
Oracle® Fusion Middleware
Oracle CQL Language Reference

19c Release (19.1.0.0.0)
F47233-01
September 2021

Oracle Fusion Middleware Oracle CQL Language Reference, 19c Release (19.1.0.0.0)

F47233-01

Copyright © 2018, 2021, Oracle and/or its affiliates.

Primary Author: Oracle® Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiii

Documentation Accessibility xiii

Conventions xiii

Syntax Diagrams xiii

1 Introduction to Oracle CQL

1.1 Fundamentals of Oracle CQL 1-1

1.1.1 Streams and Relations 1-2

1.1.1.1 Streams 1-2

1.1.1.2 Relations and GoldenGate Stream Analytics Tuple Kind Indicator 1-2

1.1.2 Stream-to-Relation Operators (Windows) 1-3

1.1.2.1 Range, Rows, and Slide 1-4

1.1.2.2 Partition 1-6

1.1.2.3 Default Stream-to-Relation Operator 1-6

1.1.3 Stream-to-Stream Operators 1-6

1.1.4 Pattern Recognition 1-6

1.1.5 Functions 1-7

1.1.6 Time 1-8

1.2 Oracle CQL and SQL Standards 1-8

2 Basic Elements of Oracle CQL

2.1 Data Types 2-1

2.1.1 Oracle CQL Built-in Data Types 2-2

2.2 Data Type Comparison Rules 2-2

2.2.1 Numeric Values 2-2

2.2.2 Date Values 2-3

2.2.3 Character Values 2-3

2.2.4 Data Type Conversion 2-3

2.2.4.1 Implicit Data Type Conversion 2-3

2.2.4.2 Explicit Data Type Conversion 2-4

iii

2.2.4.3 SQL Data Type Conversion 2-5

2.3 Literals 2-5

2.3.1 Text Literals 2-6

2.3.2 Numeric Literals 2-6

2.3.2.1 Integer Literals 2-6

2.3.2.2 Floating-Point Literals 2-7

2.3.3 Datetime Literals 2-8

2.3.4 Interval Literals 2-8

2.3.4.1 INTERVAL DAY TO SECOND 2-8

2.3.4.2 INTERVAL YEAR TO MONTH 2-10

2.4 Format Models 2-10

2.4.1 Number Format Models 2-10

2.4.2 Datetime Format Models 2-10

2.5 Nulls 2-11

2.5.1 Nulls in Oracle CQL Functions 2-11

2.5.2 Nulls with Comparison Conditions 2-11

2.5.3 Nulls in Conditions 2-12

2.6 Comments 2-12

2.7 Aliases 2-12

2.7.1 Defining Aliases Using the AS Operator 2-12

2.7.1.1 Aliases in the relation_variable Clause 2-13

2.7.1.2 Aliases in Window Operators 2-13

3 Pseudocolumns

3.1 Introduction to Pseudocolumns 3-1

3.2 ELEMENT_TIME Pseudocolumn 3-1

3.2.1 Understanding the Value of the ELEMENT_TIME Pseudocolumn 3-1

3.2.1.1 ELEMENT_TIME for a System-Timestamped Stream 3-1

3.2.1.2 ELEMENT_TIME for an Application-Timestamped Stream 3-2

3.2.1.3 ELEMENT_TIME for a Subquery 3-3

3.2.2 Using the ELEMENT_TIME Pseudocolumn in Oracle CQL Queries 3-3

3.2.2.1 Using ELEMENT_TIME With SELECT 3-3

3.2.2.2 Using ELEMENT_TIME With GROUP BY 3-4

3.2.2.3 Using ELEMENT_TIME With PATTERN 3-4

4 Operators

4.1 Introduction to Operators 4-1

4.1.1 What You May Need to Know About Unary and Binary Operators 4-1

4.1.2 What You May Need to Know About Operator Precedence 4-1

iv

4.2 Arithmetic Operators 4-2

4.3 Concatenation Operator 4-3

4.4 Alternation Operator 4-4

4.5 Range-Based Stream-to-Relation Window Operators 4-5

4.5.1 S[now] 4-6

4.5.1.1 Examples 4-6

4.5.2 S[range T] 4-6

4.5.2.1 Examples 4-6

4.5.3 S[range T1 slide T2] 4-7

4.5.3.1 Examples 4-8

4.5.4 S[range unbounded] 4-8

4.5.4.1 Examples 4-8

4.5.5 S[range C on E] 4-9

4.5.5.1 Examples 4-9

4.6 Tuple-Based Stream-to-Relation Window Operators 4-10

4.6.1 S [rows N] 4-11

4.6.1.1 Examples 4-11

4.6.2 S [rows N1 slide N2] 4-12

4.6.2.1 Examples 4-12

4.7 Partitioned Stream-to-Relation Window Operators 4-13

4.7.1 S [partition by A1,..., Ak rows N] 4-14

4.7.1.1 Examples 4-14

4.7.2 S [partition by A1,..., Ak rows N range T] 4-15

4.7.2.1 Examples 4-15

4.7.3 S [partition by A1,..., Ak rows N range T1 slide T2] 4-16

4.7.3.1 Examples 4-16

4.8 IStream Relation-to-Stream Operator 4-17

4.9 DStream Relation-to-Stream Operator 4-17

4.10 RStream Relation-to-Stream Operator 4-18

5 Expressions

5.1 Introduction to Expressions 5-1

5.2 aggr_distinct_expr 5-2

5.3 aggr_expr 5-2

5.4 arith_expr 5-4

5.5 arith_expr_list 5-5

5.5.1 Examples 5-5

5.6 case_expr 5-5

5.6.1 Examples 5-6

5.7 decode 5-8

v

5.7.1 Examples 5-9

5.8 func_expr 5-9

5.8.1 Examples 5-11

5.9 order_expr 5-12

5.9.1 Examples 5-12

6 Conditions

6.1 Introduction to Conditions 6-1

6.1.1 Condition Precedence 6-2

6.2 Comparison Conditions 6-2

6.3 Logical Conditions 6-4

6.4 LIKE Condition 6-6

6.4.1 Examples 6-7

6.5 Range Conditions 6-8

6.6 Null Conditions 6-8

6.7 Compound Conditions 6-9

6.8 IN Condition 6-9

6.8.1 Using IN and NOT IN as a Membership Condition 6-10

6.8.2 NOT IN and Null Values 6-11

7 Common Oracle CQL DDL Clauses

7.1 Introduction to Common Oracle CQL DDL Clauses 7-1

7.2 attr 7-1

7.3 attrspec 7-2

7.4 const_bigint 7-3

7.5 const_int 7-4

7.6 const_string 7-4

7.7 const_value 7-5

7.8 identifier 7-6

7.9 l-value 7-9

7.10 non_mt_arg_list 7-9

7.11 non_mt_attr_list 7-10

7.12 non_mt_attrname_list 7-10

7.13 non_mt_attrspec_list 7-11

7.14 non_mt_cond_list 7-11

7.15 out_of_line_constraint 7-12

7.16 param_list 7-13

7.17 query_ref 7-13

vi

7.18 time_spec 7-14

8 Built-In Single-Row Functions

8.1 Introduction to Oracle CQL Built-In Single-Row Functions 8-1

8.2.1 concat 8-2

8.2.2 hextoraw 8-3

8.2.3 length 8-4

8.2.4 lk 8-5

8.2.5 nvl 8-6

8.2.6 prev 8-7

8.2.7 rawtohex 8-10

8.2.8 systimestamp 8-11

8.2.9 to_bigint 8-11

8.2.10 to_boolean 8-12

8.2.11 to_char 8-13

8.2.12 to_double 8-14

8.2.13 to_float 8-14

8.2.14 to_timestamp 8-15

9 Built-In Aggregate Functions

9.1 Introduction to Oracle CQL Built-In Aggregate Functions 9-1

9.1.1 Built-In Aggregate Functions and the Where, Group By, and Having Clauses 9-2

9.2.1 avg 9-2

9.2.2 count 9-3

9.2.3 first 9-4

9.2.4 last 9-6

9.2.5 listagg 9-8

9.2.6 max 9-9

9.2.7 min 9-10

9.2.8 sum 9-11

10

Colt Single-Row Functions

10.1 Introduction to Oracle CQLBuilt-In Single-Row Colt Functions 10-1

10.2.1 beta 10-3

10.2.2 beta1 10-4

10.2.3 betaComplemented 10-5

10.2.4 binomial 10-5

10.2.5 binomial1 10-7

10.2.6 binomial2 10-8

vii

10.2.7 binomialComplemented 10-9

10.2.8 bitMaskWithBitsSetFromTo 10-10

10.2.9 ceil 10-10

10.2.10 chiSquare 10-11

10.2.11 chiSquareComplemented 10-12

10.2.12 errorFunction 10-13

10.2.13 errorFunctionComplemented 10-14

10.2.14 factorial 10-14

10.2.15 floor 10-15

10.2.16 gamma 10-16

10.2.17 gamma1 10-16

10.2.18 gammaComplemented 10-17

10.2.19 getSeedAtRowColumn 10-18

10.2.20 hash 10-19

10.2.21 hash1 10-20

10.2.22 hash2 10-20

10.2.23 hash3 10-21

10.2.24 i0 10-21

10.2.25 i0e 10-22

10.2.26 i1 10-23

10.2.27 i1e 10-24

10.2.28 incompleteBeta 10-24

10.2.29 incompleteGamma 10-25

10.2.30 incompleteGammaComplement 10-26

10.2.31 j0 10-26

10.2.32 j1 10-27

10.2.33 jn 10-28

10.2.34 k0 10-28

10.2.35 k0e 10-29

10.2.36 k1 10-30

10.2.37 k1e 10-30

10.2.38 kn 10-31

10.2.39 leastSignificantBit 10-32

10.2.40 log 10-33

10.2.41 log10 10-34

10.2.42 log2 10-34

10.2.43 logFactorial 10-35

10.2.44 logGamma 10-36

10.2.45 longFactorial 10-36

10.2.46 mostSignificantBit 10-37

10.2.47 negativeBinomial 10-38

viii

10.2.48 negativeBinomialComplemented 10-39

10.2.49 normal 10-40

10.2.50 normal1 10-40

10.2.51 normalInverse 10-41

10.2.52 poisson 10-42

10.2.53 poissonComplemented 10-43

10.2.54 stirlingCorrection 10-44

10.2.55 studentT 10-45

10.2.56 studentTInverse 10-46

10.2.57 y0 10-46

10.2.58 y1 10-47

10.2.59 yn 10-48

11

Colt Aggregate Functions

11.1 Introduction to Oracle CQL Built-In Aggregate Colt Functions 11-1

11.1.1 Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments 11-3

11.1.2 Colt Aggregate Functions and the Where, Group By, and Having Clauses 11-3

11.2.1 autoCorrelation 11-4

11.2.2 correlation 11-5

11.2.3 covariance 11-6

11.2.4 geometricMean 11-7

11.2.5 geometricMean1 11-8

11.2.6 harmonicMean 11-9

11.2.7 kurtosis 11-10

11.2.8 lag1 11-11

11.2.9 mean 11-12

11.2.10 meanDeviation 11-13

11.2.11 median 11-14

11.2.12 moment 11-16

11.2.13 pooledMean 11-17

11.2.14 pooledVariance 11-18

11.2.15 product 11-19

11.2.16 quantile 11-20

11.2.17 quantileInverse 11-21

11.2.18 rankInterpolated 11-22

11.2.19 rms 11-23

11.2.20 sampleKurtosis 11-24

11.2.21 sampleKurtosisStandardError 11-25

11.2.22 sampleSkew 11-25

11.2.23 sampleSkewStandardError 11-26

ix

11.2.24 sampleVariance 11-27

11.2.25 skew 11-28

11.2.26 standardDeviation 11-29

11.2.27 standardError 11-30

11.2.28 sumOfInversions 11-31

11.2.29 sumOfLogarithms 11-32

11.2.30 sumOfPowerDeviations 11-33

11.2.31 sumOfPowers 11-34

11.2.32 sumOfSquaredDeviations 11-35

11.2.33 sumOfSquares 11-36

11.2.34 trimmedMean 11-37

11.2.35 variance 11-38

11.2.36 weightedMean 11-39

11.2.37 winsorizedMean 11-40

12

java.lang.Math Functions

12.1 Introduction to Oracle CQL Built-In java.lang.Math Functions 12-1

12.2.1 abs 12-2

12.2.2 abs1 12-3

12.2.3 abs2 12-4

12.2.4 abs3 12-4

12.2.5 acos 12-5

12.2.6 asin 12-5

12.2.7 atan 12-6

12.2.8 atan2 12-7

12.2.9 cbrt 12-7

12.2.10 ceil1 12-8

12.2.11 cos 12-9

12.2.12 cosh 12-9

12.2.13 exp 12-10

12.2.14 expm1 12-11

12.2.15 floor1 12-12

12.2.16 hypot 12-12

12.2.17 IEEEremainder 12-13

12.2.18 log1 12-14

12.2.19 log101 12-15

12.2.20 log1p 12-15

12.2.21 pow 12-16

12.2.22 rint 12-17

12.2.23 round 12-17

x

12.2.24 round1 12-18

12.2.25 signum 12-19

12.2.26 signum1 12-19

12.2.27 sin 12-20

12.2.28 sinh 12-21

12.2.29 sqrt 12-21

12.2.30 tan 12-22

12.2.31 tanh 12-23

12.2.32 todegrees 12-23

12.2.33 toradians 12-24

12.2.34 ulp 12-25

12.2.35 ulp1 12-25

13

Pattern Recognition With MATCH_RECOGNIZE

13.1 Understanding Pattern Recognition With MATCH_RECOGNIZE 13-1

13.1.1 MATCH_RECOGNIZE and the WHERE Clause 13-2

13.1.2 Referencing Singleton and Group Matches 13-3

13.1.3 Referencing Aggregates 13-3

13.1.3.1 Running Aggregates and Final Aggregates 13-4

13.1.3.2 Operating on the Same Correlation Variable 13-4

13.1.3.3 Referencing Variables That Have not Been Matched Yet 13-5

13.1.3.4 Referencing Attributes not Qualified by Correlation Variable 13-5

13.1.3.5 Using count With *, identifier.*, and identifier.attr 13-5

13.1.3.6 Using first and last 13-7

13.1.4 Using prev 13-7

13.2 MEASURES Clause 13-8

13.2.1 Functions Over Correlation Variables in the MEASURES Clause 13-9

13.3 PATTERN Clause 13-10

13.3.1 Pattern Quantifiers and Regular Expressions 13-10

13.3.2 Grouping and Alternation in the PATTERN Clause 13-12

13.4 DEFINE Clause 13-13

13.4.1 Functions Over Correlation Variables in the DEFINE Clause 13-14

13.4.2 Referencing Attributes in the DEFINE Clause 13-15

13.4.3 Referencing One Correlation Variable From Another in the DEFINE Clause 13-16

13.5 PARTITION BY Clause 13-17

13.6 ALL MATCHES Clause 13-18

13.7 WITHIN Clause 13-20

13.8 DURATION Clause 13-21

13.8.1 Fixed Duration Non-Event Detection 13-22

13.8.2 Recurring Non-Event Detection 13-23

xi

13.9 INCLUDE TIMER EVENTS Clause 13-24

13.10 SUBSET Clause 13-24

13.11 MATCH_RECOGNIZE Examples 13-27

13.11.1 Pattern Detection 13-27

13.11.2 Pattern Detection With PARTITION BY 13-29

13.11.3 Pattern Detection With Aggregates 13-30

13.11.4 Pattern Detection With the WITHIN Clause 13-31

13.11.5 Fixed Duration Non-Event Detection 13-32

14

Oracle CQL Statements

14.1 Query 14-1

14.1.1 Query Semantics 14-5

14.1.2 Query Examples 14-10

xii

Preface

This reference contains a complete description of the Oracle Continuous Query Language
(Oracle CQL), a query language based on SQL with added constructs that support streaming
data. Using Oracle CQL, you can express queries on data streams to perform event
processing using Oracle Stream Explorer. Oracle CQL is a new technology but it is based on
a subset of SQL99.

Audience
This document is intended for all users of Oracle CQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Syntax Diagrams
Syntax descriptions are provided in this book for various Oracle CQL, SQL, PL/SQL, or other
command-line constructs in graphic form or Backus Naur Form (BNF).

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction to Oracle CQL

Oracle Continuous Query Language (Oracle CQL) is a SQL based query language, with
added constructs that support streaming data. Using Oracle CQL, you can express queries
on data streams using GoldenGate Stream Analytics (GGSA).

1.1 Fundamentals of Oracle CQL
Databases are best equipped to run queries over finite stored data sets. However, many
modern applications require long-running queries over continuous unbounded sets of data.
By design, a stored data set is appropriate when significant portions of the data are queried
repeatedly and updates are relatively infrequent. In contrast, data streams represent data that
is changing constantly, often exclusively through insertions of new elements. It is either
unnecessary or impractical to operate on large portions of the data multiple times.

Many types of applications generate data streams as opposed to data sets, including sensor
data applications, financial tickers, network performance measuring tools, network monitoring
and traffic management applications, and clickstream analysis tools. Managing and
processing data for these types of applications involves building data management and
querying capabilities with a strong temporal focus.

To address this requirement, Oracle introduces GoldenGate Stream Analytics (GGSA), a data
management infrastructure that supports the notion of streams of structured data records
together with stored relations.

To provide a uniform declarative framework, Oracle offers Oracle Continuous Query
Language (Oracle CQL), a query language based on SQL with added constructs that support
streaming data.

Oracle CQL is designed to be:

• Scalable with support for a large number of queries over continuous streams of data and
traditional stored data sets.

• Comprehensive to deal with complex scenarios. For example, through composability, you
can create various intermediate views for querying.

Using GGSA, you can define event adapters for a variety of data sources including JMS,
relational database tables, and files in the local file system. You can connect multiple input
channels to an Oracle CQL processor and you can connect an Oracle CQL processor to
multiple output channels. You can connect an output channel to another Oracle CQL
processor, to an adapter, to a cache, or an event Bean.

For more information on these elements, see:

• Streams and Relations

• Stream-to-Relation Operators (Windows)

• Stream-to-Stream Operators

• Pattern Recognition

• Functions

1-1

• Time

1.1.1 Streams and Relations
Using Oracle CQL, you can perform the following operations with streams and
relations:

• Stream-to-Relation Operators (Windows): to create a relation from a stream

• Stream-to-Stream Operators: to create a stream from one or more other streams.

1.1.1.1 Streams
A stream is the principle source of data that Oracle CQL queries act on.

Stream S is a bag (or multi-set) of elements (s,T) where s is in the schema of S and T
is in the time domain.

Stream elements are tuple-timestamp pairs, which can be represented as a sequence
of timestamped tuple insertions. In other words, a stream is a sequence of
timestamped tuples. There could be more than one tuple with the same timestamp.
The tuples of an input stream are required to arrive at the system in the order of
increasing timestamps. For more information, see Time.

A stream has an associated schema consisting of a set of named attributes, and all
tuples of the stream conform to the schema.

The term "tuple of a stream" denotes the ordered list of data portion of a stream
element, excluding timestamp data (the s of <s,t>). The following example shows how
a stock ticker data stream might appear, where each stream element is made up of
<timestamp value>, <stock symbol>, and <stock price>:

...
<timestampN> NVDA,4
<timestampN+1> ORCL,62
<timestampN+2> PCAR,38
<timestampN+3> SPOT,53
<timestampN+4> PDCO,44
<timestampN+5> PTEN,50
...

In the stream element <timestampN+1> ORCL,62, the tuple is ORCL,62.

By definition, a stream is unbounded.

1.1.1.2 Relations and GoldenGate Stream Analytics Tuple Kind Indicator
By default, GGSA includes time stamp and a GGSA tuple kind indicator in the relations
it generates.

Timestamp Tuple Kind Tuple
 1000: + ,abc,abc
 2000: + hihi,abchi,hiabc
 6000: - ,abc,abc
 7000: - hihi,abchi,hiabc
 8000: + hi1hi1,abchi1,hi1abc
 9000: + ,abc,abc
13000: - hi1hi1,abchi1,hi1abc
14000: - ,abc,abc
15000: + xyzxyz,abcxyz,xyzabc
20000: - xyzxyz,abcxyz,xyzabc

Chapter 1
Fundamentals of Oracle CQL

1-2

The GGSA tuple kind indicators are:

• + for inserted tuple

• - for deleted tuple

• U for updated tuple

1.1.2 Stream-to-Relation Operators (Windows)
Oracle CQL supports stream-to-relation operations based on a sliding window. In general,
S[W] is a relation. At time T the relation contains all tuples in window W applied to stream S up
to T.

Queries that have the same source (stream) and window specifications are optimized by the
system to share common memory space. When a new query is added with these parameters,
it automatically receives the content (events) of this shared window. This optimization can
cause the query to output initial events even though it might not have received newly added
events.

window_type::=

Figure 1-1 window_type

Oracle CQL supports the following built-in window types:

• Range: time-based

S[Range T], or, optionally,

S[Range T1 Slide T2]

• Range: time-based unbounded

S[Range Unbounded]

• Range: time-based now

S[Now]

• Range: constant value

S[Range C on ID]

• Tuple-based:

S[Rows N], or, optionally,

Chapter 1
Fundamentals of Oracle CQL

1-3

S[Rows N1 Slide N2]

• Partitioned:

S[Partition By A1 ... Ak Rows N] or, optionally,

S[Partition By A1 ... Ak Rows N Range T], or

S[Partition By A1 ... Ak Rows N Range T1 Slide T2]

This section describes the following stream-to-relation operator properties:

• Range, Rows, and Slide

• Partition

• Default Stream-to-Relation Operator.

For more information, see:

• Range-Based Stream-to-Relation Window Operators

• Tuple-Based Stream-to-Relation Window Operators

• Partitioned Stream-to-Relation Window Operators.

1.1.2.1 Range, Rows, and Slide
The keywords Range and Rows specify how much data you want to query:

• Range specifies as many tuples as arrive in a given time period

• Rows specifies a number of tuples

The Slide keyword specifies how frequently you want to see output from the query,
while the Range keyword specifies the time range from which to query events. Using
Range and Slide together results in a set of events from which to query, with that set
changing based on where the query window slides to.

So the set time is the time from which events get drawn for the query.So the time
interval is the actual amount of time (as measured by event timestamps) divided by the
amount of time specified for sliding. If the remainder from this is 0, then the set time is
the time interval multiplied by the amount of time specified for the slide. If the
remainder is greater than 0, then the set time is the time interval + 1 multiplied by the
amount of time specified for the slide.

Another way to express this is the following formula: timeInterval = actualTime /
slideSpecification if((actualTime % slideSpecification) == 0) // No
remainder setTime = timeInterval * slideSpecification else setTime =
(timeInterval + 1) * slideSpecification.

In Figure 1-2, the Range specification indicates "I want to look at 4 seconds worth of
data" and the Slide specification indicates "I want a result every 4 seconds". In this
case, the query returns a result at the end of each Slide specification (except for
certain conditions, as Range, Rows, and Slide at Query Start-Up and for Empty
Relations describes).

Chapter 1
Fundamentals of Oracle CQL

1-4

Figure 1-2 Range and Slide: Equal (Steady-State Condition)

In Figure 1-2, the Range specification indicates "I want to look at 8 seconds worth of data" and
the Slide specification indicates "I want a result every 4 seconds". In this case, the query
returns a result twice during each Range specification (except for certain conditions, as
Range, Rows, and Slide at Query Start-Up and for Empty Relations describes)

Figure 1-3 Range and Slide: Different (Steady-State Condition)

Table 1-1 lists the default Range, Range unit, and Slide (where applicable) for range-based
and tuple-based stream-to-relation window operators:

Table 1-1 Default Range and Tuple-Based Stream-to-Relation Operators

Window Operator Default
Range

Default Range
Unit

Default Slide

Range-Based Stream-to-Relation Window Operators Unbound
ed

seconds 1 nanosecond

Tuple-Based Stream-to-Relation Window Operators N/A N/A 1 tuple

1.1.2.1.1 Range, Rows, and Slide at Query Start-Up and for Empty Relations
Table 1-2 lists the behavior of Range, Rows, and Slide for special cases such as query start-
up time and for an empty relation.

Table 1-2 Range, Rows, and Slide at Query Start-Up and Empty Relations

Operator or Function Result

COUNT(*) or
COUNT(expression)

Immediately returns 0 for an empty relation (when there is no GROUP BY),
before Range or Rows worth of data has accumulated and before the first
Slide.

SUM(attribute) and
other aggregate
functions

Immediately returns null for an empty relation, before Range or Rows worth
of data has accumulated and before the first Slide.

For more information and detailed examples, see:

Chapter 1
Fundamentals of Oracle CQL

1-5

• Range-Based Stream-to-Relation Window Operators

• Tuple-Based Stream-to-Relation Window Operators

• Partitioned Stream-to-Relation Window Operators

• Functions

• Using count With *, identifier.*, and identifier.attr.

1.1.2.2 Partition
The keyword Partition By logically separates an event stream S into different
substreams based on the equality of the attributes given in the Partition By
specification. For example, the S[Partition By A,C Rows 2] partition specification
creates a sub-stream for every unique combination of A and C value pairs and the Rows
specification is applied on these sub-streams. The Rows specification indicates "I want
to look at 2 tuples worth of data".

For more information, see Range, Rows, and Slide.

1.1.2.3 Default Stream-to-Relation Operator
When you reference a stream in an Oracle CQL query where a relation is expected
(most commonly in the from clause), a Range Unbounded window is applied to the
stream by default. For example, the queries in the following examples are identical:

<query id="q1"><![CDATA[
 select * from InputChannel
]]></query>

<query id="q1"><![CDATA[
 IStream(select * from InputChannel[RANGE UNBOUNDED])
]]></query>

1.1.3 Stream-to-Stream Operators
Typically, you perform stream to stream operations using the following:

• A stream-to-relation operator to turn the stream into a relation. For more
information, see Stream-to-Relation Operators (Windows).

For more information, see:

• Default Stream-to-Relation Operator

In addition, Oracle CQL supports the following direct stream-to-stream operator:

• MATCH_RECOGNIZE: use this clause to write various types of pattern recognition
queries on the input stream. For more information, see Pattern Recognition.

1.1.4 Pattern Recognition
The Oracle CQL MATCH_RECOGNIZE construct is the principle means of performing
pattern recognition.

A sequence of consecutive events or tuples in the input stream, each satisfying certain
conditions constitutes a pattern. The pattern recognition functionality in Oracle CQL
allows you to define conditions on the attributes of incoming events or tuples and to

Chapter 1
Fundamentals of Oracle CQL

1-6

identify these conditions by using String names called correlation variables. The pattern to
be matched is specified as a regular expression over these correlation variables and it
determines the sequence or order in which conditions should be satisfied by different
incoming tuples to be recognized as a valid match.

For more information, see Pattern Recognition With MATCH_RECOGNIZE.

1.1.5 Functions
Functions are similar to operators in that they manipulate data items and return a result.
Functions differ from operators in the format of their arguments. This format enables them to
operate on zero, one, two, or more arguments:

function(argument, argument, ...)

A function without any arguments is similar to a pseudocolumn (refer to Pseudocolumns).
However, a pseudocolumn typically returns a different value for each tuple in a relation,
whereas a function without any arguments typically returns the same value for each tuple.

Oracle CQL provides a wide variety of built-in functions to perform operations on stream data,
including:

• single-row functions that return a single result row for every row of a queried stream or
view

• aggregate functions that return a single aggregate result based on group of tuples, rather
than on a single tuple

• single-row statistical and advanced arithmetic operations based on the Colt open source
libraries for high performance scientific and technical computing.

• aggregate statistical and advanced arithmetic operations based on the Colt open source
libraries for high performance scientific and technical computing.

• statistical and advanced arithmetic operations based on the java.lang.Math class

If you call an Oracle CQL function with an argument of a data type other than the data type
expected by the Oracle CQL function, then GGSA attempts to convert the argument to the
expected data type before performing the Oracle CQL function.

Oracle CQL provides a variety of built-in single-row functions and aggregate functions based
on the Colt open source libraries for high performance scientific and technical computing. The
functions which are available as part of Colt library will not support Big Decimal data type and
NULL input values. Also the value computation of the functions are not incremental. See the
COLT website for details.

Note:

Function names are case sensitive:

• Built-in functions: lower case.

For more information, see:

• Built-In Single-Row Functions

• Built-In Aggregate Functions

Chapter 1
Fundamentals of Oracle CQL

1-7

• Colt Single-Row Functions

• Colt Aggregate Functions

• java.lang.Math Functions

• Data Type Conversion.

1.1.6 Time
Timestamps are an integral part of a GGSA stream. However, timestamps do not
necessarily equate to clock time. For example, time may be defined in the application
domain where it is represented by a sequence number. Timestamps need only
guarantee that updates arrive at the system in the order of increasing timestamp
values.

Note that the timestamp ordering requirement is specific to one stream or a relation.
For example, tuples of different streams could be arbitrarily interleaved. The order of
processing tuples with the same time-stamps is not guaranteed in the case where
multiple streams are processing. In addition, there is no defined behavior for negative
timestamps. For t = 0, the event will be outputted immediately, assuming total order.

GGSA can observe the processing time and event time.

For system timestamped relations or streams, time is dependent upon the arrival of
data on the relation or stream data source. GGSA generates a heartbeat on a system
timestamped relation or stream if there is no activity (no data arriving on the stream or
relation's source) for more than a specified time: for example, 1 minute. Either the
relation or stream is populated by its specified source or GGSA generates a heartbeat
every minute. This way, the relation or stream can never be more than 1 minute
behind.

For system timestamped streams and relations, the system assigns time in such a way
that no two events have the same value of time. However, for application timestamped
streams and relations, events could have same value of time.

1.2 Oracle CQL and SQL Standards
Oracle CQL is a new technology but it is based on a subset of SQL99.

Oracle strives to comply with industry-accepted standards and participates actively in
SQL standards committees. Oracle is actively pursuing Oracle CQL standardization.

Chapter 1
Oracle CQL and SQL Standards

1-8

2
Basic Elements of Oracle CQL

This chapter provides a reference for the basic Oracle CQL elements such as, data types,
literals, nulls, etc.

2.1 Data Types
Each value manipulated by GGSA has a data type. The data type of a value associates a
fixed set of properties with the value. These properties cause GGSA to treat values of one
data type differently from values of another. For example, you can add values of INTEGER data
type, but not values of CHAR data type. When you create a stream, you must specify a data
type for each of its elements.

For more information, see:

• Oracle CQL Built-in Data Types

• Data Type Comparison Rules

• Literals

• Format Models

datatype::=

variable_length_datatype::=

fixed_length_datatype::=

2-1

2.1.1 Oracle CQL Built-in Data Types
Table 2-1 summarizes Oracle CQL built-in data types. Refer to the syntax in the
preceding sections for the syntactic elements.

Consider these data type and data type literal restrictions when defining event types.

Table 2-1 Oracle CQL Built-in Data Type Summary

Oracle CQL Data
Type

Description

BIGINT Fixed-length number equivalent to a Java Long type.

For more information, see Numeric LiteralsNumeric LiteralsNumeric
LiteralsNumeric LiteralsNumeric Literals.

BOOLEAN Fixed-length boolean equivalent to a Java Boolean type. Valid values
are true or false.

CHAR[(size)]

Oracle CQL supports
single-dimension
arrays only.

Variable-length character data of length size characters. Maximum
size is 4096 characters. Default and minimum size is 1 character.

For more information, see Text Literals.

DOUBLE Fixed-length number equivalent to a Java double type.

For more information, see Numeric Literals.

FLOAT Fixed-length number equivalent to a Java float type.

For more information, see Numeric Literals.

INTEGER Fixed-length number equivalent to a Java int type.

For more information, see Numeric Literals.

INTERVAL Fixed-length INTERVAL data type specifies a period of time. GGSA
supports DAY TO SECOND and YEAR TO MONTH. Maximum length is
64 bytes. This corresponds to a Java long type.

For more information, see Interval Literals.

TIMESTAMP Fixed-length TIMESTAMP data type stores a datetime literal that
conforms to one of the java.text.SimpleDateFormat format
models that Oracle CQL supports. Maximum length is 64 bytes.

For more information, see Datetime Literals.

2.2 Data Type Comparison Rules
This section describes how GGSA compares values of each data type.

2.2.1 Numeric Values
A larger value is considered greater than a smaller one. All negative numbers are less
than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

Chapter 2
Data Type Comparison Rules

2-2

2.2.2 Date Values
A later date is considered greater than an earlier one. For example, the date equivalent of
'29-MAR-2005' is less than that of '05-JAN-2006' and '05-JAN-2006 1:35pm' is greater than
'05-JAN-2005 10:09am'.

2.2.3 Character Values
Oracle CQL supports Lexicographic sort based on dictionary order.

Internally, Oracle CQL compares the numeric value of the char. Depending on the encoding
used, the numeric values will differ, but in general, the comparison will remain the same. For
example:

'a' < 'b'
'aa' < 'ab'
'aaaa' < 'aaaab'

2.2.4 Data Type Conversion
Generally an expression cannot contain values of different data types. For example, an
arithmetic expression cannot multiply 5 by 10 and then add 'JAMES'. However, GGSA
supports both implicit and explicit conversion of values from one data type to another.

Oracle recommends that you specify explicit conversions, rather than rely on implicit or
automatic conversions, for these reasons:

• Oracle CQL statements are easier to understand when you use explicit data type
conversion functions.

• Implicit data type conversion can have a negative impact on performance.

• Implicit conversion depends on the context in which it occurs and may not work the same
way in every case.

• Algorithms for implicit conversion are subject to change across software releases and
among Oracle products. Behavior of explicit conversions is more predictable.

This section describes:

• Implicit Data Type Conversion

• Explicit Data Type Conversion

• SQL Data Type Conversion

2.2.4.1 Implicit Data Type Conversion
GGSA automatically converts a value from one data type to another when such a conversion
makes sense.

Table 2-2 is a matrix of Oracle implicit conversions. The table shows all possible conversions
(marked with an X). Unsupported conversions are marked with a --.

Chapter 2
Data Type Comparison Rules

2-3

Table 2-2 Implicit Type Conversion Matrix

from/to to
CHA
R

to
BYTE

to
BOO
LEAN

to
INTE
GER

to
DOU
BLE

to
BIGI
NT

to
FLOA
T

to
TIME
STA
MP

to
INTE
RVAL

from CHAR -- -- -- -- -- -- -- X --

from BYTE X -- -- -- -- -- -- -- --

from BOOLEAN -- -- X -- -- -- -- -- --

from INTEGER X -- -- -- X X X -- --

from DOUBLE X -- -- -- X -- -- -- --

from BIGINT X -- -- -- X -- X -- --

from FLOAT X -- -- -- X -- -- -- --

from TIMESTAMP X -- -- -- -- -- -- -- --

from INTERVAL X -- -- -- -- -- -- -- --

The following rules govern the direction in which GGSA makes implicit data type
conversions:

• During SELECT FROM operations, GGSA converts the data from the stream to the
type of the target variable if the select clause contains arithmetic expressions or
condition evaluations.

For example, implicit conversions occurs in the context of expression evaluation,
such as c1+2.0, or condition evaluation, such as c1 < 2.0, where c1 is of type
INTEGER.

• Conversions from FLOAT to BIGINT are exact.

• Conversions from BIGINT to FLOAT are inexact if the BIGINT value uses more bits
of precision that supported by the FLOAT.

• When comparing a character value with a TIMESTAMP value, GGSA converts the
character data to TIMESTAMP.

• When you use a Oracle CQL function or operator with an argument of a data type
other than the one it accepts, GGSA converts the argument to the accepted data
type wherever supported.

• When making assignments, GGSA converts the value on the right side of the
equal sign (=) to the data type of the target of the assignment on the left side.

• During concatenation operations, GGSA converts from non-character data types
to CHAR.

• During arithmetic operations on and comparisons between character and non-
character data types, GGSA converts from numeric types to CHAR as Table 2-2
shows.

2.2.4.2 Explicit Data Type Conversion
You can explicitly specify data type conversions using Oracle CQL conversion
functions. Table 2-3 shows Oracle CQL functions that explicitly convert a value from
one data type to another. Unsupported conversions are marked with a --.

Chapter 2
Data Type Comparison Rules

2-4

Table 2-3 Explicit Type Conversion Matrix

from/to to
CHAR

to BYTE to
BOOL
EAN

to
INTEG
ER

to
DOUB
LE

to
BIGINT

to
FLOAT

to
TIMESTA
MP

to
INTE
RVAL

from
CHAR

-- hextoraw -- -- -- -- -- to_timesta
mp

--

from
BYTE

-- rawtohex -- -- -- -- -- -- --

from
BOOLEAN

-- -- -- -- -- -- -- -- --

from
INTEGER

to_char -- to_bool
ean

-- to_doub
le

to_bigint to_float -- --

from
DOUBLE

to_char -- -- -- -- -- -- -- --

from
LONG

-- -- -- -- -- -- -- to_timesta
mp

--

from
BIGINT

to_char -- to_bool
ean

-- to_doub
le

-- to_float -- --

from
FLOAT

to_char -- -- -- to_doub
le

-- -- -- --

from
TIMESTAM
P

to_char -- -- -- -- -- -- -- --

from
INTERVAL

to_char -- -- -- -- -- -- -- --

2.2.4.3 SQL Data Type Conversion
Using an Oracle CQL processor, you can specify a relational database table as an event
source. You can query this event source, join it with other event sources, and so on. When
doing so, you must observe the SQL and data type equivalents that GGSA supports.

2.3 Literals
The terms literal and constant value are synonymous and refer to a fixed data value. For
example, 'JACK', 'BLUE ISLAND', and '101' are all text literals; 5001 is a numeric literal.

GGSA supports the following types of literals in Oracle CQL statements:

• Text Literals

• Numeric Literals

• Datetime Literals

• Interval Literals.

Chapter 2
Literals

2-5

2.3.1 Text Literals
Use the text literal notation to specify values whenever const_string,
quoted_string_double_quotes, or quoted_string_single_quotes appears in the
syntax of expressions, conditions, Oracle CQL functions, and Oracle CQL statements
in other parts of this reference. This reference uses the terms text literal, character
literal, and string interchangeably.

Text literals are enclosed in single or double quotation marks so that GGSA can
distinguish them from schema object names.

You may use single quotation marks (') or double quotation marks ("). Typically, you
use double quotation marks. However, for certain expressions, conditions, functions,
and statements, you must use the quotation marks as specified in the syntax given in
other parts of this reference: either quoted_string_double_quotes or
quoted_string_single_quotes.

If the syntax uses simply const_string, then you can use either single or double
quotation marks.

If the syntax uses the term char, then you can specify either a text literal or another
expression that resolves to character data. When char appears in the syntax, the
single quotation marks are not used.

GGSA supports Java localization. You can specify text literals in the character set
specified by your Java locale.

For more information, see const_string

2.3.2 Numeric Literals
Use numeric literal notation to specify fixed and floating-point numbers.

2.3.2.1 Integer Literals
You must use the integer notation to specify an integer whenever integer appears in
expressions, conditions, Oracle CQL functions, and Oracle CQL statements described
in other parts of this reference.

The syntax of integer follows:

integer::=

where digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

An integer can store a maximum of 32 digits of precision.

Here are some valid integers:

Chapter 2
Literals

2-6

7
+255

2.3.2.2 Floating-Point Literals
You must use the number or floating-point notation to specify values whenever number or n
appears in expressions, conditions, Oracle CQL functions, and Oracle CQL statements in
other parts of this reference.

The syntax of number follows:

number::=

where

• + or - indicates a positive or negative value. If you omit the sign, then a positive value is
the default.

• digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9.

• f or F indicates that the number is a 32-bit binary floating point number of type FLOAT.

• d or D indicates that the number is a 64-bit binary floating point number of type DOUBLE.
pcbpel/cep/src/oracle/cep/common/Constants.BIGINT_LENGTH

If you omit f or F and d or D, then the number is of type INTEGER.

The suffixes f or F and d or D are supported only in floating-point number literals, not in
character strings that are to be converted to INTEGER. For example, if GGSA is expecting
an INTEGER and it encounters the string '9', then it converts the string to the Java
Integer 9. However, if GGSA encounters the string '9f', then conversion fails and an
error is returned.

A number of type INTEGER can store a maximum of 32 digits of precision. If the literal requires
more precision than provided by BIGINT or FLOAT, then GGSA truncates the value. If the
range of the literal exceeds the range supported by BIGINT or FLOAT, then GGSA raises an
error.

If your Java locale uses a decimal character other than a period (.), then you must specify
numeric literals with 'text' notation. In such cases GGSA automatically converts the text
literal to a numeric value.

Note:

You cannot use this notation for floating-point number literals.

For example, if your Java locale specifies a decimal character of comma (,), specify the
number 5.123 as follows:

'5,123'

Chapter 2
Literals

2-7

Here are some valid NUMBER literals:

25
+6.34
0.5
-1

Here are some valid floating-point number literals:

25f
+6.34F
0.5d
-1D

2.3.3 Datetime Literals
GGSA supports datetime data type TIMESTAMP.

Datetime literals must not exceed 64 bytes.

All datetime literals must conform to one of the java.text.SimpleDateFormat format
models that Oracle CQL supports. For more information, see Datetime Format Models.

For example, if your XML event uses an XSD, Oracle CQL cannot parse the
MyTimestamp element.

Oracle recommends that you define your XSD to replace xsd:dateTime with
xsd:string.

Using the XSD, Oracle CQL can process events as long as the Timestamp element's
String value conforms to the java.text.SimpleDateFormat format models that
Oracle CQL supports. For more information, see Datetime Format Models.

2.3.4 Interval Literals
An interval literal specifies a period of time. GGSA supports interval literal DAY TO
SECOND. This literal contains a leading field and may contain a trailing field. The leading
field defines the basic unit of date or time being measured. The trailing field defines
the smallest increment of the basic unit being considered. Part ranges (such as only
SECOND or MINUTE to SECOND) are not supported.

Interval literals must not exceed 64 bytes.

