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Preface

Developing Applications with Oracle Security Developer Tools provides reference
information about the Oracle Security Developer Tools. This Preface contains the
following topics:

• Intended Audience

• Documentation Accessibility

• Related Documents

• Conventions

Intended Audience
Developing Applications with Oracle Security Developer Tools is intended for Java
developers responsible for developing secure applications. This documentation
assumes programming proficiency using Java, and familiarity with security concepts
such as cryptography, public key infrastructure, Web services security, and identity
federation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documentation available in the Oracle Fusion
Middleware 12c (12.2.1) documentation set:

• Oracle Fusion Middleware Securing Web Services and Managing Policies with
Oracle Web Services Manager

• Oracle Fusion Middleware Securing Applications with Oracle Platform Security
Services

Preface
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Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface
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What's New in Oracle Security Developer
Tools?

This preface introduces the new and changed features of Oracle Security Developer
Tools.

New Features in 12c (12.2.1)
The API doc set (javadocs) has been consolidated into a single javadoc, the Java API
Reference for Oracle Security Developer Tools.

This edition of Developing Applications with Oracle Security Developer Tools contains
usability enhancements and editorial corrections.

Updates in September 2014 Documentation Refresh for 12c
(12.1.3)

This edition of Developing Applications with Oracle Security Developer Tools contains
usability enhancements and editorial corrections.

New Features in 12c (12.1.3)
New Java API references (javadocs) have been published for all the tools.

What's New in Oracle Security Developer Tools?
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1
Introduction to Oracle Security Developer
Tools

Oracle Security Developer Tools provide the cryptographic building blocks necessary
for developing robust security applications, ranging from basic tasks such as digital
signatures and secure messaging to more complex projects such as securely
implementing a service-oriented architecture. The tools are built upon the core
foundations of cryptography, public key infrastructure, web services security, and
federated identity management.
Security tools are a critical component for application development projects.
Commercial requirements and government regulations dictate that sensitive data be
kept confidential and protected from tampering or alteration.

A wide range of Oracle products utilize the Oracle Security Developer Tools, including:

• the Oracle JDeveloper integrated service environment

• Oracle Platform Security Services, which include SSL configuration features for
system components, and Oracle Wallet, which is utilized in multiple components
including Oracle Database

• system components like Oracle Web Services Manager (OWSM); Business
Integration (B2B); and Oracle SOA Suite

This chapter takes a closer look at the underlying security technologies and introduces
the components of the Oracle Security Developer Tools. It covers these topics:

• About Cryptography

• About Public Key Infrastructure (PKI)

• About Web Services Security

• About SAML

• About Identity Federation

• About Oracle Security Developer Tools

• About Supported Standards

• Setting the CLASSPATH Environment Variable

• References

1.1 About Cryptography
Cryptography protects the transmitted messages in communication channels from
being intercepted (a passive attack) or modified (an active attack) by an intruder. To
protect the message, an originator uses a cryptographic tool to convert plain, readable
messages or plaintext into encrypted ciphertext. The message recipient likewise uses
a cryptographic tool to decrypt the ciphertext into its original readable format.

Cryptography secures communications over a network such as the internet by
providing:
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• Authentication, which assures the receiver that the information is coming from a
trusted source. Authentication is commonly achieved through the use of a
Message Authentication Code (MAC), digital signature, and digital certificate.

• Confidentiality, which ensures that only the intended receiver can read a message.
Confidentiality is commonly attained through encryption.

• Integrity, which ensures that the received message has not been altered from the
original. Integrity is commonly ensured by using a cryptographic hash function.

• Non-repudiation, which is a way to prove that a given sender actually sent a
particular message. Non-repudiation is typically achieved through the use of digital
signatures.

For additional cryptography resources, refer References.

1.1.1 Types of Cryptographic Algorithms
Cryptographic algorithms or ciphers use keys to convert plain text to ciphertext and
vice versa. Essentially, there are three types of cryptographic algorithms categorized
by the number of keys used for encryption and decryption, and by their application and
usage. These are Symmetric Cryptographic Algorithms, Asymmetric Cryptographic
Algorithms, and Hash Functions.

Each type is optimized for certain applications. Hash functions are suited for ensuring
data integrity. Symmetric cryptography is ideally suited for encrypting messages.
Asymmetric cryptography is used for the secure exchange of keys, authentication, and
non-repudiation. Asymmetric cryptography could also be used to encrypt messages,
although this is rarely done. Symmetric cryptography operates about 1000 times
faster, and is better suited for encryption than asymmetric cryptography.

The cryptographic algorithm types are:

• About Symmetric Cryptographic Algorithms

• About Asymmetric Cryptographic Algorithms

• Understanding Hash Functions

1.1.1.1 About Symmetric Cryptographic Algorithms
A symmetric cryptography algorithm (also known as secret key cryptography) uses a
single key for both encryption and decryption. The sender uses the key to encrypt the
plaintext and sends the ciphertext to the receiver. The receiver applies the same key
to decrypt the message and recover the plaintext. The key must be known to both the
sender and receiver. The biggest problem with symmetric cryptography is the secure
distribution of the key.

Symmetric cryptography schemes are generally categorized as being either a block
cipher or stream cipher. A block cipher encrypts one fixed-size block of data (usually
64 bits) at a time using the same key on each block. Some common block ciphers
used today include Blowfish, AES, DES, and 3DES.

Stream ciphers operate on a single bit at a time and implement some form of feedback
mechanism so that the key is constantly changing. RC4 is an example of a stream
cipher that is used for secure communications using the SSL protocol.

Chapter 1
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1.1.1.2 About Asymmetric Cryptographic Algorithms
An asymmetric cryptography algorithm (also known as public key cryptography) uses
one key to encrypt the plaintext and another key to decrypt the ciphertext. It does not
matter which key is applied first, but both keys are required for the process to work.

In asymmetric cryptography, one of the keys is designated the public key and is made
widely available. The other key is designated the private key and is never revealed to
another party. To send messages under this scheme, the sender encrypts some
information using the receiver's public key. The receiver then decrypts the ciphertext
using her private key. This method can also be used to prove who sent a message
(non-repudiation). The sender can encrypt some plaintext with her private key, and
when the receiver decrypts the message with the sender's public key, the receiver
knows that the message indeed came from that sender.

Some of the common asymmetric algorithms in use today are RSA, DSA, and Diffie-
Hellman.

1.1.1.3 Understanding Hash Functions
A hash function (also known as a message digest) is a one-way encryption algorithm
that essentially uses no key. Instead, a fixed-length hash value is computed based
upon the plaintext that makes it impossible for either the contents or length of the
plaintext to be recovered. Hash algorithms are typically used to provide a digital
fingerprint of a file's contents, often used to ensure that the file has not been altered by
an intruder or virus. Hash functions are also commonly employed by many operating
systems to encrypt passwords. Hash functions help preserve the integrity of a file.
Some common hash functions include MD2, MD4, MD5 and SHA.

1.2 About Public Key Infrastructure (PKI)
A public key infrastructure (PKI) is designed to enable secure communications over
public and private networks. Besides secure transmission and storage of data, PKI
also enables secure e-mail, digital signatures, and data integrity. PKI uses public key
cryptography, a mathematical technique that uses a pair of related cryptographic keys
to verify the identity of the sender (digital signature), and to ensure the privacy of a
message (encryption). PKI facilities secure information exchange over Internet.

Critical elements for achieving the goals of PKI include:

• Encryption algorithms and keys to secure communications

• Digital certificates that associate a public key with the identity of its owner

• Key distribution methods to permit widespread, secure use of encryption

• A trusted entity, known as a Certificate Authority (CA), to vouch for the relationship
between a key and its legitimate owner

• A Registration Authority (RA) that is responsible for verifying the information
supplied in requests for certificates made to the CA

Relying third parties use the certificates issued by the CA and the public keys
contained in them to verify digital certificates and encrypt data.

Chapter 1
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1.2.1 Understanding Key Pairs
Encryption techniques often use a key, known only to the sender and the recipient.
Public key cryptography uses a key pair of mathematically related cryptographic keys
—the public key and the private key.

When both use the same key, the encryption scheme is called symmetric. Difficulties
with relying on a symmetric system include getting that key to both parties without
allowing an eavesdropper to get it, too; and the fact that a separate key is needed for
every two people, so that each individual must maintain many keys, one for each
recipient.

For an explanation of the use of key pairs, see "About Asymmetric Cryptographic
Algorithms".

Table 1-1 summarizes who uses public and private keys and when:

Table 1-1    Summary of Public and Private Key Usage

Function Key Type Whose Key

Encrypt data for a recipient Public key Receiver

Sign data Private key Sender

Decrypt data received Private key Receiver

Verify a signature Public key Sender

1.2.2 About the Certificate Authority
A Certificate Authority (CA) is a trusted third party that vouches for the public key
owner's identity.

Examples of certificate authorities include Verisign and Thawte.

1.2.3 What are Digital Certificates?
The certification authority validates the public key's link to a particular entity by
creating a digital certificate. This digital certificate contains the public key and
information about the key holder and the signing certification authority.

Using a PKI certificate to authenticate one's identity is analogous to identifying oneself
with a driver's license or passport.

1.2.4 Related PKI Standards
A number of standards and protocols support PKI certificate implementation. These
are Cryptographic Message Syntax (CMS), Secure/Multipurpose Internet Mail
Extension (S/MIME), Lightweight Directory Access Protocol (LDAP), Time Stamp

Chapter 1
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Protocol (TSP), Online Certificate Status Protocol (OCSP), and Certificate
Management Protocol (CMP).

Cryptographic Message Syntax

Cryptographic Message Syntax (CMS) is a general syntax for data protection
developed by the Internet Engineering Task Force (IETF). It supports a wide variety of
content types including signed data, enveloped data, digests, and encrypted data,
among others. CMS allows multiple encapsulation so that, for example, previously
signed data can be enveloped by a second party.

Values produced by CMS are encoded using X.509 Basic Encoding Rules (BER),
meaning that the values are represented as octet strings.

Secure/Multipurpose Internet Mail Extension

Secure/Multipurpose Internet Mail Extension (S/MIME) is an Internet Engineering Task
Force (IETF) standard for securing MIME data through the use of digital signatures
and encryption.

S/MIME provides the following cryptographic security services for electronic
messaging applications:

• Authentication

• Message integrity and non-repudiation of origin (using digital signatures)

• Privacy and data security (using encryption)

Lightweight Directory Access Protocol

Lightweight Directory Access Protocol (LDAP) is the open standard for obtaining and
posting information to commonly used directory servers. In a public key infrastructure
(PKI) system, a user's digital certificate is often stored in an LDAP directory and
accessed as needed by requesting applications and services.

Time Stamp Protocol

In a Time Stamp Protocol (TSP) system, a trusted third-party Time Stamp Authority
(TSA) issues time stamps for digital messages. Time stamping proves that a message
was sent by a particular entity at a particular time, providing non-repudiation for online
transactions.

The Time Stamp Protocol, as specified in RFC 3161, defines the participating entities,
the message formats, and the transport protocol involved in time stamping a digital
message.

To see how a time-stamping system can work, suppose Sally signs a document and
wants it time stamped. She computes a message digest of the document using a
secure hash function and then sends the message digest (but not the document itself)
to the TSA, which sends her in return a digital time stamp consisting of the message
digest, the date and time it was received at the TSA server, and the signature of the
TSA. Since the message digest does not reveal any information about the content of
the document, the TSA cannot eavesdrop on the documents it time stamps. Later,
Sally can present the document and time stamp together to prove when the document
was written. A verifier computes the message digest of the document, makes sure it
matches the digest in the time stamp, and then verifies the signature of the TSA on the
time stamp.

Chapter 1
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Online Certificate Status Protocol

Online Certificate Status Protocol (OCSP) is one of two common schemes for
checking the validity of digital certificates. The other, older method, which OCSP has
superseded in some scenarios, is known as the certificate revocation list (CRL).

OCSP overcomes the chief limitation of CRL: the fact that updates must be frequently
down-loaded to keep the list current at the client end. When a user attempts to access
a server, OCSP sends a request for certificate status information. The server sends
back a response of good, revoked, or unknown. The protocol specifies the syntax for
communication between the server (which contains the certificate status) and the
client application (which is informed of that status).

Certificate Management Protocol

The certificate management protocol (CMP) handles all relevant aspects of certificate
creation and management. CMP supports interactions between public key
infrastructure (PKI) components, such as Certificate Authorities (CAs), Registration
Authorities (RAs), and end entities that are issued certificates.

1.2.5 Benefits of PKI
PKI provides secure and reliable authentication. It provides data integrity, non-
repudiation, and prevents unauthorized access to transmitted or stored information.

PKI provides users with the following benefits:

• Secure and reliable authentication of users

Reliable authentication relies on two factors. The first is proof of possession of the
private key part of the public/private pair, which is verified by an automatic
procedure that uses the public key. The second factor is validation by a
certification authority that a public key belongs to a specific identity. A PKI-based
digital certificate validates this identity connection based on the key pair.

• Data integrity

Using the private key of a public/private key pair to sign digital transactions makes
it difficult to alter the data in transit. This "digital signature" is a coded digest of the
original message encrypted by the sender's private key. Recipients can readily use
the sender's corresponding public key to verify who sent the message and the fact
that it has not been altered. Any change to the message or the digest would have
caused the attempted verification using the public key to fail, telling the recipient
not to trust it.

• Non-repudiation

PKI can also be used to prove who sent a message. The sender encrypts some
plaintext with her private key to create a digital signature, and when the receiver
decrypts the message with the sender's public key, the receiver knows that the
message indeed came from that sender, making it difficult for the message
originator to disown the message; this capability is known as non-repudiation.

• Prevention of unauthorized access to transmitted or stored information

The time and effort required to derive the private key from the public key makes it
unlikely that the message would be decrypted by anyone other than the key pair
owner.

Chapter 1
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1.3 About Web Services Security
Web services provide a standard way for organizations to integrate Web-based
applications using open standard technologies such as XML, SOAP, and WSDL. While
the core SOAP specification solves many problems related to XML and Web Services,
it does not provide a means to address message security requirements such as
confidentiality, integrity, message authentication, and non-repudiation.

SOAP is a lightweight protocol for exchange of information in a service oriented
environment. In such an environment, applications can expose selected functionality
(business logic, for example) for use by other applications. SOAP provides the means
by which applications supply and consume these services; it is an XML-based protocol
for message transport in a distributed, decentralized Web Services application
environment.

The need for securing SOAP prompted OASIS to put forward the Web Services
Security standard, which:

• Specifies enhancements to allow signing and encryption of SOAP messages.

• Describes a general-purpose method to associate security tokens with messages.

• Provides additional means for describing the characteristics of tokens that are
included with a message.

1.4 About SAML
Security Assertions Markup Language (SAML) is an XML-based framework for
exchanging security information over the Internet. SAML enables the exchange of
authentication and authorization information between various security services
systems that otherwise would not be able to interoperate.

The SAML 1.0, 1.1, and 2.0 specifications were adopted by the Organization for the
Advancement of Structured Information Standards (OASIS) in 2002, 2003, and 2005
respectively. OASIS is a worldwide not-for-profit consortium that drives the
development, convergence, and adoption of e-business standards.

SAML 2.0 marks the convergence of the Liberty ID-FF, Shibboleth, and SAML 1.0/1.1
federation protocols.

1.4.1 Understanding SAML Assertions
SAML associates an identity, such as an e-mail address or a directory listing, with a
subject, such as a user or system, and defines the access rights within a specific
domain. The basic SAML document is the Assertion, which contains declarations of
facts about a Subject (typically a user).

SAML provides three kinds of declarations, or Statements:

• AuthnStatement asserts that the user was authenticated by a particular method at
a specific time.

• AttributeStatement asserts that the user is associated with particular attributes
or details, for example an employee number or account number.

Chapter 1
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• AuthzDecisionStatement asserts that the user's request for a certain access to a
particular resource has been allowed or denied.

Assertions are XML documents generated about events that have already occurred.
While SAML makes assertions about credentials, it does not actually authenticate or
authorize users. Example 1-1 shows a typical SAML authentication assertion wrapped
in a SAMLP response message:

Example 1-1    Sample SAMLP Response Containing a SAML 1.0 Authentication
Assertion

<samlp:Response
       MajorVersion="1" MinorVersion="0"
       ResponseID="128.14.234.20.90123456"
       InResponseTo="123.45.678.90.12345678"
       IssueInstant="2005-12-14T10:00:23Z"
       xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" 
       xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol">
       <samlp:Status>
           <samlp:StatusCode Value="samlp:Success" />
       </samlp:Status>
       <saml:Assertion
           MajorVersion="1" MinorVersion="0"
           AssertionID="123.45.678.90.12345678"
           Issuer="IssuingAuthority.com"
           IssueInstant="2005-12-14T10:00:23Z" >
           <saml:Conditions
               NotBefore="2005-12-14T10:00:30Z"
               NotAfter="2005-12-14T10:15:00Z" />
           </saml:Conditions
           <saml:AuthenticationStatement
               AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
               AuthenticationInstant="2005-12-14T10:00:20Z">
               <saml:Subject>
                   <saml:NameIdentifier NameQualifier="RelyingParty.com">
                     john.smith
                   </saml:NameIdentifier>
                   <saml:SubjectConfirmation>
                       <saml:ConfirmationMethod>
                           urn:oasis:names:tc:SAML:1.0:cm:artifact-01
                       </saml:ConfirmationMethod>
                   </saml:SubjectConfirmation>
               </saml:Subject>
           </saml:AuthenticationStatement>
       </saml:Assertion>
</samlp:Response>

1.4.2 Understanding SAML Requests and Responses
When a user signs into a SAML-compliant service, the service sends a "request for
authentication assertion" to the issuing authority (identity provider). The issuing
authority returns an "authentication assertion" reference stating that the user was
authenticated by a particular method at a specific time.

The authority that issues assertions is known as the issuing authority or identity
provider. An issuing authority can be a third-party service provider or an individual
business that is serving as an issuing authority within a private federation of
businesses. SAML-compliant applications and services, which trust the issuing
authority or identity provider and make use of its services, are called relying parties
or service providers.

Chapter 1
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1.4.2.1 About the SAML Request and Response Cycle
In a typical SAML cycle, the relying party (or service provider), which needs to
authenticate a specific client request, sends a SAML request to its issuing authority or
identity provider. The identity provider responds with a SAML assertion, which supplies
the relying party or service provider with the requested security information.

For example, when a user signs into a SAML-compliant service of a relying party or
identity provider, the service sends a "request for authentication assertion" to the
issuing authority (identity provider). The issuing authority returns an "authentication
assertion" reference stating that the user was authenticated by a particular method at
a specific time. The service can then pass this assertion reference to other relying
party/identity provider sites to validate the user's credentials. When the user accesses
another SAML-compliant site that requires authentication, that site uses the reference
to request the "authentication assertion" from the issuing authority or identity provider,
which states that the user has already been authenticated.

At the issuing authority, an assertion layer handles request and response messages
using the SAML protocol, which can bind to various communication and transport
protocols (HTTP, SOAP, and so on). Note that while the client always consumes
assertions, the issuing authority or identity provider can act as producer and consumer
since it can both create and validate assertions.

This cycle is illustrated in Figure 1-1.

Figure 1-1    SAML Request-Response Cycle
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This figure shows a SAML request and response cycle, and shows a user, boxes for
relying parties, and a box for the issuing authority. The user or client request first goes
to the relying party, which sends a SAML request to its issuing authority. The issuing
authority responds with a SAML assertion, which supplies the relying party with the
requested security information. Two-way arrows denote the client communication with
the relying party (there can be more than one relying party), and also denote the
request-response communication between the relying party and issuing authority.

Finally, the box for the issuing authority separates out the assertion layer (SAML) from
the transport layer (HTTP, SOAP, and so on) to show that the communication between
these layers enables the issuing authority to create and validate assertions.

1.4.2.2 About SAML Protocol Bindings and Profiles
SAML defines a protocol, SAMLP, for requesting and obtaining assertions. Bindings
define the standard way that SAML request and response messages are transported
between the issuing authorities (identity providers) and relying parties (identity
providers) by providing mappings between SAML messages and standard
communication protocols. For example, the defined transport mechanism for SAML
requests and responses is Simple Object Access Protocol (SOAP) over HTTP. This
enables the exchange of SAML information across several Web services in a standard
manner.

A profile describes how SAML assertion and protocol messages are combined with
particular transport bindings to achieve a specific practical use case. Among the most
widely-implemented SAML profiles, for example, are Web browser profiles for single
sign-on and SOAP profiles for securing SOAP payloads.

1.4.2.3 How SAML Integrates with XML Security
In addition, SAML was designed to integrate with XML Signature and XML Encryption,
standards from the World Wide Web Consortium for embedding encrypted data or
digital signatures within an XML document. This support for XML signatures allows
SAML to handle not only authentication, but also message integrity and
nonrepudiation of the sender. See Oracle XML Security for more information about
Oracle XML Security.

1.5 About Identity Federation
As global businesses strive for ever-closer relationships with suppliers and customers,
they face challenges in creating more intimate, yet highly secure business
transactions. Parties conducting a business transaction must be certain of the identity
of the person or agent with whom they are dealing; they must also be assured that the
other has the authority to act on behalf of the business with whom the transaction is
being conducted. Federated Identity Management, makes parties establish trust
relationships that allow one party to recognize and rely upon security tokens issued by
another party. Identity Federation addresses challenges such as complexity, cost
control, enabling secure access to resources for employees and customers, and
regulatory compliance.

Historically, in the course of doing business with partners, companies have resorted to
acquiring names, responsibilities, and other pertinent information about all entities who
might act on behalf of the partner company. With changing roles and responsibilities,
and particularly in large enterprises, this can create significant logistical problems as
the data quickly becomes very costly to maintain and manage.

Chapter 1
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Key federation concepts include:

• Principal - the key actor in a federated environment, being an entity that performs
an authorized business task

• Identity Provider - a service that authenticates a Principal's identity

• Service Provider - an entity that provides a service to a principal or another entity.
For example, a travel agency can act as a Service Provider to a partner's
employees (principals).

• Single Sign-on - the Principal's ability to authenticate with one system entity (the
Identity Provider), and have other entities (the Service Providers) honor that
authentication

Note:

For additional information about the standards mentioned here, see 
References.

1.6 About Oracle Security Developer Tools
Oracle Security Developer Tools are java tools that enable you implement a wide
range of security tasks and projects by using the cryptography standards and
protocols.

This section contains the topics:

• Understanding Toolkit Architecture

• Tools for XML, SAML, and Web Services Security Applications

• Tools for Public Key Cryptography (PKI) Applications

• Tools for E-mail Security Applications

• Tools for Low-level Cryptographic Applications

• Tools for Web Tokens

1.6.1 Understanding Toolkit Architecture
The Oracle Security Developer Tools consists of tools for XML, SAML, and Web
Services Security Applications, tools for Public Key Cryptography (PKI) Applications,
tools for E-mail Security Applications, tools for Low-level Cryptographic Applications,
and tools for Web Tokens arranged across different layers of the setup.

It is useful to consider the tools in the toolkit as a whole, and then to look at functional
subsets of tools for different applications.
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Figure 1-2    The Oracle Security Developer Tools

Figure 1-2 shows the components of the Oracle Security Developer Tools. Typically, a
tool will utilize functions provided by the tool immediately below it in the stack. For
example, the Oracle SAML tool leverages functions provided by the Oracle XML
Security tool.

Note that:

• Conceptually, the tools are arranged in layers with the fundamental building blocks
at the bottom layer; each additional layer utilizes and builds upon the layer
immediately below, to provide tools for specific security applications.

• The figure is not intended as a hierarchy or sequence diagram. Rather, it
illustrates the relationship among components and the progression from low-level
tools to more specialized and application-specific components higher up the stack.

Oracle Crypto and Oracle Security Engine are the basic cryptographic tools of the set.
The next layer consists of Oracle CMS for message syntax, Oracle XML Security for
signature encryption, and Oracle PKI SDK, which is a suite of PKI tools consisting of
Oracle PKI LDAP SDK, Oracle PKI TSP SDK, Oracle PKI OCSP SDK, and Oracle PKI
CMP SDK. Oracle S/MIME exploits Oracle CMS to provide a toolset for secure e-mail.
The next layer contains Oracle SAML and Oracle Liberty SDK, which provides
structured assertion markup and federated identity management capabilities. Finally,
Oracle Web Services Security facilitates secure interactions with web services.

1.6.2 Tools for XML, SAML, and Web Services Security Applications
Oracle XML Security package provides security for XML documents. It provides the
foundation for Oracle Web Services Security, Oracle SAML, and Oracle Liberty SDK.

The Oracle XML Security package provides the foundation for the following
components of the toolkit:
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• Oracle Web Services Security

• Oracle SAML for developing SAML 1.0 and 2.0-compliant Java security services

• Oracle Liberty SDK for single sign-on (SSO) and federated identity applications
based on Liberty Alliance specifications

Figure 1-3    Tools for XML, SAML, and WS Security

This graphic shows that Oracle SAML, Oracle Web Services Security, and Oracle
Liberty tools are built on Oracle XML Security.

Note:

A diagram like this is necessarily simplified; in practice the jar relationships
between the Oracle Security Developer Tools are complex and depend upon
implementation details. For example, to use the SAML libraries, you actually
need several components:

• The Oracle XML Security library is needed as SAML requires signatures.

• Oracle Security Engine provides certificate and CRL management
features

See Figure 1-2 for a more complete picture of dependencies. See the
subsequent tool chapters in this guide for instructions on setting up the
classpath for each tool, so that you have the correct environment for each
type of application.

1.6.2.1 About Oracle XML Security
XML Security refers to the common data security requirements of XML documents,
such as confidentiality, integrity, message authentication, and non-repudiation.

Oracle XML Security fulfills these needs by providing the following features:

• Support for the Decryption Transform proposed standard

• Support for the XML Canonicalization standard

• Support for the Exclusive XML Canonicalization standard

Chapter 1
About Oracle Security Developer Tools

1-13



• Compatibility with a wide range of JAXP 1.1 compliant XML parsers and XSLT
engines

1.6.2.2 About Oracle SAML
The Oracle SAML API provides tools and documentation to assist developers of
SAML-compliant Java security services. You can integrate Oracle SAML into existing
Java solutions including applets, applications, EJBs, servlets, and JSPs.

Oracle SAML provides the following features:

• Support for the SAML 1.0/1.1 and 2.0 specifications

• Support for SAML-based single sign-on (SSO), Attribute, Metadata, Enhanced
Client Proxy, and federated identity profiles

1.6.2.3 About Oracle Web Services Security
Oracle Web Services Security provides an authentication and authorization framework
based on Organization for the Advancement of Structured Information Standards
(OASIS) specifications. Oracle Web Services Security provides the following features:

• Support for the SOAP Message Security standard (SOAP 1.1, 1.2)

• Support for the Username Token Profile standard (UsernameToken Profile 1.1)

• Support for the X.509 Certificate Token Profile standard

• Support for the WSS SAML Token Profile (version 1.0)

Note:

The WSS SAML Token Profile version is different from the SAML
version.

1.6.2.4 About Oracle Liberty SDK
Oracle Liberty SDK allows Java developers to design and develop single sign-on
(SSO) and federated identity solutions based on the Liberty Alliance specifications.
Oracle Liberty SDK, available in versions 1.1 and 1.2, aims to unify, simplify, and
extend all aspects of development and integration of systems conforming to the Liberty
Alliance 1.1 and 1.2 specifications.

Oracle Liberty SDK provides the following features:

• Support for the Liberty Alliance Project version 1.1 and 1.2 specifications

• Support for Liberty-based Single Sign-on and Federated Identity

Note:

For additional information about the standards and specifications mentioned
in this chapter, see References.
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1.6.3 Tools for Public Key Cryptography (PKI) Applications
The Oracle PKI package consists of tools for working with digital certificates within an
LDAP repository, for developing timestamp services conforming to RFC 3161, for
OCSP messaging compliant with RFC 2560, and for the certificate management
protocol (CMP) specification. The Oracle PKI package also provides the foundation for
Oracle XKMS, which enables you to develop XML transactions for digital signature
processing.

Figure 1-4    PKI Tools

This graphic shows that Oracle's XKMS tool is built on Oracle PKI tools, which consist
of Oracle LDAP, Oracle TSP, Oracle OCSP, and Oracle CMP.

1.6.3.1 About Oracle PKI LDAP SDK
Oracle PKI LDAP SDK provides facilities for accessing a digital certificate within an
LDAP directory. Some of the tasks you can perform using the Oracle PKI LDAP SDK
are:

• Validating a user's certificate in an LDAP directory

• Adding a certificate to an LDAP directory

• Retrieving a certificate from an LDAP directory

• Deleting a certificate from an LDAP directory

1.6.3.2 About Oracle PKI TSP SDK
The Oracle PKI TSP SDK provides the following features and functionality:

• Oracle PKI TSP SDK conforms to RFC 3161 and is compatible with other products
that conform to this time stamp protocol (TSP) specification.

• Oracle PKI TSP SDK provides an example implementation of a TSA server to use
for testing TSP request messages, or as a basis for developing your own time
stamping service.

1.6.3.3 About Oracle PKI OCSP SDK
The Oracle PKI OCSP SDK provides the following features and functionality:

• The Oracle PKI OCSP SDK conforms to RFC 2560 and is compatible with other
products that conform to this specification, such as Valicert's Validation Authority.
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• The Oracle PKI OCSP SDK API provides classes and methods for constructing
OCSP request messages that can be sent through HTTP to any RFC 2560
compliant validation authority.

• The Oracle PKI OCSP SDK API provides classes and methods for constructing
responses to OCSP request messages, and an OCSP server implementation that
you can use as a basis for developing your own OCSP server to check the validity
of certificates you have issued.

1.6.3.4 About Oracle PKI CMP SDK
Certificate management protocol (CMP) messages support the following set of
functions:

• Registration of an entity, which takes place prior to issuing a certificate

• Initialization, such as the generation of a key pair

• Certification (issuing certificates)

• Key pair recovery for reissuing lost keys

• Key pair updates when a certificate expires and a new key pair and certificate
needs to be generated

• Revocation requests to the CA to include a certificate in a CRL

• Cross-certification between two CAs

The Oracle PKI CMP SDK conforms to RFC 2510 and is compatible with other
products that conform to this certificate management protocol specification. In addition,
it conforms to RFC 2511 and is compatible with other products that conform to this
certificate request message format (CRMF) specification.

1.6.3.5 About Oracle XKMS
Oracle XKMS (XML Key Management Specification) provides a convenient way to
handle public key infrastructures by allowing developers to write XML transactions for
digital signature processing. Oracle XKMS implements the W3C XKMS standard and
avoids some of the cost and complexity involved with public key infrastructures.

1.6.4 Tools for E-mail Security Applications
Oracle CMS provides tools for reading and writing CMS objects, as well as the
foundation for the Oracle S/MIME tools for e-mail security, including certificate parsing
and verification, X.509 certificates, private key encryption, and related features.

Figure 1-5    CMS and S/MIME Tools

This graphic shows that Oracle's S/MIME tool is built on Oracle CMS.
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1.6.4.1 About Oracle CMS
Oracle CMS provides an extensive set of tools for reading and writing CMS objects,
and supporting tools for developing secure message envelopes.

Oracle CMS implements the IETF Cryptographic Message Syntax specified in
RFC-2630. Oracle CMS implements all the RFC-2630 content types.

1.6.4.2 About Oracle S/MIME
Oracle S/MIME provides the following Secure/Multipurpose Internet Mail Extension (S/
MIME) features:

• Full support for X.509 Version 3 certificates with extensions, including certificate
parsing and verification

• Support for X.509 certificate chains in PKCS#7 and PKCS#12 formats

• Private key encryption using PKCS#5, PKCS#8, and PKCS#12

• An integrated ASN.1 library for input and output of data in ASN.1 DER/BER format

1.6.5 Tools for Low-level Cryptographic Applications
Oracle Crypto provides a broad range of cryptographic algorithms, message digests,
and MAC algorithms, as well as the basis for the Oracle Security Engine for X.509
certificates and CRL extensions.

Figure 1-6    Cryptographic Tools

This graphic shows that Oracle Security Engine is built upon the Oracle Crypto tool.

1.6.5.1 About Oracle Crypto
The Oracle Crypto toolkit provides the following features:

• Public key cryptography algorithms such as RSA

• Digital signature algorithms such as Digital Signature Algorithm (DSA) and RSA

• Key exchange algorithms such as Diffie-Hellman

• Symmetric cryptography algorithms such as Blowfish, AES, DES, 3DES, RC2, and
RC4

• Message digest algorithms such as MD2, MD4, MD5, SHA-1, SHA-256, SHA-384,
and SHA-512
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• MAC algorithms such as HMAC-MD5 and HMAC-SHA-1

• Methods for building and parsing ASN.1 objects

1.6.5.2 About Oracle Security Engine
The Oracle Security Engine toolkit provides the following features:

• X.509 Version 3 Certificates, as defined in RFC 3280

• Full PKCS#12 support

• PKCS#10 support for certificate requests

• CRLs as defined in RFC 3280

• Implementation of Signed Public Key And Challenge (SPKAC)

• Support for X.500 Relative Distinguished Name

• PKCS#7 support for wrapping X.509 certificates and CRLs

• Implementation of standard X.509 certificates and CRL extensions

1.6.6 Tools for Web Tokens
Oracle JWT enables you to create a JSON object that is digitally signed using a JSON
Web Signature (JWS) and optionally encrypted using JSON Web Encryption (JWE).

1.6.6.1 About Oracle JWT
Oracle JWT (JSON Web Token) provides support for the JSON Web Token standard.
Using Oracle JWT, you can construct and maintain JSON objects to represent claims
being transferred between parties using a compact token format.

1.7 About Supported Standards
Oracle Security Developer Tools support multiple standards for SAML, XML Security
Transforms, and WS-Security.

The supported standards and protocols are shown in the following table:

Table 1-2    Supported Standards

Feature/Component Standard

SAML • SAML 1.0
• SAML 1.1
• SAML 2.0

XML Security Transforms The following transforms are supported:

• canonicalization 1.0
• canonicalization 1.1
• exclusive canonicalization
• decrypt transform
• xpath filter transform
• xpath filter 2.0 transform
• enveloped signature transform
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Table 1-2    (Cont.) Supported Standards

Feature/Component Standard

WS-Security WS-Security 1.1, including:

• WS-Security Core Specification 1.1
• Username Token Profile 1.1
• X.509 Token Profile 1.1
• SAML Token profile 1.1
• Kerberos Token Profile 1.1
• SOAP with Attachments (SWA) Profile 1.1

Note:

By way of clarification, note that SAML token profile 1.1 applies to SAML 2.0,
while SAML token profile 1.0 applies to SAML 1.0 and SAML 1.1.

1.8 Setting the CLASSPATH Environment Variable
Each tool in the OSDT toolkit has specific CLASSPATH requirements. You must set the
CLASSPATH environment variable. Your CLASSPATH environment variable must contain
the full path and file names to all of the required jar and class files.

To determine which jars you need for a specific OSDT tool, refer the Setting Up Your
Environment section of the chapter that describes the tool.

1.8.1 Setting the CLASSPATH on Windows
On Windows, set your CLASSPATH environment variable to include the full path and file
name of all the required jar files, by using the Windows Control Panel.

To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment variable
for your user profile. If a CLASSPATH environment variable already exists, select it
and click Edit.

5. Add the full path and file names for all the required jar files to the CLASSPATH.

For example, your CLASSPATH might look like this:

%CLASSPATH%;%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_xmlsec.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_saml.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_saml2.jar;
%ORACLE_HOME%\modules\org.jaxen_1.1.1.jar;
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6. Click OK.

1.8.2 Setting the CLASSPATH on UNIX
On UNIX, set your CLASSPATH environment variable to include the full path and file
name of all the required jar and class files.

For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_xmlsec.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_saml.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_saml2.jar:
$ORACLE_HOME/modules/org.jaxen_1.1.1.jar
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2
Oracle Crypto

Oracle Crypto Software Development Kit (SDK) allows Java developers to create
applications that ensure data security and integrity.

Note:

The use of the Oracle Crypto library is not recommended with Release
11gR1 and higher. Instead, use the standard JCE interface for all
cryptographic operations.

However, for ASN.1 parsing you should continue to use the Oracle Crypto
library, as there are no standard APIs in the JDKs for that task.

For more information, see these resources:

• JDK documentation on using the JCE interfaces at http://
www.oracle.com/technetwork/java/index.html

• Migrating to the JCE Framework

This chapter contains the following topics:

• About Oracle Crypto Features and Benefits

• Setting Up Your Oracle Crypto Environment

• Understanding and Using Core Classes and Interfaces of Oracle Crypto

• The Oracle Crypto and Crypto FIPS Java API References

2.1 About Oracle Crypto Features and Benefits
Oracle Crypto supports public key cryptography algorithms, digital signature
algorithms, key exchange algorithms, symmetric cryptography algorithms, message
digest algorithms, MAC algorithms, and methods for building and parsing ASN.1
objects.

Oracle Crypto provides the following features:

• Public key cryptography algorithms such as RSA

• Digital signature algorithms such as DSA and RSA

• Key exchange algorithms such as Diffie-Hellman

• Symmetric cryptography algorithms such as Blowfish, AES, DES, 3DES, RC2, and
RC4

• Message digest algorithms such as MD2, MD4, MD5, SHA-1, SHA-256, SHA-384,
and SHA-512

• MAC algorithms such as HMAC-MD5 and HMAC-SHA-1
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• Methods for building and parsing ASN.1 objects

2.2 About the Oracle Crypto Packages
Oracle Crypto contains packages of basic cryptographic primitives, utility classes for
handling mathematical functions, various other utility classes, and facilities for reading
and writing both BER-encoded and DER-encoded ASN.1 structures.

Oracle Crypto contains the following packages:

• oracle.security.crypto.core - Basic cryptographic primitives

• oracle.security.crypto.core.math - Utility classes for handling mathematical
functions

• oracle.security.crypto.util - Various utility classes

• oracle.security.crypto.asn1 - Facilities for reading and writing both BER-
encoded and DER-encoded ASN.1 structures

2.3 Setting Up Your Oracle Crypto Environment
In order to use the Oracle Crypto SDK, your system must have the Java Development
Kit (JDK) version 1.6 or higher. Your CLASSPATH environment variable must contain the
full path and file names to the required jar and class files.

Make sure that the osdt_core.jar file is included in your CLASSPATH.

For example, your CLASSPATH might look like this:

%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar

See Also:

Setting the CLASSPATH Environment Variable

2.4 Understanding and Using Core Classes and Interfaces
of Oracle Crypto

Oracle Crypto consists of multiple core classes and interfaces in the categories of Key
Classes, Key Generation Classes, Cipher Classes, Signature Classes, Message
Digest Classes, Key Agreement Class, and Pseudo-Random Number Generator
Classes.

