
Oracle® FMW
Deploying and Managing Oracle HTTP Server
on Kubernetes

14.1.2
G22975-05
July 2025

Oracle FMW Deploying and Managing Oracle HTTP Server on Kubernetes, 14.1.2

G22975-05

Copyright © 2024, 2025, Oracle and/or its affiliates.

Primary Authors: Russell Hodgson,

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Conventions i

Related Documents i

1 What's New in This Guide

Part I Introduction to Oracle HTTP Server on Kubernetes

2 Introducing Oracle HTTP Server on Kubernetes

3 About the Kubernetes Deployment

3.1 What is Kubernetes? 1

3.2 About the Kubernetes Architecture 2

3.3 Key Components Used By an OHS Deployment 3

3.4 Supported Architectures for Oracle HTTP Server 6

3.5 Requirements for Oracle HTTP Server on Kubernetes 9

Part II Installing Oracle HTTP Server on Kubernetes

4 Preparing Your Environment

4.1 Confirm the Kubernetes Cluster is Ready 1

4.2 Obtaining the OHS Container Image 2

4.3 Setting Up the Code Repository for OHS 3

4.4 Preparing Your OHS Configuration Files 3

4.5 Creating the OHS Namespace 7

4.6 Creating ConfigMaps for the OHS Configuration Files 8

4.7 Creating a Kubernetes Secret for the Container Registry 8

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page i of iii

4.8 Creating a Kubernetes Secret for the OHS Domain Credentials 9

4.9 Preparing the ohs.yaml File 9

4.10 Preparing the ohs_service.yaml File 13

5 Deploying Oracle HTTP Server on Kubernetes

5.1 Deploying the OHS Nodeport 1

5.2 Deploying the OHS Container 2

5.3 Validating the OHS Deployment 3

Part III Administering Oracle HTTP Server on Kubernetes

6 Scaling OHS Containers

6.1 Viewing Existing OHS Servers 1

6.2 Scaling Up OHS Servers 1

6.3 Scaling Down OHS Servers 2

7 Modifying the OHS Container

7.1 Edting Files in $MYOHFILES/ohsconfig 1

7.2 Editing the ConfigMap 2

8 Deleting the OHS Container

9 Creating or Updating an OHS Image

9.1 Setting Up the WebLogic Image Tool 1

9.1.1 WebLogic Image Tool Prerequisites 1

9.1.2 Configure the WebLogic Image Tool 2

9.1.3 Validating the Setup 2

9.1.4 Setting the Build and Cache Directories 3

9.1.5 Setting Up Additional Build Scripts 3

9.2 Creating an Image 4

9.2.1 Exporting the PWD Variable 4

9.2.2 Downloading the OHS Installation Binaries and Patches 4

9.2.3 Updating the Required Build Files 4

9.2.4 Creating the Image 6

9.3 Updating an Image 8

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page ii of iii

10

Patching and Upgrading

10.1 Patching and Upgrading an Image in 14.1.2 1

10.2 Upgrading from OHS 12.2.1.4 to OHS 14.1.2 3

11

Troubleshooting and Common Problems

Index

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page iii of iii

Preface

Deploying and Managing Oracle HTTP Server on Kubernetes describes how to deploy,
configure, and administer Oracle HTTP Server on Kubernetes.

Audience
This guide is intended for:

• Administrators responsible for deploying and managing Oracle HTTP Server on
Kubernetes

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit My Oracle Support or visit About Oracle Accessibility
Oracle Accessibility Learning and Support if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Related Documents
For general information about Oracle HTTP Server, Oracle WebGate, and Oracle Access
Management, see the following documentation:

• Administering Oracle HTTP Server

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page i of ii

https://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
https://www.oracle.com/corporate/accessibility/learning-support/#accessibility-support
https://www.oracle.com/corporate/accessibility/learning-support/#accessibility-support
https://docs.oracle.com/en/middleware/fusion-middleware/web-tier/14.1.2/administer-ohs/index.html

• Administering Oracle Access Management

• Deploying Oracle Access Management 12c on Kubernetes

Preface

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page ii of ii

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/aiaag/index.html
https://oracle.github.io/fmw-kubernetes/idm-products/oam/

List of Figures

3-1 An Illustration of the Kubernetes Cluster 2

3-2 OHS on a Shared Kubernetes Cluster 7

3-3 OHS on an Independent Kubernetes Cluster 8

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page iii of iii

1
What's New in This Guide

This preface shows current and past versions of Oracle HTTP Server (OHS) 14c container
images and deployment scripts on Kubernetes. If any new functionality is added, details are
outlined.

Date Version Change

July 2025 14.1.2.0.0

GitHub release version 25.3.1

Supports Oracle HTTP Server
14.1.2.0.0 deployment using the
July 2025 OHS container image
which contains the July Patch Set
Update (PSU) and other fixes
released with the Critical Patch
Update (CPU) program.

The GitHub release version is the
latest version of the deployment
scripts used in Setting Up the
Code Repository for OHS.

April 2025 14.1.2.0.0

GitHub release version 25.2.1

Supports Oracle HTTP Server
14.1.2.0.0 deployment using the
April 2025 OHS container image
which contains the April Patch
Set Update (PSU) and other fixes
released with the Critical Patch
Update (CPU) program.

The GitHub release version is the
latest version of the deployment
scripts used in Setting Up the
Code Repository for OHS.

January 2025 14.1.2.0.0

GitHub release version 24.4.3

Initial release of Oracle HTTP
Server 14.1.2.0.0 on Kubernetes.
Supports Oracle HTTP Server
14.1.2.0.0 deployment using the
OHS container image.

The GitHub release version is the
latest version of the deployment
scripts used in Setting Up the
Code Repository for OHS.

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 1 of 1

https://github.com/oracle/fmw-kubernetes/releases
https://github.com/oracle/fmw-kubernetes/releases
https://github.com/oracle/fmw-kubernetes/releases

Part I
Introduction to Oracle HTTP Server on
Kubernetes

This section includes the following chapters:

• Introducing Oracle HTTP Server on Kubernetes

• About the Kubernetes Deployment

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 1 of 1

2
Introducing Oracle HTTP Server on
Kubernetes

Oracle HTTP Server (OHS) is supported for deployment on Kubernetes.

This documentation explains how to configure Oracle HTTP Server (OHS) on a shared
Kubernetes cluster where other applications are deployed, or on it’s own independent
Kubernetes cluster.

Please note that this documentation does not explain how to configure a Kubernetes cluster
given the product can be deployed on any compliant Kubernetes vendor.

This documentation assumes you are familiar with OHS and it’s configuration files. It also
assumes that if you are using this OHS with Oracle WebGate and Oracle Access
Management, that you are familiar with these products.

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 1 of 1

3
About the Kubernetes Deployment

Containers offer an excellent mechanism to bundle and run applications. In a production
environment, you have to manage the containers that run the applications and ensure there is
no downtime. For example, if a container goes down, another container has to start
immediately. Kubernetes simplifies container management.

This chapter includes the following topics:

• What is Kubernetes?

• About the Kubernetes Architecture

• Key Components Used By an OHS Deployment

• Supported Architectures for Oracle HTTP Server

• Requirements for Oracle HTTP Server on Kubernetes

3.1 What is Kubernetes?
Kubernetes is a portable, extensible, open-source platform for managing containerized
workloads and services that facilitates both declarative configuration and automation.

Kubernetes sits on top of a container platform such as CRI-O or Docker. Kubernetes provides
a mechanism which enables container images to be deployed to a cluster of hosts. When you
deploy a container through Kubernetes, Kubernetes deploys that container on one of its worker
nodes. The placement mechanism is transparent to the user.

Kubernetes provides:

• Service Discovery and Load Balancing: Kubernetes can expose a container using the
DNS name or using their own IP address. If traffic to a container is high, Kubernetes
balances the load and distributes the network traffic so that the deployment remains stable.

• Storage Orchestration: Kubernetes enables you to automatically mount a storage system
of your choice, such as local storages, NAS storages, public cloud providers, and more.

• Automated Rollouts and Rollbacks: You can describe the desired state for your
deployed containers using Kubernetes, and it can change the actual state to the desired
state at a controlled rate. For example, you can automate Kubernetes to create new
containers for your deployment, remove existing containers, and adopt all their resources
to the new container.

• Automatic Bin Packing: If you provide Kubernetes with a cluster of nodes that it can use
to run containerized tasks, and indicate the CPU and memory (RAM) each container
needs, Kubernetes can fit containers onto the nodes to make the best use of the available
resources.

• Self-healing: Kubernetes restarts containers that fail, replaces containers, kills containers
that do not respond to your user-defined health check, and does not advertise them to
clients until they are ready to serve.

• Secret and Configuration Management: Kubernetes lets you store and manage sensitive
information such as passwords, OAuth tokens, and SSH keys. You can deploy and update

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 1 of 10

secrets and application configuration without rebuilding your container images, and without
exposing secrets in your stack configuration.

When deploying Kubernetes, Oracle highly recommends that you use the traditional
recommendations of keeping different workloads in separate Kubernetes clusters. For
example, it is not a good practice to mix development and production workloads in the same
Kubernetes cluster.

3.2 About the Kubernetes Architecture
A Kubernetes host consists of a control plane and worker nodes.

Control Plane: A control plane is responsible for managing the Kubernetes components and
deploying applications. In an enterprise deployment, you need to ensure that the Kubernetes
control plane is highly available so that the failure of a control plane host does not fail the
Kubernetes cluster.

Worker Nodes: Worker nodes which are where the containers are deployed.

Note

An individual host can be both a control plane host and a worker host.

Figure 3-1 An Illustration of the Kubernetes Cluster

Description of Components:

Chapter 3
About the Kubernetes Architecture

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 2 of 10

• Control Plane: The control plane comprises the following:

– kube-api server: The API server is a component of the control plane that exposes the
Kubernetes APIs.

– etcd: It is used to store the Kubernetes backing store and all the cluster data.

– Scheduler: The scheduler is responsible for the placement of containers on the worker
nodes. It takes into account resource requirements, hardware and software policy
constraints, affinity specifications, and data affinity.

– Control Manager: It is responsible for running the controller processes. Controller
processes consist of:

* Node Controller

* Route Controller

* Service Controller

The control plane consists of three nodes where the Kubernetes API server is deployed,
front ended by an LBR.

• Worker Node Components: The worker nodes include the following components:

– Kubelet: An Agent that runs on each worker node in the cluster. It ensures that the
containers are running in a pod.

– Kube Proxy: Kube proxy is a network proxy that runs on each node of the cluster. It
maintains network rules, which enable inter pod communications as well as
communications outside of the cluster.

– Add-ons: Add-ons extend the cluster further, providing such services as:

* DNS

* Web UI Dashboard

* Container Resource Monitoring

* Logging

3.3 Key Components Used By an OHS Deployment
An Oracle HTTP Server (OHS) deployment uses the Kubernetes components such as pods
and Kubernetes services.

Container Image

A container image is an unchangeable, static file that includes executable code. When
deployed into Kubernetes, it is the container image that is used to create a pod. The image
contains the system libraries, system tools, and Oracle binaries required to run in Kubernetes.
The image shares the OS kernel of its host machine.

A container image is compiled from file system layers built onto a parent or base image. These
layers encourage the reuse of various components. So, there is no need to create everything
from scratch for every project.

