
Oracle® Fusion Middleware
Understanding Oracle TopLink

12c (12.2.1.4.0)
F16472-02
January 2020

Oracle Fusion Middleware Understanding Oracle TopLink, 12c (12.2.1.4.0)

F16472-02

Copyright © 2014, 2020, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience x

Related Documents x

Conventions x

1 Overview of TopLink

Understanding TopLink 1-1

What Is the Object-Persistence Impedance Mismatch? 1-3

The EclipseLink Solution 1-3

Key Features 1-4

Key Concepts 1-4

Key Components 1-7

EclipseLink Core and API 1-7

Object-Relational (JPA 2.1) Component 1-8

JAXB Component 1-8

MOXy Component 1-9

SDO Component 1-10

Database Web Services Component 1-10

Key Tools 1-10

Oracle JDeveloper 1-11

Oracle Enterprise Pack for Eclipse 1-11

Eclipse 1-12

NetBeans 1-12

2 Understanding Object-Relational and MOXy Internals

About Metadata 2-1

Advantages of the Metadata Architecture 2-2

Creating Project Metadata 2-2

Creating Session Metadata 2-3

About the Object-Relational Solution 2-3

Understanding Object-Relational Entity Architecture 2-4

iii

Adding Metadata Using Annotations 2-6

About Configuration Basics 2-6

About Data Sources 2-7

About EclipseLink Caches 2-8

About Database Queries 2-9

About the MOXy Solution 2-9

Using EclipseLink MOXy as the JAXB Provider 2-10

Understanding MOXy Architecture 2-10

Serving Metadata for MOXy 2-11

About XML Bindings 2-12

Querying Objects by XPath 2-12

3 Understanding the Persistence Unit

About the Persistence Unit 3-1

About the Persistence Unit Name 3-2

About the Persistence Provider 3-2

About the Transaction Type Data Source 3-2

About Logging 3-2

About Vendor Properties 3-3

About Mapping Files 3-3

About Managed Classes 3-4

About the Deployment Classpath 3-5

About Persistence Unit Packaging Options 3-5

About the Persistence Unit Scope 3-6

About Composite Persistence Units 3-6

Building and Using the Persistence Layer 3-7

Implementation Options 3-7

Persistent Class Requirements 3-9

Persistence Layer Components 3-9

About Persisting Objects 3-10

Application Object Model 3-10

Data Storage Schema 3-11

Primary Keys and Object Identity 3-11

Mappings 3-11

Foreign Keys and Object Relationships 3-12

Inheritance 3-12

Concurrency 3-12

Caching 3-13

Nonintrusive Persistence 3-13

Indirection 3-13

iv

Mutability 3-14

Migrating Applications to the EclipseLink Persistence Manager 3-15

About Weaving 3-15

Using Dynamic Weaving 3-15

Using Static Weaving 3-15

Weaving POJO Classes 3-16

Weaving and Java EE Application Servers 3-16

Disabling Weaving with Persistence Unit Properties 3-16

4 Understanding Entities

Identifying Entities 4-1

Entities and Persistent Identity 4-1

Entities and Database Tables 4-2

Entities and Inheritance 4-2

Entities and Embedded Objects 4-2

Entities and Sequence Generation 4-3

Entities and Locking 4-3

Extensible Entities 4-4

5 Understanding Descriptors

Common Descriptor Concepts 5-1

Descriptor Architecture 5-1

Descriptors and Inheritance 5-2

Descriptors and Aggregation 5-4

Descriptor Customization 5-5

Amendment Methods 5-5

Descriptor Event Manager 5-5

Object-Relational Descriptor Concepts 5-6

Fetch Groups 5-6

Descriptor Query Manager 5-8

Descriptors and Sequencing 5-8

Descriptors and Locking 5-8

Descriptor Files 5-12

Using orm.xml for Object-Relational Mappings 5-13

Using eclipselink-orm.xml for EclipseLink Object-Relational Mappings 5-13

Using eclipselink-oxm.xml for EclipseLink MOXy Mappings 5-14

6 Understanding Mappings

Common Mapping Concepts 6-1

v

Mapping Architecture 6-1

Mapping Examples 6-2

Mapping Converters 6-3

Transformation Mapping 6-6

Object-Relational Mapping Concepts 6-7

Indirection (Lazy Loading) 6-7

Indirection, Serialization, and Detachment 6-9

Value Holder Indirection 6-10

Transparent Indirection 6-11

Proxy Indirection 6-12

Weaved Indirection 6-12

About JPA Mapping Types 6-13

MOXy Mapping Concepts 6-19

Understanding an XML Data Representation 6-20

Mapping Values 6-21

Object-JSON Mapping Concepts 6-21

7 Understanding Data Access

About Externally Managed Transactional Data Sources 7-1

About Data Source Login Types 7-2

About Data Source Platform Types 7-2

Simple JDBC Authentication 7-3

Oracle Database Proxy Authentication 7-3

Auditing 7-4

About Authentication 7-5

Simple JDBC Authentication 7-5

Oracle Database Proxy Authentication 7-5

Auditing 7-6

About Connections 7-7

About Connection Pools 7-7

Internal Connection Pools 7-7

External Connection Pools 7-8

Default (Write) and Read Connection Pools 7-8

Sequence Connection Pools 7-9

Application-Specific Connection Pools 7-9

About Data Partitioning Policies 7-10

About Tenant Isolation 7-10

Single Table Multi-Tenancy 7-11

Table-Per-Tenant Multi-Tenancy 7-11

VPD Multi-Tenancy 7-12

vi

About Heterogeneous Batch Writing 7-12

8 Understanding Caching

About Cache Architecture 8-1

Persistence Unit Cache 8-2

Persistence Context Cache 8-3

Shared, Isolated, Protected, Weak, and Read-only Caches 8-4

About Cache Type and Size 8-7

FULL Cache Type 8-8

WEAK Cache Type 8-8

SOFT Cache Type 8-8

SOFT_WEAK and HARD_WEAK Cache Type 8-8

NONE and CACHE 8-9

Guidelines for Configuring the Cache and Identity Maps 8-9

About Queries and the Cache 8-10

About Query Cache Options and In-memory Querying 8-10

About Handling Stale Data 8-11

Configuring a Locking Policy 8-12

Configuring the Cache on a Per-Class Basis 8-12

Forcing a Cache Refresh when Required on a Per-Query Basis 8-12

Configuring Cache Invalidation 8-13

Configuring Cache Coordination 8-13

About Explicit Query Refreshes 8-13

About Cache Indexes 8-14

Database Event Notification and Oracle CQN 8-14

Oracle Continuous Query Notification 8-15

About Query Results Cache 8-15

About Cache Coordination 8-16

When to Use Cache Coordination 8-17

Clustering and Cache Coordination 8-18

Coordinating JMS and RMI Caches 8-19

Coordinating Custom Caches 8-19

Clustering and Cache Consistency 8-19

Cache Interceptors 8-20

9 Understanding Queries

Query Concepts 9-1

Call Objects 9-1

DatabaseQuery Objects 9-2

vii

Data-Level and Object-Level Queries 9-2

Summary Queries 9-2

Descriptor Query Manager 9-2

Query Keys 9-2

About JPQL Queries 9-3

EclipseLink Extensions to JPQL 9-3

EclipseLink Special Operators in JPQL 9-4

About SQL Query Language 9-4

Stored Procedures 9-5

About the Criteria API 9-5

EclipseLink Extensions to the Criteria API 9-7

About Native SQL Queries 9-7

EclipseLink Extensions to Native Query Support 9-8

About Query Hints 9-8

JPA Cache Query Hints 9-9

EclipseLink Extensions to Cache Query Hints 9-9

About Query Casting 9-10

EclipseLink Expression Support for Downcasting 9-11

About Oracle Extensions for Queries 9-11

Query Hints 9-11

Hierarchical Queries 9-12

Flashback Queries 9-12

Stored Functions 9-12

10

Understanding EclipseLink Expressions

About the Expression Framework 10-1

About Expression Components 10-1

Boolean Logic 10-2

Database Functions and Operators 10-2

Platform and User-Defined Functions 10-3

Expressions for One-to-One and Aggregate Object Relationships 10-3

Expressions for Joining and Complex Relationships 10-3

11

Understanding Non-relational Data Sources

NoSQL Platform Concepts 11-1

About NoSQL Persistence Units 11-2

Persistence Unit Properties for NoSQL Platforms 11-3

About JPA Applications on the NoSQL Platform 11-3

Mapping Restrictions on JPA Annotations 11-3

viii

About Mapping NoSQL Objects 11-4

About Queries and the NoSQL Platform 11-5

About Transactions and the NoSQL Platform 11-5

12

Database and Application Server Support

Database Support 12-1

Application Server Support 12-5

EclipseLink MOXy as the JAXB Provider for Application Servers 12-6

Non-SQL Standard Database Support: NoSQL 12-6

ix

Preface

Audience
This document is intended for application developers and administrators who want to
know more about the concepts behind EclipseLink and its features.

Related Documents
For more information, see the following documents in the EclipseLink documentation
set:

• Solutions Guide for EclipseLink

• Java Persistence API (JPA) Extensions Reference for EclipseLink

• Developing JAXB Applications EclipseLink MOXy

• Developing Persistence Architectures Using EclipseLink Database Web Services
Developer's Guide

• Java API Reference for EclipseLink

• Java Persistence specification for complete information about JPA

http://jcp.org/en/jsr/detail?id=338

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Preface

x

http://jcp.org/en/jsr/detail?id=338

1
Overview of TopLink

Describes TopLink and its key features: the components that are included with
TopLink, metadata, application architectures, mappings, and the API.

Topics

• Key Features

• Key Concepts

• Key Components

• Key Tools

Understanding TopLink
Oracle TopLink is a mapping and persistence framework for use in a Java
environment, including Java Platform, Standard Edition (Java SE) and Java Platform,
Enterprise Edition (Java EE). The core functionality of TopLink is provided by
EclipseLink, the open source mapping and persistence framework.

The EclipseLink project is led by Oracle and is under the stewardship of the Eclipse
Foundation. TopLink includes additional features beyond EclipseLink, described later
in this document.

EclipseLink completely implements the following specifications, plus extensions to
those specifications:

• Java Persistence API (JPA)

JPA is the Java API for object/relational mapping (ORM), where Java objects are
mapped to database artifacts, for the purpose of managing relational data in Java
applications. JPA includes Java Persistence Query Language (JPQL), the Java
Persistence Criteria API, and the Java API and XML schema for defining object/
relational mapping metadata.

The latest version of the specification is JSR 338: Java Persistence 2.1. See http://
jcp.org/en/jsr/detail?id=338.

Some of the EclipseLink extensions to standard JPA are:

– Support for mapping to nonrelational (NoSQL) databases.

– Features useful in Software as a Service (SaaS) environments, including
tenant isolation, extensible entities, external metadata sources.

– Java API for RESTful Web Services (JAX-RS, defined in JSR 311).

– Many other additional annotations, annotation extensions, Java Persistence
Query Language (JPQL) extensions, JPA query customizations extensions,
and persistence property extensions.

• Java Architecture for XML Binding (JAXB)

1-1

http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338

JAXB is the Java API for object/XML mapping (OXM), where an XML document is
bound to Java objects, based on the XML document's XSD schema. JAXB
provides methods for unmarshalling (reading) XML instance documents into Java
content trees, and then marshalling (writing) Java content trees back into XML
instance documents. JAXB also provides a way to generate XML schema from
Java objects.

The latest version of the specification is JSR 222: Java Architecture for XML
Binding (JAXB) 2.0. See http://jcp.org/en/jsr/detail?id=222.

Note:

The EclipseLink JAXB implementation is part of the EclipseLink MOXy
component, which extends EclipseLink JAXB to support JavaScript
Object Notation (JSON) documents. EclipseLink supports all object/XML
options when reading and writing JSON. MOXy also includes support for
the older native EclipseLink object/XML API).

In addition to the implementations of the standard specifications described above,
EclipseLink includes the following:

• EclipseLink Database Web Services (DBWS)

DBWS is a development tool and a runtime for providing Java EE-compliant,
client-neutral access to relational database artifacts via a Web service. The
development tool, DBWS Builder, is a command-line utility that generates the
necessary deployment artifacts. (DBWS Builder is integrated into the Eclipse Dali
Java Persistence toolset and into Oracle JDeveloper.) The runtime provider takes
a service descriptor (along with related deployment artifacts) and realizes it as a
JAX-WS 2.0 Web service. The runtime uses EclipseLink to bridge between the
database and the XML SOAP Messages used by Web service clients.

• EclipseLink Enterprise Information Services (EIS)

EIS is a facility for enabling the use of data stores through Java Connector
Architecture (JCA) resource adapters. Using XML metadata, the interactions and
their exchanged data are configured and mapped onto a domain model. The
interactions data can be mapped from either the Common Client interface (CCI) or
using XML schemas. This use is intended for non-relational data stores where no
JDBC or SQL access is provided.

EclipseLink can be used with a wide range of Java Enterprise Edition (Java EE) and
Java application architectures. Use EclipseLink to design, implement, deploy, and
optimize an advanced, object-persistence and object-transformation layer that
supports a variety of data sources and formats, including relational databases,
nonrelational (NoSQL) databases, XML, JSON, and Web Services.

EclipseLink supports Java persistence in Java EE, Java SE and web containers
including integration with various application servers including:

• Oracle WebLogic Server

• Oracle Glassfish Server

• JBoss Web Server

• IBM WebSphere application server

• SAP NetWeaver

Chapter 1
Understanding TopLink

1-2

http://jcp.org/en/jsr/detail?id=222

• Oracle Containers for Java EE (OC4J)

• Various other web containers, such as Apache Tomcat, Eclipse Gemini, IBM
WebSphere CE, and SpringSource Server

EclipseLink lets you quickly capture and define object-to-data source and object-to-
data representation mappings in a flexible, efficient metadata format.

The runtime lets your application exploit this mapping metadata with a simple session
facade that provides in-depth support for data access, queries, transactions (both with
and without an external transaction controller), and caching.

For more information about EclipseLink, see Key Features.

What Is the Object-Persistence Impedance Mismatch?
In a non-relational data source, you must match your Java entities with XML elements
and schemas.

Java-to-data source integration is a widely underestimated problem when creating
enterprise Java applications. This complex problem involves more than simply reading
from and writing to a data source. The data source elements include tables, rows,
columns, and primary and foreign keys. The Java and Java EE programming
languages include entity classes (regular Java classes), business rules, complex
relationships, and inheritance. In a nonrelational data source, you must match your
Java entities with XML elements and schemas.

A successful solution requires bridging these different technologies and solving the
object-persistence impedance mismatch—a challenging and resource-intensive
problem. To solve this problem, you must resolve the following issues between Java
EE and the data source elements:

• Fundamentally different technologies

• Different skill sets

• Different staff and ownership for each of the technologies

• Different modeling and design principles

As an application developer, you need a product that lets you integrate Java
applications with any data source, without compromising application design or data
integrity. In addition, as a Java developer, you need the ability to store (that is, persist)
and retrieve business domain objects using a relational database or a nonrelational
data source as a repository.

The EclipseLink Solution
EclipseLink addresses the disparity between Java objects and data sources.

EclipseLink addresses the disparity between Java objects and data sources. It
contains a persistence framework that lets you build applications that combine the best
aspects of object technology with a specific data source. You can do the following:

• Persist Java objects to virtually any relational database

• Perform in-memory conversions between Java objects and XML and JSON
documents

• Map any object model to any relational or nonrelational schema

Chapter 1
Understanding TopLink

1-3

• Use EclipseLink successfully, even if you are unfamiliar with SQL or JDBC,
because EclipseLink offers a clear, object-oriented view of data sources

Key Features
Primary features of EclipseLink.

An extensive set of features are provided. You can use these features to rapidly build
high-performance enterprise applications that are scalable and maintainable.

Some of the primary features are the following:

• Nonintrusive, flexible, metadata-based architecture

• Advanced mapping support and flexibility: relational, object-relational data type,
and XML

• Optimized for highly scalable performance and concurrency with extensive
performance tuning options

• Comprehensive object caching support including cluster integration for some
application servers (such as Oracle Fusion Middleware Server)

• Extensive query capability including: Java Persistence Query Language (JPQL),
native SQL, and EclipseLink Expressions framework

• Just-in-time reading

• Object-level transaction support and integration with popular application servers
and databases

• Optimistic and pessimistic locking options and locking policies

For additional information and downloads, see the EclipseLink home page:

http://www.eclipse.org/eclipselink/

Key Concepts
This section provides a brief introduction to several of the key concepts described in
this documentation.

The key concepts highlighted in this section are as follows:

EclipseLink Metadata

EclipseLink metadata is the bridge between the development of an application and its
deployed runtime environment. You can capture the metadata using:

• JPA annotations in Java files and the JPA-defined properties in
the persistence.xml and eclipselink-orm.xml files.

Metadata is also captured by EclipseLink JPA annotations and property
extensions in the persistence.xml file. The eclipselink-orm.xml file can also
be used to specify property extensions beyond the JPA specification.

• JAXB annotations in Java files and JAXB-defined properties in
the eclipselink-oxm.xml file.

The eclipselink-oxm.xml file can be used to define property extensions beyond the
JAXB specification.

Chapter 1
Key Features

1-4

http://www.eclispe.org/eclipselink/

• Java and the EclipseLink API.

The metadata lets you pass configuration information into the runtime environment.
The runtime environment uses the information in conjunction with the persistent
classes, such as Java objects, JPA entities, and the code written with the EclipseLink
API, to complete the application. See Adding Metadata Using Annotations for more
information. See also Java Persistence API (JPA) Extensions Reference for
EclipseLink.

Mappings can be stored external to the application. This can be as simple as making
the eclipselink-orm.xml or eclipselink-oxm.xml file with the additional
mapping information available on a web server as a file. It can also be more complex
involving a server process that stores the mapping information and allows the
information to be updated dynamically. For more information, see "EclipseLink/
Examples/JPA/MetadataSource" in the EclipseLink documentation.

http://wiki.eclipse.org/EclipseLink/Examples/JPA/MetadataSource

Entities

An entity is a persistence domain object. Typically, an entity represents a table in a
relational database, and each entity instance corresponds to a row in the table. The
primary programming artifact of an entity is the entity class, although entities can use
helper classes.

The persistent state of an entity is represented either through persistent fields or
persistent properties. These fields or properties use object/relational mapping
annotations to map the entities and entity relationships to the relational data in the
underlying data store.

See Understanding Entities.

Descriptors

Descriptors describe how a Java class relates to a data source representation. They
relate object classes to the data source at the data model level. For example,
persistent class attributes may map to database columns.

EclipseLink uses descriptors to store the information that describes how an instance of
a particular class can be represented in a data source. Descriptors are used internally
by EclipseLink, and are defined through annotations, XML, or in IDEs such as
JDeveloper or Eclipse, then read at run time.

See Understanding Descriptors .

Mappings

Mappings describe how individual object attributes relate to a data source
representation. Mappings can involve a complex transformation or a direct entry.

EclipseLink uses mappings to determine how to transform data between object and
data source representations. Mappings are used internally by EclipseLink, and are
defined through annotations, XML, or in IDEs such as Eclipse, then read from XML
files at run time.

See Understanding Mappings.

Chapter 1
Key Concepts

1-5

http://wiki.eclipse.org/EclipseLink/Examples/JPA/MetadataSource

Data Access

A data source platform includes options specific to a particular data source including
binding, use of native SQL, use of batch writing, and sequencing.

See Understanding Data Access.

Caching

The EclipseLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values. The cache is used to improve
performance by avoiding unnecessary trips to the database, manage locking and
cache isolation level, and manage object identity.

See Understanding Caching.

Queries

You can to create, read, update, and delete persistent objects or data using queries in
both Java EE and non-Java EE applications for both relational and nonrelational data
sources. Queries can be made at the object level or data level.

A number of query languages are supported, such as Java Persistence Query
Language (JPQL), SQL, and the Expression Framework. The Java Persistence
Criteria API can also be used to define dynamic queries through the construction of
object-based query definition objects, rather than use of the string-based approach of
JPQL.

See Understanding Queries.

Expression Framework

By using the EclipseLink Expressions framework, you can specify query search criteria
based on your domain object model. Expressions offer a number of advantages over
SQL. For example, expressions are easier to maintain, changes to descriptors or
database tables do not affect the querying structures in the application, they enhance
readability by standardizing the Query interface, and they simplify complex operations.

See Understanding EclipseLink Expressions.

NoSQL Databases

NoSQL is a classification of database systems that do not support the SQL standard.
These include document databases, key-value stores, and various other non-standard
databases. Persistence of Java objects to NoSQL databases is supported through the
Java Persistence API (JPA). EclipseLink's native API is also supported with NoSQL
databases.

See Understanding Non-relational Data Sources.

Performance Monitoring and Profiling

A diverse set of features is provided to measure and optimize application performance.
You can enable or disable most features in the descriptors or session, making any
resulting performance gains global. Tools are provided for performance profiling and
performance, fetch group, and query monitoring.

See "Enhancing Performance" in Solutions Guide for EclipseLink.

Chapter 1
Key Concepts

1-6

Key Components
The components contained by EclipseLink include JPA, JAXB, and MOXy
components.

This figure illustrates the key components contained by EclipseLink.

Figure 1-1 EclipseLink Components

Topics

• EclipseLink Core and API

• Object-Relational (JPA 2.1) Component

• JAXB Component

• MOXy Component

EclipseLink Core and API
The EclipseLink Core provides the runtime component. Access to the runtime can be
obtained directly through the EclipseLink API.

The runtime environment is not a separate or external process—it is embedded within
the application. Application calls invoke EclipseLink to provide persistence behavior.

Chapter 1
Key Components

1-7

This function enables transactional and thread-safe access to shared database
connections and cached objects.

The EclipseLink API provides the reference implementation for JPA 2.x (JSR-338).
The org.eclipse.persistence.* classes encapsulate the EclipseLink API and
provide extensions beyond the specification. These extensions include EclipseLink-
specific properties and annotations. For more information on the API, properties and
extensions, see Java Persistence API (JPA) Extensions Reference for EclipseLink.

The JAXB APIs are included in Java SE 6, Java SE 7, Java SE 8, Java SE 9 and Java
SE 10; these APIs were removed from Java SE 11. In the eclipselink.jar file,
the org.eclipse.persistence.jaxb.* classes encapsulate the EclipseLink
support for JAXB.

Object-Relational (JPA 2.1) Component
JPA provides an object-relational mapping approach that lets you declaratively define
how to map Java objects to relational database tables in a standard, portable way.

JPA simplifies Java persistence. It provides an object-relational mapping approach
that lets you declaratively define how to map Java objects to relational database tables
in a standard, portable way. JPA works both inside a Java EE application server and
outside an EJB container in a Java Standard Edition (Java SE) application. The main
features included in the 2.1 JPA update are:JPA simplifies Java persistence. It
provides an object-relational mapping approach that lets you declaratively define how
to map Java objects to relational database tables in a standard, portable way. JPA
works both inside a Java EE application server and outside an EJB container in a Java
Standard Edition (Java SE) application. The main features included in the 2.1 JPA
update are:

• Expanded object/relational mapping functionality

– Support for collections of embedded objects

– Multiple levels of embedded objects

– Ordered lists

– Combinations of access types

• A criteria query API

• Standardization of query "hints"

• Standardization of additional metadata to support DDL generation

• Support for validation

JAXB Component
JAXB is a Java API that allows a Java program to access an XML document by
presenting that document to the program in a Java format.

JAXB is a Java API that allows a Java program to access an XML document by
presenting that document to the program in a Java format. This process, called
binding, represents information in an XML document as an object in computer
memory. In this way, applications can access the data in the XML from the object
rather than using the Domain Object Model (DOM) or the Streaming API for XML
(SAX) to retrieve the data from a direct representation of the XML itself. Usually, an
XML binding is used with JPA entities to create a data access service by leveraging a

Chapter 1
Key Components

1-8

JAX-WS or JAX-RS implementation. Both of these Web Service standards use JAXB
as the default binding layer. This service provides a means to access data exposed by
JPA across computers, where the client computer might or might not be using Java.

JAXB uses an extended set of annotations to define the binding rules for Java-to-XML
mapping. These annotations are subclasses of the javax.xml.bind.* packages in
the EclipseLink API. For more information about these annotations, see Java API
Reference for EclipseLink.

For more information about JAXB, see "Java Architecture for XML Binding (JAXB)" at:

https://www.eclipse.org/eclipselink/#moxy

MOXy Component
MOXy is the EclipseLink JAXB implementation.

MOXy (also known as Object-XML) is the EclipseLink JAXB implementation. This
component enables you to bind Java classes to XML schemas. MOXy implements
JAXB which lets you provide mapping information through annotations. Support for
storing the mappings in XML format is provided by MOXy. The many advanced
mappings that are available enable you to handle complex XML structures without
having to mirror the schema in your Java class model.

The objects produced by the EclipseLink JAXB compiler are Java POJO models. They
are generated with the necessary annotations required by the JAXB specification. The
JAXB runtime API can be used to marshal and unmarshal objects.

When using MOXy as the JAXB provider, no metadata is required to convert your
existing object model to XML. You can supply metadata (using annotations or XML)
only when you must fine-tune the XML representation of the model.

Using EclipseLink MOXy, you can manipulate XML in the following ways:

• Generate a Java Model from an XML schema

• Specify the EclipseLink MOXy JAXB runtime

• Use JAXB to manipulate XML

• Generate an XML schema from a Java model

For more information on MOXy and these use cases, see Developing JAXB
Applications EclipseLink MOXy.

EclipseLink provides maximum flexibility with the ability to control how your object
model is mapped to an XML schema. There are many advantages to having control
over your own object model:

• You can design the domain classes specifically for your application using the
appropriate patterns and practices.

• You can use XPath-based mapping. This prevents the need for having a 1-to-1
relationship between classes and XML schema types. For more information,
see Developing JAXB Applications EclipseLink MOXy.

• You can instantiate objects in a way that is appropriate to your application.

• You can control your own class path dependencies. Most JAXB implementations
put vendor specific code in the generated classes that add class path
dependencies to your application.

Chapter 1
Key Components

1-9

https://www.eclipse.org/eclipselink/#moxy

One of the key advantages of EclipseLink is that the mapping information can be
stored externally and does not require any changes to the Java classes or XML
schema. This means that you can map your domain objects to more than one schema,
or if your schema changes, you can update the mapping metadata instead of
modifying your domain classes. This is also useful when mapping third-party classes,
because you might not have access to the source to add annotations.

SDO Component
The Service Data Objects (SDO) component provides the reference implementation of
Service Data Objects version 2.1.1. The reference implementation is described in
JSR-235. The SDO implementation incorporates the reference implementation and
provides additional features primarily used for converting Java objects to XML, and for
building and using data object models that can be incorporated into service
architectures.

SDO provides you with the following capabilities:

• Use of the SDO APIs

• Conversion of an XML Schema

• Customization of your XSD for SDO usage

• Use of dynamic data objects to manipulate XML

• Use of static data objects

– Run the SDO compiler—generate type safe data objects

– Use type safe data objects to manipulate XML

For more information, see EclipseLink SDO in the EclipseLink documentation at
https://www.eclipse.org/eclipselink/#moxy.

Database Web Services Component
Database Web Services (DBWS) enables simple and efficient access to relational
database artifacts by using a web service.It provides Java EE-compliant client-neutral
access to the database without having to write Java code. DBWS extends
EclipseLink's core capabilities while using existing ORM and OXM components.
DBWS has a runtime provider component that takes a service descriptor (along with
related deployment artifacts) and realizes it as a JAX-WS 2.0 Web service. The
runtime provider uses EclipseLink to bridge between the database and the XML SOAP
Messages used by web service clients. For information on DBWS architecture, see
Developing Persistence Architectures Using Oracle TopLink Database Web Services .

Key Tools
Oracle JDeveloper, Eclipse, and NetBeans development environments provide
specific support for EclipseLink.

This section describes the support for EclipseLink provided by Oracle JDeveloper,
Eclipse, and NetBeans development environments. Any tooling is compatible with
EclipseLink, but these offer specific integration.
This section contains the following subsections:

Chapter 1
Key Tools

1-10

http://jcp.org/en/home/index
https://www.eclipse.org/eclipselink/#moxy

Topics

• Oracle JDeveloper

• Oracle Enterprise Pack for Eclipse

• Eclipse

• NetBeans

Oracle JDeveloper
JDeveloper includes a number of features to aid in the development of applications
that use EclipseLink.

Oracle JDeveloper is a Java EE development environment with end-to-end support to
develop, debug, and deploy e-business applications and web services.

For JDeveloper information and downloads, see:

https://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html

JDeveloper includes a number of features to aid in the development of applications
that use EclipseLink. These features include wizards to reverse engineer JPA entities
from database tables and to generate EJB 3.0 Session Beans
with EntityManager injection. It also includes methods for querying JPA entities and
to test client generation.

JDeveloper tools enable you to quickly and easily configure and map your Java
classes and JPA entities to different data sources, including relational databases and
XML schemas without using code.

DBWSBuilder script (included in EclipseLink install) can be used to run the
DBWSBuilder utility to generate the Web service. JDeveloper uses the API provided,
but does not use the DBWSBuilder script directly.

For more information on Oracle JDeveloper's EclipseLink support, see JDeveloper
online help.

Oracle Enterprise Pack for Eclipse
Oracle Enterprise Pack for Eclipse (OEPE) is a set of plug-ins designed to support
Java EE development, where Eclipse is your preferred IDE.

For OEPE information and downloads, see http://www.oracle.com/technetwork/
developer-tools/eclipse/overview/index.html.

OEPE helps you complete the following tasks to create a persistence layer that uses
EclipseLink's JPA implementation:

• Configure the Persistence Provider for JPA Projects.
OEPE provides an EclipseLink project facet that you can use in your Eclipse JPA
project. Selecting the EclipseLink project facet makes the following changes to
your project:

– The project build path is automatically configured to include EclipseLink
persistence provider JAR files shipped with Oracle WebLogic Server 11g
Release 1. Note that, even though the library files are not shipped with earlier

Chapter 1
Key Tools

1-11

https://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html
http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html

versions of Oracle WebLogic Server, you can download them using the facet
configuration wizard.

– The database connection properties specific to EclipseLink can be
automatically configured in the persistence.xml file of your Eclipse JPA
project.

• Generate JPA Entities.
OEPE enables you to generate JPA entities using the OEPE JPA Entity
Generation Wizard.

• Map Java classes to an XML schema.
OEPE lets you map Java classes to an XML schema with MOXy as the JAXB
provider.

• Annotate Java Classes.
Using OEPE, you can annotate existing Java classes (POJOs) with JPA
annotations based on a database schema. When you do, Eclipse adds JPA
annotations to the appropriate accessors.

• Use a JPA Entity Diagram Editor.
OEPE provides graphical user interfaces for viewing entity relationship within a
JPA project. Using the Entity Diagram Editor, you can view and modify
relationships between entities, get easy access to the entity source code, and
create additional object-relational mappings. Note that the editor lets you edit
properties of both entities and their fields. You can also edit the persistence.xml
file that describes the persistence context.

• Use SQL Schema Viewer.
OEPE enables you to examine your database schema using the SQL Schema
Viewer that displays tables and relationships between them. The viewer displays
tables as table nodes. Each node lists all the columns in a table and shows
column data types. The node also provides primary and foreign key indicators in
the form of icons. Foreign key relationships between tables are represented by
links in the form of arrows.

Eclipse
The Eclipse IDE provides a number of features and utilities to help you create, run,
and maintain applications that use JPA. These capabilities are extended if you install
OEPE.For Eclipse IDE information and downloads, see https://www.eclipse.org/
downloads/packages/.

The Dali Java Persistence Tools Project provides extensible frameworks and tools for
defining and editing object-relational mappings for JPA entities. JPA mapping support
focuses on minimizing the complexity of mapping by providing entity generation
wizards, design-time validation, and a robust UI for entity and persistence unit
configuration. For Dali information and downloads, see http://www.eclipse.org/
webtools/dali.

Other tools and utilities from the Oracle, open source, and third party vendor
communities are available from the Eclipse Marketplace at http://
marketplace.eclipse.org/.

NetBeans
NetBeans IDE bundles GlassFish Server Open Source Edition, which includes
EclipseLink.

Chapter 1
Key Tools

1-12

http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html
http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html
http://www.eclipse.org/webtools/dali
http://www.eclipse.org/webtools/dali
http://marketplace.eclipse.org/
http://marketplace.eclipse.org/

The IDE provides full support for JPA-based code development. This support includes
entity class wizards for constructing entities and editor hints to ensure that entities
conform to the JPA specification. NetBeans also provides a persistence unit editor for
constructing a persistence.xml file.

For NetBeans information and downloads, see: http://netbeans.org/index.html.

Chapter 1
Key Tools

1-13

http://netbeans.org/index.html

2
Understanding Object-Relational and
MOXy Internals

These are the primary features of the Object-Relational and MOXy architecture.

