Oracle® Fusion Middleware
Administering JDBC Data Sources for Oracle
WebLogic Server

12¢ (12.2.1.4.0)
E90814-18
March 2025

ORACLE

Oracle Fusion Middleware Administering JDBC Data Sources for Oracle WebLogic Server, 12¢ (12.2.1.4.0)
E90814-18
Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience Xiv
Documentation Accessibility Xiv
Diversity and Inclusion Xiv
Related Documentation XV
Conventions XV

1 About WebLogic JDBC Resources

JDBC Resources 11
JDBC Data Sources 1-2
JMX and WLST Access for JDBC Resources 1-3
WebLogic Server with Oracle RAC 1-3
Advanced Configurations for Oracle Drivers and Databases 1-3

2 Configuring WebLogic JDBC Resources

JDBC System Modules 2-1
Generic Data Source Modules 2-2
Active GridLink Data Source System Modules 2-3
Multi Data Source System Modules 2-3

JDBC Application Modules 2-4
Standard Java EE Application Modules 2-4
Proprietary JDBC Application Modules 2-4

Including Drivers in EAR/WAR Files 2-5

JDBC Module File Naming Requirements 2-6

JDBC Modules in Versioned Applications 2-6

JDBC Schema 2.7

JDBC Data Source Type 2-7

JMX and WLST Access for JDBC Resources 2-8
JDBC MBeans for System Resources 2-8
JDBC Management Objects in the Java EE Management Model (JSR-77 Support) 2-9
Using WLST to Create JDBC System Resources 2-10
How to Modify and Monitor JDBC Resources 2-11

ORACLE il

Best Practices when Using WLST to Configure JDBC Resources 2-12

Creating High-Availability JDBC Resources 2-12
3 Configure Database Connectivity

Using JDBC Drivers with WebLogic Server 3-1
Types of JDBC Drivers 3-1
JDBC Driver Support 3-4
JDBC Drivers Installed with WebLogic Server 3-4
Upgrading and Using Latest Oracle 19¢ JDBC Drivers with WebLogic Server 3-5
Adding Third-Party JDBC Drivers Not Installed with WebLogic Server 3-8
Globalization Support for the Oracle Thin Driver 3-11
Using the Oracle Thin Driver in Debug Mode 3-11
Configuring JDBC Data Sources 3-11
Creating a JDBC Data Source 3-12
Configure JDBC Data Source Properties 3-12
Configure Transaction Options 3-13
Configure Connection Properties 3-13
Configure Testing Options 3-14

Target JDBC Data Sources 3-14
Configuring Connection Pool Features 3-14
Enabling JDBC Driver-Level Features 3-15
Enabling Connection-based System Properties 3-15
Enabling Connection-based Encrypted Properties 3-17
Initializing Database Connections with SQL Code 3-17
Advanced Connection Properties 3-18
Define Fatal Error Codes 3-18

Using Edition-Based Redefinition 3-18
Configure Oracle Parameters 3-21
Configure ONS Client Parameters 3-21
Tuning Generic Data Source Connection Pools 3-21
Generic Data Source Handling for Oracle RAC Outages 3-21
Generic Data Source Handling of Driver-Level Failover 3-22

4 JDBC Data Sources Types

Using the Default Data Source 4-1

What is Default Data Source 4-1

Defining a Custom Default Data Source 4-3

Compatibility Limitations When Using a Default Data Source 4-3

Using Generic Data Sources 4-4

What is Generic Data Source 4-4
ORACLE

Configuring Generic Data Source
Using JDBC Multi Data Sources
What is Multi Data Source
Adding a Database Node
Removing a Database Node
Configuring Multi Data Sources
Choosing the Multi Data Source Algorithm
Multi Data Source Fail-Over Limitations and Requirements
Controlling Multi Data Source Failover with a Callback
Deploying JDBC Multi Data Sources on Servers and Clusters
Multi Data Source Failover Enhancements
Connection Request Routing Enhancements When a Generic Data Source Fails

Automatic Re-enablement on Recovery of a Failed Generic Data Source within a
Multi Data Source

Enabling Failover for Busy Generic Data Sources in a Multi Data Source
Controlling Multi Data Source Failback with a Callback
Planned Database Maintenance with a Multi Data Source
Shutting Down the Data Source
Using Active GridLink Data Sources
What is Active GridLink Data Source
Fast Connection Failover
Runtime Connection Load Balancing
GridLink Affinity
SCAN Addresses
Secure Communication using Oracle Wallet with ONS Listener
Support for Active Data Guard
Supported Oracle On-Premises and Cloud Database Services
Using Socket Direct Protocol
Configuring Active GridLink Data Source
Configure JDBC Data Source Properties
Configure Transaction Options
Configure Connection Properties
Test Connections
Configure ONS Client
Target the Data Source
Configuring Oracle Parameters
Configuring an ONS Client Using WLST
Configuring Runtime Load Balancing using SDP
Configuring Active GridLink Connection Pool Features
Enabling JDBC Driver-Level Features
Enabling Connection-based System Properties
Initializing Database Connections with SQL Code

ORACLE

4-10
4-12
4-12
4-12

4-13
4-13
4-13
4-15
4-15
4-18
4-18
4-20
4-21
4-22
4-24
4-25
4-25
4-25
4-26
4-26
4-27
4-27
4-27
4-29
4-29
4-31
4-31
4-31
4-32
4-32
4-33
4-33
4-33

Tuning Active GridLink Data Source Connection Pools 4-34
Monitoring Active GridLink JDBC Resources 4-34
Viewing Run-Time Statistics 4-34

Debug Active GridLink Data Sources 4-35

Using Active GridLink Data Sources without FAN Notification 4-36
Best Practices for Active GridLink Data Sources 4-37
Catch and Handle Exceptions 4-37
Connection Creation with Active GridLink Data Sources 4-37
Comparing Active GridLink and Multi Data Sources 4-38
Migrating from Multi Data Source to Active GridLink 4-38
Application Changes to Migrate a Multi Data Source 4-39
Configuration Changes to Migrate a Multi Data Source 4-39

Basic Migration Steps 4-39
Managing Database Downtime with Active GridLink Data Sources 4-40
Active GridLink Configuration for Database Outages 4-40
Planned Outage Procedures 4-41
Unplanned Outages 4-45
Gradual Draining 4-45
Using Universal Connection Pool Data Sources 4-47
What is Universal Connection Pool Data Source 4-48
Configuring Universal Connection Pool Data Source 4-49
Configuring a UCP in the WebLogic Server Administration Console 4-49
Configuring a UCP Using WLST 4-54
Universal Connection Pool Multi Tenant Shared Pool support 4-55
Monitoring Universal Connection Pool JDBC Resources 4-57
Oracle Sharding Support 4-57
Using Proxy Data Sources 4-58
What is Proxy Data Source 4-58
Configuring Proxy Data Source 4-59
Configuring a Proxy Data Source in the WebLogic Server Administration Console 4-59
Configuring a Proxy Data Source Using WLST 4-60
Monitoring Proxy Data Source JDBC Resources 4-62

5 JDBC Data Source Transaction Options

Enabling Support for Global Transactions with a Non-XA JDBC Driver 5-2
Understanding the Logging Last Resource Transaction Option 5-2
Advantages to Using the Logging Last Resource Optimization 5-3
Enabling the Logging Last Resource Transaction Optimization 5-4
Programming Considerations and Limitations for LLR Data Sources 5-4
Administrative Considerations and Limitations for LLR Data Sources 5-5
Understanding the Emulate Two-Phase Commit Transaction Option 5-7

ORACLE

Vi

Limitations and Risks When Emulating Two-Phase Commit Using a Non-XA Driver 5-7
Heuristic Completions and Data Inconsistency 5-8

Cannot Recover Pending Transactions 5-8
Possible Performance Loss with Non-XA Resources in Multi-Server Configurations 5-8
Multiple Non-XA Participants 5-8

Local Transaction Completion when Closing a Connection 5-9

6 Advanced Configurations for Oracle Drivers and Databases

JDBC Replay Driver 6-1
How JDBC Replay Driver Works 6-2
Requirements and Considerations 6-4
Configuring JDBC Replay Driver 6-4
Selecting the Driver for JDBC Replay Driver 6-5

Using a Connection Callback 6-5

Setting the Replay Timeout 6-6
Disabling JDBC Replay Driver for a Connection 6-6
Configuring Logging for JDBC Replay Driver 6-7
Enabling JDBC Driver Debugging 6-7
Viewing Runtime Statistics for JDBC Replay Driver 6-8
JDBC Replay Driver Auditing 6-11
Limitations with JDBC Replay Driver with Oracle 12c Database 6-12
Database Resident Connection Pooling 6-12
Requirements and Considerations 6-12
Configuring DRCP 6-13
Configuring a Data Source for DRCP 6-13
Configuring a Database for DRCP 6-14

Global Data Services 6-15
Requirements and Considerations 6-15
Creating a Active GridLink Data Source for GDS Connectivity 6-15
Container Database with Pluggable Databases 6-16
Creating Service for PDB Access 6-16
DRCP and CDB/PDB 6-16
Setting the PDB using JDBC 6-17
Service Switching 6-17

7 Using Connection Harvesting

What is Connection Harvesting 7-1
Enable Connection Harvesting 7-2
Marking Connections Harvestable 7-2

ORACLE

Vii

Recover Harvested Connections 7-2
8 Using Shared Pooling Data Sources
How shared Pooling Works 8-1
Requirements and Considerations when using Shared Pooling Data Sources 8-1
Configuring Shared Pooling 8-2
Configuring WebLogic Server-Specific Driver Properties for Shared Pooling 8-2
Configuring Database for Shared Pooling 8-4
O Using Oracle Databases with WebLogic Server
WebLogic JDBC Features for Oracle Database 12.1 9-1
JDBC 4.1 Support for JDK 7 9-2
JDBC Replay Driver Support 9-3
Database Resident Connection Pooling Support 9-3
Container Database with Pluggable Databases 9-3
Global Data Services Support 9-3
Automatic ONS Listeners 9-3
WebLogic JDBC Features for Oracle Database 12.2 9-3
JDBC 4.2 Interfaces 9-4
Database 12.2 JDBC Replay Driver 9-5
AGL Support for URL with @alias or @Idap 9-5
10 Labeling Connections
What is Connection Labeling 10-1
Implementing Labeling Callbacks 10-2
Creating a Labeling Callback 10-2
Example Labeling Callback 10-3
Registering a Labeling Callback 10-5
Removing a Labeling Callback 10-5
Applying Connection Labels 10-5
Reserving Labeled Connections 10-6
Checking Unmatched labels 10-7
Removing a Connection Label 10-7
Using Initialization and Reinitialization Costs to Select Connections 10-7
Considerations When Using Initialization and Reinitialization Costs 10-8
Using Connection Labeling with Packaged Applications 10-8

ORACLE"

viii

11 Understanding Data Source Security

About WebLogic Data Source Security Options 11-1
WebLogic Data Source Security Options 11-2
Credential Mapping vs. Database Credentials 11-3
Set Client Identifier on Connection 11-5
Oracle Proxy Session 11-6
Identity-based Connection Pooling 11-8
Connections within Transactions 11-9
WebLogic Data Source Resource Permissions 11-9
Data Source Security Example 11-11
Using Encrypted Connection Properties 11-12
Best Practices 11-12
WLST Examples 11-13
Using SSL and Encryption with Data Sources and Oracle Drivers 11-14
Using SSL with Data Sources and Oracle Drivers 11-14
Using SSL with Oracle Wallet 11-14

Active GridLink ONS over SSL 11-15

Using Data Encryption with Data Sources and Oracle Drivers 11-15

12 Creating and Managing Oracle Wallet

What is Oracle Wallet 12-1
Where to Keep Your Wallet 12-1
How to Create an External Password Store 12-2
Defining a WebLogic Server Data Source using the Wallet 12-3

Copy the Wallet Files 12-3

Update the Data Source Configuration 12-3
Using a TNS Alias instead of a DB Connect String 12-4

13 Deploying Data Sources on Servers and Clusters

Deploying Data Sources on Servers and Clusters 13-1
Minimizing Server Startup Hang Caused By an Unresponsive Database 13-1

14 Using WebLogic Server with Oracle RAC

Overview of Oracle Real Application Clusters 14-1

Software Requirements 14-2

JDBC Driver Requirements 14-2

Hardware Requirements 14-2

Configuration Options in WebLogic Server with Oracle RAC 14-3

Choosing a WebLogic Server Configuration for Use with Oracle RAC 14-3
ORACLE

Validating Connections when using WebLogic Server with Oracle RAC 14-4
Additional Considerations When Using WebLogic Server with Oracle RAC 14-4
15 Monitoring WebLogic JDBC Resources

Viewing Run-Time Statistics 15-1
Data Source Statistics 15-1
Prepared Statement Cache Statistics 15-1
Profile Logging 15-2
Collecting Profile Information 15-2
Profile Types 15-2
Connection Usage (WEBLOGIC.JDBC.CONN.USAGE) 15-3
Connection Reservation Wait (WEBLOGIC.JDBC.CONN.RESV.WAIT) 15-3
Connection Reservation Failed (WEBLOGIC.JDBC.CONN.RESV.FAIL) 15-3
Connection Leak (WEBLOGIC.JDBC.CONN.LEAK) 15-4
Connection Last Usage (WEBLOGIC.JDBC.CONN.LAST_USAGE) 15-4
Connection Multithreaded Usage (WEBLOGIC.JDBC.CONN.MT_USAGE) 15-4
Statement Cache Entry (WEBLOGIC.JDBC.STMT_CACHE.ENTRY) 15-5
Statements Usage (WEBLOGIC.JDBC.STMT.USAGE) 15-5
Connection Unwrap (WEBLOGIC.JDBC.CONN.UNWRAP) 15-5

JDBC Object Closed Usage (WEBLOGIC.JDBC.CLOSED USAGE) 15-5

Local Transaction Connection Leak (WEBLOGIC.JDBC.CONN.LOCALTX_LEAK) 15-6
Example Profile Information Record Log 15-6
Accessing Diagnostic Data 15-6
Callbacks for Monitoring Driver-Level Statistics 15-7
Debugging JDBC Data Sources 15-7
Enabling Debugging 15-7
Enable Debugging Using the Command Line 15-7

Enable Debugging Using the WebLogic Server Administration Console 15-8

Enable Debugging Using the WebLogic Scripting Tool 15-8
Changes to the config.xml File 15-9

JDBC Debugging Scopes 15-9
Set Debugging for UCP or ONS 15-10
Request Dyeing 15-11

16 Managing WebLogic JDBC Resources

Testing Data Sources and Database Connections 16-1
Managing the Statement Cache for a Data Source 16-2
Clearing the Statement Cache for a Data Source 16-2
Clearing the Statement Cache for a Single Connection 16-2
Shrinking a Connection Pool 16-3

ORACLE

Resetting a Connection Pool

16-3

Suspending a Connection Pool 16-4
Resuming a Connection Pool 16-5
Shutting Down a Data Source 16-5
Starting a Data Source 16-6
Managing DBMS Network Failures 16-6
17 Tuning Data Source Connection Pools
Increasing Performance with the Statement Cache 17-2
Statement Cache Algorithms 17-2
LRU (Least Recently Used) 17-2
Fixed 17-3
Statement Cache Size 17-3
Usage Restrictions for the Statement Cache 17-3
Calling a Stored Statement After a Database Change May Cause Errors 17-4
Using setNull In a Prepared Statement 17-4
Statements in the Cache May Reserve Database Cursors 17-4
Other Considerations When Using the Statement Cache 17-4
Initial Capacity Enhancement in the Connection Pool 17-5
Connection Testing Options for a Data Source 17-6
Database Connection Testing Semantics 17-7
Connection Testing When Database Connections are Created 17-8
Periodic Connection Testing 17-8
Testing Reserved Connections 17-8
Minimizing Connection Test Delay After Database Connectivity Loss 17-8
Minimizing Connection Request Delays After Loss of DBMS Connectivity 17-9
Minimizing Connection Request Delay with Seconds to Trust an Idle Pool
Connection 17-10
Database Connection Testing Configuration Recommendations 17-11
Database Connection Testing Using Default Test Table Name 17-11
Database Connection Testing Options 17-12
Enabling Connection Creation Retries 17-12
Enabling Connection Requests to Wait for a Connection 17-13
Connection Reserve Timeout 17-13
Limiting the Number of Waiting Connection Requests 17-13
Automatically Recovering Leaked Connections 17-13
Avoiding Server Lockup with the Correct Number of Connections 17-14
Limiting Statement Processing Time with Statement Timeout 17-14
Using Pinned-To-Thread Property to Increase Performance 17-14
Changes to Connection Pool Administration Operations When PinnedToThread is
Enabled 17-15
Additional Database Resource Costs When PinnedToThread is Enabled 17-16

ORACLE

Xi

Using Unwrapped Data Type Objects 17-16

How to Disable Wrapping 17-17
Disable Wrapping using the Administration Console 17-17

Disable Wrapping using WLST 17-18

Tuning Maintenance Timers 17-18
JDBC Connection Creation Limits 17-19

A Configuring JDBC Application Modules for Deployment

Packaging a JDBC Module with an Enterprise Application: Main Steps A-1
Creating Packaged JDBC Modules A-2
Creating a JDBC Data Source Module Using the Administration Console A-2
JDBC Packaged Module Requirements A-3
JDBC Application Module Limitations A-3
Creating a Generic Data Source Module A-3
Creating an Active GridLink Data Source Module A-5
Creating a Multi Data Source Module A-5
Encrypting Database Passwords in a JDBC Module A-5
Deploying JDBC Modules to New Domains A-5
Application Scoping for a Packaged JDBC Module A-6
Referencing a JDBC Module in Java EE Descriptor Files A-6
Packaged JDBC Module References in weblogic-application.xml A-7
Packaged JDBC Module References in Other Descriptors A-8
Packaging an Enterprise Application with a JDBC Module A-8
Deploying an Enterprise Application with a JDBC Module A-9
Getting a Database Connection from a Packaged JDBC Module A-9

B Using Multi Data Sources with Oracle RAC

Overview of Oracle RAC B-2
Oracle RAC Scalability with WebLogic Server Multi Data Sources B-3
Oracle RAC Availability with WebLogic Server Multi Data Sources B-3
Oracle RAC Load Balancing with WebLogic Server Multi Data Sources B-3

Software Requirements B-3

JDBC Driver Requirements B-4

Hardware Requirements B-4
WebLogic Server Cluster B-4
Oracle RAC Cluster B-4
Shared Storage B-4

Configuring Multi Data Sources with Oracle RAC B-5
Choosing a Multi Data Source Configuration for Use with Oracle RAC B-5
Configuring Multi Data Sources for use with Oracle RAC B-5

ORACLE

Xii

Attributes of a Multi Data Source B-6

Configuration Considerations for Failover B-7
Multi Data Source-Managed Failover and Load Balancing B-7
Delays During Failover B-7
Failure Handling Walkthrough for Global Transactions B-8
Configuring the Listener Process for Each Oracle RAC Instance B-9
Configuring Multi Data Sources When Remote Listeners are Enabled or Disabled B-10
Additional Configuration Considerations B-11
Using Multi Data Sources with Global Transactions B-12
Rules for Data Sources within a Multi Data Source Using Global Transactions B-12
Required Attributes of Data Sources within a Multi Data Source Using Global
Transactions B-13
Sample Configuration Code B-13
Using Multi Data Sources without Global Transactions B-15
Attributes of Data Sources within a Multi Data Source Not Using Global Transactions B-15
Sample Configuration Code B-15
Configuring Connections to Services on Oracle RAC Nodes B-17
Configuring a Data Source to Connect to a Service B-17
Service Connection Configurations B-18
Workload Management B-18
Load Balancing B-20
Connection Pool Capacity Planning B-22
Using SCAN Addresses with Multi Data Sources B-25
XA Considerations and Limitations when using Multi Data Sources with Oracle RAC B-25
Oracle RAC XA Requirements when using Multi Data Sources B-26
Known Issue Occurring After Database Server Crash B-26
JDBC Store Recovery with Oracle RAC B-26
Configuring a JDBC Store for Use with Oracle RAC B-26
Automatic Retry for IMS Connections B-27
ORACLE

Xiii

Preface

Preface

Audience

This document contains Java Database Connectivity (JDBC) data source configuration and
administration information.

e Audience

e Documentation Accessibility
e Diversity and Inclusion

* Related Documentation

e Conventions

This document is a resource for software developers and system administrators who develop
and support applications that use the Java Database Connectivity (JDBC) API. It also contains
information that is useful for business analysts and system architects who are evaluating
WebLogic Server. The topics in this document are relevant during the evaluation, design,
development, pre-production, and production phases of a software project.

This document does not address specific JDBC programming topics. For links to WebLogic
Server documentation and resources for this topic, see Related Documentation.

It is assumed that the reader is familiar with Java EE and JDBC concepts. This document
emphasizes the value-added features provided by WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion

ORACLE

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.

Xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

e Developing JDBC Applications for Oracle WebLogic Server is a guide to JDBC API
programming with WebLogic Server.

e Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic
Server applications.

e Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications in development and production
environments.

JDBC Samples and Tutorials

In addition to this document, Oracle provides a variety of JDBC code samples and tutorials that
show configuration and API use, and provide practical instructions on how to perform key
JDBC development tasks.

* Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server that
simulates an independent, centralized medical record management system. The MedRec
application provides a framework for patients, doctors, and administrators to manage
patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. You can optionally install MedRec with the WebLogic Server.
You can start MedRec from the ORACLE HOME\user projects\domains\medrec directory,
where ORACLE HOME is the directory you specified as the Oracle Home when you installed
Oracle WebLogic Server.

+ JDBC Examples in the WebLogic Server Distribution

WebLogic Server optionally installs APl code examples in

EXAMPLES HOME\wl server\examples\src\examples, where EXAMPLES HOME represents
the directory in which the WebLogic Server code examples are configured. For more
information, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

New WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

ORACLE v

Preface

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE XVi

About WebLogic JDBC Resources

To configure JDBC resources you need to understand how to use the different types of data
sources available such as Active GridLink (AGL) and Multi Data Source (MDS). Each data
source that you configure contains a pool of database connections that are created when the
data source instance is created—when it is deployed or targeted, or at server startup.

* JDBC Resources

 JDBC Data Sources

e JMX and WLST Access for JDBC Resources
e WebLogic Server with Oracle RAC

« Advanced Configurations for Oracle Drivers and Databases

JDBC Resources

The key to understanding WebLogic JDBC data source configuration is to understand who
creates a JDBC resource or how a JDBC resource is created and managed. This determines
how a resource will be deployed and modified.

Both system administrators and programmers can create and manage JDBC resources either
as system modules or as application modules. WebLogic supports either standard or
proprietary JDBC application modules. Regardless of whether you are using JDBC system
modules or JDBC application modules, each JDBC data source is represented by an XML file
(a module).

» System Modules: WebLogic Administrators typically use the WebLogic Server
Administration Console or the WebLogic Scripting Tool (WLST) to create and deploy
(target) JDBC modules. These JDBC modules are considered system modules. See JDBC
System Modules.

* Application Modules: Programmers create modules in a development tool that supports
creating an XML descriptor file, then package the JDBC modules with an application (for
example, an EAR or WAR file) and pass the application to a WebLogic Administrator to
deploy. These JDBC modules are considered application modules. See JDBC Application
Modules.

The standard JDBC application modules are created using the JEE 6 annotations or schema
definitions based on datasourcedefinition. The proprietary JDBC application modules are a
WebLogic-specific extension of Java EE modules and can be configured either within a Java
EE application or as stand-alone modules.

These documents conform to the jdbc-data-source.xsd schema (available at http://
www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html).

Table 1-1 lists the JDBC module types and how they can be configured and modified.

ORACLE 1

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html

Chapter 1
JDBC Data Sources

Table 1-1 JDBC Module Types and Configuration and Management Options
]

Module Created with Add/ Modify Modify with Modify with
Type Remove with JMX JSR-88 (non- Administration
Modules (remotel remotely) Console
with y)
Administrati
on Console
System WebLogic Server Yes Yes No Yes—via JMX
Administration Console or
WLST
Application Oracle Enterprise Pack for No No Yes—via a Yes—via a
Eclipse (OEPE), Oracle deployment deployment plan
JDeveloper, another IDE, or plan

an XML editor

JDBC Data Sources

ORACLE

In WebLogic Server, you configure database connectivity by adding data sources to your
WebLogic domain. WebLogic JDBC data sources provide database access and database
connection management.

Each data source contains a pool of database connections that are created when the data
source is created and at server startup. Applications reserve a database connection from the
data source by looking up the data source on the JNDI tree or in the local application context
and then calling getConnection (). When finished with the connection, the application should
call connection.close () as early as possible, which returns the database connection to the
pool for other applications to use.

You can configure database connectivity by adding JDBC data sources to your WebLogic
domain. Configuring data sources requires several steps including choosing a type of data
source, creating the data source, configuring connection pools and Oracle database
parameters and so on. See Configuring JDBC Data Sources.

Types of WebLogic Server JDBC Data Sources
WebLogic Server provides the following types of data sources:

* Default data sources—Oracle provides a default data source required by a Java EE 7-
compliant runtime. Applications can use this pre-configured data source to access the
Derby database installed with the WebLogic Server. See Using the Default Data Source.

* Generic data sources—Generic data sources and their connection pools provide
connection management processes that help keep your system running efficiently. You can
set options in the data source to suit your applications and your environment. See Using
Generic Data Sources.

* Active GridLink data sources—A data source that provides a connection pool that spans
one or more nodes in one or more Oracle RAC clusters. It supports dynamic load
balancing of connections across the nodes and handles events indicating nodes added
and removed from the cluster(s). See Using Active GridLink Data Sources.

e Multi Data Source —A MDS is an abstraction around a group of Generic data sources
that provides load balancing or failover processing. See Configuring JDBC Multi Data
Sources.

* Proxy data source—A data source that provides the ability to switch between databases
in a WebLogic Server Multitenant environment. See Using Proxy Data Sources.

1-2

Chapter 1
JMX and WLST Access for JDBC Resources

* Universal Connection Pool (UCP) data source—A UCP data source provides an option
for users who wish to use Oracle Universal Connection Pooling to connect to Oracle
Databases. UCP provides an alternative connection pooling technology to Oracle
WebLogic Server connection pooling. See Using Universal Connection Pool Data Sources.

JMX and WLST Access for JDBC Resources

You can create JDBC resources using any of the WebLogic Server administration tools. When
you create JDBC resources, WebLogic Server creates MBeans (Managed Beans) for each of
the resources. You can then access these MBeans using Java Management Extensions (JMX)
or the WebLogic Scripting Tool (WLST).

The WebLogic Scripting Tool is a complete, command-line scripting environment for managing
Oracle WebLogic Server domains, based on the Java scripting interpreter, Jython. In addition
to supporting standard Jython features such as local variables, conditional variables, and flow
control statements, the WebLogic Scripting Tool provides a set of scripting functions
(commands) that are specific to Oracle WebLogic Server. You can extend the WebLogic
scripting language to suit your needs by following the Jython language syntax. See, Using the
WebLogic Scripting Tool in Understanding the WebLogic Scripting Tool.

To integrate third-party management systems with the WebLogic Server management system,
WebLogic Server provides standards-based interfaces that are fully compliant with the JIMX
specification. Software vendors can use these interfaces to monitor WebLogic Server MBeans,
to change the configuration of a WebLogic Server domain, and to monitor the distribution
(activation) of those changes to all server instances in the domain. See, Understanding
WebLogic Server MBeans in Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server.

For a complete list of WebLogic Server administration tools, see Summary of System
Administration Tools and APIs in Understanding Oracle WebLogic Server.

For detailed information, see IMX and WLST Access for JIDBC Resources.

WebLogic Server with Oracle RAC

Oracle WebLogic Server provides strong support for Oracle Real Application Clusters (RAC),
minimizing database access time while allowing transparent access to rich pooling
management functions that maximizes both connection performance and availability.

See:

e Using WebLogic Server with Oracle RAC
e Using Multi Data Sources with Oracle RAC

e Using Fast Connection Failover with Oracle RAC

Advanced Configurations for Oracle Drivers and Databases

Oracle provides advanced configuration options such as JDBC Replay Driver, database
resident connection policy, and global database services to improve data source and driver
performance when using Oracle drivers and databases. These configuration options help in the
management of connection reservations in the data source.

For more information, see Advanced Configurations for Oracle Drivers and Databases.

ORACLE 13

Configuring WebLogic JDBC Resources

To configure the JDBC resource you need to understand how to use JDBC resources in a
WebLogic domain, ownership of resources, how to create MBeans for JDBC resources using
tools like IMX and WLST, and how to increase the availability of JIDBC resources. In WebLogic
Server, you can configure database connectivity by configuring JDBC resources and then
targeting or deploying the JDBC resources to servers or clusters in your WebLogic domain.

JDBC System Modules

When you create a JDBC resource (data source) using the WebLogic Server
Administration Console or using the WebLogic Scripting Tool (WLST), WebLogic Server
creates a JDBC module in the config/jdbc subdirectory of the domain directory and adds
a reference to the module in the domain's config.xml file.

JDBC Application Modules
In contrast to system resource modules, the developer creates, packs, and owns the JDBC
modules whereas the Administrator only deploys the module.

JDBC Module File Naming Requirements
All WebLogic JDBC module files must end with the -jdbc. xml suffix, such as examples-
demo-jdbc.xml.

JDBC Modules in Versioned Applications
WebLogic Server identifies the data source defined in the JDBC module with a specific
name.

JDBC Schema

In support of the modular deployment model for JDBC resources in WebLogic Server,
Oracle provides a schema for WebLogic JDBC objects: weblogic-jdbc.xsd. When you
create JDBC resource modules (descriptors), the modules must conform to the schema.
IDEs and other tools can validate JDBC resource modules based on the schema.

JDBC Data Source Type
Data sources should have a datasource-type set in the descriptor. This functionality was
added in WebLogic Server 12.2.1 and is optional for backward compatibility.

JMX and WLST Access for JDBC Resources
This section describes how to access WebLogic Server MBeans using JMX client or the
WebLogic Scripting Tool (WLST).

Creating High-Availability JDBC Resources

To improve the availability of your JDBC resource and load balance communication
between resources you can target or deploy a JDBC data source to the members of a
cluster using the WebLogic Server Administration Console.

JDBC System Modules

When you create a JDBC resource (data source) using the WebLogic Server Administration
Console or using the WebLogic Scripting Tool (WLST), WebLogic Server creates a JDBC
module in the config/jdbc subdirectory of the domain directory and adds a reference to the
module in the domain's config.xml file.

ORACLE

2-1

Chapter 2
JDBC System Modules

The JDBC module conforms to the jdbc-data-source.xsd schema (available at http://
www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html).

JDBC data sources that you configure this way are known as system modules. Administrator
owns the system modules and can delete, modify, or add similar resources at any time. System
modules are globally available for targeting servers and clusters configured in the domain and
therefore are available to all applications deployed on the same targets and to client
applications. System modules are also accessible through JMX as
JDBCSystemResourceMBeans.

e Generic Data Source Modules

e Active GridLink Data Source System Modules

e Multi Data Source System Modules

Generic Data Source Modules

Generic data source system modules are included in the domain's config.xnl file as a
JDBCSystemResource element, which includes the name of the JDBC module file and the list of
target servers and clusters on which the module is deployed. Figure 2-1 shows an example of
a data source listing in a config.xml file and the module that it maps to.

< Note:

Generic is the term used to distinguish a simple data source from a Multi Data
Source or Active GridLink data source.

Figure 2-1 Reference from config.xml to a Data Source System Module

Domain\config Directory Domain\ config\jdbc Directory
- </> - </>
config.xml examples-demo-jdbc.xml
<jdbc-system-resource> <jdbc-data-source>
<name>examples-demo</name> — 3 <name>examples-demo</name>
<target>examplesServer</target> <jdbc-driver-params>

</jdbc-system-resource> R
</jdbc-driver-params>
<jdbc-connection-pool-params>

</jdbc-connection-pool-params>
<jdbc-data-source-params>

</jdbc-data-source-params>
<jdbc-xa-params>

</jdbc-xa-params>
</jdbc-data-source>

In this illustration, the config.xml file lists the examples-demo data source as a jdbc-system-
resource element, which maps to the examples-demo-jdbc.xml module in the
domain\config\jdbc folder.

ORACLE b5

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html

Active GridLink Data Source System Modules

Active GridLink data source system modules are included in the domain's config.xml file as a
JDBCSystemResource element, similar to Generic data source system modules. Active GridLink
data sources include a jdbc-oracle-params section that includes ONS and FAN.

Chapter 2
JDBC System Modules

For more information about Active GridLink data sources, see Using Active GridLink Data

Sources.

Multi Data Source System Modules

Similarly, Multi Data Source (MDS) system modules are included in the domain's config.xml
file as a jdbc-system-resource element. The MDS module includes a data-source-1list
parameter that maps to the data source modules used by the MDS. The individual data source
modules are also included in the config.xml. Figure 2-2 shows the relationship between
elements in the config.xml file and the system modules in the config/jdbc directory.

Figure 2-2 Reference from config.xml to Multi Data Source and Data Source System Modules

Domain\config Directory
</>

config.xml

<jdbc-system-resource>

<name>PB-MultiDataSource</name> ——— >

<target>examplesServer</target>
</jdbc-system-resource>
<jdbc-system-resource>
<name>examples-demo</name>
<target>examplesServer</target>
</jdbc-system-resource>
<jdbc-system-resource>
<name>examples-demo-2</name>
<target>examplesServer</target>
</jdbc-system-resource>

Domain\config\jdbc Directory

</>

PB-MultiDataSource-jdbc.xml

<jdbc-data-source>

<jdbc-data-source-params>

<name>PB-MultiDataSource</name>

<jndi-name>PB-MultiDataSource</jndi-name>
<algorithm-type>Failover</algorithm-type>

</data-source-list>
</jdbc-data-source-params>
</jdbc-data-source>

<data-source-list>examples-demo-2, examples-demo

y
examples-demo-2-jdbc.xml

<jdbc-data-source>
<name>examples-demo-2</name>
<jdbc-driver-params>

</jdbc-driver-params>
<jdbc-connection-pool-params>

</jdbc-connection-pool-params>
<jdbc-data-source-params>

</jdbc-data-source-params>
<jdbc-xa-params>

</jdbc-xa-params>
</jdbc-data-source>

Y
</>

XM

examples-demo-jdbc.xml

|I|—

<jdbc-data-source>
<name>examples-demo</name>
<jdbc-driver-params>

</jdbc-driver-params>
<jdbc-connection-pool-params>

</jdbc-connection-pool-params>
<jdbc-data-source-params>

</jdbc-data-source-params>
<jdbc-xa-params>

</jdbc-xa-params>
</jdbc-data-source>

In this illustration, the config.xml file lists three JDBC modules—one MDS and the two
Generic data sources used by the MDS, which are also listed within the MDS module. Your
application can look up any of these modules on the JNDI tree and request a database
connection. If you look up the MDS, the MDS determines which of the Generic data sources to
use to supply the database connection, depending on the data sources in the data-source-

ORACLE

2-3

Chapter 2
JDBC Application Modules

1ist parameter, the order in which the data sources are listed, and the algorithm specified in
the algorithm-type parameter.

< Note:

Members of a MDS must be Generic data sources; they cannot be MDS or Active
GridLink data sources.

For more information about MDS, see Configuring JDBC Multi Data Sources.

JDBC Application Modules

In contrast to system resource modules, the developer creates, packs, and owns the JDBC
modules whereas the Administrator only deploys the module.

This means that the Administrator has limited control over packaged modules. When deploying
a resource module, an Administrator can change the specified resource properties in the
module, but the Administrator cannot add or delete modules. (As with other Java EE modules,
deployment configuration changes for a resource module are stored in a deployment plan for
the module, leaving the original module untouched.)

e Standard Java EE Application Modules
e Proprietary JDBC Application Modules

Standard Java EE Application Modules

Java EE 7 provides the option to programmatically define DataSource resources as application
modules for a more flexible and portable method of database connectivity. See Using
DataSource Resource Definitions in Developing JDBC Applications for Oracle WebLogic
Server.

Proprietary JDBC Application Modules

ORACLE

JDBC resources can also be managed as application modules, similar to standard Java EE
modules. A proprietary JDBC application module is simply an XML file that conforms to the
jdbc-data-source.xsd schema (available at http://www.oracle.com/webfolder/
technetwork/weblogic/jdbc-data-source/index.html) and represents a data source.

JDBC modules can be included as part of an Enterprise Application as a packaged module.
Packaged modules are bundled with an EAR or exploded EAR directory, and are referenced in
all appropriate deployment descriptors, such as the weblogic-application.xml and ejb-
jar.xml deployment descriptors. The JDBC module is deployed along with the enterprise
application, and can be configured to be available only to the enclosing application or to all
applications. Using packaged modules ensures that an application always has access to
required resources and simplifies the process of moving the application into new environments.
With packaged JDBC modules, you can migrate your application and the required JDBC
configuration from environment to environment, such as from a testing environment to a
production environment, without opening an EAR file and without extensive manual data
source reconfiguration.

By definition, packaged JDBC modules are included in an enterprise application, and therefore
are deployed when you deploy the enterprise application. For more information about

2-4

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html

Chapter 2
JDBC Application Modules

deploying applications with packaged JDBC modules, see Deploying Applications to Oracle
WebLogic Server.

A proprietary JDBC application module can also be deployed as a stand-alone resource using
the weblogic.Deployer utility or the WebLogic Server Administration Console, in which case
the resource is typically available to the server or cluster targeted during the deployment
process. JDBC resources deployed in this manner are called stand-alone modules and can be
reconfigured using the WebLogic Server Administration Console or a JSR-88 compliant tool,
but are unavailable through JMX or WLST.

Stand-alone JDBC modules promote sharing and portability of JDBC resources. You can
create a data source configuration and distribute it to other developers. Stand-alone JDBC
modules can also be used to move data source configuration between domains, such as
between the development domain and the staging domain.

Note:

When deploying proprietary JDBC modules as standalone modules, a Multi Data
Source needs to have a deployment order that is greater than the deployment orders
of its member Generic data sources.

For more information about JDBC application modules, see Configuring JDBC Application
Modules for Deployment.

For information about deploying stand-alone JDBC modules, see Deploying JDBC, JMS, and
WLDF Application Modules in Deploying Applications to Oracle WebLogic Server.

e Including Drivers in EAR/WAR Files

Including Drivers in EAR/WAR Files

ORACLE

In WebLogic Server 10.3.6 and higher releases, you can include a database driver in the App-
INF/11ib directory of the EAR/WAR file that contains a packaged data source. This allows you
to deploy a self-contained EAR/WAR file that has both the data source and driver required for
an application.

Note:

You do not need to update the classpath of the manifest file to include the driver
location.

An EAR has its own classloader and it is shared across all of the nested applications so any of
them can use it. You can deploy multiple EAR/WAR files, each with a different driver version.
However, if there are other versions of the driver in the system classpath, set prefer-web-inf-
classes=true in the weblogic.xml file to ensure that the application uses the driver classes
that it was packaged with which it was packaged.

When using the Oracle driver embedded in an EAR or WAR with ojdbc6.jar or ojdbc7. jar,
there is a known problem related to cleaning up the associated classloader. To resolve this
problem, call oracle.jdbc.OracleDriver.deregisterHack () from the contextDestroyed ()
method of a ServletContextListener.

2-5

Chapter 2
JDBC Module File Naming Requirements

You can also use the WEB-INF/1ib directory to hold driver JAR files. The following example
shows the location of the various directories in WAR and EAR files.

Application (ear)
Web module (war)
WEB-INF/lib
EJB module
META-INF
APP-INF/1ib

However, you cannot have two versions of the same JAR in both DOMAIN HOME/1ib (see
Using a Third-Party JAR File in DOMAIN_HOME/lib or the system classpath and WEB-INF/1ib
Or APP-INF/1ib, with prefer-web-inf-classes Or prefer-application-packages set. That is
you should do only one of the following:

* Use DOMAIN HOME/lib or system classpath to get the driver into all applications in the
domain.

e Use the driver embedded in the application.

Note:

If you do not adhere to this restriction, it is possible (depending on the JAR, the
version changes, and the order in which the JARs are referenced) that a
ClassCastException will occur in the application.

If the JAR files are present in multiple locations, the following rules apply:

* Ifprefer-web-inf-classes in the weblogic.xml is false, the precedence is: system
classpath > DOMAIN_HOME/libAPP-INF/libWEB—INF/lib.

e Ifprefer-web-inf-classes in weblogic.xml is true, the classes in WEB-INF/1ib will take
precedence over all other locations.

JDBC Module File Naming Requirements

All WebLogic JDBC module files must end with the -jdbc.xml suffix, such as examples-demo-
jdbc.xml.

WebLogic Server checks the file name when you deploy the module. If the file does not end in
-jdbc.xml, the deployment will fail and the server will not boot.

JDBC Modules in Versioned Applications

ORACLE

WebLogic Server identifies the data source defined in the JDBC module with a specific name.

When you use production redeployment (versioning) to deploy a version of an application that
includes a packaged JDBC module, WebLogic Server identifies the data source defined in the
JDBC module with a name in the following format:

application id#version id@module name€data source name

This name is used for data source run-time MBeans and for registering the data source
instance with the WebLogic Server transaction manager.

2-6

Chapter 2
JDBC Schema

If transactions in a retiring version of an application time out and the version of the application
is then undeployed, you may have to manually resolve any pending or incomplete transactions
on the data source in the retired version of the application. After a data source is undeployed
(in this case, with the retired version of the application), the WebLogic Server transaction
manager cannot recover pending or incomplete transactions.

For more information about production redeployment, see Developing Applications for
Production Redeployment and Using Production Redeployment to Update Applications in
Deploying Applications to Oracle WebLogic Server.

JDBC Schema

In support of the modular deployment model for JDBC resources in WebLogic Server, Oracle
provides a schema for WebLogic JDBC objects: weblogic-jdbc.xsd. When you create JDBC
resource modules (descriptors), the modules must conform to the schema. IDEs and other
tools can validate JDBC resource modules based on the schema.

The schema is available at http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-
data-source/index.html.

Note:

The scope in the jdbc-data-source-params element of the schema may only be set
to Application for packaged data sources. The value Application is not valid for:

e System resources in config/jdbc, including Generic, Multi Data Sources, and
Active GridLink data sources.

e Stand-alone data sources that are deployed dynamically or statically using the
<app-deployment> element in the config.xml file.

For these data source types, there is no application to scope the data source and no
associated module. WebLogic Server does not generate a scope of Application.
This omission was not flagged as an error in releases prior to WebLogic Server
10.3.6.0 and is displayed in the console with an invalid name similar to
ds0@null@ds0. For WebLogic Server 10.3.6.0 and higher, an Error message is
logged for this configuration error and the system attempts to set the scope to Global
and display the data source name as ds0. In future releases, this error may be
treated as fatal.

JDBC Data Source Type

ORACLE

Data sources should have a datasource-type set in the descriptor. This functionality was
added in WebLogic Server 12.2.1 and is optional for backward compatibility.

The valid values are:

* Generic—Generic data source

* MDS —Multi Data Source

e AGL—Active GridLink data source

e Ucp—Universal Connection Pool data source

2-7

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html

Chapter 2
JMX and WLST Access for JDBC Resources

PROXY—Proxy for multiple tenant data sources

If the datasource-type is not set to UCP or Proxy, the following validations are performed:

If datasource-type is set to AGL, it is treated as an Active GridLink data source even if FAN
enabled is false and no ONS list is configured, and the Active GridLink flag is false.

If the datasource-type is not set to AGL, it is an error even if FAN enabled is true or an ONS
list is configured or the Active GridLink flag is true.

If no data source list exists (it does not have Multi Data Source members) and
datasource-type is set to anything other than GENERIC or AGL, it is an error.

If the data source list exists (it has Multi Data Source members) and the datasource-type
is set to anything other than MDs, it is an error.

JMX and WLST Access for JDBC Resources

This section describes how to access WebLogic Server MBeans using JMX client or the
WebLogic Scripting Tool (WLST).

JDBC MBeans for System Resources

JDBC Management Objects in the Java EE Management Model (JSR-77 Support)
Using WLST to Create JDBC System Resources

How to Modify and Monitor JDBC Resources

Best Practices when Using WLST to Configure JDBC Resources

JDBC MBeans for System Resources

Figure 2-3 shows the hierarchy of the MBeans for JDBC objects in a WebLogic domain.

ORACLE

2-8

Chapter 2
JMX and WLST Access for JDBC Resources

Figure 2-3 JDBC Bean Tree

=

DomainMBean

L JDBCSystemResourceMBean

JavaBean representations of JDBC descriptor elements

JDBCDataSourceBean

— JDBCDriverParamsBean

— JDBCConnectionPoolParamsBean

— JDBCDataSourceParamsBean

— JDBCXAParamsBean

The JDBCSystemResourceMBean is a container for the JavaBeans created from a data source
module. However, all IMX access for a JDBC data source is through the
JDBCSystemResourceMBean. You cannot directly access the individual JavaBeans created from
the data source module.

JDBC Management Objects in the Java EE Management Model (JSR-77

Support)

ORACLE

The WebLogic Server JDBC subsystem supports JSR-77, which defines the Java EE
Management Model. The Java EE Management Model is used for monitoring the run-time
state of a Java EE Web application server and its resources. You can access the Java EE
Management Model to monitor resources, including the WebLogic JDBC subsystem as a
whole, JDBC drivers loaded into memory, and JDBC data sources.

To comply with the specification, Oracle added the following run-time MBean types for the
WebLogic JDBC subsystem:

e JDBCServiceRuntimeMBean—Which represents the JDBC subsystem and provides
methods to access the list of JDBCDriverRuntimeMBeans,
JDBCMultiDataSourceRuntimeMBean, and JDBCDataSourceRuntimeMBeans currently
available in the system.

2-9

Chapter 2
JMX and WLST Access for JDBC Resources

JDBCMultiDataSourceRuntimeMBean—Which represents a JDBC Multi Data Source
deployed on a server or cluster.

JDBCDriverRuntimeMBean—Which represents a JDBC driver that the server loaded into
memory.

JDBCDataSourceRuntimeMBeans—Which represents a JDBC Generic or Active GridLink
data source deployed on a server or cluster.

Note:

WebLogic JDBC run-time MBeans do not implement the optional Statistics
Provider interfaces specified by JSR-77.

For more information about using the Java EE management model with WebLogic Server, see
Developing Java EE Management Applications for Oracle WebLogic Server.

Using WLST to Create JDBC System Resources

Basic tasks you need to perform when creating JDBC resources with the WLST are:

Start an edit session.

Create a JDBC system module that includes JDBC system resources, such as pools, data
sources, Multi Data Sources, and JDBC drivers.

Target your JDBC system module.

Example 2-1 WLST Script to Create JDBC Resources

import sys

from java.lang import System

print "@@Q@ Starting the script ..."

global props

url = sys.argv[l]
usr = sys.argv[2]

password = sys.argv[3]

connect (usr,password, url)

edit ()
startEdit ()

servermb=getMBean ("Servers/examplesServer")
if servermb is None:
print '@@E@ No server MBean found'

else:

def addJDBC (prefix) :

print (un)

print ("*** Creating JDBC resources with property prefix " + prefix)

Create the Connection Pool. The system resource will have
generated name of <PoolName>+"-jdbc"

ORACLE

2-10

Chapter 2
JMX and WLST Access for JDBC Resources

myResourceName = props.getProperty(prefix+"PoolName")
print ("Here is the Resource Name: " + myResourceName)

jdbcSystemResource = wl.create (myResourceName, "JDBCSystemResource")
myFile = jdbcSystemResource.getDescriptorFileName ()
print ("HERE IS THE JDBC FILE NAME: " + myFile)

jdbcResource = jdbcSystemResource.getJDBCResource ()
jdbcResource.setName (props.getProperty (prefix+"PoolName"))

Create the DataSource Params
dpBean = jdbcResource.getJDBCDataSourceParams ()
myName=props.getProperty (prefix+"JNDIName")
dpBean.setJNDINames ([myName])

Create the Driver Params
drBean = jdbcResource.getJDBCDriverParams ()
drBean.setPassword (props.getProperty (prefix+"Password")
drBean.setUrl (props.getProperty (prefix+"URLName"))
drBean.setDriverName (props.getProperty (prefix+"DriverName"))

propBean = drBean.getProperties()
driverProps = Properties()
driverProps.setProperty ("user",props.getProperty (prefix+"UserName"))

e = driverProps.propertyNames ()

while e.hasMoreElements ()
propName = e.nextElement ()
myBean = propBean.createProperty (propName)
myBean.setValue (driverProps.getProperty (propName))

Create the ConnectionPool Params
ppBean = jdbcResource.getJDBCConnectionPoolParams ()
ppBean.setInitialCapacity (int (props.getProperty(prefix+"InitialCapacity")))
ppBean.setMaxCapacity (int (props.getProperty (prefix+"MaxCapacity")))

if not props.getProperty(prefix+"ShrinkPeriodMinutes") == None:
ppBean.setShrinkFrequencySeconds (int (props.getProperty (prefix+"ShrinkPeriodMinutes")))
if not props.getProperty(prefix+"TestTableName") == None:

ppBean.setTestTableName (props.getProperty (prefix+"TestTableName"))

if not props.getProperty(prefix+"LoginDelaySeconds") == None:
ppBean.setloginDelaySeconds (int (props.getProperty (prefix+"LoginDelaySeconds")))

Adding KeepXaConnTillTxComplete to help with in-doubt transactions.
xaParams = jdbcResource.getJDBCXAParams ()
xaParams.setKeepXaConnTillTxComplete (1)

Add Target
jdbcSystemResource.addTarget (wl.getMBean ("/Servers/examplesServer"))

How to Modify and Monitor JDBC Resources

You can modify or monitor JDBC objects and attributes by using the appropriate method
available from the MBean.

e You can modify JDBC objects and attributes using the set, target, untarget, and delete
methods.

ORACLE 11

Chapter 2
Creating High-Availability JDBC Resources

e You can monitor JDBC run-time objects using get methods.

See Navigating MBeans (WLST Online) in Understanding the WebLogic Scripting Tool.

Best Practices when Using WLST to Configure JDBC Resources

e Trap for Null MBean objects (such as pools, data sources, and drivers) before trying to
manipulate the MBean object.

* When using WLST offline, the following characters are not valid in names of management
objects: period (.), forward slash (/), or backward slash (\). See Syntax for WLST
Commands in Understanding the WebLogic Scripting Tool.

Creating High-Availability JDBC Resources

ORACLE

To improve the availability of your JDBC resource and load balance communication between

resources you can target or deploy a JDBC data source to the members of a cluster using the
WebLogic Server Administration Console.

However, connections do not failover in the event that a cluster member becomes unavailable
for any reason. New connections are created as needed on available cluster members. See
Deploying Data Sources on Servers and Clusters.

¢ Note:

A Multi Data Source can only use Generic data sources that are deployed on the
same cluster member (in the same JVM).

2-12

Configure Database Connectivity

In WebLogic Server, you configure database connectivity through JDBC data sources, either in
your WebLogic domain configuration or in your enterprise application.

e Using JDBC Drivers with WebLogic Server
e Configuring JDBC Data Sources

Using JDBC Drivers with WebLogic Server

WebLogic Server uses JDBC drivers to provide access to various databases. WebLogic Server
comes with a default set of JDBC drivers but third-party JDBC drivers can also be used.

e Types of JDBC Drivers
JDBC drivers listed in the WebLogic Server Administration Console when creating a data
source are not necessarily certified for use with WebLogic Server. JDBC drivers are listed
as a convenience to help you create connections to many of the database management
systems available.

e JDBC Driver Support
WebLogic Server provides support for application data access to any database using a
JDBC-compliant driver.

» JDBC Dirivers Installed with WebLogic Server
The Oracle JDBC Thin driver 19.3 is installed with Oracle WebLogic Server 12.2.1.4. In
addition to the Oracle Thin Driver, the mySQL Connector/J 8.0 (mysgl-connector-java-
commercial-8.0.14-bin.jar) JDBC driver, WebLogic-branded DataDirect drivers are also
installed with WebLogic Server.

e Upgrading and Using Latest Oracle 19¢ JDBC Drivers with WebLogic Server
The Oracle Database 19.3 JDBC driver is included by default with WebLogic Server
12.2.1.4 and 14.1.1.0. This topic provides you with information on upgrading and using the
latest version of the Oracle Database 19c JDBC driver with WebLogic Server.

e Adding Third-Party JDBC Drivers Not Installed with WebLogic Server
e Globalization Support for the Oracle Thin Driver

e Using the Oracle Thin Driver in Debug Mode

Types of JDBC Drivers

ORACLE

JDBC drivers listed in the WebLogic Server Administration Console when creating a data
source are not necessarily certified for use with WebLogic Server. JDBC drivers are listed as a
convenience to help you create connections to many of the database management systems
available.

You must install JDBC drivers in order to use them to create database connections in a data
source on each server on which the data source is deployed. Drivers are listed in the
WebLogic Server Administration Console with known required configuration options to help you
configure a data source. The JDBC drivers in the list are not necessarily installed. Driver
installation can include setting system Path, Classpath, and other environment variables. See
Adding Third-Party JDBC Drivers Not Installed with WebLogic Server.

3-1

Chapter 3

Using JDBC Drivers with WebLogic Server

When a JDBC driver is updated, configuration requirements may change. The WebLogic
Server Administration Console uses known configuration requirements at the time the
WebLogic Server software was released. If configuration options for your JDBC driver have
changed, you may need to manually override the configuration options when creating the data
source or in the property pages for the data source after it is created.

WebLogic Server provides the following JDBC drivers:

Oracle Thin Drivers
— Oracle Thin Driver XA

— Oracle Thin Driver non-XA

The following table lists nine Oracle Thin Drivers as they appear in WebLogic Server
Administration Console, a sample of the URL format that is generated from the input
provided by the user, and the class name of the driver configured:

Oracle Drivers

URL Format

Description

Driver Class Name

Oracle’s Driver (Thin
XA) for JDBC Replay
Driver; Versions: Any

jdbc:oracle:thin:@hos
tname:port/service

Database is used as
service. This is the
default and most
popular format for
Generic data
sources. The service
should be available
on a single instance
for Generic and Multi
Data Source.

oracle.jdbc.replay
.OracleXADataSourc
elmpl

Oracle’s Driver (Thin
XA) for Instance
connections;
Versions: Any

jdbc:oracle:thin: @hos
tname:port:SID

Database is used as
SID, the use of SID is
deprecated. Use
service name instead
of SID in this format.

oracle.jdbc.xa.cli
ent.OracleXADataSo
urce

Oracle’s Driver (Thin
XA) for RAC Service-
Instance connections;
Versions: Any

jdbc:oracle:thin:@ (DE
SCRIPTION= (ADDRESS_LI
ST=(ADDRESS= (PROTOCOL
=TCP) (HOST=hostname)
(PORT=hostname)))
(CONNECT_DATA: (SERVIC
E NAME=service)
(INSTANCE NAME=instan
ce)))

Use this format when
the service is
available on multiple
instances and the
URL should map to a
single instance for
Generic and Multi
Data Source. A long
format URL is
generated so that you
can specify instance
name.

oracle.jdbc.xa.cli
ent.OracleXADataSo
urce

Oracle’s Driver (Thin
XA) for Service
connections;
Versions: Any

jdbc:oracle:thin:@//
hostname :port/service

Database is used as
service. This is the
default and most
popular format for
Generic data
sources. The service
should be available
on a single instance
for Generic and Multi
Data Source.

oracle.jdbc.xa.cli
ent.OracleXADataSo
urce

ORACLE

3-2

Chapter 3
Using JDBC Drivers with WebLogic Server

Oracle Drivers URL Format Description Driver Class Name
Oracle’s Driver (Thin) jdbc:oracle:thin:@// Databaseisusedas oracle.jdbc.replay
for JDBC Replay hostname:port/service service. This is the .OracleDataSourcel
Driver; Versions: Any default and most mpl

popular format for
Generic data
sources. The service
should be available
on a single instance
for Generic and Multi
Data Source.

Oracle’s Driver (Thin) jdbc:oracle:thin:@hos Databaseisusedas oracle.jdbc.Oracle

for Instance tname:port:SID SID, the use of SID is Driver
connections; deprecated. Use the
Versions: Any service name instead

of SID in this format.
Oracle’s Driver (Thin) jdbc:oracle:thin:@// Databaseisusedas oracle.jdbc.Oracle

for Service hostname:port/service service. This is the Driver
connections; default and most
Versions: Any popular format for

Generic data
sources. The service
should be available
on a single instance
for Generic and Multi
Data Source.

Oracle’s Driver (Thin) jdbc:oracle:thin:@(DE Use this format when oracle.jdbc.Oracle

for Service-Instance SCRIPTION=(ADDRESS LI the serviceis Driver

connections; ST=(ADDRESS= (PROTO_COL available on multiple

Versions: Any =TCP) (HOST=hostname) instances and the
(PORT=port))) URL should map to a

single instance for
Generic and Multi
Data Source. A long
format URL is
generated so that you
can specify instance

(CONNECT_DATA= (SERVIC
E NAME=service)

(INS TANCEiNAME=ins tan
ce))

name.
Oracle’s Driver (Thin) jdbc:oracle:thin:@hos Databaseisusedas oracle.jdbc.pool.0
for pooled instance tname:port:SID SID. Use this format racleDataSource
connections; to get a pooled data
Versions: Any source, this is not a

very commonly used

format.

¢ MySQL (non-XA)
e Third-party JDBC drivers
For more information, see Using JDBC Drivers with WebLogic Server.

WebLogic-branded DataDirect drivers: These drivers are available for the following
database management systems:

- DB2
Informix
Microsoft SQL Server

Sybase

ORACLE 23

Chapter 3
Using JDBC Drivers with WebLogic Server

All of these drivers are referenced by the weblogic.jar manifest file and do not need to be
explicitly defined in a server's classpath.

When deciding which JDBC driver to use to connect to a database, you should try drivers from
various vendors in your environment. In general, JDBC driver performance is dependent on
many factors, especially the SQL code used in applications and the JDBC driver
implementation.

For information about supported JDBC drivers, see Supported Configurations in What's New in
Oracle WebLogic Server.

JDBC Driver Support

WebLogic Server provides support for application data access to any database using a JDBC-
compliant driver.

The JDBC-compliant driver needs to meet the following requirements:
e The driver must be thread-safe.

e The driver must implement standard JDBC transactional calls, such as setAutoCommit ()
and setTransactionIsolation (), when used in transactional aware environments.

» If the driver that does not implement serializable or remote interfaces, it cannot pass
objects to an RMI client application.

When WebLogic Server features use a database for internal data storage, database support is
more restrictive than for application data access. The following WebLogic Server features
require internal data storage:

e Container Managed Persistence (CMP)

* Rowsets

« JMS/JDBC Persistence and use of a WebLogic JDBC Store

* JDBC Session Persistence

 RDBMS Security Providers

» Database Leasing (for singleton services and server migration)

e JTA Logging Last Resource (LLR) optimization.

JDBC Drivers Installed with WebLogic Server

The Oracle JDBC Thin driver 19.3 is installed with Oracle WebLogic Server 12.2.1.4. In
addition to the Oracle Thin Driver, the mySQL Connector/J 8.0 (mysgl-connector-java-
commercial-8.0.14-bin.jar) JDBC driver, WebLogic-branded DataDirect drivers are also
installed with WebLogic Server.

The Oracle driver files are named ojdbc8.jar, ojdbc8 g.jar, and ojdbc8dms. jar for JDK8.

Note:

See Using WebLogic-branded DataDirect Drivers in Developing JDBC Applications
for Oracle WebLogic Server.

ORACLE 34

Chapter 3
Using JDBC Drivers with WebLogic Server

These drivers are installed in subdirectories of SORACLE HOME/oracle common/modules. The
manifest in the weblogic.jar lists this file so that it is loaded when weblogic.jar is loaded
(when the server starts). Therefore, you do not need to add this JDBC driver to your
CLASSPATH. If you plan to use a third-party JDBC driver that is not installed with WebLogic
Server, you must install the drivers, which includes updating your CLASSPATH with the path to
the driver files, and may include updating your PATH with the path to database client files. See
Supported Configurations in What's New in Oracle WebLogic Server.

< Note:

WebLogic Server includes a version of the Derby DBMS installed with the WebLogic
Server examples in the WL_HOME\common\derby directory. Derby is an all-Java DBMS
product included in the WebLogic Server distribution solely in support of
demonstrating the WebLogic Server examples. For more information about Derby,
see http://db.apache.org/derby.

Upgrading and Using Latest Oracle 19c JDBC Drivers with WebLogic

Server

ORACLE

The Oracle Database 19.3 JDBC driver is included by default with WebLogic Server 12.2.1.4
and 14.1.1.0. This topic provides you with information on upgrading and using the latest
version of the Oracle Database 19c JDBC driver with WebLogic Server.

Upgrading to Oracle 19¢ JDBC Driver

1. Go to Oracle Database Software Downloads page.
The download page now provides all the 14 JAR files in a single download file.

Note:

You must add these JAR files to the head of the CLASSPATH used for running
WebLogic Server. Place these JAR files before 12c or 19¢c Oracle database client
JAR files.

2. Ensure to check the JAR filename and select the required ojdbc files.
e If you are using WebLogic Server, then select the non-dms JAR file.
— ojdbc8-full/ojdbc8.jar
e If you are using Fusion Middleware, then select the *dms . jar file.

— ojdbc8-full/ojdbc8dms.jar

¢ Note:
If you want to enable driver level logging, then select the * g. jar file.
e ojdbc8-full/ojdbc8 g.jar

e ojdbc8-full/ojdbc8dms g.jar

3-5

http://db.apache.org/derby
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html

ORACLE

Chapter 3
Using JDBC Drivers with WebLogic Server

You must select and install the required additional drivers.

Table 3-1 Additional 19c¢ JDBC Driver Files

File

Description

ojdbc8-full/simplefan.jar

Fast Application Notification

ojdbc8-full/ucp.jar

Universal Connection Pool

ojdbc8-full/ons.jar

Oracle Network Server client

ojdbc8-full/orail8n.jar

Internationalization support

ojdbc8-full/oraclepki.jar

Oracle Wallet support

ojdbc8-full/osdt cert.jar

Oracle Wallet support

ojdbc8-full/osdt core.jar

Oracle Wallet support

0jdbc8-full/xdb6.jar

SQL XML support

ojdbc8-full/

SQL XML support

xmlparserv2 sans_jaxp services.jar

Note:

The xmlparserv?2.jar file is available in the archive download. Ensure that
you do not include xmlparserv2.jar in the CLASSPATH.

4. For upgrading the driver jars included with the WebLogic installation:

a. Download the required jars from Oracle Database JDBC driver and Companion Jars
Downloads page.

b. Setthe CLASSPATH and PRE_CLASSPATH as explained in Updating the WebLogic Server
CLASSPATH.

Updating the WebLogic Server CLASSPATH

To upgrade to the Oracle 19c JDBC driver, you must update the CLASSPATH in your WebLogic
Server environment. If you are using startWebLogic. sh, you need to set the
PRE CLASSPATH.

The following code sample outlines a simple shell script that updates the PRE_CLASSPATH of
your WebLogic environment. Make sure ORACLE HOME is set appropriately to the directory
where the files were unpacked.