2.3.4.1 INTERVAL DAY TO SECOND
Stores time in terms of days, hours, minutes, and seconds.

Specify DAY TO SECOND interval literals using the following syntax:

interval_value::=

where const_string is a TIMESTAMP value that conforms to the appropriate datetime
format model (see Datetime Format Models).

Chapter 2
Literals

2-8

Restriction on the Leading Field:

If you specify a trailing field, then it must be less significant than the leading field. For
example, INTERVAL MINUTE TO DAY is not valid. As a result of this restriction, if SECOND is the
leading field, the interval literal cannot have any trailing field.

The valid range of values for the trailing field are as follows:

• SECOND: 0 to 59.999999999

Examples of the various forms of INTERVAL DAY TO SECOND literals follow:

Form of Interval Literal Interpretation

INTERVAL '4 5:12:10.222' DAY TO
SECOND(3)

4 days, 5 hours, 12 minutes, 10 seconds, and 222
thousandths of a second.

You can add or subtract one DAY TO SECOND interval literal from another DAY TO SECOND literal
and compare one interval literal to another. In this example, stream tkdata2_SIn1 has
schema (c1 integer, c2 interval).

<query id="tkdata2_q295"><![CDATA
select * from tkdata2_SIn1 where (c2 + INTERVAL "2 1:03:45.10" DAY TO SECOND) > INTERVAL "6
12:23:45.10" DAY TO SECOND
]]></query>

Using INTERVAL DAY TO SECOND in the define clause of pattern match:

query 'select its.itemId from ch0
MATCH_RECOGNIZE (
PARTITION BY itemId
MEASURES A.itemId as itemId
PATTERN (A B* C)
DEFINE A AS (A.temp >= 25),
B AS ((B.temp >= 25) and
(to_timestamp(B.element_time) - to_timestamp(A.element_time) <
INTERVAL "00:00:05.00" HOUR TO SECOND)),
C AS (to_timestamp(C.element_time) - to_timestamp(A.element_time)
>= INTERVAL "00:05.00" MINUTE TO SECOND)
) as its'

Input:

send [itemId=2 temp=30]
send [itemId=2 temp=55]
thread:sleep 5000
send [itemId=2 temp=125]

Output:

-> insert event: {itemId=2}

Chapter 2
Literals

2-9

2.3.4.2 INTERVAL YEAR TO MONTH
Stores time in terms of years and months.

Examples of the various forms of INTERVALYEARTOMONTH literals follow:

Form of Interval Literal Interpretation

INTERVAL "12-10" YEAR TO MONTH 12 years and 10 months.

Note:

If used in the query DDL, the INTERVAL YEAR TO MONTH notation is used to
specify constant in the CQL query. Specify a constant interval value instead
of a variable.

2.4 Format Models
A format model is a character literal that describes the format of datetime or numeric
data stored in a character string. When you convert a character string into a date or
number, a format model determines how GGSA interprets the string. The following
format models are relevant to Oracle CQL queries:

• Number Format Models

• Datetime Format Models.

2.4.1 Number Format Models
You can use number format models in the following functions:

• In the function to translate a value of int data type to bigint data type.

• In the to_float function to translate a value of int or bigint data type to float data
type

2.4.2 Datetime Format Models
Oracle CQL supports the format models that the java.text.SimpleDateFormat
specifies.

Table 2-4 lists the java.text.SimpleDateFormat models that Oracle CQL uses to
interpret TIMESTAMP literals. For more information, see Datetime Literals.

Table 2-4 Datetime Format Models

Format Model Example

MM/dd/yyyy HH:mm:ss Z 11/21/2005 11:14:23 -0800

MM/dd/yyyy HH:mm:ss z 11/21/2005 11:14:23 PST

Chapter 2
Format Models

2-10

Table 2-4 (Cont.) Datetime Format Models

Format Model Example

MM/dd/yyyy HH:mm:ss 11/21/2005 11:14:23

MM-dd-yyyy HH:mm:ss 11-21-2005 11:14:23

dd-MMM-yy 15-DEC-01

yyyy-MM-dd'T'HH:mm:ss 2005-01-01T08:12:12

You can use a datetime format model in the following functions:

• to_timestamp: to translate the value of a char data type to a TIMESTAMP data type.

2.5 Nulls
If a column in a row has no value, then the column is said to be null, or to contain null. Nulls
can appear in tuples of any data type that are not restricted by primary key integrity
constraints. Use a null when the actual value is not known or when a value would not be
meaningful.

GGSA treats a character value with a length of zero as it is, not like SQL. However, do not
use null to represent a numeric value of zero, because they are not equivalent.

Any arithmetic expression containing a null always evaluates to null. For example, null added
to 10 is null. In fact, all operators (except concatenation) return null when given a null
operand.

For more information, see:

• nvl.

• out_of_line_constraint.

2.5.1 Nulls in Oracle CQL Functions
All scalar functions (except nvl and concat) return null when given a null argument. You can
use the nvl function to return a value when a null occurs. For example, the expression
NVL(commission_pct,0) returns 0 if commission_pct is null or the value of commission_pct if
it is not null.

Most aggregate functions ignore nulls. For example, consider a query that averages the five
values 1000, null, null, null, and 2000. Such a query ignores the nulls and calculates the
average to be (1000+2000)/2 = 1500.

2.5.2 Nulls with Comparison Conditions
To test for nulls, use only the null comparison conditions (see null_conditions::=). If you use
any other condition with nulls and the result depends on the value of the null, then the result
is UNKNOWN. Because null represents a lack of data, a null cannot be equal or unequal to any
value or to another null. However, GGSA considers two nulls to be equal when evaluating a
decode expression. See decode::= for syntax and additional information.

Chapter 2
Nulls

2-11

2.5.3 Nulls in Conditions
A condition that evaluates to UNKNOWN acts almost like FALSE. For example, a SELECT
statement with a condition in the WHERE clause that evaluates to UNKNOWN returns no
tuples. However, a condition evaluating to UNKNOWN differs from FALSE in that further
operations on an UNKNOWN condition evaluation will evaluate to UNKNOWN. Thus, NOT
FALSE evaluates to TRUE, but NOT UNKNOWN evaluates to UNKNOWN.

Table 2-5 shows examples of various evaluations involving nulls in conditions. If the
conditions evaluating to UNKNOWN were used in a WHERE clause of a SELECT statement,
then no rows would be returned for that query.

Table 2-5 Conditions Containing Nulls

Condition Value of A Evaluation

a IS NULL 10 FALSE

a IS NOT NULL 10 TRUE

a IS NULL NULL TRUE

a IS NOT NULL NULL FALSE

a = NULL 10 FALSE

a != NULL 10 FALSE

a = NULL NULL FALSE

a != NULL NULL FALSE

a = 10 NULL FALSE

a != 10 NULL FALSE

For more information, see Null Conditions .

2.6 Comments
Oracle CQL does not support comments.

2.7 Aliases
Oracle CQL allows you to define aliases (or synonyms) to simplify and improve the
clarity of your queries.

This section describes:

• Defining Aliases Using the AS Operator

2.7.1 Defining Aliases Using the AS Operator
Using the AS operator, you can specify an alias in Oracle CQL for queries, relations,
streams, and any items in the SELECT list of a query.

This section describes:

• Aliases in the relation_variable Clause

Chapter 2
Comments

2-12

• Aliases in Window Operators.

2.7.1.1 Aliases in the relation_variable Clause
You can use the relation_variable clause AS operator to define an alias to label the
immediately preceding expression in the select list so that you can reference the result by
that name. The alias effectively renames the select list item for the duration of the query. You
can use an alias in the ORDER BY clause, but not other clauses in the query.

The following example shows how to define alias badItem for a stream element its.itemId
in a SELECT list and alias its for a MATCH_RECOGNIZE clause.

<query id="detectPerish"><![CDATA[
 select its.itemId as badItem
 from tkrfid_ItemTempStream MATCH_RECOGNIZE (
 PARTITION BY itemId
 MEASURES A.itemId as itemId
 PATTERN (A B* C)
 DEFINE
 A AS (A.temp >= 25),
 B AS ((B.temp >= 25) and (to_timestamp(B.element_time) - to_timestamp(A.element_time)
< INTERVAL "0 00:00:05.00" DAY TO SECOND)),
 C AS (to_timestamp(C.element_time) - to_timestamp(A.element_time) >= INTERVAL "0
00:00:05.00" DAY TO SECOND)
) as its
]]></query>

2.7.1.2 Aliases in Window Operators
You can use the AS operator to define an alias to label the immediately preceding window
operator so that you can reference the result by that name.

You may not use the AS operator within a window operator but you may use the AS operator
outside of the window operator.

The following example shows how to define aliases bid and ask after partitioned range
window operators.

<query id="Rule1"><![CDATA[
SELECT
 bid.id as correlationId
 bid.cusip as cusip
 max(bid.b0) as bid0
 bid.srcid as bidSrcId,
 bid.bq0 as bid0Qty,
 min(ask.a0) as ask0,
 ask.srcid as askSrcId,
 ask.aq0 as ask0Qty
FROM
 stream1[PARTITION by bid.cusip rows 100 range 4 hours] as bid,
 stream2[PARTITION by ask.cusip rows 100 range 4 hours] as ask
GROUP BY
 bid.id, bid.cusip, bid.srcid,bid.bq0, ask.srcid, ask.aq0
]]></query>

For more information, see Stream-to-Relation Operators (Windows).

Chapter 2
Aliases

2-13

3
Pseudocolumns

A reference for Oracle Continuous Query Language (Oracle CQL) pseudocolumns, which
you can query for but which are not part of the data from which an event was created is
provided.

3.1 Introduction to Pseudocolumns
You can select from pseudocolumns, but you cannot modify their values. A pseudocolumn is
also similar to a function without arguments (see Functions).

Oracle CQL supports the following pseudocolumns:

• ELEMENT_TIME Pseudocolumn.

3.2 ELEMENT_TIME Pseudocolumn
In CQL, every stream event is associated with a timestamp. The ELEMENT_TIME pseudo
column returns the timestamp of the stream event. The datatype of ELEMENT_TIME pseudo
column is Oracle CQL native bigint type. The unit of timestamp value returned by
ELEMENT_TIME is in nanoseconds.

Note:

ELEMENT_TIME is not supported on members of an Oracle CQL relation. For more
information, see Streams and Relations.

This section describes:

• Understanding the Value of the ELEMENT_TIME Pseudocolumn

• Using the ELEMENT_TIME Pseudocolumn in Oracle CQL Queries.

For more information, see:

• to_timestamp.

3.2.1 Understanding the Value of the ELEMENT_TIME Pseudocolumn
The value of ELEMENT_TIME for each stream event is the timestamp of that event. The
timestamp of stream event depends on the stream definition and source.

3.2.1.1 ELEMENT_TIME for a System-Timestamped Stream
If source stream is a system timestamped stream, then the timestamp for a stream event is
assigned by computing System.nanoTime(). For each event, ELEMENT_TIME pseudo column
outputs the event's timestamp.

3-1

For example, consider a system timestamped stream defined as: tktest_S1(c1
integer).

select ELEMENT_TIME, to_timestamp(ELEMENT_TIME) from tktest_S1

Input (c1) Output (timestamp: element_time,
to_timestamp(element_time))
10 12619671878392750:+
12619671878392750,05/26/1970 18:27:51
20 12619671889193750:+
12619671889193750,05/26/1970 18:27:51
30 12619671890093750:+
12619671890093750,05/26/1970 18:27:51
40 12619671891399750:+
12619671891399750,05/26/1970 18:27:51
50 12619671896472750:+
12619671896472750,05/26/1970 18:27:51

Note:

The output may vary for each execution and also depends on the machine
as timestamp is computed by calculating System.nanoTime().

3.2.1.2 ELEMENT_TIME for an Application-Timestamped Stream
If source stream is an application timestamped stream, then timestamp for stream
event is assigned by computing the application timestamp expression. The unit of
computed timestamp value is always in nanoseconds. ELEMENT_TIME pseudo column
outputs the event's timestamp.

For example, consider an application timestamped stream defined as tktest_S1(C1
integer, c2 bigint) and application timestamp expression as: c2*1000000000L.

select ELEMENT_TIME, to_timestamp(ELEMENT_TIME) from tktest_S1

Input(c1,c2) Output(timestamp: element_time,
to_timestamp(element_time))
10, 10 10000000000:+ 10000000000,12/31/1969 17:00:10
20, 20 20000000000:+ 20000000000,12/31/1969 17:00:20
30, 30 30000000000:+ 30000000000,12/31/1969 17:00:30
40, 40 40000000000:+ 40000000000,12/31/1969 17:00:40
50, 50 50000000000:+ 50000000000,12/31/1969 17:00:50

In the above query, the timestamp of each event is computed by computing
c2*1000000000L for each event. You can see that ELEMENT_TIME is same as timestamp
of the event.

Chapter 3
ELEMENT_TIME Pseudocolumn

3-2

3.2.1.2.1 Derived Timestamp Expression Evaluates to int or bigint
If the derived timestamp expression evaluates to an Oracle CQL native type of int, then it is
cast to and returned as a corresponding bigint value. If the expression evaluates to an
Oracle CQL native type of bigint, that value is returned as is.

3.2.1.2.2 Derived Timestamp Expression Evaluates to timestamp
If the derived timestamp expression evaluates to an Oracle CQL native type of timestamp, it
is converted to a long value by expressing this time value as the number of milliseconds
since the standard base time known as "the epoch", namely January 1, 1970, 00:00:00 GMT.

3.2.1.3 ELEMENT_TIME for a Subquery
If source stream is received from a subquery, then CQL does not support ELEMENT_TIME on
the subquery results.

The following example depicts the scenario which is not supported.

SELECT ELEMENT_TIME FROM (ISTREAM(SELECT * FROM SYSTS_STREAM[RANGE 1 HOUR
SLIDE 5 MINUTES])

3.2.2 Using the ELEMENT_TIME Pseudocolumn in Oracle CQL Queries
This section describes how to use ELEMENT_TIME in various queries, including:

• Using ELEMENT_TIME With SELECT

• Using ELEMENT_TIME With GROUP BY

• Using ELEMENT_TIME With PATTERN.

3.2.2.1 Using ELEMENT_TIME With SELECT
The following example shows how you can use the ELEMENT_TIME pseudocolumn in a select
statement. Stream S1 has schema (c1 integer). Note that the function to_timestamp is
used to convert the Long values to timestamp values.

<query id="q4"><![CDATA[
 select
 c1,
 to_timestamp(element_time)
 from
 S1[range 10000000 nanoseconds slide 10000000 nanoseconds]
]]></query>

Timestamp Tuple
 8000 80
 9000 90
13000 130
15000 150
23000 230
25000 250

Timestamp Tuple Kind Tuple
 8000 + 80,12/31/1969 17:00:08
 8010 - 80,12/31/1969 17:00:08
 9000 + 90,12/31/1969 17:00:09

Chapter 3
ELEMENT_TIME Pseudocolumn

3-3

 9010 - 90,12/31/1969 17:00:09
13000 + 130,12/31/1969 17:00:13
13010 - 130,12/31/1969 17:00:13
15000 + 150,12/31/1969 17:00:15
15010 - 150,12/31/1969 17:00:15
23000 + 230,12/31/1969 17:00:23
23010 - 230,12/31/1969 17:00:23
25000 + 250,12/31/1969 17:00:25
25010 - 250,12/31/1969 17:00:25

If your query includes a GROUP BY clause, you cannot use the ELEMENT_TIME
pseudocolumn in the SELECT statement directly. Instead, use a view as Using
ELEMENT_TIME With GROUP BY describes.

3.2.2.2 Using ELEMENT_TIME With GROUP BY
You cannot use ELEMENT_TIME in the SELECT statement of the query because of the
GROUP BY clause.

For example, as the window slides and an element from the queryEventChannel input
stream expires from the window, the queryCount for that queryText group would
change resulting in an output. However, since there was no new event from the input
stream queryEventChannel entering the window, the maxTime among all events in the
window has not changed, and the value of the maxTime attribute for this output event
would be the same as the value of this attribute in the previous output event.

However, the ELEMENT_TIME of the output event corresponds to the instant where the
event has expired from the window, which is different than the latest event from the
input stream, making this is an example where ELEMENT_TIME of the output event is
different from value of maxTimeattribute of the output event.

To select the ELEMENT_TIME of the output events of view V1, create a query.

<query id="Q1"><![CDATA[

 SELECT
 queryText,
 queryCount,
 ELEMENT_TIME as eventTime
 FROM
 V1

]]></query>

3.2.2.3 Using ELEMENT_TIME With PATTERN
The following example shows how the ELEMENT_TIME pseudocolumn can be used in a
pattern query. Here a tuple or event matches correlation variable Nth if the value of
Nth.status is >= F.status and if the difference between the Nth.ELEMENT_TIME value
of that tuple and the tuple that last matched F is less than the given interval as a
java.lang.Math.Bigint(Long).

...
PATTERN (F Nth+? L)
 DEFINE
 Nth AS
 Nth.status >= F.status
 AND
 Nth.ELEMENT_TIME - F.ELEMENT_TIME < 10000000000L,
 L AS
 L.status >= F.status

Chapter 3
ELEMENT_TIME Pseudocolumn

3-4

 AND
 count(Nth.*) = 3
 AND L.ELEMENT_TIME - F.ELEMENT_TIME < 10000000000L
...

Chapter 3
ELEMENT_TIME Pseudocolumn

3-5

4
Operators

A reference for operators in Oracle Continuous Query Language (Oracle CQL). An operator
manipulates data items and returns a result is provided. Syntactically, an operator appears
before or after an operand or between two operands.

4.1 Introduction to Operators
Operators manipulate individual data items called operands or arguments. Operators are
represented by special characters or by keywords. For example, the multiplication operator is
represented by an asterisk (*).

Oracle CQL provides the following operators:

• Arithmetic Operators

• Concatenation Operator

• Alternation Operator

• Range-Based Stream-to-Relation Window Operators

• Tuple-Based Stream-to-Relation Window Operators

• Partitioned Stream-to-Relation Window Operators

• IStream Relation-to-Stream Operator

• DStream Relation-to-Stream Operator

• RStream Relation-to-Stream Operator.

4.1.1 What You May Need to Know About Unary and Binary Operators
The two general classes of operators are:

• unary: A unary operator operates on only one operand. A unary operator typically
appears with its operand in this format:

operator operand

• binary: A binary operator operates on two operands. A binary operator appears with its
operands in this format:

operand1 operator operand2

Other operators with special formats accept more than two operands. If an operator is given a
null operand, then the result is always null. The only operator that does not follow this rule is
concatenation (||).

4.1.2 What You May Need to Know About Operator Precedence
Precedence is the order in which GGSA evaluates different operators in the same
expression. When evaluating an expression containing multiple operators, GGSA evaluates

4-1

operators with higher precedence before evaluating those with lower precedence.
GGSA evaluates operators with equal precedence from left to right within an
expression.

Table 4-1 lists the levels of precedence among Oracle CQL operators from high to low.
Operators listed on the same line have the same precedence.

Table 4-1 Oracle CQL Operator Precedence

Operator Operation

+, - (as unary operators) Identity, negation

*, / Multiplication, division

+, - (as binary operators), || Addition, subtraction, concatenation

Oracle CQL conditions are evaluated after Oracle
CQL operators

See Conditions.

Precedence Example

In the following expression, multiplication has a higher precedence than addition, so
Oracle first multiplies 2 by 3 and then adds the result to 1.

1+2*3

You can use parentheses in an expression to override operator precedence. Oracle
evaluates expressions inside parentheses before evaluating those outside.

4.2 Arithmetic Operators
Table 4-2 lists arithmetic operators that GGSA supports. You can use an arithmetic
operator with one or two arguments to negate, add, subtract, multiply, and divide
numeric values. Some of these operators are also used in datetime and interval
arithmetic. The arguments to the operator must resolve to numeric data types or to any
data type that can be implicitly converted to a numeric data type.

In certain cases, GGSA converts the arguments to the data type as required by the
operation. For example, when an integer and a float are added, the integer argument
is converted to a float. The data type of the resulting expression is a float. For more
information, see Implicit Data Type Conversion.

Table 4-2 Arithmetic Operators

Operator Purpose Example

+ - When these denote a positive or negative
expression, they are unary operators.

<query id="q1"><![CDATA[
 select * from orderitemsstream
 where quantity = -1
]]></query>

+ - When they add or subtract, they are
binary operators.

<query id="q1"><![CDATA[
 select hire_date
 from employees
 where sysdate - hire_date
 > 365
]]></query>

Chapter 4
Arithmetic Operators

4-2

Table 4-2 (Cont.) Arithmetic Operators

Operator Purpose Example

* / Multiply, divide. These are binary
operators.

<query id="q1"><![CDATA[
 select hire_date
 from employees
 where bonus > salary * 1.1
]]></query>

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate double
negation or the subtraction of a negative value. You should separate consecutive minus signs
with a space or parentheses.

GGSA supports arithmetic operations using numeric literals and using datetime and interval
literals.

For more information, see:

• Numeric Literals

• Datetime Literals

• Interval Literals.

4.3 Concatenation Operator
The concatenation operator manipulates character strings. Table 4-3 describes the
concatenation operator.

Table 4-3 Concatenation Operator

Operator Purpose Example

|| Concatenates character strings. <query id="q263"><![CDATA[
 select length(c2 || c2) + 1 from S10
where length(c2) = 2
]]></query>

The result of concatenating two character strings is another character string. If both character
strings are of data type CHAR, then the result has data type CHAR and is limited to 2000
characters. Trailing blanks in character strings are preserved by concatenation, regardless of
the data types of the string.

Although GGSA treats zero-length character strings as nulls, concatenating a zero-length
character string with another operand always results in the other operand, so null can result
only from the concatenation of two null strings. However, this may not continue to be true in
future versions of GGSA. To concatenate an expression that might be null, use the NVL
function to explicitly convert the expression to a zero-length string.

Chapter 4
Concatenation Operator

4-3

See Also:

• Data Types

• concat

• nvl.

The following example shows how to use the concatenation operator to append the
String "xyz" to the value of c2 in a select statement.

<query id="q264"><![CDATA[
 select c2 || "xyz" from S10
]]></query>

4.4 Alternation Operator
The alternation operator allows you to refine the sense of a PATTERN clause. Table 4-4
describes the concatenation operator.

Table 4-4 Alternation Operator

Operator Purpose Example

| Changes the sense of a PATTERN
clause to mean one or the other
correlation variable rather than
one followed by the other
correlation variable.

<query id="q263"><![CDATA[
select T.p1, T.p2, T.p3 from S
MATCH_RECOGNIZE(
 MEASURES
 A.ELEMENT_TIME as p1,
 B.ELEMENT_TIME as p2
 B.c2 as p3
 PATTERN (A+ | B+)
 DEFINE
 A as A.c1 = 10,
 B as B.c1 = 20
) as T
]]></query>

The alternation operator is applicable only within a PATTERN clause.

The following example shows how to use the alternation operator to change the sense
of the PATTERN clause to mean "A one or more times followed by either B one or more
times or C one or more times, whichever comes first".

<query id="q264"><![CDATA[
select T.p1, T.p2, T.p3 from S MATCH_RECOGNIZE(
 MEASURES
 A.ELEMENT_TIME as p1,
 B.ELEMENT_TIME as p2
 B.c2 as p3
 PATTERN (A+ (B+ | C+))
 DEFINE
 A as A.c1 = 10,
 B as B.c1 = 20
 C as C.c1 = 30
) as T
]]></query>

Chapter 4
Alternation Operator

4-4

For more information, see Grouping and Alternation in the PATTERN Clause.

4.5 Range-Based Stream-to-Relation Window Operators
Oracle CQL supports the following range-based stream-to-relation window operators:

Note:

Very large numbers must be suffixed. Without the suffix, Java treats very large
numbers like an integer and the value might be out of range for an integer, which
throws an error.

Add a suffix as follows:

l or L for Long

f or F for float

d or D for double

n or N for big decimal

For example:

SELECT * FROM channel0[RANGE 1368430107027000000l nanoseconds]

window_type_range::=

• S[now]

• S[range T]

• S[range T1 slide T2]

• S[range unbounded]

• S[range C on E].

For more information, see:

• Query

• Stream-to-Relation Operators (Windows)

• Aliases in Window Operators.

Chapter 4
Range-Based Stream-to-Relation Window Operators

4-5

4.5.1 S[now]
This time-based range window outputs an instantaneous relation. So at time t the
output of this now window is all the tuples that arrive at that instant t. The smallest
granularity of time in GGSA is nanoseconds and hence all these tuples expire 1
nanosecond later.

For an example, see S [now] Example.

4.5.1.1 Examples

S [now] Example

Consider the query and the data stream S. Timestamps are shown in nanoseconds (1
sec = 10^9 nanoseconds). The following example shows the relation that the query
returns at time 5000 ms. At time 5002 ms, the query would return an empty relation.

<query id="q1"><![CDATA[
 SELECT * FROM S [now]
]]></query>

Timestamp Tuple
 1000000000 10,0.1
 1002000000 15,0.14
 5000000000 33,4.4
 5000000000 23,56.33
 10000000000 34,4.4
200000000000 20,0.2
209000000000 45,23.44
400000000000 30,0.3
h 800000000000

Timestamp Tuple Kind Tuple
5000000000 + 33,4.4
5000000000 + 23,56.33
5000000001 - 33,4.4
5000000001 - 23,56.33

4.5.2 S[range T]
This time-based range window defines its output relation over time by sliding an
interval of size T time units capturing the latest portion of an ordered stream.

For an example, see S [range T] Example.

4.5.2.1 Examples

S [range T] Example

Consider the query q1. Given the data stream S, the query returns the relation. By
default, the range time unit is second, so S[range 1] is equivalent to S[range 1
second]. Timestamps are shown in milliseconds (1 s = 1000 ms). As many elements
as there are in the first 1000 ms interval enter the window, namely tuple (10,0.1). At
time 1002 ms, tuple (15,0.14) enters the window. At time 2000 ms, any tuples that
have been in the window longer than the range interval are subject to deletion from the
relation, namely tuple (10,0.1). Tuple (15,0.14) is still in the relation at this time. At

Chapter 4
Range-Based Stream-to-Relation Window Operators

4-6

time 2002 ms, tuple (15,0.14) is subject to deletion because by that time, it has been in the
window longer than 1000 ms.

Note:

In stream input examples, lines beginning with h (such as h 3800) are heartbeat
input tuples. These inform GGSA that no further input will have a timestamp lesser
than the heartbeat value.

<query id="q1"><![CDATA[
 SELECT * FROM S [range 1]
]]></query>

Timestamp Tuple
 1000 10,0.1
 1002 15,0.14
 200000 20,0.2
 400000 30,0.3
h 800000
100000000 40,4.04
h 200000000

Timestamp Tuple Kind Tuple
 1000: + 10,0.1
 1002: + 15,0.14
 2000: - 10,0.1
 2002: - 15,0.14
 200000: + 20,0.2
 201000: - 20,0.2
 400000: + 30,0.3
 401000: - 30,0.3
100000000: + 40,4.04
100001000: - 40,4.04

4.5.3 S[range T1 slide T2]
This time-based range window allows you to specify the time duration in the past up to which
you want to retain the tuples (range) and also how frequently you want to see the output of
the tuples (slide).

Suppose a tuple arrives at a time represented by t. Assuming a slide value represented by
T2, the tuple will be visible and sent to output at one of the following timestamps:

• t -- If the timestamp t is a multiple of slide T2

• Math.ceil(t/T2)*T2 -- If the timestamp is not a multiple of slide T2

Assuming a range value represented by T1, a tuple that arrives at timestamp t will expire at
timestamp t + T1. However, if a slide is specified and its value is non-zero, then the expired
tuple will not necessarily output at timestamp t + T1.

The expired tuple (expired timestamp is t + T1) will be visible at one of the following
timestamps:

• (t + T1) -- If the timestamp (t+T1) is a multiple of slide T2.

• Math.ceil((t+T1)/T2)*T2 -- If the timestamp (t+T1) is not a multiple of slide T2.

For an example, seeS [range T1 slide T2] Example.

Chapter 4
Range-Based Stream-to-Relation Window Operators

4-7

4.5.3.1 Examples

S [range T1 slide T2] Example

Consider the query q1. Given the data stream S, the query returns the relation. By
default, the range time unit is second, so S[range 10 slide 5] is equivalent to
S[range 10 seconds slide 5 seconds]. Timestamps are shown in milliseconds (1 s
= 1000 ms). Tuples arriving at 1000, 1002, and 5000 all enter the window at time 5000
since the slide value is 5 sec and that means the user is interested in looking at the
output after every 5 sec. Since these tuples enter at 5 sec=5000 ms, they are expired
at 15000 ms as the range value is 10 sec = 10000 ms.

<query id="q1"><![CDATA[
 SELECT * FROM S [range 10 slide 5]
]]></query>

Timestamp Tuple
 1000 10,0.1
 1002 15,0.14
 5000 33,4.4
 8000 23,56.33
 10000 34,4.4
200000 20,0.2
209000 45,23.44
400000 30,0.3
h 800000

Timestamp Tuple Kind Tuple
 5000: + 10,0.1
 5000: + 15,0.14
 5000: + 33,4.4
 10000: + 23,56.33
 10000: + 34,4.4
 15000: - 10,0.1
 15000: - 15,0.14
 15000: - 33,4.4
 20000: - 23,56.33
 20000: - 34,44.4
200000: + 20,0.2
210000: - 20,0.2
210000: + 45,23.44
220000: - 45,23.44
400000: + 30,0.3
410000: - 30,0.3

4.5.4 S[range unbounded]
This time-based range window defines its output relation such that, when T =
infinity, the relation at time t consists of tuples obtained from all elements of S up to
t. Elements remain in the window indefinitely.

For an example, see S [range unbounded] Example.

4.5.4.1 Examples

S [range unbounded] Example

Consider the query q1 and the data stream . Timestamps are shown in milliseconds (1
s = 1000 ms). Elements are inserted into the relation as they arrive. No elements are

Chapter 4
Range-Based Stream-to-Relation Window Operators

4-8

subject to deletion. The following example shows the relation that the query returns at time
5000 ms and the relation that the query returns at time 205000 ms.

<query id="q1"><![CDATA[
 SELECT * FROM S [range unbounded]
]]></query>

Timestamp Tuple
 1000 10,0.1
 1002 15,0.14
 5000 33,4.4
 8000 23,56.33
 10000 34,4.4
200000 20,0.2
209000 45,23.44
400000 30,0.3
h 800000

Timestamp Tuple Kind Tuple
 1000: + 10,0.1
 1002: + 15,0.14
 5000: + 33,4.4

Timestamp Tuple Kind Tuple
 1000: + 10,0.1
 1002: + 15,0.14
 5000: + 33,4.4
 8000: + 23,56.33
 10000: + 34,4.4
200000: + 20,0.2

4.5.5 S[range C on E]
This constant value-based range window defines its output relation by capturing the latest
portion of a stream that is ordered on the identifier E made up of tuples in which the values of
stream element E differ by less than C. A tuple is subject to deletion when the difference
between its stream element E value and that of any tuple in the relation is greater than or
equal to C.

For examples, see:

• S [range C on E] Example: Constant Value

• S [range C on E] Example: INTERVAL and TIMESTAMP.

4.5.5.1 Examples

S [range C on E] Example: Constant Value

Consider the query tkdata56_q0 and the data stream tkdata56_S0 . Stream tkdata56_S0
has schema (c1 integer, c2 float). The following example shows the relation that the
query returns. In this example, at time 200000, the output relation contains the following
tuples: (5,0.1), (8,0.14), (10,0.2). The difference between the c1 value of each of these
tuples is less than 10. At time 250000, when tuple (15,0.2) is added, tuple (5,0.1) is
subject to deletion because the difference 15 - 5 = 10, which not less than 10. Tuple
(8,0.14) remains because 15 - 8 = 7, which is less than 10. Likewise, tuple (10,0.2)
remains because 15 - 10 = 5, which is less than 10. At time 300000, when tuple (18,0.22) is
added, tuple (8,0.14) is subject to deletion because 18 - 8 = 10, which is not less than 10.

<query id="tkdata56_q0"><![CDATA[
 select * from tkdata56_S0 [range 10 on c1]
]]></query>

Chapter 4
Range-Based Stream-to-Relation Window Operators

4-9

Timestamp Tuple
 100000 5, 0.1
 150000 8, 0.14
 200000 10, 0.2
 250000 15, 0.2
 300000 18, 0.22
 350000 20, 0.25
 400000 30, 0.3
 600000 40, 0.4
 650000 45, 0.5
 700000 50, 0.6
1000000 58, 4.04

Timestamp Tuple Kind Tuple
 100000: + 5,0.1
 150000: + 8,0.14
 200000: + 10,0.2
 250000: - 5,0.1
 250000: + 15,0.2
 300000: - 8,0.14
 300000: + 18,0.22
 350000: - 10,0.2
 350000: + 20,0.25
 400000: - 15,0.2
 400000: - 18,0.22
 400000: - 20,0.25
 400000: + 30,0.3
 600000: - 30,0.3
 600000: + 40,0.4
 650000: + 45,0.5
 700000: - 40,0.4
 700000: + 50,0.6
1000000: - 45,0.5
1000000: + 58,4.04

S [range C on E] Example: INTERVAL and TIMESTAMP

Similarly, you can use the S[range C on ID] window with INTERVAL and TIMESTAMP.
Consider the query tkdata56_q2 in and the data stream tkdata56_S1. Stream
tkdata56_S1 has schema (c1 timestamp, c2 double). The following example shows
the relation that the query returns.

<query id="tkdata56_q2"><![CDATA[
 select * from tkdata56_S1 [range INTERVAL "530 0:0:0.0" DAY TO SECOND on c1]
]]></query>

Timestamp Tuple
 10 "08/07/2004 11:13:48", 11.13
2000 "08/07/2005 12:13:48", 12.15
3400 "08/07/2006 10:15:58", 22.25
4700 "08/07/2007 10:10:08", 32.35

Timestamp Tuple Kind Tuple
 10: + 08/07/2004 11:13:48,11.13
2000: + 08/07/2005 12:13:48,12.15
3400: - 08/07/2004 11:13:48,11.13
3400: + 08/07/2006 10:15:58,22.25
4700: - 08/07/2005 12:13:48,12.15
4700: + 08/07/2007 10:10:08,32.35

4.6 Tuple-Based Stream-to-Relation Window Operators
Oracle CQL supports the following tuple-based stream-to-relation window operators:

Chapter 4
Tuple-Based Stream-to-Relation Window Operators

4-10

window_type_tuple::=

• S [rows N]

For more information, see:

• Range-Based Stream-to-Relation Window Operators

• Query

• Stream-to-Relation Operators (Windows)

• Aliases in Window Operators.

4.6.1 S [rows N]
A tuple-based window defines its output relation over time by sliding a window of the last N
tuples of an ordered stream.

For the output relation R of S [rows N], the relation at time t consists of the N tuples of S with
the largest timestamps <= t (or all tuples if the length of S up to t is <= N).

If more than one tuple has the same timestamp, GGSA chooses one tuple in a non-
deterministic way to ensure N tuples are returned. For this reason, tuple-based windows may
not be appropriate for streams in which timestamps are not unique.

By default, the slide is 1.

For examples, see S [rows N] Example.

4.6.1.1 Examples

S [rows N] Example

Consider the query q1 and the data stream S. Timestamps are shown in milliseconds (1 s =
1000 ms). Elements are inserted into and deleted from the relation as in the case of S [Range
1] (see S [range T] Example).

The following example shows the relation that the query returns at time 1002 ms. Since the
length of S at this point is less than or equal to the rows value (3), the query returns all the
tuples of S inserted by that time, namely tuples (10,0.1) and (15,0.14).

The following example shows the relation that the query returns at time 1006 ms. Since the
length of S at this point is greater than the rows value (3), the query returns the 3 tuples of S
with the largest timestamps less than or equal to 1006 ms, namely tuples (15,0.14),
(33,4.4), and (23,56.33).

The following example shows the relation that the query returns at time 2000 ms. At this time,
the query returns the 3 tuples of S with the largest timestamps less than or equal to 2000 ms,
namely tuples (45,23.44), (30,0.3), and (17,1.3).

<query id="q1"><![CDATA[
 SELECT * FROM S [rows 3]
]]></query>

Chapter 4
Tuple-Based Stream-to-Relation Window Operators

4-11

Timestamp Tuple
1000 10,0.1
1002 15,0.14
1004 33,4.4
1006 23,56.33
1008 34,4.4
1010 20,0.2
1012 45,23.44
1014 30,0.3
2000 17,1.3

Timestamp Tuple Kind Tuple
 1000: + 10,0.1
 1002: + 15,0.14

Timestamp Tuple Kind Tuple
 1000: + 10,0.1
 1002: + 15,0.14
 1004: + 33,4.4
 1006: - 10,0.1
 1006: + 23,56.33

Timestamp Tuple Kind Tuple
 1000 + 10,0.1
 1002 + 15,0.14
 1004 + 33,4.4
 1006 - 10,0.1
 1006 + 23,56.33
 1008 - 15,0.14
 1008 + 34,4.4
 1008 - 33,4.4
 1010 + 20,0.2
 1010 - 23,56.33
 1012 + 45,23.44
 1012 - 34,4.4
 1014 + 30,0.3
 2000 - 20,0.2
 2000 + 17,1.3

4.6.2 S [rows N1 slide N2]
A tuple-based window that defines its output relation over time by sliding a window of
the last N1 tuples of an ordered stream.

For the output relation R of S [rows N1 slide N2], the relation at time t consists of
the N1 tuples of S with the largest timestamps <= t (or all tuples if the length of S up to
t is <= N).

If more than one tuple has the same timestamp, GGSA chooses one tuple in a non-
deterministic way to ensure N tuples are returned. For this reason, tuple-based
windows may not be appropriate for streams in which timestamps are not unique.

You can configure the slide N2 as an integer number of stream elements. GGSA
delays adding stream elements to the relation until it receives N2 number of elements.

For examples, see S [rows N] Example.

4.6.2.1 Examples

S [rows N1 slide N2] Example

Consider the query tkdata55_q0 and the data stream tkdata55_S55. Stream
tkdata55_S55 has schema (c1 integer, c2 float).

Chapter 4
Tuple-Based Stream-to-Relation Window Operators

4-12

At time 100000, the output relation is empty because only one tuple (20,0.1) has arrived on
the stream. By time 150000, the number of tuples that the slide value specifies (2) have
arrived: at that time, the output relation contains tuples (20,0.1) and (15,0.14). By time
250000, another slide number of tuples have arrived and the output relation contains tuples
(20,0.1), (15,0.14), (5,0.2), and (8,0.2). By time 350000, another slide number of tuples
have arrived. At this time, the oldest tuple (20,0.1) is subject to deletion to meet the
constraint that the rows value imposes: namely, that the output relation contain no more than
5 elements. At this time, the output relation contains tuples (15,0.14), (5,0.2), (8,0.2),
(10,0.22), and (20,0.25). At time 600000, another slide number of tuples have arrived. At
this time, the oldest tuples (15,0.14) and (5,0.2) are subject to deletion to observe the rows
value constraint. At this time, the output relation contains tuples (8,0.2), (10,0.22),
(20,0.25), (30,0.3), and (40,0.4).

<query id="tkdata55_q0"><![CDATA[
 select * from tkdata55_S55 [rows 5 slide 2]
]]></query>

Timestamp Tuple
 100000 20, 0.1
 150000 15, 0.14
 200000 5, 0.2
 250000 8, 0.2
 300000 10, 0.22
 350000 20, 0.25
 400000 30, 0.3
 600000 40, 0.4
 650000 45, 0.5
 700000 50, 0.6
100000000 8, 4.04

Timestamp Tuple Kind Tuple
150000: + 20,0.1
150000: + 15,0.14
250000: + 5,0.2
250000: + 8,0.2
350000: - 20,0.1
350000: + 10,0.22
350000: + 20,0.25
600000: - 15,0.14
600000: - 5,0.2
600000: + 30,0.3
600000: + 40,0.4
700000: - 8,0.2
700000: - 10,0.22
700000: + 45,0.5
700000: + 50,0.6

4.7 Partitioned Stream-to-Relation Window Operators
Oracle CQL supports the following partitioned stream-to-relation window operators:

window_type_partition::=

• S [partition by A1,..., Ak rows N]

Chapter 4
Partitioned Stream-to-Relation Window Operators

4-13

• S [partition by A1,..., Ak rows N range T]

For more information, see:

• Tuple-Based Stream-to-Relation Window Operators

• Query

• Stream-to-Relation Operators (Windows)

• Aliases in Window Operators.

4.7.1 S [partition by A1,..., Ak rows N]
This partitioned sliding window on a stream S takes a positive integer number of tuples
N and a subset {A1,... Ak} of the stream's attributes as parameters and:

• Logically partitions S into different substreams based on equality of attributes
A1,... Ak (similar to SQL GROUP BY).

• Computes a tuple-based sliding window of size N independently on each
substream.

For an example, see S[partition by A1, ..., Ak rows N] Example.

4.7.1.1 Examples

S[partition by A1, ..., Ak rows N] Example

Consider the query qPart_row2 and the data stream SP1. Stream SP1 has schema (c1
integer, name char(10)). The query returns the relation. By default, the range (and
slide) is 1 second. Timestamps are shown in milliseconds (1 s = 1000 ms).

Note:

In stream input examples, lines beginning with h (such as h 3800) are
heartbeat input tuples. These inform GGSA that no further input will have a
timestamp lesser than the heartbeat value.