This section provides information and code samples for using the core classes and
interfaces of Oracle Crypto. The following sections explain it further:

• About Oracle Crypto Key Classes

• Using the Oracle Crypto Key Generation Classes

• Using Oracle Crypto Cipher Classes

• Using the Oracle Crypto Signature Classes
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• Using Oracle Crypto Message Digest Classes

• Using the Oracle Crypto Key Agreement Class

• Using Oracle Crypto Pseudo-Random Number Generator Classes

2.4.1 About Oracle Crypto Key Classes
Oracle Crypto provides multiple classes and interfaces to work with keys.

These classes and interfaces are:

• The oracle.security.crypto.core.Key Interface

• The oracle.security.crypto.core.PrivateKey Interface

• The oracle.security.crypto.core.PublicKey Interface

• The oracle.security.crypto.core.SymmetricKey Class

2.4.1.1 The oracle.security.crypto.core.Key Interface
This interface represents a key which may be used for encryption or decryption, for
generating or verifying a digital signature, or for generating or verifying a MAC. A key
may be a private key, a public key, or a symmetric key.

2.4.1.2 The oracle.security.crypto.core.PrivateKey Interface
This interface represents a private key which may be an RSAPrivateKey, a
DSAPrivateKey, a DHPrivateKey, an ECPrivateKey or a PrivateKeyPKCS8 instance that
holds an encrypted private key.

2.4.1.3 The oracle.security.crypto.core.PublicKey Interface
This interface represents a public key which may be a RSAPublicKey, a DSAPublicKey,
a DHPublicKey or a ECPublicKey instance.

2.4.1.4 The oracle.security.crypto.core.SymmetricKey Class
This class represents a symmetric key which may be used for encryption, decryption
or for MAC operations.

2.4.2 Using the Oracle Crypto Key Generation Classes
Oracle Crypto provides classes for key generation.

These classes are:

• Using the oracle.security.crypto.core.KeyPairGenerator Class

• Using the oracle.security.crypto.core.SymmetricKeyGenerator Class

2.4.2.1 Using the oracle.security.crypto.core.KeyPairGenerator Class
This abstract class is used to generate key pairs such as RSA, DSA, Diffie-Hellman or
ECDSA key pairs.
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To get a new key pair generator, create a new instance of KeyPairGenerator by
calling the static getInstance() method with an AlgorithmIdentifier object as a
parameter. This example shows how to create a new KeyPairGenerator instance:

KeyPairGenerator kpg = KeyPairGenerator.getInstance(AlgID.rsaEncryption);

This creates a KeyPairGenerator object from one of the concrete classes:
RSAKeyPairGenerator, DSAKeyPairGenerator, DHKeyPairGenerator, or
ECKeyPairGenerator.

Initialize the key pair generator by using one of the initialize() methods. Generate
the key pair with the generateKeyPair() method. This example shows how to initialize
the key pair generator and then generate a key pair:

kpg.initialize(1024, RandomBitsSource.getDefault());
KeyPair kp = kpg.generateKeyPair();
PrivateKey privKey = kp.getPrivate();
PublicKey pubKey = kp.getPublic();

Save the keys using the output() method, or in the case of the private key, encrypt it
and save it using the PrivateKeyPKCS8 class. This example shows how to save a key
pair.

FileOutputStream pubKeyFos = new
FileOutputStream("my-pub-key.der");
pubKey.output(pubKeyFos);
pubKeyFos.close();

PrivateKeyPKCS8 privKeyPKCS8 = 
    new PrivateKeyPKCS8(privKey, "myPassword");
FileOutputStream privKeyFos = 
    new FileOutputStream("my-encrypted-priv-key.der");
privKeyPKCS8.output(privKeyFos);
privKeyFos.close();

2.4.2.2 Using the oracle.security.crypto.core.SymmetricKeyGenerator Class
This class generates symmetric key pairs such as Blowfish, DES, 3DES, RC4, RC2,
AES, and HMAC keys.

To get a new symmetric key generator, create a new instance of
SymmetricKeyGenerator by calling the static getInstance() method with an
AlgorithmIdentifier object as a parameter. This example shows how to create a
new SymmetricKeyGenerator instance:

SymmetricKeyGenerator skg = SymmetricKeyGenerator.getInstance(AlgID.desCBC);

Generate the key pair with the generateKey() method. You can then save the key by
using the getEncoded() method. This example shows how to generate and save a
symmetric key pair.

SymmetricKey sk = skg.generateKey();

FileOutputStream symKeyFos = 
    new FileOutputStream("my-sym-key.der");
symKeyFos.write(sk.getEncoded());
symKeyFos.close();
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2.4.3 Using Oracle Crypto Cipher Classes
Oracle Crypto provides classes for symmetric ciphers, RSA cipher, and methods for
password based encryption.

The Oracle Crypto Cipher classes and interfaces are divided into the following
categories:

• Using Symmetric Ciphers

• Using the RSA Cipher

• Using Password Based Encryption (PBE)

2.4.3.1 Using Symmetric Ciphers
The symmetric ciphers are made up of two categories: the block ciphers (such as
Blowfish, DES, 3DES, RC2, and AES) and the stream ciphers (such as RC4).

A symmetric cipher can be used for four types of operations:

• Encryption of raw data. Use one of the encrypt() methods by passing data to be
encrypted.

• Decryption of encrypted data. Use one of the decrypt() methods by passing
encrypted data to be decrypted.

• Wrapping of private or symmetric keys. Use one of the wrapKey() methods by
passing the private or symmetric key to be encrypted.

• Unwrapping of private or symmetric encrypted keys. Use either the
unwrapPrivateKey() or the unwrapSymmetricKey() method by passing the
encrypted private or symmetric key to be decrypted.

The concrete block cipher classes extend the abstract
oracle.security.crypto.core.BlockCipher class, which extends the
oracle.security.crypto.core.Cipher class. The stream cipher classes directly
extend the oracle.security.crypto.core.Cipher class.

To create a new instance of Cipher, call the static getInstance() method with an
AlgorithmIdentifier and a Key object as parameters.

This example shows how to create a new Cipher instance. First an RC4 object is
created and initialized with the specified key. Second a block cipher DES object is
created and initialized with the specified key and padding. This creates a cipher and
initializes it with the passed parameters. To re-initialize an existing cipher, call one of
the initialize() methods.

Cipher rc4 = Cipher.getInstance(AlgID.rc4, rc4SymKey);

Cipher desCipher = Cipher.getInstance(AlgID.desCBC, desSymKey, Padding.PKCS5);

When using CBC ciphers, the AlgorithmIdentifier object may hold cryptographic
parameters such as the initialization vector (IV) or the effective key length for RC2
ciphers. To specify these parameters when creating or initializing block ciphers, build a
CBCAlgorithmIdentifier object or RC2AlgorithmIdentifier object with the
cryptographic parameters. This example shows how to create and initialize a CBC
cipher and a RC2 cipher.
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CBCAlgorithmIdentifier cbcAlgID = 
    new CBCAlgorithmIdentifier(AlgID.desCBC, iv);
desCipher.initialize(cbcAlgID, desSymKey, Padding.PKCS5);
RC2AlgorithmIdentifier rc2AlgID = 
    new RC2AlgorithmIdentifier(iv, 56);
BlockCipher rc2Cipher = 
    (BlockCipher)Cipher.getInstance(rc2AlgID, rc2SymKey, Padding.PKCS5);

2.4.3.2 Using the RSA Cipher
The RSA cipher is an implementation of PKCS#1 v2.0 that supports the RSAES-
OAEP and RSAES-PKCS1-v1_5 encryption schemes. According to the specification,
RSAES-OAEP is recommended for new applications, and RSAES-PKCS1-v1_5 is
included only for compatibility with existing applications and protocols.

The encryption schemes are used to combine RSA encryption and decryption
primitives with an encoding method. Encryption and decryption can only be done
through the methods encrypt(byte[]) and decrypt(byte[]).

You can use an RSA cipher for four types of operations:

• Encryption of raw data. Use one of the encrypt() methods by passing data to be
encrypted.

• Decryption of encrypted data. Use one of the decrypt() methods by passing
encrypted data to be decrypted.

• Wrapping of keys. Use the wrapKey() method by passing the key to be encrypted.

• Unwrapping of encrypted keys. Use the unwrapSymmetricKey() method by
passing the encrypted key to be decrypted.

To create a new instance of Cipher, call the static getInstance() method with
AlgorithmIdentifier and Key objects as parameters. This example demonstrates
how to create an RSApkcs1 object and initialize it with the specified key. The cipher can
then be used to encrypt or decrypt data.

Cipher rsaEnc = Cipher.getInstance(AlgID.rsaEncryption, pubKey);
byte[] encryptedData = rsaEnc.encrypt(data);
Cipher rsaDec = Cipher.getInstance(AlgID..rsaEncryption, privKey);
byte[] decryptedData = rsaDec.decrypt(encryptedData);

When using RSA ciphers, the AlgorithmIdentifier object may hold cryptographic
parameters such as the mask generation function for RSAES-OAEP. To specify these
parameters when creating or initializing RSA ciphers, build an
OAEPAlgorithmIdentifier, or use the default one located in the
oracle.security.crypto.core.AlgID interface.

2.4.3.3 Using Password Based Encryption (PBE)
The abstract oracle.security.crypto.core.PBE class provides methods for
Password Based Encryption (PBE) operations. The concrete classes extending the
PBE are the PKCS5PBE and PKCS12PBE classes.

You may use a PBE object for four types of operations:

• Encryption of raw data. For example:

byte[] encData = pbeEnc.encrypt("myPassword", data);
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• Decryption of encrypted data. For example:

byte[] decData = pbeDec.decrypt("myPassword", encData);

• Wrapping of private or symmetric keys. For example:

byte[] encPrivKey = pbeEnc.encryptPrivateKey("myPassword", privKey);
byte[] encSymKey = pbeEnc.encryptSymmetricKey("myPassword", symKey);

• Unwrapping of private or symmetric encrypted keys. For example:

PrivateKey decPrivKey = pbeDec.decryptPrivateKey("myPassword", encPrivKey);
SymmetricKey decSymKey = pbeDec.decryptSymmetricKey("myPassword", encSymKey);

To create a new instance of PBE, call the static getInstance() method with a
PBEAlgorithmIdentifier object as a parameter. For example:

PBE pbeEnc = PBE.getInstance(pbeAlgID);

This will create a PKCS5PBE object and initialize it with the specified PBE algorithm. The
PBE can then be used to encrypt or decrypt data, wrap or unwrap keys.

When using PBE objects, the AlgorithmIdentifier object may hold cryptographic
parameters such as the salt or the iteration count as well as the ASN.1 Object
Identifier specifying the PBE algorithm to use. To specify these parameters when
creating or initializing PBEs, build a PBEAlgorithmIdentifier object with the
cryptographic parameters.

Here is an example of creating a PBE object:

PBEAlgorithmIdentifier pbeAlgID = 
    new PBEAlgorithmIdentifier(PBEAlgorithmIdentifier.pbeWithMD5AndDES_CBC, salt, 
1024);
pbeEnc.initialize(pbeAlgID);
PBE pbeDec = PBE.getInstance(pbeAlgID);

2.4.4 Using the Oracle Crypto Signature Classes
The oracle.security.crypto.core.Signature abstract class provides methods to
sign and verify signatures. The concrete classes extending the Signature class are
the RSAMDSignature, DSA and the ECDSA classes.

The algorithms available for signature operations are:

• For RSA: AlgID.md2WithRSAEncryption, AlgID.md5WithRSAEncryption and
AlgID.sha_1WithRSAEncryption

• For DSA: AlgID.dsaWithSHA1

• For ECDSA: AlgID.ecdsaWithSHA1

To create a new instance of Signature, call the static getInstance() method with an
AlgorithmIdentifier and a PrivateKey or PublicKey objects as parameters. This
example shows how to create a new Signature object and initialize it with the
specified algorithm.

Signature rsaSign = Signature.getInstance(AlgID.md5WithRSAEncryption);
Signature rsaVerif = Signature.getInstance(AlgID.md5WithRSAEncryption);

This example shows how to set the keys for the Signature objects and set the
document to be signed or verified.
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rsaSign.setPrivateKey(privKey);
rsaSign.setDocument(data);
rsaVerif.setPublicKey(pubKey);
rsaVerif.setDocument(data);

This example shows how to compute the signature using the private key or to verify
the signature using the public key and the signature bytes.

byte[] sigBytes = rsaSign.sign();
boolean verified = rsaVerif.verify(sigBytes);

2.4.5 Using Oracle Crypto Message Digest Classes
Oracle Crypto contains message digest classes to hash, digest and compute data.

Oracle Crypto provides the following message digest classes:

• Using the oracle.security.crypto.core.MessageDigest Class

• Using the oracle.security.crypto.core.MAC Class

2.4.5.1 Using the oracle.security.crypto.core.MessageDigest Class
The MessageDigest abstract class provides methods to hash and digest data. The
concrete classes extending the MessageDigest class are the MD2, MD4, MD5 and the SHA
classes.

The available algorithms for message digest operations are: AlgID.md2, AlgID.md4,
AlgID.md5, AlgID.sha_1, AlgID.sha_256, AlgID.sha_384 and AlgID.sha_512.

The basic process for creating a message digest is as follows:

1. Create a new instance of MessageDigest by calling the static getInstance()
method with an AlgorithmIdentifier object as a parameter.

2. Add the data to be digested.

3. Compute the hash value.

This example shows how to create an MD5 message digest object.

//Create a new MD5 MessageDigest object
MessageDigest md5 = Signature.getInstance(AlgID.md5);

//Add the data to be digested
md5.udpate(data1);
md5.udpate(data2);

//Compute the hash value
md5.computeCurrent();
byte[] digestBits = md5.getDigestBits();

2.4.5.2 Using the oracle.security.crypto.core.MAC Class
The MAC abstract class provides methods to compute and verify a Message
Authentication Code (MAC). The concrete class extending the MAC is the HMAC class.

The available algorithms for MAC operations are: AlgID.hmacMD5 and AlgID.hmacSHA.

The basic process for creating a MAC is as follows:
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1. Create a new instance of MAC by calling the static getInstance() method with an
AlgorithmIdentifier and a SymmetricKey object as a parameter.

2. Add the data to be digested.

3. Compute the MAC value and verify it.

This example shows how to create a new HMAC object with the HMAC-SHA1
algorithm.

//Create an HMAC object with the HMAC-SHA1 algorithm
MAC hmacSha1Compute = MAC.getInstance(AlgID.hmacSHA, hmacSha1Key);

//Add the data to be digested
hmacSha1Compute.udpate(data);

//Compute the MAC value and verify
byte[] macValue = hmacSha1Compute.computeMAC();
boolean verified = hmacSha1Verify.verifyMAC(data, macValue);

2.4.6 Using the Oracle Crypto Key Agreement Class
The oracle.security.crypto.core.KeyAgreement class abstract class provides
methods for public key agreement schemes such as Diffie-Hellman. The concrete
classes extending the KeyAgreement class are the DHKeyAgreement and the
ECDHKeyAgreement classes.

The available algorithms for key agreement operations are: AlgID.dhKeyAgreement
and ECDHKeyAgreement (Elliptic Curve Diffie-Hellman key agreement).

The basic process for key agreement is as follows:

1. Create a new instance of KeyAgreement by calling the static getInstance()
method with an AlgorithmIdentifier object as a parameter.

2. Set the local private key and the other party's public key.

3. Compute the shared secret value.

This example shows how to perform key agreement.

//Create a DH key agreement object
KeyAgreement dh = KeyAgreement.getInstance(AlgID.dhKeyAgreement);

//Set the private key and public key
dh.setPrivateKey(privKey);
dh.setPublicKey(otherPubKey);

//Compute the shared secret
byte[] sharedSecret = dh.generateSecret();

2.4.7 Using Oracle Crypto Pseudo-Random Number Generator
Classes

In cryptography, random numbers are used to generate keys. Cryptographic systems
need cryptographically strong (pseudo) random numbers that cannot be guessed by
an attacker. Oracle Crypto provides pseudo-random number generator (PRNG)
classes.

These pseudo-random number generator (PRNG) classes are:
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• Using the oracle.security.crypto.core.RandomBitsSource class

• Using the oracle.security.crypto.core.EntropySource class

2.4.7.1 Using the oracle.security.crypto.core.RandomBitsSource class
RandomBitsSource is an abstract class representing secure PRNG implementations.
Note that, by the very nature of PRNGs, the security of their output depends on the
amount and quality of seeding entropy used. Implementing classes should provide
guidance as to their proper initialization and use. The concrete classes extending the
RandomBitsSource are the MD5RandomBitsSource, SHA1RandomBitsSource, and the
DSARandomBitsSource classes.

Create a new instance of RandomBitsSource by calling the static getDefault()
method to return the default PRNG:

RandomBitsSource rbs = RandomBitsSource.getDefault();

A RandomBitsSource object can also be created by instantiating one of the subclasses:

RandomBitsSource rbs = new SHA1RandomBitsSource();

By default, a newly created PRNG created from a subclass will be seeded. To seed a
generic RandomBitsSource object, use one of the seed methods by using a byte array
or an EntropySource object:

rbs.seed(myByteArray);

The object is then ready to generate random data:

rbs.randomBytes(myRandomByteArray);

2.4.7.2 Using the oracle.security.crypto.core.EntropySource class
The EntropySource class provides a source of seed material for the PRNGs. The
concrete classes extending the EntropySource are the SpinnerEntropySource and
SREntropySource classes.

Create a new instance of EntropySource by calling the static getDefault() method to
return the default entropy source:

EntropySource es = EntropySource.getDefault();

You can also create an EntropySource object by instantiating one of the subclasses:

EntropySource rbs = new SpinnerEntropySource();

The entropy source is readied for use by using one of the generateByte methods:

es.generateBytes(mySeedingArray);
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2.5 The Oracle Crypto and Crypto FIPS Java API
References

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
guide explains the classes and methods for Oracle Crypto and Oracle Crypto FIPS.

You can access this guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
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3
Oracle Security Engine

Oracle Security Engine Software Development Kit (SDK) is a superset of Oracle
Crypto. It contains all of the libraries and tools provided with Oracle Crypto, plus
additional packages and utilities for generating digital certificates.

Note:

The use of the Oracle Security Engine library is not recommended with
Release 11gR1 and higher. Instead use the JDK's Certificate APIs.

For details, see the JDK documentation at:

http://www.oracle.com/technetwork/java/index.html

However, the following Public-Key Cryptography Standards (PKCS) have no
JCE equivalents:

• PKCS#7

• PKCS#10

• Signed Public Key And Challenge (SPKAC)

and you can continue using Oracle Security Engine for these features.

Oracle Crypto allows Java developers to develop applications that ensure data
security and integrity. For more information about the Oracle Crypto functionality, see "
Oracle Crypto ".

For an overview of public key infrastructure, see "About Public Key Infrastructure
(PKI)".

This chapter contains the following topics:

• Oracle Security Engine Features and Benefits

• Setting Up Your Oracle Security Engine Environment

• Core Classes and Interfaces of Oracle Security Engine

• The Oracle Security Engine Java API Reference

3.1 Oracle Security Engine Features and Benefits
Oracle Security Engine supports X.509, PKCS#10, and PKCS#12 certificates, along
with RDN and CRLs. It contains packages to support handling of digital certificates,
CRLs, and PKCS#12. The packages also handle Standard X.509 certificates and CRL
extensions.

Oracle Security Engine provides the following features:
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• X.509 Version 3 Certificates, as defined in RFC 3280

• Full PKCS#12 support

• PKCS#10 support for certificate requests

• certificate revocation list (CRL) functionality as defined in RFC 3280

• Implementation of Signed Public Key And Challenge (SPKAC)

• Support for X.500 Relative Distinguished Names

• PKCS#7 support for wrapping X.509 certificates and CRLs

• Implementation of standard X.509 certificates and CRL extensions

The Oracle Security Engine toolkit contains the following packages:

• oracle.security.crypto.cert - Facilities for handling digital certificates, CRLs,
and PKCS#12.

• oracle.security.crypto.cert.ext - Standard X.509 certificates and CRL
extensions.

3.2 Setting Up Your Oracle Security Engine Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME. In order to use Oracle Security Engine, your system must have the Java
Development Kit (JDK) version 1.6 or higher. Your CLASSPATH environment variable
must contain the full path and file names to the required jar and class files.

Make sure the following items are included in your CLASSPATH:

• osdt_core.jar

• osdt_cert.jar

For example, your CLASSPATH might look like this:

%CLASSPATH%;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;

See Also:

Setting the CLASSPATH Environment Variable

3.3 Core Classes and Interfaces of Oracle Security Engine
Oracle Security Engine also includes all of the classes provided with Oracle Crypto. It
also includes multiple core certificate facility classes.

Class Changes in Release 11gR1

In Release 11gR1, the oracle.security.crypto.cert.X509 class for certificate
management was replaced with java.security.cert.X509Certificate
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The Core Certificate Classes

The core certificate facility classes are:

• Using the oracle.security.crypto.cert.X500RDN Class

• Using the oracle.security.crypto.cert.X500Name Class

• Using the oracle.security.crypto.cert.CertificateRequest Class

• Using the java.security.cert.X509Certificate Class

3.3.1 Using the oracle.security.crypto.cert.X500RDN Class
The oracle.security.crypto.cert.X500RDN class represents an X.500 Relative
Distinguished Name (RDN). This is the building block for X.500 names. A RDN
consists of a set of attribute-value pairs. Typically, there is a single attribute-value pair
in each RDN.

// Create the X500RDN object
X500RDN rdn = new X500RDN(PKIX.id_at_commonName, "Joe Smith");

// Retrieve the value
X500Name n = Instance of oracle.security.crypto.cert.X500Name;
String name = n.getAttribute(PKIX.id_at_commonName).getValue().getValue();

3.3.2 Using the oracle.security.crypto.cert.X500Name Class
The oracle.security.crypto.cert.X500Name class represents distinguished names as
used in the X.500 series of specifications, defined in X.520. An X500Name object is
made of X500RDN objects. An X500Name holds attributes defining an entity such as the
common name, country, organization, and so on.

To create an X500Name object, use the standard constructor and then populate the
object with attributes. Once created, the object can then be DER-encoded to make it
available to other processes:

X500Name name = new X500Name();
name.addComponent(PKIX.id_at_commonName, "Joe Smith");
name.addComponent(PKIX.id_at_countryName, "USA");
name.addComponent(PKIX.id_at_stateOrProvinceName, "NY");
name.addComponent(PKIX.id_at_localityName, "New York");
name.addComponent(PKIX.id_at_organizationName, "Oracle");
name.addComponent(PKIX.id_at_organizationalUnitName, "Engineering");
name.addComponent(PKIX.emailAddress, "joe.smith@example.com");

// Make object DER-encoded so its available to other processes 

byte[] encodedName = Utils.toBytes(name);
X500Name n = new X500Name(new ByteArrayInputStream(encodedName));
String name = n.getAttribute(PKIX.id_at_commonName).getValue().getValue();
String email = n.getAttribute(PKIX.emailAddress).getValue().getValue();

3.3.3 Using the oracle.security.crypto.cert.CertificateRequest Class
The oracle.security.crypto.cert.CertificateRequest class represents a PKCS#10
certificate request containing information about an entity and a signature of the content
of the request. The certificate request is used to convey information and authentication
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data (the signature) that will be used by a Certificate Authority (CA) to generate a
certificate for the corresponding entity.

Creating a new certificate request involves the following high-level steps:

1. Create a new instance of CertificateRequest by using the empty constructor and
setting the keys and the subject name, or by using the constructor taking an
X500Name and a KeyPair object.

2. Add X.509 extensions to the certificate request.

3. Sign the certificate request and save it to a file.

4. Send the certificate request you created to a Certificate Authority.

//Create CertificateRequest by setting the keys and subject name
 CertificateRequest certReq = new CertificateRequest();
 certReq.setPrivateKey(privKey);
certReq.setPublicKey(pubKey);
 certReq.setSubject(subjectName);

//OR

// Create CertificateRequest by taking an X500Name and KeyPair object
CertificateRequest certReq = new CertificateRequest(subjectName, keyPair);

// Add X.509 certificate extensions in a extensionRequest attribute
X509ExtensionSet extSet = new X509ExtensionSet();

// Basic Constraints: non-CA, critical
extSet.addExtension(new BasicConstraintsExtension(false, true));

// Key Usage: signature, data encipherment, key agreement 
// & non-repudiation flags, critical
extSet.addExtension(new KeyUsageExtension(new int[] {
     KeyUsageExtension.DIGITAL_SIGNATURE,
     KeyUsageExtension.DATA_ENCIPHERMENT,
     KeyUsageExtension.KEY_AGREEMENT,
     KeyUsageExtension.NON_REPUDIATION},
        true));

// Subject Alternative Name: email address, non-critical
if (email.length() > 0)
    extSet.addExtension(new SubjectAltNameExtension(
        new GeneralName(GeneralName.Type.RFC822_NAME, email), false));

// Subject Key Identifier: key ID bytes, non-critical
extSet.addExtension(new SubjectKeyIDExtension
    (CryptoUtils.generateKeyID(kp.getPublic())));
req.addAttribute(PKIX.extensionRequest, extSet);

// Sign the certificate request and save to file
req.sign();
req.output(reqOS);
reqOS.close();
    }
// The certificate request can then be sent to a CA
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3.3.4 Using the java.security.cert.X509Certificate Class
The java.security.cert.X509Certificate class supports the generation of new certificates
as well as parsing of existing certificates.

Note:

This class replaces oracle.security.crypto.cert.X509 for X.509 certificate
management in Oracle WebLogic Server 11g.

Complete documentation of the java.security.cert.X509Certificate class is available at 
http://www.oracle.com/technetwork/java/index.html.

Converting Your Code to Use java.security.cert.X509Certificate

You can create the X509Certificate object using the certificate factory
java.security.cert.CertificateFactory.

The certificate is generated from an input stream, which can be:

• a FileInputSream, if the certificate is stored in a file, or

• a ByteArrayInputStream, if the encoded bytes are from an existing X509 object, or

• any other source.

An example follows:

// Generating an X.509 certificate from a file-based certificate
                  
CertificateFactory cf = CertificateFactory.getInstance("X.509");
     
X509Certificate cert = (X509Certificate)cf.generateCertificate(
                       new FileInputStream(certFileName);

**

3.4 The Oracle Security Engine Java API Reference
Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
guide explains the classes and methods of Oracle Security Engine.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
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4
Oracle CMS

The Oracle CMS SDK is a pure Java API with an extensive set of tools for reading and
writing CMS objects, sample programs, and supporting tools for developing secure
message envelopes.

This chapter contains these topics:

• Oracle CMS Features and Benefits

• Setting Up Your Oracle CMS Environment

• Understanding and Developing Applications with Oracle CMS

• The Oracle CMS Java API Reference

4.1 Oracle CMS Features and Benefits
The Oracle CMS SDK is a pure Java API with an extensive set of tools for reading and
writing CMS objects, sample programs, and supporting tools for developing secure
message envelopes. It implements the IETF Cryptographic Message Syntax specified
in RFC 2630. This syntax is used to digitally sign, digest, authenticate, and encrypt
messages.

The Cryptographic Message Syntax is derived from PKCS #7 version 1.5 as specified
in RFC 2315 [PKCS#7].

See Also:

References for a link to the specifications.

4.1.1 Content Types in Oracle CMS
Oracle CMS supports various content types including signed, enveloped, encrypted,
and other data. It supports all the content types specified in RFC-2630. It supports the
Enhanced Security Services for S/MIME content type specified in RFC-2634. It also
supports IETF PKIX TimeStamp Protocol content type corresponding to RFC-3161.

Table 4-1    Content Types Supported by Oracle CMS

Type Identifier

data 1.2.840.113549.1.7.1

signed-data 1.2.840.113549.1.7.2

enveloped-data 1.2.840.113549.1.7.3

digested-data 1.2.840.113549.1.7.5

encrypted-data 1.2.840.113549.1.7.6
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Table 4-1    (Cont.) Content Types Supported by Oracle CMS

Type Identifier

authenticated-data 1.2.840.113549.1.9.16.1.2

Oracle CMS is a full implementation of RFC-2630 with these exceptions:

• There is no support for Attribute Certificates

• There is no support for Key Agreement RecipientInfo

Oracle CMS supports the following Enhanced Security Services for S/MIME content
type specified in RFC-2634:

Type Identifier

receipt 1.2.840.113549.1.9.16.1.2

The following IETF PKIX TimeStamp Protocol content type corresponding to RFC
3161 is supported:

Type Identifier

TSTInfo 1.2.840.113549.1.9.16.1.4

Note:

Oracle CMS will not process a content type other than the ones specified
earlier.

A link to RFC 3161 is available in References.

4.1.2 Differences Between Oracle CMS Implementation and RFCs
Oracle CMS differs from PKCS #7 v1.5 [RFC 2315] and IETF CMS [RFC 2630] in
certain ways. You must know these differences if you require interoperability with
PKCS#7 implementations.

The following are the differences:

• The enveloped-data contains an optional OriginatorInfo.

• In RFC 2630 Enveloped data also contains optional unprotected attributes.

• The SignerIdentifier in the signed-data SignerInfo is a choice of
IssuerAndSerialNo or SubjectKeyIdentifier.

• In RFC 2630 the Signed Data contains encapsulatedcontentinfo, which contains
an optional content, whereas RFC 2315 contains content data.
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Note:

You must keep these differences in mind if you require interoperability with
PKCS#7 implementations.

4.2 Setting Up Your Oracle CMS Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME. In order to use Oracle CMS, your system must have the Java
Development Kit (JDK) version 1.6 or higher. Your CLASSPATH environment variable
must contain the full path and file names to all of the required jar and class files.

Make sure the following items are included in your CLASSPATH:

• the osdt_core.jar file

• the osdt_cert.jar file

• the osdt_cms.jar file

For example, your CLASSPATH might look like this:

%CLASSPATH%;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cms.jar;

4.3 Understanding and Developing Applications with Oracle
CMS

The Oracle CMS API enables you to build nested (wrapped) CMS objects with no limit
on the number of wrappings. Through different approaches, you can use Oracle CMS
classes to develop CMS objects.

In this section we introduce Oracle CMS classes, and explain how they enable you to
take different approaches to developing CMS objects, and describe how to work with
the objects.

This section contains these topics:

• About Oracle CMS Classes

• About CMS Object Types

• Constructing CMS Objects using the CMS***ContentInfo Classes

• CMS Objects using the CMS***Stream and CMS***Connector Classes

4.3.1 About Oracle CMS Classes
The Oracle CMS classes provides the ability to read and write CMS objects.

There are two approaches to reading and writing CMS objects with the
oracle.security.crypto.cms package:
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• Using the CMSContentInfo classes, which are relatively easy to utilize

• Using one of the following classes:

– CMSInputStream

– CMSOutputStream

– CMSInputConnector

– CMSOutputConnector

These classes provide the ability to read and write CMS objects in a single pass,
eliminating the need to accumulate the input data before writing any output.

4.3.2 About CMS Object Types
Detached object and Degenerate object are some CMS object types. A detached
object applies to data and receipt content types. A degenerate object is a certificate-
only signed-data object and is defined only for the signed-data content type.

A detached object applies to data and receipt content types. For these types, a
detached object is one where the protected content is absent.

Degenerate object refers to the case where the signed-data object has no signers. It is
normally used to store certificates and is associated with file extensions p7b and p7c.

An external signature is defined only for the signed-data content type. It is essentially a
detached signed-data object; that is, the signed-data object has one or more signers
but the content that was signed is not present in the signed-data object.

4.3.3 Constructing CMS Objects using the CMS***ContentInfo Classes
You can use the CMS***ContentInfo classes to read and write objects of the
appropriate content type, construct and process detached objects, and create nested
objects.

Table 4-2 lists the classes which make up the CMS***ContentInfo classes.

Table 4-2    CMS***ContentInfo Classes

Class Content Type

CMSDataContentInfo CMS.id_data

ESSReceipt CMS.id_ct_receipt (RFC-2634 receipt)

CMSDigestedDataContentInfo CMS.id_digestedData

CMSSignedDataContentInfo CMS.id_signedData

CMSEncryptedDataContentInfo CMS.id_encryptedData

CMSEnvelopedDataContentInfo CMS.id_envelopedData

CMSAuthenticateDataContentInfo CMS.id_ct_authData

A detailed discussion of CMS***ContentInfo classes follows in these sections:

• Using the Abstract Base Class CMSContentInfo

• Using the CMSDataContentInfo Class

• Using the ESSReceipt Class
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• The CMSDigestedDataContentInfo Class

• The CMSSignedDataContentInfo Class

• Using the CMSEncryptedDataContentInfo Class

• Understanding and Using the CMSEnvelopedDataContentInfo Class

4.3.3.1 Using the Abstract Base Class CMSContentInfo
CMSContentInfo is an abstract class representing a fundamental CMS object. 
Table 4-2 lists the subclasses of CMSContentInfo.

Some of the useful methods of this abstract class are described in Table 4-3.

Table 4-3    Useful Methods of CMSContentInfo

Method Description

contentTypeName
(oracle.security.crypto.asn1.ASN1ObjectID
contentType)

Returns the content type of the object as a
string.

getContentType() Returns the content type of the object as an
object identifier (OID).

input(java.io.InputStream is) Initializes this object by reading a BER
encoding from the specified input stream.

inputInstance(java.io.InputStream is) Creates a new CMSContentInfo object by
reading a BER encoding from the specified
input stream.

isDegenerate() Indicates if the object is degenerate.

isDetached() Indicates if the object is detached.

output(java.io.OutputStream os) Writes the encoding of the object to the given
output stream.

4.3.3.1.1 Constructing a CMS Object

You can create a CMSContentInfo object by specifying the content type.

Perform the following steps to construct a CMS object:

1. Create the object of the specified content type.

2. Initialize the object.

3. Call the output(..) method to write the object encoding.

To create a new object, use one of the constructors of the concrete subclass with
which you are working.

4.3.3.1.2 Reading a CMS Object

If you are reading in an existing CMSContentInfo, but you do not know the concrete
type in advance, use inputInstance(). To read in one of a known concrete type, use
the no-args constructor and then invoke the input() method.

Perform the following steps to read an object:
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1. Call CMSContentInfo.inputInstance(..) to read in the object.

2. Call getContentType() to determine its content type.

3. You can now invoke the content type-specific operations.

4.3.3.2 Using the CMSDataContentInfo Class
The class CMSDataContentInfo represents an object of type id-data as defined by the
constant CMS.id_data, and is intended to refer to arbitrary octet strings whose
interpretation is left up to the application.

A useful method of this class is:

byte[] getData()

which returns the data stored in the data object.

To create a CMS data object:

1. Create an instance of CMSDataContentInfo using the constructor that takes a byte
array, documentBytes, that contains the information:

CMSDataContentInfo exdata =
    new CMSDataContentInfo(byte[] documentBytes)

2. Write the data object to a file, for example data.p7m:

exdata.output(new FileOutputStream("data.p7m"));

The steps you use when reading a CMS data object depend on whether you know the
object's content type.

1. Open a connection to the file using FileInputStream.

If you know that the object stored in the file data.p7m is of content type id-data:

CMSDataContentInfo exdata =
    new CMSDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance, check the type prior to
reading:

CMSContentInfo cmsdata =
    CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));
if (cmsdata instanceof CMSDataContentInfo)
{
   CMSDataContentInfo exdata =  (CMSDataContentInfo) cmsdata;
   // .....
}

2. To access the information stored in the CMS data object:

byte[] docBytes = exdata.getData();

4.3.3.3 Using the ESSReceipt Class
Class ESSReceipt represents an object of type id-ct-receipt as defined by the constant
CMS.id_ct_receipt, and refers to an RFC-2634 receipt.

Table 4-4 lists some useful methods of this class.
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Table 4-4    Useful Methods of ESSReceipt

Method Description

byte[] getOriginatorSignatureValue() Returns the signature value of the message that
triggered the generation of this receipt.

ASN1ObjectID getReceiptContentType() Returns the content type of the message that
triggered the generation of this receipt.

byte[] getReceiptData() Returns the encoded receipt.

byte[] getSignedContentIdentifier() Returns the signed content identifier of the
message that triggered the generation of this
receipt.

void inputContent(InputStream is) Initialize this object by reading the BER
encoding from the specified input stream.

4.3.3.3.1 Creating an ESSReceipt Object

Take the following steps to create a CMS receipt object.

1. Create an instance of ESSReceipt using the constructor that takes a content type
identifier, a byte array containing the signed content identifier and a byte array
containing the originator signature value:

ESSReceipt rcpt =
    new ESSReceipt(contentType, signedContentIdentifier,
    originatorSignatureValue);

2. Write the receipt object to a file, for example data.p7m:

rcpt.output(new FileOutputStream("data.p7m"));

Note:

When you create an ESSReceipt object, do not leave any input parameters
set to null.

4.3.3.3.2 Reading an ESSReceipt Object

To read a receipt object:

1. Open a connection to the file using FileInputStream.

If you know that the object stored in the file data.p7m is of content type id-ct-
receipt:

ESSReceipt rcptdata = new ESSReceipt(new FileInputStream("data.p7m"));

Otherwise, if the content type is unknown:

CMSContentInfo cmsdata =
    CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));
if (cmsdata instanceof ESSReceipt)
{
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    ESSReceipt rcptdata =  (ESSReceipt) cmsdata;
    // .....
}

2. Access the information stored in the receipt object:

ASASN1ObjectID contentType = rcptdata.getReceiptContentType();
byte[] sciBytes = rcptdata.getSignedContentIdentifier()
byte[] osvBytes = rcptdata.getOriginatorSignatureValue();

4.3.3.4 The CMSDigestedDataContentInfo Class
The class CMSDigestedDataContentInfo represents an object of type id-digestedData
as defined by the constant CMS.id_digestedData.

Table 4-5 lists some of the useful methods of this class.

Table 4-5    Useful Methods of CMSDigestedDataContentInfo

Method Description

byte[] getDigest() Returns the message digest value.

AlgorithmIdentifier getDigestAlgID() Returns the message digest algorithm
ID.

CMSContentInfo getEnclosed() Returns the digested content.

ASN1ObjectID getEnclosedContentType() Returns the content type of the
digested content.

ASN1Integer getVersion() Returns the version number of this
object.

boolean isDetached() Indicates if this object is detached.

void setEnclosed(CMSContentInfo content) Sets the encapsulated content, that is,
the object that was originally digested.

void writeDetached(boolean writeDetached) Indicates if the object that is being
digested should be omitted when
creating the
CMSDigestedDataContentInfo object.

4.3.3.4.1 Constructing a CMS Digested-data Object

Take the following steps to create a CMS digested-data object.

1. Create an instance of CMSDigestedDataContentInfo using the constructor that
takes the object to be digested and the digest algorithm identifier. For example, if
contentInfo is a CMSDataContentInfo object and MD5 is the digest algorithm:

CMSDigestedDataContentInfo dig =
    new CMSDigestedDataContentInfo(contentInfo, CMS.md5);

2. Write the CMS digested-data object to a file named data.p7m.

dig.output(new FileOutputStream("data.p7m"));

4.3.3.4.2 Reading a CMS Digested-data Object
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The steps you need to read a CMS digested-data object depend on whether you
know the object's content type.