#!/bin/sh

source this file in to add the new 19.x jar files at the beginning of the
CLASSPATH

ORACLE19="full pathname to unpacked jar file directory"

PRE_CLASSPATH=

case "'uname " in
*CYGWINY)

SEp=";"

Windows NT)
SEp=";"

*)

3-6

https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html

ORACLE

SEP=":"

esac

dir=${ORACLE19:7?}

We need one of the following
#ojdbc8-full/ojdbc8.jar
#ojdbc8-full/lib/ojdbc8 g.jar
#ojdbc8-full/lib/ojdbc8dms. jar
#ojdbc8-full/lib/ojdbc8dms g.jar

if ["$1M =]
then
ojdbc=0jdbc8.jar
else

ojdbc="§1"

fi

case "$ojdbc" in
ojdbc8.jar)
ojdbc=0jdbc8-full/Sojdbe

rr

ojdbc8 g.jar|ojdbc8dms.jar|ojdbc8dms g.jar)

ojdbc=0jdbc8-diag/Sojdbe

*)

Chapter 3
Using JDBC Drivers with WebLogic Server

echo "Invalid argument - must be ojdbc8.jar|ojdbc8 g.jar|ojdbc8dms.jar]|

ojdbc8dms _g.jar"
exit 1

esac

PRE CLASSPATH="${dir
PRE CLASSPATH="${dir
PRE CLASSPATH="${dir
PRE CLASSPATH="${dir
PRE CLASSPATH="${dir
PRE CLASSPATH="${dir
PRE CLASSPATH="${dir
PRE CLASSPATH="${dir
PRE CLASSPATH="${dir
PRE CLASSPATH="${dir
{SEP}$SPRE_CLASSPATH"
export PRE CLASSPATH

TS N

/${Ojdbc}${SEP}$PRE_CLASSPATH"
/ojdbc8-full/simplefan.jar$ {SEP}SPRE CLASSPATH"
/ojdbc8-full/ucp.jar${SEP}$SPRE CLASSPATH"
/ojdbc8-full/ons.jar${SEP}$SPRE CLASSPATH"
/ojdbc8-full/orail8n.jar$ {SEP}SPRE CLASSPATH"
/ojdbc8-full/oraclepki.jar$ {SEP}SPRE CLASSPATH"
/ojdbc8-full/osdt cert.ja ${SEP}SPRE CLASSPATH"
/ojdbc8-full/osdt core.jar${SEP}SPRE CLASSPATH"
/0jdbc8-full/xdb6.jars {SEP}$PRE CLASSPATH"
/ojdbc8-full/xmlparserv2 sans_jaxp services.jar$

don't use xmlparserv2.jar - it conflicts with WLS classes

For example, save this script in your environment with the name setdb19 jars.sh. Then run

the script with ojdbc8.jar:

./setdbl9 jars.sh ojdbc8.jar
./setdbl9 jars.sh ojdbc8dms.jar

3-7

Chapter 3
Using JDBC Drivers with WebLogic Server

You can also put an explicit export PRE_CLASSPATH="literal path string" into
startWebLogic.sh and set CLASSPATH="$PRE CLASSPATH:$CLASSPATH" for any other scripts
used to start WebLogic Server.

Adding Third-Party JDBC Drivers Not Installed with WebLogic Server

ORACLE

To use third-party JDBC drivers that are not installed with WebLogic Server, you can add them
to the DOMAIN HOME/1ib directory.Here, DOMAIN HOME represents the directory in which the
WebLogic Server domain is configured. The default path iS ORACLE HOME/user projects/
domains.

For more information, see Adding JARs to the Domain /lib Directory in Developing Applications
for Oracle WebLogic Server.

Note:

In previous releases, adding a new JDBC driver or updating a JDBC driver where the
replacement JAR has a different name than the original JAR required updating the
WebLogic Server's classpath to include the location of the JDBC driver classes. This
is no longer required.

Using a Third-Party JAR File in DOMAIN_HOMEIlib

Using a third-party JAR file in DOMAIN HOME/1ib is only supported for third-party JDBC
drivers that are not installed with WebLogic Server. The drivers installed with WebLogic Server
are described in JDBC Drivers Installed with WebLogic Server.

When you use a third-party JAR file in the DOMAIN HOME/1lib directory, note the following:

e The classloader that gets created is a child of the system classpath classloader in
WebLogic Server.

* Any classes that are in JARs in this directory are visible only to Java EE applications in the
server, such as EAR files.

* You can use the WebLogic Server Administration Console and WLST online to configure
and manage the JAR files. (You may also be able to use WLST offline because the data
source is not deployed.)

* These JAR files do not work when run from a standalone client (such as the t3 RMI client)
or standalone applications (such as java utils.Schema).

e If there are multiple domain directories involved (that is, multiple machines without a
shared file system), the JAR file must be installed in /1ib in each domain directory.

* WebLogic Server use of methods called on third-party drivers (such as TimesTen abort
and DB2 setDB2ClientUser) is supported.

¢ Note:

For details on WebLogic Server functionality supported with these JAR files, see
Database Interoperability in What's New in Oracle WebLogic Server, and the
appropriate version of the Oracle Fusion Middleware Supported System
Configurations matrix documentation for specific database driver and DB version
certification information.

3-8

https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

ORACLE

Chapter 3
Using JDBC Drivers with WebLogic Server

Data Source Support
Third-party JAR files installed in /1ib can be used with the following:

« All data source types supported by WebLogic Server system resources including Generic,
Multi Data Source, and Active GridLink. The Universal Connection Pool data source does
not apply since the UCP JAR is not third-party.

e Packaged data sources in an EAR or a WAR.
« Java EE 6 data source definition defined in an EAR or WAR.

Although not JDBC methods, using a third-party JAR file in /1ib does apply to WebLogic
Server data source callbacks like Multi Data Source failover, connection, replay, and
harvesting.

Example 3-1 Example of Using a Third-Party JAR File in /lib

The following example shows the files contained in a standalone WAR file named
getversion.war. The Derby JAR files are located in WEB-INF/1ib or DOMAIN HOME/lib (Or
both). The class file is compiled and installed at WEB-INF/classes/demo/GetVersion.class.

<web-app>
<welcome-file-list>
<welcome-file>welcome.jsp</welcome-file>
</welcome-file-1list>
<display-name>GetVersion</display-name>
<servlet>
<description></description>
<display-name>GetVersion</display-name>
<servlet-name>GetVersion</servlet-name>
<servlet-class>
demo.GetVersion
</servlet-class>
</servlet>
<!-- Data source description can go in the web.xml descriptor or as an
annotation in the java code - see below
<data-source>
<name>java:global/DSD</name>
<class-name>org.apache.derby.jdbc.ClientDataSource</class-name>
<port-number>1527</port-number>
<server-name>localhost</server-name>
<database-name>examples</database-name>
<transactional>false</transactional>
</data-source>
-—>
</web-app>

WEB-INF/weblogic.xml
<weblogic-web-app>
<container-descriptor>
<prefer-web-inf-classes>true</prefer-web-inf-classes>
</container-descriptor>

</weblogic-web-app>

Java file

3-9

ORACLE

Using JDBC Drivers with WebLogic Server

package demo;

import java.io.IOException;

import java.io.PrintWriter;

import java.sql.Connection;

import java.sql.SQLException;

import javax.annotation.Resource;

import javax.annotation.sql.DataSourceDefinition;
import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.sqgl.DataSource;

@DataSourceDefinition (name="java:global/DSD",
className="org.apache.derby.jdbc.ClientDataSource",
portNumber=1527,
serverName="localhost",
databaseName="examples",
transactional=false
)
@WebServlet (urlPatterns = "/GetVersion")
public class GetVersion extends javax.servlet.http.HttpServlet
implements javax.servlet.Servlet {
@Resource (lookup = "java:global/DSD")
private DataSource ds;

public GetVersion() {
super () ;

}

protected void doGet (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException
doPost (request, response);

}

protected void doPost (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException
response.setContentType ("text/html");

PrintWriter writer = response.getWriter();

writer.println ("<html>");

writer.println ("<head><title>GetVersion</title></head>");
writer.println ("<body>" + doit() +"</body>");
writer.println ("</html>");

writer.close();

private String doit() {
String ret = "FAILED";
Connection conn = null;

try {
conn = ds.getConnection();
ret = "Connection obtained with version= " +

conn.getMetaData () .getDriverVersion();

Chapter 3
Configuring JDBC Data Sources

} catch(Exception e) {

e.printStackTrace();
} finally {

try {

if (conn != null)
conn.close();

} catch (Exception ignore) {}

}

return ret;

Globalization Support for the Oracle Thin Driver

For globalization support with the Oracle Thin driver, Oracle supplies the orail8n.jar file.This
file replaces nls charset.zip.

If you use character sets other than US7ASCII, WESDEC, WE8IS08859P1 and UTF8 with CHAR and
NCHAR data in Oracle object types and collections, you must include orail8n.jar and orail8n-
mapping.jar in your CLASSPATH

The orail8n.jar and orail8n-mapping.jar are included with the WebLogic Server
installation in the ORACLE HOME\oracle common\modules\oracle.nlsrtl 12.1.0 folder. These
files are not referenced by the weblogic.jar manifest file, so you must add them to your
CLASSPATH before they can be used.

Using the Oracle Thin Driver in Debug Mode

The ORACLE HOME\oracle common\modules\oracle.jdbc folder includes the ojdbc8 g.jar (for
JDKB8), which is the version of the Oracle Thin driver with classes to support debugging and
tracing. To use the Oracle Thin driver in debug mode, add the path to these files at the
beginning of your CLASSPATH.

Configuring JDBC Data Sources

ORACLE

In WebLogic Server, you configure database connectivity by adding JDBC data sources to your
WebLogic domain. Configuring data sources requires several steps including choosing a type
of data source, creating the data source, configuring connection pools and Oracle database
parameters and so on.

* Creating a JDBC Data Source
WebLogic JDBC data sources provide database access and database connection
management.

» Configuring Connection Pool Features

* Advanced Connection Properties
You can set up advanced connection properties like fatal error codes and use of Edition-
Based Redefinition (EBR). You define fatal error codes which indicate the database server
with which the data source communicates is no longer accessible on a connection. EBR
provides the ability to upgrade the database component of an application while it is in use,
thereby minimizing or eliminating down time.

* Configure Oracle Parameters
WebLogic Server provides several attributes that provide improved data source
performance when using Oracle drivers.

3-11

Chapter 3
Configuring JDBC Data Sources

Configure ONS Client Parameters
Tuning Generic Data Source Connection Pools
Generic Data Source Handling for Oracle RAC Outages

Generic Data Source Handling of Driver-Level Failover

Creating a JDBC Data Source

WebLogic JDBC data sources provide database access and database connection
management.

You can create and manage JDBC data sources using the following management tools:

Oracle WebLogic Server Administration Console: See Create a JDBC Data Source in
Oracle Weblogic Server Administration Console Online Help.

WebLogic Scripting Tool (WLST): See WLST Online Sample Scripts in Understanding
the WebLogic Scripting Tool.

Example:

EXAMPLES HOME\wl server\examples\src\examples\wlst\online\jdbc data source
creation.py

where EXAMPLES HOME represents the directory in which the WebLogic Server code
examples are configured.

Data source configuration in the Weblogic Server Administration Console is done using the
Data Source configuration wizard.

Configure JDBC Data Source Properties
JDBC data source properties include options that determine the identity of the data source
and the way database connection handles the data.

Configure Transaction Options

When you configure a JDBC data source using the WebLogic Server Administration
Console, WebLogic Server automatically selects specific transaction options based on the
type of JDBC driver. XA, non-XA, and Global transaction options are supported by
WebLogic JDBC data sources.

Configure Connection Properties

Connection Properties allows you to configure the connection between the data source
and the DBMS. Typical attributes are the database name, host name, port number, user
name, and password.

Configure Testing Options
Test Database Connection allows you to test a database connection before the data
source configuration is finalized using a table name or SQL statement.

Target JDBC Data Sources

You can select one or more targets to which to deploy your new JDBC data source. If you
don't select a target, the data source will be created but not deployed. You will need to
deploy the data source at a later time before getting connections.

Configure JDBC Data Source Properties

JDBC data source properties include options that determine the identity of the data source and
the way database connection handles the data.

ORACLE

3-12

Chapter 3
Configuring JDBC Data Sources

Data Source Names: You can use JDBCA data source name to identify the data source within
the WebLogic domain. For system resource data sources, names must be unique among all
other JDBC system resources. To avoid naming conflicts, data source names should also be
unigue among other configuration object names, such as servers, applications, clusters, and
JMS queues, topics, and servers. For JDBC application modules packaged in an application,
data source names must be unique among JDBC data sources with a similar scope.

The data source name cannot contain the following special characters: @ # S.

Data Source Scope: You can select the scope for the data source and set the scope to Global
(at the domain level), or to any existing Resource Group or Resource Group Template.

JNDI Names: You can configure a data source so that it binds to the JNDI tree with a single or
multiple names. See Developing JNDI Applications for Oracle WebLogic Server.

Database Type: You can select the Database Management System (DBMS) of the database
you want to connect. For information about supported databases, see Supported
Configurations in What's New in Oracle WebLogic Server.

JDBC Driver: You can select a JDBC database driver that is preferred to create a database
connection. You should verify, however, that the URL is as you want it before asking the
console to test it. The driver you select must be in the classpath on all servers on which you
intend to deploy the data source.

Some but not all IDBC drivers listed in the WebLogic Server Administration Console are
shipped (and/or are already in the classpath) with WebLogic Server. See Types of JDBC
Drivers.

All of these drivers are referenced by the weblogic.jar manifest file and do not need to be
explicitly defined in a server's classpath.

When deciding which JDBC driver to use to connect to a database, you should try drivers from
various vendors in your environment. In general, JDBC driver performance is dependent on
many factors, especially the SQL code used in applications and the JDBC driver
implementation.

For information about supported JDBC drivers, see Supported Configurations in What's New in
Oracle WebLogic Server.

Configure Transaction Options

When you configure a JDBC data source using the WebLogic Server Administration Console,
WebLogic Server automatically selects specific transaction options based on the type of JDBC
driver. XA, non-XA, and Global transaction options are supported by WebLogic JDBC data
sources.

For more information on configuring transaction support for a data source, see JDBC Data
Source Transaction Options.

Configure Connection Properties

Connection Properties allows you to configure the connection between the data source and
the DBMS. Typical attributes are the database name, host name, port number, user name, and
password.

ORACLE 313

Chapter 3
Configuring JDBC Data Sources

Note:

You can use a Single Client Access Name (SCAN) address to represent the host
name. When using Oracle RAC 11.2 and higher, consider the following:

* If you set the Oracle RAC REMOTE LISTENER parameter for your data source to
SCAN, then the data source connection URL can only use a SCAN address.

* If you set the Oracle RAC REMOTE LISTENER parameter for your data source to
List of Node VIPs, then the data source connection URL can only use a list of
VIP addresses.

* If you set the Oracle RAC REMOTE LISTENER parameter for your data source to
Mix of SCAN and List of Node VIPs, then the data source connection URL can
use both SCAN and VIP addresses.

For more information on using SCAN addresses, see Introduction to Automatic
Workload Management in Real Application Clusters Administration and Deployment
Guide 11g Release 2 (11.2).

Configuring Connection Properties for Oracle Bl Server: If you selected Oracle Bl Server
as your DBMS, configure the additional connection properties on the Connection Properties
page as described in Connection String in Oracle Business Intelligence Publisher
Administrator's and Developer's Guide.

Configure Testing Options

Test Database Connection allows you to test a database connection before the data source
configuration is finalized using a table name or SQL statement.

If necessary, you can test additional configuration information using the Properties and
System Properties attributes.

Target JDBC Data Sources

You can select one or more targets to which to deploy your new JDBC data source. If you don't
select a target, the data source will be created but not deployed. You will need to deploy the
data source at a later time before getting connections.

For more information, see Target JDBC data sources in Oracle WebLogic Server
Administration Console Online Help and Using JDBC Drivers with WebLogic Server.

Configuring Connection Pool Features

Each JDBC data source has a pool of JDBC connections that are created when the data
source is deployed or at server startup. Applications use a connection from the pool then return
it when finished using the connection. Connection pooling enhances performance by
eliminating the costly task of creating database connections for the application.

ORACLE 314

https://docs.oracle.com/cd/E11882_01/rac.112/e41960/hafeats.htm#RACAD076
https://docs.oracle.com/cd/E11882_01/rac.112/e41960/hafeats.htm#RACAD076
https://docs.oracle.com/middleware/12213/wls/WLACH/taskhelp/jdbc/jdbc_datasources/TargetAndDeployDataSources.html

Chapter 3
Configuring JDBC Data Sources

Note:

If a non-dynamic data source attribute is updated, the data source needs to be
undeployed or redeployed for the attribute to take effect. To determine whether an
attribute is dynamic or non-dynamic, see the MBean reference MBean Reference for
Oracle WebLogic Server for the attribute. If the attribute definition contains the
Redeploy or Restart required text, then it is a non-dynamic attribute.

See JDBC Data Source: Configuration: Connection Pool in Oracle WebLogic Server
Administration Console Online Help and JDBCConnectionPoolParamsBean in MBean
Reference for Oracle WebLogic Server.

< Note:

Certain Oracle JDBC extensions, and possibly other non-standard methods available
from other drivers may durably alter a connection's behavior in a way that future
users of the pooled connection will inherit. WebLogic Server attempts to protect
connections against some types of these calls when possible.

The following topics include information about connection pool options for a JDBC data source.
Some of these options are dynamically changeable and others are non-dynamic.

* Enabling JDBC Driver-Level Features
« Enabling Connection-based System Properties
« Enabling Connection-based Encrypted Properties

» Initializing Database Connections with SQL Code

Enabling JDBC Driver-Level Features

WebLogic JDBC data sources support the javax.sqgl.ConnectionPoolDataSource interface
implemented by JDBC drivers. You can enable driver-level features by adding the property and
its value to the Properties attribute in a JDBC data source. Driver-level properties in the
Properties attribute are set on the driver's ConnectionPoolDataSource object.

Enabling Connection-based System Properties

ORACLE

WebLogic JDBC data sources support setting driver properties using the value of system
properties. The value of each property is derived at runtime from the named system property.
You can configure connection-based system properties using the WebLogic Server
Administration Console by editing the System Properties attribute of your data source
configuration.

If a system property value is set, it overrides an encrypted property value, which overrides a
normal property value (you can only have one property value for each property name).

A system property value can contain one of the variables listed in Table 3-2. If one or more of
these variables is included in the system property, it is substituted with the corresponding
value. If a value is not found, no substitution is performed. If none of these variables are found
in the system property, then the value is taken as a system property hame.

3-15

ORACLE

Chapter 3
Configuring JDBC Data Sources

Table 3-2 Variables Supported in System Property Values for JDBC Data Source
]

Variable Value Description

${pid} First half (up to @) of
ManagementFactory.getRuntimeMXBean () .ge
tName ()

${machine} Second half of
ManagementFactory.getRuntimeMXBean () .ge
tName ()

${user.name} Java system property user.name

${os.name} System property os.name

${datasourcename} Data source name from the JDBC descriptor. It
does not contain the partition name.

${partition} Partition name or DOMAIN

${serverport} WebLogic Server server listen port

${serversslport} WebLogic Server server SSL listen port

${servername} WebLogic Server server name

${domainname} WebLogic Server domain name

A sample set of properties is shown in the following example:

<properties>
<property>
<name>user</name>
<sys-prop-value>user</sys-prop-value>
</property>
<property>
<name>v$session.osuser</name>
<sys-prop-value>${user.name}</sys-prop-value>
</property>
<property>
<name>v$session.process</name>
<sys-prop-value>${pid}</sys-prop-value>
</property>
<property>
<name>v$session.machine</name>
<sys-prop-value>${machine}</sys-prop-value>
</property>
<property>
<name>v$session.terminal</name>
<sys-prop-value>${datasourcename}</sys-prop-value>
</property>
<property>
<name>v$session.program</name>

<sys-prop-value>WebLogic ${servername} Partition ${partition}</sys-prop-

value>
</property>
</properties>

In this example:

3-16

Chapter 3
Configuring JDBC Data Sources

e user is set to the value of -Duser=value
* vS$session values are set as described in Table 3-2

For example, v$session.program running on myserver is set to WebLogic myserver
Partition DOMAIN

Note that the values have the following length limitations:
* osuser—30

e process—24

e machine—64

e terminal—30

e program—48

Enabling Connection-based Encrypted Properties

WebLogic JDBC data sources support setting driver properties using encrypted values. You
can configure connection-based encrypted properties using the WebLogic Server
Administration Console by editing the Encrypted Properties attribute of your data source
configuration. See Using Encrypted Connection Properties.

Initializing Database Connections with SQL Code

ORACLE

When WebLogic Server creates database connections in a data source, the server can
automatically run SQL code to initialize the database connection. To enable this feature, enter
SoL followed by a space and the SQL code you want to run in the Init SQL attribute on the
JDBC Data Source: Configuration: Connection Pool page in the WebLogic Server
Administration Console. Alternatively, you can specify simply a table name without sQL and the
statement SELECT COUNT (*) FROM tablename is used. If you leave this attribute blank (the
default), WebLogic Server does not run any code to initialize database connections.

WebLogic Server runs this code whenever it creates a database connection for the data
source, which includes at server startup, when expanding the connection pool, and when
refreshing a connection.

You can use this feature to set DBMS-specific operational settings that are connection-specific
or to ensure that a connection has memory or permissions to perform required actions.

Start the code with sQL followed by a space. An Oracle DBMS example:

SQL alter session set NLS DATE FORMAT='YYYY-MM-DD HH24:MI:SS'

or an Informix DBMS:

SQL SET LOCK MODE TO WAIT

The SQL statement is executed using JDBC Statement.execute (). Options that you can set
using InitSQL vary by DBMS. See the documentation from your database vendor for
supported statements. If you want to execute multiple statements, you may want to create a
stored procedure and execute it. The syntax is vendor specific. For example, to execute an
Oracle stored procedure:

SQL CALL MYPROCEDURE ()

3-17

Chapter 3
Configuring JDBC Data Sources

Advanced Connection Properties

You can set up advanced connection properties like fatal error codes and use of Edition-Based
Redefinition (EBR). You define fatal error codes which indicate the database server with which
the data source communicates is no longer accessible on a connection. EBR provides the
ability to upgrade the database component of an application while it is in use, thereby
minimizing or eliminating down time.

« Define Fatal Error Codes

e Using Edition-Based Redefinition

Define Fatal Error Codes

You can define fatal error codes that indicate that the database server with which the data
source communicates is no longer accessible on a connection. The connection is marked
invalid and taken out of the pool but the data source is not suspended. These errors include
deployment errors that cause a server to fail to boot and connection errors that prevent a
connection from being put back in the connection pool.

When specified as the exception code within a SQLException (retrieved by
sqlException.getErrorCode ()), it indicates that a fatal error has occurred, the connection is
no longer good, and it is removed from the connection pool. For Oracle databases the
following fatal error codes are predefined within WLS and do not need to be placed in the
configuration file:

Error Code Description

3113 end-of-file on communication channel

3114 not connected to ORACLE

1033 ORACLE initialization or shutdown in progress

1034 ORACLE not available

1089 immediate shutdown in progress - no operations are permitted
1090 shutdown in progress - connection is not permitted

17002 1/0 exception

For DB2, the following fatal error codes are predefined: -4498, -4499, -1776, -30108, -30081,
-30080, -6036, -1229, -1224, -1035, -1034, -1015, -924, -923, -906, -518, -514, 58004.

For Informix, the following fatal error codes are predefined: -79735, -79716, -43207, -27002,
-25580, -4499, -908, -710, 43012.

To define fatal error codes in the WebLogic Server Administration Console, see Define Fatal
Error Codes in Oracle WebLogic Server Administration Console Online Help.

Using Edition-Based Redefinition

ORACLE

Edition-based redefinition (EBR) provides the ability to upgrade the database component of an
application while it is in use, thereby minimizing or eliminating down time. It allows a pre-
upgrade and post-upgrade view of the data to exist at the same time, providing a hot upgrade
capability. You can then specify which view you want for a particular session.

See:

* Using Edition-Based Redefinition in Oracle Database Development Guide

3-18

ORACLE

Chapter 3
Configuring JDBC Data Sources

- Edition-Based Redefinition White Paper at http://www.oracle.com/technetwork/
database/features/availability/edition-based-redefinition-1-133045.pdf

Using EBR with JDBC Connections
There are two approaches to using EBR with JDBC connections:

e If you use a database service to connect to the database and an initial session edition was
specified for that service, then the initial session edition for the service is your initial
session edition on the connection. This approach is recommended for minimal overhead
on the connection.

When you create or modify a database service, you can specify its initial session edition.
To create or modify a database service, Oracle recommends using the srvctl add
service Or srvctl modify service command. To specify the default initial session edition
of the service, use the -edition option.

Alternatively, you can create or modify a database service with the
DBMS SERVICE.CREATE SERVICE or DBMS SERVICE.MODIFY SERVICE procedure, and specify
the default initial session edition of the service with the EDITION attribute.

* Changing your session edition after connecting to the database using the SQL statement
ALTER SESSION SET EDITION. You can change your session edition to any edition on which
you have the USE privilege. Note that changing the edition can require re-generating a
significant amount of state on session and database server. Oracle recommends using
DBMS SESSION.RESET PACKAGE to clean-up some of this state when changing the edition on
a session.

Using Edition-based redefinition does not require any new WebLogic Server functionality.

To make use of EBR, your environment needs to consist of an earlier version of the application
with a data source that references the earlier EDITION and a later version of the application
with a data source that references the later EDITION. When referring to multiple versions of a
WebLogic Server application, you should be using WebLogic Server versioned applications in
the production redeployment feature. See Developing Applications for Production
Redeployment in Developing Applications for Oracle WebLogic Server. By combining Oracle
database EBR and WebLogic Server versioned applications, the application can be upgraded
with no downtime, making the combination of features more powerful than either feature
independently.

You need to run with a versioned database and a versioned application initially so that you can
switch versions. To version a WebLogic Server application, simply add the Weblogic-
Application-Version property in the MANIFEST.MF file (you can also specify it at deployment
time).

Configuring WebLogic Data Sources to Use Editions

The following list describes the different ways you can configure WebLogic data sources to use
Oracle database editions.

* Packaged Data Source Using a Single Edition—The recommended way to configure the
data source is to use a packaged data source descriptor that is stored in the application
EAR or WAR file so that everything is self-contained. By doing so, you can use the same
name for each data source and you do not need to change the application to use a
variable name based on the edition. The data source URL in the descriptor should
reference the database service associated with the correct edition. If for some reason you
are using a SID instead of a database service (no longer recommended), the alternative is
to specify SQL ALTER SESSION SET EDITION = name in the Init SQL parameter in the data
source descriptor. This SQL statement is executed for each newly created physical

3-19

http://www.oracle.com/technetwork/database/features/availability/edition-based-redefinition-1-133045.pdf
http://www.oracle.com/technetwork/database/features/availability/edition-based-redefinition-1-133045.pdf

ORACLE

Chapter 3
Configuring JDBC Data Sources

database connection in the data source pool. This approach assumes that a data source
references only a single edition of the database and all connections use that edition.

Note the following restrictions when using a packaged data source.

— You cannot use a packaged data source with Logging Last Resource (LLR). You must
use a system resource.

— You cannot use an application-scoped packaged data source with
EmulateTwoPhaseCommit for the global-transactions-protocol with a versioned
application. You must use a global-scoped data source.

Therefore, if you need to use LoggingLastResource or EmulateTwoPhaseCommit, you
cannot use this approach. See JDBC Application Module Limitations.

System Resource Data Source Using a Single Edition—You can use a system resource
as an alternative to a packaged data source. In this case, each data source must have a
unique name and JNDI name. The application needs to be flexible enough to use that
name at runtime. For example, you can pass in the data source JNDI name as a system
property and the code that looks up the data source in INDI will use that value.

The disadvantage of using a single edition per data source, whether packaged or as a
system resource, is that it requires more database connections. A single edition approach
can work when the period during which the old and new editions are running is relatively
short. For applications that are using a lot of data sources and/or connections, this is not a
viable approach.

System Resource Data Source Using Multiple Editions—An alternative is to have a
data source that references multiple editions. The recommended configuration would still
use a database service associated with a single edition. However, the connections will be
re-associated with different editions during the lifetime of the connection.

Multiple Editions by Setting the Edition for Every Reservation—It is possible for the
application to set the database edition every time it gets a connection. There is some
overhead associated with making this call each time (round trip to the database server and
setting the session) and the application code needs to be modified everywhere that a
connection is reserved. If you are using the JDBC Replay Driver, this initialization should
be done in the ConnectionInitializationCallback. See Using a Connection Callback.

It's important to optimize for the normal use case instead of optimizing for the (hopefully)
short period during which the migration is done to a new edition. This approach doesn't
optimize for the normal case where all connections are on the needed edition.

Multiple Editions using Connection Labeling—You can also associate an edition with
the connection and try to reserve a connection with the correct edition. The recommended
way to tag a connection with a property is to use connection labeling. The application then
needs to implement the pieces associated with connection labeling.

— When a connection is reserved, it needs to determine the edition needed in the
context.

— A matching method is needed to determine if the property, in this case just the edition,
matches.

— Alabeling initialization method is needed to make the connection match if it doesn't
already match by using SQL. ALTER SESSION SET EDITION = name.

There is overhead associated with connection labeling, particularly when exclusively
scanning the list of existing connections to find a mach. On the other hand, the normal use
case is that every connection matches the current edition so there is no need to look far to
find a match. It is only during migration that there will be thrashing between editions and
potentially longer searches to find a match (or to determine that there is no match).

3-20

Chapter 3
Configuring JDBC Data Sources

Configure Oracle Parameters

WebLogic Server provides several attributes that provide improved data source performance
when using Oracle drivers.

For detailed information, see Advanced Configurations for Oracle Drivers and Databases.

Configure ONS Client Parameters

ONS client configuration allows the data source to subscribe to and process Oracle FAN
events.

When configuring the ONS node list, Oracle recommends not specifying a value and allowing
auto-ONS to perform the ONS configuration. In some cases, however, it is necessary to
explicitly configure the ONS configuration, for example if you need to specify an Oracle Wallet
and password, or if you want to explicitly specify the ONS topology.

You can configure an ONS client using any one of the following options:
e Configuring an ONS Client using WLST

* Configuring an ONS Client Parameters using Oracle WebLogic Server Administration
Console

Tuning Generic Data Source Connection Pools

You can improve application and system performance by ensuring a proper configuration of the
connection pool attributes in JDBC data sources in your WebLogic Server domain.
For more information, see Tuning Data Source Connection Pools.

Generic Data Source Handling for Oracle RAC Outages

It is possible to use a Generic data source with Oracle RAC with some limitations. These
limitations complicate transaction processing, monitoring, and graceful handling of RAC
outages.

Note:

Oracle recommends using a Multi Data Source (MDS) or Active GridLink (AGL) data
source instead of a Generic data source using driver-level failover. See Using Active
GridLink Data Sources or Using Multi Data Sources with Oracle RAC.

The following limitations are due to WebLogic Server instances not being aware of the RAC
instances associated with the connections in the pool:

* A Generic data source does not have the ability to disable a single instance in the pool that
a MDS or AGL data source provides. If one of the RAC instances goes down (planned or
unplanned), the data source tests all connections in the pool for the down instance,
disabling them individually. In addition to more overhead and application delays, the pool
sees multiple failures which cause the entire pool to be disabled. To prevent the pool from
being disabled, set the value of Count Of Test Failures Till Flushto 0. See JDBC
Data Source: Configuration: Connection Pool page in Oracle WebLogic Server
Administration Console Online Help or see JDBCConnectionPoolParamsBean in MBean
Reference for Oracle WebLogic Server.

ORACLE 301

Chapter 3
Configuring JDBC Data Sources

JTA or global transactions should not be used with this configuration. Because WebLogic
Server is not aware of the RAC instances, it cannot guarantee transaction affinity. This is a
problem if the transaction spans multiple servers or if a failure occurs such that another
connection is used to complete the transaction. Since the additional connections required
to complete the transaction may not be within the same RAC instance, transaction
processing may fail.

It is not possible to monitor the connections based on the RAC instances.

Generic Data Source Handling of Driver-Level Failover

Several database drivers support a feature to define multiple database instances in the URL
and failover from one database to the next. It is possible to use a Generic data source with
driver-level failover with some limitations. These limitations complicate transaction processing,
monitoring, and graceful handling of database instance outages.

The following limitations are due to WebLogic Server instances not being aware of the
database instances associated with the connections in the pool:

ORACLE

A Generic data source does not have the ability to disable a single instance in the pool that
a Multi Data Source provides. If one of the database instances goes down (planned or
unplanned), the data source tests all connections in the pool for the down instance,
disabling them individually. In addition to more overhead and application delays, the pool
sees multiple failures which cause the entire pool to be disabled. To prevent the pool from
being disabled, set the value of Count Of Test Failures Till Flush to 0.

For more information, see JDBC Data Source: Configuration: Connection Pool in Oracle
WebLogic Server Administration Console Online Help and
JDBCConnectionPoolParamsBean in MBean Reference for Oracle WebLogic Server.

JTA or global transactions should not be used with this configuration. Because WebLogic
Server is not aware of the database instances, it cannot guarantee transaction affinity. This
is a problem if the transaction spans multiple servers or if a failure occurs such that
another connection is used to complete the transaction. Since the additional connections
required to complete the transaction may not be within the same database instance,
transaction processing may fail.

It is not possible to monitor the connections based on the database instances.

3-22

JDBC Data Sources Types

Using the

Oracle WebLogic Server provides different types of JDBC data sources such as Generic data
source, Multi Data Sources, and so on. You can configure database connectivity by configuring
JDBC data sources and then targeting or deploying the JDBC resources to servers or clusters
in your WebLogic domain.

Using the Default Data Source

Oracle provides a default data source required by a Java EE 7-compliant runtime. This
pre-configured data source can be used by an application to access the Derby Database
installed with WebLogic Server.

Using Generic Data Sources
Using JDBC Multi Data Sources
Using Active GridLink Data Sources

Using Universal Connection Pool Data Sources

A Universal Connection Pool (UCP) data source is provided as an option for users who
wish to use Oracle Universal Connection Pooling to connect to Oracle Databases. UCP
provides an alternative connection pooling technology to Oracle WebLogic Server
connection pooling.

Using Proxy Data Sources
Proxy data sources provide the ability to switch between databases in a WebLogic Server
Multitenant environment.

Default Data Source

Oracle provides a default data source required by a Java EE 7-compliant runtime. This pre-
configured data source can be used by an application to access the Derby Database installed
with WebLogic Server.

What is Default Data Source
Oracle provides a default data source required by a Java EE 7-compliant runtime.

Defining a Custom Default Data Source

You can implement a custom default data source by defining a custom data source
descriptor that is bound to java:comp/DefaultDataSource or overidding the default data
source to point to another JNDI hame.

Compatibility Limitations When Using a Default Data Source
Learn about the limitations when using a default data source.

What is Default Data Source

Oracle provides a default data source required by a Java EE 7-compliant runtime.

ORACLE

It is accessible under the JNDI name:

java:comp/DefaultDataSource

4-1

ORACLE

Chapter 4
Using the Default Data Source

which is equivalent to:

@Resource (lookup="java:comp/DefaultDataSource")
DataSource myDS;

You can explicitly bind a Data Source resource reference to the Default data source using the
lookup element of the resource annotation or the lookup-name element of the resource-ref
deployment descriptor element.

Note:

The Derby database is started by the startWebLogic command by default. For more
information on starting and stopping a WebLogic Server instance, see Starting and
Stopping Servers in Administering Server Startup and Shutdown for Oracle
WebLogic Server.

Characteristics of a Default Data Source
A default data source has the following characteristics:

* Must be available for each component that is deployed.

e Only accessible for deployed components, not for data sources that are system resources
or stand-alone deployments.

* Only visible in a console after it has been referenced.
* Appears as a deployment for each component, like other Java EE deployments.
* Not configurable.

* Has the lifecycle of the associated application.

Configuring a Default Data Source
The following table provides the configuration settings that define the WebLogic Server default
data source definition:

Table 4-1 Default Data Source Configuration
]

Attribute Value

Name java:comp/DefaultDataSource
Initial capacity 0

Min capacity 0

Max capacity 15

Classname org.apache.derby.jdbc.ClientDataSource
Port 1527

Host localhost

Database name DefaultDataSource

User none

Password none

Transactional false

MaxStatements 0

4-2

Chapter 4
Using the Default Data Source

Table 4-1 (Cont.) Default Data Source Configuration

-
Attribute Value

MaxIdleTimeout not set

Defining a Custom Default Data Source

You can implement a custom default data source by defining a custom data source descriptor
that is bound to java:comp/DefaultDataSource or overidding the default data source to point
to another JNDI name.

See:

e Creating a Custom Default Data Source Descriptor
e Overriding the Default Data Source

After the component is deployed, if java:comp/DefaultDataSource is hot available for the
component, the WebLogic Server preconfigured default data source is available to the
component. However, if you disabled the Derby database by setting DERBY FLAG=false)
before running startWebLogic.sh script, the WebLogic Server preconfigured default data
source is not available.

Creating a Custom Default Data Source Descriptor

You can configure a data source descriptor that is bound to java:comp/DefaultDataSource
replacing the preconfigured default data source. For example, the following provides an
example of Java EE 6 annotations in a EAR application:

@Stateless (mappedName="DSBean")

@DataSourceDefinition (name="java:comp/DefaultDataSource",
className="oracle.jdbc.OracleDriver",

portNumber=1521,

serverName="myServer",

databaseName="myDB",

user="a username",

password="a password",

transactional=false

)

public class DSBean implements DSInterface

Overriding the Default Data Source

You can override the preconfigured default data source provided by WebLogic Server by
updating the JNDI name in the default data source attribute in the configuration of a server or
server template to point to another existing data source.

Compatibility Limitations When Using a Default Data Source

Learn about the limitations when using a default data source.

In releases prior to Weblogic Server 12.2.1, WebLogic Server tries to satisfy unresolved data
source res-ref references automatically by attempting to lookup the data source in JNDI using

ORACLE 43

Chapter 4
Using Generic Data Sources

the name of the res-ref. This behavior is undefined prior to Java EE 7. This WebLogic Server
release uses the default data source as defined by Java EE 7.

Using Generic Data Sources

Generic data sources provide database access and database connection management.
Generic data sources and their connection pools provide connection management processes
that help keep your system running efficiently.

« What is Generic Data Source

e Configuring Generic Data Source
This topic describes the steps required to create and configure Generic data sources.

What is Generic Data Source

Generic data sources provide database access and database connection management.
Each data source contains a pool of database connections that are created when the data
source is created and at server startup. Applications reserve a database connection from the
data source by looking up the data source on the JNDI tree or in the local application context
and then calling getConnection (). When finished with the connection, the application should
call connection.close() as early as possible, which returns the database connection to the
pool for other applications to use.

Configuring Generic Data Source

ORACLE

This topic describes the steps required to create and configure Generic data sources.

Configure JDBC Data Source Properties

Data Source Names: You can use JDBCA data source name to identify the data source within
the WebLogic domain. For system resource data sources, names must be unique among all
other JDBC system resources. To avoid naming conflicts, data source nhames should also be
unigue among other configuration object names, such as servers, applications, clusters, and
JMS queues, topics, and servers. For JDBC application modules packaged in an application,
data source names must be unique among JDBC data sources with a similar scope.

The data source name cannot contain the following special characters: @ # S.

Data Source Scope: You can select the scope for the data source and set the scope to Global
(at the domain level), or to any existing Resource Group or Resource Group Template.

JNDI Names: You can configure a data source so that it binds to the JNDI tree with a single or
multiple names. See Using WebLogic JNDI in a Clustered Environment in Developing JNDI
Applications for Oracle WebLogic Server.

Database Type: You can select the Database Management System (DBMS) of the database
you want to connect. See Supported Configurations in What's New in Oracle WebLogic Server.

JDBC Driver: You must select a JDBC database driver that is preferred to create a database
connection. You should verify, however, that the URL is as you want it before asking the
console to test it. The driver you select must be in the classpath on all servers on which you
intend to deploy the data source.

Some but not all IDBC drivers listed in the WebLogic Server Administration Console are
shipped (and/or are already in the classpath) with WebLogic Server. See Types of JDBC
Drivers.

4-4

Chapter 4
Using JDBC Multi Data Sources

All of these drivers are referenced by the weblogic.jar manifest file and do not need to be
explicitly defined in a server's classpath.

When deciding which JDBC driver to use to connect to a database, you should try drivers from
various vendors in your environment. In general, JDBC driver performance is dependent on
many factors, especially the SQL code used in applications and the JDBC driver
implementation. See Supported Configurations in What's New in Oracle WebLogic Server.

Configure Transaction Options

When you configure a JDBC data source using the WebLogic Server Administration Console,
WebLogic Server automatically selects specific transaction options based on the type of JDBC
driver. XA, non-XA, and Global transaction options are supported by WebLogic JDBC data
sources. See JDBC Data Source Transaction Options.

Configure Testing Options

You can set database connection testing options in a data source to make sure that the
database connections remain healthy, which helps keep your applications running properly.

Connection Properties are used to configure the connection between the data source and the
DBMS. Typical attributes are the database name, host name, port number, user name, and
password.

Test Database Connection allows you to test a database connection before the data source
configuration is finalized using a table name or SQL statement. If necessary, you can test
additional configuration information using the Properties and System Properties attributes. See
Configure testing options for a JDBC data source in Oracle FMW Administration Console
Online Help.

Configure Oracle Parameters

WebLogic Server provides several attributes that provide improved data source performance
when using Oracle drivers. See Advanced Configurations for Oracle Drivers and Databases.

Target JDBC Data Sources

You can select one or more targets to which to deploy your new JDBC data source. If you don't
select a target, the data source will be created but not deployed. You will need to deploy the
data source at a later time before getting connections. See Target JDBC data sources in
Oracle WebLogic Server Administration Console Online Help and Using JDBC Drivers with
WebLogic Server.

Using JDBC Multi Data Sources

ORACLE

A Multi Data Source (MDS) is an abstraction around a group of Generic data sources that is
bound to the JNDI tree or local application context just like Generic data sources are bound to
the JNDI tree. You can configure a MDS to provide load balancing or failover processing at the
time of connection requests, between the Generic data sources associated with the MDS.

For information about Generic data sources, see Using Generic Data Sources.

Applications lookup a MDS on the JNDI tree or in the local application context (java: comp/env)
just as they do for generic data sources, and then request a database connection. The MDS
determines which generic data source to use to satisfy the request depending on the algorithm
selected in the MDS configuration: load balancing or failover.

4-5

https://docs.oracle.com/middleware/12213/wls/WLACH/taskhelp/jdbc/jdbc_datasources/ConfigureTestingOptionsForADataSource.html
https://docs.oracle.com/middleware/12213/wls/WLACH/taskhelp/jdbc/jdbc_datasources/TargetAndDeployDataSources.html

Chapter 4
Using JDBC Multi Data Sources

Note:

Active GridLink and Multi Data Source are designed to work with Oracle RAC
clusters. Oracle does not recommend using Generic data sources with Oracle RAC
clusters. See Generic Data Source Handling for Oracle RAC Outages.

What is Multi Data Source
* Configuring Multi Data Sources
e Multi Data Source Failover Enhancements

* Planned Database Maintenance with a Multi Data Source
Learn how to handle planned maintenance, without service interruption, on the database
server used by a Multi Data Source.

e Shutting Down the Data Source
Shutting down the data source involves first suspending the data source and then
releasing the associated resources including the connections.

What is Multi Data Source

Multi Data Source is used for failover or load balancing between nodes of a highly available
database system such as Oracle Real Application Clusters (Oracle RAC). The Generic data
source member list for a MDS source supports dynamic updates. This feature allows Oracle
RAC environments to add and remove database nodes and corresponding Generic data
sources without redeployment, grow and shrink RAC clusters in response to throughput, and
shutdown Oracle RAC node for maintenance.

Note:

Multi Data Sources do not provide any synchronization between databases. It is
assumed that database synchronization is handled properly outside of WebLogic
Server so that data integrity is maintained.

Adding and removing database nodes is a manual operation performed by the database
administrator.

e Adding a Database Node
You can add a database node and corresponding Generic data sources without
redeployment. This capability provides you the ability to start a node after maintenance or
grow a cluster.

* Removing a Database Node
You can remove a database node and corresponding Generic data sources without
redeployment. This capability provides you the ability to shutdown a node for maintenance
or shrink a cluster.

ORACLE 46

Chapter 4
Using JDBC Multi Data Sources

Adding a Database Node

You can add a database node and corresponding Generic data sources without redeployment.
This capability provides you the ability to start a node after maintenance or grow a cluster.

Use the following high-level steps to add a database node:

1.
2.

Restart the database node.

Restart the Generic data source. See Start JDBC data sources in Oracle WebLogic Server
Administration Console Online Help.

Add the Generic data source back to the Multi Data Source. See Add or remove data
sources in a JDBC Multi Data Sources in Oracle WebLogic Server Administration Console
Online Help.

Removing a Database Node

You can remove a database node and corresponding Generic data sources without
redeployment. This capability provides you the ability to shutdown a node for maintenance or
shrink a cluster.

Use the following high-level steps to shutdown a database node:

4,

Note:

Failure to follow these step may cause transaction roll-backs.

Remove the Generic data source from the Multi Data Source. See Add or remove data
sources in a JDBC multi data sources in Oracle WebLogic Server Administration Console
Online Help.

When all transactions have completed, suspend the Generic data source. See Suspend
JDBC data sources in Oracle WebLogic Server Administration Console Online Help.

When all transactions have completed, shut down the Generic data source. See Shut
down JDBC data sources in Oracle WebLogic Server Administration Console Online Help.

Shut down the database node.

Configuring Multi Data Sources

Perform the steps mentioned in this topic to create and configure Multi Data Source.

1.
2.

ORACLE

Create Generic data sources. See Using Generic Data Sources.

Create the Multi Data Source using either the WebLogic Server Administration Console or
the WebLogic Scripting Tool. See, Configure JDBC Multi Data Sources in the Oracle
WebLogic Server Administration Console Online Help.

Assign the Generic data sources to the Multi Data Source.

For information about the configuration files created when configuring a Multi Data Source,
see Understanding JDBC Resources in WebLogic Server and Creating a Multi Data
Source Module.

4-7

Chapter 4
Using JDBC Multi Data Sources

Note:

In general, if a WebLogic Server data source setting of initial capacity is set to Zero,
WebLogic Server makes no DBMS connections at startup. But to startup a Multi Data
Source of LLR data sources, WebLogic Server makes a connection at startup to see
if the DBMS is a RAC or not. For a generic LLR Multi Data Source, all the data
sources need to be available, but if it is using RAC, only one node needs to be
accessible for LLR processing.

e Choosing the Multi Data Source Algorithm
Before you set up a Multi Data Source, you need to determine the primary purpose of the
Multi Data Source—failover or load balancing. You can choose the algorithm that
corresponds with your requirements.

e Multi Data Source Fail-Over Limitations and Requirements

e Controlling Multi Data Source Failover with a Callback
You can register a callback handler with WebLogic Server that controls when a MDS with
the Failover algorithm fails over connection requests from one JDBC Generic data source
in the MDS to the next Generic data source in the list.

* Deploying JDBC Multi Data Sources on Servers and Clusters

Choosing the Multi Data Source Algorithm

Failover

ORACLE

Before you set up a Multi Data Source, you need to determine the primary purpose of the Multi
Data Source—failover or load balancing. You can choose the algorithm that corresponds with
your requirements.

e Failover

e Load Balancing

The Failover algorithm provides an ordered list of Generic data sources to use to satisfy
connection requests. Normally, every connection request to this kind of Multi Data Source is
served by the first Generic data source in the list. If a database connection test fails and the
connection cannot be replaced, or if the Generic data source is suspended, a connection is
sought sequentially from the next Generic data source on the list.

4-8

Chapter 4
Using JDBC Multi Data Sources

Note:

This algorithm requires that Test Reserved Connections
(TestConnectionsOnReserve) on the Generic data source is enabled. If enabled, a
connection in the first Generic data source is tested to verify if the Generic data
source is healthy. If the connection fails the test, the Multi Data Source uses a
connection from the next Generic data source listed in the Multi Data Source. See
Connection Testing Options for a Data Source for information about configuring
TestConnectionsOnReserve.

JDBC is a highly stateful client-DBMS protocol, in which the DBMS connection and
transactional state are tied directly to the socket between the DBMS process and the
client (driver). For this reason, failover of a connection while it is in use is not
supported.

Load Balancing

Connection requests to a load-balancing Multi Data Source are served from any Generic data
source in the list. The MDS selects Generic data sources to use to satisfy connection requests
using a round-robin scheme. When the MDS provides a connection, it selects a connection
from the Generic data source listed just after the last Generic data source that was used to
provide a connection. Multi Data Sources that use the Load Balancing algorithm also fail over
to the next Generic data source in the list if a database connection test fails and the connection
cannot be replaced, or if the Generic data source is suspended.

Multi Data Source Fail-Over Limitations and Requirements

WebLogic Server provides a failover algorithm for Multi Data Sources so that if a Generic data
source fails (for example, if the database management system crashes), your system can
continue to operate. However, there are certain limitations and requirements you must consider
when configuring the Multi Data Source.

» Test Connections on Reserve to Enable Fail-Over

* No Fail-Over for In-Use Connections

Test Connections on Reserve to Enable Fail-Over

Generic data sources rely on the Test Reserved Connections (TestConnectionsOnReserve)
feature on the Generic data source to know when database connectivity is lost. Testing
reserved connections must be enabled for the Generic data sources within the Multi Data
Source. WebLogic Server will test each connection before giving it to an application. With the
Failover algorithm, the Multi Data Source uses the results from connection test to determine
when to fail over to the next Generic data source in the Multi Data Source. After a test failure,
the Generic data source attempts to recreate the connection. If that attempt fails, the Multi
Data Source fails over to the next Generic data source.

No Fail-Over for In-Use Connections

ORACLE

It is possible for a connection to fail after being reserved, in which case your application must
handle the failure. WebLogic Server cannot provide fail-over for connections that fail while
being used by an application. Any failure while using a connection requires that the application
code close the failed connection, and the transaction must be restarted from the beginning with
a new connection.

4-9

Chapter 4
Using JDBC Multi Data Sources

Controlling Multi Data Source Failover with a Callback

You can register a callback handler with WebLogic Server that controls when a MDS with the
Failover algorithm fails over connection requests from one JDBC Generic data source in the
MDS to the next Generic data source in the list.

You can use callback handlers to control if or when the failover occurs so that you can make
any other system preparations before the failover, such as priming a database or
communicating with a high-availability framework.

Callback handlers are registered using the Failover Callback Handler attribute of the MDS
and are registered per MDS. You must register the callback handler for each MDS to which you
want the callback handler to apply. And you can register different callback handlers for each
MDS in your domain.

e Callback Handler Requirements
e Callback Handler Configuration

How It Works—Failover

Callback Handler Requirements

A callback handler used to control the failover and failback within a Multi Data Source must
include an implementation of the
weblogic.jdbc.extensions.ConnectionPoolFailoverCallback interface. When the Multi
Data Source needs to failover to the next Generic data source in the list or when a previously
disabled Generic data source becomes available, WebLogic Server calls the
allowPoolFailover () method in the ConnectionPoolFailoverCallback interface, and passes
a value for the three parameters, currPool, nextPool, and opcode, as defined below.
WebLogic Server then waits for the return from the callback handler before completing the
task.

Your application must return OK, RETRY CURRENT, Or DONOT FAILOVER as defined below. The
application should handle failover and failback cases.

See the weblogic.jdbc.extensions.ConnectionPoolFailoverCallback interface.

Note:

Failover callback handlers are optional. If no callback handler is specified in the Multi
Data Source configuration, WebLogic Server proceeds with the operation (failing over
or re-enabling the disabled Generic data source).

Callback Handler Configuration

ORACLE

There are two Multi Data Source configuration attributes associated with the failover and
failback functionality:

» Failover Callback Handler (ConnectionPoolFailoverCallbackHandler)—To register a
failover callback handler for a Multi Data Source, you add a value for this attribute to the
Multi Data Source configuration. The value must be an absolute name, such as
com.bea.samples.wls.jdbc.MultiDataSourceFailoverCallbackApplication. You can
set the Failover Callback Handler using the WebLogic Server Administration Console (see
Register a failover callback handler in the Oracle WebLogic Server Administration Console

4-10

Chapter 4
Using JDBC Multi Data Sources

Online Help) or on the JDBCDataSourceParamsBean for the Multi Data Source using
WLST.

e Test Frequency (TestFrequencySeconds)—To control how often the Multi Data Source
checks disabled (dead) Generic data sources to see if they are now available. See
Automatic Re-enablement on Recovery of a Failed Generic Data Source within a Multi
Data Source for more details.

How It Works—Failover

WebLogic Server attempts to failover connection requests to the next Generic data source in
the list when the current Generic data source fails a connection test or, if you enabled
FailoverRequestIfBusy, when all connections in the current Generic data source are busy.

To enable the callback feature, you register the callback handler with Weblogic Server using
Failover Callback Handler in the Multi Data Source configuration.

With the Failover algorithm, connection requests are served from the first Generic data source
in the list. If a connection from that Generic data source fails a connection test, WebLogic
Server marks the Generic data source as dead and disables it. If a callback handler is
registered, WebLogic Server calls the callback handler, passing the following information, and
waits for a return:

e currPool—For failover, this is the name of Generic data source currently being used to
supply database connections. This is the "failover from" Generic data source.

* nextPool—The name of next available Generic data source listed in the Multi Data Source.
For failover, this is the "failover to" Generic data source.

e opcode—A code that indicates the reason for the call:

— OPCODE_CURR_POOL DEAD—WebLogic Server determined that the current Generic data
source is dead and has disabled it.

— OPCODE_CURR_POOL BUSY—AII database connections in the Generic data source are in
use. (Requires FailoverIfBusy=true in the Multi Data Source configuration. See
Enabling Failover for Busy Generic Data Sources in a Multi Data Source.)

Failover is synchronous with the connection request: Failover occurs only when WebLogic
Server is attempting to satisfy a connection request.

The return from the callback handler can indicate one of three options:

e OK—proceed with the operation. In this case, that means to failover to the next Generic
data source in the list.

* RETRY CURRENT—Retry the connection request with the current Generic data source.

* DONOT FAILOVER—Do not retry the current connection request and do not failover.
WebLogic Server will throw a
weblogic.jdbc.extensions.PoolUnavailableSQLException.

WebLogic Server acts according to the value returned by the callback handler.

If the secondary Generic data sources fails, WebLogic Server calls the callback handler again,
as in the previous failover, in an attempt to failover to the next available Generic data source in
the Multi Data Source, if there is one.

ORACLE 411

Chapter 4
Using JDBC Multi Data Sources

Note:

WebLogic Server does not call the callback handler when you manually disable a
Generic data source.

For Multi Data Sources with the Load-Balancing algorithm, WebLogic Server does not call the
callback handler when a Generic data source is disabled. However, it does call the callback
handler when attempting to re-enable a disabled Generic data source. See the following
section for more details.

Deploying JDBC Multi Data Sources on Servers and Clusters

All Generic data sources used by a Multi Data Source to satisfy connection requests must be
deployed on the same servers and clusters as the Multi Data Source. A Multi Data Source
always uses a Generic data source deployed on the same server to satisfy connection
requests. Multi Data Sources do not route connection requests to other servers in a cluster or
in a domain.

To deploy a Multi Data Source to a cluster or server, you select the server or cluster as a
deployment target. When a Multi Data Source is deployed on a server, WebLogic Server
creates an instance of the Multi Data Source on the server. When you deploy a Multi Data
Source to a cluster, WebLogic Server creates an instance of the Multi Data Source on each
server in the cluster.

For instructions, see Target and deploy JDBC Multi Data Sources in the Oracle WebLogic
Server Administration Console Online Help.

Multi Data Source Failover Enhancements

Learn how to improve failover processing for Multi Data Sources.

e Connection Request Routing Enhancements When a Generic Data Source Fails

e Automatic Re-enablement on Recovery of a Failed Generic Data Source within a Multi
Data Source

e Enabling Failover for Busy Generic Data Sources in a Multi Data Source

e Controlling Multi Data Source Failback with a Callback

Connection Request Routing Enhancements When a Generic Data Source Fails

ORACLE

To improve performance when a Generic data source within a Multi Data Source fails,
WebLogic Server automatically disables the Generic data source when a pooled connection
fails a connection test. After a Generic data source is disabled, WebLogic Server does not
route connection requests from applications to the Generic data source. Instead, it routes
connection requests to the next available Generic data source listed in the Multi Data Source.

This feature requires that Generic data source testing options are configured for allGeneric
data sources in a Multi Data Source, specifically Test Table Name and Test Reserved
Connections. See Connection Testing Options for a Data Source.

If a callback handler is registered for the Multi Data Source, WebLogic Server calls the callback
handler before failing over to the next Generic data source in the list. See Controlling Multi
Data Source Failover with a Callback for more details.

4-12

Chapter 4
Using JDBC Multi Data Sources

Automatic Re-enablement on Recovery of a Failed Generic Data Source within a
Multi Data Source

After a Generic data source is automatically disabled because a connection failed a connection
test, the Multi Data Source periodically tests a connection from the disabled Generic data
source to determine when the Generic data source (or underlying database) is available again.
When the Generic data source becomes available, the Multi Data Source automatically re-
enables the Generic data source and resumes routing connection requests to the Generic data
source, depending on the Multi Data Source algorithm and the position of the Generic data
source in the list of included Generic data sources. Frequency of these tests is controlled by
the Test Frequency Seconds attribute of the Multi Data Source. The default value for Test
Frequency is 120 seconds, so if you do not specifically set a value for the option, the Multi
Data Source will test disabled Generic data sources every 120 seconds. See JDBC Multi Data
Source: Configuration: General in the Oracle WebLogic Server Administration Console Online
Help.

WebLogic Server does not test and automatically re-enable Generic data sources that you
manually disable. It only tests Generic data sources that are automatically disabled.

If a callback handler is registered for the Multi Data Source, WebLogic Server calls the callback
handler before re-enabling the Generic data source. See Controlling Multi Data Source
Failback with a Callback for more details.

Enabling Failover for Busy Generic Data Sources in a Multi Data Source

By default, for Multi Data Sources with the Failover algorithm, when the number of requests for
a database connection exceeds the number of available connections in the current Generic
data source in the Multi Data Source, subsequent connection requests fail.

To enable the Multi Data Source to failover when all connections in the current Generic data
source are in use, you can enable the Failover Request if Busy option on the JDBC Multi Data
Source: Configuration: General page in the WebLogic Server Administration Console. (Also
available as the FailoverRequestIfBusy attribute in the JDBCDataSourceParamsBean). If
enabled (set to true), when all connections in the current Generic data source are in use,
application requests for connections will be routed to the next available Generic data source
within the Multi Data Source. When disabled (set to false, the default), connection requests do
not failover.

If a ConnectionPoolFailoverCallbackHandler is included in the Multi Data Source
configuration, WebLogic Server calls the callback handler before failing over. See Controlling
Multi Data Source Failover with a Callback for more details.

Controlling Multi Data Source Failback with a Callback

ORACLE

If you register a failover callback handler for a Multi Data Source, WebLogic Server calls the
same callback handler when re-enabling a Generic data source that was automatically
disabled. You can use the callback to control if or when the disabled Generic data source is re-
enabled so that you can make any other system preparations before the Generic data source
is re-enabled, such as priming a database or communicating with a high-availability framework.

See the following sections for more details about the callback handler:

¢ How It Works—Failback

4-13

Chapter 4
Using JDBC Multi Data Sources

How It Works—Failback

ORACLE

WebLogic Server periodically checks the status of Generic data sources in a Multi Data Source
that were automatically disabled. (See Automatic Re-enablement on Recovery of a Failed
Generic Data Source within a Multi Data Source.) If a disabled Generic data source becomes
available and if a failover callback handler is registered, WebLogic Server calls the callback
handler with the following information and waits for a return:

e currPool—For failback, this is the name of the Generic data source that was previously
disabled and is now available to be re-enabled.

* nextPool—~For failback, this is null.

* opcode—A code that indicates the reason for the call. For failback, the code is always
OPCODE_REENABLE CURR_POOL, which indicates that the Generic data source named in
currPool is now available.

Failback, or automatically re-enabling a disabled Generic data source, differs from failover in
that failover is synchronous with the connection request, but failback is asynchronous with the
connection request.

The callback handler can return one of the following values:

* OK—proceed with the operation. In this case, that means to re-enable the indicated
Generic data source. WebLogic Server resumes routing connection requests to the
Generic data source, depending on the Multi Data Source algorithm and the position of the
Generic data source in the list of included Generic data sources.

e DONOT FAILOVER—Do not re-enable the currPool Generic data source. Continue to serve
connection requests from the Generic data sources in use.

WebLogic Server acts according to the value returned by the callback handler.

If the callback handler returns DONOT_FAILOVER, WebLogic Server will attempt to re-enable
the Generic data source during the next testing cycle as determined by the
TestFrequencySeconds attribute in the Multi Data Source configuration, and will call the
callback handler as part of that process.

The order in which Generic data sources are listed in a Multi Data Source is very important. A

Multi Data Source with the Failover algorithm will always attempt to serve connection requests
from the first available Generic data source in the list of Generic data sources in the Multi Data
Source. Consider the following scenario:

1. MultiDataSource 1 uses the Failover algorithm, has a registered
ConnectionPoolFailoverCallbackHandler, and includes three Generic data sources: DS1,
DS2, and DS3, listed in that order.

2. DS1 becomes disabled, so MultiDataSource 1 fails over connection requests to DS2.
3. DS2 then becomes disabled, so MultiDataSource 1 fails over connection requests to DS3.

4. After some time, DS1 becomes available again and the callback handler allows WebLogic
Server to re-enable the Generic data source. Future connection requests will be served by
DS1 because DS1 is the first Generic data source listed in the Multi Data Source.

5. If DS2 subsequently becomes available and the callback handler allows WebLogic Server
to re-enable the Generic data source, connection requests will continue to be served by
DS1 because Ds1 is listed before DS2 in the list of Generic data sources.

4-14

Chapter 4
Using JDBC Multi Data Sources

Planned Database Maintenance with a Multi Data Source

Learn how to handle planned maintenance, without service interruption, on the database
server used by a Multi Data Source.

To avoid service interruption, multiple database instances must be available so that the
database can be updated in a rolling fashion. Oracle RAC cluster and Oracle GoldenGate, or a
combination of these products, can be used to help accomplish this goal. (Note that Oracle
DataGuard cannot be used for planned maintenance without service interruption). Each
database instance is configured as a Generic data source member of the Multi Data Source.
This approach assumes that the application is returning connections to the pool on a regular
basis.

Process Overview
The following steps provide a high-level overview of the planned maintenance process:

1. On mid-tier systems—Shutdown all member data sources associated with the Oracle RAC
instance that will be shut down for maintenance. It is important that you do not shut down
all data sources in each Multi Data Source list so that connections can be reserved for the
other member(s). Wait for data source shutdown to complete. See:

e Shutting Down the Data Source

» JDBCDataSourceRuntimeMBean shutdown operation in MBean Reference for Oracle
WebLogic Server

2. If required, you may want to reduce the remaining connections on the database side that
are not associated with the WebLogic data source. For the Oracle database server, this
might include stopping (or relocating) the application services at the instances that will be
shut down for maintenance, stopping the listener, and/or issuing a transactional disconnect
for the services on the database instance.