A pod is based on a container image. This container image is read-only. Each pod has its own
instance of a container image.

A container image contains all the software and libraries required to run the product. It does
not require the entire operating system. Many container images do not include standard
operating utilities such as the vi editor or ping.

Chapter 3
Key Components Used By an OHS Deployment

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 3 of 10

When you upgrade a pod, you are actually instructing the pod to use a different container
image. For example, if the container image for Oracle HTTP Server is based on the July 2025
bundle patch, then to upgrade the pod to use the July 2025 bundle patch, you have to tell the
pod to use the July 2025 image and restart the pod. Further information on upgrading can be
found in Patching and Upgrading.

Pods

A pod is a group of one or more containers, with shared storage/network resources, and a
specification for how to run the containers. A pod's contents are always co-located and co-
scheduled, and run in a shared context. A pod models an application-specific logical host that
contains one or more application containers which are relatively tightly coupled.

In an Oracle HTTP Server (OHS) deployment, each OHS runs in a different pod.

If a node becomes unavailable, Kubernetes does not delete the pods automatically. Pods that
run on an unreachable node attain the 'Terminating' or 'Unknown' state after a timeout. Pods
may also attain these states when a user attempts to delete a pod on an unreachable node
gracefully. You can remove a pod in such a state from the apiserver in one of the following
ways:

• You or the Node Controller deletes the node object.

• The kubelet on the unresponsive node starts responding, terminates the pod, and removes
the entry from the apiserver.

• You force delete the pod.

Oracle recommends the best practice of using the first or the second approach. If a node is
confirmed to be dead (for example: permanently disconnected from the network, powered
down, and so on), delete the node object. If the node suffers from a network partition, try to
resolve the issue or wait for the partition to heal. When the partition heals, the kubelet
completes the deletion of the pod and frees up its name in the apiserver.

Typically, the system completes the deletion if the pod is no longer running on a node or an
administrator has deleted it. You may override this by force deleting the pod.

Pod Scheduling

By default, Kubernetes will schedule a pod to run on any worker node that has sufficient
capacity to run that pod. In some situations, it is desirable that scheduling occurs on a subset
of the worker nodes available. This type of scheduling can be achieved by using Kubernetes
labels.

Kubernetes Services

Kubernetes services expose the processes running in the pods regardless of the number of
pods that are running. For example, Oracle HTTP Servers each running in different pods will
have a service associated with them. This service will redirect your request to the individual
pods in the cluster.

Kubernetes services can be internal or external to the cluster. Internal services are of the type
ClusterIP and external services are of the type NodePort.

Some deployments use a proxy in front of the service. This proxy is typically provided by an
'Ingress' load balancer such as Ngnix. Ingress allows a level of abstraction to the underlying
Kubernetes services.

In this guide, Oracle HTTP Server (OHS) is exposed as type NodePort and Ingress is not used to
access OHS.

Chapter 3
Key Components Used By an OHS Deployment

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 4 of 10

The Kubernetes services use a small port range. Therefore, when a Kubernetes service is
created, there will be a port mapping. For instance, if an OHS pod is using port 7777, then a
Kubernetes nodeport service may use 30777 as its port, mapping port 30777 to 7001
internally. It is worth noting that using individual NodePort Services, the corresponding
Kubernetes service port will be reserved on every worker node in the cluster.

Kubernetes/ingress services are known to each worker node, regardless of the worker node on
which the containers are running. Therefore, a load balancer is often placed in front of the
worker node to simplify routing and worker node scalability.

If OHS is communicating using mod_wl_ohs to a WebLogic Server, then it interacts with those
services using the format: worker_node_hostname:Service port. This format is applicable whether you
are using individual NodePort Services or a consolidated Ingress node port service.

If OHS communicates with multiple WebLogic worker nodes, then you should include multiple
worker nodes in your calls to remove single points of failure. In this guide OHS makes direct
proxy calls using WebLogicCluster directives. More information on this can be found in Supported
Architectures for Oracle HTTP Server.

Ingress Controller

Whilst this guide uses NodePort for Oracle HTTP Server (OHS) access, if OHS communicates
with WebLogic Server on an independent Kubernetes cluster, then the WebLogicCluster directive
should point to the port of the Ingress controller used by WebLogic Server.

Ingress is a proxy server which sits inside the Kubernetes cluster, unlike the NodePort
Services which reserve a port per service on every worker node in the cluster. With an ingress
service, you can reserve single ports for all HTTP / HTTPS traffic.

An Ingress service works in the same way as the Oracle HTTP Server. It has the concept of
virtual hosts and can terminate SSL, if required.

More information on this can be found in Supported Architectures for Oracle HTTP Server.

Domain Name System

Every service defined in the cluster (including the DNS server itself) is assigned a DNS name.
By default, a client pod's DNS search list includes the pod's own namespace and the cluster's
default domain.

The following types of DNS records are created for a Kubernetes cluster:

• Services
Record Type: A or AAAA record

Name format: my-svc.namespace.svc.cluster-example.com

• Pods
Record Type: A or AAAA record

Name format: podname.namespace.pod.cluster-example.com

Kubernetes uses a built-in DNS server called 'CoreDNS' which is used for the internal name
resolution.

External name resolution (names used outside of the cluster, for example:
loadbalancer.example.com) may not possible inside the Kubernetes cluster. If you encounter this
issue, you can use one of the following options:

• Option 1 - Add a secondary DNS server to CoreDNS for the company domain.

Chapter 3
Key Components Used By an OHS Deployment

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 5 of 10

• Option 2 - Add individual host entries to CoreDNS for the external hosts. For example:
loadbalancer.example.com

Namespaces

Namespaces enable you to organize clusters into virtual sub-clusters which are helpful when
different teams or projects share a Kubernetes cluster. You can add any number of
namespaces within a cluster, each logically separated from others but with the ability to
communicate with each other.

In this guide the OHS deployment uses the namespace ohsns.

3.4 Supported Architectures for Oracle HTTP Server
Oracle HTTP Server (OHS) can be deployed in the following Kubernetes scenarios:

• Oracle HTTP Server deployed on a shared Kubernetes cluster with other applications.

• Oracle HTTP Server deployed on an independent Kubernetes cluster.

Before deploying OHS you must consider what architecture to deploy and then plan
accordingly.

Oracle HTTP Server on a Shared Kubernetes Cluster

This deployment is recommended for sandbox and intranet environments only.

In this deployment OHS is installed on the same Kubernetes cluster as other Kubernetes
deployed applications. For example, you may want to deploy OHS on the same Kubernetes
cluster as other Oracle products such as Oracle WebLogic Server, or Oracle Access
Management (OAM).

If OHS needs to communicate with other applications on the same Kubernetes cluster, for
example using mod_wls_ohs to communicate with Oracle WebLogic Server, then the OHS
communicates to the internal port of that Kubernetes service.

An example architecture is as follows:

Chapter 3
Supported Architectures for Oracle HTTP Server

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 6 of 10

Figure 3-2 OHS on a Shared Kubernetes Cluster

In this example:

• OHS is deployed in the same Kubernetes cluster as Oracle WebLogic Server.

• SSL is terminated at the load balancer.

• The load balancer communicates with OHS via the OHS nodeport using HTTP.

• OHS communicates with the WebLogic Administration and WebLogic Managed Servers
via HTTP, using the internal port of the associated Kubernetes service:
<service_name>.<namespace>.svc.cluster.local:<port>. The <service_name> and <port> can be found by
running kubectl get svc -n <namespace> on your Kubernetes cluster.

Note

The load balancer is optional and you can connect direct to the OHS nodeport if
required, either from workstations outside the firewall, or internally from other
applications.

Chapter 3
Supported Architectures for Oracle HTTP Server

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 7 of 10

Oracle HTTP Server on an Independent Kubernetes Cluster

This deployment is recommended for internet facing, production environments.

In this deployment OHS is installed on it’s own Kubernetes cluster inside a demilitarized zone.

If OHS needs to communicate with other applications deployed on a different Kubernetes
cluster, for example using mod_wl_ohs to communicate with Oracle WebLogic Server, then the
OHS communicates via HTTP to the Ingress controller port used by the application on that
Kubernetes cluster, or to the appropriate NodePort Kubernetes service you wish to connect to.

An example architecture is as follows:

Figure 3-3 OHS on an Independent Kubernetes Cluster

In this example:

Chapter 3
Supported Architectures for Oracle HTTP Server

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 8 of 10

• SSL is terminated at the load balancer.

• The load balancer communicates with OHS via the OHS nodeport using HTTP.

• WebLogic Server is deployed on it’s own Kubernetes cluster.

• OHS communicates with the WebLogic Administration and WebLogic Managed Servers
using the HTTP port of the Ingress controller configured for WebLogic Server.

Note

The load balancer is optional and you can connect direct to the OHS nodeport if
required, either from workstations outside the firewall, or internally from other
applications.

3.5 Requirements for Oracle HTTP Server on Kubernetes
This section provides information about the system requirements and limitations for deploying
and running Oracle HTTP Server (OHS) on Kubernetes.

System Requirements for OHS on Kubernetes

You must have a running Kubernetes cluster that meets the following requirements:

• The Kubernetes cluster and container engine must meet the minimum version
requirements outlined in document ID 3058838.1 on My Oracle Support.

• An administrative host from which to deploy the products. This host could be a Kubernetes
Control host, a Kubernetes Worker host, or an independent host. This host must have
kubectl deployed using the same version as your cluster.

• The Kubernetes cluster must have sufficient nodes and resources.

• A supported container engine such as CRI-O or Docker must be installed and running on
the Kubernetes cluster.

• The system clocks on node of the Kubernetes cluster must be synchronized. Run the date
command simultaneously on all the nodes in each cluster and then synchronize
accordingly.

Note

This documentation does not tell you how to install a Kubernetes cluster, the container
engine, or how to push container images to a container registry. Please refer to your
vendor specific documentation for this information.

Before deploying OHS you must consider what architecture to deploy and then plan
accordingly.

Oracle Access Management Requirements

If you intend to use OHS with Oracle WebGate and Oracle Access Management (OAM), then
OAM must have been deployed beforehand, either in an on-premises environment, or in a
Kubernetes cluster. You must have an understanding of OAM and Oracle WebGate before
proceeding.

Chapter 3
Requirements for Oracle HTTP Server on Kubernetes

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 9 of 10

https://support.oracle.com

Instructions for deploying OAM 14.1.2.1.0 in a Kubernetes cluster can be found in Deploying
and Managing Oracle Access Management on Kubernetes. OAM in a Kubernetes cluster must
be deployed as per one of the supported architectures defined. See, Supported Architectures
for Oracle HTTP Server.

To use Oracle WebGate with OHS you must perform the following before deploying OHS:

• Update the Load Balancing and WebGate Traffic Load Balancer to the entry point for OAM.
For example, if OAM is accessed via the load balancer (https://loadbalancer.example.com), then
the OAM Server Host, OAM Server Port, and OAM Server Protocol should be updated
to loadbalancer.example.com, 443, and HTTPS respectively. For more information, see Updating
the OAM Hostname and Port for the Loadbalancer.

• Create an Agent in the Oracle Access Management console. After creating the agent,
make sure the User Defined Parameters for OAMRestEndPointHostName, OAMRestEndPointPort,
and OAMServerCommunicationMode are set to the same values as the load balancing settings
above. See, Registering a WebGate Agent.