Topics

• About Metadata

• About the Object-Relational Solution

• About the MOXy Solution

About Metadata
The EclipseLink metadata is the bridge between the development of an application
and its deployed run-time environment.

The EclipseLink metadata is the bridge between the development of an application
and its deployed run-time environment. Capture the metadata using the following:

• Annotations, and elements property extensions in the persistence.xml file. The
persistence provider interprets all these sources of metadata to create an in-
memory session and project at run time.

• Java and the EclipseLink API (this approach is the most labor-intensive).

The metadata lets you pass configuration information into the run-time environment.
The run-time environment uses the information in conjunction with the persistent
classes (Java objects or entities) and the code written with the EclipseLink API, to
complete the application.

For more information, see "Overriding and Merging" in Java Persistence API (JPA)
Extensions Reference for EclipseLink.

Figure 2-1 EclipseLink Metadata

2-1

Topics

• Advantages of the Metadata Architecture

• Creating Project Metadata

• Creating Session Metadata

Advantages of the Metadata Architecture
The EclipseLink metadata architecture provides many important benefits.

The EclipseLink metadata architecture provides many important benefits, including the
following:

• Stores mapping information in XML—not in the domain model objects

• By using the metadata, EclipseLink does not intrude in the object model or the
database schema

• Allows you to design the object model as needed, without forcing any specific
design

• Allows DBAs to design the database as needed, without forcing any specific
design

• Does not rely on code-generation (which can cause serious design,
implementation, and maintenance issues)

• Is unobtrusive: adapts to the object model and database schema, rather than
requiring you to design their object model or database schema to suit EclipseLink

Using EclipseLink JPA, you have the flexibility of expressing persistence metadata
using standard JPA annotations, deployment XML, or both and you can optionally take
advantage of EclipseLink JPA annotation and persistence.xml property
extensions.

Creating Project Metadata
A project contains the mapping metadata that the EclipseLink runtime uses to map
objects to a data source.

A project contains the mapping metadata that the EclipseLink runtime uses to map
objects to a data source. The project is the primary object used by the EclipseLink
runtime.

The principal contents of project metadata include the following:

• Entity Mappings

• Data Source Login Information

For Object-relational mapping, the EclipseLink runtime constructs an in-memory
project based on any combination of JPA annotations, persistence.xml, and
EclipseLink JPA annotations and persistence.xml property extensions.

For MOXy mapping, the EclipseLink runtime uses a combination of JAXB annotations
and eclipselink-oxm bindings. See "Overriding and Merging" in Java Persistence API
(JPA) Extensions Reference for EclipseLink.

Chapter 2
About Metadata

2-2

Entity Mappings

EclipseLink maps persistent entities to the database in the application. There are
several approaches to project development, including the following:

• Importing classes and tables for mapping

• Importing classes and generating tables and mappings

• Importing tables and generating classes and mappings

• Creating both class and table definitions

The most common solution is to develop the persistent entities using a development
tool, such as a modeling tool or an integrated development environment (IDE) like
JDeveloper, and to develop the relational model through appropriate relational design
tools. You then use JDeveloper to construct mappings that relate these two models.

Although JDeveloper offers the ability to generate persistent entities or the relational
model components for an application, these utilities are intended only to assist in rapid
initial development strategies—not complete round-trip application development.

For more information, see Understanding Descriptors and Understanding Mappings.

Data Source Login Information

For POJO projects, you configure a session login in the session metadata that
specifies the information required to access the data source.

For more information, see Creating Session Metadata.

Creating Session Metadata
An EclipseLink session contains the information required to access the data source.
The session is the primary object used by your application to access the features of
the EclipseLink runtime.

Using EclipseLink JPA, the EclipseLink runtime constructs an in-memory session
based on any combination of JPA and EclipseLink annotations, JPA persistence
properties (in the persistence.xml file), and EclipseLink property extensions. See
"Overriding and Merging" in Java Persistence API (JPA) Extensions Reference for
EclipseLink.

About the Object-Relational Solution
EclipseLink provides a complete, JPA-compliant JPA implementation.

It provides complete compliance for all of the mandatory features and many of the
optional features. It also supports EclipseLink features not described in the JPA
specification, such as object-level cache, distributed cache coordination, extensive
performance tuning options, enhanced Oracle Database support, advanced mappings,
optimistic and pessimistic locking options, extended annotations, and query hints.
For more information, see Java Persistence API (JPA) Extensions Reference for
EclipseLink.

Topics

• Understanding Object-Relational Entity Architecture

Chapter 2
About the Object-Relational Solution

2-3

• Adding Metadata Using Annotations

• About Configuration Basics

• About Data Sources

• About EclipseLink Caches

• About Database Queries

Understanding Object-Relational Entity Architecture
The entity architecture is composed of entities, persistence units, persistence contexts,
entity manager factories, and entity managers.

The following figure illustrates the relationships between these elements:

• Persistence creates one or more EntityManagerFactory objects.

• Each EntityManagerFactory is configured by one persistence unit.

• EntityManagerFactory creates one or more EntityManager objects.

• One or more EntityManagers manage one PersistenceContext.

Figure 2-2 Relationships Between Entity Architecture Elements

Entities

An entity is any application-defined object with the following characteristics:

• It can be made persistent.

• It has a persistent identity (a key that uniquely identifies an entity instance and
distinguishes it from other instances of the same entity type. An entity has a
persistent identity when there is a representation of it in a data store).

• It is transactional in a sense that a persistence view of an entity is transactional
(an entity is created, updated, and deleted within a transaction, and a transaction
is required for the changes to be committed in the database). However, in-memory
entities can be changed without the changes being persisted.

Chapter 2
About the Object-Relational Solution

2-4

• It is not a primitive, a primitive wrapper, or built-in object. An entity is a fine-grained
object that has a set of aggregated states that is typically stored in a single place
(such as a row in a table) and have relationships to other entities.

The entity also contains entity metadata that describes the entity. Entity metadata is
not persisted to the database. It is used by the persistence layer to manage the entity
from when it is loaded until it is invoked at runtime. Metadata can be expressed as
annotations on the Java programming elements or in XML files (descriptors). For more
information, see Understanding Entities.

Beginning with the current release, you can define and use extensible entities where
mappings can be added spontaneously. In this case, the entity stores extended
attributes within a map instead of static attributes. The entity then defines how values
from this map are mapped to the database using an eclipselink-orm.xml mapping file.
In addition to being able to dynamically define mappings, EclipseLink also enables
these extended mappings to be stored and managed externally. This external storage
enables your extended mappings to be defined while the application is running. For
more information on making entities extensible, see "Providing Software as a Service"
in Solutions Guide for EclipseLink.

Persistence and Persistence Units

Persistence is a characteristic of an entity. This means that the entity can be
represented in a data store, and it can be accessed at a later time.

A persistence unit identifies a persistable unit and defines the properties associated
with it. It also defines the objects that must be persisted. The objects can be entity
classes, embeddable classes, or mapped superclasses. The persistence unit provides
the configuration for the entity manager factory. Entity managers created by the entity
manager factory inherit the properties defined in the persistence unit.

Entity Managers

An entity manager enables API calls to perform operations on an entity. Until an entity
manager is used to create, read, or write an entity, the entity is a nonpersistent Java
object. When an entity manager obtains a reference to an entity, that entity becomes
managed by the entity manager. The set of managed entity instances within an entity
manager at any given time is called its persistence context; only one Java instance
with the same persistent identity can exist in a persistence context at any time.

You can configure an entity manager to read or write to a particular database, to
persist or manage certain types of objects, and to be implemented by a specific
persistence provider. The persistence provider supplies the implementation for JPA,
including the EntityManager interface implementation, the Query implementation,
and the SQL generation.Entity managers are provided by
an EntityManagerFactory. The configuration for an entity manager is bound to the
EntityManagerFactory, but it is defined separately as a persistence unit. You
name persistence units to enable differentiation
between EntityManagerFactory objects. This way, your application obtains control
over which configuration to use for operations on a specific entity. The configuration
that describes the persistence unit is defined in a persistence.xml file. You name
persistence units to be able to request a specific configuration to be bound to
an EntityManagerFactory.

Chapter 2
About the Object-Relational Solution

2-5

Adding Metadata Using Annotations
An annotation is a simple, expressive means of decorating Java source code with
metadata that is compiled into the corresponding Java class files for interpretation at
run time by a JPA persistence provider to manage persistent behavior.

A metadata annotation represents a Java language feature that lets you attach
structured and typed metadata to the source code. Annotations alone are sufficient for
the metadata specification—you do not need to use XML. Standard JPA annotations
are in the javax.persistence package.

For more information, see Chapter 10 "Metadata Annotations" in the JPA
Specification http://jcp.org/en/jsr/detail?id=338

EclipseLink provides a set of proprietary annotations as an easy way to add metadata
to the Java source code. The metadata is compiled into the corresponding Java class
files for interpretation at run time by a JPA persistence provider to manage persistent
behavior. You can apply annotations at the class, method, and field levels.

EclipseLink annotations expose some features that are currently not available through
the use of JPA metadata:

• Basic properties—By default, the EclipseLink persistence provider automatically
configures a basic mapping for simple types. Use these annotations to fine-tune
the immediate state of an entity in its fields or properties.

• Relationships—EclipseLink has defaults for some relationships, such as One-To-
One and One-To-Many. Other relationships must be mapped explicitly. Use the
annotations to specify the type and characteristics of entity relationships and to
fine-tune how your database implements these relationships.

• Embedded objects—An embedded object does not have its own persistent
identity; it is dependent upon an entity for its identity. By default, the persistence
provider assumes that every entity is mapped to its own table. Use annotations to
override this behavior for entities that are owned by other entities.

Advantages and Disadvantages of Using Annotations

Using annotations provides several advantages:

• They are relatively simple to use and understand.

• They provide in-line metadata within with the code that it describes; you do not
need to replicate the source code context of where the metadata applies.

The primary disadvantage of annotations is that the metatdata becomes unnecessarily
coupled to the code; changes to metadata require changing and recompiling the
source code.

About Configuration Basics
TopLink includes several configuration files in an Object Relational Mapping project.

The following sections describe some of the key configuration files in an Object
Relational Mapping project.

Chapter 2
About the Object-Relational Solution

2-6

http://jcp.org/en/jsr/detail?id=338

Default Annotation Values

Each annotation has a default value (consult the JPA specification for defaults). A
persistence engine defines defaults that apply to the majority of applications. You only
need to supply values when you want to override the default value. Therefore, having
to supply a configuration value is not a requirement, but the exception to the rule. This
is known as configuration by exception.

Note:

You should be familiar with the defaults to be able to change the behavior
when necessary.

The default values are described in Java Persistence API (JPA) Extensions Reference
for EclipseLink. See also Chapter 10, "Metadata Annotations" in the JPA specification.

http://jcp.org/en/jsr/detail?id=338

The configuration is done by exception: if a value is not specified in one of the
configuration files, then a default value is used.

Configuring Persistence Units Using persistence.xml

A persistence unit defines the details that are required when you acquire an entity
manager. You specify a persistence unit by name when you acquire an entity manager
factory. Use the JPA persistence file, persistence.xml, to configure a persistence
unit. You can specify any vendor-specific extensions in the file by using
a <properties> element.

This file appears in the META-INF/ directory of your persistence unit JAR file or in the
classpath.

For more information, see About the Persistence Unit. See also "Persistence Property
Extensions Reference" in Java Persistence API (JPA) Extensions Reference for
EclipseLink.

Object-Relational Data Type Mappings

Object-relational data type mappings transform certain object data member types to
structured data source representations optimized for storage in specialized object-
relational databases such as Oracle Database. Object-relational data type mappings
let you map an object model into an object-relational model. You can use only object-
relational data type mappings with specialized object-relational databases optimized to
support object-relational data type data source representations.

For more information, see Java Persistence API (JPA) Extensions Reference for
EclipseLink.

About Data Sources
An important part of the definition of the persistence unit is the location where the
provider can find data to read and write: the data source.

Chapter 2
About the Object-Relational Solution

2-7

http://jcp.org/en/jsr/detail?id=338

The data source is typically a database. The database location is specified in the form
of a JDBC data source in the JNDI namespace of the server.

Typically, applications that use EclipseLink are run in the context of a JTA transaction.
Specify the name of the data source in the jta-data-source element in
the persistence.xml file. If the application is not run in the context of a transaction,
then it is considered to be resource-local. In this case, specify the name of the data
source in the non-jta-data-source element.

You can also specify a non-relational database data source, such as an XML schema.

For more information, see Understanding Data Access.

Applications can be run in standalone, or Java SE, mode. In this mode, the application
runs outside the server, with a non-JTA compliant data source, and in a non-Oracle
stack. In this case, you must provide driver-specific information, such as the JDBC
driver class, the URL that the client uses to connect to the database, and the user
name and password to access the database. For more information and an example of
running an application in standalone mode, see "Testing EclipseLink JPA Outside a
Container" in Solutions Guide for EclipseLink.

About EclipseLink Caches
By default, EclipseLink uses a shared object cache that caches a subset of all objects
read and persisted for the persistence unit.

The shared cache differs from the local EntityManager cache. The shared cache
exists for the duration of the persistence unit (EntityManagerFactory or server)
and is shared by all EntityManagers and users of the persistence unit. The
local EntityManager cache is not shared and only exists for the duration of
the EntityManager or transaction.

The benefit of the shared cache is that after an object is read, the database does not
need to be accessed if the object is read again. Also, if the object is read by using a
query, it does not need to be rebuilt, and its relationships do not need to be fetched
again.

The limitation of the shared cache is that if the database is changed directly through
JDBC, or by another application or server, the objects in the shared cache will be
stale.

EclipseLink offers several mechanism to deal with stale data including:

• Refreshing

• Invalidation

• Optimistic locking

• Cache coordination

• Database Change Notification (DCN)

The shared cache can also be disabled, or it can be selectively enabled and disabled
by using the @Cache or @Cacheable annotations. EclipseLink also offers several
different caching strategies, to configure how many objects are cached and how much
memory is used.

If the application detects that the cache is out of date, it can clear, refresh, or invalidate
it programmatically. Clearing the cache can cause object identity issues if any of the

Chapter 2
About the Object-Relational Solution

2-8

cached objects are in use, so invalidating is safer. If you know that none of the cached
objects are in use, then you can clear the cache.

For more information, see Understanding Caching.

Defining Cache Behavior

EclipseLink provides an @Cache annotation which lets you define cache properties.
The properties include cache type, size, and refresh rules, among others. See Java
Persistence API (JPA) Extensions Reference for EclipseLink.

Caching in Clustered Environments

Caching in a clustered environment can have problems because changes made on
one server are not reflected on objects cached in other servers. This is not a problem
for read-only objects, but it is for objects that are frequently updated.

EclipseLink offers several solutions to this problem.

• The cache can be disabled for the classes that frequently change.

• Cache coordination can be used to broadcast changes between the servers in the
cluster to update or invalidate changed objects.

• Cache invalidation based on time-to-live or time-of-day.

• Optimistic locking prevents updates to stale objects and triggers the objects to be
invalidated in the cache.

For more information, see Clustering and Cache Coordination.

About Database Queries
The object-relational component of EclipseLink supports a variety of queries.

• JPQL queries

• SQL queries

• Criteria API queries

• Native SQL queries

• EclipseLink JPA query hints

• Query casting

• Oracle Extensions for queries

• Advanced EclipseLink native queries

For information on these queries, see Chapter 9, "Understanding Queries."

About the MOXy Solution
The MOXy component, supplied by EclipseLink, enables you to efficiently bind Java
classes to XML schemas. MOXy implements JAXB, enabling you to provide your
mapping information through annotations and providing support for storing the
mappings in XML format.

Chapter 2
About the MOXy Solution

2-9

http://www.eclipse.org/eclipselink/documentation/2.6/concepts/queries.htm#CHDGGCJB

JAXB (Java Architecture for XML Binding—JSR 222) is the standard for XML Binding
in Java. JAXB covers 100 percent of XML Schema concepts. EclipseLink provides a
JAXB implementation with many extensions.

When using EclipseLink MOXy as the JAXB provider, no metadata is required to
convert your existing object model to XML. You can supply metadata (using
annotations or XML) if you want to fine-tune the XML representation.

MOXy includes many advanced mappings that let you handle complex XML structures
without having to mirror the schema in your Java class model.

For more information, see Developing JAXB Applications EclipseLink MOXy.

Topics

• Using EclipseLink MOXy as the JAXB Provider

• Understanding MOXy Architecture

• Serving Metadata for MOXy

• About XML Bindings

• Querying Objects by XPath

Using EclipseLink MOXy as the JAXB Provider
To use MOXy as your JAXB provider, you must identify the entry point to the JAXB
runtime. This entry point is the EclipseLink JAXBContextFactory class.

To identify the entry point, create a text file called jaxb.properties and enter the
path to the JAXBContextFactory class as the value of
the javax.xml.bind.context.factory context parameter, for example:

javax.xml.bind.context.factory=org.eclipse.persistence.jaxb.JAXBContextFact
ory

The jaxb.properties file must appear in the same package as the domain classes.

Understanding MOXy Architecture
In a sample MOXy architecture, the starting point is an XML schema.

As illustrated in this figure, a binding compiler binds the source schema to a set of
schema-derived program classes and interfaces. JAXB-annotated classes within the
application are generated either by a schema compiler or the result of a developer
adding JAXB annotations to existing Java classes. The application can either marshal
data to an XML document or unmarshal the data to a tree of content objects. Each
content object is an instance of either a schema derived or an existing program
element mapped by the schema generator and corresponds to an instance in the XML.

Chapter 2
About the MOXy Solution

2-10

Figure 2-3 A Sample MOXy Architecture

JAXB Contexts and JAXB Context Factories

The JAXBContextFactory class is the entry point into the EclipseLink JAXB
runtime. It provides the required factory methods and can create new instances
of JAXBContext objects.

The JAXBContextFactory class has the ability to:

• Create a JAXBContext object from an array of classes and a properties object

• Create a JAXBContext object from a context path and a classloader

The JAXBContext class provides the client's entry point to the JAXB API.
The JAXBContext class is responsible for interpreting the metadata, generating
schema files, and for creating instances of these JAXB
objects: Marshaller, Unmarshaller, Binder, Introspector, and Validator.

MOXy offers several options when creating the JAXBContext object. You have the
option of booting from:

• A list of one or more JAXB-annotated classes

• A list of one or more EclipseLink XML Bindings documents defining the mappings
for your Java classes

• A combination of classes and XML Bindings

• A list of context paths

Serving Metadata for MOXy
MOXy provides the concept of a MetadataSource object.

This object lets you to store mapping information outside of your application and
retrieve it when the application's JAXBContext object is being created or refreshed.

Chapter 2
About the MOXy Solution

2-11

For information on implementing MetadataSource, see Developing JAXB
Applications EclipseLink MOXy.

About XML Bindings
XML binding is how you represent information in an XML document as an object in
computer memory.

This allows applications to access the data in the XML from the object rather than
using the Domain Object Model (DOM), the Simple API for XML (SAX) or the
Streaming API for XML (StAX) to retrieve the data from a direct representation of the
XML itself. When binding, JAXB applies a tree structure to the graph of JPA entities.
Multiple tree representations of a graph are possible and will depend on the root object
chosen and the direction the relationships are traversed.

EclipseLink enables you to use all of the standard JAXB annotations. In addition to the
standard annotations, EclipseLink offers another way of expressing your metadata—
the EclipseLink XML Bindings document. Not only can XML Bindings separate your
mapping information from your actual Java class, it can also be used for more
advanced metadata tasks such as:

• Augmenting or overriding existing annotations with additional mapping information.

• Specifying all mappings information externally, without using Java annotations.

• Defining your mappings across multiple Bindings documents.

• Specifying virtual mappings that do not correspond to concrete Java fields.

For more information, see Developing JAXB Applications EclipseLink MOXy.

Querying Objects by XPath
EclipseLink MOXy also lets you access values using an XPath statement.

In addition to using conventional Java access methods to get and set your object's
values, . There are special APIs on EclipseLink's JAXBContext object that enable
you to get and set values by XPath. For more information, see Developing JAXB
Applications EclipseLink MOXy.

Chapter 2
About the MOXy Solution

2-12

3
Understanding the Persistence Unit

This chapter describes details about the persistence unit and the persistence layer.

Topics

• About the Persistence Unit

• Building and Using the Persistence Layer

• About Persisting Objects

• Migrating Applications to the EclipseLink Persistence Manager

• About Weaving

About the Persistence Unit
A persistence unit defines the details that are required when you acquire an entity
manager.

To package your EclipseLink JPA application, you must configure the persistence unit
during the creation of the persistence.xml file. Define each persistence unit in
a persistence-unit element in the persistence.xml file.

Use the persistence.xml file to package your entities. Once you choose a
packaging strategy, place the persistence.xml file in the META-INF directory of
the archive of your choice. The following sections provide more detail on how to
specify the persistence unit. For more information and examples, see "persistence.xml
file" in the JPA Specification. For information on EclipseLink extensions to
the persistence.xml file, see "Persistence Property Extensions Reference" in Java
Persistence API (JPA) Extensions Reference for EclipseLink.

Topics

• About the Persistence Unit Name

• About the Persistence Unit Name

• About the Transaction Type Data Source

• About Logging

• About Vendor Properties

• About Mapping Files

• About Managed Classes

• About the Deployment Classpath

• About Persistence Unit Packaging Options

• About the Persistence Unit Scope

• About Composite Persistence Units

3-1

http://jcp.org/en/jsr/detail?id=338

About the Persistence Unit Name
The persistence unit name must be unique within each module.

If you are developing your application in a Java EE environment, ensure that the
persistence unit name is unique within each module. For example, you can define only
one persistence unit with the name EmployeeService in an emp_ejb.jar file.

For more information, see "name" in the JPA Specification.

About the Persistence Provider
The persistence provider defines the implementation of JPA.

The persistence provider is defined in the provider element of
the persistence.xml file. Persistence providers are vendor-specific. The
persistence provider for EclipseLink
is org.eclipse.persistence.jpa.PersistenceProvider.

About the Transaction Type Data Source
The default transaction type will vary, depending on your data source and
environment.

If you are developing your application in a Java EE environment, use the default
transaction type: JTA (for Java Transaction API) and specify the data source in a jta-
data-source element.

If you are using a data source that does not conform to the JTA, then set
the transaction-type element to RESOURCE_LOCAL and specify a value for
the non-jta-data-source element.

If you are using the default persistence
provider, org.eclipse.persistence.jpa.PersistenceProvider, then the
provider attempts to automatically detect the database type based on the connection
metadata. This database type is used to issue SQL statements specific to the detected
database type. You can specify the optional eclipselink.target-
database property to guarantee that the database type is correct.

For more information, see "transaction-type" and "provider" in the JPA
Specification.

About Logging
EclipseLink provides a logging utility even though logging is not part of the JPA
specification.

The information provided by the log is EclipseLink JPA-specific. With EclipseLink, you
can enable logging to view the following information:

• Configuration details

• Information to facilitate debugging

• The SQL that is being sent to the database

Chapter 3
About the Persistence Unit

3-2

http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338

You can specify logging in the persistence.xml file. EclipseLink logging properties
let you specify the level of logging and whether the log output goes to a file or standard
output. Because the logging utility is based on java.util.logging, you can specify
a logging level to use.

The logging utility provides nine levels of logging control over the amount and detail of
the log output. Use eclipselink.logging.level to set the logging level, for
example:

<property name="eclipselink.logging.level" value="FINE"/>

By default, the log output goes to System.out or to the console. To configure the
output to be logged to a file, set the property eclipselink.logging.file, for
example:

<property name="eclipselink.logging.file" value="output.log"/>

EclipseLink's logging utility is pluggable, and several different logging integrations are
supported, including java.util.logging. To enable java.util.logging, set the
property eclipselink.logging.logger, for example:

<property name="eclipselink.logging.logger" value="JavaLogger"/>

For more information about EclipseLink logging and the levels of logging available in
the logging utility, see "Persistence Property Extensions Reference" in Java
Persistence API (JPA) Extensions Reference for EclipseLink.

About Vendor Properties
The last section in the persistence.xml file is the properties section.

The properties element gives you the chance to supply EclipseLink persistence
provider-specific settings for the persistence unit. See "properties" in the JPA
Specification. see also "Persistence Property Extensions Reference" in Java
Persistence API (JPA) Extensions Reference for EclipseLink.

About Mapping Files
This metadata is a union of all the mapping files and the annotations (if there is
no xml-mapping-metadata-complete element).

Apply the metadata to the persistence unit. If you use one mapping orm.xml file for
your metadata, and place this file in a META-INF directory on the classpath, then you
do not need to explicitly list it. The EclipseLink persistence provider will automatically
search for this file and use it. If you named your mapping files differently or placed
them in a different location, then you must list them in the mapping-file elements in
the persistence.xml file.

For more information, see "mapping-file, jar-file, class, exclude-unlisted-classes"
in the JPA Specification.

Chapter 3
About the Persistence Unit

3-3

http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338

About Managed Classes
Put all of the entities and other managed classes in a single JAR file, along with
the persistence.xml file in the META-INF directory, and one or more mapping files
(when you store metadata in XML).

At the time the EclipseLink persistence provider processes the persistence unit, it
determines which set of entities, mapped superclasses, embedded objects, and
converters each particular persistence unit will manage.

At deployment time, the EclipseLink persistence provider may obtain managed classes
from any of the following sources. A managed class will be included if it is one of the
following:

• Local classes: the classes annotated
with @Entity, @MappedSuperclass, @Embeddable, or @Converter in the
deployment unit in which its persistence.xml file was packaged. For more
information, see "Entity" in the JPA Specification.

Note:

If you are deploying your application in the Java EE environment, the
application server itself, not the EclipseLink persistence provider, will
discover local classes. In the Java SE environment, you can use
the exclude-unlisted-classes element to false to enable this
functionality—EclipseLink persistence provider will attempt to find local
classes if you set this element to false. See "mapping-file, jar-file,
class, exclude-unlisted-classes" in the JPA Specification.

• Classes in mapping files: the classes that have mapping entries, such as entity
(see "entity" in the JPA Specification), mapped-superclass or embeddable, in
an XML mapping file. For more information, see "mapped-
superclass" and "embeddable" in the JPA Specification.

If these classes are in the deployed component archive, then they will already be
on the classpath. If they are not, you must explicitly include them in the classpath.

• Explicitly listed classes: the classes that are listed as class elements in
the persistence.xml file.

Consider listing classes explicitly if one of the following applies:

– there are additional classes that are not local to the deployment unit JAR. For
example, there is an embedded object class in a different JAR that you want to
use in an entity in your persistence unit. You would list the fully qualified class
in the class element in the persitence.xml file. You would also need to
ensure that the JAR or directory that contains the class is on the classpath of
the deployed component (by adding it to the manifest classpath of the
deployment JAR, for example);

– you want to exclude one or more classes that may be annotated as an entity.
Even though the class may be annotated with the @Entity annotation, you
do not want it treated as an entity in this particular deployed context. For
example, you may want to use this entity as a transfer object and it needs to
be part of the deployment unit. In this case, in the Java EE environment, you

Chapter 3
About the Persistence Unit

3-4

http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338

have to use the exclude-unlisted-classes element of
the persistence.xml file—the use of the default setting of this element
prevents local classes from being added to the persistence unit. For more
information, see "mapping-file, jar-file, class, exclude-unlisted-classes" of
the JPA Specification.

– you plan to run your application in the Java SE environment, and you list your
classes explicitly because that is the only portable way to do so in Java SE.

• Additional JAR files of managed classes: the annotated classes in a named JAR
file listed in a jar-file element in the persistence.xml file. For more
information, see "mapping-file, jar-file, class, exclude-unlisted-classes" in the
JPA Specification.

You have to ensure that any JAR file listed in the jar-file element is on the
classpath of the deployment unit. Do so by manually adding the JAR file to the
manifest classpath of the deployment unit.

Note that you must list the JAR file in the jar-file element relative to the parent
of the JAR file in which the persistence.xml file is located. This matches what
you would put in the classpath entry in the manifest file.

About the Deployment Classpath
To be accessible to the EJB JAR, WAR, or EAR file, a class or a JAR file must be on
the deployment classpath.

You can achieve this in one of the following ways:

• Put the JAR file in the manifest classpath of the EJB JAR or WAR file.

To do this, add a classpath entry to the META-INF/MANIFEST.MF file in the JAR
or WAR file. You can specify one or more directories or JAR files, separating them
by spaces.

• Place the JAR file in the library directory of the EAR file.

This will make the JAR file available on the application classpath and accessible
by all of the modules deployed within the EAR file. By default, this would be
the lib directory of the EAR file, although you may configure it to be any directory
in the EAR file using the library-directory element in
the application.xml deployment descriptor.

About Persistence Unit Packaging Options
Java EE allows for persistence support in a variety of packaging configurations.

You can deploy your application to the following module types:

• EJB modules: you can package your entities in an EJB JAR. When defining a
persistence unit in an EJB JAR, the persistence.xml file is not optional–you
must create and place it in the META-INF directory of the JAR alongside the
deployment descriptor, if it exists.

• Web modules: you can use a WAR file to package your entities. In this case, place
the persistence.xml file in the WEB-INF/classes/META-INF directory. Since
the WEB-INF/classes directory is automatically on the classpath of the WAR,
specify the mapping file relative to that directory.

Chapter 3
About the Persistence Unit

3-5

http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338

• Persistence archives: a persistence archive is a JAR that contains
a persistence.xml file in its META-INF directory and the managed classes for
the persistence unit defined by the persistence.xml file. Use a persistence
archive if you want to allow multiple components in different Java EE modules to
share or access a persistence unit.

Once you create a persistence archive, you can place it in either the root or the
application library directory of the EAR. Alternatively, you can place the
persistence archive in the WEB-INF/lib directory of a WAR. This will make the
persistence unit accessible only to the classes inside the WAR, but it enables the
decoupling of the definition of the persistence unit from the web archive itself.

For more information, see "Persistence Unit Packaging" in the JPA Specification.

About the Persistence Unit Scope
You can define any number of persistence units in single persistence.xml file.

The following are the rules for using defined and packaged persistence units:

• Persistence units are accessible only within the scope of their definition.

• Persistence units names must be unique within their scope.

For more information, see "Persistence Unit Scope" in the JPA Specification.

About Composite Persistence Units
You can expose multiple persistence units (each with unique sets of entity types) as a
single persistence context by using a composite persistence unit.

Individual persistence units that are part of this composite persistence unit are called
composite member persistence units.

With a composite persistence unit, you can:

• Map relationships among any of the entities in multiple persistence units

• Access entities stored in multiple databases and different data sources

• Easily perform queries and transactions across the complete set of entities

This figure illustrates a simple composite persistence unit. EclipseLink processes
the persistence.xml file and detects the composite persistence unit, which
contains two composite member persistence units:

• Class A is mapped by a persistence unit named memberPu1 located in
the member1.jar file.

• Class B is mapped by a persistence unit named memberPu2 located in
the member2.jar file.

Chapter 3
About the Persistence Unit

3-6

http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338

Figure 3-1 A Simple Composite Persistence Unit

For more information, see "Using Multiple Databases with a Composite Persistence
Unit" in Solutions Guide for EclipseLink.

Building and Using the Persistence Layer
EclipseLink requires that classes must meet certain minimum requirements before
they can become persistent

EclipseLink also provides alternatives to most requirements. EclipseLink uses a
nonintrusive approach by employing a metadata architecture that allows for minimal
object model intrusions.

Topics

• Implementation Options

• Persistent Class Requirements

• Persistent Layer Components

Implementation Options

When implementing your persistence layer using EclipseLink, consider the following
options:

• Using EclipseLink JPA Metatdata, Annotations, and XML

• Using EclipseLink Metadata Java API

• Using Method and Direct Field Access

• Using Java Byte-code Weaving

Using EclipseLink JPA Metatdata, Annotations, and XML

When using JPA, you can specify persistence layer components using any
combination of standard JPA annotations and persistence.xml, EclipseLink JPA
annotation extensions, and EclipseLink JPA persistence.xml extensions.

Chapter 3
Building and Using the Persistence Layer

3-7

http://www.eclipse.org/eclipselink/documentation/2.6/concepts/app_dev002.htm#CCHGEJEA
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/app_dev002.htm#CCHHEIFG
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/app_dev002.htm#CCHJBHDG
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/app_dev002.htm#CCHGGAGE

For more information, see About Configuration Basics.

Using EclipseLink Metadata Java API

Persistence layer components can be coded or generated as Java. To use Java code,
you must manually write code for each element of the project including: project, login,
platform, descriptors, and mappings. This may be more efficient if your application is
model-based and relies heavily on code generation.

Using Method and Direct Field Access

You can access the fields (data members) of a class by using a getter/setter method
(also known as property access) or by accessing the field itself directly.