Shut down the database instance using your preferred tools.
Perform the planned maintenance
Restart the database instance using your preferred tools.

Startup the services when the database instances are ready for application use.

N o g & w

On mid-tier systems—Start the member data sources. See
JDBCDataSourceRuntimeMBean start operation in MBean Reference for Oracle WebLogic
Server.

Shutting Down the Data Source

ORACLE

Shutting down the data source involves first suspending the data source and then releasing the
associated resources including the connections.

When a member data source in a Multi Data Source is marked as suspended, the Multi Data
Source will not try to get connections from the suspended pool. Instead, to reserve
connections, it will go to the next member data source. It is important that you do not shut
down all member data sources in a Multi Data Source list at the same time. If all members are
shut down or fail, then access to the Multi Data Source fails and the application will see
failures.

When you gracefully suspend a data source, which is the first step of the shut down process,
the following occurs:

4-15

ORACLE

Chapter 4
Using JDBC Multi Data Sources

e The data source is immediately marked as suspended at the beginning of the operation
and no further connections are created on the data source.

* Idle (not reserved) connections are marked closed

« After a timeout period for the suspend operation, all remaining connections in the pool are
marked as suspended and the following exception is thrown for any operations on the
connection, indicating that the data source is suspended:

java.sql.SQLRecoverableException: Connection has been administratively
disabled. Try later.

* All the remaining connections are then closed. We won't know until the data source is
resumed if they are good or not. In this case, we know that the database will be shut down
and the connections in the pool will not be good if the data source is resumed. Instead, we
are doing a data source shutdown which will close all of the disabled connections.

The shutdown operation can be done synchronously or asynchronously. If you do a
synchronous shutdown, the default timeout period is 60 seconds. You can change the
value of this timeout period by configuring or dynamically setting Inactive Connection
Timeout Seconds to a non-zero value. There is no upper limit on the inactive timeout
period. Note that the processing actually checks for in-use (reserved) resources every
tenth of a second so if the timeout value is set to 2 hours and all reserved resources are
released a second later, the shut down will complete a second later. If you do an
asynchronous operation, the timeout period is specified on the method itself. If set to 0, the
default is used. The default is to use Inactive Connection Timeout Seconds if set or 60
seconds. If you want a minimal timeout, set the value to 1. If you want no timeout, set it to
a large value (not recommended).

This shutdown operation runs synchronously; there is no asynchronous version of the MBean
operation available.

You can also use this for Multi Data Sources configured with either Load-Balancing or Failover.
Example 4-1 WLST Example

The following WLST example script demonstrates how to edit the configuration to increase the
suspend timeout period and then use the runtime MBean to shutdown a data source. This
script must be integrated into the existing framework for all WebLogic Server servers and data
sources.

import sys, socket, os
hostname = 'hostname'
datasource='ds'
svr='myserver'
connect ("weblogic", "password", "t3://"+hostname+":7001")
Shutdown the data source serverRuntime ()
serverRuntime ()
cd('/JDBCServiceRuntime/' + svr + '/JDBCDataSourceRuntimeMBeans/'
+datasource)
task = cmo.shutdown (10000)
while (task.isRunning ()):
print 'SHUTTING DOWN'
java.lang.Thread.sleep (2000)
print 'Datasource task is in status' + task.getStatus()
exit ()
$ java weblogic.WLST myscript2.py
Intializing Weblogic Scripting Tool (WLST)...
Welcome to WebLogic Server Administration Scripting Shell

4-16

ORACLE

Chapter 4
Using JDBC Multi Data Sources

Location changed to serverRuntime tree.

This is a read-only tree with ServerRuntimeMBean as the root. For more help,
use help('serverRuntime').

SHUTTING DOWN

Datasource task is in status

SUCCESS

Datasource task is in status

SUCCESS

Exiting WebLogic Scripting Tool.

Important Considerations

The following list describes issues you should be aware of when performing planned
maintenance:

« If the Multi Data Source is using a database service, you cannot stop or relocate the
database service before suspending or shutting down the Multi Data Source. If you do, the
Multi Data Source may attempt to create a connection to the now missing service and it will
react as though the database is down and kill all connections, preventing a graceful
shutdown. Because suspending a Multi Data Source ensures that no new connections are
created at the associated instance, it is not necessary to stop the service. (Note that the
Multi Data Source only creates connections on this instance. It will never create
connections on another instance even if it is relocated). Also, suspending a Multi Data
Source ceases operations on all connections, therefore no further progress occurs on any
sessions (the transactions will not complete) that remain in the Multi Data Source pool.

* You may encounter an issue related to XA affinity that is enforced by the Multi Data Source
algorithms. When an XA branch is created on an Oracle RAC instance, all additional
branches are created on the same instance. While Oracle RAC supports XA across
instances, there are some significant limitations that applications run into before the
prepare phase, and the Multi Data Source enforces that all operations are on the same
instance. As soon as the graceful suspend operation starts, the member data source is
marked as suspended and no further connections are allocated there. If an application
using global transactions tries to start another branch on the suspending data source, it will
fail to get a connection and the transaction fails. In the case of an XA transaction spanning
multiple WebLogic servers, the suspend is not graceful. This issue does not apply to
Emulate Two-Phase Commit or one-phase commit, which use a single connection for all
work, and Logging Last Resource (LLR).

* If for some reason you must separate suspending the data source, at which point all
connections are disabled, from releasing the resources, you can perform a suspend
followed by forceShutdown. You must use a forced shutdown to avoid going through the
waiting period a second time. Oracle does not recommend using this process.

* To get a graceful shutdown of the data source when shutting down the database, the data
source must be involved. This process of shutting down the data source followed by
shutdown of the database requires coordination between the mid-tier and the database
server processing. Processing is simplified by using Active GridLink instead of Multi Data
Source. See Using Active GridLink Data Sources.

* When using the Oracle database, Oracle recommends that an application service be
configured for each database so that it can be configured for high availability. By using an
application service, you can start up the database on its own without the data source
starting to use it. Once the application service is explicitly started, the administrator can
make the database available to the data source.

4-17

Chapter 4
Using Active GridLink Data Sources

Using Active GridLink Data Sources

An Active GridLink (AGL) data source provides connectivity between WebLogic Server and an
Oracle database. Oracle database offers both on-premises and cloud database services with
cluster capabilities of Oracle Grid Infrastructure and Oracle Clusterware.

For more information, see Supported Oracle On-Premises and Cloud Database Services and
Understanding the ActiveGridlink Attribute.

Using an AGL data source involves creating the AGL data source, configuring the connection
pool and Oracle database parameters, tuning, monitoring, and so on. The following sections
explain in detail these concepts:

What is Active GridLink Data Source

Configuring Active GridLink Data Source
Use the WebLogic Server Administration Console or WLST to configure Active GridLink
Data Source in a WebLogic domain.

Configuring Runtime Load Balancing using SDP
To configure load balancing across SDP connections, you must edit the TNSNAMES . ORA file
on all nodes and add an SDP end-point to the LISTENER IBLOCAL entry.

Configuring Active GridLink Connection Pool Features

Tuning Active GridLink Data Source Connection Pools
By properly configuring the connection pool attributes in JDBC data sources in your
WebLogic Server domain, you can improve application and system performance.

Monitoring Active GridLink JDBC Resources
Learn about monitoring and debugging Active GridLink data sources.

Using Active GridLink Data Sources without FAN Notification

Best Practices for Active GridLink Data Sources

Learn about the best practices for using Active GridLink data sources by understanding the
catch and handle exceptions and how connections are created when using an Active
GridLink data source.

Comparing Active GridLink and Multi Data Sources
There are several benefits to using Active GridLink data sources over Multi Data Sources
when using Oracle RAC clusters.

Migrating from Multi Data Source to Active GridLink
You can migrate to Multi Data Source from Active GridLink data sources using simple
manual process.

Managing Database Downtime with Active GridLink Data Sources
Learn several ways to handle database downtime with Active GridLink data sources in an
Oracle RAC database environment.

Gradual Draining

During planned database maintenance, gradually close the database connections instead
of closing all of the connections immediately. This strategy prevents uneven performance
by the application.

What is Active GridLink Data Source

An Active GridLink Data Source (AGL) data source provides connectivity between WebLogic
Server and an Oracle database service, which may include one or more Oracle RAC clusters.

ORACLE

4-18

Chapter 4
Using Active GridLink Data Sources

An Oracle database service represents a workload with common attributes that enables
system administrators to manage the workload as a single entity.

You scale the number of AGL data sources as the number of services increases in the data
base, independent of the number of nodes in the Oracle RAC cluster(s). Examples of High
Availability support for multiple clusters include Data Guard, GoldenGate, and Global Database
Service.

Note:

Active GridLink and Multi Data Source are designed to work with Oracle RAC
clusters. Oracle does not recommend using Generic data sources with Oracle RAC
clusters. See Comparing AGL and Multi Data Sources.

Figure 4-1 Active GridLink Data Source Connectivity

i RAC (1)
WebLogic Server Sl
Single WLS connection
pool for service A T ‘"{ ONS D‘?emon ’
|
|
Polli
e | v
Ilr———{ ONS Daemon |
|
Advisories : :
| I
ONS H
UCP-RAC module dient F— o)
RAC (2)
Service A

An Active GridLink data source includes the features of Generic data sources plus the
following support for Oracle RAC:

* Fast Connection Failover

* Runtime Connection Load Balancing

e GridLink Affinity

* SCAN Addresses

e Secure Communication using Oracle Wallet with ONS Listener

e Support for Active Data Guard

ORACLE 419

Chapter 4
Using Active GridLink Data Sources

e Supported Oracle On-Premises and Cloud Database Services

» Using Socket Direct Protocol

Fast Connection Failover

Fast Connection Failover feature provides an application-independent method to implement
Oracle RAC event notifications such as detection and cleanup of invalid connections, load
balancing of available connections, and work redistribution on active Oracle RAC instances.

WebLogic Server supports Fast Connection Failover. See About Fast Connection Failover in
Universal Connection Pool for JDBC Developer's Guide.

An AGL data source uses Fast Connection Failover and responds to Oracle RAC events using
Oracle Notification Service (ONS). This ensures that the connection pool in the AGL data
source contains valid connections (including reserved connections) without the need to poll
and test connections. It also ensures that connections are created on new nodes as they
become available.

Figure 4-2 Fast Connection Failover

WebLogic RAC Aware RAC Database
Connection Pool
X
Instance 1
—_—
Start —> S==== —— ONS Subscribe —>
23 —— .
<— Handle — <——ONS Publish
Event
Fail-over Instance 2
X 23 Handler Thread
Instance 3

An AGL data source uses Fast Connection Failover to:

e Provide rapid failure detection.
* Abort and remove invalid connections from the connection pool.

e Perform graceful shutdown for planned and unplanned Oracle RAC node outages. See
Planned Outage Procedures and Unplanned Outages.

e Adapt to changes in topology, such as adding or removing a node.

« Distribute runtime work requests to all active Oracle RAC instances, including those
rejoining a cluster.

ORACLE 450

Chapter 4
Using Active GridLink Data Sources

Note:

AGL data sources do not support the deprecated FastConnectionFailoverEnabled
connection property. An attempt to create an XA connection with this property
enabled results in a java.sql.SQLException: Can not use getXAConnection ()
when connection caching is enabled exception because the driver implementation
of Fast Connection Failover for this property does not support XA connections.

JDBC Driver Configuration for use with Oracle Fast Connection Failover
To enable Fast Connection Failover on a data source, you need to set specific values for
the Driver Class Name and ONS configuration string properties.

JDBC Driver Configuration for use with Oracle Fast Connection Failover

To enable Fast Connection Failover on a data source, you need to set specific values for the
Driver Class Name and ONS configuration string properties.

Set the following connection pool properties:

In Driver Class Name—set the class name to oracle. jdbc.pool.OracleDataSource.

In Properties—set the ONS configuration string to remotely subscribe the Oracle RAC
nodes to Oracle FAN/ONS events. For example:
ONSConfiguration=nodes=hostnamel:portl,hostname2:port2

Note:

Oracle's OracleDataSource class is not XA-capable, so the resulting data source
does not implement a XA connection pool.

Runtime Connection Load Balancing

AGL data sources provide load balancing. AGL data sources use runtime connection load
balancing (RCLB) to distribute connections to Oracle RAC instances based on Oracle FAN
events issued by the database. This simplifies data source configuration and improves
performance as the database drives load balancing of connections through the AGL data
source, independent of the database topology.

Runtime Connection Load Balancing allows WebLogic Server to:

ORACLE

Adjust the distribution of work based on back end node capacities such as CPU,
availability, and response time.

React to changes in Oracle RAC topology.

Manage pooled connections for high performance and scalability.

4-21

Chapter 4
Using Active GridLink Data Sources

Figure 4-3 Runtime Connection Load Balancing

WebLogic Connection Pool RAC Database

\/

30% Connections

Y

I'm busy
Instance 1
— 10% Connections ——»
= .
<——I'mvery busy ————
Application Instance 2
T I'midle
60% Connections >
Instance 3

If FAN is not enabled, AGL data sources use a round-robin load balancing algorithm to allocate
connections to Oracle RAC nodes.

Note:

Connections may be shut down periodically on AGL data sources. If the connections
allocated to various RAC instances do not correspond to the Runtime Load Balancing
percentages in the FAN load-balancing advisories, connections to overweight
instances are destroyed and new connections opened. This process occurs every 30
seconds by default.

You can tune this behavior using the
weblogic.jdbc.gravitationShrinkFrequencySeconds system property which
specifies the amount of time, in seconds, the system waits before rebalancing
connections. A value of 0 disables the rebalancing process.

GridLink Affinity

WebLogic Server GridLink affinity policies are designed to improve application performance by
maximizing RAC cluster utilization.

e Session Affinity Policy
e XA Affinity Policy

Session Affinity Policy

Web applications have better performance when repeated operations against the same set of
records are processed by the same RAC instance. Business applications such as online
shopping and online banking are typical examples of this pattern.

ORACLE 455

Chapter 4
Using Active GridLink Data Sources

An AGL data source uses the Session Affinity policy to ensure all the data base operations for
a web session, including transactions, are directed to the same Oracle RAC instance of a RAC
cluster.

Note:

The context is stored in the HTTP session. It is up to the application how windows
(within a browser or across browsers) are mapped to HTTP sessions.

If an AGL data source with a session affinity policy is accessed outside the context of a web
session, the affinity policy changes to the XA affinity policy. See XA Affinity Policy.

Figure 4-4 Session Affinity

RAC
@ Database
Application
Connect to me
Instance 1
Data
BB — source
Data .
ISP = source D e——
Data _}—
Serviet — goirce Instance 2
— WebLogic Connection Pool
=
=|>=
WebLogic Server
Instance 3

Key

Connection

Affinity Context @

An AGL data source monitors RAC load balancing advisories (LBAS) using the AffEnabled
attribute to determine if RAC affinity is enabled for a RAC cluster. The first connection request
is load balanced using Runtime Connection Load-Balancing (RCLB) and is assigned an Affinity
context. All subsequent connection requests are routed to the same Oracle RAC instance
using the Affinity context of the first connection until the session ends or the transaction
completes. Affinity is based on the database name, service name, and instance name.
Although the Session Affinity policy for an AGL data source is always enabled by default, a
Web session is active for Session Affinity if:

* Oracle RAC is enabled, active, and the service has enabled RCLB. RCLB is enabled for a
service if the service GOAL (NOT CLB_GOAL) is set to either SERVICE TIME or THROUGHPUT.

e The database determines there is sufficient performance improvement in the cluster wait
time and the Affinity flag in the payload in the information from ONS is set to TRUE.

ORACLE 403

Chapter 4
Using Active GridLink Data Sources

If the database determines it is not advantageous to implement session affinity, such as a high
database availability condition, the database load balancing algorithm reverts to its default
work allocation policy and the Affinity flag in the payload is set to FALSE.

XA Affinity Policy

XA Affinity for global transactions ensures all the data base operations for a global transaction
performed on an Oracle RAC cluster are directed to the same Oracle RAC instance. There are
limitations to consider:

e XA transaction can't span instances.

e Strict affinity is enforced for connections within an XA transaction. If a connection cannot
be created on the correct instance, an exception is thrown.

Figure 4-5 XA Affinity

Oracle WebLogic Oracle RAC Oracle WebLogic Oracle RAC
Servers Server Servers Server
, ——— - , I RAC | , e . RAC]
:} WebLogic Instance 1 }: . | Instance | :} WebLogic Instance 1 }: . | Instance
v I | | v I | |
| WebLogic 1 !] } | WebLogic 1 !] }
i I I Vo I 1
i’ I] I 1 L > I
| m WebLogic | } ! 1| APP1 | webLogic | | —> |
D Conn 4 . RACT | D Conn I i RACT
|| state Pool % } 1 || State Pool | | }
' 1! | | A 1! | |
L m e i I B e i I I
| T Al — | |
| |] | |
******** ST T I RAC2 1 pablexA oo I RAC2
| | WebLogic Instance 2 | | ! | Transaction | | WeblLogic Instance 2 | | ! !
X I | | Affinity X I | |
Ol WebLogic 2 I ! } O WebLogic 2 P } !
i I I I o I I I
! I I I ! I I I
¥ m WebLogic 5 | RAC3 | 1 (App2 Weblogic ¥ | RAC3 |
Ll onn — | te—————— 1 onn [t
|| State Pool | | state Pool !]
| ! Notification | !] Notification
b .. ! Service | CEE——— ! Service
SCAN Addresses

There are two options to load balance connections across nodes:

* Use a single Oracle Single Client Access Name (SCAN) address

jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS= (PROTOCOL=TCP) (HOST=scanname)
(PORT=scanport)) (CONNECT DATA=(SERVICE NAME=myservice)))

e Use multiple non-SCAN addresses with LOAD_BALANCE=0n

jdbc:oracle:thin:@ (DESCRIPTION=(ADDRESS LIST=(LOAD BALANCE=ON)
(ADDRESS= (PROTOCOL=TCP) (HOST=hostl) (PORT=1521)) (ADDRESS= (PROTOCOL=TCP)
(HOST=host2) (PORT=1521))) (CONNECT DATA=(SERVICE NAME=myservice)))

Using a SCAN address is recommended over using multiple non-SCAN addresses. However,
a SCAN address can only be used if your database is configured to use it. Contact your
network administrator for appropriately configured SCAN URLSs for your environment.

ORACLE Y

Chapter 4
Using Active GridLink Data Sources

Note:
When using Oracle RAC 11.2 and higher, consider the following:

» If the Oracle RAC listener is set to SCAN, the AGL data source configuration can
only use a SCAN address.

e |If the Oracle RAC listener is setto List of Node VIPs, the AGL data source
configuration can only use a list of VIP addresses.

» If the Oracle RAC listener is set to Mix of SCAN and List of Node VIPs, the
AGL data source configuration can use both SCAN and VIP addresses.

See:

* Overview of Automatic Workload Management with Dynamic Database Services
in Real Application Clusters Administration and Deployment Guide.

* Oracle Single Client Access Name (SCAN) White Paper at http://
www.oracle.com/technetwork/database/clustering/overview/
scan-129069.pdf

Secure Communication using Oracle Wallet with ONS Listener

This feature allows you to configure secure communication with the ONS listener using Oracle
Wallet. See Secure ONS Client Communication.

Support for Active Data Guard

Active GridLink data source also works with Oracle Active Data Guard. Oracle Clusterware
must be installed and active on the primary and standby sites for both single instance (using
Oracle Restart) and Oracle RAC databases. Oracle Data Guard broker coordinates with Oracle
Clusterware to properly fail over role-based services to a new primary database after a Data
Guard failover has occurred. Cluster Ready Services (CRS) posts FAN events when the role
change occurs.

Supported Oracle On-Premises and Cloud Database Services

ORACLE

Oracle database offers both on-premises and cloud database services that use the Fast
Application Notification (FAN) feature provided with the cluster capabilities of Oracle Grid
Infrastructure and Oracle Clusterware.

Oracle database on-premises services that use the FAN feature include the following products
and features:

* Oracle Real Application Clusters (RAC). See, Using WebLogic Server with Oracle RAC.

e Oracle Real Application Clusters (RAC) One Node. See Overview of Oracle Real
Application Clusters One Node and Administering Oracle RAC One Node in Real
Application Clusters Administration and Deployment Guide.

e Oracle Data Guard (with Broker). See Oracle Data Guard Broker Concepts in Oracle®
Data Guard Broker Guide.

e Oracle Standard Edition High Availability. See About Standard Edition High Availability and
Installing Standard Edition High Availability in Database Installation Guide.

¢ Oracle Database Global Data Services. See Global Data Services.

4-25

http://www.oracle.com/pls/topic/lookup?ctx=fmw122140&id=RACAD7276
http://www.oracle.com/technetwork/database/clustering/overview/scan-129069.pdf
http://www.oracle.com/technetwork/database/clustering/overview/scan-129069.pdf
http://www.oracle.com/technetwork/database/clustering/overview/scan-129069.pdf

Chapter 4
Using Active GridLink Data Sources

Oracle Database related cloud services that use the FAN feature includes the following
products:

Oracle Autonomous Transaction Processing Dedicated (ATP-D). See About Dedicated
Autonomous Database and Access Dedicated Autonomous Database in the Oracle Cloud
Infrastructure Console in Oracle Autonomous Database on Dedicated Exadata
Infrastructure Guide.

Oracle Autonomous Database Dedicated (ADB-D). See About Dedicated Autonomous
Database in Oracle Autonomous Database on Dedicated Exadata Infrastructure Guide.

Oracle Exadata Cloud@Customer. See About Oracle Exadata Cloud at Customer in
Exadata Database Service on Cloud@Customer Administrator's Guide.

Oracle Exadata Cloud Service. See About Exadata Cloud Service Instances in
Administering Oracle Database Exadata Cloud Service Guide.

Oracle Database Cloud Service. See About Oracle Database Cloud Services in
Administering Oracle Database Classic Cloud Service Guide.

Using Socket Direct Protocol

To use the Socket Direct Protocol (SDP), your database network must be configured to use
Infiniband. SDP does not support SCAN addresses.

See Configuring SDP Support for InfiniBand Connections in the Oracle Database Net Services
Administrator's Guide.

Configuring Active GridLink Data Source

Use the WebLogic Server Administration Console or WLST to configure Active GridLink Data
Source in a WebLogic domain.

ORACLE

See:

Create JDBC GridLink data sources in the Oracle WebLogic Server Administration
Console Online Help.

The sample WLST script

EXAMPLES HOME\wl server\examples\src\examples\wlst\online\jdbc data source cre
ation.py, where EXAMPLES HOME represents the directory in which the WebLogic Server
code examples are configured. This example creates a Generic data source. See WLST
Online Sample Scripts in Understanding the WebLogic Scripting Tool.

You must perform the following basic steps to create a data source using the WebLogic Server
Administration Console:

Configure JDBC Data Source Properties
Configure Transaction Options
Configure Connection Properties

Test Connections

Configure ONS Client

Target the Data Source

Configuring Oracle Parameters

Configuring an ONS Client Using WLST

4-26

http://docs.oracle.com/database/121/NETAG/performance.htm#NETAG014

Chapter 4
Using Active GridLink Data Sources

Configure JDBC Data Source Properties

JDBC Data Source Properties include options that determine the identity of the data source
and the way the data is handled on a database connection.

- Data Source Names: JDBC data source names are used to identify the data source within
the WebLogic domain. For system resource data sources, hames must be unique among
all other JDBC system resources, including data sources. To avoid naming conflicts, data
source names should also be unique among other configuration object names, such as
servers, applications, clusters, and JMS queues, topics, and servers. For JDBC application
modules scoped to an application, data source names must be unique among JDBC data
sources that are similarly scoped. The data source name cannot contain the following
special characters: @ # S.

- Data Source Scope: You can select the scope for the data source and set the scope to
Global (at the domain level), or to any existing Resource Group or Resource Group
Template.

« JNDI Names: You can configure a data source so that it binds to the JNDI tree with a
single or multiple names. You can use a multi-JNDI-named data source in place of legacy
configurations that included multiple data sources that pointed to a single JDBC connection
pool. See Developing JNDI Applications for Oracle WebLogic Server.

« Driver: Select the replay driver for JDBC Replay Driver, or the XA or non-XA Thin driver.

Note:

The JDBC Replay Driver does not currently support XA transactions.

Configure Transaction Options

When you configure a JDBC data source using the WebLogic Server Administration Console,
WebLogic Server automatically selects specific transaction options based on the type of JDBC
driver. WebLogic JDBC data sources supports XA, non-XA, and Global transaction options.

For more information on configuring transaction support for a data source, see JDBC Data
Source Transaction Options.

Configure Connection Properties

ORACLE

Connection Properties are used to configure the connection between the data source and the
DBMS. Typical attributes are the service name, database name, host name, port number, user
name, and password.

¢ Note:
Using service names:

When a Database Domain is used, service names must be suffixed with the
domain name. For example, if the database name is db.country.myCorp.com,
the service name myservice would need to be entered as
myservice.db.country.myCorp.com.

4-27

Chapter 4
Using Active GridLink Data Sources

The console allows you to enter connection properties in one of the following ways:
e Enter Connection Properties

e Enter a Complete URL

e Supported Active GridLink Data Source URL Formats

Enter Connection Properties

On the GridLink data source connection Properties Options page, select Enter individual
listener information and click Next. Enter the connection properties. For example:

* Enter myService in Service Name.

* Enter left:1234, center:1234, right:1234 in the Host and Port:. Separate the host and
port of each listener with colon.

* Enter myDataBase in Database User Name.

* Enter myPassword1 in Password.

e If required, set Protocol to spp.

The console automatically generates the complete JDBC URL. For example:

jdbc:oracle:thin:@(DESCRIPTION = (ADDRESS LIST = (LOAD BALANCE=on) (FAILOVER=ON)
(ADDRESS= (PROTOCOL=TCP) (HOST=1left) (PORT=1521)) (ADDRESS=(PROTOCOL=TCP)
(HOST=center) (PORT=1521)) (ADDRESS=(PROTOCOL=TCP) (HOST=right) (PORT=1521)))
(CONNECT DATA=(SERVICE NAME=myService)))

Enter a Complete URL

On the GridLink data source connection Properties Options page, select Enter complete
JDBC URL and click Next. Enter the connection properties. For example:

* In Complete JDBC URL, enter the JDBC URL. For example:

jdbc:oracle:thin:@(DESCRIPTION = (ADDRESS LIST = (LOAD BALANCE=on)
(FAILOVER=ON) (ADDRESS=(PROTOCOL=TCP) (HOST=1left) (PORT=1521))

(ADDRESS= (PROTOCOL=TCP) (HOST=center) (PORT=1521)) (ADDRESS=(PROTOCOL=TCP)
(HOST=right) (PORT=1521))) (CONNECT DATA=(SERVICE NAME=myService)))

You can also use a SCAN address. For example:

jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS LIST=(ADDRESS= (PROTOCOL=TCP)
(HOST=MyScanAddr-scn.myCompany.com) (PORT=1234)))

(CONNECT DATA= (SERVICE NAME=myService)))

* Enter myDataBase in Database User Name.
e Enter myPasswordl in Password.

e If required, set Protocol to sDp.

Supported Active GridLink Data Source URL Formats

AGL data sources only support long format JDBC URLs. The supported long format pattern is:

jdbc:oracle:thin:@ (DESCRIPTION=(ADDRESS LIST=(ADDRESS=(PROTOCOL=TCP)
(HOST=[SCAN VIP]) (PORT=[SCAN PORT])))
(CONNECT_DATA=(SERVICE_NAME=[SERVICE_NAME})))

ORACLE 408

Chapter 4
Using Active GridLink Data Sources

Easy Connect (short) format URLs are not supported for AGL data sources. The following is an
example of a Easy Connect URL pattern that is not supported for use with AGL data sources:

jdbc:oracle:thin: [SCAN VIP]:[SCAN PORT]/[SERVICE NAME]

Recommendations for AGL Data Source URLs

The following section provides general recommendations when creating AGL data source
URLs.

* Use asingle DESCRIPTION. Avoid a DESCRIPTION LIST to avoid connection delays.
* Use one ADDRESS_LIST for each RAC cluster or DataGuard database

* Enter RETRY COUNT, RETRY DELAY, CONNECT TIMEOUT at the DESCRIPTION level so that all
ADDRESS_LIST entries use the same value.

* RETRY DELAY specifies the delay, in seconds, between the connection retries. This attribute
is new in the Oracle 12.1.0.2 release.

e RETRY COUNT is used to specify the number of times an ADDRESS list is traversed before the
connection attempt is terminated. The default value is 0. When using SCAN listeners with
FAILOVER=on, Setting RETRY COUNT to a value of 2 means that if you had 3 SCAN IP
addresses, each would be traversed three times each, resulting in a total of nine connect
attempts (3 * 3)

* Specify LOAD BALANCE=on for each address list to balance the SCAN addresses.

e The service name should be a configured application service, not a PDB or administration
service.

* CONNECT TIMEOUT is used to specify the overall time used to complete the Oracle Net
connect. Set CONNECT TIMEOUT=90 or higher to prevent logon storms. For JDBC driver
12.1.0.2 and earlier, CONNECT TIMEOUT is also used for the TCP/IP connection timeout for
each address in the URL. When considering TCP/IP connections, a shorter
CONNECT TIMEOUT is preferred though secondary to overall timeout requirements.

* Do not set the oracle.net.CONNECT TIMEOUT driver property on the data source because it
is overridden by the URL property.

Test Connections

Test Database Connection allows you to test a database connection before the data source
configuration is finalized using a table name or SQL statement. If necessary, you can test
additional configuration information using the Properties and System Properties attributes.

Configure ONS Client

ORACLE

ONS client configuration allows the data source to subscribe to and process Oracle FAN
events. When configuring the ONS node list, Oracle recommends not specifying a value and
allowing auto-ONS to perform the ONS configuration. In some cases, however, it is necessary
to explicitly configure the ONS configuration, for example if you need to specify an Oracle
Wallet and password, or if you want to explicitly specify the ONS topology.

You can also configure an ONS client using WLST. For an example, see Configuring an ONS
Client Using WLST.

To configure an ONS client from the Summary of Data Sources page in the Administration
Console, see Configure ONS client parameters in Oracle WebLogic Server Administration
Console Online Help.

4-29

Chapter 4
Using Active GridLink Data Sources

Other Considerations

In general, if a WebLogic Server data source setting of initial capacity is set to 0, WebLogic
Server makes no DBMS connections at startup. For Active GridLink data sources with Auto-
ONS, WebLogic Server needs to connect to the DBMS once at startup to get the ONS
information.

e Enabling FAN Events
e Configure ONS Host and Port
e Secure ONS Client Communication

e Test ONS Client Configuration

Enabling FAN Events

To ensure that the data source is configured to subscribe to and process Oracle Fast
Application Notification (FAN) events, select Fan Enabled.

Configure ONS Host and Port

ORACLE

There are two methods that you can use to configure the OnsNodeList value: a single node
list or a property node list. You can use one or the other, but not both. If the WebLogic Server
OnsNodeList contains an equals sign (=), it is assumed to be a property node list.

For both types of node lists you can use a Single Client Access Name (SCAN) address instead
of a host name, and to access FAN notifications. For more information about SCAN addresses,
see Scan Addresses.

To configure the OnsNodeList value using a:

* Single node list—Specify a comma separated list of ONS daemon listen addresses and
ports for receiving ONS-based FAN events. For example, rac1:6200, rac2:6200. You can
enter a single node list in the ONS host and port field in the Administration Console when
creating an AGL Data Source.

* Property node list—Specify a string composed of multiple records, with each record
consisting of a key=value pair and terminated by a new line ('\n') character. For example,
nodes.l1=racl:6200, rac2:6200. You cannot enter a property node list in the ONS host and
port field when creating a data source. Instead, you should leave this field blank. After you
finish creating the data source, you can enter the property node list on the Configuration:
ONS tab on the settings page for the data source.

You can specify the following keys in a property node list:

* nodes.id—A list of nodes representing a unique topology of remote ONS servers. id
specifies a unique identifier for the node list. Duplicate entries are ignored. The list of
nodes configured in any list must not include any nodes configured in any other list for the
same client or duplicate notifications will be sent and delivered. The list format is a comma
separated list of ONS daemon listen addresses and ports pairs separated by colon.

* maxconnections.id—Specifies the maximum number of concurrent connections
maintained with the ONS servers. id specifies the node list to which this parameter applies.
The default is 3

* active.id If true, the list is active and connections are automatically established to the
configured number of ONS servers. If false, the list is inactive and is only be used as a fail
over list in the event that no connections for an active list can be established. An inactive
list can only serve as a fail over for one active list at a time, and once a single connection

4-30

Chapter 4
Using Active GridLink Data Sources

is re-established on the active list, the fail-over list reverts to being inactive. Note that only
notifications published by the client after a list has failed over are sent to the fail over list.
id specifies the node list to which this parameter applies. The default is true

° remotetimeout —The timeout period, in milliseconds, for a connection to each remote
server. If the remote server has not responded within this timeout period, the connection is
closed. The default is 30 seconds

Note:

Although walletfile and walletpassword are supported in the string, WebLogic
Server has separate configuration elements for these values, OnsWalletFile and
OnsWalletPasswordEncrypted.

Secure ONS Client Communication
To use an Oracle Wallet file with WebLogic Server, you must:

« Update your Active GridLink data source configuration to include the directory of the
Oracle wallet file in which the SSL certificates are stored and optionally, the ONS Wallet
password. See Secure ONS Listener using Oracle Wallet in Oracle WebLogic Server
Administration Console Online Help.

* For more information on Oracle Wallet, see the Creating and Managing Oracle Wallet.

Test ONS Client Configuration

Test ONS client configuration allows you to test a connection to the ONS listener before
the data source configuration is finalized.

Target the Data Source

You can select one or more targets to which to deploy your new Active GridLink data source. If
you don't select a target, the data source will be created but not deployed. You will need to
deploy the data source at a later time.

Configuring Oracle Parameters

WebLogic Server provides several attributes that provide improved data source performance
when using Oracle drivers. See Advanced Configurations for Oracle Drivers and Databases.

Configuring an ONS Client Using WLST

Use WLST to configure an ONS client.

The following fragment provides an example for setting the Oracle parameters of an Active
GridLink data source.

cd('/JDBCSystemResources/' + dsName + '/JDBCResource/' + dsName + '/
JDBCOracleParams/' + dsName)

cmo.setFanEnabled (true)

cmo.setOnsNodeList ('nodes.l=racl:6200,rac2:6200\nmaxconnections.1=3\n")

For more information about configuring an ONS client, see ONS Client Communication.

ORACLE 451

Chapter 4
Using Active GridLink Data Sources

Configuring Runtime Load Balancing using SDP

To configure load balancing across SDP connections, you must edit the TNSNAMES . ORA file on
all nodes and add an SDP end-point to the LISTENER IBLOCAL entry.

Note:

The TNSNAMES. ORA file is only read at instance startup or when using an ALTER
SYSTEM SET LISTENER NETWORKS="Iistener address" command. After updating the
TNSNAMES. ORA file, restart all instances or run the ALTER SYSTEM SET

LISTENER NETWORKS command on all networks.

For example:

LISTENER IBLOCAL =
(DESCRIPTION =
(ADDRESS LIST =
(ADDRESS = (PROTOCOL = TCP) (HOST =

sclcgdb02ibvip.country.myCorp.com) (PORT=1522))
(ADDRESS = (PROTOCOL = SDP) (HOST =
sclcgdb02-bvip.country.myCorp.com) (PORT=1522))
)
)

You should then distribute connections on the LISTERNER IB network using the following URL:

jdbc:oracle:thin:@ (DESCRIPTION=(ADDRESS LIST=(ADDRESS=(PROTOCOL=SDP) (HOST=sclcgdb01-
bvip.country.myCorp.com) (PORT=1522)) (ADDRESS= (PROTOCOL=SDP) (HOST=sclcgdb02-
ibvip.country.myCorp.com) (PORT=1522))) (CONNECT DATA=(SERVICE NAME=elservice)))

Configuring Active GridLink Connection Pool Features

Applications use a connection from the pool then return it when finished using the connection.
Connection pooling enhances performance by eliminating the costly task of creating database
connections for the application. Connection pools have options that allow you to control JDBC
driver features and system properties associated with connection pools as well as use SQL for
database connection initialization.

Note:

Certain Oracle JDBC extensions may durably alter a connection's behavior in a way
that future users of the pooled connection will inherit. WebLogic Server attempts to
protect connections against some types of these calls when possible.

For more information, see JDBC Data Source: Configuration: Connection Pool in Oracle
WebLogic Server Administration Console Online Help and JDBCConnectionPoolParamsBean
in MBean Reference for Oracle WebLogic Server.

ORACLE 430

Chapter 4
Using Active GridLink Data Sources

The following connection pool options are available for a JDBC data source:
e Enabling JDBC Driver-Level Features
e Enabling Connection-based System Properties

e Initializing Database Connections with SQL Code

Enabling JDBC Driver-Level Features

WebLogic JDBC data sources support the javax.sqgl.ConnectionPoolDataSource interface
implemented by JDBC drivers. You can enable driver-level features by adding the property and
its value to the Properties attribute in a JDBC data source. Driver-level properties in the
Properties attribute are set on the driver's ConnectionPoolDataSource object.

Note:

Do not use FastConnectionFailoverEnabled, ConnectionCachingEnabled, Or
ConnectionCacheName as Driver-level properties in the Properties attribute in a
JDBC data source.

Enabling Connection-based System Properties

WebLogic JDBC data sources support setting driver properties using the value of system
properties. The value of each property is derived at runtime from the named system property.
You can configure connection-based system properties using the WebLogic Server
Administration Console by editing the System Properties attribute of your data source
configuration.

< Note:

Do not specify oracle.jdbc.FastConnectionFailover as a Java system property
when starting the WebLogic Server.

Initializing Database Connections with SQL Code

ORACLE

When WebLogic Server creates database connections in a data source, the server can
automatically run SQL code to initialize the database connection. To enable this feature, enter
SoL followed by a space and the SQL code you want to run in the Init SQL attribute on the
JDBC Data Source: Configuration: Connection Pool page in the WebLogic Server
Administration Console. Alternatively, you can specify simply a table name without sQL and the
statement SELECT COUNT (*) FROM tablename is used. If you leave this attribute blank (the
default), WebLogic Server does not run any code to initialize database connections.

WebLogic Server runs this code whenever it creates a database connection for the data
source, which includes at server startup, when expanding the connection pool, and when
refreshing a connection.

You can use this feature to set DBMS-specific operational settings that are connection-specific
or to ensure that a connection has memory or permissions to perform required actions.

Start the code with sQL followed by a space. An Oracle DBMS example:

4-33

Chapter 4
Using Active GridLink Data Sources

SQL alter session set NLS DATE FORMAT='YYYY-MM-DD HH24:MI:SS'

or an Informix DBMS:

SQL SET LOCK MODE TO WAIT

The SQL statement is executed using JDBC Statement.execute (). Options that you can set
using InitSQL vary by DBMS. See the documentation from your database vendor for
supported statements. If you want to execute multiple statements, you may want to create a

stored procedure and execute it. The syntax is vendor specific. For example, to execute an
Oracle stored procedure:

SQL CALL MYPROCEDURE ()

Tuning Active GridLink Data Source Connection Pools

By properly configuring the connection pool attributes in JDBC data sources in your WebLogic
Server domain, you can improve application and system performance.

See Tuning Data Source Connection Pools.

Monitoring Active GridLink JDBC Resources

Learn about monitoring and debugging Active GridLink data sources.
For more information, see Monitoring WebLogic JDBC Resources.

* Viewing Run-Time Statistics

* Debug Active GridLink Data Sources

Viewing Run-Time Statistics

You can view run-time statistics for an Active GridLink data source via the WebLogic Server
Administration Console or through the associated runtime MBeans.

 JDBCOracleDataSourceRuntimeMBean
 JDBCOracleDataSourcelnstanceRuntimeMBean

e ONSDaemonRuntimeMBean

JDBCOracleDataSourceRuntimeMBean

The JDBCOracleDataSourceRuntimeMBean provides methods for getting the current state of the
data source instance and for getting statistics about the data source, such as the average
number of active connections, the current number of active connections, and the highest
number of active connections. This MBean also has a child
JDBCOracleDataSourceInstanceRuntimeMBean for each node that is active in the Active
GridLink data source. See JDBCOracleDataSourceRuntimeMBean in the MBean Reference
for Oracle WebLogic Server.

JDBCOracleDataSourceInstanceRuntimeMBean

The JDBCOracleDataSourcelnstanceRuntimeMBean provides methods for getting the current
state of the data source instance. There an instance for each ONS listener that is active. In a
configuration that uses auto-ONS where the administrator doesn't configure the ONS string, this
is the only way to discover which ONS listeners are available. See

ORACLE ey

Chapter 4
Using Active GridLink Data Sources

JDBCOracleDataSourcelnstanceRuntimeMBean in the MBean Reference for Oracle WebLogic
Server.

ONSDaemonRuntimeMBean

The ONSDaemonRuntimeMBean provides methods for monitoring the ONS client configuration
that is associated with an Active GridLink data source.

The following is a WLST script for testing an ONS connection. In this example, the Active
GridLink data source is named glds and it is targeted to myserver:

connect (<wluser>, <wlpassword>, 't3://localhost:7001"')
serverRuntime ()

cd ('JDBCServiceRuntime')
'myserver')
'JDBCDataSourceRuntimeMBeans')
'glds"')

'ONSClientRuntime')

'glds"')

'ONSDaemonRuntimes"')
cd('glds 0")

cmo.ping ()

cd(
cd (
cd(
cd(
cd(
cd (

See ONSDaemonRuntimeMBean in the MBean Reference for Oracle WebLogic Server.

Debug Active GridLink Data Sources

You can activate WebLogic Server's debugging features to track down the specific problem
within the application.

e JDBC Debugging Scopes
e UCP JDK Logging
* Enable Debugging Using the Command Line

JDBC Debugging Scopes
The following are registered debugging scopes for JDBC:

* DebugJDBCRAC—prints information about Active GridLink data source lifecycle, Universal
Connection Pool callback, and connection information.

* DebugJDBCONS—traces ONS client information, including the LBA event body. One trace is
available for each ONS listener that is active. In a configuration that uses auto-ONS where
the administrator doesn't configure the ONS string, this is the only way to see what ONS
listeners are available.

* DebugJDBCReplay—traces JDBC Replay Driver replay information.

e DebugJDBCUCP—traces low level RAC information from the UCP driver.

UCP JDK Logging

For enabling UCP JDK logging, see Overview of Logging in UCP in Universal Connection Pool
for IDBC Developer's Guide.

Enable Debugging Using the Command Line

Set the appropriate AGL data source debugging properties on the command line. For example,

ORACLE o

Chapter 4
Using Active GridLink Data Sources

-Dweblogic.debug.DebugJDBCRAC=true
-Dweblogic.debug.DebugJDBCONS=true
-Dweblogic.debug.DebugJDBCUCP=true
-Dweblogic.debug.DebugJDBCREPLAY=true

Setting these values is static and can only be used at server startup.

To enable ONS debugging, you must configure Java Util Logging. To do so, set the following
properties on the command line as follows:

-Doracle.ons.debug=true

See java.util.logging in Java Platform Standard Edition API Specification.

Using Active GridLink Data Sources without FAN Notification

ORACLE

You can configure and use an Active GridLink data source without enabling Fast Application
Notification (FAN). In this configuration, disabling a connection to a RAC node occurs after two
successive connection test failures. Connectivity is reestablished after a successful connection
test.

Note:

This is not a standard recommendation from Oracle.

Oracle recommends that you enable TestConnectionsOnReserve. You might need to turn off
FAN if a configured firewall doesn't allow this protocol to flow.

The following table indicates the availability of Active GridLink data source features when FAN
Enabled set to false.

Table 4-2 Active GridLink Features when FAN Enabled is False

|
Active GridLink Feature Available when FAN Enabled is False?

Single data source configuration for access to RAC Yes

cluster

Runtime MBeans for individual RAC cluster Yes
instances

Connection load balancing using Runtime Load No
Balancing (RLB)

Fast Application Notification (FAN) No
Fast Connection Failover (FCF) No
Graceful shutdown No
Gravitation (rebalancing connections) No
ONS Client Support, including password and Yes
encrypted wallet configurations

Transaction affinity Yes
Session affinity No

4-36

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/logging/package-summary.html

Chapter 4
Using Active GridLink Data Sources

Understanding the ActiveGridlink Attribute

In WebLogic Server 12.1.2 and higher, the ActiveGridlink attribute is used to explicitly
declare a data source configuration as an Active GridLink data source. It is automatically
enabled by the WebLogic Server Administration Console when creating a Active GridLink data
source. If you create data source configurations using WLST, you must remember to set
ActiveGridlink=true.

Note:

To maintain backward compatibility with releases prior to WebLogic Server 12.1.2, a
data source configuration is always an Active GridLink data source configuration if
FanEnabled=true or the OnsNodeList is non-null. In this case, the ActiveGridlink

value is ignored.

Legacy data source configurations are not updated during the upgrade process. If you need to
update a legacy Active GridLink data source to access RAC clusters without enabling Fast
Application Notification (FAN), edit or use WLST to set ActiveGridlink=true in the

configuration.

Best Practices for Active GridLink Data Sources

Learn about the best practices for using Active GridLink data sources by understanding the
catch and handle exceptions and how connections are created when using an Active GridLink
data source.

e Catch and Handle Exceptions

* Connection Creation with Active GridLink Data Sources

Catch and Handle Exceptions

Applications need to catch and handle all exceptions. Applications using AGL data sources
should expect exceptions, such as an 10 socket read error, when performing JDBC
operations on borrowed connections. Best practice is to check the connection validity and
reconnect if necessary. Connection exceptions can occur if the driver detects an outage earlier
than FAN event arrival or as a result of the cleanup of a connection. For unplanned down
events, a connection pool aborts all borrowed connections that are affected by the outage.

Connection Creation with Active GridLink Data Sources

ORACLE

This section summarizes the change in connections in Active GridLink data source, assuming
FAN and ONS are enabled:

e Connections are added to the pool initially based on the configured initial capacity. That
uses connect time load balancing based on the listener. For that to work correctly, you
must either specify LOAD BALANCE=ON for multiple non-scan addresses or use SCAN.

* Connections are added to the pool on demand based on runtime load balancing. However,
this is overridden by XA affinity or Web session affinity, in which case connections are
added on the instance providing affinity to the last request in the transaction or Web
session.

4-37

Chapter 4
Using Active GridLink Data Sources

When a planned down event occurs, unused connections for that instance are released
immediately and connections in use are released when returned to the pool.

When an unplanned down event occurs, all connections for that instance are destroyed
immediately.

When an up event occurs, connections are proactively created on the new instance.

When gravitation shrinking occurs, one unused connection is destroyed on a heavily
loaded instance (per period).

When normal shrinking occurs, half of the unused connections down to minimum capacity
are destroyed without respect to load (per period).

Comparing Active GridLink and Multi Data Sources

There are several benefits to using Active GridLink data sources over Multi Data Sources when
using Oracle RAC clusters.

The benefits include:

Requires one data source with a single URL. Multi Data Sources require a configuration
with n Generic data sources and a Multi Data Source.

Eliminates a polling mechanism that can fall if one of the Generic data sources is
performing slowly.

Eliminates the need to manually add or delete a node to/from the cluster.

Provides a fast internal notification (out-of-band) when nodes are available so that
connections are load-balanced to the new nodes using Oracle Notification Service (ONS).

Provides a fast internal notification when a node goes down so that connections are
steered away from the node using ONS.

Provides load balancing advisories (LBA) so that new connections are created on the node
with the least load, and the LBA information is also used for gravitation to move idle
connections around based on load.

Provides affinity based on your XA transaction or your web session which may significantly
improve performance.

Leverages all the advantages of HA configurations like DataGuard. For more information,
see Oracle WebLogic Server and Highly Available Oracle Databases: Oracle Integrated
Maximum Availability Solutions on the Oracle Technology network at http://
www.oracle.com/technetwork/middleware/weblogic/learnmore/index.html.

Migrating from Multi Data Source to Active GridLink

You can migrate to Multi Data Source from Active GridLink data sources using simple manual
process.

ORACLE

Application Changes to Migrate a Multi Data Source
Configuration Changes to Migrate a Multi Data Source

Basic Migration Steps

4-38

http://www.oracle.com/technetwork/middleware/weblogic/learnmore/index.html
http://www.oracle.com/technetwork/middleware/weblogic/learnmore/index.html

Chapter 4
Using Active GridLink Data Sources

Application Changes to Migrate a Multi Data Source

No changes should be required to your applications. A standard application looks up the Multi
Data Source in JNDI and uses it to get connections. By giving the Active GridLink data source
the same JNDI name as the Multi Data Source, the process is exactly the same in the
application to use a data source name from JNDI.

Configuration Changes to Migrate a Multi Data Source

The only changes necessary should be to your configuration. An Active GridLink data source
(AGL) is composed of information from the Multi Data Source (MDS) and the member generic
data sources combined into a single AGL descriptor. The only additional information that is
needed is the configuration of Oracle Notification Service (ONS) on the RAC cluster. In many
cases, the ONS information consists of the same host names as used in the MDS and the only
additional information is the port number, and which can be simplified by the use of a SCAN
address.

A MDS descriptor does not contain much information. The key components are:

e The JNDI name. It must become the name of your new AGL data source to keep things
transparent to the application. If you want to run the MDS in parallel with the AGL data
source, then you must give the AGL data source a new JNDI name but you must also
update the application to use that new JNDI name.

* Alist of the member Generic data sources which provide any remaining information that
you need to configure the AGL data source.

Each of the member Generic data sources has its own URL. As described in Using Multi
Data Sources with Oracle RAC, it has the following pattern:

jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS=
(PROTOCOL=TCP) (HOST=hostl-vip) (PORT=1521)
(CONNECT_DATA= (SERVICE NAME=dbservice) (INSTANCE NAME=instl)))

Each member should have its own host and port pair. The members probably have the
same service and often have the same port on different hosts. The URL for the AGL data
source is a combination of the host and port pairs. For example:

jdbc:oracle:thin:@ (DESCRIPTION=(ADDRESS LIST=
(ADDRESS= (PROTOCOL=TCP) (HOST=host1l-vip) (PORT=1521))
(ADDRESS= (PROTOCOL=TCP) (HOST=host2-vip) (PORT=1521)))
(CONNECT DATA= (SERVICE NAME=dbservice))

It is preferable to use an Oracle Single Client Access Name (SCAN) address instead of
multiple host or Virtual IP (VIP) addresses. SCAN addresses are simpler and makes
changes to the nodes in the cluster transparent. For more information on SCAN
addresses, see the Oracle Real Application Clusters Administration and Deployment
Guide. For example:

jdbc:oracle:thin:@(DESCRIPTION:(ADDRESS_LIST:(ADDRESS:(PROTOCOL:TCP)
(HOST=scanaddress) (PORT=1521))) (CONNECT DATA=(SERVICE NAME=dbservice))

e Ignore the Algorithm Type.

Basic Migration Steps

The following section provides the basic steps needed to migrate a Multi Data Source to an
Active GridLink data source:

ORACLE 439

Chapter 4
Using Active GridLink Data Sources

Delete the Multi Data Source and the Generic data sources from the configuration using
the WebLogic Server Administration Console.

Add a single Active GridLink data source using the WebLogic Server Administration
Console.

— Give it the same JNDI name as the Multi Data Source.
— Select an XA or non-XA driver based on your what Generic data sources used.

— Enter the complete URL as described in Configuration Changes to Migrate a Multi
Data Source.

— Set the user and password, it should be the same as what you had on the Multi Data
Source members.

— On the Test GridLink Datasource Connection page, click Test All Listeners and
verify the new URL.

— Enter the information for the ONS connections. Specify one or more host:port pairs.
For example, host1-vip:6200 Or scanaddress: 6200. If possible, use a single SCAN
address and port. Make sure that FAN Enabled is checked.

— Test the ONS connections.
Deploy the data source.
Edit the Active GridLink data source and configure additional parameters.

There are many data source parameters that can't be configured while creating a new data
source. In most cases, you should be able to use the parameter setting used in the Multi
Data Source. If there are conflicts, you will need to resolve them and select the appropriate
settings for your environment.

For more information on creating Active GridLink data sources using the WebLogic Server
Administration Console, see Configure JDBC GridLink data sources in Oracle WebLogic
Server Administration Console Online Help.

Managing Database Downtime with Active GridLink Data Sources

Learn several ways to handle database downtime with Active GridLink data sources in an
Oracle RAC database environment.

Active GridLink Configuration for Database Outages
Planned Outage Procedures

Unplanned Outages

Active GridLink Configuration for Database Outages

ORACLE

Ensure that the Active GridLink data source is configured as follows:

Fast Application Notification (FAN) is enabled. FAN provides rapid notification about state
changes for database services, instances, the databases themselves, and the nodes that
form the cluster. It allows for draining of work during planned maintenance with no errors
returned to applications.

Is using auto-ONS, or an explicitly defined ONS configuration. See ONS Client
Configuration.

Is using a dynamic database service. Do not connect using the administrative service or
PDB service. They are for intended for administration purposes only and are not supported
for FAN.

4-40

Chapter 4
Using Active GridLink Data Sources

» Test connections is enabled. Depending on the outage, applications may receive stale
connections when connections are borrowed before a down event is processed. This can
occur, for example, on a clean instance down when sockets are closed coincident with
incoming connection requests. To prevent the application from receiving any errors,
connection checks should be enabled at the connection pool. This requires setting test-
connections-on-reserve to true and setting the test-table (the recommended value for
Oracle is SQL ISVALID).

e SCAN usage is optimized. For database drivers 12.1.0.2 and later, set the URL setting
LOAD BALANCE=TRUE for the ADDRESSLIST as an optimization to force re-ordering of the
SCAN IP addresses that are returned from DNS for a SCAN address.

For database drivers before 12.1.0.2, use the connection property
oracle.jdbc.thinForceDNSLoadBalancing=true. See SCAN Addresses.

Planned Outage Procedures

For planned downtime, the primary goal is to manage scheduled maintenance with no
application interruption while maintenance is underway at the database server. Achieving this
goal requires the following:

e Transparent scheduled maintenance—Ensures that the scheduled maintenance process at
the database servers is transparent to applications.

e Session Draining—When an instance is brought down for maintenance at the database
server, session draining ensures that all work using instances at that node completes and
that idle sessions are removed. Sessions are drained without impacting in-flight work.

For maintenance purposes (such as software and hardware upgrades, repairs, changes,
migrations within and across systems), the services used are shutdown gracefully one or
several at a time without disrupting the operations and availability of the WebLogic Server
applications. Upon a FAN DOWN event, Active GridLink drains sessions away from the
instance(s) targeted for maintenance. It is necessary to stop non-singleton services running on
the target database instance (assuming that they are still available on the remaining running
instances) or relocate singleton services from the target instance to another instance. Once the
services have drained, the instance is stopped with no application errors

The following steps provide a high level overview of the planned maintenance process:
1. Detect DOWN event triggered by DBA on instances targeted for maintenance.

2. Drain sessions away from the targeted instance(s).

3. Perform scheduled maintenance on the database servers.

4. Resume operations on the upgraded node(s).

Unlike Multi Data Source where operations need to be coordinated on both the database
server and the mid tier, Active GridLink co-operates with the database so that all of these
operations are managed from the database server, simplifying the process. Table 4-3 lists the
steps that are executed on the database server and the corresponding reactions at the mid tier.

ORACLE 4an

ORACLE

Chapter 4
Using Active GridLink Data Sources

Table 4-3 Steps Performed on Database Server for Active GridLink Planned
Maintenance

Step# Database Server Steps Command Mid-Tier Reaction
1. Stop the non-singleton service $ srvctl stop The FAN Planned Down
without -force or relocate the service -db (reason=USER) event for the
singleton service. db name - service informs the connection pool
Omitting the —server option service that a service is no longer available
operates on all services on the service name - foruse and connections should be
instance. instance drained. Idle connections on the
instance name stopped service are released
- immediately. In-use connections
or are released when returned
$ srvctl (logically closed) by the application.
relocate New connections are reserved on
service -db other instance(s) and databases
db name - offering the services. This FAN
service action invokes draining the
service name - Sessions from the instance without
oldinst_oldins disrupting the application.
-newinst
newinst
2. Disable the stopped service to $ srvctl No new connections are associated
ensure it is not automatically disable service with the stopped/disabled service
started again. Disabling the service —dp db name - at the mid-tier.
is optional. This step is service
recommended for maintenance service name -
actions where the service must not instancg
restart automatically until the action
instance name
has completed. -
3. Allow sessions to drain. Not applicable The amount of time depends on the

application. There may be long-
running queries. Batch programs
may not be written to periodically
return connections and get new
ones. It is recommended that batch
be drained in advance of the
maintenance.

4-42

ORACLE

Chapter 4
Using Active GridLink Data Sources

Table 4-3 (Cont.) Steps Performed on Database Server for Active GridLink Planned
Maintenance

Step# Database Server Steps Command Mid-Tier Reaction
4. Check for long-running sessions. SQL> select The connection on the mid-tier will
Terminate these sessions usinga count (*) from get an error. If using JDBC Replay
transactional disconnect. Wait for (select 1 from Driver, itis possible to hide the
the sessions to drain. You can run y$sessionwhere €rror from the application by
the query again to check if any service name in automatically replaying the
sessions remain. upper ('gervice operatio.ns on a new conqection on
name') union - anot_her.lnstance. Otherwise, t_he
211 select 1 application gets a SQLException.
from
vStransaction
where status =
'ACTIVE')
SQL> exec
dbms_service.di
sconnect sessio
n('service nam
e’y
DBMS SERVICE.PO
ST TRANSACTION)
5. Repeat steps 1 through 4. Repeat for all Not Applicable
services targeted
for planned
maintenance
6. Stop the database instance using $ srvctl stop No impact on the mid-tier until the
the immediate option. instance -db database and service are re-
db name - started.
instance
instance name -
stopoption
immediate
7. Optionally, disable the instance so $ srvctl Not Applicable
that it will not automatically start disable
again during maintenance. instance -db
This step is for maintenance db name -
operations where the services instance
cannot resume during the instance name
maintenance. B
8. Perform the scheduled Not Applicable Not Applicable

maintenance work (patches,
repairs, and changes).

4-43

Chapter 4
Using Active GridLink Data Sources

Table 4-3 (Cont.) Steps Performed on Database Server for Active GridLink Planned

Maintenance

Step #

Database Server Steps

Command

Mid-Tier Reaction

9. Enable and start the instance.

$ srvctl enable

Not Applicable

instance -db

db _name -

instance

instanc

$ srvct

e name

1 start

instance -db

db name

instance

instance name

10. Enable and start the service back.
Check that the service is up and

running.

$ srvct
service
db name
service
service
instanc
instanc

$ srvct
service
db name
service
service
instanc
instanc

1 enable The FAN UP event for the service
-db informs the connection pool that a
_ new instance is available for use,

allowing sessions to be created on

this instance at the next request
submission. Automatic rebalancing
of sessions starts.

_name -
e
e name

1 start
-db

_name -
e
€ nhame

The following figure shows the distribution of connections for a service across two Oracle RAC
instances before and after Planned Downtime. Notice that the connection workload moves
from fifty-fifty across both instances to hundred-zero. In other words, RAC_INST_1 can be
taken down for maintenance without any impact on the business operation.

Figure 4-6 Distribution of Connections Across Two Oracle RAC Instances

ORACLE

Fig 1: Flanned Downtime

4-44

Chapter 4
Using Active GridLink Data Sources

Unplanned Outages

There are several differences when an unplanned outage occurs:

e A component at the database server may fail making all services unavailable on the
instances running at that node. There is no stop or disable on the services because they
have failed.

e The FAN unplanned DOWN event (reason=FAILURE) is delivered to the mid-tier.

e All sessions are closed immediately, preventing the application from hanging on TCP/IP
timeouts. Existing connections on other instances remain usable, and new connections are
opened to these instances as needed.

e There is no graceful draining of connections. For those applications using services that are
configured to use JDBC Replay Driver, active sessions are restored on a surviving
instance and recovered by replaying the operations, masking the outage from applications.
If not protected by JDBC Replay Driver, any sessions in active communication with the
instance receive a SQLException.

Gradual Draining

ORACLE

During planned database maintenance, gradually close the database connections instead of
closing all of the connections immediately. This strategy prevents uneven performance by the
application.

When planned database maintenance occurs, a planned down service event is processed by
the WebLogic Server JDBC data source. By default, all unreserved connections in the pool are
closed immediately and borrowed connections are closed when they are returned to the pool.
This shutdown process can cause uneven application performance because:

* New connections need to be created on the alternative instances.
e Alogon storm can occur on the other instances.

This feature is supported for an Active GridLink data source running with Oracle RAC.

Setting the Drain Timeout Period

The connection property weblogic.jdbc.drainTimeout is recognized to define the draining
period in seconds. The value must be a non-negative integer. For example, the following is a
sample from a WLST script that creates a data source.

jdbcSR = create(dsname, 'JDBCSystemResource')

jdbcResource = jdbcSR.getJDBCResource ()

driverParams = jdbcResource.getJDBCDriverParams ()

driverProperties = driverParams.getProperties ()

drainprop = driverProperties.createProperty('weblogic.jdbc.drainTimeout")
drainprop.setValue('60")

When running with the Oracle database 12.2 driver and the Oracle database 12.2 server, the
drain timeout can be configured on the database server side by setting -drain_timeout on the
database service. For example, a repayable service can be created by using:

srvctl add service -db ORCL -service otrade -clbgoal SHORT -preferred
orcll,orcl2 -rlbgoal SERVICE TIME -failoverretry 30 -failoverdelay 10 -
failovertype TRANSACTION -commit outcome TRUE -replay init time 1800 -retention
86400 -notification TRUE -drain_timeout 60

4-45

ORACLE

Chapter 4
Using Active GridLink Data Sources

If both the connection property and the server-side drain timeout are set on an Oracle
database 12.2 configuration, the server-side value takes precedence. This value is only used
during a planned down event to stop some but not all of the instances on which a service is
running. For example,

srvctl stop service -db ORCL -instance orcl2 -service otrade.example.com

If the drain period is not set or set to 0, then by default, there is no drain period and
connections are closed immediately.

A small value accelerates the migration, but might cause applications to experience higher
response times, as requests on the target node hit a cold buffer cache. A larger value migrates
work more gently and gives the buffer cache on the target node more time to warm-up, which
in consequence leads to reduced impact on the application, but a longer overall migration
duration.

Gradual Draining Processing

Processing starts when a database service that is configured for an Active GridLink data
source is stopped using srvctl stop service -db dbname -instance instancename -
service servicename.

Note:

Draining is not done if all services are shutdown (for example, when no instance
name is specified).

e If the drain timeout is not set or set to 0, there is no drain period. Unreserved connections
are immediately closed and borrowed connections are closed when returned to the pool.

» If the drain timeout is specified, it takes effect only if the service is available at another
RAC instance. For active/active services draining is gradual. For active/passive services,
version 12.2 of RAC relocates the service first, so gradual draining is also supported. This
feature does not work with Oracle DataGuard, which has only one primary active service at
atime.