1. Open a connection to the data.p7m file using FileInputStream.

If you know that the object stored in the file is of content type id-digestedData,
open the connection as follows:

CMSDigestedDataContentInfo digdata =
    new CMSDigestedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance, open it as follows:

CMSContentInfo cmsdata =
    CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));
if (cmsdata instanceof CMSDigestedDataContentInfo)
{
    CMSDigestedDataContentInfo digdata =
        (CMSDigestedDataContentInfo) cmsdata;
    // .....
}

2. To access the information stored in the CMS digested-data object:

int version = digdata.getVersionNumber().intValue();
AlgorithmIdentifier digestAlgID = digdata.getDigestAlgID();
byte[] digestValue = digdata.getDigest();
CMSContentInfo digContentInfo = digData.getEnclosed()
if (digData.getEnclosedContentType().equals(CMS.id_data))
    CMSDataContentInfo contentInfo = (CMSDataContentInfo)digContentInfo;

3. To verify the integrity of the protected data, verify the digest:

digData.verify();

4.3.3.4.3 Working with Detached digested-data Objects

When working with a detached object, the object that is digested is not a part of the
resulting CMS digested-data structure. To generate a detached object, call the
writeDetached (true | false) method. For example:

dig.writeDetached(true);

While you can read in a detached CMS digested-data object as shown earlier, the
digest verification will fail because the original object that was digested is not present.
To resolve this, call the setEnclosed (CMScontentInfo) method to set the
digestedContent:

digdata.setEnclosed(CMScontentInfo object);

followed by digest verification:

digdata.verify();

4.3.3.5 The CMSSignedDataContentInfo Class
The class CMSSignedDataContentInfo represents an object of type id-signedData as
defined by the constant CMS.id_signedData.
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Oracle CMS supports a choice of IssuerAndSerialNo or SubjectKeyIdentifier for
use as the SignerIdentifier. For interoperability with PKCS #7 and S/MIME,
however, the IssuerAndSerialNo must be used as the SignerIdentifier.

Table 4-6 lists some useful methods of this class:

Table 4-6    Useful Methods of CMSSignedDataContentInfo

Method Description

void addCertificate(X509Certificate cert) Appends the given certificate to
the list of certificates which will be
included with this signed data
object.

void addCRL(CRL crl) Appends the given CRL to the list
of CRLs which will be included
with this signed data object.

void addSignature(AttributeSet authenticatedAttributes,
PrivateKey signerKey, X509Certificate signerCert,
AlgorithmIdentifier digestAlgID, AlgorithmIdentifier
digestEncryptionAlgID, AttributeSet
unauthenticatedAttributes)

Adds a signature using the
IssuerAndSerialNumber as the
SignerIdentifier, that is, a Version1
CMSSignerInfo.

void addSignature(AttributeSet authenticatedAttributes,
PrivateKey signerKey, X509Certificate signerCert,
AlgorithmIdentifier digestAlgID, AlgorithmIdentifier
digestEncryptionAlgID, AttributeSet
unauthenticatedAttributes, boolean useSPKI64)

Adds a signature using the
SubjectKeyIdentifier as the
SignerIdentifier; that is, a Version3
CMSSignerInfo.

void addSignerInfo(X509Certificate signerCert,
CMSSignerInfo signerInfo)

Adds a CMSSignerInfo to the list
of signers.

Vector getCertificates() Returns the list of certificates
included with this signed data
object.

Vector getCRLs() Returns the list of CRLs included
with this signed data object.

CMSContentInfo getEnclosed() Returns the signed document.

ASN1ObjectID getEnclosedContentType() Returns the content type of the
document which was signed.

CMSSignerInfo getSignerInfo(signerCert) Returns the CMSSignerInfo
corresponding to the certificate.

ASN1Integer getVersion() Returns the version number of this
object.

boolean isDegenerate() IIndicates if this is a degenerate
CMSSignedDataContentInfo
object (that is, has no SignerInfo
structures)

boolean isDetached() Indicates if this is a detached
object.

boolean isExternalSignature() Checks for the presence of
external signatures.

void setEnclosed(CMSContentInfo content) Sets the content which was
signed.
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Table 4-6    (Cont.) Useful Methods of CMSSignedDataContentInfo

Method Description

Enumeration signers() Returns the signatures on this
signed data object in the form of
an enumeration, each element of
which is an instance of
CMSSignerInfo.

void verify(CertificateTrustPolicy trustPolicy) Returns normally if this CMS
signed data object contains at
least one valid signature,
according to the given trust policy.

void verify(CertificateTrustPolicy
  trustPolicy,CMSContentInfo contentInfo)

Returns normally if this signed
data object contains at least one
valid signature, according to the
given trust policy.

void verifySignature(X509Certificate signerCert) Returns successfully if this signed
data object contains a signature
which is validated by the given
certificate.

void verifySignature(X509Certificate signerCert,
  CMSContentInfo contentInfo)

Returns successfully if this signed
data object contains a signature
which is validated by the given
certificate and data.

void writeExternalSignature(boolean
createExternalSignature)

Indicates if an external signature
must be created.

Users of RSA and DSA signature algorithms should note that the providers are
pluggable in the Oracle CMS implementation.

4.3.3.5.1 Constructing a CMS Signed-data Object

Follow these steps to create a CMS signed-data object:

1. Create an instance of CMSSignedDataContentInfo. For example, to create the
CMSSignedDataContentInfo object, pass the contentInfo object (the data that is to
be signed):

CMSSignedDataContentInfo sig =
    new CMSSignedDataContentInfo(contentInfo);

2. Add signatures:

CertificateFactory cf = CertificateFactory.getInstance("X.509");
X509Certificate envCert =  (X509Certificate)cf.generateCertificate(new 
FileInputStream("name1"));
PrivateKey signerKey =
    ...;

a. To add a signature using the IssuerAndSerialNo as the SignerIdentifier, MD5
digests and RSA Signature Algorithm:
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sig.addSignature(null, signerKey, signerCert, CMS.md5,
    CMS.rsaEncryption, null);

b. To add a signature using the 64 bit SubjectKeyIdentifier as the
SignerIdentifier, SHA-1 digests and DSS Signature Algorithm:

sig.addSignature(null, signerKey, signerCert, CMS.sha_1,
    CMS.dsaWithSHA, null, true);

c. To add a signature using the 160 bit SubjectKeyIdentifier as the
SignerIdentifier, SHA-1 digests and RSA Signature Algorithm:

sig.addSignature(null, signerKey, signerCert, CMS.sha_1,
    CMS.rsaEncryption, null, false);

3. Add any Certificates and CRLs:

sig.addCertificate (....)
sig.addCRL (...)

4. Write the CMS signed-data object to a file, for example data.p7m:

sig.output(new FileOutputStream("data.p7m"));

4.3.3.5.2 Reading a CMS Signed-data Object

The steps you need to read a CMS signed-data object depend on whether you know
the object's content type.

1. Open a connection to the data.p7m file using FileInputStream.

If you know that the object stored in the file is of content type id-signedData:

CMSSignedDataContentInfo sigdata =
    new CMSSignedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance:

CMSContentInfo cmsdata =
    CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));
if (cmsdata instanceof CMSSignedDataContentInfo)
{
    CMSSignedDataContentInfo sigdata =
        (CMSSignedDataContentInfo) cmsdata;
    // .....
}

2. Access the information stored in the CMS signed-data object:

int version = sigdata.getVersion().intValue();
CMSContentInfo sigContentInfo = sigData.getEnclosed()
Vector certs = sigdata.getCertificates();
Vector crls = sigData.getCRLs();
Enumeration e = sigData.signers();
CMSContentInfo sigContentInfo = sigData.getEnclosed();
if (sigData.getEnclosedContentType().equals(CMS.id_data))
    CMSDataContentInfo contentInfo = (CMSDataContentInfo)sigContentInfo;

3. Verify the signature using the signer's public key certificate:

sigData.verifySignature(signerCert);

4. To get more information about the signer:

Chapter 4
Understanding and Developing Applications with Oracle CMS

4-12



CMSSignerInfo sigInfo = sigdata.getSignerInfo(signerCert);
byte[] signatureValue = sigInfo.getEncryptedDigest();
AlgorithmIdentifier digest = sigInfo.getDigestAlgID();
AlgorithmIdentifier signature = sigInfo.getDigestEncryptionAlgID();
AttributeSet signedAttributes = sigInfo.getAuthenticatedAttributes();
AttributeSet unsignedAttributes = sigInfo.getUnauthenticatedAttributes();

4.3.3.5.3 Working with External Signatures (Detached Objects)

For a detached object, the signed object is not part of the resulting CMS signed-data
structure. To generate a detached object, call the writeExternalSignature() method:

sig.writeExternalSignature(true);

While you can read in a detached CMS signed-data object as shown in "Reading a
CMS Signed-data Object", the signature verification will fail because the original object
that was signed is not present. To address this, first call the setEnclosed (..) method
to set the signed content:

sigdata.setEnclosed(contentInfo);

followed by signature verification:

sigdata.verifySignature(signerCert);

4.3.3.5.4 Working with Certificates/CRL-Only Objects

These are essentially CMSSignedDataContentInfo objects with attached certificates, or
CRLs, or both, but without any signatures. To generate a Certificate/CRL-only object:

CMSSignedDataContentInfo sigdata = 
    new CMSSignedDataContentInfo(new CMSDataContentInfo(new byte[0]));
sigData.addCertificate (...);
sigData.addCRL( ...);
sigData.output(..);

You can read in a Certificate/CRL-only signed-data object as shown in "Reading a
CMS Signed-data Object".

4.3.3.6 Using the CMSEncryptedDataContentInfo Class
The class CMSEncryptedDataContentInfo represents an object of type id-
encryptedData as defined by the constant CMS.id_encryptedData.

Table 4-7 lists some useful methods of this class.

Table 4-7    Useful Methods of CMSEncryptedDataContentInfo

Method Description

AlgorithmIdentifier getContentEncryptionAlgID() Returns the content encryption
algorithm

CMSContentInfo getEnclosed(SecreKey decryptionKey) Returns the decrypted content

ASN1ObjectID getEnclosedContentType() Returns the content type of the
encrypted content

byte[] getEncryptedContent() Returns the encrypted content
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Table 4-7    (Cont.) Useful Methods of CMSEncryptedDataContentInfo

Method Description

AttributeSet getUnprotectedAttributes() Returns the set of unprotected
attributes

ASN1Integer getVersion() Returns the version number

boolean isDetached() Indicates if this is a detached CMS
object

void setUnprotectedAttributes
  (oracle.security.crypto.cert.AttributeSet
unprotectedAttributes)

Sets the unprotected attributes

void writeDetached   (boolean writeDetachedObject) Indicates if the encryptedContent
will be a part of the
EncryptedContentInfo structure in
this object's output encoding

Users of encryption operations, including RC2, DES, Triple-DES, AES, and so on,
should note that the cipher providers are pluggable in the Oracle Security Engine
implementation.

4.3.3.6.1 Constructing a CMS Encrypted-data Object

To create an encrypted-data object:

1. Create an instance of CMSEncryptedDataContentInfo. For example, if
contentInfo is a CMSDataContentInfo object and the cipher is Triple-DES in CBC
mode:

SecretKey contentEncryptionKey = 
   KeyGenerator.getInstance("DESede").generateKey();
 
CMSEncryptedDataContentInfo enc =
   new CMSEncryptedDataContentInfo(contentInfo, contentEncryptionKey,
      CMS.des_ede3_cbc);

2. Write the encrypted-data object to a file, say data.p7m:

enc.output(new FileOutputStream("data.p7m"));

4.3.3.6.2 Reading a CMS Encrypted-data Object

The steps you need to read an encrypted-data object depend on whether you know
the object's content type.

1. Open a connection to the data.p7m file using FileInputStream.

If you know that the object stored in the file data.p7m is of content type id-
encryptedData:

CMSEncryptedDataContentInfo encdata =
    new CMSEncryptedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance:
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CMSContentInfo cmsdata =
    CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));
if (cmsdata instanceof CMSEncryptedDataContentInfo)
{
    CMSEncryptedDataContentInfo encdata =
        (CMSEncryptedDataContentInfo) cmsdata;
    // .....
}

2. To access the information stored in the CMS encrypted-data object:

int version = encdata.getVersion().intValue();
AlgorithmIdentifier encAlgID = encdata.getContentEncryptionAlgID();
byte[] encValue = encdata.getEncryptedContent();
CMSContentInfo encContentInfo =
    encdata.getEnclosed(ContentEncryptionKey);  //Decrypt the Content
if (encData.getEnclosedContentType().equals(CMS.id_data))
   CMSDataContentInfo contentInfo = (CMSDataContentInfo)encContentInfo;

4.3.3.6.3 Generating a Detached encrypted-data CMS Object

If it is a detached object, the encrypted object is not a part of the resulting CMS
encrypted-data structure. To generate a detached object, call the writeDetached
(..) method:

encData.writeDetached(true);

While you can read in a detached CMS encrypted-data object as shown in "Reading a
CMS Encrypted-data Object", the content decryption will fail because the original
object that was encrypted is not present. Call the setEnclosed (..) method to set the
encryptedContent:

encData.setEnclosed(encryptedcontent());

followed by content decryption:

encdata.getEnclosed(ContentEncryptionKey);

4.3.3.7 Understanding and Using the CMSEnvelopedDataContentInfo Class
The class CMSEnvelopedDataContentInfo represents an object of type id-
envelopedData as defined by the constant CMS.id_envelopedData.

Table 4-8 lists some useful methods of this class:

Table 4-8    Useful Methods of CMSEnvelopedDataContentInfo

Method Description

void addRecipient(AlgorithmIdentifier keyEncryptionAlgID,
      SecretKey keyEncryptionKey, byte[] keyIdentifier, Date
keyDate, ASN1Sequence otherKeyAttribute)

Adds a recipient using the key
encryption (wrap) key exchange
mechanism.

void addRecipient(CMSRecipientInfoSpec ris) Adds a recipient using the key
exchange mechanism
specification

void addRecipient(X509Certificate recipientCert,
AlgorithmIdentifier keyEncryptionAlgID)

Adds a recipient using the key
transport (IssuerAndSerialNo) key
exchange mechanism
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Table 4-8    (Cont.) Useful Methods of CMSEnvelopedDataContentInfo

Method Description

void addRecipient(X509Certificate recipientCert,
AlgorithmIdentifier keyEncryptionAlgID, boolean
useSPKI64)

Adds a recipient the key transport
(SubjectKeyIdentifier) key
exchange mechanism

AlgorithmIdentifier getContentEncryptionAlgID() Returns the content encryption
algorithm

CMSContentInfo getEnclosed(PrivateKey privateKey,
X509Certificate recipientCert)

Returns the enclosed content after
decryption using Key Transport
RecipientInfo

CMSContentInfo getEnclosed(SecretKey symmetricKey,
byte[] keyIdentifier)

Returns the enclosed content after
decryption using Key Encryption
RecipientInfo

CMSContentInfo getEnclosed(SecretKey symmetricKey,
byte[] keyIdentifier,Date keyDate)

Returns the enclosed content after
decryption

ASN1ObjectID getEnclosedContentType() Returns the content type of the
encrypted content

byte[] getEncryptedContent() Returns the enclosed content
which is encrypted

OriginatorInfo getOriginatorInfo() Returns the OriginatorInfo

AttributeSet getUnprotectedAttribs() Returns the unprotected attributes

ASN1Integer getVersion() Returns the version number

boolean isDetached() Indicates if the encrypted content
is not present

Enumeration recipients() Returns the list of message
recipients

void setEnclosed(byte[] encryptedContent) Sets the Encrypted Content

void setOriginatorInfo(OriginatorInfo   origInfo) Sets the OriginatorInfo

void setUnprotectedAttribs
  (oracle.security.crypto.cert.AttributeSet
unprotectedAttributes)

Sets the unprotected attributes

void writeDetached(boolean writeDetached) Indicates if the encrypted content
must be omitted from this object's
output encoding

4.3.3.7.1 Constructing a CMS Enveloped-data Object

Take these steps to create an enveloped-data object:

1. Create an instance of CMSEnvelopedDataContentInfo. For example, if contentInfo
is a CMSDataContentInfo object and the cipher is Triple-DES in CBC mode:

CMSEnvelopedDataContentInfo env = 
    new CMSEnvelopedDataContentInfo(contentInfo, CMS.des_ede3_cbc);

2. Add recipients, keeping in mind the recipient's key management technique.

• If the recipient uses the key encryption (wrap) key management mechanism:
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env.addRecipient(keyEncryptionAlgID, keyEncryptionKey,
    keyIdentifier, keyDate, otherKeyAttribute);

• If the recipient key exchange mechanism was specified using a
CMSRecipientInfoSpec object:

env.addRecipient(ris)

• If the recipient uses the key transport (IssuerAndSerialNo recipient identifier)
key management mechanism:

env.addRecipient(recipientCert, CMS.rsaEncryption);

• If the recipient uses the key transport (64-bit SubjectKeyIdentifier recipient
identifier) key management mechanism:

env.addRecipient(recipientCert, CMS.rsaEncryption, true)

• If the recipient uses the key transport (160-bit SubjectKeyIdentifier recipient
identifier) key management mechanism:

env.addRecipient(recipientCert, CMS.rsaEncryption, false)

3. Set any optional arguments:

env.setOriginatorInfo(originatorInfo);
env.setUnprotectedAttribs(unprotectedAttributes);

4. Write the CMS enveloped-data object to a file, say data.p7m:

enc.output(new FileOutputStream("data.p7m"));

4.3.3.7.2 Reading a CMS Enveloped-data Object

The steps you need to read the object depend on whether you know the object's
content type.

1. Open a connection to the data.p7m file using FileInputStream. If you know that
the object stored in the file is of content type id-envelopedData, open the
connection as follows:

CMSEnvelopedDataContentInfo envdata =
    new CMSEnvelopedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance, open it as follows:

CMSContentInfo cmsdata =
    CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));
if (cmsdata instanceof CMSEnvelopedDataContentInfo)
{
    CMSEnvelopedDataContentInfo envdata =
        (CMSEnvelopedDataContentInfo) cmsdata;
    // 
    .....
}

2. To access the information stored in the enveloped-data object:

int version = envdata.getVersion().intValue();
AlgorithmIdentifier encAlgID = envdata.getContentEncryptionAlgID();
ASN1ObjectID contentType = envdata.getEnclosedContentType();
byte[] encryptedContent = envdata.getEncryptedContent();
OriginatorInfo origInfo = envdata.getOriginatorInfo();
AttributeSet unprotected = envdata.getUnprotectedAttribs();
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3. Decrypt the content depending on the recipient information:

CMSContentInfo envContentInfo =
    env.getEnclosed(privateKey, recipientCert);

or

CMSContentInfo envContentInfo =
    env.getEnclosed(symmetricKey, keyIdentifier);

or

CMSContentInfo envContentInfo =
    env.getEnclosed(symmetricKey, keyIdentifier, keyDate)
if (envContentInfo instanceof CMSDataContentInfo)
{
    CMSDataContentInfo contentInfo = (CMSDataContentInfo) envContentInfo;
    // ...
}

4.3.3.7.3 About the Key Transport Key Exchange Mechanism

This mechanism supports the use of either IssuerAndSerialNo or
SubjectKeyIdentifier as the recipient identifier.

4.3.3.7.4 About the Key Agreement Key Exchange Mechanism

This mechanism is not currently supported.

4.3.3.7.5 About the Key Encryption (Wrap) Key Exchange Mechanism

Oracle CMS supports CMS3DESWrap and CMSRC2Wrap algorithms. Mixed mode
wrapping is not supported; for example, 3DES keys cannot be RC2-wrapped.

Note:

Using the OtherKeyAttribute could cause interoperability problems.

4.3.3.7.6 Using the Detached Enveloped-data CMS Object

If working with a detached object, note that the enveloped object is not part of the
resulting CMS enveloped-data structure. Call the writeDetached (..) method to
generate a detached object:

envdata.writeDetached(true);

While you can read in a detached enveloped-data object as shown in "Reading a
CMS Enveloped-data Object", the content decryption will fail because the original,
enveloped object is not present. Call the setEnclosed (..) method to set the
enveloped content:

envdata.setEnclosed(env.getEncryptedContent());
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followed by content decryption:

envdata.getEnclosed(............);

4.3.3.8 Using the CMSAuthenticatedDataContentInfo Class
The class CMSAuthenticatedDataContentInfo represents an object of type id-ct-
authData as defined by the constant CMS.id_ct_authData.

Note:

Oracle CMS supports HMAC with SHA-1 Message Authentication Code
(MAC) Algorithm.

Table 4-9 lists some useful methods of this class.

Table 4-9    Useful Methods of CMSAuthenticatedDataContentInfo

Method Description

void addRecipient(AlgorithmIdentifier keyEncryptionAlgID,
    SecretKey keyEncryptionKey, byte[] keyIdentifier, java.util.Date
keyDate, ASN1Sequence otherKeyAttribute)

Adds a recipient using the
key wrap key exchange
mechanism

void addRecipient(CMSRecipientInfoSpec ris) Adds a recipient using the
specified key exchange
mechanism

void addRecipient(X509Certificate recipientCert,
AlgorithmIdentifier keyEncryptionAlgID)

Adds a recipient using the
key transport key
exchange mechanism
using the
IssuerAndSerialNo as the
recipient identifier

void addRecipient(X509Certificate recipientCert,
AlgorithmIdentifier keyEncryptionAlgID, boolean useSPKI64)

Adds a recipient using the
key transport key
exchange mechanism
using the
SubjectKeyIdentifier as the
recipient identifier

AttributeSet getAuthenticatedAttributes() Returns the Authenticated
Attributes

AlgorithmIdentifier getDigestAlgID() Returns the digest
algorithm

CMSContentInfo getEnclosed() Returns the authenticated
content

ASN1ObjectID getEnclosedContentType() Returns the content type of
the enclosed content

byte[] getMAC() Returns the message
authentication code

AlgorithmIdentifier getMACAlgID() Returns the MAC algorithm
used for authentication
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Table 4-9    (Cont.) Useful Methods of CMSAuthenticatedDataContentInfo

Method Description

OriginatorInfo getOriginatorInfo() Returns the Originator
information

AttributeSet getUnauthenticatedAttributes() Returns the
Unauthenticated Attributes

ASN1Integer getVersion() Returns the version
number

boolean isDetached() Indicates if this object is
detached

java.util.Enumeration recipients() Returns the list of message
recipients

void setAuthenticatedAttributes(AttributeSet
authenticatedAttributes, AlgorithmIdentifier digestAlgorithm)

Sets the Authenticated
attributes

void setEnclosed(CMSContentInfo content) Sets the authenticated
content

void setOriginatorInfo(OriginatorInfo originatorInfo) Sets the OriginatorInfo

void setUnauthenticatedAttributes(AttributeSet
unauthenticatedAttributes)

Sets the unauthenticated
attributes

void verifyMAC(PrivateKey privateKey, X509Certificate
recipientCert)

Returns the enclosed
content after decryption

void verifyMAC(SecretKey symmetricKey, byte[] keyIdentifier) Returns the enclosed
content after decryption

void verifyMAC(SecretKey symmetricKey, byte[] keyIdentifier,
Date keyDate)

Returns the enclosed
content after decryption

void verifyMAC(SecretKey symmetricKey, byte[] keyIdentifier,
Date keyDate, ASN1Sequence otherKeyAttribute)

Returns the enclosed
content after decryption

void writeDetached(boolean writeDetachedObject) Indicates if the
authenticated content must
be omitted from this
object's output encoding

4.3.3.8.1 Constructing a CMS Authenticated-data Object

The starting point for working with authenticated-data objects is the
CMSAuthenticatedDataContentInfo class.

Take the following steps to create an authenticated-data object:

1. Create an instance of CMSAuthenticatedDataContentInfo. In the following
example, contentInfo is a CMSDataContentInfo object, Triple-DES HMAC key and
HMAC with SHA-1 MAC algorithm:

SecretKey contentEncryptionKey = 
   KeyGenerator.getInstance("DESede").generateKey();
CMSAuthenticatedDataContentInfo auth = 
    new CMSAuthenticatedDataContentInfo(contentInfo, 
contentEncryptionKey, CMS.hmac_SHA_1);

2. Add recipients, keeping in mind the recipient's key management technique.
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• If the recipient uses the key encryption (wrap) key management mechanism:

auth.addRecipient(keyEncryptionAlgID, keyEncryptionKey, keyIdentifier,
    keyDate, otherKeyAttribute);

• If the recipient key exchange mechanism was specified using a
CMSRecipientInfoSpec object:

auth.addRecipient(ris)

• If the recipient uses the key transport (IssuerAndSerialNo recipient identifier)
key management mechanism:

auth.addRecipient(recipientCert, CMS.rsaEncryption);

• If the recipient uses the key transport (64-bit SubjectKeyIdentifier recipient
identifier) key management mechanism:

auth.addRecipient(recipientCert, CMS.rsaEncryption, true)

• If the recipient uses the key transport (160-bit SubjectKeyIdentifier recipient
identifier) key management mechanism:

auth.addRecipient(recipientCert, CMS.rsaEncryption, false)

3. Set any optional arguments:

auth.setAuthenticatedAttributes(authenticatedAttributes, CMS.md5);
auth.setOriginatorInfo(originatorInfo);
auth.setUnauthenticatedAttributes(unauthenticatedAttributes);

4. Write the CMS authenticated-data object to a file, say data.p7m:

auth.output(new FileOutputStream("data.p7m"));

4.3.3.8.2 Reading a CMS Authenticated-data Object

The steps you need to read the object depend on whether you know the object's
content type.

The steps to read an object are as follows:

1. Open a connection to the data.p7m file using FileInputStream. If you know that
the object stored in the file is of content type id-ct-authData:

CMSAuthenticatedDataContentInfo authdata =
    new CMSAuthenticatedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance:

CMSContentInfo cmsdata =
    CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));
if (cmsdata instanceof  CMSAuthenticatedDataContentInfo)
{
CMSAuthenticatedDataContentInfo authdata = 
                             (CMSAuthenticatedDataContentInfo) cmsdata;
   // .....
}

2. To access the information stored in the CMS authenticated-data object:

int version = authdata.getVersion().intValue();
AlgorithmIdentifier macAlgID = authdata.getMACAlgID();
byte[] macValue = authdata.getMAC();
CMSContentInfo authContentInfo = authdata.getEnclosed();
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if (authData.getEnclosedContentType().equals(CMS.id_data))
    CMSDataContentInfo contentInfo = (CMSDataContentInfo)authContentInfo;

3. Verify the MAC depending on the recipient information:

authdata.verifyMAC(recipientPrivateKey, recipientCert);

or

authdata.verifyMAC(symmetricKey, keyIdentifier)

or

authdata.verifyMAC(symmetricKey, keyIdentifier, keyDate)

or

authdata.verifyMAC(symmetricKey, keyIdentifier, keyDate,
    otherKeyAttribute)

4.3.3.8.3 Working with Detached Authenticated-data CMS Objects

While you can read in a detached authenticated-data object as shown earlier, the MAC
verification will fail because the original object that was authenticated is not present.
To resolve this, call the setEnclosed (..) method to set the authenticated content:

authdata.setEnclosed(contentInfo);

followed by MAC verification using the appropriate key exchange mechanism:

authdata.verifyMAC(...)

4.3.3.9 Working with Wrapped (Triple or more) CMSContentInfo Objects
To wrap a CMSContentInfo object in another CMSContentInfo object, you simply pass
an initialized CMSContentInfo object to the enclosing CMSContentInfo object through
its constructor. Call the output (..) method of the enclosing outermost
CMSContentInfo object to generate the nested object.

4.3.3.9.1 Reading a Nested (Wrapped) CMS Object

The approach to reading a nested object depends on whether you know the outermost
content type in advance.

If you do not know the outermost content type in advance, call the static method:

CMSContentInfo.inputInstance( ... )

If you do know the outermost content type in advance, call the appropriate constructor:

new CMS***DataContentInfo( .... )

Then, recursively call the getEnclosed(..) method to extract the next inner object.
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4.3.4 CMS Objects using the CMS***Stream and CMS***Connector
Classes

The CMS**DataContentInfo classes provide the same functionality as the
CMS***Stream classes. The primary advantage of the CMS***Stream classes over the
CMS**DataContentInfo classes is that CMS objects can be created or read in one
pass without having to accumulate all of the input data. A CMSInputConnector is used
in place of a CMSInputStream when reading nested CMS objects.

Table 4-10 lists the content types of the CMS***Stream classes:

Table 4-10    The CMS***Stream Classes

Class Content Type

CMSDigestedDataInputStream,
CMSDigestedDataOutputStream

CMS.id_digestedData

CMSSignedDataInputStream,
CMSSignedDataOutputStream

CMS.id_signedData

CMSEncryptedDataInputStream,
CMSEncryptedDataOutputStream

CMS.id_encryptedData

CMSEnvelopedDataInputStream,
CMSEnvelopedDataOutputStream

CMS.id_envelopedData

CMSAuthenticatedDataInputStream,
CMSAuthenticatedDataOutputStream

CMS.id_ct_authData

Table 4-11 lists the content types of the CMS***Connector classes:

Table 4-11    The CMS***Connector Classes

Class Content Type

CMSDigestedDataInputConnector,
CMSDigestedDataOutputConnector

CMS.id_digestedData

CMSSignedDataInputConnector,
CMSSignedDataOutputConnector

CMS.id_signedData

CMSEncryptedDataInputConnector,
CMSEncryptedDataOutputConnector

CMS.id_encryptedData

CMSEnvelopedDataInputConnector,
CMSEnvelopedDataOutputConnector

CMS.id_envelopedData

CMSAuthenticatedDataInputConnector,
CMSAuthenticatedDataOutputConnector

CMS.id_ct_authData

4.3.4.1 Limitations of the CMS***Stream and CMS***Connector Classes
There are some limitations to CMS***Stream and CMS***Connector classes when
processing objects:

1. They cannot verify the digest of a detached CMS id-digestedData object.

2. They cannot verify the signature of a detached CMS id-signedData object.
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3. They cannot verify the MAC of a detached CMS id-ct-authData object.

Caution:

Always use the CMS**DataContentInfo classes when processing detached
objects.

4.3.4.2 Difference between CMS***Stream and CMS***Connector Classes
The CMS***OutputStream class is an output stream filter which wraps the data written
to it within a CMS (RFC-2630) ContentInfo structure, whose BER encoding is then
written to the underlying output stream. The CMS***OutputConnector class is an
output stream filter which likewise wraps the data written to it within a CMS
(RFC-2630) ContentInfo structure, except that only the values octets of the Content
field of the ContentInfo structure (minus the explicit [0] tag) are written to the
underlying output stream.

The CMS***InputStream class is an input stream filter which reads in a BER encoding
of a CMS (RFC-2630) ContentInfo structure from the underlying output stream. The
CMS***InputConnector class is an input stream filter that expects the underlying input
stream to be positioned at the start of the value octets of the Content field of the
ContentInfo structure (after the explicit [0] tag).

CMS***Connectors are useful in creating and reading nested objects.

4.3.4.3 Using the CMS***OutputStream and CMS***InputStream Classes
CMS***InputStream includes methods to read in CMS objects. CMS***OutputStream
writes a CMS object to the output stream.

To construct an object:

1. Create a CMS***OutputStream class of the appropriate content type. All the
relevant parameters are passed through the constructor.

2. Write the data being protected to the CMS***OutputStream created in step 1.

3. After all the data is written, close the CMS***OutputStream created in step 1 .

To read an object:

1. Create a CMS***InputStream class of the appropriate content type by passing the
underlying input stream through the constructor.

2. Read the protected data from the CMS***InputStream created in step 1 using the
read() and read (byte[],...) methods.

3. Invoke terminate() after you have finished reading data from the
CMS***InputStream created in step 1. This completes the reading of the object.

4. Invoke the appropriate methods to verify that the protected content is secure.

4.3.4.3.1 Working with the CMS id-data Object

The getData() method returns the data which can then be written to a
CMS***OutputStream or CMS***OutputConnector.
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4.3.4.3.2 Working with the CMS id-ct-receipt Object

The getReceiptData() method returns the encoded receipt which can then be written
to a CMS***OutputStream or CMS***OutputConnector.

To read ESSReceipt data from the input stream:

byte[] rcptData = in.read(...);
ESSReceipt er = new ESSReceipt();
er.inputContent(rcptData);

4.3.4.3.3 Working with CMS id-digestedData Objects

You will not be able to verify the digest of a detached digested-data object. Setting the
boolean parameter writeEContentInfo in the CMSDigestedDataOutputStream
constructor to false enables you to create a detached digested-data object.

4.3.4.3.4 Working with CMS id-signedData Objects

You will not be able to verify the signature of a detached signed-data object.

The CMSSignerInfoSpec class stores signer-specific information. For every signature
you want to add, you will need to create a corresponding CMSSignerInfoSpec object
which is then passed to the constructor.

Setting the boolean parameter createExternalSignatures in the
CMSSignedDataOutputStream constructor to true enables you to create a detached
signed-data object or external signatures.

To create a Certificate/CRL only object, do not pass any signer information to the
CMSDSignedDataOutputStream constructor.

4.3.4.3.5 Working with CMS id-encryptedData Objects

Setting the boolean parameter writeEncryptedOutput in the
CMSEncryptedDataOutputStream constructor to false enables you to create a detached
encrypted-data object.

4.3.4.3.6 Working with CMS id-envelopedData Objects

The CMSRecipientInfoSpec class stores recipient-specific information. For every
recipient you want to add, you will need to create a corresponding
CMSRecipientInfoSpec object which is then passed to the constructor.

Setting the boolean parameter writeContent in the CMSEnvelopedDataOutputStream
constructor to false enables you to create a detached enveloped-data object.

Recipients are classified according to their exchange mechanism. This table defines
the different mechanisms:
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Exchange Mechanism How to Use

Key Transport Key Exchange
Mechanism

Use the CMSKeyTransRecipientInfoSpec class to
store recipient information that uses the key transport
key management mechanism.

Key Agreement Key Exchange
Mechanism

This mechanism is not supported at this time.

Key Encryption (wrap) Key
Exchange Mechanism

Use the CMSKEKRecipientInfoSpec class to store
recipient information that uses the key wrap key
management mechanism.

4.3.4.3.7 About CMS id-ct-authData Objects

You will not be able to verify the MAC of a detached authenticated-data object.

Setting the boolean parameter detachEncapContent in the
CMSAuthenticatedDataOutputStream constructor to true enables you to create a
detached authenticated-data object.

4.3.4.4 Wrapping (Triple or more) CMS***Connector Objects
You use CMS***OutputConnectors to create nested objects.

Use the following code to create signed, enveloped, digested, and encrypted data and
write it to the file nested.p7m:

// nested.p7m <--- FileOutputStream <--- CMSSignedDataOutputConnector
//     <--- CMSEnvelopedDataOutputConnector <---
//         <----  CMSDigestedDataOutputConnector <---
//             <----  CMSEncryptedDataOutputConnector <---
//                 <---- write the data (byte[] data)

FileOutputStream fos = new FileOutputStream("nested.p7m");
CMSSignedDataOutputConnector conn1 = 
    new CMSSignedDataOutputConnector(fos, .....);
CMSEnvelopedDataOutputConnector conn2 = 
    new CMSEnvelopedDataOutputConnector(conn1, ...);
CMSDigestedDataOutputConnector conn3 = 
    new CMSDigestedDataOutputConnector(conn2, ...);
CMSEncryptedDataOutputConnector conn4 = 
    new CMSEncryptedDataOutputConnector(conn3, ...);
OutputStream os = conn4.getOutputStream();
os.write(data);
os.close();

To read signed, enveloped, digested, and encrypted data stored in file nested.p7m:

// nested.p7m ---> FileInputStream ---> CMSSignedDataInputConnector -
//     ---> CMSEnvelopedDataInputConnector ---
//         -----> CMSDigestedDataInputConnector ---
//             ----> CMSEncryptedDataInputConnector ---
//                 ---> read the data (byte[] data)

FileInputStream fos = new FileInputStream("nested.p7m");
CMSSignedDataInputConnector conn1 =
    new CMSSignedDataInputConnector(fos, .....);
CMSEnvelopedDataInputConnector conn2 =
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    new CMSEnvelopedDataInputConnector(conn1, ...);
CMSDigestedDataInputConnector conn3 =
    new CMSDigestedDataInputConnector(conn2, ...);
CMSEncryptedDataInputConnector conn4 =
    new CMSEncryptedDataInputConnector(conn3, ...);
InputStream is = conn4.getInputStream();
is.read(data);

4.4 The Oracle CMS Java API Reference
The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes and methods of Oracle CMS.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
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5
Oracle S/MIME

Oracle S/MIME API is a java solution, which includes classes, interfaces, and methods
to work with S/MIME objects.

We provide a survey of the classes and features of Oracle S/MIME:

• Oracle S/MIME Features and Benefits

• Setting Up Your Oracle S/MIME Environment

• Developing Applications with Oracle S/MIME

• The Oracle S/MIME Java API Reference

5.1 Oracle S/MIME Features and Benefits
Oracle S/MIME API is a java solution with support for X.509 certificate and private key
encryption.

It has the following features:

• Full support for X.509 Version 3 certificates with extensions, including certificate
parsing and verification

• Support for X.509 certificate chains in PKCS #7 and PKCS #12 formats

• Private key encryption using PKCS #5, PKCS #8, and PKCS #12

• An integrated ASN.1 library for input and output of data in ASN.1 DER/BER format

5.2 Setting Up Your Oracle S/MIME Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME. In order to use Oracle S/MIME, your system must have the Java
Development Kit (JDK) version 1.6 or higher. Your CLASSPATH environment variable
must contain the full path and file names to all of the required jar and class files.

Oracle S/MIME also requires:

• An implementation of the JavaBeans Activation Framework (JAF). Oracle's
royalty-free implementation is available at:

http://www.oracle.com/technetwork/java/jaf11-139815.html

• An implementation of the JavaMail API. Oracle's royalty-free implementation is
available at:

http://www.oracle.com/technetwork/java/index-138643.html

If you are using POP or IMAP, be sure to download Oracle's POP3 (or IMAP) Provider,
which is also available at the JavaMail page.

Make sure the following items are included in your CLASSPATH:
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• osdt_core.jar file

• osdt_cert.jar file

• osdt_cms.jar file

• osdt_smime.jar file

• Your JAF (Java Activation Framework), JavaMail, and POP3 provider installations.

Note:

Java Activation Framework is included in JDK 1.6.

For example:

setenv CLASSPATH $CLASSPATH:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cms.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_smime.jar:
/usr/lib/jaf-1.1/activation.jar:
/usr/lib/javamail-1.4.1/mail.jar

Any application using the Oracle S/MIME API must have all the neccessary MIME
types registered in its command map.

Some applications, specifically those reading S/MIME entries from a FileDataSource,
will need to register the S/MIME file types.

5.3 Developing Applications with Oracle S/MIME
You can develop applications by using the core and supporting classes and interfaces
in Oracle S/MIME API and the methods therein.

This section describes selected interfaces and classes in the Oracle S/MIME API and
illustrates their use. It includes these topics:

• Core Classes and Interfaces of Oracle S/MIME

• Supporting Classes and Interfaces

• Using the Oracle S/MIME Classes

Selected methods are described as appropriate.