When to use method or direct field access depends on your application design.
Consider the following guidelines:

• Use method access outside of a class.

This is the natural public API of the class. The getter/setter methods handle any
necessary side-effects and the client need not know anything about those details.

• Use direct field access within a class to improve performance.

In this case, you are responsible for taking into consideration any side-effects not
invoked by bypassing the getter/setter methods.

When considering using method or direct field access, consider the following
limitations.

If you enable change tracking on a getter/setter method (for example, you decorate
method setPhone with @ChangeTracking), then EclipseLink tracks changes
accordingly when a client modifies the field (phone) using the getter/setter methods.

Similarly, if you enable change tracking on a field (for example, you decorate
field phone with @ChangeTracking), then EclipseLink tracks changes accordingly
when a client modifies the field (phone) directly.

However, if you enable change tracking on a getter/setter method (for example, you
decorate method setPhone with @ChangeTracking) and a client accesses the field
(phone) directly, EclipseLink does not detect the change. If you choose to code in this
style of field access within a class for performance and method access outside of a
class, then be aware of this limitation.

For more information, see the description of the @ChangeTracking annotation
in Java Persistence API (JPA) Extensions Reference for EclipseLink.

Using Java Byte-code Weaving

Weaving is a technique of manipulating the byte-code of compiled Java classes.

Weaving is used to enhance both JPA entities and Plain Old Java Object (POJO)
classes for such things as lazy loading, change tracking, fetch groups, and internal
optimizations.

For more information, see About Weaving.

Chapter 3
Building and Using the Persistence Layer

3-8

Persistent Class Requirements
When you create persistent Java objects, use direct access on private or protected
attributes.

If you are using weaving, the ValueHolderInterface is not required. For more
information, see About Weaving See Indirection (Lazy Loading) for more information
on indirection and transparent indirection.

Persistence Layer Components
The purpose of your application's persistence layer is to use a session at run time to
associate mapping metadata and a data source to create, read, update, and delete
persistent objects using the EclipseLink cache, queries and expressions, and
transactions.

Typically, the EclipseLink persistence layer contains the following components:

• Mapping Metadata

• Cache

• Queries and Expressions

Mapping Metadata

The EclipseLink application metadata model is based on the project. The project
includes descriptors, mappings, and various policies that customize the run-time
capabilities. You associate this mapping and configuration information with a particular
data source and application by referencing the project from a session.

For more information, see the following:

• Creating Project Metadata

• Understanding Descriptors

• Understanding Mappings

Cache

By default, EclipseLink sessions provide an object-level cache that guarantees object
identity and enhances performance by reducing the number of times the application
needs to access the data source. EclipseLink provides a variety of cache options,
including locking, refresh, invalidation, isolation, and coordination. Using cache
coordination, you can configure EclipseLink to synchronize changes with other
instances of the deployed application. You configure most cache options at the
persistence unit or entity level. You can also configure cache options on a per-query
basis or on a descriptor to apply to all queries on the reference class.

For more information, see Understanding Caching.

Queries and Expressions

For Object-relational architectures, EclipseLink provides several object and data query
types, and offers flexible options for query selection criteria, including the following:

• EclipseLink expressions

Chapter 3
Building and Using the Persistence Layer

3-9

http://www.eclipse.org/eclipselink/documentation/2.6/concepts/app_dev002.htm#BABFEEGF
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/app_dev002.htm#BABBGFHF
http://www.eclipse.org/eclipselink/documentation/2.6/concepts/app_dev002.htm#BABJDGGH

• JPQL (Java Persistence Query Language)

• SQL

• Stored procedures

• Query by example

With these options, you can build any type of query. Oracle recommends using named
queries to define application queries. Named queries are held in the project metadata
and referenced by name. This simplifies application development and encapsulates
the queries to reduce maintenance costs.

For Object-relational architectures, you are free to use any of the query options
regardless of the persistent entity type. Alternatively, you can build queries in code,
using the EclipseLink API.

Note:

These query techniques cannot be used with MOXy (OXM, JAXB) mapping.
However you can perform queries when using legacy EIS XML projects.

For more information, see Understanding Queries and Understanding EclipseLink
Expressions.

About Persisting Objects
This section includes a brief description of relational mapping and provides information
and restrictions to guide object and relational modeling. This information is useful
when building applications.

Topics

• Application Object Model

• Data Storage Schema

• Primary Keys and Object Identity

• Mappings

• Foreign Keys and Object Relationships

• Inheritance

• Concurrency

• Caching

• Nonintrusive Persistence

• Indirection

• Mutability

Application Object Model
Object modeling refers to the design of the Java classes that represent your
application objects.

Chapter 3
About Persisting Objects

3-10

You can use your favorite integrated development environment (IDE) or Unified
Modeling Language (UML) modeling tool to define and create your application object
model.

Any class that registers a descriptor with EclipseLink database sessions is called a
persistent class. EclipseLink does not require that persistent classes provide public
accessor methods for any private or protected attributes stored in the database. Refer
to Persistent Class Requirements for more information.

Data Storage Schema
Your data storage schema refers to the design that you implement to organize the
persistent data in your application.

This schema refers to the data itself—not the actual data source (such as a relational
database or nonrelational legacy system).

During the design phase of the application development process, you should decide
how to implement the classes in the data source. When integrating existing data
source information, you must determine how the classes relate to the existing data. If
no legacy information exists to integrate, decide how you will store each class, then
create the necessary schema.

Primary Keys and Object Identity
When making objects persistent, each object requires an identity to uniquely identify it
for storage and retrieval.

Object identity is typically implemented using a unique primary key. This key is used
internally by EclipseLink to identify each object, and to create and manage references.
Violating object identity can corrupt the object model.

In a Java application, object identity is preserved if each object in memory is
represented by one, and only one, object instance. Multiple retrievals of the same
object return references to the same object instance—not multiple copies of the same
object.

EclipseLink supports multiple identity maps to maintain object identity (including
composite primary keys). See About Cache Type and Size for additional information.

Mappings
EclipseLink uses metadata to describe how objects and beans map to the data source.

This approach isolates persistence information from the object model—you are free to
design their ideal object model, and DBAs are free to design their ideal schema. For
more information, see About Metadata.

At run time, EclipseLink uses the metadata to seamlessly and dynamically interact with
the data source, as required by the application.

EclipseLink provides an extensive mapping hierarchy that supports the wide variety of
data types and references that an object model might contain. For more information,
see Understanding Mappings.

Chapter 3
About Persisting Objects

3-11

Foreign Keys and Object Relationships
A foreign key can be one or more columns that reference a unique key, usually the
primary key, in another table.

Foreign keys can be any number of fields (similar to primary key), all of which are
treated as a unit. A foreign key and the primary parent key it references must have the
same number and type of fields.

Foreign keys represents relationships from a column or columns in one table to a
column or columns in another table. For example, if every Employee has an
attribute address that contains an instance of Address (which has its own descriptor
and table), the one-to-one mapping for the address attribute would specify foreign
key information to find an address for a particular Employee.

Inheritance
Object-oriented systems allow classes to be defined in terms of other classes.

For example: motorcycles, sedans, and vans are all kinds of vehicles. Each of the
vehicle types is a subclass of the Vehicle class. Similarly, the Vehicle class is
the superclass of each specific vehicle type. Each subclass inherits attributes and
methods from its superclass (in addition to having its own attributes and methods).

Inheritance provides several application benefits, including the following:

• Using subclasses to provide specialized behaviors from the basis of common
elements provided by the superclass. By using inheritance, you can reuse the
code in the superclass many times.

• Implementing abstract superclasses that define generic behaviors. This abstract
superclass may define and partially implement behavior, while allowing you to
complete the details with specialized subclasses.

Concurrency
To have concurrent clients logged in at the same time, the server must spawn a
dedicated thread of execution for each client.

Java EE application servers do this automatically. Dedicated threads enable each
client to work without having to wait for the completion of other clients. EclipseLink
ensures that these threads do not interfere with each other when they make changes
to the identity map or perform database transactions. Your client can make
transactional changes in an isolated and thread safe manner. EclipseLink manages
clones for the objects you modify to isolate each client's work from other concurrent
clients and threads. This is essentially an object-level transaction mechanism that
maintains all of the ACID (Atomicity, Consistency, Isolation, Durability) transaction
principles as a database transaction.

EclipseLink supports configurable optimistic and pessimistic locking strategies to let
you customize the type of locking that the EclipseLink concurrency manager uses. For
more information, see Descriptors and Locking.

Chapter 3
About Persisting Objects

3-12

Caching
EclipseLink caching improves application performance by automatically storing data
returned as objects from the database for future use.

This caching provides several advantages:

• Reusing Java objects that have been previously read from the database minimizes
database access

• Minimizing SQL calls to the database when objects already exist in the cache

• Minimizing network access to the database

• Setting caching policies a class-by-class and bean-by-bean basis

• Basing caching options and behavior on Java garbage collection

EclipseLink supports several caching polices to provide extensive flexibility. You can
fine-tune the cache for maximum performance, based on individual application
performance. Refer to Understanding Caching for more information.

Nonintrusive Persistence
The EclipseLink nonintrusive approach of achieving persistence through a metadata
architecture means that there are almost no object model intrusions.

To persist Java objects, EclipseLink does not require any of the following:

• Persistent superclass or implementation of persistent interfaces

• Store, delete, or load methods required in the object model

• Special persistence methods

• Generating source code into or wrapping the object model

See Building and Using the Persistence Layer for additional information on this
nonintrusive approach. See also About Metadata.

Indirection
An indirection object takes the place of an application object so the application object
is not read from the database until it is needed.

Using indirection, or lazy loading in JPA, allows EclipseLink to create stand-ins for
related objects. This results in significant performance improvements, especially when
the application requires the contents of only the retrieved object rather than all related
objects.

Without indirection, each time the application retrieves a persistent object, it also
retrieves all the objects referenced by that object. This may result in lower
performance for some applications.

Note:

Oracle strongly recommends that you always use indirection.

Chapter 3
About Persisting Objects

3-13

EclipseLink provides several indirection models, such as proxy indirection, transparent
indirection, and value holder indirection.

See Collection Mappings and Indirection (Lazy Loading)for more information.

Mutability
Mutability is a property of a complex field that specifies whether the field value may be
changed or not changed as opposed to replaced.

An immutable mapping is one in which the mapped object value cannot change unless
the object ID of the object changes: that is, unless the object value is replaced by
another object value altogether.

A mutable mapping is one in which the mapped object value can change without
changing the object ID of the object.

By default, EclipseLink assumes the following:

• all TransformationMapping instances are mutable

• all JPA @Basic mapping types, except Serializable types, are immutable
(including Date and Calendar types)

• all JPA @Basic mapping Serializable types are mutable

Whether a value is immutable or mutable largely depends on how your application
uses your persistent classes. For example, by default, EclipseLink assumes that a
persistent field of type Date is immutable: this means that as long as the value of the
field has the same object ID, EclipseLink assumes that the value has not changed. If
your application uses the set methods of the Date class, you can change the state of
the Date object value without changing its object ID. This prevents EclipseLink from
detecting the change. To avoid this, you can configure a mapping as mutable: this tells
EclipseLink to examine the state of the persistent value, not just its object ID.

You can configure the mutability of the following:

• TransformationMapping instances;

• any JPA @Basic mapping type (including Date and Calendar types) individually;

• all Date and Calendar types.

Mutability can affect change tracking performance. For example, if a transformation
mapping maps a mutable value, EclipseLink must clone and compare the value. If the
mapping maps a simple immutable value, you can improve performance by
configuring the mapping as immutable.

Mutability also affects weaving. EclipseLink can only weave an attribute change
tracking policy for immutable mappings.

For more information, see About Weaving. See also the description of
the @Mutable annotation in Java Persistence API (JPA) Extensions Reference for
EclipseLink.

Chapter 3
About Persisting Objects

3-14

Migrating Applications to the EclipseLink Persistence
Manager

You can configure an application server to use EclipseLink as the persistence
manager.

You can use only one persistence manager for all of the entities with container-
managed persistence in a JAR file.

EclipseLink provides automated support for migrating an existing Java EE application
to use EclipseLink as the persistence manager. For more information, see "Migrating
from Apache OpenJPA to EclipseLink" in Solutions Guide for EclipseLink.

About Weaving
Weaving is a technique of manipulating the byte-code of compiled Java classes

The EclipseLink JPA persistence provider uses weaving to enhance both JPA entities
and Plain Old Java Object (POJO) classes for such things as lazy loading, change
tracking, fetch groups, and internal optimizations.

Weaving can be performed either dynamically at runtime, when entities are loaded, or
statically at compile time by post-processing the entity .class files. By default,
EclipseLink uses dynamic weaving whenever possible, including inside a Java EE
application server and in Java SE when the EclipseLink agent is configured. Dynamic
weaving is recommended as it is easy to configure and does not require any changes
to a project's build process.

Topics

• Using Dynamic Weaving

• Using Static Weaving

• Weaving POJO Classes

• Weaving and Java EE Application Servers

• Disabling Weaving with Persistence Unit Properties

Using Dynamic Weaving
Use dynamic weaving to weave application class files one at a time, as they are
loaded at run time.

Consider this option when the number of classes to weave is few or when the time
taken to weave the classes is short.

If the number of classes to weave is large or the time required to weave the classes is
long, consider using static weaving.

Using Static Weaving
Use static weaving to weave all application class files at build time so that you can
deliver prewoven class files.

Chapter 3
Migrating Applications to the EclipseLink Persistence Manager

3-15

Consider this option to weave all applicable class files at build time so that you can
deliver prewoven class files. By doing so, you can improve application performance by
eliminating the runtime weaving step required by dynamic weaving.

In addition, consider using static weaving to weave in Java environments where you
cannot configure an agent.

Weaving POJO Classes
EclipseLink weaves all the POJO classes in the JAR you create when you package a
POJO application for weaving.

EclipseLink uses weaving to enable the following for POJO classes:

• Lazy loading

• Change tracking

• Fetch groups

EclipseLink weaves all the classes defined in the persistence.xml file, that is:

• All the classes you list in the persistence.xml file.

• All classes relative to the JAR containing the persistence.xml file if
element <exclude-unlisted-classes> is false.

Weaving and Java EE Application Servers
The default EclipseLink weaving behavior applies in any Java EE JPA-compliant
application server using the EclipseLink JPA persistence provider.

To change this behavior, modify your persistence.xml file (for your JPA entities or
POJO classes) to use EclipseLink JPA properties, EclipseLink JPA annotations, or
both.

Disabling Weaving with Persistence Unit Properties
You can disable weaving by using the persistence unit properties.

To disable weaving using EclipseLink persistence unit properties, configure
your persistence.xml file with one or more of the following properties set to false:

• eclipse.weaving; disables all weaving

• eclipselink.weaving.lazy; disables weaving for lazy loading (indirection)

• eclipselink.weaving.changetracking; disables weaving for change
tracking

• eclipselink.weaving.fetchgroups; disables weaving for fetch groups

• eclipselink.weaving.internal; disables weaving for internal optimization

• eclipselink.weaving.eager; disables weaving for indirection on eager
relationships

Chapter 3
About Weaving

3-16

4
Understanding Entities

An entity is a lightweight persistence domain object.

Typically, an entity represents a table in a relational database, and each entity
instance corresponds to a row in the table. The primary programming artifact of an
entity is the entity class, although entities can use helper classes.

The persistent state of an entity is represented either through persistent fields or
persistent properties. These fields or properties use object/relational mapping
annotations to map the entities and entity relationships to the relational data in the
underlying data store.

Topics

• Identifying Entities

• Entities and Persistent Identity

• Entities and Database Tables

• Entities and Inheritance

• Entities and Embedded Objects

• Entities and Sequence Generation

• Entities and Locking

• Extensible Entities

Identifying Entities
Use the @Entity annotation to specify that a class is an entity.

Note:

The entity class must also be listed in your persistence.xml file, unless you
set the tag <exclude-unlisted-classes> to false.

For more information, see Chapter 2 "Entities" in the JPA Specification.

http://jcp.org/en/jsr/detail?id=338

Entities and Persistent Identity
Every entity must have a persistent identity, which is an equivalent of a primary key in
a database table that stores the entity state.

4-1

http://jcp.org/en/jsr/detail?id=338

By default, the EclipseLink persistence provider assumes that each entity has at least
one field or property that serves as a primary key.

You can generate and/or configure the identity of your entities by using the following
annotations:

• @Id

• @IdClass

• @EmbeddedId

• @GeneratedValue

• @TableGenerator

• @SequenceGenerator

• @UuidGenerator

You can also use these annotations to fine-tune how your database maintains the
identity of your entities. For more information on these annotations, see "Metadata for
Object/Relational Mapping" in the JPA Specification.

http://jcp.org/en/jsr/detail?id=338

Entities and Database Tables
Every entity class maps to a specific table or set of tables in the database.

By default, the entity's table name is defaulted as its entity name as uppercase, which
defaults to the entity's short class name. An entity normally maps to a single table, but
can also map to multiple tables, or even a view.

You can customize an entity's tables using the following annotations:

• @Table

• @SecondaryTable

Entities and Inheritance
JPA defines several difference methods for persisting objects with inheritance.

The @Inheritance annotation is used in the root class to define SINGLE_TABLE,
JOINED, and TABLE_PER_CLASS inheritance. For abstract classes that define
common state or persistence behavior, but have no relationship on the database,
the @MappedSuperclass annotation can be used.

• @Inheritance

• @MappedSuperclass

Entities and Embedded Objects
An embeddable is a special type of class that is not directly persistent, but persisted
only with its parent entity.

You can use the @Embeddable annotation to map an embedded class. An
embeddable can be referenced from an entity or another embeddable using

Chapter 4
Entities and Database Tables

4-2

http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338

the @Embedded annotation for a single reference, @EmbeddedId for an embedded id,
or the @ElementCollection annotation for a Collection or Map reference. An
embeddable can also be used in any Map key using the @MapKeyClass annotation.

• @Embeddable

• @EmbeddedId

• @Embedded

• @ElementCollection

Entities and Sequence Generation
Many databases support an internal mechanism for id generation called sequences.

You can use a database sequence to generate identifiers when the underlying
database supports them.

• @SequenceGenerator—If you use the @GeneratedValue annotation to specify
a primary key generator of type SEQUENCE, then you can use
the @SequenceGenerator annotation to fine-tune this primary key generator to
do the following:

– change the allocation size to match your application requirements or database
performance parameters

– change the initial value to match an existing data model (for example, if you
are building on an existing data set for which a range of primary key values
has already been assigned or reserved)

– use a predefined sequence in an existing data model

• @TableGenerator—If you use the @GeneratedValue annotation to specify a
primary key generator of type TABLE, then you can use
the @TableGenerator annotation to fine-tune this primary key generator to do
the following:

– change the name of the primary key generator's table, because the name is
awkward, a reserved word, incompatible with a preexisting data model, or
invalid as a table name in your database

– change the allocation size to match your application requirements or database
performance parameters

– change the initial value to match an existing data model (for example, if you
are building on an existing data set, for which a range of primary key values
has already been assigned or reserved)

– configure the primary key generator's table with a specific catalog or schema

– configure a unique constraint on one or more columns of the primary key
generator's table

For more information and examples of these annotations, see "Metadata for Object/
Relational Mapping" in the JPA Specification.

Entities and Locking
By default, the EclipseLink persistence provider assumes that the application is
responsible for data consistency.

Chapter 4
Entities and Sequence Generation

4-3

http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338

You have the choice between optimistic and pessimistic locking. Oracle recommends
using optimistic locking. For more information, see Descriptors and Locking.

Oracle recommends that you use the @Version annotation to enable JPA-managed
optimistic locking by specifying the version field or property of an entity class that
serves as its optimistic lock value. When choosing a version field or property, ensure
that the following is true:

• there is only one version field or property per entity

• you choose a property or field persisted to the primary table (see "Table
Annotation" in the JPA Specification)

• your application does not modify the version property or field

Note:

The field or property type must either be a numeric type (such
as Number, long, int, BigDecimal, and so on), or
a java.sql.Timestamp. Oracle recommends using a numeric type.

The @Version annotation does not have attributes.

For more information, see the following:

• "Optimistic Locking and Concurrency" in the JPA Specification http://
jcp.org/en/jsr/detail?id=338

• "Version Annotation" in the JPA Specification http://jcp.org/en/jsr/detail?id=338

• EclipseLink JPA extensions for optimistic locking described in Java Persistence
API (JPA) Extensions Reference for EclipseLink

For more information on the EclipseLink artifacts configured by JPA metadata, see
Descriptors and Locking.

Extensible Entities
JPA entities and JAXB beans can be made extensible by adding or modifying
mappings externally.

There is no need to modify the entity or bean source file nor do you have to redeploy
the persistence unit.

Extensible entities are useful in a multi-tenant (or SaaS) architecture where a shared,
generic application can be used by multiple clients (tenants). Tenants have private
access to their own data, and to data shared with other tenants.

Using extensible entities, you can:

• Build an application where some mappings are common to all users and some
mappings are user-specific.

• Add mappings to an application after it is made available to a customer (even
post-deployment).

• Use the same EntityManagerFactory interface to work with data after
mappings have changed.

Chapter 4
Extensible Entities

4-4

http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338

• Provide an additional source of metadata to be used by an application.

Use the @VirtualAccessMethods annotation to specify that a JPA entity is
extensible and use the @XmlVirtualAccessMethods annotation to specify that a
JAXB bean is extensible. In both cases, you use virtual properties to specify external
mappings. This allows you to modify the mappings without modifying source files and
without redeploying the persistence unit.

For information on how to make JPA entities and JAXB beans extensible, see "Making
JPA Entities and JAXB Beans Extensible" in Solutions Guide for EclipseLink.

Chapter 4
Extensible Entities

4-5

5
Understanding Descriptors

EclipseLink uses descriptors to store the information that describes how an instance of
a particular class can be represented by a data source.

Descriptors own mappings that associate class instance variables with a data source
and transformation routines that are used to store and retrieve values. As such, the
descriptor acts as the connection between a Java object and its data source
representation.

Topics

• Common Descriptor Concepts

• Object-Relational Descriptor Concepts

• Descriptor Files

Common Descriptor Concepts
Many concepts are common to Object-Relational and MOXy descriptors.

Topics

• Descriptor Architecture

• Descriptors and Inheritance

• Descriptors and Aggregation

• Descriptor Customization

• Amendment Methods

• Descriptor Event Manager

Descriptor Architecture
A descriptor stores all the information describing how an instance of a particular
object class can be represented in a data source.

The Descriptor API can be used to define, or amend EclipseLink descriptors through
Java code. The Descriptor API classes are mainly in
the org.eclipse.persistence.descriptors package.

EclipseLink descriptors may contain the following information:

• The persistent Java class it describes and the corresponding data source
(database tables or XML complex type interaction)

• A collection of mappings, which describe how the attributes and relationships for
that class are represented in the data source

• The primary key information (or equivalent) of the data source

5-1

• A list of query keys (or aliases) for field names

• Information for sequence numbers

• A set of optional properties for tailoring the behavior of the descriptor, including
support for caching refresh options, identity maps, optimistic locking, the event
manager, and the query manager

There is a descriptor type for each data source type that EclipseLink supports. In some
cases, multiple descriptor types are valid for the same data source type. The type of
descriptor you use determines the type of mappings that you can define.

Descriptors and Inheritance
Inheritance describes how a derived (child) class inherits the characteristics of its
superclass (parent).

You can use descriptors to describe the inheritance relationships between classes in
relational and XML projects.

In the descriptor for a child class, you can override mappings that have been specified
in the descriptor for a parent class, or map attributes that have not been mapped at all
in the parent class descriptor.

This figure illustrates the Vehicle object model–a typical Java inheritance hierarchy.
The root class Vehicle contains two branch
classes: FueledVehicle and NonFueledVehicle. Each branch class contains a
leaf class: Car and Bicycle, respectively.

Figure 5-1 Example Inheritance Hierarchy

EclipseLink recognizes the following three types of classes in an inheritance hierarchy:

• The root class stores information about all instantiable classes in its subclass
hierarchy. By default, queries performed on the root class return instances of the
root class and its instantiable subclasses. However, the root class can be

Chapter 5
Common Descriptor Concepts

5-2

configured so queries on it return only instances of itself, without instances of its
subclasses.

For example, the Vehicle class in this figure is a root class.

• Branch classes have a persistent superclass and also have subclasses. By
default, queries performed on the branch class return instances of the branch
class and any of its subclasses. However, as with the root class, the branch class
can be configured so queries on it return only instances of itself without instances
of its subclasses.

For example, the FueledVehicle class in this figure is a branch class.

• Leaf classes have a persistent superclass in the hierarchy but do not have
subclasses. Queries performed on the leaf class can only return instances of the
leaf class.

For example, the Car class in this figure is a leaf class.

In the descriptor for a child class, you can override mappings that have been specified
in the descriptor for a parent class, or map attributes that have not been mapped at all
in the parent class descriptor.

Specifying a Class Indicator

When configuring inheritance, you configure the root class descriptor with the means
of determining which subclasses it should instantiate.

You can do this in one of the following ways:

• Using Class Indicator Fields

• Using Class Extraction Methods

Note:

All leaf classes in the hierarchy must have a class indicator and they must
have the same type of class indicator (field or class extraction method).

Using Class Indicator Fields
You can use a persistent attribute of a class to indicate which subclass should be
instantiated. For example, in a relational descriptor, you can use a class indicator field
in the root class table. The indicator field should not have an associated direct
mapping unless it is set to read-only.

Note:

If the indicator field is part of the primary key, define a write-only
transformation mapping for the indicator field.

You can use strings or numbers as values in the class indicator field.

The root class descriptor must specify how the value in the class indicator field
translates into the class to be instantiated.

Chapter 5
Common Descriptor Concepts

5-3

Using Class Extraction Methods

You can define a Java method to compute the class indicator based on any available
information in the object's data source record. Such a method is called a class
extraction method.

Using a class extraction method, you do not need to include an explicit class indicator
field in your data model and you can handle relationships that are too complex to
describe using class indicator fields.

A class extraction method must have the following characteristics:

• it must be defined on the root descriptor's class;

• it must be static;

• it must take a Record as an argument;

• it must return the java.lang.Class object to use for the Record passed in.

You may also need to define only-instances and with-all-subclasses expressions. If
you use a class extraction method, then you must provide EclipseLink with
expressions to correctly filter sibling instances for all classes that share a common
table.

When configuring inheritance using a class extraction method, EclipseLink does not
generate SQL for queries on the root class.

Inheritance and Primary Keys

For relational projects, EclipseLink assumes that all of the classes in an inheritance
hierarchy have the same primary key, as set in the root descriptor.

Single and Multi-Table Inheritance

In a relational project, you can map your inheritance hierarchy to a single table or to
multiple tables.

Aggregate and Composite Descriptors and Inheritance

You can designate relational descriptors as aggregates. XML descriptors are always
composites (see Descriptors and Aggregation).

When configuring inheritance for a relational aggregate descriptor, all the descriptors
in the inheritance tree must be aggregates. The descriptors for aggregate and non-
aggregate classes cannot exist in the same inheritance tree.

When configuring inheritance for an XML descriptor, because all XML descriptors are
composites, descriptor type does not restrict inheritance.

Descriptors and Aggregation

Two objects—a source (parent or owning) object and a target (child or owned) object
—are related by aggregation if there is a strict one-to-one relationship between them,
and all the attributes of the target object can be retrieved from the same data source
representation as the source object. This means that if the source object exists, then
the target object must also exist, and if the source object is destroyed, then the target
object is also destroyed.

Chapter 5
Common Descriptor Concepts

5-4

In this case, the descriptors for the source and target objects must be designated to
reflect this relationship.

The EJB 3.0 specification does not support nested aggregates.

Descriptor Customization
You can customize a descriptor at run time by specifying a descriptor customizer.

A descriptor customizer is a a Java class that implements
the org.eclipse.persistence.config.DescriptorCustomizer interface and
provides a default (zero-argument) constructor.

You use a descriptor customizer to customize a descriptor at run time through code
API similar to how you use an amendment method to customize a descriptor. See
Amendment Methods.

Amendment Methods
You can associate a static Java method that is called when a descriptor is loaded at
run time.

This method can amend the run-time descriptor instance through the descriptor Java
code API. The method must be public static and take a single parameter of
type org.persistence.descriptors.structures.ClassDescriptor. In the implementation of
this method, you can configure advanced features of the descriptor using any of the
public descriptor and mapping API.

You can only modify descriptors before the session has been connected; you should
not modify descriptors after the session has been connected.

Amendment methods can be used with rational descriptors, object-relational data type
descriptors, and XML descriptors.

Descriptor Event Manager
In relational projects, EclipseLink raises various instances
of DescriptorEvent during the persistence life cycle.

Each descriptor owns an instance of DescriptorEventManager that is responsible
for receiving these events and dispatching them to the descriptor event handlers
registered with it.

Using a descriptor event handler, you can execute your own application specific logic
whenever descriptor events occur, allowing you to take customized action at various
points in the persistence life-cycle. For example, using a descriptor event handler, you
can do the following:

• Synchronize persistent objects with other systems, services, and frameworks

• Maintain nonpersistent attributes of which EclipseLink is not aware

• Notify other objects in the application when the persistent state of an object
changes

• Implement complex mappings or optimizations not directly supported by
EclipseLink mappings

Chapter 5
Common Descriptor Concepts

5-5

Object-Relational Descriptor Concepts
This section describes the concepts specific to Object-Relational descriptors.

Topics

• Fetch Groups

• Descriptor Query Manager

• Descriptors and Sequencing

• Descriptors and Locking

Fetch Groups
Using a fetch group, you can define a subset of an object's attributes and associate
the fetch group with either a ReadObjectQuery or ReadAllQuery query.

By default, when you execute an object-level read query for a particular object class,
EclipseLink returns all the persistent attributes mapped in the object's descriptor. With
this single query, all the object's persistent attributes are defined, and calling
their get methods returns the value directly from the object.

When you are interested in only some of the attributes of an object, it may be more
efficient to return only a subset of the object's attributes using a fetch group.

Using a fetch group, you can define a subset of an object's attributes and associate
the fetch group with either a ReadObjectQuery or ReadAllQuery query. When you
execute the query, EclipseLink retrieves only the attributes in the fetch group.
EclipseLink automatically executes a query to fetch all the attributes excluded from this
subset when and if you call a get method on any one of the excluded attributes.

You can define more than one fetch group for a class. You can optionally designate at
most one such fetch group as the default fetch group. If you execute either
a ReadObjectQuery or ReadAllQuery query without specifying a fetch group,
EclipseLink will use the default fetch group, unless you configure the query otherwise.

Before using fetch groups, Oracle recommends that you perform a careful analysis of
system use. In many cases, the extra queries required to load attributes not in the
fetch group could well offset the gain from the partial attribute loading.

Fetch groups can be used only with basic mappings configured
with FetchType.LAZY (partial object queries).

EclipseLink uses the AttributeGroup that can be used to configure the use of
partial entities in fetch, load, copy, and merge operations.

• Fetch: Control which attributes and their associated columns are retrieved from
the database

• Load: Control which relationships in the entities returned from a query are
populated

• Copy: Control which attributes are copied into a new entity instance

• Merge: Merge only those attributes fetched, loaded, or copied into an entity

The following sections describe the possible AttributeGroup types and operations.

Chapter 5
Object-Relational Descriptor Concepts

5-6

FetchGroup

The FetchGroup defines which attributes should be fetched (selected from the
database) when the entity is retrieved as the result of a query execution. The inclusion
of relationship attributes in a FetchGroup only determines if the attribute's required
columns should be fetched and populated. In the case of a lazy fetch type the
inclusion of the attribute simply means that its proxy will be created to enable lazy
loading when accessed. To force a relationship mapping to be populated when using
a FetchGroup on a query the attribute must be included in the group and must either
be FetchType.EAGER or it must be included in an associated LoadGroup on the
query.

Default FetchGroup

FetchGroup also has the notion of named and default FetchGroup which are
managed by the FetchGroupManager. A default FetchGroup is defined during
metadata processing if one or more basic mappings are configured to be lazy and the
entity class implements FetchGroupTracker (typically introduced through weaving).
The default FetchGroup is used on all queries for this entity type where no
explicit FetchGroup or named FetchGroup is configured.

Named FetchGroup

A named FetchGroup can be defined for an entity using @FetchGroup annotation or
within the eclipselink-orm.xml file.

Full FetchGroup

A FetchGroup when first created is assumed to be empty. The user must add the
attributes to the FetchGroup. If a FetchGroup is required with all of the attributes then
the FetchGroupManager.createFullFetchGroup() must be used.

Load/LoadAll with FetchGroup

A FetchGroup can also be configured to perform a load operation of relationship
mappings and nested relationship mappings.

LoadGroup

A LoadGroup is used to force a specified set of relationship attributes to be populated
in a query result.