< If an alternative instance is available, the drain timeout period is started. The granularity
and reducing the connections is done on a five-second interval. The total connection count
is the count of the unreserved and the count of the reserved connections. The total count is
divided by the value “(drain period/5)” to compute the number of connections to be
released per interval (note that if the number is less than 1, then some intervals may not
have any connections drained). After each five-second interval, harvestable connections
are harvested and interval count connections are closed if they are unreserved or marked
for closure on return to the pool. After the last interval, the instance is marked as down
(with respect to monitor status).

« If a data source is suspended or shut down, draining is stopped on any instance that is
currently draining. Unreserved connections are immediately closed and borrowed
connections are closed when returned to the pool.

« If a service is started again on an instance that is draining for that service, draining is
stopped.

« If a service is stopped on all instances by not specifying a instance name or the last
instance is stopped, draining is stopped on all instances. For all instances, unreserved
connections are immediately closed and borrowed connections are closed when returned
to the pool.

4-46

Chapter 4
Using Universal Connection Pool Data Sources

* When draining is happening on an instance, connection gravitation on the data source
(rebalancing connections based on the runtime load balancing information) is stopped until
the draining completes.

* When the service is stopped, the Load Balance Advisories (LBA) indicates that the
percentage for the stopped service should be 0. This causes the preference for allocating
existing connections to other instances first. If a connection does not exists on the other
instances and a connection exists on the stopped service, it will pick that one instead of
creating a connection. This applies to connections created using LBA or Session
Affinity. XA affinity will try to create a new connection for the instance in the affinity context,
and only use a different instance or branch if a new connection can't be created.

Example

The following figure shows the effect of gradual draining when a service on an instance is
stopped. In this case, the service is stopped on instance beadev? just after 25:00. Note that it
takes a while for the Load Balancing Advisories (LBA) to respond to the shut down at around
25:25 and the percentage goes to 0 for instance beadev2. WebLogic Server receives the
shutdown event almost instantly and starts to take action. If gradual draining were not
configured, the graph of Current Capacity would show the capacity dropping to 0 (or the count
of active connections) immediately when the event is received. Instead, you can see that the
capacity gradually goes down every five- seconds for the sixty-second drain period and there is
a corresponding increase in capacity on beadevl. Note that the total capacity stays constant
through the entire period.

Note:

These graphs were generated from an artificial work-load of requests that are getting
a connection, doing a little work, and releasing the connection. In the real world, the
results may not be so perfect.

Figure 4-7 Gradual Draining

LBA Percentages: Current Capacity:
100 : ~ e 12L
‘ beadevl beadev mo—mm—oomm—oommo—ooo&
50 beadev2 10 beadev2
0 a| M Total
24:50 25:00 25:10 25:20 25:30 25:40 25:50 26:00 6
LBA Affinity: I
I | 4
rue beadev1
beadev2 2
false ' i
24:50 25:00 25:10 25:20 25:30 25:40 25:50 26:00 24:50 25:00 25:10 25:20 2530 25:40 25:50 26:00

Using Universal Connection Pool Data Sources

A Universal Connection Pool (UCP) data source is provided as an option for users who wish to
use Oracle Universal Connection Pooling to connect to Oracle Databases. UCP provides an
alternative connection pooling technology to Oracle WebLogic Server connection pooling.

ORACLE A-47

Chapter 4
Using Universal Connection Pool Data Sources

What is Universal Connection Pool Data Source

Configuring Universal Connection Pool Data Source

To configure Universal Connection Pool data sources in your WebLogic domain, you can
use the WebLogic Server Administration Console, the WebLogic Scripting Tool (WLST), or
Fusion Middleware Control.

Universal Connection Pool Multi Tenant Shared Pool support

To use this feature, the URI for the Universal Connection Pool (UCP) MT Shared Pool
support XML configuration file must be specified using the
oracle.ucp.jdbc.xmlConfigFile system property before any UCP data source is loaded
in the JVM.

Monitoring Universal Connection Pool JDBC Resources

Learn about monitoring Universal Connection Pool JDBC Resources using the WebLogic
Sever Administration Console or the JDBCUCPDataSourceRuntimeMBean,
JDBCDataSourceRuntimeMBean .

Oracle Sharding Support
Sharding is a data tier architecture in which data is horizontally partitioned across
independent databases.

What is Universal Connection Pool Data Source

A Universal Connection Pool data source is provided as an option for users who wish to use
UCP for connecting to Oracle Databases. UCP provides an alternative connection pooling
technology to Oracle WebLogic Server connection pooling.

Note:

Oracle generally recommends the use of Generic data source, Multi Data Source, or
Active GridLink data source with Oracle WebLogic Server to establish connectivity
with Oracle databases.

WebLogic Server provides the following support when using a UCP data source:

Configuration as an alternative data source to Generic data source, Multi Data Source, or
Active GridLink data source.

Deploy and undeploy data source.
Basic monitoring and statistics:

— ConnectionsTotalCount

— CurrCapacity

— FailedReserveRequestCount

— ActiveConnectionsHighCount

— ActiveConnectionsCurrentCount

Certification with Oracle simple driver, XA driver, and JDBC Replay Driver driver.

A UCP data source does not support:

ORACLE

WebLogic Server Transaction Manager (one-phase, LLR, JTS, JDBC TLog, determiner
resource, and so on).

4-48

Chapter 4
Using Universal Connection Pool Data Sources

e Additional life cycle operations (suspend, resume, shutdown, forceshutdown, start, and so
on).

e Generic support for any connection pool.

* Oracle WebLogic Server Security options.

» JDBC drivers other than those listed above.

e Oracle WebLogic Server data operations such as JMS, Leasing, EJB, and so on.
* RMI access to a UCP data source.

The implementations of UCP data sources are loosely coupled, allowing the swapping of the
ucp.jar to support the use of new UCP features by the applications. UCP data sources are not
supported in an application-scoped/packaged or stand-alone module environment.

For details about the Oracle Universal Connection Pool, see Oracle Universal Connection Pool
for JDBC Developer's Guide.

Configuring Universal Connection Pool Data Source

To configure Universal Connection Pool data sources in your WebLogic domain, you can use
the WebLogic Server Administration Console, the WebLogic Scripting Tool (WLST), or Fusion
Middleware Control.

The WebLogic Server Administration Console and WLST methods are described in the
following topics:

e Configuring a UCP in the WebLogic Server Administration Console
e Configuring a UCP Using WLST

Configuring a UCP in the WebLogic Server Administration Console

ORACLE

The procedure for creating a Universal Connection Pool (UCP) data source in the WebLogic
Server Administration Console is provided in Create Universal Connection Pool data sources
in the Oracle WebLogic Server Administration Console Online Help. This procedure includes
instructions for accessing the data source configuration wizard.

The following sections provide an overview of the basics steps used in the data source
configuration wizard to create a data source using the WebLogic Server Administration
Console:

Set JDBC Data Source Properties

The JDBC Data Source Properties section includes options that determine the identity of the
data source and the way the data is handled on a database connection. Guidelines for
configuring these properties are described as follows:

» Data Source Names—Enter a name for the UCP data source in the Name field. JDBC
data source names are used to identify the data source within the WebLogic domain. For
system resource data sources, names must be unique among all other JDBC system
resources, including data sources. To avoid naming conflicts, data source names should
also be unique among other configuration object names, such as servers, applications,
clusters, and JMS queues, topics, and servers.

The data source name cannot contain the following special characters: @ # $.

* Scope—Select the scope for the data source from the list of available scopes. You can set
the scope to Global (at the domain level), or to any existing Resource Group or Resource
Group Template.

4-49

https://docs.oracle.com/database/121/JJUCP/intro.htm#JJUCP8109
https://docs.oracle.com/database/121/JJUCP/intro.htm#JJUCP8109

ORACLE

Chapter 4
Using Universal Connection Pool Data Sources

* JNDI Names—Enter a JNDI name for the UCP data source in the JNDI Name field. You
can configure a data source so that it binds to the JNDI tree with a single nhame or multiple
names. You can use a multi-JNDI-named data source in place of legacy configurations that
included multiple data sources that pointed to a single JDBC connection pool. For more
information, see Developing JNDI Applications for Oracle WebLogic Server.

- Database Type and Driver—The UCP data source is certified with three Oracle drivers:
thin XA and non-XA, and an JDBC Replay Driver driver. Select the required driver from the
menu.

The supported combinations of driver and JDBC connection factory are shown in Table 4-4

Table 4-4 Supported Driver and Connection Factory Combinations for UCP Data
Source

Driver Factory (ConnectionFactoryClassName)
oracle.ucp.jdbc.PoolDataSourceImpl oracle.ucp.jdbc.PoolDataSourceImpl
(default)
oracle.ucp.jdbc.PoolXADataSourceImpl oracle.jdbc.xa.client.OracleXADataSourc
e
oracle.ucp.jdbc.PoolDataSourceImpl oracle.jdbc.replay.OracleDataSourceImpl
Note:

The JDBC Replay Driver does not currently support XA transactions.

If a non-XA driver from the list in Table 4-4 is specified with an XA factory from the
table, an error is generated. If you specify values that are not in the table they are not
validated.

If the driver-name is not specified in the jdbc-driver-params, it defaults to
oracle.ucp.jdbc.PoolDataSourceImpl.

If you specify a supported driver name but do not specify the
ConnectionFactoryClassName connection property, the corresponding entry from
Table 4-4 is used. If you do not specify a supported driver name, an error is
generated.

Set Connection Properties

Connection properties are used to configure the connection between the data source and the
DBMS. There are two ways that you can enter the connection properties for a UCP data
source in the Administration Console.

On the Connection Properties page of the wizard, all of the available connection properties for
a UCP driver are displayed so that you can enter the appropriate values. As an alternative, you
can configure properties by entering the properties directly into the Properties text box on the
Test Database Connection page using the format propertyName=value. Any values that you
entered on the Connection Properties page are already listed Properties text box.

Table 4-5 describes the connection properties that you can configure for a UCP data source.
For more information about UCP properties, see Class PoolDataSourcelmpl. In Oracle
Universal Connection Pool for JDBC Java API Reference. Attributes are determined by setters

4-50

ORACLE

Chapter 4

Using Universal Connection Pool Data Sources

on the PoolDataSourceImpl class. Use the attribute name without the "set" prefix. The names

are case insensitive.

Table 4-5 Universal Connection Pool Properties

Property

Type

Description

AbandonedConnectionTimeout

int

Sets the abandoned connection
timeout.

The range of valid values is 0 to
Integer.MAX VALUE. The
default is 0.

ConnectionFactoryClassName

String

Sets the Connection Factory
class name.

ConnectionFactoryPropertie
S

name=value

Sets the connection factory
properties on the connection
factory.

ConnectionFactoryProperty

name=value

Sets a connection factory
property on the connection
factory.

ConnectionHarvestMaxCount

int

Sets the maximum number of
connections that can be
harvested when the connection
harvesting occurs.

ConnectionHarvestTriggerCo
unt

int

Sets the number of available
connections at which the
connection pool's connection
harvesting will occur.

ConnectionLabelingHighCost

int

Sets the cost value that identifies
a connection as "high-cost" for
connection labeling.

ConnectionPoolName

String

Sets the connection pool name.

ConnectionProperties

name=value

Sets the connection properties on
the connection factory.

ConnectionProperty

name=value

Sets a connection property on
the connection factory.

ConnectionWaitTimeout int Sets the amount of time to wait
(in seconds) for a used
connection to be released by a
client.
The range of valid values is 0 to
Integer.MAX VALUE. The
default is 3.

DatabaseName String Sets the database name.

DataSourceName String Sets the data source name.

Description String Sets the data source description.

FastConnectionFailoverEnab |Boolean Enables Fast Connection Failover

led

(FCF) for the connection pool
accessed using this pool-enabled
data source. Valid values are true
and false.

4-51

Chapter 4
Using Universal Connection Pool Data Sources

Table 4-5 (Cont.) Universal Connection Pool Properties

Property Type Description

HighCostConnectionReuseThr | int Sets the high-cost connection

eshold reuse threshold for connection
labeling.

InactiveConnectionTimeout |int Sets the inactive connection
timeout.

he range of valid values is 0 to
Integer.MAX VALUE. The
default is 0.

InitialPoolSize int Sets the initial pool size.

The range of valid values is 0 to
Integer.MAX VALUE. Itisillegal
to set this to a value greater than
the maximum pool size. The

default is 0.
LoginTimeout int Sets the login timeout.
MaxConnectionReuseCount int Sets the connection reuse count
property.
MaxConnectionReuseTime long Sets the connection reuse time
property.
MaxIdleTime int Sets Idle timeout for available
connections in the pool.
MaxPoolSize int Sets the maximum number of
connections.

The range of valid values is 1 to
Integer.MAX VALUE. The
default is Integer .MAX VALUE.

MaxStatements int Sets the maximum number of
statements that may be pooled or
cached on a connection.

MinPoolSize int Sets the minimum number of
connections.

The range of valid values is 0 to
Integer.MAX VALUE. Itisillegal
to set this to a value greater than
the maximum pool size. The

default is 0.
NetworkProtocol String Sets the data source network
protocol.
ONSConfiguration String Sets the configuration string used
for remote ONS subscription.
Password String Sets the password with which
connections have to be obtained.
PortNumber int Sets the database port number.
PropertyCycle int Sets the Property cycle in
seconds.
RoleName String Sets the data source role name.

ORACLE 455

ORACLE

Chapter 4
Using Universal Connection Pool Data Sources

Table 4-5 (Cont.) Universal Connection Pool Properties

Property Type Description

ServerName String Sets the database server name.

SQLForValidateConnection String Sets the value (SQL) for
SQLForValidateConnection
property.

TimeoutCheckInterval int Sets the
timeoutCheckInterval,in
seconds.

TimeToLiveConnectionTimeou| int Sets the maximum time, in

t seconds, that a connection may
remain in-use.

URL String Sets the URL that the data

source uses to obtain
connections to the database.

User String Sets the user name with which
connections have to be obtained.

ValidateConnectionOnBorrow|Boolean Sets whether or not a connection
being borrowed should first be
validated. Valid values are true
and false.

Note:

System properties and encrypted properties are supported in addition to normal
string literals. See the following topics in Oracle WebLogic Server Administration
Console Online Help:

* Set System Properties

* Encrypt connection properties

If the jdbc-driver-params URL is set, any URL property is ignored. If the encrypted-password
is set, any password property is ignored.

The attributes ConnectionFactoryProperty, ConnectionFactoryProperties,
ConnectionProperty, and ConnectionFactoryProperties accept values of the form
"namel=valuel, name2=value2...".

Test Database Connections

The Test Database Connection page allows you to enter free-form values for properties and to
test a database connection before the data source configuration is finalized using a table name
or SQL statement. If necessary, you can test additional configuration information using the
Properties and System Properties attributes.

Select Targets

You can select one or more targets to which to deploy your new UCP data source. If you don't
select a target, the data source will be created but not deployed. You will need to deploy the
data source at a later time.

4-53

Chapter 4
Using Universal Connection Pool Data Sources

Configuring a UCP Using WLST

ORACLE

You can create a UCP data source using WebLogic Scripting Tool (WLST) in the same way
that you create other data source types. However, UCP data sources have less attributes.

The configuration elements for a UCP data source are as follows.
° name

e datasource-type=UCP

e jdbc-driver-params url

e jdbc-driver-params property - user

e jdbc-driver-params password-encrypted

e jdbc-data-source-params jndi-name

e jdbc-driver-params other properties

No other elements from the WebLogic Server data source descriptor are recognized. If other
elements are specified, they are ignored.

A sample WLST script for creating a UCP data source is provided in Example 4-2

Example 4-2 Sample WLST Script to Create a UCP Data Source

import sys, socket

import os

hostname = socket.gethostname ()

connect ("username", "password", "t3://"+hostname+":7001")
edit ()

startEdit ()

serverName="AdminServer"

serverBean = getMBean ('/Servers/'+serverName)
host="%s.us.example.com' %hostname

print 'Creating UCP datasource'

domain = getMBean ("/")

startEdit ()

resourceName="ucpDS'

print "Creating datasource ds in domain"
systemResource=domain.createJDBCSystemResource (resourceName)
systemResource.setName (resourceName)
jdbcResource=systemResource.getJDBCResource ()
jdbcResource.setName (resourceName)
jdbcResource.setDatasourceType ('UCP')
driverParams=jdbcResource.getJDBCDriverParams ()
driverParams.setDriverName ('oracle.ucp.jdbc.PoolDataSourceImpl')
driverParams.setUrl ('jdbc:oracle:thin:@dbhost:1521/otrade")
properties = driverParams.getProperties|()
properties.createProperty('user', 'dbuser')
properties.createProperty('ConnectionFactoryClassName',
'oracle.jdbc.pool.OracleDataSource')
driverParams.setPassword ('PASSWD')
jdbcDataSourceParams=jdbcResource.getJDBCDataSourceParams ()
jdbcDataSourceParams.addJNDIName (resourceName)
jdbcDataSourceParams.setGlobalTransactionsProtocol ('None')
cd('/SystemResources/' + resourceName)

4-54

Chapter 4
Using Universal Connection Pool Data Sources

set ('Targets',jarray.array([ObjectName ('com.bea:Name="' + serverName +
', Type=Server')], ObjectName))

save ()

activate()

Note:

You can also use the sample WLST script for creating a Generic data source that is
provided with WebLogic Server as the basis for your UCP data source:

EXAMPLES HOME\wl server\examples\src\examples\wlst\online\jdbc data so
urce creation.py

where EXAMPLES HOME represents the directory in which the WebLogic Server code
examples are configured. See WLST Online Sample Scripts in Understanding the
WebLogic Scripting Tool.

Universal Connection Pool Multi Tenant Shared Pool support

ORACLE

To use this feature, the URI for the Universal Connection Pool (UCP) MT Shared Pool support
XML configuration file must be specified using the oracle.ucp.jdbc.xmlConfigFile system
property before any UCP data source is loaded in the JVM.

This can be set on the command line when starting Weblogic Server. Since this is sometimes
inconvenient, it is also possible to set the xm1ConfigFile connection property. If you use the
connection property approach, it must be set on all UCP data sources configured in WebLogic
Server, even if they do not use the XML file. The format is generally something like file:///
path/file.xml.

When using the shared pool feature, all attributes for the data source are ignored except for
the following:

 Name - the data source name
e Data source Type — UCP

e Driver class name — oracle.ucp.jdbc.PoolDataSourceImpl Or
oracle.ucp.jdbc.PoolXADataSourceImpl

e Property DataSourceFromConfiguration — data source name in the XML file

e Property xmlConfigFile — optionally set the URI of the XML file if not set as a system
property
* JNDI Name — the JNDI name where the data source object is mapped

Example:

import sys, socket

import os

hostname = socket.gethostname ()

connect ("weblogic", "server password","t3://"+hostname+":7001")
edit ()

startEdit ()

serverName="myserver"

4-55

ORACLE

Chapter 4
Using Universal Connection Pool Data Sources

print 'Creating UCP datasource'

domain = getMBean ("/")

startEdit ()

resourceName="'ds5"'

print "Creating datasource ds in domain"
systemResource=domain.createJDBCSystemResource (resourceName)
systemResource.setName (resourceName)
jdbcResource=systemResource.getJDBCResource ()
jdbcResource.setName (resourceName)
jdbcResource.setDatasourceType ('UCP')
driverParams=jdbcResource.getJDBCDriverParams ()
driverParams.setDriverName ('oracle.ucp.jdbc.PoolDataSourceImpl')
properties = driverParams.getProperties()
properties.createProperty ('DataSourceFromConfiguration', 'pdsl')
properties.createProperty ('XmlConfigFile', 'file:///SharedPoolDemo.xml")
jdbcDataSourceParams=jdbcResource.getJDBCDataSourceParams ()
jdbcDataSourceParams.addJNDIName (resourceName)
cd('/SystemResources/' + resourceName)

set ('Targets',jarray.array([ObjectName ('com.bea:Name="' + serverName +
', Type=Server')], ObjectName))

save ()

activate()

The UCP XML file might look like the following.

<?xml version="1.0" encoding="UTF-8"?>
<ucp-properties>
<connection-pool
connection-pool-name="pooll"
connection-factory-class-name="oracle.jdbc.pool.OracleDataSource"
url="jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS=(PROTOCOL=tcp)
(HOST=dbhost) (PORT=5521)) (CONNECT_DATA:
(SERVICE NAME=dbhostservice)))"
user="system"
password="manager"
initial-pool-size="4"
min-pool-size="2"

max-pool-size="10"

shared="true"

>
<data-source data-source-name="pdsl"
user="system"

password="manager"

service="pdbl service"
description="pdbl data source"

/>

<data-source data-source-name="pds2"
user="system"

password="manager"

service="pdb2 service"
description="pdb2 data source"

/>
</connection-pool>
</ucp-properties>

4-56

Chapter 4
Using Universal Connection Pool Data Sources

Monitoring Universal Connection Pool JDBC Resources

Learn about monitoring Universal Connection Pool JDBC Resources using the WebLogic
Sever Administration Console or the JDBCUCPDataSourceRuntimeMBean,
JDBCDataSourceRuntimeMBean .

The JDBCUCPDataSourceRuntimeMBean provides methods for getting the current state of the
data source and for getting statistics about the data source, such as the average number of
active connections, the current number of active connections, and the highest number of active
connections. This MBean extends the JDBCDataSourceRuntimeMBean SO that it can be returned
with the list of other JDBC MBeans from the JDBC service. See
JDBCUCPDataSourceRuntimeMBean in the MBean Reference for Oracle WebLogic Server.

In addition to runtime statistics, the testPool () operation returns null if the test is success or
an error string otherwise (similar to other data source types). Testing the pool is done only if

SQLForValidateConnection is setto a SQL string to be executed for validation (for example

SELECT 1 from DUAL). The rest of the operations will take no action.

To understand more about JDBC monitoring, see Monitoring WebLogic JDBC Resources.

Oracle Sharding Support

Sharding is a data tier architecture in which data is horizontally partitioned across independent
databases.

Oracle sharding is available in 12.2 UCP and surfaced from WebLogic Server via the native
UCP data source feature. See Overview of Oracle Sharding in Using Oracle Sharding.

Once the UCP data source is accessed using a JNDI look-up, the sharding API's can be used,
as in the following java code:

import javax.naming.Context;

import javax.naming.InitialContext;
import java.sql.Connection;

import oracle.ucp.jdbc.PoolDataSource;

Context cts = new InitialContext();

/// Look up the data source using JNDI
PoolDatasource pds = (PoolDataSource) ctx.lookup ("ShardedDB");

// Create a key corresponding to sharding key columns, to access the correct
shard
OracleShardingKey key = pds.createShardingKeyBuilder () .subkey (100,
JDBCType .NUMERIC) .build () ;

// Fetch a connection to the shard corresponding to the key
Connection conn = pds.createconnectionBuilder ().shardingKey (key) .build();

// Use the above connection for performing shard specific operations

ORACLE 4-57

Chapter 4
Using Proxy Data Sources

Using Proxy Data Sources

Proxy data sources provide the ability to switch between databases in a WebLogic Server
Multitenant environment.

Note:

WebLogic Server Multitenant domain partitions are deprecated in WebLogic Server
12.2.1.4.0 and will be removed in the next release. Oracle recommends that
customers using domain partitions as a container dedicated to specific applications
and resources consider the use of alternative container-based architectures,
including the deployment of WebLogic applications and services in Docker containers
running in Kubernetes clusters.

e What is Proxy Data Source
Applications often need a quick access to data sources by hame without knowing the
naming conventions, context names (partitions or tenants), and so on. Proxy data sources
provide applications the access to such underlying data sources.

e Configuring Proxy Data Source
To create and configure Proxy data sources in your WebLogic domain, you can use the
WebLogic Server Administration Console, WLST, or Fusion Middleware Control.

e Monitoring Proxy Data Source JDBC Resources
Monitor a Proxy data source using runtime statistics. You can view runtime statistics via the
WebLogic Server Administration Console or through the JDBCProxyDataSourceRuntime
MBean.

What is Proxy Data Source

ORACLE

Applications often need a quick access to data sources by name without knowing the naming
conventions, context names (partitions or tenants), and so on. Proxy data sources provide
applications the access to such underlying data sources.

The Proxy data source simplifies the administration of multiple data sources by providing a
light-weight mechanism for accessing a data source associated with a partition or tenant. All of
the significant processing happens in the data sources to which it points. That is, the
underlying data sources actually handle deployment, management, security, and so on.

Proxy data source provides for WebLogic Server data source access with:

e Minimal configuration.

* Minimal performance overhead including no double connection pooling (for example, no
pooling of connections in both the proxy and the underlying connection pool).

e The ability to switch between replicated data sources in the WebLogic Server Multitenant
environment.

« JNDI access to a data source object.
e A data source object that implements javax.sgl.DataSource.

e A callback interface that can be implemented to do the data source switching based on the
context in the environment (for example, partition, tenant, and so on)

4-58

Chapter 4
Using Proxy Data Sources

e Switching configuration by the application both at the context-level used for switching (such
as tenant, partition, other information in the thread) and to which data sources the switch is
done.

« Direct access to all the data sources to which it may want to switch.

Configuring Proxy Data Source

To create and configure Proxy data sources in your WebLogic domain, you can use the
WebLogic Server Administration Console, WLST, or Fusion Middleware Control.

Procedures for creating a Proxy data source using Fusion Middleware Control are described in
Create JDBC Proxy data sources in Administering Oracle WebLogic Server with Fusion
Middleware Control.

When creating a Proxy data source, note the following:

* The Proxy data source does not validate the values in the switching properties to confirm
that they match the context names or data sources. If an invalid data source is specified,
getting a connection will fail. However, the data sources to which the proxy points do not
have to be available when configured or deployed.

* There are no rules for the data sources to which the proxy points. In general, however, the
members should basically provide the same functionality. They can be from different
vendor drivers but should have the same schemas, transaction properties, and general
functionality. Oracle does not assume that the underlying data sources are configured to
use Oracle Container Database/Pluggable Database technology or that the data sources
use an Oracle driver.

e The proxy data source provides a javax.sql.DataSource interface. The XADataSource
equivalent is not provided or necessary. The additional methods on XADataSource are
necessary only for handling transaction enlistment. Transaction processing is handled at
the member/real data source level instead of at the proxy level; doing it at two levels would
cause problems.

e Proxy data sources are not supported in an application-scoped environment, nor should
they reference application-scoped data sources. They must be defined as system
resources and targeted to server(s) and/or cluster(s) (WebLogic Server does not support
targeting to a domain).

The Administration Console and WLST methods are described in the following topics:

« Configuring a Proxy Data Source in the WebLogic Server Administration Console

e Configuring a Proxy Data Source Using WLST

Configuring a Proxy Data Source in the WebLogic Server Administration Console

ORACLE

The procedure for creating a Proxy data source in the WebLogic Server Administration
Console is provided in Create Proxy data sources in the Oracle WebLogic Server
Administration Console Online Help. This procedure includes instructions for accessing the
data source configuration wizard.

The following sections provide an overview of the basics steps used in the data source
configuration wizard to create a data source using the WebLogic Server Administration
Console:

e Set Proxy Data Source Properties

e Select Target

4-59

Chapter 4
Using Proxy Data Sources

Set Proxy Data Source Properties

The Proxy Data Source Properties section includes options that determine the identity of the
data source and the way the data is handled on a database connection. Guidelines for
configuring these properties are described as follows:

- Data Source Names— JDBC data source names are used to identify the data source
within the WebLogic domain. For system resource data sources, names must be unique
among all other JDBC system resources, including data sources. To avoid haming
conflicts, data source names should also be unique among other configuration object
names, such as servers, applications, clusters, and JMS queues, topics, and servers.

e Scope—You cannot set the scope for Proxy data sources.

< JNDI Names— You can configure a data source so that it binds to the JNDI tree with a
single name or multiple names. You can use a multi-JNDI-named data source in place of
legacy configurations that included multiple data sources that pointed to a single JDBC
connection pool. For more information, see Developing JNDI Applications for Oracle
WebLogic Server.

- Switching Properties—Enter the switching properties to be passed to the switching
callback method for the Proxy data source. This value is dependent on the requirements of
the switching callback. For the default switching callback, the format of the proxy switching
properties is
partitionl=datasourcel;partition2=datasource?;...;default=datasourcen. Itis
passed to the second argument of getDataSource () in the switching callback.

The default WebLogic Server implementation uses the current partition to look up the data
source in the switching properties. If it is not in a partition, the partition value is DOMAIN. If
no match is found or it is not in a partition, the data source associated with default is used.
If a default value is not appropriate, then do not provide a default value and a null is
returned. The default callback can only be used within the WebLogic Server.

* Switching Callback—Enter the name of the proxy switching callback class. To use the
default callback, leave this value empty. If you specify a callback class, it must implement
the weblogic.jdbc.extensions.DataSourceSwitchingCallback interface. This interface
has one method that takes two parameters. The format of the two parameters depends on
the implementation. The first parameter, which is a comma-separated list of INDI names
for the proxy data source, is not used in the default callback. The second parameter is
described above in the Switching Properties.

Select Target

You can select one or more targets to which to deploy your new Proxy data source. If you don't
select a target, the data source will be created but not deployed. You will need to deploy the
data source at a later time.

Configuring a Proxy Data Source Using WLST

ORACLE

You can create a Proxy data source using WLST in the same way that you create other data
source types. However, Proxy data sources require less attributes.
The configuration elements for a Proxy data source are as follows.

® name

* datasource-type=PROXY

4-60

Chapter 4
Using Proxy Data Sources

* jdbc-data-source-params proxy-switching-properties—A string that defines how the
switching is done. This value is optional and is null if not specified. This value is
configurable and dynamic.

* jdbc-data-source-params proxy-switching-callback—A string that defines the name of
a class that implements weblogic.jdbc.extensions.DataSourceSwitchingCallback. This
value is optional and a default callback class will be used for WebLogic Server. This value
is configurable and dynamic.

e jdbc-data-source-params jndi-name—An array of String names at which the data source
is mapped into the WebLogic Server (Java EE) JNDI. In addition to other naming
conventions regarding JNDI names, JNDI name(s) for the proxy data source must not
contain a comma (,).

No other elements from the WebLogic Server data source descriptor are recognized. If other
elements are specified, they are ignored.

A sample WLST script for creating a Proxy data source is provided in Example 4-3

Example 4-3 Sample WLST Script to Create a Proxy Data Source

import sys, socket

import os

hostname = socket.gethostname ()

connect ("username", "password", "t3://"+hostname+":7001")
edit ()

startEdit ()

serverName="AdminServer"

serverBean = getMBean ('/Servers/'+serverName)
host='%s.us.example.com' %hostname

print 'Creating Proxy datasource'

domain = getMBean ("/")

startEdit ()

resourceName="'proxyDS'

print "Creating data source in domain"
systemResource=domain.createJDBCSystemResource (resourceName)
systemResource.setName (resourceName)
jdbcResource=systemResource.getJDBCResource ()
jdbcResource.setName (resourceName)
jdbcResource.setDatasourceType ('PROXY ")
jdbcDataSourceParams=jdbcResource.getJDBCDataSourceParams ()
jdbcDataSourceParams.addJNDIName (resourceName)
jdbcDataSourceParams.setProxySwitchingProperties ('partitionl=partitionl:ds;def
ault=domain:ds')

cd('/SystemResources/' + resourceName)

set ('Targets',jarray.array([ObjectName ('com.bea:Name="' + serverName +
', Type=Server')], ObjectName))

save ()

activate ()

ORACLE 46l

Chapter 4
Using Proxy Data Sources

Note:

You can also use the sample WLST script for creating a Generic data source that is
provided with WebLogic Server as the basis for your Proxy data source:

EXAMPLES HOME\wl server\examples\src\examples\wlst\online\jdbc data so
urce creation.py

where EXAMPLES_HOME represents the directory in which the WebLogic Server
code examples are configured. See WLST Online Sample Scripts in Understanding
the WebLogic Scripting Tool.

Monitoring Proxy Data Source JDBC Resources

ORACLE

Monitor a Proxy data source using runtime statistics. You can view runtime statistics via the
WebLogic Server Administration Console or through the JDBCProxyDataSourceRuntime
MBean.

The JDBCProxyDataSourceRuntimeMBean extends the JDBCDataSourceRuntimeMBean SO that it
can be returned with the list of other JDBC MBeans from the JDBC service for tools such as
the WebLogic Server Administration Console. For a PROXY data source, it sets the state. All
runtime statistics such as active connections and so on are not set (they will be set to -1).

In addition to runtime statistics, the testPool () operation returns null if the test is a success.
Otherwise it returns an error string (similar to other data source types). The rest of the
operations take no action.

See JDBCProxyDataSourceRuntimeMBean in the MBean Reference for Oracle WebLogic
Server.

For JDBC monitoring, see Monitoring WebLogic JDBC Resources.

4-62

JDBC Data Source Transaction Options

When you configure a JDBC data source using the WebLogic Server Administration Console,
WebLogic Server automatically selects specific transaction options based on the type of JDBC

driver.

WebLogic JDBC data sources supports the following transaction options:

ORACLE

XA drivers: For XA drivers, the system automatically selects the Two-Phase Commit
protocol for global transaction processing.

Non-XA drivers: For non-XA drivers, local transactions are supported by definition. In
addition, WebLogic Server offers Global Transactions options too.

You must select Support Global Transactions option if you want to use connections from
the data source in global transactions, even though you have not selected an XA driver.
See Enabling Support for Global Transactions with a Non-XA JDBC Driver for more
information.

When you select Supports Global Transactions, you must also select the protocol for
WebLogic Server to use for the transaction branch when processing a global transaction:

Logging Last Resource: With this option, the transaction branch in which the
connection is used is processed as the last resource in the transaction and is
processed as a local transaction. Commit records for two-phase commit (2PC)
transactions are inserted in a table on the resource itself, and the result determines the
success or failure of the prepare phase of the global transaction. This option offers
some performance benefits and greater data safety than Emulate Two-Phase Commiit,
but it has some limitations. See Understanding the Logging Last Resource Transaction
Option.

Note:

Logging Last Resource is not supported for data sources used by a multi
data source except when used with Oracle RAC version 10g Release 2
(10gR2) and greater versions as described in Administrative Considerations
and Limitations for LLR Data Sources.

Emulate Two-Phase Commit: With this option, the transaction branch in which the
connection is used always returns success for the prepare phase of the transaction. It
offers performance benefits, but also has risks to data in some failure conditions.
Select this option only if your application can tolerate heuristic conditions. See
Understanding the Emulate Two-Phase Commit Transaction Option.

One-Phase Commit: (selected by default) With this option, a connection from the data
source can be the only participant in the global transaction and the transaction is
completed using a one-phase commit optimization. If more than one resource
participates in the transaction, an exception is thrown when the transaction manager
calls XAResource.prepare on the 1PC resource.

Enabling Support for Global Transactions with a Non-XA JDBC Driver

Understanding the Logging Last Resource Transaction Option

5-1

Chapter 5
Enabling Support for Global Transactions with a Non-XA JDBC Driver

e Understanding the Emulate Two-Phase Commit Transaction Option
If you need to support distributed transactions with a JDBC data source, but there is no
available XA-compliant driver for your DBMS, you can select the Emulate Two-Phase
Commit for non-XA Driver option for a data source to emulate two-phase commit for the
transactions in which connections from the data source participate.

e Local Transaction Completion when Closing a Connection

Enabling Support for Global Transactions with a Non-XA JDBC

Driver

If you use global transactions in your applications, you should use an XA JDBC driver to create
database connections in the JDBC data source. If an XA driver is unavailable for your
database, or you prefer not to use an XA driver, you should enable support for global
transactions in the data source.

You should also enable support for global transaction if your applications meet any of the
following criteria:

e Use the EJB container in WebLogic Server to manage transactions
e Include multiple database updates within a single transaction

e Access multiple resources, such as a database and the Java Messaging Service (JMS),
during a transaction

e Use the same data source on multiple servers (clustered or non-clustered)

With an EJB architecture, it is common for multiple EJBs that are doing database work to be
invoked as part of a single transaction. Without XA, the only way for this to work is if all
transaction participants use the exact same database connection. When you enable global
transactions and select either Logging Last Resource or Emulate Two-Phase Commit,
WebLogic Server internally uses the JTS driver to make sure all EJBs use the same database
connection within the same transaction context without requiring you to explicitly pass the
connection from EJB to EJB.

If multiple EJBs are participating in a transaction and you do not use an XA JDBC driver for
database connections, configure a Data Source with the following options:

e Supports Global Transactions selected
* Logging Last Resource or Emulate Two-Phase Commit selected

This configuration will force the JTS driver to internally use the same database connection for
all database work within the same transaction.

With XA (requires an XA driver), EJBs can use a different database connection for each part of
the transaction. WebLogic Server coordinates the transaction using the two-phase commit
protocol, which guarantees that all or none of the transaction will be completed.

Understanding the Logging Last Resource Transaction Option

ORACLE

WebLogic Server supports the Logging Last Resource (LLR) transaction optimization with
JDBC data sources. LLR is a performance enhancement option that enables one non-XA
resource to participate in a global transaction with the same ACID guarantee as XA. LLR is a
refinement of the "Last Agent Optimization”. It differs from Last Agent Optimization in that it is
transactionally safe.

The LLR resource uses a local transaction for its transaction work. The WebLogic Server
transaction manager prepares all other resources in the transaction and then determines the

5-2

Chapter 5
Understanding the Logging Last Resource Transaction Option

commit decision for the global transaction based on the outcome of the LLR resource's local
transaction.

The LLR optimization improves performance by:

* Removing the need for an XA JDBC driver to connect to the database. XA JDBC drivers
are typically inefficient compared to non-XA JDBC drivers.

* Reducing the number of processing steps to complete the transaction, which also reduces
network traffic and the number of disk 1/Os.

* Removing the need for XA processing at the database level

When a connection from a data source configured for LLR participates in a two-phase commit
(2PC) global transaction, the WebLogic Server transaction manager completes the transaction

by:
* Calling prepare on all other (XA-compliant) transaction participants.

* Inserting a commit record to a table on the LLR participant (rather than to the file-based
transaction log).

e Committing the LLR participant's local transaction (which includes both the transaction
commit record insert and the application's SQL work).

e Calling commit on all other transaction participants.

For a one-phase commit (1PC) global transaction, LLR eliminates the XA overhead by using a
local transaction to complete the database operations, but no 2PC transaction record is written
to the database.

The Logging Last Resource optimization maintains data integrity by writing the commit record
on the LLR participant. If the transaction fails during the local transaction commit, the
WebLogic Server transaction manager rolls back the transaction on all other transaction
participants. For failure recovery, the WebLogic Server transaction manager reads the
transaction log on the LLR resource along with other transaction log files in the default store
and completes any transaction processing as necessary. Work associated with XA participants
is committed if a commit record exists, otherwise their work is rolled back.

For instructions on how to create an LLR-enabled JDBC data source, see Create LLR-enabled
JDBC data sources in the Oracle WebLogic Server Administration Console Online Help. For
more details about the Logging Last Resource transaction processing, see Logging Last
Resource Transaction Optimization in Developing JTA Applications for Oracle WebLogic
Server.

* Advantages to Using the Logging Last Resource Optimization
* Enabling the Logging Last Resource Transaction Optimization
e Programming Considerations and Limitations for LLR Data Sources

* Administrative Considerations and Limitations for LLR Data Sources

Advantages to Using the Logging Last Resource Optimization

ORACLE

Depending on your environment, you may want to consider the LLR transaction protocol in
place of the two-phase commit protocol for transaction processing because of its performance
benefits. The LLR transaction protocol offers the following advantages:

« Allows non-XA JDBC drivers and even non-XA—capable databases to safely participate in
two-phase commit transactions.

e Eliminates the database's use of the XA protocol.

5-3

Chapter 5
Understanding the Logging Last Resource Transaction Option

« Performs better than JDBC XA connections.
* Reduces the length of time that database row locks are held.

« Always commits database work prior to other XA work. In XA transactions, these
operations are committed in parallel, so, for example, when a JMS send participates in the
transaction, the JMS message may be delivered before database work commits. With LLR,
the database work in the local transaction is completed before all other transaction work.

* Has no increased risk of heuristic hazards, unlike the Emulate Two-Phase Commit option
for a JDBC data source.

Note:

The LLR optimization provides a significant increase in performance for insert,
update, and delete operations. However, for read operations with LLR,
performance is somewhat slower than read operations with XA.

For more information about performance tuning with LLR, see Optimizing
Performance with LLR in Developing JTA Applications for Oracle WebLogic
Server.

Enabling the Logging Last Resource Transaction Optimization

To enable the LLR transaction optimization, you create a JDBC data source with the Logging
Last Resource transaction protocol, then use database connections from the data source in
your applications. WebLogic Server automatically creates the required table on the database.

See Create LLR-enabled JDBC data sources in the Oracle WebLogic Server Administration
Console Online Help.

Programming Considerations and Limitations for LLR Data Sources

ORACLE

You use JDBC connections from an LLR-enabled data source in an application as you would
use JDBC connections from any other data source: after beginning a transaction, you look up
the data source on the JNDI tree, then request a connection from the data source. However,
with the LLR optimization, WebLogic Server internally manages the connection request and
handles the transaction processing differently than in an XA transaction. For more information
about how Logging Last Resource works, see Logging Last Resource Transaction
Optimization in Developing JTA Applications for Oracle WebLogic Server.

Note the following:

e When programming with an LLR data source, you must start the global transaction before
calling getConnection on the LLR data source. If you call getConnection before starting the
global transaction, the connection will be independent, and will not be associated with any
subsequently started global transaction. The connection will operate in the
autoCommit (true) mode. In this mode, every update will commit automatically on its own,
and there will be no way to roll back any update unless application code has explicitly set
the autoCommit state to false and is explicitly managing its own local transaction.

e Only one internal JDBC LLR connection is reserved per transaction. And that connection is
used throughout the transaction processing.

e The reserved connection is always hosted on the transaction's coordinator server. Make
sure that the data source is targeted to the coordinating server or to the cluster. Also see

5-4

Chapter 5
Understanding the Logging Last Resource Transaction Option

Optimizing Performance with LLR" in Developing JTA Applications for Oracle WebLogic
Server.

For additional JDBC connection requests within the transaction from a same-named data
source, operations are routed to the reserved connection from the original connection
request, even if the subsequent connection request is made on a different instance of the
data source (i.e., a data source deployed on a different server than the original data source
that supplied the connection for the first request). Note the following:

— Routed LLR connections may be less capable and less performant than locally hosted
XA connections. See Possible Performance Loss with Non-XA Resources in Multi-
Server Configurations.

— Connection request routing limits the number of concurrent transactions. The
maximum number of concurrent LLR transactions is equal to the configured size
(MaxCapacity) of the coordinator's JDBC LLR data source.

— Routed connections have less capability than local connections, and may fail as a
result. Specifically, non-serializable "custom" data types within a query ResultSet may
fail.

Only instances of a single LLR data source may participate in a particular transaction. A
single LLR data source may have instances on multiple WebLogic servers, and two data
sources are considered to be the same if they have the same configured name. If more
than one LLR data source instance is detected and they are not instances of the same
data source, the transaction manager will roll back the transaction.

Resource adapters (connectors) that implement the
weblogic.transaction.nonxa.NonXAResource interface cannot participate in global
transaction in which an LLR resource also participates because both must be the last
resource in the transaction. If both resource types participate in the same transaction, the
transaction commit () method throws a javax.transaction.RollbackException when this
conflict is detected.

Because the LLR connection uses a separate local transaction for database processing,
any changes made (and locks held) to the same database using an XA connection are not
visible during the LLR processing even though all of the processing occurs in the same
global transaction. In some cases, this can cause deadlocks in the database. You should
not combine XA and LLR processing in the same database in a single global transaction.

Connections from an LLR data source cannot participate in transactions coordinated by
foreign transaction managers, such as a transaction started by a remote object request
broker or by Tuxedo.

Global transactions cannot span to another legacy domain that includes a data source with
the same name as an LLR data source.

For JDBC LLR 2PC transactions, if the transaction data is too large to fit in the LLR table,
the transaction will fail with a rollback exception thrown during commit. This can occur if
your application adds many transaction properties during transaction processing. Your
database administrator can manually create a table with larger columns if this occurs. See
Oracle WebLogic Extensions to JTA in Developing JTA Applications for Oracle WebLogic
Server.

Administrative Considerations and Limitations for LLR Data Sources

ORACLE

Consider the following requirements and limitations when configuring an LLR-enabled JDBC
data source. For more information about how Logging Last Resource works, see Logging Last
Resource Transaction Optimization in Developing JTA Applications for Oracle WebLogic
Server.

5-5

Chapter 5
Understanding the Logging Last Resource Transaction Option

* Thereis one LLR table per server:
— Multiple LLR data sources may share a table.
— WebLogic Server automatically creates the table if it is not found.

— Default name is WL_LLR SERVERNAME. You can configure the table name in the
WebLogic Server Administration Console on the Server > Configuration > General
tab under Advanced options. See Servers: Configuration: General in Oracle WebLogic
Server Administration Console Online Help.

« A server will not boot if the database is down or the LLR table is unreachable during boot.

* Multiple servers must not share the same LLR table. Boot checks to ensure domain and
server name match the domain and server name stored in the table when the table is
created. If WebLogic Server detects that more than one server is sharing the same LLR
table, WebLogic Server will shut down one or more of the servers.

* LLR supports server migration and transaction recovery service migration. To use the
transaction recovery service migration, ensure that each LLR resource be targeted to
either the cluster or the set of candidate servers in the cluster. See Recovering
Transactions For a Failed Clustered Server in Developing JTA Applications for Oracle
WebLogic Server.

e The LLR transaction option is not permitted for use in JDBC application modules.

* When using Multi Data Sources, the LLR transaction option can only be used with Oracle
RAC version 10g Release 2 (10gR2) and greater versions with the following settings:

— All WebLogic application database JDBC interactions must use the READ COMMITTED
transaction isolation level (the default).

— The Oracle RAC setting MAX COMMIT PROPAGATION DELAY must be set to a value of O
(zero, the default).

The use of LLR with Multi Data Sources is supported only with Oracle RAC. All (or none) of
the members of the Multi Data Source must be LLR data sources.

— When using Oracle RAC, at least one of the members of the Multi Data Source must
be available for recovery processing when the server is booted or the server fails to
boot.

— When not using Oracle RAC, all of the members of the Multi Data Source must be
available for recovery processing when the server is booted or the server fails to boot.

e If you use credential mapping or identity pooling on an LLR data source, all mapped users
must have write permissions on the LLR table.

e You cannot use a JDBC XA driver to create database connections in a JDBC LLR data
source. If the JDBC driver used in a JDBC LLR data source supports XA, a warning
message is logged, and the data source participates in transactions as a full XA resource
rather than as an LLR resource.

e Transaction statistics for LLR resources are tracked under NonXAResource. See View
transaction statistics for non-XA resources in the Oracle WebLogic Server Administration
Console Online Help.

e When using LLR with a Sybase DBMS, Sybase's JDBC driver requires that certain JDBC
stored procedures be installed in the DBMS in order to implement some standard JDBC
metadata methods. See the Sybase jConnect documentation for details.

ORACLE -

Chapter 5
Understanding the Emulate Two-Phase Commit Transaction Option

Understanding the Emulate Two-Phase Commit Transaction

Option

If you need to support distributed transactions with a JDBC data source, but there is no
available XA-compliant driver for your DBMS, you can select the Emulate Two-Phase Commit
for non-XA Driver option for a data source to emulate two-phase commit for the transactions in
which connections from the data source participate.

This option is an advanced option on the Configuration > General tab of a data source
configuration.

When the Emulate Two-Phase Commit for non-XA Driver option is selected
(EnableTwoPhaseCommit is set to true), the non-XA JDBC resource always returns XA OK
during the xAResource.prepare () method call. The resource attempts to commit or roll back its
local transaction in response to subsequent XAResource.commit () OF XAResource.rollback()
calls. If the resource commit or rollback fails, a heuristic error results. Application data may be
left in an inconsistent state as a result of a heuristic failure.

When the Emulate Two-Phase Commit for non-XA Driver option is not selected in the Console
(EnableTwoPhaseCommit iS set to false), the non-XA JDBC resource causes
XAResource.prepare () to fail. When there is only one resource participating in a transaction,
the one phase optimization bypasses XAResource.prepare (), and the transaction commits
successfully in most instances.

Note:

There are risks to data integrity when using the Emulate Two-Phase Commit for non-
XA Driver option. Oracle recommends that you use an XA-compliant JDBC driver or
the Logging Last Resource option rather than use the Emulate Two-Phase Commit
option. Make sure you consider the risks below before enabling this option.

This non-XA JDBC driver support is often referred to as the "JTS driver" because WebLogic
Server uses the WebLogic JTS Driver internally to support the feature. For more information
about the WebLogic JTS Driver, see Using the WebLogic JTS Driver in Developing JDBC
Applications for Oracle WebLogic Server.

e Limitations and Risks When Emulating Two-Phase Commit Using a Non-XA Driver

Limitations and Risks When Emulating Two-Phase Commit Using a Non-XA

Driver

ORACLE

WebLogic Server supports the participation of non-XA JDBC resources in global transactions
with the Emulate Two-Phase Commit data source transaction option, but there are limitations
that you must consider when designing applications to use such resources. Because a hon-XA
driver does not adhere to the XA/2PC contracts and only supports one-phase commit and
rollback operations, WebLogic Server (through the JTS driver) has to make compromises to
allow the resource to participate in a transaction controlled by the Transaction Manager.

Consider the following limitations and risks before using the Emulate Two-Phase Commit for
non-XA Driver option.

5-7

Chapter 5
Understanding the Emulate Two-Phase Commit Transaction Option

e Heuristic Completions and Data Inconsistency
e Cannot Recover Pending Transactions
* Possible Performance Loss with Non-XA Resources in Multi-Server Configurations

e Multiple Non-XA Participants

Heuristic Completions and Data Inconsistency

When Emulate Two-Phase Commit is selected for a non-XA resource, (enableTwoPhaseCommit
= true), the prepare phase of the transaction for the non-XA resource always succeeds.
Therefore, the non-XA resource does not truly participate in the two-phase commit (2PC)
protocol and is susceptible to failures. If a failure occurs in the non-XA resource after the
prepare phase, the non-XA resource is likely to roll back the transaction while XA transaction
participants will commit the transaction, resulting in a heuristic completion and data
inconsistencies.

Because of the data integrity risks, the Emulate Two-Phase Commit option should only be
used in applications that can tolerate heuristic conditions.

Cannot Recover Pending Transactions

Because a non-XA driver manipulates local database transactions only, there is no concept of
a transaction pending state in the database with regard to an external transaction manager.
When xXAResource.recover () is called on the non-XA resource, it always returns an empty set
of Xids (transaction IDs), even though there may be transactions that need to be committed or
rolled back. Therefore, applications that use a non-XA resource in a global transaction cannot
recover from a system failure and maintain data integrity.

Possible Performance Loss with Non-XA Resources in Multi-Server Configurations

Because WebLogic Server relies on the database local transaction associated with a particular
JDBC connection to support non-XA resource participation in a global transaction, when the
same JDBC data source is accessed by an application with a global transaction context on
multiple WebLogic Server instances, the JTS driver will always route to the first connection
established by the application in the transaction.

For example, if an application starts a transaction on one server, accesses a non-XA JDBC
resource, then makes a remote method invocation (RMI) call to another server and accesses a
data source that uses the same underlying JDBC driver, the JTS driver recognizes that the
resource has a connection associated with the transaction on another server and sets up an
RMI redirection to the actual connection on the first server. All operations on the connection
are made on the one connection that was established on the first server. This behavior can
result in a performance loss due to the overhead associated with setting up these remote
connections and making the RMI calls to the one physical connection.

Multiple Non-XA Participants

ORACLE

If you use more than one non-XA resource in a global transaction, it is possible to see JTA
SystemExceptions in the event of a non-atomic outcome. The chance for non-atomic outcomes
and SystemExceptions tends to increase with the number of two-phase-emulated data source
participants.

5-8

Chapter 5
Local Transaction Completion when Closing a Connection

Note:

The use of a two-phase-emulated data source in a JTA transaction across domains
of different versions is not supported.

Local Transaction Completion when Closing a Connection

For a non-XA connection, the setAutoCommit (true) method is called if the connection is
currently in auto-commit false state when a connection is closed. Per the Java EE JDBC
specification, this method automatically commits any outstanding local transaction.

There are some drivers (Oracle 10.x and 11.x driver) that do not commit the local transaction. If
the application does not complete (commit or rollback) the local transaction before closing the
connection, a connection is returned to the pool with outstanding work and that work may
never be completed or it may be committed or rolled back by the next reservation of that
connection. To prevent that situation from happening, a WebLogic data source calls commit on
the connection when returning it to the pool, if running with the Oracle 10.x or 11.x driver. If an
explicit commit is desired on close, then set the system property
weblogic.datasource.endLocalTxOnNonXaConWithCommit=true .

Some users may want an abandoned local transaction to rollback instead of commit on close.
Setting the following properties will cause local transactions to be rolled back instead of
committed if abandoned:

-Dweblogic.datasource.endLocalTxOnNonXaConWithCommit=false
-Dweblogic.datasource.endLocalTxOnNonXaConWithRollback=true

Note:

It is not a good programming practice to leave abandoned transactions. It is
recommended that applications explicitly commit or rollback local transactions.

For an xA connection, WebLogic data sources have always rolled back any local transaction
when closing the connection. The transaction can be committed instead of rolled back by
setting the system property weblogic.datasource.endLocalTxOnXaConWithCommit=true.

For an xA connection, WebLogic data sources have always rolled back any local transaction
when closing the connection. The transaction can be committed instead of rolled back by
setting the system property weblogic.datasource.endLocalTxOnXaConWithCommit=true.

ORACLE -

Advanced Configurations for Oracle Drivers
and Databases

Oracle provides advanced configuration options such as JDBC Replay Driver (also referred to
as Application Continuity Driver), database resident connection policy, global database
services to improve data source and driver performance when using Oracle drivers and
databases. These configuration options help in management of connection reservation in the
data source.

« JDBC Replay Driver
JDBC Replay Driver (also referred to as Application Continuity Driver) is a general
purpose, application-independent infrastructure for Active GridLink and Generic data
sources that enables the recovery of work from an application perspective and masks
many system, communication, and hardware failures.

e Database Resident Connection Pooling
Database Resident Connection Pooling (DRCP) provides the ability for multiple web-tier
and mid-tier data sources to pool database server processes and sessions that are
resident in an Oracle database.

* Global Data Services
Global Data Services (GDS) enables you to use a global service to provide seamless
central management in a distributed database environment. A global server provides
automated load balancing, fault tolerance and resource utilization across multiple RAC and
single-instance Oracle databases interconnected by replication technologies such as Data
Guard or GoldenGate.

e Container Database with Pluggable Databases
Container Database (CDB) is an Oracle Database feature that minimizes the overhead of
having many of databases by consolidating them into a single database with multiple
Pluggable Databases (PDB) in a single CDB.

e Service Switching
Learn about the limitations of service switching.

JDBC Replay Driver

ORACLE

JDBC Replay Driver (also referred to as Application Continuity Driver) is a general purpose,
application-independent infrastructure for Active GridLink and Generic data sources that
enables the recovery of work from an application perspective and masks many system,
communication, and hardware failures.

In today's environment, application developers are required to deal explicitly with outages of
the underlying software, hardware, communications, and storage layers. As a result,
application development is complex and outages are exposed to the end users. For example,
some applications warn users not to hit the submit button twice. When the warning is not
heeded, users may unintentionally purchase items twice or submit multiple payments for the
same invoice.

JDBC Replay Driver semantics assure that end-user transactions can be executed on time and
at-most-once. The only time an end user should see an interruption in service is when the
outage is such that there is no point in continuing.

6-1

Chapter 6
JDBC Replay Driver

The following topics provide information on how to configure and use JDBC Replay Driver:

How JDBC Replay Driver Works

Requirements and Considerations

Configuring JDBC Replay Driver

Viewing Runtime Statistics for JDBC Replay Driver

JDBC Replay Driver Auditing

Limitations with JDBC Replay Driver with Oracle 12c Database

How JDBC Replay Driver Works

Following any outage that is due to a loss of database service, planned or unplanned, JDBC
Replay Driver rebuilds the database session. Once an outage is identified by Fast Application
Notification or a recoverable ORACLE error, the Oracle driver:

ORACLE

Establishes a new database session to clear any residual state.

If a callback is registered, issues a callback allowing the application to re-establish initial
state for that session.

Executes the saved history accumulated during the request.

The Oracle driver determines the timing of replay calls. Calls may be processed
chronologically or using a lazy processing implementation depending on how the application
changes the database state. The replay is controlled by the Oracle 12c Database Server. For a
replay to be approved, each replayed call must return exactly the same client visible state that
was seen and potentially used by the application during the original call execution.

6-2

Chapter 6
JDBC Replay Driver

Figure 6-1 JDBC Replay Driver

=%

Database Client
Application

© O
Request Response

v |
JDBC/OCI, Pool or WebLogic

Q Replay

*
X
|
© 6 e
FAN
Calls or Calls

SE=E=E=

12c Database

SIElE

ORACLE" 6-3

Chapter 6
JDBC Replay Driver

Requirements and Considerations

The following section provides requirements and items to consider when using JDBC Replay
Driver (also referred as Application Continuity) with WebLogic applications:

Requires an Oracle 12c JDBC driver and database. See Using an Oracle 12c Database.

JDBC Replay Driver supports read and read/write of non-XA transactions (local
transactions) on XA connections. We discourage an Oracle driver for JDBC Replay Driver
participating in a Global transaction.

Note:

— Application Continuity is silently disabled by the usage of XA transactions on
a connection.

— Remember to call connection.setAutoCommit (false) in your application to
prevent breaking the transaction semantics and disabling JDBC Replay
Driver in your environment.

Deprecated oracle.sql.* concrete classes are not supported. Occurrences should be
changed to use either the corresponding oracle.jdbc.* interfaces or java.sql.*
interfaces. Oracle recommends using the standard java.sql.* interfaces. See Using API
Extensions for Oracle JDBC Types in Developing JDBC Applications for Oracle WebLogic
Server.

JDBC Replay Driver works by storing intermediate results in memory. An application may
run slower and require significantly more memory than running without the feature.

If the WebLogic statement cache is configured with JDBC Replay Driver, the cache is
cleared every time the connection is replayed.

There are additional limitations and exceptions to the JDBC Replay Driver feature which
may affect whether your application can use Replay. For more information, see Application
Continuity for Java in the Oracle Database JDBC Developer's Guide.

The database service that is specified in the URL for the data source must be configured
with the failover type set to TRANSACTION and the -commit outcome parameter to TRUE. For
example:

srvctl modify service -d mydb -s myservice -e TRANSACTION -commit outcome TRUE
-rlbgoal SERVICE TIME -clbgoal SHORT

Configuring JDBC Replay Driver

The topic provides information on how to implement JDBC Replay Driver in your environment.

ORACLE

Selecting the Driver for JDBC Replay Driver
Using a Connection Callback

Setting the Replay Timeout

Disabling JDBC Replay Driver for a Connection
Configuring Logging for JDBC Replay Driver
Enabling JDBC Driver Debugging

6-4

Chapter 6
JDBC Replay Driver

Selecting the Driver for JDBC Replay Driver
Configure your data source to use the correct JDBC driver using one of the following methods:

e If you are creating a new data source, when asked to select a Database driver from the
drop-down menu in the configuration wizard, select the appropriate Oracle driver that
supports JDBC Replay Driver for your environment. See Enable Application Continuity in
Oracle WebLogic Server Administration Console Online Help.

e If you are editing an existing data source in the Administrator Console, select the
Connection Pool tab, change the Driver Class Name to
oracle.jdbc.replay.OracleDataSourceImpl, and click Save.

e When creating or editing a data source with a text editor or WLST, set the JDBC driver to
oracle.jdbc.replay.OracleDataSourceImpl.

See Requirements and Considerations.
Using a Connection Callback

e Create an Initialization Callback
* Registering an Initialization Callback

* Unregister an Initialization Callback

Create an Initialization Callback

To create a connection initialization callback, your application must implement the
initialize(java.sql.Connection connection) method of the
oracle.ucp.jdbc.ConnectionInitializationCallback interface. Only one callback can be

created per connection pool.

The callback is ignored if a labeling callback is registered for the connection pool. Otherwise,
the callback is executed at every connection check out from the pool and at each successful
reconnect following a recoverable error at replay. Use the same callback at runtime and at
replay to ensure that exactly the same initialization that was used when the original session
was established is used during the replay. If the callback invocation fails, replay is disabled on
that connection.

Note:
Connection Initialization Callback is not supported for clients (JDBC over RMI).

Connection callback once registered will be called even without Oracle driver.

The following example demonstrates a simple initialization callback implementation:

import oracle.ucp.jdbc.ConnectionInitializationCallback ;

class MyConnectionInitializationCallback implements ConnectionInitializationCallback {
public MyConnectionInitializationCallback() {
}

public void initialize(java.sgl.Connection connection) throws SQLException {
// Re-set the state for the connection, if necessary

ORACLE g

Chapter 6
JDBC Replay Driver

Registering an Initialization Callback

The WiDataSource interface provides the

registerConnectionInitializationCallback (ConnectionInitializationCallback
callback) method for registering initialization callbacks. Only one callback may be registered
on a connection pool. The following example demonstrates registering an initialization callback
that is implemented in the MyConnectionInitializationCallback class:

import weblogic.jdbc.extensions.WLDataSource;

MyConnectionInitializationCallback callback = new MyConnectionInitializationCallback();
((WLDataSource)ds) .registerConnectionInitializationCallback (callback);

The callback can also be registered by entering the callback class in the Connection
Initialization Callback attribute on the Oracle tab for a data source in the WebLogic Server
Administration Console. Oracle recommends configuring this callback attribute instead of
setting the callback at runtime. See Enable Application Continuity in Oracle WebLogic Server
Administration Console Online Help.

Unregister an Initialization Callback

The WLDataSource interface provides the unregisterConnectionInitializationCallback ()
method for unregistering a ConnectionInitializationCallback. The following example
demonstrates removing an initialization callback:

import weblogic.jdbc.extensions.WLDataSource;
((WLDataSource)ds) .unregisterConnectionInitializationCallback();

Setting the Replay Timeout

Use the ReplayInitiationTimeout attribute on the Oracle tab for a data source in the
WebLogic Server Administration Console to set the amount of time a data source allows for
JDBC Replay Driver processing before timing out and ending a replay session context for a
connection.

For applications that use the WebLogic HTTP request timeout, make sure to set the
ReplayInitiationTimeout appropriately:

* You should set the ReplayInitiationTimeout value equal to the HTTP session timeout
value to ensure the entire HTTP session is covered by a replay session. The default
ReplayInitiationTimeout and the default HTTP session timeout are both 3600 seconds.

e Ifthe HTTP timeout value is longer than ReplayInitiationTimeout value, replay events
will not be available for the entire HTTP session.

e If the HTTP timeout value is shorter than the ReplayInitiationTimeout value, your
application should close the connection to end the replay session.