• In the Application Domain created for the WebGate, update the resources with any
resources you wish to protect.

• Create any Host Identifier(s) for any URL’s you require. For example if you access OAM
via a load balancer, create a host identifier for both the load balancer hostname.domain
and the OHS hostname.domain. If you access OAM directly via OHS, create a host
identifier for the OHS hostname.domain. See, Creating Host Identifiers.

• Download the zip file for the Agent from the OAM Console. This zip file will later be copied
and extracted to the $WORKDIR/ohsConfig/webgate/config directory. See, Preparing Your OHS
Configuration Files.

Chapter 3
Requirements for Oracle HTTP Server on Kubernetes

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 10 of 10

https://docs.oracle.com/en/middleware/idm/access-manager/14.1.2/oamku/index.html
https://docs.oracle.com/en/middleware/idm/access-manager/14.1.2/oamku/index.html

Part II
Installing Oracle HTTP Server on Kubernetes

This section includes the following chapters:

• Preparing Your Environment

• Deploying Oracle HTTP Server on Kubernetes

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 1 of 1

4
Preparing Your Environment

Before starting an Oracle HTTP Server (OHS) deployment on Kubernetes, you must prepare
your environment.

This chapter includes the following topics:

• Confirm the Kubernetes Cluster is Ready

• Obtaining the OHS Container Image

• Setting Up the Code Repository for OHS

• Preparing Your OHS Configuration Files

• Creating the OHS Namespace

• Creating ConfigMaps for the OHS Configuration Files

• Creating a Kubernetes Secret for the Container Registry

• Creating a Kubernetes Secret for the OHS Domain Credentials

• Preparing the ohs.yaml File

• Preparing the ohs_service.yaml File

4.1 Confirm the Kubernetes Cluster is Ready
As per Requirements for Oracle HTTP Server on Kubernetes, a Kubernetes cluster should
have already been configured.

1. Run the following command on the Kubernetes administrative node to check the cluster
and worker nodes are running:

kubectl get nodes,pods -n kube-system

The output will look similar to the following:

NAME STATUS ROLES AGE VERSION
 node/worker-node1 Ready <none> 17h v1.29.9+3.el8
 node/worker-node2 Ready <none> 17h v1.29.9+3.el8
 node/master-node Ready control-plane,master 23h v1.29.9+3.el8

 NAME READY STATUS RESTARTS AGE
 pod/coredns-66bff467f8-fnhbq 1/1 Running 0 23h
 pod/coredns-66bff467f8-xtc8k 1/1 Running 0 23h
 pod/etcd-master 1/1 Running 0 21h
 pod/kube-apiserver-master-node 1/1 Running 0 21h
 pod/kube-controller-manager-master-node 1/1 Running 0 21h
 pod/kube-flannel-ds-amd64-lxsfw 1/1 Running 0 17h
 pod/kube-flannel-ds-amd64-pqrqr 1/1 Running 0 17h
 pod/kube-flannel-ds-amd64-wj5nh 1/1 Running 0 17h
 pod/kube-proxy-2kxv2 1/1 Running 0 17h

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 1 of 13

 pod/kube-proxy-82vvj 1/1 Running 0 17h
 pod/kube-proxy-nrgw9 1/1 Running 0 23h
 pod/kube-scheduler-master 1/1 Running 0 21h

4.2 Obtaining the OHS Container Image
The Oracle HTTP Server (OHS) Kubernetes deployment requires access to an OHS container
image.

The OHS container image can be obtained in the following ways:

• Prebuilt OHS container image

• Build your own OHS container image using WebLogic Image Tool

Prebuilt OHS container image

The latest prebuilt OHS 14.1.2 container image can be downloaded from Oracle Container
Registry. This image is prebuilt by Oracle and includes Oracle HTTP Server 14.1.2.0.0, the
latest Patch Set Update (PSU) and other fixes released with the Critical Patch Update (CPU)
program.

Note

Before using this image you must login to Oracle Container Registry, navigate to
Middleware > ohs and accept the license agreement. For future releases (post
January 25) that contain the latest Patch Set Update (PSU) and other fixes released
with the Critical Patch Update (CPU) program, you should navigate to Middleware
>ohs_cpu.

You can use this image in the following ways:

• Pull the container image from the Oracle Container Registry automatically during the OHS
Kubernetes deployment.

• Manually pull the container image from the Oracle Container Registry and then upload it to
your own container registry.

• Manually pull the container image from the Oracle Container Registry and manually stage
it on each worker node.

Build your own OHS container image using WebLogic Image Tool

You can build your own OHS container image using the WebLogic Image Tool. This is
recommended if you need to apply one off patches to a prebuilt OHS container image. For
more information about building your own container image with WebLogic Image Tool, see
Creating or Updating an OHS Image.

You can use an image built with WebLogic Image Tool in the following ways:

• Manually upload them to your own container registry.

• Manually stage them on each worker node.

Chapter 4
Obtaining the OHS Container Image

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 2 of 13

https://container-registry.oracle.com/
https://container-registry.oracle.com/
https://container-registry.oracle.com/

Note

This documentation does not tell you how to pull or push the above images into a
private container registry, or stage them on worker nodes. Details of this can be found
in the Enterprise Deployment Guide. See, Procuring Software for an Enterprise
Deployment.

4.3 Setting Up the Code Repository for OHS
To deploy Oracle HTTP Server (OHS) you need to set up the code repository which provides
sample deployment yaml files.

Perform the following steps on a node that has access to the Kubernetes cluster.

1. Create a directory to setup the source code:

mkdir <ohsscripts>

For example:

mkdir -p /OHSK8S/OHSscripts

2. Download the latest OHS deployment scripts from the OHS repository:

cd <ohsscripts>
git clone https://github.com/oracle/fmw-kubernetes.git

For example:

cd /OHSK8S/OHSscripts
git clone https://github.com/oracle/fmw-kubernetes.git

3. Set the $SCRIPTDIR environment variable as follows:

export SCRIPTDIR=<ohsscripts>/fmw-kubernetes/OracleHTTPServer/kubernetes

For example:

export SCRIPTDIR=/OHSK8S/OHSscripts/fmw-kubernetes/OracleHTTPServer/kubernetes

4.4 Preparing Your OHS Configuration Files
Before you deploy Oracle HTTP Server (OHS), you must prepare your OHS configuration files.

The steps below assume familiarity with on premises Oracle HTTP Server in terms of general
configuration, and use of Oracle WebGate.

Chapter 4
Setting Up the Code Repository for OHS

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 3 of 13

https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.4/ikedg/procuring-software-enterprise-deployment.html
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.4/ikedg/procuring-software-enterprise-deployment.html

Note

Administrators should be aware of the following:

• If you do not specify configuration files beforehand, then the OHS container is
deployed with a default configuration of Oracle HTTP Server.

• The directories listed below are optional. For example, if you do not want to deploy
WebGate then you do not need to create the webgateConf and webgateWallet
directories. Similarly, if you do not want to copy files to htdocs then you do not need
to create the htdocs directory.

1. Make a directory to store your OHS configuration files:

mkdir -p <myohsfiles>

For example:

mkdir -p /OHSK8S/myOHSfiles

2. Set the $MYOHSFILES environment variable as follows:

export MYOHSFILES=<myohsfiles>

For example:

export MYOHSFILES=/OHSK8S/myOHSfiles

3. Create the following directories for your OHS configuration:

mkdir -p $MYOHSFILES/ohsConfig/httpconf
mkdir -p $MYOHSFILES/ohsConfig/moduleconf
mkdir -p $MYOHSFILES/ohsConfig/htdocs
mkdir -p $MYOHSFILES/ohsConfig/htdocs/myapp
mkdir -p $MYOHSFILES/ohsConfig/webgate/config/wallet
mkdir -p $MYOHSFILES/ohsConfig/wallet/mywallet

Where:

• httpconf - contains any configuration files you want to configure that are usually found in
the $OHS_DOMAIN_HOME/config/fmwconfig/components/OHS/ohs1 directory. For example
httpd.conf, ssl.conf and mod_wl_ohs.conf. The webgate.conf does not need to be copied as this
will get generated automatically if deploying with Oracle WebGate.

• moduleconf - contains any additional config files, for example virtual host configuration
files that you want to copy to the $OHS_DOMAIN_HOME/config/fmwconfig/components/OHS/
ohs1/moduleconf folder in the container.

• htdocs - contains any html files, or similar, that you want to copy to
the $OHS_DOMAIN_HOME/config/fmwconfig/components/OHS/ohs1/htdocs folder in the container.

• htdocs/myapp - myapp is an example directory name that exists under htdocs. If you need to
copy any directories under htdocs above, then create the directories you require.

Chapter 4
Preparing Your OHS Configuration Files

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 4 of 13

• webgate/config - contains the extracted Oracle WebGate configuration. For example,
when you download the <agent>.zip file from Oracle Access Management (OAM)
Console, you extract the zip file into this directory. If you are accessing OAM URL’s via
SSL, this directory must also contain the Certificate Authority cacert.pem file(s) that
signed the certificate of the OAM entry point. For example, if you will access OAM via
a HTTPS Load Balancer URL, then cacert.pem is the CA certificate(s) that signed the
load balancer certificate.

• webgate/config/wallet - contains the contents of the wallet directory extracted from the
<agent>.zip file.

• wallet/mywallet - if OHS is to be configured to use SSL, this directory contains the
preconfigured OHS Wallet file, cwallet.sso.

Note

Administrators should be aware of the following if configuring OHS for SSL:

• The wallet must contain a valid certificate.

• Only auto-login-only wallets (cwallet.sso only) are supported. For example,
wallets created with orapki using the auto-login-only option. Password protected
wallets (ewallet.p12) are not supported.

• You must configure ssl.conf in $MYOHSFILES/ohsConfig/httpconf and set the
directory for SSLWallet to:

SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/$
{COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/wallet/mywallet"

An example file system may contain the following:

ls -R $MYOHSFILES/ohsConfig
/OHSK8S/myOHSfiles/ohsConfig:
htdocs httpconf moduleconf wallet webgate

/OHSK8S/myOHSfiles/ohsConfig/htdocs:
myapp mypage.html

/OHSK8S/myOHSfiles/ohsConfig/htdocs/myapp:
index.html

/OHSK8S/myOHSfiles/ohsConfig/httpconf:
httpd.conf mod_wl_ohs.conf ssl.conf

/OHSK8S/myOHSfiles/ohsConfig/moduleconf:
vh.conf

/OHSK8S/myOHSfiles/ohsConfig/wallet:
mywallet

/OHSK8S/myOHSfiles/ohsConfig/wallet/mywallet:
cwallet.sso

/OHSK8S/myOHSfiles/ohsConfig/webgate:

Chapter 4
Preparing Your OHS Configuration Files

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 5 of 13

config

/OHSK8S/myOHSfiles/ohsConfig/webgate/config:
cacert.pem cwallet.sso cwallet.sso.lck ObAccessClient.xml wallet

/OHSK8S/myOHSfiles/ohsConfig/webgate/config/wallet:
cwallet.sso cwallet.sso.lck

Set WLDNSRefreshInterval and WebLogicCluster Directives

If your OHS deployment is configured to communicate with Oracle WebLogic Server, then you
must set the WLDNSRefreshInterval and WebLogicCluster directives in your OHS configuration files
appropriately.