CopyGroup

The CopyGroup replaces the deprecated ObjectCopyPolicy being used to define
how a entity is copied. In addition to specifying the attributes defining what should be
copied from the source entity graph into the target copy the CopyGroup also allows
definition of:

• shouldResetPrimaryKey: Reset the identifier attributes to their default value.
This is used when the copy operation is intended to clone the entity in order to
make a new entity with similar state to the source. Default is false.

• shouldResetVersion: Reset the optimistic version locking attribute to its default
value in the copies. Default is false.

Chapter 5
Object-Relational Descriptor Concepts

5-7

• depth: defines cascade mode for handling relationships. By
default CASCADE_PRIVATE_PARTS is used but it can also be configured
to NO_CASCADE and CASCADE_ALL_PARTS.

Merging

When a partial entity is merged into a persistence context that has
an AttributeGroup associated with it defining which attributes are available only
those attributes are merged. The relationship mappings within the entity are still
merged according to their cascade merge settings.

Descriptor Query Manager

In addition to storing named queries applicable to a particular class, you can also use
the DescriptorQueryManager to override the default action that EclipseLink
defines for common data source operations.

Descriptors and Sequencing
Sequencing options you configure at the project (or session) level determine the type
of sequencing that EclipseLink uses.

An essential part of maintaining object identity is managing the assignment of unique
values (that is, a specific sequence) to distinguish one object instance from another.

In a POJO project, you can use session-level sequence configuration to override
project-level sequence configuration, on a session-by-session basis, if required.

After configuring the sequence type, for each descriptor's reference class, you must
associate one attribute, typically the attribute used as the primary key, with its own
sequence.

Descriptors and Locking
EclipseLink supports multiple locking policies.

With object-relational mapping, you can configure a descriptor with any of the following
locking policies to control concurrent access to a domain object:

• Optimistic—All users have read access to the data. When a user attempts to make
a change, the application checks to ensure the data has not changed since the
user read the data.

• Pessimistic—The first user who accesses the data with the purpose of updating it
locks the data until completing the update.

• No locking—The application does not prevent users overwriting each other's
changes.

Oracle recommends using optimistic locking for most types of applications to ensure
that users do not overwrite each other's changes.

This section describes the various types of locking policies that EclipseLink supports,
including the following:

Chapter 5
Object-Relational Descriptor Concepts

5-8

Optimistic Version Locking Policies

With optimistic locking, all users have read access to the data. When a user attempts
to make a change, the application checks to ensure the data has not changed since
the user read the data.

Optimistic version locking policies enforce optimistic locking by using a version field
(also known as a write-lock field) that you provide in the reference class that
EclipseLink updates each time an object change is committed.

EclipseLink caches the value of this version field as it reads an object from the data
source. When the client attempts to write the object, EclipseLink compares the cached
version value with the current version value in the data source in the following way:

• If the values are the same, EclipseLink updates the version field in the object and
commits the changes to the data source.

• If the values are different, the write operation is disallowed because another client
must have updated the object since this client initially read it.

EclipseLink provides the following version-based optimistic locking policies:

• VersionLockingPolicy

• TimestampLockingPolicy

For descriptions of these locking policies, see "Setting Optimistic Locking" in Solutions
Guide for EclipseLink.

Note:

In general, Oracle recommends numeric version locking because of the
following:

• accessing the timestamp from the data source can have a negative
impact on performance;

• time stamp locking is limited to the precision that the database stores for
timestamps.

Whenever any update fails because optimistic locking has been violated, EclipseLink
throws an OptimisticLockException. This should be handled by the application
when performing any database modification. The application must notify the client of
the locking contention, refresh the object, and have the client reapply its changes.

You can choose to store the version value in the object as a mapped attribute, or in
the cache. In three-tier applications, you typically store the version value in the object
to ensure it is passed to the client when updated (see “Applying Locking in an
Application” below).

If you store the version value in the cache, you do not need to map it. If you do map
the version field, you must configure the mapping as read-only.

To ensure that the parent object's version field is updated whenever a privately owned
child object is modified, consider “Optimistic Version Locking Policies and Cascading.”

Chapter 5
Object-Relational Descriptor Concepts

5-9

If you are using a stored procedure to update or delete an object, your database may
not return the row-count required to detect an optimistic lock failure, so your stored
procedure is responsible for checking the optimistic lock version and throwing an error
if they do not match. Only version locking is directly supported with
a StoredProcedureCall. Because timestamp and field locking require two versions
of the same field to be passed to the call, an SQL call that uses an ## parameter to
access the translation row could be used for other locking policies.

Optimistic Version Locking Policies and Cascading
If your database schema is such that both a parent object and its privately owned child
object are stored in the same table, then if you update the child object, the parent
object's version field will be updated.

However, if the parent and its privately owned child are stored in separate tables, then
changing the child will not, by default, update the parent's version field.

To ensure that the parent object's version field is updated in this case, you can either
manually update the parent object's version field or, if you are using
a VersionLockingPolicy, you can configure EclipseLink to automatically cascade
the child object's version field update to the parent.

After you enable optimistic version locking cascading, when a privately owned child
object is modified, EclipseLink will traverse the privately owned foreign reference
mappings, updating all the parent objects back to the root.

EclipseLink supports optimistic version locking cascading for:

• object changes in privately owned one-to-one and one-to-many mappings

• relationship changes (adding or removing) in the following collection mappings
(privately owned or not):

– direct collection

– one-to-many

– many-to-many

– aggregate collection

Consider the example object graph shown in this figure:

Figure 5-2 Optimistic Version Locking Policies and Cascading Example

In this example, ObjectA privately owns ObjectB, and ObjectB privately
owns ObjectC, and ObjectC privately owns ObjectD.

Suppose you register ObjectB in a unit of work, modify an ObjectB field, and commit
the unit of work. In this case, ObjectB checks the cache for ObjectA and, if not
present, queries the database for ObjectA. ObjectB then notifies ObjectA of its
change. ObjectA forces an update on its version optimistic locking field even though it
has no changes to its corresponding table.

Chapter 5
Object-Relational Descriptor Concepts

5-10

Suppose you register ObjectA in a unit of work, access its ObjectB to access
its ObjectC to access its ObjectD, modify an ObjectD field, and commit the unit of
work. In this case, ObjectD notifies ObjectC of its changes. ObjectC forces an update
on its version optimistic locking field even though it has no changes to its
corresponding table. ObjectC then notifies ObjectB of
the ObjectD change. ObjectB then notifies ObjectA of
the ObjectD change. ObjectA forces an update on its version optimistic locking field
even though it has no changes to its corresponding table.

Optimistic Locking and Rollbacks
With optimistic locking, use
the UnitOfWork method commitAndResumeOnFailure to rollback a locked
object's value, if you store the optimistic lock versions in the cache.

If you store the locked versions in an object, you must refresh the objects (or their
versions) on a failure. Alternatively, you can acquire a new unit of work on the failure
and reapply any changes into the new unit of work.

Optimistic Field Locking Policies
Optimistic field locking policies enforce optimistic locking by using one or more of the
fields that currently exist in the table to determine if the object has changed since the
client read the object.

The unit of work caches the original state of the object when you first read the object
or register it with the unit of work. At commit time, the unit of work compares the
original values of the lock fields with their current values on the data source during the
update. If any of the lock fields' values have changed, an optimistic lock exception is
thrown.

EclipseLink provides the following optimistic field locking policies:

• AllFieldsLockingPolicy

• ChangedFieldsLockingPolicy

• SelectedFieldsLockingPolicy

• VersionLockingPolicy

• TimestampLockingPolicy

For descriptions of these locking policies, see "Setting Optimistic Locking" in Solutions
Guide for EclipseLink.

Pessimistic Locking Policies

With pessimistic locking, the first user who accesses the data with the purpose of
updating it locks the data until completing the update.

When using a pessimistic locking policy, you can configure the policy to either fail
immediately or to wait until the read lock is acquired.

You can use a pessimistic locking policy only in a project with a container-managed
persistence type and with descriptors that have EJB information.

You can also use pessimistic locking (but not a pessimistic locking policy) at the query
level.

EclipseLink provides an optimization for pessimistic locking when this locking is used
with entities with container-managed persistence: if you set your query to pessimistic
locking and run the query in its own new transaction (which will end after the execution

Chapter 5
Object-Relational Descriptor Concepts

5-11

of the finder), then EclipseLink overrides the locking setting and does not append FOR
UPDATE to the SQL. However, the use of this optimization may produce an
undesirable result if the pessimistic lock query has been customized by the user with a
SQL string that includes FOR UPDATE. In this case, if the conditions for the
optimization are present, the query will be reset to nonpessimistic locking, but the SQL
will remain the same resulting in the locking setting of the query conflicting with the
query's SQL string. To avoid this problem, you can take one of the following two
approaches:

• Use an expression (see Understanding EclipseLink Expressions) for the selection
criteria. This will give EclipseLink control over the SQL generation.

• Place the finder in a transaction to eliminate conditions for the optimization.

Applying Locking in an Application

To correctly lock an object in an application, you must obtain the lock before the object
is sent to the client for editing.

Applying Optimistic Locking in an Application
If you are using optimistic locking, you have the following two choices for locking
objects correctly:

• Map the optimistic lock field in your object as not read-only and pass the version to
the client on the read and back to the server on the update.

Ensure that the original version value is sent to the client when it reads the object
for the update. The client must then pass the original version value back with the
update information, and this version must be set into the object to be updated after
it is registered/read in the new unit of work on the server.

• Hold the unit of work for the duration of the interaction with the client.

Either through a stateful session bean, or in an HTTP session, store the unit of
work used to read the object for the update for the duration of the client interaction.

You must read the object through this unit of work before passing it to the client for
the update. This ensures that the version value stored in the unit of work cache or
in the unit of work clone will be the original value.

This same unit of work must be used for the update.

The first option is more commonly used, and is required if developing a stateless
application.

Applying Pessimistic Locking in an Application
If you are using pessimistic locking, you must use the unit of work to start a database
transaction before the object is read. You must hold this unit of work and database
transaction while the client is editing the object and until the client updates the object.
You must use this same unit of work to update the object.

Descriptor Files
EclipseLink includes descriptor files that can be used for object-relational and MOXy
mapping.

Topics

• Using orm.xml for Object-Relational Mappings

Chapter 5
Descriptor Files

5-12

• Using eclipselink-orm.xml for EclipseLink Object-Relational Mappings

• Using eclipselink-oxm.xml for EclipseLink MOXy Mappings

Using orm.xml for Object-Relational Mappings
Use the orm.xml file to apply the metadata to the persistence unit.

This metadata is a union of all the mapping files and the annotations (if there is
no xml-mapping-metadata-complete element). If you use one
mapping orm.xml file for your metadata and place this file in a META-INF directory on
the classpath, then you do not need to explicitly list it. The persistence provider will
automatically search for this file (orm.xml) and use it.

The schema for the JPA 2.0 orm.xml is orm_2_0.xsd. (http://
java.sun.com/xml/ns/persistence/orm_2_0.xsd)

If you use a different name for your mapping files or place them in a different location,
you must list them in the mapping-file element of the persistence.xml file.

Using eclipselink-orm.xml for EclipseLink Object-Relational Mappings
EclipseLink supports an extended JPA orm.xml mapping configuration file
called eclipselink-orm.xml.

This mapping file can be used in place of JPA's standard mapping file or can be used
to override a JPA mapping file. In additional to allowing all of the standard JPA
mapping capabilities it also includes advanced mapping types and options.

For more information on the eclipselink-orm.xml file, see "eclipselink-orm.xml
Schema Reference" in Java Persistence API (JPA) Extensions Reference for
EclipseLink.

Note:

Using this mapping file enables many EclipseLink advanced features, but it
may prevent the persistence unit from being portable to other JPA
implementations.

For more information, on overriding values, see:

• "XML Overriding Rules" in the JPA Specification.

http://jcp.org/en/jsr/detail?id=338

• The schema for eclipselink-orm.xml is eclipselink_orm_2_2.xsd:

http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_2.xsd

Overriding and Merging Mapping Information

To override the orm.xml file's mapping, you must define the META-INF/
eclipselink-orm.xml file in the project. The contents of eclipselink-
orm.xml override orm.xml and any other JPA mapping file specified in the
persistence unit. If there are overlapping specifications in multiple ORM files, the files
are merged if there are no conflicting entities.

Chapter 5
Descriptor Files

5-13

http://java.sun.com/xml/ns/persistence/orm_2_0.xsd
http://java.sun.com/xml/ns/persistence/orm_2_0.xsd
http://jcp.org/en/jsr/detail?id=338
http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_2.xsd

For more information, see "Overriding and Merging" in Java Persistence API (JPA)
Extensions Reference for EclipseLink.

Validating the XML Schema

By default the content of your .orm XML file is not validated against the
JPA .orm XML schema.

During development it is a good idea to validate your .orm XML file against the
schema to ensure it is valid. In EclipseLink, validating the .orm XML schema can be
enabled using the persistence unit property eclipselink.orm.validate.schema
in your persistence.xml file.

Advantages and Disadvantages of Using XML

Some advantages of using XML instead of annotations include:

• No coupling between the metadata and the source code

• Compliance with the existing, pre-EJB 3.0 development process

• Support in IDEs and source control systems

The main disadvantages of mapping with XML include:

• It is inherently complex (when compared to annotations)

• The need for replication of the code context (that is, defining the structure in both
the XML and the source code)

For more information, see Chapter 10 "Metadata Annotations" in the JPA
Specification:

http://jcp.org/en/jsr/detail?id=338

Using eclipselink-oxm.xml for EclipseLink MOXy Mappings
You can use Java annotations to specify JAXB features in your projects.

In addition to Java annotations, EclipseLink provides an XML mapping configuration
file called eclipselink-oxm.xml. This mapping file contains the standard JAXB
mappings and configuration options for advanced mapping types. You can use
the eclipselink-oxm.xml file in place of or to override JAXB annotations in source
code.

Note:

Using this mapping file will enable many advanced features but it can
prevent the model from being portable to other JAXB implementations.

Chapter 5
Descriptor Files

5-14

http://jcp.org/en/jsr/detail?id=338

6
Understanding Mappings

EclipseLink can transform data between an object representation and a representation
specific to a data source.

This transformation is called mapping and it is the core of EclipseLink projects.

A mapping corresponds to a single data member of a domain object. It associates the
object data member with its data source representation and defines the means of
performing the two-way conversion between object and data source.

Topics

• Common Mapping Concepts

• Object-Relational Mapping Concepts

• MOXy Mapping Concepts

• Object-JSON Mapping Concepts

Common Mapping Concepts
This section describes concepts for relational and nonrelational mappings that are
unique to EclipseLink.

Topics

• Mapping Architecture

• Mapping Examples

• Mapping Converters

• Transformation Mapping

Mapping Architecture

To define a mapping, you draw upon the following components:

• The data representation specific to the data source (such as a relational database
table or schema-defined XML element) in which you store the object's data.

• A descriptor for a particular object class.

• An object class to map.

Note:

A mapping is the same regardless of whether your project is persistent or
nonpersistent.

6-1

For an example of a typical EclipseLink mapping, see Mapping Examples.

The type of data source you define in your project determines the type of mappings
you can use and how you configure them. In a persistent project, you use mappings to
persist to a data source. In a nonpersistent project, you use mappings simply to
transform between the object format and some other data representation (such as
XML).

A descriptor represents a particular domain object: it describes the object's class. A
descriptor also owns the mappings: one mapping for each of the class data members
that you intend to persist or transform in memory. For more information about
descriptors, see Understanding Descriptors.

Mapping Examples
Although EclipseLink supports more complex mappings, most EclipseLink classes
map to a single database table or XML element that defines the type of information
available in the class.

Each object instance of a given class maps to a single row comprising the object's
attributes, plus an identifier (the primary key) that uniquely identifies the object.

This figure illustrates the simplest database mapping case in which:

• Table_X in the database represents Class_X.

• Object_X1 and Object_X2 are instances of Class_X.

• Individual rows in Table_X represent Object_X1 and Object_X2, as well as any
other instances of Class_X.

Figure 6-1 How Classes and Objects Map to a Database Table

EclipseLink provides you with the tools to build these mappings, from the simple
mappings illustrated above, to complex mappings.

For an additional example of a relational mapping, see Mapping Converters.

Chapter 6
Common Mapping Concepts

6-2

Mapping Converters
If existing EclipseLink mappings do not meet your needs, you can create custom
mappings using mapping extensions.

Note:

Except for simple type translation, you can use the mapping converters and
transformers regardless of whether your data source is relational or
nonrelational. Simple type translation is applicable only to XML projects.

Serialized Object Converter

The serialized object converter can be used with direct and direct collection mappings,
allowing you to map complex objects into binary fields through Java object
serialization. Serialized objects are normally stored in RAW or Binary Large Object
(BLOB) fields in the database, or HEX or BASE64 elements in an XML document.

This figure shows an example of a direct-to-field mappings that uses a serialized
object converter. The attribute jobDescription contains a formatted text document
that is stored in the JOB_DESC field of the database.

Figure 6-2 Serialized Object Converter (relational)

Figure 6-3 demonstrates an example of a nonrelational mapping that uses a serialized
object converter. The attribute jobDescription contains a formatted text document
that EclipseLink stores in the JOB DESCRIPTION element of an XML schema.

Figure 6-3 Serialized Object Converter (nonrelational)

The serialized object converter relies on the Java serializer. Before you map a domain
object with the serialized object converter, ensure that the domain object implements

Chapter 6
Common Mapping Concepts

6-3

the java.io.Serializable interface (or inherits that implementation) and marks all
nonserializable fields transient.

Type Conversion Converter

The type conversion converter can be used with direct and direct collection mappings,
allowing you to map complex objects into binary fields. For example, a Number in the
data source can be mapped to a String in Java, or a java.util.Date in Java can
be mapped to a java.sql.Date in the data source.

This figure illustrates a type conversion mapping (relational). Because
the java.util.Date class is stored by default as a Timestamp in the database, it
must first be converted to an explicit database type such
as java.sql.Date (required only for DB2–most other databases have a single date
data type that can store any date or time).

Figure 6-4 Type Conversion Mapping (relational)

This figure illustrates a type conversion mapping (nonrelational). java.util.Date object is
mapped to a String in a XML schema.

Figure 6-5 Type Conversion Mapping (nonrelational)

You can use a type conversion converter to specify the specific database type when
that type must be handled specially for the database. This includes support for the
special Oracle JDBC binding options required for NCHAR, NVARCHAR2,
and NCLOB fields as well as the special Oracle Thin JDBC insert and update
requirements for handling BLOB and CLOB fields greater than 5K.

EclipseLink uses the NCharacter, NClob and NString types in
the org.eclipse.persistence.platform.database.oracle package as the

Chapter 6
Common Mapping Concepts

6-4

converter data type to support the NCHAR, NCLOB and NVARCHAR2 types. EclipseLink
uses the java.sql.Blob and Clob types as the converter data type to
support BLOB and CLOB values greater than 5K.

You can configure a type conversion converter to map a data source time type (such
as TIMESTAMP) to a java.lang.String provided that the String value conforms
to the following formats:

• YYYY/MM/DD HH:MM:SS

• YY/MM/DD HH:MM:SS

• YYYY-MM-DD HH:MM:SS

• YY-MM-DD HH:MM:SS

For more complex String to TIMESTAMP type conversion, consider a transformation
mapping (see Transformation Mapping).

You can also use the @TypeConverter annotation to modify data values during the
reading and writing of a mapped attribute. Each TypeConverter must be uniquely
named and can be defined at the class, field, and property level, and can be specified
within an Entity, MappedSuperclass and Embeddable class.
A TypeConverter is always specified by using an @Convert annotation.

You can place a @TypeConverter on a Basic, BasicMap,
or BasicCollection mapping. For more information on these annotations, see Java
Persistence API (JPA) Extensions Reference for EclipseLink.

Object Type Converter

The object type converter can be used with direct and direct collection mappings
allowing you to match a fixed number of values to Java objects. Use this converter
when the values in the schema differ from those in Java.

This figure illustrates an object type conversion between
the Employee attribute gender and the XML element gender. If the value of the Java
object attribute is Female, EclipseLink stores it in the XML element as F.

Figure 6-6 Object Type XML Converter

You can also perform object type transformations by using
the @ObjectTypeConverter annotation. This annotation specifies
an org.eclipse.persistence.mappings.converters.ObjectTypeConvert
er that converts a fixed number of database data value(s) to Java object value(s)
during the reading and writing of a mapped attribute. For this annotation you must
provide values for the array of conversion values by using
the @ConversionValue annotation. For more information, see the descriptions

Chapter 6
Common Mapping Concepts

6-5

of @ObjectTypeConverter and @ConversionValuein Java Persistence API
(JPA) Extensions Reference for EclipseLink.

Transformation Mapping
In some special circumstances, existing mapping types and their default Java to data
source type handling may be insufficient.

In these special cases, you can consider using a transformation mapping to perform
specialized translations between how a value is represented in Java and in the data
source.

Note:

Because of the complexity of transformation mappings, it is often easier to
perform the transformation with a converter or getter and setter methods of a
direct-to-field mapping.

This figure illustrates a transformation mapping. The values from
the B_DATE and B_TIME fields are used to create a java.util.Date to be stored in
the birthDate attribute.

Figure 6-7 Transformation Mappings

A transformation mapping is made up of the following two components:

• attribute transformer: performs the object attribute transformation at read time

• field transformer: performs the object attribute-to-field transformation at write time

You can implement a transformer as either a separate class or as a method on your
domain object.

Chapter 6
Common Mapping Concepts

6-6

Often, a transformation mapping is appropriate when values from multiple fields are
used to create an object. This type of mapping requires that you provide an attribute
transformation that is invoked when reading the object from the database. This must
have at least one parameter that is an instance of Record. In your attribute
transformation, you can use Record method get to retrieve the value in a specific
column. Your attribute transformation can optionally specify a second parameter, an
instance of Session. The Session performs queries on the database to get
additional values needed in the transformation. The transformation should return the
value to be stored in the attribute.

Transformation mappings also require a field transformation for each field, to be
written to the database when the object is saved. The transformation returns the value
to be stored in that field.

Within your implementation of the attribute and field transformation, you can take
whatever actions are necessary to transform your application data to suit your data
source, and vise versa.

You can perform transformation mappings between database columns and attribute
values by using the @Transformation annotation. Use this annotation with
the @WriteTransformer and @ReadTransformer annotations.
The @WriteTransformer annotation is used to transform a single attribute value to
a single database column value. For this annotation you have the option of providing
an implementation of the FieldTransformer interface. For
the @ReadTransformer annotation, you must provide an implementation of the
org.eclipse.persistence.mappings.transformers.AttributeTransform
er interface. For more information on these annotations, see the descriptions of
the @Transformation, @ReadTransformer, and @WriteTransformer in Java
Persistence API (JPA) Extensions Reference for EclipseLink.

Object-Relational Mapping Concepts
This section describes concepts for relational mappings that are unique to EclipseLink.

Topics

• Indirection (Lazy Loading)

• Indirection, Serialization, and Detachment

• Value Holder Indirection

• Transparent Indirection

• Proxy Indirection

• Weaved Indirection

• About JPA Mapping Types

Indirection (Lazy Loading)
By default, when EclipseLink retrieves a persistent object, it retrieves all of the
dependent objects to which it refers.

When you configure indirection (also known as lazy reading, lazy loading, and just-in-
time reading) for an attribute mapped with a relationship mapping, EclipseLink uses an
indirection object as a place holder for the referenced object: EclipseLink defers

Chapter 6
Object-Relational Mapping Concepts

6-7

reading the dependent object until you access that specific attribute. This can result in
a significant performance improvement, especially if the application is interested only
in the contents of the retrieved object, rather than the objects to which it is related.

Oracle strongly recommends using indirection for all relationship mappings. Not only
does this lets you optimize data source access, but it also allows EclipseLink to
optimize the persistence unit processing, cache access, and concurrency.

Note:

• The use of indirection is especially important for providing a proper
maintenance of bidirectional relationships. In this case, you must use
indirection. If you are operating with collections, you must use
transparent indirection (see Transparent Indirection).

• The implementation of indirection (lazy loading) is vendor-specific.
Serializing entities and merging those entities back into a persistence
context may not be interoperable across vendors when lazy properties or
fields and/or relationships are used.

This figure shows an indirection example. Without indirection, reading the Order object
also reads the dependent collection of LineItem objects. With indirection, reading the
Order object does not read the dependent collection of LineItem objects: the
lineItems attribute refers to an indirection object. You can access other attributes
(such as customerId), but EclipseLink reads the dependent LineItem objects only if
and when you access the lineItems attribute.

Chapter 6
Object-Relational Mapping Concepts

6-8

Figure 6-8 EclipseLink Indirection

EclipseLink supports the following types of indirection:

• Value Holder Indirection

• Transparent Indirection

• Proxy Indirection

When using indirection with an object that your application serializes, you must
consider the effect of any untriggered indirection objects at deserialization time. See
Indirection, Serialization, and Detachment.

Indirection, Serialization, and Detachment
When using indirection (lazy loading), it is likely that a graph of persistent objects will
contain untriggered indirection objects

Chapter 6
Object-Relational Mapping Concepts

6-9

Because indirection objects are transient and do not survive serialization between one
JVM and another, untriggered indirection objects will trigger an error if the relationship
is accessed after deserialization.

The application must ensure that any indirect relationships that will be required after
deserialization have been instantiated before serialization. This can be done through
accessing the get method for any relationship using ValueHolder or weaved
indirection, and by calling the size method to any relationship using transparent
indirection. If the application desired the relationships to be always instantiated on
serialization, you could overwrite the serialization writeObject method in the
persistent class to first instantiate the desired relationships. Use caution for objects
with many or deep relationships to avoid serializing large object graphs: ideally, only
the relationships required by the client should be instantiated.

When serializing JPA entities, any lazy relationships that have not been instantiated
prior to serialization will trigger errors if they are accessed. If weaving is used on the
server, and the entities are serialized to a client, the same weaved classes must exist
on the client, either through static weaving of the jar, or through launching the client
JVM using the EclipseLink agent.

For more information, see Implementation Options.

Value Holder Indirection
Persistent classes that use indirection must replace relationship attributes with value
holder attributes.

A value holder is an instance of a class that implements
the ValueHolderInterface interface, such as ValueHolder. This object stores
the information necessary to retrieve the object it is replacing from the database. If the
application does not access the value holder, the replaced object is never read from
the database.

To obtain the object that the value holder replaces, use
the getValue and setValue methods of the ValueHolderInterface. A convenient
way of using these methods is to hide the getValue and setValue methods of
the ValueHolderInterface inside get and set methods, as shown in the following
illustrations.

This figure shows the Employee object being read from the database.
The Address object is not read and will not be created unless it is accessed.

Figure 6-9 Address Object Not Read

Chapter 6
Object-Relational Mapping Concepts

6-10

The first time the address is accessed, as in this figure, the ValueHolder reads and
returns the Address object.

Figure 6-10 Initial Request

Subsequent requests for the address do not access the database, as shown in this
figure.

Figure 6-11 Subsequent Requests

If you are using method access, the get and set methods specified in the mapping
must access the instance of ValueHolderInterface, rather than the object
referenced by the value holder. The application should not use these getter and setter,
but use the getter and setter that hide the usage of value holders.

Transparent Indirection
EclipseLink will use an indirection object that implements the appropriate interface and
also performs just-in-time reading of the related objects.

Transparent indirection lets you declare any relationship attribute of a persistent class
that holds a collection of related objects as any of the following Java objects:

• java.util.Collection

• java.util.Hastable

• java.util.List

• java.util.Map

• java.util.Set

• java.util.Vector

Chapter 6
Object-Relational Mapping Concepts

6-11

When using transparent indirection, you do not have to declare the attributes
as ValueHolderInterface.

Newly created collection mappings use transparent indirection by default if their
attribute is not a ValueHolderInterface.

You can configure EclipseLink to automatically weave transparent indirect container
indirection for JPA entities and Plain Old Java Object (POJO) classes. For more
information, see Implementation Optionsand About Weaving

.

Proxy Indirection
The Java class Proxy lets you use dynamic proxy objects as place-holders for a
defined interface.

Certain EclipseLink mappings can be configured to use proxy indirection, which gives
you the benefits of indirection without the need to include EclipseLink classes in your
domain model. Proxy indirection is to one-to-one relationship mappings as indirect
containers are to collection mappings.

To use proxy indirection, your domain model must satisfy all of the following criteria:

• The target class of the one-to-one relationship must implement a public interface.

• The one-to-one attribute on the source class must be of the interface type.

• If you employ method accessing, then the getter and setter methods must use the
interface.

Before using proxy indirection, be aware of the restrictions it places on how you use
the persistence unit (see “Proxy Indirection Restrictions”).

To configure proxy indirection, you can use JDeveloper or Java in an amendment
method.

Proxy Indirection Restrictions

Proxy objects in Java are only able to intercept messages sent. If a primitive operation
such as ==, instanceof, or getClass is used on a proxy, it will not be intercepted.
This limitation can require the application to be somewhat aware of the usage of proxy
objects.

You cannot register the target of a proxy indirection implementation with a persistence
unit. Instead, first register the source object with the persistence unit. This lets you
retrieve a target object clone with a call to a getter on the source object clone.

Weaved Indirection
For JPA entities or POJO classes that you configure for weaving, EclipseLink weaves
value holder indirection for one-to-one mappings.

If you want EclipseLink to weave change tracking and your application includes
collection mappings (one-to-many or many-to-many), then you must configure all
collection mappings to use transparent indirect container indirection only (you may not
configure your collection mappings to use eager loading nor value holder indirection).

For more information, see Implementation Options.

Chapter 6
Object-Relational Mapping Concepts

6-12

About JPA Mapping Types
To map entity classes to relational tables you must configure a mapping per persistent
field.

The following sections describe EclipeLink's JPA mapping types:

• Basic Mappings

• Default Conversions and Converters

• Collection Mappings

• Using Optimistic Locking

Basic Mappings

Simple Java types are mapped as part of the immediate state of an entity in its fields
or properties. Mappings of simple Java types are called basic mappings.

By default, the EclipseLink persistence provider automatically configures a basic
mapping for simple types.

Use the following annotations to fine-tune how your application implements these
mappings:

• @Basic

• @Enumerated

• @Temporal

• @Lob

• @Transient

• @Column

• Lazy Basics (See “Using Indirection with Collections,” below.)

For all mapping types there are a common set of options:

• Read-Only: Specifies that the mapping should populate the value on read and
copy. Required when multiple mappings share the same database column.

• Converters: Allows custom data types and data conversions to be used with most
mapping types

– Annotations: @Converter, @TypeConverter, @ObjectTypeConverter,
@StructConverter, @Convert

– External Metadata: <converter>, <type-converter>, <object-type-
converter>, <struct-converter>, <convert>

For more information on these annotations, see Java Persistence API (JPA)
Extensions Reference for EclipseLink.

Default Conversions and Converters

The section "Converter Annotations" in Java Persistence API (JPA) Extensions
Reference for EclipseLink provides a list of the converter annotation extensions
defined by EclipseLink and links to their descriptions.

Chapter 6
Object-Relational Mapping Concepts

6-13

See the individual converter annotations in Java Persistence API (JPA) Extensions
Reference for EclipseLink for descriptions of the following:

• the order in which the EclipseLink persistence provider searches the converter
annotations

• the types of classes for which you can specify converters (you can define
converters at the class, field and property level)

• the mappings with which you can use converters

Collection Mappings

You can access additional advanced mappings and mapping options through the
EclipseLink descriptor and mapping API using a DescriptorCustomizer class.

One-to-Many Mapping
One-to-many mappings are used to represent the relationship between a single source
object and a collection of target objects. They are a good example of something that is
simple to implement in Java using a Collection (or other collection types) of target
objects, but difficult to implement using relational databases.

In a Java Collection, the owner references its parts. In a relational database, the
parts reference their owner. Relational databases use this implementation to make
querying more efficient.

Figure 6-12 One-to-Many Relationships

Note:

The phone attribute shown in the One-to-Many Relationships is of type
Vector. You can use a Collection interface (or any class that
implements the Collection interface) for declaring the collection attribute.

JPA Mapping

Chapter 6
Object-Relational Mapping Concepts

6-14

By default, JPA automatically defines a OneToMany mapping for a many-valued
association with one-to-many multiplicity.

Use the @OneToMany annotation to do the following:

• configure the fetch type to EAGER

• configure the associated target entity, because the Collection used is not
defined using generics

• configure the operations that must be cascaded to the target of the association: for
example, if the owning entity is removed, ensure that the target of the association
is also removed

• configure the details of the join table used by the persistence provider for
unidirectional one-to-many relationships. For a one-to-many using
a mappedBy or JoinColumn, the deletion of the related objects is cascaded on
the database. For a one-to-many using a JoinTable, the deletion of the join table
is cascaded on the database (target objects cannot be cascaded even if private
because of constraint direction).