Disabling JDBC Replay Driver for a Connection

You can disable JDBC Replay Driver on a per-connection basis using the following:

ORACLE 66

Chapter 6
JDBC Replay Driver

if (connection instanceof oracle.jdbc.replay.ReplayableConnection) {
((oracle.jdbc.replay.ReplayableConnection)connection) .disableReplay();

}

You can disable JDBC Replay Driver at the database service level by modifying the service to
have a failover type of NONE. For example:

srvctl modify service -d mydb -s myservice -e NONE

You can also disable JDBC Replay Driver at the data source level by setting the
ReplaylINitializationTimeout to 0. When set to zero (0) seconds, replay processing (failover) is
disabled (begin and endRequest are still called).

Configuring Logging for JDBC Replay Driver

To enable logging of JDBC Replay Driver processing, use the following WebLogic property:

-Dweblogic.debug.DebugdDBCReplay=true

Use -Djava.util.logging.config.file=configfile, Where configfile is the path and file
name of the configuration file property used by standard JDK logging, to control the log output
format and logging level. The following is an example of a configuration file that uses the
SimplFormatter and sets the logging level to FINEST:

handlers = java.util.logging.ConsoleHandler

java.util.logging.ConsoleHandler.level = ALL
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter

#OR - use other formatters like the ones below
#java.util.logging.ConsoleHandler.formatter = java.util.logging.XMLFormatter
#java.util.logging.ConsoleHandler.formatter = oracle.ucp.util.logging.UCPFormatter

#OR - use FileHandler instead of ConsoleHandler

#handlers = java.util.logging.FileHandler
#java.util.logging.FileHandler.pattern = replay.log
#java.util.logging.FileHandler.limit = 3000000000
#java.util.logging.FileHandler.count = 1
#java.util.logging.FileHandler.formatter = java.util.logging.SimpleFormatter
oracle.jdbc.internal.replay.level = FINEST

See Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server.

Enabling JDBC Driver Debugging

ORACLE

To enable JDBC driver debugging, you must configure Java Util Logging. To do so, set the
following properties on the command line as follows:

-Djava.util.logging.config.file=configfile
-Doracle.jdbc.Trace=true

In this command, configfile is the path and file name of the configuration property file
property used by standard JDK logging to control the log output format and logging level.

The configfile mustinclude one of the following lines:

* oracle.jdbc.internal.replay.level=FINEST—Replay debugging

6-7

Chapter 6
JDBC Replay Driver

* oracle.jdbc.level = FINEST—Standard JDBC debugging

For more information, see java.util.logging in Java Platform Standard Edition API Specification.

Viewing Runtime Statistics for JDBC Replay Driver

JDBC Replay Driver statistics are available using the JDBCReplayStatisticsRuntimeMBean for

Active GridLink and Generic data sources.

The JDBCReplayStatisticsRuntimeMBean:

e |s available for Active GridLink and Generic data sources. It is not available (null is
returned) for Universal Connection Pool and Multi Data Sources.

* Is available only if running with the 12.1.0.2 or later Oracle thin driver. It is not available

(null is returned) for earlier driver versions.

* Is available only if the data source is configured to use the JDBC Replay Driver driver. It is
not available (null is returned) for non-replay drivers.

« Wil not have any statistics set initially (they will be initialized to -1). You must call the
refreshStatistics () operation on the MBean to update the statistics before getting them.

Note:

Refreshing the statistics is a heavy operation. It locks the entire pool and runs
through all reserved and unreserved connections aggregating the statistics. Running
this operation frequently will impact the performance of the data source. Performance
can also be impacted when clearing the statistics.

Table 6-1 lists the statistics that you can access using the

JDBCReplayStatisticsRuntimeMBean.

Table 6-1 Runtime Statistics for JDBCReplayStatisticsRuntimeMBean

Name

Description

TotalRequests

Total number of successfully submitted requests.

TotalCompletedRequests

Total number of completed requests.

TotalCalls

Total number of JDBC calls executed.

TotalProtectedCalls

Total number of JDBC calls executed that are
protected by JDBC Replay Driver.

TotalCallsAffectedByOutages

Total number of JDBC calls affected by outages.
This includes both local calls and calls that involve
roundtrip(s) to the database server.

TotalCallsTriggeringReplay

Total number of JDBC calls that triggered replay.
Replay can be disabled for some requests,
therefore not all calls affected by an outage trigger
replay.

ORACLE

6-8

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/logging/package-summary.html

ORACLE

Chapter 6
JDBC Replay Driver

Table 6-1 (Cont.) Runtime Statistics for JDBCReplayStatisticsRuntimeMBean

___|
Name Description

TotalCallsAffectedByOutagesDuringReplay Total number of JDBC calls affected by outages in
the middle of replay. Outages may be cascaded
and strike a call multiple times when replay is
ongoing. JDBC Replay Driver automatically
reattempts replay when this happens, unless it
reaches the maximum retry limit.

SuccessfulReplayCount Total number of replays that succeeded. Successful
replays mask the outages from applications.

FailedReplayCount Total number of replays that failed.

When replay fails, it re-throws the original
SQLRecoverableException to the application,
along with the reason for the failure chained to the
original exception. The application can call
getNextException to retrieve the reason.

ReplayDisablingCount Total number of times that replay is disabled.

When replay is disabled in the middle of a request,
the remaining calls in that request are no longer
protected by JDBC Replay Driver. If an outage
strikes one of the remaining calls, no replay is
attempted, and the application gets an
SQLRecoverableException

TotalReplayAttempts Total number of replay attempts. JDBC Replay
Driver automatically reattempts when replay fails,
so this number may exceed the number of JDBC
calls that triggered replay.

For more information, see JDBCReplayStatisticsRuntimeMBean in MBean Reference for
Oracle WebLogic Server and ReplayableConnection.StatisticsReportType in Oracle JDBC
Java API Reference.

Example 6-1 WLST Sample

You can access the statistics on the runtime MBean using WLST. The following sample WLST
script shows how to print the information on the JDBCReplayStatisticsRuntimeMBean:

import sys, socket, os

hostname = socket.gethostname ()

datasource="'JDBC GridLink Data Source-0Q'

svr='myserver'

connect ("weblogic", "password", "t3://"+hostname+":7001")

serverRuntime ()

cd('/JDBCServiceRuntime/' + svr + '/JDBCDataSourceRuntimeMBeans/' +
datasource + '/JDBCReplayStatisticsRuntimeMBean/' +
datasource + '.ReplayStatistics')

cmo.refreshStatistics()

1s()

total=cmo.getTotalRequests ()

cmo.clearStatistics()

6-9

http://docs.oracle.com/database/121/JAJDB/oracle/jdbc/replay/ReplayableConnection.StatisticsReportType.html

Chapter 6
JDBC Replay Driver

Example 6-2 Java Sample

The following Java example demonstrates how to expose the statistics using the
JDBCReplayStatisticsRuntimeMBean:

import javax.naming.NamingException;
import javax.management.AttributeNotFoundException;
import javax.management.MBeanServer;
import javax.management.InstanceNotFoundException;
import javax.management.ReflectionException
import javax.management.ObjectName;
import javax.management.MalformedObjectNameException;
import javax.management.MBeanAttributeInfo;
import javax.management.MBeanOperationInfo;
import javax.management.MBeanException;
import javax.management.MBeanParameterInfo;
import weblogic.management.runtime.JDBCReplayStatisticsRuntimeMBean;
public void printReplayStats(String dsName) throws Exception {
MBeanServer server = getMBeanServer();
ObjectName[] dsRTs getJdbcDataSourceRuntimeMBeans (server) ;
for (ObjectName dsRT : dsRTs) {
String name = (String) server.getAttribute (dsRT, "Name");
if (name.equals (dsName)) {
ObjectName mb = (ObjectName)server.getAttribute (dsRT,
"JDBCReplayStatisticsRuntimeMBean") ;
server.invoke (mb, "refreshStatistics", null, null);
MBeanAttributeInfo[] attributes =
server.getMBeanInfo (mb) .getAttributes();
for (int i = 0; 1 < attributes.length; i++) {
if (attributes[i].getType().equals("java.lang.Long")) {
System.out.println(attributes[i].getName () +"="+
(Long) server.getAttribute (mb, attributes[i].getName()));

MBeanServer getMBeanServer () throws Exception {
InitialContext ctx = new InitialContext();
MBeanServer server = (MBeanServer) ctx.lookup ("java:comp/env/jmx/
runtime");
return server;

}
ObjectName[] getJdbcDataSourceRuntimeMBeans (MBeanServer server)
throws Exception {
ObjectName service = new ObjectName (

"com.bea:Name=RuntimeService, Type=weblogic.management.mbeanservers.runtime .Ru
ntimeServiceMBean") ;
ObjectName serverRT = (ObjectName) server.getAttribute (service,
"ServerRuntime") ;
ObjectName jdbcRT = (ObjectName) server.getAttribute (serverRT,
"JDBCServiceRuntime") ;
ObjectName[] dsRTs = (ObjectName[]) server.getAttribute (jdbcRT,
"JDBCDataSourceRuntimeMBeans") ;

ORACLE 510

Chapter 6
JDBC Replay Driver

return dsRTs;

JDBC Replay Driver Auditing

During a ConnectionInitializationCallback, between the first connection initialization and
reinitialization during replay, the application may want to know when the connection work is
being replayed. The getReplayAttemptCount () method on the WLConnection interface is
available to get the number of times that replay is attempted on the connection.

When a connection is first being initialized, it will be set to 0. For subsequent initialization of the
connection when it is being replayed, it will be set to a value greater than 0.

Note:

This counter only indicates attempted replays since it is possible for replay to fail for
various reasons (after which the connection is no longer valid). For a non-replay
driver, it will always return 0.

Example 6-3 WLST Sample

The following is a sample callback class for initializing the connection. It assumes that there is
some mechanism for getting an application identifier associated with the current work or
transaction.

import java.sql.SQLException;

import java.util.Date;

import java.text.SimpleDateFormat;

import java.util.Properties;

import weblogic.jdbc.extensions.WLConnection;

import oracle.ucp.jdbc.ConnectionInitializationCallback;

public class callback implements ConnectionInitializationCallback ({
final String idLabel = "GUUID";

public callback() {

}

public void initialize(java.sqgl.Connection conn) throws SQLException {
if (((WLConnection)conn).getReplayAttemptCount () == 0) {

// first time - initialize the label value

((WLConnection)conn) .applyConnectionLabel (idLabel, Application.getGuuid());
// Get the id from somewhere and store it in the connection label

} else {

Properties props = ((WLConnection)conn).getConnectionLabels();

String value = props.getProperty(idLabel);
System.out.println("Transaction '"+value+"' is getting replayed at " + new
SimpleDateFormat ("yyyy-MM-dd HH:mm:ss.SSS").format (new

Date()));

}

}

}

ORACLE 611

Chapter 6
Database Resident Connection Pooling

Limitations with JDBC Replay Driver with Oracle 12c Database

The following section provides information on limitations when using Oracle Database Release
12c with JDBC Replay Driver:

- Database Resident Connection Pooling is not supported. A web request is not replayed
and the original java.sql.SQLRecoverableException is thrown if an outage occurs.

e Cannot be used with PDB tenant switching using ALTER SESSION SET CONTAINER.

Database Resident Connection Pooling

Database Resident Connection Pooling (DRCP) provides the ability for multiple web-tier and
mid-tier data sources to pool database server processes and sessions that are resident in an
Oracle database.

See Database Resident Connection Pooling in JDBC Developer's Guide.

e Requirements and Considerations
e Configuring DRCP

Requirements and Considerations

ORACLE

The following section provides requirements and items to consider when using DRCP with
WebLogic applications:

* Requires an Oracle 12c JDBC Driver and Database. See Using an Oracle 12¢ Database.

« If the WebLogic statement cache is configured along with DRCP, the cache is cleared
every time the connection is returned to the pool with close().

* WebLogic Server data sources do not support connection labeling on DRCP connections
and a SQLException is thrown. For example, using getConnection with properties on
WLDataSource Or @ method on LabelableConnection is called, generates an exception.
Note, registerConnectionLabelingCallback and removeConnectionLabelingCallback
on WLDataSource are permitted.

e WebLogic Server does not support defining the oracle.jdbc.DRCPConnectionClass as a
system property. It must be defined as a connection property in the data source descriptor.

» For DRCP to be effective, applications must return connections to the connection pool as
soon as work is completed. Holding on to connections and using harvesting defeats the
use of DRCP.

* When using DRCP, the JDBC program must attach to the server before performing
operations on the connection and must detach from the server to allow other connections
to use the pooled session. By default, when the JDBC program is attaching to the server, it
does not actually reserve a session but returns and defers the reservation until the next
database round-trip. As a result, the subsequent database operation may fail because it
cannot reserve a session. To prevent this from happening, there is a network timeout value
that forces a round-trip to the database after an attach to the server. Once this occurs, the
network timer is unset. The default network timeout is 10,000 milliseconds. You can set it
to another value by setting the system property weblogic.jdbc.attachNetworkTimeout.

This property is the timeout, in milliseconds to wait for the attach to be done and the
database round trip to return. If set to O, then the additional processing around the server
attach is not done.

6-12

Chapter 6
Database Resident Connection Pooling

For more information on configuring DRCP, see Configuring Database Resident Connection
Pooling in the Oracle® Database Administrator's Guide.

Configuring DRCP

You must configure datasource and database for DRCP in your environment.

e Configuring a Data Source for DRCP
e Configuring a Database for DRCP

Configuring a Data Source for DRCP

To configure your data source to support DRCP:

« If you are creating a new data source, on the Connection Properties tab of the data
source configuration wizard, under Additional Configuration Properties, enter the DRCP
connection class in the oracle.jdbc.DRCPConnectionClass field. See Create JDBC
Generic data sources and Create JDBC Active GridLink data sources in Oracle WebLogic
Server Administration Console Online Help.

In the resulting data source:

— The suffix : POOLED is added to the constructed short-form of the URL. For example:
jdbc:oracle:thin:@//host:port/service name:POOLED

— For the service form of the URL, (SERVER=POOLED) is added after the
(SERVICE NAME=name) parameter in the CONNECT DATA element.

— The value/name pair of the DRCP connection class appears as a connection property
on the Connection Pool tab. For example:
oracle.jdbc.DRCPConnectionClass=myDRCPclass.

e If you are editing an existing data source in the Administrator Console, select the
Connection Pool tab:

1. Change the URL to include a suffix of : POOLED or (SERVER=POOLED) for service URLS.

2. Update the connection properties to include the value/name pair of the DRCP
connection class. For example: oracle.jdbc.DRCPConnectionClass=myDRCPclass.

3. Click Save.
* When creating or editing a data source with a text editor or using WLST:

1. Change the URL element to include a suffix of : POOLED or (SERVER=POOLED) for service
URLs. For example: <url>jdbc:oracle:thin:@host:port:service:POOLED</url>

2. Update the connection properties to include the value/name pair of the DRCP
connection class. For example:

<properties>
<property>
<name>aname</name>
<value>avalue</value>
</property>
<property>
<name>oracle.jdbc.DRCPConnectionClass</name>
<value>myDRCPclass</value>
</property>
</properties>

ORACLE 613

Chapter 6
Database Resident Connection Pooling

* WebLogic Server throws a configuration error if the DataSource resource definition has a
oracle.jdbc.DRCPConnectionClass connection property or a POOLED URL but not both.
This validation is performed when testing the connection listener in the console, deploying
a DataSource during system boot, or when targeting a DataSource.

* Set TestConnectionsOnReserve=true to minimize problems with MAX THINK TIME. See
Configuring a Database for DRCP.

* Set TestFrequencySeconds to a value less than INACTIVITY TIMEOUT. See Configuring a
Database for DRCP.

Configuring a Database for DRCP

To configure your Oracle database to support DRCP:

DRCP must be enabled on the database side using:
SQL> DBMS CONNECTION POOL.CONFIGURE POOL ('SYS DEFAULT CONNECTION POOL')
SQL> EXECUTE DBMS CONNECTION POOL.START POOL();

» The following parameters of the server pool configuration must be set correctly:

— MAXSIZE: The maximum number of pooled servers in the pool. The default value is 40.
The connection pool reserves 5% of the pooled servers for authentication and at least
one pooled server is always reserved for authentication. When setting this parameter,
ensure that there are enough pooled servers for both authentication and connections.

It may be necessary to set MAXSIZE to the size of the largest WebLogic connection pool
using the DRCP.

— INACTIVITY TIMEOUT: The maximum time, in seconds, the pooled server can stay idle
in the pool. After this time, the server is terminated. The default value is 300. This
parameter does not apply if the server pool has a size of MINSIZE.

If a connection is reserved from the WebLogic data source and then not used, the
inactivity timeout may occur and the DRCP connection will be released. Set
INACTIVITY TIMEOUT appropriately or return connections to the WebLogic data source
if they will not be used. You can also use TestFrequencySeconds to ensure that
unused connections don't time out.

— MAX THINK TIME: The maximum time of inactivity, in seconds, for a client after it
obtains a pooled server from the pool. After obtaining a pooled server from the poal, if
the client application does not issue a database call for the time specified by
MAX THINK TIME, the pooled server is freed and the client connection is terminated.
The default value is 120.

If a connection is reserved from the WebLogic data source and no activity is done
within the MAX THINK TIME, the connection is released. You can set Test Connections
On Reserve (see Testing Reserved Connections) or set MAX THINK TIME appropriately.
You can minimize the overhead of testing connections by setting
SecondstoTrustanIdlePoolConnection to a reasonable value less than

MAX THINK TIME. See Tuning Data Source Connection Pools.

If the server pool configuration parameters are not set correctly for your environment, your
data source connections may be terminated and your applications may receive an error,
such as a socket exception, when accessing a WebLogic data source connection.

ORACLE 614

Chapter 6
Global Data Services

Global Data Services

Global Data Services (GDS) enables you to use a global service to provide seamless central
management in a distributed database environment. A global server provides automated load
balancing, fault tolerance and resource utilization across multiple RAC and single-instance
Oracle databases interconnected by replication technologies such as Data Guard or
GoldenGate.

e Requirements and Considerations

e Creating a Active GridLink Data Source for GDS Connectivity

Requirements and Considerations

Ensure to complete the following requirements and considerations when using Global Data
Services in WebLogic Server:

* Requires an Oracle 12c JDBC driver and database. See Using an Oracle 12c Database.

e Itis not possible to use a single SCAN address to replace multiple Global Service Manager
(GSM) addresses.

* For update operations to be handled correctly, you must define a service for updates that is
only enabled on the primary database.

» Define a separate service for read-only operations that is located on the primary and
secondary databases.

* Since only a single service can be defined for a URL and a single URL for a data source
configuration, one data source must be defined for the update service and another data
source defined for the read-only service.

* Your application must be written so that update operations are process by the update data
source and read-only operations are processed by the read-only data source.

Creating a Active GridLink Data Source for GDS Connectivity

Use the WebLogic Server Administration Console to create a Active GridLink data source that
uses a modified URL to provide Global Data Services (GDS) connectivity. See Create JDBC
Active GridLink data sources in the Oracle WebLogic Server Administration Console Online
Help.

The connection information for a GDS URL is similar to a RAC Cluster, containing the following
basic information:

e Service name (Global Service Name)

e Address/port pairs for Global Service Manager
* GDS Region in the CONNECT DATA parameter
The following is a sample URL.:

jdbc:oracle:thin:@ (DESCRIPTION=
(ADDRESS LIST=(LOAD BALANCE=ON) (FAILOVER=ON)
(ADDRESS= (HOST=myHostl.com) (PORT=1111) (PROTOCOL=tcp))
(ADDRESS= (HOST=myHost2.com) (PORT=2222) (PROTOCOL=tcp)))
(CONNECT DATA=(SERVICE NAME=my. gds.cloud) (REGION=west)))

ORACLE e

Chapter 6
Container Database with Pluggable Databases

Container Database with Pluggable Databases

Container Database (CDB) is an Oracle Database feature that minimizes the overhead of
having many of databases by consolidating them into a single database with multiple
Pluggable Databases (PDB) in a single CDB.

See Managing Pluggable Databases in Enterprise Manager Lifecycle Management
Administrator's Guide.

e Creating Service for PDB Access
 DRCP and CDB/PDB
e Setting the PDB using JDBC

Creating Service for PDB Access

Access to a PDB is completely transparent to a WebLogic Server data source. It is accessed
like any other database using a URL with a service. The service must be associated with the
PDB. It can be created in SQLPIlus by associating a session with the PDB, creating the service
and starting it.

alter session set container = cdbl pdbl; -- configure service for each PDB

execute

dbms_service.create service('replaytest cdbl pdbl.regress.rdbms.dev.us.myCompany.com', 're
playtest cdbl pdbl.regress.rdbms.dev.us.myCompany.com');

execute

DBMS SERVICE.START SERVICE ('replaytest cdbl pdbl.regress.rdbms.dev.us.myCompany.com');

If you want to set up the service for use with JDBC Replay Driver, it needs to be appropriately
configured. For example, SQLPIus:

declare

params dbms_service.svc parameter array ;
begin

params ('goal') := 'service time' ;

params ('commit outcome') := 'true' ;
params ('ag ha notifications') := 'true' ;
params ('failover method') := 'BASIC' ;
params ('failover type') := 'TRANSACTION' ;
params ('failover retries') := 60 ;

params ('failover delay') := 2 ;

dbms service.modify service('replaytest cdbl pdbl.regress.rdbms.dev.us.myCompany.com',
params) ;

end;

/

DRCP and CDB/PDB

ORACLE

DRCP cannot be used in a PDB. It must be associated with a CDB only. To configure, set a
session to point to the CDB and start the DRCP pool. For example:

alter session set container = cdbSroot;
execute dbms connection pool.configure pool ('SYS DEFAULT CONNECTION POOL');
execute dbms connection pool.start pool();

6-16

Chapter 6
Service Switching

Setting the PDB using JDBC

Initially when a connection is created for the pool, it is created using the URL with the service
associated with a specific PDB in a CDB. It is possible to dynamically change the PDB within
the same CDB. Changing PDB's is done by executing the SQL statement:

ALTER SESSION SET CONTAINER = name SET SERVICE servicename;

Specifying SET SERVICE servicename allows for an explicit service to be configured by the
application and named. This allows for support of Load Balancing Advisories, Session Affinity,
Fast Application Notification, JDBC Replay Driver, and Proxy Authentication. These features
are not available without the SET SERVICE servicename clause.

After the container is changed, the following do not change:

« The RAC instance

e The connection object

e The WebLogic connection lifecycle (enabled/disabled/destroyed)
e The WebLogic connection attributes.

Any remaining state on the connection is cleared to avoid leaking information between PDB's.
If configured, the following are reset:

* JDBC Replay Driver

e DRCP

e client identifier

e proxy user

e The connection harvesting callback

Note:
DRCP is not supported with PDB switching

Service Switching

ORACLE

Learn about the limitations of service switching.
The limitations of using service switching with WebLogic Server are as follows:

e Service switching has no impact on where the service is offered.
* Service switching is only allowed only when the service is published at that instance.

e Service switching is only allowed at request boundaries. This is necessary for JDBC
Replay Driver to work correctly.

e Service switching is only allowed at a top level call (no user call is active).
* Service switching is not supported with Database Resident Connection Pooling.

e Service switching returns an error if there is an open transaction, local, or XA.

6-17

ORACLE

Chapter 6
Service Switching

Service attributes set at switch are never carried over from earlier usage. The application
must set up the session appropriately.

Service switching is supported in non-CDB environments as wells as CDB environments.
In the non-CDB environment, the container cannot change.

As with the earlier version, the service name may change during the switch but the
instance name may not change.

XA affinity is based on a service name, database name, instance name triple. When the
service changes, there is no XA affinity enforced.

Note:

There is a limitation for Generic, Active GridLink, and Universal Connection Pool data
sources. Fast Application Notification and Fast Connection Failover (FCF) are service
based. When the data source is created, a subscription is set up for the configured
service name. The data source will receive events for instance and service up and
down. When the application switches the service, service up and down events will not
be received for the new service name. Since gradual draining and scheduled
maintenance are based on stopping the service allowing connections to drain before
the instance is stopped, scheduled maintenance (planned down) does not work with
application service switching. When the instance is stopped, a down event will be
processed and the connections closed. WebLogic Server shared pooling manages
multiple subscriptions and the resulting Fast Application Notification service events

properly.

6-18

Using Connection Harvesting

Connection harvesting helps to ensure that a specified number of connections are always
available in the pool and improves performance by minimizing connection initialization. Using
connection harvesting in your applications involves enabling the use of connection harvesting,
marking the connection pools as harvestable, and recovering the harvested connections.

¢ What is Connection Harvesting
Connection harvesting is particularly useful if an application caches connection handles.
Caching is typically performed for performance reasons because it minimizes the
initialization of state necessary for connections to participate in a transaction.

« Enable Connection Harvesting
To enable and specify a threshold to trigger connection harvesting, use Connection
Harvest Trigger Count data source attribute.

e Marking Connections Harvestable
When connection harvesting is enabled, all connections are initially marked harvestable.

* Recover Harvested Connections
When a connection is harvested, an application callback is executed to cleanup the
connection if the callback has been registered. A unique callback must be generated for
each connection; generally it needs to be initialized with the connection object.

What is Connection Harvesting

Connection harvesting is particularly useful if an application caches connection handles.
Caching is typically performed for performance reasons because it minimizes the initialization
of state necessary for connections to participate in a transaction.

For example: A connection is reserved from the data source, initialized with necessary
session state, and then held in a context object. Holding connections in this manner may cause
the connection pool to run out of available connections. Connection harvesting appropriately
reclaims the reserved connections and allows the connections to be reused.

Note:

In WebLogic Server 12.2.1.1.0 and earlier releases, do not enable harvesting on data
sources that are referenced by WebLogic JDBC or TLOG-in-DB stores. Harvesting
may destabilize such stores, which can in turn destabilize WebLogic JMS or
WebLogic JTA. If you want to enable harvesting on a data source used by WebLogic
JDBC or TLOG-in-DB stores in WebLogic Server 12.2.1.1.0 and earlier releases,
contact Oracle Support for a patch that protects their store connections from getting
harvested.

For more information, see Using Connection Harvesting.

ORACLE -

Chapter 7
Enable Connection Harvesting

Enable Connection Harvesting

To enable and specify a threshold to trigger connection harvesting, use Connection Harvest
Trigger Count data source attribute.

For example, if Connection Harvest Trigger Count is setto 10, connection harvesting is
enabled and the data source begins to harvest reserved connections when the number of
available connections drops to 10. A value of -1, the default, indicates that connection
harvesting is disabled. See Connection Harvest Trigger Count.

When connection harvesting is triggered, the Connection Harvest Max Count specifies how
many reserved connections should be returned to the pool. The number of connections
actually harvested ranges from 1 to the value of Connection Harvest Max Count, depending
on how many connections are marked harvestable.

See Configure connection harvesting for a connection pool in Oracle WebLogic Server
Administration Console Online Help.

Marking Connections Harvestable

When connection harvesting is enabled, all connections are initially marked harvestable.

If you do not want a connection to be harvestable, you must explicitly mark it as unharvestable
by calling the setConnectionHarvestable (boolean) method in the
oracle.ucp.jdbc.HarvestableConnection interface with false as the argument value. For

example, use the following statements to prevent harvesting when a transaction is used within
a transaction:

Connection conn = datasource.getConnection();
((HarvestableConnection) conn) .setConnectionHarvestable (false);

After work with the connection is completed, you can mark the connection as harvestable by
setting setConnectionHarvestable (true) So the connection can be harvested if required. You
can tell the harvestable status of a connection by calling isConnectionHarvestable ().

Recover Harvested Connections

ORACLE

When a connection is harvested, an application callback is executed to cleanup the connection
if the callback has been registered. A unique callback must be generated for each connection;
generally it needs to be initialized with the connection object.

For example:

import java.sql.Connection;

public myHarvestingCallback implements ConnectionHarvestingCallback {

private Connection conn;
mycallback (Connection conn) {

this.conn = conn;
}
public boolean cleanup() {

try {

conn.close();
} catch (Exception ignore) {

7-2

ORACLE

Chapter 7
Recover Harvested Connections

return false;

}

return true;

}

Connection conn = ds.getConnection();
try {
(HarvestableConnection)conn) .registerConnectionHarvestingCallback (
new myHarvestingCallback (conn));
(HarvestableConnection)conn) .setConnectionHarvestable (true);
} catch (Exception exception) {
// This can't be from registration - setConnectionHarvestable must have failed.
// That most likely means that the connection has already been harvested.
// Do whatever logic is necessary to clean up here and start over.
throw new Exception("Need to get a new connection");

Note:
Consider the following:

» After a connection is harvested, an application can only call Connection.close.

* If the connection is not closed by the application, a warning is logged indicating
that the connection was forced closed if LEAK profiling is enabled.

» If the callback throws an exception, a message is logged and the exception is
ignored. Use JDBCCONN debugging to retrieve a full stack trace.

e The return value of the cleanup method is ignored.

« Connection harvesting releases reserved connections that are marked
harvestable by the application when a data source falls to a specified number of
available connections. By default, this check is performed every 30 seconds. You
can tune this behavior using the weblogic.jdbc.harvestingFrequencySeconds
system property which specifies the amount of time, in seconds, the system waits
before harvesting marked connections. Setting this system property to less than
1 disables harvesting.

7-3

Using Shared Pooling Data Sources

Shared pooling provides the ability for Multi Data Source definitions to share an underlying
connection pool. This feature improves connection utilization and density when data sources
are not heavily used by applications, or are not participating in long running transaction
processing. When configured to connect to an Oracle Container Database (CDB) environment,
the shared pool can easily manage connections to multiple Pluggable Database (PDB)
services.

How shared Pooling Works

Requirements and Considerations when using Shared Pooling Data Sources
Learn and understand the requirements for using shared pooling.

Configuring Shared Pooling
You can configure shared pooling by setting WebLogic Server-specific driver properties
and configuring Database properties.

How shared Pooling Works

When an application component requests a connection from a data source, the shared pool
attempts to locate a connection that matches the database name and service for the data
source.If an existing connection is found, it is returned to the application. Otherwise, an
available connection associated with a different database is reserved and re-purposed for the
requesting data source.

< Note:

If there are no available connections in the shared pool, and if capacity is available, a
new connection will be created for the common service and repurposed for the
shared data source requesting the connection.

Requirements and Considerations when using Shared Pooling
Data Sources

Learn and understand the requirements for using shared pooling.

ORACLE

Shared pool feature requires the Oracle 12.2 database and the 12.2 JDBC/UCP/ONS client
libraries.

All sharing data source definitions that specify a particular shared pool JNDI name must
have compatible configuration attributes with the shared pooling data source definitions.

Separate ONS subscriptions need to be managed for each sharing data source that
defines a unique PDB service.

The shared pool feature provides support for Generic and Active GridLink (AGL) data
source types.

8-1

Chapter 8
Configuring Shared Pooling

Note:

A Generic sharing data source cannot be used as a member data source in a
Multi Data Source configuration, as this would result in an exception being raised
at runtime causing the Multi Data Source deployment to fail.

e The shared connection pool supports connection matching based on PDB name, service
name and RAC instance name (AGL).

e Shared pooling does not provide support for Pinned-to-thread Optimization, Application
Invoked PDB Switch, and Identity-based pooling and Bl Impersonation identity options.

Configuring Shared Pooling

You can configure shared pooling by setting WebLogic Server-specific driver properties and
configuring Database properties.

e Configuring WebLogic Server-Specific Driver Properties for Shared Pooling

e Configuring Database for Shared Pooling

Configuring WebLogic Server-Specific Driver Properties for Shared Pooling

To configure shared pooling in your environment you need to set the following properties in the
data source:

Setting the Shared Pool Definition

* Set the shared pool attribute weblogic.jdbc.sharedPool=true.

Note:

This attribute indicates whether the data source definition represents a shared
connection pool. When this attribute is set to false (default) any data source
referencing the data source as a shared pool will result in a deployment
exception.

Setting the Sharing Data Source Definition

e Set the shared pool JNDI Name.

weblogic.jdbc.sharedPoolJNDIName=<jndiname>

< Note:

If the data source bound under JNDI Name is not configured as a shared pool
then it will result in deployment exception.

* Set the name of the PDB that is associated with the sharing data source.

weblogic. jdbc.pdbName=<pdb>

ORACLE -

ORACLE

Chapter 8
Configuring Shared Pooling

Note:

If a sharing data source does not specify the PDB name property then
getConnection () invocations will return a JDBC connection associated with the
root container, or the default service of the shared pool configuration.

You can set the PDB Service Name to specify the name of the service set on the JDBC
connection when the connection is repurposed for a specific PDB.

weblogic.jdbc.pdbServiceName=<service>

Note:

The PDB service name attribute is optional. When not specified by the sharing
data source configuration a connection will be associated with the default service
of the shared pool data source.

You can set Proxy User property to specify the name of the proxy user and password to
set on the JDBC connection when the connection is repurposed for the sharing data
source.

weblogic.jdbc.pdbProxy.<proxy-user>=<proxy-password>

Note:

Proxy user is only set when a connection is switched to a PDB/service. When
both Proxy User and Role Name attributes are specified, the Proxy User takes
precedence and the role is not set on the database session.

You can also set the Role property to specify a password-protected role to be set on the
JDBC connection when it is repurposed for the sharing data source. There can be any
number of password-protected roles configured for a sharing data source.

weblogic.jdbc.pdbRole.<role-name>=<role-password>

Note:

When the Proxy User attribute is also set, it takes precedence and the role is not
set.

Note:

You can set proxy authentication or password protected roles to secure the sharing
data source. For any given shared pool, you can use only one of these options.

8-3

Chapter 8
Configuring Shared Pooling

Configuring Database for Shared Pooling

To configure your Oracle database to support shared pooling, you need to specify a common
database user in the shared pooling data source configuration attributes. This common user
must exist in all PDBs that are connected to the sharing data sources.

This common user must have the following privileges:

e grant execute on dbms_service prvt to c##user;
e grant set container to c##user;

The shared pooling data source configuration should specify a URL that includes a common
service for the CDB.

The password-protected roles need to be defined for the configured common user in each PDB
connected to by a sharing data source

Example 8-1 WLST Script for Configuring Shared Pooling

import os
def createJDBCSystemResource (owner, resourceName, driver, url, user,
password) :
systemResource=owner.createJDBCSystemResource (resourceName)
systemResource.setName (resourceName)
jdbcResource=systemResource.getJDBCResource ()
jdbcResource.setName (resourceName)
driverParams=jdbcResource.getJDBCDriverParams ()
if driver:
driverParams.setDriverName (driver)
if url:
driverParams.setUrl (dburl)
properties = driverParams.getProperties()
if user:
properties.createProperty('user', user)
if password:
driverParams.setPassword (dbpassword)
return systemResource
def createSharedPoolDS (owner, resourceName, driver, url, user, password):
systemResource = createJDBCSystemResource (owner, resourceName, driver,
url, user, password)

systemResource.getJDBCResource () .getJDBCDriverParams () .getProperties () .createP
roperty ('weblogic.jdbc.sharedPool', 'true')

return systemResource
def createSharingDS (owner, resourceName, sharedPoolJNDIName, pdbName,
pdbServiceName, roleName, rolePassword):

systemResource = createJDBCSystemResource (owner, resourceName, driver=None,
url=None, user=None, password=None)

properties=systemResource.getJDBCResource () .getJDBCDriverParams () .getPropertie
s ()
properties.createProperty('weblogic.jdbc.sharedPoolJNDIName',
sharedPoolJNDIName)
if pdbName:
properties.createProperty ("weblogic.jdbc.pdbName", pdbName)
if pdbServiceName:

ORACLE -

ORACLE

Chapter 8
Configuring Shared Pooling

properties.createProperty ("weblogic.jdbc.pdbServiceName", pdbServiceName)
if roleName:
roleprop=properties.createProperty("weblogic.jdbc.pdbRole."+roleName)
if rolePassword:
roleprop.setEncryptedvValue (rolePassword)
return systemResource
servername='myserver'
sharedpoolname="'sharedpool"
sharingdslname="'sharingdsl'
sharingds2name="'sharingds2'
driver='oracle.jdbc.OracleDriver'
dburl="jdbc:oracle:thin:@host:1521/orcl’
dbuser="c##1'
dbpassword="xyzzy"'
pdbl="pdbl"'
pdblservice="'coke'
pdblrole="cokerole'
pdblrolepwd="cokepwd'
pdb2="pdb2"'
pdb2service="pepsi'
pdb2role="pepsirole'
pdb2rolepwd="pepsipwd'
connect ('weblogic', 'weblogic', 't3://localhost:7001")
edit ()
create shared pool datasource
startEdit ()
spds=createSharedPoolDS (cmo, sharedpoolname, driver, dburl, dbuser,
dbpassword)
spds.addTarget (getMBean ('/Servers/'+servername))
activate()
startEdit ()
create sharing datasource 1
sharingdsl=createSharingDS (owner=cmo, resourceName=sharingdslname,
sharedPoolJNDIName=sharedpoolname, pdbName=pdbl, pdbServiceName=pdblservice,
roleName=pdblrole, rolePassword=pdblrolepwd)
sharingdsl.addTarget (getMBean ('/Servers/'+servername))
create sharing datasource 2
sharingds2=createSharingDS (owner=cmo, resourceName=sharingds2name,
sharedPoolJNDIName=sharedpoolname, pdbName=pdb2, pdbServiceName=pdb2service,
roleName=pdb2role, rolePassword=pdb2rolepwd)
sharingds2.addTarget (getMBean ('/Servers/'+servername))
activate()
exit ()

8-5

Using Oracle Databases with WebLogic

Server

ORACLE

WebLogic Server integrates with specific features of the Oracle database to provide some
advanced functionality.

* WebLogic JDBC Features for Oracle Database 12.1
Learn about Oracle database features supported with various combinations of WebLogic
Server, 11g and 12c¢ JDBC drivers, and 11g and 12.1 versions of Oracle Database.

* WebLogic JDBC Features for Oracle Database 12.2
WebLogic JDBC provides several features that specifically require the use of Oracle
Database 12.2.x. Learn about supported features with various combinations of WebLogic
Server releases and Oracle Database 12.2.x release.

WebLogic JDBC Features for Oracle Database 12.1

Learn about Oracle database features supported with various combinations of WebLogic
Server, 11g and 12c¢ JDBC drivers, and 11g and 12.1 versions of Oracle Database.

Table 9-1 Oracle Database 12.1 Feature Support

Feature WebLogic WebLogic WebLogic WebLogic WebLogic WebLogic
Server Server Server Server Server Server
10.3.6/12.1.x 10.3.6/12.1.x 10.3.6/12.1.1 12.1.2 and 10.3.6/12.1.1 12.1.2 and
with 11g with 11g with 12c and later with with 12c and later with
drivers and drivers and later drivers 12c and later drivers 12c and
Oracle Oracle and Oracle later drivers and Oracle later drivers
Database Database Database and Oracle Database with Oracle
11gR2 12¢c 11gR2 Database 12¢c Database

11gR2 12c

JDBC Replay No No No No Yes (Read/ Yes (Read/

Driver (read/ Write with Write with

write) Active Active

GridLink only, GridLink and

no XA Generic data

transactions) source, no
XA
transactions)

Pluggable No Yes (Except No No Yes Yes

Database Set

(PDB) Container)

Dynamic No No No No No Yes (no XA)

switching

between

PDBs

9-1

ORACLE

Chapter 9

WebLogic JDBC Features for Oracle Database 12.1

Table 9-1 (Cont.) Oracle Database 12.1 Feature Support

Feature WebLogic WebLogic WebLogic WebLogic WebLogic WebLogic
Server Server Server Server Server Server
10.3.6/12.1.x 10.3.6/12.1.x 10.3.6/12.1.1 12.1.2 and 10.3.6/12.1.1 12.1.2 and
with 11g with 11g with 12c and later with with 12c and later with
drivers and drivers and later drivers 12c and later drivers 12c and
Oracle Oracle and Oracle later drivers and Oracle later drivers
Database Database Database and Oracle Database with Oracle
11gR2 12¢c 11gR2 Database 12c Database

11gR2 12¢c

Database No No No Yes No Yes

Resident

Connection

Pooling(DRC

P)

Oracle No No No No No Yes (Active

Notification GridLink

Service only)

(ONS) auto

configuration

Global Data No Yes (Active No No Yes (Active Yes (Active

Services GridLink GridLink GridLink

(GDS) only) only) only)

JDBC 4.1 No No Yes Yes Yes Yes

(using

ojdbc7.jar

files and JDK

7)

WebLogic JDBC features for Oracle Database 12.1 are:

e JDBC 4.1 Support for JDK 7

e JDBC Replay Driver Support

- Database Resident Connection Pooling Support

e Container Database with Pluggable Databases

e Global Data Services Support

e Automatic ONS Listeners

JDBC 4.1 Support for JIDK 7

WebLogic Server supports the JDBC 4.1 specification when the environment is using JDK 7
and the JDBC driver is JDBC 4.1 compliant. To use new JDBC 4.1 methods, you must use the
ojdbc7.jar. See JDBC™ 4.1 Specification.

Note:

WebLogic Server currently does not support the java.sql.driver interfaces required
to use the Java SE 8 getParentLogger method. See http://docs.oracle.com/
javase/8/docs/api/index.html?java/sql/Driver.html.

9-2

http://download.oracle.com/otndocs/jcp/jdbc-4_1-mrel-spec/index.html
http://docs.oracle.com/javase/8/docs/api/index.html?java/sql/Driver.html
http://docs.oracle.com/javase/8/docs/api/index.html?java/sql/Driver.html

Chapter 9
WebLogic JDBC Features for Oracle Database 12.2

JDK 7 also brings support for minor changes in Rowset 1.1 defined at http://jcp.org/
aboutJava/communityprocess/maintenance/jsr114/114MR2approved.pdf. The WebLogic
Server implementation of the new RowSetFactory is called

weblogic. jdbc.rowset.JdbcRowSetFactory.

JDBC Replay Driver Support

JDBC Replay Driver (also referred to as Replay) is a general purpose, application-independent
infrastructure for Active GridLink and Generic data sources that enables the recovery of work
from an application perspective and masks many system, communication, and hardware
failures. See JDBC Replay Driver.

Database Resident Connection Pooling Support

Database Resident Connection Pooling (DRCP) is an Oracle database server feature that
provides the ability to share connections among multiple connection pools that can span
across mid-tier systems. See Database Resident Connection Pooling.

Container Database with Pluggable Databases

Container Database (CDB) is an Oracle Database feature that minimizes the overhead of
having many of databases by consolidating them into a single database with multiple
Pluggable Databases (PDB) in a single CDB. See Container Database with Pluggable
Databases.

Global Data Services Support

Global Data Services (GDS) is an Oracle Database feature that provides automated load
balancing, fault tolerance and resource utilization in a distributed database environment. See
Global Database Services.

Automatic ONS Listeners

If you are using Oracle Database 12c¢ with WebLogic Server version 12.1.2 or later, you are no
longer required to provide the ONS Listener list as part of an Active GridLink data source
configuration. The ONS list is automatically provided from the database to the driver. See
Enabling FAN Events.

WebLogic JDBC Features for Oracle Database 12.2

WebLogic JDBC provides several features that specifically require the use of Oracle Database
12.2.x. Learn about supported features with various combinations of WebLogic Server releases
and Oracle Database 12.2.x release.

Table 9-2 Oracle Database 12.2 Feature Support

Feature Description WebLogic Server Database
Introduced Releases

JDBC 4.2 See JDBC 4.2 Interfaces 12.1.3 12.1.0.1

Service Switching See Service Switching 12.2.1 12.2

ORACLE 0.3

http://jcp.org/aboutJava/communityprocess/maintenance/jsr114/114MR2approved.pdf
http://jcp.org/aboutJava/communityprocess/maintenance/jsr114/114MR2approved.pdf

Table 9-2 (Cont.) Oracle Database 12.2 Feature Support
]

Chapter 9

WebLogic JDBC Features for Oracle Database 12.2

Feature Description WebLogic Server Database
Introduced Releases
JDBC Replay Driver See Database 12.2 JDBC Replay 12.2.1 12.2
Driver
UCP MT Shared Pool See Universal Connection Pool 12.2.1.1.0 12.2
support Multi Tenant Shared Pool support
Gradual Draining During planned maintenance, itis 12.2.1.2.0 12.1 with
desirable to gradually drain 12.2
connections instead of closing enhancemen
them all immediately. This ts
prevents uneven performance by
the application. See Gradual
Draining
AGL Support for URL with See AGL Support for URL with 12.2.1.2.0 12.2
@alias or @ldap @alias or @ldap
Data Source Shared Pooling Shared pooling feature provides 12.2.1.3.0 12.2
the ability for multiple data source
definitions to share an underlying
connection pool. See Using
Shared Pooling Data Sources
Transaction Guard Transaction Guard provides a 12.2.1.3.0 12.1.0.2

Integration

generic infrastructure for
applications to use for at-most-
once execution during planned
and unplanned outages and
duplicate submissions. See Using
Transaction Guard in Developing
JTA Applications for Oracle
WebLogic Server.

WebLogic JDBC features for Oracle Database 12.2 are:

JDBC 4.2 Interfaces

Database 12.2 JDBC Replay Driver
AGL Support for URL with @alias or @Idap

JDBC 4.2 Interfaces

JDK 8 has new API's for JDBC 4.2 that are supported for any database driver that is JDBC 4.2

ORACLE

compliant. The first Oracle driver to support JDK 8 and JDBC 4.2 is 12.2.0.1.

The following are the features introduced in JDBC 4.2 java.sqgl and javax.sql.

Added JDBCType enum and SQLType interface

Support for REF CURSORS in CallableStatement

DatabaseMetaData methods to return maximum Logical LOB Size and if REF CURSORS are

supported

Added support for large update counts

The JDBC 4.2 API changes are documented at https://docs.oracle.com/javase/8/docs/
technotes/guides/jdbc/jdbc_42.html.

9-4

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_42.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_42.html

Chapter 9
WebLogic JDBC Features for Oracle Database 12.2

Database 12.2 JDBC Replay Driver

The JDBC Replay Driver is new in Oracle Database 12.2. The name is
oracle.jdbc.replay.OracleXADataSourcelImpl. If the WebLogic Server is run on a driver
earlier than 12.2, an error will be thrown indicating that the class cannot be loaded.

If the data source is running with the JDBC Replay Driver from database 12.2, the test table
name is validated as follows:

If SQL ISVALID or SQL PINGDATABASE, no change.

If a table name (which is converted to select count (*) from tablename) or SQL SELECT
is specified, it is converted to SQL. ISVALID.

Any other value (DML or DDL) will cause an exception to be thrown and the data source
will not deploy.

Note:

12.2 JDBC Replay Driver does not support replay with global transactions, it supports
local transactions on an XA connection.

AGL Support for URL with @alias or @Idap

This feature allows for using an alias or an LDAP connection in the AGL URL.
The alias format is jdbc:oracle:thin:Qalias where "alias" is an alias defined in a
tnsnames.ora file.

See LDAP Syntax.

To use an alias, you need to you need to perform the following steps:

1.

ORACLE

Specify the system property -Doracle.net.tns admin=tns directory, where
tns_directory, is the directory location of the tnsnames.ora file.

Create or modify a tnsnames.ora file in the directory location specified by tns directory.

The entry has the form: alias=(DESCRIPTION= (ADDRESS= (PROTOCOL=TCP) (HOST=host)
(PORT=port)) (CONNECT DATA=(SERVICE NAME=service)))

where host is URL of a database listener, port is the port a database listener, and service is
the service name of the database you would like to connect to.

Use the alias in the data source definition URL by replacing the connection string with the
alias.

For example, change the URL attribute in the Connection Pool tab of the Administrative
Console to jdbc:oracle:thin:Qalias.

9-5

https://docs.oracle.com/database/121/JJDBC/urls.htm#CHDBICFA

Labeling Connections

Label connections increase the performance of database connections. By associating
particular labels with particular connection states, an application can retrieve an already
initialized connection from the pool and avoid the time and cost of re-initialization.

e What is Connection Labeling
Applications often initialize connections retrieved from a connection pool before using the
connection. The initialization varies and could include simple state re-initialization that
requires method calls within the application code or database operations that require round
trips over the network. The cost of such initialization may be significant. Labeling
connections allows an application to attach arbitrary name/value pairs to a connection.

« Implementing Labeling Callbacks
A labeling callback is used to define how the connection pool selects labeled connections
and allows the selected connection to be configured before returning it to an application.
Applications that use the connection labeling feature must provide a callback
implementation.

e Creating a Labeling Callback
A labeling callback is used to define how the connection pool selects labeled connections
and allows the selected connection to be configured before returning it to an application.
Learn how to create a labeling callback by implementing the
oracle.ucp.ConnectionLabelingCallback interface.

* Registering a Labeling Callback
A WebLogic Server data source provides the
registerConnectionLabelingCallback (ConnectionLabelingCallback callback) method
for registering labeling callbacks. Only one callback may be registered on a connection
pool.

* Reserving Labeled Connections
WebLogic JDBC data sources provide two getConnection methods that are used for
reserving a labeled connection from the pool.

e Checking Unmatched labels
Connections may have multiple labels, which each uniquely identify the connection based
on specified criteria. Use the getUnmatchedConnectionLabels method to verify which
connections do not match the requested label.

* Removing a Connection Label
You can remove a connection label by using the removeConnectionLabel method.

e Using Initialization and Reinitialization Costs to Select Connections

e Using Connection Labeling with Packaged Applications
WebLogic Server allows callbacks, such as connection labeling and connection
initialization, in EAR or WAR files used by a packaged application.

What is Connection Labeling

Applications often initialize connections retrieved from a connection pool before using the
connection. The initialization varies and could include simple state re-initialization that requires
method calls within the application code or database operations that require round trips over

ORACLE 104

Chapter 10
Implementing Labeling Callbacks

the network. The cost of such initialization may be significant. Labeling connections allows an
application to attach arbitrary name/value pairs to a connection.

The application can request a connection with the desired label from the connection pool. The
connection labeling feature does not impose any meaning on user-defined keys or values; the
meaning of user-defined keys and values is defined solely by the application.

Some of the examples for connection labeling include role, NLS language settings, transaction
isolation levels, stored procedure calls, or any other state initialization that is expensive and
necessary on the connection before work can be executed by the resource.

Connection labeling is application-driven and requires the following:

e The oracle.ucp.jdbc.LabelableConnection interface is used to apply and remove
connection labels, as well as retrieve labels that have been set on a connection.

e The oracle.ucp.ConnectionLabelingCallback interface is used to create a labeling
callback that determines whether or not a connection with a requested label already exists.
If no connections exist, the interface allows current connections to be configured as
required.

e AcConnection Labeling Callback, see JDBC Data Source: Configuration: Connection
Pool in Oracle WebLogic Server Administration Console Online Help.

Implementing Labeling Callbacks

A labeling callback is used to define how the connection pool selects labeled connections and
allows the selected connection to be configured before returning it to an application.
Applications that use the connection labeling feature must provide a callback implementation.

A labeling callback is used when a labeled connection is requested but there are no
connections in the pool that match the requested labels. The callback determines which
connection requires the least amount of work in order to be re-configured to match the
requested label and then allows the connection's labels to be updated before returning the
connection to the application.

Note:

Connection Labeling is not supported from client applications that use RMI. See
Using the WebLogic RMI Driver (Deprecated) in Developing JDBC Applications for
Oracle WebLogic Server.

Creating a Labeling Callback

ORACLE

A labeling callback is used to define how the connection pool selects labeled connections and
allows the selected connection to be configured before returning it to an application. Learn how
to create a labeling callback by implementing the oracle.ucp.ConnectionLabelingCallback
interface.

To create a labeling callback, an application implements the
oracle.ucp.ConnectionLabelingCallback interface. One callback is created per connection
pool. The interface provides two methods as shown below:

public int cost (Properties requestedLabels, Properties currentLabels);

10-2

Chapter 10
Creating a Labeling Callback

public boolean configure (Properties requestedlLabels, Connection conn);

The connection pool iterates over each connection available in the pool. For each connection,
it calls the cost method. The result of the cost method is an integer which represents an
estimate of the cost required to reconfigure the connection to the required state. The larger the
value, the costlier it is to reconfigure the connection. The connection pool always returns
connections with the lowest cost value. The algorithm is as follows:

« If the cost method returns O for a connection, the connection is a match (note that this does
not guarantee that requestedLabels equals currentlLabels). The connection pool does
not call configure on the connection found and simply returns the connection.

< If the cost method returns a value that is not 0 (a negative or positive integer), then the
connection pool iterates until it finds a connection with a cost value of 0 or runs out of
available connections.

* If the pool has iterated through all available connections and the lowest cost of a
connection is Integer.MAX VALUE (2147483647 by default), then no connection in the pool
is able to satisfy the connection request. The pool creates a new connection, calls the
configure method on it, and then returns this new connection. If the pool has reached the
maximum pool size (it cannot create a new connection), then the pool either throws an
SQL exception or waits if the connection wait timeout attribute is specified.

e If the pool has iterated through all available connections and the lowest cost of a
connection is less than Integer.MAX VALUE, then the configure method is called on the
connection and the connection is returned. If multiple connections are less than
Integer.MAX VALUE, the connection with the lowest cost is returned.

There is also an extended callback interface oracle.ucp.jdbc.ConnectionLabelingCallback
that has an additional getRequestedLabels () method. getRequestedLabels is invoked at
getConnection () time when no requested labels are provided and there is an instance
registered. This occurs when the standard java.sql.Datasource getConnection () methods
are used that do not provide the label information on the getConnection () call.

* Example Labeling Callback

Example Labeling Callback

ORACLE

The following code example demonstrates a simple labeling callback implementation that
implements both the cost and configure methods. The callback is used to find a labeled
connection that is initialized with a specific transaction isolation level.

Example 10-1 Labeling Callback

import oracle.ucp.jdbc.ConnectionLabelingCallback;

import oracle.ucp.jdbc.LabelableConnection;

import java.util.Properties;

import java.util.Map;

import java.util.Set;

import weblogic.jdbc.extensions.WLDataSource;

class MyConnectionLabelingCallback implements ConnectionLabelingCallback {

public MyConnectionLabelingCallback() {
}
public int cost(Properties reqglabels, Properties currentLabels) {
// Case 1: exact match
if (reglLabels.equals(currentLabels)) {
System.out.println("## Exact match found!! ##");
return 0;

}

10-3

Chapter 10
Creating a Labeling Callback

// Case 2: some labels match with no unmatched labels
String isol = (String) reqlLabels.get ("TRANSACTION ISOLATION");
String iso2 = (String) currentLabels.get ("TRANSACTION ISOLATION");
boolean match =

(isol != null && iso2 != null && isol.equalsIgnoreCase(iso2));
Set rKeys = reqlabels.keySet();
Set cKeys = currentlLabels.keySet();
if (match && rKeys.containsAll (cKeys)) {

System.out.println ("## Partial match found!! ##");

return 10;

}

// No label matches to application's preference.
// Do not choose this connection.
System.out.println ("## No match found!! ##");
return Integer.MAX VALUE;

public boolean configure (Properties reqlabels, Object conn) {
try {
String isoStr = (String) reglLabels.get ("TRANSACTION ISOLATION");
((Connection)conn) .setTransactionIsolation(Integer.valueOf (isoStr));
LabelableConnection lconn = (LabelableConnection) conn;

// Find the unmatched labels on this connection

Properties unmatchedLabels =
lconn.getUnmatchedConnectionLabels (reqlabels) ;

// Bpply each label <key,value> in unmatchedLabels to conn

for (Map.Entry<Object, Object> label : unmatchedLabels.entrySet()) {
String key = (String) label.getKey();
String value = (String) label.getValue();

lconn.applyConnectionLabel (key, value);

}
} catch (Exception exc) {
return false;

}

return true;
public java.util.Properties getRequestedLabels() {
Properties props = new Properties();
// Set based on some application state that might be on a thread-local, http session
info, etc.
String value = "value";

props.put ("TRANSACTION ISOLATION", value);

return props;

}

ORACLE 10-4

Chapter 10
Registering a Labeling Callback

Registering a Labeling Callback

A WebLogic Server data source provides the
registerConnectionLabelingCallback (ConnectionLabelingCallback callback) method for
registering labeling callbacks. Only one callback may be registered on a connection pool.

See, the registerConnectionLabelingCallback (ConnectionLabelingCallback callback)
method for registering labeling callbacks. The following code example demonstrates
registering a labeling callback that is implemented in the MyConnectionLabelingCallback
class:

import weblogic.jdbc.extensions.WLDataSource;

MyConnectionLabelingCallback callback = new MyConnectionLabelingCallback();
((WLDataSource)ds) .registerConnectionlabelingCallback(callback);

You can also register the callback using the WebLogic Server Administration Console, see
Configure a connection labeling callback class in Oracle WebLogic Server Administration
Console Online Help.

e Removing a Labeling Callback

e Applying Connection Labels

Removing a Labeling Callback

You can remove a labeling callback by using one of the following methods:

* If you have programmatically set a callback, use the
removeConnectionLabelingCallback () method as shown in the following example:
import weblogic.jdbc.extensions.WLDataSource;

((WLDataSource)ds) .removeConnectionLabelingCallback(callback);
* If you have administratively configured the callback, remove the callback from the data

source configuration. See Configure a connection labeling callback class in Oracle
WebLogic Server Administration Console Online Help.

Note:

An application must use one of the methods to register and remove callbacks but not
both. For example, if you register the callback on a connection using
registerConnectionLabelingCallback (callback), you must use
removeConnectionLabelingCallback () to remove it.

Applying Connection Labels

Labels are applied on a reserved connection using the applyConnectionLabel method from
the LabelableConnection interface. Any number of connection labels may be cumulatively

ORACLE Lo

Chapter 10
Reserving Labeled Connections

applied on a reserved connection. Each time a label is applied to a connection, the supplied
key/value pair is added to the existing collection of labels. Only the last applied value is
retained for any given key.

Note:

A labeling callback must be registered on the connection pool before a label can be
applied on a reserved connection; otherwise, labeling is ignored. See Creating a
Labeling Callback.

The following example demonstrates initializing a connection with a transaction isolation level
and then applying a label to the connection:

String pname = "propertyl";

String pvalue = "value";

Connection conn = ds.getConnection();

// initialize the connection as required.
conn.setTransactionIsolation (Connection.TRANSACTION SERIALIZABLE);
((LabelableConnection) conn).applyConnectionlLabel (pname, pvalue);

Reserving Labeled Connections

ORACLE

WebLogic JDBC data sources provide two getConnection methods that are used for reserving
a labeled connection from the pool.

The syntax of the two methods is:
e Public Connection getConnection(java.util.Properties labels)

e Public Connection getConnection (String user, String password,
java.util.Properties labels)

The methods require that the label be passed to the getConnection method as a Properties
object. The following example demonstrates getting a connection with the label property1
value.

import weblogic.jdbc.extensions.WLDataSource;

String pname = "propertyl";

String pvalue = "value";

Properties label = new Properties();
label.setProperty (pname, pvalue);

Connection conn = ((WLDataSource)ds).getConnection(label);

It is also possible to use the standard java.sqgl.Datasource getConnection () methods. In
this case, the label information is not provided on the getConnection () call. The interface
oracle.ucp.jdbc.ConnectionLabelingCallback is used:

java.util.Properties getRequestedLabels();

getRequestedLabels is invoked at getConnection () time when no requested labels are
provided and there is an instance registered.

10-6

Chapter 10
Checking Unmatched labels

Checking Unmatched labels

Connections may have multiple labels, which each uniquely identify the connection based on
specified criteria. Use the getUnmatchedConnectionLabels method to verify which connections
do not match the requested label.

This method is used after a connection with multiple labels is reserved from the connection
pool and is typically used by a labeling callback. See getUnmatchedConnectionLabels method.

The following code example demonstrates checking for unmatched labels:

String pname = "propertyl";

String pvalue = "value";

Properties label = new Properties();
label.setProperty (pname, pvalue);

Connecion conn = ((WLDataSource)ds).getConnection (label);
Properties unmatched =
((LabelableConnection) connection) .getUnmatchedConnectionLabels (label);

Removing a Connection Label

You can remove a connection label by using the removeConnectionLabel method.

This method is used after a labeled connection is reserved from the connection pool. See
removeConnectionLabel.

The following code example demonstrates removing a connection label:

String pname = "propertyl";

String pvalue = "value";

Properties label = new Properties();

label.setProperty (pname, pvalue);

Connection conn = ((WLDataSource)ds).getConnection (label);

((LabelableConnection) conn).removeConnectionLabel (pname) ;

Using Initialization and Reinitialization Costs to Select
Connections

ORACLE

Some applications require that a connection pool be able to identify high-cost connections and
avoid using those connections when the number of connections is below a certain threshold.
Using that information allows a connection pool to use new physical connections to serve
connection requests from different tenants without incurring reinitialization overhead on other
tenant connections already in the pool.

WebLogic Server provides the following connection properties to identify high cost
connections:

* ConnectionLabelingHighCost—When greater than O, connections with a cost value equal
to or greater than the property value are considered high-cost connections. The default
value is Integer.MAX VALUE.

10-7

Chapter 10
Using Connection Labeling with Packaged Applications

For example, if the property value is set to 5, any connection whose calculated cost value
from the labeling callback is equal to or greater than 5 is considered a high-cost
connection.

HighCostConnectionReuseThreshold—When greater than 0, specifies a threshold of the
number of total connections in the pool beyond which Connection Labeling is allowed to
reuse high-cost connections in the pool to serve a request. Below this threshold,
Connection Labeling either uses an available low-cost connection or creates a brand-new
physical connection to serve a request. The default value is 0.

For example, if set to 20, Connection Labeling reuses high-cost connections when there
are no low-cost connections available and the total connections reach 20.

For Generic data sources see Configuring Generic Connection Pool Features.

For Active GridLink data sources, see Configuring AGL Connection Pool Features.

Considerations When Using Initialization and Reinitialization Costs

Considerations When Using Initialization and Reinitialization Costs

This section provides additional considerations when selecting connections based on
connection costs:

Valid callback registration activates Connection Labeling. Once registered, the connection
pool checks for new threshold values at regular intervals and determines:

— if a connnection has a cost that is equal to or greater than
ConnectionLabelingHighCost.

— If the number of total connections accounts for the number of active connection
creation requests, including restrictions for MinCapacity and MaxCapacity.

Any labeled connection with cost value of Integer.MAX VALUE is not reused, even if a new
threshold is reached.

There is no requirement not to reuse connections without labels (stateless) in the pool to
serve connection requests with labels (labeled requests). Once the
HighCostConnectionReuseThreshold is reached and Connection Labeling is activated, the
pool continues to favor connections without labels (stateless) over creating new physical
connections.

Using Connection Labeling with Packaged Applications

WebLogic Server allows callbacks, such as connection labeling and connection initialization, in
EAR or WAR files used by a packaged application.

ORACLE

To define an application-packaged callback class in a data source configuration:

Define the data source as part of the application.

For example, if the callback implementation classes are packaged in a WAR or defined as
part of a shared library that is referenced by the application, the EAR file contains
application packaged data source configurations that reference the callback class names
in their module descriptors.

Specify the application WAR file (that contains the callback implementations) as part of the
application classloader hierarchy in the weblogic-application.xnl file.