<query id="qPart_row2"><![CDATA[
 select * from SP1 [partition by c1 rows 2]
]]></query>

Timestamp Tuple
1000 1,abc
1100 2,abc
1200 3,abc
2000 1,def
2100 2,def
2200 3,def
3000 1,ghi
3100 2,ghi
3200 3,ghi
h 3800
4000 1,jkl
4100 2,jkl
4200 3,jkl
5000 1,mno
5100 2,mno

Chapter 4
Partitioned Stream-to-Relation Window Operators

4-14

5200 3,mno
h 12000
h 200000000

Timestamp Tuple Kind Tuple
1000: + 1,abc
1100: + 2,abc
1200: + 3,abc
2000: + 1,def
2100: + 2,def
2200: + 3,def
3000: - 1,abc
3000: + 1,ghi
3100: - 2,abc
3100: + 2,ghi
3200: - 3,abc
3200: + 3,ghi
4000: - 1,def
4000: + 1,jkl
4100: - 2,def
4100: + 2,jkl
4200: - 3,def
4200: + 3,jkl
5000: - 1,ghi
5000: + 1,mno
5100: - 2,ghi
5100: + 2,mno
5200: - 3,ghi
5200: + 3,mno

4.7.2 S [partition by A1,..., Ak rows N range T]
This partitioned sliding window on a stream S takes a positive integer number of tuples N and
a subset {A1,... Ak} of the stream's attributes as parameters and:

• Logically partitions S into different substreams based on equality of attributes A1,... Ak
(similar to SQL GROUP BY).

• Computes a tuple-based sliding window of size N and range T independently on each
substream.

For an example, see S[partition by A1, ..., Ak rows N range T] Example.

4.7.2.1 Examples

S[partition by A1, ..., Ak rows N range T] Example

Consider the query qPart_range2 and the data stream SP5. Stream SP5 has schema (c1
integer, name char(10)). The query returns the relation. By default, the range time unit is
second, so range 2 is equivalent to range 2 seconds. Timestamps are shown in milliseconds
(1 s = 1000 ms).

<query id="qPart_range2"><![CDATA[
 select * from SP5 [partition by c1 rows 2 range 2]
]]></query>

Timestamp Tuple
1000 1,abc
2000 1,abc
3000 1,abc
4000 1,abc
5000 1,def
6000 1,xxx
h 200000000

Chapter 4
Partitioned Stream-to-Relation Window Operators

4-15

Timestamp Tuple Kind Tuple
1000: + 1,abc
2000: + 1,abc
3000: - 1,abc
3000: + 1,abc
4000: - 1,abc
4000: + 1,abc
5000: - 1,abc
5000: + 1,def
6000: - 1,abc
6000: + 1,xxx
7000: - 1,def
8000: - 1,xxx

4.7.3 S [partition by A1,..., Ak rows N range T1 slide T2]
This partitioned sliding window on a stream S takes a positive integer number of tuples
N and a subset {A1,... Ak} of the stream's attributes as parameters and:

• Logically partitions S into different substreams based on equality of attributes
A1,... Ak (similar to SQL GROUP BY).

• Computes a tuple-based sliding window of size N, range T1, and slide T2
independently on each substream.

For an example, see S[partition by A1, ..., Ak rows N] Example.

4.7.3.1 Examples

S[partition by A1, ..., Ak rows N range T1 slide T2] Example

Consider the query qPart_rangeslide and the data stream SP1. Stream SP1 has
schema (c1 integer, name char(10)). The query returns the relation. By default, the
range and slide time unit is second so range 1 slide 1 is equivalent to range 1
second slide 1 second. Timestamps are shown in milliseconds (1 s = 1000 ms).

<query id="qPart_rangeslide"><![CDATA[
 select * from SP1 [partition by c1 rows 1 range 1 slide 1]
]]></query>

Timestamp Tuple
1000 1,abc
1100 2,abc
1200 3,abc
2000 1,def
2100 2,def
2200 3,def
3000 1,ghi
3100 2,ghi
3200 3,ghi
h 3800
4000 1,jkl
4100 2,jkl
4200 3,jkl
5000 1,mno
5100 2,mno
5200 3,mno
h 12000
h 200000000

Timestamp Tuple Kind Tuple
1000: + 1,abc
2000: + 2,abc
2000: + 3,abc

Chapter 4
Partitioned Stream-to-Relation Window Operators

4-16

2000: - 1,abc
2000: + 1,def
3000: - 2,abc
3000: + 2,def
3000: - 3,abc
3000: + 3,def
3000: - 1,def
3000: + 1,ghi
4000: - 2,def
4000: + 2,ghi
4000: - 3,def
4000: + 3,ghi
4000: - 1,ghi
4000: + 1,jkl
5000: - 2,ghi
5000: + 2,jkl
5000: - 3,ghi
5000: + 3,jkl
5000: - 1,jkl
5000: + 1,mno
6000: - 2,jkl
6000: + 2,mno
6000: - 3,jkl
6000: + 3,mno
6000: - 1,mno
7000: - 2,mno
7000: - 3,mno

4.8 IStream Relation-to-Stream Operator
Istream (for "Insert stream") applied to a relation R contains (s,t) whenever tuple s is in
R(t) - R(t-1), that is, whenever s is inserted into R at time t. If a tuple happens to be both
inserted and deleted with the same timestamp then IStream does not output the insertion.

The now window converts the viewq3 into a relation, which is kept as a relation by the filter
condition. The IStream relation-to-stream operator converts the output of the filter back into a
stream.

<query id="q3Txns"><![CDATA[
 Istream(
 select
 TxnId,
 ValidLoopCashForeignTxn.ACCT_INTRL_ID,
 TRXN_BASE_AM,
 ADDR_CNTRY_CD,
 TRXN_LOC_ADDR_SEQ_ID
 from
 viewq3[NOW],
 ValidLoopCashForeignTxn
 where
 viewq3.ACCT_INTRL_ID = ValidLoopCashForeignTxn.ACCT_INTRL_ID
)
]]></query>

You can combine the Istream operator with a DIFFERENCES USING clause to succinctly detect
differences in the Istream.

4.9 DStream Relation-to-Stream Operator
Dstream (for Delete stream) applied to a relation R contains (s,t) whenever tuple s is in
R(t-1) - R(t), that is, whenever s is deleted from R at time t. If a tuple happens to be both
inserted and deleted with the same timestamp, then IStream does not output the insertion.

Chapter 4
IStream Relation-to-Stream Operator

4-17

In the following example, the query delays the input on stream S by 10 minutes. The
range window operator converts the stream S into a relation, whereas the Dstream
converts it back to a stream.

<query id="BBAQuery"><![CDATA[
 Dstream(select * from S[range 10 minutes])
]]></query>

Assume that the granularity of time is minutes. Table 4-5 illustrates the contents of the
range window operator's relation (S[Range 10 minutes]) and the Dstream stream for
the following input stream TradeInputs:

Time Value
05 1,1
25 2,2
50 3,3

Table 4-5 DStream Example Output

Input Stream S Relation Output Relation Contents DStream Output

05 1,1 + 05 1,1 {1, 1}

05 1,1 - 15 1,1 {} +15 1,1

25 2,2 + 25 2,2 {2,2}

25 2,2 - 35 2,2 {} +35 2,2

50 3,3 + 50 3,3 {3,3}

50 3,3 - 60 3,3 {} +60 3,3

Note that at time 15, 35, and 60, the relation is empty {} (the empty set).

You can combine the Dstream operator with a DIFFERENCES USING clause to succinctly
detect differences in the Dstream.

4.10 RStream Relation-to-Stream Operator
The Rstream operator maintains the entire current state of its input relation and outputs
all of the tuples as insertions at each time step.

Since Rstream outputs the entire state of the relation at every instant of time, it can be
expensive if the relation set is not very small.

In the following example, Rstream outputs the entire state of the relation at time Now
and filtered by the where clause.

<query id="rstreamQuery"><![CDATA[
 Rstream(
 select
 cars.car_id, SegToll.toll
 from
 CarSegEntryStr[now] as cars, SegToll
 where (cars.exp_way = SegToll.exp_way and
 cars.lane = SegToll.lane and
 cars.dir = SegToll.dir and
 cars.seg = SegToll.seg)
)
]]></query>

Chapter 4
RStream Relation-to-Stream Operator

4-18

5
Expressions

A reference to expressions in Oracle Continuous Query Language (Oracle CQL) is provided.
An expression is a combination of one or more values and one or more operations, including
a constant having a definite value, a function that evaluates to a value, or an attribute
containing a value.

Every expression maps to a data type. This simple expression evaluates to 4 and has data
type NUMBER (the same data type as its components):

2*2

The following expression is an example of a more complex expression that uses both
functions and operators. The expression adds seven days to the current date, removes the
time component from the sum, and converts the result to CHAR data type:

TO_CHAR(TRUNC(SYSDATE+7))

5.1 Introduction to Expressions
GGSA supports the following expressions:

• Aggregate distinct expressions: aggr_distinct_expr.

• Aggregate expressions: aggr_expr.

• Arithmetic expressions: arith_expr.

• Arithmetic expression list: arith_expr_list

• Case expressions: case_expr.

• Decode expressions: decode.

• Function expressions: func_expr.

• Order expressions: order_expr.

You can use expressions in:

• The select list of the SELECT statement

• A condition of the WHERE clause and HAVING clause

GGSA does not accept all forms of expressions in all parts of all Oracle CQL statements.
Refer to the individual Oracle CQL statements in Oracle CQL Statements for information on
restrictions on the expressions in that statement.

You must use appropriate expression notation whenever expr appears in conditions, Oracle
CQL functions, or Oracle CQL statements in other parts of this reference. The sections that
follow describe and provide examples of the various forms of expressions.

5-1

Note:

In stream input examples, lines beginning with h (such as h 3800) are
heartbeat input tuples. These inform GGSA that no further input will have a
timestamp lesser than the heartbeat value.

5.2 aggr_distinct_expr
Use an aggr_distinct_expr aggregate expression when you want to use an
aggregate built-in function with distinct. When you want to use an aggregate built-in
function without distinct, see aggr_expr.

aggr_distinct_expr::=

(arith_expr::=)

You can specify an arith_distinct_expr as the argument of an aggregate
expression.

You can use an aggr_distinct_expr in the following Oracle CQL statements:

• arith_expr::=

For more information, see Built-In Aggregate Functions.

5.3 aggr_expr
Use an aggr_expr aggregate expression when you want to use aggregate built-in
functions. When you want to use an aggregate built-in function with distinct, see
aggr_distinct_expr.

Chapter 5
aggr_distinct_expr

5-2

aggr_expr::=

(arith_expr::=)

You can specify an arith_expr as the argument of an aggregate expression.

The count aggregate built-in function takes a single argument made up of any of the values
that Table 5-1 lists and returns the int value indicated.

Table 5-1 Return Values for COUNT Aggregate Function

Input Argument Return Value

arith_expr The number of tuples where arith_expr is not null.

* The number of tuples matching all the correlation variables in the pattern,
including duplicates and nulls.

identifier.* The number of all tuples that match the correlation variable identifier,
including duplicates and nulls.

identifier.attr The number of tuples that match correlation variable identifier, where attr
is not null.

The first and last aggregate built-in functions take a single argument made up of the
following period separated values:

• identifier1: the name of a pattern as specified in a DEFINE clause.

• identifier2: the name of a stream element as specified in a CREATE STREAM statement.

You can use an aggr_expr in the following Oracle CQL statements:

• arith_expr::=

For more information, see:

• Built-In Aggregate Functions

• Using count With *, identifier.*, and identifier.attr

• first

Chapter 5
aggr_expr

5-3

• last.

5.4 arith_expr
Use an arith_expr arithmetic expression to define an arithmetic expression using any
combination of stream element attribute values, constant values, the results of a
function expression, aggregate built-in function, case expression, or decode. You can
use all of the normal arithmetic operators (+,-,*, and /) and the concatenate operator
(||).

arith_expr::=

(func_expr::=, aggr_expr::=, aggr_distinct_expr::=, case_expr::=, decode::=,
arith_expr::=)

You can use an arith_expr in the following Oracle CQL statements:

• aggr_distinct_expr::=

• aggr_expr::=

• arith_expr::=

• case_expr::=

• searched_case::=

• simple_case::=

• condition::=

• between_condition::=

• param_list

Chapter 5
arith_expr

5-4

• measure_column::=.

For more information, see Arithmetic Operators.

5.5 arith_expr_list
Use an arith_expr_list arithmetic expression list to define one or more arithmetic
expressions using any combination of stream element attribute values, constant values, the
results of a function expression, aggregate built-in function, case expression, or decode. You
can use all of the normal arithmetic operators (+,-,*, and /) and the concatenate operator
(||).

arith_expr_list::=

(arith_expr::=)

For more information, see Arithmetic Operators.

5.5.1 Examples
The following example shows how to use a arith_expr_list expression.

<query id="q1"><![CDATA[
 select
 XMLELEMENT("Emp", XMLELEMENT("Name", e.job_id||' '||e.last_name),XMLELEMENT("Hiredate",
e.hire_date)
)
 from
 tkdata51_S0 [range 1] as e
]]></query>

5.6 case_expr
Use a case_expr case expression to evaluate stream elements against multiple conditions.

case_expr::=

(searched_case_list::=, arith_expr::=, simple_case_list::=)

searched_case_list::=

Chapter 5
arith_expr_list

5-5

(searched_case::=)

searched_case::=

(arith_expr::=)

simple_case_list::=

(simple_case::=)

simple_case::=

(arith_expr::=)

The case_expr is similar to the DECODE clause of an arithmetic expression (see
decode).

In a searched_case clause, when the non_mt_cond_list evaluates to true, the
searched_case clause may return either an arithmetic expression or null.

In a simple_case clause, when the arithmetic expression is true, the simple_case
clause may return either another arithmetic expression or null.

You can use a case_expr in the following Oracle CQL statements:

• arith_expr::=.

5.6.1 Examples
This section describes the following case_expr examples:

• case_expr with SELECT *

• case_expr with SELECT.

case_expr with SELECT *

Consider the query q97 and the data stream S0. Stream S1 has schema (c1 integer,
c2 float). The query returns the relation.

<query id="q97"><![CDATA[
 select * from S0
 where
 case
 when c2 < 25 then c2+5

Chapter 5
case_expr

5-6

 when c2 > 25 then c2+10
 end > 25
]]></query>

Timestamp Tuple
 1000 0.1,10
 1002 0.14,15
 200000 0.2,20
 400000 0.3,30
 500000 0.3,35
 600000 ,35
h 800000
100000000 4.04,40
h 200000000

Timestamp Tuple Kind Tuple
400000:+ 0.3,30
500000:+ 0.3,35
600000:+ ,35
100000000:+ 4.04,40

case_expr with SELECT

Consider the query q96 and the data streams S0 and S1. Stream S0 has schema (c1 float,
c2 integer) and stream S1 has schema (c1 float, c2 integer). The query returns the
relation.

<query id="q96"><![CDATA[
 select
 case to_float(S0.c2+10)
 when (S1.c2*100)+10 then S0.c1+0.5
 when (S1.c2*100)+11 then S0.c1
 else S0.c1+0.3
 end
 from
 S0[rows 100],
 S1[rows 100]
]]></query>

Timestamp Tuple
 1000 0.1,10
 1002 0.14,15
 200000 0.2,20
 400000 0.3,30
 500000 0.3,35
 600000 ,35
h 800000
100000000 4.04,40
h 200000000

Timestamp Tuple
 1000 10,0.1
 1002 15,0.14
 200000 20,0.2
 300000 ,0.2
 400000 30,0.3
100000000 40,4.04

Timestamp Tuple Kind Tuple
 1000: + 0.6
 1002: + 0.44
 1002: + 0.4
 1002: + 0.14
 200000: + 0.5
 200000: + 0.5
 200000: + 0.4
 200000: + 0.44
 200000: + 0.7

Chapter 5
case_expr

5-7

 300000: + 0.4
 300000: + 0.44
 300000: + 0.7
 400000: + 0.6
 400000: + 0.6
 400000: + 0.6
 400000: + 0.6
 400000: + 0.4
 400000: + 0.44
 400000: + 0.5
 400000: + 0.8
 500000: + 0.6
 500000: + 0.6
 500000: + 0.6
 500000: + 0.6
 500000: + 0.6
 600000: +
 600000: +
 600000: +
 600000: +
 600000: +
100000000: + 4.34
100000000: + 4.34
100000000: + 4.34
100000000: + 4.34
100000000: + 4.34
100000000: + 0.4
100000000: + 0.44
100000000: + 0.5
100000000: + 0.6
100000000: + 0.6
100000000: +
100000000: + 4.34

5.7 decode
Use a decode expression to evaluate stream elements against multiple conditions.

decode::=

expr, search1, result1, search2, result2, ... , searchN, result N,
default

DECODE compares expr to each search value one by one. If expr equals a search
value, the DECODE expressions returns the corresponding result. If no match is found,
the DECODE expressions returns default. If default is omitted, the DECODE expressions
returns null.

The arguments can be any of the numeric (INTEGER, BIGINT, FLOAT, or DOUBLE) or
character (CHAR) data types. For more information, see Data Types).

The search, result, and default values can be derived from expressions. GGSA
uses short-circuit evaluation. It evaluates each search value only before comparing
it to expr, rather than evaluating all search values before comparing any of them with
expr. Consequently, GGSA never evaluates a search i, if a previous search j (0 < j
< i) equals expr.

Chapter 5
decode

5-8

GGSA automatically converts expr and each search value to the data type of the first search
value before comparing. GGSA automatically converts the return value to the same data type
as the first result.

In a DECODE expression, GGSA considers two nulls to be equivalent. If expr is null, then
GGSA returns the result of the first search that is also null.

The maximum number of components in the DECODE expression, including expr, searches,
results, and default, is 255.

The decode expression is similar to the case_expr (see case_expr::=).

You can use a decode expression in the following Oracle CQL statements:

• arith_expr::=.

5.7.1 Examples
Consider the query q and the input relation R. Relation R has schema (c1 float, c2
integer). The query returns the relation.

<query id="q"><![CDATA[
...
 SELECT DECODE (c2, 10, c1+0.5, 20, c1+0.1, 30, c1+0.2, c1+0.3) from R
]]></query>

Timestamp Tuple Kind Tuple
 1000: + 0.1,10
 1002: + 0.14,15
 2000: - 0.1,10
 2002: - 0.14,15
 200000: + 0.2,20
 201000: - 0.2,20
 400000: + 0.3,30
 401000: - 0.3,30
 500000: + 0.3,35
 501000: - 0.3,35
 600000: + 0.3,35
 601000: - 0.3,35
100000000: + 4.04,40
100001000: - 4.04,40

Timestamp Tuple Kind Tuple
 1000: + 0.6
 1002: + 0.44
 2000: - 0.1,10
 2002: - 0.14,15
 200000: + 0.3
 201000: - 0.2,20
 400000: + 0.5
 401000: - 0.3,30
 500000: + 0.6
 501000: - 0.3,35
100000000: + 4.34
100001000: - 4.34

5.8 func_expr
Use the func_expr function expression to define a function invocation using any Oracle CQL
built-in, user-defined, or Oracle data cartridge function.

Chapter 5
func_expr

5-9

func_expr::=

arith_expr::=)

:=

func_name

You can specify the identifier of a function explicitly:

• with an empty argument list.

• with an argument list of one or more arguments.

• with a distinct arithmetic expression.

For more information, see aggr_distinct_expr.

PREV

The PREV function takes a single argument made up of the following period-separated
identifier arguments:

• identifier1: the name of a pattern as specified in a DEFINE clause.

• identifier2: the name of a stream element as specified in a CREATE STREAM
statement.

The PREV function also takes the following const_int arguments:

• const_int: the index of the stream element before the current stream element to
compare against. Default: 1.

Chapter 5
func_expr

5-10

• const_bigint: the timestamp of the stream element before the current stream element to
compare against. To obtain the timestamp of a stream element, you can use the
ELEMENT_TIME pseudocolumn (see ELEMENT_TIME Pseudocolumn).

For more information, see prev. For an example, see func_expr PREV Function Example.

FIRST and LAST

The FIRST and LAST functions each take a single argument made up of the following period-
separated values:

• identifier1: the name of a pattern as specified in a DEFINE clause.

• identifier2: the name of a stream element as specified in a CREATE STREAM statement.

For more information, see:

• first

• last

You can specify the identifier of a function explicitly with or without a non_mt_arg_list: a list
of arguments appropriate for the built-in or user-defined function being invoked. The list can
have single or multiple arguments.

You can use a func_expr in the following Oracle CQL statements:

• arith_expr::=

For more information, see Functions.

5.8.1 Examples
This section describes the following func_expr examples:

• func_expr PREV Function Example

func_expr PREV Function Example

The following example shows how to compose a func_expr to invoke the PREV function.

<query id="q36"><![CDATA[
 select T.Ac1 from S15
 MATCH_RECOGNIZE (
 PARTITION BY
 c2
 MEASURES
 A.c1 as Ac1
 PATTERN(A)
 DEFINE
 A as (A.c1 = PREV(A.c1,3,5000))
) as T
]]></query>

The following example shows how to compose a func_expr to invoke the SUM function.

<query id="q3"><![CDATA[
 select sum(c2) from S1[range 5]
]]></query>

Chapter 5
func_expr

5-11

5.9 order_expr
Use the order_expr expression to specify the sort order in which GGSA returns tuples
that a query selects.

order_expr::=

You can specify a stream element by attr name.

Alternatively, you can specify a stream element by its const_int index where the index
corresponds to the stream element position you specify at the time you register or
create the stream.

5.9.1 Examples
Stream S3 has schema (c1 bigint, c2 interval, c3 byte(10), c4 float). This
example shows how to order the results of query q210 by c1 and then c2 and how to
order the results of query q211 by c2, then by the stream element at index 3 (c3) and
then by the stream element at index 4 (c4).

<query id="q210"><![CDATA[
 select * from S3 order by c1 desc nulls first, c2 desc nulls last
]]></query>
<query id="q211"><![CDATA[
 select * from S3 order by c2 desc nulls first, 3 desc nulls last, 4 desc
]]></query>

Chapter 5
order_expr

5-12

6
Conditions

A reference to conditions in Oracle Continuous Query Language (Oracle CQL) is provided. A
condition specifies a combination of one or more expressions and logical operators and
returns a value of TRUE, FALSE, or UNKNOWN.

6.1 Introduction to Conditions
You must use appropriate condition syntax whenever condition appears in Oracle CQL
statements.

You can use a condition in the WHERE clause of these statements:

• SELECT

You can use a condition in any of these clauses of the SELECT statement:

• WHERE

• HAVING

See Also:

Query.

A condition could be said to be of a logical data type.

The following simple condition always evaluates to TRUE:

1 = 1

The following more complex condition adds the salary value to the commission_pct value
(substituting the value 0 for null using the nvl function) and determines whether the sum is
greater than the number constant 25000:

NVL(salary, 0) + NVL(salary + (salary*commission_pct, 0) > 25000)

Logical conditions can combine multiple conditions into a single condition. For example, you
can use the AND condition to combine two conditions:

(1 = 1) AND (5 < 7)

Here are some valid conditions:

name = 'SMITH'
S0.department_id = S2.department_id
hire_date > '01-JAN-88'
commission_pct IS NULL AND salary = 2100

6-1

6.1.1 Condition Precedence
Precedence is the order in which GGSA evaluates different conditions in the same
expression. When evaluating an expression containing multiple conditions, GGSA
evaluates conditions with higher precedence before evaluating those with lower
precedence. GGSA evaluates conditions with equal precedence from left to right within
an expression.

Table 6-1 lists the levels of precedence among Oracle CQL condition from high to low.
Conditions listed on the same line have the same precedence. As the table indicates,
Oracle evaluates operators before conditions.

Table 6-1 Oracle CQL Condition Precedence

Type of Condition Purpose

Oracle CQL operators are evaluated before
Oracle CQL conditions

See What You May Need to Know About
Operator Precedence .

=, <>, <, >, <=, >= comparison

IS NULL, IS NOT NULL, LIKE, BETWEEN, IN,
NOT IN

comparison

NOT exponentiation, logical negation

AND conjunction

OR disjunction

XOR disjunction

6.2 Comparison Conditions
Comparison conditions compare one expression with another. The result of such a
comparison can be TRUE, FALSE, or NULL.

When comparing numeric expressions, GGSA uses numeric precedence to determine
whether the condition compares INTEGER, FLOAT, or BIGINT values.

Two objects of nonscalar type are comparable if they are of the same named type and
there is a one-to-one correspondence between their elements.

A comparison condition specifies a comparison with expressions or view results.

Table 6-2 lists comparison conditions.

Table 6-2 Comparison Conditions

Type of
Condition

Purpose Example

= Equality test. <query id="Q1"><![CDATA[
 SELECT *
 FROM S0
 WHERE salary = 2500
]]></query>

Chapter 6
Comparison Conditions

6-2

Table 6-2 (Cont.) Comparison Conditions

Type of
Condition

Purpose Example

<> Inequality test. <query id="Q1"><![CDATA[
 SELECT *
 FROM S0
 WHERE salary <> 2500
]]></query>

>

<

Greater-than and less-than
tests.

<query id="Q1"><![CDATA[
 SELECT * FROM S0
 WHERE salary > 2500
]]></query>
<query id="Q1"><![CDATA[
 SELECT * FROM S0
 WHERE salary < 2500
]]></query>

>=

<=

Greater-than-or-equal-to and
less-than-or-equal-to tests.

<query id="Q1"><![CDATA[
 SELECT * FROM S0
 WHERE salary >= 2500
]]></query>
<query id="Q1"><![CDATA[
 SELECT * FROM S0
 WHERE salary <= 2500
]]></query>

like Pattern matching tests on
character data.

For more information, see LIKE
Condition .

<query id="q291"><![CDATA[
 select * from SLk1
 where first1 like "^Ste(v|ph)en$"
]]></query>

is [not] null Null tests.

For more information, see Null
Conditions .

<query id="Q1"><![CDATA[
 SELECT last_name
 FROM S0
 WHERE commission_pct
 IS NULL
]]></query>

<query id="Q2"><![CDATA[
 SELECT last_name
 FROM S0
 WHERE commission_pct
 IS NOT NULL
]]></query>

Chapter 6
Comparison Conditions

6-3

Table 6-2 (Cont.) Comparison Conditions

Type of
Condition

Purpose Example

[not] in Set and membership tests.

For more information, see IN
Condition.

<query id="Q1"><![CDATA[
 SELECT * FROM S0
 WHERE job_id NOT IN
 ('PU_CLERK','SH_CLERK')
]]></query>
<view id="V1" schema="salary"><!
[CDATA[
 SELECT salary
 FROM S0
 WHERE department_id = 30
]]></view>
<view id="V2" schema="salary"><!
[CDATA[
 SELECT salary
 FROM S0
 WHERE department_id = 20
]]></view>
<query id="Q2"><![CDATA[
 V1 IN V2
]]></query>

condition::=

(aggr_expr::= and non_mt_arg_list_set::=.

6.3 Logical Conditions
A logical condition combines the results of two component conditions to produce a
single result based on them or to invert the result of a single condition. Table 6-3 lists
logical conditions.

Chapter 6
Logical Conditions

6-4

Table 6-3 Logical Conditions

Type of
Condition

Operation Examples

NOT Returns TRUE if the following condition is FALSE.
Returns FALSE if it is TRUE. If it is UNKNOWN, then it
remains UNKNOWN.

<query id="Q1"><![CDATA[
 SELECT *
 FROM S0
 WHERE NOT (job_id IS NULL)
]]></query>

AND Returns TRUE if both component conditions are
TRUE. Returns FALSE if either is FALSE. Otherwise
returns UNKNOWN.

<query id="Q1"><![CDATA[
 SELECT *
 FROM S0
 WHERE job_id = 'PU_CLERK'
 AND dept_id = 30
]]></query>

OR Returns TRUE if either component condition is
TRUE. Returns FALSE if both are FALSE.
Otherwise returns UNKNOWN.

<query id="Q1"><![CDATA[
 SELECT *
 FROM S0
 WHERE job_id = 'PU_CLERK'
 OR department_id = 10
]]></query>

XOR Returns TRUE if either component condition is
TRUE. Returns FALSE if both are FALSE.
Otherwise returns UNKNOWN.

<query id="Q1"><![CDATA[
 SELECT *
 FROM S0
 WHERE job_id = 'PU_CLERK'
 XOR department_id = 10
]]></query>

Table 6-4 shows the result of applying the NOT condition to an expression.

Table 6-4 NOT Truth Table

-- TRUE FALSE UNKNOWN

NOT FALSE TRUE UNKNOWN

Table 6-5 shows the results of combining the AND condition to two expressions.

Table 6-5 AND Truth Table

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

For example, in the WHERE clause of the following SELECT statement, the AND logical condition
returns values only when both product.levelx is BRAND and v1.prodkey equals
product.prodkey:

 select

Chapter 6
Logical Conditions

6-5

 v1.region,
 v1.dollars,
 v1.month_
 from
 v1,
 product
 where
 product.levelx = "BRAND" and v1.prodkey = product.prodkey

Table 6-6 shows the results of applying OR to two expressions.

Table 6-6 OR Truth Table

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

For example, the following query returns the internal account identifier for RBK or RBR
accounts with a risk of type 2:

 select ACCT_INTRL_ID from Acct
 where (
 ((MANTAS_ACCT_BUS_TYPE_CD = "RBK") OR (MANTAS_ACCT_BUS_TYPE_CD = "RBR")) AND
 (ACCT_EFCTV_RISK_NB != 2)
)

Table 6-7 shows the results of applying XOR to two expressions.

Table 6-7 XOR Truth Table

XOR TRUE FALSE UNKNOWN

TRUE FALSE TRUE UNKNOWN

FALSE TRUE FALSE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN

For example, the following query returns c1 and c2 when c1 is 15 and c2 is 0.14 or
when c1 is 20 and c2 is 100.1, but not both:

<query id="q6"><![CDATA[
 select
 S2.c1,
 S3.c2
 from
 S2[range 1000], S3[range 1000]
 where
 (S2.c1 = 15 and S3.c2 = 0.14) xor (S2.c1 = 20 and S3.c2 = 100.1)
]]></query>

6.4 LIKE Condition
The LIKE condition specifies a test involving regular expression pattern matching.
Whereas the equality operator (=) exactly matches one character value to another, the
LIKE conditions match a portion of one character value to another by searching the

Chapter 6
LIKE Condition

6-6

first value for the regular expression pattern specified by the second. LIKE calculates strings
using characters as defined by the input character set.

The LIKE condition with the syntax of the comparison String supports % for 0 or more
characters and - for any single character in coherence.

like_condition::=

(arith_expr::=)

In this syntax:

• arith_expr is an arithmetic expression whose value is compared to const_string.

• const_string is a constant value regular expression to be compared against the
arith_expr.

If any of arith_expr or const_string is null, then the result is unknown.

The const_string can contain any of the regular expression assertions and quantifiers that
java.util.regex supports: that is, a regular expression that is specified in string form in a
syntax similar to that used by Perl.

Table 6-8 describes the LIKE conditions.

Table 6-8 LIKE Conditions

Type of
Condition

Operation Example

x LIKE y TRUE if x does match the pattern y, FALSE
otherwise.

<query id="q291"><![CDATA[
 select * from SLk1 where first1
like "^Ste(v|ph)en$"
]]></query>

<query id="q292"><![CDATA[
 select * from SLk1 where first1
like ".*intl.*"
]]></query>

See Also:

lk

For more information on Perl regular expressions, see http://perldoc.perl.org/perlre.html.

6.4.1 Examples
This condition is true for all last_name values beginning with Ma:

last_name LIKE '^Ma'

Chapter 6
LIKE Condition

6-7

http://perldoc.perl.org/perlre.html

All of these last_name values make the condition true:

Mallin, Markle, Marlow, Marvins, Marvis, Matos

Case is significant, so last_name values beginning with MA, ma, and mA make the
condition false.

Consider this condition:

last_name LIKE 'SMITH[A-Za-z]'

This condition is true for these last_name values:

SMITHE, SMITHY, SMITHS

This condition is false for SMITH because the [A-Z] must match exactly one character
of the last_name value.

Consider this condition:

last_name LIKE 'SMITH[A-Z]+'

This condition is false for SMITH but true for these last_name values because the [A-Z]
+ must match 1 or more such characters at the end of the word.

SMITHSTONIAN, SMITHY, SMITHS

For more information, see http://java.sun.com/j2se/1.5.0/docs/api/java/util/
regex/Pattern.html.

6.5 Range Conditions
A range condition tests for inclusion in a range.

between_condition::=

(arith_expr::=)

Table 6-9 describes the range conditions.

Table 6-9 Range Conditions

Type of Condition Operation Example

BETWEEN x AND y Greater than or equal to x and
less than or equal to y.

<query id="Q1"><![CDATA[
 SELECT * FROM S0
 WHERE salary
 BETWEEN 2000 AND 3000
]]></query>

6.6 Null Conditions
A NULL condition tests for nulls. This is the only condition that you should use to test for
nulls.

Chapter 6
Range Conditions

6-8

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

null_conditions::=

(Expressions).

Table 6-10 lists the null conditions.

Table 6-10 Null Conditions

Type of
Condition

Operation Example

IS [NOT] NULL Tests for nulls.

See Also: Nulls
<query id="Q1"><![CDATA[
 SELECT last_name
 FROM S0
 WHERE commission_pct
 IS NULL
]]></query>

<query id="Q2"><![CDATA[
 SELECT last_name
 FROM S0
 WHERE commission_pct
 IS NOT NULL
]]></query>

6.7 Compound Conditions
A compound condition specifies a combination of other conditions.

compound_conditions::=

See Also:

Logical Conditions for more information about NOT, AND, and OR conditions.

6.8 IN Condition
You can use the IN and NOT IN condition in the following ways:

Chapter 6
Compound Conditions

6-9

• in_condition_set: Using IN and NOT IN as a Membership Condition

• in_condition_membership: Using IN and NOT IN as a Membership Condition.

Note:

You cannot combine these two usages.

When using the NOT IN condition, be aware of the effect of null values as NOT IN and
Null Values describes.

6.8.1 Using IN and NOT IN as a Membership Condition
In this usage, the query will be a SELECT-FROM-WHERE query that either tests whether or
not one argument is a member of a list of arguments of the same type or tests whether
or not a list of arguments is a member of a set of similar lists.

in_condition_membership::=

(arith_expr::= and non_mt_arg_list_set::=)

non_mt_arg_list_set::=

When you use IN or NOT IN to test whether or not a non_mt_arg_list is a member of
a set of similar lists, then you must use a non_mt_arg_list_set. Each
non_mt_arg_list in the non_mt_arg_list_set must match the non_mt_arg_list to
the left of the condition in number and type of arguments.

Consider the query Q1 and the data stream S0. Stream S0 has schema (c1 integer,
c2 integer). The following example shows the relation that the query returns. In Q1,
the non_mt_arg_list_set is ((50,4),(4,5)). Note that each non_mt_arg_list that it
contains matches the number and type of arguments in the non_mt_arg_list to the
left of the condition, (c1, c2).

<query id="Q1"><![CDATA[
 select c1,c2 from S0[range 1] where (c1,c2) in ((50,4),(4,5))
]]></query>

Timestamp Tuple
1000 50, 4
2000 30, 6
3000 , 5

Chapter 6
IN Condition

6-10

4000 22,
h 200000000

Timestamp Tuple Kind Tuple
1000: + 50,4
2000: - 50,4

6.8.2 NOT IN and Null Values
If any item in the list following a NOT IN operation evaluates to null, then all stream elements
evaluate to FALSE or UNKNOWN, and no rows are returned. For example, the following
statement returns c1 and c2 if c1 is neither 50 nor 30:

<query id="check_notin1"><![CDATA[
 select c1,c2 from S0[range 1]
 where
 c1 not in (50, 30)
]]></query>

However, the following statement returns no stream elements:

<query id="check_notin1"><![CDATA[
 select c1,c2 from S0[range 1]
 where
 c1 not in (50, 30, NULL)
]]></query>

The preceding example returns no stream elements because the WHERE clause condition
evaluates to:

c1 != 50 AND c1 != 30 AND c1 != null

Because the third condition compares c1 with a null, it results in an UNKNOWN, so the entire
expression results in FALSE (for stream elements with c1 equal to 50 or 30).

Chapter 6
IN Condition

6-11

7
Common Oracle CQL DDL Clauses

A reference to clauses in the data definition language (DDL) in Oracle Continuous Query
Language (Oracle CQL) is provided.

7.1 Introduction to Common Oracle CQL DDL Clauses
Oracle CQL supports the following common DDL clauses:

• attr

• attrspec

• const_int

• const_string

• const_value

• identifier

• l-value

• non_mt_arg_list

• non_mt_attr_list

• non_mt_attrname_list

• non_mt_attrspec_list

• non_mt_cond_list

• param_list

• query_ref

• time_spec

For more information on Oracle CQL statements, see Oracle CQL Statements.

7.2 attr
Purpose

Use the attr clause to specify a stream element or pseudocolumn.

You can use the attr clause in the following Oracle CQL statements:

• arith_expr::=

• order_expr::=.

Prerequisites

None.

7-1

Syntax

Figure 7-1 attr::=

identifier::= and Example 7-1.

Semantics

identifier

Specify the identifier of the stream element.

You can specify

• StreamOrViewName.ElementName

• ElementName

• CorrelationName.PseudoColumn

• PseudoColumn.

Example 7-1 pseudo_column

Specify the timestamp associated with a specific stream element, all stream elements,
or the stream element associated with a correlation name in a MATCH_RECOGNIZE
clause.

For examples, see:

• Using ELEMENT_TIME With SELECT

• Using ELEMENT_TIME With GROUP BY

• Using ELEMENT_TIME With PATTERN.

For more information, see Pseudocolumns.

7.3 attrspec
Purpose

Use the attrspec clause to define the identifier and data type of a stream element.

Prerequisites

None.

Chapter 7
attrspec

7-2

Syntax

Figure 7-2 attrspec::=

(fixed_length_datatype::= and variable_length_datatype::=).

Semantics

identifier

Specify the identifier of the stream element.

fixed_length_datatype

Specify the stream element data type as a fixed-length data type.

For syntax, see fixed_length_datatype::= .

variable_length_datatype

Specify the stream element data type as a variable-length data type.

For syntax, see variable_length_datatype::=.

integer

Specify the length of the variable-length data type.

7.4 const_bigint
Purpose

Use the const_bigint clause to specify a big integer numeric literal.

You can use the const_bigint clause in the following Oracle CQL statements:

• func_expr::=

For more information, see Numeric Literals.

Prerequisites

None.

Syntax

const_bigint::=

Chapter 7
const_bigint

7-3

7.5 const_int
Purpose

Use the const_int clause to specify an integer numeric literal.

You can use the const_int clause in the following Oracle CQL statements:

• func_expr::=

• order_expr::=

For more information, see Numeric Literals.

Prerequisites

None.

Syntax

const_int::=

7.6 const_string
Purpose

Use the const_string clause to specify a constant String text literal.

You can use the const_string clause in the following Oracle CQL statements:

• func_expr::=

• order_expr::=

• condition::=

• Figure 7-4

For more information, see Text Literals.

Prerequisites

None.

Syntax

Figure 7-3 const_string::=

Chapter 7
const_int

7-4

7.7 const_value
Purpose

Use the const_value clause to specify a literal value.

You can use the const_value clause in the following Oracle CQL statements:

• arith_expr::=

• condition::=

For more information, see Literals.

Prerequisites

None.

Syntax

Figure 7-4 const_value::=

Example 7-2.

Figure 7-5 interval_value

Example 7-2 interval_value

Specify an interval constant value as a quoted string. For example:

INTERVAL '4 5:12:10.222' DAY TO SECOND(3)

For more information, see Interval Literals.

const_string

Specify a quoted String constant value.

For more information, see Text Literals.

Chapter 7
const_value

7-5

null

Specify a null constant value.

For more information, see Nulls.

const_int

Specify an int constant value.

For more information, see Numeric Literals.

bigint

Specify a bigint constant value.

For more information, see Numeric Literals.

float

Specify a float constant value.

For more information, see Numeric Literals.

7.8 identifier
Purpose

Use the identifier clause to reference an existing Oracle CQL schema object.

You can use the identifier clause in the following Oracle CQL statements:

• Figure 14-19

• aggr_expr::=

• func_expr::=

• Figure 7-1

• Figure 7-2

• Figure 7-9

• Figure 7-8

• Figure 14-7

• measure_column::=

• Query

• Figure 14-4

Prerequisites

The schema object must already exist.

Chapter 7
identifier

7-6

Syntax

Figure 7-6 identifier::=

const_string and Example 7-3.

Chapter 7
identifier

7-7

Example 7-3 unreserved_keyword::=

Semantics

const_string

Specify the identifier as a String.

[A-Z]

Specify the identifier as a single uppercase letter.

unreserved_keyword

These are names that you may use as identifiers.

reserved_keyword

These are names that you may not use as identifiers, because they are reserved
keywords: add, aggregate, all, alter, and, application, as, asc, avg, between,
bigint, binding, binjoin, binstreamjoin, boolean, by, byte, callout, case, char,
clear, columns, constraint, content, count, create, day, days, decode, define,
derived, desc, destination, disable, distinct, document, double, drop, dstream,
dump, duration, duration, element_time, else, enable, end, evalname, event, events,
except, external, false, first, float, from, function, group, groupaggr, having,
heartbeat, hour, hours, identified, implement, in, include, index, instance, int,
integer, intersect, interval, is, istream, java, key, language, last, level, like,
lineage, logging, match_recognize, matches, max, measures, metadata_query,
metadata_system, metadata_table, metadata_userfunc, metadata_view,
metadata_window, microsecond, microseconds, millisecond, milliseconds, min,
minus, minute, minutes, monitoring, multiples, nanosecond, nanoseconds, not, now,
null, nulls, object, of, on, operator, or, order, orderbytop, output, partition,
partitionwin, partnwin, passing, path, pattern, patternstrm, patternstrmb, prev,
primary, project, push, query, queue, range, rangewin, real, register, relation,
relsrc, remove, return, returning, rows, rowwin, rstream, run, run_time,
sched_name, sched_threaded, schema, second, seconds, select, semantics, set,
silent, sink, slide, source, spill, start, stop, storage, store, stream, strmsrc,
subset, sum, synopsis, system, systemstate, then, time, time_slice, timeout, timer,
timestamp, timestamped, to, true, trusted, type, unbounded, union, update, using,
value, view, viewrelnsrc, viewstrmsrc, wellformed, when, where, window, xmlagg,
xmlattributes, xmlcolattval, xmlconcat, xmldata, xmlelement, xmlexists,
xmlforest, xmlparse, xmlquery, xmltable, xmltype, or xor.

Chapter 7
identifier

7-8

7.9 l-value
Purpose

Use the l-value clause to specify an integer literal.