In the file where your WLS location directives reside, you must set the following:

<IfModule weblogic_module>
WLDNSRefreshInterval 10
</IfModule>

For WebLogicCluster, the values to set depend on whether the WLS is deployed on-premises, on
the same Kubernetes cluster as OHS, or on a different Kubernetes cluster to OHS. The
following sections explain how to set the values in each case.

On-premises Configuration
If OHS is connecting to a WebLogic Server deployed in an on-premises configuration (non-
Kubernetes), then set:

WebLogicCluster <APPHOST1>:<PORT>,<APPHOST2>:<PORT>

For example, if you were connecting to the WebLogic Server Administration Server port:

<Location /console>
 WLSRequest ON
 DynamicServerList OFF
 WLProxySSL ON
 WLProxySSLPassThrough ON
 WLCookieName OAMJSESSIONID
 WebLogicCluster APPHOST1.example.com:7001,APPHOST2.example.com:7001
 </Location>

Oracle HTTP Server on a Shared Kubernetes Cluster
If OHS is connecting to a WebLogic Server deployed on the same Kubernetes cluster, then set
the following depending on your environment:

WebLogicHost <service_name>.<namespace>.svc.cluster.local
WebLogicPort <port>

or:

WebLogicCluster <service_name>.<namespace>.svc.cluster.local:<port>

Chapter 4
Preparing Your OHS Configuration Files

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 6 of 13

Note

You can get the <service_name> and <port> by running kubectl get svc -n <namespace> on your
Kubernetes cluster.

The following shows an example when connecting to an Oracle Access Management (OAM)
Managed Server cluster service and port:

<Location /oam>
WLSRequest ON
DynamicServerList OFF
WLProxySSL ON
WLProxySSLPassThrough ON
WLCookieName OAMJSESSIONID
WebLogicCluster accessdomain-cluster-oam-cluster.oamns.svc.cluster.local:14100

Oracle HTTP Server on an Independent Kubernetes Cluster
If OHS is connecting to a WebLogic Server deployed on a separate Kubernetes cluster, then
set:

WebLogicCluster
<K8S_WORKER_HOST1>:30777,<K8S_WORKER_HOST2>:30777,<K8S_WORKER_HOST3>:30777

Where <K8S_WORKER_HOSTX> is your Kubernetes worker node hostname.domain, and 30777 is
the HTTP port of the ingress controller.

For example:

<Location /console>
 WLSRequest ON
 DynamicServerList OFF
 WLProxySSL ON
 WLProxySSLPassThrough ON
 WLCookieName OAMJSESSIONID
 WebLogicCluster
K8_WORKER_HOST1.example.com:30777,K8_WORKER_HOST2.example.com:30777,K8_WORKER_HOST3.e
xample.com:30777
 </Location>

4.5 Creating the OHS Namespace
Create a Kubernetes namespace for Oracle HTTP Server (OHS).

Run the following command to create a namespace for OHS:

kubectl create namespace <namespace>

For example:

kubectl create namespace ohsns

Chapter 4
Creating the OHS Namespace

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 7 of 13

The output will look similar to the following:

namespace/ohsns created

4.6 Creating ConfigMaps for the OHS Configuration Files
Create the required Kubernetes ConfigMaps for the Oracle HTTP Server (OHS) configuration
files.

Before following this section, make sure you have created the directories and files as per
Preparing Your OHS Configuration Files.

Run the following commands to create the required ConfigMaps for the OHS directories and
files created in Preparing Your OHS Configuration Files:

cd $MYOHSFILES
kubectl create cm -n ohsns ohs-config --from-file=ohsConfig/moduleconf
kubectl create cm -n ohsns ohs-httpd --from-file=ohsConfig/httpconf
kubectl create cm -n ohsns ohs-htdocs --from-file=ohsConfig/htdocs
kubectl create cm -n ohsns ohs-myapp --from-file=ohsConfig/htdocs/myapp
kubectl create cm -n ohsns webgate-config --from-file=ohsConfig/webgate/config
kubectl create cm -n ohsns webgate-wallet --from-file=ohsConfig/webgate/config/wallet
kubectl create cm -n ohsns ohs-wallet --from-file=ohsConfig/wallet/mywallet

Note

Only create the ConfigMaps for directories that you want to copy to the OHS container.

4.7 Creating a Kubernetes Secret for the Container Registry
Create a Kubernetes secret that stores the credentials for the container registry where the
Oracle HTTP Server (OHS) image is stored.

Note

If you are not using a container registry and have loaded the images on each of the
worker nodes, then there is no need to create the registry secret.

Run the following command to create the secret:

kubectl create secret docker-registry "regcred" --docker-server=<CONTAINER_REGISTRY> \
--docker-username="<USER_NAME>" \
--docker-password=<PASSWORD> --docker-email=<EMAIL_ID> \
--namespace=<domain_namespace>

For example, if using Oracle Container Registry:

kubectl create secret docker-registry "regcred" --docker-server=container-registry.oracle.com \
--docker-username="user@example.com" \

Chapter 4
Creating ConfigMaps for the OHS Configuration Files

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 8 of 13

--docker-password=password --docker-email=user@example.com \
--namespace=ohsns

Replace <USER_NAME> and <PASSWORD> with the credentials for the registry with the following
caveats:

• If using Oracle Container Registry to pull the OHS container image, this is the username
and password used to login to Oracle Container Registry. Before using this image you
must login to Oracle Container Registry, navigate to Middleware > ohs and accept the
license agreement. For future releases (post January 25) that contain the latest Patch Set
Update (PSU) and other fixes released with the Critical Patch Update (CPU) program, you
should navigate to Middleware >ohs_cpu.

• If using your own container registry to store the OHS container image, this is the username
and password (or token) for your container registry.

The output will look similar to the following:

secret/regcred created

4.8 Creating a Kubernetes Secret for the OHS Domain
Credentials

Create a Kubernetes secret that stores the credentials for the Oracle HTTP Server (OHS)
domain.

Run the following command to create the secret:

kubectl create secret generic ohs-secret -n <namespace> --from-literal=username=weblogic --from-
literal=password='<password>'

For example:

kubectl create secret generic ohs-secret -n ohsns --from-literal=username=weblogic --from-
literal=password='<password>`

Replace <password> with a password of your choice.

The output will look similar to the following:

secret/ohs-secret created

4.9 Preparing the ohs.yaml File
Prepare the ohs.yaml file ready for Oracle HTTP Server (OHS) deployment.

Perform the following steps to prepare the ohs.yaml file:

1. Copy the sample yaml files to $MYOHSFILES:

cd $MYOHSFILES
cp $SCRIPTDIR/*.yaml .

Chapter 4
Creating a Kubernetes Secret for the OHS Domain Credentials

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 9 of 13

https://container-registry.oracle.com
https://container-registry.oracle.com/

2. Edit the $MYOHSFILES/ohs.yaml and change the following parameters to match your
installation:

• <NAMESPACE> to your namespace, for example ohsns.

• <IMAGE_NAME> to the correct image tag on Oracle Container Registry. If you are using
your own container registry for the image, you will need to change the image location
appropriately. If your own container registry is open, you do not need the
imagePullSecrets.

• During the earlier creation of the ConfigMaps, and secret, if you changed the names
from the given examples, then you will need to update the values accordingly.

• All ConfigMaps are shown for completeness. Remove any ConfigMaps that you are
not using, for example if you don’t require htdocs then remove the ohs-htdocs ConfigMap.
If you are not deploying Oracle WebGate then remove the webgate-config and webgate-
wallet ConfigMaps, and so forth.

• If you have created any additional directories under htdocs, then add the additional
entries in that match the ConfigMap and directory names.

• All ConfigMaps used must mount to the directories stated.

• Ports can be changed if required.

• Set DEPLOY_WG to true or false depending on whether Oracle WebGate is to be
deployed.

• If using SSL change <WALLET_NAME> to the wallet directory created under ohsConfig/
webgate/config/wallet, for example mywallet.

• initialDelaySeconds may need to be changed to 10 on slower systems. See, Issues with
Liveness Probe in Troubleshooting and Common Problems.

An example ohs.yaml is shown below:

apiVersion: v1
kind: ConfigMap
metadata:
 name: ohs-script-configmap
 namespace: ohsns
data:
 ohs-script.sh: |
 #!/bin/bash
 mkdir -p /u01/oracle/bootdir /u01/oracle/config /u01/oracle/config/moduleconf /u01/oracle/config/webgate/config
 { echo -en "username=" && cat /ohs-config/username && echo -en "\npassword=" && cat /ohs-config/
password; } > /u01/oracle/bootdir/domain.properties
 /u01/oracle/provisionOHS.sh

apiVersion: apps/v1
kind: Deployment
metadata:
 name: ohs-domain
 namespace: ohsns
spec:
 progressDeadlineSeconds: 600
 replicas: 1
 selector:

Chapter 4
Preparing the ohs.yaml File

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 10 of 13

 matchLabels:
 oracle: ohs
 template:
 metadata:
 labels:
 oracle: ohs
 spec:
 containers:
 - name: ohs
 image: container-registry.oracle.com/middleware/ohs_cpu:14.1.2.0-jdk17-ol8-<YYMMDD>
 env:
 - name: DEPLOY_WG
 value: "true"
 ports:
 - name: clear
 containerPort: 7777
 - name: https
 containerPort: 4443
 resources:
 requests:
 cpu: 1000m
 memory: 1Gi
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - ALL
 privileged: false
 runAsNonRoot: true
 runAsUser: 1000
 livenessProbe:
 exec:
 command:
 - /bin/bash
 - -c
 - pgrep httpd
 initialDelaySeconds: 10
 periodSeconds: 5
 readinessProbe:
 httpGet:
 port: 7777
 path: /helloWorld.html
 volumeMounts:
 - name: ohs-secret
 mountPath: /ohs-config
 - name: ohs-config
 mountPath: /u01/oracle/config/moduleconf
 - name: ohs-htdocs
 mountPath: /u01/oracle/config/htdocs
 - name: ohs-myapp
 mountPath: /u01/oracle/config/htdocs/myapp
 - name: ohs-httpd
 mountPath: /u01/oracle/config/httpd
 - name: webgate-config
 mountPath: /u01/oracle/config/webgate/config
 - name: webgate-wallet

Chapter 4
Preparing the ohs.yaml File

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 11 of 13

 mountPath: /u01/oracle/config/webgate/config/wallet
 - name: ohs-wallet
 mountPath: /u01/oracle/config/wallet/mywallet
 - name: script-volume
 mountPath: /ohs-bin
 readOnly: true
 command: ["/ohs-bin/ohs-script.sh"]
 imagePullSecrets:
 - name: regcred
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: oracle
 operator: In
 values:
 - ohs
 topologyKey: "kubernetes.io/hostname"
 restartPolicy: Always
 securityContext:
 seccompProfile:
 type: RuntimeDefault
 terminationGracePeriodSeconds: 30
 volumes:
 - name: ohs-secret
 secret:
 defaultMode: 0444
 secretName: ohs-secret
 - name: script-volume
 configMap:
 defaultMode: 0555
 name: ohs-script-configmap
 - name: ohs-config
 configMap:
 defaultMode: 0555
 name: ohs-config
 - name: ohs-httpd
 configMap:
 defaultMode: 0555
 name: ohs-httpd
 - name: ohs-htdocs
 configMap:
 defaultMode: 0555
 name: ohs-htdocs
 - name: ohs-myapp
 configMap:
 defaultMode: 0555
 name: ohs-myapp
 - name: webgate-config
 configMap:
 defaultMode: 0555
 name: webgate-config
 - name: webgate-wallet

Chapter 4
Preparing the ohs.yaml File

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 12 of 13

 configMap:
 defaultMode: 0555
 name: webgate-wallet
 - name: ohs-wallet
 configMap:
 defaultMode: 0555
 name: ohs-wallet
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 1

4.10 Preparing the ohs_service.yaml File
Prepare the ohs_service.yaml file for the Oracle HTTP Server (OHS) nodeport.

The OHS nodeport is the entry point for OHS. For example http://ohs.example.com:31777 or https://
ohs.example.com:31443

Edit the $MYOHSFILES/ohs_service.yaml and make the following changes:

• <NAMESPACE> to your namespace, for example ohsns.