For more information, see Section 11.1.23 "JoinTable Annotation" in the JPA
Specification.

http://jcp.org/en/jsr/detail?id=338

Many-to-Many Mapping
Many-to-many mappings represent the relationships between a collection of source
objects and a collection of target objects. They require the creation of an intermediate
table for managing the associations between the source and target records.

This figure illustrates a many-to-many mapping in Java and in relational database
tables.

Chapter 6
Object-Relational Mapping Concepts

6-15

http://jcp.org/en/jsr/detail?id=338

Figure 6-13 Many-to-Many Relationships

Note:

For the projects attribute shown in the Many-to-many Relationships you can
use a Collection interface (or any class that implements
the Collection interface) for declaring the collection attribute.

JPA Mapping
By default, JPA automatically defines a many-to-many mapping for a many-valued
association with many-to-many multiplicity.

Use the @ManyToMany annotation to do the following:

• configure the FetchType to EAGER

• configure the mapping to forbid null values (for nonprimitive types) in case null
values are inappropriate for your application

• configure the associated target entity because the Collection used is not
defined using generics

Chapter 6
Object-Relational Mapping Concepts

6-16

• configure the operations that must be cascaded to the target of the association (for
example, if the owning entity is removed, ensure that the target of the association
is also removed)

For a list of supported attributes for the @ManyToMany annotation, see the Java
Persistence specification:

http://jcp.org/en/jsr/detail?id=338

Using Indirection with Collections
JPA specifies that lazy loading is a hint to the persistence provider that data should be
fetched lazily when it is first accessed, if possible. If you are developing your
application in a Java EE environment, set fetch
to javax.persistence.FetchType.LAZY, and the persistence provider supplies
all the necessary functionality.

When using a one-to-one or many-to-one mapping in a Java SE environment, use
either dynamic or static weaving to perform lazy loading when the fetch attribute is set
to FetchType.LAZY. Also in the Java SE environment, one-to-many and many-to-
many relationships are lazy by default and use transparent indirection, while one-to-
one and many-to-one relationships are not lazy.

When using a one-to-one or many-to-one mapping in a Java SE environment and the
environment does not permit the use of -javaagent on the JVM command line, use
static weaving to perform lazy loading when the fetch attribute is set
to FetchType.LAZY.

If you set one-to-one or many-to-one relationships to lazy, and you enable weaving,
the EclipseLink JPA persistence provider will use weaving to enable value holder
indirection for these relationships.

The collection annotations @OneToOne, @OneToMany, @ManyToMany,
and @ManyToOne provide a fetch mapping attribute which can be set to lazy or eager.
When you set the attribute to lazy, the EclipseLink JPA persistence provider uses
indirection.

Table 6-1 Support for Lazy Loading by Mapping Type

Mapping Java EE Java SE

Many-to-many Lazy loading is performed
when the fetch attribute is set
to javax.persistence.
FetchType.LAZY (default).

Lazy loading is performed
when the fetch attribute is set
to javax.persistence.F
etchType.LAZY (default).

One-to-many Lazy loading is performed
when the fetch attribute is set
to javax.persistence.
FetchType.LAZY (default).

Lazy loading is performed
when the fetch attribute is set
to
javax.persistence.Fe
tchType.Lazy (default).

One-to-one Lazy loading is performed
when the fetch attribute is set
to javax.persistence.
FetchType.LAZY.

The fetch attribute is ignored
and
default javax.persistenc
e.FetchType.EAGER appl
ies.

Chapter 6
Object-Relational Mapping Concepts

6-17

http://jcp.org/en/jsr/detail?id=338

Table 6-1 (Cont.) Support for Lazy Loading by Mapping Type

Mapping Java EE Java SE

Many-to-one Lazy loading is performed
when the fetch attribute is set
to javax.persistence.
FetchType.LAZY.

The fetch attribute is ignored
and
default javax.persistenc
e.FetchType.EAGER appl
ies

Basic Lazy loading is performed
when the fetch attribute is set
to javax.persistence.
FetchType.LAZY.

The fetch attribute is ignored
and
default javax.persisten
ce.FetchType.EAGER ap
plies

Using Optimistic Locking

Oracle recommends using optimistic locking. With optimistic locking, all users have
read access to the data. When a user attempts to write a change, the application
checks to ensure the data has not changed since the user read the data.

Optimistic Locking in a Stateless Environment
In a stateless environment, take care to avoid processing out-of-date (stale) data. A
common strategy for avoiding stale data is to implement optimistic locking, and store
the optimistic lock values in the object. This solution requires careful implementation if
the stateless application serializes the objects, or sends the contents of the object to
the client in an alternative format. In this case, transport the optimistic lock values to
the client in the HTTP contents of an edit page. You must then use the returned values
in any write transaction to ensure that the data did not change while the client was
performing its work.

You can use optimistic version locking or optimistic field locking policies. Oracle
recommends using version locking policies.

Optimistic Version Locking
Use the @Version annotation to enable the JPA-managed optimistic locking by
specifying the version field or property of an entity class that serves as its optimistic
lock value (recommended).

When choosing a version field or property, ensure that the following is true:

• there is only one version field or property per entity

• you choose a property or field persisted to the primary table

• your application does not modify the version property or field

For more information, see Section 11.1.45 "Table Annotation" in the JPA Specification.

http://jcp.org/en/jsr/detail?id=338

Chapter 6
Object-Relational Mapping Concepts

6-18

http://jcp.org/en/jsr/detail?id=338

Note:

The field or property type must either be a numeric type (such
as Number, long, int, BigDecimal, and so on), or
a java.sql.Timestamp. EclipseLink recommends using a numeric type.

The @Version annotation does not have attributes. The @Version annotation allows
you to use EclipseLink converters. See “Default Conversions and Converters,” above.

For more information, see Section 11.1.9 "Column Annotation" in the JPA
Specification.

http://jcp.org/en/jsr/detail?id=338

MOXy Mapping Concepts
XML mappings transform object data members to the XML elements of an XML
document whose structure is defined by an XML Schema Document (XSD).

You can map the attributes of a Java object to a combination of XML simple and
complex types using a wide variety of XML mapping types.

Classes are mapped to complex types, object relationships map to XML elements, and
simple attributes map to text nodes and XML attributes. The real power in using MOXy
is that when mapping an object attribute to an XML document, XPath statements are
used to specify the location of the XML data.

EclipseLink stores XML mappings for each class in the class descriptor. EclipseLink
uses the descriptor to instantiate objects mapped from an XML document and to store
new or modified objects as XML documents.

EclipseLink provides XML mappings that are not defined in the JAXB specification.
Some of the MOXy extensions are available through EclipseLink annotations; others
require programmatic changes to the underlying metadata.

Mapping concepts for MOXy are described in Developing JAXB Applications
EclipseLink MOXy. See the following chapters:

"EclipseLink MOXy Runtime" describes:

• the EclipseLink XML Bindings document, which is an alternative to the JAXB
annotations. Not only can XML Bindings separate your mapping information from
your actual Java class, it can also be used for more advanced metadata

• the several different bootstrapping options that you can use when creating
your JAXBContext.

• the MetadataSource interface, which is responsible for serving up EclipseLink
metadata. Providing an implementation of this interface allows you to store
mapping information outside of your application and have it retrieved when the
application's JAXBContext is being created or refreshed.

• schema generation and validation.

• the several mechanisms by which you can get event callbacks during the
marshalling and unmarshalling processes. You can specify callback methods

Chapter 6
MOXy Mapping Concepts

6-19

http://jcp.org/en/jsr/detail?id=338

directly on your mapped objects, or define separate Listener classes and
register them with the JAXB runtime

• querying objects by XPath. This is an alternative to using conventional Java
access methods to get and set your object's values. EclipseLink MOXy allows you
to access values using an XPath statement. There are special APIs on
EclipseLink's JAXBContext to allow you to get and set values by XPath.

• the use of the JAXB Binder interface, which allows you to preserve an entire XML
document, even if only some of the items are mapped.

"Mapping Type Levels" describes the initial tasks of setting up a mapping in MOXy:

• the default root element, which tells EclipseLink what the top-level root of your
XML document will be.

• namespace information for the Java class, and that all of the elements must be
qualified for the namespace. You can namespace-qualify the elements on the
package, type, or field/property level.

• the ways in which you can specify inheritance hierarchy in XML by
using xsi:type attribute, substitution groups, or the MOXY-
specific @XmlDiscriminatorNode and @XmlDiscriminatorValue annotation
s

"Mapping Simple Values" and "Mapping Special Schema Types" describes how Java
values can be mapped to XML in several different ways:

• Java values can be mapped to XML attributes, text nodes, schema types, or
simple type translators

• collections of simple Java values can be mapped to text nodes, text nodes within a
grouping element, list elements, or a collection
of XmlAttributes or XmlValues

• multiple Java mappings can be created for a single property using OXM metadata,
with the caveat that at most one mapping will be readable (the rest will be "write-
only")

• Java enums can be mapped to XML using
the @XmlEnum and @XmlEnumValue annotations

• dates and time: EclipseLink MOXy supports the following types which are not
covered in the JAXB specification: java.sql.Date java.sql.Time ,
and java.sql.Timestamp.

• union files: When EclipseLink unmarshalls the XML document, such as an XML
Schema Union, it tries each of the union types until it can make a successful
conversion. Currently, EclipseLink does not support the mapping of Unions using
Annotations or OXM Metadata. However, an EclipseLink XML Customizer can be
used to create the mapping.

• binary types: EclipseLink supports marshalling and unmarshalling binary data in
two different representation formats: base64Binary (default) and hexBinary. You
can specify the desired binary format using the @XmlSchemaType annotation,
or <xml-schema-type> element in EclipseLink OXM.

Understanding an XML Data Representation
Annotations are not always the most effective way to map JPA to XML.

Chapter 6
MOXy Mapping Concepts

6-20

For example, you would not use JAXB if:

• You want to specify metadata for a third-party class but do not have access to the
source.

• You want to map an object model to multiple XML schemas, because JAXB rules
preclude applying more than one mapping by using annotations.

• Your object model already contains too many annotations—for example, from
such services as JPA, Spring, JSR-303, and so on—and you want to specify the
metadata elsewhere.

Under these and similar circumstances, you can use an XML data representation by
exposing the eclipselink_oxm.xml file.

XML metadata works in two modes:

• It adds to the metadata supplied by annotations. This is useful when:

– Annotations define version one of the XML representation, and you use XML
metadata to tweak the metadata for future versions.

– You use the standard JAXB annotations, and use the XML metadata for the
MOXy extensions. In this way you don't introduce new compile time
dependencies in the object model.

• It completely replaces the annotation metadata, which is useful when you want to
map to different XML representations.

Mapping Values
There are several ways to map simple Java values and collections of simple values
directly to XML text nodes.

You can map to attributes, text nodes, or schema types. You can also use simple type
translators to map types of nodes that are not defined in your XML schema. These
techniques are described in "Mapping Simple Values" in Developing JAXB
Applications EclipseLink MOXy.

Object-JSON Mapping Concepts
EclipseLink MOXy supports the ability to convert objects to and from JSON
(JavaScript Object Notation).

This feature is useful when creating RESTful services; JAX-RS services can accept
both XML and JSON messages.

EclipseLink supports all MOXy object-to-XML options when reading and writing JSON,
including:

• EclipseLink's advanced and extended mapping features (in addition to the JAXB
specification)

• Storing mappings in external bindings files

• Creating dynamic models with Dynamic JAXB

• Building extensible models that support multitenant applications

EclipseLink provides the following support for mapping JSON documents:

Chapter 6
Object-JSON Mapping Concepts

6-21

• JSON bindings that do not require compile time dependencies, in addition to those
required for normal JAXB use. You can also write MOXy External Bindings files as
JSON documents.

• Although XML has a single datatype, JSON differentiates between strings,
numbers, and booleans. EclipseLink supports these datatypes automatically.

• JSON does not use attributes; anything mapped with
a @XmlAttribute annotation will be marshalled as an element. By default,
EclipseLink triggers both the attribute and element events, thereby allowing either
the mapped attribute or element to handle the value.

• EclipseLink supports JSON documents without a root element. By default, if
no @XmlRootElement annotation exists, the marshalled JSON document will not
have a root element. With EclipseLink, you can override this behavior (that is, omit
the root element from the JSON output).

• Because JSON does not use namespaces, all namespaces and prefixes are
ignored by default when marshaling and unmarshaling. With EclipseLink, you can
supply a Map of namespace-to-prefix (or an instance
of NamespacePrefixMapper) to the marshaller and unmarshaller. The
namespace prefix will appear in the marshalled document prepended to the
element name.

• By default, when marshalling to JSON, EclipseLink marshals empty collections as
[], EclipseLink allows you to override this behavior, so that empty collections are
not marshalled at all.

• You can marshal and unmarshal root-level collections.

For more information on EclipseLink support for JSON documents, see "Using JSON
Documents" in Developing JAXB Applications EclipseLink MOXy.

Chapter 6
Object-JSON Mapping Concepts

6-22

7
Understanding Data Access

The most important functions of a session is to provide access to a data source.

This chapter describes the concepts behind data access within a session that are
unique to EclipseLink.

Topics

• About Externally Managed Transactional Data Sources

• About Data Source Login Types

• About Data Source Platform Types

• About Authentication

• About Connections

• About Connection Pools

• About Data Partitioning Policies

• About Tenant Isolation

• About Heterogeneous Batch Writing

About Externally Managed Transactional Data Sources
EclipseLink transactional data sources are externally managed if the connection pool
is managed by a transaction service (such as an application server controlled
transaction or a JTA transaction).

A JTA managed data source or connection pool is commonly used in Java EE
applications and normally required in EJB applications. Use an externally-managed
connection pool as follows:

• Configure the session to use an ExternalTransactionController to
integrate EclipseLink's persistence unit with the external transaction service. Use
the eclipselink.target-server persistence unit property to configure the
name of the class that implements
the ExternalTransactionController interface.

• Use the boolean external-transaction-controller option on the
persistence unit to indicate that the transaction is managed by a transaction
manager and should not be managed by EclipseLink. This can also be used if the
datasource does not support transactions to specify the connection's login and
inform EclipseLink that the connection is maintained by the external controller.

• You may need to configure the EclipseLink read connection pool or sequence
connection pool to use a non-JTA connection pool in order to avoid transactional
overhead. For more information, see Default (Write) and Read Connection
Poolsand Sequence Connection Pools.

7-1

About Data Source Login Types
The login (if any) associated with a session determines how the EclipseLink runtime
connects to the project's data source.

For projects that do not persist to a data source, a login is not required. For projects
that do persist to a data source, a login is always required. A login includes details of
data source access, such as authentication, use of connection pools, and use of
external transaction controllers. A Login owns a data source platform.

A data source platform includes options specific to a particular data source including
binding, use of native SQL, use of batch writing, and sequencing.

You can use a login in a variety of roles. A login's role determines where and how you
create it. The login role you choose depends on the type of project you are creating
and how you intend to use the login.

There is a session login type for each project type that persists to a data source.

Note that there is no XML login. EclipseLink XML projects are used for nonpersistent,
in-memory object to XML data transformation and consequently there is no data
source to log in to.

If you are creating a project that accesses a relational database, you must configure
the project with a DatabaseLogin. Your choice of DatabasePlatform further
customizes your project for a particular type of database. can be configured through
the datasource-login persistence unit option. This option contains attributes for
configuring user name, password, the name of the class implementing the data source
platform, and others.

About Data Source Platform Types
EclipseLink abstracts the details of your underlying data source using data source
platform classes.

A data source platform is owned by your project's Login. Specify your database
platform at the project level for all sessions, or override this project-level configuration
at the session level.

To configure most platform options, you must use an amendment method, or
a preLogin event listener.

EclipseLink interacts with databases using structured query language (SQL). Because
each database platform uses its own variation on the basic SQL language, EclipseLink
must adjust the SQL it uses to communicate with the database to ensure that the
application runs smoothly.

The type of database platform you choose determines the specific means by which the
EclipseLink runtime accesses the database, including the type of Java Database
Connectivity (JDBC) driver to use. JDBC is an application programming interface (API)
that gives Java applications access to a database. EclipseLink relational projects rely
on JDBC connections to read objects from, and write objects to, the database.
EclipseLink applications use either individual JDBC connections or a JDBC connection
pool, depending on the application architecture.

Chapter 7
About Data Source Login Types

7-2

The DataPlatform class encapsulates behavior specific to a database platform
(such as, Oracle, Sybase, DBase), and provides the protocol for EclipseLink to access
this behavior

EclipseLink provides a variety of database-specific platforms that let you customize
your project for your target database. For a list of supported database platforms,
see org.eclipse.persistence.config.TargetDatabase class and Database
Support.

A list of supported application servers can be found
in org.eclipse.persistence.config.TargetServer and Application Server
Support. The name of the application server you wish to use can be specified with
the eclipselink.target-server.persistence unit property.

The datasource-login persistence unit option contains other data source
properties you can configure, such as user name, password, connection pooling, and
so on. You can implement the Login class, and then set properties specific to
database.

Simple JDBC Authentication
When you configure an EclipseLink database login with a user name and password,
EclipseLink provides these credentials to the JDBC driver that you configure your
application to use.

By default, EclipseLink reads passwords from the persistence.xml file.

Oracle Database Proxy Authentication
EclipseLink supports proxy authentication with Oracle Database in Java SE
applications and Java EE applications with the Oracle JDBC driver and external
connection pools only.

Note:

EclipseLink does not support Oracle Database proxy authentication with
JTA.

Oracle Database proxy authentication delivers the following security benefits:

• A limited trust model, by controlling the users on whose behalf middle tiers can
connect, and the roles the middle tiers can assume for the user.

• Scalability, by supporting user sessions through Oracle Call Interface (OCI) and
thick JDBC, and eliminating the overhead of reauthenticating clients.

• Accountability, by preserving the identity of the real user through to the database,
and enabling auditing of actions taken on behalf of the real user.

• Flexibility, by supporting environments in which users are known to the database,
and in which users are merely "application users" of which the database has no
awareness.

Chapter 7
About Data Source Platform Types

7-3

Note:

Oracle Database supports proxy authentication in three-tiers only; it does not
support it across multiple middle tiers.

For more information about authentication in Oracle Database, see "Preserving User
Identity in Multitiered Environments" in the Oracle Database Security Guide.

Configure your EclipseLink database login to use proxy authentication to do the
following:

• address the complexities of authentication in a three-tier architecture (such as
client-to-middle-tier and middle-tier-to-database authentication, and client
reauthentication through the middle -tier to the database)

• enhance database audit information (for even triggers and stored procedures) by
using a specific user for database operations, rather than the generic pool user

• simplify VPD/OLS configuration by using a proxy user, rather than setting user
information directly in the session context with stored procedures

Auditing
Regardless of what type of authentication you choose, EclipseLink logs the name of
the user associated with all database operations.

Example 7-1shows the CONFIG level EclipseLink logs when
a ServerSession connects through the main connection for the sample user "scott",
and a ClientSession uses proxy connection "jeff"

Your database server likely provides additional user auditing options. Consult your
database server documentation for details.

Alternatively, you may consider using the EclipseLink persistence unit in conjunction
with your database schema for auditing purposes.

Example 7-1 Logs with Oracle Database Proxy Authentication

[EclipseLink Config]--ServerSession(13)--Connection(14)--
Thread(Thread[main,5,main])--
connecting(DatabaseLogin(platform=>Oracle9Platform user name=> "scott"
connector=>OracleJDBC10_1_0_2ProxyConnector datasource name=>DS))
[EclipseLink Config]--ServerSession(13)--Connection(34)--
Thread(Thread[main,5,main])--Connected: jdbc:oracle:thin:@localhost:
1521:orcl User: SCOTT
[EclipseLink Config]--ClientSession(53)--Connection(54)--
Thread(Thread[main,5,main])--
connecting(DatabaseLogin(platform=>Oracle9Platform user name=> "scott"
connector=>OracleJDBC10_1_0_2ProxyConnector datasource name=>DS))
[EclipseLink Config]--ClientSession(53)--Connection(56)--
Thread(Thread[main,5,main])--Connected: jdbc:oracle:thin:@localhost:
1521:orcl User: jeff

Chapter 7
About Data Source Platform Types

7-4

About Authentication
Authentication is the means by which a data source validates a user's identity and
determines whether the user has sufficient privileges to perform a given action.

Authentication plays a central role in data security and user accountability and
auditing.

For two-tier applications, simple JDBC authentication is usually sufficient.

Topics

• Simple JDBC Authentication

• Oracle Database Proxy Authentication

• Auditing

Simple JDBC Authentication
When you configure an EclipseLink database login with a user name and password,
EclipseLink provides these credentials to the JDBC driver that you configure your
application to use.

By default, EclipseLink reads passwords from the persistence.xml file.

Oracle Database Proxy Authentication
EclipseLink supports proxy authentication with Oracle Database in Java SE
applications and Java EE applications with the Oracle JDBC driver and external
connection pools only.

Note:

EclipseLink does not support Oracle Database proxy authentication with
JTA.

Oracle Database proxy authentication delivers the following security benefits:

• A limited trust model, by controlling the users on whose behalf middle tiers can
connect, and the roles the middle tiers can assume for the user.

• Scalability, by supporting user sessions through Oracle Call Interface (OCI) and
thick JDBC, and eliminating the overhead of reauthenticating clients.

• Accountability, by preserving the identity of the real user through to the database,
and enabling auditing of actions taken on behalf of the real user.

• Flexibility, by supporting environments in which users are known to the database,
and in which users are merely "application users" of which the database has no
awareness.

Chapter 7
About Authentication

7-5

Note:

Oracle Database supports proxy authentication in three-tiers only; it does not
support it across multiple middle tiers.

For more information about authentication in Oracle Database, see "Preserving User
Identity in Multitiered Environments" in the Oracle Database Security Guide.

Configure your EclipseLink database login to use proxy authentication to do the
following:

• address the complexities of authentication in a three-tier architecture (such as
client-to-middle-tier and middle-tier-to-database authentication, and client
reauthentication through the middle -tier to the database)

• enhance database audit information (for even triggers and stored procedures) by
using a specific user for database operations, rather than the generic pool user

• simplify VPD/OLS configuration by using a proxy user, rather than setting user
information directly in the session context with stored procedures

Auditing
Regardless of what type of authentication you choose, EclipseLink logs the name of
the user associated with all database operations.

Example 7-1shows the CONFIG level EclipseLink logs when
a ServerSession connects through the main connection for the sample user "scott",
and a ClientSession uses proxy connection "jeff"

Your database server likely provides additional user auditing options. Consult your
database server documentation for details.

Alternatively, you may consider using the EclipseLink persistence unit in conjunction
with your database schema for auditing purposes.

Example 7-2 Logs with Oracle Database Proxy Authentication

[EclipseLink Config]--ServerSession(13)--Connection(14)--
Thread(Thread[main,5,main])--
connecting(DatabaseLogin(platform=>Oracle9Platform user name=> "scott"
connector=>OracleJDBC10_1_0_2ProxyConnector datasource name=>DS))
[EclipseLink Config]--ServerSession(13)--Connection(34)--
Thread(Thread[main,5,main])--Connected: jdbc:oracle:thin:@localhost:
1521:orcl User: SCOTT
[EclipseLink Config]--ClientSession(53)--Connection(54)--
Thread(Thread[main,5,main])--
connecting(DatabaseLogin(platform=>Oracle9Platform user name=> "scott"
connector=>OracleJDBC10_1_0_2ProxyConnector datasource name=>DS))
[EclipseLink Config]--ClientSession(53)--Connection(56)--
Thread(Thread[main,5,main])--Connected: jdbc:oracle:thin:@localhost:
1521:orcl User: jeff

Chapter 7
About Authentication

7-6

About Connections
A connection is an object that provides access to a data source by way of the driver
you configure your application to use. Relational projects use JDBC to connect to the
data source; EIS projects use JCA. EclipseLink uses the
interface org.eclipse.persistence.internal.databaseaccess.Accessor t
o wrap data source connections. This interface is accessible from certain events.

Typically, when using a server session, EclipseLink uses a different connection for
both reading and writing. This lets you use nontransactional connections for reading
and avoid maintaining connections when not required.

By default, an EclipseLink server session acquires connections lazily: that is, only
during the commit operation of a persistence unit. Alternatively, you can configure
EclipseLink to acquire a write connections at the time you acquire a client sessions.

Connections can be allocated from internal or external connection pools.

About Connection Pools
A connection pool is a service that creates and maintains a shared collection (pool)
of data source connections on behalf of one or more clients.

The connection pool provides a connection to a process on request, and returns the
connection to the pool when the process is finished using it. When it is returned to the
pool, the connection is available for other processes. Because establishing a
connection to a data source can be time-consuming, reusing such connections in a
connection pool can improve performance.

EclipseLink uses connection pools to manage and share the connections used by
server and client sessions. This feature reduces the number of connections required
and allows your application to support many clients.

You can configure your session to use internal connection pools provided by
EclipseLink or external connection pools provided by a JDBC driver or Java EE
container.

You can use connection pools in your EclipseLink application for a variety of purposes,
such as reading, writing, sequencing, and other application-specific functions.

Topics

• Internal Connection Pools

• External Connection Pools

• Default (Write) and Read Connection Pools

• Sequence Connection Pools

• Application-Specific Connection Pools

Internal Connection Pools
For non-Java EE applications, you typically use internal connection pools. By default,
EclipseLink sessions use internal connection pools.

Chapter 7
About Connections

7-7

Using internal connection pools, you can configure the default (write) and read
connection pools. You can also create additional connection pools for object identity,
or any other purpose.

Internal connection pools allow you to optimize the creation of read connections for
applications that read data only to display it and only infrequently modify data. This
also allow you to use Workbench to configure the default (write) and read connection
pools and to create additional connection pools for object identity or any other
purpose.

External Connection Pools
An external connection pool is a collection of reusable connections to a single data
source provided by a JDBC driver or Java EE container.

For Java EE applications, you typically use external connection pools.

If you are using an external transaction controller (JTA), you must use external
connection pools to integrate with the JTA.

Using external connection pools, you can use Java to configure the default (write) and
read connection pools and create additional connection pools for object identity, or any
other purpose.

External connection pools enable your EclipseLink application to do the following:

• Integrate into a Java EE-enabled system.

• Integrate with JTA transactions (JTA transactions require a JTA-enabled data
source).

• Leverage a shared connection pool in which multiple applications use the same
data source.

• Use a data source configured and managed directly on the server.

Default (Write) and Read Connection Pools
A server session provides a read connection pool and a write connection pool.

These could be different pools, or if you use external connection pooling, the same
connection pool.

All read queries use connections from the read connection pool and all queries that
write changes to the data source use connections from the write connection pool. You
can configure attributes of the default (write) and read connection pools.

Whenever a new connection is established, EclipseLink uses the connection
configuration you specify in your session's DatasourceLogin. Alternatively, when
you use an external transaction controller, you can define a separate connection
configuration for a read connection pool to avoid the additional overhead, if
appropriate.

Use the connection-pool.read property to configure a read connection pool for
non-transaction read queries. By default, EclipseLink does not use a separate read
connection pool; the default pool is used for read queries. For more information,
see connection-pool.read in Java Persistence API (JPA) Extensions Reference
for EclipseLink.

Chapter 7
About Connection Pools

7-8

Sequence Connection Pools
An essential part of maintaining object identity is sequencing–managing the
assignment of unique values to distinguish one instance from another

For more information, see About Cache Type and Size.

Sequencing involves reading and writing a special sequence resource maintained by
your data source.

By default, EclipseLink includes sequence operations in a separate transaction. This
avoids complications during the write transaction, which may lead to deadlocks over
the sequence resource. However, when using an external transaction controller (such
as a JTA data source or connection pool), EclipseLink cannot use a different
transaction for sequencing. Use a sequence connection pool to configure a non-JTA
transaction pool for sequencing. This is required only for table sequencing–not native
sequencing.

In each server session, you can create one connection pool, called a sequence
connection pool, that EclipseLink uses exclusively for sequencing. With a sequence
connection pool, EclipseLink satisfies a request for a new object identifier outside of
the transaction from which the request originates. This allows EclipseLink to
immediately commit an update to the sequence resource, which avoids deadlocks.

Note:

If you use a sequence connection pool and the original transaction fails, the
sequence operation does not roll back.

You should use a sequence connection pool, if the following applies:

• You use table sequencing (that is, non-native sequencing).

• You use external transaction controller (JTA).

You should not use a sequence connection pool, if the following applies:

• You do not use sequencing, or use the data source's native sequencing.

• You have configured the sequence table to avoid deadlocks.

• You use non-JTA data sources.

You can configure a sequence connection pool with
the eclipselink.connection-pool.sequence persistence unit property. This
property allows the connection pool to allocate generated IDs, and is required only
for TABLE sequencing. By default, EclipseLink does not use a separate sequence
connection pool; the default pool is used for sequencing. For more information,
see connection-pool.sequence in Java Persistence API (JPA) Extensions
Reference for EclipseLink.

Application-Specific Connection Pools
When you use internal EclipseLink connection pools in a session, you can create one
or more connection pools that you can use for any application purpose.

Chapter 7
About Connection Pools

7-9

These are called named connection pools, as you can give them any name you want
and use them for any purpose.

Typically, use these named connection pools to provide pools of different security
levels. For example, the "default" connection pool may only allow access to specific
tables but the "admin" connection pool may allow access to all tables.

About Data Partitioning Policies
Data partitioning allows an application to scale its data across more than a single
database machine.

For more information on data partitioning, see "Using Data Partitioning to Scale Data"
in Solutions Guide for EclipseLink.

Some databases support clustering the database across multiple machines. Oracle
RAC allows for a single database to span multiple different server nodes. Oracle RAC
also supports table and node partitioning of data. A database cluster allows for any of
the data to be accessed from any node in the cluster. However, it is generally more
efficient to partition the data access to specific nodes, to reduce cross node
communication. For more information, see "Clustered Databases and Oracle RAC"
in Solutions Guide for EclipseLink.

About Tenant Isolation
EclipseLink offers considerable flexibility in how you can design and implement
features for isolating tenants.

Eclipselink includes the following:

Application Isolation options

• Separate container/server

• Separate application within the same container/server

• Separate entity manager factory and shared cache within the same application

• Shared entity manager factory with tenant isolation per entity manager

Data isolation options

• Separate database

• Separate schema/tablespace

• Separate tables

• Shared table with row isolation

• Query filtering

• Oracle Virtual Private Database (VPD)

EclipseLink includes the following options for providing multi-tenancy in the
data source:

• Single-table multi-tenancy allows tenants to share tables. Each tenant has its
own rows, identified by discriminator columns, and those rows are invisible to
other tenants. See Single Table Multi-Tenancy.

Chapter 7
About Data Partitioning Policies

7-10

• With table-per-tenant multi-tenancy, each tenant has its own table or tables,
identified by table tenant discriminators, and those tables are invisible to other
users. See .

• With (VDP) multi-tenancy, tenants use a VDP database, which provides the
functionality to support multiple tenants sharing the same table. See .

Single Table Multi-Tenancy
With single-table multi-tenancy, any table (Table or SecondaryTable) to which an
entity or mapped superclass maps can include rows for multiple tenants.

Access to tenant-specific rows is restricted to the specified tenant.

Tenant-specific rows are associated with the tenant by using one or more tenant
discriminator columns. Discriminator columns are used with application context values
to limit what a persistence context can access.

The results of queries on the mapped tables are limited to the tenant discriminator
value(s) provided as property values. This applies to all insert, update, and delete
operations on the table. When multi-tenant metadata is applied at the mapped
superclass level, it is applied to all subentities unless they specify their own multi-
tenant metadata.

Table-Per-Tenant Multi-Tenancy
Table-per-tenant multi-tenancy allows multiple tenants of an application to isolate their
data in one or more tenant-specific tables.

Multiple tenants' tables can be in a shared schema, identified using a prefix or suffix
naming pattern; or they can be in separate, tenant-specific schemas. Table-per-tenant
entities can be mixed with other multi-tenant type entities within the same persistence
unit.

The table-per-tenant multi-tenant type is used in conjunction with:

• A tenant table discriminator that specifies the type of discriminator (schema or
name with prefix or suffix)

• A tenant ID to identify the user (configured per entity manager or at the entity
manager factory, if isolating the table-per-tenant per persistence unit.)

A single application instance with a shared EntityManagerFactory for a
persistence unit can be responsible for handling requests from multiple tenants.

Alternatively, separate EntityManagerFactory instances can be used for each
tenant. (This is required when using extensions per tenant.) In this case, tenant-
specific schema and table names are defined in an eclipselink-
orm.xml configuration file. A MetadataSource must be registered with a persistence
unit. The MetadataSource is used to support additional persistence unit metadata
provided from outside the application. See also metadata-source in Java
Persistence API (JPA) Extensions Reference for EclipseLink.