Prerequisites

None.

Syntax

l-value::=

7.10 non_mt_arg_list
Purpose

Use the non_mt_arg_list clause to specify one or more arguments as arithmetic expressions
involving stream elements.

You can use the non_mt_arg_list clause in the following Oracle CQL statements:

• decode::=

• func_expr::=

• condition::=

• non_mt_arg_list_set::=.

Prerequisites

If any stream elements are referenced, the stream must already exist.

Syntax

non_mt_arg_list::=

(arith_expr::=)

Semantics

arith_expr

Specify the arithmetic expression that resolves to the argument value.

Chapter 7
l-value

7-9

7.11 non_mt_attr_list
Purpose

Use the non_mt_attr_list clause to specify one or more arguments as stream
elements directly.

You can use the non_mt_attr_list clause in the following Oracle CQL statements:

• Figure 13-6

• Figure 14-8

• Figure 14-11.

Prerequisites

If any stream elements are referenced, the stream must already exist.

Syntax

Figure 7-7 non_mt_attr_list::=

Semantics

attr

Specify the argument as a stream element directly.

7.12 non_mt_attrname_list
Purpose

Use the non_mt_attrname_list clause to one or more stream elements by name.

You can use the non_mt_attrname_list clause in the following Oracle CQL
statements:

Prerequisites

If any stream elements are referenced, the stream must already exist.

Syntax

Figure 7-8 non_mt_attrname_list::=

Chapter 7
non_mt_attr_list

7-10

Semantics

identifier

Specify the stream element by name.

7.13 non_mt_attrspec_list
Purpose

Use the non_mt_attrspec_list clause to specify one or more attribute specifications that
define the identifier and data type of stream elements.

Prerequisites

If any stream elements are referenced, the stream must already exist.

Syntax

non_mt_attrspec_list::=

Semantics

attrspec

Specify the attribute identifier and data type.

7.14 non_mt_cond_list
Purpose

Use the non_mt_cond_list clause to specify one or more conditions using any combination
of logical operators AND, OR, XOR and NOT.

You can use the non_mt_cond_list clause in the following Oracle CQL statements:

• Figure 13-5

• searched_case::=

• Figure 14-10

• Figure 14-18.

For more information, see Conditions.

Prerequisites

None.

Syntax

non_mt_cond_list::=

Chapter 7
non_mt_attrspec_list

7-11

(condition::=, between_condition::=)

Semantics

condition

Specify a comparison condition.

For more information, see Comparison Conditions .

For syntax, see condition::=.

between_condition

Specify a condition that tests for inclusion in a range.

For more information, see Range Conditions .

For syntax, see between_condition::=.

7.15 out_of_line_constraint
Purpose

Use this out_of_line_constraint clause to restrict a tuple of any data type by a
primary key integrity constraint.

If you plan to configure a query on a relation with USE UPDATE SEMANTICS, you must
declare one or more stream elements as a primary key. Use this constraint to specify a
compound primary key made up of one or more stream element values.

You can use the out_of_line_constraint clause in the following Oracle CQL
statements:

• Query.

For more information, see:

• Nulls.

Prerequisites

A tuple that you specify with an out_of_line_constraint may not contain a null value.

Syntax

out_of_line_constraint::=

Chapter 7
out_of_line_constraint

7-12

Semantics

non_mt_attrname_list

Specify one or more tuples to restrict by a primary key integrity constraint.

7.16 param_list
Purpose

Use the param_list clause to specify a comma-separated list of zero or more parameters,
similar to a function parameter list, for an Oracle CQL data cartridge complex type method or
constructor.

You can use the param_list clause in the following Oracle CQL data cartridge statements:

Prerequisites

None.

Syntax

param_list::=

(arith_expr::=).

7.17 query_ref
Purpose

Use the query_ref clause to reference an existing Oracle CQL query by name.

Prerequisites

The query must already exist (see Query).

Syntax

Figure 7-9 query_ref::=

Semantics

identifier

Chapter 7
param_list

7-13

Specify the name of the query. This is the name you use to reference the query in
subsequent Oracle CQL statements.

7.18 time_spec
Purpose

Use the time_spec clause to define a time duration in days, hours, minutes, seconds,
milliseconds, or nanoseconds.

Default: if units are not specified, GGSA assumes [second|seconds].

You can use the time_spec clause in the following Oracle CQL statements:

• Figure 13-9

• windows_type in Query Semantics

Prerequisites

None.

Syntax

Figure 7-10 time_spec::=

Figure 7-11 time_unit::=

Semantics

integer

Chapter 7
time_spec

7-14

Specify the number of time units.

time_unit

Specify the unit of time.

Chapter 7
time_spec

7-15

8
Built-In Single-Row Functions

A reference to single-row functions in Oracle Continuous Query Language (Oracle CQL) is
provided. Single-row functions return a single result row for every row of a queried stream or
view.

8.1 Introduction to Oracle CQL Built-In Single-Row Functions
Table 8-1 lists the built-in single-row functions that Oracle CQL provides.

Table 8-1 Oracle CQL Built-in Single-Row Functions

Type Function

Character (returning character values) • concat

Character (returning numeric values) • length

Datetime • systimestamp

Conversion • to_bigint
• to_boolean
• to_char
• to_double
• to_float
• to_timestamp

Encoding and Decoding • hextoraw
• rawtohex

Null-related • nvl

Pattern Matching • lk
• prev

Note:

Built-in function names are case sensitive and you must use them in the case
shown (in lower case).

Note:

In stream input examples, lines beginning with h (such as h 3800) are heartbeat
input tuples. These inform GGSA that no further input will have a timestamp lesser
than the heartbeat value.

8-1

8.2.1 concat
Syntax

Purpose

concat returns char1 concatenated with char2 as a char[] or byte1 concatenated
with byte2 as a byte[]. The char returned is in the same character set as char1. Its
data type depends on the data types of the arguments.

Using concat, you can concatenate any combination of character, byte, and numeric
data types. The concat performs automatic numeric to string conversion.

This function is equivalent to the concatenation operator (||).

Examples

concat Function

Consider the query chr_concat in concat and data stream S4 in concat. Stream S4 has
schema (c1 char(10)). The query returns the relation in concat.

Example 8-1 concat Function Query

<query id="chr_concat"><![CDATA[
select
concat(c1,c1),
concat("abc",c1),
concat(c1,"abc")
from
S4[range 5]
]]></query>

Example 8-2 concat Function Stream Input

Timestamp Tuple
1000
2000 hi
8000 hi1
9000
15000 xyz
h 200000000

Example 8-3 concat Function Relation Output

Timestamp Tuple Kind Tuple
1000: + ,abc,abc
2000: + hihi,abchi,hiabc

Chapter 8
concat

8-2

6000: - ,abc,abc
7000: - hihi,abchi,hiabc
8000: + hi1hi1,abchi1,hi1abc
9000: + ,abc,abc
13000: - hi1hi1,abchi1,hi1abc
14000: - ,abc,abc
15000: + xyzxyz,abcxyz,xyzabc
20000: - xyzxyz,abcxyz,xyzabc

Concatenation Operator (||)

Consider the query q264 in Example 8–4 and the data stream S10 in Example 8–5. Stream
S10 has schema (c1 integer, c2 char(10)). The query returns the relation in Example 8–
6.

Example 8-4 Concatenation Operator (||) Query

<query id="q264">
select
c2 || "xyz"
from
S10
]]></query>

Example 8-5 Concatenation Operator (||) Stream Input

Timestamp Tuple
1 1,abc
2 2,ab
3 3,abc
4 4,a
h 200000000

Example 8-6 Concatenation Operator (||) Relation Output

Timestamp Tuple Kind Tuple
1: + abcxyz
2: + abxyz
3: + abcxyz
4: + axyz

8.2.2 hextoraw
Syntax

Purpose

hextoraw converts char containing hexadecimal digits in the char character set to a raw
value.

Chapter 8
hextoraw

8-3

See Also:

rawtohex.

Examples

Consider the query q6 and the data stream SByt. Stream SByt has schema (c1
integer, c2 char(10)). The query returns the relation.

<query id="q6"><![CDATA[
 select * from SByt[range 2]
 where
 hextoraw(c2) between and hextoraw("5600")
]]></query>

Timestamp Tuple
1000 1,"51c1"
2000 2,"52"
3000 3,"53aa"
4000 4,"5"
5000 ,"55ef"
6000 6,
h 8000
h 200000000

Timestamp Tuple Kind Tuple
3000 + 3,"53aa"
5000 - 3,"53aa"
5000 + ,"55ef"
7000 - ,"55ef"

8.2.3 length
Syntax

Purpose

The length function returns the length of its char or byte expression as an int.
length calculates length using characters as defined by the input character set.

For a char expression, the length includes all trailing blanks. If the expression is null,
this function returns null.

Examples

Consider the query chr_len and the data stream S2. Stream S2 has schema (c1
char(10), c2 integer). The query returns the relation.

<query id="chr_len"><![CDATA[
 select length(c1) from S2[range 5]
]]></query>

Timestamp Tuple
 1000

Chapter 8
length

8-4

 2000 hi
 8000 hi1
 9000
15000 xyz
h 200000000

Timestamp Tuple Kind Tuple
 1000: + 0
 2000: + 2
 6000: - 0
 7000: - 2
 8000: + 3
 9000: + 0
13000: - 3
14000: - 0
15000: + 3
20000: - 3

8.2.4 lk
Syntax

Purpose

lk boolean true if char1 matches the regular expression char2, otherwise it returns false.

This function is equivalent to the LIKE condition. For more information, see .

Examples

Consider the query q291 and the data stream SLk1. Stream SLk1 has schema (first1
char(20), last1 char(20)). The query returns the relation.

<query id="q291"><![CDATA[
 select * from SLk1
 where
 lk(first1,"^Ste(v|ph)en$") = true
]]></query>

Timestamp Tuple
1 Steven,King
2 Sten,Harley
3 Stephen,Stiles
4 Steven,Markles
h 200000000

Timestamp Tuple Kind Tuple
1: + Steven,King
3: + Stephen,Stiles
4: + Steven,Markles

Chapter 8
lk

8-5

8.2.5 nvl
Syntax

Purpose

nvl lets you replace null (returned as a blank) with a string in the results of a query. If
expr1 is null, then NVL returns expr2. If expr1 is not null, then NVL returns expr1.

The arguments expr1 and expr2 can have any data type. If their data types are
different, then GGSA implicitly converts one to the other. If they cannot be converted
implicitly, GGSA returns an error. The implicit conversion is implemented as follows:

• If expr1 is character data, then GGSA converts expr2 to character data before
comparing them and returns VARCHAR2 in the character set of expr1.

• If expr1 is numeric, then GGSA determines which argument has the highest
numeric precedence, implicitly converts the other argument to that data type, and
returns that data type.

Examples

Consider the query q281 and the data stream SNVL. Stream SNVL has schema (c1
char(20), c2 integer). The query returns the relation.

<query id="q281"><![CDATA[
 select nvl(c1,"abcd") from SNVL
]]></query>

Timestamp Tuple
1 ,1
2 ab,2
3 abc,3
4 ,4
h 200000000

Timestamp Tuple Kind Tuple
1: + abcd
2: + ab
3: + abc
4: + abcd

Chapter 8
nvl

8-6

8.2.6 prev
Syntax

Purpose

prev returns the value of the stream attribute (function argument identifier2) of the event
that occurred previous to the current event and which belongs to the partition to which the
current event belongs. It evaluates to NULL if there is no such previous event.

The type of the specified stream element may be any of:

• integer

• bigint

• float

• double

• byte

• char

• interval

• timestamp.

The return type of this function depends on the type of the specified stream attribute (function
argument identifier2).

Where:

• identifier1.identifier2 : identifier1 is the name of a correlation variable used in
the PATTERN clause and defined in the DEFINE clause and identifier2 is the name of a
stream attribute whose value in the previous event should be returned by prev.

• const_int: if this argument has a value n, then it specifies the nth previous event in the
partition to which the current event belongs. The value of the attribute (specified in
argument identifier2) in the nth previous event will be returned if such an event exists,
NULL otherwise.

• const_bigint: specifies a time range duration in nanoseconds and should be used if you
are interested in previous events that occurred only within a certain range of time before
the current event.

If the query uses PARTITION BY with the prev function and input data will include many
different partition key values (meaning many partitions), then total memory consumed for
storing the previous event(s) per partition could be large. In such cases, consider using the
time range duration (the third argument, possibly with a large range value) so that this
memory can be reclaimed wherever possible.

Chapter 8
prev

8-7

Examples

prev(identifier1.identifier2)

Consider query q2 and the data stream S1. Stream S1 has schema (c1 integer). This
example defines pattern A as A.c1 = prev(A.c1). In other words, pattern A matches
when the value of c1 in the current stream element matches the value of c1 in the
stream element immediately before the current stream element. The query returns the
stream.

<query id="q2"><![CDATA[
 select
 T.Ac1,
 T.Cc1
 from
 S1
 MATCH_RECOGNIZE (
 MEASURES
 A.c1 as Ac1,
 C.c1 as Cc1
 PATTERN(A B+ C)
 DEFINE
 A as A.c1 = prev(A.c1),
 B as B.c1 = 10,
 C as C.c1 = 7
) as T
]]></query>

Timestamp Tuple
1000 35
3000 35
4000 10
5000 7

Timestamp Tuple Kind Tuple
5000: + 35,7

prev(identifier1.identifier2, const_int)

Consider query q35 and the data stream S15. Stream S15 has schema (c1 integer,
c2 integer). This example defines pattern A as A.c1 = prev(A.c1,3). In other
words, pattern A matches when the value of c1 in the current stream element matches
the value of c1 in the third stream element before the current stream element. The
query returns the stream.

<query id="q35"><![CDATA[
 select T.Ac1 from S15
 MATCH_RECOGNIZE (
 MEASURES
 A.c1 as Ac1
 PATTERN(A)
 DEFINE
 A as (A.c1 = prev(A.c1,3))
) as T
]]></query>

Timestamp Tuple
 1000 45,20
 2000 45,30
 3000 45,30
 4000 45,30
 5000 45,30
 6000 45,20
 7000 45,20
 8000 45,20

Chapter 8
prev

8-8

 9000 43,40
10000 52,10
11000 52,30
12000 43,40
13000 52,50
14000 43,40
15000 43,40

Timestamp Tuple Kind Tuple
 4000: + 45
 5000: + 45
 6000: + 45
 7000: + 45
 8000: + 45
12000: + 43
13000: + 52
15000: + 43

prev(identifier1.identifier2, const_int, const_bigint)

Consider query q36 and the data stream S15. Stream S15 has schema (c1 integer, c2
integer). This example defines pattern A as A.c1 = prev(A.c1,3,5000000000L). In other
words, pattern A matches when:

• the value of c1 in the current event equals the value of c1 in the third previous event of
the partition to which the current event belongs, and

• the difference between the timestamp of the current event and that third previous event is
less than or equal to 5000000000L nanoseconds.

The query returns the output stream. Notice that in the output stream, there is no output at
8000. The following example shows the contents of the partition (partitioned by the value of
the c2 attribute) to which the event at 8000 belongs.

Timestamp Tuple
1000 45,20
6000 45,20
7000 45,20
8000 45,20

As the following example shows, even though the value of c1 in the third previous event (the
event at 1000) is the same as the value c1 in the current event (the event at 8000), the range
condition is not satisfied. This is because the difference in the timestamps of these two
events is more than 5000000000 nanoseconds. So it is treated as if there is no previous tuple
and prev returns NULL so the condition fails to match.

<query id="q36"><![CDATA[
 select T.Ac1 from S15
 MATCH_RECOGNIZE (
 PARTITION BY
 c2
 MEASURES
 A.c1 as Ac1
 PATTERN(A)
 DEFINE
 A as (A.c1 = prev(A.c1,3,5000000000L))
) as T
]]></query>

Timestamp Tuple
 1000 45,20
 2000 45,30
 3000 45,30
 4000 45,30
 5000 45,30
 6000 45,20

Chapter 8
prev

8-9

 7000 45,20
 8000 45,20
 9000 43,40
10000 52,10
11000 52,30
12000 43,40
13000 52,50
14000 43,40
15000 43,40

Timestamp Tuple Kind Tuple
5000: + 45

8.2.7 rawtohex
Syntax

Purpose

rawtohex converts byte containing a raw value to hexadecimal digits in the CHAR
character set.

See Also:

hextoraw.

Examples

Consider the query byte_to_hex and the data stream S5. Stream S5 has schema (c1
integer, c2 byte(10)). This query uses the rawtohex function to convert a ten byte
raw value to the equivalent ten hexadecimal digits in the character set of your current
locale. The query returns the relation.

<query id="byte_to_hex"><![CDATA[
 select rawtohex(c2) from S5[range 4]
]]></query>

Timestamp Tuple
1000 1,"51c1"
2000 2,"52"
2500 7,"axc"
3000 3,"53aa"
4000 4,"5"
5000 ,"55ef"
6000 6,
h 8000
h 200000000

Timestamp Tuple Kind Tuple
 1000: + 51c1
 2000: + 52
 3000: + 53aa
 4000: + 05
 5000: - 51c1
 5000: + 55ef

Chapter 8
rawtohex

8-10

 6000: - 52
 6000: +
 7000: - 53aa
 8000: - 05
 9000: - 55ef
10000: -

8.2.8 systimestamp
Syntax

Purpose

systimestamp returns the system date, including fractional seconds and time zone, of the
system on which the GGSA server resides. The return type is TIMESTAMP WITH TIME ZONE.

Examples

Consider the query q106 and the data stream S0. Stream S0 has schema (c1 float, c2
integer). The query returns the relation.

<query id="q106"><![CDATA[
 select * from S0
 where
 case c2
 when 10 then null
 when 20 then null
 else systimestamp()
 end > "07/06/2007 14:13:33"
]]></query>

Timestamp Tuple
 1000 0.1 ,10
 1002 0.14,15
 200000 0.2 ,20
 400000 0.3 ,30
 500000 0.3 ,35
 600000 ,35
h 800000
100000000 4.04,40
h 200000000

Timestamp Tuple Kind Tuple
 1002: + 0.14,15
 400000: + 0.3 ,30
 500000: + 0.3 ,35
 600000: + ,35
100000000: + 4.04,40

8.2.9 to_bigint
Syntax

Chapter 8
systimestamp

8-11

Purpose

Input/Output Types

The input/output types for this function are as follows:

Input Type Output Type

INTEGER BIGINT

TIMESTAMP BIGINT

CHAR BIGINT

Examples

Consider the query q282 and the data stream S11. Stream S11 has schema (c1
integer, name char(10)). The query returns the relation.

<query id="q282"><![CDATA[
 select nvl(to_bigint(c1), 5.2) from S11
]]></query>

Timestamp Tuple
 10 1,abc
2000 ,ab
3400 3,abc
4700 ,a
h 8000
h 200000000

Timestamp Tuple Kind Tuple
 10: + 1
2000: + 5.2
3400: + 3
4700: + 5.2

8.2.10 to_boolean
Syntax

Purpose

to_boolean returns a value of true or false for its bigint or integer expression
argument.

Examples

Consider the query q282 and the data stream S11. Stream S11 has schema (c1
integer, name char(10)). The query returns the relation.

<view id="v2" schema="c1 c2" ><![CDATA[
 select to_boolean(c1), c1 from tkboolean_S3 [now] where c2 = 0.1
]]></view><query id="q1"><![CDATA[

Chapter 8
to_boolean

8-12

 select * from v2
]]></query>

Timestamp Tuple
1000 -2147483648, 0.1
2000 2147483647, 0.2
3000 12345678901, 0.3
4000 -12345678901, 0.1
5000 9223372036854775799, 0.2
6000 -9223372036854775799, 0.3
7000 , 0.1
8000 10000000000, 0.2
9000 60000000000, 0.3
h 200000000

Timestamp Tuple Kind Tuple
1000 + true,-2147483648
1000 - true,-2147483648
4000 + true,-12345678901
4000 - true,-12345678901
7000 + ,
7000 - ,

8.2.11 to_char
Syntax

Purpose

to_char returns a char value for its integer, double, bigint, float, timestamp, or interval
expression argument. If the bigint argument exceeds the char precision, GGSA returns an
error.

Examples

Consider the query q282 and the data stream S11. Stream S11 has schema (c1 integer,
name char(10)). The query returns the relation.

<query id="q1"><![CDATA[
 select to_char(c1), to_char(c2), to_char(c3), to_char(c4), to_char(c5), to_char(c6)
 from S1
]]></query>

Timestamp Tuple
1000 99,99999, 99.9, 99.9999, "4 1:13:48.10", "08/07/2004 11:13:48", cep

Timestamp Tuple Kind Tuple
1000: + 99,99999,99.9,99.9999,4 1:13:48.10,08/07/2004 11:13:48

Chapter 8
to_char

8-13

8.2.12 to_double
Syntax

Purpose

to_double returns a double value for its bigint, integer, or float expression
argument. If the bigint argument exceeds the double precision, GGSA returns an
error.

Examples

Consider the query q282 and the data stream S11. Stream S11 has schema (c1
integer, name char(10)). The query returns the relation.

<query id="q282"><![CDATA[
 select nvl(to_double(c1), 5.2) from S11
]]></query>

Timestamp Tuple
 10 1,abc
2000 ,ab
3400 3,abc
4700 ,a
h 8000
h 200000000

Timestamp Tuple Kind Tuple
 10: + 1
2000: + 5.2
3400: + 3
4700: + 5.2

8.2.13 to_float
Syntax

Purpose

to_float returns a float number equivalent of its bigint or integer argument. If the
bigint argument exceeds the float precision, GGSA returns an error.

Chapter 8
to_double

8-14

Examples

Consider the query q1 and the data stream S11. Stream S1 has schema (c1 integer, name
char(10)). The query returns the relation.

<query id="q1"><![CDATA[
 select nvl(to_float(c1), 5.2) from S11
]]></query>

Timestamp Tuple
 10 1, abc
2000 , ab
3400 3, abc
4700 , a
h 8000
h 200000000

Timestamp Tuple Kind Tuple
10:+ 1.02000:+ 5.23400:+ 3.04700:+ 5.2

8.2.14 to_timestamp
Syntax

Purpose

to_timestamp converts char literals that conform to java.text.SimpleDateFormat format
models to timestamp data types. There are two forms of the to_timestamp function
distinguished by the number of arguments:

• char: this form of the to_timestamp function converts a single char argument that
contains a char literal that conforms to the default java.text.SimpleDateFormat format
model (MM/dd/yyyy HH:mm:ss) into the corresponding timestamp data type.

• char1, char2: this form of the to_timestamp function converts the char1 argument that
contains a char literal that conforms to the java.text.SimpleDateFormat format model
specified in the second char2 argument into the corresponding timestamp data type.

• long: this form of the to_timestamp function converts a single long argument that
represents the number of nanoseconds since the standard base time known as "the
epoch", namely January 1, 1970, 00:00:00 GMT, into the corresponding timestamp data
type represented as a number in milliseconds since "the epoch" with a date format that
conforms to the default java.text.SimpleDateFormat format model (MM/dd/yyyy
HH:mm:ss).

Examples

Consider the query q277 and the data stream STs2. Stream STs2 has schema (c1 integer,
c2 char(20)). The query returns the relation.

<query id="q277"><![CDATA[
 select * from STs2

Chapter 8
to_timestamp

8-15

 where
 to_timestamp(c2,"yyMMddHHmmss") = to_timestamp("09/07/2005 10:13:48")
]]></query>

Timestamp Tuple
1 1,"040807111348"
2 2,"050907101348"
3 3,"041007111348"
4 4,"060806111248"
h 200000000

Timestamp Tuple Kind Tuple
2: + 2,050907101348

Chapter 8
to_timestamp

8-16

9
Built-In Aggregate Functions

A reference to built-in aggregate functions included in Oracle Continuous Query Language
(Oracle CQL) is provided. Built-in aggregate functions perform a summary operation on all
the values that a query returns.

9.1 Introduction to Oracle CQL Built-In Aggregate Functions
Table 9-1 lists the built-in aggregate functions that Oracle CQL provides:

Table 9-1 Oracle CQL Built-in Aggregate Functions

Type Function

Aggregate • listagg
• max
• min

Aggregate (incremental computation) • avg
• count
• sum

Extended aggregate • first
• last

Specify distinct if you want GGSA to return only one copy of each set of duplicate tuples
selected. Duplicate tuples are those with matching values for each expression in the select
list. For more information, see .

GGSA does not support nested aggregations.

Note:

Built-in function names are case sensitive and you must use them in the case
shown (in lower case).

Note:

In stream input examples, lines beginning with h (such as h 3800) are heartbeat
input tuples. These inform GGSA that no further input will have a timestamp lesser
than the heartbeat value.

For more information, see:

• Built-In Aggregate Functions and the Where_ Group By_ and Having Clauses

9-1

9.1.1 Built-In Aggregate Functions and the Where, Group By, and
Having Clauses

In Oracle CQL, the where clause is applied before the group by and having clauses.
This means the Oracle CQL statement is invalid:

<query id="q1"><![CDATA[
 select * from InputChanel[rows 4 slide 4] as ic where count(*) = 4
]]></query>

Instead, you must use the Oracle CQL statement:

<query id="q1"><![CDATA[
 select * from InputChanel[rows 4 slide 4] as ic where count(*) = 4
]]></query>

9.2.1 avg
Syntax

Purpose

avg returns average value of expr.

This function takes as an argument any bigint, float, or int data type. The function
returns a float regardless of the numeric data type of the argument.

Input/Output Types

The following tables lists the input types and the corresponding output types:

Input Type Output Type

INT FLOAT

BIGINT FLOAT

FLOAT FLOAT

DOUBLE DOUBLE

Chapter 9
avg

9-2

BIGDECIMAL BIGDECIMAL

Examples

Consider the query float_avg and the data stream S3. Stream S3 has schema (c1 float).
The query returns the relation. Note that the avg function returns a result of NaN if the average
value is not a number.

<query id="float_avg"><![CDATA[
 select avg(c1) from S3[range 5]
]]></query>

Timestamp Tuple
 1000
 2000 5.5
 8000 4.4
 9000
15000 44.2
h 200000000

Timestamp Tuple Kind Tuple
 1000: -
 1000: + 0.0
 2000: - 0.0
 2000: + 5.5
 6000: - 5.5
 6000: + 5.5
 7000: - 5.5
 8000: -
 8000: + 4.4
 9000: - 4.4
 9000: + 4.4
13000: - 4.4
13000: + NaN
14000: - NaN
14000: +
15000: -
15000: + 44.2
20000: - 44.2
20000: +

9.2.2 count
Syntax

Chapter 9
count

9-3

Purpose

count returns the number of tuples returned by the query as an int value.

The return value depends on the argument as Table 9-2 shows.

Table 9-2 Return Values for COUNT Aggregate Function

Input Argument Return Value

arith_expr The number of tuples where arith_expr is not null.

* The number of all tuples, including duplicates and nulls.

identifier.* The number of all tuples that match the correlation variable identifier,
including duplicates and nulls.

identifier.att
r

The number of tuples that match correlation variable identifier, where
attr is not null.

count never returns null.

Example

Consider the query q2 and the data stream S2. Stream S2 has schema (c1 integer,
c2 integer). The query returns the relation.

<query id="q2"><![CDATA[
 SELECT COUNT(c2), COUNT(*) FROM S2 [RANGE 10]
]]></query>

Timestamp Tuple
1000 1,2
2000 1,
3000 1,4
6000 1,6

Timestamp Tuple Kind Tuple
-9223372036854775808: + 0,0
1000: - 0,0
1000: + 1,1
2000: - 1,1
2000: + 1,2
3000: - 1,2
3000: + 2,3
6000: - 2,3
6000: + 3,4

9.2.3 first
Syntax

Purpose

first returns the value of the specified stream element the first time the specified
pattern is matched.

Chapter 9
first

9-4

The type of the specified stream element may be any of:

• bigint

• integer

• byte

• char

• float

• interval

• timestamp.

The return type of this function depends on the type of the specified stream element.

This function takes a single argument made up of the following period-separated values:

• identifier1: the name of a pattern as specified in a DEFINE clause.

• identifier2: the name of a stream element as specified in a CREATE STREAM statement.

Examples

Consider the query q9 and the data stream S0. Stream S0 has schema (c1 integer, c2
float). This example defines pattern C as C.c1 = 7. It defines firstc as first(C.c2). In
other words, firstc will equal the value of c2 the first time c1 = 7. The query returns the
relation.

<query id="q9"><![CDATA[
 select
 T.firstc,
 T.lastc,
 T.Ac1,
 T.Bc1,
 T.avgCc1,
 T.Dc1
 from
 S0
 MATCH_RECOGNIZE (
 MEASURES
 first(C.c2) as firstc,
 last(C.c2) as lastc,
 avg(C.c1) as avgCc1,
 A.c1 as Ac1,
 B.c1 as Bc1,
 D.c1 as Dc1
 PATTERN(A B C* D)
 DEFINE
 A as A.c1 = 30,
 B as B.c2 = 10.0,
 C as C.c1 = 7,
 D as D.c1 = 40
) as T
]]></query>

Timestamp Tuple
 1000 33,0.9
 3000 44,0.4
 4000 30,0.3
 5000 10,10.0
 6000 7,0.9
 7000 7,2.3
 9000 7,8.7
11000 40,6.6
15000 19,8.8

Chapter 9
first

9-5

17000 30,5.5
20000 5,10.0
23000 40,6.6
25000 3,5.5
30000 30,2.2
35000 2,10.0
40000 7,5.5
44000 40,8.9

Timestamp Tuple Kind Tuple
11000: + 0.9,8.7,30,10,7.0,40
23000: + ,,30,5,,40
44000: + 5.5,5.5,30,2,7.0,40

9.2.4 last
Syntax

Purpose

last returns the value of the specified stream element the last time the specified
pattern is matched.

The type of the specified stream element may be any of:

• bigint

• integer

• byte

• char

• float

• interval

• timestamp.

The return type of this function depends on the type of the specified stream element.

This function takes a single argument made up of the following period-separated
values:

• identifier1: the name of a pattern as specified in a DEFINE clause.

• identifier2: the name of a stream element as specified in a CREATE STREAM
statement.

Examples

Consider the query q9 and the data stream S0. Stream S1 has schema (c1 integer,
c2 float). This example defines pattern C as C.c1 = 7. It defines lastc as
last(C.c2). In other words, lastc will equal the value of c2 the last time c1 = 7. The
query returns the relation.

<query id="q9"><![CDATA[
 select
 T.firstc,

Chapter 9
last

9-6

 T.lastc,
 T.Ac1,
 T.Bc1,
 T.avgCc1,
 T.Dc1
 from
 S0
 MATCH_RECOGNIZE (
 MEASURES
 first(C.c2) as firstc,
 last(C.c2) as lastc,
 avg(C.c1) as avgCc1,
 A.c1 as Ac1,
 B.c1 as Bc1,
 D.c1 as Dc1
 PATTERN(A B C* D)
 DEFINE
 A as A.c1 = 30,
 B as B.c2 = 10.0,
 C as C.c1 = 7,
 D as D.c1 = 40
) as T
]]></query>

Timestamp Tuple
 1000 33,0.9
 3000 44,0.4
 4000 30,0.3
 5000 10,10.0
 6000 7,0.9
 7000 7,2.3
 9000 7,8.7
11000 40,6.6
15000 19,8.8
17000 30,5.5
20000 5,10.0
23000 40,6.6
25000 3,5.5
30000 30,2.2
35000 2,10.0
40000 7,5.5
44000 40,8.9

Timestamp Tuple Kind Tuple
11000: + 0.9,8.7,30,10,7.0,40
23000: + ,,30,5,,40
44000: + 5.5,5.5,30,2,7.0,40

Chapter 9
last

9-7

9.2.5 listagg
Syntax

Purpose

listagg returns a java.util.List containing the Java equivalent of the function's
argument.

Note that when a user-defined class is used as the function argument, the class must
implement the equals method.

Examples

<view id="v1"><![CDATA[
 ISTREAM(select c1, listAgg(c3) as l1,
 java.util.LinkedHashSet(listAgg(c3)) as set1
 from S1
 group by c1)
]]></view>

<query id="q1"><![CDATA[
 select v1.l1.size(), v1.set1.size()
 from v1
]]></query>

Timestamp Tuple
1000 orcl, 1, 15, 400
1000 msft, 1, 15, 400
2000 orcl, 2, 20, 300
2000 msft, 2, 20, 300
5000 orcl, 4, 5, 200
5000 msft, 4, 5, 200
7000 orcl, 3, 10, 100
7000 msft, 3, 20, 100
h 20000000

Timestamp Tuple Kind Tuple
 1000: + 1,1
 1000: + 1,1
 2000: + 2,2

Chapter 9
listagg

9-8

 2000: + 2,2
 5000: + 3,3
 5000: + 3,3
 7000: + 4,4
 7000: + 4,3

9.2.6 max
Syntax

Purpose

max returns maximum value of expr. Its data type depends on the data type of the argument.

Examples

Consider the query test_max_timestamp and the data stream S15 . Stream S15 has schema
(c1 int, c2 timestamp). The query returns the relation.

<query id="test_max_timestamp"><![CDATA[
 select max(c2) from S15[range 2]
]]></query>

Timestamp Tuple
 10 1,"08/07/2004 11:13:48"
2000 ,"08/07/2005 11:13:48"
3400 3,"08/07/2006 11:13:48"
4700 ,"08/07/2007 11:13:48"
h 8000
h 200000000

Timestamp Tuple Kind Tuple
 0: +
 10: -
 10: + 08/07/2004 11:13:48
2000: - 08/07/2004 11:13:48
2000: + 08/07/2005 11:13:48
2010: - 08/07/2005 11:13:48
2010: + 08/07/2005 11:13:48
3400: - 08/07/2005 11:13:48
3400: + 08/07/2006 11:13:48
4000: - 08/07/2006 11:13:48
4000: + 08/07/2006 11:13:48
4700: - 08/07/2006 11:13:48
4700: + 08/07/2007 11:13:48
5400: - 08/07/2007 11:13:48
5400: + 08/07/2007 11:13:48
6700: - 08/07/2007 11:13:48
6700: +

Chapter 9
max

9-9

9.2.7 min
Syntax

Purpose

min returns minimum value of expr. Its data type depends on the data type of its
argument.

Examples

Consider the query test_min_timestamp and the data stream S15. Stream S15 has
schema (c1 int, c2 timestamp). The query returns the relation.

<query id="test_min_timestamp"><![CDATA[
 select min(c2) from S15[range 2]
]]></query>

Timestamp Tuple
 10 1,"08/07/2004 11:13:48"
2000 ,"08/07/2005 11:13:48"
3400 3,"08/07/2006 11:13:48"
4700 ,"08/07/2007 11:13:48"
h 8000
h 200000000

Timestamp Tuple Kind Tuple
 0: +
 10: -
 10: + 08/07/2004 11:13:48
2000: - 08/07/2004 11:13:48
2000: + 08/07/2004 11:13:48
2010: - 08/07/2004 11:13:48
2010: + 08/07/2005 11:13:48
3400: - 08/07/2005 11:13:48
3400: + 08/07/2005 11:13:48
4000: - 08/07/2005 11:13:48
4000: + 08/07/2006 11:13:48
4700: - 08/07/2006 11:13:48
4700: + 08/07/2006 11:13:48
5400: - 08/07/2006 11:13:48
5400: + 08/07/2007 11:13:48
6700: - 08/07/2007 11:13:48
6700: +

Chapter 9
min

9-10

9.2.8 sum
Syntax

Purpose

sum returns the sum of values of expr. This function takes as an argument any bigint, float,
or integer expression. The function returns the same data type as the numeric data type of
the argument.

Examples

Consider the query q3 and the data stream S1. Stream S1 has schema (c1 integer, c2
bigint). The query returns the relation. For more information on range, see .

<query id="q3"><![CDATA[
 select sum(c2) from S1[range 5]
]]></query>

Timestamp Tuple
1000 5,
1000 10,5
2000 ,4
3000 30,6
5000 45,44
7000 55,3
h 200000000

Timestamp Tuple Kind Tuple
 1000: -
 1000: + 5
 2000: - 5
 2000: + 9
 3000: - 9
 3000: + 15
 5000: - 15
 5000: + 59
 6000: - 59
 6000: + 54
 7000: - 54
 7000: + 53
 8000: - 53
 8000: + 47
10000: - 47
10000: + 3
12000: - 3
12000: +

Chapter 9
sum

9-11

10
Colt Single-Row Functions

A reference to Colt single-row functions included in Oracle Continuous Query Language
(Oracle CQL) is provided. Colt single-row functions are based on the Colt open source
libraries for high performance scientific and technical computing.

For more information, see Functions.

10.1 Introduction to Oracle CQLBuilt-In Single-Row Colt
Functions

Table 10-1 lists the built-in single-row Colt functions that Oracle CQL provides.

Table 10-1 Oracle CQL Built-in Single-Row Colt-Based Functions

Colt Package Function

cern.jet.math.Arithmetic

A set of basic polynomials, rounding, and calculus
functions.

• binomial
• binomial1
• ceil
• factorial
• floor
• log
• log2
• log10
• logFactorial
• longFactorial
• stirlingCorrection

cern.jet.math.Bessel

A set of Bessel functions.

• i0
• i0e
• i1
• i1e
• j0
• j1
• jn
• k0
• k0e
• k1
• k1e
• kn
• y0
• y1
• yn

10-1

Table 10-1 (Cont.) Oracle CQL Built-in Single-Row Colt-Based Functions

Colt Package Function

cern.jet.random.engine.RandomSeedTable

A table with good seeds for pseudo-random number
generators. Each sequence in this table has a period
of 10**9 numbers.

• getSeedAtRowColumn

cern.jet.stat.Gamma

A set of Gamma and Beta functions.

• beta
• gamma
• incompleteBeta
• incompleteGamma
• incompleteGammaComplement
• logGamma

cern.jet.stat.Probability

A set of probability distributions.

• beta1
• betaComplemented
• binomial2
• binomialComplemented
• chiSquare
• chiSquareComplemented
• errorFunction
• errorFunctionComplemented
• gamma1
• gammaComplemented
• negativeBinomial
• negativeBinomialComplemented
• normal
• normal1
• normalInverse
• poisson
• poissonComplemented
• studentT
• studentTInverse

cern.colt.bitvector.QuickBitVector

A set of non polymorphic, non bounds checking, low
level bit-vector functions.

• bitMaskWithBitsSetFromTo
• leastSignificantBit
• mostSignificantBit

cern.colt.map.HashFunctions

A set of hash functions.

• hash
• hash1
• hash2
• hash3

Note:

Built-in function names are case sensitive and you must use them in the
case shown (in lower case).

Chapter 10
Introduction to Oracle CQLBuilt-In Single-Row Colt Functions

10-2

Note:

In stream input examples, lines beginning with h (such as h 3800) are heartbeat
input tuples. These inform GGSA that no further input will have a timestamp lesser
than the heartbeat value.

For more information, see:

• Functions

• Data Types

• http://dsd.lbl.gov/~hoschek/colt/.

10.2.1 beta
Syntax

Purpose

beta is based on cern.jet.stat.Gamma. It returns the beta function (see Figure 10-1) of the
input arguments as a double.

Figure 10-1 cern.jet.stat.Gamma beta

This function takes the following arguments:

• double1: the x value.

• double2: the y value.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/
Beta.html#Beta(double, double, cern.jet.random.engine.RandomEngine).

Examples

Consider the query qColt28. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation .

<query id="qColt28"><![CDATA[
 select beta(c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6

Chapter 10
beta

10-3

http://dsd.lbl.gov/~hoschek/colt/
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Beta.html#Beta(double,%20double,%20cern.jet.random.engine.RandomEngine)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Beta.html#Beta(double,%20double,%20cern.jet.random.engine.RandomEngine)

1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 3.1415927
1000: + 1.899038
1200: + 1.251922
2000: + 4.226169

10.2.2 beta1
Syntax

Purpose

beta1 is based on cern.jet.stat.Probability. It returns the area P(x) from 0 to x
under the beta density function (see Figure 10-2) as a double.

Figure 10-2 cern.jet.stat.Probability beta1

This function takes the following arguments:

• double1: the alpha parameter of the beta distribution a.

• double2: the beta parameter of the beta distribution b.

• double3: the integration end point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/
Beta.html#Beta(double, double, cern.jet.random.engine.RandomEngine).

Examples

Consider the query qColt35. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt35"><![CDATA[
 select beta1(c2,c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5
1000: + 0.66235894

Chapter 10
beta1

10-4

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Beta.html#Beta(double,%20double,%20cern.jet.random.engine.RandomEngine)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Beta.html#Beta(double,%20double,%20cern.jet.random.engine.RandomEngine)

1200: + 0.873397
2000: + 0.44519535

10.2.3 betaComplemented
Syntax

Purpose

betaComplemented is based on cern.jet.stat.Probability. It returns the area under the
right hand tail (from x to infinity) of the beta density function (see Figure 10-2) as a double.

This function takes the following arguments:

• double1: the alpha parameter of the beta distribution a.

• double2: the beta parameter of the beta distribution b.

• double3: the integration end point x.

For more information, see:

• incompleteBeta

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#betaComplemented(double, double, double).

Examples

Consider the query qColt37. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt37"><![CDATA[
 select betaComplemented(c2,c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5
1000: + 0.66235894
1200: + 0.873397
2000: + 0.44519535

10.2.4 binomial
Syntax

Chapter 10
betaComplemented

10-5

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#betaComplemented(double,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#betaComplemented(double,%20double,%20double)

Purpose

binomial is based on cern.jet.math.Arithmetic. It returns the binomial coefficient n
over k (see Figure 10-3) as a double.

Figure 10-3 Definition of binomial coefficient

This function takes the following arguments:

• double1: the n value.

• long2: the k value.

Table 10-2 lists the binomial function return values for various values of k.

Table 10-2 cern.jet.math.Arithmetic binomial Return Values

Arguments Return Value

k < 0 0

k = 0 1

k = 1 n

Any other value of k Computed binomial coefficient as given in Figure 10-3.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#binomial(double, long).

Examples

Consider the query qColt6. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 long), the query returns the relation.