5.3.1 Core Classes and Interfaces of Oracle S/MIME
Oracle S/MIME API consists of multiple core classes and interfaces.

This section describes core classes and interfaces in the Oracle S/MIME API, and
explains how to create and parse S/MIME objects.

Core classes and interfaces include:

• Using the oracle.security.crypto.smime.SmimeObject Interface

• Using the oracle.security.crypto.smime.SmimeSignedObject Interface

• Using the oracle.security.crypto.smime.SmimeSigned Class
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• Using the oracle.security.crypto.smime.SmimeEnveloped Class

• Using the oracle.security.crypto.smime.SmimeMultipartSigned Class

• Using the oracle.security.crypto.smime.SmimeSignedReceipt Class

• Using the oracle.security.crypto.smime.SmimeCompressed Class

5.3.1.1 Using the oracle.security.crypto.smime.SmimeObject Interface
The oracle.security.crypto.smime.SmimeObject interface represents an S/MIME
object.

Classes that implement this interface include:

• SmimeSigned

• SmimeEnveloped

• SmimeMultipartSigned

• SmimeSignedReceipt

• SmimeCompressed

Methods in this interface include:

String generateContentType ()

returns the content type string for this S/MIME object. For example:

"application/pkcs7-mime; smime-type=signed-data"

String generateContentType (boolean useStandardContentTypes)

If the argument is true, returns the same as generateContentType(); if false, returns
old-style (Netscape) content type string. For example: "application/x-pkcs7-mime;
smime-type=signed-data"

void writeTo (java.io.OutputStream os, java.lang.String mimeType)

outputs this object to the specified output stream.

5.3.1.2 Using the oracle.security.crypto.smime.SmimeSignedObject Interface
The oracle.security.crypto.smime.SmimeSignedObject interface extends
SmimeObject, and specifies methods common to all S/MIME signed objects, including
SmimeSigned and SmimeMultipartSigned.

Methods in this interface include:

Vector getCertificates ()

Returns the list of certificates included in this S/MIME object's signed content.

Vector getCRLs ()

Returns the list of certificate revocation lists in the S/MIME object's signed content.

javax.mail.internet.MimeBodyPart getEnclosedBodyPart ()

Returns the document which was signed.
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oracle.security.crypto.smime.ess.EquivalentLabels getEquivalentLabels
(java.security.cert.X509Certificate signerCert)

Returns the EquivalentLabels if present or null.

oracle.security.crypto.smime.ess.ESSSecurityLabel getESSSecurityLabel
(java.security.cert.X509Certificate signerCert)

Returns the ESSSecurityLabel if present or null.

oracle.security.crypto.smime.ess.MLExpansionHistory getMLExpansionHistory(
 java.security.cert.X509Certificate signerCert)

Returns the MLExpansionHistory attribute if present or null.

oracle.security.crypto.smime.ess.ReceiptRequest getReceiptRequest(
 java.security.cert.X509Certificate signerCert)

Returns the ReceiptRequest attribute if present or null.

oracle.security.crypto.smime.ess.SigningCertificate getSigningCertificate(
 java.security.cert.X509Certificate signerCert)

Returns the SigningCertificate.

void verify (oracle.security.crypto.cert.CertificateTrustPolicy trustPolicy)

Returns normally if the signed contents include at least one valid signature according
to the specified trust policy, otherwise throws an AuthenticationException.

void verifySignature (java.security.cert.X509Certificate signerCert)

Returns normally if the signed contents contain a signature which can be validated by
the given certificate, otherwise throws an AuthenticationException.

The method can throw a SignatureException, if no signature exists corresponding to
the given certificate.

5.3.1.3 Using the oracle.security.crypto.smime.SmimeSigned Class
The oracle.security.crypto.smime.SmimeSigned class represents an S/MIME
signed message (.implements SmimeSignedObject). You may use this class to build a
new message or parse an existing one.

Constructors and methods include:

SmimeSigned (javax.mail.internet.MimeBodyPart content)

Creates a new SmimeSigned object, using the specified MIME body part for the
contents to be signed.

SmimeSigned ()

Creates a new empty SmimeSigned object, which is useful for building a "certificates-
only" S/MIME message.

SmimeSigned (InputStream is)

Creates a new SmimeSigned object by reading its encoding from the specified input
stream.
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void addSignature (java.security.PrivateKey signerKey,
    java.security.cert.X509Certificate signerCert,
    oracle.security.crypto.core.AlgorithmIdentifier digestAlgID)

Adds a signature to the message, using the specified private key, certificate, and
message digest algorithm.

void addSignature (java.security.PrivateKey signerKey,
 java.security.cert.X509Certificate signerCert,
 oracle.security.crypto.core.AlgorithmIdentifier digestAlgID,
      java.util.Date timeStamp)

Adds a signature to the message, including a time stamp.

void addSignature (java.security.PrivateKey signerKey,
    java.security.cert.X509Certificate signerCert,
    oracle.security.crypto.core.AlgorithmIdentifier digestAlgID,
    SmimeCapabilities smimeCaps)

Adds a signature to the message, including S/MIME capabilities.

javax.mail.internet.MimeBodyPart getEnclosedBodyPart ()

Returns the MIME body part that was signed.

To build a new message, use any of these three constructors:

// Create a new S/MIME Signed Message
SmimeSigned sig = new SmimeSigned();

//         -OR-
// Create a new S/MIME Signed Message with a specified MIME body part
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
SmimeSigned sig1 = new SmimeSigned(bp);

//         -OR-
// Create a new S/MIME Signed Message with a specified MIME body part 
// and a flag switching compression on or off
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
boolean useCompression = true;
SmimeSigned sig2 = new SmimeSigned(bp, useCompression);

To parse a message, use the constructor that takes a java.io.InputStream:

InputStream is = Input stream containing message to be parsed
SmimeSigned sig = new SmimeSigned(is);

5.3.1.4 Using the oracle.security.crypto.smime.SmimeEnveloped Class
The oracle.security.crypto.smime.SmimeEnveloped class represents an S/MIME
enveloped message (implements SmimeObject), and may be used to build a new
message or parse an existing one.

Constructors and methods include:

SmimeEnveloped (javax.mail.internet.MimeBodyPart content,
    oracle.security.crypto.core.AlgorithmIdentifier contentEncryptionAlgID)
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Creates a new SmimeEnveloped object from the specified MIME body part, using the
specified content encryption algorithm.

SmimeEnveloped (InputStream is)

Creates a new SmimeEnveloped object by reading its encoding from the specified input
stream.

void addRecipient (java.security.cert.X509Certificate cert)

Encrypts the message for the recipient using the given public key certificate.

byte[] getEncryptedContent ()

Returns the contents without decrypting.

javax.mail.internet.MimeBodyPart getEnclosedBodyPart (
 java.security.PrivateKey recipientKey,
 java.security.cert.X509Certificate recipientCert)

Returns the MIME body part for the recipient specified by recipientCert, after
decryption using the given recipient private key.

Use the following code to build a new message:

// Create a new S/MIME Enveloped Message with a specified MIME body part and a 
specified content
// encryption algorithm
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
AlgorithmIdentifier algId = AlgID.aes256_CBC;
SmimeEnveloped env = new SmimeEnveloped(bp, algId);

To parse a message, use the constructor that takes a java.io.InputStream:

InputStream is = Input stream containing message to be parsed
    SmimeEnveloped env = new SmimeEnveloped(is);

5.3.1.5 Using the oracle.security.crypto.smime.SmimeMultipartSigned Class
The oracle.security.crypto.smime.SmimeMultipartSigned class represents an S/
MIME multi-part signed message. A multipart signed message is intended for email
clients that are not MIME-aware. This class can be used to build a new message or
parse an existing one.

Constructors and methods include:

SmimeMultipartSigned (javax.mail.internet.MimeBodyPart bodyPart,
    oracle.security.crypto.core.AlgorithmIdentifier digestAlgID)

Creates a new SmimeMultipartSigned message, with the specified MIME body part
and message digest algorithm.

void addBodyPart (javax.mail.BodyPart part)

Inherited from javax.mail.Multipart, adds the specified body part to this
SmimeMultipartSigned object. (See the javax.mail API documentation at http://
www.oracle.com/technetwork/java/index-138643.html for more details.)

Chapter 5
Developing Applications with Oracle S/MIME

5-6

http://www.oracle.com/technetwork/java/index-138643.html
http://www.oracle.com/technetwork/java/index-138643.html


void addSignature (java.security.PrivateKey signerKey,
    java.security.cert.X509Certificate signerCert)

Adds a signature to the message, using the specified private key and certificate.

void addSignature (java.security.PrivateKey signerKey,
    java.security.cert.X509Certificate signerCert, java.util.Date timeStamp)

Adds a signature to the message, using the specified private key and certificate plus a
time stamp.

void addSignature (java.security.PrivateKey signerKey,
    java.security.cert.X509Certificate signerCert, java.util.Date timeStamp,
    SmimeCapabilities smimeCaps)

Adds a signature to the message, using the specified private key and certificate, plus
S/MIME capabilities.

javax.mail.internet.MimeBodyPart getEnclosedBodyPart ()

Returns the MIME body part that was signed.

Use the following code to build a new message:

// Create a new S/MIME Multipart Signed Message with a specified 
// MIME body part and a specified digest algorithm
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
AlgorithmIdentifier algId = AlgID.sha1;
SmimeMutlipartSigned sig = new SmimeMultipartSigned(bp, algId);

To parse a message, use the constructor that takes a javax.activation.DataSource:

DataSource ds = Data source containing message to be parsed
SmimeMultipartSigned sig = new SmimeMultipartSigned(ds);

5.3.1.6 Using the oracle.security.crypto.smime.SmimeSignedReceipt Class
The oracle.security.crypto.smime.SmimeSignedReceipt class represents an S/
MIME wrapped and signed receipt. You may use this class to build a new message or
parse an existing one.

To build a new message, use any of these four constructors:

// Create a new S/MIME wrapped and signed receipt with the specified receipt,
// the specified digest of the message's signed attributes
// and the addresses of the receipt recipients
ESSReceipt receipt = ESS receipt to include in message
byte [] msgSigDigest = Digest of signed attributes to be included in message
Address [] addresses = Addresses of receipt recipients
SmimeSignedReceipt sig = new SmimeSigned(receipt, msgSigDigest, addresses);

 //         -OR-
// Create a new S/MIME wrapped and signed receipt 
// with a specified S/MIME Signed Message containing the receipt 
SmimeSignedObject sso = S/MIME signed message containing receipt
SmimeSignedReceipt sig1 = new SmimeSignedReceipt(sso);

//         -OR-
// Create a new S/MIME wrapped and signed receipt with a 
// specified S/MIME Signed Message containing the receipt,
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// the signer's certificate and the addresses of the receipt recipients
SmimeSignedObject sso1 = S/MIME signed message containing receipt
X509Certificate signerCert = The message signer's certificate
Address [] addresses1 = Addresses of receipt recipients
SmimeSignedReceipt sig2 = new SmimeSignedReceipt(sso1, signerCert, addresses1); 

//         -OR-

// Create a new S/MIME wrapped and signed receipt with a 
// specified S/MIME Signed Message containing the receipt,
// the signer's certificate, the addresses of the receipt recipients and
// a specified MLExpansionHistory attribute.
SmimeSignedObject sso1 = S/MIME signed message containing receipt
X509Certificate signerCert = The message signer's certificate
Address [] addresses1 = Addresses of receipt recipients
MLExpansionHistory mlExpansionHistory = The MLExpansionHistory attribute
SmimeSignedReceipt sig2 = 
    new SmimeSignedReceipt(sso1, signerCert, addresses1, mlExpansionHistory);

To parse a message, use the constructor that takes a java.io.InputStream:

InputStream is = Input stream containing message to be parsed
SmimeSignedReceipt sig = new SmimeSignedReceipt(is);

5.3.1.7 Using the oracle.security.crypto.smime.SmimeCompressed Class
The oracle.security.crypto.smime.SmimeCompressed class represents an S/MIME
compressed message as defined in RFC 3274. You can use this class to build a new
message or parse an existing one.

Note:

A link to RFC 3274 is available in References.

Use the following code to build a new message:

// Create a new S/MIME Compressed Message with a specified MIME body part
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
SmimeCompressed comp = new SmimeCompressed(bp);

//           -OR-
// Create a new S/MIME Compressed Message with a specified MIME body part
// and a specified compression algorithm
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
AlgorithmIdentifier algId = Smime.id_alg_zlibCompress;
SmimeCompressed comp = new SmimeCompressed(bp, algId);

To parse a message, use the constructor that takes a java.io.InputStream:

InputStream is = Input stream containing message to be parsed
SmimeCompressed comp1 = new SmimeCompressed(is);
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5.3.2 Supporting Classes and Interfaces
Oracle S/MIME contains supporting interface that defines constants such as algorithm
identifiers, content type identifiers, and attribute identifiers. It contains supporting
classes that contains static utility methods, verify signatures on signed S/MIME
objects, and encapsulate capabilities for an S/MIME object.

This section describes Oracle S/MIME supporting classes and interfaces.

5.3.2.1 Using the oracle.security.crypto.smime.Smime Interface
The oracle.security.crypto.smime.Smime interface defines constants such as
algorithm identifiers, content type identifiers, and attribute identifiers.

5.3.2.2 Using the oracle.security.crypto.smime.SmimeUtils Class
The oracle.security.crypto.smime.SmimeUtils class contains static utility methods.

Methods of this class include:

public static FileDataSource createFileDataSource (File file,
    String contentTypeHeader)
public static FileDataSource createFileDataSource (String name,
    String contentTypeHeader)

For transparent handling of multipart or multipart/signed S/MIME types, use these
methods instead of directly instantiating a javax.activation.FileDataSource.

Note:

The default javax.activation.FileDataSource included with JAF 1.0.1
does not handle multipart MIME boundaries when used with Javamail 1.1.x.

5.3.2.3 Using the oracle.security.crypto.smime.MailTrustPolicy Class
The oracle.security.crypto.smime.MailTrustPolicy class implements a certificate
trust policy (oracle.security.crypto.cert.CertificateTrustPolicy) used to verify
signatures on signed S/MIME objects.

5.3.2.4 Using the oracle.security.crypto.smime.SmimeCapabilities Class
The oracle.security.crypto.smime.SmimeCapabilities class encapsulates a set of
capabilities for an S/MIME object including, for example, the supported encryption
algorithms.

A useful method of this class is:

void addCapability(oracle.security.crypto.asn1.ASN1ObjectID capabilityID)

which adds the capability with the specified object ID to this set of S/MIME capabilities.
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5.3.2.5 Using the oracle.security.crypto.smime.SmimeDataContentHandler
Class

The oracle.security.crypto.smime.SmimeDataContentHandler class provides the
DataContentHandler for S/MIME content types. It implements
javax.activation.DataContentHandler.

5.3.2.6 Using the oracle.security.crypto.smime.ess Package
The oracle.security.crypto.smime.ess package contains the following classes:

Table 5-1    Classes in the oracle.security.crypto.smime.ess Package

Class Description

ContentHints Content hints

ContentReference Content reference

EquivalentLabels ESS EquivalentLabels

ESSSecurityLabel An ESS security label

MLData Represents the MLData element which is used in the
MLExpansionHistory attribute

MLExpansionHistory Mailing list expansion history

ReceiptRequest An ESS Receipt Request

ReceiptRequest.AllOrFirstTier An 'AllOrFirstTier' is a part of the 'ReceiptsFrom' field of a
ReceiptRequest

SigningCertificate An ESS Signing Certificate

5.3.3 Using the Oracle S/MIME Classes
You can use the Oracle S/MIME SDK to work with multi-part signed messages, sign
messages and authenticate signed messages, create and open digital envelopes, and
implement Enhanced Security Services (ESS).

It covers these topics:

• Using the Abstract Class SmimeObject

• Signing Messages

• Creating "Multipart/Signed" Entities

• Creating Digital Envelopes

• Creating "Certificates-Only" Messages

• Reading Messages

• Authenticating Signed Messages

• Opening Digital Envelopes (Encrypted Messages)

• Adding Enhanced Security Services (ESS)
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5.3.3.1 Using the Abstract Class SmimeObject
SmimeObject is an abstract class representing a fundamental S/MIME message
content entity. Subclasses of SmimeObject include :

• SmimeSigned

• SmimeEnveloped

• SmimeMultipartSigned

• SmimeSignedReceipt, and

• SmimeCompressed

One of the characteristics of SmimeObject implementations is that they "know their own
MIME type" -- that is, they implement the generateContentType method. Thus, to
place such an object inside a MIME message or body part, follow the same outline that
was used in the SmimeSigned example:

1. Create the object.

2. Invoke generateContentType on the object to obtain a MIME type.

3. Pass the object, together with the generated content type, to the setContent
method of a MimeMessage or MimeBodyPart object.

The SmimeObject class provides another version of the generateContentType method,
which takes a boolean parameter. When given true as a parameter,
generateContentType behaves exactly as in the case of no argument. When given
false as a parameter, generateContentType returns the older MIME types required by
certain mail clients, including Netscape Communicator 4.0.4. Specifically:

• "application/pkcs7-mime" becomes "application/x-pkcs7-mime"

• "application/pkcs7-signature" becomes "application/x-pkcs7-signature"

5.3.3.2 Signing Messages
Create a signed message, or signed MIME body part, using these steps:

1. Prepare an instance of MimeBodyPart which contains the content you wish to
sign. This body part may have any content-type desired. In the following example
we create a "text/plain" body part:

MimeBodyPart doc = new MimeBodyPart();
doc.setText("Example signed message.");

2. Create an instance of SmimeSigned using the constructor which takes the
MimeBodyPart created earlier as argument.

SmimeSigned sig = new SmimeSigned (doc);

3. Add all desired signatures. For each signature, you need to specify a private key,
a certificate for the matching public key, and a message digest algorithm. For
example:

sig.addSignature (signatureKey, signatureCert, AlgID.sha1);
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In this example we specified the SHA-1 message digest algorithm. Alternatively,
we could have specified the MD5 algorithm by passing AlgID.md5 as the
argument.

4. Place your SmimeSignedObject into a MimeMessage or MimeBodyPart, as
appropriate. For example:

MimeMessage m = new MimeMessage();
m.setContent (sig, sig.generateContentType());

or

MimeBodyPart bp = new MimeBodyPart();
bp.setContent (sig, sig.generateContentType());

The generateContentType method used in these examples returns a string identifying
the appropriate MIME type for the object, which in this case is:

application/pkcs7-mime; smime-type=signed-data

With these simple steps, you can now transport the MIME message, place the body
part containing S/MIME content into a MIME multipart object, or perform any other
operation appropriate for these objects. See the JavaMail API for details.

5.3.3.3 Creating "Multipart/Signed" Entities
The SmimeMultipartSigned class provides an alternative way to create signed
messages. These messages use the "multipart/signed" mime type instead of
"application/pkcs7-mime". The advantage is that the content of the resulting message
is readable with non-MIME enabled mail clients, although such clients will not, of
course, be able to verify the signature.

Creating a multi-part/signed message is slightly different from creating a signed
message. For example, to send a multi-part/signed text message:

// create the content text as a MIME body part
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Example multipart/signed message.");
// the constructor takes the signature algorithm
SmimeMultipartSigned sig = new SmimeMultipartSigned(bp, AlgID.sha1);
// sign the content
sig.addSignature(signerKey, signerCert); 
// place the content in a MIME message
MimeMessage msg = new MimeMessage();
msg.setContent(sig, sig.generateContentType());

The reason for identifying the message digest in the SmimeMultipartSigned
constructor is that, unlike the case of application/pkcs7-mime signed data objects,
multipart/signed messages require that all signatures use the same message digest
algorithm.

The generateContentType method returns the following string:

multipart/signed; protocol="application/pkcs7-signature"

5.3.3.4 Creating Digital Envelopes
An S/MIME digital envelope (encrypted message) is represented by the
SmimeEnveloped class. This is a MIME entity which is formed by encrypting a MIME
body part with some symmetric encryption algorithm (eg, Triple-Des or RC2) and a
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randomly generated session key, then encrypting the session key with the RSA public
key for each intended message recipient.

In the following example, doc is an instance of MimeBodyPart, which is to be wrapped
in an instance of SmimeEnveloped, and recipientCert is the recipient's certificate.

SmimeEnveloped env = new SmimeEnveloped(doc, Smime.dES_EDE3_CBC);
env.addRecipient (recipientCert);

You may add any number of envelope recipients by making repeated calls to
addRecipient.

5.3.3.5 Creating "Certificates-Only" Messages
It is possible to create an S/MIME signed-data object that contains neither content nor
signatures; rather, it contains just certificates, or CRLs, or both. Such entities can be
used as a certificate transport mechanism. They have the special content type:

application/pkcs7-mime; smime-type=certs-only

This example shows how to create a signed-data object:

X509Certificate cert1, cert2;
SmimeSigned certBag = new SmimeSigned();
certBag.addCertificate(cert1);
certBag.addCertificate(cert2);

Now you can pass certBag to an appropriate setContent method. When
generateContentType is invoked on certBag, it will automatically return a content type
with the correct "certs-only" value for the smime-type parameter.

5.3.3.6 Reading Messages
The basic JavaMail API technique for extracting Java objects from MIME entities is to
invoke the getContent() method on an instance of MimePart, an interface which
models MIME entities and is implemented by the MimeMesage and MimeBodyPart
classes.

The getContent method consults the currently installed default command map - which
is part of the JavaBeans Activities Framework - to find a data content handler for the
given MIME type, which is responsible for converting the content of the MIME entity
into a Java object of the appropriate class.

The mailcap file provided with your distribution can be used to install the
SmimeDataContentHandler class, which serves as a data content handler for the
following types:

Content Type Returns Instance Of

application/pkcs7-mime SmimeSigned or Smime Enveloped

application/pkcs7-signature SmimeSigned

application/pkcs10 oracle.security.crypto.cert.CertificateRequest

multipart/signed SmimeMultipartSigned
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5.3.3.7 Authenticating Signed Messages
Once you obtain an instance of SmimeSigned or SmimeMutlipartSigned from
getContent(), you will naturally want to verify the attached signatures. To explain the
available options for signature verification, it is neccessary to discuss the structure of
an S/MIME signed message.

The content of a signed S/MIME message is a CMS object of type SignedData. Such
an object itself has a content - the document to which the signatures are applied -
which is the text encoding of a MIME entity. It also contains from zero to any number
of signatures, and, optionally, a set of certificates, CRLs, or both, which the receiving
party may use to validate the signatures.

The SmimeSigned and SmimeMultipartSigned classes encapsulate all of this
information. They provide two authentication methods: verifyingSignature and
verify.

To verify a particular signature with a certificate already in possession, ignoring any
certificate and CRLs attached by the signer, use verifySignature. For example:

SmimeSignedObject sig =
    (SmimeSignedObject)msg.getContent(); // msg is a Message
sig.verifySignature(cert, msg.getFrom()); // cert is an X509Certificate object

If verification fails, the verifySignature method throws either a SignatureException
or an AuthenticationException ; otherwise, it returns normally.

Use verify to verify that the content contains at least one valid signature; that is, there
exists a valid certificate chain, starting from a trusted root CA, and terminating in a
certificate for the private key which generated the signature. This method makes use
of the attached certificate and CRLs in order to follow certificate chains.

For example, given a trusted certificate authority (CA) certificate already in hand:

TrustedCAPolicy trusts = new TrustedCAPolicy();
// if true, need CRL for each cert in chain
trusts.setRequireCRLs(false); 
// caCert is an X509Certificate object with CA cert
trusts.addTrustedCA(caCert); 
SmimeSignedObject sig = (SmimeSignedObject)msg.getContent();
sig.verify(trusts, msg.getFrom());

Like verifySignature, verify throws an AuthenticationException if the signature
cannot be verified; otherwise it returns normally. In either case you can recover the
document that was signed, which is itself a MIME entity, by invoking
getEnclosedBodyPart():

MimeBodyPart doc = sig.getEnclosedBodyPart();

5.3.3.8 Opening Digital Envelopes (Encrypted Messages)
An S/MIME digital envelope consists of:

• A protected MIME body part, which has been encrypted with a symmetric key
algorithm (for example, DES or RC2)

• A randomly generated content encryption key
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• Information that allows one or more intended recipients to decrypt the content

For each recipient, this information consists of the content encryption key, itself
encrypted with the recipient's public key.

To obtain the encrypted content from an SmimeEnveloped object, you need the
recipient's private key and the corresponding certificate; the certificate is used as an
index into the recipient information table contained in the envelope's data structure.

For example:

SmimeEnveloped env = (SmimeEnveloped)msg.getContent();
MimeBodyPart mbp = env.getEnclosedBodyPart(privKey, cert)
// privKey is a PrivateKey object
// cert is an X509Certificate object

Passing the private key and the certificate to the getEnclosedBodyPart method returns
the decrypted content as an instance of MimeBodyPart.

The getContent method can now be invoked on the MimeBodyPart object to retrieve
the (now decrypted) content. This content may be a String (in the case of an
encrypted text message), or any other object such as an SmimeSigned.

5.3.3.9 Adding Enhanced Security Services (ESS)
You can add the ESS services ReceiptRequests, SecurityLabels, and
SigningCertificates to an S/MIME signed message by adding them to the
signedAttributes of a signature.

// Create a Signed Message
SmimeSigned sig = new SmimeSigned(); 
    AttributeSet signedAttributes = new AttributeSet();

5.3.3.9.1 Requesting a Signed Receipt with ESS

oracle.security.crypto.smime.ess.ReceiptRequest supports the receipt request
service.

To request a signed receipt from the recipient of a message, add a receiptRequest
attribute to the signedAttributes field while adding a signature:

ReceiptRequest rr = new ReceiptRequest();
.........
signedAttributes.addAttribute(Smime.id_aa_receiptRequest, rr);

5.3.3.9.2 Attaching a Security Label with ESS

oracle.security.crypto.smime.ess.ESSSecurityLabel provides the security label
service.

To attach a security label to a message, add an ESSSecurityLabel attribute to the
signedAttributes field while adding a signature:

ESSSecurityLabel sl = new ESSSecurityLabel();
    .........
    signedAttributes.addAttribute(Smime.id_aa_securityLabel, sl);
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5.3.3.9.3 Attaching a Signing Certificate with ESS

oracle.security.crypto.smime.ess.SigningCertificate enables you to attach a signing
certificate.

To attach a signing certificate to a message, add a SigningCertificate attribute to
the signedAttributes field while adding a signature:

SigningCertificate sc = new SigningCertificate();
    .........
    signedAttributes.addAttribute(Smime.id_aa_signingCertificate, sc);

Use the signedAttributes while adding a signature:

sig.addSignature(signerKey, signerCert, digestAlgID, signedAttributes);

The ESS signed receipts are generated using the SmimeSignedReceipt class in the
oracle.security.crypto.smime package, in a manner similar to using a SmimeSigned
class, except that the content that is signed is an
oracle.security.crypto.cms.ESSReceipt object.

5.3.3.10 Processing Enhanced Security Services (ESS)
An S/MIME signed receipt must have correctly set content type parameters for the
data content handlers to recognize it. If the content type parameters are missing, the
signed receipt is treated as a signed message.

5.4 The Oracle S/MIME Java API Reference
The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes and methods available in Oracle S/MIME.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
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6
Oracle PKI SDK

Public key infrastructure (PKI) is a security architecture that provides an increased
level of confidence when exchanging information over the Internet. Oracle PKI SDK
provides packages for PKI, LDAP, and timestamp functions for developing PKI-aware
applications.

We explain PKI features and the various sub-packages of Oracle PKI:

• Oracle PKI CMP SDK

• Oracle PKI OCSP SDK

• Oracle PKI TSP SDK

• Oracle PKI LDAP SDK

6.1 Oracle PKI CMP SDK
You can use Oracle public key infrastructure (PKI) Software Development Kit (SDK)
for certificate management protocol (CMP). Oracle PKI CMP SDK allows Java
developers to quickly implement certificate management functionality such as issuing
and renewing certificates, creating and publishing CRLs, and providing key recovery
capabilities.

• Oracle PKI CMP SDK Features and Benefits

• Setting Up Your Oracle PKI CMP SDK Environment

• The Oracle PKI CMP SDK Java API Reference

6.1.1 Oracle PKI CMP SDK Features and Benefits
Oracle PKI CMP SDK provides packages that implement certificate management
protocol (CMP) as described in RFC 2510, and certificate request message format
(CRMF) as described in RFC 2511.

The Oracle PKI CMP SDK provides the following features and functionality:

• Oracle PKI CMP SDK conforms to RFC 2510, and is compatible with other
products that conform to this certificate management protocol (CMP) specification.
RFC 2510 defines protocol messages for all aspects of certificate creation and
management.

• Oracle PKI CMP SDK conforms to RFC 2511, and is compatible with other
products that conform to this certificate request message format (CRMF)
specification. RFC 2511 describes the Certificate Request Message Format
(CRMF), which is used to convey X.509 certificate requests to a Certification
Authority (CA).

The Oracle PKI CMP SDK toolkit contains the following packages:
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• The oracle.security.crypto.cmp package provides classes that implement
certificate management protocol (CMP) as described in RFC 2510, and certificate
request message format (CRMF) as described in RFC 2511.

• The oracle.security.crypto.cmp.attribute package provides attribute classes
for registration controls, registration information, and general information. This
package includes the following classes and their subclasses:

– RegistrationControl

– RegistrationInfo

– InfoTypeAndValue (which extends
oracle.security.crypto.cert.AttributeTypeAndValue)

• The oracle.security.crypto.cmp.transport package provides classes for CMP
and CRMF transport protocols. It includes the TCPMessage class and its specific
message-type subclasses.

6.1.2 Setting Up Your Oracle PKI CMP SDK Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME. In order to use Oracle PKI CMP SDK, your system must have the Java
Development Kit (JDK) version 1.6 or higher. Your CLASSPATH environment variable
must contain the full path and file names to all of the required jar and class files.

Make sure the following items are included in your CLASSPATH:

• osdt_core.jar

• osdt_cert.jar

• osdt_cms.jar

• osdt_cmp.jar

For example, your classpath may look like:

%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cms.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cmp.jar

See Also:

Setting the CLASSPATH Environment Variable

6.1.3 The Oracle PKI CMP SDK Java API Reference
Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
guide explains the classes and methods available in Oracle PKI CMP SDK.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
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6.2 Oracle PKI OCSP SDK
Oracle PKI OCSP SDK allows Java developers to quickly develop Online Certificate
Status Protocol (OCSP) enabled client applications and OCSP responders that
conform to RFC 2560 specifications.

This section contains the following topics:

• Oracle PKI OCSP SDK Features and Benefits

• Setting Up Your Oracle PKI OCSP SDK Environment

• The Oracle PKI OCSP SDK Java API Reference

6.2.1 Oracle PKI OCSP SDK Features and Benefits
Oracle PKI OCSP SDK conforms to RFC 2560 specifications. It provides classes and
methods to constructing OCSP request messages, responses, and OSCP server
implementations.

Oracle PKI OCSP SDK provides the following features and functionality:

• Oracle PKI OCSP SDK conforms to RFC 2560 and is compatible with other
products that conform to this specification, such as Valicert's Validation Authority.
RFC 2560 specifies a protocol useful in determining the current status of a digital
certificate without requiring CRLs.

• The Oracle PKI OCSP SDK API provides classes and methods for constructing
OCSP request messages that can be sent through HTTP to any RFC 2560
compliant validation authority.

• The Oracle PKI OCSP SDK API provides classes and methods for constructing
responses to OCSP request messages, and an OCSP server implementation that
you can use as a basis for developing your own OCSP server to check the validity
of certificates you have issued.

6.2.2 Setting Up Your Oracle PKI OCSP SDK Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME. In order to use Oracle PKI OCSP SDK, your system must have the Java
Development Kit (JDK) version 1.6 or higher. Also, make sure that your PATH
environment variable includes the Java bin directory. Your CLASSPATH environment
variable must contain the full path and file names to all of the required jar and class
files.

Make sure the following items are included in your CLASSPATH:

• osdt_core.jar

• osdt_cert.jar

• osdt_ocsp.jar

For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOMEmodules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOMEmodules/oracle.osdt_11.1.1/osdt_ocsp.jar
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See Also:

Setting the CLASSPATH Environment Variable.

6.2.3 The Oracle PKI OCSP SDK Java API Reference
The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes and methods available in Oracle PKI OCSP SDK.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

6.3 Oracle PKI TSP SDK
Oracle PKI TSP SDK allows Java developers quickly implement time-stamping
functionality within a public key infrastructure (PKI) framework.

This section contains the following topics:

• Oracle PKI TSP SDK Features and Benefits

• Setting Up Your Oracle PKI TSP SDK Environment

• The Oracle PKI TSP SDK Java API Reference

6.3.1 Oracle PKI TSP SDK Features and Benefits
Oracle PKI TSP SDK conforms to RFC 3161 and is compatible with other products
that conform to this time stamp protocol (TSP) specification. It provides a sample
implementation of a TSA server which you can use for testing TSP request messages,
or as a basis for developing your own time stamping service.

Oracle PKI TSP SDK contains the following classes and interfaces:

Table 6-1    Oracle PKI TSP SDK Classes and Interfaces

Class or Interface Name Description

TSP Interface Defines various constants associated with the Time Stamp Protocol
(TSP).

HttpTSPRequest Class Implementation of a TSP request message over HTTP.

HttpTSPResponse Class Implementation of a TSP response message over HTTP.

MessageImprint Class This class represents a MessageImprint object as defined in
RFC 3161.

TSAPolicyID Class This class represents a TSAPolicyID object as defined in RFC 3161.

TSPContentHandlerFactory Class A content handler for TSP over HTTP.

TSPMessage Class A TSP message.

TSPTimeStampReq Class A TSP message of type TimeStampReq as defined in RFC 3161.

TSPTimeStampResp Class A TSP message of type TimeStampResp as defined in RFC 3161.
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Table 6-1    (Cont.) Oracle PKI TSP SDK Classes and Interfaces

Class or Interface Name Description

TSPUtils Class Defines various utility methods for the
oracle.security.crypto.tsp package.

6.3.2 Setting Up Your Oracle PKI TSP SDK Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME. In order to use Oracle PKI TSP SDK, your system must have the Java
Development Kit (JDK) version 1.6 or higher. Also, make sure that your PATH
environment variable includes the Java bin directory. Your CLASSPATH environment
variable must contain the full path and file names to all of the required jar and class
files.

Make sure the following items are included in your CLASSPATH:

• osdt_core.jar

• osdt_cert.jar

• osdt_cms.jar

• osdt_cmp.jar

• osdt_tsp.jar

For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cms.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cmp.jar;
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_tsp.jar

See Also:

Setting the CLASSPATH Environment Variable.

6.3.3 The Oracle PKI TSP SDK Java API Reference
The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes and methods available in Oracle PKI TSP SDK.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

6.4 Oracle PKI LDAP SDK
Oracle PKI LDAP SDK allows Java developers quickly implement operations that
involve publishing and retrieving digital certificates from a directory server.
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This section contains the following topics:

• Oracle PKI LDAP SDK Features and Benefits

• Setting Up Your Oracle PKI LDAP SDK Environment

• The Oracle PKI LDAP SDK Java API Reference

6.4.1 Oracle PKI LDAP SDK Features and Benefits
Oracle PKI LDAP SDK provides classes and methods to access, validate, and
manage a digital certificate within an LDAP directory.

Oracle PKI LDAP SDK provides facilities for accessing a digital certificate within an
LDAP directory. Some of the tasks you can perform with Oracle PKI LDAP SDK are:

• Validating a user's certificate in an LDAP directory

• Adding a certificate to an LDAP directory

• Retrieving a certificate from an LDAP directory

• Deleting a certificate from an LDAP directory

The oracle.security.crypto.LDAP package contains two classes:

• LDAPCertificateValidator, which validates a user certificate by checking
whether it exists in its subject's LDAP directory entry

• LDAPUtils, which is a collection of methods to add, retrieve, and remove
certificates from a subject's LDAP directory entry

6.4.2 Setting Up Your Oracle PKI LDAP SDK Environment
The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME. You must have Java Development Kit (JDK) version 1.6 or higher and
Oracle's Java Naming and Directory Interface (JNDI) version 1.2.1 or higher in your
system. Your CLASSPATH environment variable must contain the full path and file
names to all of the required jar and class files.

To use Oracle PKI LDAP SDK, your system must have the following:

• Java Development Kit (JDK) version 1.6 or higher. Also, make sure that the Java
bin directory is added to your PATH environment variable.

• Oracle's Java Naming and Directory Interface (JNDI) version 1.2.1 or higher. You
must add all of the JNDI jar files to your CLASSPATH.

Make sure the following items are included in your CLASSPATH:

• osdt_core.jar

• osdt_cert.jar

• osdt_ldap.jar

• jndi.jar, ldapbp.jar, ldap.jar, jaas.jar, and providerutil.jar (Oracle's
Java Naming and Directory Interface (JNDI))

For example:
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%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_ldap.jar;

See Also:

Setting the CLASSPATH Environment Variable.

6.4.3 The Oracle PKI LDAP SDK Java API Reference
The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes and methods available in Oracle PKI LDAP SDK.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
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7
Oracle XML Security

XML security refers to standard security requirements of XML documents such as
confidentiality, integrity, message authentication, and non-repudiation. You can setup
your environment and use Oracle XML Securityto fulfil these standard security
requirements of XML documents.

The need for digital signature and encryption standards for XML documents prompted
the World Wide Web Consortium (W3C) to put forth an XML Signature standard and
an XML Encryption standard.

We cover features and provide code samples for implementing Oracle XML Security:

• Oracle XML Security Features and Benefits

• Setting Up Your Oracle XML Security Environment

• Signing Data with Oracle XML Security

• Verifying XML Data

• Understanding how Data is Encrypted

• Understanding Data Decryption with Oracle XML Security

• Understanding and Using Element Wrappers in the OSDT XML APIs

• Signing Data with the Oracle XML Security API

• Verifying Signatures with the Oracle XML Security API

• Encrypting Data with the Oracle XML Security API

• Decrypting Data with the Oracle XML Security API

• Common XML Security Questions

• Best Practices for Oracle XML Security

• The Oracle XML Security Java API Reference

See Also:

The following resources provide more information about XML and XML
standards:

• W3C's Recommendation for XML Signatures

• W3C's Recommendation for XML Encryption

Links to these resources are available in References.
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7.1 Oracle XML Security Features and Benefits
Oracle Security Developer Tools provide a complete implementation of the XML
Signature and XML Encryption specifications, and supports Signature Algorithms,
Digest Algorithms, Data Encryption Algorithms, Key Encryption and Key Wrapping
Algorithms, and Transforms.