For example:

10-8

Chapter 10
Using Connection Labeling with Packaged Applications

<classloader-structure>
<module-ref>
<module-uri>appcallbacks.war</module-uri>
</module-ref>
</classloader-structure>

Considerations When using Labelled Connections in Packaged Applications

WebLogic Server does not support specifying a connection labeling callback or connection
initialization callback in the module descriptor for a globally scoped data source system
resource when the callback class is packaged in an application. A global data source requires
that callback implementation classes be on the WebLogic classpath. However, you can
workaround this restriction for an application callback that is packaged in a WAR or EAR by
having the application register the callback at runtime using the WLDataSource interface in the
Java API Reference for Oracle WebLogic Server.

ORACLE 0.0

Understanding Data Source Security

Secure WebLogic JDBC data sources by configuring the data source security options in your
application environment. Security considerations include the number of WebLogic Server and
database users, the granularity of data access, the depth of the security identity (property on
the connection or a real user), performance, coordination of various components in the
software stack, and driver capabilities.

e About WebLogic Data Source Security Options
By default, you define a single database user and password for a data source. You can
store it in the data source descriptor or make use of the wallet.

e WebLogic Data Source Security Options
Learn about the security options available for WebLogic JDBC data source.

e Connections within Transactions
When you get a connection within a transaction, it is associated with the transaction
context on a particular WebLogic Server instance. This type of connection has some
special behaviors.

e WebLogic Data Source Resource Permissions

e Data Source Security Example
Learn about the interactions and differences between ldentity, Proxy, and Database
Credentials with help of data source security example.

e Using Encrypted Connection Properties

e Using SSL and Encryption with Data Sources and Oracle Drivers
Use SSL to provide both data encryption and strong authentication for network
connections to the database server. This topic provides additional information on using
these features with WebLogic Server.

About WebLogic Data Source Security Options

By default, you define a single database user and password for a data source. You can store it
in the data source descriptor or make use of the wallet.

For information on using wallets, see Creating and Managing Oracle Wallet. This is a very
simple and efficient approach to security. All of the connections in the connection pool are
owned by this user and there is no special processing when a connection is given out. That is,
it's a homogenous connection pool and any request can get any connection from a security
perspective (there are other aspects, such as affinity). Regardless of the end user of the
application, all connections in the pool use the same security credentials to access the DBMS.
No additional information is needed when you get a connection because it's all available from
the data source descriptor or wallet. For example:

java.sgl.Connection conn = mydatasource.getConnection();

ORACLE 111

Chapter 11
WebLogic Data Source Security Options

Note:

You can enter the password as a hame-value pair in the Properties field (this not
permitted for production environments) or you can enter it in the Password field. The
value in the password field overrides any password value defined in the Properties
passed to the JDBC Driver when creating physical database connections.

It is recommended that you use the Password attribute in place of the password
property in the properties string because the Password value is encrypted in the
configuration file (stored as the password-encrypted attribute in the jdbc-driver-
params tag in the module file) and is hidden in the WebLogic Server Administration
Console. The properties and Password fields are located on the WebLogic Server
Administration Console data source creation wizard or data source configuration
page. Also, JDBCDriverParamsBean.Password attribute is now dynamic and does not
require a restart of the data source. See JDBC Data Source: Configuration:
Connection Pool in Oracle WebLogic Server Administration Console Online Help.

The JDBC API can also be used to programmatically specify the database username and
password as in the following.

java.sgl.Connection conn = mydatasource.getConnection (“user", “password");

Although the JDBC specification implies that the getConnection (“user", “password")
method should take a database user and associated password, software vendors have
developed implementations according to their own interpretation of the specification. Oracle
WebLogic Server, by default, treats this as an application server user and password:

e The pair is authenticated to see if it is a valid user and that user is used for WebLogic
security permission checks.

e The user is then mapped to a database user and password using the data source
credential mapper.

WebLogic Server's implementation generically follows the specification but the database
credentials are one-step removed from the application code.

While the default approach is simple, it does mean that only one user is doing all of the work.
You can't determine who actually did the update nor can you restrict SQL operations by who is
running the operation, at least at the database level. Any type of per-user logic needs to be in
the application code instead of relying on the database. There are various WebLogic data
source features that can be configured to provide per-user information about the operations.

WebLogic Data Source Security Options

Learn about the security options available for WebLogic JDBC data source.

ORACLE 110

Chapter 11
WebLogic Data Source Security Options

Table 11-1 WebLogic Data Source Configuration Options for Security Credentials
|

Feature Description Can be used with . .. Can't be used with . . .
User authentication Default Proxy session, Set client Identity pooling, Use
(default) getConnection (use identifier database credentials

r, password)
behavior — WebLogic
validates the input and
uses the user/
password in the

descriptor.
Use database Instead of using the Set client identifier, Proxy User authentication
credentials credential mapping, session, Identity pooling

use the supplied user
and password directly.

Set Client Identifier Set a client identifier ~ Everything N/A
property associated
with the connection
(Oracle and DB2 only).

Proxy Session Set a light-weight User authentication, Set Identity pooling
proxy user associated client identifier, Use
with the connection database credentials
(Oracle-only).

Identity pooling Heterogeneous pool of Set client identifier, Use Proxy session, User
connections owned by database credentials authentication, Labeling,
specified users. Active GridLink

\J
«# Note:

All of these features are available with both XA and non-XA drivers.

All of these features are configurable on the Identity tab of the Data Source Configuration
tab in the WebLogic Server Administration Console. See JDBC Data Source: Configuration:
Identity Option in Oracle WebLogic Server Administration Console Online Help.

* Credential Mapping vs. Database Credentials
* Set Client Identifier on Connection
* Oracle Proxy Session

* Identity-based Connection Pooling

Credential Mapping vs. Database Credentials

ORACLE

Each WebLogic data source has a credential map that is a mechanism used to map a key, in
this case a WebLogic user, to security credentials (user and password). By default, when a
user and password are specified when getting a connection, they are treated as credentials for
a WebLogic user, validated, and are converted to a database user and password using a
credential map associated with the data source. If a matching entry is not found in the
credential map for the data source, then the user and password associated with the data
source definition are used. Because of this defaulting mechanism, you should be careful what
permissions are granted to the default user. Alternatively, you can define an invalid default user

11-3

Chapter 11
WebLogic Data Source Security Options

to ensure that no one can accidentally get through (in this case, you would need to set the
initial capacity for the pool to zero so that the pool is populated only by valid users).

To create an entry in the credential map:

1. Create a WebLogic user. In the WebLogic Server Administration Console, go to Security
realms, select your realm (for example, myrealm), select Users, and select New.

2. Create the mapping as described in Configure credential mapping for a JDBC data source
in Oracle WebLogic Server Administration Console Online Help.

The advantages of using the credential mapping are that:

* You don't hard-code the database user/password into a program or need to prompt for it in
addition to the WebLogic user/password.

* It provides a layer of abstraction between WebLogic security and database settings such
that many WebLogic identities can be mapped to a smaller set of DB identities, thereby
only requiring middle-tier configuration updates when WebLogic users are added/removed.

You can cut down the number of users that have access to a data source to reduce the user
maintenance overhead. For example, suppose that a servlet has the one pre-defined
WebLogic user/password for data source access that is hardwired in its code using a
getConnection (user, password) call. Every WebLogic user can reap the specific DBMS
access coded into the servlet, but none has to have general access to the data source. For
instance, there may be a Sales DBMS which needs to be protected from unauthorized eyes,
but it contains some day-to-day data that everyone needs. The Sales data source is configured
with restricted access and a servlet is built that hardwires the specific data source access
credentials in its connection request. It uses that connection to deliver only the generally
needed day-to-day info to any caller. The servlet cannot reveal any other data and no
WebLogic user can get any other access to the data source. This is the approach that many
large applications use and is the logic behind the default mapping behavior in WebLogic
Server.

The disadvantages of using the credential map are that:

« ltis difficult to manage (create, update, delete) with a large number of users; it is possible
to use WLST scripts or a custom JMX client utility to manage credential map entries.

* You can't share a credential map between data sources so they must be duplicated.

Some applications prefer not to use the credential map. Instead, the credentials passed to
getConnection (user, password) should be treated as database credentials and used to
authenticate with the database for the connection, avoiding going through the credential map.
This is enabled by setting the use-database-credentials to true. See Configure Oracle
parameters in Oracle WebLogic Server Administration Console Online Help.

When use-database-credentials is enabled, it turns of credential mapping for the following
attributes:

e identity-based-connection-pooling-enabled
* oracle-proxy-session

o set client identifier

ORACLE 112

Chapter 11
WebLogic Data Source Security Options

Note:

in the data source schema, the set client identifier feature is poorly named
credential-mapping-enabled. The documentation and the console refer to it as set

client identifier.).

To review the behavior of credential mapping and using database credentials:

« If using the credential map, there needs to be a mapping for each WebLogic user to
database user for those users that have access to the database; otherwise the default user
for the data source is used. If you always specify a user/password when getting a
connection, you only need credential map entries for those specific users.

« If using database credentials without specifying a user/password, the default user and
password in the data source descriptor are always used. If you specify a user/password
when getting a connection, that user is used for the credentials. WebLogic users are not
involved at all in the data source connection process.

Set Client Identifier on Connection

When this feature is enabled on the data source, a client property is associated with the
connection. The underlying SQL user remains unchanged for the life of the connection but the
client value can change. This information can be used for accounting, auditing, or debugging.
The client property is based on either the WebLogic user mapped to a database user based
on the credential map or the database user parameter directly from the getConnection ()
method, based on the use database credentials setting described earlier.

To enable this feature, select Set Client ID On Connection in the WebLogic Server
Administration Console. See Enable Set Client ID On Connection for a JDBC data source in
Oracle WebLogic Server Administration Console Online Help.

The Set Client Identifier feature is only available for use with the Oracle thin driver and the IBM
DB2 driver, based on the following interfaces:

* For pre-Oracle 12c,
oracle.jdbc.driver.OracleConnection.setClientIdentifier (client) is used. For
more information about how to use this for auditing and debugging, see Using the
CLIENT_IDENTIFIER Attribute to Preserve User Identity in the Oracle Database Security
Guide. You can get the value using getClientIdentifier () from the driver using the
ojdbeN. jar of ojdocN g.jar files.

Note:

Setting the client identifier using the Oracle driver is disabled if you are using
ojdbcNdms. jar, the default JAR file for Oracle Fusion MiddleWare and Oracle
Fusion Applications. In this case, the Set Client Identifier feature is not
supported.

To get back the value from the database as part of a SQL query, use a statement like the
following:

select sys context ('USERENV', 'CLIENT IDENTIFIER') from DUAL

ORACLE 115

http://docs.oracle.com/cd/B28359_01/network.111/b28531/authentication.htm#i1009003
http://docs.oracle.com/cd/B28359_01/network.111/b28531/authentication.htm#i1009003

Chapter 11
WebLogic Data Source Security Options

e Starting in Oracle 12c, java.sql.Connection.setClientInfo (“OCSID.CLIENTID",
client) is used. This is a JDBC standard API, although the property values are
proprietary. A problem with setClientIdentifier usage is that there are pieces of the
Oracle technology stack that set and depend on this value. If application code also sets
this value, it can cause problems. This has been addressed with setClientInfo by making
use of this method a privileged operation. A well-managed container can restrict the Java
security policy grants to specific namespaces and code bases, and protect the container
from out-of-control user code. When running with the Java security manager, permission
must be granted in the Java security policy file for:

permission "oracle.jdbc.OracleSQLPermission" "clientInfo.OCSID.CLIENTID";

Using the name 0CSID.CLIENTID allows for upward compatible use of select
sys_context ('USERENV', 'CLIENT IDENTIFIER') from DUAL or use the JDBC standard
APl java.sql.getClientInfo (“OCSID.CLIENTID") to retrieve the value.

e Setting this value in the Oracle USERENV context can be used to drive the Oracle Virtual
Private Database (VPD) feature to create security policies to control database access at
the row and column level. Essentially, Oracle Virtual Private Database adds a dynamic
WHERE clause to a SQL statement that is issued against the table, view, or synonym to
which an Oracle Virtual Private Database security policy was applied. See Using Oracle
Virtual Private Database to Control Data Access in the Oracle Database Security Guide.
Using this data source feature means that no programming is needed on the WebLogic
side to set this context. The context is set and cleared by the WebLogic data source code.

e For the IBM DB2 driver, com.ibm.db2.jcc.DB2Connection.setDB2ClientUser (client) IS
used for older releases (prior to version 9.5). This specifies the current client user name for
the connection. Note that the current client user name can change during a connection
(unlike the user). This value is also available in the CURRENT CLIENT USERID special
register. You can select it using a statement like select CURRENT CLIENT USERID from
SYSIBM.SYSTABLES.

e When running the IBM DB2 driver with JDBC 4.0 (starting with version 9.5),
java.sqgl.Connection.setClientInfo (“ClientUser", client) is used. You can retrieve
the value using java.sql.Connection.getClientInfo (“ClientUser") instead of the DB2
proprietary API (even if set using setDB2ClientUser ()).

Oracle Proxy Session

ORACLE

Oracle proxy authentication allows one JDBC connection to act as a proxy for multiple (serial)
light-weight user connections to an Oracle database with the thin driver. You can configure a
WebLogic data source to allow a client to connect to a database through an application server
as a proxy user. The client authenticates with the application server and the application server
authenticates with the Oracle database. This allows the client's user name to be maintained on
the connection with the database.

Note:

This feature is only supported when using the Oracle thin driver and a supported
Oracle database (the database URL must contain oracle.

Use the following steps to configure proxy authentication on a connection to an Oracle
database.

11-6

http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm
http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm

Chapter 11
WebLogic Data Source Security Options

1. If you have not yet done so, create the necessary database users.
2. Onthe Oracle database, provide CONNECT THROUGH privileges. For example:
SQL> ALTER USER connectionuser GRANT CONNECT THROUGH dbuser;
where connectionuser is the name of the application user to be authenticated and dbuser
is an Oracle database user.
3. Create a Generic or Active GridLink data source and set the user to the value of dbuser.
4. To use:

e WebLogic credentials, create an entry in the credential map that maps the value of
wlsuser to the value of dbuser, as described earlier.

« Database credentials, enable Use Database Credentials, as described earlier

5. Enable Oracle Proxy Authentication, see Configure Oracle parameters in Oracle WebLogic
Server Administration Console Help.

6. Log onto a WebLogic Server instance using the value of wlsuser or dbuser.

7. Get a connection using getConnection (username, password). The credentials are based
on either the WebLogic user that is mapped to a database user or the database user
directly, based on the use database credentials setting.

You can see the current user and proxy user by executing:

select user, sys context ('USERENV','PROXY USER') from DUAL

Note:

getConnection fails if Use Database Credentials is not enabled and the value of the
user/password is not valid for a WebLogic user. Conversely, it fails if Use Database
Credentials is enabled and the value of the user/password is not valid for a
database user.

A proxy session is opened on the connection based on the user each time a connection
request is made on the pool. The proxy session is closed when the connection is returned to
the pool. Opening or closing a proxy session has the following impact on JDBC objects:

« Closes any existing statements (including result sets) from the original connection.

e Clears the WebLogic Server statement cache.

« Clears the client identifier, if set.

e The WebLogic Server test statement for a connection is recreated for every proxy session.

These behaviors may impact applications that share a connection across instances and expect
some state to be associated with the connection.

Oracle proxy session is also implicitly enabled when use-database-credentials is enabled
and getConnection (user, password) is called.

The exact definition of oracle-proxy-session is as follows:

e If proxy authentication is enabled and identity based pooling is also enabled, it is an error.

ORACLE 11-7

Chapter 11
WebLogic Data Source Security Options

e Ifauseris specified on getConnection () and identity-based-connection-pooling-
enabled is false, then oracle-proxy-session is treated as true implicitly (it can also be
explicitly true).

e If auser is specified on getConnection () and identity-based-connection-pooling-
enabled iS true, then oracle-proxy-session is treated as false.

|dentity-based Connection Pooling

ORACLE

An identity based pool creates a heterogeneous pool of connections. This allows applications
to use a JDBC connection with a specific DBMS credential by pooling physical connections
with different DBMS credentials. The DBMS credential is based on either the WebLogic user
mapped to a database user or the database user directly, based on the use-database-
credentials. use-database-credentials=true is how some implementations interpret the
JDBC standard—basically a heterogeneous pool with users specified by

getConnection (User, password) .

The allocation of connections is more complex if Enable Identity Based Connection
Pooling attribute is enabled on the data source. When an application requests a database
connection, the WebLogic Server instance selects an existing physical connection or creates a
new physical connection with requested DBMS identity.

The following section provides information on how heterogeneous connections are created:

1. At connection pool initialization, the physical JDBC connections based on the configured or
default “initial capacity" are created with the configured default DBMS credential of the
data source.

2. An application tries to get a connection from a data source.
3. |If:

* use-database-credentials is not enabled, the user specified in getConnection is
mapped to a DBMS credential, as described earlier. If the credential map doesn't have
a matching user, the default DBMS credential is used from the data source descriptor.

° use-database-credentials is enabled, the user and password specified in
getConnection are used directly.

4. The connection pool is searched for a connection with a matching DBMS credential.
5. If a match is found, the connection is reserved and returned to the application.

6. If no match is found, a connection is created or reused based on the maximum capacity of
the pool:

e If the maximum capacity has not been reached, a new connection is created with the
DBMS credential, reserved, and returned to the application.

e If the pool has reached maximum capacity, based on the least recently used (LRU)
algorithm, a physical connection is selected from the pool and destroyed. A new
connection is created with the DBMS credential, reserved, and returned to the
application.

It should be clear that finding a matching connection is more expensive than a homogeneous
pool. Destroying a connection and getting a new one is very expensive. If possible, use a
normal homogeneous pool or one of the light-weight options (client identity or an Oracle proxy
connection) as they are more efficient than identity-based pooling.

Regardless of how physical connections are created, each physical connection in the pool has
its own DBMS credential information maintained by the pool. Once a physical connection is

11-8

Chapter 11
Connections within Transactions

reserved by the pool, it does not change its DBMS credential even if the current thread
changes its WebLogic user credential and continues to use the same connection.

To configure this feature, select Enable Identity Based Connection Pooling. See Enable
identity-based connection pooling for a JDBC data source in Oracle WebLogic Server
Administration Console Online Help.

You must make the following changes to use Logging Last Resource (LLR) transaction
optimization with Identity-based Pooling to get around the problem that multiple users access
the associated transaction table:

* You must configure a custom schema for LLR using a fully qualified LLR table name. All
LLR connections will then use the named schema rather than the default schema when
accessing the LLR transaction table.

* Use database specific administration tools to grant permission to access the named LLR
table to all users that could access this table via a global transaction. By default, the LLR
table is created during boot by the user configured for the connection in the data source. In
most cases, the database will only allow access to this user and not allow access to
mapped users.

Connections within Transactions

When you get a connection within a transaction, it is associated with the transaction context on
a particular WebLogic Server instance. This type of connection has some special behaviors.

For example:

* When getting a connection with a data source configured with non-XA LLR or 1PC (JTS
driver) with global transactions, the first connection obtained within the transaction is
returned on subsequent connection requests regardless of the values of username/
password specified and independent of the associated proxy user session, if any. The
connection must be shared among all users of the connection when using LLR or 1PC.

* For XA data sources, the first connection obtained within the global transaction is returned
on subsequent connection requests within the application server, regardless of the values
of username/password specified and independent of the associated proxy user session, if
any. The connection must be shared among all users of the connection within a global
transaction within the application server/JVM.

WebLogic Data Source Resource Permissions

ORACLE

In WebLogic Server, security policies answer the question "who has access" to a WebLogic
data source resource. A security policy is created when you define an association between a
WebLogic data source resource and a user, group, or role. You can optionally restrict access to
JDBC data sources using security policies.

A WebLogic data source resource has no protection until you assign it a security policy. As
soon as you add one policy for a permission, then all other users are restricted. For example, if
you add a policy so that weblogic can reserve a connection, then all other users fail to reserve
connections unless they are also explicitly added. The validation is done for WebLogic user
credentials, not database user credentials. See Create policies for resource instances in
Oracle WebLogic Server Administration Console Online Help.

You can protect JDBC resource operations by assigning Administrator methods which can limit
the actions that an administrator may take upon a JDBC data source. These resources can be
defined on the Policies tab on the Security tab associated with the data source. When you

11-9

ORACLE

Chapter 11
WebLogic Data Source Resource Permissions

secure an individual data source, you can choose whether to protect JDBC operations using
one or more of the following administrator methods:

e admin—The following methods on the JDBCDataSourceRuntimeMBean are invoked as admin
operations: clearStatementCache, suspend, forceSuspend, resume, shutdown,
forceShutdown, start, getProperties, and poolExists.

* reserve—Applications reserve a connection in the data source by looking up the data
source and then calling getConnection. Giving a user the reserve permission enables
them to execute vendor-specific operations. Depending on the database vendor, some of
these operations may have database security implications. See WebLogic Data Source
Security Options.

e shrink—Shrinks the number of connections in the data source to the maximum of the
currently reserved connections or to the initial size.

e reset—Resets the data source connections by shutting down and re-establishing all
physical database connections. This also clears the statement cache for each connection.
You can only reset data source connections that are running normally.

* All—An individual data source is protected by the union of the Admin, reserve, shrink,
and reset administrator methods.

Note:

Be aware of the following:

— If a security policy controls access to connections in a Multi Data Source,
access checks are performed at both levels of the JDBC resource hierarchy
(once at the Multi Data Source level, and again at the individual data source
level). As with all types of WebLogic resources, this double-checking ensures
that the most specific security policy controls access.

See Java DataBase Connectivity (JDBC) Resources in Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

The following table provides information on the user for permission checking when using the
administrator method reserve:

Table 11-2 Determining the User when using the reserve Administration Method
]

API Use-database-credential User for permission checking
getConnection () True or False Current WebLogic user
getConnection (user,password False User/password from API

)

getConnection (user, password True Current WebLogic user

)

In summary, if a simple getConnection () is used or database credentials are enabled, the
current user that is authenticated to the WebLogic system is checked. If database credentials
are not enabled, then the user and password on the API are used. This feature is very useful to
restrict what code and users can access your database.

For instructions on how to set up security for all WebLogic Server resources, see Use roles
and policies to secure resources in Oracle WebLogic Server Administration Console Online

11-10

Chapter 11

Data Source Security Example

Help. For more information about securing server resources, see Securing Resources Using
Roles and Policies for Oracle WebLogic Server.

Data Source Security Example

Learn about the interactions and differences between ldentity, Proxy, and Database
Credentials with help of data source security example.

ORACLE

The following is an actual example of the interactions between identity-based-connection-

pooling-enabled, oracle-proxy-session, and use-database-credentials.

On the database side, the following objects are configured:

* users: scott; jdbcga; jdbcga3

* alter user jdbcga3 grant connect through jdbcqga;

e alter user jdbcga grant connect through jdbcga;

The following WebLogic users are configured:

* weblogic

o wluser

The following WebLogic data source objects are configured.

* Credential mapping weblogic to scott

* Credential mapping wluser to jdbcga3

» Data Source configured with user jdbcga

e All tests run with Set Client ID setto true.

e All tests run with oracle-proxy-session setto false.

The test program:

* Runsin servlet

* Authenticates to WebLogic as user weblogic

Table 11-3 Comparing ldentity, Proxy, and Database Credentials

Use DB Identity based getConnecti getConnection getConnection getConnection()

Credential on (scott,***) (weblogic,***) (jdbcqga3,***)

s

true true Identity scott weblogic fails— User jdbcga3 Default jdbcga
Client not a db user Client Client weblogic
weblogic weblogic Proxy null
Proxy null Proxy null

false true scott fails— User scott jdbcga3 fails — User scott
nota Client scott nota WebLogic cjient scott
WebLogic user
user Proxy null Proxy null

true false Proxy for weblogic fails— User jdbcga3 Default jdbcga
scott failed notadbuser cjient Client weblogic

weblogic

Proxy jdbcqga

Proxy null

11-11

Chapter 11
Using Encrypted Connection Properties

Table 11-3 (Cont.) Comparing Identity, Proxy, and Database Credentials
]

Use DB Identity based getConnecti getConnection getConnection getConnection()

Credential on (scott,***) (weblogic,***) (jdbcqa3,***)

s

false false scott fails— User jdbcga jdbcga3 fails — Default jdbcga
nota) Client scott nota WebLogic cjient scott
WebLogic user
user Proxy null Proxy null

If:

e Set Client IDIis setto false, all cases would have Client setto null.

e The Oracle thin driver is not used, the one case with the non-null Proxy would throw an
exception because proxy session is only supported with the Oracle thin driver.

When oracle-proxy-session is set to true, the only cases that pass (with a proxy of jdbcga)
are:

e Setting use-database-credentials to true and using getConnection (jdbcga3,..) or
getConnection().

e Setting use-database-credentials is false and using getConnection (wluser, ..) Of
getConnection().

Using Encrypted Connection Properties

As part of a secure configuration, it may be necessary to provide one or more connection
property values that should not appear as clear text in the connection properties of the data
source descriptor file. These properties can be added using the Encrypted Properties
attribute.

See Encrypt connection properties in Oracle WebLogic Server Administration Console Online
Help.

Note:

You cannot encrypt connection properties when creating a data source in the
WebLogic Server Administration Console. It can only be done when updating an
existing data source configuration.

* Best Practices
e WLST Examples

Best Practices

The following section provides information on best practices and tips when encrypting
connection properties in the WebLogic Server Administration Console:

e When creating a data source:

— Create it without the encrypted property and do not target the data source.

ORACLE 110

Chapter 11
Using Encrypted Connection Properties

— It may not be possible to test the connection without the encrypted property. You might
want to temporarily test with a clear text property, then replace the clear text property
with the encrypted property later.

— Edit the data source by going to Summary of JDBC Data Sources page, select the
Data Source, go to the Configuration tab and then select the Connection Pool tab.

* To enter values without clear text values displayed on the screen:

— Save any other changes that you wish to make to this page and click the Add
Securely button next to the Encrypted Properties text box.

— On the Add a new Encrypted Property page, enter the property name and masked
value, and click OK.

— Repeat for additional encrypted property values.
— Click Save when you have finished entering encrypted properties.

* You can enter several values at once if it is appropriate in your environment to display the
encrypted values on the screen until the changes are saved.

— List each property=value pair on a separate line in the Encrypted Properties field.
— Click Save to encrypt the values.
e Activate your changes:

— If the data source was untargeted: Go to the Targets tab, target the data source, and
click Save.

— If the data source was already active when the encrypted property values were added:
Go to the Targets tab, untarget the data source, click Save, retarget the data source,
and click Save.

WLST Examples

ORACLE

Providing WLST scripts examples to encrypt connection properties:

Use WLST to Update an Existing Data Source with Encrypted Properties

The following is an online WLST script that shows how to add an encrypted property to an
existing data source named genericds:

connect ('admin', 'password', 't3://localhost:7001")

edit ()

startEdit ()

cd ('JDBCSystemResources/genericds/JDBCResource/genericds/JDBCDriverParams/
genericds/Properties/genericds/Properties’)

create('encryptedprop', 'Property')

cd('encryptedprop')

cmo. setEncryptedValueEncrypted (encrypt('foo'))

save ()

activate ()

Use WLST to Create Encrypted Properties

The following WLST script creates encrypted properties:

create ('myProps', 'Properties')

11-13

Chapter 11
Using SSL and Encryption with Data Sources and Oracle Drivers

cd ('Properties/NO NAME 0')
Create other properties

p=create('javax.net.ssl.trustStoreType', 'Property')
p.setValue ('JKS")

p=create('javax.net.ssl.trustStorePassword', 'Property')
p.setEncryptedvValueEncrypted (encrypt ('securityCommonTrustKeyStorePassPhrase'))

Using SSL and Encryption with Data Sources and Oracle Drivers

Use SSL to provide both data encryption and strong authentication for network connections to
the database server. This topic provides additional information on using these features with
WebLogic Server.

For more information, see JDBC Client-Side Security Features in the Oracle® Database JDBC
Developer's Guide.

* Using SSL with Data Sources and Oracle Drivers

* Using Data Encryption with Data Sources and Oracle Drivers

Using SSL with Data Sources and Oracle Drivers

You must provide additional information on a variety of options that use SSL with data sources
and Oracle drivers. The general requirement when using SSL, regardless of the option, is that
you must specify a protocol of tcps in any URL.

For detailed information on configuring and using SSL with Oracle drivers, see:

e How-To Configure and Use Oracle JDBC Driver SSL with Oracle WebLogic Server

e http://www.oracle.com/technetwork/database/enterprise-edition/wp-oracle-jdbc-thin-
ssl-130128.pdf.

If you use a provider that requires a password, such as the
javax.net.ssl.trustStorePassword Of javax.net.ssl.keyStorePassword, the value should
be stored as an encrypted property. See Using Encrypted Connection Properties.

e Using SSL with Oracle Wallet
e Active GridLink ONS over SSL

Using SSL with Oracle Wallet

ORACLE

Oracle wallet can also be used with SSL. By using it correctly, passwords can be eliminated
from the JDBC configuration and client/server configuration can be simplified by sharing the
wallet). The following is a list of basic requirements to use SSL with Oracle wallet.

* Update the sqlnet.ora and listener.ora files with the location of the wallet. These files
also indicate whether or not SSL_CLIENT AUTHENTICATION is being used.

* If you use an auto-login wallet type, a password is not needed in the data source
configuration to open the wallet. The store type for an auto-login wallet is SSO (not JKS or
PKCS12) and the file name is cwallet.sso. If you use another provider type, use the

11-14

http://www.oracle.com/technetwork/middleware/weblogic/index-087556.html
http://www.oracle.com/technetwork/database/enterprise-edition/wp-oracle-jdbc-thin-ssl-130128.pdf
http://www.oracle.com/technetwork/database/enterprise-edition/wp-oracle-jdbc-thin-ssl-130128.pdf

Chapter 11
Using SSL and Encryption with Data Sources and Oracle Drivers

encrypted property type to store the password as an encrypted value in the data source
configuration.

Enable the Oracle PKI provider in a WLS startup class using:
Security.insertProviderAt (new oracle.security.pki.OraclePKIProvider (), 3);
For encryption and server authentication, use the data source connection properties:

javax.net.ssl.trustStore=location of wallet
javax.net.ssl.trustStoreType="SSO"

For client authentication, use the data source connection properties:

javax.net.ssl.keyStore=location of wallet
javax.net.ssl.keyStoreType="SSO"

Wallets are created using the orapki. They need to be created based on the usage
(encryption or authentication).

Common use cases are:

Encryption and server authentication, which requires just a trust store.

Encryption and authentication of both tiers (client and server), which requires a trust store
and a key store.

Active GridLink ONS over SSL

You can use SSL to secure communication between an Active GridLink data source and the
Oracle Notification Service (ONS) which is use to provide load balancing information and
notification of node up/down events.

Use the following basic steps:

Create an auto-login wallet and use the wallet on the client and server. The following is a
sample sequence to create a test wallet for use with ONS.

orapki wallet create -wallet ons -auto login -pwd ONS Wallet

orapki wallet export -wallet ons -dn "CN=ons_test,C=US" -cert ons/cert.txt -pwd
ONS Wallet

orapki wallet export -wallet ons -dn "CN=ons_test,C=US" -cert ons/cert.txt -pwd
ONS Wallet

On the database server side:
1. Define the wallet file directory in the file $CRS_HOME/opmn/conf/ons.config.
2. Runonsctl stop/start.

When configuring an Active GridLink data source, the connection to the ONS must be
defined. In addition to the host and port, the wallet file directory must be specified. If you do
not provide a password, a SSO wallet is assumed.

Using Data Encryption with Data Sources and Oracle Drivers

To use data encryption with the Oracle Thin driver, you must specify several connection
properties, see Configuration Parameters in Oracle® Database Advanced Security

ORACLE

Administrator's Guide. The following table maps the encryption and checksum configuration

parameters to the string constants required when configuring data source descriptors using the
Administration Console or WLST:

11-15

http://www.oracle.com/pls/topic/lookup?ctx=fmw122140&id=ASOAG030

Chapter 11
Using SSL and Encryption with Data Sources and Oracle Drivers

Table 11-4 Connection Encryption Parameters and WebLogic Configuration Constants

Client Configuration Parameter WebLogic Server Configuration String
Constant

OracleConnection.CONNECTION PROPERTY THIN oracle.net.encryption client
NET ENCRYPTION LEVEL

OracleConnection.CONNECTION PROPERTY THIN oracle.net.encryption types client
NET ENCRYPTION TYPES

OracleConnection.CONNECTION PROPERTY THIN oracle.net.crypto checksum client
NET CHECKSUM LEVEL

OracleConnection.CONNECTION PROPERTY THIN oracle.net.crypto checksum types clie
NET CHECKSUM TYPES nt

ORACLE 116

Creating and Managing Oracle Wallet

Oracle Wallet allows you to store database credentials for WebLogic JDBC data source
definitions.

¢ What is Oracle Wallet
e Where to Keep Your Wallet
¢ How to Create an External Password Store

« Defining a WebLogic Server Data Source using the Wallet
To configure a WebLogic Server data source to use a Wallet you need to copy the Wallet
files to the secure directory on the client machine and update the data source configuration
files.

e Using a TNS Alias instead of a DB Connect String

What is Oracle Wallet

Wallet provides a simple and easy method to manage database credentials across multiple
domains. It allows you to update database credentials by updating the Wallet instead of having
to change individual data source definitions. Updates are accomplished by using a database
connection string in the data source definition that is resolved by an entry in the Wallet.

This is accomplished by using a database connection string in the data source definition that is
resolved by an entry in the Wallet.

This feature can be taken a step further by also using the Oracle TNS (Transparent Network
Substrate) administrative file to hide the details of the database connection string (host name,
port number, and service name) from the data source definition and instead use an alias. If the
connection information changes, it is simply a matter of changing the tnsnames.ora file instead
of potentially many data source definitions.

The wallet can be used to have common credentials between different domains. That includes
two different WebLogic Server domains or sharing credentials between WebLogic Server and
the database. When used correctly, it makes having passwords in the data source
configuration unnecessary.

Where to Keep Your Wallet

Oracle recommends that you create and manage the location of the Wallet in the database
environment. The database environment provides all the necessary commands and libraries,
including the SORACLE HOME/oracle common/bin/mkstore command. Often the storage of the
Wallet is managed by a database administrator and provided for use by the client. A configured
Wallet consists of two files, cwallet.sso and ewallet.pl2 stored in a secure Wallet directory.

ORACLE 191

Chapter 12
How to Create an External Password Store

Note:

You can also install the Oracle Client Runtime package to provide the necessary
commands and libraries to create and manage Wallet.

How to Create an External Password Store

ORACLE

Wallet has an automatic login feature that allows the client to access the Wallet contents
without supplying a password. Use of this feature prevents exposing a clear text password on
the client. Learn how to create an Wallet at the desired location and provide credentials in the
Wallet file.

Create a Wallet on the client by using the following syntax at the command line:

mkstore -wrl <wallet location> -create

where wallet locationis the path to the directory where you want to create and store the
Wallet.

This command creates a Wallet with the autologin feature enabled at the location specified.
Autologin enables the client to access the Wallet contents without supplying a password and
prevents exposing a clear text password on the client.

The mkstore command prompts for a password that is used for subsequent commands.
Passwords must have a minimum length of eight characters and contain alphabetic characters
combined with numbers or special characters. For example:

mkstore -wrl /tmp/wallet -create

Enter password: mysecret

PKI-01002: Invalid password.

Enter password: mysecretl (not echoed)
Enter password again: mysecretl (not echoed)

< Note:

Using Wallet moves the security vulnerability from a clear text password in the data
source configuration file to an encrypted password in the Wallet file. Make sure the
Wallet file is stored in a secure location.

You can store multiple credentials for multiple databases in one client Wallet. You cannot store
multiple credentials (for logging in to multiple schemas) for the same database in the same
Wallet. If you have multiple login credentials for the same database, then they must be stored
in separate Wallets.

To add database login credentials to an existing client Wallet, enter the following command at
the command line:

mkstore -wrl <wallet location> -createCredential <db connect string> <username>
<password>

where:

* Thewallet location is the path to the directory where you created the Wallet.

12-2

Chapter 12
Defining a WebLogic Server Data Source using the Wallet

The db_connect_string must be identical to the connection string that you specify in the
URL used in the data source definition (the part of the string that follows the @). It can be
either the short form or the long form of the URL. For example:

myhost:1521/myservice oOr

(DESCRIPTION=(ADDRESS LIST=(ADDRESS=(PROTOCOL=TCP) (HOST=myhost-scan)
(PORT=1521))) (CONNECT DATA=(SERVICE NAME=myservice)))

< Note:

You should enclose this value in quotation marks to escape any special
characters from the shell. Since this name is generally a long and complex value,
an alternative is to use TNS aliases. See Using a TNS Alias instead of a DB
Connect String.

The username and password are the database login credentials.

Repeat for each database you want to use in a WebLogic data source.

See the Oracle Database Advanced Security Administrator's Guide for more information about
using autologin and maintaining Wallet passwords.

Defining a WebLogic Server Data Source using the Wallet

To configure a WebLogic Server data source to use a Wallet you need to copy the Wallet files
to the secure directory on the client machine and update the data source configuration files.

Use the following procedures to configure a WebLogic Server data source to use Wallet:

Copy the Wallet Files

Update the Data Source Configuration

Copy the Wallet Files

Copy the Wallet files, cwallet.sso and ewallet.pl2, from the database machine to the client
machine and locate it in a secure directory.

Update the Data Source Configuration

Use the following steps to configure a WebLogic data source to use Oracle Wallet:

1.

ORACLE

Do not enter a user or password in the WebLogic Server Administration Console when
creating a data source or deleting them from an existing data source. If a user, password,
or encrypted password appear in the configuration, it overrides the Oracle wallet values.

Add the value oracle.net.wallet location=wallet directory to Connection Properties.

where wallet directory is the secure directory location in Step 1 of Copy the Wallet
Files. An alternative method is use the -Doracle.net.wallet location System property
and add it to JAVA_OPTIONS. Oracle recommends using the connection property.

12-3

http://docs.oracle.com/cd/E15586_01/network.1111/e10746/asowalet.htm

Chapter 12
Using a TNS Alias instead of a DB Connect String

Using a TNS Alias instead of a DB Connect String

ORACLE

Instead of specifying a matching database connection string in the URL and in the Oracle
Wallet, you can create an alias to map the URL information. The connection string information
is stored in tnsnames.ora file with an associated alias name. The alias hame is then used both
in the URL and the Wallet.

Use the following steps to create an TNS alias:

1. Specify the system property -Doracle.net.tns admin=tns directory where
tns_directory is the directory location of the tnsnames.ora file.

< Note:

Do not use the tns_directory location as a connection property.

2. Create or modify a tnsnames.ora file in the directory location specified by tns directory.
The entry has the form:

alias=(DESCRIPTION= (ADDRESS=(PROTOCOL=TCP) (HOST=host) (PORT=port))
(CONNECT DATA=(SERVICE NAME=service)))

Where host is URL of a database listener, port is the port a database listener, and
service is the service name of the database you would like to connect to.

There are additional attributes that can be configured, see Local Naming Parameters
(tnsnames.ora) in the Database Net Services Reference. Oracle recommends that the
string be entered on a single line.

3. Use the alias in the data source definition URL by replacing the connection string with the
alias. For example, change the URL attribute in the Connection Pool tab of the
Administrative Console to jdbc:oracle:thin:Qalias.

Once created, it should not be necessary to modify the alias or the data source definition
again. To change the user credential, update the Wallet. To change the connection information,
update the tnsnames.ora file. In either case, the data source must be re-deployed. The
simplest way to redeploy a data source is to untarget and target the data source in the
WebLogic Server Administration Console. This configuration is supported for Oracle release
10.2 and higher drivers.

12-4

http://docs.oracle.com/cd/E11882_01/network.112/e10835/tnsnames.htm
http://docs.oracle.com/cd/E11882_01/network.112/e10835/tnsnames.htm

Deploying Data Sources on Servers and
Clusters

Learn how to deploy data sources on servers and clusters.

e Deploying Data Sources on Servers and Clusters

e Minimizing Server Startup Hang Caused By an Unresponsive Database
To minimize the chances of the server hanging during start-up, use the
JDBCLoginTimeoutSeconds attribute on the ServerMBean.

Deploying Data Sources on Servers and Clusters

To deploy a data source to a cluster or server, you select the server or cluster as a deployment
target. When a data source is deployed on a server, WebLogic Server creates an instance of
the data source on the server, including the pool of database connections in the data source.
When you deploy a data source to a cluster, WebLogic Server creates an instance of the data
source on each server in the cluster.

For instructions, see Target JDBC data sources in the Oracle WebLogic Server Administration
Console Online Help.

Minimizing Server Startup Hang Caused By an Unresponsive
Database

To minimize the chances of the server hanging during start-up, use the
JDBCLoginTimeoutSeconds attribute on the ServerMBean.

On server startup, WebLogic Server attempts to create database connections in the data
sources deployed on the server. If a database is unreachable, server startup may hang in the
STANDBY state for a long period of time. This is due to WebLogic Server threads that hang
inside the JDBC driver code waiting for a reply from the database server. The duration of the
hang depends on the JDBC driver and the TCP/IP timeout setting on the WebLogic Server
machine.

To work around this issue, WebLogic Server includes the JDBCLoginTimeoutSeconds attribute
on the ServerMBean. When you set a value for this attribute, the value is passed into
java.sql.DriverManager.setLoginTimeout (). If the JIDBC driver being used to create
database connections implements the setLoginTimeout method, attempts to create database
connections will wait only as long as the timeout specified.

An alternative is to set the Initial Capacity for the data source to 0. That means that no
connections are created when the data source is deployed and the database need not even be
available at that time. Connection creation is deferred until the application needs them.

ORACLE 121

Using WebLogic Server with Oracle RAC

Oracle WebLogic Server provides strong support for Oracle Real Application Clusters (RAC),
minimizing database access time while allowing transparent access to rich pooling
management functions that maximizes both connection performance and availability.

Both Oracle RAC and WebLogic Server are complex systems. To use them together requires
specific configuration on both systems, as well as clustering software and a shared storage
solution. This document describes the configuration required at a high level. For more details
about configuring Oracle RAC, your clustering software, your operating system, and your
storage solution, see the documentation from the respective vendors.

This chapter describes the requirements and configuration tasks for using Oracle Real
Application Clusters (Oracle RAC) with WebLogic Server.

e Overview of Oracle Real Application Clusters
Oracle RAC is a software component you can add to a high-availability solution that
enables users on multiple machines to access a single database with increased
performance.

* Software Requirements
Learn about the software requirements for using WebLogic Server with Oracle RAC.

« JDBC Driver Requirements
To use WebLogic Server with Oracle RAC, your WebLogic JDBC data sources must use
the Oracle JDBC Thin driver 11g or later to create database connections.

e Hardware Requirements
A typical WebLogic Server/Oracle RAC configuration includes a WebLogic Server cluster,
an Oracle RAC cluster, and hardware for shared storage.

* Configuration Options in WebLogic Server with Oracle RAC
When using WebLogic Server with Oracle RAC, configure the WebLogic domain so that it
interacts with Oracle RAC instances.

Overview of Oracle Real Application Clusters

ORACLE

Oracle RAC is a software component you can add to a high-availability solution that enables
users on multiple machines to access a single database with increased performance.

Oracle RAC comprises two or more Oracle database instances running on two or more
clustered machines and accessing a shared storage device via cluster technology. To support
this architecture, the machines that hosts the database instances are linked by a high-speed
interconnect to form the cluster. The interconnect is a physical network used as a means of
communication between the nodes of the cluster. Cluster functionality is provided by the
operating system or compatible third party clustering software.

An Oracle RAC installation appears like a single standard Oracle database and is maintained
using the same tools and practices. All the nodes in the cluster execute transactions against
the same database and Oracle RAC coordinates each node's access to the shared data to
maintain consistency and ensure integrity. You can add nodes to the cluster easily and there is
no need to partition data when you add them. This means that you can horizontally scale the
database tier as usage and demand grows by adding Oracle RAC nodes, storage, or both.

14-1

Chapter 14
Software Requirements

Software Requirements

Learn about the software requirements for using WebLogic Server with Oracle RAC.

To use WebLogic Server with Oracle RAC, you must install the following software on each
Oracle RAC node:

e Operating system patches required to support Oracle RAC. See the release notes from
Oracle for details.

* Oracle database management system. See Oracle® Fusion Middleware Licensing
Information.

» Clustering software for your operating system. See the Oracle documentation for
supported clustering software and cluster configurations.

e Shared storage software, such as Oracle Automatic Storage Management (ASM). Note
that some clustering software includes a file storage solution, in which case additional
shared storage software is not required.

< Note:

See Supported Configurations in What's New in Oracle WebLogic Server for the
latest WebLogic Server hardware platform and operating system support, and for
the Oracle RAC versions supported by WebLogic Server versions and service
packs. See the Oracle documentation for hardware and software requirements
required for running the Oracle RAC software.

JDBC Driver Requirements

To use WebLogic Server with Oracle RAC, your WebLogic JDBC data sources must use the
Oracle JDBC Thin driver 11g or later to create database connections.

Hardware Requirements

ORACLE

A typical WebLogic Server/Oracle RAC configuration includes a WebLogic Server cluster, an
Oracle RAC cluster, and hardware for shared storage.

WebLogic Server Cluster

The WebLogic Server cluster can be configured in many ways and with various hardware
options. See Administering Clusters for Oracle WebLogic Server for more details about
configuring a WebLogic Server cluster.

Oracle RAC Cluster

For the latest hardware requirements for Oracle RAC, see the Oracle RAC documentation.
However, to use Oracle RAC with WebLogic Server, you must run Oracle RAC instances on
robust, production-quality hardware. The Oracle RAC configuration must deliver database
processing performance appropriate for reasonably-anticipated application load requirements.
Unusual database response delays can lead to unexpected behavior during database failover
scenarios.

14-2

Chapter 14
Configuration Options in WebLogic Server with Oracle RAC

Shared Storage

In an Oracle RAC configuration, all data files, control files, and parameter files are shared for
use by all Oracle RAC instances. An HA storage solution that uses one of the following
architectures is recommended:

e Direct Attached Storage (DAS), such as a dual ported disk array or a Storage Area
Network (SAN)

e Network Attached Storage (NAS)

For a complete list of supported storage solutions, see your Oracle documentation.

Configuration Options in WebLogic Server with Oracle RAC

When using WebLogic Server with Oracle RAC, configure the WebLogic domain so that it
interacts with Oracle RAC instances.

* Choosing a WebLogic Server Configuration for Use with Oracle RAC
* Validating Connections when using WebLogic Server with Oracle RAC

* Additional Considerations When Using WebLogic Server with Oracle RAC

Choosing a WebLogic Server Configuration for Use with Oracle RAC

ORACLE

When using WebLogic Server with Oracle RAC, you can configure WebLogic Data Sources by
considering the following alternatives:

e Using Active GridLink (AGL) data sources, see Oracle® Fusion Middleware Licensing
Information. AGL offers the best integration to Oracle RAC by providing the best
performance and high availability. AGL supports Fast Connection Failover, automatic and
transparent addition, and removal of RAC instances. It also automatically handles when
nodes go down and come up without waiting for connection failures and successes. AGL
affirms runtime connection load balancing (RCLB) providing the best performance as the
database drives load balancing of connections through the AGL data source, independent
of the database topology See Using Active GridLink Data Sources.

e Multi Data Source (MDS) provides failover and load balancing capabilities across the
instances of the Real Application Clusters (RAC). MDS failover is handled at the MDS level
when an Oracle RAC instance becomes unavailable. MDS load balancing follows a Round
Robin pattern across the RAC instances. See Configuring Connections to Services on
Oracle RAC Nodes

* To connect to multiple Oracle RAC instances when using Global transactions (XA), Oracle
recommends the use of transaction-aware AGL or MDS, which support failover and load
balancing, to connect to the Oracle RAC nodes.

— For configuring AGL with Global transactions see Configure Transaction Options and
GridLink Affinity Policies - XA Affinity

— For configuring MDS with Global transactions see Using Multi Data Sources with
Global Transactions.

e To connect to multiple Oracle RAC instances when not using XA, Oracle recommends the
use of non-transaction-aware AGL or MDS to connect to the Oracle RAC nodes.

— For configuring AGL without Global transactions see Configure Transaction Options

— For configuring MDS without Global transactions see Using Multi Data Sources without
Global Transactions .

14-3

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/jdbca/generic_oracle_rac.html#GUID-CB1F8641-F4D7-4EC3-AA15-8E74DA451AEB
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/jdbca/generic_oracle_rac.html#GUID-CB1F8641-F4D7-4EC3-AA15-8E74DA451AEB
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/jdbca/using-active-gridlink-data-sources.html#GUID-D147151A-A03A-4087-A6DB-520CFA0E2C25
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/jdbca/using-active-gridlink-data-sources.html#GUID-1CE3D391-2E6A-4D18-9695-F8A129B77061
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/jdbca/generic_oracle_rac.html#GUID-7DF09E89-DDBC-4010-8841-7940781871C3
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/jdbca/generic_oracle_rac.html#GUID-7DF09E89-DDBC-4010-8841-7940781871C3
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/jdbca/using-active-gridlink-data-sources.html#GUID-D147151A-A03A-4087-A6DB-520CFA0E2C25

Chapter 14
Configuration Options in WebLogic Server with Oracle RAC

Note:

Using a Generic data source for XA with Oracle RAC is not supported. See
Generic Data Source Handling for Oracle RAC Outages.

Validating Connections when using WebLogic Server with Oracle RAC

Applications can use the JDBC 4.0 Connection.isValid API to verify connection viability.

Note:

WebLogic Server does not support oracle.ucp.jdbc.ValidConnection.isValid or
oracle.ucp.jdbc.ValidConnection.setInvalid.

Additional Considerations When Using WebLogic Server with Oracle RAC

ORACLE

The Distributed Transaction Processing (DTP) attribute on a database service should not be
used to coordinate transactions when using Active GridLink or Multi Data Sources with Oracle
RAC. This option implies that the service is guaranteed to run on only one RAC instance at any
time. Transaction affinity to a single instance is automatically managed by WebLogic Server for
either Active GridLink or Multi Data Sources. This allows the whole RAC cluster to be available
for distributed transactions, as opposed to DTP limiting all transactions for the service to a
single RAC instance.

14-4

http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html#isValid(int)

Monitoring WebLogic JDBC Resources

For monitoring WebLogic JDBC resources you need to understand how to create, collect,
analyze, archive, and access diagnostic data generated by a running server and the
applications deployed within its containers. This data provides insight into the run-time
performance of servers and applications and enables you to isolate and diagnose faults when
they occur. WebLogic JDBC takes advantage of this service to provide enhanced run-time
statistics, profile information over a period of time, logging, and debugging to help you keep
your WebLogic domain running smoothly.

You can use the run-time statistics to monitor the data sources in your WebLogic domain to
see if there is a problem. If there is a problem, you can use profiling to determine which
application is the source of the problem. Once you've narrowed it down to the application, you
can then use JDBC debugging features to find the problem within the application.

* Viewing Run-Time Statistics

* Profile Logging
WebLogic Server uses a data source profile log to store events.

e Collecting Profile Information

* Debugging JDBC Data Sources
Once you narrow the problem down to a specific application, you can activate the
WebLogic Server debugging features to isolate the problem with the application.

Viewing Run-Time Statistics

Viewing run-time statistics allows you to monitor the data sources in your WebLogic domain.

e Data Source Statistics

* Prepared Statement Cache Statistics

Data Source Statistics

You can view run-time statistics for a data source using the WebLogic Server Administration
Console (see JDBC Data Source:Monitoring:Statistics in Oracle WebLogic Server
Administration Console Online Help) or through the JBCDataSourceRuntimeMBean. The
JDBCDataSourceRuntimeMBean provides methods for getting the current state of the data
source and for getting statistics about the data source, such as the average number of active
connections, the current number of active connections, the highest number of active
connections, and so forth. For more information, see JDBCDataSourceRuntimeMBean in the
MBean Reference for Oracle WebLogic Server.

Prepared Statement Cache Statistics

ORACLE

You can view run-time statistics for a prepared statement cache via the WebLogic Server
Administration Console or through the JBCDataSourceRuntimeMBean. For more information, see
JDBCDataSourceRuntimeMBean in the MBean Reference for Oracle WebLogic Server.

15-1

Chapter 15
Profile Logging

Profile Logging

WebLogic Server uses a data source profile log to store events.
The profile log has the following benefits:

* Log-rotation—provides the ability to configure, rotate, and retire old data using the
standard WebLogic logging implementation. See the DataSourceLogFileMBean in MBean
Reference for Oracle WebLogic Server.

* Data accessibility—provides the ability to use common text editors, the WLDF Data
Accessor, or the WebLogic Server Administration Console. See Accessing Diagnostic
Data.

Basic characteristics of the log for data source profiling are:

« Asingle log file is used for all data source profile types. Each profile record has the profile
type name for filtering. See Profile Types.

* Asingle log file is used for all data sources on the server. Each profile record has the
decorated data source name for filtering (fully qualified with
application@module@component, if applicable). See the DataSourcelLogFileMBean in
MBean Reference for Oracle WebLogic Server.

For more information on WebLogic logging services, see:

e Enable and configure Datasource Profile logs in Oracle WebLogic Server Administration
Console Online Help.

< Understanding WebLogic Logging Services in Configuring Log Files and Filtering Log
Messages for Oracle WebLogic Server.

Collecting Profile Information

If the statistics indicate a problem in your WebLogic domain, you can configure any data
source to collect profile information to help you pinpoint the source of the problem. The
collected profile information is stored in records in the profile log.

When configuring your data source for profiling, you must specify the interval at which profile
data is harvested (Harvest Frequency Seconds); if the interval is set to 0, harvesting of data is
disabled. See Configure diagnostic profiling for a JDBC data source in Oracle WebLogic
Server Administration Console Online Help.

The fields contain different information for different profile types:

e Profile Types
e Accessing Diagnostic Data

e Callbacks for Monitoring Driver-Level Statistics

Profile Types

ORACLE

For each of the profile types in this section, the User information provides a stack trace of the
thread that allocated the connection and is associated with the operation being profiled. By
default, the value is not set because of the overhead in tracking this information. To obtain this
information, you must also enable profiling of connection leaks in addition to profile type that
you want to track. For more information about profiling connection leaks, see Connection Leak
(WEBLOGIC.JDBC.CONN.LEAK).

15-2

Chapter 15
Collecting Profile Information

You can choose to profile the following information about data sources and the prepared
statement cache:

e Connection Usage (WEBLOGIC.JDBC.CONN.USAGE)

e Connection Reservation Wait (WEBLOGIC.JDBC.CONN.RESV.WAIT)

e Connection Reservation Failed (WEBLOGIC.JDBC.CONN.RESV.FAIL)

e Connection Leak (WEBLOGIC.JDBC.CONN.LEAK)

e Connection Last Usage (WEBLOGIC.JDBC.CONN.LAST _USAGE)

e Connection Multithreaded Usage (WEBLOGIC.JDBC.CONN.MT_USAGE)
e Statement Cache Entry (WEBLOGIC.JDBC.STMT_CACHE.ENTRY)

e Statements Usage (WEBLOGIC.JDBC.STMT.USAGE)

e Connection Unwrap (WEBLOGIC.JDBC.CONN.UNWRAP)

e JDBC Obiject Closed Usage (WEBLOGIC.JDBC.CLOSED_ USAGE)

e Local Transaction Connection Leak (WEBLOGIC.JDBC.CONN.LOCALTX LEAK)

e Example Profile Information Record Log

Connection Usage (WEBLOGIC.JDBC.CONN.USAGE)

Enable connection usage profiling to collect information about threads currently using
connections from the pool of connections in the data source. This profile information can help
determine why applications are unable to get connections from the data source.

The record contains the following information:

* PoolName - name of the data source to which this connection belongs
e ID - connection ID

e User - stack trace of the thread using the connection

e Timestamp - time stamp showing when the connection was given to the thread

Connection Reservation Wait (WEBLOGIC.JDBC.CONN.RESV.WAIT)

Enable connection reservation wait profiling to collect information about threads currently
waiting to reserve a connection from the data source. This profile information can help
determine why applications are unable to get connections from the data source or to wait for
connections. The record contains the following information:

e PoolName - name of the data source to which this connection belongs
 ID-thread ID
e User - stack trace of the thread waiting for the connection

e Timestamp - time stamp showing when the thread started waiting for a connection

Connection Reservation Failed (WEBLOGIC.JDBC.CONN.RESV.FAIL)

ORACLE

Enable connection reservation failure profiling to collect information about threads that attempt
to reserve a connection from the data source but fail to get that connection. This profile
information can help determine why applications are unable to get connections from the data
source even after reserving them. The record contains the following information:

15-3

Chapter 15
Collecting Profile Information

* PoolName - name of the data source to which this connection belongs
* ID-thread ID

e User - stack trace of the thread waiting for the connection plus the exception received
when the reservation request failed

e Timestamp - time stamp showing when the reservation request failed

Connection Leak (WEBLOGIC.JDBC.CONN.LEAK)

Enable connection leak profiling to collect information about threads that have reserved a
connection from the data source and the connection leaked (was not properly returned to the
pool of connections). This profile information can help determine which applications are not
properly closing JDBC connections. Connection leak profiling must be enabled to get user
stack trace information for any of the profile types.The record contains the following
information:

e PoolName - name of the data source to which this connection belongs

e ID - connection ID

e User - stack trace of the thread waiting for the connection

e Timestamp - time stamp showing when the connection leak was detected

To specify the length of time before a reserved connection is considered leaked, do one of the
following:

° SetInactive Connection Timeout Seconds to a value greater than zero. WebLogic prints
a stack trace of where a JDBC pool connection was reserved. The stack trace is printed
after the Inactive Connection Timeout Seconds expires.

e Set Connection Leak Timeout Seconds to a value greater than zero. The value specifies
the number of seconds that a JDBC connection needs to be held by an application before
triggering a connection leak diagnostic profiling record. If set to 0, the timeout is disabled.

Connection Last Usage (WEBLOGIC.JDBC.CONN.LAST USAGE)

Enable connection last usage profiling to collect information about the previous thread that last
used the connection. This information is useful when you are debugging problems with
connections infected in pending transactions that cause subsequent XA operations on the
connections to fail. The record contains the following information:

e PoolName - name of the data source to which this connection belongs
e ID - stack trace of the XA exception thrown
e User - stack trace of the thread that last used the connection

e Timestamp - timestamp showing when the exception was thrown

Connection Multithreaded Usage (WEBLOGIC.JDBC.CONN.MT_USAGE)

ORACLE

Enable connection multithreaded usage profiling to collect information about threads that
erroneously use a connection that was previously obtained by a different thread. This
information is useful when an application reports a problem that you suspect may have been
caused by the simultaneous use of a connection by more than one thread. The record contains
the following information:

* PoolName - name of the data source to which this connection belongs

15-4

Chapter 15
Collecting Profile Information

» |ID - stack trace of the other thread that was found using the connection
» User - stack trace of the thread that reserved the connection

e Timestamp - time stamp showing when usage of the connection by multiple threads was
detected

Statement Cache Entry (WEBLOGIC.JDBC.STMT_CACHE.ENTRY)

Enable statement cache entry profiling to collect information for prepared and callable
statements added to the statement cache, and for the threads that originated the cached
statements. This information can help you determine how the cache is being used. The record
contains the following information:

e PoolName - name of the data source to which this connection belongs
e ID - string representation of the statement
e User - stack trace of the thread using the statement

e Timestamp - time stamp showing when the statement was added to the cache

Statements Usage (WEBLOGIC.JDBC.STMT.USAGE)

Enable statements usage profiling to collect information about threads currently executing SQL
statements from the statement cache. This information can help you determine how
statements are being used. The record contains the following information:

* PoolName - name of the data source to which this connection belongs
* ID - SQL statement being executed via the statement
* User - stack trace of the thread using the statement

* Timestamp - duration of statement execution

Connection Unwrap (WEBLOGIC.JDBC.CONN.UNWRAP)

Enable connection unwrap profiling to collect profile information about application components
that access the underlying JDBC connection using either the getVendorObject WebLogic
extension API or the JDBC 4.0 method unwrap. The record contains the following information:

e PoolName - name of the data source to which this connection belongs
< |D - stack trace of where the object was unwrapped
e User - stack trace of the thread unwrapping the object

e Timestamp - time stamp showing when the object was unwrapped.

JDBC Object Closed Usage (WEBLOGIC.JDBC.CLOSED USAGE)

ORACLE

Enable JDBC object usage profiling to collect profile information about JDBC objects
(Connection, Statement, or ResultSet) that are accessed after the close() method has been
invoked. This information can help you determine both the thread that initially closed the object
and the thread that attempted to access the closed object. The record contains the following
information:

* PoolName - name of the data source to which this connection belongs
* ID - stack trace of the current thread attempting to close the object

* User - stack trace of the thread that closed the object plus where the close was done

15-5

Chapter 15
Collecting Profile Information

e Timestamp - time stamp showing when the object was closed

Local Transaction Connection Leak (WEBLOGIC.JDBC.CONN.LOCALTX_LEAK)

Enable JDBC local transaction connection leak profiling to collect profile information about
application components that leak a local transaction (start it but don't commit or rollback the
transaction). The log record will include the call stack and details about the thread releasing
the connection.The record contains the following information:

e PoolName - name of the data source to which this connection belongs
e |D - stack trace of the thread that is releasing the connection

e User - stack trace of the reserving thread plus a stack trace of the thread at the time the
connection was closed

e Timestamp - time stamp showing when the connection was closed

Example Profile Information Record Log

The following is an example profile information record for Statements Usage
(WEBLOGIC.JDBC.STMT.USAGE) from a standard output log.

####<JDBC Data Source-0> <WEBLOGIC.JDBC.STMT.USAGE> <0> <java.lang.Exception
at

weblogic.servlet.provider.ContainerSupportProviderImpl$WlsRequestExecutor.run(ContainersS
upportProviderImpl.java:254)
at weblogic.work.ExecuteThread.execute (ExecuteThread.java:295)
at weblogic.work.ExecuteThread.run (ExecuteThread.java:254)
> <select 1 from dual>

Each component of the profile log is surrounded by brackets ("<" and ">"):
e The PoolIName—JDBC Data Source-0

e The Profile Type— WEBLOGIC.JDBC.STMT.USAGE

e The Timestamp—0 (milliseconds)

e User—java.lang.Exception at . . . at
weblogic.work.ExecuteThread.run (ExecuteThread.java:254

e |D—select 1 from dual

Accessing Diagnostic Data

ORACLE

You can use one of the following methods to access diagnostic data:

e The WebLogic Server Administration Console. SeeView and configure logs and Monitor
Statistics for a JDBC data source in Oracle WebLogic Server Administration Console
Online Help.

e The Data Accessor component of the WebLogic Diagnostic Framework (WLDF). See
Accessing Diagnostic Data With the Data Accessor in Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server

e Manually review information using text editors.

15-6

Chapter 15
Debugging JDBC Data Sources

* When running with DataSource profiling, the default harvesting time is 300 seconds so you
may not be able to view data immediately. You may need to set the harvest time to a small
value (say 5 seconds) to better visualize results. To see all connections, take a diagnostic
image. To see the stack trace, enable leak profiling.

Callbacks for Monitoring Driver-Level Statistics

WebLogic Server provides callbacks for methods called on a JDBC driver. You can use these
callbacks to monitor and profile JDBC driver usage, including methods being executed, any
exceptions thrown, and the time spent executing driver methods.