<query id="qColt6"><![CDATA[
 select binomial(c2,c3) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + -0.013092041
1000: + -0.012374863
1200: + -0.0010145549
2000: + -0.0416

Chapter 10
binomial

10-6

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#binomial(double,%20long)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#binomial(double,%20long)

10.2.5 binomial1
Syntax

Purpose

binomial1 is based on cern.jet.math.Arithmetic. It returns the binomial coefficient n over
k (see Figure 10-3) as a double.

This function takes the following arguments:

• long1: the n value.

• long2: the k value.

Table 10-3 lists the BINOMIAL function return values for various values of k.

Table 10-3 cern.jet.math.Arithmetic Binomial1 Return Values

Arguments Return Value

k < 0 0

k = 0 || k = n 1

k = 1 || k = n-1 n

Any other value of k Computed binomial coefficient as given in Figure 10-3.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/
Binomial.html#Binomial(int, double, cern.jet.random.engine.RandomEngine).

Examples

Consider the query qColt7. Given the data stream SColtFunc with schema (c1 integer, c2
float, c3 long), the query returns the relation.

<query id="qColt7"><![CDATA[
 select binomial1(c3,c3) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + 1.0
1200: + 1.0
2000: + 1.0

Chapter 10
binomial1

10-7

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Binomial.html#Binomial(int,%20double,%20cern.jet.random.engine.RandomEngine)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Binomial.html#Binomial(int,%20double,%20cern.jet.random.engine.RandomEngine)

10.2.6 binomial2
Syntax

Purpose

binomial2 is based on cern.jet.stat.Probability. It returns the sum of the terms 0
through k of the binomial probability density (see Figure 10-4) as a double.

Figure 10-4 cern.jet.stat.Probability binomial2

This function takes the following arguments (all arguments must be positive):

• integer1: the end term k.

• integer2: the number of trials n.

• double3: the probability of success p in (0.0, 1.0).

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#binomial(int, int, double).

Examples

Consider the query qColt34. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt34"><![CDATA[
 select binomial2(c1,c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + 1.0
1200: + 1.0
2000: + 1.0

Chapter 10
binomial2

10-8

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#binomial(int,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#binomial(int,%20int,%20double)

10.2.7 binomialComplemented
Syntax

Purpose

binomialComplemented is based on cern.jet.stat.Probability. It returns the sum of the
terms k+1 through n of the binomial probability density (see Figure 10-5) as a double.

Figure 10-5 cern.jet.stat.Probability binomialComplemented

This function takes the following arguments (all arguments must be positive):

• integer1: the end term k.

• integer2: the number of trials n.

• double3: the probability of success p in (0.0, 1.0).

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#binomialComplemented(int, int, double).

Examples

Consider the query qColt38. Given the data stream SColtFunc with schema (integer, c2
double, c3 bigint), the query returns the relation.

<query id="qColt38"><![CDATA[
 select binomialComplemented(c1,c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 0.0
1200: + 0.0
2000: + 0.0

Chapter 10
binomialComplemented

10-9

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#binomialComplemented(int,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#binomialComplemented(int,%20int,%20double)

10.2.8 bitMaskWithBitsSetFromTo
Syntax

Purpose

bitMaskWithBitsSetFromTo is based on cern.colt.bitvector.QuickBitVector. It
returns a 64-bit wide bit mask as a long with bits in the specified range set to 1 and all
other bits set to 0.

This function takes the following arguments:

• integer1: the from value; index of the start bit (inclusive).

• integer2: the to value; index of the end bit (inclusive).

Precondition (not checked): to - from + 1 >= 0 && to - from + 1 <= 64.

If to - from + 1 = 0 then returns a bit mask with all bits set to 0.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/
QuickBitVector.html#bitMaskWithBitsSetFromTo(int, int)

• leastSignificantBit

• mostSignificantBit.

Examples

Consider the query qColt53. Given the data stream SColtFunc with schema (c1
integer, c2 float, c3 bigint), the query returns the relation.

query id="qColt53"><![CDATA[
 select bitMaskWithBitsSetFromTo(c1,c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 2
1000: + 16
1200: + 8
2000: + 256

10.2.9 ceil
Syntax

Chapter 10
bitMaskWithBitsSetFromTo

10-10

https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/QuickBitVector.html#bitMaskWithBitsSetFromTo(int,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/QuickBitVector.html#bitMaskWithBitsSetFromTo(int,%20int)

Purpose

ceil is based on cern.jet.math.Arithmetic. It returns the smallest long greater than or
equal to its double argument.

This method is safer than using (float) java.lang.Math.ceil(long) because of possible
rounding error.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#ceil(double)

• ceil1.

Examples

Consider the query qColt1. Given the data stream SColtFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the relation.

<query id="qColt1"><![CDATA[
 select ceil(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1
1000: + 1
1200: + 1
2000: + 1

10.2.10 chiSquare
Syntax

Purpose

chiSquare is based on cern.jet.stat.Probability. It returns the area under the left hand
tail (from 0 to x) of the Chi square probability density function with v degrees of freedom (see
Figure 10-6) as a double.

Figure 10-6 cern.jet.stat.Probability chiSquare

Chapter 10
chiSquare

10-11

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#ceil(double)

This function takes the following arguments (all arguments must be positive):

• double1: the degrees of freedom v.

• double2: the integration end point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#chiSquare(double, double).

Examples

Consider the query qColt39. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation .

<query id="qColt39"><![CDATA[
 select chiSquare(c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 0.0
1200: + 0.0
2000: + 0.0

10.2.11 chiSquareComplemented
Syntax

Purpose

chiSquareComplemented is based on cern.jet.stat.Probability. It returns the area
under the right hand tail (from x to infinity) of the Chi square probability density
function with v degrees of freedom (see Figure 10-6) as a double.

This function takes the following arguments (all arguments must be positive):

• double1: the degrees of freedom v.

• double2: the integration end point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#chiSquareComplemented(double, double).

Examples

Consider the query qColt40. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation .

<query id="qColt40"><![CDATA[
 select chiSquareComplemented(c2,c2) from SColtFunc
]]></query>

Chapter 10
chiSquareComplemented

10-12

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#chiSquare(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#chiSquare(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#chiSquareComplemented(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#chiSquareComplemented(double,%20double)

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 0.0
1200: + 0.0
2000: + 0.0

10.2.12 errorFunction
Syntax

Purpose

errorFunction is based on cern.jet.stat.Probability. It returns the error function of the
normal distribution of the double argument as a double, using the integral that Figure 10-7
shows.

Figure 10-7 cern.jet.stat.Probability errorFunction

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#errorFunction(double).

Examples

Consider the query qColt41. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt41"><![CDATA[
 select errorFunction(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5204999
1000: + 0.6778012
1200: + 0.79184324
2000: + 0.42839235

Chapter 10
errorFunction

10-13

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#errorFunction(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#errorFunction(double)

10.2.13 errorFunctionComplemented
Syntax

Purpose

errorFunctionComplemented is based on cern.jet.stat.Probability. It returns the
complementary error function of the normal distribution of the double argument as a
double, using the integral that Figure 10-8 shows.

Figure 10-8 cern.jet.stat.Probability errorfunctioncompelemented

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#errorFunctionComplemented(double).

Examples

Consider the query qColt42. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt42"><![CDATA[
 select errorFunctionComplemented(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.47950011
1000: + 0.3221988
1200: + 0.20815676
2000: + 0.57160765

10.2.14 factorial
Syntax

Chapter 10
errorFunctionComplemented

10-14

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#errorFunctionComplemented(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#errorFunctionComplemented(double)

Purpose

factorial is based on cern.jet.math.Arithmetic. It returns the factorial of the positive
integer argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#factorial(int).

Examples

Consider the query qColt8. Given the data stream SColtFunc with schema (c1 integer, c2
float, c3 bigint), the query returns the relation.

<query id="qColt8"><![CDATA[
 select factorial(c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + 24.0
1200: + 6.0
2000: + 40320.0

10.2.15 floor
Syntax

Purpose

floor is based on cern.jet.math.Arithmetic. It returns the largest long value less than or
equal to the double argument.

This method is safer than using (double) java.lang.Math.floor(double) because of
possible rounding error.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#floor(double)

• floor1

Examples

Consider the query qColt2. Given the data stream SColtFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the relation.

<query id="qColt2"><![CDATA[
 select floor(c2) from SColtFunc
]]></query>

Chapter 10
floor

10-15

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#factorial(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#factorial(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#floor(double)

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0
1000: + 0
1200: + 0
2000: + 0

10.2.16 gamma
Syntax

Purpose

gamma is based on cern.jet.stat.Gamma. It returns the Gamma function of the double
argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#gamma(double, double, double).

Examples

Consider the query qColt29. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt29"><![CDATA[
 select gamma(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.7724539
1000: + 1.2980554
1200: + 1.0768307
2000: + 2.2181594

10.2.17 gamma1
Syntax

Chapter 10
gamma

10-16

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#gamma(double,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#gamma(double,%20double,%20double)

Purpose

gamma1 is based on cern.jet.stat.Probability. It returns the integral from zero to x of the
gamma probability density function (see Figure 10-9) as a double.

Figure 10-9 cern.jet.stat.Probability gamma1

This function takes the following arguments:

• double1: the gamma distribution alpha value a

• double2: the gamma distribution beta or lambda value b

• double3: the integration end point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/
Gamma.html#Gamma(double, double, cern.jet.random.engine.RandomEngine).

Examples

Consider the query qColt36. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt36"><![CDATA[
 select gamma1(c2,c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5204999
1000: + 0.55171627
1200: + 0.59975785
2000: + 0.51785487

10.2.18 gammaComplemented
Syntax

Purpose

gammaComplemented is based on cern.jet.stat.Probability. It returns the integral from x to
infinity of the gamma probability density function (see Figure 10-10) as a double.

Chapter 10
gammaComplemented

10-17

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Gamma.html#Gamma(double,%20double,%20cern.jet.random.engine.RandomEngine)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/Gamma.html#Gamma(double,%20double,%20cern.jet.random.engine.RandomEngine)

Figure 10-10 cern.jet.stat.Probability gammaComplemented

This function takes the following arguments:

• double1: the gamma distribution alpha value a

• double2: the gamma distribution beta or lambda value b

• double3: the integration end point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#gammaComplemented(double, double, double).

Examples

Consider the query qColt43. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt43"><![CDATA[
 select gammaComplemented(c2,c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.47950011
1000: + 0.44828376
1200: + 0.40024218
2000: + 0.48214513

10.2.19 getSeedAtRowColumn
Syntax

Purpose

getSeedAtRowColumn is based on cern.jet.random.engine.RandomSeedTable. It
returns a deterministic seed as an integer from a (seemingly gigantic) matrix of
predefined seeds.

This function takes the following arguments:

• integer1: the row value; should (but need not) be in [0,Integer.MAX_VALUE].

• integer2: the column value; should (but need not) be in [0,1].

Chapter 10
getSeedAtRowColumn

10-18

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#gammaComplemented(double,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#gammaComplemented(double,%20double,%20double)

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/engine/
RandomSeedTable.html#getSeedAtRowColumn(int, int).

Examples

Consider the query qColt27. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt27"><![CDATA[
 select getSeedAtRowColumn(c1,c1) from SColtFunc
]]></query>

Tmestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 253987020
1000: + 1289741558
1200: + 417696270
2000: + 350557787

10.2.20 hash
Syntax

Purpose

hash is based on cern.colt.map.HashFunctions. It returns an integer hashcode for the
specified double value.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/
HashFunctions.html#hash(double).

Examples

Consider the query qColt56. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt56"><![CDATA[
 select hash(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1071644672
1000: + 1608935014
1200: + 2146204385
2000: + -1613129319

Chapter 10
hash

10-19

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/engine/RandomSeedTable.html#getSeedAtRowColumn(int,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/random/engine/RandomSeedTable.html#getSeedAtRowColumn(int,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(double)

10.2.21 hash1
Syntax

Purpose

hash1 is based on cern.colt.map.HashFunctions. It returns an integer hashcode for
the specified float value.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/
HashFunctions.html#hash(float).

Examples

Consider the query qColt57. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt57"><![CDATA[
 select hash1(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1302214522
1000: + 1306362078
1200: + 1309462552
2000: + 1300047248

10.2.22 hash2
Syntax

Purpose

hash2 is based on cern.colt.map.HashFunctions. It returns an integer hashcode for
the specified integer value.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/
HashFunctions.html#hash(int).

Examples

Consider the query qColt58. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

Chapter 10
hash1

10-20

https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(float)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(float)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(int)

<query id="qColt58"><![CDATA[
 select hash2(c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1
1000: + 4
1200: + 3
2000: + 8

10.2.23 hash3
Syntax

Purpose

hash3 is based on cern.colt.map.HashFunctions. It returns an integer hashcode for the
specified long value.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/
HashFunctions.html#hash(long).

Examples

Consider the query qColt59. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt59"><![CDATA[
 select hash3(c3) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 8
1000: + 6
1200: + 12
2000: + 4

10.2.24 i0
Syntax

Chapter 10
hash3

10-21

https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(long)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/map/HashFunctions.html#hash(long)

Purpose

i0 is based on cern.jet.math.Bessel. It returns the modified Bessel function of order
0 of the double argument as a double.

The function is defined as i0(x) = j0(ix).

The range is partitioned into the two intervals [0,8] and (8,infinity).

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i0(double)

• j0.

Examples

Consider the query qColt12. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt12"><![CDATA[
 select i0(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0634834
1000: + 1.126303
1200: + 1.2080469
2000: + 1.0404018

10.2.25 i0e
Syntax

Purpose

i0e is based on cern.jet.math.Bessel. It returns the exponentially scaled modified
Bessel function of order 0 of the double argument as a double.

The function is defined as: i0e(x) = exp(-|x|) j0(ix).

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i0e(double)

• j0

Examples

Consider the query qColt13. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

Chapter 10
i0e

10-22

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i0(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i0e(double)

<query id="qColt13"><![CDATA[
 select i0e(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.64503527
1000: + 0.55930555
1200: + 0.4960914
2000: + 0.6974022

10.2.26 i1
Syntax

Purpose

i1 is based on cern.jet.math.Bessel. It returns the modified Bessel function of order 1 of
the double argument as a double.

The function is defined as: i1(x) = -i j1(ix).

The range is partitioned into the two intervals [0,8] and (8,infinity). Chebyshev
polynomial expansions are employed in each interval.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i1(double)

• j1.

Examples

Consider the query qColt14. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt14"><![CDATA[
 select i1(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.2578943
1000: + 0.37187967
1200: + 0.49053898
2000: + 0.20402676

Chapter 10
i1

10-23

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i1(double)

10.2.27 i1e
Syntax

Purpose

i1e is based on cern.jet.math.Bessel. It returns the exponentially scaled modified
Bessel function of order 1 of the double argument as a double.

The function is defined as i1(x) = -i exp(-|x|) j1(ix).

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i1e(double)

• j1.

Examples

Consider the query qColt15. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt15"><![CDATA[
 select i1e(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.1564208
1000: + 0.18466999
1200: + 0.20144266
2000: + 0.13676323

10.2.28 incompleteBeta
Syntax

Purpose

incompleteBeta is based on cern.jet.stat.Gamma. It returns the Incomplete Beta
Function evaluated from zero to x as a double.

This function takes the following arguments:

Chapter 10
i1e

10-24

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#i1e(double)

• double1: the beta distribution alpha value a

• double2: the beta distribution beta value b

• double3: the integration end point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Gamma.html#incompleteBeta(double, double, double).

Examples

Consider the query qColt30. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt30"><![CDATA[
 select incompleteBeta(c2,c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5
1000: + 0.66235894
1200: + 0.873397
2000: + 0.44519535

10.2.29 incompleteGamma
Syntax

Purpose

incompleteGamma is based on cern.jet.stat.Gamma. It returns the Incomplete Gamma
function of the arguments as a double.

This function takes the following arguments:

• double1: the gamma distribution alpha value a.

• double2: the integration end point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Gamma.html#incompleteGamma(double, double).

Examples

Consider the query qColt31. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt31"><![CDATA[
 select incompleteGamma(c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8

Chapter 10
incompleteGamma

10-25

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#incompleteBeta(double,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#incompleteBeta(double,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#incompleteGamma(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#incompleteGamma(double,%20double)

1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.6826895
1000: + 0.6565891
1200: + 0.6397422
2000: + 0.7014413

10.2.30 incompleteGammaComplement
Syntax

Purpose

incompleteGammaComplement is based on cern.jet.stat.Gamma. It returns the
Complemented Incomplete Gamma function of the arguments as a double.

This function takes the following arguments:

• double1: the gamma distribution alpha value a.

• double2: the integration start point x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Gamma.html#incompleteGammaComplement(double, double).

Examples

Consider the query qColt32. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt32"><![CDATA[
 select incompleteGammaComplement(c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.3173105
1000: + 0.34341094
1200: + 0.3602578
2000: + 0.29855874

10.2.31 j0
Syntax

Chapter 10
incompleteGammaComplement

10-26

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#incompleteGammaComplement(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#incompleteGammaComplement(double,%20double)

Purpose

j0 is based on cern.jet.math.Bessel. It returns the Bessel function of the first kind of order
0 of the double argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#j0(double).

Examples

Consider the query qColt16. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt16"><![CDATA[
 select j0(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.9384698
1000: + 0.8812009
1200: + 0.8115654
2000: + 0.9603982

10.2.32 j1
Syntax

Purpose

j1 is based on cern.jet.math.Bessel. It returns the Bessel function of the first kind of order
1 of the double argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#j1(double).

Examples

Consider the query qColt17. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt17"><![CDATA[
 select j1(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Chapter 10
j1

10-27

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#j0(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#j0(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#j1(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#j1(double)

Timestamp Tuple Kind Tuple
 10: + 0.24226846
1000: + 0.32899573
1200: + 0.40236986
2000: + 0.19602658

10.2.33 jn
Syntax

Purpose

jn is based on cern.jet.math.Bessel. It returns the Bessel function of the first kind of
order n of the argument as a double.

This function takes the following arguments:

• integer1: the order of the Bessel function n.

• double2: the value to compute the bessel function of x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#jn(int, double).

Examples

Consider the query qColt18. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt18"><![CDATA[
 select jn(c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.24226846
1000: + 6.1009696E-4
1200: + 0.0139740035
2000: + 6.321045E-11

10.2.34 k0
Syntax

Chapter 10
jn

10-28

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#jn(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#jn(int,%20double)

Purpose

k0 is based on cern.jet.math.Bessel. It returns the modified Bessel function of the third
kind of order 0 of the double argument as a double.

The range is partitioned into the two intervals [0,8] and (8, infinity). Chebyshev
polynomial expansions are employed in each interval.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#k0(double).

Examples

Consider the query qColt19. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt19"><![CDATA[
 select k0(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.92441905
1000: + 0.6605199
1200: + 0.49396032
2000: + 1.1145291

10.2.35 k0e
Syntax

Purpose

k0e is based on cern.jet.math.Bessel. It returns the exponentially scaled modified Bessel
function of the third kind of order 0 of the double argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#k0e(double).

Examples

Consider the query qColt20. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt20"><![CDATA[
 select k0e(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6

Chapter 10
k0e

10-29

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k0(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k0(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k0e(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k0e(double)

1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.5241094
1000: + 1.3301237
1200: + 1.2028574
2000: + 1.662682

10.2.36 k1
Syntax

Purpose

k1 is based on cern.jet.math.Bessel. It returns the modified Bessel function of the
third kind of order 1 of the double argument as a double.

The range is partitioned into the two intervals [0,2] and (2, infinity). Chebyshev
polynomial expansions are employed in each interval.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#k1(double).

Examples

Consider the query qColt21. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt21"><![CDATA[
 select k1(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.6564411
1000: + 1.0502836
1200: + 0.7295154
2000: + 2.1843543

10.2.37 k1e
Syntax

Chapter 10
k1

10-30

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k1(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k1(double)

Purpose

k1e is based on cern.jet.math.Bessel. It returns the exponentially scaled modified Bessel
function of the third kind of order 1 of the double argument as a double.

The function is defined as: k1e(x) = exp(x) * k1(x).

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#k1e(double)

• k1.

Examples

Consider the query qColt22. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt22"><![CDATA[
 select k1e(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 2.7310097
1000: + 2.1150115
1200: + 1.7764645
2000: + 3.258674

10.2.38 kn
Syntax

Purpose

kn is based on cern.jet.math.Bessel. It returns the modified Bessel function of the third
kind of order n of the argument as a double.

This function takes the following arguments:

• integer1: the n value order of the Bessel function.

• double2: the x value to compute the bessel function of.

The range is partitioned into the two intervals [0,9.55] and (9.55, infinity). An
ascending power series is used in the low range, and an asymptotic expansion in the high
range.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#kn(int, double).

Chapter 10
kn

10-31

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k1e(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#k1e(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#kn(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#kn(int,%20double)

Examples

Consider the query qColt23. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt23"><![CDATA[
 select kn(c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.6564411
1000: + 191.99422
1200: + 10.317473
2000: + 9.7876858E8

10.2.39 leastSignificantBit
Syntax

Purpose

leastSignificantBit is based on cern.colt.bitvector.QuickBitVector. It returns
the index (as an integer) of the least significant bit in state true of the integer
argument. Returns 32 if no bit is in state true.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/
QuickBitVector.html#leastSignificantBit(int)

• bitMaskWithBitsSetFromTo

• mostSignificantBit.

Examples

Consider the query qColt54. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt54"><![CDATA[
 select leastSignificantBit(c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0
1000: + 2

Chapter 10
leastSignificantBit

10-32

https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/QuickBitVector.html#leastSignificantBit(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/QuickBitVector.html#leastSignificantBit(int)

1200: + 0
2000: + 3

10.2.40 log
Syntax

Purpose

log is based on cern.jet.math.Arithmetic. It returns the computation that Figure 10-11
shows as a double.

Figure 10-11 cern.jet.math.Arithmetic log

This function takes the following arguments:

• double1: the base.

• double2: the value.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#log(double, double).

Examples

Consider the query qColt3. Given the data stream SColtFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the relation.

<query id="qColt3"><![CDATA[
 select log(c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + 1.0
1200: + 1.0
2000: + 1.0

Chapter 10
log

10-33

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#log(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#log(double,%20double)

10.2.41 log10
Syntax

Purpose

log10 is based on cern.jet.math.Arithmetic. It returns the base 10 logarithm of a
double value as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#log10(double).

Examples

Consider the query qColt4. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt4"><![CDATA[
 select log10(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + -0.30103
1000: + -0.15490197
1200: + -0.050610002
2000: + -0.39794

10.2.42 log2
Syntax

Purpose

log2 is based on cern.jet.math.Arithmetic. It returns the base 2 logarithm of a
double value as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#log2(double).

Examples

Consider the query qColt9. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

Chapter 10
log10

10-34

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#log10(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#log10(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#log2(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#log2(double)

<query id="qColt9"><![CDATA[
 select log2(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + -1.0
1000: + -0.5145732
1200: + -0.16812278
2000: + -1.321928

10.2.43 logFactorial
Syntax

Purpose

logFactorial is based on cern.jet.math.Arithmetic. It returns the natural logarithm (base
e) of the factorial of its integer argument as a double

For argument values k<30, the function looks up the result in a table in O(1). For argument
values k>=30, the function uses Stirlings approximation.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#logFactorial(int).

Examples

Consider the query qColt10. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt10"><![CDATA[
 select logFactorial(c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 3.1780539
1200: + 1.7917595
2000: + 10.604603

Chapter 10
logFactorial

10-35

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#logFactorial(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#logFactorial(int)

10.2.44 logGamma
Syntax

Purpose

logGamma is based on cern.jet.stat.Gamma. It returns the natural logarithm (base e)
of the gamma function of the double argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Gamma.html#logGamma(double).

Examples

Consider the query qColt33. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt33"><![CDATA[
 select logGamma(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5723649
1000: + 0.26086727
1200: + 0.07402218
2000: + 0.7966778

10.2.45 longFactorial
Syntax

Purpose

longFactorial is based on cern.jet.math.Arithmetic. It returns the factorial of its
integer argument (in the range k >= 0 && k < 21) as a long.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#longFactorial(int).

Examples

Consider the query qColt11. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

Chapter 10
logGamma

10-36

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#logGamma(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Gamma.html#logGamma(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#longFactorial(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#longFactorial(int)

<query id="qColt11"><![CDATA[
 select longFactorial(c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1
1000: + 24
1200: + 6
2000: + 40320

10.2.46 mostSignificantBit
Syntax

Purpose

mostSignificantBit is based on cern.colt.bitvector.QuickBitVector. It returns the index
(as an integer) of the most significant bit in state true of the integer argument. Returns -1
if no bit is in state true.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/
QuickBitVector.html#mostSignificantBit(int)

• bitMaskWithBitsSetFromTo

• leastSignificantBit.

Examples

Consider the query qColt55. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt55"><![CDATA[
 select mostSignificantBit(c1) from SColtFunc
]]></view>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0
1000: + 2
1200: + 1
2000: + 3

Chapter 10
mostSignificantBit

10-37

https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/QuickBitVector.html#mostSignificantBit(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/colt/bitvector/QuickBitVector.html#mostSignificantBit(int)

10.2.47 negativeBinomial
Syntax

Purpose

negativeBinomial is based on cern.jet.stat.Probability. It returns the sum of the
terms 0 through k of the Negative Binomial Distribution (see Figure 10-12) as a
double.

Figure 10-12 cern.jet.stat.Probability negativeBinomial

This function takes the following arguments:

• integer1: the end term k.

• integer2: the number of trials n.

• double3: the probability of success p in (0.0,1.0).

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#negativeBinomial(int, int, double).

Examples

Consider the query qColt44. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt44"><![CDATA[
 select negativeBinomial(c1,c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.75
1000: + 0.94203234
1200: + 0.99817264
2000: + 0.28393665

Chapter 10
negativeBinomial

10-38

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#negativeBinomial(int,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#negativeBinomial(int,%20int,%20double)

10.2.48 negativeBinomialComplemented
Syntax

Purpose

negativeBinomialComplemented is based on cern.jet.stat.Probability. It returns the sum
of the terms k+1 to infinity of the Negative Binomial distribution (see Figure 10-13) as a
double.

Figure 10-13 cern.jet.stat.Probability negativeBinomialComplemented

This function takes the following arguments:

• integer1: the end term k.

• integer2: the number of trials n.

• double3: the probability of success p in (0.0,1.0).

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#negativeBinomialComplemented(int, int, double).

Examples

Consider the query qColt45. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt45"><![CDATA[
 select negativeBinomialComplemented(c1,c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.25
1000: + 0.05796766
1200: + 0.0018273441
2000: + 0.7160633

Chapter 10
negativeBinomialComplemented

10-39

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#negativeBinomialComplemented(int,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#negativeBinomialComplemented(int,%20int,%20double)

10.2.49 normal
Syntax

Purpose

normal is based on cern.jet.stat.Probability. It returns the area under the Normal
(Gaussian) probability density function, integrated from minus infinity to the double
argument x (see Figure 10-14) as a double.

Figure 10-14 cern.jet.stat.Probability normal

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/
stat/Probability.html#normal(double).

Examples

Consider the query qColt46. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt46"><![CDATA[
 select normal(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.69146246
1000: + 0.7580363
1200: + 0.81326705
2000: + 0.65542173

10.2.50 normal1
Syntax

Chapter 10
normal

10-40

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#normal(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#normal(double)

Purpose

normal1 is based on cern.jet.stat.Probability. It returns the area under the Normal
(Gaussian) probability density function, integrated from minus infinity to x (see Figure 10-15)
as a double.

Figure 10-15 cern.jet.stat.Probability normal1

This function takes the following arguments:

• double1: the normal distribution mean.

• double2: the variance of the normal distribution v.

• double3: the integration limit x.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#normal(double, double, double).

Examples

Consider the query qColt47. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt47"><![CDATA[
 select normal1(c2,c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5
1000: + 0.5
1200: + 0.5
2000: + 0.5

10.2.51 normalInverse
Syntax

Purpose

normalInverse is based on cern.jet.stat.Probability. It returns the double value, x, for
which the area under the Normal (Gaussian) probability density function (integrated from

Chapter 10
normalInverse

10-41

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#normal(double,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#normal(double,%20double,%20double)

minus infinity to x) equals the double argument y (assumes mean is zero and variance
is one).

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#normalInverse(double).

Examples

Consider the query qColt48. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt48"><![CDATA[
 select normalInverse(c2) from SColtFunc
]]></view>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 0.5244005
1200: + 1.226528
2000: + 0.2533471

10.2.52 poisson
Syntax

Purpose

poisson is based on cern.jet.stat.Probability. It returns the sum of the first k
terms of the Poisson distribution (see Figure 10-16) as a double.

Figure 10-16 cern.jet.stat.Probability poisson

This function takes the following arguments:

• integer1: the number of terms k.

• double2: the mean of the Poisson distribution m.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#poisson(int, double).

Chapter 10
poisson

10-42

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#normalInverse(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#normalInverse(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#poisson(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#poisson(int,%20double)

Examples

Consider the query qColt49. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt49"><![CDATA[
 select poisson(c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.909796
1000: + 0.9992145
1200: + 0.9870295
2000: + 1.0

10.2.53 poissonComplemented
Syntax

Purpose

poissonComplemented is based on cern.jet.stat.Probability. It returns the sum of the
terms k+1 to Infinity of the Poisson distribution (see Figure 10-17) as a double.

Figure 10-17 cern.jet.stat.Probability poissonComplemented

This function takes the following arguments:

• integer1: the start term k.

• double2: the mean of the Poisson distribution m.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#poissonComplemented(int, double).

Examples

Consider the query qColt50. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt50"><![CDATA[
 select poissonComplemented(c1,c2) from SColtFunc
]]></query>

Chapter 10
poissonComplemented

10-43

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#poissonComplemented(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#poissonComplemented(int,%20double)

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.09020401
1000: + 7.855354E-4
1200: + 0.012970487
2000: + 5.043364E-10

10.2.54 stirlingCorrection
Syntax

Purpose

stirlingCorrection is based on cern.jet.math.Arithmetic. It returns the correction
term of the Stirling approximation of the natural logarithm (base e) of the factorial of
the integer argument (see Figure 10-18) as a double.

Figure 10-18 cern.jet.math.Arithmetic stirlingCorrection

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Arithmetic.html#stirlingCorrection(int).

Examples

Consider the query qColt5. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt5"><![CDATA[
 select stirlingCorrection(c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.08106147
1000: + 0.020790672
1200: + 0.027677925
2000: + 0.010411265

Chapter 10
stirlingCorrection

10-44

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#stirlingCorrection(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Arithmetic.html#stirlingCorrection(int)

10.2.55 studentT
Syntax

Purpose

studentT is based on cern.jet.stat.Probability. It returns the integral from minus infinity
to t of the Student-t distribution with k > 0 degrees of freedom (see Figure 10-19) as a
double.

Figure 10-19 cern.jet.stat.Probability studentT

This function takes the following arguments:

• double1: the degrees of freedom k.

• double2: the integration end point t.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#studentT(double, double).

Examples

Consider the query qColt51. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt51"><![CDATA[
 select studentT(c2,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.621341
1000: + 0.67624015
1200: + 0.7243568
2000: + 0.5930112

Chapter 10
studentT

10-45

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#studentT(double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#studentT(double,%20double)

10.2.56 studentTInverse
Syntax

Purpose

studentTInverse is based on cern.jet.stat.Probability. It returns the double
value, t, for which the area under the Student-t probability density function (integrated
from minus infinity to t) equals 1-alpha/2. The value returned corresponds to the
usual Student t-distribution lookup table for talpha[size]. This function uses the
studentt function to determine the return value iteratively.

This function takes the following arguments:

• double1: the probability alpha.

• integer2: the data set size.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Probability.html#studentTInverse(double, int)

• studentT.

Examples

Consider the query qColt52. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt52"><![CDATA[
 select studentTInverse(c2,c1) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + 0.4141633
1200: + 0.15038916
2000: + 0.8888911

10.2.57 y0
Syntax

Chapter 10
studentTInverse

10-46

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#studentTInverse(double,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Probability.html#studentTInverse(double,%20int)

Purpose

y0 is based on cern.jet.math.Bessel. It returns the Bessel function of the second kind of
order 0 of the double argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#y0(double).

Examples

Consider the query qColt24. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt24"><![CDATA[
 select y0(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + -0.44451874
1000: + -0.19066493
1200: + -0.0031519707
2000: + -0.60602456

10.2.58 y1
Syntax

Purpose

y1 is based on cern.jet.math.Bessel. It returns the Bessel function of the second kind of
order 1 of the float argument as a double.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#y1(double).

Examples

Consider the query qColt25. Given the data stream SColtFunc with schema (c1 integer,
c2 double, c3 bigint), the query returns the relation.

<query id="qColt25"><![CDATA[
 select y1(c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Chapter 10
y1

10-47

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#y0(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#y0(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#y1(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#y1(double)

Timestamp Tuple Kind Tuple
 10: + -1.4714724
1000: + -1.1032499
1200: + -0.88294965
2000: + -1.780872

10.2.59 yn
Syntax

Purpose

yn is based on cern.jet.math.Bessel. It returns the Bessel function of the second
kind of order n of the double argument as a double.

This function takes the following arguments:

• integer1: the n value order of the Bessel function.

• double2: the x value to compute the Bessel function of.

For more information, see https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/
Bessel.html#yn(int, double).

Examples

Consider the query qColt26. Given the data stream SColtFunc with schema (c1
integer, c2 double, c3 bigint), the query returns the relation.

<query id="qColt26"><![CDATA[
 select yn(c1,c2) from SColtFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + -1.4714724
1000: + -132.63406
1200: + -8.020442
2000: + -6.3026547E8

Chapter 10
yn

10-48

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#yn(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/math/Bessel.html#yn(int,%20double)

11
Colt Aggregate Functions

A reference to Colt aggregate functions provided in Oracle Continuous Query Language
(Oracle CQL) is provided. Colt aggregate functions are based on the Colt open source
libraries for high performance scientific and technical computing.

For more information, see Functions.

11.1 Introduction to Oracle CQL Built-In Aggregate Colt
Functions

Table 11-1 lists the built-in aggregate Colt functions that Oracle CQL provides.

11-1

Table 11-1 Oracle CQL Built-in Aggregate Colt-Based Functions

Colt Package Function

cern.jet.stat.Descriptive

A set of basic descriptive statistics functions.

• autoCorrelation
• correlation
• covariance
• geometricMean
• geometricMean1
• harmonicMean
• kurtosis
• lag1
• mean
• meanDeviation
• median
• moment
• pooledMean
• pooledVariance
• product
• quantile
• quantileInverse
• rankInterpolated
• rms
• sampleKurtosis
• sampleKurtosisStandardError
• sampleSkew
• sampleSkewStandardError
• sampleVariance
• skew
• standardDeviation
• standardError
• sumOfInversions
• sumOfLogarithms
• sumOfPowerDeviations
• sumOfPowers
• sumOfSquaredDeviations
• sumOfSquares
• trimmedMean
• variance
• weightedMean
• winsorizedMean

Note:

Built-in function names are case sensitive and you must use them in the
case shown (in lower case).

Chapter 11
Introduction to Oracle CQL Built-In Aggregate Colt Functions

11-2

Note:

In stream input examples, lines beginning with h (such as h 3800) are heartbeat
input tuples. These inform GGSA that no further input will have a timestamp lesser
than the heartbeat value.

In relation output examples, the first tuple output is:

-9223372036854775808:+

This value is -Long.MIN_VALUE() and represents the largest negative timestamp
possible.

For more information, see:

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments

• Colt Aggregate Functions and the Where, Group By, and Having Clauses

• Functions

• Data Types

• http://dsd.lbl.gov/~hoschek/colt/.

11.1.1 Oracle CQL Colt Aggregate Function Signatures and Tuple
Arguments

Note that the signatures of the Oracle CQL Colt aggregate functions do not match the
signatures of the corresponding Colt aggregate functions.

Consider the following Colt aggregate function:

double autoCorrelation(DoubleArrayList data, int lag, double mean, double variance)

In this signature, data is the Collection over which aggregates will be calculated and mean
and variance are the other two parameter aggregates which are required to calculate
autoCorrelation (where mean and variance aggregates are calculated on data).

In GGSA, data will never come in the form of a Collection. The Oracle CQL function
receives input data in a stream of tuples.

So suppose our stream is defined as S:(double val, integer lag). On each input tuple,
the Oracle CQL autoCorrelation function will compute two intermediate aggregates, mean
and variance, and one final aggregate, autoCorrelation.

Since the function expects a stream of tuples having a double data value and an integer lag
value only, the signature of the Oracle CQL autoCorrelation function is:

double autoCorrelation (double data, int lag)

11.1.2 Colt Aggregate Functions and the Where, Group By, and Having
Clauses

In Oracle CQL, the where clause is applied before the group by and having clauses. This
means the Oracle CQL statement is invalid:

Chapter 11
Introduction to Oracle CQL Built-In Aggregate Colt Functions

11-3

http://dsd.lbl.gov/~hoschek/colt/

<query id="q1"><![CDATA[
 select * from InputChannel[rows 4 slide 4] as ic where geometricMean(c3) > 4
]]></query>

Instead, you must use the Oracle CQL statement shown in the following example:

<query id="q1"><![CDATA[
 select * from InputChannel[rows 4 slide 4] as ic, myGeoMean =
geometricMean(c3) where myGeoMean > 4
]]></query>

For more information, see:

• Figure 14-10

• Figure 14-11

• Figure 14-18.

11.2.1 autoCorrelation
Syntax

Purpose

autoCorrelation is based on
cern.jet.stat.Descriptive.autoCorrelation(DoubleArrayList data, int lag,
double mean, double variance). It returns the auto-correlation of a data sequence of
the input arguments as a double.

Note:

This function has semantics different from lag1.

This function takes the following tuple arguments:

• double1: data value.

• int1: lag.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#autoCorrelation(cern.colt.list.DoubleArrayList, int, double, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr1. Given the data stream SColtAggrFunc with schema
(c3 double), the query returns the relation.

Chapter 11
autoCorrelation

11-4

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#autoCorrelation(cern.colt.list.DoubleArrayList,%20int,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#autoCorrelation(cern.colt.list.DoubleArrayList,%20int,%20double,%20double)

<query id="qColtAggr1"><![CDATA[
 select autoCorrelation(c3, 0) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 5.441341838866902
1000 6.1593756700951054
1200 3.7269733222923676
1400 4.625160266213489
1600 3.490061774090248
1800 3.6354484064421917
2000 5.635401664977703
2200 5.006087562207967
2400 3.632574304861612
2600 7.618087248962962
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + 1.0
1200: - 1.0
1200: + 1.0
1400: - 1.0
1400: + 1.0
1600: - 1.0
1600: + 1.000000000000002
1800: - 1.000000000000002
1800: + 1.0
2000: - 1.0
2000: + 0.9999999999999989
2200: - 0.9999999999999989
2200: + 0.999999999999999
2400: - 0.999999999999999
2400: + 0.9999999999999991
2600: - 0.9999999999999991
2600: + 1.0000000000000013

11.2.2 correlation
Syntax

Purpose

correlation is based on cern.jet.stat.Descriptive.correlation(DoubleArrayList
data1, double standardDev1, DoubleArrayList data2, double standardDev2) . It
returns the correlation of two data sequences of the input arguments as a double.

This function takes the following tuple arguments:

• double1: data value 1.

• double2: data value 2.

For more information, see

Chapter 11
correlation

11-5

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#correlation(cern.colt.list.DoubleArrayList, double,
cern.colt.list.DoubleArrayList, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr2. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr2"><![CDATA[
 select correlation(c3, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + 2.0
1200: - 2.0
1200: + 1.5
2000: - 1.5
2000: + 1.333333333333333

11.2.3 covariance
Syntax

Purpose

covariance is based on cern.jet.stat.Descriptive.covariance(DoubleArrayList
data1, DoubleArrayList data2). It returns the correlation of two data sequences
(see Figure 11-1) of the input arguments as a double.

Figure 11-1 cern.jet.stat.Descriptive.covariance

This function takes the following tuple arguments:

• double1: data value 1.

Chapter 11
covariance

11-6

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#correlation(cern.colt.list.DoubleArrayList,%20double,%20cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#correlation(cern.colt.list.DoubleArrayList,%20double,%20cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#correlation(cern.colt.list.DoubleArrayList,%20double,%20cern.colt.list.DoubleArrayList,%20double)

• double2: data value 2.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#covariance(cern.colt.list.DoubleArrayList,
cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr3. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr3"><![CDATA[
 select covariance(c3, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + 50.0
1200: - 50.0
1200: + 100.0
2000: - 100.0
2000: + 166.66666666666666

11.2.4 geometricMean
Syntax

Purpose

geometricMean is based on cern.jet.stat.Descriptive.geometricMean(DoubleArrayList
data). It returns the geometric mean of a data sequence (see Figure 11-2) of the input
argument as a double.

Figure 11-2 cern.jet.stat.Descriptive.geometricMean(DoubleArrayList data)

This function takes the following tuple arguments:

Chapter 11
geometricMean

11-7

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#covariance(cern.colt.list.DoubleArrayList,%20cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#covariance(cern.colt.list.DoubleArrayList,%20cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#covariance(cern.colt.list.DoubleArrayList,%20cern.colt.list.DoubleArrayList)

• double1: data value.

Note that for a geometric mean to be meaningful, the minimum of the data values must
not be less than or equal to zero.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#geometricMean(cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr6. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr6"><![CDATA[
 select geometricMean(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 40.0
1000: - 40.0
1000: + 34.64101615137755
1200: - 34.64101615137755
1200: + 28.844991406148168
2000: - 28.844991406148168
2000: + 22.133638394006436

11.2.5 geometricMean1
Syntax

Purpose

geometricMean1 is based on cern.jet.stat.Descriptive.geometricMean(double
sumOfLogarithms). It returns the geometric mean of a data sequence (see
Figure 11-3) of the input arguments as a double.