These algorithms are:

Signature Algorithms

• DSA with SHA1

• RSA with SHA1

• HMAC-SHA1

Digest Algorithms

• MD5

• SHA1

• SHA256

• SHA512

Transforms

• Canonicalization – Canonical XML 1.0, Canonical XML 1.1, exclusive Canonical
XML 1.0, (all forms are supported with and without comments)

• XSLT

• XPath Filter

• XPath Filter 2.0

• Base64 Decode

• Enveloped Signature

• Decrypt Transform

Data Encryption Algorithms

• AES-128 in CBC mode

• AES-192 in CBC mode

• AES-256 in CBC mode

• DES EDE in CBC mode

Key Encryption and Key Wrapping Algorithms

• RSAES-OAEP-ENCRYPT with MGF1

• RSAES-PKCS1-v1_5

• AES-128 Key Wrap

• AES-192 Key Wrap
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• AES-256 Key Wrap

• DES-EDE Key Wrap

7.2 Setting Up Your Oracle XML Security Environment
Setup your Oracle XML Security environment by installing Oracle Security Developer
Tools and JDK, and setting up CLASSPATH environment variable for jar files.

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME/modules/oracle.osdt_11.1.1.

System Requirements

In order to use Oracle XML Security, you must have JDK 5 or higher.

CLASSPATH Environment Variable

Make sure the following items are included in your CLASSPATH:

• osdt_core.jar

• osdt_cert.jar

• osdt_xmlsec.jar (This is the main jar containing all the Oracle XML Security
classes.)

• org.jaxen_1.1.1.jar, which is located in $ORACLE_HOME/modules/

Oracle XML Security relies on the Jaxen XPath engine for XPath processing.

See Also:

Setting the CLASSPATH Environment Variable

7.3 Signing Data with Oracle XML Security
Using the Oracle Security Developer Tools Oracle XML Security API, you can sign an
XML document, a fragment of an XML document, or some binary data.

This section explains the concepts behind data signing.

The basic steps are as follows:

1. Identify what to sign and where to place the signature.

2. Decide on a signing key.

See Also:

For details of data signing with the Oracle XML Security APIs, see Signing
Data with the Oracle XML Security API through Decrypting Data with the
Oracle XML Security API.
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7.3.1 Identifying What to Sign
As a first step, you must identify the data that you need to sign and where your
signature will be placed. You can do this by adding the xml:id attribute to the
information element. The Signature uses this attribute to refer to the element.

The most common case of signing is when you are signing a part of a document, and
the signature is also placed in the same document. For this you need to decide how
you refer to that part. The simplest way is to use an ID, for example:

<myDoc>
  <importantInfo  xml:id="foo1">
    ...
  </importantInfo>
  <dsig:Signature>
    ...
      <dsig:Reference URI="#foo1">
    ...
  </dsig:Signature>
</myDoc>

In this example myDoc is the entire document, of which you only want to sign the
<importantInfo> element, and the signature is placed right after the <importantInfo>
element. The <importantInfo> has an xml:id attribute, which the Signature uses to
refer to it.

xml:id is a generic identifying mechanism.

If your schema does not allow you to add this attribute to your <importantInfo>
element, you can instead use an Xpath to refer to it.

7.3.1.1 Determining the Signature Envelope
This example uses a "disjoint" signature where the signature and element to be signed
are completely separate.

There are two other ways of signing "enveloped":

• where the signature element is the child/descendant of the element to be signed,
and

• "enveloping" where the signature element is a parent/ancestor of the element to
be signed.

Here is an example of Enveloped Signing:

<myDoc>
  <importantInfo  xml:id="foo1">
    ...
    <dsig:Signature>
      ...
      <dsig:Reference URI="#foo1">
         ...
         <Transform Algorithm="...enveloped-signature">
         ...
      </dsig:Reference>
      ...
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    </dsig:Signature>
    ...
  </importantInfo>
</myDoc>

When you use enveloped signature, you must use the EnvelopedSignatureTransform
to exclude the signature itself from the signature calculation, otherwise the very act of
generating a signature changes the content of the importtantInfo element, and the
verification will fail.

7.3.1.2 Deciding How to Sign Binary Data
It is also possible to sign binary data. To do this you must make the binary data
available through a URI. Oracle XML Security allows any URIs that can be resolved by
the JDK, such as http:, file:, and zip: URIs.

You need to create a separate XML document which will hold the Signature element,
and this signature will refer to the binary data using this URI.

You can sign XML data using this mechanism as well, provided your XML data can be
accessed by a URI. But for XML you can decide to either treat it as binary data and
sign as is, or apply canonicalization and sign as XML. To apply canonicalization you
need to add a canonicalization transform.

If your binary data is present as a base64 encoded string in your XML document, you
can use an ID-based or an Xpath-based reference to it, and then use a
Base64DecodeTransform to decode the data and sign the binary.

<myDoc>
  <importantBinaryData  xml:id="foo1">
    XJELGHKLasNDE12KL=
  </importantBinaryData>
  <dsig:Signature>
    ...
      <dsig:Reference URI="#foo1">
         ...
         <Transform Algorithm="...base64">
         ...
      </dsig:Reference>
      ...
  </dsig:Signature>
</myDoc>

Note:

External URI dereferencing can be very insecure. For example, say you are
running Oracle Security Developer Tools code inside a server, and you verify
an incoming message; if this message has an external URI reference, it is
essentially causing your server to read from the file or from external web
sites. This can lead to denial of service attacks and cross-site scripting.

This is why External URI dereferencing is disabled by default. You need to
set the JVM property osdt.allow.externalReferences (or set
osdt.allow.all) to allow external URI dereferencing.
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7.3.1.3 Signing Multiple XML Fragments with a Signature
You can include multiple XML fragments into the same signature. For example, you
can have two ID-based references, and include both of them in the same signature. Or
you can use an Xpath expression which resolves to multiple subtrees.

You can also mix and match local ID-based references with remote URI references,
and have all of them in the same signature.

In fact it is recommended that you include multiple parts into the same signature to
cryptographically bind them together; for example, if you are using an XML signature
to sign a purchase order approval, you must include the items that are being
purchased, the user who approved it, and time it was approved, all in the same
signature. If you forget to include the user, somebody can potentially steal this
message, change the user name, resubmit it, and the signature will still verify.

7.3.1.4 Excluding Elements from a Signature
At times you may need to sign subtrees with exclusions, rather than signing complete
subtrees; to achieve this you need to use an Xpath expression.

7.3.2 Deciding on a Signing Key
Once you have decided on what to sign, and how to reference it, you can decide on a
signing key, by using a X509Certificate, a symmetric key, or a raw asymmetric signing
key, like a DSA, RSA, or DH key.

These options are:

• Use a X509Certificate.

This is the most common mechanism. You sign with the private key, and anybody
who has your public key can verify with it.

• Use a raw asymmetric signing key, like a DSA, RSA, or DH key.

When you are signing with an X509certificate, you are in fact signing with the
DSA/RSA/DH signing key that is associated with the certificate. You can also sign
with DSA/RSA/DH signing key that is not associated with any certificate, although
there is no good reason for doing so.

• Use a symmetric key.

You can also do HMAC signing with a symmetric key. This is useful when you and
the verifier already share a symmetric key; it could be a key derived from a
password, or it could be from a kerberos system which uses symmetric keys. The
Oracle Security Developer Tools WS Security APIs provide explicit APIs for
password-based keys and kerberos keys.

7.3.2.1 Setting Up Key Exchange
The key exchange needs to happen out of band. For example, if you signing with a
certificate, the receiver should already be set up with the trust points, so that the
receiver can verify your certificate. Or if you are signing with a symmetric key, the
receiver should already know this symmetric key. The XML Signature specification
does not define this initial key exchange mechanism.
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7.3.2.2 Providing a Receiver Hint
You also need to provide a hint so that the receiver knows how to verify your
signature. This will be in the <dsig:KeyInfo> tag inside the <dsig:Signature>. This
can be accomplished in different ways:

• You can provide no hint at all. This perfectly acceptable, if you have already
communicated the key to the receiver, and the receiver is expecting all signatures
to be signed by this key. However this is not a likely situation.

• When signing with an X509Certificate, you can provide one or more of the
following:

– The entire X509Certificate. This is the most common usage.

– The Subject DN of the certificate – This is useful when the receiver has
access to a LDAP directory, and it can look up the certificate based on the DN.

– The SubjectKeyIdentifier or the IssuerDN/Serial number pair – This is
useful when the receiver is only expecting a signatures from a set of
certificates, and it every time it has to verify a signature, it can loop over all the
certificates and find the one with matching SKI or IssuerSerial.

• When signing with a raw asymmetric key, you can provide the actual values of the
RSA/DSA/DH public key. This is not recommended as the receiver cannot verify
the key; alternatively, if you include the certificate, the receiver can do PKIX
processing and verify it; that is, the receiver can check for certificate validity and
check against an OCSP or CRL.

• When signing with a symmetric key, you can provide a key name. This is just a
string that conveys some information that the receiver can use to retrieve/construct
the symmetric key.

7.4 Verifying XML Data
You can verify XML data by searching for the signature element and fetching the
verification key.

This section explains the concepts behind data verification.

Once you understand how to create a signature, you can use similar steps to verify the
signature. The basic steps are as follows:

1. Search for the signature element, and check what was signed

When you first search for the signature element in the XML document. Oracle XML
Security provides a method (put in link here) to list the elements included in this
signature. Verify that those are the elements you were expecting to be signed.

2. Fetch the verification key

Next identify the key with which the signature was signed. To do this, examine the
<dsig:KeyInfo> for the certificate, raw public key, or symmetric key that should be
used for verification.
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See Also:

For details of data verification with the Oracle XML Security APIs, see

7.5 Understanding how Data is Encrypted
You can encrypt an XML document, a fragment of an XML document or some binary
data by applying an encryption key.

This section explains the concepts behind data encryption.

The basic steps are as follows:

• Identifying what to Encrypt

• Decide on the Encryption Key

See Also:

For details of data encryption with the Oracle XML Security APIs, see 
Encrypting Data with the Oracle XML Security API.

7.5.1 Identifying what to Encrypt
The most common encryption scenario is to encrypt and replace. When you are
encrypting a part of the document, replace the document with the encrypted bytes.

For example:

<myDoc>
  <importantInfo>
    ...
  </importantInfo>
</myDoc>

If you encrypt the importantInfo element, it will look like this:

<myDoc>
  <xenc:EncryptedData>
    ...
  </xenc:EncryptedData>
</myDoc>

Here the entire <importantInfo> and all its contents are replaced by an
EncryptedData element which essentially contains a large base64 string, which is the
base64 encoding of the encrypted <importantInfo> element.

In this mode the <importantInfo> element is completely hidden, and the receiver has
no way of knowing the contents until it is decrypted.
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7.5.1.1 Using the Content Only Encryption Mode
There is also a "Content only" encryption mode where the element tag itself is not
encrypted, but all its contents are encrypted.

<myDoc>
  <importantInfo>
    <xenc:EncryptedData>
      ...
    </xenc:EncryptedData>
  </importantInfo>
</myDoc>

Use the "Content Only" mode if it is appropriate for everyone to know that the
<importantInfo> exists; only the intended party will know how to decrypt and look at
the contents of the <importantInfo> element.

7.5.1.2 Encrypting Binary Data
If you are encrypting binary data present as a base64 encoded string, you can encrypt
it as if it were regular XML data.

However if you are encrypting external binary data (that is, data outside the XML
document), your options depend on where you will store the encrypted data.

You can store the data externally or inside the encrypted data element.

One option is to store the encrypted data externally as well. For SOAP Attachments
refer to the WS Security SOAP Attachments (insert link) which specifies a mechanism
to encrypt attachments and store the encrypted data back as an attachment.

To store the encrypted data externally, you need to use a xenc:CipherReference,
which is a subelement of xencEncryptedData and uses a URI to refer to the encrypted
bytes.

The other option is to store the encrypted bytes inside the EncryptedData, just as you
would with in-place XML encryption.

7.5.2 Decide on the Encryption Key
You can choose a random symmetric key and encrypt your data. Then you can
encrypt this symmetric key with your asymmetric key.

This is very similar to the task of deciding the signing key (see section Deciding on a
Signing Key) except that you never directly encrypt with an asymmetric key. Instead,
you usually:

1. choose a random symmetric key,

2. encrypt your data with this key,

3. encrypt this random symmetric key with your asymmetric key, and

4. send both the encrypted data and encrypted key to the receiver.

Even with a symmetric key, you can still choose to:

1. generate a random symmetric key,
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2. encrypt this random symmetric key with your symmetric key and

3. send both the encrypted data key and the encrypted key to the receiver

To use this encrypted key mechanism, you need to decide where to place the
xenc:EncryptedKey in your document.

• If you only have one encryptedData element, place the EncryptedKey in the
KeyInfo of the EncryptedData.

• Otherwise, place them separately and have one refer to the other.

Use the <dsig:KeyInfo> inside the EncryptedKey to refer to the certificate,
asymmetric key, or key name that can be used to decrypt the EncryptedKey.

7.6 Understanding Data Decryption with Oracle XML
Security

Data decryption follows the same process as for data encryption, but in reverse. You
need to decrypt the random symmetric key, and then use this key to decrypt the data.

The basic steps are as follows:

If the data was encrypted with a simple encryption in place, locate the EncryptedData
element and look at its KeyInfo.

If it is directly encrypted with a known symmetric key, decrypt it.

Otherwise if it is encrypted with a random symmetric key:

1. locate the corresponding EncryptedKey,

2. decrypt it first, and

3. use this decrypted random symmetric key to decrypt the EncryptedData.

See Also:

For details of data decryption with the Oracle XML Security APIs, see

7.7 Understanding and Using Element Wrappers in the
OSDT XML APIs

All the XML-based Oracle Security Developer Tools APIs like Oracle XML Security
and Oracle Web Services Securityuse a wrapper concept, in which for each XML
element, there is a corresponding Java wrapper class.

For example, the <dsig:Signature> XML element corresponds to the XSSignature
class. All these wrapper classes inherit from XMLElement, and they contain only one
data member, which is the pointer to the corresponding DOM element.

This section shows how to work with wrapper objects in the Oracle Security Developer
Tools APIs. Topics include:
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• Constructing the Wrapper Object

• Obtaining the DOM Element from the Wrapper Object

• Parsing Complex Elements

• Constructing Complex Elements

7.7.1 Constructing the Wrapper Object
You can invoke the constructor to construct a wrapper object from a DOM element. If
the DOM element does not exist, either you can first create a DOM element, and then
use the constructor, or you can use a newInstance method.

To construct a wrapper object from the DOM element, simply invoke the constructor.

For example:

Element sigElem =  
   (Element)doc.getElementsByTagNameNS(XMLURI.ns_dsig, "Signature").item(0);
XSSignature sig = new XSSignature(sigElem);

To construct a Wrapper object when the DOM element does not exist, you can either:

• create a DOM element, and use the above method, or

• use a newInstance method

XSSignature sig = XSSignature.newInstance(doc, null);

This internally achieves the same ends, that is, it creates a <dsig:Signature> DOM
element, without appending it anywhere, then creates a wrapper object on top of the
element. You will need to append this element somewhere in your document.

For some wrapper classes, there is no newInstance method and you need to call a
constructor that takes the document object.

XSSignedInfo sigInfo =  new XSSignedInfo(doc, null);

Another way to create the wrapper object from the element is to call the
XMLUtils.getInstance method:

XSSignature sig = (XSSignature)XMLUtils.getInstance(sigElem);

The Oracle Security Developer Tools APIs internally maintain a table associating
element names to wrapper class names. The XMLUtils.getInstance uses this table to
invoke the appropriate constructor and return an instance of that wrapper class.

7.7.2 Obtaining the DOM Element from the Wrapper Object
You can use the method XMLElement.getElement() to get the underlying DOM
element from the wrapper object.

The underlying DOM element is readily available. All wrapper classes extend from
XMLElement which provides a method, XMLElement.getElement(), to get the
underlying DOM element.
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7.7.3 Parsing Complex Elements
For complex elements containing a hierarchy of subelements, there are an equivalent
hierarchy of wrapper objects.

For example, suppose you have an incoming document containing a signature:

<dsig:Signature>
  <dsig:SignedInfo>
    <dsig:CanonicalizationMethod ... />
     ...
  <dsig:SignedInfo>
  <dsig:SignatureValue>..</dsig:SignatureValue>
  ...  
</dsig:Signature>

Most of these elements have a corresponding wrapper class, such as dsig:Signature
-> XSSignature, dsig:SignedInfo -> XSSignedInfo, dsig:SignatureValue ->
XSSignatureValue and so on.

But when you construct the XSSignedInfo object from the dsig:Signature DOM
element, it does not construct any of the child objects, in fact it does not even look at
any of the child elements. The new XSSignature(sigElem) is a quick call which simply
creates an object with the data member pointing to the sigElem. The child objects are
created every time. So when you call XSSignature.getSignedInfo() it searches the
child elements of dsig:Signature to find the dsig:SignedInfo element, constructs a
wrapper object on that element, and returns it.

This wrapper object is not stored anywhere. So if you invoke
XSSignature.getSignedInfo() again, it does the same thing, returning a different
instance of the SignedInfo object; however both these objects point to the same DOM
element, so they behave exactly the same way even though they are different
instances.

Note:

Remember that the DOM is the source of truth, while the wrapper objects are
throwaway objects. The get methods always create new wrapper objects,
and if you modify the underlying DOM, the wrapper objects always see the
most recent changes.

7.7.4 Constructing Complex Elements
You can create individual wrapper objects and assemble them by using the set
methods to construct a complex element.

Consider the same example as before, but now instead of the signature present in an
incoming document, you want to create a document containing a signature and send
this document to someone.

<dsig:Signature>
  <dsig:SignedInfo>
     ...
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  <dsig:SignedInfo>
  ...  
</dsig:Signature>

To construct this complex element, you need to create individual wrapper objects and
assemble them using set methods.

For example:

XSSignature sig = XSSignature.newInstance(doc, null);
XSSignedInfo sigInfo = new XSSignedInfo(doc, null);
sig.setSignedInfo(sigInfo);

Remember that the DOM is always the source of truth; the set methods do not store or
copy the passed-in wrapper object, they just modify the underlying DOM.

So in this case the setSignedInfo gets the dsig:SignedInfo element, and makes that
a child of the dsig:Signature element. So after invoking setSignedInfo(sigInfo), if
you do sigInfo = null, it will not affect anything.

Finally you need to insert the top-level object somewhere into your DOM:

elem.appendChild(sig.getElement());

7.8 Signing Data with the Oracle XML Security API
With Oracle XML Security APIs, you can create signatures for the XML data elements.

This section describes techniques for signing data with the Oracle XML Security APIs.

Topics include:

• Creating a Detached Signature, Basic Procedure

• Using Variations on the Basic Signing Procedure

7.8.1 Creating a Detached Signature, Basic Procedure
You can create a detached signature with an identified XML element, an ID attribute
added to the element, and a signing key and certificate.

To create a detached signature like this:

<myDoc>
  <importantInfo  xml:id="foo1">
    ...
  </importantInfo>
  <dsig:Signature>
    ...
      <dsig:Reference URI="#foo1">
    ...
  </dsig:Signature>
</myDoc>

You need to do this:

// assume you have your data set up in doc
Document doc = ...
Element impElem = ...
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// Now put an ID on the importantInfo element
impElem.setAttributeNS(XMLURI.ns_xml, "xml:id", "foo1");
 
// Then get the signing key and certificate from 
// somewhere – e.g. you can load them from a keystore
PrivateKey signKey = ...
X509Certificate signCert = ...
 
// Create the Signature object
XSSignature sig = XSSignature.newInstance(doc, null);
 
// Create the SignedInfo object
// Normally you should use exclusive canonicalization
//    alg_exclusiveC14N
// Depending on the type of your private key DSA or RSA
//    use dsaWithSHA1 or rsaWithSHA1
XSSignedInfo sigInfo = sig.createSignedInfo(
  XMLURI.alg_exclusiveC14N, XMLURI.alg_rsaWithSHA1, null)
sig.setSignedInfo(sigInfo);
 
 
// Create a Reference object to the importantInfo element
// You need to specify the id which you set up earlier, 
//  and also a digestMethod
XSReference ref = sig.createReference(null, "#foo1", null, 
   XMLURI.alg_sha1);
sigInfo.addReference(ref);
// Create an exclusive c14n Transform object
// If you do not add this transform object, it will use 
// inclusive by default
XSAlgorithmIdentifier transform = 
  new XSAlgorithmIdentifier(doc, "Transform", 
  XMLURI.alg_exclusiveC14n);
ref.addTransform(transform);
 
 
// Create a KeyInfo object
XSKeyInfo keyInfo = sig.createKeyInfo();
sig.setKeyInfo(keyInfo);
 
// Create an X509Data element for your signingCert, inside
//  this keyingo
X509Data x509 = keyInfo.createX509Data(signingCert);
keyInfo.addKeyInfoData(x509);
 
// Everything is setup, now do the actual signing
// This will actually do all the canonicalization, 
// digesting, signing etc
sig.sign(signKey, null);
 
// Finally insert the signature somewhere in your document
doc.getDocumentElement().appendChild(sig.getElement());

Note:

After creating a child Wrapper object, you must call a set or add method to
put it in its parent, and also remember to insert the top level Signature
object into your document.
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7.8.2 Using Variations on the Basic Signing Procedure
While creating a signature you can include multiple references, enveloped signatures,
XPath expressions, certificate hints, and HMAC key signing.

The following topics explain it further:

• Including Multiple References

• Using an Enveloped Signature

• Using an XPath Expression

• Using a Certificate Hint

• Signing with an HMAC Key

7.8.2.1 Including Multiple References
To include multiple references in a signature, simply add more XSReference objects to
the XSSignedInfo object. Each XSReference object needs its own list of transforms.

7.8.2.2 Using an Enveloped Signature
To use an enveloped signature, add the enveloped signature transform to the
reference. This means inserting the following code just before the code that adds the
exclusive transform:

XSAlgorithmIdentifier transform1 = 
  new XSAlgorithmIdentifier(doc, "Transform", 
  XMLURI.alg_envelopedSignature);
ref.addTransform(transform1);

7.8.2.3 Using an XPath Expression
To use an XPath expression instead of an ID-based reference, pass in an empty string
instead of "#foo1" for the URI parameter of createReference, then add an XPath
transform to the Reference as the first transform.

String xpathExpr = "ancestor-or-self:importantInfo";
Element xpathElem = doc.createElementNS(XMLURI.ns_dsig, 
 "dsig:XPath");
xpathElem.appendChild(doc.createTextNode(xpathExpr);
XSAlgorithmIdentifier transform2 = 
  new XSAlgorithmIdentifier(doc, "Transform", 
  XMLURI.alg_xpath);
transform2.addParameter(xpathElem);
ref.addTransform(transform2);

7.8.2.4 Using a Certificate Hint
If you do not want to include the entire certificate in the key info, but only a hint to the
certificate, use the no-argument form of XSKeyInfo.createX509Data() and call one of
the methods X509Data.addIssuerSerial, addSubjectName, or addSubjectKeyID.
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7.8.2.5 Signing with an HMAC Key
TO sign with an HMAC key, instead of signing with an RSA or DSA private key, use
the XSSignature.sign(byte[] secret, String sigValueId) method, and pass your
HMAC key as the first argument.

Also use a different kind of KeyInfo, such as a KeyName, by calling
XSKeyInfo.createKeyName.

7.9 Verifying Signatures with the Oracle XML Security API
Using Oracle XML Security APIs, you can locate what is signed, fetch the keyinfo of
the signature, and then verify the signature.

Signature verification topics include:

• Checking What is Signed, Basic Procedure

• Setting Up Callbacks

• Writing a Custom Key Retriever

• Checking What is Signed

• Verifying the Signature

7.9.1 Checking What is Signed, Basic Procedure
You can verify a signature by first locating the <dsig:Signature> element in your
document, using it to construct the XSSignature wrapper object, and then fetching the
KeyInfo of the signature.

Element sigElem = …
XSSignature sig = new XSSignature(sigElem);

Next, fetch the KeyInfo of the signature and examine the key to determine if you trust
the signer. There are different ways to deal with the KeyInfo:

• For very simple cases, you may already know the verification key in advance, and
you do not need to look at the KeyInfo at all.

• In most cases, however, you should look at the KeyInfo. One way is to set up
callbacks, so when you call XSSignature.verify() you call it with no verification
key. Internally, the Oracle Security Developer Tools look at the KeyInfo to see if it
invokes a callback to fetch the key.

• The other option is to proactively look into the KeyInfo and determine the key
yourself.
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7.9.2 Setting Up Callbacks
If the KeyInfo contains the signing certificate, set a certificate validator callback. If the
KeyInfo contains a hint, write a KeyRetriever to fetch a certificate from a certificate
store.

If the KeyInfo Contains the Signing Certificate

If you expect the KeyInfo to contain the signing certificate, and you do not already
have this certificate, but you have set up the trust points, you just need to set a
certificate validator callback.

// Create your certificate validator
CertificateValidator myValidator 
  = new CertificateValidator() {
  public void validateCert(CertPath cp) {
     // Code to validate the certificate
  }
};
KeyRetriever.setCertificateValidator(myValidator);

The Oracle Security Developer Tools API retrieves the certificate from the KeyInfo
and invokes your callback; if the callback returns true, it will verify with that certificate.

If the KeyInfo Contains a Hint

If you expect the KeyInfo to contain only a hint to the signing certificate, that is, the
subjectDN or Issuer Serial or subject key identifier, write a KeyRetriever to fetch a
certificate from a certificate store given this hint.

If your certificate store is a keystore, a PKCS12 wallet, or a PKCS8 file, you can use
one of the built-in retrievers for these types. These retrievers iterate through all the
certificates in the keystore or Oracle wallet and find the one which matches the given
subjectDN/issuerSerial or SubjectKey.

Note:

You can also use this mechanism also if your KeyInfo contains the entire
certificate; the key retriever will simply match the entire certificate.

// Load your keystore
KeyStore ks = 
// Set up a callback against this KeyStore
KeyRetriever.addKeyRetriever(
  new KeyStoreKeyRetriever(ks, passwd));

7.9.3 Writing a Custom Key Retriever
If these built-in retrievers are not suitable, you can write a custom KeyRetriever by
deriving from the KeyRetriever class.

For example you could do this when you expect the KeyInfo to contain a subjectDN,
and you will look up an LDAP directory to find the certificate for that DN.
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KeyRetriever myRetriever = new KeyRetriever() {
   X509Certificate retrieveCertificate (KeyInfoData keyInfo) {
       // write code to fetch the certificate from 
       // the certificate store based on keyInfo
   }
 
   PublicKey retrieveCertificate (KeyInfoData keyInfo) {
       // write code to fetch the PublicKey from 
       // the certificate store based on keyInfo
   }
};
KeyRetriever.addKeyRetriever(myRetriever);

If the signature used the symmetric key, and the KeyInfo has the keyname of that key,
write a custom key retriever which can fetch the symmetric key based on this key
name.

7.9.4 Checking What is Signed
You can check if a signature really signs what you were expecting it to sign. The
Oracle Security Developer Tools API provides methods to return this information.

// XSSignature has be created as mentioned before
XSSignature sig = ...
 
// at first locate the element that are expecting 
// to be signed
Element impElem = ...
 
// Now check if the signature really signs this
List signedObjects = XMLUtils.resolveReferences(sig);
if (signedObjects.size() != 1 ||
   signedObjects.get(0) != impElem {
   // something is wrong – impElem is not signed by
   // this signature
}

7.9.5 Verifying the Signature
You can verify a signature by using the sig.verify() method and know whether the
signature format is correct. You can also debug the failed signatures.

The last step is to actually verify the signature. The call protocol depends on whether
callbacks are set up.

7.9.5.1 Verifying if Callbacks are Set Up
If you set up callbacks, then make this call:

boolean result = sig.verify();

You need to check for both a false result and an exception:

• sig.verify() returns false if the signature format is correct, but one of the
reference digests does not match, or if the signature does not verify.

Chapter 7
Verifying Signatures with the Oracle XML Security API

7-18



• sig.verify() throws an exception if there is something wrong in the construction
of the signature; for example, if the algorithm names are wrong or signature bytes
are not of the right size.

7.9.5.2 Verifying if Callbacks are Not Set Up
If you did not set up callbacks, and you determined the key by yourself, you must call:

• sig.verify(byte[]) for HMAC keys or

• sig.verify(PublicKey) for DSA/RSA keys.

7.9.5.3 Debugging Verification
If you cannot determine why a particular signature does not verify, and you need to
debug it, set the JVM property –Dxml.debug.verify=1. This flag instructs the Oracle
Security Developer Tools to print diagnostic output to the stderr for failed signatures.

7.10 Encrypting Data with the Oracle XML Security API
You can encrypt data with a shared symmetric key or a random symmetric key.

The following topics explain it further:

• Encrypting with a Shared Symmetric Key

• Encrypting with a Random Symmetric Key

7.10.1 Encrypting with a Shared Symmetric Key
You can create a new XEEncryptedData instance and specify the encryption method.
Then, create a Keyinfo with a hint to the symmetric key. You can use the utility method
XEncUtils.encryptElement to perform all these steps.

To encrypt and replace the following <importantInfo> element:

<myDoc>
  <importantInfo>
    ...
  </importantInfo>
</myDoc>

you will need to take the following steps:

// Assuming there is a shared symmetric key
SecretKey dataEncKey = ...
 
// Create a new XEEncryptedData instance 
// use either obj_Element or obj_Content depending
// on whether you want to encrypt the whole element
// or content only
XEEncryptedData ed = XEEncryptedData
    .newInstance(doc, null, XMLURI.obj_Element);
 
// Specify the data encryption method
XEEncryptionMethod em =   
   ed.createEncryptionMethod(XMLURI.alg_aes128_CBC);
ed.setEncryptionMethod(em);
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// Create a Keyinfo with a hint to the symmetric key
XEKeyInfo ki= ed.createKeyInfo();
ki.addKeyInfoData(ki.createKeyName("MyKey"));
ed.setKeyInfo(ki);
 
// Locate the importantInfo element
Element impElem = ...
 
// Encrypt the importantInfo element and replace
// it with the EncryptedData element
XEEncrytedData.encryptAndReplace(impElem, dataEncKey, 
   null, ed);

There is a utility method which performs all these steps:

XEncUtils.encryptElement(
  impElem,  // element to be encrypted
  false,    // true = contentOnly, false = entire element
  XMLURI.alg_aes128_CBC, // data encryption alg
  "MyKey" // hint to data key
);

7.10.2 Encrypting with a Random Symmetric Key
Usually you need to generate a random symmetric key and encrypt the data with that
key, and then encrypt this random symmetric key with the receiver's public key. The
XEncUtils.encryptElement method performs all these steps.

Here is how you would do that:

// Load up the encryption certificate of the reciever
X509Certificate encCert = ...
 
// Get the reciever's public key from the cert
PublicKey keyEncKey = encCert.getPublicKey();
 
// Then generate a random symmetric key
KeyGenerator keyGen = KeyGenerator.getInstance("AES");
keyGen.init(128);
SecretKey dataEncKey = keyGen.generateKey();
 
// Now create an EncryptedKey object
XEEncryptedKey = new XEEncryptedKey(doc);
 
// set up the key encryption algorithm
XEEncryptionMethod em =   
  ek.createEncryptionMethod(XMLURI.alg_rsaOAEP_MGF1);
em.setDigestMethod(XMLURI.alg_sha1);
ek.setEncryptionMethod(em);
 
// encrypt the random symmetric key with public key
byte[] cipherValue = ek.encrypt(dataEncKey, keyEncKey);
 
// store this cipherValue into ek
XECipherData cd = ek.createCipherData();
cd.setCipherValue(cipherValue);
ek.setCipherData(cd);
 
 
// decide on how you would let the receiver know the
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// the key encryption key. We are putting in the 
// entire reciever's certificate
XEKeyInfo kki = ek.createKeyInfo();
kki.addKeyInfoData(kki.createX509Data(encCert);
 
// Now the encrypted key has been set up, let us
// do the data encryption as before
XEncUtils.encryptElement(
  impElem,  // element to be encrypted
  false,    // true = contentOnly, false = entire element
  XMLURI.alg_aes128_CBC, // data encryption alg
  null // No hint to data key
);
 
// Finally we need to put the EncryptedKey inside the
// KeyInfo of the EncryptedData
ed.addKeyInfoData(ek);

There is a utility method which performs all these steps:

XEncUtils.encryptElement (
  impElem,  // element to be encrypted
  false,    // true = contentOnly, false = entire element
  XMLURI.alg_aes128_CBC, // data encryption alg
  dataEncKey, // the random symmetric key that we generated
  XMLURI.alg_rsaOAEP_MGF1, // key encryption alg
  KeyEncKey, // public key that we got from cert
  "RecieverCert" // A hint to the certificate
);

Notice that this utility method puts KeyName in the EncryptedKey's KeyInfo; if you
want to pass X509Data instead, pass null for keyEncKeyName and then add the
X509Data yourself:

// use utility method to create EncrytedData
XEEncryptedData ed = XEncUtils...
 
// no extract EncryptedKey from it
XEEncryptedKey ek = (XEEncryptedKey)ed.getKeyInfo()
 .getEncryptedKeys().elementAt(0);
 
// Set the keyInfo of the ek
XEKeyInfo kki = ek.createKeyInfo();
kki.addKeyInfoData(kki.createX509Data(encCert);

7.11 Decrypting Data with the Oracle XML Security API
Oracle XML Security API has different methods for decrypting data depending upon
whether you have used a shared symmetric key or a random symmetric key.

The topics in this section explain it further.

7.11.1 Decrypting with a Shared Symmetric Key
You can search for the encrypted data element and decrypt the data by using the
XEEncrytedData.decryptAndReplace method.

If you have a shared symmetric key, do the following:
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// search for the EncryptedData element
Element edElem = ...
 
// decrypt the data
SecretKey dataDecKey = ...
XEEncrytedData.decryptAndReplace(dataDecKey, edElem, true);

7.11.2 Decrypting with a Random Symmetric Key
With a random symmetric key, you can decrypt the data by using the
XEEncUtils.decryptElement method.

If you expect to use a random symmetric key:

// search for the EncryptedData element
Element edElem = ...
 
// decrypt the data
PrivateKey keyDecKey = ...
XEEncUtils.decryptElement(edElem, keyDecKey);

7.12 About Supporting Classes and Interfaces
Oracle XML Security API contains supporting classes and interfaces. The
oracle.security.xmlsec.util.XMLURI interface defines URI string constants for
algorithms, namespaces, and objects. The oracle.security.xmlsec.util.XMLUtils
class contains static utility methods for XML and XML-DSIG.

It contains these topics:

• About the oracle.security.xmlsec.util.XMLURI Interface

• About the oracle.security.xmlsec.util.XMLUtils class

7.12.1 About the oracle.security.xmlsec.util.XMLURI Interface
The oracle.security.xmlsec.util.XMLURI interface defines URI string constants for
algorithms, namespaces, and objects.

It uses the following naming convention:

• Algorithm URIs begin with "alg_".

• Namespace URIs begin with "ns_".

• Object type URIs begin with "obj_".

7.12.2 About the oracle.security.xmlsec.util.XMLUtils class
The oracle.security.xmlsec.util.XMLUtils class contains static utility methods for
XML and XML-DSIG.

Methods frequently used in applications include the createDocBuilder(),
createDocument(), toBytesXML(), and toStringXML() methods.
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7.13 Common XML Security Questions
Learn frequently asked questions about Oracle XML Security.

What is the DER format? The PEM format? How are these formats used?

DER is an abbreviation for ASN.1 Distinguished Encoding Rules. DER is a binary
format that is used to encode certificates and private keys. Oracle XML Security SDK
uses DER as its native format, as do most commercial products that use certificates
and private keys.

Many other formats used to encode certificates and private keys, including PEM,
PKCS #7, and PKCS #12, are transformations of DER encoding. For example, PEM
(Privacy Enhanced Mail) is a text format that is the Base 64 encoding of the DER
binary format. The PEM format also specifies the use of text BEGIN and END lines that
indicate the type of content that is being encoded.

I received a certificate in my email in a text format. It has several lines of text
characters that don't seem to mean anything. How do I convert it into the format
that Oracle XML Security uses?

If you received the certificate in your email, it is in PEM format. You need to convert
the certificate from PEM (Privacy-Enhanced Mail) format to ASN.1 DER (Distinguished
Encoding Rules) format.

How do I use a certificate that is exported from a browser?

If you have exported the certificate from a browser, it is most likely in PKCS #12 format
(*.p12 or *.pfx). You must parse the PKCS #12 object into its component parts.

7.14 Best Practices for Oracle XML Security
You can refer to discussions on best practices for implementors and users of the XML
Signature specification.

See the best practices at:

http://www.w3.org/TR/xmldsig-bestpractices/

7.15 The Oracle XML Security Java API Reference
The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes, interfaces, and methods used in Oracle XML
Security API.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
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8
Oracle SAML

Oracle SAML allows Java developers to develop cross-domain single sign-on and
federated access control solutions that conform to the SAML 1.0/1.1 and SAML 2.0
specifications.

This chapter contains the following topics:

• Oracle SAML Features and Benefits

• Oracle SAML 1.0/1.1

• Oracle SAML 2.0

8.1 Oracle SAML Features and Benefits
The Oracle SAML SDK provides a Java API with supporting tools, documentation, and
sample programs to assist developers of SAML-compliant Java security services.
Oracle SAML can be integrated into existing Java solutions, including applets,
applications, EJBs, servlets, and JSPs.

Oracle SAML provides the following features:

• Support for the SAML 1.0/1.1 and 2.0 specifications

• Support for SAML-based single sign-on (SSO), Attribute, Metadata, Enhanced
Client Proxy, and federated identity profiles

See Also:

For more information and links to these specifications and related
documents, see References.

8.2 Oracle SAML 1.0/1.1
Oracle SAML 1.0/1.1 conforms to the SAML 1.0/1.1 specifications. You can set up
your environment for Oracle SAML 1.0/1.1 toolkit, and use its classes and interfaces.

It contains the following topics:

• Oracle SAML 1.0/1.1 Packages

• Setting Up Your Oracle SAML 1.0/1.1 Environment

• Classes and Interfaces of Oracle SAML 1.x

• The Oracle SAML 1.0/1.1 Java API Reference
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8.2.1 Oracle SAML 1.0/1.1 Packages
The Oracle SAML Java API contains the following packages for creating SAML
1.0/1.1-compliant Java applications: oracle.security.xmlsec.saml and
oracle.security.xmlsec.samlp

oracle.security.xmlsec.saml

This package contains classes that support SAML assertions.

oracle.security.xmlsec.samlp

This package contains classes that support the SAML request and response protocol
(SAMLP).

8.2.2 Setting Up Your Oracle SAML 1.0/1.1 Environment
You can setup Oracle SAML environment by installing Oracle Security Developer
Tools and Java Development Kit (JDK), and setting the CLASSPATH variable to all of the
required jar and class files.

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME.

In order to use Oracle SAML, your system must have the Java Development Kit (JDK)
version 1.6 or higher.

Your CLASSPATH environment variable must contain the full path and file names to all of
the required jar and class files. Make sure the following items are included in your
CLASSPATH:

• osdt_core.jar

• osdt_cert.jar

• osdt_xmlsec.jar

• osdt_saml.jar

• The org.jaxen_1.1.1.jar file (Jaxen XPath engine, included with your Oracle
XML Security distribution)

See Setting the CLASSPATH Environment Variable for configuration details.