To enable the callback feature, you specify the fully qualified path of the callback handler for
the driver-interceptor element in the JDBC data source descriptor (module). Your callback
handler must implement the weblogic.jdbc.extensions.DriverInterceptor interface. When
you enable JDBC driver callbacks, WebLogic Server calls the preInvokeCallback(),
postInvokeExceptionCallback (), and postInvokeCallback () methods of the registered
callback handler before and after invoking any method inside the JDBC driver.

Any time an application calls the JDBC driver, a callback is sent to the class that implemented
the driver.

Debugging JDBC Data Sources

Once you narrow the problem down to a specific application, you can activate the WebLogic
Server debugging features to isolate the problem with the application.

* Enabling Debugging

e JDBC Debugging Scopes

e Set Debugging for UCP or ONS
* Request Dyeing

Enabling Debugging

You can enable debugging by setting the appropriate ServerDebug configuration attribute to
"true." Optionally, you can also set the server StdoutSeverity to "Debug".

You can modify the configuration attribute in any of the following ways:

e Enable Debugging Using the Command Line
* Enable Debugging Using the WebLogic Server Administration Console
* Enable Debugging Using the WebLogic Scripting Tool

e Changes to the config.xml File

Enable Debugging Using the Command Line

Set the appropriate properties on the command line. For example,

-Dweblogic.debug.DebugJDBCSQL=true
-Dweblogic.log.StdoutSeverity="Debug"

This method is static and can only be used at server startup.

ORACLE 15-7

Chapter 15
Debugging JDBC Data Sources

Enable Debugging Using the WebLogic Server Administration Console

To track down problems within the application you can enable debugging using the WebLogic
Server Administration Console.

To enable debugging do the following:

Locate the Change Center in the upper left corner of the Administration Console.
Click Lock & Edit to lock the editable configuration hierarchy for the domain.

In the left pane of the console, select Environment > Servers.

Enable or disable debugging on the relevant page of the Console.

Click Save on each page where you make a change

o g & 0w b PR

When you have finished making all the necessary changes, click Activate Changes in the
Change Center.

For more information, see Using the Change Center in Understanding Oracle WebLogic
Server.

Enable Debugging Using the WebLogic Scripting Tool

ORACLE

Use the WebLogic Scripting Tool (WLST) to set the debugging values. For example, the
following command runs a program for setting debugging values called debug.py:

java weblogic.WLST debug.py

The debug.py program contains the following code:

user='userl'

password="'password'
url='t3://localhost:7001"

connect (user, password, url)

edit ()

cd ('Servers/myserver/ServerDebug/myserver")
startEdit ()

set ('DebugJDBCSQL', 'true')

save ()

activate ()

Note that you can also use WLST from Java. The following example shows a Java file used to
set debugging values:

import weblogic.management.scripting.utils.WLSTInterpreter;
import java.io.*;

import weblogic.jndi.Environment;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

public class test {

public static void main(String args[]) {
try {

WLSTInterpreter interpreter = null;
String user="userl";

String pass="pwl2ab";

String url ="t3://localhost:7001";
Environment env = new Environment();
env.setProviderUrl (url);

15-8

Chapter 15
Debugging JDBC Data Sources

env.setSecurityPrincipal (user);
env.setSecurityCredentials (pass);
Context ctx = env.getInitialContext();

interpreter = new WLSTInterpreter();
interpreter.exec

("connect ('"+user+"', '"+pass+"', ""+url+"")");
interpreter.exec ("edit ()");
interpreter.exec("startEdit ()");
interpreter.exec
("cd('Servers/myserver/ServerDebug/myserver')");
interpreter.exec("set ('DebugJDBCSQL', 'true')");
interpreter.exec("save()");
interpreter.exec("activate()");

} catch (Exception e) {
System.out.println ("Exception "+e);
}

}

}

Using the WLST is a dynamic method and can be used to enable debugging while the server is

running.

Changes to the config.xml File

Changes in debugging characteristics, through console, or WLST, or command line are
persisted in the config.xml file. See Example 15-1:

Example 15-1 Example Debugging Stanza for JDBC

<server>

<name>myserver</name>
<server-debug>

<debug-scope>
<name>weblogic.transaction</name>
<enabled>true</enabled>
</debug-scope>
<debug-jdbcsgl>true</debug-jdbcsgl>
</server-debug>

</server>

This sample config.xml fragment shows a transaction debug scope (set of debug attributes)
and a single JDBC attribute.

JDBC Debugging Scopes

The following are registered debugging scopes for JDBC:

* DebugJDBCSQL (scope weblogic.jdbc.sql) - prints information about all JDBC
methods invoked, including their arguments and return values, and thrown exceptions.

ORACLE

15-9

Chapter 15
Debugging JDBC Data Sources

e DebugJDBCConn (scope weblogic.jdbc.connection) - trace all connection
reserve and release operations in data sources as well as all application requests to get or
close connections.

* DebugJDBCONS (scope weblogic.jdbc.rac) - trace low-level ONS debugging.
* DebugJDBCRAC (scope weblogic.jdbc.rac) -trace RAC debugging.

* DebugJDBCUCP (scope weblogic.jdbc.rac) - trace low-level UCP debugging.
* DebugJDBCReplay (scope weblogic.jdbc.rac) -trace Replay debugging.

* DebugJDBCRMI (scope weblogic.jdbc.rmi) - similarto JDBCSQL but at the RMI
level; turning on this one and JDBCSQL will get two sets of debug messages for each
operation called from a client.

* DebugJDBCInternal (scope weblogic.jdbc.internal) -low level debugging in
weblogic/jdbc/common/internal related to the data source, the connection
environment, and the data source manager.

e DebugJDBCDriverLogging (scope weblogic.jdbc.driverlogging) - enables
JDBC driver level logging (this replaces serverMBean JDBCLoggingEnabled and
getJDBCLogFileName).

Note:

To get driver level tracing for Oracle, you need to use ojdbc6_g. jar instead of
ojdbc6.jar. Note that for this debug scope, it can be turned on once via the
command line or configuration when the server is booted but cannot be turned on
or off dynamically (due to the DriverManager interface).

e DebugJTAJDBC (scope weblogic.jdbc.transaction) -trace transaction
debugging.

Set Debugging for UCP or ONS

ORACLE

Debugging UCP
Set UCP debugging directly using:

oracle.ucp.level = FINEST;
oracle.ucp.jdbc.PoolDataSource = WARNING;
Debugging ONS

To enable debugging for ONS, you must configure java.util.logging.

-Djava.util.logging.config.file=configfile
-Doracle.ons.debug=true

In this command, configfile is the path and file name of the configuration property file
property used by standard JDK logging to control the log output format and logging level. The
configfile must include the following line:

oracle.ons.level=FINEST

15-10

Chapter 15
Debugging JDBC Data Sources

For more information, see java.util.logging in Java Platform Standard Edition API Specification.

Request Dyeing

ORACLE

Another option for debugging is to trace the flow of an individual (typically "dyed") application
request through the JDBC subsystem. For more information, see Configuring the Dye Vector
via the Dyelnjection Monitor in Configuring and Using the Diagnostics Framework for Oracle
WebLogic Server.

15-11

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/logging/package-summary.html

Managing WebLogic JDBC Resources

Learn how to use the WebLogic Server Administration Console, command line, JMX programs,
or WebLogic Scripting Tool (WLST) scripts to manage the JDBC data sources in your domain.

e Testing Data Sources and Database Connections
To make sure that the database connections in a data source remain healthy, you should
periodically test the connections. WebLogic Server includes two basic types of testing:
automatic testing that you configure with attributes on the data source and manual testing
that you can do to trouble-shoot a data source.

e Managing the Statement Cache for a Data Source
WebLogic Server creates a statement cache of each connection in a data source. When a
prepared statement or callable statement is used on a connection, WebLogic Server
caches the statement so that it can be reused.

e Shrinking a Connection Pool
Use the Shrink option to drop some connections from the data source when a peak usage
period has ended. This option frees up WebLogic Server and DBMS resources.

e Resetting a Connection Pool
Use the Reset option to close and recreate all available database connections in a data
source.

e Suspending a Connection Pool
Use the suspend () and forceSuspend () options to suspend a data source.

* Resuming a Connection Pool
Use the Resume option to re-use a suspended data source.

e Shutting Down a Data Source
Use the Shutdown and Force Shutdown options to shut down a data source.

e Starting a Data Source
Use the Start option to start a data source which has been shut down.

e Managing DBMS Network Failures

Testing Data Sources and Database Connections

ORACLE

To make sure that the database connections in a data source remain healthy, you should
periodically test the connections. WebLogic Server includes two basic types of testing:
automatic testing that you configure with attributes on the data source and manual testing that
you can do to trouble-shoot a data source.

Allowing WebLogic Server to automatically maintain the integrity of pool connections should
prevent most DBMS connection problems. For more information about configuring automatic
connection testing, see Connection Testing Options for a Data Source.

To manually test a connection from a data source, you can use the Test Data Source feature
on the JDBC Data Source: Monitoring: Testing page in the WebLogic Server Administration
Console (see Test JDBC data sources) or the testPool () method in the
JDBCDataSourceRuntimeMBean.

JDBCDataSourceRuntimeMBean.testPool

16-1

Chapter 16
Managing the Statement Cache for a Data Source

To test a database connection from a data source, Test Reserved Connections must be
enabled and Test Table Name must be defined in the data source configuration. Both are
defined by default if you create the data source using the WebLogic Server Administration
Console.

When you test a data source, WebLogic Server reserves a connection, tests it using the query
defined in Test Table Name, and then releases the connection.

Managing the Statement Cache for a Data Source

WebLogic Server creates a statement cache of each connection in a data source. When a
prepared statement or callable statement is used on a connection, WebLogic Server caches
the statement so that it can be reused.

For more information about the statement cache, see Increasing Performance with the
Statement Cache.

Each connection in the data source has its own statement cache, but configuration settings are
made for all connections in the data source. You can clear the statement cache for all
connections in a data source using the WebLogic Server Administration Console or you can
programmatically clear the statement cache for an individual connection.

Note:

When the JDBC 4.0 setPoolable (false) method is called for a WebLogic data
source that has prepared statement caching enabled, the statement is removed from
the cache in addition to calling the method on the driver object.

* Clearing the Statement Cache for a Data Source

* Clearing the Statement Cache for a Single Connection

Clearing the Statement Cache for a Data Source

You can manually clear the statement cache for all connections in a data source using the
WebLogic Server Administration Console or with the clearStatementCache () method on the
JDBCDataSourceRuntimeMBean.

JDBCDataSourceRuntimeMBean.clearStatementCache

For more information, see Clear the statement cache in a JDBC data source and
JDBCDataSourceRuntimeMBean.clearStatementCache in Oracle Fusion Middleware
Administration Console Online Help for Oracle WebLogic Server.

Clearing the Statement Cache for a Single Connection

ORACLE

weblogic.jdbc.extensions.WLConnection.clearStatementCache ()
weblogic.jdbc.extensions.WLConnection.clearCallableStatement (java.lang.
String sql)
weblogic.jdbc.extensions.WLConnection.clearCallableStatement (java.lang.
String sql,int resType,int resConcurrency)
weblogic.jdbc.extensions.WLConnection.clearPreparedStatement (java.lang.
String sql)
weblogic.jdbc.extensions.WLConnection.clearPreparedStatement (java.lang.
String sql,int resType,int resConcurrency)

16-2

Chapter 16
Shrinking a Connection Pool

You can use methods in the weblogic.jdbc.extensions.WLConnection interface to clear the
statement cache for a single connection or to clear an individual statement from the cache.
These methods return true if the operation was successful and false if the operation fails
because the statement was not found.

When prepared and callable statements are stored in the cache, they are stored (keyed) based
on the exact SQL statement and result set parameters (type and concurrency options), if any.
When clearing an individual prepared or callable statement, you must use the method that
takes the proper result set parameters. For example, if you have callable statement in the
cache with resSetType Of ResultSet.TYPE SCROLL INSENSITIVE and a resSetConcurrency of
ResultSet.CONCUR READ ONLY, you must use the method that takes the result set parameters:

clearCallableStatement (java.lang.String sgl,int resSetType,int resSetConcurrency)

If you use the method that only takes the SQL string as a parameter, the method will not find
the statement, nothing will be cleared from the cache, and the method will return false.

When you clear a statement that is currently in use by an application, WebLogic Server
removes the statement from the cache, but does not close it. When you clear a statement that
is not currently in use, WebLogic Server removes the statement from the cache and closes it.

For more details about these methods, see the Javadoc for WLConnection.

Shrinking a Connection Pool

Resetting

ORACLE

Use the Shrink option to drop some connections from the data source when a peak usage
period has ended. This option frees up WebLogic Server and DBMS resources.

A data source has a set of properties that define the initial, minimum, and maximum number of
connections in the pool (initialCapacity, minCapacity, and maxCapacity). A data source
automatically adds one connection to the pool when all connections are in use. When the pool
reaches maxCapacity, the maximum number of connections are opened, and they remain
opened unless you enable automatic shrinking on the data source or manually shrink the data
source with the shrink () method.

You may want to drop some connections from the data source when a peak usage period has
ended, freeing up WebLogic Server and DBMS resources. You can use the Shrink option on
the JDBC Data Source: Control page in the WebLogic Server Administration Console (see
Shrink the connection pool in a JDBC data source in Oracle WebLogic Server Administration
Console Online Help) or the shrink () method on the JDBCDataSourceRuntimeMBean.

JDBCDataSourceRuntimeMBean.shrink

When you shrink a data source, WebLogic Server reduces the number of connections in the
pool to the greater of either the minCapacity or the number of connections currently in use.
The pool is decreased gradually to minimize thrashing. The number of unused connections is
cut in half each time automatic shrinking is performed.

a Connection Pool

Use the Reset option to close and recreate all available database connections in a data
source.

Reset option is available on the JDBC Data Source: Control page in the WebLogic Server
Administration Console (see Reset connections in a JDBC data source in Oracle WebLogic
Server Administration Console Online Help) or the reset () method on the
JDBCDataSourceRuntimeMBean.

16-3

Chapter 16
Suspending a Connection Pool

JDBCDataSourceRuntimeMBean.reset

This may be necessary after the DBMS has been restarted, for example. Often when one
connection in a data source has failed, all of the connections in the pool are bad.

Suspending a Connection Pool

ORACLE

Use the suspend () and forceSuspend () options to suspend a data source.

The Suspend and Force Suspend options can be reserved on the JDBC Data Source: Control
page in the WebLogic Server Administration Console (see Suspend JDBC data sources in
Oracle WebLogic Server Administration Console Online Help) or the suspend () and
forceSuspend () methods in the JDBCDataSourceRuntimeMBean.

JDBCDataSourceRuntimeMBean.suspend
JDBCDataSourceRuntimeMBean.forceSuspend

When you suspend a data source (not forcibly suspend), the data source is marked as
disabled and applications cannot reserve connections from the pool. Applications that already
have a reserved connection from the data source when it is suspended will get an exception
when trying to use the connection. WebLogic Server preserves all connections in the data
source exactly as they were before the data source was suspended.

When you gracefully suspend a data source, the following occurs:

e The data source is immediately marked as suspended at the beginning of the operation
and no further connections are created on the data source.

< ldle (not reserved) connections are marked as disabled.

- After a timeout period for the suspend operation, all remaining connections in the pool are
marked as suspended and the following exception is thrown for any operations on the
connection, indicating that the data source is suspended:

java.sql.SQLRecoverableException: Connection has been administratively
disabled. Try later.

- If graceful suspend is done as part of a graceful shutdown operation, connections are
immediately closed when no longer reserved or at the end of the timeout period. If not
done as part of a shutdown operation, these connections remain in the pool and are not
closed because the pool may be resumed.

A graceful suspend can be done synchronously or asynchronously.

The synchronous operation does not have a timeout period on the method. By default, the
timeout period is 60 seconds. You can change the value of this timeout period by configuring or
dynamically setting Inactive Connection Timeout Seconds to a non-zero value. There is no
upper limit on the inactive timeout period. Note that the processing actually checks for in-use
(reserved) resources every tenth of a second so if the timeout value is set to 2 hours and all
reserved resources are released a second later, the shutdown will complete a second later.

The asynchronous operation takes a timeout value in seconds. It returns a
JDBCDataSourceTaskRuntimeMBean that can be used to check the status of the operation. The
getProgress () method returns TaskRuntimeMBean.PROGRESS SUCCESS ("success"),
TaskRuntimeMBean.PROGRESS FAILED ("failed"), or a

TaskRuntimeMBean.PROGRESS PROCESSING ("processing"). The getStatus() method returns
"SUCCESS", "FAILURE", and now "PROCESSING". There can be multiple task MBeans in
existence. The next operation call on the data source will clean up MBeans for tasks that have
been completed for at least 30 minutes. Note that once a suspend or shutdown operation is
started, the other operations will fail immediately but a task MBean is still created. The

16-4

Chapter 16
Resuming a Connection Pool

isRunning () method returns true if suspend or shutdown is still running. Timeout of the
operation is controlled by the timeout parameter on the new task operations. If set to 0, the
default is used. The default is to use Inactive Connection Timeout Seconds if set or 60
seconds. If you want a minimal timeout, set the value to 1. If you want no timeout, setitto a
large value (not recommended).

When you forcibly suspend a data source, all pool connections are destroyed and any
subsequent attempt to use reserved connections fail. Any transactions on the connections that
are closed are rolled back.

Resuming a Connection Pool

Use the Resume option to re-use a suspended data source.

The Resume option is available on the JDBC Data Source: Control page in the WebLogic
Server Administration Console (see Resume suspended JDBC data sources in Oracle
WebLogic Server Administration Console Online Help) or the resume () method on the
JDBCDataSourceRuntimeMBean.

JDBCDataSourceRuntimeMBean.resume

When you resume a data source, WebLogic Server marks the data source as enabled and
allows applications to reserve connections from the data source. If you suspended the data
source (not forcibly suspended), all connections are preserved exactly as they were before the
data source was suspended. Clients that had reserved a connection before the data source
was suspended can continue exactly where they left off. If you forcibly suspended the data
source, clients will have to reserve new connections to proceed.

Note:

You cannot resume a data source that did not start correctly, for example, if the
database server is unavailable.

Shutting Down a Data Source

ORACLE

Use the Shutdown and Force Shutdown options to shut down a data source.

The Shutdown and Force Shutdown options are available on the JDBC Data Source: Control
page in the WebLogic Server Administration Console (see Shut down JDBC data sources in
Oracle WebLogic Server Administration Console Online Help) or the shutdown () and
forceShutdown () methods in the JDBCDataSourceRuntimeMBean.

JDBCDataSourceRuntimeMBean.shutdown
JDBCDataSourceRuntimeMBean.forceShutdown

A graceful (non-forced) data source shutdown operation involves first gracefully suspending
the data source and then releasing the associated resources including the connections. See
the description above for details of gracefully suspending the data source. After the data
source is gracefully suspended, all remaining in-use connections are closed and the data
source is marked as shut down.

A graceful shutdown can be done synchronously or asynchronously.

16-5

Chapter 16
Starting a Data Source

The synchronous operation does not have a timeout period on the method. The timeout period
is 60 seconds by default. This can be changed by configuring or dynamically setting Inactive
Connection Timeout Seconds to a non-zero value (note that this value is overloaded with
another feature when connection leak profiling is enabled). There is no upper limit on the
inactive timeout. Note that the processing actually checks for in-use (reserved) resources
every tenth of a second so if the timeout value is set to 2 hours and it's done a second later, it
will complete a second later.

The asynchronous operation takes a timeout value in seconds. It returns a
JDBCDataSourceTaskRuntimeMBean that can be used to check the status of the operation. The
getProgress () method returns TaskRuntimeMBean.PROGRESS SUCCESS ("success"),
TaskRuntimeMBean.PROGRESS FAILED ("failed"), or

TaskRuntimeMBean.PROGRESS PROCESSING ("processing"). The getStatus() method returns
"SUCCESS", "FAILURE", and now "PROCESSING". There can be multiple task MBeans in
existence. The next operation call on the data source will clean up MBeans for tasks that have
been completed for at least 30 minutes. Note that once a suspend or shutdown operation is
started, the other operations will fail immediately but a task MBean is still created. The
isRunning () method returns true if suspend or shutdown is still running. Timeout of the
operation is controlled by the timeout parameter on the new task operations. If set to 0, the
default is used. The default is to use Inactive Connection Timeout Seconds if set or 60
seconds. If you want a minimal timeout, set the value to 1. If you want no timeout, setitto a
large value (not recommended).

When you forcibly shut down a data source, WebLogic Server closes database connections in
the data source and shuts down the data source. All current connection users are forcibly
disconnected. For a sample WLST script that shuts down a data source, see the WLST
example WLST example.

Starting a Data Source

Use the Start option to start a data source which has been shut down.

The Start option is available on the JDBC Data Source: Control page in the WebLogic Server
Administration Console or the start () method in the JDBCDataSourceRuntimeMBean.

JDBCDataSourceRuntimeMBean.start

Invoking the Start operation re-initializes the data source, creates connections and transitions
the data source to a health state of running.

For more information, see Start JDBC data sources and JDBCDataSourceRuntimeMBean.start
in Oracle Fusion Middleware Administration Console Online Help for Oracle WebLogic Server.

Managing DBMS Network Failures

ORACLE

Manage the DBMS network failures by setting a desired amount of time for -
Dweblogic.resourcepool.max test wait secs=xx .

Here, xx is the amount of time, in seconds, WebLogic Server waits for connection test before
considering the connection test failed. By default, a server instance is assigned a value of 10
seconds.

This command line flag manages failures, such as a DBMS network failure, which can cause
connection tests and connections in use by applications to hang for extended periods of time
(for example, 10 minutes). If the assigned time period expires, the server instance purges
unused connections and puts a watch on connections that are in use by the application.

16-6

Chapter 16
Managing DBMS Network Failures

A value of ten seconds provides a reasonable amount of time to allow for peak stress loads,
when a DBMS may temporarily halt responses to clients, and then resume service on existing
connections. However, if the wait time is too long or too short, add the flag to the
startWebLogic script used for starting the server with a value that is more appropriate for your
environment. Setting the value for the amount of time to zero (0) seconds, causes the server to
wait indefinitely on a hanging connection test.

ORACLE 16-7

Tuning Data Source Connection Pools

ORACLE

Learn how to use connection pool attributes for JDBC data sources to improve application and
system performance.

Increasing Performance with the Statement Cache

Reusing cached statements reduces CPU usage on the database server, improving
performance for the current statement and leaving CPU cycles for other tasks. Cache
configurations options include Statement Cache Type and Statement Cache size.

Initial Capacity Enhancement in the Connection Pool
Connection retry, early failure, and critical data sources are available from WebLogic
Server 12.2.1.3, to enhance the initial capacity connections in the connection pool.

Connection Testing Options for a Data Source
Enabling Connection Creation Retries
Enabling Connection Requests to Wait for a Connection

Automatically Recovering Leaked Connections

You can automatically recover leaked connection by specifying values for Inactive
Connection Timeout onthe JDBC Data Source: Configuration: Connection Pool page
in the WebLogic Server Administration Console.

Avoiding Server Lockup with the Correct Number of Connections

Limiting Statement Processing Time with Statement Timeout

With the Statement Timeout option on a JDBC data source, you can limit the amount of
time that a statement takes to execute on a database connection reserved from the data
source.

Using Pinned-To-Thread Property to Increase Performance

To minimize the time it takes for an application to reserve a database connection from a
data source and to eliminate contention between threads for a database connection, you
can set the Pinned To Thread option on the JDBC data source to true.

Using Unwrapped Data Type Objects
Disabling wrapping allows applications to use native driver objects directly to provide a
significant performance improvement.

Tuning Maintenance Timers

Learn about the tunable timer properties
weblogic.jdbc.gravitationShrinkFrequencySeconds
weblogic.jdbc.harvestingFrequencySeconds and
weblogic.jdbc.securityCacheTimeoutSeconds used by WebLogic JDBC.

JDBC Connection Creation Limits

Some databases place a limit on the rate of JDBC connections that can be created. For
example, 100 connections per second. For large WebLogic Server deployments this rate
can be exceeded during server startup, database rolling restarts, failover events, and so
on. Even with databases that do not enforce a rate limit, many simultaneous JDBC
connection requests can potentially overwhelm the database capacity.

17-1

Chapter 17
Increasing Performance with the Statement Cache

Increasing Performance with the Statement Cache

Reusing cached statements reduces CPU usage on the database server, improving
performance for the current statement and leaving CPU cycles for other tasks. Cache
configurations options include Statement Cache Type and Statement Cache size.

When you use a prepared statement or callable statement in an application or EJB, there is
considerable processing overhead for the communication between the application server and
the database server and on the database server itself. To minimize the processing costs,
WebLogic Server can cache prepared and callable statements used in your applications. When
an application or EJB calls any of the statements stored in the cache, WebLogic Server reuses
the statement stored in the cache. Reusing prepared and callable statements reduces CPU
usage on the database server, improving performance for the current statement and leaving
CPU cycles for other tasks.

Each connection in a data source has its own individual cache of prepared and callable
statements used on the connection. However, you configure statement cache options per data
source. That is, the statement cache for each connection in a data source uses the statement
cache options specified for the data source, but each connection caches it's own statements.
Statement cache configuration options include:

- Statement Cache Type—The algorithm that determines which statements to store in the
statement cache. See Statement Cache Algorithms.

+ Statement Cache Size—The number of statements to store in the cache for each
connection. The default value is 10. See Statement Cache Size.

You can use the WebLogic Server Administration Console to set statement cache options for a
data source. See Configure the statement cache for a JDBC data source in the Oracle
WebLogic Server Administration Console Online Help.

e Statement Cache Algorithms
e Statement Cache Size

e Usage Restrictions for the Statement Cache

Statement Cache Algorithms

The Statement Cache Type (or algorithm) determines which prepared and callable statements
to store in the cache for each connection in a data source. You can choose from the following
options:

* LRU (Least Recently Used)
* Fixed

LRU (Least Recently Used)

ORACLE

When you select LRU (Least Recently Used, the default) as the Statement Cache Type,
WebLogic Server caches prepared and callable statements used on the connection until the
statement cache size is reached. When an application calls Connection.prepareStatement (),
WebLogic Server checks to see if the statement is stored in the statement cache. If so,
WebLogic Server returns the cached statement (if it is not already being used). If the statement
is not in the cache, and the cache is full (number of statements in the cache = statement cache
size), WebLogic Server determines which existing statement in the cache was the least
recently used and replaces that statement in the cache with the new statement.

17-2

Fixed

Chapter 17
Increasing Performance with the Statement Cache

The LRU statement cache algorithm in WebLogic Server uses an approximate LRU scheme.

When you select FIXED as the Statement Cache Type, WebLogic Server caches prepared
and callable statements used on the connection until the statement cache size is reached.
When additional statements are used, they are not cached.

With this statement cache algorithm, you can inadvertently cache statements that are rarely
used. In many cases, the LRU is preferred because rarely used statements will eventually be
replaced in the cache with frequently used statements.

Statement Cache Size

The Statement Cache Size attribute determines the total number of prepared and callable
statements to cache for each connection in each instance of the data source. By caching
statements, you can increase your system performance. However, you must consider how your
DBMS handles open prepared and callable statements:

* In many cases, the DBMS has a resource cost, such as a cursor, for each open statement.
This applies to prepared and callable statements in the statement cache. For example, if
you cache too many statements, you may exceed the limit of open cursors on your
database server. If you have a data source with 10 connections deployed on 2 servers,
and set the Statement Cache Size to 10 (the default), you may open 200 (10 x 2 x 10)
cursors on your database server for the cached statements.

e Some drivers impose large memory requirements for every open statement. For a server,
memory consumption is based on (number of data sources * number of connections *
number of statements).

e Some DBMSs may impose limits on the number of statements/cursors per connection.

The statement cache size is dependent on your applications. Ideally it is the total number of
every prepared or callable statement made with a connection from the DataSource. One way
to approximate the maximum size used by your applications is to set the cache size to a huge
number, observe the pool statistics of your application, and then take a value slightly larger
than the largest observed value. From a WebLogic DataSource perspective, there is no loss in
performance for having a cache size larger than your applications require.

However, having a cache size that is too small negatively impacts performance as the cache
turnover can be so high while trying to accommodate new statements that old statements are
flushed before they are ever reused. In some cases where you cannot allow a big enough
statement cache to hold all or most of your statements, you may find may the reuse rate is so
small that your system performs better without a statement cache.

Usage Restrictions for the Statement Cache

ORACLE

Using the statement cache can dramatically increase performance, but you must consider its
limitations before you decide to use it. Please note the following restrictions when using the
statement cache.

There may be other issues related to caching statements that are not listed here. If you see
errors in your system related to prepared or callable statements, you should set the statement
cache size to 0, which turns off statement caching, to test if the problem is caused by caching
prepared statements.

e Calling a Stored Statement After a Database Change May Cause Errors

e Using setNull In a Prepared Statement

17-3

Chapter 17
Increasing Performance with the Statement Cache

e Statements in the Cache May Reserve Database Cursors

e Other Considerations When Using the Statement Cache

Calling a Stored Statement After a Database Change May Cause Errors

Prepared statements stored in the cache refer to specific database objects at the time the
prepared statement is cached. If you perform any DDL (data definition language) operations on
database objects referenced in prepared statements stored in the cache, the statements may
fail the next time you run them. For example, if you cache a statement such as select * from
emp and then drop and recreate the emp table, the next time you run the cached statement, the
statement may fail because the exact emp table that existed when the statement was prepared,
no longer exists.

Likewise, prepared statements are bound to the data type for each column in a table in the
database at the time the prepared statement is cached. If you add, delete, or rearrange
columns in a table, prepared statements stored in the cache are likely to fail when run again.

These limitations depend on the behavior of your DBMS.

Using setNull In a Prepared Statement

If you cache a prepared statement that uses a setNull bind variable, you must set the variable
to the proper data type. If you use a generic data type, as in the following example, data may
be truncated or the statement may fail when it runs with a value other than null.

java.sqgl.Types.Long sal=null

if (sal == null)
setNull(2,int)//This is incorrect
else
setLong(2,sal)

Instead, use the following:

if (sal == null)
setNull(2,long)//This is correct
else
setLong (2,sal)

Statements in the Cache May Reserve Database Cursors

When WebLogic Server caches a prepared or callable statement, the statement may open a
cursor in the database. If you cache too many statements, you may exceed the limit of open
cursors for a connection. To avoid exceeding the limit of open cursors for a connection, you
can change the limit in your database management system or you can reduce the statement
cache size for the data source.

Other Considerations When Using the Statement Cache

ORACLE

When oracle.jdbc.implicitstatementcachesize is setin the connection properties of a data
source, the WebLogic Server statement cache size is automatically set to zero (0).

There are several cases where special consideration is needed for the statement cache.

» If a data source is configured to use DRCP, the cache is cleared whenever the connection
is closed by the application. See Database Resident Connection Pooling.

17-4

Chapter 17
Initial Capacity Enhancement in the Connection Pool

* When a data source is configured to use JDBC Replay Driver using the JDBC Replay
Driver driver, the WebLogic Server statement cache size is automatically set to 0.

¢ oracle.jdbc.implicitstatementcachesize is setin the connection properties of a data
source.

* For ease of use and to ensure caching is disabled, WebLogic Server automatically sets the
statement cache size value to zero (0).

* When the JDBC 4.0 setPoolable (false) method is called for a WebLogic data source
that has prepared statement caching enabled, the statement is removed from the cache in
addition to calling the method on the driver object.

Initial Capacity Enhancement in the Connection Pool

ORACLE

Connection retry, early failure, and critical data sources are available from WebLogic Server
12.2.1.3, to enhance the initial capacity connections in the connection pool.

Creating the Initial Capacity Connections in the Connection Pool

Whenever a server starts, the data source tries to create the initial capacity connections in the
connection pool. Prior to 12.2.1.3, the data source attempted to create initial capacity
connections even if some of the connection attempts failed. This can take a long time if one or
more of the connection failures take a long time due to unavailability of network or database.

From WebLogic Server 12.2.1.3 onwards, the following changes are available during the
creation of the initial capacity connections:

e Connection Retry
* Early Failure

e Critical Data Sources

Connection Retry
There are two connection properties that control retrying the initial connection creation failure:

weblogic.jdbc.startupRetryCount — If this property is set and the value is greater than O, if
failure occurs connection creation will be retried based on the value. The default value is 0 (no
retry).

weblogic.jdbc.startupRetryDelaySeconds— If this property is set and the value is greater
than 0 and retry count is set, the connection creation will delay for the specified number of
seconds between retries. The default value is 0 (no delay).

Early Failure

The following connection property controls whether or not to continue after connection creation
fails:

weblogic.jdbc.continueMakeResourceAttemptsAfterFailure=true — If startup retry is
enabled, the driver property
weblogic.jdbc.continueMakeResourceAttemptsAfterFailure=true is ignored and the data
source will not continue to create connections after a failure when the server is starting. It will
continue create attempts if the data source is deployed or redeployed on a running server.

Critical Data Sources

If a failure occurs while populating the initial capacity connections in the connection pool, the
data source is not deployed (it won't be in JNDI so the application will fail to find it) but the

17-5

Chapter 17
Connection Testing Options for a Data Source

server continues to startup and is not marked as unhealthy. In some applications, a data
source may be a critical resource such that no useful processing can be done if the data
source is not deployed. This can be controlled using a connection property:

weblogic.jdbc.critical — If this value is set to true, the managed server fails to boot; this
does not apply to the administration server, which is available to process configuration
changes. The default value is false, where the server continues to boot without deploying the
data source.

Example 17-1 WLST Sample Code

The following WLST sample code fragment illustrates defining a Retry count and delay on a
data source.

edit ()

startEdit ()

datasource="dsname"

cd ("/JIDBCSystemResources/" + datasource + "/JDBCResource/" + datasource + "/
JDBCDriverParams/"

+ datasource + "/Properties/" + datasource)

cmo.createProperty ("weblogic.jdbc.startupRetryCount", "5")
cmo.createProperty ("weblogic.jdbc.startupRetryDelaySeconds", "10")

save ()

activate ()

Connection Testing Options for a Data Source

ORACLE

Learn about testing the database connections for a data source using the Automatic and
Manual testing methods.

To make sure that the database connections in a data source remain healthy, you should
periodically test the connections. WebLogic Server includes two basic types of testing:

e Automatic testing that you configure with options on the data source so that WebLogic
Server makes sure that database connections remain healthy.

e Manual testing that you can do to trouble-shoot a data source. See Testing Data Sources
and Database Connections.

To configure automatic testing options for a data source, you set the following options either
through the WebLogic Server Administration Console or through WLST using the
JDBCConnectionPoolParamsBean:

e Test Frequency—(TestFrequencySeconds in the JDBCConnectionPoolParamsBean) Use
this attribute to specify the number of seconds between tests of unused connections.
WebLogic Server tests unused connections, and closes and replaces any faulty
connections. You must also set the Test Table Name.

* Test Reserved Connections—(TestConnectionsOnReserve in the
JDBCConnectionPoolParamsBean) Enable this option to test each connection before giving
to a client. This may add a slight delay to the request, but it guarantees that the connection
is healthy. You must also set a Test Table Name.

* Test Table Name—(TestTableName in the JDBCConnectionPoolParamsBean) Use this
attribute to specify a table name to use in a connection test. You can also specify SQL
code to run in place of the standard test by entering sQL followed by a space and the SQL
code you want to run as a test. Test Table Name is required to enable any database
connection testing. See Database Connection Testing Using Default Test Table Name.

17-6

Chapter 17
Connection Testing Options for a Data Source

e Seconds to Trust an Idle Pool Connection—(SecondsToTrustAnIdlePoolConnection in
the JDBCConnectionPoolParamsBean) Use this option to specify the number of seconds
after a connection has been proven to be OK that WebLogic Server trusts the connection
is still viable and will skip the connection test, either before delivering it to an application or
during the periodic connection testing process. This option is an optimization that
minimizes the performance impact of connection testing, especially during heavy traffic.
See Minimizing Connection Request Delay with Seconds to Trust an Idle Pool Connection.

e Count of Test Failures Till Flush—(CountOfTestFailuresTillFlush in the
JDBCConnectionPoolParamsBean) Use this option to specify the number of test failures
allowed before WebLogic Server closes all connections in the connection pool to minimize
the delay caused by further database testing. This parameter minimizes the amount of time
allowed for failover when a Multi Data Source member fails. See Minimizing Connection
Test Delay After Database Connectivity Loss.

* Connection Count of Refresh Failures Till Disable—
(CountOfRefreshFailuresTillDisable in the JDBCConnectionPoolParamsBean) Use this
option to specify the number of test failures allowed before WebLogic Server disables the
connection pool to minimize the delay in handling the connection request caused by a
database failure. See Minimizing Connection Request Delays After Loss of DBMS
Connectivity.

See the JDBC Data Source: Configuration: Connection Pool page in the WebLogic Server
Administration Console or see JDBCConnectionPoolParamsBean in the MBean Reference for
Oracle WebLogic Server for more details about these options.

For instructions to set connection testing options, see Configure testing options for a JDBC
data source in the Oracle WebLogic Server Administration Console Online Help.

Automatic connection testing options are:

» Database Connection Testing Semantics

» Database Connection Testing Configuration Recommendations
* Database Connection Testing Using Default Test Table Name

« Database Connection Testing Options

Database Connection Testing Semantics

ORACLE

When WebLogic Server tests database connections in a data source, it reserves a connection
from the data source, runs a small query on the connection, then returns the connection to the
pool in the data source. The server instance tracks statistics on the pool status, including the
amount of time a required to complete a connection test, the number of connections waiting for
a connection, and the number of connections being tested. The history of recent test
connection behavior is used to calculate the amount of time the server instance waits until a
connection test is determined to have failed.

If a thread appears to be taking longer than normal to complete a test, the server instance may
delay testing on other threads until the abnormally long-running test completes. If that thread
hangs too long in connection testing (10 seconds by default), a pool may declare a DBMS
connectivity failure, disable itself, and kill all connections, whether unreserved or in application
hands. A pool closes all in-test or unused connections, and flags in-use connections to check
them later as they may be hanging. After the Test Frequency Seconds has passed, WebLogic
Server kills any in-use connections that have not progressed.

This is very rare, and is intended to relieve the otherwise interminable hangs that can be
caused by network cable disconnects and other problems that can lock any JVM thread which

17-7

Chapter 17
Connection Testing Options for a Data Source

is doing a call in a socket read that the JVM will be unable to break until the OS TCP limit is hit
(typically 10 minutes).

The query used in testing is determined by the value in Test Table Name. If the value is a table
name, the query is select count(*) from table name. If Test Table Name includes a full
query starting with sQL followed by space and the query, WebLogic Server uses that query
when sting database connections.

If a connection fails the test, WebLogic Server closes and recreates the connection, and then
tests the new connection.

Details about the semantics of connection testing is explained in the following topics:

e Connection Testing When Database Connections are Created

e Periodic Connection Testing

e Testing Reserved Connections

¢ Minimizing Connection Test Delay After Database Connectivity Loss

e Minimizing Connection Request Delays After Loss of DBMS Connectivity

e Minimizing Connection Request Delay with Seconds to Trust an Idle Pool Connection

Connection Testing When Database Connections are Created

When connections are created in a data source, WebLogic Server tests each connection using
the query defined by the value in Test Table Name. Connections are created when a data
source is deployed, either at server startup or when creating a data source, when increasing
capacity to meet demand for connections, or when recreating a connection that failed a
connection test.

The purpose of this testing is to ensure that new connections are viable and ready for use
when an application requests a connection.

Periodic Connection Testing

If Test Frequency is greater than 0, WebLogic Server periodically tests the pooled connections
that are not currently reserved by applications. The test is based on the query defined in Test
Table Name. If a connection fails the test, WebLogic Server closes the connection, recreates
the connection, and tests the new connection before returning it to the pool.

Testing Reserved Connections

When Test Connections On Reserve isS enabled, when your application requests a connection
from the data source, WebLogic Server tests the connection using the query specified in Test
Table Name before giving the connection to the application. The default value is not enabled.

Testing reserved connections can cause a delay in satisfying connection requests, but it makes
sure that the connection is viable when the application gets the connection. You can minimize
the impact of testing reserved connections by tuning Seconds to Trust an Idle Pool Connection.
See Minimizing Connection Request Delay with Seconds to Trust an Idle Pool Connection.

Minimizing Connection Test Delay After Database Connectivity Loss

ORACLE

When connectivity to the DBMS is lost, even if only momentarily, some or all of the JDBC
connections in a data source typically become terminated. If the data source is configured to
test connections on reserve, then when an application requests a database connection,

17-8

Chapter 17
Connection Testing Options for a Data Source

WebLogic Server tests the connection, discovers that the connection is terminated, and tries to
replace it with a new connection to satisfy the request. Ordinarily, when the DBMS comes back
online, the refresh process succeeds. However, in some cases and for some modes of failure,
testing a terminated connection can impose a long delay.

To minimize this delay, WebLogic data sources include logic that considers all connections in
the data source as terminated after a number of consecutive test failures, and closes all
connections in the data source. After all connections are closed, when an application requests
a connection, the data source creates a connection without first having to test a terminated
connection. This behavior minimizes the delay for connection requests following the data
source's connection pool flush.

WebLogic Server determines the number of test failures before closing all connections based
on the test frequency setting for the data source:

* If test frequency is greater than 0, the number of test failures before closing all connections
is set to CountOfTestFailuresTillFlush .

Note:

The default value is 2.

e If test frequency is set to 0 (periodic testing is disabled), the number of test failures before
closing all connections is set to 25% of the Maximum Capacity for the data source.

< Note:

This value is overridden by CountOfTestFailuresTillFlush value. Actually, the
number of test failures before closing all connections follows the count of test
failures till flush, that is, CountOfTestFailuresTillFlush, which is located in
Connection Pool parameter of WebLogic Server Administration Console.

To minimize the delay that occurs during the test of dead database connections, you can set
CountOfTestFailuresTillFlush attribute on the connection pool. To enable this feature,
TestConnectionsOnReserve must also be set to true.

If the configured or default number of consecutive connection test failures are observed, then
all currently unused connections in the pool are terminated so that any subsequent connection
requests get a new connection. Active connections are not interrupted but are monitored for
activity. If no activity is detected with in 60 seconds, these connections are destroyed.

The default value is generally sufficient. You may need to increase this value if your
environment has:

* Slow-running applications that may not show JDBC activity for several minutes

* Network/firewall issues that consistently terminate one or two connections

Minimizing Connection Request Delays After Loss of DBMS Connectivity

ORACLE

If your DBMS becomes and remains unavailable, the data source will persistently test and try
to replace dead connections while trying to satisfy connection requests. This behavior is
beneficial because it enables the data source to react immediately when the database
becomes available. However, in cases where the DBMS is truly down, it may be minutes,
hours, or days before the DBMS is restored. Testing a dead database connection can take as

17-9

Chapter 17
Connection Testing Options for a Data Source

long as the network timeout, and can cause a long delay for clients. This delay occurs for each
dead connection in the connection pool until all connections are replaced and can cause long
delays to clients before getting the expected failure message.

To minimize the delay that occurs for client applications while a database is unavailable, you
can set the CountOfRefreshFailuresTillDisable attribute on the connection pool. The default
value is 2. To enable this feature, TestConnectionsOnReserve must also be set to true and
InitialCapacity must be greater than O.

If the configured or default number of consecutive failures to replace a dead connection are
observed, WebLogic Server suspends the connection pool. If an application requests a
connection from a suspended connection pool, WebLogic Server throws
PoolDisabledSQLException to notify the client that a connection is not available.

For data sources that are disabled in this manner, WebLogic Server periodically runs a refresh
process. The refresh process does the following:

e The server instance executes a health check on the database server every 5 seconds.
This setting is not configurable.

» If the server instance recognizes that the database was recovered, it creates a new
database connection and enables the data source.

You can also manually enable the data source using the WebLogic Server Administration
Console or WLST.

Note:

If a data source is added to a Multi Data Source, the Multi Data Source takes over
the responsibility of disabling and re-enabling its data sources. By default, a Multi
Data Source will check every two minutes (configurable) and re-enable any of its data
sources that can re-establish connections. Configure using test frequency seconds
at the Multi Data Source level. Note that the semantics of this setting are different
than at the data source level.

Minimizing Connection Request Delay with Seconds to Trust an Idle Pool Connection

ORACLE

For some applications that use DBMS connections in a lot of very short cycles (such as
reserve-do_one_query-close), the data source's testing of the connection can contribute a
significant amount of overhead to each use cycle. To minimize the impact of connection
testing, you can set the Seconds To Trust An Idle Pool Connection attribute in the JDBC data
source configuration to trust recently-used or recently-tested database connections and skip
the connection test.

If Test Reserved Connections is enabled on your data source, when an application requests a
database connection, WebLogic Server tests the database connection before giving it to the
application. If the request is made within the time specified for Seconds to Trust an Idle Pool
Connection, since the connection was tested or successfully used by an application, WebLogic
Server skips the connection test before delivering it to an application.

If Test Frequency is greater than 0 for your data source (periodic testing is enabled), WebLogic
Server also skips the connection test if the connection was successfully used and returned to
the data source within the time specified for Seconds to Trust an Idle Pool Connection.

For instructions to set Seconds to Trust an Idle Pool Connection, see Configure testing options
for a JDBC data source in the Oracle WebLogic Server Administration Console Online Help.

17-10

Chapter 17
Connection Testing Options for a Data Source

Seconds to Trust an Idle Pool Connection is a tuning feature that can improve application
performance by minimizing the delay caused by database connection testing, especially during
heavy traffic. However, it can reduce the effectiveness of connection testing, especially if the
value is set too high. The appropriate value depends on your environment and the likelihood
that a connection will become defunct.

Database Connection Testing Configuration Recommendations

You should set connection testing attributes so that they best fit your environment. For
example, if your application cannot tolerate database connection failures, you should set
Seconds to Trust an Idle Pool Connection to 0 and make sure Test Reserved Connections is
enabled so that WebLogic Server will test every connection before giving it to an application. If
your application is more sensitive to delays in getting a connection from the data source and
can tolerate a possible application failure due to using a dead connection, you should set
Seconds to Trust an Idle Pool Connection to a higher number, set Test Frequency to a lower
number, and enable Test Reserved Connections.

With these settings, your application will rely more on the data source testing connections in
the pool when they are not in use, rather than when an application requests a connection.

Note:

Ultimately, even if WebLogic does its best, a connection may fail in the instant after
WebLogic successfully tested it, and just before the application uses it. Therefore,
every application should be written to respond appropriately in the case of
unexpected exceptions from a dead connection.

When running with AGL and FAN enabled:

* Itis not necessary to run with Test Connections on Reserve because ONS will send
down events when a database instance goes down. This can significantly improve
performance by eliminating (or reducing) testing overhead in the database. However, Test
Connections on Reserve tests for other failures such as network connectivity and
application access to the database. Oracle recommends running with Test Connections
on Reserve and using SecondsToTrustAnIdlePoolConnection and/or
TestFrequencySeconds to reduce the overhead.

* CountOfTestFailuresTillFlush and CountOfRefreshFailuresTillDisable are ignored.
The disabling an entire RAC instance occurs when a FAN event is received that indicates
that the instance is down.

Database Connection Testing Using Default Test Table Name

ORACLE

When you create a data source using the WebLogic Server Administration Console, the
WebLogic Server Administration Console automatically sets the Test Table Name attribute for
a data source based on the DBMS that you select. The Test Table Name attribute is used in
connection testing which is optionally performed periodically or when you create or reserve a
connection, depending on how you configure the testing options. For database tests to
succeed, the database user used to create database connections in the data source must have
access to the database table. If not, you should either grant access to the user (make this
change in the DBMS) or change the Test Table Name attribute to the name of a table to which
the user does have access (make this change in the WebLogic Server Administration
Console).

17-11

Chapter 17
Enabling Connection Creation Retries

The Test Table Name is an overloaded parameter. Its simplest form is to name a table that
WebLogic Server queries to test a connection. Setting it to any table, such as "DUAL" for
Oracle, causes the data source to run the query select count(*) from DUAL. If used in this
mode, Oracle recommends that you choose a small, infrequently updated table (preferably a
pseudo-table such as DUAL).

The second manner in which you can define this parameter is to allow any specific SQL string
to be executed to test the connection. To use this option, set the parameter to "SQL " plus the
desired SQL string. For example SQL select 1 works for SQLServer, which does not need a
table in queries to select constants. This option is useful for adding DBMS-side control of
WebLogic Server pool connection testing, and to make the test as fast as possible.

Table 17-1 Default Test Table Name by DBMS

DBMS Default Test Table Name (Query)

DB2 SQL SELECT COUNT(*) FROM SYSIBM.SYSTABLES
Microsoft SQL Server SQL SELECT 1

MySQL SQL SELECT 1

Oracle SQL ISVALID

Sybase SQL SELECT 1

Database Connection Testing Options

For applications using an Oracle data base, particularly those with Oracle RAC environments,
using the default value of the Test Table Name attribute provides the best overall performance.

Oracle continues to support SQL. PINGDATABASE and SQL SELECT 1 FROM DUAL. Although not as
thorough as using SQL SELECT 1 FROM DUAL, SQL ISVALID significantly eliminate processing
overhead and improve SOA workload performance.

Enabling Connection Creation Retries

WebLogic JDBC data sources offer the Creation Retry Frequency option, which sets the
number of seconds between attempts to establish connections to the database. If you do not
set this value, data source creation fails if the database is unavailable. If set and if the
database is unavailable when the data source is created, WebLogic Server will attempt to
create connections in the pool again after the number of seconds you specify, and will continue
to attempt to create the connections until it succeeds.This option applies to connections
created when the data source is created at server startup or when the data source is deployed
or if the initial capacity is increased. It does not apply to connections created for pool
expansion or to replace a defunct connection in the pool.

By default, Connection Creation Retry Frequency is 0 seconds. When the value is set to 0,
connection creation retries is disabled and data source creation fails if the database is
unavailable.

See JDBC Data Source: Configuration: Connection Pool page in the WebLogic Server
Administration Console or see JDBCConnectionPoolParamsBean in the MBean Reference for
Oracle WebLogic Server .

ORACLE 17-12

Chapter 17
Enabling Connection Requests to Wait for a Connection

Enabling Connection Requests to Wait for a Connection

JDBC data sources have two attributes that you can set to enable connection requests to wait
for a connection from a data source: Connection Reserve Timeout
(ConnectionReserveTimeoutSeconds) and Maximum Waiting for Connection
(HighestNumWaiters).

You use these two attributes together to enable connection requests to wait for a connection
without disabling your system by blocking too many threads.

¢ Connection Reserve Timeout

e Limiting the Number of Waiting Connection Requests

Connection Reserve Timeout

When an application requests a connection from a data source, if all connections in the data
source are in use and if the data source has expanded to its maximum capacity, the application
will get a Connection Unavailable SQL Exception. To avoid this, you can configure the
Connection Reserve Timeout value (in seconds) so that connection requests will wait for a
connection to become available. After the Connection Reserve Timeout has expired, if no
connection becomes available, the request will fail and the application will get a
PoolLimitSQLException exception.

If you set Connection Reserve Timeout to -1, a connection request will timeout immediately if
there is no connection available. If you set Connection Reserve Timeout to 0, a connection
request will wait indefinitely. The default value is 10 seconds.

See Enable connection requests to wait for a connection in the Oracle WebLogic Server
Administration Console Online Help.

Limiting the Number of Waiting Connection Requests

Connection requests that wait for a connection block a thread. If too many connection requests
concurrently wait for a connection and block threads, your system performance can degrade.
To avoid this, you can set the Maximum Waiting for Connection (HighestNumWaiters) attribute,
which limits the number connection requests that can concurrently wait for a connection.

If you set Maximum Waiting for Connection (HighestNumWaiters) to MAX-INT (the default),
there is effectively no bound on how many connection requests can wait for a connection. If
you set Maximum Waiting for Connection to 0, connection requests cannot wait for a
connection. If the maximum number of requests has been met, a SQLException is thrown when
an application requests a connection.

See JDBC Data Source: Configuration: Connection Pool page in the WebLogic Server
Administration Console Online Help and JDBCConnectionPoolParamsBean in the MBean
Reference for Oracle WebLogic Server.

Automatically Recovering Leaked Connections

You can automatically recover leaked connection by specifying values for Inactive
Connection Timeout on the JDBC Data Source: Configuration: Connection Pool page in
the WebLogic Server Administration Console.

ORACLE 17-13

Chapter 17
Avoiding Server Lockup with the Correct Number of Connections

A leaked connection is a connection that was not properly returned to the connection pool in
the data source. When you set a value for Inactive Connection Timeout, WebLogic Server
forcibly returns a connection to the data source when there is no activity on a reserved
connection for the number of seconds that you specify. When set to 0 (the default value), this
feature is turned off.

For more details about this option, see JDBC Data Source: Configuration: Connection Pool
page in the Oracle WebLogic Server Administration Console Online Help or see
JDBCConnectionPoolParamsBean in the MBean Reference for Oracle WebLogic Server.

Note:

The actual timeout could exceed the configured value for Inactive Connection
Timeout. The internal data source maintenance thread runs every 5 seconds. When it
reaches the Inactive Connection Timeout (for example 30 seconds), it checks for
inactive connections. To avoid timing out a connection that was reserved just before
the current check or just after the previous check, the server gives an inactive
connection a "second chance." On the next check, if the connection is still inactive,
the server times it out and forcibly returns it to the data source. On average, there
could be a delay of 50% more than the configured value.

Avoiding Server Lockup with the Correct Number of Connections

To avoid receiving an error while attempting to get a connection from a data source in which
there are no available connections, make sure your data source can expand to the size
required to accommodate your peak load of connection requests.

To increase the maximum number of connections available in the data source, increase the
value for Maximum Capacity for the data source on the JDBC Data Source: Configuration:
Connection Pool page in the Oracle WebLogic Server Administration Console Online Help.

Limiting Statement Processing Time with Statement Timeout

With the Statement Timeout option on a JDBC data source, you can limit the amount of time
that a statement takes to execute on a database connection reserved from the data source.

When you set a value for Statement Timeout, WebLogic Server passes the time specified to
the JDBC driver using the java.sql.Statement.setQueryTimeout () method. WebLogic
Server will make the call, and if the driver throws an exception, the value will be ignored. In
some cases, the driver may silently not support the call, or may document limited support.
Oracle recommends that you check the driver documentation to verify the expected behavior.

When Statement Timeout is set to -1, (the default) statements do not timeout.

See the JDBC Data Source: Configuration: Connection Pool page in the Oracle WebLogic
Server Administration Console Online Help for more details about this option.

Using Pinned-To-Thread Property to Increase Performance

To minimize the time it takes for an application to reserve a database connection from a data
source and to eliminate contention between threads for a database connection, you can set the
Pinned To Thread option on the JDBC data source to true.

ORACLE 17-14

Chapter 17
Using Pinned-To-Thread Property to Increase Performance

When Pinned To Thread is enabled, WebLogic Server pins a database connection from the
data source to an execution thread the first time an application uses the thread to reserve a
connection. When the application finishes using the connection and calls connection.close (),
which otherwise returns the connection to the data source, WebLogic Server keeps the
connection with the execute thread and does not return it to the data source. When an
application subsequently requests a connection using the same execute thread, WebLogic
Server provides the connection already reserved by the thread. There is no locking contention
on the data source that occurs when multiple threads attempt to reserve a connection at the
same time and there is no contention for threads that attempt to reserve the same connection
from a limited number of database connections.

Note:

The Pinned To Thread feature does not work with an IdentityPool. Starting with
WebLogic Server Release 12.1.2, configurations with this combination will cause the
datasource to fail to deploy.

See JDBC Data Source: Configuration: Connection Pool in the Oracle WebLogic Server
Administration Console Online Help.

» Changes to Connection Pool Administration Operations When PinnedToThread is Enabled

* Additional Database Resource Costs When PinnedToThread is Enabled

Changes to Connection Pool Administration Operations When
PinnedToThread is Enabled

ORACLE

Because the nature of connection pooling behavior is changed when PinnedToThread is
enabled, some connection pool attributes or features behave differently or are disabled to suit
the behavior change:

e Maximum Capacity is ignored. The number of connections in a connection pool equals
the greater of either the initial capacity or the number of connections reserved from the
connection pool.

e Shrinking does not apply to connection pools with PinnedToThread enabled because
connections are never returned to the connection pool. Effectively, they are always
reserved.

* When you Reset a connection pool, the reset connections from the connection pool are
marked as Test Needed. The next time each connection is reserved, WebLogic Server
tests the connection and recreates it if necessary. Connections are not tested
synchronously when you reset the connection pool. This feature requires that Test
Connections on Reserve is enabled and a Test Table Name or query is specified.

Consider the following when using the PinnedToThread feature:

e Ifused with Identity Based Connection Pooling Enabled Setto true, an error is thrown
and the data source will not deploy.

e When used with Use Database Credentials setto true, all connections are owned by the
default user as defined in the JDBC descriptor but the Oracle proxy is set to the user and
password specified on getConnection (user, password). Similarly, with Oracle Proxy set
to true, the user and password are mapped to a database credential and the Oracle proxy
is set. This is the same behavior as without PinnedToThread.

17-15

Chapter 17
Using Unwrapped Data Type Objects

« Connection labeling is not supported when using PinnedToThread and an exception is
thrown when trying to get a connection with label properties.

* When using Multi Data Source (MDS), connections are maintained by each member data
source as they are selected by the MDS. For example, with Algorithm Type of Failover,
connections are initially be maintained only for the primary member of MDS. If a failover
occurs, then connections are maintained for the next member of the MDS. When used with
the Algorithm Type of Load-Balancing, connections are maintained for each member of
the MDS.

e When using Active GridLink, Affinity and Runtime Load Balancing continue to work as
before with regard to choosing an instance. As many as one connection is stored per
instance per thread (the equivalent of setting OnePinnedConnectionOnly=true but on a per
instance basis). Gravitation is not supported (no migration of connections to lightly used
nodes).

Additional Database Resource Costs When PinnedToThread is Enabled

When PinnedToThread is enabled, the maximum capacity of the connection pool (maximum
number of database connections created in the connection pool) becomes the number of
execute threads used to request a connection multiplied by the number of concurrent
connections each thread reserves. This may exceed the Maximum Capacity specified for the
connection pool. You may need to consider this larger number of connections in your system
design and ensure that your database allows for additional associated resources, such as
open cursors.

Also note that connections are never returned to the connection pool, which means that the
connection pool can never shrink to reduce the number of connections and associated
resources in use. You can minimize this cost by setting an additional driver parameter
onePinnedConnectionOnly. When onePinnedConnectionOnly=true, only the first connection
requested is pinned to the thread. Any additional connections required by the thread are taken
from and returned to the connection pool as needed. Set onePinnedConnectionOnly using the
Properties attribute, for example:

Properties="onePinnedConnectionOnly=true;user=examples"

If your system can handle the additional resource requirements, Oracle recommends that you
use the PinnedToThread option to increase performance.

If your system cannot handle the additional resource requirements or if you see database
resource errors after enabling PinnedToThread, Oracle recommends not using
PinnedToThread.

Using Unwrapped Data Type Objects

ORACLE

Disabling wrapping allows applications to use native driver objects directly to provide a
significant performance improvement.

Some JDBC objects from a driver that are returned from WebLogic Server are wrapped by
default. Wrapping data source objects provides WebLogic Server the ability to:

e Generate debugging output from all method calls.
« Track connection utilization so that connections can be timed out appropriately.

* Provide transparent automatic transaction enlistment and security authorization.

17-16

Chapter 17
Using Unwrapped Data Type Objects

WebLogic Server provides the ability to disable the wrapping of some objects which provides

the following benefits:

e Although WebLogic Server generates a dynamic proxy for vendor methods that implement
an interface to show through the wrapper, some data types do not implement an interface.
For example, Oracle data types Array, Blob, Clob, NClob, Ref, SQLXML, and Struct are
classes that do not implement interfaces. Disabling wrapping allows applications to use

native driver objects directly.

Note:

WebLogic Server.

Oracle recommends not using these concrete classes and instead using
standard SQL types or corresponding Oracle interfaces. See Using API
Extensions for Oracle JDBC Types in Developing JDBC Applications for Oracle

« Eliminating wrapping overhead can provide a significant performance improvement.

When wrapping is disabled (the wrap-types element is false), the following data types are not

wrapped:

* Array

e Blob

* Clob

* NClob

* Ref

+ SQLXML
e Struct

* ParameterMetaData
— No connection testing performed
* ResultSetMetaData
— No connection testing performed
— No result set testing performed

— No JDBC MT profiling performed

e How to Disable Wrapping

How to Disable Wrapping

You can use the WebLogic Server Administration Console and WLST to disable data type

wrapping.
» Disable Wrapping using the Administration Console

* Disable Wrapping using WLST

Disable Wrapping using the Administration Console

ORACLE

To disable wrapping of JDBC data type objects:

17-17

Chapter 17
Tuning Maintenance Timers

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

In the Domain Structure tree, expand Services, then select Data Sources.

On the Summary of Data Sources page, click the data source name.

Select the Configuration: Connection Pool tab.

Scroll down and click Advanced to show the advanced connection pool options.
In Wrap Data Types, deselect the checkbox to disable wrapping.

Click Save.

To activate these changes, in the Change Center of the WebLogic Server Administration
Console, click Activate Changes.

® N o g M w DN

This change does not take effect immediately—it requires that the data source be
redeployed or the server be restarted.

Disable Wrapping using WLST

The following is a WLST code snippet to disable data type wrapping:

jdbcSR = create (dsname, "JDBCSystemResource") ;
theJDBCResource = jdbcSR.getJDBCResource () ;

poolParams = theJDBCResource.getJDBCConnectionPoolParams () ;
poolParams.setWrapTypes (false);

This change does not take effect immediately—it requires that the data source be redeployed
or the server be restarted.

Tuning Maintenance Timers

ORACLE

Learn about the tunable timer properties
weblogic.jdbc.gravitationShrinkFrequencySeconds
weblogic.jdbc.harvestingFrequencySeconds and
weblogic.jdbc.securityCacheTimeoutSeconds used by WebLogic JDBC.

* weblogic.jdbc.gravitationShrinkFrequencySeconds—Connections may be shut down
periodically on Active GridLink data sources. If the connections allocated to various RAC
instances do not correspond to the Runtime Load Balancing percentages in the FAN load-
balancing advisories, connections to overweight instances are destroyed and new
connections opened. This process occurs every 30 seconds by default. You can tune this
behavior using the weblogic.jdbc.gravitationShrinkFrequencySeconds System property
which specifies the amount of time, in seconds, the system waits before rebalancing
connections. A value less than or equal to 0 disables the rebalancing process.

* weblogic.jdbc.harvestingFrequencySeconds—Connection harvesting releases reserved
connections that are marked harvestable by the application when a data source falls to a
specified number of available connections. This check by default is done every 30
seconds. This system property can be used to change the frequency of harvesting by Data
Source the amount of time, in seconds. If set less than or equal to 0, connection harvesting
is turned off. See Recover Harvested Connections.

e weblogic.jdbc.securityCacheTimeoutSeconds—Performance is impacted when
reserving connections from a connection pool, due to the credentials for the WebLogic
server user being checked for each reserve connection request. To resolve this, checking

17-18

Chapter 17
JDBC Connection Creation Limits

can be controlled by this system property. If less than or equal to zero, the cache is turned
off and user authentication happens each time. If greater than zero, user authentication is
done only once for each user in the specified time period in seconds; the value is then
cached. In situations where pool access restrictions are dynamically altered, the pool re-
authenticates the users once each time after the cache is cleared. The default value is 10
minutes.