Figure 11-3 cern.jet.stat.Descriptive.geometricMean1(int size, double
sumOfLogarithms)

Chapter 11
geometricMean1

11-8

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#geometricMean(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#geometricMean(cern.colt.list.DoubleArrayList)

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#geometricMean(cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr7. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr7"><![CDATA[
 select geometricMean1(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + Infinity
1000: - Infinity
1000: + Infinity
1200: - Infinity
1200: + Infinity
2000: - Infinity
2000: + Infinity

11.2.6 harmonicMean
Syntax

Purpose

harmonicMean is based on cern.jet.stat.Descriptive.harmonicMean(int size, double
sumOfInversions). It returns the harmonic mean of a data sequence as a double.

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#harmonicMean(int,
double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Chapter 11
harmonicMean

11-9

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#geometricMean(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#geometricMean(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#harmonicMean(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#harmonicMean(int,%20double)

Examples

Consider the query qColtAggr8. Given the data stream SColtAggrFunc with schema
(c3 double), the query returns the relation.

<query id="qColtAggr8"><![CDATA[
 select harmonicMean(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 5.441341838866902
1000 6.1593756700951054
1200 3.7269733222923676
1400 4.625160266213489
1600 3.490061774090248
1800 3.6354484064421917
2000 5.635401664977703
2200 5.006087562207967
2400 3.632574304861612
2600 7.618087248962962
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 5.441341876983643
1000: - 5.441341876983643
1000: + 5.778137193205395
1200: - 5.778137193205395
1200: + 4.882442561720335
1400: - 4.882442561720335
1400: + 4.815475325819701
1600: - 4.815475325819701
1600: + 4.475541862878903
1800: - 4.475541862878903
1800: + 4.309563447664887
2000: - 4.309563447664887
2000: + 4.45944509362759
2200: - 4.45944509362759
2200: + 4.5211563834502515
2400: - 4.5211563834502515
2400: + 4.401525382790638
2600: - 4.401525382790638
2600: + 4.595562422157167

11.2.7 kurtosis
Syntax

Purpose

kurtosis is based on cern.jet.stat.Descriptive.kurtosis(DoubleArrayList
data, double mean, double standardDeviation). It returns the kurtosis or excess
(see Figure 11-4) of a data sequence as a double.

Chapter 11
kurtosis

11-10

Figure 11-4 cern.jet.stat.Descriptive.kurtosis(DoubleArrayList data, double mean,
double standardDeviation)

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#kurtosis(cern.colt.list.DoubleArrayList, double, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr12. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr12"><![CDATA[
 select kurtosis(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + -2.0
1200: - -2.0
1200: + -1.5000000000000002
2000: - -1.5000000000000002
2000: + -1.3600000000000003

11.2.8 lag1
Syntax

Purpose

lag1 is based on cern.jet.stat.Descriptive.lag1(DoubleArrayList data, double
mean). It returns the lag - 1 auto-correlation of a dataset as a double.

Chapter 11
lag1

11-11

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#kurtosis(cern.colt.list.DoubleArrayList,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#kurtosis(cern.colt.list.DoubleArrayList,%20double,%20double)

Note:

This function has semantics different from autoCorrelation.

This function takes the following tuple arguments:

• double1: data value.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#lag1(cern.colt.list.DoubleArrayList, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr14. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr14"><![CDATA[
 select lag1(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + -0.5
1200: - -0.5
1200: + 0.0
2000: - 0.0
2000: + 0.25

11.2.9 mean
Syntax

Purpose

mean is based on cern.jet.stat.Descriptive.mean(DoubleArrayList data). It
returns the arithmetic mean of a data sequence (see Figure 11-5) as a double.

Chapter 11
mean

11-12

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#lag1(cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#lag1(cern.colt.list.DoubleArrayList,%20double)

Figure 11-5 cern.jet.stat.Descriptive.mean(DoubleArrayList data)

The following table lists the input types and the corresponding output types:

Input Types Output Types

INT DOUBLE

BIGINT DOUBLE

FLOAT DOUBLE

DOUBLE DOUBLE

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#mean(cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr16. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr16"><![CDATA[
 select mean(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 40.0
1000: - 40.0
1000: + 35.0
1200: - 35.0
1200: + 30.0
2000: - 30.0
2000: + 25.0

11.2.10 meanDeviation
Syntax

Chapter 11
meanDeviation

11-13

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#mean(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#mean(cern.colt.list.DoubleArrayList)

Purpose

meanDeviation is based on
cern.jet.stat.Descriptive.meanDeviation(DoubleArrayList data, double
mean). It returns the mean deviation of a dataset (see Figure 11-6) as a double.

Figure 11-6 cern.jet.stat.Descriptive.meanDeviation(DoubleArrayList data,
double mean)

This function takes the following tuple arguments:

• double1: data value.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#meanDeviation(cern.colt.list.DoubleArrayList, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr17. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr17"><![CDATA[
 select meanDeviation(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + 5.0
1200: - 5.0
1200: + 6.666666666666667
2000: - 6.666666666666667
2000: + 10.0

11.2.11 median
Syntax

Chapter 11
median

11-14

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#meanDeviation(cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#meanDeviation(cern.colt.list.DoubleArrayList,%20double)

Purpose

median is based on cern.jet.stat.Descriptive.median(DoubleArrayList sortedData). It
returns the median of a sorted data sequence as a double.

The following table lists the input types and the corresponding output types:

Table 11-2 Input and Output Types

Input Types Output Types

INT DOUBLE

BIGINT DOUBLE

FLOAT DOUBLE

DOUBLE DOUBLE

Note:

If the input type is INT, then return type will also be INT and it will be floor of the
divided value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#median(cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr18. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr18"><![CDATA[
 select median(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 40.0
1000: - 40.0
1000: + 35.0
1200: - 35.0
1200: + 30.0
2000: - 30.0
2000: + 25.0

Chapter 11
median

11-15

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#median(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#median(cern.colt.list.DoubleArrayList)

11.2.12 moment
Syntax

Purpose

moment is based on cern.jet.stat.Descriptive.moment(DoubleArrayList data,
int k, double c). It returns the moment of the k-th order with constant c of a data
sequence (see Figure 11-7) as a double.

Figure 11-7 cern.jet.stat.Descriptive.moment(DoubleArrayList data, int k,
double c)

This function takes the following tuple arguments:

• double1: data value.

• int1: k.

• double2: c.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#moment(cern.colt.list.DoubleArrayList, int, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr21. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr21"><![CDATA[
 select moment(c3, c1, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0

Chapter 11
moment

11-16

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#moment(cern.colt.list.DoubleArrayList,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#moment(cern.colt.list.DoubleArrayList,%20int,%20double)

1000: - 0.0
1000: + 5000.0
1200: - 5000.0
1200: + 3000.0
2000: - 3000.0
2000: + 1.7045E11

11.2.13 pooledMean
Syntax

Purpose

pooledMean is based on cern.jet.stat.Descriptive.pooledMean(int size1, double
mean1, int size2, double mean2). It returns the pooled mean of two data sequences (see
Figure 11-8) as a double.

Figure 11-8 cern.jet.stat.Descriptive.pooledMean(int size1, double mean1, int size2,
double mean2)

This function takes the following tuple arguments:

• double1: mean 1.

• double2: mean 2.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#pooledMean(int, double, int, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr22. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr22"><![CDATA[
 select pooledMean(c3, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+

Chapter 11
pooledMean

11-17

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#pooledMean(int,%20double,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#pooledMean(int,%20double,%20int,%20double)

 10: -
 10: + 40.0
1000: - 40.0
1000: + 35.0
1200: - 35.0
1200: + 30.0
2000: - 30.0
2000: + 25.0

11.2.14 pooledVariance
Syntax

Purpose

pooledVariance is based on cern.jet.stat.Descriptive.pooledVariance(int
size1, double variance1, int size2, double variance2). It returns the pooled
variance of two data sequences (see Figure 11-9) as a double.

Figure 11-9 cern.jet.stat.Descriptive.pooledVariance(int size1, double
variance1, int size2, double variance2)

This function takes the following tuple arguments:

• double1: variance 1.

• double2: variance 2.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#pooledVariance(int, double, int, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr23. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr23"><![CDATA[
 select pooledVariance(c3, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Chapter 11
pooledVariance

11-18

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#pooledVariance(int,%20double,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#pooledVariance(int,%20double,%20int,%20double)

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + 25.0
1200: - 25.0
1200: + 66.66666666666667
2000: - 66.66666666666667
2000: + 125.0

11.2.15 product
Syntax

Purpose

product is based on cern.jet.stat.Descriptive.product(DoubleArrayList data). It
returns the product of a data sequence (see Figure 11-10) as a double.

Figure 11-10 cern.jet.stat.Descriptive.product(DoubleArrayList data)

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#product(cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr24. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr24"><![CDATA[
 select product(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -

Chapter 11
product

11-19

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#product(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#product(cern.colt.list.DoubleArrayList)

 10: + 40.0
1000: - 40.0
1000: + 1200.0
1200: - 1200.0
1200: + 24000.0
2000: - 24000.0
2000: + 240000.0

11.2.16 quantile
Syntax

Purpose

quantile is based on cern.jet.stat.Descriptive.quantile(DoubleArrayList
sortedData, double phi). It returns the phi-quantile as a double; that is, an element
elem for which holds that phi percent of data elements are less than elem.

This function takes the following tuple arguments:

• double1: data value.

• double2: phi; the percentage; must satisfy 0 <= phi <= 1.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#quantile(cern.colt.list.DoubleArrayList, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr26. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr26"><![CDATA[
 select quantile(c3, c2) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 40.0
1000: - 40.0
1000: + 36.99999988079071
1200: - 36.99999988079071
1200: + 37.799999713897705
2000: - 37.799999713897705
2000: + 22.000000178813934

Chapter 11
quantile

11-20

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#quantile(cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#quantile(cern.colt.list.DoubleArrayList,%20double)

11.2.17 quantileInverse
Syntax

Purpose

quantileInverse is based on
cern.jet.stat.Descriptive.quantileInverse(DoubleArrayList sortedList, double
element). It returns the percentage phi of elements <= element (0.0 <= phi <= 1.0) as a
double. This function does linear interpolation if the element is not contained but lies in
between two contained elements.

This function takes the following tuple arguments:

• double1: data.

• double2: element.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#quantileInverse(cern.colt.list.DoubleArrayList, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr27. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr27"><![CDATA[
 select quantileInverse(c3, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 1.0
1000: - 1.0
1000: + 0.5
1200: - 0.5
1200: + 0.3333333333333333
2000: - 0.3333333333333333
2000: + 0.25

Chapter 11
quantileInverse

11-21

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#quantileInverse(cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#quantileInverse(cern.colt.list.DoubleArrayList,%20double)

11.2.18 rankInterpolated
Syntax

Purpose

rankInterpolated is based on
cern.jet.stat.Descriptive.rankInterpolated(DoubleArrayList sortedList,
double element). It returns the linearly interpolated number of elements in a list less
or equal to a given element as a double.

The rank is the number of elements <= element. Ranks are of the form{0, 1, 2,...,
sortedList.size()}. If no element is <= element, then the rank is zero. If the element
lies in between two contained elements, then linear interpolation is used and a non-
integer value is returned.

This function takes the following tuple arguments:

• double1: data value.

• double2: element.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#rankInterpolated(cern.colt.list.DoubleArrayList,
double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr29. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr29"><![CDATA[
 select rankInterpolated(c3, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 1.0
1000: - 1.0
1000: + 1.0
1200: - 1.0
1200: + 1.0
2000: - 1.0
2000: + 1.0

Chapter 11
rankInterpolated

11-22

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#rankInterpolated(cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#rankInterpolated(cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#rankInterpolated(cern.colt.list.DoubleArrayList,%20double)

11.2.19 rms
Syntax

Purpose

rms is based on cern.jet.stat.Descriptive.rms(int size, double sumOfSquares). It
returns the Root-Mean-Square (RMS) of a data sequence (see Figure 11-11) as a double.

Figure 11-11 cern.jet.stat.Descriptive.rms(int size, double sumOfSquares)

This function takes the following tuple arguments:

• double1: data value.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#rms(int, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr30. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr30"><![CDATA[
 select rms(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 40.0
1000: - 40.0
1000: + 35.35533905932738
1200: - 35.35533905932738
1200: + 31.09126351029605
2000: - 31.09126351029605
2000: + 27.386127875258307

Chapter 11
rms

11-23

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#rms(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#rms(int,%20double)

11.2.20 sampleKurtosis
Syntax

Purpose

sampleKurtosis is based on
cern.jet.stat.Descriptive.sampleKurtosis(DoubleArrayList data, double
mean, double sampleVariance). It returns the sample kurtosis (excess) of a data
sequence as a double.

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sampleKurtosis(cern.colt.list.DoubleArrayList,
double, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr31. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr31"><![CDATA[
 select sampleKurtosis(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + NaN
1200: - NaN
1200: + NaN
2000: - NaN
2000: + -1.1999999999999993

Chapter 11
sampleKurtosis

11-24

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleKurtosis(cern.colt.list.DoubleArrayList,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleKurtosis(cern.colt.list.DoubleArrayList,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleKurtosis(cern.colt.list.DoubleArrayList,%20double,%20double)

11.2.21 sampleKurtosisStandardError
Syntax

Purpose

sampleKurtosisStandardError is based on
cern.jet.stat.Descriptive.sampleKurtosisStandardError(int size). It returns the
standard error of the sample Kurtosis as a double.

This function takes the following tuple arguments:

• int1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sampleKurtosisStandardError(int)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr33. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr33"><![CDATA[
 select sampleKurtosisStandardError(c1) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + Infinity
1200: - Infinity
1200: + Infinity
2000: - Infinity
2000: + 2.6186146828319083

11.2.22 sampleSkew
Syntax

Chapter 11
sampleKurtosisStandardError

11-25

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleKurtosisStandardError(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleKurtosisStandardError(int)

Purpose

sampleSkew is based on cern.jet.stat.Descriptive.sampleSkew(DoubleArrayList
data, double mean, double sampleVariance). It returns the sample skew of a data
sequence as a double.

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sampleSkew(cern.colt.list.DoubleArrayList, double,
double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr34. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr34"><![CDATA[
 select sampleSkew(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + NaN
1200: - NaN
1200: + 0.0
2000: - 0.0
2000: + 0.0

11.2.23 sampleSkewStandardError
Syntax

Purpose

sampleSkewStandardError is based on
cern.jet.stat.Descriptive.sampleSkewStandardError(int size). It returns the
standard error of the sample skew as a double.

This function takes the following tuple arguments:

Chapter 11
sampleSkewStandardError

11-26

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleSkew(cern.colt.list.DoubleArrayList,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleSkew(cern.colt.list.DoubleArrayList,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleSkew(cern.colt.list.DoubleArrayList,%20double,%20double)

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sampleSkewStandardError(int)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr36. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr36"><![CDATA[
 select sampleSkewStandardError(c1) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + -0.0
1000: - -0.0
1000: + Infinity
1200: - Infinity
1200: + 1.224744871391589
2000: - 1.224744871391589
2000: + 1.01418510567422

11.2.24 sampleVariance
Syntax

Purpose

sampleVariance is based on
cern.jet.stat.Descriptive.sampleVariance(DoubleArrayList data, double mean). It
returns the sample variance of a data sequence (see Figure 11-12) as a double.

Figure 11-12 cern.jet.stat.Descriptive.sampleVariance(DoubleArrayList data, double
mean)

Chapter 11
sampleVariance

11-27

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleSkewStandardError(int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleSkewStandardError(int)

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sampleVariance(cern.colt.list.DoubleArrayList,
double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr38. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr38"><![CDATA[
 select sampleVariance(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + 50.0
1200: - 50.0
1200: + 100.0
2000: - 100.0
2000: + 166.66666666666666

11.2.25 skew
Syntax

Purpose

skew is based on cern.jet.stat.Descriptive.skew(DoubleArrayList data, double
mean, double standardDeviation). It returns the skew of a data sequence of a data
sequence (see Figure 11-13) as a double.

Figure 11-13 cern.jet.stat.Descriptive.skew(DoubleArrayList data, double
mean, double standardDeviation)

Chapter 11
skew

11-28

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleVariance(cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleVariance(cern.colt.list.DoubleArrayList,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sampleVariance(cern.colt.list.DoubleArrayList,%20double)

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#skew(cern.colt.list.DoubleArrayList, double, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr41. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr41"><![CDATA[
 select skew(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + NaN
1000: - NaN
1000: + 0.0
1200: - 0.0
1200: + 0.0
2000: - 0.0
2000: + 0.0

11.2.26 standardDeviation
Syntax

Purpose

standardDeviation is based on cern.jet.stat.Descriptive.standardDeviation(double
variance). It returns the standard deviation from a variance as a double.

The following table lists the input types and the corresponding output types:

Input Types Output Types

INT DOUBLE

BIGINT DOUBLE

Chapter 11
standardDeviation

11-29

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#skew(cern.colt.list.DoubleArrayList,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#skew(cern.colt.list.DoubleArrayList,%20double,%20double)

FLOAT DOUBLE

DOUBLE DOUBLE

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#standardDeviation(double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr44. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr44"><![CDATA[
 select standardDeviation(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + 5.0
1200: - 5.0
1200: + 8.16496580927726
2000: - 8.16496580927726
2000: + 11.180339887498949

11.2.27 standardError
Syntax

Purpose

standardError is based on cern.jet.stat.Descriptive.standardError(int size,
double variance). It returns the standard error of a data sequence (see Figure 11-14)
as a double.

Figure 11-14 cern.jet.stat.Descriptive.cern.jet.stat.Descriptive.standardError(int
size, double variance)

Chapter 11
standardError

11-30

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#standardDeviation(double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#standardDeviation(double)

This function takes the following tuple arguments:

• double1: data value.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#standardError(int,
double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr45. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr45"><![CDATA[
 select standardError(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + 3.5355339059327378
1200: - 3.5355339059327378
1200: + 4.714045207910317
2000: - 4.714045207910317
2000: + 5.5901699437494745

11.2.28 sumOfInversions
Syntax

Purpose

sumOfInversions is based on
cern.jet.stat.Descriptive.sumOfInversions(DoubleArrayList data, int from, int
to). It returns the sum of inversions of a data sequence (see Figure 11-15) as a double.

Figure 11-15 cern.jet.stat.Descriptive.sumOfInversions(DoubleArrayList data, int
from, int to)

Chapter 11
sumOfInversions

11-31

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#standardError(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#standardError(int,%20double)

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sumOfInversions(cern.colt.list.DoubleArrayList, int, int)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr48. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr48"><![CDATA[
 select sumOfInversions(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.025
1000: - 0.025
1000: + 0.058333333333333334
1200: - 0.058333333333333334
1200: + 0.10833333333333334
2000: - 0.10833333333333334
2000: + 0.20833333333333334

11.2.29 sumOfLogarithms
Syntax

Purpose

sumOfLogarithms is based on
cern.jet.stat.Descriptive.sumOfLogarithms(DoubleArrayList data, int from,
int to). It returns the sum of logarithms of a data sequence (see Figure 11-16) as a
double.

Figure 11-16 cern.jet.stat.Descriptive.sumOfLogarithms(DoubleArrayList data,
int from, int to)

Chapter 11
sumOfLogarithms

11-32

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfInversions(cern.colt.list.DoubleArrayList,%20int,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfInversions(cern.colt.list.DoubleArrayList,%20int,%20int)

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sumOfLogarithms(cern.colt.list.DoubleArrayList, int, int)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr49. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr49"><![CDATA[
 select sumOfLogarithms(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 3.6888794541139363
1000: - 3.6888794541139363
1000: + 7.090076835776092
1200: - 7.090076835776092
1200: + 10.085809109330082
2000: - 10.085809109330082
2000: + 12.388394202324129

11.2.30 sumOfPowerDeviations
Syntax

Purpose

sumOfPowerDeviations is based on
cern.jet.stat.Descriptive.sumOfPowerDeviations(DoubleArrayList data, int k,
double c). It returns sum of power deviations of a data sequence (see Figure 11-17) as a
double.

Figure 11-17 cern.jet.stat.Descriptive.sumOfPowerDeviations(DoubleArrayList data,
int k, double c)

Chapter 11
sumOfPowerDeviations

11-33

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfLogarithms(cern.colt.list.DoubleArrayList,%20int,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfLogarithms(cern.colt.list.DoubleArrayList,%20int,%20int)

This function is optimized for common parameters like c == 0.0, k == -2 .. 4, or
both.

This function takes the following tuple arguments:

• double1: data value.

• int1: k.

• double2: c.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sumOfPowerDeviations(cern.colt.list.DoubleArrayList, int,
double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr50. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr50"><![CDATA[
 select sumOfPowerDeviations(c3, c1, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + 10000.0
1200: - 10000.0
1200: + 9000.0
2000: - 9000.0
2000: + 6.818E11

11.2.31 sumOfPowers
Syntax

Purpose

sumOfPowers is based on
cern.jet.stat.Descriptive.sumOfPowers(DoubleArrayList data, int k). It
returns the sum of powers of a data sequence (see Figure 11-18) as a double.

Chapter 11
sumOfPowers

11-34

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfPowerDeviations(cern.colt.list.DoubleArrayList,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfPowerDeviations(cern.colt.list.DoubleArrayList,%20int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfPowerDeviations(cern.colt.list.DoubleArrayList,%20int,%20double)

Figure 11-18 cern.jet.stat.Descriptive.sumOfPowers(DoubleArrayList data, int k)

This function takes the following tuple arguments:

• double1: data value.

• int1: k.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sumOfPowers(cern.colt.list.DoubleArrayList, int)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr52. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr52"><![CDATA[
 select sumOfPowers(c3, c1) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 40.0
1000: - 40.0
1000: + 3370000.0
1200: - 3370000.0
1200: + 99000.0
2000: - 99000.0
2000: + 7.2354E12

11.2.32 sumOfSquaredDeviations
Syntax

Purpose

sumOfSquaredDeviations is based on
cern.jet.stat.Descriptive.sumOfSquaredDeviations(int size, double variance). It
returns the sum of squared mean deviation of a data sequence (see Figure 11-19) as a
double.

Chapter 11
sumOfSquaredDeviations

11-35

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfPowers(cern.colt.list.DoubleArrayList,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfPowers(cern.colt.list.DoubleArrayList,%20int)

Figure 11-19 cern.jet.stat.Descriptive.sumOfSquaredDeviations(int size, double
variance)

This function takes the following tuple arguments:

• double1: data value.

For more information, see

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sumOfSquaredDeviations(int, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr53. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr53"><![CDATA[
 select sumOfSquaredDeviations(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + 25.0
1200: - 25.0
1200: + 133.33333333333334
2000: - 133.33333333333334
2000: + 375.0

11.2.33 sumOfSquares
Syntax

Purpose

sumOfSquares is based on
cern.jet.stat.Descriptive.sumOfSquares(DoubleArrayList data). It returns the
sum of squares of a data sequence (see Figure 11-20) as a double.

Chapter 11
sumOfSquares

11-36

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfSquaredDeviations(int,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfSquaredDeviations(int,%20double)

Figure 11-20 cern.jet.stat.Descriptive.sumOfSquares(DoubleArrayList data)

This function takes the following tuple arguments:

• double1: data value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#sumOfSquares(cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr54. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr54"><![CDATA[
 select sumOfSquares(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 1600.0
1000: - 1600.0
1000: + 2500.0
1200: - 2500.0
1200: + 2900.0
2000: - 2900.0
2000: + 3000.0

11.2.34 trimmedMean
Syntax

Purpose

trimmedMean is based on cern.jet.stat.Descriptive.trimmedMean(DoubleArrayList
sortedData, double mean, int left, int right). It returns the trimmed mean of an
ascending sorted data sequence as a double.

This function takes the following tuple arguments:

Chapter 11
trimmedMean

11-37

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfSquares(cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#sumOfSquares(cern.colt.list.DoubleArrayList)

• double1: data value.

• int1: left.

• int2: right.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#trimmedMean(cern.colt.list.DoubleArrayList, double, int, int)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr55. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr55"><![CDATA[
 select trimmedMean(c3, c1, c1) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 0, 0.5, 40.0, 8
1000 0, 0.7, 30.0, 6
1200 0, 0.89, 20.0, 12
2000 1, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
10: -
10: + 40.0
1000: - 40.0
1000: + 35.0
1200: - 35.0
1200: + 30.0
2000: - 30.0
2000: + 25.0

11.2.35 variance
Syntax

Purpose

variance is based on cern.jet.stat.Descriptive.variance(int size, double
sum, double sumOfSquares). It returns the variance of a data sequence (see
Figure 11-21) as a double.

Figure 11-21 cern.jet.stat.Descriptive.variance(int size, double sum, double
sumOfSquares)

Chapter 11
variance

11-38

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#trimmedMean(cern.colt.list.DoubleArrayList,%20double,%20int,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#trimmedMean(cern.colt.list.DoubleArrayList,%20double,%20int,%20int)

The following table lists the input types and the corresponding output types:

Input Types Output Types

INT DOUBLE

BIGINT DOUBLE

FLOAT DOUBLE

DOUBLE DOUBLE

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#variance(int,
double, double)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr57. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr57"><![CDATA[
 select variance(c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 0.0
1000: - 0.0
1000: + 25.0
1200: - 25.0
1200: + 66.66666666666667
2000: - 66.66666666666667
2000: + 125.0

11.2.36 weightedMean
Syntax

Purpose

weightedMean is based on cern.jet.stat.Descriptive.weightedMean(DoubleArrayList
data, DoubleArrayList weights). It returns the weighted mean of a data sequence (see
Figure 11-22) as a double.

Chapter 11
weightedMean

11-39

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#variance(int,%20double,%20double)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#variance(int,%20double,%20double)

Figure 11-22 cern.jet.stat.Descriptive.weightedMean(DoubleArrayList data,
DoubleArrayList weights)

This function takes the following tuple arguments:

• double1: data value.

• double2: weight value.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#weightedMean(cern.colt.list.DoubleArrayList,
cern.colt.list.DoubleArrayList)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr58. Given the data stream SColtAggrFunc with schema
(c1 integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr58"><![CDATA[
 select weightedMean(c3, c3) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 4, 0.7, 30.0, 6
1200 3, 0.89, 20.0, 12
2000 8, 0.4, 10.0, 4
h 8000
h 200000000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
 10: -
 10: + 40.0
1000: - 40.0
1000: + 35.714285714285715
1200: - 35.714285714285715
1200: + 32.22222222222222
2000: - 32.22222222222222
2000: + 30.0

11.2.37 winsorizedMean
Syntax

Purpose

winsorizedMean is based on
cern.jet.stat.Descriptive.winsorizedMean(DoubleArrayList sortedData,

Chapter 11
winsorizedMean

11-40

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#weightedMean(cern.colt.list.DoubleArrayList,%20cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#weightedMean(cern.colt.list.DoubleArrayList,%20cern.colt.list.DoubleArrayList)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#weightedMean(cern.colt.list.DoubleArrayList,%20cern.colt.list.DoubleArrayList)

double mean, int left, int right). It returns the winsorized mean of a sorted data
sequence as a double.

This function takes the following tuple arguments:

• double1: data value.

• int1: left.

• int2: right.

For more information, see:

• https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/
Descriptive.html#winsorizedMean(cern.colt.list.DoubleArrayList, double, int, int)

• Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments.

Examples

Consider the query qColtAggr60. Given the data stream SColtAggrFunc with schema (c1
integer, c2 float, c3 double, c4 bigint), the query returns the relation.

<query id="qColtAggr60"><![CDATA[
 select winsorizedMean(c3, c1, c1) from SColtAggrFunc
]]></query>

Timestamp Tuple
 10 1, 0.5, 40.0, 8
1000 0, 0.7, 30.0, 6
1200 1, 0.89, 20.0, 12
2000 1, 0.4, 10.0, 4
h 8000

Timestamp Tuple Kind Tuple
-9223372036854775808:+
10: -
10: + 40.0
1000: - 40.0
1000: + 35.0
1200: - 35.0
1200: + 30.000000000000004
2000: - 30.000000000000004
2000: + 25

Chapter 11
winsorizedMean

11-41

https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#winsorizedMean(cern.colt.list.DoubleArrayList,%20double,%20int,%20int)
https://dst.lbl.gov/ACSSoftware/colt/api/cern/jet/stat/Descriptive.html#winsorizedMean(cern.colt.list.DoubleArrayList,%20double,%20int,%20int)

12
java.lang.Math Functions

A reference to the java.lang.Math functions provided in Oracle Continuous Query Language
(Oracle CQL) is provided.

12.1 Introduction to Oracle CQL Built-In java.lang.Math Functions
Table 12-1 lists the built-in java.lang.Math functions that Oracle CQL provides.

Table 12-1 Oracle CQL Built-in java.lang.Math Functions

Type Function

Trigonometric • sin
• cos
• tan
• asin
• acos
• atan
• atan2
• cosh
• sinh
• tanh

Logarithmic • log1
• log101
• log1p

Euler's Number • exp
• expm1

Roots • cbrt
• sqrt
• hypot

Signum Function • signum
• signum1

Unit of Least Precision • ulp
• ulp1

12-1

Table 12-1 (Cont.) Oracle CQL Built-in java.lang.Math Functions

Type Function

Other • abs
• abs1
• abs2
• abs3
• ceil1
• floor1
• IEEEremainder
• pow
• rint
• round
• round1
• todegrees
• toradians

Note:

Built-in function names are case sensitive and you must use them in the
case shown (in lower case).

Note:

In stream input examples, lines beginning with h (such as h 3800) are
heartbeat input tuples. These inform GGSA that no further input will have a
timestamp lesser than the heartbeat value.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html.

12.2.1 abs
Syntax

Purpose

abs returns the absolute value of the input integer argument as an integer.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#abs(int).

Chapter 12
abs

12-2

http://java.sun.com/javase/6/docs/api/java/lang/Math.html
http://java.sun.com/javase/6/docs/api/java/lang/Math.html
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(int)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(int)

Examples

Consider the query q66. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q66"><![CDATA[
 select abs(c1) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 -4,0.7,6
1200 -3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1
1000: + 4
1200: + 3
2000: + 8

12.2.2 abs1
Syntax

Purpose

abs1 returns the absolute value of the input long argument as a long.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#abs(long).

Examples

Consider the query q67. Given the data stream SFunc with schema (c1 integer, c2 float,
c3 long), the query returns the stream.

<query id="q67"><![CDATA[
 select abs1(c3) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,-6
1200 3,0.89,-12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 8
1000: + 6
1200: + 12
2000: + 4

Chapter 12
abs1

12-3

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(long)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(long)

12.2.3 abs2
Syntax

Purpose

abs2 returns the absolute value of the input float argument as a float.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#abs(float).

Examples

Consider the query q68. Given the data stream SFunc with schema (c1 integer, c2
float, c3 bigint), the query returns the stream.

<query id="q68"><![CDATA[
 select abs2(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,-0.7,6
1200 3,-0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5
1000: + 0.7
1200: + 0.89
2000: + 0.4

12.2.4 abs3
Syntax

Purpose

abs3 returns the absolute value of the input double argument as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#abs(double).

Examples

Consider the query q69. Given the data stream SFunc with schema (c1 integer, c2
float, c3 bigint, c4 double), the query returns the stream.

Chapter 12
abs2

12-4

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(float)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(float)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#abs(double)

<query id="q69"><![CDATA[
 select abs3(c4) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8,0.25334
1000 4,0.7,6,-4.64322
1200 3,0.89,12,-1.4672272
2000 8,0.4,4,2.66777

Timestamp Tuple Kind Tuple
 10: + 0.25334
1000: + 4.64322
1200: + 1.4672272
2000: + 2.66777

12.2.5 acos
Syntax

Purpose

acos returns the arc cosine of a double angle, in the range of 0.0 through pi, as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#acos(double).

Examples

Consider the query q73. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q73"><![CDATA[
 select acos(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0471976
1000: + 0.79539883
1200: + 0.4734512
2000: + 1.1592795

12.2.6 asin
Syntax

Chapter 12
acos

12-5

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#acos(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#acos(double)

Purpose

asin returns the arc sine of a double angle, in the range of -pi/2 through pi/2, as a
double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#asin(double).

Examples

Consider the query q74. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q74"><![CDATA[
 select asin(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5235988
1000: + 0.7753975
1200: + 1.0973451
2000: + 0.41151685

12.2.7 atan
Syntax

Purpose

atan returns the arc tangent of a double angle, in the range of -pi/2 through pi/2, as
a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#atan(double).

Examples

Consider the query q75. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q75"><![CDATA[
 select atan(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Chapter 12
atan

12-6

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#asin(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#asin(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#atan(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#atan(double)

Timestamp Tuple Kind Tuple
 10: + 0.4636476
1000: + 0.61072594
1200: + 0.7272627
2000: + 0.3805064

12.2.8 atan2
Syntax

Purpose

atan2 converts rectangular coordinates (x,y) to polar (r,theta) coordinates.

This function takes the following arguments:

• double1: the ordinate coordinate.

• double2: the abscissa coordinate.

This function returns the theta component of the point (r,theta) in polar coordinates that
corresponds to the point (x,y) in Cartesian coordinates as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#atan2(double,%20double).

Examples

Consider the query q63. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q63"><![CDATA[
 select atan2(c2,c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.7853982
1000: + 0.7853982
1200: + 0.7853982
2000: + 0.7853982

12.2.9 cbrt
Syntax

Chapter 12
atan2

12-7

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#atan2(double,%20double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#atan2(double,%20double)

Purpose

cbrt returns the cube root of the double argument as a double.

For positive finite a, cbrt(-a) == -cbrt(a); that is, the cube root of a negative value
is the negative of the cube root of that value's magnitude.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#cbrt(double).

Examples

Consider the query q76. Given the data stream SFunc with schema (c1 integer, c2
float, c3 bigint), the query returns the stream.

<query id="q76"><![CDATA[
 select cbrt(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.7937005
1000: + 0.887904
1200: + 0.9619002
2000: + 0.73680633

12.2.10 ceil1
Syntax

Purpose

ceil1 returns the smallest (closest to negative infinity) double value that is greater
than or equal to the double argument and equals a mathematical integer.

To avoid possible rounding error, consider using (long)
cern.jet.math.Arithmetic.ceil(double).

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/Math.html#ceil(double).

Examples

Consider the query q77. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q77"><![CDATA[
 select ceil1(c2) from SFunc
]]></query>

Chapter 12
ceil1

12-8

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cbrt(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cbrt(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#ceil(double)

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + 1.0
1200: + 1.0
2000: + 1.0

12.2.11 cos
Syntax

Purpose

cos returns the trigonometric cosine of a double angle as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#cos(double).

Examples

Consider the query q61. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q61"><![CDATA[
 select cos(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.87758255
1000: + 0.7648422
1200: + 0.62941206
2000: + 0.921061

12.2.12 cosh
Syntax

Purpose

cosh returns the hyperbolic cosine of a double value as a double.

Chapter 12
cos

12-9

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cos(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cos(double)

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#cosh(double).

Examples

Consider the query q78. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

tkdata140.cqlx, data/inpSColtFunc.txt, log/outSColtcosh.txt

<query id="q78"><![CDATA[
 select cosh(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.127626
1000: + 1.255169
1200: + 1.4228927
2000: + 1.0810723

12.2.13 exp
Syntax

Purpose

exp returns Euler's number e raised to the power of the double argument as a double.

Note that for values of x near 0, the exact sum of expm1(x) + 1 is much closer to the
true result of Euler's number e raised to the power of x than EXP(x).

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/Math.html#exp(double)

• expm1.

Examples

Consider the query q79. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q79"><![CDATA[
 select exp(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Chapter 12
exp

12-10

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cosh(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#cosh(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#exp(double)

Timestamp Tuple Kind Tuple
 10: + 1.6487212
1000: + 2.0137527
1200: + 2.4351296
2000: + 1.4918247

12.2.14 expm1
Syntax

Purpose

expm1 returns the computation that Figure 12-1 shows as a double, where x is the double
argument and e is Euler's number.

Figure 12-1 java.lang.Math Expm1

Note that for values of x near 0, the exact sum of expm1(x) + 1 is much closer to the true
result of Euler's number e raised to the power of x than exp(x).

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/Math.html#expm1(double)

• exp.

Examples

Consider the query q80. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q80"><![CDATA[
 select expm1(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.6487213
1000: + 1.0137527
1200: + 1.4351296
2000: + 0.49182472

Chapter 12
expm1

12-11

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#expm1(double)

12.2.15 floor1
Syntax

Purpose

floor1 returns the largest (closest to positive infinity) double value that is less than or
equal to the double argument and equals a mathematical integer.

To avoid possible rounding error, consider using (long)
cern.jet.math.Arithmetic.floor(double).

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#floor(double).

Examples

Consider the query q81. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q81"><![CDATA[
 select floor1(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 0.0
1200: + 0.0
2000: + 0.0

12.2.16 hypot
Syntax

Purpose

hypot returns the hypotenuse (see Figure 12-2) of the double arguments as a double.

Chapter 12
floor1

12-12

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#floor(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#floor(double)

Figure 12-2 java.lang.Math hypot

This function takes the following arguments:

• double1: the x value.

• double2: the y value.

The hypotenuse is computed without intermediate overflow or underflow.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#hypot(double,%20double).

Examples

Consider the query q82. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q82"><![CDATA[
 select hypot(c2,c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.70710677
1000: + 0.98994946
1200: + 1.2586501
2000: + 0.56568545

12.2.17 IEEEremainder
Syntax

Purpose

IEEEremainder computes the remainder operation on two double arguments as prescribed
by the IEEE 754 standard and returns the result as a double.

This function takes the following arguments:

• double1: the dividend.

• double2: the divisor.

The remainder value is mathematically equal to f1 - f2 × n, where n is the mathematical
integer closest to the exact mathematical value of the quotient f1/f2, and if two mathematical

Chapter 12
IEEEremainder

12-13

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#hypot(double,%20double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#hypot(double,%20double)

integers are equally close to f1/f2, then n is the integer that is even. If the remainder
is zero, its sign is the same as the sign of the first argument.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#IEEEremainder(double,%20double).

Examples

Consider the query q72. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q72"><![CDATA[
 select IEEEremainder(c2,c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 0.0
1200: + 0.0
2000: + 0.0

12.2.18 log1
Syntax

Purpose

log1 returns the natural logarithm (base e) of a double value as a double.

Note that for small values x, the result of log1p(x) is much closer to the true result of
ln(1 + x) than the floating-point evaluation of log(1.0+x).

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/Math.html#log(double)

• log1p.

Examples

Consider the query q83. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q83"><![CDATA[
 select log1(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Chapter 12
log1

12-14

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#IEEEremainder(double,%20double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#IEEEremainder(double,%20double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#log(double)

Timestamp Tuple Kind Tuple
 10: + -0.6931472
1000: + -0.35667497
1200: + -0.11653383
2000: + -0.9162907

12.2.19 log101
Syntax

Purpose

log101 returns the base 10 logarithm of a double value as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#log10(double).

Examples

Consider the query q84. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q84"><![CDATA[
 select log101(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + -0.30103
1000: + -0.15490197
1200: + -0.050610002
2000: + -0.39794

12.2.20 log1p
Syntax

Purpose

log1p returns the natural logarithm of the sum of the double argument and 1 as a double.

Note that for small values x, the result of log1p(x) is much closer to the true result of ln(1 +
x) than the floating-point evaluation of log(1.0+x).

For more information, see:

Chapter 12
log101

12-15

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#log10(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#log10(double)

• http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#log1p(double)

• log1.

Examples

Consider the query q85. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q85"><![CDATA[
 select log1p(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.4054651
1000: + 0.53062826
1200: + 0.63657683
2000: + 0.33647224

12.2.21 pow
Syntax

Purpose

pow returns the value of the first double argument (the base) raised to the power of the
second double argument (the exponent) as a double.

This function takes the following arguments:

• double1: the base.

• double2: the exponent.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#pow(double,%20double).

Examples

Consider the query q65. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q65"><![CDATA[
 select pow(c2,c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Chapter 12
pow

12-16

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#log1p(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#log1p(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#pow(double,%20double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#pow(double,%20double)

Timestamp Tuple Kind Tuple
 10: + 0.70710677
1000: + 0.7790559
1200: + 0.9014821
2000: + 0.69314486

12.2.22 rint
Syntax

Purpose

rint returns the double value that is closest in value to the double argument and equals a
mathematical integer. If two double values that are mathematical integers are equally close,
the result is the integer value that is even.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#rint(double).

Examples

Consider the query q86. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q86"><![CDATA[
 select rint(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.0
1000: + 1.0
1200: + 1.0
2000: + 0.0

12.2.23 round
Syntax

Purpose

round returns the closest integer to the argument.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#round(float).

Chapter 12
rint

12-17

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#rint(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#rint(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#round(float)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#round(float)

Input/Output Types

The input/output types for this function are as follows:

Input Type Output Type

DOUBLE DOUBLE

INTEGER INTEGER

FLOAT FLOAT

BIGINT BIGINT

BIGDECIMAL BIGDECIMAL

Examples

Consider the query q87. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q87"><![CDATA[
 select round(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1
1000: + 1
1200: + 1
2000: + 0

12.2.24 round1
Syntax

Purpose

round1 returns the closest integer to the float argument.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#round(float).

Examples

Consider the query q88. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q88"><![CDATA[
 select round1(c2) from SFunc
]]></query>

Chapter 12
round1

12-18

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#round(float)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#round(float)

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1
1000: + 1
1200: + 1
2000: + 0

12.2.25 signum
Syntax

Purpose

signum returns the signum function of the double argument as a double:

• zero if the argument is zero

• 1.0 if the argument is greater than zero

• -1.0 if the argument is less than zero

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#signum(double).

Examples

Consider the query q70. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q70"><![CDATA[
 select signum(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,-0.7,6
1200 3,-0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + -1.0
1200: + -1.0
2000: + 1.0

12.2.26 signum1
Syntax

Chapter 12
signum

12-19

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#signum(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#signum(double)

Purpose

signum1 returns the signum function of the float argument as a float:

• zero if the argument is zero

• 1.0 if the argument is greater than zero

• -1.0 if the argument is less than zero.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#signum(float).

Examples

Consider the query q71. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the relation.