8.2.3 Classes and Interfaces of Oracle SAML 1.x
Oracle SAML 1.0/1/1 contains multiple core classes to create SAML assertions,
requests, and responses. It contains supporting interfaces which define URI string
constants for algorithms, namespaces, and objects. It also contains a supporting class
that is base class for all the SAML and SAML extension messages.

This section provides information and code samples for using the classes and
interfaces of Oracle SAML 1.0/1.1. It contains these topics:

• Core Classes of Oracle SAML 1.x

• Supporting Classes and Interfaces
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8.2.3.1 Core Classes of Oracle SAML 1.x
SAML assertions, requests, and responses are created with the Oracle SAML API.

This section provides a brief overview of the core SAML and SAMLP 1.0/1.1 classes
with some brief code examples.

Topics include:

• Using the oracle.security.xmlsec.saml.SAMLInitializer Class

• Using the oracle.security.xmlsec.saml.Assertion Class

• Using the oracle.security.xmlsec.samlp.Request Class

• Using the oracle.security.xmlsec.samlp.Response Class

8.2.3.1.1 Using the oracle.security.xmlsec.saml.SAMLInitializer Class
This class initializes the Oracle SAML toolkit. By default Oracle SAML is automatically
initialized for SAML v1.0. You can also initialize Oracle SAML for a specific version of
the SAML specification. When the initialize method is called for a specific version,
previously initialized versions will remain initialized.

This example shows how to initialize the SAML toolkit for SAML v1.0 and SAML v1.1.

// initializes for SAML v1.1
SAMLInitializer.initialize(1, 1); 
// initializes for SAML v1.0, done by default
SAMLInitializer.initialize(1, 0); 

8.2.3.1.2 Using the oracle.security.xmlsec.saml.Assertion Class
This class represents the Assertion element of the SAML Assertion schema.

This example shows how to create a new Assertion element and append it to an
existing XML document.

Document doc = Instance of org.w3c.dom.Document;
Assertion assertion = new Assertion(doc);
doc.getDocumentElement().appendChild(assertion);

This example shows how to obtain Assertion elements from an XML document.

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all Assertion elements in the document

NodeList assrtList = 
    doc.getElementsByTagNameNS(SAMLURI.ns_saml, "Assertion");
if (assrtList.getLength() == 0)
    System.err.println("No Assertion elements found.");

// Convert each org.w3c.dom.Node object to a 
// oracle.security.xmlsec.saml.Assertion object and process

for (int s = 0, n = assrtList.getLength(); s < n; ++s)
{
    Assertion assertion = new Assertion((Element)assrtList.item(s));
    // Process Assertion element
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    ...
}

8.2.3.1.3 Using the oracle.security.xmlsec.samlp.Request Class
This class represents the Request element of the SAML Protocol schema.

This example shows how to create a new Request element and append it to an
existing XML document.

Document doc = Instance of org.w3c.dom.Document;
Request request = new Request(doc);
doc.getDocumentElement().appendChild(request);

This example shows how to obtain Request elements from an existing XML document.

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all Request elements in the document

NodeList reqList = 
    doc.getElementsByTagNameNS(SAMLURI.ns_samlp, "Request");
if (reqList.getLength() == 0)
    System.err.println("No Request elements found.");

// Convert each org.w3c.dom.Node object to a 
// oracle.security.xmlsec.samlp.Request object and process

for (int s = 0, n = reqList.getLength(); s < n; ++s)
{
    Request request = new Request((Element)reqList.item(s));
    // Process Request element
    ...
}

8.2.3.1.4 Using the oracle.security.xmlsec.samlp.Response Class
This class represents the Response element of the SAML Protocol schema.

This example shows how to create a Response element and append it to an existing
XML document.

Document doc = Instance of org.w3c.dom.Document;
Response response = new Response(doc);
doc.getDocumentElement().appendChild(response);

This example shows how to obtain Response elements from an existing XML
document.

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all Response elements in the document

NodeList respList = 
    doc.getElementsByTagNameNS(SAMLURI.ns_samlp, "Response");
if (respList.getLength() == 0)
    System.err.println("No Response elements found.");

// Convert each org.w3c.dom.Node object to a 
// oracle.security.xmlsec.samlp.Response object and process
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for (int s = 0, n = respList.getLength(); s < n; ++s)
{
    Response response = new Response((Element)respList.item(s));
    // Process Response element
    ...
}

8.2.3.2 Supporting Classes and Interfaces
This section provides an overview of the supporting classes and interfaces of Oracle
SAML 1.0/1.1:

• Using the oracle.security.xmlsec.saml.SAMLURI Interface

• Using the oracle.security.xmlsec.saml.SAMLMessage Class

8.2.3.2.1 Using the oracle.security.xmlsec.saml.SAMLURI Interface
This interface defines URI string constants for algorithms, namespaces, and objects.
The following naming conventions are used:

• Action Namespace URIs defined in the SAML 1.0 specifications begin with
action_ .

• Authentication Method Namespace URIs defined in the SAML 1.0 specifications
begin with authentication_method_ .

• Confirmation Method Namespace URIs defined in the SAML 1.0 specifications
begin with confirmation_method_ .

• Namespace URIs begin with ns_ .

8.2.3.2.2 Using the oracle.security.xmlsec.saml.SAMLMessage Class
This is the base class for all the SAML and SAML extension messages that may be
signed and contain an XML-DSIG (digital signature) structure.

8.2.4 The Oracle SAML 1.0/1.1 Java API Reference
The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes, interfaces, and methods available in Oracle SAML
1.0/1.1 API.

You can access this guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

8.3 Oracle SAML 2.0
Oracle SAML 2.0 conforms to the SAML 2.0 specifications. You can set up your
environment for Oracle SAML 2.0 toolkit, and use its classes and interfaces.

It contains the following topics:

• Oracle SAML 2.0 Packages

• Setting Up Your Oracle SAML 2.0 Environment

• Classes and Interfaces of Oracle SAML 2.0
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• The Oracle SAML 2.0 Java API Reference

8.3.1 Oracle SAML 2.0 Packages
Oracle SAML 2.0 API contains multiple packages with classes to support SAML
assertions, SAML request and response protocol (SAMLP), and SAML authentication.

The Oracle SAML Java API contains the following packages for creating SAML 2.0-
compliant Java applications:

oracle.security.xmlsec.saml2.core

This package contains classes that support SAML assertions.

oracle.security.xmlsec.saml2.protocol

This package contains classes that support the SAML request and response protocol
(SAMLP).

oracle.security.xmlsec.saml2.ac

This package contains classes that support the SAML authentication context basic
types.

oracle.security.xmlsec.saml2.ac.classes

This package contains classes that support various SAML authentication context
classes.

oracle.security.xmlsec.saml2.metadata

This package contains classes that support the SAML metadata.

oracle.security.xmlsec.saml2.profiles.attributes

This package contains classes that support various SAML attribute profiles.

oracle.security.xmlsec.saml2.profiles.sso.ecp

This package contains classes that support the SAML ECP SSO profile.

8.3.2 Setting Up Your Oracle SAML 2.0 Environment
You can setup Oracle SAML environment by installing Oracle Security Developer
Tools and Java Development Kit (JDK), and setting the CLASSPATH variable to all of
the required jar and class files.

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME.

In order to use Oracle SAML, your system must have the Java Development Kit (JDK)
version 1.6 or higher.

Your CLASSPATH environment variable must contain the full path and file names to all of
the required jar and class files. Make sure the following items are included in your
CLASSPATH:

• osdt_core.jar
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• osdt_cert.jar

• osdt_xmlsec.jar

• osdt_saml.jar

• The org.jaxen_1.1.1.jar file (Jaxen XPath engine, included with your Oracle
XML Security distribution)

For example, your CLASSPATH might look like this:

%CLASSPATH%;%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_xmlsec.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_saml.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_saml2.jar;
%ORACLE_HOME%\modules\org.jaxen_1.1.1.jar;

See Setting the CLASSPATH Environment Variable for configuration details.

8.3.3 Classes and Interfaces of Oracle SAML 2.0
Oracle SAML 2.0 contains multiple core classes to create SAML assertions, requests,
and responses. It contains supporting interfaces which define URI string constants for
algorithms, namespaces, and objects.

This section provides information and code samples for using the classes and
interfaces of Oracle SAML 2.0. It contains these sections:

• Core Classes of Oracle SAML 2.0

• Supporting Classes and Interfaces

8.3.3.1 Core Classes of Oracle SAML 2.0
Core classes of the Oracle SAML 2.0 API enable you to create assertions, requests,
and responses.

This section provides an overview of the core SAML and SAMLP classes with some
brief code examples. Topics are:

• Using the oracle.security.xmlsec.saml2.core.Assertion Class

• Using the oracle.security.xmlsec.saml2.protocol.AuthnRequest Class

• Using the oracle.security.xmlsec.saml2.protocol.StatusResponseType Class

8.3.3.1.1 Using the oracle.security.xmlsec.saml2.core.Assertion Class
This class represents the Assertion element of the SAML Assertion schema.

This example shows how to create a new Assertion element and append it to an
existing XML document.

Document doc = Instance of org.w3c.dom.Document;
Assertion assertion = new Assertion(doc);
doc.getDocumentElement().appendChild(assertion);

This example shows how to obtain Assertion elements from an XML document.

// Get a list of all Assertion elements in the document
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NodeList assrtList = 
    doc.getElementsByTagNameNS(SAML2URI.ns_saml, "Assertion");
if (assrtList.getLength() == 0)
    System.err.println("No Assertion elements found.");
 
// Convert each org.w3c.dom.Node object to a 
// oracle.security.xmlsec.saml2.core.Assertion object and process
 
for (int s = 0, n = assrtList.getLength(); s < n; ++s)
{
    Assertion assertion = new Assertion((Element)assrtList.item(s));
    // Process Assertion element
    ...
}

8.3.3.1.2 Using the oracle.security.xmlsec.saml2.protocol.AuthnRequest Class
This class represents the AuthnRequest element of the SAML Protocol schema.

This example shows how to create a new AuthnRequest element and append it to an
existing XML document.

Document doc = Instance of org.w3c.dom.Document;
AuthnRequest request = new AuthnRequest(doc);
doc.getDocumentElement().appendChild(response);

This example shows how to obtain AuthnRequest elements from an existing XML
document.

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all AuthnRequest elements in the document
 
NodeList reqList = 
    doc.getElementsByTagNameNS(SAML2URI.ns_samlp, "AuthnRequest");
if (reqList.getLength() == 0)
    System.err.println("No Request elements found.");
 
// Convert each org.w3c.dom.Node object to a 
// oracle.security.xmlsec.saml2.protocol.AuthnRequest 
// object and process
 
for (int s = 0, n = reqList.getLength(); s < n; ++s)
{
    AuthnRequest request = new AuthnRequest((Element)reqList.item(s));
    // Process Request element
    ...
}

8.3.3.1.3 Using the oracle.security.xmlsec.saml2.protocol.StatusResponseType Class
This class represents the Response element of the SAML Protocol schema.

The samlp:StatusResponseType element is a base type representing an extension
point for the SAML 2.0 protocols. The various protocols defined in the SAML 2.0
specification use sub-types such as samlp:Response or samlp:LogoutResponse.

This example shows how to create a Response element and append it to an existing
XML document.
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Document doc = Instance of org.w3c.dom.Document;
Response response = new Response(doc);
doc.getDocumentElement().appendChild(response);

This example shows how to obtain Response elements from an existing XML
document.

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all Response elements in the document
 
NodeList respList = 
    doc.getElementsByTagNameNS(SAML2URI.ns_samlp, "Response");
if (respList.getLength() == 0)
    System.err.println("No Response elements found.");
 
// Convert each org.w3c.dom.Node object to a 
// oracle.security.xmlsec.saml2.protocol.Response object and process
 
for (int s = 0, n = respList.getLength(); s < n; ++s)
{
    Response response = new Response((Element)respList.item(s));
    // Process Response element
    ...
}

8.3.3.2 Supporting Classes and Interfaces
This section provides an overview of the supporting classes and interfaces of Oracle
SAML 2.0. It includes:

• Using the oracle.security.xmlsec.saml2.util.SAML2URI Interface

8.3.3.2.1 Using the oracle.security.xmlsec.saml2.util.SAML2URI Interface
This interface defines URI string constants for algorithms, namespaces, and objects.
The interface uses these naming conventions:

• Action namespace URIs defined in the SAML 1.0/1.1/2.0 specifications begin with
action_ .

• Authentication method namespace URIs defined in the SAML 1.0/1.1/2.0
specifications begin with authentication_method_.

• Confirmation method namespace URIs defined in the SAML 1.0/1.1/2.0
specifications begin with confirmation_method_ .

• Namespace URIs begin with ns_.

8.3.4 The Oracle SAML 2.0 Java API Reference
The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes, interfaces, and methods available in Oracle SAML
2.0 API.

The Oracle SAML Java API reference (Javadoc) is available at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
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9
Oracle Web Services Security

Oracle Web Services Security provides a complete implementation of the OASIS WS
Security 1.1 standard. It provides mechanisms to sign and encrypt messages, and
security tokens to ascertain the sender's identity.

This chapter describes how to install and use the SDK. This chapter contains these
topics:

• Setting Up Your Oracle Web Services Security Environment

• Classes and Interfaces of Oracle Web Services Security

• The Oracle Web Services Security Java API Reference

9.1 Setting Up Your Oracle Web Services Security
Environment

You can setup Oracle Web Services Security environment by installing Oracle Security
Developer Tools and Java Development Kit (JDK), and setting the CLASSPATH variable
to all the required jar files.

The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME.

To use Oracle Web Services Security, you must have Development Kit (JDK) version
1.6 or higher.

Make sure the following items are included in your CLASSPATH:

• osdt_core.jar

• osdt_cert.jar

• osdt_xmlsec.jar - This is the Oracle XML Security jar.

• osdt_saml.jar - This is the Oracle SAML 1.0 and 1.1 jar.

• osdt_saml2.jar - This is the Oracle SAML 2.0 jar.

• org.jaxen_1.1.1.jar, which is included in $ORACLE_HOME/modules/.

• osdt_wss.jar - This is the main jar containing Oracle Web Services Security.

• saaj-api.jar - This is the standard SAAJ API and is included in JDK6; for
previous JDKs, you can obtain it from your JavaEE container.

• mail.jar, activation.jar - You can obtain these jars from your JavaEE
container.
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See Also:

Setting the CLASSPATH Environment Variable.

9.2 Classes and Interfaces of Oracle Web Services Security
Oracle Web Services Security provides classes, interfaces, and methods to sign and
encrypt messages, and security tokens to ascertain the sender's identity.

Note:

Review Oracle XML Security before proceeding.

This section describes classes and interfaces in the Oracle Web Services Security
API. It contains these topics:

• Element Wrappers in Oracle Web Services Security

• The <wsse:Security> header

• Security Tokens (ST) in Oracle Web Services Security

• Security Token References (STR)

• Signing and Verifying

• Encrypting and Decrypting

9.2.1 Element Wrappers in Oracle Web Services Security
Oracle Web Services Security provides element wrappers to all XML elements.

See Also:

Understanding and Using Element Wrappers in the OSDT XML APIs

Table 9-1 lists the element wrappers provided by Oracle Web Services Security.

Table 9-1    Element Wrappers for Oracle Web Services Security

XML Tag Name Java Class Name

<wsse:Security> oracle.security.xmlsec.wss.WSSecurity

<wsse:BinarySecurityToken> oracle.security.xmlsec.wss.WSSBinarySecurityToken or one of
its derived classes depending on the valueType attribute:
oracle.security.xmlsec.wss.x509.X509BinarySecurityToken
oracle.security.xmlsec.wss.kerberos.KerberosBinarySecurityTo
ken
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Table 9-1    (Cont.) Element Wrappers for Oracle Web Services Security

XML Tag Name Java Class Name

<wsse:
SecurityTokenReference>

oracle.security.xmlsec.wss.WSSecurityTokenReference

<wsse: Embedded> oracle.security.xmlsec.wss.WSSEmbedded

<wsse11:EncryptedHeader> oracle.security.xmlsec.wss.WSSEncryptedHeader

<wsse11:SignatureConfirmati
on>

oracle.security.xmlsec.wss.WSSignatureConfirmation

<wsse:KeyIdentifier> oracle.security.xmlsec.wss.WSSKeyIdentifier or one of its
derived classes depending on the valueType attribute:
oracle.security.xmlsec.wss.x509.X509KeyIdentifier
oracle.security.xmlsec.wss.saml.SAMLAssertionKeyIdentifier
oracle.security.xmlsec.wss.saml2.SAML2AssertionKeyIdentifier
oracle.security.xmlsec.wss.kerberos.KerberosKeyIdentifier
oracle.security.xmlsec.wss.WSSEncryptedKeyIdentifier

<wsse:Reference> oracle.security.xmlsec.wss.WSSReference

<wsu:Created> oracle.security.xmlsec.wss.WSUCreated

<wsu:Expires> oracle.security.xmlsec.wss.WSUExpires

<wsu:Timestamp> oracle.security.xmlsec.wss.WSUTimestamp

<wsse:UsernameToken> oracle.security.xmlsec.wss.username.UsernameToken
oracle.security.xmlsec.wss. oracle.security.xmlsec.wss.
oracle.security.xmlsec.wss. oracle.security.xmlsec.wss.
oracle.security.xmlsec.wss. oracle.security.xmlsec.wss.

As explained in Understanding and Using Element Wrappers in the OSDT XML APIs,
the java classes are only throwaway wrappers, while the DOM elements are the
source of truth. You can create these wrapper classes using the appropriate
constructor, which takes in the DOM element; you can get the underlying DOM
element using the getElement method.

9.2.2 The <wsse:Security> header
The WS Security specification defines a new SOAP Header called <wsse:Security>.
All security information, such as Security Tokens, Timestamp, Signatures,
EncryptedKeys, and ReferenceList, are stored inside this header.

• Security Tokens - Contain user name tokens, certificates, SAML assertion and so
on (see next section)

• Timestamp - The current time stamp is often included in the security header, and it
is usually included in a signature to prevent replay attacks.

• Signatures - Any signatures are stored inside the header. Even though the
signature is in the Security header, what it signs is often outside the header - for
example, a single signature can sign the SOAP Body, some SOAP attachments, a
UserName token inside the Security header, and a Timestamp token in the
Security header.

• EncryptedKeys - Any encrypted session keys are stored here.

• ReferenceList - Contains a list of all the EncryptedData sections.
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9.2.2.1 Handling Outgoing Messages
For outgoing messages, you need to create a new <wsse:Security> header, add
security tokens and then encrypt and/or sign parts of the document. Here is how to
accomplish this task:

// Assuming we the outgoing message has already been constructed into 
// a SOAPMessage object (part of SAAJ API)
SOAPMessage msg = ...
 
// Now create a new <wsse:Security> Header 
// newInstance will internally use SOAPHeader.addHeaderElement
SOAPEnvelope env = msg.getSOAPPart().getEnvelope();
WSSecurity ws = WSSecurity.newInstance(env);
 
// Add required prefixes to this SOAP header
 
// Now add some security tokens (refer to the next section on 
// how to create security tokens)
UsernameToken ut = ...
ws.addUsernameToken(ut);
 
// Create some security token references to this token 
// (refer to following sections)
ws.createSTR...
 
// Now sign or encrypt some data (refer to following sections)
// These should use the above STRs
ws.sign(...);
ws.encryptWithEncKey(...);
ws.encryptNoEncKey(...);

9.2.2.2 Handling Incoming Messages
For incoming messages, you need to look for a particular <wsse:Security> header,
inspect its contents, and verify or decrypt parts of the document. To accomplish this
task:

// Assuming we the incoming message has already been constructed into 
// a SOAPMessage object (part of SAAJ API)
SOAPMessage msg = ...

9.2.3 Security Tokens (ST) in Oracle Web Services Security
A security token represents an artifact such as a certificate, a kerberos ticket, a user
name with password, a Single sign-on token and so on. Oracle Web Services Security
contains different types security tokens, such as Username token, X509 certificate,
Kerberos ticket, and SAML Assertion, with multiple variations.

Usually a key is derived/extracted from this token, and this key is used to encrypt/
decrypt sign/verify parts of the message. However, the security token can also be
used just as a data object.
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Table 9-2     Security Tokens for Oracle Web Services Security

Type of Token (Java Class) Variations Keys

Username token
oracle.security.xmlsec.wss.us
ername. UsernameToken

• With no password
• With a SHA1 digest of the

password
• With the actual password,

or a different kind of
digest/derived password.

Symmetric key obtained by
running KeyDerivation on
user's password

X509 certificate
oracle.security.xmlsec.wss.x5
09. X509BinarySecurityToken

• Single v3 certificate
• Chain of certificates in

PKIPath format
• Chain of certificates in

PKCS7 format

• Public key inside
certificate

• Private key associated
with certificate

Kerberos ticket
oracle.security.xmlsec.wss.ker
beros.
KerberosBinarySecurityToken

• AP_REQ packet
• GSS-wrapped AP_REQ

packet

Either the session key present
in the ticket, or a subkey.

SAML Assertion 1.1
oracle.security.xmlsec.wss.sa
ml.SAMLAssertionToken

SAML Assertion 2.0
oracle.security.xmlsec.wss.sa
ml2. SAML2AssertionToken

• holder_of_key
• sender_vouchers
• bearer

For holder_of_key the
subject's key is used – this is,
the key inside the
<saml:SubjectConfirmation>
which is inside the
<saml:Assertion>.

For sender_vouches, the key
of the attesting entity is used.

Keys are not extracted from
bearer tokens.

9.2.3.1 Creating a WSS Username Token
First, create a UsernameToken and place it inside your WSSecurity header. The only
mandatory field in the UsernameToken is the username:

// create a Username token
WSSecurity ws = ...
UsernameToken ut = new UsernameToken(doc);
ut.setUserName("Zoe");
 
// remember to put this inside your WSSecurity header. 
// addUserNameToken puts it at the beginning, you can also
// use a regular DOM method appendChild or insertChild to put it in.
ws.addUsernameToken(ut); 
 
// optionally add an wsu:Id, so you can refer to it
ut.setWsuId("MyUser");

Next, decide how to put the password into this token. There are several choices:

1. Add a clear text password. Consider using this technique only when the whole
message is being sent over a secure channel like SSL.

2. Add a digest of the password or some other kind of derived password. A digest is
not necessarily more secure than a clear text password, as it can also be replayed
unless it is protected by a nonce and time.
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3. Add a digest of the password using the digest mechanism given in the WS
Security specification. This uses the nonce and the createdDate.

4. Do not add the password or its digest at all. Instead derive a key from the
password and use that to sign the message, to demonstrate knowledge of the key.

// For options 1 and 2, use the setPassword method
ut.setPassword("IloveDogs");  
 
// With this mechanism, the reciever should simply call
// UsernameToken.getPassword to check if the password is as expected.
 
// For option 3, use the setPasswordDigest method, but before doing 
// thatfor that you have to  at first set a nonce and a created date.
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
byte nonce[] = new byte[20];
random.nextBytes(nonce); // compute a 20 byte random nonce
ut.setNonce(nonce);
ut.setCreatedDate(new Date()); // Set the date to now
ut.setPasswordDigest("IloveDogs"); // will compute the digest from 
                                   // this clear text password using 
                                   // nonce and createdDate
 
// For this mechanism, the reciever should use the following
byte nonce[] = ut.getNonce();
.. check against the used nonces, to make sure this is a new nonce
Date createdDate = ut.getCreated();
.. check that this createdDate is within an expected clock skew
boolean valid = ut.isValid(userName, passwd), 
// above call will recompute the digest from the passwd
// and the nonce and created date, and check if this digest matches 
// the digest in the username token
 
 
// For option 4, set the salt and iteration count
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
byte salt[] = new byte[15];
random.nextBytes(salt); // compute a 15 byte random salt
 
ut.setSalt(1, salt);
ut.setIteration(1000);
SecretKey key = ut.deriveKey("IloveDogs");

Now you can use this secret key to sign or encrypt data.

9.2.3.2 Creating an X509 Token
You can either use the X509BinarySecurityToken constructor followed by the
setToken method, or use the equivalent helper method WSSecurity.createBST_X509:

WSSecurity ws = ...
X509Certificate cert = ...
X509BinarySecurityToken x509token = WSSecurity.createBST_X509(cert);
 
// remember to put this inside your WSSecurity header. 
// addX509CertificateToken puts it at the beginning, you can also
// use a regular DOM method appendChild or insertChild to put it in.
ws.addX509CertificateToken(x509Token);
 
// optionally add an wsu:Id, so you can refer to it
x509Token.setWsuId("MyCert");

Chapter 9
Classes and Interfaces of Oracle Web Services Security

9-6



You can also create an X509BinarySecurityToken from a CertPath object if you want
to include an entire chain of certificates.

For encryption data with this certificate, you need the public key which you can obtain
by using cert.getPublicKey(). For signing, however, you need the private key, which
you should maintain in a keystore.

9.2.3.3 Creating a Client-Side Kerberos Token
Kerberos tokens are used, as a rule, in conjunction with the Java GSS-API.

This example shows how to create a client-side token:

//Use JAAS Authentication with Kerberos Login Module
 
// Set up the config files and then call  login()
// to login using this module. This will cause the client to contact 
// the Kerberos Authentication-Service and get a ticket to talk to the 
// Kerberos Ticket-Granting-Service
LoginContext lc = new LoginContext(...);
lc.login();
 
//Use JAAS Authorization to set the subject into the thread context
Subject.doAs(lc.getSubject(), action)
 
// The rest of the code should be executed as a Privileged action
// Create a GSSContext to talk to a particular server.
 
GSSManager gssManager = GSSManager.getInstance();
GSSName serviceName = gssManager.createName(svcPrincipalName, null);
GSSContext gssContext = gssManager.createContext(serviceName, null, 
    null, GSSCredential.DEFAULT_LIFETIME);
 
// Then call initSecContext. this will cause the client to contact 
// the Ticket-Granting-Service to obtain a ticket for talking to that 
// particular server. The token that is returned by the initSecContext
// is a GSS wrapped AP_REQ packet.
byte[] token = new byte[1];
token = gssContext.initSecContext(token, 0, token.length);
 
// Create a Kerberos BST using this AP_REQ packet
WSSecurity ws = ...
KerberosBinarySecurityToken kbst = ws.createBST_Kerberos(token,   
      WSSURI.vt_GSSKerberosv5);
ws.addKerberosToken(kbst);
 
// Get the sessionKey that is present inside the AP_REQ packet, 
// this is the session that is generated by the TGT and returned
// to the client in the initSecContext class
//
// This getSessionKey call simply calls Subject.getPrivateCredentials
// to get a list of tickets associated with the subject, and then
// iterates through them to find the one to be used for
// for that particular server
SecretKey sessionKey = 
   KerberosUtils.getSessionKey(lc.getSubject(),svcPrincipalName);

Now you can use this secret key to sign or encrypt data.
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Server Side

9.2.3.4 Creating a Server-side Kerberos Token
Server-side kerberos tokens require creation of the GSSContext and extraction of the
session key.

This example shows how to create a server-side kerberos token:

// Use JAAS Authentication and Authorization as for the client 
// Create GSSContext will null credentials </b><br>
SSManager manager = GSSManager.getInstance();
GSSContext gssContext = manager.createContext((GSSCredential)null);
 
 
// Locate the KerberosBinarySecurityToken in the incoming WSSecurity 
// header. You can do this by doing a DOM search
WSSecurity = ...
KerberosBinarySecurityToken kbst = ...
 
 
// Now extract the AP_REQ from the BST and call acceptSecContext 
byte ap_req[] = kbst.getValue();
gssContext.acceptSecContext(ap_req);
 
// The context is now extablished. (Note Mutual authentication would 
// need one more round trip)
 
// Now extract the session key
// KerberosUtils.getSession is an overloaded method, and this 
// particular one is meant to be used by server. Internally
// it decrypts the ap_req packet using the server's key (or the 
// tgtSession key) and extracts the key from the decrypted ap_req
// packet
Subject srvrSubject = ...
SecretKey sessionKey = 
   KerberosUtils.getSessionKey(srvrSubject, ap_req);

Now you can decrypt or verify using this key.

9.2.3.5 Creating a SAML Assertion Token
Refer to Oracle XML Security for information on how to create Assertion objects.
From the Assertion object you can create a SAML assertion token by simply invoking
the SAMLAssertionToken(Assertion assertion) constructor.

9.2.4 Security Token References (STR)
The WS Security specifications defines the concept of Security Token Reference
(STR), which is a mechanism to refer to a security token. A Signature or Encryption
uses this STR mechanism to identify the key that was used to sign or encrypt. STR
supports mechanisms such as Direct Reference, Key Identifier, and Embedded.

STR typically supports the following mechanisms:

• Direct Reference: The STR uses a URI to refer to the ST.
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• Key Identifier: The STR does not use a URI, but instead uses some other
mechanism to identify the token, such as the Issuer serial for X509 tokens and
the assertion ID for SAML tokens. The token may not be in the message at all.

• Embedded: The token is directly embedded in the KeyInfo.

9.2.4.1 Creating a direct reference STR
STRs are created using a uniform procedure; the mechanism to pass in the STR
depends on the type of token.

To create the STR:

1. Create the token as mentioned earlier.

2. Call .setWsuId() to set an ID on that token

3. Create the STR with the ID from Step 2

4. Pass in that STR in the WSSSignatureParams or WSEncryptionParams

Subsequent sections demonstrate how to pass in the STR for various tokens.

9.2.4.2 Creating a Reference STR for a username token
This example shows how to create a reference STR for a username token:

WSSecurity ws = ...
WSSecurityTokenReference str = 
   ws.createSTR_Username_ref("#MyUser");

9.2.4.3 Creating a Reference STR for a X509 Token
This example shows how to create a reference STR for an X509 token:

WSSecurity ws = ...
WSSecurityTokenReference str =     
   ws.createSTR_X509_Ref("#MyCert");

9.2.4.4 Creating a Reference STR for Kerberos Token
This example shows how to create a reference STR for a kerberos token:

WSSecurity ws = ...
// use the appropriate value type
String valueType = WSSURI.vt_GSSKerberosv5;
WSSecurityTokenReference str =     
   ws.createSTR_KerberosKeyRef ( "#MyToken");

9.2.4.5 Creating a Reference STR for a SAML Assertion token
This example shows how to create a reference STR for a SAML assertion token:

WSSecurity ws = ...
WSSecurityTokenReference str =
   ws.createSTR_SAML_Assertion_Ref20("MySAMLAssertion")
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9.2.4.6 Creating a Reference STR for an EncryptedKey
This example shows how to create a reference STR for an encrypted key:

WSSecurity ws = ...
WSSecurityTokenReference str =
  ws.createSTR_EncKeyRef("MyEncKey")

9.2.4.7 Creating a Reference STR for a generic token
Instead of using the createSTR methods you can also create the reference directly with
the appropriate valueType and tokenType:

WSSecurity ws = ...
String uri = "#MyToken";
WSSReference ref = new WSSReference(doc, uri);
ref.setValueType(valueType); // set an optional valueType
WSSecurityTokenReference str = new WSSecurityTokenReference(doc);
str.setTokenType(tokenType); // set an optional tokenType
str.appendChild(ref);

9.2.4.8 Creating a Key Identifier STR
A KeyIdentifier is another way to refer to a security token that uses some intrinsic
property of the token; for example, an assertionID for a SAML Token or a Subject
Key Identifier for an X509 token.

KeyIdentifers are often used when the token itself is not present in the document.
For example, an incoming message can be encrypted with a X509Cert, but instead of
having that X509Cert in the message, it can have only a hint to it, in the form of a
SubjectKeyIdentifier.

9.2.4.9 Creating a KeyIdentifier STR for an X509 Token
There are three different ways to identify an X509 Token:

1. Issuer Serial: A combination of Issuer DN and Serial number of the certificate

2. Subject Key Identifier : The subject key Identifier of the certificate

3. Thumbprint SHA1: SHA1 of the certificate.

X509Certificate cert = ... 
WSSecurity ws = ...
WSSecurityTokenReference str = 
   ws.createSTR_X509_IssuerSerial(cert);
// alternatively use ws.createSTR_X509_SKI(cert) 
// or ws. createSTR_X509_ThumbprintSHA1(cert)

9.2.4.10 Creating a KeyIdentifier STR for a Kerberos Token
Kerberos tokens can be identified by the SHA1 of the AP_REQ packet or of the GSS
wrapped AP_REQ packet.

byte ap_req[] = ...
WSSecurity ws = ...
String valueType = WSSURI.vt_GSSKerberosv5;
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WSSecurityTokenReference str = 
   ws.createSTR_KerberosKeyIdSHA1(ap_req, valueType);

9.2.4.11 Creating a KeyIdentifier STR for a SAML Assertion Token
SAML assertions can be identified by the Assertion ID.

For local SAML 1.1 assertions use:

WSSecurity.createSTR_SAML_AssertionIdv11(byte assertionId[])

For remote SAML 1.1 assertions use:

createSTR_SAML_AssertionIdv11(
   byte assertionId[], AuthorityBinding authorityBinding)

For local SAML 2.0 assertions use:

createSTR_SAML_AssertionIdv20(byte assertionId[])

For remote SAML 2.0 assertions use a reference URI:

createSTR_SAML_Assertion_Ref20("MySAMLAssertion")

9.2.4.12 Creating a KeyIdentifier STR for an EncryptedKey
Remote encrypted keys can be identified by their SHA1 hash. Use this function to
create the KeyIdentifier:

createSTR_EncKeySHA1(byte sha1[])

9.2.4.13 Adding an STRTransform
An STRTransform is a very useful transform that you add to your signatures. This
transform causes a temporary replacement of the STRs wth the corresponding STs
while calculating the signature.

For example, you might include an X509 SKI based STR in your reference. Without
the STRTransform this will result in only the STR reference being included in the
signature,that is, only the SKI value. But if you add an STRTransform, during the
signing and verifiing process the STR will be replaced by the actual X509 Certificate,
that is, the entire X509 certificate will be included in the message.

9.2.5 Signing and Verifying
You can sign and verify SOAP messages, and confirm signatures.

This section contains a discussion of signing and verifying data.

Topics include:

• Signing SOAP Messages

• Verifying SOAP Messages

• Confirming Signatures
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9.2.5.1 Signing SOAP Messages
Take these steps to sign a SOAP message:

1. Decide how you want to identify the data to be signed – the most common
mechanism is to use an ID, but instead of an ID you can also use an XPath
expression

2. Decide on additional transforms – exclusive c14n and STR transforms are two
common transforms that you might add.

3. Decide on the signing key – you can either do HMAC signing with a symmetric key
or do RSA/DSA signatures.

4. Decide on how to indicate this signing key to the receiver – for this you usually
need to create an STR as mentioned earlier.

9.2.5.1.1 Adding IDs to elements

IDs may be added to DOM elements.

Use the function:

WSSUtils.addWsuIdToElement(String id, Element element) 

to add a wsu:Id to the element to be signed. You can use this mechanism to add an ID
to regular DOM element, or SAAJ objects which also derive from DOM Elements.

You must declare the wsu namespace prefix. For example, you can declare it at the
SOAP Envelope level like this

SOAPEnvelope env = ...
env.addNamespaceDeclaration("wsu" , WSSURI.ns_wsu);

To sign attachments, you must assign a ContentId to each attachment. For this you
need to use the following method:

setContentId(String contentId) 

of the SAAJ AttachmentPart object.

9.2.5.1.2 Creating the WSSignatureParams object

A WSSSignatureParams object must be created with all the signing parameters.

Use the following constructor to create the initial WSSignatureParams object. If you
want to use HMAC signing, pass in a value for hmacKey, and null for the signingKey; to
use asymmetric signing, pass in a value for the signingKey and null for hmacKey.

WSSignatureParams(byte[] hmacKey, PrivateKey signingKey); 

This constructor assumes c14nMethod=excC14N, digestMethod=SHA1 and
signMethod=hmacSHA/rsaSHA1/dsaSHA1 (depending on the key). If you want different
algorithms use the following setters to set them:

setDigestMethod(String digestMethod)
setSignMethod(String signMethod)
setC14nMethod(String method)
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You also need to set the STR that you have created earlier into this object; use the
setKeyInfoData for setting the STR.

setKeyInfoData(KeyInfoData keyInfoData)

When signing attachments, you need to set the SOAPMessage into this
WSSignatureParams object so that it can resolve the cid references by locating
corresponding attachments.

setSOAPMessage(SOAPMessage msg)

9.2.5.1.3 Specifying Transforms

There are two ways to specify transforms - a simpler but limited way, and an advanced
and flexible way.

For the simple way, you need to set the following parameters in the
WSSignatureParams:

setAttachmentContentOnly(boolean)

In the simple mode, all cid references automatically get the AttachmentContentOnly
transform, but if you call setAttachmentContentOnly(false) then the cid references
will get an AttachmentComplete transform

·    setUsingSTRTransform(boolean)

If you set this to true, each reference will be checked whether it points to an STR, if it
does an STRTransform will we added to that reference. Note the STRTransform is only
added if the reference directly points to an STR, not if the reference points to a an
ancestor of an STR.

·    setC14Nmethod(String) 

This parameter defaults to exclusive c14n, and specifies both the canonicalization
method for each of the references and the canonicalization method for the SignedInfo
section.

·    setUsingDecryptTransfom(boolean)

Set this to true if you want a decrypt transform to be added.

9.2.5.1.4 Calling the WSSecurity.sign method

The final step is to call the following method in WSSecurity to perform the actual
signing.

XSSignature sign (String[] uris, WSSignatureParams sigParams, XSAlgorithmIdentifier[]
[] trans)

This method creates the <Signature> element, computes digests of each reference
and finally computes the signature.

uris is an array of IDs to be signed. A separate <Reference> will be created for each
element of this array.
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As described earlier there are two ways to specify the transforms – a simple way in
which the transform must be null, and the transformation information is specified
throught the various set methods mentioned above (in WSSignatureParams). Or a more
advanced way where the transform parameter must explicitly specify all the transforms
for each reference, that is, trans.length must be equal to uris.length.

9.2.5.2 Verifying SOAP Messages
When verifying a signature you first need to locate the signature elements in the
<wsse:Security> header; for this you can use the method

WSSecurity ws = ...
List<XSSignature>sigs = ws.getSignatures();

This method searches the DOM tree to find all immediate children of <wsse:Security>
that are <dsig:Signature> and then creates XSSignature wrapper objects for each of
those elements and returns them. (Note the namespace prefixes do not have to use
wsse and dsig).

If you already have the verification key in hand, you can call the following method -
either pass in an hmacKey for HMAC signatures or a signingKey for asymmetric key
signatures. The SOAPMessage is only need when attachments are signed.

XSSignature sig = sigs[0];
 
byte [] hmacKey = ...
PublicKey signingKey = ... ; // Need either hmacKey of signingKey
 
SOAPMessage msg = null; // needed only for attachments
boolean res = WSSecurity.verify(sig, byte[] hmacKey, signingKey, msg);

However, if you do not have the verification key, you need to set up the following
callbacks for resolving STR Key Identifiers. Recall that STR Key Identifiers are usually
references to tokens outside the document, so Oracle Security Developer Tools
cannot locate these tokens unless you explicitly set up these callbacks.