• If you want your OHS node port to listen on something other that 31777 and 31443, change
accordingly.

• If you are using your own httpd.conf file and have changed the port to anything other than
7777, you must change the targetPort and port to match.

• If you are using your own ssl.conf file and have changed the port to anything other than 4443,
you must change the targetPort and port to match.

An example ohs_service.yaml is shown below:

kind: Service
apiVersion: v1
metadata:
 name: ohs-domain-nodeport
 namespace: ohsns
spec:
 selector:
 oracle: ohs
 type: NodePort
 ports:
 - port: 7777
 name: http
 targetPort: 7777
 nodePort: 31777
 protocol: TCP
 - port: 4443
 name: https
 targetPort: 4443
 nodePort: 31443
 protocol: TCP

Chapter 4
Preparing the ohs_service.yaml File

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 13 of 13

5
Deploying Oracle HTTP Server on Kubernetes

Deploying Oracle HTTP Server (OHS) on Kubernetes involves deploying the OHS Nodeport
followed by the OHS Container.

Before following this section, make sure you have completed all the steps in Preparing Your
Environment.

This chapter includes the following topics:

• Deploying the OHS Nodeport

• Deploying the OHS Container

• Validating the OHS Deployment

5.1 Deploying the OHS Nodeport
Create the Kubernetes service nodeport for Oracle HTTP Server (OHS).

To deploy the OHS nodeport:

1. Run the following command:

 kubectl create -f $MYOHSFILES/ohs_service.yaml

The output will look similar to the following:

service/ohs-domain-nodeport created

2. Validate the service has been created by running the following:

kubectl get service -n <namespace>

For example:

kubectl get service -n ohsns

The output will look similar to the following:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
ohs-domain-nodeport NodePort 10.98.163.75 <none> 7777:31777/TCP,4443:31443/TCP 22s

Administrators should be aware of the following:

• As this is a Kubernetes service, the port is accessible on all the worker nodes in the
Kubernetes cluster.

• If in the future you create another OHS container on a different port, you will need to create
another nodeport service for that OHS.

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 1 of 4

5.2 Deploying the OHS Container
Create the Oracle HTTP Server (OHS) container on Kubernetes.

1. To deploy the OHS container run the following command:

kubectl create -f $MYOHSFILES/ohs.yaml

The output will look similar to the following:

configmap/ohs-script-configmap created
deployment.apps/ohs-domain created

2. Run the following command to view the status of the pods:

kubectl get pods -n <namespace> -w

For example:

kubectl get pods -n ohsns -w

Whilst the OHS container is creating you, may see:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-vkp4s 0/1 ContainerCreating 0 2m13s

To check what is happening while the pod is in ContainerCreating status, you can run:

kubectl describe pod <podname> -n <namespace>

For example:

kubectl describe pod ohs-domain-d5b648bc5-vkp4s -n ohsns

Once the container is created, it will go to a READY status of 0/1 with STATUS of Running. For
example:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-vkp4s 1/1 Running 0 3m10s

To check what is happening while the pod is in this status, you can run:

kubectl logs -f <pod> -n <namespace>

For example:

kubectl logs -f <pod> -n ohsns

Chapter 5
Deploying the OHS Container

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 2 of 4

Once everything is started you should see the OHS is running (READY 1/1):

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-vkp4s 1/1 Running 0 4m10s

If there are any failures, see Troubleshooting and Common Problems.

5.3 Validating the OHS Deployment
Validate the Oracle HTTP Server (OHS) container and check you can access OHS using the
nodeport.

Validating the OHS Container File System

To validate the OHS container file system:

1. Run the following command to get the name of the OHS container:

kubectl get pods -n <namespace>

For example:

kubectl get pods -n ohsns

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-vkp4s 1/1 Running 0 5m34s

2. Run the following command to create a bash shell inside the container:

kubectl exec -n <namespace> -ti <pod> -- /bin/bash

For example:

kubectl exec -n ohsns -ti ohs-domain-79f8f99575-8qwfh -- /bin/bash

This will take you to a bash shell inside the container:

[oracle@ohs-domain-75fbd9b597-z77d8 oracle]$

3. Inside the bash shell navigate to the /u01/oracle/user_projects/domains/ohsDomain/config/fmwconfig/
components/OHS/ohs1/ directory:

cd /u01/oracle/user_projects/domains/ohsDomain/config/fmwconfig/components/OHS/ohs1/

From within this directory, you can navigate around and list (ls) or cat any files you
configured using the ConfigMaps.

Validating the OHS Nodeport

Validate the OHS nodeport by accessing the OHS URL's.

Chapter 5
Validating the OHS Deployment

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 3 of 4

In the examples below, ${OHS-HOSTNAME} refers to the hostname.domain of the server where
the OHS nodeport was deployed. ${OHS-NODEPORT} refers to the nodePort specified in your ohs-
service.yaml, for example 31777 for HTTP, or 31443 for HTTPS.

Note

If OHS is accessed via a loadbalancer, replace ${OHS-HOSTNAME} and ${OHS-
NODEPORT} with the loadbalancer hostname.domain and port.

If you have any problems accessing the URL’s, refer to Troubleshooting and Common
Problems.

1. Launch a browser and access the following:

Note

If you have deployed OHS with Oracle WebGate, then it will depend on your policy
setup as to whether the URL’s below are accessible or not.

• The OHS homepage http(s)://${OHS-HOSTNAME}:${OHS-NODEPORT}.

• Any other files copied in your ohs-htdocs ConfigMap, for example: http(s)://${OHS-
HOSTNAME}:${OHS-NODEPORT}/mypage.html.

• Any files from directories created under htdocs, for example the ohs-myapp ConfigMap:
http(s)://${OHS-HOSTNAME}:${OHS-NODEPORT}/myapp.

• Any URI’s defined for mod_wl_ohs in your httpd.conf, ssl.conf or moduleconf/*.conf files, for
example: http(s)://${OHS-HOSTNAME}:${OHS-NODEPORT}/console.

• If Oracle WebGate is deployed, any protected applications, for example: http(s)://${OHS-
HOSTNAME}:${OHS-NODEPORT}/myprotectedapp.

Chapter 5
Validating the OHS Deployment

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 4 of 4

Part III
Administering Oracle HTTP Server on
Kubernetes

This section includes the following chapters:

• Scaling OHS Containers

• Modifying the OHS Container

• Deleting the OHS Container

• Creating or Updating an OHS Image

• Patching and Upgrading

• Troubleshooting and Common Problems

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 1 of 1

6
Scaling OHS Containers

Learn the basic operations to scale OHS containers in Kubernetes.

• Viewing Existing OHS Servers

• Scaling Up OHS Servers

• Scaling Down OHS Servers

6.1 Viewing Existing OHS Servers

The default OHS deployment starts one OHS server, assuming replicas: 1 in the ohs.yaml.

To view the running OHS servers, run the following command:

kubectl get pods -n <namespace>

For example:

kubectl get pods -n ohsns

The output should look similar to the following:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-vkp4s 1/1 Running 0 5h17m

6.2 Scaling Up OHS Servers

The number of Oracle HTTP Server (OHS) servers running is dependent on the replicas
parameter configured for OHS. To add additional OHS servers:

1. Run the following kubectl command to start additional OHS servers:

kubectl -n <namespace> patch deployment ohs-domain -p '{"spec": {"replicas": <replica count>}}'

where <replica count> is the number of OHS servers to start.
In the example below, two additional OHS servers are started, by increasing replicas to 3:

kubectl -n ohsns patch deployment ohs-domain -p '{"spec": {"replicas": 3}}'

The output will look similar to the following:

deployment.apps/ohs-domain patched

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 1 of 3

2. While the new OHS containers are being started, you can run the following command to
monitor the progress:

kubectl get pods -n <namespace> -w

For example:

kubectl get pods -n ohsns -w

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-2q8bw 0/1 ContainerCreating 0 26s
ohs-domain-d5b648bc5-qvdjn 0/1 Running 0 26s
ohs-domain-d5b648bc5-vkp4s 1/1 Running 0 5h21m

Two new OHS pods have been created, in this example ohs-domain-d5b648bc5-2q8bw and ohs-
domain-d5b648bc5-qvdjn.

3. To check what is happening while the pods are in ContainerCreating status, you can run:

kubectl describe pod <podname> -n <namespace>

4. To check what is happening while the pods are in 0/1 Running status, you can run:

kubectl logs -f <pod> -n <namespace>

5. Once everything is started you should see all the additional OHS containers are running
(READY 1/1):

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-2q8bw 1/1 Running 0 9m34s
ohs-domain-d5b648bc5-qvdjn 1/1 Running 0 9m34s
ohs-domain-d5b648bc5-vkp4s 1/1 Running 0 5h30m

6.3 Scaling Down OHS Servers
As previously referenced, the number of Oracle HTTP Server (OHS) servers running is
dependent on the replicas parameter configured for OHS. To stop one or more OHS servers:

1. Run the following kubectl command to scale down OHS servers:

kubectl -n <namespace> patch deployment ohs-domain -p '{"spec": {"replicas": <replica count>}}'

where <replica count> is the number of OHS servers to run.
In the example below, replicas is reduced to 1, so only one OHS is running:

kubectl -n ohsns patch deployment ohs-domain -p '{"spec": {"replicas": 1}}'

Chapter 6
Scaling Down OHS Servers

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 2 of 3

The output will look similar to the following:

deployment.apps/ohs-domain patched

2. Run the following kubectl command to view the pods:

 kubectl get pods -n <namespace>

For example:

kubectl get pods -n ohsns

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-2q8bw 0/1 Terminating 0 12m
ohs-domain-d5b648bc5-qvdjn 0/1 Terminating 0 12m
ohs-domain-d5b648bc5-vkp4s 1/1 Running 0 5h31m

Two pods now have a STATUS of Terminating. Keep executing the command until the pods
have disappeared and you are left with the one OHS pod:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-vkp4s 1/1 Running 0 5h32m

Chapter 6
Scaling Down OHS Servers

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 3 of 3

7
Modifying the OHS Container

Learn how to modify the Oracle HTTP Server (OHS) configuration after the OHS container is
deployed.