The table-per-tenant multi-tenant type enables individual tenant table(s) to be used at
the entity level. A tenant context property must be provided on each entity manager
after a transaction has started.

Chapter 7
About Tenant Isolation

7-11

• The table(s) (Table and SecondaryTable) for the entity are individual tenant
tables based on the tenant context. Relationships within an entity that uses a join
or a collection table are also assumed to exist within the table-per-tenant context.

• Multi-tenant metadata can only be applied at the root level of the inheritance
hierarchy when using a SINGLE_TABLE or JOINED inheritance strategy. Multi-
tenant metadata can be specified in a TABLE_PER_CLASS inheritance hierarchy.

For information on constructing table-per-tenant multi-tenancy, see "Using Table-Per-
Tenant Multi-Tenancy" in Solutions Guide for EclipseLink.

VPD Multi-Tenancy
A Virtual Private Database (VPD) uses security controls to restrict access to database
objects based on various parameters.

For example, the Oracle Virtual Private Database supports security policies that
control database access at the row and column level. Oracle VPD adds a
dynamic WHERE clause to SQL statements issued against the table, view, or synonym
to which the security policy was applied.

Oracle Virtual Private Database enforces security directly on the database tables,
views, or synonyms. Because security policies are attached directly to these database
objects, and the policies are automatically applied whenever a user accesses data,
there is no way to bypass security.

When a user directly or indirectly accesses a table, view, or synonym that is protected
with an Oracle Virtual Private Database policy, Oracle Database dynamically modifies
the SQL statement of the user. This modification creates a WHERE condition (called a
predicate) returned by a function implementing the security policy. Oracle Virtual
Private Database modifies the statement dynamically, transparently to the user, using
any condition that can be expressed in or returned by a function. Oracle Virtual Private
Database policies can be applied to SELECT, INSERT, UPDATE, INDEX,
and DELETE statements.

When using EclipseLink VPD Multitenancy, the database handles the tenant filtering
on all SELECT, INSERT, UPDATE, INDEX and DELETE queries.

To use EclipseLink VPD multi-tenancy, you must first configure VPD in the database
and then specify multi-tenancy on the entity or mapped superclass
using @Multitenant and @TenantDiscriminatorColumn annotations.

For more information on constructing VPD Multi-Tenancy, see “Using VPD Multi-
Tenancy” in Solutions Guide for EclipseLink.

About Heterogeneous Batch Writing
The current release provides persistence unit properties to optimize transactions with
multiple writes.

The eclipselink.jdbc.batch-writing property configures the use of batch
writing to optimize transactions with multiple writes. Batch writing allows multiple
heterogeneous dynamic SQL statements to be sent to the database as a single
execution, or multiple homogeneous parameterized SQL statements to be executed as
a single batch execution. Note that not all JDBC drivers, or databases support batch
writing.

Chapter 7
About Heterogeneous Batch Writing

7-12

The eclipselink.jdbc.batch-writing.size property configures the batch size
used for batch writing. For parameterized batch writing this is the number of
statements to batch, default 100. For dynamic batch writing, this is the size of the
batched SQL buffer, default 32k.

The eclipselink.jdbc.batch-writing persistence property can also be used
with query hints to configure if a modify query can be batched through batch writing.
Some types of queries cannot be batched, such as DDL on some databases.
Disabling batch writing will also allow the row count to be returned.

Chapter 7
About Heterogeneous Batch Writing

7-13

8
Understanding Caching

The EclipseLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values.

The cache improves performance by holding recently read or written objects and
accessing them in-memory to minimize database access, manage locking and
isolation level, and manage object identity.

The entity caching annotations defined by EclipseLink are listed in "Caching
Annotations" in Java Persistence API (JPA) Extensions Reference for EclipseLink.

EclipseLink also provides a number of persistence unit properties that you can specify
to configure the EclipseLink cache. These properties may compliment or provide an
alternative to annotations. For a list of these properties, see "Caching" in Java
Persistence API (JPA) Extensions Reference for EclipseLink.

Topics

• About Cache Architecture

• About Cache Type and Size

• About Queries and the Cache

• About Handling Stale Data

• About Explicit Query Refreshes

• About Cache Indexes

• Database Event Notification and Oracle CQN

• About Query Results Cache

• About Cache Coordination

• Clustering and Cache Coordination

• Clustering and Cache Consistency

• Cache Interceptors

About Cache Architecture
EclipseLink uses two types of cache: persistence unit cache (L2) and persistence
context cache (L1).

EclipseLink uses two types of cache: the shared persistence unit cache (L2)
maintains objects retrieved from and written to the data source; and the
isolated persistence context cache (L1) holds objects while they participate in
transactions. When a persistence context (entity manager) successfully commits to the
data source, EclipseLink updates the persistence unit cache accordingly. Conceptually
the persistence context cache is represented by the EntityManager and the
persistence unit cache is represented by the EntityManagerFactory.

8-1

Internally, EclipseLink stores the persistence unit cache on a EclipseLink session, and
the persistence context cache on a EclipseLink persistence unit. As the following
figure shows, the persistence unit (session) cache and the persistence context (unit of
work) cache work together with the data source connection to manage objects in a
EclipseLink application.

Read requests from the database are sent to the persistence unit (session) cache in
EclipseLink session. Write requests from the database are sent to the EclipseLink
persistence context (unit of work) cache. The persistence unit (session) cache
registers objects with the persistence context. During a commit or merge transaction,
the persistence context cache refreshes the persistence unit cache. The object life
cycle relies on these mechanisms.

Figure 8-1 Object Life Cycle and the EclipseLink Caches

Persistence Unit Cache

The persistence unit cache is a shared cache (L2) that services clients attached to a
given persistence unit. When you read objects from or write objects to the data source
using an EntityManager object, EclipseLink saves a copy of the objects in the
persistence unit's cache and makes them accessible to all other processes accessing
the same persistence unit.

EclipseLink adds objects to the persistence unit cache from the following:

• The data store, when EclipseLink executes a read operation

• The persistence context cache, when a persistence context successfully commits
a transaction

Chapter 8
About Cache Architecture

8-2

EclipseLink defines three cache isolation levels: Isolated, Shared, and Protected. For
more information on these levels, see Shared, Isolated, Protected, Weak, and Read-
only Caches.

There is a separate persistence unit cache for each unique persistence unit name.
Although the cache is conceptually stored with the EntityManagerFactory, two
factories with the same persistence unit name will share the same cache (and
effectively be the same persistence unit instance). If the same persistence unit is
deployed in two separate applications in Java EE, their full persistence unit name will
normally still be unique, and they will use separate caches. Certain persistence unit
properties, such as data-source, database URL, user, and tenant id can affect the
unique name of the persistence unit, and result in separate persistence unit instances
and separate caches. The eclipselink.session.name persistence unit property
can be used to force two persistence units to resolve to the same instance and share a
cache.

Persistence Context Cache
The persistence context cache is an isolated cache (L1) that services operations within
an EntityManager.

It maintains and isolates objects from the persistence unit cache, and writes changed
or new objects to the persistence unit cache after the persistence context commits
changes to the data source.

Note:

Only committed changes are merged into the shared persistence unit cache,
flush or other operations do not affect the persistence unit cache until the
transaction is committed.

The life-cycle for the persistence context cache differs between application managed,
and container managed persistence contexts. The persistence context (unit of work)
cache services operations within the persistence unit. It maintains and isolates objects
from the persistence context (session) cache, and writes changed or new objects to
the persistence context cache after the persistence unit commits changes to the data
source.

Application Managed Persistence Contexts

An application managed persistence context is created by the application from
an EntityManagerFactory. The application managed persistence context's cache
will remain until the EntityManager is closed or clear() is called. It is important to
keep application managed persistence units short lived, or to make use of clear() to
avoid the persistence context cache from growing too big, or from becoming out of
sync with the persistence unit cache and the database. Typically a
separate EntityManager should be created for each transaction or request.

An extended persistence context has the same caching behavior as an application
managed persistence context, even if it is managed by the container.

Chapter 8
About Cache Architecture

8-3

EclipseLink also supports a WEAK reference mode option for long lived persistence
contexts, such as two-tier applications. See Shared, Isolated, Protected, Weak, and
Read-only Caches.

Container Managed Persistence Contexts

A container managed persistence context is typically injected into a SessionBean or
other managed object by a Java EE container, or frameworks such as Spring. The
container managed persistence context's cache will only remain for the duration of the
transaction. Entities read in a transaction will become detached after the completion of
the transaction and will require merging or editing in subsequent transactions.

Note:

EclipseLink supports accessing an entity's LAZY relationships after the
persistence context has been closed.

Shared, Isolated, Protected, Weak, and Read-only Caches

EclipseLink defines three cache isolation levels. The cache isolation level defines how
caching for an entity is performed by the persistence unit and the persistence context.
The cache isolation levels can be set with the isolation attribute on
the @Cache annotation. the possible values of the isolation attribute are:

• isolated—entities are only cached in the persistence context, not in the
persistence unit. See “Isolated Cache.”

shared—entities are cached both in the persistence context and persistence unit,
read-only entities are shared and only cached in the persistence unit. See “Shared
Cache.”

• protected—entities are cached both in the persistence context and persistence
unit, read-only entities are isolated and cached in the persistence unit and
persistence context. See “Protected Cache.”

Isolated Cache

The isolated cache (L1) is the cache stored in the persistence context. It is a
transactional or user session based cache. Setting the cache isolation
to isolated for an entity disables its shared cache. With an isolated cache all queries
and find operations will access the database unless the object has already been read
into the persistence context and refreshing is not used.

Use a isolated cache to do the following:

• avoid caching highly volatile data in the shared cache

• achieve serializable transaction isolation

Each persistence context owns an initially empty isolated cache. The persistence
context's isolated cache is discarded when the persistence context is closed, or
the EntityManager.clear()operation is used.

When you use an EntityManager to read an isolated entity,
the EntityManager reads the entity directly from the database and stores it in the

Chapter 8
About Cache Architecture

8-4

persistence context's isolated cache. When you read a read-only entity it is still stored
in the isolated cache, but is not change tracked.

The persistence context can access the database using a connection pool or an
exclusive connection. The persistence unit
property eclipselink.jdbc.exclusive-connection.mode can be used to use
an exclusive connection. Using an exclusive connection provides improved user-based
security for reads and writes. Specific queries can also be configured to use the
persistence context's exclusive connection.

Note:

If an EntityManager contains an exclusive connection, you must close
the EntityManager when you are finished using it. We do not recommend
relying on the finalizer to release the connection when
the EntityManager is garbage-collected. If you are using a managed
persistence context, then you do not need to close it.

Shared Cache

The shared cache (L2) is the cache stored in the persistence unit. It is a shared object
cache for the entire persistence unit. Setting the cache isolation to shared for an entity
enables its shared cache. With a shared cache queries and find operations will resolve
against the shared cache unless refreshing is used.

Use a shared cache to do the following:

• improve performance by avoiding database access when finding or querying an
entity by Id or index;

• improve performance by avoiding database access when accessing an entity's
relationships;

• preserve object identity across persistence contexts for read-only entities.

When you use an EntityManager to find a shared entity, the EntityManager first checks
the persistence unit's shared cache. If the entity is not in the persistence unit's shared
cache, it will be read from the database and stored in the persistence unit's shared
cache, a copy will also be stored in the persistence context's isolated cache. Any
query not by Id, and not by an indexed attribute will first access the database. For
each query result row, if the object is already in the shared cache, the shared object
(with its relationships) will be used, otherwise a new object will be built from the row
and put into the shared cache, and a copy will be put into the isolated cache. The
isolated copy is always returned, unless read-only is used. For read-only the shared
object is returned as the isolated copy is not required.

The size and memory usage of the shared cache depends on the entities cache type.
attributes on the @Cache annotation can also be used to invalidate or clear the cache.

Protected Cache

The protected cache option allows for shared objects to reference isolated objects.
Setting the cache isolation to protected for an entity enables its shared cache. The
protected option is mostly the same as the shared option, except that protected
entities can have relationships to isolated entities, whereas shared cannot.

Chapter 8
About Cache Architecture

8-5

Use a protected cache to do the following:

• improve performance by avoiding database access when finding or querying an
entity by Id or index

• improve performance by avoiding database access when accessing an entity's
relationships to shared entities

• ensure read-only entities are isolated to the persistence context

• allow relationships to isolated entities

Protected entities have the same life-cycle as shared entities, except for relationships,
and read-only. Protected entities relationships to shared entities are cached in the
shared cache, but their relationships to isolated entities are isolated and not cached in
the shared cache. The @Noncacheable annotation can also be used to disable
caching of a relationship to shared entities. Protected entities that are read-only are
always copied into the isolated cache, but are not change tracked.

Weak Reference Mode

EclipseLink offers a specialized persistence context cache for long-lived persistence
contexts. Normally it is best to keep persistence contexts short-lived, such as creating
a new EntityManager per request, or per transaction. This is referred to as a
stateless model. This ensures the persistence context does not become too big,
causing memory and performance issues. It also ensures the objects cached in the
persistence context do not become stale or out of sync with their committed state.

Some two-tier applications, or stateful models require long-lived persistence contexts.
EclipseLink offers a special weak reference mode option for these types of
applications. A weak reference mode maintains weak references to the objects in the
persistence context. This allows the objects to garbage-collected if not referenced by
the application. This helps prevent the persistence context from becoming too big,
reducing memory usage and improving performance. Any new, removed or changed
objects will be held with strong references until a commit occurs.

A weak reference mode can be configured through
the eclipselink.persistence-context.reference-mode persistence unit
property. The following options can be used:

• HARD—This is the default, weak references are not used. The persistence context
will grow until cleared or closed.

• WEAK—Weak references are used. Unreferenced unchanged objects will be
eligible for garbage collection. Objects that use deferred change tracking will not
be eligible for garbage collection.

• FORCE_WEAK—Weak references are used. Unreferenced, unchanged objects will
be eligible for garbage collection. Changed (but unreferenced) objects that use
deferred change tracking will also be eligible for garbage collection, causing any
changes to be lost.

Read-Only Entities

An entity can be configured as read-only using the @ReadOnly annotation or the read-
only XML attribute. A read-only entity will not be tracked for changes and any updates
will be ignored. Read-only entities cannot be persisted or removed. A read-only entity
must not be modified, but EclipseLink does not currently enforce this. Modification to
read-only objects can corrupt the persistence unit cache.

Chapter 8
About Cache Architecture

8-6

Queries can also be configured to return read-only objects using
the eclipselink.read-only query hint.

A shared entity that is read-only will return the shared instance from queries. The
same entity will be returned from all queries from all persistence contexts. Shared
read-only entities will never be copied or isolated in the persistence context. This
improves performance by avoiding the cost of copying the object, and tracking the
object for changes. This both reduces memory, reduces heap usage, and improves
performance. Object identity is also maintained across the entire persistence unit for
read-only entities, allowing the application to hold references to these shared objects.

An isolated or protected entity that is read-only will still have an isolated copy returned
from the persistence context. This gives some improvement in performance and
memory usage because it does not track the object for changes, but it is not as
significant as shared entities.

About Cache Type and Size
EclipseLink provides several different cache types which have different memory
requirements.

The size of the cache (in number of cached objects) can also be configured. The
cache type and size to use depends on the application, the possibility of stale data, the
amount of memory available in the JVM and on the machine, the garbage collection
cost, and the amount of data in the database.

The cache type of the shared object cache and its size can be configured with
the type and size attributes of the @Cache annotation. In addition, the cache type for
the query results cache can be configured with the eclipselink.query-results-
cache.type persistence unit property. For more information, see
the @Cache annotation and eclipselink.query-results-
cache.type persistence unit property descriptions in the Java Persistence API (JPA)
Extensions Reference for EclipseLink.

By default, EclipseLink uses a SOFT_WEAK with an initial size of 100 objects. The
cache size is not fixed, but just the initial size, EclipseLink will never eject an object
from the cache until it has been garbage collected from memory. It will eject the object
if the CACHE type is used, but this is not recommended. The cache size of
the SOFT_WEAK and HARD_WEAK is also the size of the soft or hard sub-cache that can
determine a minimum number of objects to hold in memory.

You can configure how object identity is managed on a class-by-class basis.
The ClassDescriptor object provides the cache and identity map options described
in this table:

Table 8-1 Cache and Identity Map Options

Option Caching Guaranteed Identity Memory Use

FULL Cache Type Yes Yes Very High

WEAK Cache Type Yes Yes Low

SOFT Cache Type Yes Yes High

SOFT_WEAK and
HARD_WEAK Cache
Type

Yes Yes Medium-high

Chapter 8
About Cache Type and Size

8-7

There are two other options: NONE and CACHE. These options are not recommend.

The value of the type attribute can be overridden with these persistence unit
properties: eclipselink.cache.type.<ENTITY> and eclipselink.cache.ty
pe.default.

FULL Cache Type
This option provides full caching and guaranteed identity: objects are never flushed
from memory unless they are deleted.

It caches all objects and does not remove them. Cache size doubles whenever the
maximum size is reached. This method may be memory-intensive when many objects
are read. Do not use this option on batch operations.

Oracle recommends using this identity map when the data set size is small and
memory is in large supply.

WEAK Cache Type
This option only caches objects that have not been garbage collected.

Any object still referenced by the application will still be cached.

The weak cache type uses less memory than full identity map but also does not
provide a durable caching strategy across client/server transactions. Objects are
available for garbage collection when the application no longer references them on the
server side (that is, from within the server JVM).

SOFT Cache Type
This option is similar to the weak cache type, except that the cache uses soft
references instead of weak references.

Any object still referenced by the application will still be cached, and objects will only
be removed from the cache when memory is low.

The soft identity map allows for optimal caching of the objects, while still allowing the
JVM to garbage collect the objects if memory is low.

SOFT_WEAK and HARD_WEAK Cache Type
These options are similar to the weak cache except that they maintain a most
frequently used sub-cache.

The sub-cache uses soft or hard references to ensure that these objects are not
garbage collected, or only garbage collected only if the JVM is low on memory.

The soft cache and hard cache provide more efficient memory use. They release
objects as they are garbage-collected, except for a fixed number of most recently used
objects. Note that weakly cached objects might be flushed if the transaction spans
multiple client/server invocations. The size of the sub-cache is proportional to the size
of the cache as specified by the @Cache size attribute. You should set the cache size
to the number of objects you wish to hold in your transaction.

Chapter 8
About Cache Type and Size

8-8

Oracle recommends using this cache in most circumstances as a means to control
memory used by the cache.

NONE and CACHE
NONE and CACHE options do not preserve object identity and should only be used in
very specific circumstances.

NONE does not cache any objects. CACHE only caches a fixed number of objects in an
LRU fashion. These cache types should only be used if there are no relationships to
the objects. Oracle does not recommend using these options. To disable caching, set
the cache isolation to ISOLATED instead.

Guidelines for Configuring the Cache and Identity Maps
Use the following guidelines when configuring your cache type:

• For objects with a long life span, use a SOFT, SOFT_WEAK, or HARD_WEAK cache
type. For more information on when to choose one or the other, see “About the
Internals of Weak, Soft, and Hard Cache Types.”

• For objects with a short life span, use a WEAK cache type.

• For objects with a long life span, that have few instances, such as reference data,
use a FULL cache type.

Note:

Use the FULL cache type only if the class has a small number of finite
instances. Otherwise, a memory leak will occur.

• If caching is not required or desired, disable the shared cache by setting the cache
isolation to ISOLATED.

Note:

Oracle does not recommend the use of CACHE and NONE cache types.

About the Internals of Weak, Soft, and Hard Cache Types

The WEAK and SOFT cache types use JVM weak and soft references to ensure that
any object referenced by the application is held in the cache. Once the application
releases its reference to the object, the JVM is free to garbage collection the objects.
When a weak or a soft reference is garbage collected is determined by the JVM. In
general, expect a weak reference to be garbage collected with each JVM garbage-
collection operation.

The SOFT_WEAK and HARD_WEAK cache types contain the following two caches:

• Reference cache: implemented as a LinkedList that contains soft or hard
references, respectively.

• Weak cache: implemented as a Map that contains weak references.

Chapter 8
About Cache Type and Size

8-9

When you create a SOFT_WEAK or HARD_WEAK cache with a specified size, the
reference cache LinkedList is exactly this size. The weak cache Map has the size as
its initial size: the weak cache will grow when more objects than the specified size are
read in. Because EclipseLink does not control garbage collection, the JVM can reap
the weakly held objects whenever it sees fit.

Because the reference cache is implemented as a LinkedList, new objects are added
to the end of the list. Because of this, it is by nature a least recently used (LRU) cache:
fixed size, object at the top of the list is deleted, provided the maximum size has been
reached.

The SOFT_WEAK and HARD_WEAK are essentially the same type of cache.
The HARD_WEAK was constructed to work around an issue with some JVMs.

If your application reaches a low system memory condition frequently enough, or if
your platform's JVM treats weak and soft references the same, the objects in the
reference cache may be garbage-collected so often that you will not benefit from the
performance improvement provided by it. If this is the case, Oracle recommends that
you use the HARD_WEAK. It is identical to the SOFT_WEAK except that it uses hard
references in the reference cache. This guarantees that your application will benefit
from the performance improvement provided by it.

When an object in a HARD_WEAK or SOFT_WEAK is pushed out of the reference cache,
it gets put in the weak cache. Although it is still cached, EclipseLink cannot guarantee
that it will be there for any length of time because the JVM can decide to garbage-
collect weak references at anytime.

About Queries and the Cache
A query that is run against the shared persistence unit (session) cache is known as
an in-memory query.

Careful configuration of in-memory querying can improve performance.

By default, a query that looks for a single object based on primary key attempts to
retrieve the required object from the cache first, and searches the data source only if
the object is not in the cache. All other query types search the database first, by
default. You can specify whether a given query runs against the in-memory cache, the
database, or both.

About Query Cache Options and In-memory Querying
JPA defines standard query hints for configuring how a query interacts with the shared
persistence unit cache (L2).

EclipseLink also provides some additional query hints for configuring the cache usage.
For information on JPA and EclipseLink query hints, see About Query Hints.

Entities can be accessed through JPA using either find() method or queries.
The find() method will first check the persistence context cache (L1) for the Id, if
the object is not found it will check the shared persistence unit cache (L2), if the object
is still not found it will access the database. By default all queries will access the
database, unless querying by Id or by cache indexed fields. Once the query retrieves
the rows from the database, it will resolve each row with the cache. If the object is
already in the cache, then the row will be discarded, and the object will be used. If the
object is not in the shared cache, then it will be built from the row and put into the

Chapter 8
About Queries and the Cache

8-10

shared cache. A copy will also be put in the persistence context cache and returned as
the query result.

This is the general process, but it differs if the transaction is dirty. If the transaction is
dirty then the shared persistence unit cache will be ignored and objects will be built
directly into the persistence context cache.

A transaction is considered dirty in the following circumstances:

• A flush() has written changes to the database.

• A pessimistic lock query has been executed.

• An update or delete query has been executed.

• A native SQL query has been executed.

• This persistence unit property eclipselink.transaction.join-existing is
used.

• The JDBC connection has been unwrapped from the EntityManager.

• The UnitOfWork API beginEarlyTransaction has been called.

Entities can also be configured to be isolated, or noncacheable, in which case they will
never be placed in the shared cache (see Shared, Isolated, Protected, Weak, and
Read-only Caches).

About Handling Stale Data
Stale data is an artifact of caching, in which an object in the cache is not the most
recent version committed to the data source.

To avoid stale data, implement an appropriate cache locking strategy.

By default, EclipseLink optimizes concurrency to minimize cache locking during read
or write operations. Use the default EclipseLink isolation level, unless you have a very
specific reason to change it. For more information on isolation levels in EclipseLink,
see Shared, Isolated, Protected, Weak, and Read-only Caches.

Cache locking regulates when processes read or write an object. Depending on how
you configure it, cache locking determines whether a process can read or write an
object that is in use within another process.

A well-managed cache makes your application more efficient. There are very few
cases in which you turn the cache off entirely, because the cache reduces database
access, and is an important part of managing object identity.

To make the most of your cache strategy and to minimize your application's exposure
to stale data, Oracle recommends the following:

Topics

• Configuring a Locking Policy

• Configuring the Cache on a Per-Class Basis

• Forcing a Cache Refresh when Required on a Per-Query Basis

• Configuring Cache Invalidation

• Configuring Cache Coordination

Chapter 8
About Handling Stale Data

8-11

Configuring a Locking Policy
Make sure you configure a locking policy so that you can prevent or at least identify
when values have already changed on an object you are modifying.

Typically, this is done using optimistic locking. EclipseLink offers several locking
policies such as numeric version field, time-stamp version field, and some or all fields.
Optimistic and pessimistic locking are described in the following sections.

Optimistic Locking

Oracle recommends using EclipseLink optimistic locking. With optimistic locking, all
users have read access to the data. When a user attempts to write a change, the
application checks to ensure the data has not changed since the user read the data.
Use @OptimisticLocking to specify the type of optimistic locking EclipseLink
should use when updating or deleting entities.

You can use version or field locking policies. Oracle recommends using version
locking policies. The standard JPA @Version annotation is used for single valued
value and timestamp based locking. However, for advanced locking features use
the @OptimisticLocking annotation. The @OptimisticLocking annotation
specifies the type of optimistic locking to use when updating or deleting entities.
Optimistic locking is supported on an @Entity or @MappedSuperclass annotation.

For more information on the OptimisticLocking annotation and the types of
locking you can use, see "@OptimisticLocking" in Java Persistence API (JPA)
Extensions Reference for EclipseLink.

For more information, see Descriptors and Locking.

Pessimistic Locking

With pessimistic locking, the first user who accesses the data with the purpose of
updating it locks the data until completing the update. The disadvantage of this
approach is that it may lead to reduced concurrency and deadlocks. Use
the eclipselink.pessimistic-lock property to specify if EclipseLink uses
pessimistic locking. For more information, see "eclipselink.pessimistic-lock" in Java
Persistence API (JPA) Extensions Reference for EclipseLink.

Consider using pessimistic locking support at the query level. See Descriptors and
Locking.

Configuring the Cache on a Per-Class Basis
If other applications can modify the data used by a particular class, use a weaker style
of cache for the class.

For example, the @Cache type attribute values WEAK and SOFT_WEAK minimizes the
length of time the cache maintains an object whose reference has been removed. For
more information about cache types, see About Cache Type and Size.

Forcing a Cache Refresh when Required on a Per-Query Basis
Any query can include a flag that forces EclipseLink to go to the data source for the
most recent version of selected objects and update the cache with this information.

Chapter 8
About Handling Stale Data

8-12

For more information, see About Explicit Query Refreshes. See also "Refreshing the
Cache" in Solutions Guide for EclipseLink.

Configuring Cache Invalidation
You can configure any entity with an expiry that lets you specify either the number of
milliseconds after which an entity instance should expire from the cache, or a time of
day that all instances of the entity class should expire from the cache.

Expiry is set on the @Cache annotation or <cache> XML element, and can be
configured either with the expiry or with the expiryTimOfDay attribute. For more
information, see "Setting Entity Caching Expiration" in Solutions Guide for EclipseLink.

Configuring Cache Coordination

If your application is primarily read-based and the changes are all being performed by
the same Java application operating with multiple, distributed sessions, you may
consider using the EclipseLink cache coordination feature. Although this will not
prevent stale data, it should greatly minimize it. For more information, see About
Cache Coordination and Clustering and Cache Coordination.

About Explicit Query Refreshes
Some distributed systems require only a small number of objects to be consistent
across the servers in the system.

Conversely, other systems require that several specific objects must always be
guaranteed to be up-to-date, regardless of the cost. If you build such a system, you
can explicitly refresh selected objects from the database at appropriate intervals,
without incurring the full cost of distributed cache coordination.

To implement this type of strategy, do the following:

1. Configure a set of queries that refresh the required objects.

2. Establish an appropriate refresh policy.

3. Invoke the queries as required to refresh the objects.

The @Cache annotation provides
the alwaysRefresh and refreshOnlyIfNewer attributes which force all queries
that go to the database to refresh the cache. The cache is only actually refreshed if the
optimistic lock value in the database is newer than in the cache. For more information,
see "Refreshing the Cache" in Solutions Guide for EclipseLink.

When you execute a query, if the required objects are in the cache, EclipseLink
returns the cached objects without checking the database for a more recent version.
This reduces the number of objects that EclipseLink must build from database results,
and is optimal for noncoordinated cache environments. However, this may not always
be the best strategy for a coordinated cache environment.

To override this behavior, set the alwaysRefresh attribute to specify that the objects
from the database always take precedence over objects in the cache. This updates the
cached objects with the data from the database.

Chapter 8
About Explicit Query Refreshes

8-13

You can implement this type of refresh policy on each EclipseLink entity, or just on
certain queries, depending upon the nature of the application.

About Cache Indexes
The EclipseLink cache is indexed by the entity's Id.

This allows the find() operation, relationships, and queries by Id to obtain cache
hits and avoid database access. The cache is not used by default for any non-Id
query. All non-Id queries will access the database then resolve with the cache for each
row returned in the result-set.

Applications tend to have other unique keys in their model in addition to their Id. This is
quite common when a generated Id is used. The application frequently queries on
these unique keys, and it is desirable to be able to obtain cache hits to avoid database
access on these queries.

Cache indexes allow an in-memory index to be created in the EclipseLink cache to
allow cache hits on non-Id fields. The cache index can be on a single field, or on a set
of fields. The indexed fields can be updateable, and although they should be unique,
this is not a requirement. Queries that contain the indexed fields will be able to obtain
cache hits. Only single results can be obtained from indexed queries.

Cache indexes can be configured using
the @CacheIndex and @CacheIndexes annotations and <cache-index> XML
element. A @CacheIndex can be defined on the entity, or on an attribute to index the
attribute. Indexes defined on the entity must define the columnNames used for the
index. An index can be configured to be re-indexed when the object is updated using
the updateable attribute.

It is still possible to cache query results for non-indexed queries using the query result
cache. For more information, see About Query Results Cache.

Database Event Notification and Oracle CQN
Some databases and database products allow events to be raised from the database
when rows are updated or deleted.

EclipseLink supports an API to allow the database to notify EclipseLink of database
changes, so the changed objects can be invalidated in the EclipseLink shared cache.
This allows a shared cache to be used, and stale data to be avoided, even if other
applications access the same data in the database. EclipseLink supports integration
with the Oracle Database feature for Database Change Notification CQN. A
custom DatabaseEventListener may be provided for other databases and
products that support database events.

There are also other solutions to caching in a shared environment, including:

• Disable the shared cache (through setting @Cacheable(false),
or @Cache(isolation=ISOLATED)).

• Only cache read-only objects.

• Set a cache invalidation timeout to reduce stale data.

• Use refreshing on objects/queries when fresh data is required.

Chapter 8
About Cache Indexes

8-14

• Use optimistic locking to ensure write consistency (writes on stale data will fail,
and will automatically invalidate the cache).

The JPA Cache API and the EclipseLink JpaCache API can also be used directly to
invalidate objects in the shared cache by the application. EclipseLink cache
coordination could also be used to send invalidation messages to a cluster of
EclipseLink persistence units.

Database events can reduce the chance of an application getting stale data, but do not
eliminate the possibility. Optimistic locking should still be used to ensure data integrity.
Even in a single server application stale data is still possible within a persistence
context unless pessimistic locking is used. Optimistic (or pessimistic) locking is always
required to ensure data integrity in any multi-user system.

Oracle Continuous Query Notification
The Oracle database released a Continuous Query Notification (CQN) feature in the
10.2 release.

The Oracle database released a Continuous Query Notification (CQN) feature in the
10.2 release. CQN allows for database events to be raised when the rows in a table
are modified. The JDBC API for CQN was not complete until 11.2, so 11.2 is required
for EclipseLink's integration.

EclipseLink CQN support is enabled by
the OracleChangeNotificationListener listener which integrates with Oracle
JDBC to received database change events. Use the eclipselink.cache.database-
event-listener property to configure the full class name of the listener.

By default all tables in the persistence unit are registered for change notification, but
this can be configured using the databaseChangeNotificationType attribute of
the @Cache annotation to selectively disable change notification for certain classes.

Oracle CQN uses the ROWID to inform of row level changes. This requires EclipseLink
to include the ROWID in all queries for a CQN enabled class. EclipseLink must also
select the object's ROWID after an insert operation. EclipseLink must maintain a cache
index on the ROWID, in addition to the object's Id. EclipseLink also selects the
database transaction Id once each transaction to avoid invalidating the cache on the
server that is processing the transaction.

EclipseLink's CQN integration has the following limitations:

• Changes to an object's secondary tables will not trigger it to be invalidate unless a
version is used and updated in the primary table.

• Changes to an object's OneToMany, ManyToMany, and ElementCollection
relationships will not trigger it to be invalidate unless a version is used and
updated in the primary table.

About Query Results Cache
The EclipseLink query results cache allows the results of named queries to be cached,
similar to how objects are cached.