Table 9-3    Callbacks to Resolve STR Key Identifiers

Token Type Implementation Interface and
Registration

Notes

Username Token Interface: PasswordRetriever

Registration:
UsernameToken.addPassword
Retriever

This callback resolves the
UsernameToken Reference
STRs.

In the getPassword() callback,
return the password
corresponding to the user.

This secret key will be derived
from password, iteration count
and salt.

login() and logout() callbacks
are not used
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Table 9-3    (Cont.) Callbacks to Resolve STR Key Identifiers

Token Type Implementation Interface and
Registration

Notes

Username Token Interface: KeyDerivator

Registration:
UsernameToken.addKeyDerivat
or

This callback also resolves the
UsernameToken Reference
STRs. Use it when you want to
use your own key derivation
algorithm. In the resolve()
callback, derive the key and
return it.

X509 Interface:
X509KeyIdentifierResolver

Registration:
X509KeyIdentifier.addResolver

This callback resolves
Thumbprint and SKI Key
Identifier STRs.

Implement the resolve() and
getPrivateKey() callbacks to
return the certificate and the
private key respectively.

Note: The private key is not
required for verification, but it
is required for decryption.

If you have an array of
certificates, use the
X509KeyIdentifier.matches()
method to match each

cerificate against the passed-in
X509 KeyIdentifier.

X509 Interface:
X509IssuerSerialResolver

Registration:
X509IssuerSerial.addResolver

This callback resolves Issuer
Serial Key Identifier STRs.

Implement the resolve() and
getPrivateKey() callbacks as in
the previous case.
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Table 9-3    (Cont.) Callbacks to Resolve STR Key Identifiers

Token Type Implementation Interface and
Registration

Notes

Kerberos Interface:
KerberosKeyIdentifierResolver

Registration:
KerberosKeyIdentifier.addResol
ver

This callback resolves
Kerberos STRs.

Implement the resolve() and
resolveKey() method to return
the ap_req packet and the
session key/subkey

which corresponds to the
SHA1 value present in the
KeyIdentifier.

If you have an array of ap_req
packets, calculate the SHA1 of
each one of them, and find the
one

whose SHA1 matches the
value returned by
KerberosKeyIdentifier.getValu
e().

Return this ap_req packet in
the resolve() method.

For the resolveKey() method
you need to take one more
step and return they key
present inside

the ap_Req packet, for this
youe can use the
KerberosUtils.getSessionKey(
Subject, byte[]) method,

which decrypts the ap_req
packet using the Subject's key
and extracts the session key/
sub-key from it.

SAML Assertion v1.1 Interface:
SAMLAssertionKeyIdentifierRes
olver

Registration:
SAMLAssertionKeyIdentifier.ad
dResolver

This callback resolves SAML
Assertion KeyIdentifier STRs.

Implement the resolve(),
getPublicKey() and
getPrivateKey() methods to
return the SAML assertion,
SAMLX509Cert, and private
key respectively. (Note: The
private key is required only for
decryption, not for verification.)

SAML Assertion v 2.0 Interface:
SAML2AssertionKeyIdentifierR
esolver

Registration:
SAML2AssertionKeyIdentifier.a
ddResolver

See previous notes for SAML
Assertion v1.1.

For tokens that use symmetric keys - UserName Token, Kerberos, and EncryptedKey
- you need to set up a resolver, because the document does not have this symmetric
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key, and Oracle Security Developer Tools cannot verify (or decrypt) unless you set the
resolvers.

For tokens that use asymmetric keys - SAML Assertions and X509 Tokens - you do
not need to set up a resolver if it uses a direct URI reference STR or an embedded
token, because in these cases Oracle Security Developer Tools can locate the
certificate on its own. However you still need to set up the CertificateValidator
callback because Oracle Security Developer Tools will not blindly use a certificate in
the message unless you have validated the certificate in your callback.

See Also:

Oracle XML Security

After you have set up all the resolvers and the CertificateValidator, use the
following method:

SOAPMessage msg = null; // needed only for attachments
boolean searchTokens = true; 
boolean res = WSSecurity.verify(sig, searchTokens, msg);

This method inspects the Signature's KeyInfo and either searches for the certificate,
or calls the appropriate resolvers to get the signing key.

You can also use the WSSecurity.verifyAll method which searches for signatures
and verifies them one by one.

9.2.5.3 Confirming Signatures
You use the WSSignatureConfirmation wrapper class to contruct and process
signature confirmation elements.

9.2.5.3.1 Signature Confirmation Response Generation

For response generation use the following function in WSSecurity:

List<WSSignatureConfirmation> createSignatureConfirmations(Document doc);

This looks at all the Signatures present in the current WSSecurity element, and
constructs corresponding SignatureConfirmation elements in a new document.
These could be put in the response's WSSecuirty header.

9.2.5.3.2 Signature Confirmation Response Processing

For response processing, first use this function (at request time) to save all the
Signature values.

String [] getSignatureValues()

At response processing time, you can then use this saved list to compare against the
incoming SignatureConfirmations as follows:

boolean verifySignatureConfirmations(String sigValue[])
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9.2.6 Encrypting and Decrypting
You can encrypt or decrypt SOAP messages with or without an EncryptedKey.

There are two primary encryption methods:

1. With EncryptedKey: Encrypt the elements with a random session key, then encrypt
this session key into an <EncryptedKey> element and place that element in the
<wsse:Security> header.

2. Without EncryptedKey: Encrypt the elements with known symmetric keys, which
may be different for each element; construct a <ReferenceList> element with
references to each of these encrypted data sections, and place the
<ReferenceList> in the <wsse:Security> header.

Note:

While encrypting regular DOM elements is standard practice, you can also
encrypt SOAP headers, the SOAP body, and attachments. Special
considerations apply for encrypting these objects as explained later.

9.2.6.1 Encrypting SOAP messages with EncryptedKey
You can encrypt SOAP messages by means of EncryptedKey.

First decide on a key to use to encrypt this random session key, then create an STR
with the information that the receiver will use to locate this decryption key:

Key keyEncKey = ... ; WSSecurityTokenReference str = ...

create a WSSEncryptionParams with this information:

// Choose a data encryption algorithm - say AES 128
String dataEncAlg = XMLURI.alg_aes128_CBC;
 
// Either generate a random session key yourself, or set this to 
// null to indicate that OSDT should generate it
SecretKey dataEncKey = null;
 
// Depending on the KeyEncryptionKey that you have chosen choose 
// either an RSA key wrap or a symmetric key wrap
String keyEncAlg = XMLURI.alg_rsaOAEP_MGF1;
 
// Now put all this information into a WSSEncryptionParams
WSSEncryptionParams eParam = new WSSEncryptionParams(
 dataEncAlg, dataEncKey, keyEncAlg, keyEncKey, str);

regular DOM element, SOAP headers, the SOAP Body or AttachmentParts:

Element elem1 = ... // one object to be encrypted
Element elem2 = … // another object to be encrypted
ArrayList objectList[] = new ArrayList();
objectList.add(elem1);
objectList.add(elem2);
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Create two more arrays to indicate whether each object is to be encrypted content
only, and what IDs will be assigned to the resulting EncryptedData objects:

Note:

SOAP bodies are always encrypted content only, regardless of what you
pass in this flag. For attachments, "not content only" means content plus
mime headers.

// both these elements are not content only
boolean[] contentOnlys = { false, false };
 
// After encryption the EncryptedData elements will get these ids
String encDataIds[] = { "id1", "id2" };

Finally, call the encryptWithEncKey method:

WSSecurity ws = ...
XEEncryptedKey encKey = ws.encryptWithEncKey(objectList, contentOnlys, 
 encDataIds, eParam);

9.2.6.2 Encrypting SOAP messages without EncryptedKey
Use these steps if you do not wish to use an EncryptedKey:

Decide on a data encryption key; you can either use the same one for all the
EncryptedData sections or a different one for each. Also create an STR with the
information that the receiver will use to locate this decryption key, and put into a
WSSEncryptionParams object:

SecretKey dataEncKey = ... ; // assuming 128 bit AES key
String dataEncAlg = XMLURI.alg_aes128_CBC;
WSSecurityTokenReference str = ...
 
// Now put all this information into a WSSEncryptionParams
WSSEncryptionParams eParam = new WSSEncryptionParams(
 dataEncAlg, dataEncKey, null, null, str);

Now create a list of elements to be encrypted as before, along with the associated
contentOnly and encDataIds array:

Element elem1 = ... // one object to be encrypted
Element elem2 = … // another object to be encrypted
ArrayList objectList[] = new ArrayList();
objectList.add(elem1);
objectList.add(elem2);
 
// both these elements are not content only
boolean[] contentOnlys = { false, false };
 
// After encryption the EncryptedData elements will get these ids
String encDataIds[] = { "id1", "id2" };

Finally, call the encryptWithNoEncKey method:
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WSSecurity ws = ...
XEEncryptedKey encKey = ws.encryptWithNoEncKey(objectList, 
 contentOnlys, encDataIds, new WSEncryptionParams[]{eParam, eParam});

In this example we used the same encryptionParams for both elements.

9.2.6.3 Encrypting SOAP Headers into an EncryptedHeader
When you call the encrypt methods on the SOAP header block , with content only set
to false, the entire SOAP header block is encrypted into an EncryptedData element;
this element is placed inside an EncryptedHeader element, which replaces the original
SOAP header block.

The mustUnderstand and actor attributes are copied over from the current
wsse:Security header.

9.2.6.4 Decrypting SOAP messages with EncryptedKey
To decrypt SOAP messages with EncryptedKey, use:

WSSecurity.decrypt(XEEncryptedKey, PrivateKey, SOAPMessage)

which first decrypts the EncryptedKey with the given PrivateKey to obtain a symmetric
key, then uses this symmetric key to decrypt all the references inside the EncrytedKey.

If you do not know the PrivateKey, call:

decrypt(XEEncryptedKey, SOAPMessage)

which looks into the KeyInfo of the EncryptedKey and calls the registered callbacks to
obtain the private key.

If you already know the decrypted form of the EncryptedKey then use:

decrypt(XEEncryptedKey, SecretKey, SOAPMessage)

which uses the given symmetric key to decrypt all the references inside the
EncryptedKey.

9.2.6.5 Decrypting SOAP messages without EncryptedKey
When you wish to decrypt all the elements (or attachments) mentioned in a top level
ReferenceList, use:

decrypt(XEReferenceList, SecretKey, SOAPMessage)

which uses the given symmetric key to decrypt all the references inside the
ReferenceList. This functions assumes that all the references are encrypted with the
same key.

If you do not know the SecretKey, or if all the references are not encrypted with the
same key, send in a null for the SecretKey; decrypt then looks into the KeyInfo of
each of the EncrytedData and calls the registered callbacks to obtain the symmetric
key.
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9.3 Additional Resources for Web Services Security
OASIS Specifications, such as OASIS WSS SOAP Message Security Specification
and OASIS WSS Username Token Profile Specification, provide more information
about Web Services Security.

The following resources provide more information about Web Services Security:

• OASIS WSS SOAP Message Security Specification

• OASIS WSS Username Token Profile Specification

• OASIS WSS X.509 Certificate Token Profile Specification

• OASIS WSS SAML Assertion Token Profile Specification

• OASIS WSS SWA Token Profile Specification 1.1

See Also:

Links to these documents are available in References.

9.4 The Oracle Web Services Security Java API Reference
The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes, interfaces, and methods available in the Oracle Web
Services Security API.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
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10
Oracle Liberty SDK

Oracle Liberty SDK allows Java developers to design and develop single sign-on
(SSO) and federated identity management (FIM) solutions. It aims to unify, simplify,
and extend all aspects of development and integration of systems conforming to the
Liberty Alliance ID-FF 1.1 and 1.2 specifications.

The Liberty Alliance was founded with the goal of allowing individuals and businesses
to engage in virtually any transaction without compromising the privacy and security of
vital identity information. Specifications issued by the Liberty Alliance are based on an
open identity federation framework, allowing partner companies to form business
relationships based on a cross-organizational, federated network identity model.

This chapter contains these topics:

• Oracle Liberty SDK Features and Benefits

• Oracle Liberty 1.1

• Oracle Liberty 1.2

10.1 Oracle Liberty SDK Features and Benefits
Oracle Liberty SDK 1.1 and 1.2 enable simplified software development through the
use of an intuitive and straightforward Java API. The toolkits provide tools, information,
and examples to help you develop solutions that conform to the Liberty Alliance
specifications. The toolkits can also be seamlessly integrated into any existing Java
solution, including applets, applications, EJBs, servlets, JSPs, and so on.

The Oracle Liberty SDK is a pure java solution which provides the following features:

• Support for the Liberty Alliance ID-FF version 1.1 and 1.2 specifications

• Support for Liberty-based Single Sign-on and Federated Identity protocols

• Support for the SAML 1.0/1.1 specifications

See Also:

You can find the Liberty Alliance specifications at http://
www.projectliberty.org/resources/specifications.php.

10.2 Oracle Liberty 1.1
Oracle Liberty 1.1 conforms to the Liberty Alliance ID-FF 1.1 specifications. It contains
classes, interfaces, and methods to provide functionality such as authentication
request/response, logout request/response, and federation termination.
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This section explains how to set up your environment for and use Oracle Liberty 1.1,
and describes the classes and interfaces of Oracle Liberty 1.1. It contains the following
topics:

• Setting Up Your Oracle Liberty 1.1 Environment

• Overview of Oracle Liberty 1.1 Classes and Interfaces

• The Oracle Liberty 1.1 API Reference

10.2.1 Setting Up Your Oracle Liberty 1.1 Environment
You can setup Oracle Liberty 1.1 environment by installing Oracle Security Developer
Tools and Java Development Kit (JDK), and setting the CLASSPATH variable to all of
the required jar and class files.

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME.

10.2.1.1 Understanding System Requirements for Oracle Liberty 1.1
In order to use Oracle Liberty 1.1, your system must have the Java Development Kit
(JDK) version 1.6 or higher.

Your CLASSPATH environment variable must contain the full path and file names to all of
the required jar and class files. Make sure the following items are included in your
CLASSPATH:

• osdt_core.jar

• osdt_cert.jar

• osdt_xmlsec.jar

• osdt_saml.jar

• The org.jaxen_1.1.1.jar file (Jaxen XPath engine, included with your Oracle
XML Security distribution)

• the osdt_lib_v11.jar file

For example, your CLASSPATH might look like this:

%CLASSPATH%;%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_xmlsec.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_saml.jar;
%ORACLE_HOME%\modules\org.jaxen_1.1.1.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_lib_v11.jar;

See Also:

Setting the CLASSPATH Environment Variable
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10.2.2 Overview of Oracle Liberty 1.1 Classes and Interfaces
Oracle Liberty SDK v. 1.1 contains core and supporting classes and interfaces to
provide functionality such as authentication request/response, logout request/
response, and federation termination

This section introduces some useful classes and interfaces of Oracle Liberty SDK v.
1.1. It contains these topics:

• Using Core Classes and Interfaces

• Using Supporting Classes and Interfaces

10.2.2.1 Using Core Classes and Interfaces
The core classes and interfaces of the Oracle Liberty SDK v. 1.1 enable you to create
authentication request and response elements, logout request and response elements,
and register name identifiers.

This section contains the topics:

• Using the oracle.security.xmlsec.liberty.v11.AuthnRequest Class

• Using the oracle.security.xmlsec.liberty.v11.AuthnResponse Class

• Using the oracle.security.xmlsec.liberty.v11.FederationTerminationNotification
Class

• Using the oracle.security.xmlsec.liberty.v11.LogoutRequest Class

• Using the oracle.security.xmlsec.liberty.v11.LogoutResponse Class

• Using the oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierRequest Class

• Using the oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierResponse
Class

10.2.2.1.1 Using the oracle.security.xmlsec.liberty.v11.AuthnRequest Class

This class represents the AuthnRequest element of the Liberty protocol schema.

This example shows how to create a new AuthnRequest element and append it to a
document.

Document doc = Instance of org.w3c.dom.Document;
AuthnRequest authnRequest = new AuthnRequest(doc);
doc.getDocumentElement().appendChild(authnRequest);

This example shows how to obtain AuthnRequest elements from an XML document.

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all AuthnRequest elements in the document.
NodeList arList = 
    doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "AuthnRequest"); 
if (arList.getLength() == 0)
    System.err.println("No AuthnRequest elements found.");
 
// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.liberty.v11.AuthnRequest object and process
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for (int s = 0, n = arList.getLength(); s < n; ++s)
{
    AuthnRequest authnRequest = 
        new AuthnRequest((Element)arList.item(s)); 

    // Process AuthnRequest element
    ...
}

10.2.2.1.2 Using the oracle.security.xmlsec.liberty.v11.AuthnResponse Class

This class represents the AuthnResponse element of the Liberty protocol schema.

This example shows how to create a new AuthnResponse element and append it to a
document.

Document doc = Instance of org.w3c.dom.Document;
AuthnResponse authnResponse = new AuthnResponse(doc);
doc.getDocumentElement().appendChild(authnResponse);

This example shows how to obtain AuthnResponse elements from an XML document.

Document doc = Instance of org.w3c.dom.Document;

// Get list of all AuthnResponse elements in the document.
NodeList arList = 
    doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "AuthnResponse");
if (arList.getLength() == 0)
    System.err.println("No AuthnResponse elements found.");
 
// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.liberty.v11.AuthnResponse object and process
for (int s = 0, n = arList.getLength(); s < n; ++s)
{
    AuthnResponse authnResponse = 
        new AuthnResponse((Element)arList.item(s)); 
    // Process AuthnResponse element
    ...
}

10.2.2.1.3 Using the oracle.security.xmlsec.liberty.v11.FederationTerminationNotification
Class

This class represents the FederationTerminationNotification element of the Liberty
protocol schema.

This example shows how to create a new federation termination notification element
and append it to a document.

Document doc = Instance of org.w3c.dom.Document;
FederationTerminationNotification ftn = 
    new FederationTerminationNotification(doc);
doc.getDocumentElement().appendChild(ftn);

This example shows how to obtain federation termination notification elements from an
XML document.

Document doc = Instance of org.w3c.dom.Document;
 

Chapter 10
Oracle Liberty 1.1

10-4



// Get list of all FederationTerminationNotification elements in the document
     NodeList ftnList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty, 
    "FederationTerminationNotification");
if (ftnList.getLength() == 0)
    System.err.println("No FederationTerminationNotification elements found.");
 
// Convert each org.w3c.dom.Node object to an 
// oracle.security.xmlsec.liberty.v11.FederationTerminationNotification 
// object and process
for (int s = 0, n = ftnList.getLength(); s < n; ++s)
{
    FederationTerminationNotification ftn =
         new FederationTerminationNotification((Element)ftnList.item(s));

    // Process FederationTerminationNotification element
    ...
}

10.2.2.1.4 Using the oracle.security.xmlsec.liberty.v11.LogoutRequest Class

This class represents the LogoutRequest element of the Liberty protocol schema.

This example shows how to create a new LogoutRequest element and append it to a
document.

Document doc = Instance of org.w3c.dom.Document;
LogoutRequest lr = new LogoutRequest(doc);
doc.getDocumentElement().appendChild(lr);

This example shows how to obtain LogoutRequest elements from an XML document.

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all LogoutRequest elements in the document.
NodeList lrList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty, 
    "LogoutRequest");
if (lrList.getLength() == 0)
    System.err.println("No LogoutRequest elements found.");
 
// Convert each org.w3c.dom.Node object to an 
// oracle.security.xmlsec.liberty.v11.LogoutRequest
// object and process
for (int s = 0, n = lrList.getLength(); s < n; ++s)
{
    LogoutRequest lr = new LogoutRequest((Element)lrList.item(s));

    // Process LogoutRequest element
    ...
}

10.2.2.1.5 Using the oracle.security.xmlsec.liberty.v11.LogoutResponse Class

This class represents the LogoutResponse element of the Liberty protocol schema.

This example shows how to create a new LogoutResponse element and append it to a
document.
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Document doc = Instance of org.w3c.dom.Document;
LogoutResponse lr = new LogoutResponse(doc);
doc.getDocumentElement().appendChild(lr);

This example shows how to obtain LogoutResponse elements from an XML document.

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all LogoutResponse elements in the document.
NodeList lrList = 
    doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "LogoutResponse");
if (lrList.getLength() == 0)
    System.err.println("No LogoutResponse elements found.");
 
// Convert each org.w3c.dom.Node object to an 
// oracle.security.xmlsec.liberty.v11.LogoutResponse
// object and process
for (int s = 0, n = lrList.getLength(); s < n; ++s)
{
    LogoutResponse lr = new LogoutResponse((Element)lrList.item(s));
            
    // Process LogoutResponse element
    ...
}

10.2.2.1.6 Using the oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierRequest
Class

This class represents the RegisterNameIdentifierRequest element of the Liberty
protocol schema.

This example shows how to create a new RegisterNameIdentifierRequest element
and append it to a document.

Document doc = Instance of org.w3c.dom.Document;
RegisterNameIdentifierRequest rnir = 
    new RegisterNameIdentifierRequest(doc);
doc.getDocumentElement().appendChild(rnir);

This example shows how to obtain RegisterNameIdentifierRequest elements from
an XML document.

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all RegisterNameIdentifierRequest elements in the document
NodeList rnirList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty, 
    "RegisterNameIdentifierRequest");
if (rnirList.getLength() == 0)
    System.err.println("No RegisterNameIdentifierRequest elements found.");
 
// Convert each org.w3c.dom.Node object to an 
//oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierRequest
// object and process
for (int s = 0, n = rnirList.getLength(); s < n; ++s)
{
    RegisterNameIdentifierRequest rnir = new 
        RegisterNameIdentifierRequest((Element)rnirList.item(s));
            
    // Process RegisterNameIdentifierRequest element
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    ...
}

10.2.2.1.7 Using the oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierResponse
Class

This class represents the RegisterNameIdentifierResponse element of the Liberty
protocol schema.

This example shows how to create a new RegisterNameIdentifierResponse element
and append it to a document.

Document doc = Instance of org.w3c.dom.Document;
RegisterNameIdentifierResponse rnir = new RegisterNameIdentifierResponse(doc);
doc.getDocumentElement().appendChild(rnir);

This example shows how to obtain RegisterNameIdentifierResponse elements from
an XML document.

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all RegisterNameIdentifierResponse elements in the document
NodeList rnirList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty, 
    "RegisterNameIdentifierResponse");
if (rnirList.getLength() == 0)
    System.err.println("No RegisterNameIdentifierResponse elements found.");
 
// Convert each org.w3c.dom.Node object to an 
// oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierResponse
// object and process
for (int s = 0, n = rnirList.getLength(); s < n; ++s)
{
    RegisterNameIdentifierResponse rnir = new 
        RegisterNameIdentifierResponse((Element)rnirList.item(s));

    // Process RegisterNameIdentifierResponse element
    ...
}

10.2.2.2 Using Supporting Classes and Interfaces
This section describes supporting classes and interfaces of Oracle Liberty SDK v. 1.1.

The supporting classes and interfaces are:

• Using the oracle.security.xmlsec.liberty.v11.LibertyInitializer class

• The oracle.security.xmlsec.liberty.v11.LibertyURI interface

• Using the oracle.security.xmlsec.liberty.v11.ac.AuthenticationContextURI interface

• The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class

• The oracle.security.xmlsec.saml.SAMLURI Interface

• The oracle.security.xmlsec.saml.SAMLMessage class

10.2.2.2.1 Using the oracle.security.xmlsec.liberty.v11.LibertyInitializer class

Chapter 10
Oracle Liberty 1.1

10-7



The oracle.security.xmlsec.liberty.v11.LibertyInitializer class handles load-
time initialization and configuration of the Oracle Liberty SDK library. You must call this
class's static initialize() method before making any calls to the Oracle Liberty SDK
API.

10.2.2.2.2 The oracle.security.xmlsec.liberty.v11.LibertyURI interface

The oracle.security.xmlsec.liberty.v11.LibertyURI interface defines URI string
constants for algorithms, namespaces and objects. The following naming convention is
used:

• Algorithm URIs begin with "alg_".

• Namespace URIs begin with "ns_".

• Object type URIs begin with "obj_".

• Liberty profile namespace URIs begin with "prof_".

10.2.2.2.3 Using the oracle.security.xmlsec.liberty.v11.ac.AuthenticationContextURI
interface

The oracle.security.xmlsec.liberty.v11.ac.AuthenticationContextURI interface
defines URI string constants for algorithms, namespaces and objects. The following
naming convention is used:

• Algorithm URIs begin with "alg_".

• Namespace URIs begin with "ns_".

• Object type URIs begin with "obj_".

10.2.2.2.4 The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class

The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class is
an abstract class representing the top-level AuthenticationContextStatement
element of the Liberty authentication context schema. Each concrete implementation
of this class represents a respective class defined in the Liberty Authentication Context
Specification.

10.2.2.2.5 The oracle.security.xmlsec.saml.SAMLURI Interface

The oracle.security.xmlsec.saml.SAMLURI interface defines URI string constants
for algorithms, namespaces and objects. The following naming convention is used:

• Action namespace URIs defined in the SAML 1.0 specifications begin with
"action_"

• Authentication method namespace URIs defined in the SAML 1.0 specifications
begin with "authentication_method_".

• Confirmation method namespace URIs defined in the SAML 1.0 specifications
begin with "confirmation_method_".

• Namespace URIs begin with "ns_".
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10.2.2.2.6 The oracle.security.xmlsec.saml.SAMLMessage class

The oracle.security.xmlsec.saml.SAMLMessage class is the base class for all the
SAML and SAML extension messages that may be signed and contain an XML-DSIG
structure.

10.2.3 The Oracle Liberty 1.1 API Reference
The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains classes, interfaces, and the methods available in Oracle Liberty
SDK v1.1.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

10.3 Oracle Liberty 1.2
Oracle Liberty 1.2 conforms to the Liberty Alliance ID-FF 1.2 specifications. You can
setup your environment and use the classes and interfaces in Oracle Liberty 1.2 to
provide functionality as per the specifications.

This section describes the classes and interfaces of Oracle Liberty 1.2, and explains
how to set up your environment and use Oracle Liberty 1.2.

It contains these sections:

• Setting Up Your Oracle Liberty 1.2 Environment

• Overview of Oracle Liberty 1.2 Classes and Interfaces

• The Oracle Liberty SDK 1.2 API Reference

10.3.1 Setting Up Your Oracle Liberty 1.2 Environment
You can setup Oracle Liberty 1.2 environment by installing Oracle Security Developer
Tools and Java Development Kit (JDK), and setting the CLASSPATH variable to all of
the required jar and class files.

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME.

In order to use Oracle Liberty 1.2, your system must have the Java Development Kit
(JDK) version 1.6 or higher. Also, make sure that your PATH environment variable
includes the Java bin directory.

Your CLASSPATH environment variable must contain the full path and file names to all of
the required jar and class files. Make sure the following items are included in your
CLASSPATH:

• osdt_core.jar

• osdt_cert.jar

• osdt_xmlsec.jar

• osdt_saml.jar
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• The org.jaxen_1.1.1.jar file (Jaxen XPath engine, included with your Oracle
XML Security distribution)

• osdt_lib_v12.jar

For example your classpath may look like this:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_xmlsec.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_saml.jar:
$ORACLE_HOME/modules/org.jaxen_1.1.1.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_lib_v12.jar

10.3.2 Overview of Oracle Liberty 1.2 Classes and Interfaces
Oracle Liberty 1.2 contains multiple core and supporting classes and interfaces. Useful
classes of Liberty 1.2 include assertion, request, response, authentication request/
response, and others.

This section introduces classes and interfaces of Oracle Liberty SDK v. 1.2. It contains
these topics:

• Core Classes and Interfaces

• Supporting Classes and Interfaces

10.3.2.1 Core Classes and Interfaces
This section describes core classes and interfaces of the Oracle Liberty SDK, v. 1.2.

The core classes are:

• Using the oracle.security.xmlsec.saml.Assertion class

• Using the oracle.security.xmlsec.samlp.Request class

• Using the oracle.security.xmlsec.samlp.Response class

• Using the oracle.security.xmlsec.liberty.v12.AuthnRequest class

• Using the oracle.security.xmlsec.liberty.v12.AuthnResponse class

• Using the oracle.security.xmlsec.liberty.v12.FederationTerminationNotification
class

• Using the oracle.security.xmlsec.liberty.v12.LogoutRequest class

• Using the oracle.security.xmlsec.liberty.v12.LogoutResponse class

• Using the oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest class

• Using the oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse
class

10.3.2.1.1 Using the oracle.security.xmlsec.saml.Assertion class

The oracle.security.xmlsec.saml.Assertion class represents the Assertion
element of the SAML Assertion schema.

This example shows how to create a new assertion element and append it to a
document.
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Document doc = Instance of org.w3c.dom.Document;
Assertion assertion = new Assertion(doc);
doc.getDocumentElement().appendChild(assertion);

This example shows how to obtain assertion elements from an XML document.

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all Assertion elements in the document
NodeList assrtList = 
    doc.getElementsByTagNameNS(SAMLURI.ns_saml, "Assertion");
if (assrtList.getLength() == 0)
    System.err.println("No Assertion elements found.");
 
// Convert each org.w3c.dom.Node object to 
// an oracle.security.xmlsec.saml.Assertion
// object and process
for (int s = 0, n = assrtList.getLength(); s < n; ++s)
{
    Assertion assertion = new Assertion((Element)assrtList.item(s));

    // Process Assertion element
    ...
}

10.3.2.1.2 Using the oracle.security.xmlsec.samlp.Request class

The oracle.security.xmlsec.samlp.Request class represents the Request element
of the SAML Protocol schema.

This example shows how to create a new Request element and append it to a
document.

Document doc = Instance of org.w3c.dom.Document;
Request request = new Request(doc);
doc.getDocumentElement().appendChild(request);

This example shows how to obtain Request elements from an XML document.

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all Request elements in the document
NodeList reqList = 
    doc.getElementsByTagNameNS(SAMLURI.ns_samlp, "Request");
if (reqList.getLength() == 0)
    System.err.println("No Request elements found.");

// Convert each org.w3c.dom.Node object to an 
// oracle.security.xmlsec.samlp.Request
// object and process
for (int s = 0, n = reqList.getLength(); s < n; ++s)
{
    Request request = new Request((Element)reqList.item(s));

    // Process Request element
    ...
}

10.3.2.1.3 Using the oracle.security.xmlsec.samlp.Response class
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The oracle.security.xmlsec.samlp.Response class represents the Response
element of the SAML Protocol schema.

This example shows how to create a new element and append it to a document.

Document doc = Instance of org.w3c.dom.Document;
Response response = new Response(doc);
doc.getDocumentElement().appendChild(response);

This example shows how to obtain Response elements from an XML document.

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all Response elements in the document
NodeList respList = 
    doc.getElementsByTagNameNS(SAMLURI.ns_samlp, "Response");
if (respList.getLength() == 0)
    System.err.println("No Response elements found.");
 
// Convert each org.w3c.dom.Node object to an 
// oracle.security.xmlsec.samlp.Response
// object and process
for (int s = 0, n = respList.getLength(); s < n; ++s)
{
    Response response = new Response((Element)respList.item(s));

    // Process Response element
    ...
}

10.3.2.1.4 Using the oracle.security.xmlsec.liberty.v12.AuthnRequest class

The oracle.security.xmlsec.liberty.v12.AuthnRequest class represents the
AuthnRequest element of the Liberty protocol schema.

This example shows how to create a new authorization request element and append it
to a document.

Document doc = Instance of org.w3c.dom.Document;
AuthnRequest authnRequest = new AuthnRequest(doc);
doc.getDocumentElement().appendChild(authnRequest);

This example shows how to obtain AuthnRequest elements from an XML document.

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all AuthnRequest elements in the document
NodeList arList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "AuthnRequest");

if (arList.getLength() == 0)
    System.err.println("No AuthnRequest elements found.");
 
// Convert each org.w3c.dom.Node object to
// an oracle.security.xmlsec.liberty.v12.AuthnRequest
// object and process
for (int s = 0, n = arList.getLength(); s < n; ++s)
{
    AuthnRequest authnRequest = new AuthnRequest((Element)arList.item(s));

    // Process AuthnRequest element
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    ...
}

10.3.2.1.5 Using the oracle.security.xmlsec.liberty.v12.AuthnResponse class

The oracle.security.xmlsec.liberty.v12.AuthnResponse class represents the
AuthnResponse element of the Liberty protocol schema.

This example shows how to create a new authorization response element and append
it to a document.

Document doc = Instance of org.w3c.dom.Document;
AuthnResponse authnResponse = new AuthnResponse(doc);
doc.getDocumentElement().appendChild(authnResponse);

This example shows how to obtain AuthnResponse elements from an XML document.

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all AuthnResponse elements in the document.
NodeList arList = 
    doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "AuthnResponse");
if (arList.getLength() == 0)
    System.err.println("No AuthnResponse elements found.");
 
// Convert each org.w3c.dom.Node object to 
// an oracle.security.xmlsec.liberty.v12.AuthnResponse
// object and process
for (int s = 0, n = arList.getLength(); s < n; ++s)
{
    AuthnResponse authnResponse = 
        new AuthnResponse((Element)arList.item(s));

    // Process AuthnResponse element
    ...
}

10.3.2.1.6 Using the oracle.security.xmlsec.liberty.v12.FederationTerminationNotification
class

The oracle.security.xmlsec.liberty.v12.FederationTerminationNotification
class represents the FederationTerminationNotification element of the Liberty
protocol schema.

This example shows how to create a new federation termination notification element
and append it to a document.

Document doc = Instance of org.w3c.dom.Document;
FederationTerminationNotification ftn = 
    new FederationTerminationNotification(doc);
doc.getDocumentElement().appendChild(ftn);

This example shows how to obtain federation termination notification elements from an
XML document.

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all FederationTerminationNotification elements in the document
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NodeList ftnList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty,
    "FederationTerminationNotification");
if (ftnList.getLength() == 0)
    System.err.println("No FederationTerminationNotification elements found.");
 
// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.liberty.v12.FederationTerminationNotification
// object and process
for (int s = 0, n = ftnList.getLength(); s < n; ++s)
{
    FederationTerminationNotification ftn = new 
        FederationTerminationNotification((Element)ftnList.item(s));

    // Process FederationTerminationNotification element
    ...
}

10.3.2.1.7 Using the oracle.security.xmlsec.liberty.v12.LogoutRequest class

The oracle.security.xmlsec.liberty.v12.LogoutRequest class represents the
LogoutRequest element of the Liberty protocol schema.

This example shows how to create a new element and append it to a document.

Document doc = Instance of org.w3c.dom.Document;
LogoutRequest lr = new LogoutRequest(doc);
doc.getDocumentElement().appendChild(lr);

This example shows how to obtain logout request elements from an XML document.

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all LogoutRequest elements in the document
NodeList lrList = 
    doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "LogoutRequest");
if (lrList.getLength() == 0)
    System.err.println("No LogoutRequest elements found.");
 
// Convert each org.w3c.dom.Node object to
// an oracle.security.xmlsec.liberty.v12.LogoutRequest
// object and process
for (int s = 0, n = lrList.getLength(); s < n; ++s)
{
    LogoutRequest lr = new LogoutRequest((Element)lrList.item(s));

    // Process LogoutRequest element
    ...
}

10.3.2.1.8 Using the oracle.security.xmlsec.liberty.v12.LogoutResponse class

The oracle.security.xmlsec.liberty.v12.LogoutResponse class represents the
LogoutResponse element of the Liberty protocol schema.

This example shows how to create a new logout response element and append it to a
document.

Document doc = Instance of org.w3c.dom.Document;
LogoutResponse lr = new LogoutResponse(doc);
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doc.getDocumentElement().appendChild(lr);
 

This example shows how to obtain logout response elements from an XML document.

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all LogoutResponse elements in the document
NodeList lrList = 
    doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "LogoutResponse");
if (lrList.getLength() == 0)
    System.err.println("No LogoutResponse elements found.");
 
// Convert each org.w3c.dom.Node object to
// an oracle.security.xmlsec.liberty.v12.LogoutResponse
// object and process
for (int s = 0, n = lrList.getLength(); s < n; ++s)
{
    LogoutResponse lr = new LogoutResponse((Element)lrList.item(s));

    // Process LogoutResponse element
    ...
}

10.3.2.1.9 Using the oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest
class

The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest class
represents the RegisterNameIdentifierRequest element of the Liberty protocol
schema.

This example shows how to create a new RegisterNameIdentifierRequest element
and append it to a document.

Document doc = Instance of org.w3c.dom.Document;
RegisterNameIdentifierRequest rnir = new RegisterNameIdentifierRequest(doc);
doc.getDocumentElement().appendChild(rnir);

This example shows how to obtain RegisterNameIdentifierRequest elements from
an XML document.

Document doc = Instance of org.w3c.dom.Document;
 
// Get list of all 
// RegisterNameIdentifierRequest elements 
// in the document
NodeList rnirList = 
    doc.getElementsByTagNameNS(LibertyURI.ns_liberty,
    "RegisterNameIdentifierRequest");
if (rnirList.getLength() == 0)
    System.err.println("No RegisterNameIdentifierRequest elements found.");
 
// Convert each org.w3c.dom.Node object to a 
// oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest
// object and process
for (int s = 0, n = rnirList.getLength(); s < n; ++s)
{
    RegisterNameIdentifierRequest rnir =
         new RegisterNameIdentifierRequest((Element)rnirList.item(s));
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    // Process RegisterNameIdentifierRequest element
    ...
}

10.3.2.1.10 Using the oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse
class

The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse class
represents the RegisterNameIdentifierResponse element of the Liberty protocol
schema.

This example shows how to create a new RegisterNameIdentifierResponse element
and append it to a document.

Document doc = Instance of org.w3c.dom.Document;
RegisterNameIdentifierResponse rnir = 
    new RegisterNameIdentifierResponse(doc);
doc.getDocumentElement().appendChild(rnir);

This example shows how to obtain RegisterNameIdentifierResponse elements from
an XML document.

Document doc = Instance of org.w3c.dom.Document;

// Get list of all RegisterNameIdentifierResponse elements in the document
NodeList rnirList = 
    doc.getElementsByTagNameNS(LibertyURI.ns_liberty, 
        "RegisterNameIdentifierResponse");

if (rnirList.getLength() == 0)
    System.err.println("No RegisterNameIdentifierResponse elements found.");
 
// Convert each org.w3c.dom.Node object to an 
// oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse
// object and process
for (int s = 0, n = rnirList.getLength(); s < n; ++s)
{
    RegisterNameIdentifierResponse rnir = new 
        RegisterNameIdentifierResponse((Element)rnirList.item(s));

    // Process RegisterNameIdentifierResponse element
    ...
}

10.3.2.2 Supporting Classes and Interfaces
This section describes supporting classes and interfaces of Oracle Liberty SDK v. 1.2:

• The oracle.security.xmlsec.liberty.v12.LibertyInitializer class

• The oracle.security.xmlsec.liberty.v12.LibertyURI interface

• The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class

• The oracle.security.xmlsec.saml.SAMLInitializer class

• The oracle.security.xmlsec.saml.SAMLURI interface

10.3.2.2.1 The oracle.security.xmlsec.liberty.v12.LibertyInitializer class
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This class handles load-time initialization and configuration of the Oracle Liberty SDK
1.2 library. You must call this class's static initialize() method before making any
calls to the Oracle Liberty SDK 1.2 API.