Modifying the deployed OHS container configuration can be achieved in one of the following
ways:

• Edting Files in $MYOHFILES/ohsconfig

• Editing the ConfigMap

7.1 Edting Files in $MYOHFILES/ohsconfig
To edit the configuration files in $MYOHFILES/ohsconfig:

1. Edit the required files in the $MYOHSFILES/ohsConfig subdirectories.

2. Delete the ConfigMaps for any files you have changed. For example if you have changed
httpd.conf and files in moduleconf, run:

kubectl delete cm ohs-httpd -n ohsns
kubectl delete cm ohs-config -n ohsns

3. Recreate the required ConfigMaps:

cd $MYOHSFILES
kubectl create cm -n ohsns ohs-httpd --from-file=ohsConfig/httpconf
kubectl create cm -n ohsns ohs-config --from-file=ohsConfig/moduleconf

4. Find the name of the existing OHS pod:

kubectl get pods -n <namespace>

For example:

kubectl get pods -n ohsns

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-vkp4s 1/1 Running 0 55s

5. Delete the pod using the following command:

kubectl delete pod <pod> -n <namespace>

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 1 of 3

For example:

kubectl delete pod ohs-domain-d5b648bc5-vkp4s -n ohsns

The output will look similar to the following:

pod "ohs-domain-d5b648bc5-vkp4s" deleted

6. Run the following command to make sure the pod has restarted:

kubectl get pods -n ohsns

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-gdvnp 1/1 Running 0 39s

7.2 Editing the ConfigMap
To edit the ConfigMap:

1. Run the following command to edit the OHS configuration:

kubectl edit configmap <configmap> -n <namespace>

Where <configmap> is either ohs-httpd or ohs-config to modify the httpd.conf and moduleconf files
respectively.
For example:

kubectl edit configmap ohs-httpd -n ohsns

Note

This opens an edit session for the ConfigMap where parameters can be changed
using standard vi commands.

2. In the edit session, edit the required parameters accordingly. Save the file and exit (:wq!).

3. Find the name of the existing OHS pod:

kubectl get pods -n <namespace>

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-vkp4s 1/1 Running 0 2h33s

4. Delete the pod using the following command:

kubectl delete pod <pod> -n <namespace>

Chapter 7
Editing the ConfigMap

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 2 of 3

For example:

kubectl delete pod ohs-domain-d5b648bc5-vkp4s -n ohsns

The output will look similar to the following:

pod "ohs-domain-d5b648bc5-vkp4s" deleted

5. Run the following command to make sure the pod has restarted:

kubectl get pods -n ohsns -w

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-gdvnp 1/1 Running 0 39s

Chapter 7
Editing the ConfigMap

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 3 of 3

8
Deleting the OHS Container

Learn how to delete the Oracle HTTP Server (OHS) container.

The following commands show how to remove the OHS container, OHS nodeport service,
ConfigMaps, secrets, and namespace:

1. Run the following command to delete the OHS nodeport service:

kubectl delete -f $MYOHSFILES/ohs_service.yaml

2. Run the following command to delete the OHS container:

kubectl delete -f $MYOHSFILES/ohs.yaml

3. Run the following commands to delete any configmaps you have created, for example:

kubectl delete cm -n ohsns ohs-config
kubectl delete cm -n ohsns ohs-httpd
kubectl delete cm -n ohsns ohs-htdocs
kubectl delete cm -n ohsns ohs-myapp
kubectl delete cm -n ohsns webgate-config
kubectl delete cm -n ohsns webgate-wallet
kubectl delete cm -n ohsns ohs-wallet

4. Run the following command to delete the secrets:

kubectl delete secret regcred -n ohsns
kubectl delete secret ohs-secret -n ohsns

5. Run the following command to delete the namespace:

kubectl delete namespace ohsns

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 1 of 1

9
Creating or Updating an OHS Image

As described in Obtaining the OHS Container Image you can create your own OHS container
image if required. Similarly, if you have access to My Oracle Support (MOS), and there is a
need to build a new image with an interim or one off patch, you can update an existing image
accordingly.

Regardless of whether you are creating your own image, or updating an existing image, it is
recommended to use the WebLogic Image Tool to build an OHS image for production
deployments.

This chapter includes the following topics:

• Setting Up the WebLogic Image Tool

• Creating an Image

• Updating an Image

9.1 Setting Up the WebLogic Image Tool
Using the WebLogic Image Tool, you can create a new Oracle HTTP Server (OHS) image with
Patch Set Updates (PSU’s) and interim patches, or update an existing image with one or more
interim patches.

Administrators should be aware of the following recommendations:

• Use Creating an Image for creating a new OHS image containing the OHS binaries, bundle
patch and interim patches. This is the recommended approach if you have access to the
OHS patches because it optimizes the size of the image.

• Use Updating an Image for patching an existing OHS image with a single interim patch.
Please note that the patched image size may increase considerably due to additional
image layers introduced by the patch application tool.

The following sections explain how to set up the WebLogic Image Tool:

• WebLogic Image Tool Prerequisites

• Configure the WebLogic Image Tool

• Validating the Setup

• Setting the Build and Cache Directories

9.1.1 WebLogic Image Tool Prerequisites
Verify that the environment where you will build the image meets the following prerequisites:

• Docker client and daemon is installed, with minimum Docker version 18.03.1.ce.

• Bash version 4.0 or later, to enable the command complete feature.

• The JAVA_HOME environment variable set to the supported JDK location.

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 1 of 9

https://support.oracle.com

Note

JDK 8 or higher is supported for WebLogic Image Tool.

For example:

export JAVA_HOME=/scratch/export/oracle/product/jdk

9.1.2 Configure the WebLogic Image Tool
To set up the WebLogic Image Tool:

1. Create a working directory and navigate to it:

mkdir <workdir>
cd <workdir>

For example:

mkdir /scratch/imagetool-setup
cd /scratch/imagetool-setup

2. Download the latest version of the WebLogic Image Tool from the Releases page:

wget https://github.com/oracle/weblogic-image-tool/releases/download/release-X.X.X/imagetool.zip

where X.X.X is the latest release referenced on the Releases page.

Note

You must use WebLogic Image Tool 1.14.3 or later.

3. Unzip the release ZIP file in the imagetool-setup directory:

unzip imagetool.zip

4. Execute the following commands to set up the WebLogic Image Tool:

cd <workdir>/imagetool-setup/imagetool/bin
source setup.sh

For example:

cd /scratch/imagetool-setup/imagetool/bin
source setup.sh

9.1.3 Validating the Setup
To validate the setup of the WebLogic Image Tool:

Chapter 9
Setting Up the WebLogic Image Tool

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 2 of 9

https://github.com/oracle/weblogic-image-tool/releases/latest
https://github.com/oracle/weblogic-image-tool/releases/latest

1. Enter the following command to retrieve the version of the WebLogic Image Tool:

imagetool --version

2. Enter imagetool then press the Tab key to display the available imagetool commands:

imagetool <TAB>

The output will look similar to the following:

cache create help rebase update

9.1.4 Setting the Build and Cache Directories
Optionally create the WebLogic Image Tool build and cache directories.

WebLogic Image Tool Build Directory

The WebLogic Image Tool creates a temporary Docker context directory, prefixed by
wlsimgbuilder_temp, every time the tool runs. Under normal circumstances, this context directory
will be deleted. However, if the process is aborted or the tool is unable to remove the directory,
it is safe for you to delete it manually. By default, the WebLogic Image Tool creates the Docker
context directory under the user’s home directory. If you prefer to use a different directory for
the temporary context, set the environment variable WLSIMG_BLDDIR:

export WLSIMG_BLDDIR="/path/to/build/dir"

WebLogic Image Tool Cache Directory

The WebLogic Image Tool maintains a local file cache store. This store is used to look up
where the OHS and JDK installers, and OHS patches reside in the local file system. By default,
the cache store is located in the user’s $HOME/cache directory. Under this directory, the lookup
information is stored in the .metadata file. All automatically downloaded patches also reside in
this directory. You can change the default cache store location by setting the environment
variable WLSIMG_CACHEDIR:

export WLSIMG_CACHEDIR="/path/to/cachedir"

9.1.5 Setting Up Additional Build Scripts
Creating an Oracle HTTP Server (OHS) container image using the WebLogic Image Tool
requires additional container scripts for OHS domains.

1. Clone the docker-images repository to set up the required scripts:

cd <workdir>/imagetool-setup
git clone https://github.com/oracle/docker-images.git

For example:

cd /scratch/imagetool-setup
$ git clone https://github.com/oracle/docker-images.git

Chapter 9
Setting Up the WebLogic Image Tool

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 3 of 9

https://github.com/oracle/docker-images.git

9.2 Creating an Image
Before creating an Oracle HTTP Server (OHS) image, make sure you have followed Setting
Up the WebLogic Image Tool.

This sections includes the following topics:

• Exporting the PWD Variable

• Downloading the OHS Installation Binaries and Patches

• Updating the Required Build Files

• Creating the Image

9.2.1 Exporting the PWD Variable
In order for the WebLogic Image Tool to build OHS with all the latest patches, the image
creation downloads patches from My Oracle Support.

During the image build you are asked to enter your My Oracle Support credentials, however
the password is passed as a variable. Set the variable as follows:

export MYPWD="MY_ORACLE_SUPPORT_PWD"

9.2.2 Downloading the OHS Installation Binaries and Patches
You must download the required Oracle HTTP Server (OHS) installation binaries and JDK as
listed below from Oracle Software Delivery Cloud and My Oracle Support. Save them to a
directory of your choice.

The installation binaries and JDK required are:

• Oracle Web Tier 14.1.2.0.0

– V1045136-01.zip

Note

You will need to unzip the file after downloading to get the
fmw_14.1.2.0.0_ohs_linux64.bin which is used with the imageTool.

• Oracle JDK v17 or v21

– jdk-17.X.X_linux-x64.tar.gz or jdk-21.X.X_linux-x64.tar.gz

Note

17.0.14 or higher, or 21.0.6 or higher are supported.

9.2.3 Updating the Required Build Files
The following files are used for creating the image. These files must be updated before
creating the image:

Chapter 9
Creating an Image

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 4 of 9

https://support.oracle.com/
https://edelivery.oracle.com/
https://support.oracle.com/

• additionalBuildCmds.txt

• buildArgs

1. Create the <workdir>/imagetool-setup/docker-images/OracleHTTPServer/additionalBuildCmds.txt file and
add the following:

[package-manager-packages]
binutils make glibc-devel procps
[final-build-commands]
ENV PATH=$PATH:/u01/oracle/ohssa/oracle_common/common/bin \
 NM_PORT=5556 \
 OHS_LISTEN_PORT=7777 \
 OHS_SSL_PORT=4443 \
 MW_HOME=/u01/oracle/ohssa \
 DOMAIN_NAME=ohsDomain \
 OHS_COMPONENT_NAME=ohs1 \
 PATH=$PATH:$ORACLE_HOME/oracle_common/common/bin:$ORACLE_HOME/user_projects/domains/
ohsDomain/bin:/u01/oracle/ \
 WLST_HOME=/u01/oracle/ohssa/oracle_common/common/bin
COPY --chown=oracle:root files/create-sa-ohs-domain.py files/configureWLSProxyPlugin.sh files/
mod_wl_ohs.conf.sample files/provisionOHS.sh files/start-ohs.py files/stop-ohs.py files/helloWorld.html /u01/
oracle/
WORKDIR ${ORACLE_HOME}
CMD ["/u01/oracle/provisionOHS.sh"]

Note

Administrators should be aware of the following:

• oracle:root is used for OpenShift which has more stringent policies. Users who
do not want those permissions can change to the permissions they require.