By default in EclipseLink all queries access the database, unless they are by Id, or by
cache-indexed fields. The resulting rows will still be resolved with the cache, and
further queries for relationships will be avoided if the object is cached, but the original

Chapter 8
About Query Results Cache

8-15

query will always access the database. EclipseLink does have options for querying the
cache, but these options are not used by default, as EclipseLink cannot assume that
all of the objects in the database are in the cache. The query results cache allows for
non-indexed and result list queries to still benefit from caching.

The query results cache is indexed by the name of the query, and the parameters of
the query. Only named queries can have their results cached, dynamic queries cannot
use the query results cache. As well, if you modify a named query before execution,
such as setting hints or properties, then it cannot use the cached results.

The query results cache does not pick up committed changes from the application as
the object cache does. It should only be used to cache read-only objects, or should
use an invalidation policy to avoid caching stale results. Committed changes to the
objects in the result set will still be picked up, but changes that affect the results set
(such as new or changed objects that should be added/removed from the result set)
will not be picked up.

The query results cache supports a fixed size, cache type, and invalidation options.

About Cache Coordination
The need to maintain up-to-date data for all applications is a key design challenge for
building a distributed application.

The difficulty of this increases as the number of servers within an environment
increases. EclipseLink provides a distributed cache coordination feature that ensures
data in distributed applications remains current.

Cache coordination reduces the number of optimistic lock exceptions encountered in a
distributed architecture, and decreases the number of failed or repeated transactions
in an application. However, cache coordination in no way eliminates the need for an
effective locking policy. To effectively ensure working with up-to-date data, cache
coordination must be used with optimistic or pessimistic locking. Oracle recommends
that you use cache coordination with an optimistic locking policy.

Tune the EclipseLink cache for each class to help eliminate the need for distributed
cache coordination. Always tune these settings before implementing cache
coordination. For more information, see "Monitoring and Optimizing EclipseLink-
Enabled Applications" in Solutions Guide for EclipseLink.

You can use cache invalidation to improve cache coordination efficiency. For more
information, see "Setting Entity Caching Expiration" in Solutions Guide for EclipseLink.

As this figure shows, cache coordination is a session feature that allows multiple,
possibly distributed, instances of a session to broadcast object changes among each
other so that each session's cache is either kept up-to-date or notified that the cache
must update an object from the data source the next time it is read.

Note:

You cannot use isolated client sessions with cache coordination. For more
information, see Shared, Isolated, Protected, Weak, and Read-only Caches

.

Chapter 8
About Cache Coordination

8-16

Figure 8-2 Coordinated Persistence Unit (Session) Caches

When sessions are distributed, that is, when an application contains multiple sessions
(in the same JVM, in multiple JVMs, possibly on different servers), as long as the
servers hosting the sessions are interconnected on the network, sessions can
participate in cache coordination. Coordinated cache types that require discovery
services also require the servers to support User Datagram Protocol (UDP)
communication and multicast configuration. For more information, see Coordinating
JMS and RMI Caches.

When to Use Cache Coordination

Cache coordination can enhance performance and reduce the likelihood of stale data
for applications that have the following characteristics:

• Changes are all being performed by the same Java application operating with
multiple, distributed sessions

• Primarily read-based

• Regularly requests and updates the same objects

To maximize performance, avoid cache coordination for applications that do not have
these characteristics.

For other options to reduce the likelihood of stale data, see About Handling Stale Data

.

Chapter 8
About Cache Coordination

8-17

Clustering and Cache Coordination
An application cluster is a set of middle tier server machines or VMs servicing requests
for a single application, or set of applications.

Multiple servers are used to increase the scalability of the application and/or to provide
fault tolerance and high availability. Typically the same application will be deployed to
all of the servers in the cluster and application requests will be load balanced across
the set of servers. The application cluster will access a single database, or a database
cluster. An application cluster may allow new servers to be added to increase
scalability, and for servers to be removed such as for updates and servicing.

Application clusters can consist of Java EE servers, Web containers, or Java server
applications.

EclipseLink can function in any clustered environment. The main issue in a clustered
environment is utilizing a shared persistence unit (L2) cache. If you are using a shared
cache (enabled by default in EclipseLink projects), then each server will maintain its
own cache, and each caches data can get out of synchronization with the other
servers and the database.

EclipseLink provides cache coordination in a clustered environment to ensure the
servers caches are synchronized.

There are also many other solutions to caching in a clustered environment, including:

• Disable the shared cache (through setting @Cacheable(false),
or @Cache(isolation=ISOLATED)).

• Use only cache read-only objects.

• Set a cache invalidation timeout to reduce stale data.

• Use refreshing on objects/queries when fresh data is required.

• Use optimistic locking to ensure write consistency (writes on stale data will fail,
and will automatically invalidate the cache).

• Use database events to invalidate changed data in the cache (such as
EclipseLink's support for Oracle Query Change Notification).

Cache coordination enables a set of persistence units deployed to different servers in
the cluster (or on the same server) to synchronize their changes. Cache coordination
works by each persistence unit on each server in the cluster being able to broadcast
notification of transactional object changes to the other persistence units in the cluster.
EclipseLink supports cache coordination over RMI and JMS. The cache coordination
framework is also extensible so other options could be developed.

By default, EclipseLink optimizes concurrency to minimize cache locking during read
or write operations. Use the default EclipseLink transaction isolation configuration
unless you have a very specific reason to change it.

Cache coordination works by broadcasting changes for each transaction to the other
servers in the cluster. Each other server will receive the change notification, and either
invalidate the changed objects in their cache, or update the cached objects state with
the changes. Cache coordination occurs after the database commit, so only committed
changes are broadcast.

Chapter 8
Clustering and Cache Coordination

8-18

Cache coordination greatly reduces to chance of an application getting stale data, but
does not eliminate the possibility. Optimistic locking should still be used to ensure data
integrity. Even in a single server application stale data is still possible within a
persistence context unless pessimistic locking is used. Optimistic (or pessimistic)
locking is always required to ensure data integrity in any multi-user system.

For more information about cache coordination, including cache synchronization, see
"Using Cache Coordination" in Solutions Guide for EclipseLink.

Coordinating JMS and RMI Caches
For a JMS coordinated caches, when a particular session's coordinated cache starts, it
uses its JNDI naming service information to locate and create a connection to the JMS
server.

The coordinated cache is ready when all participating sessions are connected to the
same topic on the same JMS server. At this point, sessions can start sending and
receiving object change messages. You can then configure all sessions that are
participating in the same coordinated cache with the same JMS and JNDI naming
service information.

For an RMI coordinated cache, when a particular session's coordinated cache starts,
the session binds its connection in its naming service (either an RMI registry or JNDI),
creates an announcement message (that includes its own naming service information),
and broadcasts the announcement to its multicast group. When a session that belongs
to the same multicast group receives this announcement, it uses the naming service
information in the announcement message to establish bidirectional connections with
the newly announced session's coordinated cache. The coordinated cache is ready
when all participating sessions are interconnected in this way, at which point sessions
can start sending and receiving object change messages. You can then configure
each session with naming information that identifies the host on which the session is
deployed.

For more information on configuring JMS and RMI cache coordination, see
"Configuring JMS Cache Coordination Using Persistence Properties" and "Configuring
RMI Cache Coordination Using Persistence Properties" in Solutions Guide for
EclipseLink.

Coordinating Custom Caches

You can define your own custom solutions for coordinated caches by using the
classes in the EclipseLink
org.eclipse.persistence.sessions.coordination package.

Clustering and Cache Consistency
EclipseLink applications that are deployed to an application server cluster benefit from
cluster scalability, load balancing, and failover.

These capabilities ensure that EclipseLink applications are highly available and scale
as application demand increases. EclipseLink applications are deployed the same way
in application server clusters as they are in standalone server environments. However,
additional planning and configuration is required to ensure cache consistency in an
application server cluster.

Chapter 8
Clustering and Cache Consistency

8-19

To ensure cache consistency you perform tasks such as disabling entity caching,
refreshing the cache, setting entity expiration, and setting optimistic locking on the
cache. For more information on these topics, see "Task 1: Configure Cache
Consistency" in Solutions Guide for EclipseLink.

Cache Interceptors
EclipseLink provides a very functional, performant and integrated cache.

However, you can integrate third-party external caches by using the EclipseLink
CacheInterceptor annotation and API.

Chapter 8
Cache Interceptors

8-20

9
Understanding Queries

EclipseLink enables you to create, read, update, and delete persistent objects or data
using queries in both Java EE and non-Java EE applications for both relational and
nonrelational data sources.

Topics

• Query Concepts

• About JPQL Queries

• About SQL Query Language

• About the Criteria API

• About Native SQL Queries

• About Query Hints

• About Query Casting

• About Oracle Extensions for Queries

Query Concepts
In general, querying a data source means performing an action on or interacting with
the contents of the data source.

To do this, you must be able to perform the following:

• Define an action in a syntax native to the data source being queried.

• Apply the action in a controlled fashion.

• Manage the results returned by the action (if any).

You must also consider how the query affects the EclipseLink cache.

Topics

• Call Objects

• DatabaseQuery Objects

• Data-Level and Object-Level Queries

• Summary Queries

• Descriptor Query Manager

• Query Keys

Call Objects
The Call object encapsulates an operation or action on a data source.

9-1

The EclipseLink API provides a variety of Call types such as structured query
language (SQL), Java Persistence Query Language (JPQL), and Extensible Markup
Language (XML).

You can execute a Call directly or in the context of the EclipseLink DatabaseQuery
object.

DatabaseQuery Objects
A DatabaseQuery object is an abstraction that associates additional customization
and optimization options with the action encapsulated by a Call.

By separating these options from the Call, EclipseLink can provide sophisticated query
capabilities across all Call types.

Data-Level and Object-Level Queries
Queries can be defined for objects or data.

• Object-level queries are object-specific and return data as objects in your domain
model. They are the preferred type of query for mapped data. By far, object-level
DatabaseQuery queries are the most common query used in EclipseLink.

• Data-level queries are used to query database tables directly, and are an
appropriate way to work with unmapped data.

Summary Queries
While data-level queries return raw data and object-level queries return objects in your
domain model, summary queries return data about objects.

EclipseLink provides partial object queries to return a set of objects with only specific
attributes populated, and report queries to return summarized (or rolled-up) data for
specific attributes of a set of objects.

Descriptor Query Manager
Each relational descriptor provides an instance of DescriptorQueryManager.

Each relational descriptor provides an instance of DescriptorQueryManager that
you can use to configure the following:

• named queries

• custom default queries for basic persistence operations

• additional join expressions

Query Keys
A query key is a schema-independent alias for a database field name.

Using a query key, you can refer to a field using a schema-independent alias. In
relational projects only, EclipseLink automatically creates query keys for all mapped
attributes. The name of the query key is the name of the class attribute specified in
your object model.

Chapter 9
Query Concepts

9-2

You can configure query keys in a class descriptor or interface descriptor. You can use
query keys in expressions and to query variable one-to-one mappings.

By default, EclipseLink creates query keys for all mapped attributes, but in some
scenarios you may find it beneficial to add your own.

About JPQL Queries
The Java Persistence Query Language (JPQL) is the query language defined by JPA.

JPQL is similar to SQL, but operates on objects, attributes and relationships instead of
tables and columns. JPQL can be used for reading (SELECT), as well as bulk updates
(UPDATE) and deletes (DELETE). JPQL can be used in a NamedQuery (through
annotations or XML) or in dynamic queries using the EntityManager
createQuery() API.

The disadvantage of JPQL is that dynamic queries require performing string
concatenations to build queries dynamically from web forms or dynamic content. JPQL
is also not checked until runtime, making typographical errors more common. These
disadvantages are reduced by using the query Criteria API, described About the
Criteria API.

EclipseLink Extensions to JPQL
EclipseLink supports all of the statements and clauses described in "Query Language"
in the JPA Specification, including SELECT queries, update and delete statements,
WHERE clauses, literal values, and database functions.

For more information, see the JPA Specification:

http://jcp.org/en/jsr/detail?id=338

EclipseLink provides many extensions to the standard JPA JPQL. These extensions
provide access to additional database features many of which are part of the SQL
standard, provide access to native database features and functions, and provide
access to EclipseLink specific features.

EclipseLink's JPQL extensions include:

• Less restrictions than JPQL, allows sub-selects and functions within operations
such as LIKE, IN, ORDER BY, constructors, functions etc.

• Allow != in place of <>

• FUNCTION operation to call database specific functions

• TREAT operation to downcast related entities with inheritance

• OPERATOR operation to call EclipseLink database independent functions

• SQL operation to mix SQL with JPQL

• CAST and EXTRACT functions

• REGEXP function for regular expression querying

• Usage of sub-selects in the SELECT and FROM clause

• ON clause support for defining JOIN and LEFT JOIN conditions

• Joins between independent entities

Chapter 9
About JPQL Queries

9-3

http://jcp.org/en/jsr/detail?id=338

• Usage of an alias on a JOIN FETCH

• COLUMN operation to allow querying on nonmapped columns

• TABLE operation to allow querying on non mapped tables

• UNION, INTERSECT, EXCEPT support

• Usage of object variables in =, <>, IN, IS NULL, and ORDER BY

For descriptions of these extensions, see "EclipseLink Query Language" in Java
Persistence API (JPA) Extensions Reference for EclipseLink.

EclipseLink Special Operators in JPQL
EclipseLink defines several special JPQL operators that allow performing database
operations that are not possible in basic JPQL.

These include:

• COLUMN

• FUNCTION

• OPERATOR

• SQL

For descriptions of these operators, see "Special Operators" in Java Persistence API
(JPA) Extensions Reference for EclipseLink.

About SQL Query Language
SQL is the most common query language for applications that use a relational
database data source.

Using EclipseLink, you can express a query using the following query languages:

• SQL Queries

• EclipseLink Expressions (see Understanding EclipseLink Expressions.)

• Stored Procedures

In most cases, you can compose a query directly in a given query language or,
preferably, you can construct a DatabaseQuery with an appropriate Call and specify
selection criteria using an Expression object. Although composing a query directly in
SQL appears to be the simplest approach (and for simple operations or operations on
unmapped data, it is), using the DatabaseQuery approach offers the compelling
advantage of confining your query to your domain object model and avoiding
dependence on data source schema implementation details.

Oracle recommends that you compose your queries using Expression.

You can execute custom SQL directly using Session methods
executeSelectingCall and executeNonSelectingCall, or you can construct
a DatabaseQuery with an appropriate Call.

EclipseLink provides a variety of SQL Call objects for use with stored procedures and,
with Oracle Database, stored functions. EclipseLink also supports PLSQL call for
Oracle stored procedures with PLSQL data types.

Chapter 9
About SQL Query Language

9-4

Stored Procedures

As described in the "Stored Procedures" section of the JPA specification (http://
jcp.org/en/jsr/detail?id=338), native SQL allows you to use named stored procedures
either dynamically or specified by the NamedStoredProcedureQuery annotation. If
you use annotations, the stored procedure must exist in the database. The annotation
allows you to specify the types of all parameters to the stored procedure, their
corresponding parameter modes, and the mapping of the result sets.

Metadata must be provided for all parameters by using the
StoredProcedureParameter annotation. Parameters must be specified in the
order in which they occur in the parameter list of the stored procedure. If parameter
names are used, the parameter name is used to bind the parameter value and to
extract the output value (if the parameter is an INOUT or OUT parameter).

If the stored procedure is not defined using metadata, then parameter and result set
information must be provided dynamically.

EclipseLink Extensions to Stored Procedures

EclipseLink defines annotation extensions that allow the use of PLSQL stored
procedures (such as @NamedPLSQLStoredProcedureQuery) and stored functions
(such as @NamedPLSQLStoredFunctionQuery). The PLSQL annotations allow you
to use complex PLSQL types such as RECORD and TABLE, that are not accessible
from JDBC. The annotations contain attributes for specifying the function (or
procedure) name, the return value of the stored function, any query hints, the
parameters for the stored function, and the name of the SQLResultMapping.

Parameters for the stored function (or procedure) are specified with the
@PLSQLParameter annotation. The @PLSQLRecord annotation defines a database
PLSQL RECORD type for use within PLSQL procedures.

EclipseLink also defines annotation extensions that allow the use of non-PLSQL
stored procedures (such as @NamedStoredProcedureQuery) and stored functions
(such as @NamedStoredFunctionQuery).

For a list of the EclipseLink extensions for stored procedures and links to their
descriptions, see "Stored Procedure and Function Annotations" in Java Persistence
API (JPA) Extensions Reference for EclipseLink.

About the Criteria API
The Java Persistence Criteria API is used to define dynamic queries through the
construction of object-based query definition objects, rather than use of the string-
based approach of JPQL.

The Criteria API allows dynamic queries to be built programmatically offering better
integration with the Java language than a string-based 4th GL approach.

The Criteria API has two modes, the type-restricted mode, and the non-typed mode.
The type-restricted mode uses a set of JPA metamodel generated classes to define
the query-able attributes of a class. The non-typed mode uses strings to reference
attributes of a class.

Chapter 9
About the Criteria API

9-5

http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=338

The Criteria API is only for dynamic queries, and cannot be used in metadata or
named queries. Criteria queries are dynamic queries and do not perform as well as
static named queries, or even dynamic parametrized JPQL which benefit from
EclipseLink's parse cache.

For more information, see Chapter 6 "Criteria API" in the JPA Specification.

http://jcp.org/en/jsr/detail?id=338

CriteriaBuilder is the main interface into the Criteria API. A CriteriaBuilder is obtained
from an EntityManager or an EntityManagerFactory using the getCriteriaBuilder() API.
CriteriaBuilder is used to construct CriteriaQuery objects and their expressions. The
Criteria API currently only supports select queries.

CriteriaQuery defines a database select query. A CriteriaQuery models all of the
clauses of a JPQL select query. Elements from one CriteriaQuery cannot be used in
other CriteriaQuerys. A CriteriaQuery is used with the EntityManager createQuery()
API to create a JPA Query.

The where clause is normally the main part of the query as it defines the conditions
(predicates) that filter what is returned. The where clause is defined using the where
API on CriteriaQuery with any Predicate objects. A Predicate is obtained using a
comparison operation, or a logical operation on CriteriaBuilder. The isNull, isNotNull,
and in operations can also be called on Expression objects. The not operation can
also be called on Predicate objects.

Subqueries can be used in the Criteria API in the select, where, order, group by, or
having clauses. A subquery is created from a CriteriaQuery using the subquery
operation. Most subquery usage restricts the subquery to returning a single result and
value, unless used with the CriteriaBuilder exists, all, any, or some operations, or with
an in operation.

Parameters can be defined using the parameter API on CriteriaBuilder. JPA defines
named parameters, and positional parameters. For named parameters the parameter
type and name are specified. For positional parameters only the parameter type is
specified. Positional parameters start at position 1 not 0.

Several database functions are supported by the Criteria API. All supported functions
are defined on CriteriaBuilder. Some functions may not be supported by some
databases, if they are not SQL compliant, and offer no equivalent function.

The Criteria API defines several special operations that are not database functions,
but have special meaning in JPA. Some of these operations are defined on
CriteriaBuilder and some are on specific Expression interfaces.

JPA defines a meta-model that can be used at runtime to query information about the
ORM mapping metadata. The meta-model includes the list of mapped attributes for a
class, and their mapping types and cardinality. The meta-model can be used with the
Criteria API in place of using strings to reference the class attributes.

JPA defines a set of "_" classes ("_MyEntity.java", for example) that are to be
generated by the JPA provider, or IDE, that give compile time access to the meta-
model. This allows typed static variables to be used in the Criteria API. This can
reduce the occurrence of typos, or invalid queries in application code, by catching
query issues at compile time, instead of during testing. It does however add complexity
to the development process, as the meta-model static class needs to be generated,
and be part of the development cycle.

Chapter 9
About the Criteria API

9-6

http://jcp.org/en/jsr/detail?id=338

A Tuple defines a multi-select query result. Normally an object array is returned by
JPA multi-select queries, but an object array is not a very useful data structure. A
Tuple is a map-like structure that allows the results to be retrieved by name or index.

EclipseLink Extensions to the Criteria API
EclipseLink's Criteria API support has fewer restrictions than specified by JPA.

In general, sub-queries and object path expressions are allowed in most places,
including:

• Sub-queries in the select, group by, and order clauses;

• Sub-query usage with functions;

• in usage with object path expressions;

• Order by usage with object path expressions.

EclipseLink's Criteria API support is built on top of EclipseLink native Expression API.
EclipseLink provides the JpaCriteriaBuilder interface to allow the conversion of native
Expression objects to and from JPA Expression objects. This allows the EclipseLink
native Expression API to be mixed with the JPA Criteria API.

The EclipseLink native Expression API provides the following additional functionality:

• Additional database functions (over 80 database functions are supported)

• Usage of custom ExpressionOperators

• Embedding of SQL within an Expression query

• Usage of sub-selects in the from clause

• ON clause support

• Access to unmapped columns and tables

• Historical querying

EclipseLink Expressions can be combined with EclipseLink DatabaseQuerys to
provide additional functionality:

• Unions, intersect and except clauses;

• Hierarchical connect by clauses;

• Batch fetching.

About Native SQL Queries
JPA allows SQL to be used for querying entity objects, or data. SQL queries are not
translated, and passed directly to the database.

SQL queries can be used for advanced queries that require database specific syntax,
or by users who are more comfortable in the SQL language than JPQL or Java.

SQL queries are created from the EntityManager using the createNativeQuery
API or via named queries. A Query object is returned and executed the same as any
other JPA query. An SQL query can be created for an entity class, or return an object
array of data. If returning entities, the SQL query must return the column names that
the entity's mappings expect, or an SqlResultSetMapping can be used. An

Chapter 9
About Native SQL Queries

9-7

SqlResultSetMapping allows the SQL result set to be mapped to an entity, or set
of entities and data.

SQL queries can be used to execute SQL or DML (Data Manipulation Language)
statements. For SQL queries that return results, getSingleResult or
getResultList can be used. For SQL queries that do not return results,
executeUpdate must be used. executeUpdate can only be used within a
transaction. SQL queries can be used to execute database operations and some
stored procedures and functions. Stored procedures that return output parameters, or
certain complex stored procedures, cannot be executed with SQL queries.

Parameters to SQL queries are delimited using the question mark (?) character. Only
indexed parameters are supported, named parameters are not supported. The index
can be used in the delimiter, such as ?1. Parameter values are set on the Query using
the setParameter API. Indexed parameters start at the index 1 not 0.

Native SQL queries can be defined as named queries in annotations or XML using the
NamedNativeQuery annotation or <named-native-query> XML element. Named
native SQL queries are executed the same as any named query.

An SqlResultSetMapping can be used to map the results of an SQL query to an
entity if the result column names do not match what the entity mappings expect. It can
also be used to return multiple entities, or entities and data from a single SQL query.
EntityResult and FieldResult are used to map the SQL query result column to
the entity attribute. ColumnResult can be used to add a data element to the result.

SqlResultSetMappings are defined through annotations or XML using the
@SqlResultSetMapping annotation or <sql-result-set-mapping> XML
element. They are referenced from native SQL queries by name.

EclipseLink Extensions to Native Query Support
EclipseLink expressions let you specify query search criteria based on your domain
object model.

When you execute the query, EclipseLink translates these search criteria into the
appropriate query language for your platform.

The EclipseLink API provides the following two public classes to support expressions:

• The Expression class represents an expression that can be anything from a
simple constant to a complex clause with boolean logic. You can manipulate,
group, and integrate expressions.

• The ExpressionBuilder class is the factory for constructing new expressions.

You can specify a selection criterion as an Expression with DatabaseQuery
method setSelectionCriteria, and in a finder that takes an Expression.

For more information about using EclipseLink expressions, see Understanding
EclipseLink Expressions..

About Query Hints
You can use a query hint to customize or optimize a JPA query.

The NamedQuery annotation is used to specify a named query in the Java
Persistence query language. This annotation contains a hints element that can be

Chapter 9
About Query Hints

9-8

used to specify query properties and hints. For more information on this annotation,
see "NamedQuery Annotation" in the JPA Specification.

http://jcp.org/en/jsr/detail?id=338

The definitions of query hints are vendor-specific.

Topics

• JPA Cache Query Hints

• EclipseLink Extensions to Cache Query Hints

JPA Cache Query Hints
The JPA query hints allow for queries or the find() operation to bypass, or refresh the
shared cache.

JPA cache query hints can be set on named or dynamic queries, or set in the
properties map passed to the find() operation.

JPA 2.0 defines the following query hint properties to configure a queries interaction
with the shared cache:

• javax.persistence.cache.retrieveMode

• javax.persistence.cache.storeMode

EclipseLink Extensions to Cache Query Hints

The EclipseLink cache query hints allow for queries or the find() operation to interact
with the cache is the following ways:

• Bypass the cache check and force accessing the database, but still resolve with
the cache.

• Refresh the cache from the database results.

• Bypass the cache and persistence unit and return detached objects.

• Bypass the persistence context and return read-only objects.

• Allow queries that use Id fields, and other fields to obtain cache hits.

• Query the cache first, and only access the database if the object is not found.

• Only query the cache, and avoid accessing the database.

• Conform a query with non-flushed changes in a persistence context.

Queries that access the cache have the following restrictions:

• Sub-selects are not supported.

• Certain database functions are not supported.

• Queries must return a single set of objects.

• Grouping is not supported.

• Uninstantiated lazy relationships may not be able to be queried.

Chapter 9
About Query Hints

9-9

http://jcp.org/en/jsr/detail?id=338

All EclipseLink query hints are defined in the QueryHints class in the
org.eclipse.persistence.config package. When you set a hint, you can set
the value using the public static final field in the appropriate configuration class in
org.eclipse.persistence.config package, including the following:

• HintValues

• CacheUsage

• PessimisticLock

• QueryType

You can specify EclipseLink query hints (JPA query extensions) either by using the
@QueryHint annotation, by including the hints in the orm.xml or eclipselink-
orm.xml files. or by using the setHint() method when executing a named or
dynamic query (JPQL or Criteria).

Query settings and query hints that affect the generated SQL are not supported with
SQL queries. Unsupported query hints include:

• batch

• history.as-of

• inheritance.outer-join

• sql.hint

• join-fetch—join-fetch is supported, but requires that the SQL selects all of the
joined columns.

• fetch-group—fetch-group is supported, but requires that the SQL selects all of the
fetched columns.

• pessimistic-lock—pessimistic-lock is supported, but requires that the SQL locks
the result rows.

For descriptions of these extensions, see "EclipseLink Query Language" in Java
Persistence API (JPA) Extensions Reference for EclipseLink.

About Query Casting
Use query casting to query across attributes in subclasses when using JPA or ORM.
This feature is available in JPQL, EclipseLink Expressions, and Criteria API.

Starting with JPA 2.0, it is possible to limit the results or a query to those of a specific
subclass. For example, the expression framework provides
Expression.type(Class).

In JPQL, downcasting is accomplished in the FROM clause, using TREAT...AS in the
JOIN clause.

The JPA Criteria API includes the casting operator Expression.as(type). This
expression does a simple cast that allows matching of types within the generics.

Calling a cast on a JOIN node permanently alters that node. For example, in the
example above, after calling join.as(LargeProject.class), the join refers to a
LargeProject.

Chapter 9
About Query Casting

9-10

EclipseLink Expression Support for Downcasting
EclipseLink extends the Criteria API to allow a cast using Expression.as(type).

The as method checks the hierarchy; and if type is a subclass of the type for the
expression that is being called on, a cast is implemented.

The Expression.as(Class) can also be used for downcasting. The behavior of
using Expression.as(Class) is as follows:

• An exception is thrown at query execution time if the class that is cast to is not a
subclass of the class of the query key being cast.

• Casts are only allowed on ObjectExpressions (QueryKeyExpression and
ExpressionBuilder). The parent expression of a cast must be an
ObjectExpression.

• Casts use the same outer join settings as the ObjectExpression they modify.

• Casts modify their parent expression. As a result, when using a cast with a parallel
expression, you must use a new instance of the parent expression.

• Casting is not supported for TablePerClass inheritance.

• It is prudent to do a check for type in a query that does a cast.

• EclipseLink automatically appends type information for cases where the cast
results in a single type; but for classes in the middle of a hierarchy, no type
information is appended to the SQL.

About Oracle Extensions for Queries
You can use Oracle-specific query features when using EclipseLink with Oracle
Database.

Topics

• Query Hints

• Hierarchical Queries

• Flashback Queries

• Stored Functions

Query Hints
Oracle lets you specify SQL query additions called hints that can influence how the
database server SQL optimizer works.

This lets you influence decisions usually reserved for the optimizer. You use hints to
specify things such as join order for a join statement, or the optimization approach for
a SQL call.

You specify hints using the EclipseLink DatabaseQuery method setHintString.

For more information, see the performance tuning guide for your database.

Chapter 9
About Oracle Extensions for Queries

9-11

Hierarchical Queries
Oracle Database Hierarchical Queries mechanism lets you select database rows
based on hierarchical order.

For example, you can design a query that reads the row of a given employee, followed
by the rows of people the employee manages, followed by their managed employees,
and so on.

You specify a hierarchical query clause using the setHierarchicalQueryClause
method which appears in the EclipseLink DatabaseQuery subclass ReadAllQuery.

Flashback Queries
When using EclipseLink with Oracle9i Database (or later), you can acquire a special
historical session where all objects are read as of a past time, and then you can
express read queries depending on how your objects are changing over time.

For more information, see "Using Oracle Flashback Technology" in Oracle Database
Advanced Application Developer's Guide.

Stored Functions
A stored function is an Oracle Database mechanism that provides all the capabilities of
a stored procedure in addition to returning a value.

It provides a number of annotations for working with stored functions as well as stored
procedures. For a list of the EclipseLink annotation extensions for stored functions and
procedures and links to their descriptions, see "Stored Procedure and Function
Annotations" in Java Persistence API (JPA) Extensions Reference for EclipseLink.

Chapter 9
About Oracle Extensions for Queries

9-12

10
Understanding EclipseLink Expressions

Topics

• About the Expression Framework

• About Expression Components

About the Expression Framework
The EclipseLink expression framework provides methods through the following
classes:

• The Expression class provides most general functions, such as toUpperCase.

• The ExpressionMath class supplies mathematical methods.

This division of functionality enables EclipseLink expressions to provide similar
mathematical functionality to the java.lang.Math class, but keeps both the Expression
and ExpressionMath classes from becoming unnecessarily complex.

Expressions offer the following advantages over SQL when you access a database:

• Expressions are easier to maintain because the database is abstracted.

• Changes to descriptors or database tables do not affect the querying structures in
the application.

• Expressions enhance readability by standardizing the Query interface so that it
looks similar to traditional Java calling conventions.

• Expressions allow read queries to transparently query between two classes that
share a relationship. If these classes are stored in multiple tables in the database,
EclipseLink automatically generates the appropriate join statements to return
information from both tables.

• Expressions simplify complex operations

About Expression Components
A simple expression usually consists of the following three parts:

• The attribute, which represents a mapped attribute or query key of the persistent
class

• The operator, which is an expression method that implements boolean logic, such
as GreaterThan, Equal, or Like

• The constant or comparison, which refers to the value used to select the object

In the following code fragment, the attribute is lastName, the operator is equal and the
constant is the string "Smith". The expressionBuilder substitutes for the object or

10-1

objects to be read from the database. In this example, expressionBuilder represents
employees.

expressionBuilder.get("lastName").equal("Smith");

Topics

• Boolean Logic

• Database Functions and Operators

• Platform and User-Defined Functions

• Expressions for One-to-One and Aggregate Object Relationships

• Expressions for Joining and Complex Relationships

Boolean Logic

Expressions use standard boolean operators, such as AND, OR, and NOT, and you
can combine multiple expressions to form more complex expressions.

Database Functions and Operators
EclipseLink supports many database functions using standard operator names that are
translated to different databases.

EclipseLink operators are supported on any database that has an equivalent function
(or set of functions). For more information and a list of all supported functions and
operators see "OPERATOR" and "FUNCTION" in Java Persistence API (JPA)
Extensions Reference for EclipseLink

EclipseLink expressions support a variety of database functions, which are described
in the Expression class. Database functions let you define more flexible queries. You
can use these functions in either a report query using a SELECT clause, or with
comparisons in a query's selection criteria using a WHERE clause.

Note:

Some functions may be database platform-specific.

Operators are relational operations that compare two values. EclipseLink expression
operators are described in the ExpressionOperator class.

Mathematical functions are available through the ExpressionMath class. Mathematical
function support in expressions is similar to the support provided by the Java class
java.lang.Math.

Oracle XMLType Functions

You can use the following operators when constructing queries against data mapped
to Oracle Database XMLType column:

Chapter 10
About Expression Components

10-2

• extract—Takes an XPath string and returns an XMLType which corresponds to the
part of the original document that matches the XPath.