10.3.2.2.2 The oracle.security.xmlsec.liberty.v12.LibertyURI interface

This interface defines URI string constants for algorithms, namespaces, and objects.

10.3.2.2.3 The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class

This is an abstract class representing the top-level AuthenticationContextStatement
element of the Liberty authentication context schema. Each concrete implementation
of this class represents the respective class defined in the Liberty Authentication
Context Specification.

10.3.2.2.4 The oracle.security.xmlsec.saml.SAMLInitializer class

This class handles load-time initialization and configuration of the Oracle SAML library.
You should call this class's static initialize(int major, int minor) method, for
version 1.1, before making any calls to the Oracle SAML Toolkit API for SAML 1.1.

10.3.2.2.5 The oracle.security.xmlsec.saml.SAMLURI Interface

The oracle.security.xmlsec.saml.SAMLURI interface defines URI string constants
for algorithms, namespaces, and objects. The following naming convention is used:

• Action Namespace URIs defined in the SAML 1.1 specifications begin with
"action_"

• Authentication Method Namespace URIs defined in the SAML 1.1 specifications
begin with "authentication_method_"

• Confirmation Method Namespace URIs defined in the SAML 1.1 specifications
begin with "confirmation_method_"

• Namespace URIs begin with "ns_"

10.3.2.2.6 The oracle.security.xmlsec.saml.SAMLMessage Class

oracle.security.xmlsec.saml.SAMLMessage is the base class for all the SAML and
SAML extension messages that may be signed and contain an XML-DSIG structure.

10.3.3 The Oracle Liberty SDK 1.2 API Reference
The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes, interfaces, and methods available in Oracle Liberty
SDK v1.2 API.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
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11
Oracle XKMS

XKMS (XML Key Management Specification) is a W3C specification for public key
management. Oracle XKMS API conforms to this specification. It provides a
convenient way to handle public key infrastructures by enabling developers to write
XML transactions for digital signature processing.

This chapter contains these topics:

• Understanding Oracle XKMS Features and Benefits

• Setting Up Your Oracle XKMS Environment

• Core Classes and Interfaces

• The Oracle XKMS Java API Reference

11.1 Understanding Oracle XKMS Features and Benefits
Oracle XKMS is a pure Java solution which consists of a toolkit for locating keys and
verifying user identities across businesses and applications. It supports the secure,
trusted messaging required for web services, and provides a way to sidestep some of
the costs and complexity associated with PKI.

Oracle XKMS provides the following features:

• Simplified access to PKI functionality - by implementing the W3C XKMS Standard,
Oracle XKMS combines the simplicity of XML with the robustness of PKI. With this
toolkit, developers can easily deploy robust application functionality by deploying
secure, lightweight client software.

• Supports complete key/certificate life cycle - Oracle XKMS helps enterprise
applications locate, retrieve, and validate signature and encryption keys using
lightweight Web Services infrastructure.

• Secures XKMS messages using XML Signatures - requests and responses can be
digitally signed using Oracle XML toolkit.

• 100% Java with no native methods

• Works with JAXP 1.1 compliant XML parsers

The Oracle XKMS library contains the following packages:

Table 11-1    Packages in the Oracle XKMS Library

Package Description

oracle.security.xmlsec.xkms Contains the main XKMS message elements

oracle.security.xmlsec.xkms.xkiss Contains the classes for the Key Information
Service Specification

oracle.security.xmlsec.xkms.xkrss Contains the classes for the Key Registration
Service Specification
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Table 11-1    (Cont.) Packages in the Oracle XKMS Library

Package Description

oracle.security.xmlsec.xkms.util Contains constants and utility classes

11.2 Setting Up Your Oracle XKMS Environment
You can setup Oracle XKMS environment by installing Oracle Security Developer
Tools and Java Development Kit (JDK), and setting the CLASSPATH variable to all of
the required jar and class files.

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME.

In order to use Oracle XKMS, your system must have the following components
installed:

• The Java Development Kit (JDK) version 1.6 or higher

• the Oracle XML Security toolkit

Your CLASSPATH environment variable must contain the full path and file names to the
required jar and class files. Make sure that the following files are included in your
CLASSPATH:

• osdt_core.jar

• osdt_cert.jar

• osdt_xmlsec.jar

• org.jaxen_1.1.1.jar, which is located in the $ORACLE_HOME/modules/ directory of
the security tools distribution. Oracle XML Security relies on the Jaxen XPath
engine for XPath processing.

For example, your CLASSPATH might look like this:

C:%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_core.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_cert.jar;
%ORACLE_HOME%\modules\oracle.osdt_11.1.1\osdt_xmlsec.jar;
%ORACLE_HOME%\modules\org.jaxen_1.1.1.jar;

See Also:

Setting the CLASSPATH Environment Variable

11.3 Core Classes and Interfaces
Core classes of Oracle XKMS enable you to locate, validate, and recover message
requests and results. You can refer the code samples to use the core classes and
interfaces of Oracle XKMS.

The core classes are:
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• oracle.security.xmlsec.xkms.xkiss.LocateRequest

• Using the oracle.security.xmlsec.xkms.xkiss.LocateResult Class

• Using the oracle.security.xmlsec.xkms.xkiss.ValidateRequest Class

• Using the oracle.security.xmlsec.xkms.xkiss.ValidateResult Class

• Using the oracle.security.xmlsec.xkms.xkrss.RecoverRequest Class

• Using the oracle.security.xmlsec.xkms.xkrss.RecoverResult Class

11.3.1 oracle.security.xmlsec.xkms.xkiss.LocateRequest
The oracle.security.xmlsec.xkms.xkiss.LocateRequest class represents the
XKMS LocateRequest element. You can refer examples and create an instance of
LocateRequest, and attach RespondWith attribute to LocateRequest.

// Parse the XML document containing the dsig:Signature.
Document sigDoc = //Instance of org.w3c.dom.Document;
 
//Create Query Key Binding
QueryKeyBinding queryKeyBinding = new QueryKeyBinding(sigDoc);
queryKeyBinding.setTimeInstant(new Date());
 
// Create the xkms:LocateRequest.
LocateRequest loc = new LocateRequest(sigDoc, queryKeyBinding);

Client requests of type LocateRequest must include an xkms:RespondWith attribute.

This example shows how RespondWith can be added to a LocateRequest:

//Add xkms:RespondWith as X.509 Certificate.
loc.addRespondWith(XKMSURI.respondWith_X509Cert);

11.3.2 Using the oracle.security.xmlsec.xkms.xkiss.LocateResult
Class

oracle.security.xmlsec.xkms.xkiss.LocateResult class represents the
xkms:LocateResult element. You can create an instance of LocateResult element. If
the LocateRequest contains a RespondWith attribute of X509Certificate, you can add
an X509 Certificate to the LocateResult element.

Example:

//Parse the XML document containin the dsig:Signature
Document sigDoc = //Instance of org.w3c.doc.Document;
 
// Create the xkms:LocateResult
LocateResult locRes = new LocateResult(sigDoc);
 
//Set ResultMajor to Success.
locRes.setResultCode(XKMSURI.result_major_success, null);

If the LocateRequest contained a RespondWith attribute of X509Certificate, use the
following code to add an X509 Certificate to the LocateResult:

//Creating a signature and adding X509 certificate to the KeyInfo element.
X509Certificate userCert = // Instance of java.security.cert.X509Certificate
XSSignature Sig = XSSignature.newInstance(sigDoc, "MySignature");
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XSKeyInfo xsInfo = sig.getKeyInfo();
X509Data xData = xsInfo.createX509Data(userCert);
 
//Add X509Data to the KeyInfo
xsInfo.addKeyInfoData(xData);
 
//Set Key Binding and add KeyInfo the the KeyBinding
UnverifiedKeyBinding keyBinding = new UnverifiedKeyBinding(sigDoc);
keyBinding.setKeyInfo(xsInfo);
 
//Add Key Binding to LocateResult
locRes.addKeyBinding(keyBinding);

11.3.3 Using the oracle.security.xmlsec.xkms.xkiss.ValidateRequest
Class

The oracle.security.xmlsec.xkms.xkiss.ValidateRequest class represents the
XKMS xkms:ValidateRequest element. With this class you can create an instance of
xkms:ValidateRequest element.

This example shows how to create an instance of xkms:ValidateRequest:

// Parse the XML document containing the dsig:Signature.
Document sigDoc = //Instance of org.w3c.dom.Document;
 
//Create Query Key Binding
QueryKeyBinding queryKeyBinding = new QueryKeyBinding(sigDoc);
queryKeyBinding.setTimeInstant(new Date());
 
// Create the xkms:ValidateRequest.
ValidateRequest validateReq = new ValidateRequest(sigDoc, queryKeyBinding);

Requests of type ValidateRequest must include an xkms:RespondWith attribute. This
example shows how to add RespondWith to a ValidateRequest:

//Add xkms:RespondWith as X.509 Certificate.
validateReq.addRespondWith(XKMSURI.respondWith_X509Cert);

11.3.4 Using the oracle.security.xmlsec.xkms.xkiss.ValidateResult
Class

With the oracle.security.xmlsec.xkms.xkiss.ValidateResult class, you can create
an instance of ValidateResult. You can also set a status in response to a
ValidateRequest.

This example shows how to create an instance of ValidateResult:

//Parse the XML document containin the dsig:Signature
Document sigDoc = //Instance of org.w3c.doc.Document;
 
// Create the xkms:ValidateResult
ValidateResult valRes = new ValidateResult(sigDoc);
 
//Set ResultMajor to Success.
valRes.setResultCode(XKMSURI.result_major_success, null);

Use the following code to set a status in response to a ValidateRequest:
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//Create a status element and add reasons.
Status responseStatus = new Status(sigDoc);
responseStatus.addValidReason(XKMSURI.reasonCode_IssuerTrust);
responseStatus.addValidReason(XKMSURI.reasonCode_RevocationStatus);
responseStatus.addValidReason(XKMSURI.reasonCode_ValidityInterval);
responseStatus.addValidReason(XKMSURI.reasonCode_Signature);
 
//Create a xkms:KeyBinding to add status and X509Data
XSKeyInfo xsInfo = 
    // Instance of oracle.security.xmlsec.dsig.XSKeyInfo, 
    // which contains X509Data
KeyBinding keyBinding = new KeyBinding(sigDoc);
keyBinding.setStatus(responseStatus);
keyBinding.setKeyInfo(xsInfo);
 
// Add the key binding to the ValidateResult.
valRes.addKeyBinding(keyBinding);

11.3.5 Using the oracle.security.xmlsec.xkms.xkrss.RecoverRequest
Class

The oracle.security.xmlsec.xkms.xkrss.RecoverRequest class represents the
XKMS RecoverRequest element. With this class, you can create an instance of
RecoverRequest. You can also add the Authentication and RecoverKeyBinding
elements to RecoverRequest.

This example shows how to create an instance of RecoverRequest:

// Parse the XML document containing the dsig:Signature.
Document sigDoc = //Instance of org.w3c.dom.Document;
 
// Create the xkms:RecoverRequest
RecoverRequest recReq = new RecoverRequest(sigDoc);
 
//Set RespondWith to PrivateKey, so that the RecoverResult 
contains the private key.
recReq.addRespondWith(XKMSURI.respondWith_PrivateKey);

A RecoverRequest must include the Authentication and RecoverKeyBinding
elements. These can be added with the following code:

//Create an instance of XSSignature.
XSSignature sig = 
    //Instance of oracle.security.xmlsec.dsig.XSSignature
 
//Create an instance of Authentication element.
Authentication auth = new Authentication(sigDoc);
 
//Set key binding authentication.
auth.setKeyBindingAuthentication(sig);
 
//Set Authentication for the RecoverRequest.
recReq.setAuthentication(auth);
 
//Add RecoverKeyBinding to RecoverRequest.
RecoverKeyBinding recKeyBind = new RecoverKeyBinding(sigDoc);
 
//Add Key Info on the key to be recovered.
XSKeyInfo xsInfo = 
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    //Instance of oracle.security.xmlsec.dsig.XSKeyInfo
recKeyBind.setKeyInfo(xsInfo);
 
//Adding status, as known to the key holder, to the KeyBinding
Status keyStatus = new Status(sigDoc);
keyStatus.setStatusValue(XKMSURI.kbs_Indeterminate);
recKeyBind.setStatus(keyStatus);
 
//Adding RecoverKeyBinding to RecoverRequest.
recReq.setKeyBinding(recKeyBind);

11.3.6 Using the oracle.security.xmlsec.xkms.xkrss.RecoverResult
Class

The oracle.security.xmlsec.xkms.xkrss.RecoverResult class represents the
xkms:RecoverResult element. With this class, you can create an instance of
RecoverResult. You can set KeyBinding for RecoverResult. You can also set the
recovered PrivateKey into the RecoverResult.

This example shows how to create an instance of RecoverResult:

// Parse the XML document containing the dsig:Signature.
Document sigDoc = //Instance of org.w3c.dom.Document;
 
// Create the xkms:RecoverResult
RecoverResult recResult = new RecoverResult(sigDoc);
 
//Set ResultMajor to Success.
recResult.setResultCode(XKMSURI.result_major_success, null);

The KeyBinding needs to be set for a RecoverResult. You can accomplish this with
the following code:

//Create a xkms:KeyBinding to add status and X509Data
XSKeyInfo xsInfo = 
    //Instance of oracle.security.xmlsec.dsig.XSKeyInfo, 
    //which contains X509Data
KeyBinding keyBinding = new KeyBinding(sigDoc);
keyBinding.setKeyInfo(xsInfo);
 
//Create a status element and add reasons.
//Status is set to Invalid because the service can decide
//to revoke the key binding in the case of recovery.

Status responseStatus = new Status(sigDoc);
responseStatus.addInvalidReason(XKMSURI.reasonCode_IssuerTrust);
responseStatus.addInvalidReason(XKMSURI.reasonCode_RevocationStatus);
responseStatus.addInvalidReason(XKMSURI.reasonCode_ValidityInterval);
responseStatus.addInvalidReason(XKMSURI.reasonCode_Signature);
responseStatus.setStatusValue(XKMSURI.kbs_Invalid);
 
keyBinding.setStatus(responseStatus);
 
//Set KeyBinding into RecoverResult
recResult.addKeyBinding(keyBinding);

Finally, this example shows how to set the recovered PrivateKey into the
RecoverResult:
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//Create an Instance of dsig:XEEncryptedData
XEEncryptedData encryptedData = //Instance of 
oracle.security.xmlsec.enc.XEEncryptedData
 
//Create an instance of oracle.security.xmlsec.xkms.xkrss.PrivateKey
PrivateKey privKey = new PrivateKey(sigDoc);
privKey.setEncryptedData(encryptedData);
 
//Add PrivateKey to RecoverResult
recResult.setPrivateKey(privKey);

11.4 The Oracle XKMS Java API Reference
The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes, interfaces, and methods available in Oracle XKMS
API.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
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12
Oracle JSON Web Token

Oracle JSON Web Token API is a full Java solution that provides extensive support for
JSON Web Token (JWT). You can use the API to construct Base64url encoded tokens
and set the token's header and claim parameter values, parse and verify tokens, and
sign and serialize tokens.

Oracle JSON Web Token, introduced in Release 11g, provides support for the JSON
Web Token (JWT) standard.

• Oracle JSON Web Token Features and Benefits

• Setting Up Your Oracle JSON Web Token Environment

• Using Core Classes and Interfaces

• Examples of Oracle JSON Web Token Usage

• The Oracle JSON Web Token Java API Reference

12.1 Oracle JSON Web Token Features and Benefits
JSON Web Token (JWT) represents claims to be transferred between two parties.
JWT is a compact token format intended for space- constrained environments such as
HTTP Authorization headers and URI query parameters. You can use the API to
construct Base64url encoded tokens and set the token's header and claim parameter
values, parse and verify tokens, and sign and serialize tokens.

This section introduces JWT concepts and key features of Oracle JSON Web Token.

• About JSON Web Token

• Oracle JSON Web Token Features

12.1.1 About JSON Web Token
JSON Web Token (JWT) represents claims to be transferred between two parties.
JWT is a compact token format intended for space- constrained environments such as
HTTP Authorization headers and URI query parameters. A JSON object is digitally
signed using a JSON Web Signature (JWS) and optionally encrypted using JSON
Web Encryption (JWE).

The claims in a JWT are encoded as a JSON object that is base64url encoded and
consists of zero or more name/value pairs (or members), where the names are strings
and the values are arbitrary JSON values. Each member is a claim represented by the
JWT.

The JWT is represented as the concatenation of three segments:

• JWT Header Segment describes the cryptographic operations applied to the
token.

• JWT Claim Segment encodes the claims contained in the JWT.
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• JWT Crypto Segment contains the cryptographic material that secures the
contents of the token.

The segments are separated by period ('.') characters. All three segments are always
Base64url encoded values.

See Also:

JSON Web Token IETF draft document at http://tools.ietf.org/html/
draft-jones-json-web-token-05.

12.1.2 Oracle JSON Web Token Features
You can use the API to construct Base64url encoded tokens and set the token's
header and claim parameter values, parse and verify tokens, and sign and serialize
tokens.

Oracle JSON Web Token is a full Java solution that provides extensive support for
JWT tokens. You can use the API to:

• construct Base64url encoded tokens and set the token's header and claim
parameter values, including user-defined headers

• parse and verify tokens

• sign and serialize tokens

The oracle.security.jwt.JwtToken class represents the JSON Web Token (JWT).
Representative methods of oracle.security.jwt.JwtToken include:

• setAlgorithm(String), getAlgorithm()

• signAndSerialize(PrivateKey)

• serializeUnsigned()

• claim methods such as setPrincipal(String), getPrincipal(), getIssuer()

For details, see the tables of header and claim parameter names and corresponding
get/set methods in the Javadoc.

See Also:

The Oracle JSON Web Token Java API Reference.

12.2 Setting Up Your Oracle JSON Web Token Environment
You can setup Oracle JSON Web Token environment by installing Oracle Security
Developer Tools and Java Development Kit (JDK), and setting the CLASSPATH
variable to all of the required jar and class files.

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME.
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In order to use Oracle JSON Web Token, your system must have the Java
Development Kit (JDK) version 1.6 or higher.

Your CLASSPATH environment variable must contain the full path and file names to all of
the required jar and class files. Make sure the following items are included in your
CLASSPATH:

• osdt_core.jar file

• osdt_cert.jar file

• jackson-core-1.1.1.jar file

• jackson-mapper-1.1.1.jar file

For example, your CLASSPATH might look like this:

setenv CLASSPATH $CLASSPATH:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$ORACLE_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$Jackson.library.path/jackson-core-1.1.1.jar
$Jackson.library.path/jackson-mapper-1.1.1.jar

At run-time, the following locations are searched for the Jackson jars:

1. If present, the jars are loaded from the system class path.

2. If the jars are not present in the system class path, the system property
Jackson.library.path is examined. If present, the jars are loaded from that
location for both Java SE and Java EE clients.

3. If the system property Jackson.library.path is not set or the Jackson jars are not
found there, they are picked up from the predefined location $ORACLE_HOME/
modules (for Java EE environment) and from the present directory (for Java SE
client).

See Also:

Setting the CLASSPATH Environment Variable

12.3 Using Core Classes and Interfaces
The Oracle JSON Web Token consists of the oracle.security.restsec.jwt.JwtToken
class. Key functions by this class include constructing a JWT token, setting the
parameter values of the JWT token, signing the token, verifying the token, and token
serialization.

Examples of Oracle JSON Web Token Usage demonstrates how to use Oracle JSON
Web Token.

12.4 Examples of Oracle JSON Web Token Usage
You can refer the examples of constructing a JWT token, signing the token, verifying
the token, and serializing the token without signing to know how to use Oracle JSON
Web Token.
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This section provides some examples of using Oracle JSON Web Token.

• Creating the JWT Token

• Signing the JWT Token

• Verifying the JWT Token

• Serializing the JWT Token without Signing

Note:

These are specific examples to demonstrate how to use Oracle JSON Web
Token. For details and other options for using the methods described here,
see the JWT javadoc (The Oracle JSON Web Token Java API Reference).

12.4.1 Creating the JWT Token
Creating the JWT token involves creating the object itself, then setting header and
claim parameters as needed.

The steps are as follows:

1. To create a JWT token, begin by using the constructor method JwtToken() to
create a JwtToken object.

JwtToken jwtToken = new JwtToken(); 

You can use various setter methods to set the parameter values of the JWT token.

2. To set header parameters, the header parameter alg must first be set; use the
setAlgorithm(String) and getAlgorithm() methods, respectively, to set and get this
parameter. By default, the alg parameter is set to "none" implying that you do not
want to sign the token.

Use the setHeaderParameter(String, Object) method to set a user-defined
header parameter in the JWT header segment.

3. Oracle JSON Web Token provides methods to set claim parameters exp, iat, iss,
aud, prn. All the claim parameters are optional.

Use the setClaimParameter(String, Object) method to set the user-defined claim
parameter in the JWT claim segment.

12.4.2 Signing the JWT Token
Signing a token involves actions such as creating a token instance, setting token
parameters, and finally signing the token.

The steps are as follows:

1. Create and sign the JWT token, by first creating the instance of the JwtToken
class:

JwtToken jwtToken = new JwtToken(String); 

2. Next set the parameters like algorithm, issuer, expiry time, other claims and so on:
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jwtToken.setAlgorithm(JwtToken.SIGN_ALGORITHM.HS256.toString());
jwtToken.setType(JwtToken.JWT);
jwtToken.setIssuer("my.company.com");
jwtToken.setPrincipal("john.doe"); 

3. Finally obtain the private key and sign the token with a secret key or private key:

PrivateKey privateKey ;
String jwtString = jwtToken.signAndSerialize(privateKey);

12.4.3 Verifying the JWT Token
Verifying a token involves actions such as reading the token from the HTTP header,
checking the token issuer, and so on.

This example code verifies the expiry date and token issuer:

// Read the JWT token as a String from HTTP header
String jwtStr = "eyJ.eyJp.dB";
JwtToken token = new JwtToken(jwtStr);
 
// Validate the issued and expiry time stamp.
if (token.getExpiryTime().after(new Date())) {
...
...
}
 
// Get the issuer from the token
String issuer = token.getIssuer(); 

12.4.4 Serializing the JWT Token without Signing
If the JWT token is not required to be digitally signed, you can serialize the token
without signing.

Example:

JwtToken jwtToken = new JwtToken();
jwtToken.setType(JwtToken.JWT);
jwtToken.setIssuer("my.example.com");
jwtToken.setPrincipal("john.doe");
String jwtString = jwtToken.serializeUnsigned();

12.5 The Oracle JSON Web Token Java API Reference
The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes and methods available in the Oracle JSON Web
Token API.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
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A
Migrating to the JCE Framework

The Oracle Security Developer Tools framework introduced changes to low-level
libraries starting in 11g Release 1 to comply with the Java Cryptography Extension
(JCE) framework. The changes affected both client programs and higher-level libraries
of the Oracle Security Developer Tools. You can migrate your legacy programs to
leverage the JCE functions.

This chapter describes how the changes affected the toolkit architecture, and explain
how you can migrate your legacy programs to leverage the JCE functions. It contains
these topics:

• About The JCE Framework

• Understanding JCE Keys

• Converting Between OSDT Key Objects and JCE Key Objects

• Working with JCE Certificates

• Working with JCE Certificate Revocation Lists (CRLs)

• Using JCE Keystores

• The Oracle JCE Java API Reference

A.1 About The JCE Framework
Prior to Oracle Fusion Middleware 11g, Oracle Security Developer Tools used a
cryptographic engine that was developed prior to the adoption of JCE in the market.
To enable applications (including Oracle WebLogic Server) to continue their move to
adopt JCE, the Oracle Security Developer Tools have standardized on low-level
libraries that are compliant with the Java Cryptography Extension (JCE) framework
with Oracle Fusion Middleware 11g.

Benefits of the JCE framework include:

• standards-based implementations of cryptographic and certificate management
engines

• a pluggable JCE provider architecture that enables you to leverage third-party JCE
provider implementations

• the ability to use third-party providers as the cryptographic engine

Additional Reading

This chapter’s primary focus is on the changes to the Oracle Security Developer Tools
for the JCE framework, and how to migrate your existing security artifacts to JCE
objects.
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A.2 Understanding JCE Keys
As of Release 11gR1, the higher level toolkits (Oracle XML Security, Oracle Web
Services Security, Oracle CMS, Oracle S/MIME, Oracle XKMS) have changed so that
instead of taking Oracle cryptographic keys and certificates, they take standard JCE
keys and certificates.

Thus, APIs that were taking:

oracle.security.crypto.core.PublicKey

now take a:

java.security.PublicKey

Note:

This discussion highlights changes in the Oracle Security Developer Tools in
support of JCE. For fuller details of all the available cryptographic functions,
see the API documentation.

• oracle.security.crypto.core.PublicKey changed to
java.security.PublicKey

• oracle.security.crypto.core.PrivateKey changed to
java.security.PrivateKey

• oracle.security.crypto.core.SymmetricKey changed to
javax.crypto.SecretKey

A.3 Converting Between OSDT Key Objects and JCE Key
Objects

You can convert keys from Oracle Security Developer Tools (OSDT) objects to JCE
objects and vice versa.

If you are using a java.security.KeyStore to store your keys, you will directly get a
java.security.PrivateKey object from it, so you do not need to do any conversion.

However if you are using a oracle.security.crypto.cert.PKCS12 object to store your
keys, you will get an oracle.security.crypto.core.PrivateKey from it, and then you need
to convert to a java.security.PrivateKey object.

A.3.1 Converting a Private Key from OSDT to JCE Object
You can convert keys in Oracle Security Developer Tools (OSDT) format to JCE
objects.

Here is an example:

//***** Conversion of PrivateKeys from OSDT -> JCE *******
{
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// Example code to convert an RSAPrivateKey (non CRT) to JCE
oracle.security.crypto.core.RSAPrivateKey osdtKey = null;
RSAPrivateKeySpec keySpec = new RSAPrivateKeySpec(
osdtKey.getModulus(), osdtKey.getExponent());
KeyFactory kf = KeyFactory.getInstance("RSA");
RSAPrivateKey jceKey = (RSAPrivateKey)kf.generatePrivate(keySpec);
}
 
{
// Example code to convert an RSAPrivateKey (CRT) to JCE
oracle.security.crypto.core.RSAPrivateKey osdtKey = null;
RSAPrivateKeySpec keySpec = new RSAPrivateCrtKeySpec(
osdtKey.getModulus(),
osdtKey.getPublicExponent(),
osdtKey.getExponent(),
osdtKey.getPrimeP(),
osdtKey.getPrimeQ(),
osdtKey.getPrimeExponentP(),
osdtKey.getPrimeExponentQ(),
osdtKey.getCrtCoefficient());
KeyFactory kf = KeyFactory.getInstance("RSA");
RSAPrivateCrtKey jceKey = (RSAPrivateCrtKey)kf.generatePrivate(keySpec);
 
}
 
{
// Example code to convert a DSAPrivateKey to JCE
oracle.security.crypto.core.DSAPrivateKey osdtKey = null;
DSAPrivateKeySpec keySpec = new DSAPrivateKeySpec(
osdtKey.getX(),
osdtKey.getParams().getP(),
osdtKey.getParams().getQ(),
osdtKey.getParams().getG());
 
KeyFactory kf = KeyFactory.getInstance("DSA");
DSAPrivateKey jceKey = (DSAPrivateKey)kf.generatePrivate(keySpec);
 
}
 
{
// Example code to convert a DHPrivateKey to JCE
oracle.security.crypto.core.DHPrivateKey osdtKey = null;
 
// Note q is assumed to be (p-1)/2
DHPrivateKeySpec keySpec = new DHPrivateKeySpec(
osdtKey.getX(),
osdtKey.getParams().getP(),
osdtKey.getParams().getG());
 
KeyFactory kf = KeyFactory.getInstance("DiffieHelman");
DHPrivateKey jceKey = (DHPrivateKey)kf.generatePrivate(keySpec);
 
}

A.3.2 Converting a Private Key from JCE Object to OSDT Object
You can convert private key objects from JCE to OSDT format.

Here is an example:
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//***** Conversion or Private Keys from JCE -> OSDT *******
{
// Example code to convert an RSAPrivateKey (non CRT) to OSDT
RSAPrivateKey jceKey = null;
oracle.security.crypto.core.RSAPrivateKey osdtKey =
new oracle.security.crypto.core.RSAPrivateKey(
jceKey.getModulus(),
jceKey.getPrivateExponent());
}
 
{
// Example code to convert an RSAPrivateKey (CRT) to OSDT
RSAPrivateCrtKey jceKey = null;
oracle.security.crypto.core.RSAPrivateKey osdtKey =
new oracle.security.crypto.core.RSAPrivateKey(
jceKey.getModulus(),
jceKey.getPrivateExponent(),
jceKey.getPublicExponent(),
jceKey.getPrimeP(),
jceKey.getPrimeQ(),
jceKey.getPrimeExponentP(),
jceKey.getPrimeExponentQ(),
jceKey.getCrtCoefficient());
}
 
{
// Example code to convert an DSAPrivateKey to OSDT
DSAPrivateKey jceKey = null;
oracle.security.crypto.core.DSAPrivateKey osdtKey =
new oracle.security.crypto.core.DSAPrivateKey(
jceKey.getX(),
new oracle.security.crypto.core.DSAParams(
jceKey.getParams().getP(),
jceKey.getParams().getQ(),
jceKey.getParams().getG()));
}
 
{
// Example code to convert an DHPrivateKey to OSDT
DHPrivateKey jceKey = null;
 
// Note calculate q = (p-1)/2
oracle.security.crypto.core.DHPrivateKey osdtKey =
new oracle.security.crypto.core.DHPrivateKey(
jceKey.getX(),
new oracle.security.crypto.core.DHParams(
jceKey.getParams().getP(),
jceKey.getParams().getG(),
jceKey.getParams().getP().subtract(new BigInteger("1")).divide(new 
BigInteger("2"))));
}

A.4 Working with JCE Certificates
As of Release 11gR1, oracle.security.crypto.cert.X509 is changed to
java.security.cert.X509Certificate. Several utility methods are available for
creating and working with JCE certificates. An X509Certificate object can be created
from an input stream using java.security.cert.CertificateFactory.

The input stream can be one of the following:
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• a FileInputSream, if the certificate is stored in a file, or

• a ByteArrayInputStream, if we got the encoded bytes from an old X509 object, or

• any other sources.

For example, the following code converts an Oracle Security Developer Tools
certificate to a JCE certificate:

CertificateFactory cf = CertificateFactory.getInstance("X.509");
  
X509Certificate cert = (X509Certificate)cf.generateCertificate(
    new FileInputStream(certFileName);

where certFileName is the name of the certificate file.

A.5 Working with JCE Certificate Revocation Lists (CRLs)
In Release 11gR1, oracle.security.crypto.cert.CRL is replaced by
java.security.cert.CRL. You can create the java.security.cert.CRL object from
an input stream by using java.security.cert.CertificateFactory.

The input stream can be one of the following:

• FileInputSream, if the CRL is stored in a file

• ByteArrayInputStream, if the encoded bytes were obtained from an old
oracle.security.crypto.cert.CRL object

• any other source

Here is an example of a CRL object creation:

CertificateFactory cf = CertificateFactory.getInstance("X.509");
 
509Certificate cert = (X509Certificate)cf.generateCRL(
   new FileInputStream(crlFileName));

where the crlFileName is the name of the CRL file.

A.6 Using JCE Keystores
Oracle Security Developer Tools provide four types of keystore: JKS keystore, Oracle
wallet, PKCS12 wallet, and PKCS8 wallet.

These are:

1. the JKS keystore, which is Oracle's implementation of the java.security.KeyStore
interface

2. the Oracle wallet, which is Oracle's implementation of the java.security.KeyStore
interface

3. the PKCS12 wallet, which is a proprietary Oracle interface/implementation of
PKCS12

4. the PKCS8 wallet, which is a proprietary Oracle interface/implementation of
PKCS8
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A.6.1 Working with standard KeyStore-type Wallets
You can instantiate a Keystore object using an Oracle provider, load a Keystore file,
and retrieve a certificate.

Creating a PKCS12 Wallet

This example instantiates a PKCS12 wallet for the Oracle provider:

java.security.KeyStore keystore = KeyStore.getInstance("PKCS12", "OraclePKI");

Loading a Keystore File

You perform this task with the keystore.load method:

keystore.load(new FileInputStream(walletFile), pass);

Retrieving a Certificate

To retrieve a certificate and private key using an alias:

Key key = keystore.getKey(alias);

Certificate cert = keystore.getCert(alias);

If the alias is not known in advance, you can list all aliases by calling:

keystore.aliases();

A.6.2 Working with PKCS12 and PKCS8 Wallets
If you maintain keystores in the PKCS12 or PKCS8 oracle wallet format, you can
retrieve keys, certificates or CRLs from those stores in Oracle Security Developer
Tools format.

• Retrieving a PKCS Object

• Retrieving a Certificate

• Retrieving CRLs

A.6.2.1 Retrieving a PKCS Object
In Oracle wallets, the key is found in oracle.security.crypto.core.PrivateKey.

After retrieval, you can convert the keys into the JCE key format, using the utility class
PhaosJCEKeyTranslator.

For more information, see Converting Between OSDT Key Objects and JCE Key
Objects.

A.6.2.2 Retrieving a Certificate
In Oracle wallets, the certificate is found in oracle.security.crypto.cert.X509.

After retrieval, you can:

1. get the encoded value of the X509 certificate, for example X509.getEncoded();
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2. use the CertificateFactory to create a X509Certificate instance, based on the
encoded bytes value.

For more information, see Working with JCE Certificates.

A.6.2.3 Retrieving CRLs
In Oracle wallets, the CRL is found in oracle.security.crypto.cert.CRL.

After retrieval, you can:

1. get the encoded value of the CRL, for example CRL.getEncoded();

2. use the CertificateFactory to create a java.security.cert.CRL instance, based on
the encoded bytes value.

For more information, see Working with JCE Certificate Revocation Lists (CRLs).

A.7 The Oracle JCE Java API Reference
The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes and methods available in the Oracle JCE framework.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
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B
References

A list of standards forms the basis of Oracle Security Developer Tools. You can refer
these standards and protocols referenced in this document.

Table B-1    Security Standards and Protocols

Document Reference

[AES-128] W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Block Encryption
Algorithms,http://www.w3.org/2001/04/xmlenc#aes128-cbc and 
http://www.w3.org/2001/04/xmlenc#kw-aes128

[AES-192] W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Block Encryption
Algorithms,http://www.w3.org/2001/04/xmlenc#aes192-cbc and 
http://www.w3.org/2001/04/xmlenc#kw-aes192

[AES-256] W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Block Encryption
Algorithms,http://www.w3.org/2001/04/xmlenc#aes256-cbc and 
http://www.w3.org/2001/04/xmlenc#kw-aes256

Cryptography Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and
Source Code in C (2nd Edition), John Wiley and Sons, 1996.

Cryptography William Stallings, Cryptography and Network Security: Principles and
Practice (3rd Edition), Prentice Hall, 2002.

[DES-EDE] W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Block Encryption
Algorithms,http://www.w3.org/2001/04/xmlenc#aes128-cbc and 
http://www.w3.org/2001/04/xmlenc#kw-tripledes

Diffie-Hellman Key
Agreement

W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Diffie-Hellman Key Agreement, 
http://www.w3.org/2001/04/xmlenc#dh

[DSA-SHA] W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See DSA, http://www.w3.org/TR/
xmlenc-core/

JSON Web Token JSON Web Token (JWT) Draft. See http://tools.ietf.org/html/
draft-jones-json-web-token-05

Liberty Alliance Liberty Alliance Project ID-FF 1.2 and ID-WSF 2.0 Specifications, 
http://www.projectliberty.org/resources/
specifications.php

[PKCS] RSA Laboratories, "Public-Key Cryptography Standards (PKCS)", 
http://www.rsasecurity.com/rsalabs/node.asp?id=2125

[PKCS1] RSA Laboratories, "PKCS #1: RSA Cryptography Standard", http://
www.rsasecurity.com/rsalabs/node.asp?id=2125

[PKCS3] RSA Laboratories, "PKCS #3: Diffie-Hellman Key Agreement Standard", 
http://www.rsasecurity.com/rsalabs/node.asp?id=2126
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Table B-1    (Cont.) Security Standards and Protocols

Document Reference

[PKCS5] RSA Laboratories, "PKCS #5: Password-Based Cryptography Standard", 
http://www.rsasecurity.com/rsalabs/node.asp?id=2127

[PKCS6] RSA Laboratories, "PKCS #6: Extended-Certificate Syntax Standard", 
http://www.rsasecurity.com/rsalabs/node.asp?id=2128

[PKCS7] RSA Laboratories, "PKCS #7: Cryptographic Message Syntax Standard", 
http://www.rsasecurity.com/rsalabs/node.asp?id=21299

[PKCS8] RSA Laboratories, "PKCS #8: Private-Key Information Syntax Standard", 
http://www.rsasecurity.com/rsalabs/node.asp?id=2130

[PKCS9] RSA Laboratories, "PKCS #9: Selected Attribute Types", http://
www.rsasecurity.com/rsalabs/node.asp?id=2131

[PKCS10] RSA Laboratories, "PKCS #10: Certification Request Syntax Standard", 
http://www.rsasecurity.com/rsalabs/node.asp?id=2132

[PKCS11] RSA Laboratories, "PKCS #11: Cryptographic Token Interface
Standard", http://www.rsasecurity.com/rsalabs/node.asp?
id=2133

[RFC2311] S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade, L. Repka, "S/MIME
Version 2 Message Specification". March 1998, http://
www.ietf.org/rfc/rfc2311.txt

[RFC2459] R. Housley, W. Ford, W. Polk, D. Solo, "Internet X.509 Public Key
Infrastructure Certificate and CRL Profile". January 1999, http://
www.ietf.org/rfc/rfc2459.txt

[RFC2510] C. Adams, S. Farrell, "Internet X.509 Public Key Infrastructure Certificate
Management Protocols". March 1999, http://www.ietf.org/rfc/
rfc2510.txt

[RFC2511] M. Myers, C. Adams, D. Solo, D. Kemp, "Internet X.509 Certificate
Request Message Format". March 1999, http://www.ietf.org/rfc/
rfc2511.txt

[RFC2560] M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams, "X.509 Internet
Public Key Infrastructure Online Certificate Status Protocol - OCSP".
June 1999, http://www.ietf.org/rfc/rfc2560.txt

[RFC2630] R. Housley, "Cryptographic Message Syntax". June 1999, http://
www.ietf.org/rfc/rfc2630.txt

[RFC2634] P. Hoffman, Editor, "Enhanced Security Services for S/MIME". June
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