• The packages listed in the [package-manager-packages] is for Oracle Linux 8
images. If you want to build Oracle Linux 9 images you need to add libxcrypt-
compat to this list also.

2. Create the <workdir>/imagetool-setup/docker-images/OracleHTTPServer/buildArgs file as follows and
change the following:

• <workdir> to your working directory, for example /scratch/

• %BUILDTAG% to the tag you want create for the image, for example oracle/ohs:14.1.2.0.0

• %JDK_VERSION% to the version of your JDK, for example 21.0.6

• <user> to your My Oracle Support username

create
--tag=%BUILDTAG%
--additionalBuildCommands /<workdir>/imagetool-setup/docker-images/OracleHTTPServer/
additionalBuildCmds.txt
--additionalBuildFiles <workdir>/imagetool-setup/docker-images/OracleHTTPServer/dockerfiles/14.1.2.0.0/
container-scripts/create-sa-ohs-domain.py,<workdir>/imagetool-setup/docker-images/OracleHTTPServer/
dockerfiles/14.1.2.0.0/container-scripts/provisionOHS.sh,<workdir>/imagetool-setup/docker-images/
OracleHTTPServer/dockerfiles/14.1.2.0.0/container-scripts/configureWLSProxyPlugin.sh,<workdir>/imagetool-
setup/docker-images/OracleHTTPServer/dockerfiles/14.1.2.0.0/container-scripts/

Chapter 9
Creating an Image

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 5 of 9

https://support.oracle.com/

mod_wl_ohs.conf.sample,<workdir>/imagetool-setup/docker-images/OracleHTTPServer/dockerfiles/14.1.2.0.0/
container-scripts/start-ohs.py,<workdir>/imagetool-setup/docker-images/OracleHTTPServer/dockerfiles/
14.1.2.0.0/container-scripts/stop-ohs.py,<workdir>/imagetool-setup/docker-images/OracleHTTPServer/
dockerfiles/14.1.2.0.0/container-scripts/helloWorld.html
--type=OHS
--pull
--recommendedPatches
--chown=oracle:root
--user=<user>
--passwordEnv=MYPWD
--version=14.1.2.0.0
--jdkVersion=<version>

For example:

create
--tag=oracle/ohs:14.1.2.0.0
--additionalBuildCommands /scratch/imagetool-setup/docker-images/OracleHTTPServer/
additionalBuildCmds.txt
--additionalBuildFiles /scratch/imagetool-setup/docker-images/OracleHTTPServer/dockerfiles/14.1.2.0.0/
container-scripts/create-sa-ohs-domain.py,/scratch/imagetool-setup/docker-images/OracleHTTPServer/
dockerfiles/14.1.2.0.0/container-scripts/provisionOHS.sh,/scratch/imagetool-setup/docker-images/
OracleHTTPServer/dockerfiles/14.1.2.0.0/container-scripts/configureWLSProxyPlugin.sh,/scratch/imagetool-
setup/docker-images/OracleHTTPServer/dockerfiles/14.1.2.0.0/container-scripts/mod_wl_ohs.conf.sample,/
scratch/imagetool-setup/docker-images/OracleHTTPServer/dockerfiles/14.1.2.0.0/container-scripts/start-ohs.py,/
scratch/imagetool-setup/docker-images/OracleHTTPServer/dockerfiles/14.1.2.0.0/container-scripts/stop-ohs.py,/
scratch/imagetool-setup/docker-images/OracleHTTPServer/dockerfiles/14.1.2.0.0/container-scripts/
helloWorld.html
--type=OHS
--pull
--recommendedPatches
--chown=oracle:root
--user=user@example.com
--passwordEnv=MYPWD
--version=14.1.2.0.0
--jdkVersion=21.0.6

Note

jdkVersion can also be 17.0.14 or higher.

For more information on the complete list of options available with the WebLogic Image
Tool create command. see Create Image.

9.2.4 Creating the Image
To create the OHS image, run the following commands:

1. Add the JDK package to the WebLogic Image Tool cache. For example:

imagetool cache addInstaller --type jdk --version 21.0.6 --path <download location>/jdk-21_linux-x64.tar.gz

Chapter 9
Creating an Image

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 6 of 9

https://oracle.github.io/weblogic-image-tool/userguide/tools/create-image/

2. Add the downloaded installation binaries to the WebLogic Image Tool cache. For example:

imagetool cache addInstaller --type ohs --version 14.1.2.0.0 --path <download location>/
fmw_14.1.2.0.0_ohs_linux64.bin

3. Create the Oracle HTTP Server image:

imagetool @<absolute path to buildargs file>

Note

By default ImageTool builds an image with Oracle Linux 8. If you want to build an
image with Oracle Linux 9. you must append --fromImage ghcr.io/oracle/oraclelinux:9-slim
to the image tool command.

For example for Oracle Linux 8:

imagetool @/scratch/imagetool-setup/docker-images/OracleHTTPServer/buildArgs

For Oracle Linux 9:

imagetool @/scratch/imagetool-setup/docker-images/OracleHTTPServer/buildArgs --fromImage ghcr.io/oracle/
oraclelinux:9-slim

4. After the image has been created, check the created image using the docker images
command:

docker images | grep ohs

The output will look similar to the following:

oracle/ohs:14.1.2.0.0 14.1.2.0.0 ad732fc7c16b About a minute ago 3.68GB

5. If you want to see what patches were installed, you can run:

imagetool inspect --image=<REPOSITORY>:<TAG> --patches

For example:

imagetool inspect --image=oracle/ohs:14.1.2.0.0 --patches

6. Run the following command to save the container image to a tar file:

docker save -o <path>/<file>.tar <image>

For example:

docker save -o $WORKDIR/ohs14.1.2.tar oracle/ohs:14.1.2.0.0

Chapter 9
Creating an Image

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 7 of 9

9.3 Updating an Image
Before updating an Oracle HTTP Server (OHS) image, make sure you have followed Setting
Up the WebLogic Image Tool.

Note

The container image to be patched must be loaded in the local docker images
repository before attempting these steps. In the examples below the image oracle/
ohs:14.1.2.0.0 is updated with an interim patch:

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
oracle/ohs:14.1.2.0.0 14.1.2.0.0 b051804ba15f 3 months ago 3.68GB

The steps below show how to update an existing Oracle HTTP Server image with an interim
patch:

1. Download the required interim patch(es) and latest Opatch (28186730) from My Oracle
Support. and save them in a directory of your choice.

2. Add the OPatch patch to the WebLogic Image Tool cache, for example:

imagetool cache addEntry --key 28186730_13.9.4.2.18 --value <downloaded-patches-location>/
p28186730_1394218_Generic.zip

3. Execute the imagetool cache addEntry command for each patch to add the required patch(es) to
the WebLogic Image Tool cache. For example, to add patch p6666666_141200_Generic.zip:

Note

This is not a real patch number, it is used purely for an example.

imagetool cache addEntry --key=6666666_14.1.2.141200 --value <downloaded-patches-location>/
p6666666_141200_Generic.zip

4. Provide the following arguments to the WebLogic Image Tool update command:

• --fromImage - Identify the image that needs to be updated. In the example below, the
image to be updated is oracle/ohs:14.1.2.0.0.

• --patches - Multiple patches can be specified as a comma-separated list.

• --tag - Specify the new tag to be applied for the image being built.

For more information on the complete list of options available with the WebLogic Image
Tool update command, see Update Image.

Chapter 9
Updating an Image

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 8 of 9

https://support.oracle.com/
https://support.oracle.com/
https://oracle.github.io/weblogic-image-tool/userguide/tools/update-image/

Note

The WebLogic Image Tool cache should have the latest OPatch zip. The
WebLogic Image Tool will update the OPatch if it is not already updated in the
image.

For example:

imagetool update --fromImage oracle/ohs:14.1.2.0.0 --tag=oracle/ohs-new:14.1.2.0.0 --
patches=6666666_14.1.2.141200 --opatchBugNumber=28186730_13.9.4.2.18

Note

If the command fails because the files in the image being upgraded are not owned
by oracle:root, then add the parameter --chown <userid>:<groupid> to correspond with the
values returned in the error.

5. Check the built image using the docker images command:

docker images | grep OHS

The output will look similar to the following:

REPOSITORY TAG IMAGE ID CREATED SIZE
oracle/ohs-new:14.1.2.0.0 14.1.2.0.0 78ccd1ad67eb 5 minutes ago 4.5GB
oracle/ohs:14.1.2.0.0 14.1.2.0.0 b051804ba15f 3 months ago 3.68GB

6. Run the following command to save the patched container image to a tar file:

docker save -o <path>/<file>.tar <image>

For example:

docker save -o $WORKDIR/ohs-new14.1.2.tar oracle/ohs-new:14.1.2

Chapter 9
Updating an Image

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 9 of 9

10
Patching and Upgrading

This chapter includes the following topics:

• Patching and Upgrading an Image in 14.1.2

• Upgrading from OHS 12.2.1.4 to OHS 14.1.2

10.1 Patching and Upgrading an Image in 14.1.2
Learn how to patch or upgrade the Oracle HTTP Server (OHS) image used by an OHS 14.1.2
container.

The instructions in this section relate to patching or upgrading an existing 14.1.2 OHS
container with a new container image.

1. To show the version of the image the OHS container is currently running, run the following
command:

kubectl describe pod <pod> -n <namespace> | grep Image

For example:

kubectl describe pod ohs-domain-d5b648bc5-qsgts -n ohsns | grep Image

The output will look similar to the following:

Image: container-registry.oracle.com/middleware/ohs_cpu:14.1.2.0-jdk17-ol8-<version>
Image ID: 9a7199ac903114793d6ad1f320010c3dbd59a39ad9bc987d926d3422a68603e7

2. If using an image from Oracle Container Registry, you must login to Oracle Container
Registry, navigate to Middleware > ohs_cpu and accept the license agreement.

3. Run the following command to update the container with the new image:

kubectl set image deployment/ohs-domain -n <namespace> ohs=<new_image>

For example:

kubectl set image deployment/ohs-domain -n ohsns ohs=container-registry.oracle.com/middleware/
ohs_cpu:14.1.2.0-jdk17-ol8-<new>

The output will look similar to the following:

deployment.apps/ohs-domain image updated

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 1 of 4

https://container-registry.oracle.com
https://container-registry.oracle.com

Note

This command will perform a rolling restart of the OHS container by shutting down
the existing OHS container and starting a new one.