<query id="q71"><![CDATA[
 select signum1(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,-0.7,6
1200 3,-0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.0
1000: + -1.0
1200: + -1.0
2000: + 1.0

12.2.27 sin
Syntax

Purpose

sin returns the trigonometric sine of a double angle as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#sin(double).

Examples

Consider the query q60. Given the data stream SFunc with schema (c1 integer, c2
float, c3 bigint), the query returns the stream.

<query id="q60"><![CDATA[
 select sin(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6

Chapter 12
sin

12-20

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#signum(float)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#signum(float)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sin(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sin(double)

1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.47942555
1000: + 0.64421767
1200: + 0.7770717
2000: + 0.38941833

12.2.28 sinh
Syntax

Purpose

sinh returns the hyperbolic sine of a double value as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#sinh(double).

Examples

Consider the query q89. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q89"><![CDATA[
 select sinh(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5210953
1000: + 0.75858366
1200: + 1.012237
2000: + 0.41075233

12.2.29 sqrt
Syntax

Purpose

sqrt returns the correctly rounded positive square root of a double value as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#sqrt(double).

Chapter 12
sinh

12-21

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sinh(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sinh(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sqrt(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#sqrt(double)

Examples

Consider the query q64. Given the data stream SFunc with schema (c1 integer, c2
float, c3 bigint), the query returns the stream.

<query id="q64"><![CDATA[
 select sqrt(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.70710677
1000: + 0.83666
1200: + 0.9433981
2000: + 0.6324555

12.2.30 tan
Syntax

Purpose

tan returns the trigonometric tangent of a double angle as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#tan(double).

Examples

Consider the query q62. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q62"><![CDATA[
 select tan(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.5463025
1000: + 0.8422884
1200: + 1.2345995
2000: + 0.42279324

Chapter 12
tan

12-22

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#tan(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#tan(double)

12.2.31 tanh
Syntax

Purpose

tanh returns the hyperbolic tangent of a double value as a double.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#tanh(double).

Examples

Consider the query q90. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q90"><![CDATA[
 select tanh(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 0.46211717
1000: + 0.6043678
1200: + 0.7113937
2000: + 0.37994897

12.2.32 todegrees
Syntax

Purpose

todegrees converts a double angle measured in radians to an approximately equivalent
angle measured in degrees as a double.

The conversion from radians to degrees is generally inexact; do not expect
COS(TORADIANS(90.0)) to exactly equal 0.0.

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/Math.html#toDegrees(double)

Chapter 12
tanh

12-23

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#tanh(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#tanh(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#toDegrees(double)

• toradians.

• cos.

Examples

Consider the query q91. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q91"><![CDATA[
 select todegrees(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 28.64789
1000: + 40.107044
1200: + 50.993244
2000: + 22.918312

12.2.33 toradians
Syntax

Purpose

toradians converts a double angle measured in degrees to an approximately
equivalent angle measured in radians as a double.

For more information, see:

• http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#toRadians(double)

• todegrees

• cos.

Examples

Consider the query q92. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q92"><![CDATA[
 select toradians(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Chapter 12
toradians

12-24

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#toRadians(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#toRadians(double)

Timestamp Tuple Kind Tuple
 10: + 0.008726646
1000: + 0.012217305
1200: + 0.0155334305
2000: + 0.006981317

12.2.34 ulp
Syntax

Purpose

ulp returns the size of an ulp of the double argument as a double. In this case, an ulp of the
argument value is the positive distance between this floating-point value and the double value
next larger in magnitude.

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#ulp(double).

Examples

Consider the query q93. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the stream.

<query id="q93"><![CDATA[
 select ulp(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 1.110223E-16
1000: + 1.110223E-16
1200: + 1.110223E-16
2000: + 5.551115E-17

12.2.35 ulp1
Syntax

Purpose

ulp1 returns the size of an ulp of the float argument as a float. An ulp of a float value is the
positive distance between this floating-point value and the float value next larger in
magnitude.

Chapter 12
ulp

12-25

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#ulp(double)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#ulp(double)

For more information, see http://java.sun.com/javase/6/docs/api/java/lang/
Math.html#ulp(float).

Examples

Consider the query q94. Given the data stream SFunc with schema (c1 integer, c2
double, c3 bigint), the query returns the relation.

<query id="q94"><![CDATA[
 select ulp1(c2) from SFunc
]]></query>

Timestamp Tuple
 10 1,0.5,8
1000 4,0.7,6
1200 3,0.89,12
2000 8,0.4,4

Timestamp Tuple Kind Tuple
 10: + 5.9604645E-8
1000: + 5.9604645E-8
1200: + 5.9604645E-8
2000: + 2.9802322E-8

Chapter 12
ulp1

12-26

http://java.sun.com/javase/6/docs/api/java/lang/Math.html#ulp(float)
http://java.sun.com/javase/6/docs/api/java/lang/Math.html#ulp(float)

13
Pattern Recognition With
MATCH_RECOGNIZE

A reference and usage information about the MATCH_RECOGNIZE clause in Oracle Continuous
Query Language (Oracle CQL) is provided. This clause and its sub-clauses perform pattern
recognition in Oracle CQL queries.

Pattern matching with multiple streams in FROM clause is also supported.

13.1 Understanding Pattern Recognition With MATCH_RECOGNIZE
The MATCH_RECOGNIZE clause performs pattern recognition in an Oracle CQL query. This
query will export (make available for inclusion in the SELECT) the MEASURES clause values for
events (tuples) that satisfy the PATTERN clause regular expression over the DEFINE clause
conditions.

<query id="detectPerish"><![CDATA[
 select its.badItemId
 from tkrfid_ItemTempStream
 MATCH_RECOGNIZE (
 PARTITION BY itemId
 MEASURES A.itemId as badItemId
 PATTERN (A B* C)
 DEFINE
 A AS (A.temp >= 25),
 B AS ((B.temp >= 25) and (to_timestamp(B.element_time) - to_timestamp(A.element_time) < INTERVAL "0
00:00:05.00" DAY TO SECOND)),
 C AS (to_timestamp(C.element_time) - to_timestamp(A.element_time) >= INTERVAL "0 00:00:05.00" DAY TO
SECOND)
) as its
]]></query>

pattern_recognition_clause::=

(Figure 13-6, Figure 13-1, pattern_def_dur_clause::=)

pattern_def_dur_clause::=

13-1

(Figure 13-2, Figure 13-7, Figure 13-3, Figure 13-9, Figure 13-11)

Using MATCH_RECOGNIZE, you define conditions on the attributes of incoming events
and identify these conditions by using identifiers called correlation variables. The
previous example defines correlation variables A, B, and C. A sequence of consecutive
events in the input stream satisfying these conditions constitutes a pattern.

The output of a MATCH_RECOGNIZE query is always a stream.

The principle MATCH_RECOGNIZE sub-clauses are:

• MEASURES: exports (makes available for inclusion in the SELECT) attribute values of
events that successfully match the pattern you specify.

See MEASURES Clause.

• PATTERN: specifies the pattern to be matched as a regular expression over one ore
more correlation variables.

See PATTERN Clause.

• DEFINE: specifies the condition for one or more correlation variables.

See DEFINE Clause.

To refine pattern recognition, you may use the optional MATCH_RECOGNIZE sub-clauses,
including:

• PARTITION BY Clause

• ALL MATCHES Clause

• WITHIN Clause

• DURATION Clause

• INCLUDE TIMER EVENTS Clause

• SUBSET Clause.

For more information, see:

• MATCH_RECOGNIZE and the WHERE Clause

• Referencing Singleton and Group Matches

• Referencing Aggregates.

– Using count With *, identifier.*, and identifier.attr

– Using first and last.

• Using prev

• MATCH_RECOGNIZE Examples.

13.1.1 MATCH_RECOGNIZE and the WHERE Clause
In Oracle CQL (as in SQL), the FROM clause is evaluated before the WHERE clause.

Consider the following Oracle CQL query:

SELECT ... FROM S MATCH_RECOGNIZE (....) as T WHERE ...

In this query, the S MATCH_RECOGNIZE (....) as T is like a subquery in the FROM
clause and is evaluated first, before the WHERE clause.

Chapter 13
Understanding Pattern Recognition With MATCH_RECOGNIZE

13-2

Consequently, you rarely use both a MATCH_RECOGNIZE clause and a WHERE clause in the same
Oracle CQL query. Instead, you typically use a view to apply the required WHERE clause to a
stream and then select from the view in a query that applies the MATCH_RECOGNIZE clause.

13.1.2 Referencing Singleton and Group Matches
The MATCH_RECOGNIZE clause identifies the following types of matches:

• singleton: a correlation variable is a singleton if it occurs exactly once in a pattern, is not
defined by a SUBSET, is not in the scope of an alternation, and is not quantified by a
pattern quantifier.

References to such a correlation variable refer to this single event.

• group: a correlation variable is a group if it occurs in more than one pattern, is defined by
a SUBSET, is in the scope of an alternation, or is quantified by a pattern quantifier.

References to such a correlation variable refer to this group of events.

When you reference singleton and group correlation variables in the MEASURES and DEFINE
clauses, observe the following rules:

• For singleton correlation variables, you may reference individual event attributes only, not
aggregates.

• For group correlation variables:

– If you reference an individual event attribute, then the value of the last event to match
the correlation variable is returned.

If the correlation variable is not yet matched, NULL is returned. In the case of
count(A.*), if the correlation variable A is not yet matched, 0 is returned.

If the correlation variable is being referenced in a definition of the same variable
(such as DEFINE A as A.balance > 1000), then the value of the current event is
returned.

– If you reference an aggregate, then the aggregate is performed over all events that
have matched the correlation variable so far.

For more information, see:

• Using count With *, identifier.*, and identifier.attr

• Pattern Quantifiers and Regular Expressions

• Referencing Attributes in the DEFINE Clause.

13.1.3 Referencing Aggregates
You can use any built-in, Colt, or user-defined aggregate function in the MEASURES and DEFINE
clause of a MATCH_RECOGNIZE query.

When using aggregate functions, consider the following:

• Running Aggregates and Final Aggregates

• Operating on the Same Correlation Variable

• Referencing Variables That Have not Been Matched Yet

• Referencing Attributes not Qualified by Correlation Variable.

Chapter 13
Understanding Pattern Recognition With MATCH_RECOGNIZE

13-3

For more information, see:

• Using count With *, identifier.*, and identifier.attr

• Using first and last

• Introduction to Oracle CQL Built-In Aggregate Functions

• Introduction to Oracle CQL Built-In Aggregate Colt Functions

• MEASURES Clause

• DEFINE Clause.

13.1.3.1 Running Aggregates and Final Aggregates
In the DEFINE clause, any aggregate function on a correlation variable X is a running
aggregate: that is, the aggregate includes all preceding matches of X up to and
including the current match. If the correlation variable X has been completely matched
so far, then the aggregate is final, otherwise it is running.

In the MEASURES clause, because it is evaluated after the match has been found, all
aggregates are final because they are computed over the final match.

When using a SUBSET clause, be aware of the fact that you may inadvertently imply a
running aggregate.

...
PATTERN (X+ Y+)
SUBSET Z = (X, Y)
DEFINE
 X AS X.price > 100,
 Y AS sum(Z.price) < 1000
...

Because correlation variable Z involves Y, the definition of Y involves a running
aggregate on Y.

For more information, see:

• MEASURES Clause

• DEFINE Clause

• SUBSET Clause.

13.1.3.2 Operating on the Same Correlation Variable
In both the MEASURES and DEFINE clause, you may only apply an aggregate function to
attributes of the same correlation variable.

For example: the use of aggregate function correlation.

...
MEASURES xycorr AS correlation(X.price, Y.price)
PATTERN (X+ Y+)
DEFINE
 X AS X.price <= 10,
 Y AS Y.price > 10
...

Chapter 13
Understanding Pattern Recognition With MATCH_RECOGNIZE

13-4

The correlation aggregate function may not operate on more than one correlation variable.

13.1.3.3 Referencing Variables That Have not Been Matched Yet
In the DEFINE clause, you may reference a correlation variable that has not been matched
yet. However, you should use caution when doing so.

PATTERN (X+ Y+)
DEFINE
 X AS count(Y.*) >= 3
 Y AS Y.price > 10,

Although this syntax is legal, note that in this particular example, the pattern will never match
because at the time X is matched, Y has not yet been matched, and count(Y.*) is 0.

To implement the desired behavior ("Match when the price of Y has been greater than 10, 3 or
more times in a row"), implement this pattern.

PATTERN (Y+ X+)
DEFINE
 Y AS Y.price > 10,
 X AS count(Y.*) >= 3

For more information, see Using count With *, identifier.*, and identifier.attr.

13.1.3.4 Referencing Attributes not Qualified by Correlation Variable
In the DEFINE clause, if you apply an aggregate function to an event attribute not qualified by
correlation variable, the aggregate is a running aggregate.

PATTERN ((RISE FALL)+)
DEFINE
 RISE AS count(RISE.*) = 1 or RISE.price > FALL.price,
 FALL AS FALL.price < RISE.price and count(*) > 1000

This query detects a pattern in which a price alternately goes up and down, for as long as
possible, but for at least more than 1000 matches.

For more information, see:

• Running Aggregates and Final Aggregates

• Using count With *, identifier.*, and identifier.attr.

13.1.3.5 Using count With *, identifier.*, and identifier.attr
The built-in aggregate function count has syntax:

(arith_expr::=)

The return value of count depends on the argument as Table 13-1 shows.

Chapter 13
Understanding Pattern Recognition With MATCH_RECOGNIZE

13-5

Table 13-1 Return Values for count Aggregate Function

Input Argument Return Value

arith_expr The number of tuples where arith_expr is not NULL.

* The number of tuples matching all the correlation variables in the
pattern, including duplicates and nulls.

identifier.* The number of all tuples that match the correlation variable
identifier, including duplicates and nulls.

Note the following:

• count(A.*) = 1 is true for the first event that matches A.
• count(A.*) = 0 is true while A has not been matched yet.

identifier.attr The number of tuples that match correlation variable identifier,
where attr is not NULL.

Assume that the schema of S includes attributes account and balance. This query
returns an event for each account that has not received 3 or more events in 60
minutes.

select
 T.account,
 T.Atime
FROM S
 MATCH_RECOGNIZE(
 PARTITION BY account
 MEASURES
 A.account has account
 A.ELEMENT_TIME as Atime
 ALL MATCHES
 INCLUDE TIMER EVENTS
 PATTERN (A+)
 DURATION 60 MINUTES
 DEFINE
 A AS count(A.*) < 3
) as T

The PATTERN (A+) specifies the pattern "Match A one or more times".

The DEFINE clause specifies the condition:

A AS count(A.*) < 3

This condition for A places no restrictions on input tuples (such as A.balance > 1000).
The only restrictions are imposed by the PARTITION BY account and DURATION 60
MINUTES clauses. In the DEFINE clause, the A.* means, "Match all input tuples for the
group A+". This group includes the one or more input tuples with a particular account
received in the 60 minutes starting with the first input tuple. The count(A.*) is a
running aggregate that returns the total number of events in this group.

If the DEFINE clause specifies the condition:

A AS A.balance > 1000 and count(A.*) < 3

Then A.* still means "Match all input tuples for the group A+". In this case, this group
includes the one or more input tuples with a particular account received in the 60
minutes starting with the first input tuple and with balance > 1000.

Chapter 13
Understanding Pattern Recognition With MATCH_RECOGNIZE

13-6

In contrast:

• count(*) means "The number of tuples matching all the correlation variables in the
pattern, including duplicates and nulls."

• count(A.balance) means "The number of all tuples that match the correlation variable A
where the balance is not NULL".

For more information, see:

• count

• Range, Rows, and Slide at Query Start-Up and for Empty Relations

• Referencing Singleton and Group Matches

• Referencing Aggregates

• Referencing Variables That Have not Been Matched Yet

• Referencing Attributes not Qualified by Correlation Variable.

13.1.3.6 Using first and last
Use the first and last built-in aggregate functions to access event attributes of the first or
last event match, respectively:

first returns the value of the first match of a group in the order defined by the ORDER BY
clause or the default order.

last returns the value of the last match of a group in the order defined by the ORDER BY
clause or the default order.

The first and last functions accept an optional non-negative, constant integer argument (N)
that indicates the offset following the first and the offset preceding the last match of the
variable, respectively. If you specify this offset, the first function returns the N-th matching
event following the first match and the last function returns the N-th matching event
preceding the last match. If the offset does not fall within the match of the variable, the first
and last functions return NULL.

For more information, see:

• first

• last

• Referencing Aggregates.

13.1.4 Using prev
Use the prev built-in single-row function to access event attributes of a previous event match.
If there is no previous event match, the prev function returns NULL.

The prev function accepts an optional non-negative, constant integer argument (N) that
indicates the offset to a previous match. If you specify this offset, the prev function returns the
N-th matching event preceding the current match. If there is no such previous match, the prev
functions returns NULL.

When you use the prev function in the DEFINE clause, this function may only access the
currently defined correlation variable.

For example: the correlation variable definition:

Chapter 13
Understanding Pattern Recognition With MATCH_RECOGNIZE

13-7

Y AS Y.price < prev(Y.price, 2)

However, the correlation variable definition is invalid because while defining correlation
variable Y, it references correlation variable X inside the prev function.

Y AS Y.price < prev(X.price, 2)

For more information, see:

• prev

DEFINE Clause.

13.2 MEASURES Clause
The MEASURES clause exports (makes available for inclusion in the SELECT) attribute
values of events that successfully match the pattern you specify.

You may specify expressions over correlation variables that reference partition
attributes, order by attributes, singleton variables and aggregates on group variables,
and aggregates on the attributes of the stream that is the source of the
MATCH_RECOGNIZE clause.

You qualify attribute values by correlation variable to export the value of the attribute
for the event that matches the correlation variable's condition. For example, within the
MEASURES clause, A.c1 refers to the value of event attribute c1:

• In the tuple that last matched the condition corresponding to correlation variable A,
if A is specified in the DEFINE clause.

• In the last processed tuple, if A is not specified in the DEFINE clause.

This is because if A is not specified in the DEFINE clause, then A is considered as
TRUE always. So effectively all the tuples in the input match to A.

You may include in the SELECT statement only attributes you specify in the MEASURES
clause.

Figure 13-1 pattern_measures_clause::=

(non_mt_measure_list::=)

non_mt_measure_list::=

(measure_column::=)

Chapter 13
MEASURES Clause

13-8

measure_column::=

(arith_expr::=)

The pattern_measures_clause is:

MEASURES
 A.itemId as itemId

This section describes:

• Functions Over Correlation Variables in the MEASURES Clause.

For more information, see:

• Referencing Singleton and Group Matches

• Referencing Aggregates

• DEFINE Clause

• Functions.

13.2.1 Functions Over Correlation Variables in the MEASURES Clause
In the MEASURES clause, you may apply any single-row or aggregate function to the attributes
of events that match a condition.

The following example applies the last function over correlation variable Z.c1 in the
MEASURES clause.

<query id="tkpattern_q41"><![CDATA[
 select
 T.firstW, T.lastZ
 from
 tkpattern_S11
 MATCH_RECOGNIZE (
 MEASURES A.c1 as firstW, last(Z.c1) as lastZ
 ALL MATCHES
 PATTERN(A W+ X+ Y+ Z+)
 DEFINE
 W as W.c2 < prev(W.c2),
 X as X.c2 > prev(X.c2),
 Y as Y.c2 < prev(Y.c2),
 Z as Z.c2 > prev(Z.c2)
) as T
]]></query>

Note the following in the MEASURES clause:

• A.c1 will export the value of c1 in the first and only the first event that the query
processes because:

– A is not specified in the DEFINE clause, therefor it is always true.

– A has no pattern quantifiers, therefor it will match exactly once.

• The built-in aggregate function last will export the value of c1 in the last event that
matched Z at the time the PATTERN clause was satisfied.

Chapter 13
MEASURES Clause

13-9

For more information, see:

• Referencing Aggregates

• Using count With *, identifier.*, and identifier.attr

• Using first and last

• Using prev.

13.3 PATTERN Clause
The PATTERN clause specifies the pattern to be matched as a regular expression over
one ore more correlation variables.

Incoming events must match these conditions in the order given (from left to right).

The regular expression may contain correlation variables that are:

• Defined in the DEFINE clause: such correlation variables are considered true only if
their condition definition evaluates to TRUE.

See DEFINE Clause.

• Not defined in the DEFINE clause: such correlation variables are considered as
always TRUE; that is, they match every input.

Figure 13-2 pattern_clause::=

(regexp::=, Figure 13-8)

This section describes:

• Pattern Quantifiers and Regular Expressions

• Grouping and Alternation in the PATTERN Clause.

For more information, see:

• Pattern Detection

• Pattern Detection With PARTITION BY

• Pattern Detection With Aggregates.

13.3.1 Pattern Quantifiers and Regular Expressions
You express the pattern as a regular expression composed of correlation variables and
pattern quantifiers.

Chapter 13
PATTERN Clause

13-10

regexp::=

(correlation_name::=, pattern_quantifier::=)

correlation_name::=

pattern_quantifier::=

Table 13-2 lists the pattern quantifiers (pattern_quantifier::=) Oracle CQL supports.

Table 13-2 MATCH_RECOGNIZE Pattern Quantifiers

Maximal Minimal Description

* *? 0 or more times

+ +? 1 or more times.

? ?? 0 or 1 time.

None None An unquantified pattern, such as A, is assumed to
have a quantifier that requires exactly 1 match.

Use the pattern quantifiers to specify the pattern as a regular expression, such as A* or A+?.

The one-character pattern quantifiers are maximal or "greedy"; they will attempt to match as
many instances of the regular expression on which they are applied as possible.

The two-character pattern quantifiers are minimal or "reluctant"; they will attempt to match as
few instances of the regular expression on which they are applied as possible.

Chapter 13
PATTERN Clause

13-11

Consider the following pattern_clause:

PATTERN (A B* C)

This pattern clause means a pattern match will be recognized when the following
conditions are met by consecutive incoming input tuples:

1. Exactly one tuple matches the condition that defines correlation variable A,
followed by

2. Zero or more tuples that match the correlation variable B, followed by

3. Exactly one tuple that matches correlation variable C.

While in state 2, if a tuple arrives that matches both the correlation variables B and C
(since it satisfies the defining conditions of both of them) then as the quantifier * for B
is greedy that tuple will be considered to have matched B instead of C. Thus due to the
greedy property B gets preference over C and we match a greater number of B. Had
the pattern expression be A B*? C, one that uses a lazy or reluctant quantifier over B,
then a tuple matching both B and C will be treated as matching C only. Thus C would
get preference over B and we will match fewer B.

For more information, see:

• Referencing Singleton and Group Matches

• Grouping and Alternation in the PATTERN Clause.

13.3.2 Grouping and Alternation in the PATTERN Clause
As shown in the regexp_grp_alt syntax, you can use:

• open and close round brackets ((and)) to group correlation variables

• alternation operators (|) to match either one correlation variable (or group of
correlation variables) or another

regexp_grp_alt::=

(correlation_name::=, pattern_quantifier::=, regexp::=)

Consider the following pattern_clause:

PATTERN (A+ B+)

This means "A one or more times followed by B one or more times".

You can group correlation variables. For example:

PATTERN (A+ (C+ B+)*)

This means "A one or more times followed by zero or more occurrences of C one or
more times and B one or more times".

Chapter 13
PATTERN Clause

13-12

Using the PATTERN clause alternation operator (|), you can refine the sense of the
pattern_clause. For example:

PATTERN (A+ | B+)

This means "A one or more times or B one or more times, whichever comes first".

Similarly, you can both group correlation variables and use the alternation operator. For
example:

PATTERN (A+ (C+ | B+))

This means "A one or more times followed by either C one or more times or B one or more
times, whichever comes first".

To match every permutation you can use:

PATTERN ((A B) | (B A))

This means "A followed by B or B followed by A, which ever comes first".

For more information, see:

• Pattern Quantifiers and Regular Expressions

• Alternation Operator.

13.4 DEFINE Clause
The DEFINE clause specifies the boolean condition for each correlation variable.

You may specify any logical or arithmetic expression and apply any single-row or aggregate
function to the attributes of events that match a condition.

On receiving a new tuple from the base stream, the conditions of the correlation variables
that are relevant at that point in time are evaluated. A tuple is said to have matched a
correlation variable if it satisfies its defining condition. A particular input can match zero, one,
or more correlation variables. The relevant conditions to be evaluated on receiving an input
are determined by logic governed by the PATTERN clause regular expression and the state in
pattern recognition process that we have reached after processing the earlier inputs.

The condition can refer to any of the attributes of the schema of the stream or view that
evaluates to a stream on which the MATCH_RECOGNIZE clause is being applied.

A correlation variable in the PATTERN clause need not be specified in the DEFINE clause: the
default for such a correlation variable is a predicate that is always true. Such a correlation
variable matches every event. It is an error to specify a correlation variable in the DEFINE
clause which is not used in a PATTERN clause

No correlation variable defined by a SUBSET clause may be defined in the DEFINE clause.

Figure 13-3 pattern_definition_clause::=

(Figure 13-4)

Chapter 13
DEFINE Clause

13-13

Figure 13-4 non_mt_corrname_definition_list::=

(Figure 13-5)

Figure 13-5 correlation_name_definition::=

(correlation_name::=, non_mt_cond_list)

This section describes:

• Functions Over Correlation Variables in the DEFINE Clause

• Referencing Attributes in the DEFINE Clause

• Referencing One Correlation Variable From Another in the DEFINE Clause.

For more information, see:

• Referencing Singleton and Group Matches

• Referencing Aggregates

• Using first and last

• Using prev

• PATTERN Clause

• SUBSET Clause

• Functions.

13.4.1 Functions Over Correlation Variables in the DEFINE Clause
You can use functions over the correlation variables while defining them.

The following example applies the to_timestamp function to correlation variables.

...
 PATTERN (A B* C)
 DEFINE
 A AS (A.temp >= 25),
 B AS ((B.temp >= 25) and (to_timestamp(B.element_time) - to_timestamp(A.element_time) < INTERVAL
"0 00:00:05.00" DAY TO SECOND)),
 C AS (to_timestamp(C.element_time) - to_timestamp(A.element_time) >= INTERVAL "0 00:00:05.00" DAY
TO SECOND)
...

The following example applies the count function to correlation variable B to count the
number of times its definition was satisfied. A match is recognized when
totalCountValue is less than 1000 two or more times in 30 minutes.

...
 MATCH_RECOGNIZE(

Chapter 13
DEFINE Clause

13-14

 ...
 PATTERN(B*)
 DURATION 30 MINUTES
 DEFINE
 B as (B.totalCountValue < 1000 and count(B.*) >= 2)
...

For more information, see:

• Referencing Aggregates

• Using count With *, identifier.*, and identifier.attr

• Using first and last

• Using prev.

13.4.2 Referencing Attributes in the DEFINE Clause
You can refer to the attributes of a base stream:

• Without a correlation variable: c1 < 20.

• With a correlation variable: A.c1 < 20.

When you refer to the attributes without a correlation variable, a tuple that last matched any
of the correlation variables is consulted for evaluation.

Consider the following definitions:

• DEFINE A as c1 < 20

• DEFINE A as A.c1 < 20

Both refer to c1 in the same tuple which is the latest input tuple. This is because on receiving
an input we evaluate the condition of a correlation variable assuming that the latest input
matches that correlation variable.

If you specify a correlation name that is not defined in the DEFINE clause, it is considered to
be true for every input.

The correlation variable A appears in the PATTERN clause but is not specified in the DEFINE
clause. This means the correlation name A is true for every input. It is an error to define a
correlation name which is not used in a PATTERN clause.

<query id="q"><![CDATA[
 SELECT
 T.firstW,
 T.lastZ
 FROM
 S2
 MATCH_RECOGNIZE (
 MEASURES
 A.c1 as firstW,
 last(Z) as lastZ
 PATTERN(A W+ X+ Y+ Z+)
 DEFINE
 W as W.c2 < prev(W.c2),
 X as X.c2 > prev(X.c2),
 Y as Y.c2 < prev(Y.c2),
 Z as Z.c2 > prev(Z.c2)
) as T
]]></query>

For more information, see:

Chapter 13
DEFINE Clause

13-15

• Referencing One Correlation Variable From Another in the DEFINE Clause

• Referencing Singleton and Group Matches

• Referencing Variables That Have not Been Matched Yet

• Referencing Attributes not Qualified by Correlation Variable

• PATTERN Clause.

13.4.3 Referencing One Correlation Variable From Another in the
DEFINE Clause

A definition of one correlation variable can refer to another correlation variable.
Consider the query:

...
Select
 a_firsttime, d_lasttime, b_avgprice, d_avgprice
FROM
 S
MATCH_RECOGNIZE (
 PARTITION BY symbol
 MEASURES
 first(a.time) as a_firsttime,
 last(d.time) as d_lasttime,
 avg(b.price) as b_avgprice,
 avg(d.price) as d_avgprice
 PATTERN (A B+ C+ D)
 DEFINE
 A as A.price > 100,
 B as B.price > A.price,
 C as C.price < avg(B.price),
 D as D.price > prev(D.price)
)
...

Note the following:

• Because correlation variable A defines a single attribute, B can refer to this single
attribute.

• Because B defines more than one attribute, C cannot reference a single attribute of
B. In this case, C may only reference an aggregate of B.

• D is defined in terms of itself: in this case, you may refer to a single attribute or an
aggregate. In this example, the prev function is used to access the match of D
prior to the current match.

For more information, see:

• Referencing Attributes in the DEFINE Clause

• Referencing Singleton and Group Matches

• Referencing Variables That Have not Been Matched Yet

• Referencing Attributes not Qualified by Correlation Variable

• Referencing Attributes in the DEFINE Clause.

Chapter 13
DEFINE Clause

13-16

13.5 PARTITION BY Clause
Use this optional clause to specify the stream attributes by which a MATCH_RECOGNIZE clause
should partition its results.

Without a PARTITION BY clause, all stream attributes belong to the same partition.

Figure 13-6 pattern_partition_clause::=

(non_mt_attr_list)

The pattern_partition_clause is:

PARTITION BY
 itemId

The partition by clause in pattern means the input stream is logically divided based on the
attributes mentioned in the partition list and pattern matching is done within a partition.

Consider a stream S with schema (c1 integer, c2 integer) with the input data.

 c1 c2
1000 10, 1
2000 10, 2
3000 20, 2
4000 20, 1

Consider the MATCH_RECOGNIZE query.

select T.p1, T.p2, T.p3 from S MATCH_RECOGNIZE(
 MEASURES
 A.ELEMENT_TIME as p1,
 B.ELEMENT_TIME as p2
 B.c2 as p3
 PATTERN (A B)
 DEFINE
 A as A.c1 = 10,
 B as B.c1 = 20
) as T

This query would output the following:

3000:+ 2000, 3000, 2

If we add PARTITION BY c2 to the query, then the output would change to:

3000:+ 2000, 3000, 2
4000:+ 1000, 4000, 1

This is because by adding the PARTITION BY clause, matches are done within partition only.
Tuples at 1000 and 4000 belong to one partition and tuples at 2000 and 3000 belong to
another partition owing to the value of c2 attribute in them. In the first partition A matches
tuple at 1000 and B matches tuple at 4000. Even though a tuple at 3000 matches the B
definition, it is not presented as a match for the first partition since that tuple belongs to
different partition.

Chapter 13
PARTITION BY Clause

13-17

13.6 ALL MATCHES Clause
Use this optional clause to configure GGSA to match overlapping patterns.

With the ALL MATCHES clause, GGSA finds all possible matches. Matches may overlap
and may start at the same event. In this case, there is no distinction between greedy
and reluctant pattern quantifiers. For example, the following pattern:

ALL MATCHES
PATTERN (A* B)

produces the same result as:

ALL MATCHES
PATTERN (A*? B)

Without the ALL MATCHES clause, overlapping matches are not returned, and
quantifiers such as the asterisk determine which among a set of candidate (and
overlapping) matches is the preferred one for output. The rest of the overlapping
matches are discarded.

Figure 13-7 pattern_skip_match_clause::=

Consider the query tkpattern_q41 that uses ALL MATCHES and the data stream
tkpattern_S11. Stream tkpattern_S11 has schema (c1 integer, c2 integer). The
query returns the stream.

The query tkpattern_q41 will report a match when the input stream values, when
plotted, form the shape of the English letter W. The relation shows an example of
overlapping instances of this W-pattern match.

There are two types of overlapping pattern instances:

• Total: Example of total overlapping: Rows from time 3000-9000 and 4000-9000 in
the input, both match the given pattern expression. Here the longest one
(3000-9000) will be preferred if ALL MATCHES clause is not present.

• Partial: Example of Partial overlapping: Rows from time 12000-21000 and
16000-23000 in the input, both match the given pattern expression. Here the one
which appears earlier is preferred when ALL MATCHES clause is not present. This is
because when ALL MATCHES clause is omitted, we start looking for the next
instance of pattern match at a tuple which is next to the last tuple in the previous
matched instance of the pattern.

<query id="tkpattern_q41"><![CDATA[
 select
 T.firstW, T.lastZ
 from
 tkpattern_S11
 MATCH_RECOGNIZE (
 MEASURES A.c1 as firstW, last(Z.c1) as lastZ
 ALL MATCHES
 PATTERN(A W+ X+ Y+ Z+)
 DEFINE
 W as W.c2 < prev(W.c2),

Chapter 13
ALL MATCHES Clause

13-18

 X as X.c2 > prev(X.c2),
 Y as Y.c2 < prev(Y.c2),
 Z as Z.c2 > prev(Z.c2)
) as T
]]></query>

Timestamp Tuple
 1000 1,8
 2000 2,8
 3000 3,8
 4000 4,6
 5000 5,3
 6000 6,7
 7000 7,6
 8000 8,2
 9000 9,6
10000 10,2
11000 11,9
12000 12,9
13000 13,8
14000 14,5
15000 15,0
16000 16,9
17000 17,2
18000 18,0
19000 19,2
20000 20,3
21000 21,8
22000 22,5
23000 23,9
24000 24,9
25000 25,4
26000 26,7
27000 27,2
28000 28,8
29000 29,0
30000 30,4
31000 31,4
32000 32,7
33000 33,8
34000 34,6
35000 35,4
36000 36,5
37000 37,1
38000 38,7
39000 39,5
40000 40,8
41000 41,6
42000 42,6
43000 43,0
44000 44,6
45000 45,8
46000 46,4
47000 47,3
48000 48,8
49000 49,2
50000 50,5
51000 51,3
52000 52,3
53000 53,9
54000 54,8
55000 55,5
56000 56,5
57000 57,9
58000 58,7
59000 59,3
60000 60,3

Chapter 13
ALL MATCHES Clause

13-19

Timestamp Tuple Kind Tuple
 9000: + 3,9
 9000: + 4,9
11000: + 6,11
11000: + 7,11
19000: + 12,19
19000: + 13,19
19000: + 14,19
20000: + 12,20
20000: + 13,20
20000: + 14,20
21000: + 12,21
21000: + 13,21
21000: + 14,21
23000: + 16,23
23000: + 17,23
28000: + 24,28
30000: + 26,30
38000: + 33,38
38000: + 34,38
40000: + 36,40
48000: + 42,48
50000: + 45,50
50000: + 46,50

The ALL MATCHES clause reports all the matched pattern instances on receiving a
particular input. For example, at time 20000, all of the tuples {12,20}, {13,20}, and
{14,20} are output.

For more information, see Pattern Quantifiers and Regular Expressions.

13.7 WITHIN Clause
The WITHIN clause is an optional clause that outputs a pattern_clause match if and
only if the match occurs within the specified time duration.

Figure 13-8 within_clause::=

(time_spec)

That is, if and only if:

TL - TF < WD

Where:

• TL - Timestamp of last event matching the pattern.

• TF - Timestamp of first event matching the pattern.

• WD - Duration specified in the WITHIN clause.

The WITHIN INCLUSIVE clause tries to match events at the boundary case as well.
That is, it outputs a match if and only if:

TL - TF <= WD

Chapter 13
WITHIN Clause

13-20

If the match completes within the specified time duration, then the event is output as soon as
it happens. That is, if the match can be output, it is output with the timestamp at which it
completes. The WITHIN clause does not wait for the time duration to expire as the DURATION
clause does.

When the WITHIN clause duration expires, it discards any potential candidate matches which
are incomplete.

For more information, see Pattern Detection With the WITHIN Clause.

Note:

You cannot use a WITHIN clause with a DURATION clause. For more information, see
DURATION Clause.

13.8 DURATION Clause
The DURATION clause is an optional clause that you should use only when writing a query
involving non-event detection. Non-event detection is the detection of a situation when a
certain event which should have occurred in a particular time limit does not occur in that time
frame.

Figure 13-9 duration_clause::=

(Figure 7-10)

Using this clause, a match is reported only when the regular expression in the PATTERN
clause is matched completely and no other event or input arrives until the duration specified
in the DURATION clause expires. The duration is measured from the time of arrival of the first
event in the pattern match.

You must use the INCLUDE TIMER EVENTS clause when using the DURATION clause. For more
information, see INCLUDE TIMER EVENTS Clause.

This section describes:

• Fixed Duration Non-Event Detection

• Recurring Non-Event Detection.

Note:

You cannot use a DURATION clause with a WITHIN clause. For more information, see
WITHIN Clause.

Chapter 13
DURATION Clause

13-21

13.8.1 Fixed Duration Non-Event Detection
The duration can be specified as a constant value, such as 10. Optionally, you may
specify a time unit such as seconds or minutes (see Figure 7-11); the default time unit
is seconds.

Consider the query tkpattern_q59 that uses DURATION 10 to specify a delay of 10 s
(10000 ms) and the data stream tkpattern_S19. Stream tkpattern_S19 has schema
(c1 integer). The query returns the stream.

<query id="BBAQuery"><![CDATA[
 select
 T.p1, T.p2
 from
 tkpattern_S19
 MATCH_RECOGNIZE (
 MEASURES A.c1 as p1, B.c1 as p2
 include timer events
 PATTERN(A B*)
 duration 10
 DEFINE A as A.c1 = 10, B as B.c1 != A.c1
) as T
]]></query>

Timestamp Tuple
 1000 10
 4000 22
 6000 444
 7000 83
 9000 88
11000 12
11000 22
11000 15
12000 13
15000 10
27000 11
28000 10
30000 18
40000 10
44000 19
52000 10
h 100000

Timestamp Tuple Kind Tuple
11000: + 10,88
25000: + 10,
38000: + 10,18
50000: + 10,19
62000: + 10,

The tuple at time 1000 matches A.

Since the duration is 10 we output a match as soon as input at time 1000+10000=11000
is received (the one with the value 12). Since the sequence of tuples from 1000
through 9000 match the pattern AB* and nothing else a match is reported as soon as
input at time 11000 is received.

The next match starts at 15000 with the tuple at that time matching A. The next tuple
that arrives is at 27000. So here also we have tuples satisfying pattern AB* and
nothing else and hence a match is reported at time 15000+10000=25000. Further output
is generated by following similar logic.

For more information, see Fixed Duration Non-Event Detection.

Chapter 13
DURATION Clause

13-22

13.8.2 Recurring Non-Event Detection
When you specify a MULTIPLES OF clause, it indicates recurring non-event detection. In this
case an output is sent at the multiples of duration value as long as there is no event after the
pattern matches completely.

Consider the query tkpattern_q75 that uses DURATION MULTIPLES OF 10 to specify a delay
of 10 s (10000 ms) and the data stream tkpattern_S23. Stream tkpattern_S23 has schema
(c1 integer). The query returns the stream.

<query id="tkpattern_q75"><![CDATA[
 select
 T.p1, T.p2, T.p3
 from
 tkpattern_S23
 MATCH_RECOGNIZE (
 MEASURES A.c1 as p1, B.c1 as p2, sum(B.c1) as p3
 ALL MATCHES
 include timer events
 PATTERN(A B*)
 duration multiples of 10
 DEFINE A as A.c1 = 10, B as B.c1 != A.c1
) as T
]]></query>

Timestamp Tuple
 1000 10
 4000 22
 6000 444
 7000 83
 9000 88
11000 12
11000 22
11000 15
12000 13
15000 10
27000 11
28000 10
30000 18
44000 19
62000 20
72000 10
h 120000

Timestamp Tuple Kind Tuple
 11000: + 10,88,637
 25000: + 10,,
 38000: + 10,18,18
 48000: + 10,19,37
 58000: + 10,19,37
 68000: + 10,20,57
 82000: + 10,,
 92000: + 10,,
102000: + 10,,
112000: + 10,,

The execution here follows similar logic to that of the example above for just the DURATION
clause (see Fixed Duration Non-Event Detection). The difference comes for the later outputs.
The tuple at 72000 matches A and then there is nothing else after that. So the pattern AB* is
matched and we get output at 82000. Since we have the MULTIPLES OF clause and duration
10 we see outputs at time 92000, 102000, and so on.

Chapter 13
DURATION Clause

13-23

13.9 INCLUDE TIMER EVENTS Clause
Use this clause in conjunction with the DURATION clause for non-event detection
queries.

Typically, in most pattern match queries, a pattern match output is always triggered by
an input event on the input stream over which pattern is being matched. The only
exception is non-event detection queries where there could be an output triggered by a
timer expiry event (as opposed to an explicit input event on the input stream).

Figure 13-10 pattern_inc_timer_evs_clause::=

(Figure 13-2, Figure 13-7, Figure 13-3, Figure 13-9, Figure 13-11)

For more information, see DURATION Clause.

13.10 SUBSET Clause
Using this clause, you can group together one or more correlation variables that are
defined in the DEFINE clause. You can use this named subset in the MEASURES and
DEFINE clauses just like any other correlation variable.

For example:

SUBSET S1 = (Z,X)

The right-hand side of the subset ((Z,X)) is a comma-separated list of one or more
correlation variables as defined in the PATTERN clause.

The left-hand side of the subset (S1) is the union of the correlation variables on the
right-hand side.

You cannot include a subset variable in the right-hand side of a subset.