• extractValue—Takes an XPath string and returns either a numerical or string value
based on the contents of the node pointed to by the XPath.

• existsNode—Takes an XPath expression and returns the number of nodes that
match the XPath.

• getStringVal—Gets the string representation of an XMLType object.

• getNumberVal—Gets the numerical representation of an XMLType object.

• isFragment—Evaluates to 0 if the XML is a well formed document. Evaluates to 1
if the document is a fragment.

Platform and User-Defined Functions
You can use the Expression method getFunction to access database functions that
EclipseLink does not support directly.

The Expression API includes additional forms of the getFunction method that allow
you to specify arguments. You can also create your own custom functions. For more
information, see Java API Reference for EclipseLink.

Expressions for One-to-One and Aggregate Object Relationships

Expressions can include an attribute that has a one-to-one relationship with another
persistent class. A one-to-one relationship translates naturally into an SQL join that
returns a single row.

Expressions for Joining and Complex Relationships
You can query against complex relationships, such as one-to-many, many-to-many,
direct collection, and aggregate collection relationships. Expressions for these types of
relationships are more complex to build, because the relationships do not map directly
to joins that yield a single row per object.

About Joins

A join is a relational database query that combines rows from two or more tables.
Relational databases perform a join whenever multiple tables appear in the query's
FROM clause. The query's select list can select any columns from any of these tables.

An inner join (sometimes called a "simple join") is a join of two or more tables that
returns only those rows that satisfy the join condition.

An outer join extends the result of an inner join. An outer join returns all rows that
satisfy the join condition and also returns some or all of those rows from one table for
which no rows from the other satisfy the join condition. Outer joins can be categorized
as left or right:

• A query that performs a left outer join of tables A and B returns all rows from A.
For all rows in A that have no matching rows in B, the database returns null for any
select list expressions containing columns of B.

Chapter 10
About Expression Components

10-3

• A query that performs a right outer join of tables A and B returns all rows from B.
For all rows in B that have no matching rows in A, the database returns null for any
select list expressions containing columns of A.

When you query with a join expression, EclipseLink can use joins to check values from
other objects or other tables that represent parts of the same object. Although this
works well under most circumstances, it can cause problems when you query against
a one-to-one relationship, in which one side of the relationship is not present.

For example, Employee objects may have an Address object, but if the Address is
unknown, it is null at the object level and has a null foreign key at the database level.
When you attempt a read that traverses the relationship, missing objects cause the
query to return unexpected results. Consider the following expression:

(emp.get("firstName").equal("Steve")).or(emp.get("address").
get("city").equal("Ottawa"))

In this case, employees with no address do not appear in the result set, regardless of
their first name. Although not obvious at the object level, this behavior is fundamental
to the nature of relational databases.

Outer joins rectify this problem in the databases that support them. In this example,
the use of an outer join provides the expected result: all employees named Steve
appear in the result set, even if their address is unknown.

To implement an outer join, use Expression method getAllowingNull, rather than
get, and Expression method anyOfAllowingNone, rather than anyOf.

For example:

(emp.get("firstName").equal("Steve")).or(emp.getAllowingNull("address").ge
t("city").equal("Ottawa"))

Support and syntax for outer joins vary widely between databases and database
drivers. EclipseLink supports outer joins for most databases.

Using EclipseLink Expression API for Joins

You can use joins anywhere expressions are used, including: selection-criteria,
ordering, report queries, partial objects, one-to-one relational mappings, and join
reading.

Use the Expression API shown in the following table to configure inner and outer join
expressions.

Table 10-1 Expression API for Joins

Expression API Type of Join Type of Mapping

get inner one-to-one

getAllowingNull outer one-to-one

anyOf inner one-to-many, many-to-many

anyOfAllowingNone outer one-to-many, many-to-many

Chapter 10
About Expression Components

10-4

To query across a one-to-many or many-to-many relationship, use the anyOf
operation. As its name suggests, this operation supports queries that return all items
on the "many" side of the relationship that satisfy the query criteria.

Chapter 10
About Expression Components

10-5

11
Understanding Non-relational Data
Sources

There are many types of non-relational data sources.

These include document databases, key-value stores, and various other non-standard
databases, such as MongoDB, Cassandra, and Google BigTable. This chapter
focuses on the NoSQL data source. NoSQL is a classification of database systems
that do not support the SQL standard. EclipseLink supports persistence of Java
objects to NoSQL databases through the Java Persistence API (JPA). EclipseLink
native API is also supported with NoSQL databases.

Topics

• NoSQL Platform Concepts

• About NoSQL Persistence Units

• About JPA Applications on the NoSQL Platform

• About Mapping NoSQL Objects

• About Queries and the NoSQL Platform

• About Transactions and the NoSQL Platform

NoSQL Platform Concepts
NoSQL is a classification of database systems that do not support the SQL standard.

The NoSQL classification can be expanded to include Enterprise Information Systems
(EIS) including application databases, legacy databases, messaging systems, and
transaction processing monitors, such as IMS, VSAM, and ADABASE.

EclipseLink's NoSQL support includes:

• MongoDB

• Oracle NoSQL

• XML files

• JMS

• Oracle AQ

A complete description of EclipseLink support for NoSQL is described in Non-SQL
Standard Database Support: NoSQL.

NoSQL and EIS data-sources have a Java Connector Architecture (JCA) resource
adapter that supports the Java Connector Architecture Common Client Interface (JCA
CCI).

There are many different ways to access NoSQL and EIS data-sources. Many NoSQL
data-sources provide a Java API. For EIS data-sources, there are many third party

11-1

and custom Java adapters. These APIs are normally non-standard, and low-level,
similar to JDBC. EclipseLink NoSQL support is built on top of such APIs, and offers
the rich, high-level and standard JPA API.

Some NoSQL data-sources support the JDBC API and a subset of the SQL language.
Many third-party vendors provide JDBC drivers for EIS data-sources. EclipseLink
regular JPA support can be used with any compliant JDBC driver. So, if JDBC access
is an option, EclipseLink's NoSQL support is not required, as EclipseLink standard
JPA support can be used.

Some NoSQL data-sources may support JCA. JCA is a Java Enterprise Edition API
that allows connecting to more generic systems than JDBC. JCA is composed of two
parts, a resource adapter layer, and the Common Client Interface (CCI). EclipseLink
NoSQL and EIS support is based on the JCA CCI. For MongoDB, Oracle NoSQL,
XML files, JMS, and Oracle AQ, EclipseLink provides the JCA adapter and EclipseLink
EISPlatform and ConnectionSpec classes. Third party JCA adapters can also be
used with EclipseLink as long as they support the CCI. There are third party JCA
vendors, such as Attunity, that support various EIS data-sources such as IMS, VSAM
and ADABASE.

About NoSQL Persistence Units
NoSQL persistence units are configured the same as JPA persistence units.

The persistence.xml file is used to define the persistence unit. NoSQL persistence
units can be application managed, JTA managed, injected, or created through
Persistence the same as regular JPA persistence units. NoSQL persistence units do
have some specific persistence unit properties that are required, and have some
limitations.

NoSQL defines the following persistence unit properties:

• eclipselink.nosql.connection-spec

• eclipselink.nosql.connection-factory

• eclipselink.nosql.property

• eclipselink.target-database—this is used to set the NoSQL platform
class, or use org.eclipse.persistence.eis.EISPlatform for a generic
platform.

For more information on these properties, see "Persistence Property Extensions
Reference" in Java Persistence API (JPA) Extensions Reference for EclipseLink.

NoSQL persistence units have the following restrictions:

• <jta-data-source>, <non-jta-data-source>—these elements are not
supported, as they refer to JDBC DataSources.

• JTA—JTA-managed persistence units are supported, but XA transactions may not
be provided unless the NoSQL JCA resource adapter supports JTA.

• javax.jdbc, eclipselink.jdbc—JDBC-specific properties are not
supported as NoSQL does not use JDBC.

Chapter 11
About NoSQL Persistence Units

11-2

Persistence Unit Properties for NoSQL Platforms
To use a NoSQL platform you must set both the eclipselink.nosql.connection-spec to
the connection spec class name and the eclipselink.target-database to the platform
class name.

Each NoSQL platform also supports platform-specific properties that can be set using
eclipselink.nosql.property. For more information on values for MongoDB, Oracle
NoSQL, XML, JMS, and Oracle AQ, see "@NoSql" in Java Persistence API (JPA)
Extensions Reference for EclipseLink. See also Non-SQL Standard Database
Support: NoSQL.

About JPA Applications on the NoSQL Platform
Mapping to NoSQL data is configured through the EclipseLink @NoSql annotation,
and <no-sql> XML element. @NoSql defines the class as mapping to non-relational
data. @NoSql can be specified with @Entity or @Embeddable classes.

The @NoSql annotation defines a dataType and a dataFormat attribute. The
dataType attribute is the name for the entity's structure; the meaning of the
dataType is dependent on the NoSQL platform. For MongoDB, it is the collection
name that the JSON documents are stored to. For Oracle NoSQL the dataType is the
first part of the major key value. For the XML file adapter it is the file name.

The dataFormat attribute specifies the type of structure the data is stored as. The
dataFormat attribute is defined by the DataFormatType enum.

For examples of configuring an application with the @NoSql annotation, see "@NoSql"
in Java Persistence API (JPA) Extensions Reference for EclipseLink.

Mapping Restrictions on JPA Annotations
NoSQL supports most JPA annotations and others have different restrictions than
mapping relational data.

Supported mapping annotations:

• @Entity—defines a root level object in the NoSQL data-store.

• @Embeddable—defines an object embedded in another object's data structure.

• @Basic, @Temporal, @Enumerated, @Lob

• @Convert, @Converter, @TypeConverter, @ObjectTypeConverter

• @Access, @Transient, @Mutable

• @Id, @EmbeddedId

• @GeneratedValue, @UuidGenerator

• @Version—is supported, but dependent on the NoSQL data-source to validate
version write conflicts.

• @Embedded—defines a reference that will be embedded in the parent's data
structure as a nested structure.

Chapter 11
About JPA Applications on the NoSQL Platform

11-3

• @ElementCollection—defines a collection of values or embeddables that will
be embedded in the parent's data structure as a list of nested structures.

• @OneToOne, @ManyToOne—define a relationship to another root level object
stored as a foreign key in the source object's data structure.

• @OneToMany, @ManyToMany—define a relationship to a collection of other root
level object stored as a list of foreign keys in the source object's data structure.

• @Inheritance, @MappedSuperclass, @ClassExtractor

• @Cacheable, @Cache, @ReadOnly, @Noncacheable

• @NamedQuery—is supported on NoSQL data-sources that support querying.

• @NamedNativeQuery—is supported on NoSQL data-sources that support native
querying. The query language is not SQL, but specific to the NoSQL data-store.

• @EntityListeners, @PrePersist, @PreUpdate, @PreRemove, @PreLoad,
@PostPersist, @PostUpdate, @PostRemove, @PostLoad

• @Customizer

Unsupported mapping annotations:

• @Table, @SecondaryTable—are not supported, as objects are not mapped to
tables, it is replaced by the dataType on the @NoSql annotation.

• @Column—@Field should be used, as data is not stored in table columns,
however @Column is still allowed, but just the name will be used.

• @JoinColumn—is not supported; it is replaced by @JoinField.

• @JoinTable—is not required or supported; OneToManys and ManyToManys are
stored as collections of Ids embedded in the source object's data structure.

• @CollectionTable—is not required or supported; ElementCollections are
embedded in the parent object's data structure.

• @MapKeyColumn, @MapKeyClass, @MapKeyJoinColumn—are not currently
supported.

• @OrderBy, @OrderColumn—are not normally required or supported, as order is
normally maintained by the object's data structure.

• @SequenceGenerator, @TableGenerator—are not directly supported.

• @AttributeOverride, @AssociationOverride—are supported with
inheritance, but are not supported or required with embedded relationships as
embedded objects are nested in their parent object's data structure, not flattened
as in the case of relational data.

• @JoinFetch, @BatchFetch—are not supported.

About Mapping NoSQL Objects
NoSQL maps objects to structured data such as XML or JSON. NoSQL supports
embedded data, embedded collections, and all of the existing JPA mapping
annotations.

To map NoSQL objects, you must define IDs, mapping, embedded objects,
relationships, and locking. For more information, see "Implementing the Solution" in
Solutions Guide for EclipseLink.

Chapter 11
About Mapping NoSQL Objects

11-4

About Queries and the NoSQL Platform
Whether querying is supported in NoSQL depends on the NoSQL platform you are
using.

Some NoSQL data-sources may support dynamic querying through their own query
language, others may not support querying at all. The following types of queries are
supported by NoSQL.

• JPQL Queries

• Native Queries

• Interaction Queries

For more information on support for these queries, see "Defining Queries" in Solutions
Guide for EclipseLink.

About Transactions and the NoSQL Platform
The JPA transaction API is supported with NoSQL data-sources.

Some NoSQL data-sources might not support transactions, so the level of transaction
support is dependent on the NoSQL platform. JTA persistence units and transactions
are also supported, but unless the NoSQL adapter is integrated with JTA, no XA or
transaction support will be available.

If the NoSQL data-source does not support transactions, then any database change
such as flush() will be committed directly to the database, and rollback() will not
have any affect. A commit operation that fails will not roll back any successful changes
written before the error. JPA normally does not write to the database until commit or
flush() are called, so there will still be some level of transaction support offered by
the persistence context.

JPA operations persist(), merge(), and remove() are supported.

• MongoDB—Transactions are not supported.

• Oracle NoSQL—Transactions are not supported.

Chapter 11
About Queries and the NoSQL Platform

11-5

12
Database and Application Server Support

This section describes the database platforms and application servers supported by
EclipseLink.

Topics

• Database Support

• Application Server Support

• Non-SQL Standard Database Support: NoSQL

Database Support
EclipseLink supports any relational database that is compliant with SQL and has a
compliant JDBC driver.

EclipseLink has extended support for several database platforms. The extended
support mainly consists of providing native sequencing support, schema creation, and
certain database functions.

The databases in this table are supported. The Java classes are in the
org.eclipse.persistence.platform.database package and are described in
Java API Reference for EclipseLink.

Table 12-1 Supported Database Platforms

Database Java Class Features

Apache Derby org.eclipse.persiste
nce.platform.databas
e.DerbyPlatform

Provides Derby-specific
behavior.

Attunity org.eclipse.persiste
nce.platform.databas
e.AttunityPlatform

Platform class that works with
Attunity's Connect JDBC
driver.

dBASE org.eclipse.persiste
nce.platform.databas
e.DBasePlatform

Provides dBASE-specific
behavior, including:

• Writes Time and
Timestamp as strings
(dBASE does not support
Times or Timestamps)

Firebird org.eclipse.persiste
nce.platform.databas
e.FirebirdPlatform

Provides Firebird-specific
behavior.

H2 org.eclipse.persiste
nce.platform.databas
e.H2Platform

Provides H2-specific behavior.

12-1

Table 12-1 (Cont.) Supported Database Platforms

Database Java Class Features

HyperSQL DataBase (HSQL) org.eclipse.persiste
nce.platform.databas
e.HSQLPlatform

Provides HSQL-specific
behavior. Supports HSQL
functionality as of 1.8.1.
Features include:

• DDL creation
• IDENTITY sequencing
• SEQUENCE objects
• Functions
• Pagination

IBM Cloudscape org.eclipse.persiste
nce.platform.databas
e.CloudscapePlatform

Provides CloudScape DBMS-
specific behavior.

IBM DB2 Mainframe org.eclipse.persiste
nce.platform.databas
e.DB2MainframePlatfo
rm

Provides DB2 Mainframe-
specific behavior. This
provides for some additional
compatibility in certain DB2
versions on OS390. Features
include:

• Specialized CONCAT
syntax

IBM DB2 org.eclipse.persiste
nce.platform.databas
e.DB2Platform

Provides DB2-specific
behavior, including:

• Schema creation
• Native SQL for byte[],

Date, Time, and
Timestamp

• Table qualified names.
• Stored procedures
• Temporary tables
• Casting
• Database functions
• Identity sequencing
• SEQUENCE sequencing

IBM Informix org.eclipse.persiste
nce.platform.databas
e.InformixPlatform

Provides Informix-specific
behavior, including:

• Types for schema
creation.

• Native sequencing using
@SERIAL.

Microsoft Access org.eclipse.persiste
nce.platform.databas
e.AccessPlatformPlat
form

Provides Microsoft Access-
specific behavior.

Chapter 12
Database Support

12-2

Table 12-1 (Cont.) Supported Database Platforms

Database Java Class Features

Microsoft SQLServer org.eclipse.persiste
nce.platform.databas
e.SQLServerPlatform

Provides Microsoft SQL
Server-specific behavior,
including:

• Native SQL for byte[],
Date, Time, and
Timestamp.

• Native sequencing using
@IDENTITY.

MySQL org.eclipse.persiste
nce.platform.databas
e.MySQLPlatform

Provides MySQL-specific
behavior, including:

• Native SQL for Date,
Time, and Timestamp

• Native sequencing
• Mapping of class types to

database types for the
schema framework

• Pessimistic locking
• Platform specific

operators

Oracle org.eclipse.persiste
nce.platform.databas
e.OraclePlatform

Provides Oracle Database-
specific behavior, including:

• LOB
• NChar
• XMLType
• TIMESTAMP (TZ, LTZ)
• Native batch writing
• Structured object-

relational data-types
• PLSQL datatypes and

stored procedures
• VPD, RAC, proxy

authentication
• XDK XML parser
• Hierarchical selects

(Select by prior)
• Returning clause
• Flashback history and

queries
• Stored procedures, output

parameters and output
cursors

• Stored functions
• Oracle AQ

Oracle JavaDB org.eclipse.persiste
nce.platform.databas
e.JavaDBPlatform

Allows the use of
JavaDBPlatform as a
synonym for DerbyPlatform.

Oracle TimesTen org.eclipse.persiste
nce.platform.databas
e.TimesTenPlatform

Provides Oracle TimesTen
database-specific behavior.

Chapter 12
Database Support

12-3

Table 12-1 (Cont.) Supported Database Platforms

Database Java Class Features

Oracle TimesTen7 org.eclipse.persiste
nce.platform.databas
e.TimesTen7Platform

Provides Oracle TimesTen 7
database-specific behavior.

PervasivePlatform org.eclipse.persiste
nce.platform.databas
e.PervasivePlatform

Provides Pervasive PSQL-
specific behavior.

PointBase org.eclipse.persiste
nce.platform.databas
e.PointBasePlatform

Provides PointBase database-
specific behavior.

PostgreSQL org.eclipse.persiste
nce.platform.databas
e.PostgreSQLPlatform

Provides PostgreSQL
database-specific behavior,
including:

• Native SQL for Date,
Time, and Timestamp

• Native sequencing
• Mapping of class types to

database types for the
schema framework

• Pessimistic locking
• Platform specific

operators
• LIMIT/OFFSET query

syntax for select
statements

See also PostgreSQL: http://
wiki.eclipse.org/
EclipseLink/FAQ/JPA/
PostgreSQL

SAP MaxDB org.eclipse.persiste
nce.platform.databas
e.MaxDBPlatform

Provides MaxDB database-
specific behavior.

SAP SyBase SQLAnywhere org.eclipse.persiste
nce.platform.databas
e.SQLAnywherePlatfor
m

Provides SQL Anywhere-
specific behavior.

Sybase org.eclipse.persiste
nce.platform.databas
e.SybasePlatform

Provides Sybase-specific
behavior, including:

• Native SQL for byte[],
Date, Time, and
Timestamp

• Native sequencing using
@IDENTITY

Chapter 12
Database Support

12-4

http://wiki.eclipse.org/EclipseLink/FAQ/JPA/PostgreSQL
http://wiki.eclipse.org/EclipseLink/FAQ/JPA/PostgreSQL
http://wiki.eclipse.org/EclipseLink/FAQ/JPA/PostgreSQL
http://wiki.eclipse.org/EclipseLink/FAQ/JPA/PostgreSQL

Table 12-1 (Cont.) Supported Database Platforms

Database Java Class Features

Fujitsu Symfoware org.eclipse.persiste
nce.platform.databas
e.SymfowarePlatform

Provides Symfoware-specific
behavior, including:

• DDL Generation
• Outer Join
• Subquery (with

limitations)
• Stored Procedure Calls
• Stored Procedure

Generation
• Native Sequences/

Identifier fields
• JPA Bulk Update/Delete

(with limitations)
• Batch Reading
• Batch Writing
• Pessimistic Locking (with

limitations)
• First Result/Limit (with

limitations)
• Expression Framework

(with limitations)
• Delimiters
• Auto Detection

It also possible to extend EclipseLink to add extended support for additional platforms.
There are also several user-contributed platforms in the EclipseLink incubator project.
See Platform Incubator:

http://wiki.eclipse.org/EclipseLink/Development/Incubator/Platform

Application Server Support
EclipseLink can be used with any Java EE application server that meets the software
requirements through the EclipseLink API.

Table 12-2 lists the application servers for which EclipseLink provides integration
support. The classes listed in the table are concrete subclasses of the EclipseLink
org.eclipse.persistence.platform.server.ServerPlatformBase class,
which is responsible for representing server-specific behavior. These classes
determine the following behavior for the server:

• Which external transaction controller to use

• Whether to enable JTA (external transaction control)

• How to register or unregister for runtime services (JMX or MBean)

• Whether to enable runtime services

• How to launch container Threads

For more information on the Java classes listed in the table, see Java API Reference
for EclipseLink.

Chapter 12
Application Server Support

12-5

http://wiki.eclipse.org/EclipseLink/Development/Incubator/Platform

Table 12-2 Supported Application Servers

Server Name Java Classes

IBM WebSphere Application Server • org.eclipse.persistence.platform.server.wa
s.WebSphere_6_1_Platform

• org.eclipse.persistence.platform.server.wa
s.WebSphere_7_Platform

• org.eclipse.persistence.platform.server.wa
s.WebSpherePlatform

JBoss Application Server • org.eclipse.persistence.platform.server.jb
oss.JBossPlatform

Oracle Containers for J2EE (OC4J) • org.eclipse.persistence.platform.server.oc
4j.Oc4jPlatform

Oracle Sun Application Server • org.eclipse.persistence.platform.server.su
nas

Oracle WebLogic Server • org.eclipse.persistence.platform.server.wl
s.WebLogic_10_Platform

• org.eclipse.persistence.platform.server.wl
s.WebLogic_9_Platform

• org.eclipse.persistence.platform.server.wl
s.WebLogicPlatform

SAP NetWeaver Application Server • org.eclipse.persistence.platform.server.sa
p.SAPNetWeaver_7_1_Platform

EclipseLink MOXy as the JAXB Provider for Application Servers
EclipseLink MOXy is integrated into the GlassFish and WebLogic application servers
as the JAXB provider.

For more information, see the following links:

• GlassFish Server: http://blog.bdoughan.com/2012/02/glassfish-312-is-full-of-
moxy.html

• WebLogic Server: http://blog.bdoughan.com/2011/12/eclipselink-moxy-is-jaxb-
provider-in.html

Non-SQL Standard Database Support: NoSQL
EclipseLink JPA can be used with NoSQL databases.

A Java class can be mapped to a NoSQL datasource using the @NoSQL annotation or
<no-sql> XML element.

EclipseLink also provides JPA access to EIS (Enterprise Information Systems) such as
legacy databases and systems (CICS, ADA, VSAM, IMS, MQ, AQ).

EclipseLink's NoSQL support allows complex hierarchical data to be mapped,
including XML, indexed, and hierarchical mapped data such as JSON data. CRUD
operations, embedded objects and collections, inheritance, and relationships are
supported. A subset of JPQL and the Criteria API are supported, dependent on the
NoSQL database's query support.

Chapter 12
Non-SQL Standard Database Support: NoSQL

12-6

http://blog.bdoughan.com/2012/02/glassfish-312-is-full-of-moxy.html
http://blog.bdoughan.com/2012/02/glassfish-312-is-full-of-moxy.html
http://blog.bdoughan.com/2011/12/eclipselink-moxy-is-jaxb-provider-in.html
http://blog.bdoughan.com/2011/12/eclipselink-moxy-is-jaxb-provider-in.html

It is also possible to add support for other NoSQL data-sources by defining your own
EISPlatform subclass and JCA adapter. There are also several user-contributed
platforms in the EclipseLink incubator project. See "Platform Incubator" at this URL:

http://wiki.eclipse.org/EclipseLink/Development/Incubator/Platform

This table lists the NoSQL and EIS data-sources that are supported by EclipseLink.
For more information on the Java classes listed in the table, see Java API Reference
for EclipseLink.

Table 12-3 Supported NoSQL and EIS Platforms

Data-source Java Class Features

MongoDB org.eclipse.persiste
nce.nosql.adapters.m
ongo.MongoPlatform

Provides MongoDB support
including:

• MAPPED JSON data
• JPQL and Criteria queries
• Native queries
• hints for

READ_PREFERENCE,
WRITE_CONCERN,
OPTIONS, SKIP, LIMIT,
BATCH_SIZE

Oracle NoSQL org.eclipse.persiste
nce.nosql.adapters.n
osql.OracleNoSQLPlat
form

Provides Oracle NoSQL
support including:

• MAPPED key/value data
• XML data
• find() and SELECT all

queries
• hints for CONSISTENCY,

DURABILITY, TIMEOUT,
VERSION

XML files org.eclipse.persiste
nce.eis.adapters.xml
file.XMLFilePlatform

Provides support for
persistence to XML file
including:

• XML data
• find() and SELECT all

queries
• XPath interactions

JMS org.eclipse.persiste
nce.eis.adapters.jms
.JMSPlatform

Provides support for
persistence through JMS
messaging:

• XML data
• send/receive operations

Oracle AQ org.eclipse.persiste
nce.eis.adapters.aq.
AQPlatform

Provides support for
persistence through Oracle
AQ messaging:

• XML data
• enqueue/dequeue

operations

Chapter 12
Non-SQL Standard Database Support: NoSQL

12-7

http://wiki.eclipse.org/EclipseLink/Development/Incubator/Platform

	Contents
	Preface
	Audience
	Related Documents
	Conventions

	1 Overview of TopLink
	Understanding TopLink
	What Is the Object-Persistence Impedance Mismatch?
	The EclipseLink Solution

	Key Features
	Key Concepts
	Key Components
	EclipseLink Core and API
	Object-Relational (JPA 2.1) Component
	JAXB Component
	MOXy Component
	SDO Component

	Database Web Services Component

	Key Tools
	Oracle JDeveloper
	Oracle Enterprise Pack for Eclipse
	Eclipse
	NetBeans

	2 Understanding Object-Relational and MOXy Internals
	About Metadata
	Advantages of the Metadata Architecture
	Creating Project Metadata
	Creating Session Metadata

	About the Object-Relational Solution
	Understanding Object-Relational Entity Architecture
	Adding Metadata Using Annotations
	About Configuration Basics
	About Data Sources
	About EclipseLink Caches
	About Database Queries

	About the MOXy Solution
	Using EclipseLink MOXy as the JAXB Provider
	Understanding MOXy Architecture
	Serving Metadata for MOXy
	About XML Bindings
	Querying Objects by XPath

	3 Understanding the Persistence Unit
	About the Persistence Unit
	About the Persistence Unit Name
	About the Persistence Provider
	About the Transaction Type Data Source
	About Logging
	About Vendor Properties
	About Mapping Files
	About Managed Classes
	About the Deployment Classpath
	About Persistence Unit Packaging Options
	About the Persistence Unit Scope
	About Composite Persistence Units

	Building and Using the Persistence Layer
	Implementation Options
	Persistent Class Requirements
	Persistence Layer Components

	About Persisting Objects
	Application Object Model
	Data Storage Schema
	Primary Keys and Object Identity
	Mappings
	Foreign Keys and Object Relationships
	Inheritance
	Concurrency
	Caching
	Nonintrusive Persistence
	Indirection
	Mutability

	Migrating Applications to the EclipseLink Persistence Manager
	About Weaving
	Using Dynamic Weaving
	Using Static Weaving
	Weaving POJO Classes
	Weaving and Java EE Application Servers
	Disabling Weaving with Persistence Unit Properties

	4 Understanding Entities
	Identifying Entities
	Entities and Persistent Identity
	Entities and Database Tables
	Entities and Inheritance
	Entities and Embedded Objects
	Entities and Sequence Generation
	Entities and Locking
	Extensible Entities

	5 Understanding Descriptors
	Common Descriptor Concepts
	Descriptor Architecture
	Descriptors and Inheritance
	Descriptors and Aggregation
	Descriptor Customization
	Amendment Methods
	Descriptor Event Manager

	Object-Relational Descriptor Concepts
	Fetch Groups
	Descriptor Query Manager
	Descriptors and Sequencing
	Descriptors and Locking

	Descriptor Files
	Using orm.xml for Object-Relational Mappings
	Using eclipselink-orm.xml for EclipseLink Object-Relational Mappings
	Using eclipselink-oxm.xml for EclipseLink MOXy Mappings

	6 Understanding Mappings
	Common Mapping Concepts
	Mapping Architecture
	Mapping Examples
	Mapping Converters
	Transformation Mapping

	Object-Relational Mapping Concepts
	Indirection (Lazy Loading)
	Indirection, Serialization, and Detachment
	Value Holder Indirection
	Transparent Indirection
	Proxy Indirection
	Weaved Indirection
	About JPA Mapping Types

	MOXy Mapping Concepts
	Understanding an XML Data Representation
	Mapping Values

	Object-JSON Mapping Concepts

	7 Understanding Data Access
	About Externally Managed Transactional Data Sources
	About Data Source Login Types
	About Data Source Platform Types
	Simple JDBC Authentication
	Oracle Database Proxy Authentication
	Auditing

	About Authentication
	Simple JDBC Authentication
	Oracle Database Proxy Authentication
	Auditing

	About Connections
	About Connection Pools
	Internal Connection Pools
	External Connection Pools
	Default (Write) and Read Connection Pools
	Sequence Connection Pools
	Application-Specific Connection Pools

	About Data Partitioning Policies
	About Tenant Isolation
	Single Table Multi-Tenancy
	Table-Per-Tenant Multi-Tenancy
	VPD Multi-Tenancy

	About Heterogeneous Batch Writing

	8 Understanding Caching
	About Cache Architecture
	Persistence Unit Cache
	Persistence Context Cache
	Shared, Isolated, Protected, Weak, and Read-only Caches

	About Cache Type and Size
	FULL Cache Type
	WEAK Cache Type
	SOFT Cache Type
	SOFT_WEAK and HARD_WEAK Cache Type
	NONE and CACHE
	Guidelines for Configuring the Cache and Identity Maps

	About Queries and the Cache
	About Query Cache Options and In-memory Querying

	About Handling Stale Data
	Configuring a Locking Policy
	Configuring the Cache on a Per-Class Basis
	Forcing a Cache Refresh when Required on a Per-Query Basis
	Configuring Cache Invalidation
	Configuring Cache Coordination

	About Explicit Query Refreshes
	About Cache Indexes
	Database Event Notification and Oracle CQN
	Oracle Continuous Query Notification

	About Query Results Cache
	About Cache Coordination
	When to Use Cache Coordination

	Clustering and Cache Coordination
	Coordinating JMS and RMI Caches
	Coordinating Custom Caches

	Clustering and Cache Consistency
	Cache Interceptors

	9 Understanding Queries
	Query Concepts
	Call Objects
	DatabaseQuery Objects
	Data-Level and Object-Level Queries
	Summary Queries
	Descriptor Query Manager
	Query Keys

	About JPQL Queries
	EclipseLink Extensions to JPQL
	EclipseLink Special Operators in JPQL

	About SQL Query Language
	Stored Procedures

	About the Criteria API
	EclipseLink Extensions to the Criteria API

	About Native SQL Queries
	EclipseLink Extensions to Native Query Support

	About Query Hints
	JPA Cache Query Hints
	EclipseLink Extensions to Cache Query Hints

	About Query Casting
	EclipseLink Expression Support for Downcasting

	About Oracle Extensions for Queries
	Query Hints
	Hierarchical Queries
	Flashback Queries
	Stored Functions

	10 Understanding EclipseLink Expressions
	About the Expression Framework
	About Expression Components
	Boolean Logic
	Database Functions and Operators
	Platform and User-Defined Functions
	Expressions for One-to-One and Aggregate Object Relationships
	Expressions for Joining and Complex Relationships

	11 Understanding Non-relational Data Sources
	NoSQL Platform Concepts
	About NoSQL Persistence Units
	Persistence Unit Properties for NoSQL Platforms

	About JPA Applications on the NoSQL Platform
	Mapping Restrictions on JPA Annotations

	About Mapping NoSQL Objects
	About Queries and the NoSQL Platform
	About Transactions and the NoSQL Platform

	12 Database and Application Server Support
	Database Support
	Application Server Support
	EclipseLink MOXy as the JAXB Provider for Application Servers

	Non-SQL Standard Database Support: NoSQL