4. Run the following kubectl command to view the pods:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n ohsns

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
ohs-domain-5c9c9879d-kpt9j 0/1 ContainerCreating 0 8s
ohs-domain-d5b648bc5-qsgts 1/1 Terminating 0 17h

The existing OHS pod will move to a STATUS of Terminating and a new OHS pod will be
started.
To check what is happening while the pods are in ContainerCreating status, you can run:

kubectl describe pod <podname> -n <namespace>

To check what is happening while the pods are in 0/1 Running status, you can run:

kubectl logs -f <pod> -n <namespace>

Keep running the kubectl get pods -n <namespace> command until the pod is Running and at
READY 1\1:

NAME READY STATUS RESTARTS AGE
ohs-domain-5c9c9879d-kpt9j 1/1 Running 0 6m40s

5. To show the OHS container is running the new image, run the following command:

kubectl describe pod <pod> -n <namespace> | grep Image

For example:

kubectl describe pod ohs-domain-5c9c9879d-kpt9j -n ohsns | grep Image

The output will look similar to the following:

Image: container-registry.oracle.com/middleware/ohs_cpu:14.1.2.0-jdk17-ol8-<new>
Image ID: 118c5c3713ddd6804cb699ecd0c7bd4a26ebf7e1427c5351c63244b5eb74ca94

Chapter 10
Patching and Upgrading an Image in 14.1.2

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 2 of 4

10.2 Upgrading from OHS 12.2.1.4 to OHS 14.1.2
Learn how to upgrade from Oracle HTTP Server (OHS) 12.2.1.4 to OHS 14.1.2.

The instructions in this section relate to upgrading an existing 12.2.1.4 OHS deployment to
OHS 14.1.2.

1. Take a backup of your existing OHS configuration files in $MYOHSFILES.

2. Read What’s New in this Release and look at the New Features and Deprecated
Features in 14.1.2. Make any required changes to your OHS configuration files
in $MYOHSFILES/ohsConfig.

3. Delete any ConfigMaps that relate to any files you have changed. For example if you have
changed httpd.conf and files in moduleconf, run:

kubectl delete cm ohs-httpd -n ohsns
kubectl delete cm ohs-config -n ohsns

4. Recreate the required ConfigMaps:

cd $MYOHSFILES
kubectl create cm -n ohsns ohs-httpd --from-file=ohsConfig/httpconf
kubectl create cm -n ohsns ohs-config --from-file=ohsConfig/moduleconf

5. Edit the $MYOHSFILES/ohs.yaml and change the <IMAGE_NAME> to the correct 14.1.2 image
tag on Oracle Container Registry. If you are using your own container registry for the
image, you will need to change the image location appropriately.

Note

Before using this image you must login to Oracle Container Registry, navigate to
Middleware > ohs and accept the license agreement. For future releases (post
January 25) that contain the latest Patch Set Update (PSU) and other fixes
released with the Critical Patch Update (CPU) program, you should navigate to
Middleware >ohs_cpu.

6. Find the name of the existing OHS pod:

kubectl get pods -n <namespace>

For example:

kubectl get pods -n ohsns

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-vkp4s 1/1 Running 0 55s

Chapter 10
Upgrading from OHS 12.2.1.4 to OHS 14.1.2

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 3 of 4

https://docs.oracle.com/en/middleware/fusion-middleware/web-tier/14.1.2/releasenotes-ohs/new.html
https://container-registry.oracle.com
https://container-registry.oracle.com/

7. Delete the pod using the following command:

kubectl delete pod <pod> -n <namespace>

For example:

kubectl delete pod ohs-domain-d5b648bc5-vkp4s -n ohsns

The output will look similar to the following:

pod "ohs-domain-d5b648bc5-vkp4s" deleted

8. Run the following command to make sure the pod has restarted:

kubectl get pods -n ohsns

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-gdvnp 1/1 Running 0 39s

Chapter 10
Upgrading from OHS 12.2.1.4 to OHS 14.1.2

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 4 of 4

11
Troubleshooting and Common Problems

The information in this section relates to problems creating Oracle HTTP Server (OHS)
containers, and how to view log files.

OHS Container in CreatingContainer Status

During OHS container creation you may see:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-vkp4s 0/1 ContainerCreating 0 2m13s

To check what is happening while the pod is in ContainerCreating status, you can run:

kubectl describe pod <podname> -n <namespace>

For example:

 kubectl describe pod ohs-domain-d5b648bc5-vkp4s -n ohsns

The details of the above command can help identify possible problems.

In the Events, if you see Pulling image <image>, this means that the container is pulling the image
from the container-registry. Depending on the speed of the network this could take 5-10
minutes. Once the image is pulled you should see the pod go to RUNNING 0/1 status, before
eventually going to RUNNING 1\1.

OHS Container in ImagePullBackOff

If you see the following:

kubectl get pods -n ohsns
NAME READY STATUS RESTARTS AGE
ohs-domain-58b8dc4749-hzlc9 0/1 ImagePullBackOff 0 16s

This could be because you have put the wrong image location in the ohs.yaml, there is a
problem with the image itself, or the secrets created are incorrect.

Once the problem is identified and resolved, you can delete the container and try again:

cd $MYOHSFILES
kubectl delete -f ohs.yaml
kubectl create -f ohs.yaml

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 1 of 4

OHS Container in 0/1 Running Status

During OHS container creation you may see:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-vkp4s 0/1 Running 0 2m13s

This is normal behavior during any startup, however the pod should eventually go to RUNNING
1/1.

Whilst the pod is in 0/1 status, you can check what is happening by running:

kubectl logs -f <pod> -n <namespace>

For example:

kubectl logs -f ohs-domain-d5b648bc5-vkp4s -n ohsns

If there are any problems or errors during startup, they will be logged here.

You can also describe the pod to determine potential problems:

 kubectl describe pod <pod> -n <namespace>

For example:

kubectl describe pod ohs-domain-d5b648bc5-vkp4s -n ohsns

Additionally, you can view the OHS log files inside the container. See, Troubleshooting and
Common Problems, Viewing OHS log files later in this chapter.

Depending on the error, you may need to fix the files in the $MYOHSFILES/ohsConfig directories.

Once you have fixed your configuration files, you will need to delete the appropriate
configmap(s) and recreate. For example if the problem was in httpd.conf, ssl.conf, or
mod_wl_ohs.conf:

cd $MYOHSFILES
kubectl delete -f ohs.yaml
kubectl delete cm ohs-httpd -n ohsns
kubectl create cm -n ohsns ohs-httpd --from-file=ohsConfig/httpconf
kubectl create -f ohs.yaml

Issues with LivenessProbe

If you see OHS Container in 0/1 Running Status and the container constantly restarts:

NAME READY STATUS RESTARTS AGE
ohs-domain-d5b648bc5-vkp4s 0/1 Running 4 2m13s

Chapter 11

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 2 of 4

then, if this occurs and kubectl logs -f <pod> -n <namespace> is showing no errors, then run:

kubectl describe pod <podname> -n <namespace>

If the output shows:

---- ------ ---- ---- -------
 Normal Scheduled 63s default-scheduler Successfully assigned ohsns/ohs-domain-857c5d97d5-8nnx9
to doc-worker1
 Normal Pulled 17s (x2 over 62s) kubelet Container image "<image>" already present on machine
 Normal Created 17s (x2 over 62s) kubelet Created container ohs
 Normal Started 17s (x2 over 62s) kubelet Started container ohs
 Warning Unhealthy 2s (x9 over 61s) kubelet Readiness probe failed: Get "http://10.244.1.150:7777/
helloWorld.html": dial tcp 10.244.1.150:7777: connect: connection refused
 Warning Unhealthy 2s (x6 over 57s) kubelet Liveness probe failed:
 Normal Killing 2s (x2 over 47s) kubelet Container ohs failed liveness probe, will be restarted

then it’s possible the liveness probe is killing and restarting the container because the httpd
process has not started before the liveness probe checks. This can happen on slow systems.

If this occurs delete the container:

cd $MYOHSFILES
kubectl delete -f ohs.yaml

and edit the ohs.yaml file and increase the initialDelaySeconds from 10 to 30:

 livenessProbe:
 exec:
 command:
 - /bin/bash
 - -c
 - pgrep httpd
 initialDelaySeconds: 30
 periodSeconds: 5

Then try creating the container again:

cd $MYOHSFILES
kubectl create -f ohs.yaml

Viewing OHS Log Files

To view OHS log files inside the container, run the following commands:

kubectl exec -n <namespace> -ti <pod> -- /bin/bash

For example:

kubectl exec -n ohsns -ti ohs-domain-79f8f99575-8qwfh -- /bin/bash

Chapter 11

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 3 of 4

This will take you to a bash shell inside the container:

[oracle@ohs-domain-75fbd9b597-z77d8 oracle]$

Inside the bash shell navigate to the /u01/oracle/user_projects/domains/ohsDomain/server/ohs1/logs
directory:

cd /u01/oracle/user_projects/domains/ohsDomain/server/ohs1/logs

From within this directory, you can cat the OHS log files to help diagnose problems.

Chapter 11

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Page 4 of 4

Glossary

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Glossary-1 of Glossary-1

Index

Deploying and Managing Oracle HTTP Server on Kubernetes
G22975-05
Copyright © 2024, 2025, Oracle and/or its affiliates.

July 21, 2025
Index-1 of Index-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions
	Related Documents

	List of Figures
	1 What's New in This Guide
	Part I Introduction to Oracle HTTP Server on Kubernetes
	2 Introducing Oracle HTTP Server on Kubernetes
	3 About the Kubernetes Deployment
	3.1 What is Kubernetes?
	3.2 About the Kubernetes Architecture
	3.3 Key Components Used By an OHS Deployment
	3.4 Supported Architectures for Oracle HTTP Server
	3.5 Requirements for Oracle HTTP Server on Kubernetes

	Part II Installing Oracle HTTP Server on Kubernetes
	4 Preparing Your Environment
	4.1 Confirm the Kubernetes Cluster is Ready
	4.2 Obtaining the OHS Container Image
	4.3 Setting Up the Code Repository for OHS
	4.4 Preparing Your OHS Configuration Files
	4.5 Creating the OHS Namespace
	4.6 Creating ConfigMaps for the OHS Configuration Files
	4.7 Creating a Kubernetes Secret for the Container Registry
	4.8 Creating a Kubernetes Secret for the OHS Domain Credentials
	4.9 Preparing the ohs.yaml File
	4.10 Preparing the ohs_service.yaml File

	5 Deploying Oracle HTTP Server on Kubernetes
	5.1 Deploying the OHS Nodeport
	5.2 Deploying the OHS Container
	5.3 Validating the OHS Deployment

	Part III Administering Oracle HTTP Server on Kubernetes
	6 Scaling OHS Containers
	6.1 Viewing Existing OHS Servers
	6.2 Scaling Up OHS Servers
	6.3 Scaling Down OHS Servers

	7 Modifying the OHS Container
	7.1 Edting Files in ⁠$MYOHFILES/ohsconfig
	7.2 Editing the ConfigMap

	8 Deleting the OHS Container
	9 Creating or Updating an OHS Image
	9.1 Setting Up the WebLogic Image Tool
	9.1.1 WebLogic Image Tool Prerequisites
	9.1.2 Configure the WebLogic Image Tool
	9.1.3 Validating the Setup
	9.1.4 Setting the Build and Cache Directories
	9.1.5 Setting Up Additional Build Scripts

	9.2 Creating an Image
	9.2.1 Exporting the PWD Variable
	9.2.2 Downloading the OHS Installation Binaries and Patches
	9.2.3 Updating the Required Build Files
	9.2.4 Creating the Image

	9.3 Updating an Image

	10 Patching and Upgrading
	10.1 Patching and Upgrading an Image in 14.1.2
	10.2 Upgrading from OHS 12.2.1.4 to OHS 14.1.2

	11 Troubleshooting and Common Problems

	Glossary
	Index