Figure 13-11 subset_clause::=

(Figure 13-12)

Figure 13-12 non_mt_subset_definition_list::=

Chapter 13
INCLUDE TIMER EVENTS Clause

13-24

(Figure 13-13)

Figure 13-13 subset_definition::=

(Figure 13-14, Figure 13-15)

Figure 13-14 subset_name::=

(Figure 7-3)

Figure 13-15 non_mt_corr_list::=

(correlation_name::=)

Consider the query q55 inExample 13-1 and the data stream S11 in Example 13-2. Stream
S11 has schema (c1 integer, c2 integer). This example defines subsets S1 through S6.
This query outputs a match if the c2 attribute values in the input stream form the shape of the
English letter W. Now suppose we want to know the sum of the values of c2 for those tuples
which form the incrementing arms of this W shape. The correlation variable X represents
tuples that are part of the first incrementing arm and Z represent the tuples that are part of the
second incrementing arm. So we need some way to group the tuples that match both. Such a
requirement can be captured by defining a SUBSET clause as the example shows.

Subset S4 is defined as (X,Z). It refers to the tuples in the input stream that match either X or
Z. This subset is used in the MEASURES clause statement sum(S4.c2) as sumIncrArm. This
computes the sum of the value of c2 attribute in the tuples that match either X or Z. A
reference to S4.c2 in a DEFINE clause like S4.c2 = 10 will refer to the value of c2 in the latest
among the last tuple that matched X and the last tuple that matched Z.

Subset S6 is defined as (Y). It refers to all the tuples that match correlation variable Y.

The query returns the stream.

Example 13-1 SUBSET Clause Query

<query id="q55"><![CDATA[
 select
 T.firstW,
 T.lastZ,
 T.sumDecrArm,
 T.sumIncrArm,
 T.overallAvg
 from
 S11
 MATCH_RECOGNIZE (

Chapter 13
SUBSET Clause

13-25

 MEASURES
 S2.c1 as firstW,
 last(S1.c1) as lastZ,
 sum(S3.c2) as sumDecrArm,
 sum(S4.c2) as sumIncrArm,
 avg(S5.c2) as overallAvg
 PATTERN(A W+ X+ Y+ Z+)
 SUBSET S1 = (Z) S2 = (A) S3 = (A,W,Y) S4 = (X,Z) S5 = (A,W,X,Y,Z) S6 = (Y)
 DEFINE
 W as W.c2 < prev(W.c2),
 X as X.c2 > prev(X.c2),
 Y as S6.c2 < prev(Y.c2),
 Z as Z.c2 > prev(Z.c2)
) as T
]]></query>

Example 13-2 SUBSET Clause Example

Timestamp Tuple
 1000 1,8
 2000 2,8
 3000 3,8
 4000 4,6
 5000 5,3
 6000 6,7
 7000 7,6
 8000 8,2
 9000 9,6
10000 10,2
11000 11,9
12000 12,9
13000 13,8
14000 14,5
15000 15,0
16000 16,9
17000 17,2
18000 18,0
19000 19,2
20000 20,3
21000 21,8
22000 22,5
23000 23,9
24000 24,9
25000 25,4
26000 26,7
27000 27,2
28000 28,8
29000 29,0
30000 30,4
31000 31,4
32000 32,7
33000 33,8
34000 34,6
35000 35,4
36000 36,5
37000 37,1
38000 38,7
39000 39,5
40000 40,8
41000 41,6
42000 42,6
43000 43,0
44000 44,6
45000 45,8
46000 46,4
47000 47,3
48000 48,8
49000 49,2
50000 50,5

Chapter 13
SUBSET Clause

13-26

51000 51,3
52000 52,3
53000 53,9
54000 54,8
55000 55,5
56000 56,5
57000 57,9
58000 58,7
59000 59,3
60000 60,3

Timestamp Tuple Kind Tuple
 9000: + 3,9,25,13,5.428571
21000: + 12,21,24,22,4.6
28000: + 24,28,15,15,6.0
38000: + 33,38,19,12,5.1666665
48000: + 42,48,13,22,5.0

For more information, see:

• Running Aggregates and Final Aggregates

• MEASURES Clause

• PATTERN Clause

• DEFINE Clause.

13.11 MATCH_RECOGNIZE Examples
The following examples illustrate basic MATCH_RECOGNIZE practices:

• Pattern Detection

• Pattern Detection With PARTITION BY

• Pattern Detection With Aggregates

• Fixed Duration Non-Event Detection.

13.11.1 Pattern Detection
Consider the stock fluctuations that Figure 13-16 shows. This data can be represented as a
stream of stock ticks (index number or time) and stock price. Figure 13-16 shows a common
trading behavior known as a double bottom pattern between days 1 and 9 and between days
12 and 19. This pattern can be visualized as a W-shaped change in stock price: a fall (X), a
rise (Y), a fall (W), and another rise (Z).

Chapter 13
MATCH_RECOGNIZE Examples

13-27

Figure 13-16 Pattern Detection: Double Bottom Stock Fluctuations

Example 13-3 shows a query q on stream S2 of stock price events with schema
symbol, stockTick, and price. This query detects double bottom patterns on the
incoming stock trades using the PATTERN clause (A W+ X+ Y+ Z+). The correlation
names in this clause are:

• A: corresponds to the start point of the double bottom pattern.

Because correlation name A is true for every input, it is not defined in the DEFINE
clause. If you specify a correlation name that is not defined in the DEFINE clause, it
is considered to be true for every input.

• W+: corresponds to the first decreasing arm of the double bottom pattern.

It is defined by W.price < prev(W.price). This definition implies that the current
price is less than the previous one.

• X+: corresponds to the first increasing arm of the double bottom pattern.

• Y+: corresponds to the second decreasing arm of the double bottom pattern.

• Z+: corresponds to the second increasing arm of the double bottom pattern.

Example 13-3 Pattern Detection

<query id="q"><![CDATA[
 SELECT
 T.firstW,
 T.lastZ
 FROM
 S2
 MATCH_RECOGNIZE (
 MEASURES
 A.stockTick as firstW,
 last(Z) as lastZ
 PATTERN(A W+ X+ Y+ Z+)
 DEFINE
 W as W.price < prev(W.price),
 X as X.price > prev(X.price),
 Y as Y.price < prev(Y.price),
 Z as Z.price > prev(Z.price)
) as T
 WHERE
 S2.symbol = "oracle"
]]></query>

Chapter 13
MATCH_RECOGNIZE Examples

13-28

13.11.2 Pattern Detection With PARTITION BY
Consider the stock fluctuations that Figure 13-17 shows. This data can be represented as a
stream of stock ticks (index number or time) and stock price. In this case, the stream contains
data for more than one stock ticker symbol. Figure 13-17 shows a common trading behavior
known as a double bottom pattern between days 1 and 9 and between days 12 and 19 for
stock BOFA. This pattern can be visualized as a W-shaped change in stock price: a fall (X), a
rise (Y), a fall (W), and another rise (Z).

Figure 13-17 Pattern Detection With Partition By: Stock Fluctuations

Example 13-4 shows a query q on stream S2 of stock price events with schema symbol,
stockTick, and price. This query detects double bottom patterns on the incoming stock
trades using the PATTERN clause (A W+ X+ Y+ Z+). The correlation names in this clause are:

• A: corresponds to the start point of the double bottom pattern.

• W+: corresponds to the first decreasing arm of the double bottom pattern as defined by
W.price < prev(W.price), which implies that the current price is less than the previous
one.

• X+: corresponds to the first increasing arm of the double bottom pattern.

• Y+: corresponds to the second decreasing arm of the double bottom pattern.

• Z+: corresponds to the second increasing arm of the double bottom pattern.

The query partitions the input stream by stock ticker symbol using the PARTITION BY clause
and applies this PATTERN clause to each logical stream.

Example 13-4 Pattern Detection With PARTITION BY

<query id="q"><![CDATA[
 SELECT
 T.firstW,
 T.lastZ
 FROM
 S2
 MATCH_RECOGNIZE (
 PARTITION BY
 A.symbol
 MEASURES

Chapter 13
MATCH_RECOGNIZE Examples

13-29

 A.stockTick as firstW,
 last(Z) as lastZ
 PATTERN(A W+ X+ Y+ Z+)
 DEFINE
 W as W.price < prev(W.price),
 X as X.price > prev(X.price),
 Y as Y.price < prev(Y.price),
 Z as Z.price > prev(Z.price)
) as T
]]></query>

13.11.3 Pattern Detection With Aggregates
Consider the query q1 and the data stream S. Stream S has schema (c1 integer).
The query returns the stream.

<query id="q1"><![CDATA[
 SELECT
 T.sumB
 FROM
 S
 MATCH_RECOGNIZE (
 MEASURES
 sum(B.c1) as sumB
 PATTERN(A B* C)
 DEFINE
 A as ((A.c1 < 50) AND (A.c1 > 35)),
 B as B.c1 > avg(A.c1),
 C as C.c1 > prev(C.c1)
) as T
]]></query>

Timestamp Tuple
 1000 40
 2000 52
 3000 60
 4000 58
 5000 57
 6000 56
 7000 55
 8000 59
 9000 30
10000 40
11000 52
12000 60
13000 58
14000 57
15000 56
16000 55
17000 30
18000 10
19000 20
20000 30
21000 10
22000 25
23000 25
24000 25
25000 25

Timestamp Tuple
8000 338
12000 52

Chapter 13
MATCH_RECOGNIZE Examples

13-30

13.11.4 Pattern Detection With the WITHIN Clause
Consider the queries and the data stream S. Stream S has schema (c1 integer, c2
integer). Table 13-3 compares the output of these queries.

<query id="queryWithin"><![CDATA[
 SELECT T.Ac2, T.Bc2, T.Cc2
 FROM S
 MATCH_RECOGNIZE(
 MEASURES A.c2 as Ac2, B.c2 as Bc2, C.c2 as Cc2
 PATTERN (A (B+ | C)) within 3000 milliseconds
 DEFINE
 A as A.c1=10 or A.c1=25,
 B as B.c1=20 or B.c1=15 or B.c1=25,
 C as C.c1=15
) as T
]]></query>

<query id="queryWithinInclusive"><![CDATA[
 SELECT T.Ac2, T.Bc2, T.Cc2
 FROM S
 MATCH_RECOGNIZE(
 MEASURES A.c2 as Ac2, B.c2 as Bc2, C.c2 as Cc2
 PATTERN (A (B+ | C)) within inclusive 3000 milliseconds
 DEFINE
 A as A.c1=10 or A.c1=25,
 B as B.c1=20 or B.c1=15 or B.c1=25,
 C as C.c1=15
) as T
]]></query>

Timestamp Tuple
 1000 10,100
h 2000
 3000 15,200
 3000 20,300
 4000 25,400
 5000 20,500
 6000 20,600
 7000 35,700
 8000 10,800
 9000 15,900
h 11000
 11000 20,1000
 11000 50,1100

Table 13-3 WITHIN and WITHIN INCLUSIVE Query Output

Query queryWithin Query queryWithinInclusive

Timestamp Tuple Kind Tuple

3000: + 100,300,
6000: + 400,600,
9000: + 800,900,

Timestamp Tuple Kind Tuple

 4000: + 100,400,
11000: + 800,1000,

As Table 13-3 shows for the queryWithin query, the candidate match starts with the event at
TimeStamp=1000 and since the WITHIN clause duration is 3 seconds, the query will output the
match only if it completes before the event at TimeStamp=4000. When the query receives the
event at TimeStampe=4000, the longest match up to that point (since we are not using ALL
MATCHES) is output. Note that although the event at TimeStamp=4000 matches B, it is not

Chapter 13
MATCH_RECOGNIZE Examples

13-31

included in the match. The next match starts with the event at TimeStamp=4000 since
that event also matches A and the previous match ends at TimeStamp=3000.

As Table 13-3 shows for the queryWithinInclusive query, the candidate match starts
with the event at TimeStamp=1000. When the query receives the event at
TimeStamp=4000, that event is included in the match because the query uses WITHIN
INCLUSIVE and the event matches B. Note that although the event at TimeStamp=5000
matches B, the pattern is not grown further since it exceeds the duration (3 seconds)
measured from the start of the match (TimeStamp=1000). Since this match ends at
TimeStamp=4000 and we are not using ALL MATCHES, the next match does not start at
TimeStamp=4000, even though it matches A.

For more information, see:

• WITHIN Clause

• ALL MATCHES Clause.

13.11.5 Fixed Duration Non-Event Detection
Consider an object that moves among five different rooms. Each time it starts from
room 1, it must reach room 5 within 5 minutes. Figure 13-18 shows the object's
performance. This data can be represented as a stream of time and room number.
Note that when the object started from room 1 at time 1, it reached room 5 at time 5,
as expected. However, when the object started from room 1 at time 6, it failed to reach
room 5 at time 11; it reached room 5 at time 12. When the object started from room 1
at time 15, it was in room 5 at time 20, as expected. However, when the object started
from room 1 at time 23, it failed to reach room 5 at time 28; it reached room 5 at time
30. The successes at times 5 and 20 are considered events: the arrival of the object in
room 5 at the appropriate time. The failures at time 11 and 28 are considered non-
events: the expected arrival event did not occur. Using Oracle CQL, you can query for
such non-events.

Figure 13-18 Fixed Duration Non-Event Detection

Chapter 13
MATCH_RECOGNIZE Examples

13-32

The following example shows query q on stream S (with schema c1 integer representing room
number) that detects these non-events. Each time the object fails to reach room 5 within 5
minutes of leaving room 1, the query returns the time of departure from room 1.

<query id="q"><![CDATA[
select T.Atime FROM S
 MATCH_RECOGNIZE(
 MEASURES
 A.ELEMENT_TIME as Atime
 INCLUDE TIMER EVENTS
 PATTERN (A B*)
 DURATION 5 MINUTES
 DEFINE
 A as A.c1 = 1,
 B as B.c1 != 5
) as T
]]></query>

For more information, see DURATION Clause.

Chapter 13
MATCH_RECOGNIZE Examples

13-33

14
Oracle CQL Statements

This chapter describes the Data definition language (DDL) statements that are supported in
Oracle Continuous Query Language (Oracle CQL).

14.1 Query
Purpose

Use the query statement to define a Oracle CQL query that you reference by identifier in
subsequent Oracle CQL statements.

Prerequisites

If your query references a stream or view, then the stream or view must already exist.

If the query already exists, GGSA server throws an exception.

Syntax

Figure 14-1 sfw_block::=

14-1

Figure 14-2 select_clause::=

Figure 14-3 non_mt_projterm_list::=

Figure 14-4 projterm::=

(arith_expr)

Figure 14-5 from_clause::=

Figure 14-6 non_mt_relation_list::=

Figure 14-7 relation_variable::=

Chapter 14
Query

14-2

Figure 14-8 window_type::=

Figure 14-9 table_clause::=

Figure 14-10 opt_where_clause::=

Figure 14-11 opt_group_by_clause::=

Figure 14-12 order_by_clause::=

Figure 14-13 order_by_top_clause::=

Figure 14-14 order_by_list::=

Chapter 14
Query

14-3

Figure 14-15 orderterm::=

Figure 14-16 null_spec::=

Figure 14-17 asc_desc::=

Figure 14-18 opt_having_clause::=

Figure 14-19 binary::=

Figure 14-20 idstream_clause::=

Figure 14-21 using_clause::=

Chapter 14
Query

14-4

Figure 14-22 usinglist::=

Figure 14-23 usingterm::=

Figure 14-24 usingexpr::=

14.1.1 Query Semantics
named_query

Specify the Oracle CQL query statement itself.

For syntax, see Query.

query

You can create an Oracle CQL query from any of the following clauses:

• sfw_block: a select, from, and other optional clauses.

• binary: an optional clause, often a set operation.

sfw_block

Specify the select, from, and other optional clauses of the Oracle CQL query. You can specify
any of the following clauses:

• select_clause: the stream elements to select from the stream or view you specify.

• from_clause: the stream or view from which your query selects.

• opt_where_clause: optional conditions your query applies to its selection

• opt_group_by_clause: optional grouping conditions your query applies to its result

order_by_clause: optional ordering conditions your query applies to its results

• order_by_top_clause: optional ordering conditions your query applies to the top-n
elements in its results

• opt_having_clause: optional clause your query uses to restrict the groups of returned
stream elements to those groups for which the specified condition is TRUE

select_clause

Specify the select clause of the Oracle CQL query statement.

Chapter 14
Query

14-5

If you specify the asterisk (*), then this clause returns all tuples, including duplicates
and nulls.

Otherwise, specify the individual stream elements you want.

Optionally, specify distinct if you want Event Processing to return only one copy of
each set of duplicate tuples selected. Duplicate tuples are those with matching values
for each expression in the select list.

non_mt_projterm_list

Specify the projection term or comma separated list of projection terms in the select
clause of the Oracle CQL query statement.

projterm

Specify a projection term in the select clause of the Oracle CQL query statement. You
can select any element from any of stream or view in the from_clause using the
identifier of the element.

Optionally, you can specify an arithmetic expression on the projection term.

Optionally, use the AS keyword to specify an alias for the projection term instead of
using the stream element name as is.

from_clause

Specify the from clause of the Oracle CQL query statement by specifying the individual
streams or views from which your query selects.

To perform an outer join, use the LEFT or RIGHT OUTER JOIN ... ON syntax. To
perform an inner join, use the WHERE clause.

non_mt_relation_list

Specify the stream in the from clause of the Oracle CQL query statement.

relation_variable

Use the relation_variable statement to specify a stream or view from which the
Oracle CQL query statement selects.

You can specify a previously registered or created stream or view directly by its
identifier you used when you registered or created the stream or view. Optionally,
use the AS keyword to specify an alias for the stream or view instead of using its name
as is.

To specify a built-in stream-to-relation operator, use a window_type clause. Optionally,
use the AS keyword to specify an alias for the stream or view instead of using its name
as is.

To apply advanced comparisons optimized for data streams to the stream or view, use
a pattern_recognition_clause . Optionally, use the AS keyword to specify an alias for
the stream or view instead of using its name as is.

window_type

Specify a built-in stream-to-relation operator.

For more information, see Stream-to-Relation Operators (Windows).

Chapter 14
Query

14-6

time_spec

Specify the time over which a range or partitioned range sliding window should slide.

Default: if units are not specified, Oracle Event Processing assumes [second|seconds].

For more information, see Range-Based Stream-to-Relation Window Operators and
Partitioned Stream-to-Relation Window Operators.

opt_where_clause

Specify the (optional) where clause of the Oracle CQL query statement.

Because Oracle CQL applies the WHERE clause before GROUP BY or HAVING, if you specify an
aggregate function in the SELECT clause, you must test the aggregate function result in a
HAVING clause, not the WHERE clause.

In Oracle CQL (as in SQL), the FROM clause is evaluated before the WHERE clause. Consider
the following Oracle CQL query:

SELECT ... FROM S MATCH_RECOGNIZE (....) as T WHERE ...

In this query, the S MATCH_RECOGNIZE (....) as T is like a subquery in the FROM clause
and is evaluated first, before the WHERE clause. Consequently, you rarely use both a
MATCH_RECOGNIZE clause and a WHERE clause in the same Oracle CQL query. Instead, you
typically use views to apply the required WHERE clause to a stream and then select from the
views in a query that applies the MATCH_RECOGNIZE clause.

For more information, see:

• Built-In Aggregate Functions and the Where, Group By, and Having Clauses

• Colt Aggregate Functions and the Where, Group By, and Having Clauses

• MATCH_RECOGNIZE and the WHERE Clause.

opt_group_by_clause

Specify the (optional) GROUP BY clause of the Oracle CQL query statement. Use the GROUP BY
clause if you want Oracle Event Processing to group the selected stream elements based on
the value of expr(s) and return a single (aggregate) summary result for each group.

Expressions in the GROUP BY clause can contain any stream elements or views in the FROM
clause, regardless of whether the stream elements appear in the select list.

The GROUP BY clause groups stream elements but does not guarantee the order of the result
set. To order the groupings, use the ORDER BY clause.

Because Oracle CQL applies the WHERE clause before GROUP BY or HAVING, if you specify an
aggregate function in the SELECT clause, you must test the aggregate function result in a
HAVING clause, not the WHERE clause.

For more information, see:

• Built-In Aggregate Functions and the Where, Group By, and Having Clauses

• Colt Aggregate Functions and the Where, Group By, and Having Clauses.

Chapter 14
Query

14-7

order_by_clause

Specify the ORDER BY clause of the Oracle CQL query statement as a comma-delimited
list of one or more order terms. Use the ORDER BY clause to specify the order in which
stream elements on the left-hand side of the rule are to be evaluated. The expr must
resolve to a dimension or measure column. This clause returns a stream.

Both ORDER BY and ORDER BY ROWS support specifying the direction of sort as
ascending or descending by using the ASC or DESC keywords. They also support
specifying whether null items should be listed first or last when sorting by using NULLS
FIRST or NULLS LAST.

order_by_top_clause

Specify the ORDER BY clause of the Oracle CQL query statement as a comma-delimited
list of one or more order terms followed by a ROWS keyword and integer number (n) of
elements. Use this form of the ORDER BY clause to select the top-n elements over a
stream or relation. This clause returns a relation.

Consider the following example queries:

• At any point of time, the output of the following example query will be a relation
having top 10 stock symbols throughout the stream.

select stock_symbols from StockQuotes order by stock_price rows 10

• At any point of time, the output of the following example query will be a relation
having top 10 stock symbols from last 1 hour of data.

select stock_symbols from StockQuotes[range 1 hour] order by stock_price rows 10

order_by_list

Specify a comma-delimited list of one ore more order terms in an (optional) ORDER BY
clause.

orderterm

A stream element or positional index (constant int) to a stream element. Optionally,
you can configure whether or not nulls are ordered first or last using the NULLS
keyword.

order_expr

order_expr can be an attr or constant_int. The attr can be any stream element or
pseudo column.

null_spec

Specify whether or not nulls are ordered first (NULLS FIRST) or last (NULLS LAST) for a
given order term.

asc_desc

Specify whether an order term is ordered in ascending (ASC) or descending (DESC)
order.

Chapter 14
Query

14-8

opt_having_clause

Use the HAVING clause to restrict the groups of returned stream elements to those groups for
which the specified condition is TRUE. If you omit this clause, GGSA returns summary results
for all groups.

Specify GROUP BY and HAVING after the opt_where_clause. If you specify both GROUP BY and
HAVING, then they can appear in either order.

Because Oracle CQL applies the WHERE clause before GROUP BY or HAVING, if you specify an
aggregate function in the SELECT clause, you must test the aggregate function result in a
HAVING clause, not the WHERE clause.

For more information, see:

• Built-In Aggregate Functions and the Where, Group By, and Having Clauses

• Colt Aggregate Functions and the Where, Group By, and Having Clauses.

binary

Use the binary clause to perform operations on the tuples that two streams or views return.
Most of these perform set operations, receiving two relations as operands. However, the
UNION ALL operator can instead receive two streams, which are by nature unbounded.

idstream_clause

Use an idstream_clause to specify an IStream or DStream relation-to-stream operator that
applies to the query.

using_clause

Use a DIFFERENCE USING clause to succinctly detect differences in the IStream or DStream of
a query.

usinglist

Use a usinglist clause to specify the columns to use to detect differences in the IStream or
DStream of a query. You may specify columns by:

• attribute name: use this option when you are selecting by attribute name.

• alias: use this option when you want to include the results of an expression where an
alias is specified.

• position: use this option when you want to include the results of an expression where no
alias is specified.

Specify position as a constant, positive integer starting at 1, reading from left to right.

The following example specifies the result of expression funct(c2, c3) by its position (3)
in the DIFFERENCE USING clause usinglist.

<query id="q1">
 ISTREAM (
 SELECT c1, log(c4) as logval, funct(c2, c3) FROM S [RANGE 1
NANOSECONDS]
) DIFFERENCE USING (c1, logval, 3)
</query>

Chapter 14
Query

14-9

pattern_recognition_clause

Use a pattern_recognition_clause to perform advanced comparisons optimized for
data streams.

For more information and examples, see Pattern Recognition With
MATCH_RECOGNIZE.

14.1.2 Query Examples
Simple Query Example

The following example shows how to register a simple query q0 that selects all (*)
tuples from stream OrderStream where stream element orderAmount is greater than
10000.

<query id="q0"><![CDATA[
 select * from OrderStream where orderAmount > 10000.0
]]></query>

HAVING Example

Consider the query q4 and the data stream S2. Stream S2 has schema (c1 integer,
c2 integer). The query returns the relation.

<query id="q4"><![CDATA[
 select
 c1,
 sum(c1)
 from
 S2[range 10]
 group by
 c1
 having
 c1 > 0 and sum(c1) > 1
]]></query>

Timestamp Tuple
1000 ,2
2000 ,4
3000 1,4
5000 1,
6000 1,6
7000 ,9
8000 ,

Timestamp Tuple Kind Tuple
5000: + 1,2
6000: - 1,2
6000: + 1,3

ORDER BY Query Example

Use the ORDER BY clause with stream input to sort events that have duplicate
timestamps. ORDER BY is only valid when the input is a stream and only sorts among
events of the same timestamp. Its output is a stream with the sorted events.

Consider the query q1. Given the data stream S0, the query returns the relation. The
query sorts events of duplicate timestamps in ascending order by tuple values.

<query id="q1"><![CDATA[
 SELECT *

Chapter 14
Query

14-10

 FROM S0
 ORDER BY c1,c2 ASC
]]></query>

Timestamp Tuple
1000 7, 15
2000 7, 14
2000 5, 23
2000 5, 15
2000 5, 15
2000 5, 25
3000 3, 12
3000 2, 13
4000 4, 17
5000 1, 9
h 1000000000

Timestamp Tuple Kind Tuple
1000: + 7,15
2000: + 5,15
2000: + 5,15
2000: + 5,23
2000: + 5,25
3000: + 2,13
3000: + 3,19
4000: + 4,17
5000: + 1,9

ORDER BY ROWS Query Example

Use the ORDER BY clause with the ROWS keyword to use ordering criteria to determine
whether an event received by the query should be included in output. ORDER BY ROWS
accepts either stream or relation input and outputs a relation.

The ORDER BY ROWS clause maintains a set of events whose maximum size is the number
specified by the ROWS keyword. As new events are received, they are evaluated, based on
thr order criteria and the ROWS limit, to determine whether they will be added to the output.

Note that the output of ORDER BY ROWS is not arranged based on the ordering criteria, as
is the output of the ORDER BY clause. Instead, ORDER BY ROWS uses the ordering criteria
and specified number of rows to determine whether to admit events into the output as they
are received.

Consider the query q1. Given the data stream S0, the query returns the relation.

<query id="q1"><![CDATA[
 SELECT c1 ,c2
 FROM S0
 ORDER BY c1,c2 ROWS 5
]]></query>

Timestamp Tuple
1000 7, 15
2000 7, 14
2000 5, 23
2000 5, 15
2000 5, 15
2000 5, 25
3000 2, 13
3000 3, 19
4000 4, 17
5000 1, 9
h 1000000000

Timestamp Tuple Kind Tuple
1000: + 7,15

Chapter 14
Query

14-11

2000: + 7,14
2000: + 5,23
2000: + 5,15
2000: + 5,15
2000: - 7,15
2000: + 5,25
3000: - 7,14
3000: + 2,13
3000: - 5,25
3000: + 3,19
4000: - 5,23
4000: + 4,17
5000: - 5,15
5000: + 1,9

In the following example, the query uses the PARTITION keyword to specify the tuple
property within which to sort events and constrain output size. Here, the PARTITION
keyword specifies that events in the input should be evaluated based on their symbol
value.

In other words, when determining whether to include an event in the output, the query
looks at the existing set of events in output that have the same symbol. The ROWS
limit is two, meaning that the query will maintain a set of sorted events that has no
more than two events in it. For example, if there are already two events with the ORCL
symbol, adding another ORCL event to the output will require deleting the oldest
element in output having the ORCL symbol.

Also, the query is ordering events by the value property, so that is also considered
when a new event is being considered for output. Here, the DESC keyword specifies
that event be ordered in descending order. A new event that does not come after
events already in the output set will not be included in output.

<query id="q1"><![CDATA[
 SELECT symbol, value
 FROM S0
 ORDER BY value DESC ROWS 2
 PARTITION BY symbol
]]></query>

Timestamp Tuple
1000 ORCL, 500
1100 MSFT, 400
1200 INFY, 200
1300 ORCL, 503
1400 ORCL, 509
1500 ORCL, 502
1600 MSFT, 405
1700 INFY, 212
1800 INFY, 209
1900 ORCL, 512
2000 ORCL, 499
2100 MSFT, 404
2200 MSFT, 403
2300 INFY, 215
2400 MSFT, 415
2500 ORCL, 499
2600 INFY, 211

Timestamp Tuple Kind Tuple
1000 + ORCL,500
1100 + MSFT,400
1200 + INFY,200

Chapter 14
Query

14-12

1300 + ORCL,503
1400 - ORCL,500
1400 + ORCL,509
1600 + MSFT,405
1700 + INFY,212
1800 - INFY,200
1800 + INFY,209
1900 - ORCL,503
1900 + ORCL,512
2100 - MSFT,400
2100 + MSFT,404
2300 - INFY,209
2300 + INFY,215
2400 - MSFT,404
2400 + MSFT,415

Chapter 14
Query

14-13

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions
	Syntax Diagrams

	1 Introduction to Oracle CQL
	1.1 Fundamentals of Oracle CQL
	1.1.1 Streams and Relations
	1.1.1.1 Streams
	1.1.1.2 Relations and GoldenGate Stream Analytics Tuple Kind Indicator

	1.1.2 Stream-to-Relation Operators (Windows)
	1.1.2.1 Range, Rows, and Slide
	1.1.2.1.1 Range, Rows, and Slide at Query Start-Up and for Empty Relations

	1.1.2.2 Partition
	1.1.2.3 Default Stream-to-Relation Operator

	1.1.3 Stream-to-Stream Operators
	1.1.4 Pattern Recognition
	1.1.5 Functions
	1.1.6 Time

	1.2 Oracle CQL and SQL Standards

	2 Basic Elements of Oracle CQL
	2.1 Data Types
	2.1.1 Oracle CQL Built-in Data Types

	2.2 Data Type Comparison Rules
	2.2.1 Numeric Values
	2.2.2 Date Values
	2.2.3 Character Values
	2.2.4 Data Type Conversion
	2.2.4.1 Implicit Data Type Conversion
	2.2.4.2 Explicit Data Type Conversion
	2.2.4.3 SQL Data Type Conversion

	2.3 Literals
	2.3.1 Text Literals
	2.3.2 Numeric Literals
	2.3.2.1 Integer Literals
	2.3.2.2 Floating-Point Literals

	2.3.3 Datetime Literals
	2.3.4 Interval Literals
	2.3.4.1 INTERVAL DAY TO SECOND
	2.3.4.2 INTERVAL YEAR TO MONTH

	2.4 Format Models
	2.4.1 Number Format Models
	2.4.2 Datetime Format Models

	2.5 Nulls
	2.5.1 Nulls in Oracle CQL Functions
	2.5.2 Nulls with Comparison Conditions
	2.5.3 Nulls in Conditions

	2.6 Comments
	2.7 Aliases
	2.7.1 Defining Aliases Using the AS Operator
	2.7.1.1 Aliases in the relation_variable Clause
	2.7.1.2 Aliases in Window Operators

	3 Pseudocolumns
	3.1 Introduction to Pseudocolumns
	3.2 ELEMENT_TIME Pseudocolumn
	3.2.1 Understanding the Value of the ELEMENT_TIME Pseudocolumn
	3.2.1.1 ELEMENT_TIME for a System-Timestamped Stream
	3.2.1.2 ELEMENT_TIME for an Application-Timestamped Stream
	3.2.1.2.1 Derived Timestamp Expression Evaluates to int or bigint
	3.2.1.2.2 Derived Timestamp Expression Evaluates to timestamp

	3.2.1.3 ELEMENT_TIME for a Subquery

	3.2.2 Using the ELEMENT_TIME Pseudocolumn in Oracle CQL Queries
	3.2.2.1 Using ELEMENT_TIME With SELECT
	3.2.2.2 Using ELEMENT_TIME With GROUP BY
	3.2.2.3 Using ELEMENT_TIME With PATTERN

	4 Operators
	4.1 Introduction to Operators
	4.1.1 What You May Need to Know About Unary and Binary Operators
	4.1.2 What You May Need to Know About Operator Precedence

	4.2 Arithmetic Operators
	4.3 Concatenation Operator
	4.4 Alternation Operator
	4.5 Range-Based Stream-to-Relation Window Operators
	4.5.1 S[now]
	4.5.1.1 Examples

	4.5.2 S[range T]
	4.5.2.1 Examples

	4.5.3 S[range T1 slide T2]
	4.5.3.1 Examples

	4.5.4 S[range unbounded]
	4.5.4.1 Examples

	4.5.5 S[range C on E]
	4.5.5.1 Examples

	4.6 Tuple-Based Stream-to-Relation Window Operators
	4.6.1 S [rows N]
	4.6.1.1 Examples

	4.6.2 S [rows N1 slide N2]
	4.6.2.1 Examples

	4.7 Partitioned Stream-to-Relation Window Operators
	4.7.1 S [partition by A1,..., Ak rows N]
	4.7.1.1 Examples

	4.7.2 S [partition by A1,..., Ak rows N range T]
	4.7.2.1 Examples

	4.7.3 S [partition by A1,..., Ak rows N range T1 slide T2]
	4.7.3.1 Examples

	4.8 IStream Relation-to-Stream Operator
	4.9 DStream Relation-to-Stream Operator
	4.10 RStream Relation-to-Stream Operator

	5 Expressions
	5.1 Introduction to Expressions
	5.2 aggr_distinct_expr
	5.3 aggr_expr
	5.4 arith_expr
	5.5 arith_expr_list
	5.5.1 Examples

	5.6 case_expr
	5.6.1 Examples

	5.7 decode
	5.7.1 Examples

	5.8 func_expr
	5.8.1 Examples

	5.9 order_expr
	5.9.1 Examples

	6 Conditions
	6.1 Introduction to Conditions
	6.1.1 Condition Precedence

	6.2 Comparison Conditions
	6.3 Logical Conditions
	6.4 LIKE Condition
	6.4.1 Examples

	6.5 Range Conditions
	6.6 Null Conditions
	6.7 Compound Conditions
	6.8 IN Condition
	6.8.1 Using IN and NOT IN as a Membership Condition
	6.8.2 NOT IN and Null Values

	7 Common Oracle CQL DDL Clauses
	7.1 Introduction to Common Oracle CQL DDL Clauses
	7.2 attr
	7.3 attrspec
	7.4 const_bigint
	7.5 const_int
	7.6 const_string
	7.7 const_value
	7.8 identifier
	7.9 l-value
	7.10 non_mt_arg_list
	7.11 non_mt_attr_list
	7.12 non_mt_attrname_list
	7.13 non_mt_attrspec_list
	7.14 non_mt_cond_list
	7.15 out_of_line_constraint
	7.16 param_list
	7.17 query_ref
	7.18 time_spec

	8 Built-In Single-Row Functions
	8.1 Introduction to Oracle CQL Built-In Single-Row Functions
	8.2.1 concat
	8.2.2 hextoraw
	8.2.3 length
	8.2.4 lk
	8.2.5 nvl
	8.2.6 prev
	8.2.7 rawtohex
	8.2.8 systimestamp
	8.2.9 to_bigint
	8.2.10 to_boolean
	8.2.11 to_char
	8.2.12 to_double
	8.2.13 to_float
	8.2.14 to_timestamp

	9 Built-In Aggregate Functions
	9.1 Introduction to Oracle CQL Built-In Aggregate Functions
	9.1.1 Built-In Aggregate Functions and the Where, Group By, and Having Clauses

	9.2.1 avg
	9.2.2 count
	9.2.3 first
	9.2.4 last
	9.2.5 listagg
	9.2.6 max
	9.2.7 min
	9.2.8 sum

	10 Colt Single-Row Functions
	10.1 Introduction to Oracle CQLBuilt-In Single-Row Colt Functions
	10.2.1 beta
	10.2.2 beta1
	10.2.3 betaComplemented
	10.2.4 binomial
	10.2.5 binomial1
	10.2.6 binomial2
	10.2.7 binomialComplemented
	10.2.8 bitMaskWithBitsSetFromTo
	10.2.9 ceil
	10.2.10 chiSquare
	10.2.11 chiSquareComplemented
	10.2.12 errorFunction
	10.2.13 errorFunctionComplemented
	10.2.14 factorial
	10.2.15 floor
	10.2.16 gamma
	10.2.17 gamma1
	10.2.18 gammaComplemented
	10.2.19 getSeedAtRowColumn
	10.2.20 hash
	10.2.21 hash1
	10.2.22 hash2
	10.2.23 hash3
	10.2.24 i0
	10.2.25 i0e
	10.2.26 i1
	10.2.27 i1e
	10.2.28 incompleteBeta
	10.2.29 incompleteGamma
	10.2.30 incompleteGammaComplement
	10.2.31 j0
	10.2.32 j1
	10.2.33 jn
	10.2.34 k0
	10.2.35 k0e
	10.2.36 k1
	10.2.37 k1e
	10.2.38 kn
	10.2.39 leastSignificantBit
	10.2.40 log
	10.2.41 log10
	10.2.42 log2
	10.2.43 logFactorial
	10.2.44 logGamma
	10.2.45 longFactorial
	10.2.46 mostSignificantBit
	10.2.47 negativeBinomial
	10.2.48 negativeBinomialComplemented
	10.2.49 normal
	10.2.50 normal1
	10.2.51 normalInverse
	10.2.52 poisson
	10.2.53 poissonComplemented
	10.2.54 stirlingCorrection
	10.2.55 studentT
	10.2.56 studentTInverse
	10.2.57 y0
	10.2.58 y1
	10.2.59 yn

	11 Colt Aggregate Functions
	11.1 Introduction to Oracle CQL Built-In Aggregate Colt Functions
	11.1.1 Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments
	11.1.2 Colt Aggregate Functions and the Where, Group By, and Having Clauses

	11.2.1 autoCorrelation
	11.2.2 correlation
	11.2.3 covariance
	11.2.4 geometricMean
	11.2.5 geometricMean1
	11.2.6 harmonicMean
	11.2.7 kurtosis
	11.2.8 lag1
	11.2.9 mean
	11.2.10 meanDeviation
	11.2.11 median
	11.2.12 moment
	11.2.13 pooledMean
	11.2.14 pooledVariance
	11.2.15 product
	11.2.16 quantile
	11.2.17 quantileInverse
	11.2.18 rankInterpolated
	11.2.19 rms
	11.2.20 sampleKurtosis
	11.2.21 sampleKurtosisStandardError
	11.2.22 sampleSkew
	11.2.23 sampleSkewStandardError
	11.2.24 sampleVariance
	11.2.25 skew
	11.2.26 standardDeviation
	11.2.27 standardError
	11.2.28 sumOfInversions
	11.2.29 sumOfLogarithms
	11.2.30 sumOfPowerDeviations
	11.2.31 sumOfPowers
	11.2.32 sumOfSquaredDeviations
	11.2.33 sumOfSquares
	11.2.34 trimmedMean
	11.2.35 variance
	11.2.36 weightedMean
	11.2.37 winsorizedMean

	12 java.lang.Math Functions
	12.1 Introduction to Oracle CQL Built-In java.lang.Math Functions
	12.2.1 abs
	12.2.2 abs1
	12.2.3 abs2
	12.2.4 abs3
	12.2.5 acos
	12.2.6 asin
	12.2.7 atan
	12.2.8 atan2
	12.2.9 cbrt
	12.2.10 ceil1
	12.2.11 cos
	12.2.12 cosh
	12.2.13 exp
	12.2.14 expm1
	12.2.15 floor1
	12.2.16 hypot
	12.2.17 IEEEremainder
	12.2.18 log1
	12.2.19 log101
	12.2.20 log1p
	12.2.21 pow
	12.2.22 rint
	12.2.23 round
	12.2.24 round1
	12.2.25 signum
	12.2.26 signum1
	12.2.27 sin
	12.2.28 sinh
	12.2.29 sqrt
	12.2.30 tan
	12.2.31 tanh
	12.2.32 todegrees
	12.2.33 toradians
	12.2.34 ulp
	12.2.35 ulp1

	13 Pattern Recognition With MATCH_RECOGNIZE
	13.1 Understanding Pattern Recognition With MATCH_RECOGNIZE
	13.1.1 MATCH_RECOGNIZE and the WHERE Clause
	13.1.2 Referencing Singleton and Group Matches
	13.1.3 Referencing Aggregates
	13.1.3.1 Running Aggregates and Final Aggregates
	13.1.3.2 Operating on the Same Correlation Variable
	13.1.3.3 Referencing Variables That Have not Been Matched Yet
	13.1.3.4 Referencing Attributes not Qualified by Correlation Variable
	13.1.3.5 Using count With *, identifier.*, and identifier.attr
	13.1.3.6 Using first and last

	13.1.4 Using prev

	13.2 MEASURES Clause
	13.2.1 Functions Over Correlation Variables in the MEASURES Clause

	13.3 PATTERN Clause
	13.3.1 Pattern Quantifiers and Regular Expressions
	13.3.2 Grouping and Alternation in the PATTERN Clause

	13.4 DEFINE Clause
	13.4.1 Functions Over Correlation Variables in the DEFINE Clause
	13.4.2 Referencing Attributes in the DEFINE Clause
	13.4.3 Referencing One Correlation Variable From Another in the DEFINE Clause

	13.5 PARTITION BY Clause
	13.6 ALL MATCHES Clause
	13.7 WITHIN Clause
	13.8 DURATION Clause
	13.8.1 Fixed Duration Non-Event Detection
	13.8.2 Recurring Non-Event Detection

	13.9 INCLUDE TIMER EVENTS Clause
	13.10 SUBSET Clause
	13.11 MATCH_RECOGNIZE Examples
	13.11.1 Pattern Detection
	13.11.2 Pattern Detection With PARTITION BY
	13.11.3 Pattern Detection With Aggregates
	13.11.4 Pattern Detection With the WITHIN Clause
	13.11.5 Fixed Duration Non-Event Detection

	14 Oracle CQL Statements
	14.1 Query
	14.1.1 Query Semantics
	14.1.2 Query Examples