JDBC Connection Creation Limits

ORACLE

Some databases place a limit on the rate of JDBC connections that can be created. For
example, 100 connections per second. For large WebLogic Server deployments this rate can
be exceeded during server startup, database rolling restarts, failover events, and so on. Even
with databases that do not enforce a rate limit, many simultaneous JDBC connection requests
can potentially overwhelm the database capacity.

To avoid JDBC driver connection errors, the data source connection property
weblogic.jdbc.maxConcurrentCreateRequests can be used to limit the number of concurrent
connection-create operations. The
weblogic.jdbc.concurrentCreateRequestsTimeoutSeconds property can be used to specify
how long a connection create request waits (60 seconds by default) for a permit to proceed.

17-19

Configuring JDBC Application Modules for
Deployment

Learn how to package and scope a data source for use in enterprise applications and the
details of packaged JDBC modules.

Note:

To learn more about the proprietary mechanism provided by WebLogic Server prior to
the DatasourceDefinition feature introduced in Java EE 6, see Using Java EE
DataSources Resource Definitions in Developing JDBC Applications for Oracle
WebLogic Server.

When you package your enterprise application, you can include JDBC resources in the
application by packaging JDBC modules in the archive and adding references to the JDBC
modules in all applicable descriptor files. When you deploy the application, the JDBC
resources are deployed, too. Depending on how you configure the JDBC modules, the JDBC
data sources deployed with the application will either be restricted for use only by the
containing application (application-scoped modules) or will be available to all applications and
clients (globally-scoped modules).

e Packaging a JDBC Module with an Enterprise Application: Main Steps
Learn about the steps for creating, packaging, and deploying a JDBC module with an
enterprise application.

e Creating Packaged JDBC Modules

¢ Referencing a JDBC Module in Java EE Descriptor Files

* Packaging an Enterprise Application with a JDBC Module
e Deploying an Enterprise Application with a JDBC Module

e Getting a Database Connection from a Packaged JDBC Module

Packaging a JDBC Module with an Enterprise Application: Main

Steps

ORACLE

Learn about the steps for creating, packaging, and deploying a JDBC module with an
enterprise application.

The main steps for creating, packaging, and deploying a JDBC module with an enterprise
application are as follows:

1. Create the module. See Creating Packaged JDBC Modules.

2. Add references to the module in all applicable descriptor files. See Referencing a JDBC
Module in Java EE Descriptor Files.

A-1

Appendix A
Creating Packaged JDBC Modules

3. Package all application modules in an EAR. See Packaging an Enterprise Application with
a JDBC Module.

4. Deploy the application. See Deploying an Enterprise Application with a JDBC Module.

Creating Packaged JDBC Modules

You can create JDBC application modules using any development tool that supports creating
an XML descriptor file.

You then deploy and manage JDBC modules using JSR 88-based tools, such as the
weblogic.Deployer utility, or the WebLogic Server Administration Console.

Note:

You can create a JDBC data source using the WebLogic Server Administration
Console, then copy the module as a template for use in your applications. You must
change the name and jndi-name elements of the module before deploying it with
your application to avoid a naming conflict in the namespace.

Each JDBC module represents a data source. Modules that represent a generic or Active
GridLink data source include all of the configuration parameters for the Generic or Active
GridLink data source. Modules that represent a Multi Data Source include configuration
parameters for the Multi Data Source, including a list of Generic data source modules used by
the Multi Data Source.

e Creating a JDBC Data Source Module Using the Administration Console
e JDBC Packaged Module Requirements

» JDBC Application Module Limitations

* Creating a Generic Data Source Module

* Creating an Active GridLink Data Source Module

e Creating a Multi Data Source Module

* Encrypting Database Passwords in a JDBC Module

* Application Scoping for a Packaged JDBC Module

Creating a JDBC Data Source Module Using the Administration Console

ORACLE

To create a data source module in the WebLogic Server Administration Console that you can
re-use as an application module, follow these steps.

1. Create a data source as described in Creating a JDBC Data Source. The data source
module is created in the config/jdbc subdirectory of the domain directory.

2. Copy the data-source-name.xml file to a subdirectory within your application and rename
the copy to include -jdbc as a suffix, such as new-data-source-name-jdbc.xml.

3. Open the file in an editor and change the following elements:
* name—change the name to a name that is unique within the domain.

* jndi-name—change the jndi-name to a name that you want the enterprise application
to use to lookup the data source in the local application context.

A-2

Appendix A
Creating Packaged JDBC Modules

* scope—optionally, to limit access to the data source to only the containing application,
add a scope element to the jdbc-data-source-params section of the module. For
example, <scope>Application</scope>. See Application Scoping for a Packaged
JDBC Module.

4. Continue with adding references to the descriptor files in the enterprise application. See
Referencing a JDBC Module in Java EE Descriptor Files.

JDBC Packaged Module Requirements

A JDBC module must meet the following criteria:

e Conforms to the jdbc-data-source.xsd schema. The schema is available at http://
www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html.

* Uses a file name that ends in -jdbc.xml.

e Includes a name element that is unique within the WebLogic domain.

Data source modules must also include the following JDBC driver parameters:
e url

e driver-name

* properties, including any properties required by the JDBC driver to create database
connections, such as a user name and password.

Multi Data Source modules must also include the data-source-1ist, which is a list of data
source modules, separated by commas, that the Multi Data Source uses to satisfy database
connection requests from applications.

Note:

All data sources listed in the data-source-1list must have the same XA and
transaction protocol settings.

All other configuration parameters are optional or have a default value that WebLogic Server
uses if a value is not specified. However, to create a useful JDBC module, you will likely need
to specify additional configuration options as required by your applications and your
environment.

JDBC Application Module Limitations

Note the following limitations for JDBC application modules:

* The LoggingLastResource global-transactions-protocol is not permitted for use in JDBC
application modules.

* When deploying an application in production with application-scoped JDBC resources, if
the resource uses EmulateTwoPhaseCommit for the global-transactions-protocol, you
cannot deploy multiple versions of the application at the same time.

Creating a Generic Data Source Module

The main sections within a JDBC data source module are:

ORACLE A3

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html

Appendix A
Creating Packaged JDBC Modules

e jdbc-driver-params—includes entries for the JDBC driver used to create database
connections, including url, driver-name, and individual driver property entries. See the
jdbc-data-source.xsd schema for more valid entries. For an explanation of each element,
see JDBCDriverParamsBean in the MBean Reference for Oracle WebLogic Server.

e jdbc-connection-pool-params—includes entries for connection pool configuration,
including connection testing options, statement cache options, and so forth. This element
also inherits connection-pool-params from the weblogic-javaee.xsd schema, including
initial-capacity, min-capacity, max-capacity, and other options common to pooled
resources. For more information, see the following:

— JDBCConnectionPoolParamsBean in the MBean Reference for Oracle WebLogic
Server

— jdbc-data-source.xsd schema

* jdbc-data-source-params—includes entries for data source behavior options and
transaction processing options, such as jndi-name, row-prefetch-size, and global-
transactions-protocol. See the jdbc-data-source.xsd schema for more valid entries.
For an explanation of each element, see JDBCDataSourceParamsBean in the MBean
Reference for Oracle WebLogic Server.

* jdbc-xa-params—includes entries for XA database connection handling options, such as
keep-xa-conn-till-tx-complete, and xa-transaction-timeout. For an explanation of
each element, see JIDBCXAParamsBean in the MBean Reference for Oracle WebLogic
Server.

Example A-1 shows an example of a JDBC module for a data source with some typical
configuration options.

Example A-1 Sample Generic Data Source Module

<jdbc-data-source xsi:schemalLocation="http://www.bea.com/ns/weblogic/90/domain.xsd"
xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"
xmlns:sec="http://www.bea.com/ns/weblogic/90/security"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:wls="http://www.bea.com/ns/weblogic/90/security/wls">
<name>examples-demoXA-2</name>
<jdbc-driver-params>
<url>jdbc:derby://localhost:1527/examples;create=true</url>
<driver-name>org.apache.derby.jdbc.ClientXADataSource</driver-name>
<properties>
<property>
<name>user</name>
<value>examples</value>
</property>
<property>
<name>DatabaseName</name>
<value>examples</value>
</property>
</properties>
<password-encrypted>{AES}MEK6bPum8M69KRPAFANX3TG/001SWRYu2rzGUwnVo6U=</password-encrypted>
</jdbc-driver-params>
<jdbc-connection-pool-params>
<max-capacity>100</max-capacity>
<connection-reserve-timeout-seconds>25</connection-reserve-timeout-seconds>
<test-table-name>SQL SELECT 1 FROM SYS.SYSTABLES</test-table-name>
</jdbc-connection-pool-params>
<jdbc-data-source-params>
<global-transactions-protocol>TwoPhaseCommit</global-transactions-protocol>
</jdbc-data-source-params>
</jdbc-data-source>

ORACLE

Appendix A
Creating Packaged JDBC Modules

Creating an Active GridLink Data Source Module

Active GridLink data source modules are similar to Generic data source system modules.
Active GridLink data sources include an jdbc-oracle-params section that includes oNs and
FAN.

Creating a Multi Data Source Module

A JDBC Multi Data Source module is much simpler than a Generic data source module. Only
one main section is required: jdbc-data-source-params. The jdbc-data-source-params
element in a Multi Data Source differs in that it contains options for Multi Data Source behavior
options instead of data source behavior options. Only the following parameters in the jdbc-
data-source-params are valid for Multi Data Sources:

* jndi-name (required)

e data-source-list (required)

° scope

* algorithm-type

e connection-pool-failover-callback-handler
e failover-request-if-busy

For an explanation of each element, see JDBCDataSourceParamsBean in the MBean
Reference for Oracle WebLogic Server.

Example A-2 shows an example of a JDBC module for a data source with some typical
configuration options.

Example A-2 Sample JDBC Multi Data Source Module

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source">
<name>examples-demoXA-multi-data-source</name>
<jdbc-data-source-params>
<jndi-name>examples-demoXA -multi-data-source</jndi-name>
<algorithm-type>Load-Balancing</algorithm-type>
<data-source-list>examples-demoXA, examples-demoXA-2</data-source-list>
</jdbc-data-source-params>
</jdbc-data-source>

Encrypting Database Passwords in a JDBC Module

Oracle recommends that you encrypt database passwords in a JDBC module to keep your
data secure. To encrypt a database password, you process the password with the WebLogic
Server encrypt utility, which returns an encrypted equivalent of the password that you include
in the JDBC module as the password-encrypted element. For more details about using the
WebLogic Server encrypt utility, see encrypt in the WLST Command Reference for WebLogic
Server.

* Deploying JDBC Modules to New Domains

Deploying JDBC Modules to New Domains

It it common practice for JIDBC modules to be moved from one domain to another, such as
moving an application from development to production. However, the encryption key generated

ORACLE A

Appendix A
Referencing a JDBC Module in Java EE Descriptor Files

by the WebLogic Server encrypt utility is not transferable to a new domain. When moving a
JDBC module with an encrypted database password, you must do one of the following:

e Override the old encrypted password within a deployment plan that includes a password
that was encrypted specifically for the new domain. See Update a deployment plan in
Oracle WebLogic Server Administration Console Online Help.

e Re-encrypt the passwords for your new domain. See Encrypting Database Passwords in a
JDBC Module.

e If you use the Oracle wallet, you can simply reference the wallet and copy the wallet file to
the new domain. See Creating and Managing Oracle Wallet.

Application Scoping for a Packaged JDBC Module

By default, when you package a JDBC module with an application, the JDBC resource is
globally scoped—that is, the resource is bound to the global JINDI namespace and is available
to all applications and clients. To reserve the resource for use only by the enclosing
application, you must include the <scope>Application</scope> parameter in the jdbc-data-
source-params element in the JDBC module, which binds the resource to the local application
namespace. For example:

<jdbc-data-source-params>
<jndi-name>examples-demoXA-2</jndi-name>
<scope>Application</scope>

</jdbc-data-source-params>

All generic data sources in a multi data source for an application-scoped JDBC module must
also be application scoped.

Referencing a JDBC Module in Java EE Descriptor Files

Learn about referencing a JDBC Module in Java EE Descriptor Files.

When you package a JDBC module with an enterprise application, you must reference the
module in all applicable descriptor files, including among others:

e weblogic-application.xml
* ejb-jar.xzml

* weblogic-ejb-jar.xml

* web.xml

* weblogic.xml

Figure A-1 shows the relationship between entries in various descriptor files for an EJB
application and how they refer to a JDBC module packaged with the application.

ORACLE At

Appendix A

Referencing a JDBC Module in Java EE Descriptor Files

Figure A-1 Relationship Between JDBC Modules and Descriptors in an Enterprise Application

Enterprise Application (myapp.ear)

application.xml weblogic-application.xml

<module> <module>
<ejb> <name>
r———— i —- ejbs/Beanl.jar data-source-1
: </ejb> </name>
| </module> <type>
| JDBC
: </type>
1 <path>
META-INF jdbc/data-source-1-jdbc.xml
: </path>
I </module>
I
I
I
I

\4
ejb-jar.xml

<resource-ref>

</res-ref-name>

<res-type>javax.sql.DataSource

</res-type>

<res-auth>Container</res-auth>
</resource-ref>

EJB
DataSource ds =
(DataSource) ctx.lookup (”java:comp
/env/my-data-source”)

weblogic-ejb-jar.xml

<resource-description>

——> <res-ref-name>my-data-source ————————» <res-ref-name>my-data-source

</res-ref-name>
<jndi-name>ga-database-1
</jndi-name>
</resource-description>

4

data-source-1-jdbc.xml

<jdbc-data-source>
<name>data-source-1</name>
<jdbc-driver-params>

</jdbc-driver-params>
<jdbc-connection-pool-params>

</jdbc-connection-pool-params>
<jdbc-data-source-params>

L——>» <jndi-name>ga-database-1
</jndi-name>
<scope>Application</scope>

</jdbc-data-source-params>
<jdbc-xa-params>

</jdbc-xa-params>
</jdbc-data-source>

* Packaged JDBC Module References in weblogic-application.xml

* Packaged JDBC Module References in Other Descriptors

Packaged JDBC Module References in weblogic-application.xml

When including JDBC modules in an enterprise application, you must list each JDBC module
as a module element of type JDBC in the weblogic-application.xml descriptor file packaged

with the application. For example:

<module>
<name>data-source-1</name>

ORACLE

Appendix A
Packaging an Enterprise Application with a JDBC Module

<type>JDBC</type>
<path>datasources/data-source-1-jdbc.xml</path>

</module>

Packaged JDBC Module References in Other Descriptors

For other application modules in your enterprise application to use the JDBC modules
packaged with your application, you must add the following entries in the descriptor files
packaged with application modules:

In the standard Java EE descriptor files packaged with your application modules, such as
ejb-jar.xml for an EJB, you must add resource-ref-name references to specify the JNDI
name of the data source as used in the application. For example:

<resource-ref>
<res-ref-name>my-data-source</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>

In this example, my-data-source is the data source name as used in the application
module. Your application would look up the data source with the following code:

javax.sql.DataSource ds =
(javax.sql.DataSource) ctx.lookup ("java:comp/env/my-data-source");

In the WebLogic-specific descriptor files, such as weblogic-ejb-jar.xml for an EJB, you must
map each resource-ref-name reference to the jndi-name element of a data source. For
example:

<resource-description>
<res-ref-name>my-data-source</res-ref-name>
<jndi-name>ga-database-1</jndi-name>

</resource-description>

In this example, the resource name (<res-ref-name>my-data-source</res-ref-name>)
from the standard descriptor is mapped to the INDI hame (<jndi-name>ga-database-1</
jndi-name>) of the data source in the JDBC module.

Figure A-1 shows the mapping of the of the data source hame as used in the application
module to the JNDI name of the JDBC data source in the JDBC module.

Note:

For application-scoped data sources, if you do not add these entries to the descriptor
files, your application will be unable to look up the data source to get a database
connection.

Packaging an Enterprise Application with a JDBC Module

Learn about packaging an application with a JDBC module.
See Packaging Applications Using wipackage in Developing Applications for Oracle WebLogic
Server.

ORACLE

A-8

Appendix A
Deploying an Enterprise Application with a JDBC Module

Deploying an Enterprise Application with a JDBC Module

Learn about deploying an enterprise application with a JDBC module.
See Deploying Applications Using wideploy in Developing Applications for Oracle WebLogic
Server.

Note:

When deploying an application in production with application-scoped JDBC
resources, if the resource uses EmulateTwoPhaseCommit for the global-
transactions-protocol, you cannot deploy multiple versions of the application at the
same time.

Getting a Database Connection from a Packaged JDBC Module

ORACLE

To get a connection from JDBC module packaged with an enterprise application, you look up
the data source defined in the JDBC module in the local environment (java:comp/env) or on
the JNDI tree and then request a connection from the data source or multi data source.

For example:

javax.sgl.DataSource ds =
(javax.sql.DataSource) ctx.lookup ("java:comp/env/my-data-source");
java.sqgl.Connection conn = ds.getConnection();

When you are finished using the connection, make sure you close the connection to return it to
the connection pool in the data source:

conn.close();

A-9

Using Multi Data Sources with Oracle RAC

ORACLE

Learn how to configure and use Multi Data Sources on Oracle Real Application Clusters (RAC)

with WebLogic Server. Oracle continues to support Multi Data Sources configurations for
legacy application environments using RAC.

Both Oracle RAC and WebLogic Server are complex systems. To use them together requires

specific configuration on both systems, as well as clustering software and a shared storage
solution. This section describes the configuration required at a high level. For more details
about configuring Oracle RAC, your clustering software, your operating system, and your

storage solution, see the documentation from the respective vendors.

Note:

Oracle recommends using Active GridLink data sources when developing new Oracle
RAC applications and when legacy applications do not use Multi Data Sources. See
Using WebLogic Server with Oracle RAC.

Overview of Oracle RAC

Oracle RAC is a software component you can add to a high-availability solution that
enables users on multiple machines to access a single database with increased
performance. Oracle RAC comprises two or more Oracle database instances running on
two or more clustered machines and accessing a shared storage device via cluster
technology.

Software Requirements
Learn about the software required to use WebLogic Server with Oracle RAC.

JDBC Driver Requirements
To use WebLogic Server with Oracle RAC, your WebLogic generic data sources must use
the Oracle JDBC Thin driver 11g or later to create database connections.

Hardware Requirements
A typical WebLogic Server/Oracle RAC system includes a WebLogic Server cluster, an
Oracle RAC cluster, and hardware for shared storage.

Configuring Multi Data Sources with Oracle RAC

When using Multi Data Sources with Oracle RAC, you must configure your WebLogic
Domain so that it can interact with Oracle RAC instances and so that it performs as
expected.

Using Multi Data Sources with Global Transactions

In this configuration, a Multi Data Source "pins" a transaction to one and only one Oracle
RAC instance. Individual transactions are load balanced with the initial connection request
for the transaction.

Using Multi Data Sources without Global Transactions
Learn about the configurations that use Oracle RAC with Multi Data Sources in an
application that does not require global transactions.

B-1

Appendix B
Overview of Oracle RAC

* Configuring Connections to Services on Oracle RAC Nodes
If you rely on Oracle services in your Oracle RAC cluster for workload management, you
must use Multi Data Sources to connect to those services instead of you using a Service
ID (SID). A WebLogic Server Generic data source can be configured to connect only to a
specific service on a specific Oracle RAC node, providing both workload management and
load balancing.

e Using SCAN Addresses with Multi Data Sources
Use Single Client Access Name (SCAN) for providing connection to time listener failover
and load-balancing.

e XA Considerations and Limitations when using Multi Data Sources with Oracle RAC
Learn about the certain requirements and limitations you need to consider when using XA
(Global transactions) withMulti Data Sources on Oracle RAC.

« JDBC Store Recovery with Oracle RAC
If you are using a JDBC Store with Oracle RAC, there are features and limitations to
consider that concern Oracle RAC node failover.

Overview of Oracle RAC

Oracle RAC is a software component you can add to a high-availability solution that enables
users on multiple machines to access a single database with increased performance. Oracle
RAC comprises two or more Oracle database instances running on two or more clustered
machines and accessing a shared storage device via cluster technology.

To support this architecture, the machines that host the database instances are linked by a
high-speed interconnect to form the cluster. The interconnect is a physical network used as a
means of communication between the nodes of the cluster. Cluster functionality is provided by
the operating system, Oracle Automatic Storage Management (ASM), or compatible third party
clustering software. Figure B-1 shows an Oracle RAC configuration.

Figure B-1 Oracle Real Application Clusters Configuration

[l [l

RAC Node 1 RAC Node 2

Interconnect

§

Shared Storage

Oracle RAC offers features in the following areas:

e Oracle RAC Scalability with WebLogic Server Multi Data Sources

ORACLE 5

Appendix B
Software Requirements

e Oracle RAC Availability with WebLogic Server Multi Data Sources
e Oracle RAC Load Balancing with WebLogic Server Multi Data Sources

Oracle RAC Scalability with WebLogic Server Multi Data Sources

An Oracle RAC installation appears like a single standard Oracle database and is maintained
using the same tools and practices. All the nodes in the cluster execute transactions against
the same database and Oracle RAC coordinates each node's access to the shared data to
maintain consistency and ensure integrity. You can add nodes to the cluster easily and there is
no need to partition data when you add them. This means that you can horizontally scale the
database tier as usage and demand grows by adding Oracle RAC nodes, storage, or both.

As the number of nodes in an Oracle RAC increases, you scale the number of generic data
sources by the number of nodes added to the Oracle RAC. This requires a complex
configuration (requiring n+1 data sources where n is the number of Generic data sources plus
a Multi Data Source) that requires administrative intervention when the Oracle RAC topology
changes.

Oracle RAC Availability with WebLogic Server Multi Data Sources

A Multi Data Source provides an ordered list of generic data sources to use to satisfy
connection requests. Normally, every connection request to this kind of Multi Data Source is
served by the first Generic data source in the list. If a database connection test fails and the
connection cannot be replaced, or if the Generic data sources is suspended, a connection is
sought sequentially from the next Generic data source on the list. See Failover and Multi Data
Source-Managed Failover and Load Balancing.

Oracle RAC Load Balancing with WebLogic Server Multi Data Sources

Multi Data Sources provide load balancing for XA and non-XA environments. TheGeneric data
sources that form a multi data sourceMulti Data Source are accessed using a round-robin
scheme. When switching connections, WebLogic Server selects a connection from the next
Generic data source in the order listed.

Software Requirements

Learn about the software required to use WebLogic Server with Oracle RAC.

To use WebLogic Server with Oracle RAC, you must install the following software on each
Oracle RAC node:

e Operating system patches required to support Oracle RAC. See the release notes from
Oracle for details.

e Oracle 11g database management system

« Clustering software for your operating system. See the Oracle documentation for
supported clustering software and cluster configurations.

* Shared storage software, such as Oracle Automated Storage Management (ASM). Note
that some clustering software includes a file storage solution, in which case additional
shared storage software is not required.

ORACLE 53

Appendix B
JDBC Driver Requirements

Note:

See Supported Configurations in What's New in Oracle WebLogic Server for the
latest WebLogic Server hardware platform and operating system support, and for
the Oracle RAC versions supported by WebLogic Server versions and service
packs. See the Oracle documentation for hardware and software requirements
required for running the Oracle RAC software.

JDBC Driver Requirements

To use WebLogic Server with Oracle RAC, your WebLogic generic data sources must use the
Oracle JDBC Thin driver 119 or later to create database connections.

Hardware Requirements

A typical WebLogic Server/Oracle RAC system includes a WebLogic Server cluster, an Oracle
RAC cluster, and hardware for shared storage.

e WebLogic Server Cluster
e Oracle RAC Cluster
e Shared Storage

WebLogic Server Cluster

The WebLogic Server cluster can be configured in many ways and with various hardware
options. See Administering Clusters for Oracle WebLogic Server for more details about
configuring a WebLogic Server cluster.

Oracle RAC Cluster

For the latest hardware requirements for Oracle RAC, see the Oracle RAC documentation.
However, to use Oracle RAC with WebLogic Server, you must run Oracle RAC instances on
robust, production-quality hardware. The Oracle RAC configuration must deliver database
processing performance appropriate for reasonably-anticipated application load requirements.
Unusual database response delays can lead to unexpected behavior during database failover
scenarios.

Shared Storage

In an Oracle RAC configuration, all data files, control files, and parameter files are shared for
use by all Oracle RAC instances. An HA storage solution that uses one of the following
architectures is recommended:

« Direct Attached Storage (DAS), such as a dual ported disk array or a Storage Area
Network (SAN)

* Network Attached Storage (NAS)

For a complete list of supported storage solutions, see your Oracle documentation.

ORACLE 54

Appendix B
Configuring Multi Data Sources with Oracle RAC

Configuring Multi Data Sources with Oracle RAC

When using Multi Data Sources with Oracle RAC, you must configure your WebLogic Domain
so that it can interact with Oracle RAC instances and so that it performs as expected.

Choosing a Multi Data Source Configuration for Use with Oracle RAC
Configuring Multi Data Sources for use with Oracle RAC

Configuration Considerations for Failover

Configuring the Listener Process for Each Oracle RAC Instance

Configuring Multi Data Sources When Remote Listeners are Enabled or Disabled

Additional Configuration Considerations

Choosing a Multi Data Source Configuration for Use with Oracle RAC

WebLogic Server Multi Data Sources support several configuration options for using Oracle
RAC:

To connect to multiple Oracle RAC instances when using Global transactions (XA), see
Using Multi Data Sources with Global Transactions.

To connect to multiple Oracle RAC instances when not using XA, see Using Multi Data
Sources without Global Transactions.

You can also configure Multi Data Sources to connect to specific services that are running
on Oracle RAC nodes. Both XA and non-XA drivers are supported, see Configuring
Connections to Services on Oracle RAC Nodes.

Configuring Multi Data Sources for use with Oracle RAC

To connect WebLogic Server to multiple Oracle RAC nodes using Multi Data Sources, first
configure a Generic data source for each Oracle RAC instance in your Oracle RAC cluster with
the Oracle Thin driver. Then configure a Multi Data Source, using either the algorithm for load
balancing or the algorithm for failover, and add generic data sources to it.

ORACLE

Figure B-2 shows a typical Multi Data Source configuration.

B-5

Appendix B
Configuring Multi Data Sources with Oracle RAC

Figure B-2 Multi Data Source Configuration

= =
=(> SI>
WebLogic Server |=|— WebLogic Server |=|—
Multi Data Source Multi Data Source
Data Source Data Source Data Source Data Source

— |1 1|~

RAC Node 1 RAC Node 2

Interconnect

H

Shared Storage

You can use the WebLogic Server Administration Console or any other means that you prefer
to configure your domain, such as the WebLogic Scripting Tool (WLST) or a JMX program. For
information about configuring a WebLogic JDBC Multi Data Source see Configuring JDBC
Multi Data Sources. For information on how to configure the Generic data sources in a Multi
Data Source to connect to services running on Oracle RAC nodes, see Configuring
Connections to Services on Oracle RAC Nodes.

To use a database connection in this configuration, your applications look up one v on the JNDI
tree and then request a connection. The Multi Data Source determines which generic data
source to use to satisfy the connection request based on the algorithm type specified in the
configuration (that is, failover or load balancing).

e Attributes of a Multi Data Source

Attributes of a Multi Data Source

ORACLE

The multi data source may have the following attributes, depending on the role of Oracle RAC
in your system—Ioad balancing or failover:

e AlgorithmType="Load-Balancing" Or AlgorithmType="Failover"

With the Load-Balancing option, connection requests are distributed among available
generic data sources; with the Failover option, connection requests are served by the first
available pool in the list. When a generic data source becomes defunct, connection
requests are served by the next generic data source in the list.

B-6

Appendix B
Configuring Multi Data Sources with Oracle RAC

e FailoverRequestIfBusy="true"

With the Failover algorithm, this attribute enables failover when all connections in a generic
data source are in use.

e TestFrequencySeconds="120"

This attribute controls the frequency at which WebLogic Server checks the health of
generic data sources previously marked as unhealthy to see if connections can be
recreated and if the generic data source can be re-enabled. For more details see
Configuring JDBC Multi Data Sources.

For fast failover of Oracle RAC nodes, set this value to a smaller interval, for example, 10
(seconds).

Configuration Considerations for Failover

Consider the following information when configuring for failover.

e Multi Data Source-Managed Failover and Load Balancing
e Delays During Failover

e Failure Handling Walkthrough for Global Transactions

Multi Data Source-Managed Failover and Load Balancing

Multi Data Sources offer failover and load balancing for global transactions. For a description of
Multi Data Source failover features, see Multi Data Source Failover Enhancements.

With this configuration, pictured in Figure B-2, you get:

e Fast failover controlled by the Multi Data Source
e Automatic failback by the WebLogic Server health monitor

The Multi Data Source handles failover for database connections when an Oracle RAC node
becomes unavailable. When WebLogic Server tests a connection and the connection fails, it
attempts to recreate the connection. If that attempt fails, the server disables the Generic data
source and routes connection requests to other Generic data sources (which correspond to
other Oracle RAC nodes) in the Multi Data Source. WebLogic Server periodically tries to
recreate the database connections in the disabled Generic data source. When WebLogic
Server is successful in recreating the connections, it next re-enables the Generic data source
and begins routing connection requests to the Generic data source again. Because of the
connection request routing and automatic health checking features, there is minimal delay in
satisfying connection requests after a failure.

Delays During Failover

ORACLE

Occasionally, when one Oracle RAC node fails over to another, there may be a delay before
the data associated with a transaction branch in progress on the now failed node is available
throughout the cluster. This prevents incomplete transactions from being properly completed,
which could further result in data locking in the database. To protect against the potential
consequences of such a delay, WebLogic Server provides two configuration attributes that
enable XA call retry for Oracle RAC: xARetryDurationSeconds and XARetryIntervalSeconds.

When a server acting as Coordinator returns to service, it takes the following actions during
recovery:

e The Transaction Manager reads the transaction checkpoints and the resource checkpoints
from the TLog.

B-7

Appendix B
Configuring Multi Data Sources with Oracle RAC

* The transactions read from the TLOG (transaction checkpoints) become active and the
state is set to committing. The TM tries to commit these transactions just as it does for
other runtime transactions. If the commit fails a retry-commit process takes place until
AbandonTimeoutSeconds after a grace period has expired.

e The TM calls xa.recover on resources read from the TLOG (resource checkpoints) to
obtain a list of pending transactions. If the xa.recover call fails, the TM retries the
xa.recover call on the resource every XARetryIntervalSeconds for a period of
XARetryDurationSeconds.

Use the following formula to determine the value for XARetryDurationSeconds:

XARetryDurationSeconds = (longest transaction timeout for transactions that use connections
from the generic data source) + (delay before XIDs are available on all Oracle RAC nodes,
typically less than 5 minutes)

For example, if your application sets the longest transaction timeout as 180 seconds, you
should set xaRetryDurationSeconds to 180 seconds + 300 seconds, for a total of 480
seconds.

Note:

It is generally better to set XARetryDurationSeconds higher than minimally necessary
to make sure that all transactions are completed properly. Setting the value higher
than minimally required should not affect application performance during normal
operations. The additional processing only affects transactions that have been
prepared but have failed to complete.

You can also optionally set a value for xARetryIntervalSeconds. This value determines the
time between XA retry calls. By default, the value is 60 seconds. Decreasing the value will
decrease the amount of time between XA retry attempts. The default value should suffice in
most cases.

To enable xARetryDurationSeconds and XARetryIntervalSeconds from the WebLogic Server
Administration Console, use the following steps:

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

In the Domain Structure tree, expand Services > JDBC, then select Data Sources.
On the Summary of Data Sources page, click the data source name.
Select the Configuration: Connection Pool tab.

Scroll down and click Advanced to show the advanced connection pool options.

@ g w Nbd

Update XA Retry Duration and XA Retry Interval.
7. Click Save.

Optionally, you can use WebLogic Scripting Tool (WLST) or a JMX program.

Failure Handling Walkthrough for Global Transactions

What happens to in-flight transactions to a database node if that node fails? When the primary
Oracle RAC node fails? Does WebLogic Server support transparent failover? To answer these
and other questions about how WebLogic Server handles failures, let's walk through the

ORACLE -

Appendix B
Configuring Multi Data Sources with Oracle RAC

transaction processing steps and describe how a failure would be handled at each stage along
the way.

The first stage at which a failure may occur is before the application calls for the transaction to
be committed. If a database or Oracle RAC node fails at this stage, the application receives an
exception and must get a new connection and make a new attempt at processing the
transaction. WebLogic Server does not support transparent failover.

If a failure occurs after the application has called for the transaction to be committed, the
handling of any in-flight transaction depends upon whether the PREPARE operation is complete.
If the PREPARE operation is not complete, the transaction manager rolls back the transaction
and sends the application an exception for the failed transaction. If the PREPARE operation is
complete, the transaction manager attempts to drive the in-flight transaction to completion
using another node.

If a failure occurs during the COMMIT operation, the transaction manager attempts to retry the
COMMIT operation several times. Note that the connection is blocked during these attempts. If
the COMMIT operation is not successful during the first set of retry attempts, the application
receives an exception. The transaction manager then continues to retry the COMMIT operation
periodically until it is successful; if the transaction cannot be completed successfully within the
abandon time period, the transaction is driven to completion heuristically.

Configuring the Listener Process for Each Oracle RAC Instance

ORACLE

For Oracle RAC, the listener process establishes a communication pathway between a user
process and an Oracle instance. When you use Oracle RAC with WebLogic Server, the user
process is typically a data source.

When a multi data source is created, it attempts to create a pool of database connections for
applications to borrow. If a pooled database connection becomes inoperative or if the generic
data source is configured to grow in capacity, the data source attempts to create additional
database connections up to the maximum specified in the configuration file. In all of these
instances, the Oracle listener process handles the connection request on the Oracle RAC
instance.

Figure B-3 shows the Oracle listener process functionality.

B-9

Appendix B
Configuring Multi Data Sources with Oracle RAC

Figure B-3 Oracle Listener Process Functionality

WebLogic Server
Data
Source
o
Connection
Request Connection
managed for Oracle by
the connection process
RAC Node 1
4
Listener _@&». Spawns Connection
Proccess Connection Proccess

To enable this functionality, you have two options:

e Use local listeners. Configure the listener process for each Oracle RAC instance in the
Oracle cluster. WebLogic Server requires that you configure a local listener on each Oracle
RAC instance. Each database instance should be configured to register only with its local
listener.

Oracle instances can be configured to register with the listener statically in the
listener.ora file or registered dynamically using the instance initialization parameter
local listener, or both. Oracle recommends using dynamic registration.

A listener can start either a shared dispatcher process or a dedicated process. When using
with WebLogic Server, Oracle recommends using dedicated processes.

* Use remote listeners. WLS requires that you specify both the SERVICE_NAME and the
INSTANCE_NAME in the JDBC URL for the generic data sources in the multi data source.
See Configuring Multi Data Sources When Remote Listeners are Enabled or Disabled.

Configuring Multi Data Sources When Remote Listeners are Enabled or
Disabled

If the server-side load balancing feature has been enabled for the Oracle RAC backend (using
remote_listeners), the JDBC URL that you use in the generic data sources of a multi data
source configuration should include the INSTANCE_NAME. For example, the URL can be
specified in the following format:

jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS=(PROTOCOL=TCP) (HOST=host-vip) (PORT=1521))
(CONNECT DATA=(SERVICE NAME=dbservice) (INSTANCE NAME=instl)))

ORACLE 510

Appendix B
Configuring Multi Data Sources with Oracle RAC

If specifying the INSTANCE_NAME in the URL is not possible, remote listeners must be
disabled. To disable remote listeners, delete any listed remote listeners in spfile.ora on each
Oracle RAC node. For example:

*.remote listener="

In this case, the recommended URL that you use in the generic data sources of a multi data
source configuration is:

jdbc:oracle:thin:@host-vip:port/dbservice

or

jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS=(PROTOCOL=TCP) (HOST=host-vip) (PORT=1521)) (
CONNECT DATA=(SERVICE NAME=dbservice)))

Additional Configuration Considerations

ORACLE

In some deployments of Oracle RAC, you may need to set parameters in addition to the out of
the box configuration of a data source in an Oracle RAC configuration. The additional
parameters are:

e Setoracle.jdbc.ReadTimeout=300000 (300000 milliseconds) for each generic data
source.

The actual value of the ReadTimeout parameter used may differ based on your application
environment.

« If the network is not reliable, it is difficult for a client to detect the frequent disconnections
when the server is abruptly disconnected. By default, a client running on Linux takes 7200
seconds (2 hours) to sense the abrupt disconnections. This value is equal to the value of
the tcp keepalive time property. To configure the application to detect the disconnections
faster, set the value of the tcp keepalive time, tcp keepalive interval, and
tcp keepalive probes properties to a lower value at the operating system level.

Note:

Setting a low value for the tcp keepalive interval property leads to frequent
probe packets on the network, which can make the system slower. Set the value
of this property based on system requirements of your application environment.

For example, set tcp keepalive time=600 for a system running a WebLogic Server
managed server.

e Specify the ENABLE=BROKEN parameter in the DESCRIPTION clause in the connection
descriptor. For example:

jdbc:oracle:thin:@ (DESCRIPTION= (enable=broken)

(ADDRESS LIST=(ADDRESS=(PROTOCOL=TCP) (HOST=nodel-vip.mycompany.com)
(PORT=1521))) (CONNECT DATA=(SERVICE NAME=orcl.country.myCorp.com)
(INSTANCE NAME=orcll))

The following code snippet provides an example generic data source configuration:

<url>jdbc:oracle:thin:@ (DESCRIPTION=(enable=broken) (ADDRESS LIST=(ADDRESS=(PROTOCOL=TCP)
(HOST=nodel-vip.country.myCorp.com) (PORT=1521)))
(CONNECT_DATA:(SERVICE_NAME:orcl.country.myCorp.com)(INSTANCE_NAME:orcll)))</url>
<driver-name>oracle.jdbc.xa.client.OracleXADataSource</driver-name>

B-11

Appendix B
Using Multi Data Sources with Global Transactions

<properties>

<property>
<name>oracle.jdbc.ReadTimeout</name>
<value>300000</value>

</property>

<property>

<name>user</name>
<value>jmsuser</value>

</property>

<property>

<name>oracle.net.CONNECT TIMEOUT</name>
<value>10000</value>

</property>

</properties>

Using Multi Data Sources with Global Transactions

In this configuration, a Multi Data Source "pins" a transaction to one and only one Oracle RAC
instance. Individual transactions are load balanced with the initial connection request for the
transaction.

Failover is handled at the Multi Data Source level when a Oracle RAC instance becomes
unavailable. If there is a failure on a Oracle RAC instance before PREPARE, the transaction is
lost. If there is a failure after PREPARE, the transaction is failed over to another instance.

* Rules for Data Sources within a Multi Data Source Using Global Transactions
* Required Attributes of Data Sources within a Multi Data Source Using Global Transactions

e Sample Configuration Code

Rules for Data Sources within a Multi Data Source Using Global
Transactions

ORACLE

The following rules apply to the XA data sources within a Multi Data Source:

« All the data sources must be homogeneous. In other words, either all of them must use an
XA driver or none of them can use an XA driver.

* If you choose to specify them, all XA-related attributes must be set to the same values for
each generic data source. The attributes include the following:

— XARetryDurationSeconds

— SupportsLocalTransaction

— KeepXAConnTillTxComplete

— NeedTxCtxOnClose

— XAEndOnlyOnce

— NewXAConnForCommit

— RollbackLocalTxUponConnClose
— RecoverOnlyOnce

— KeepLogicalConnOpenOnRelease

B-12

Appendix B
Using Multi Data Sources with Global Transactions

< Note:

If you are not using Active GridLink data sources, Oracle recommends the
use of Multi Data Sources for failover and load balancing across Oracle RAC
instances for XA and non-XA environments. For more information on using
Multi Data Sources in non-XA environments, see Using Multi Data Sources
without Global Transactions.

Required Attributes of Data Sources within a Multi Data Source Using
Global Transactions

Each generic data source within the multi data source should have the following attributes:

Oracle JDBC Thin driver. For example:

<url>jdbc:oracle:thin:@host1:1521:SNRACI</url>
<driver-name>oracle.jdbc.xa.client.OracleXADataSource</driver-name>

KeepXAConnTillTxComplete="true"

— Forces the generic data source to reserve a physical database connection and provide
the same connection to an application throughout transaction processing until the
distributed transaction is complete.

— Required for proper transaction processing with Oracle RAC.
XARetryDurationSeconds="300"

— Enables the WebLogic Server transaction manager to retry XA recover, commit, and
rollback calls for the specified amount of time.

TestConnectionsOnReserve="true"

— Enables testing of a database connection when an application reserves a connection
from the generic data source. See Test Connections on Reserve to Enable Fail-Over
for more details about this attribute.

— Required to enable failover to another Oracle RAC node.

TestTableName="name of small table" The name of the table used to test a physical
database connection. For more details about this attribute, see Connection Testing Options
for a Data Source.

Sample Configuration Code

Sample configuration code for a multi data source and two associated generic data sources is
shown below.

ORACLE

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"

xmlns:sec="http://xmlns.oracle.com/weblogic/security"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:wls="http://xmlns.oracle.com/weblogic"
xsi:schemalocation="http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd">
<name>oracleRACXAPool</name>

<jdbc-driver-params>

<url>jdbc:oracle:thin:@host1:1521:SNRACI</url>
<driver-name>oracle.jdbc.xa.client.OracleXADataSource</driver-name>
<properties>

<property>

B-13

ORACLE

Appendix B
Using Multi Data Sources with Global Transactions

<name>user</name>
<value>wlsqa</value>
</property>
</properties>
<password-encrypted>{3DES}aP/xScCS8ul=</password-encrypted>
</jdbc-driver-params>
<jdbc-connection-pool-params>
<test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
<profile-type>0</profile-type>
</jdbc-connection-pool-params>
<jdbc-data-source-params>
<jndi-name>oracleRACXAJndiName</jndi-name>
<global-transactions-protocol>TwoPhaseCommit
</global-transactions-protocol>
</jdbc-data-source-params>
<jdbc-xa-params>
<keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
<xa-end-only-once>true</xa-end-only-once>
<xa-set-transaction-timeout>true</xa-set-transaction-timeout>
<xa-transaction-timeout>120</xa-transaction-timeout>
<xa-retry-duration-seconds>300</xa-retry-duration-seconds>
</jdbc-xa-params>
</jdbc-data-source>

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"
xmlns:sec="http://xmlns.oracle.com/weblogic/security"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:wls="http://xmlns.oracle.com/weblogic"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd">
<name>oracleRACXAPool2</name>
<jdbc-driver-params>
<url>jdbc:oracle:thin:@host2:1521:SNRAC2</url>
<driver-name>oracle.jdbc.xa.client.OracleXADataSource</driver-name>
<properties>
<property>
<name>user</name>
<value>wlsqa</value>
</property>
</properties>
<password-encrypted>{3DES}aP/xScCS8ul=</password-encrypted>
</jdbc-driver-params>
<jdbc-connection-pool-params>
<test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
<profile-type>0</profile-type>
</jdbc-connection-pool-params>
<jdbc-data-source-params>
<jndi-name>oracleRACXAJndiName2</jndi-name>
<global-transactions-protocol>TwoPhaseCommit
</global-transactions-protocol>
</jdbc-data-source-params>
<jdbc-xa-params>
<keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
<xa-end-only-once>true</xa-end-only-once>
<xa-set-transaction-timeout>true</xa-set-transaction-timeout>
<xa-transaction-timeout>120</xa-transaction-timeout>
<xa-retry-duration-seconds>300</xa-retry-duration-seconds>
</jdbc-xa-params>
</jdbc-data-source>

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"

xmlns:sec="http://xmlns.oracle.com/weblogic/security"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

B-14

Appendix B
Using Multi Data Sources without Global Transactions

xmlns:wls="http://xmlns.oracle.com/weblogic"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd">
<name>oracleRACXAMDS</name>
<jdbc-data-source-params>
<jndi-name>oracleRACMDSJndiName</jndi-name>
<algorithm-type>Load-Balancing</algorithm-type>
<data-source-list>oracleRACXAPool, oracleRACXAPool2</data-source-list>
</jdbc-data-source-params>
</jdbc-data-source>

Using Multi Data Sources without Global Transactions

Learn about the configurations that use Oracle RAC with Multi Data Sources in an application
that does not require global transactions.

e Attributes of Data Sources within a Multi Data Source Not Using Global Transactions

e Sample Configuration Code

Attributes of Data Sources within a Multi Data Source Not Using Global
Transactions

Generic data sources must have the following attributes:

e Oracle JDBC Thin driver. For example:

<url>jdbc:oracle:thin:@host1:1521:SNRACI</url>
<driver-name>oracle.jdbc.OracleDriver</driver-name>

. TestConnectionsOnReserve="true"

— Enables testing of a database connection when an application reserves a connection
from the Generic data source. Test Connections on Reserve to Enable Fail-Over for
more details about this attribute.

— Required to enable failover and connection request routing within a Multi Data Source
(effectively, failover to another Oracle RAC node).

. TestTableName="name of small table"

— The name of the table used to test a physical database connection. For more details
about this attribute, see Connection Testing Options for a Data Source.

Sample Configuration Code

Sample configuration code for a WebLogic JDBC multi data source and associated generic
data sources is shown below.

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"

xmlns:sec="http://xmlns.oracle.com/weblogic/security"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:wls="http://xmlns.oracle.com/weblogic"
xsi:schemalocation="http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd">
<name>jdbcPool</name>
<jdbc-driver-params>

<url>jdbc:oracle:thin:@hostl:1521:snracl</url>

<driver-name>oracle.jdbc.OracleDriver</driver-name>

<properties>

<property>
<name>user</name>

ORACLE 515

ORACLE

Appendix B
Using Multi Data Sources without Global Transactions

<value>wlsqa</value>
</property>
</properties>
<password-encrypted>{3DES}aP/xScCS8ul=</password-encrypted>
</jdbc-driver-params>
<jdbc-connection-pool-params>
<test-connections-on-reserve>true</test-connections-on-reserve>
<test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
</jdbc-connection-pool-params>
<jdbc-data-source-params>
<jndi-name>jdbcDataSource</jndi-name>
</jdbc-data-source-params>
</jdbc-data-source>

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"
xmlns:sec="http://xmlns.oracle.com/weblogic/security"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:wls="http://xmlns.oracle.com/weblogic"
xsi:schemalLocation="http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd">
<name>jdbcPool2</name>
<jdbc-driver-params>
<url>jdbc:oracle:thin:@host2:1521:SNRAC2</url>
<driver-name>oracle.jdbc.OracleDriver</driver—-name>
<properties>
<property>
<name>user</name>
<value>wlsqga</value>
</property>
</properties>
<password-encrypted>{3DES}aP/xScCS8ul=</password-encrypted>
</jdbc-driver-params>
<jdbc-connection-pool-params>
<test-connections-on-reserve>true</test-connections-on-reserve>
<test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
</jdbc-connection-pool-params>
<jdbc-data-source-params>
<jndi-name>jdbcDataSource2</jndi-name>
<global-transactions-protocol>OnePhaseCommit
</global-transactions-protocol>
</jdbc-data-source-params>
</jdbc-data-source>

<jdbc-data-source xmlns="http://xmlns.oracle.com/weblogic/jdbc-data-source"
xmlns:sec="http://xmlns.oracle.com/weblogic/security"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:wls="http://xmlns.oracle.com/weblogic"
xsi:schemalLocation="http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd">
<name>jdbcNonXAMultiPool</name>
<jdbc-data-source-params>
<jndi-name>jdbcDataSource</jndi-name>
<algorithm-type>Failover</algorithm-type>
<data-source-list>jdbcPool, jdbcPool2</data-source-list>
<failover-request-if-busy>true</failover-request-if-busy>
</jdbc-data-source-params>
</jdbc-data-source>

Note:

Line breaks added for readability.

B-16

Appendix B
Configuring Connections to Services on Oracle RAC Nodes

Configuring Connections to Services on Oracle RAC Nodes

If you rely on Oracle services in your Oracle RAC cluster for workload management, you must
use Multi Data Sources to connect to those services instead of you using a Service ID (SID). A
WebLogic Server Generic data source can be configured to connect only to a specific service
on a specific Oracle RAC node, providing both workload management and load balancing.

In general, to connect to Oracle RAC services, you need to:

* Create a Multi Data Source for each service to which you want to connect.

* Within each Multi Data Source, create one Generic data source for each Oracle RAC node
in the cluster on which the service will be configured, whether or not the service will be
actively running on each node.

Configuring a Data Source to Connect to a Service, describes special considerations for
configuring these data sources. Service Connection Configurations, shows example
configurations for either load balancing or workload management.

e Configuring a Data Source to Connect to a Service
* Service Connection Configurations

e Connection Pool Capacity Planning

Configuring a Data Source to Connect to a Service

ORACLE

You configure a Generic data source to connect to a service running on an Oracle RAC node in
the same way as you configure any Generic data source (using WLST, the WebLogic Server
Administration Console, or the Configuration Wizard), with the following exceptions:

e initial-capacity="0"

This prevents pool creation failure for inactive pools at WLS startup, and enables WLS to
create the Generic data source even if it can't connect to the service on the node. Without
setting this option to 0, Generic data source creation will fail and the server may fail to boot
normally.

In the WebLogic Server Administration Console, edit the generic data source after creating
it, and set Initial Capacity to 0.

e Oracle JDBC Thin (or Thin XA) driver. For example:
For non-XA:

driver-name="oracle.jdbc.OracleDriver"
url="jdbc:oracle:thin:@ (DESCRIPTION=(ADDRESS LIST=(ADDRESS=(PROTOCOL=TCP) (HOST=RACI)
(PORT=1521))) (CONNECT_DZ—\TZ—\: (SERVICE_NAME:Service_l) (INSTZ—\NCE_NZ—\ME:DB_02))"

If configuring via the WebLogic Server Administration Console, select Oracles's Driver
(Thin) for RAC Service-Instance connections from the Database Driver drop-down and
specify the service in the Service Name field.

For XA:

driver-name="oracle.jdbc.xa.client.OracleXADataSource"
url="jdbc:oracle:thin:@ (DESCRIPTION=(ADDRESS LIST=(ADDRESS=(PROTOCOL=TCP) (HOST=RACI)
(PORT=1521))) (CONNECT DATA=(SERVICE NAME=Servicel) (INSTANCE NAME=DBasel)))"

B-17

Appendix B
Configuring Connections to Services on Oracle RAC Nodes

If configuring via the WebLogic Server Administration Console, select Oracle's Driver
(Thin XA) for RAC Service-Instance connections from the Database Driver drop-down
and specify the service in the Service Name field.

Note:

The SERVICE NAME must be the same for all Generic data sources in a given Multi
Data Source.

Specify a different H0ST NaAME and/or port for each Generic data source in a given
Multi Data Source.

* When specifying max-capacity (Maximum Capacity in the WebLogic Server
Administration Console) for the connection pool, you need to consider the connection
capacity of each of the Oracle RAC nodes in your configuration, and the total number of
connections from all Generic data sources. See Connection Pool Capacity Planning, for
more information.

Selecting the Appropriate Multi Data Source Algorithm

For service connection scenarios, Oracle recommends that you configure your Multi Data
Source with the Load Balancing algorithm. If the Multi Data Source is configured with the
Load Balancing algorithm, its connection pools are used in a round robin fashion. In this case,
workload is load-balanced across all of the Oracle RAC nodes on which the associated service
is currently active.

If the Multi Data Source is configured with the Failover algorithm, the first Multi Data Source is
used to connect to the service on its associated Oracle RAC node, until a connection attempt
fails for any reason (for example, the Oracle RAC node becomes unavailable or there are no
more connections available in the Multi Data Source). At that point, the second Multi Data
Source is used to connect to the service on its associated Oracle RAC node, and so on. In this
case, the Oracle RAC node to which the first Multi Data Source is connected will experience
more use than the remaining nodes on which the service is running.

Service Connection Configurations

You can design your configuration to provide:

* Workload Management

* Load Balancing

Workload Management

ORACLE

In a workload management configuration, each Multi Data Source has one Generic data
source configured for a given service on each Oracle RAC node, regardless of whether the
service you are connecting to is active or inactive on a given Oracle RAC node. This lets you
quickly start an inactive service on a node and create connections to that service should
another node become unavailable due to unplanned downtime or scheduled maintenance. It
also lets you quickly increase or decrease the available capacity for a given service based on
workload demands.

When you start the service on a node, the associated Generic data source detects that the
service is now active, and the Generic data source will then start making connections to that
node as needed. When you stop a service on a given node, the associated Generic data

B-18

Appendix B
Configuring Connections to Services on Oracle RAC Nodes

source can no longer make connections to that node, and will become inactive until the service
is restarted on that node.

The WLS Generic data source performs connection testing. This lets the Generic data source
adjust to changes in the topology of the Oracle RAC configuration. The Generic data source
performs polling to see if its associated service is active or inactive. The connection test fails if
the service is no longer available on the Oracle RAC node.

Figure B-4 Workload Management using Multi Data Sources

[l

A

> RAC Node 1
WebLogic Server o > Service 1
|
Multi Data Source } Service 2
Data Source —— }
|
‘ []
Data Source } > I I
\ RAC Node 2
Data Source @ — } rTT T > . <
\ Service 1
|
Backup N \ :
Data Source } Service 2
|
Backup L }
Data Source | -] v v
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
5 RACNode3
|
|
|
|
|
|
|
|
|
|
|
|

WebLogic Server L ” Service 1
|
Multi Data Source | Service 2 Shared
\ Storage
Backup 1 R Ag
Data Source ¥ |
i —
Backup N }
Data Source |t > RACNode 4 .
| | ———> Service 1
Backup N
Data Source i Service 2
Data Source I
|
|
Data Source —— E
b | m——— » RACNode5
> Service 1 h

Service 2

ORACLE 510

Appendix B
Configuring Connections to Services on Oracle RAC Nodes

In this example, Service 1 is active on Oracle RAC Nodes 1, 2, and 3, while Service 2 is
inactive on those nodes. Service 2 is active on Oracle RAC Nodes 4 and 5, while Service 1 is
inactive on those nodes.

If Oracle RAC Node 1 becomes unavailable for any reason, you can start Service 1 on Oracle
RAC Node 4. WebLogic Server will detect that the service is running on Node 4, and will begin
making connections from the associated backup generic data source to Node 4 as needed.

Load Balancing

In a load balancing configuration, there are multiple services running concurrently on each
Oracle RAC node. Each WLS Multi Data Source has an active connection pool configured to
connect to a given service on each of the nodes. In this scenario, you would configure each
Multi Data Source to use the Load Balancing algorithm.

ORACLE 590

WebLogic Server

Multi Data Source

Data Source

Data Source

Data Source

Data Source

Data Source

WebLogic Server

Multi Data Source

Data Source

Data Source

Data Source

Data Source

Data Source

ORACLE

\ 4

Y

Y

Y

Appendix B

Configuring Connections to Services on Oracle RAC Nodes

Figure B-5 Load Balancing with Multi Data Sources

[l

RAC Node 1

Service 1

Service 2

[l

RAC Node 2

Service 1

Service 2

[l

RAC Node 3

Service 1

Service 2

[l

RAC Node 4

Service 1

Service 2

[l

Y

RAC Node 5

Service 1

Service 2

Shared
Storage

B-21

Appendix B
Configuring Connections to Services on Oracle RAC Nodes

In this example, Service 1 and Service 2 are each actively running on all of the available
Oracle RAC nodes. As a result, all of the connection pools in each multi data source will
actively make connections in a round-robin fashion, balancing workload among the five nodes.

Connection Pool Capacity Planning

ORACLE

It is important to note the Maximum Capacity value you specify for a Generic data source can
cause the connection capacity to a given Oracle RAC node to be exceeded. You must consider
the following factors when determining how to set this value for each of your Generic data
sources:

The maximum number of simultaneous connections that a Oracle RAC node can support.
This is based on the available memory on a given Oracle RAC node and the amount of
memory consumed by each service connection (which can vary for each service). Memory
consumption by each connection is a major limitation on the amount of work that can be
generated from the WLS servers. Exceeding the amount of available memory by creating
too many connections from your WLS Generic data sources to a given Oracle RAC node
can result in degraded performance on the Oracle RAC node, or could lead to failed
connections.

Available memory for a node should be based on the PGA target attribute (per session
memory).

The maximum number of Generic data sources that can potentially create connections to a
given Oracle RAC node, and the number of WebLogic server instances to which each
Generic data source or Multi Data Source is targeted. For example, if you have one
Generic data source that is targeted to three WLS servers, that Generic data source
counts as three Generic data sources, as each server uses its own instance of the Generic
data source. This is the case whether the servers are part of a cluster or are independent
server instances.

The maximum number of services that may be actively running on a given Oracle RAC
node, and the memory consumed on the node by each connection to each service.

The expected relative workload for each service on a given node. For example, the
expected workload of Servicel may be double that of the expected workload of Service2.

Regardless of whether or not a service is always active on a node, you should allocate
resources for that service in the event you have to start it on the node.

Always use the worst-case scenario when setting the Maximum Capacity value for your
generic data sources. For example, assume that all available services will be actively
running on the Oracle RAC node associated with each generic data source.

The following example explains how you could go about determining each Generic data
sources Maximum Capacity value. Keep in mind that this is a very simple example intended
to illustrate the issue conceptually, and that real-world situations are much more complicated.
In general, it is best to under-configure yourGeneric data sources with a low Maximum
Capacity value, monitor your Oracle RAC nodes for memory usage and performance, then
adjust the Maximum Capacity values upward until you are approaching the maximum
capacity of the associated Oracle RAC nodes.

Example

Suppose you have the following basic configuration:

Five Oracle RAC nodes, each with 16 GB of memory.

Two services actively running on each Oracle RAC node. Servicel uses 10 MB per
connection, Service2 uses 20MB per connection.

B-22

ORACLE

Appendix B
Configuring Connections to Services on Oracle RAC Nodes

* Workload for each service is the same, that is, each service will generate an equivalent
number of connections on a given Oracle RAC node.

* Two WebLogic Server clusters. Clusterl has five servers. Cluster2 has four servers.

* For a given Oracle RAC node, one generic data source is targeted to Clusterl and is
configured to connect to Servicel.

« For a given Oracle RAC node, one generic data source is targeted to Cluster 2 and is
configured to connect to Service2.

Because Service2 uses twice as much memory per connection as Servicel, you should
allocate approximately 10 GB of the node's memory for Service 2 and approximately 5GB for
Servicel.

Because Clusterl has five WLS servers, there will be five Generic data sources making
connection requests to this Oracle RAC node. This gives you 1 GB of memory available for
connections from a given generic data source (5GB/5). Each connection requires 10 MB of
memory, so the Maximum Capacity value for each generic data source targeted to Clusterl
should be 100 or lower.

Because Cluster 2 has four WLS servers, there will be four Generic data sources making
connection requests to this Oracle RAC node. This gives you 2.5 GB of memory available for
connections from a given generic data source (10GB/4). Each connection requires 20 MB, so
the Maximum Capacity value for each generic data source targeted to Cluster2 should be 125
or lower.

If Service 2 generates more workload than Servicel, you would have to adjust these values
appropriately (increase the Maximum Capacity value for the generic data source connecting
to Service2, decrease the value for the generic data source connecting to Servicel). As long
as:

(Max. connections to Servicel x memory used per connection) + (Max. connections
to Service2 x memory used per connection) < Available memory

you can avoid the potential for performance degradation or connection failures.

Alternatively, in a simple configuration, such as is shown in Figure B-6, the Maximum
Capacity value you specify for each of your generic data sources can be loosely determined
using the following formula:

Maximum connection pool capacity = Maximum number of connections to Oracle RAC nodes/
(Number of WebLogic Server instances x Nmber of generic data sources targeted to each
instance x Number of active Oracle RAC services configured x Number of Oracle RAC Nodes)

where:

Maximum number of connections to Oracle RAC nodes is determined by total memory
available on all nodes divided by the memory consumed by each connection.

Number of WebLogic Server instances is the number of server instances to which the Generic
data sources are targeted. If the generic data sources is targeted to a WLS cluster, this is the
number of servers in the cluster.

In the example in Figure B-6:

e assume that a maximum of 4000 total connections can be made to the group of Oracle
RAC nodes, based on 8GB of available memory per Oracle RAC node, and 10 MB of
memory used per connection.

« there are a total of five server instances to which the Generic data sources are targeted

« there are five generic data sources targeted to each server instance

B-23

Appendix B

Configuring Connections to Services on Oracle RAC Nodes

» there are two services running on each Oracle RAC node, and

» there are five Oracle RAC nodes.

In this configuration, the Maximum Capacity value you would enter for each of your Generic

data sources would be:

Maximum connection pool capacity = 4000/ (5 server instances x 5 generic data sources x 2

services x 5 Oracle RAC nodes)

which would give you a Maximum Capacity value of 16 for each of your Generic data

sources.

Figure B-6 Example Multi Data Source Connection Configuration

WebLogic Server
Multi Data Source

Data Source

Server 1
Data Source
Server 2
Data Source
Server 3 Data Source
Data Source
WebLogic Server
Multi Data Source
Data Source
Server 4 Data Source
Data Source
Server 5

Data Source

Data Source

Keep in mind that this formula is just a general guideline for configuring your generic data

\4

\4

]

RAC Node 1

Service 1

Service 2

]

RAC Node 2

Service 1

Service 2

]

RAC Node 3

Service 1

Service 2

]

RAC Node 4

Service 1

Service 2

]

Y

RAC Node 5

Service 1

Service 2

sources, as many configurations will be too complex for you to use such a simple calculation.

ORACLE

B-24

Appendix B
Using SCAN Addresses with Multi Data Sources

When calculating the Maximum Capacity value you should use, always consider the worst-
case scenario that you will have in your overall configuration. It is best to under-configure this
value for normal operation than to have it over-configured when a worst-case situation
develops. You can always monitor your Oracle RAC nodes to determine if it is safe to increase
the Maximum Capacity value for any of your Generic data sources.

Using SCAN Addresses with Multi Data Sources

Use Single Client Access Name (SCAN) for providing connection to time listener failover and
load-balancing.

SCAN is not recommended for use with Multi Data Source. This can be a problem if your
configuration is set up to use SCAN (for example, you can't use non-scan addresses if the
database listener is set up to use SCAN).

Connection load-balancing cannot be used with a Multi Data Source because the Multi Data
Source must be in control of handling the connection load balancing and failover. To turn off
this capability, use a URL with an INSTANCE NAME attribute. Each of the Generic data sources in
the Multi Data Source should point to a different instance. When the Multi Data Source
recognizes that an instance is down on the first Generic data source, it guides connections to
the instance on the first Generic data source that is not down. When SCAN used with an
INSTANCE NAME attribute, the Multi Data Source provides load-balancing, failover of
connections, and continues to provide a more reliable way to get to a listener.

If you need to configure SCAN address for a Multi Data Source, configure each Generic data
source member with a URL that has a different INSTANCE NAME value. For example:

(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP) (HOST=scanname) (PORT=scanport))
(CONNECT DATA=(SERVICE NAME=myservice) (INSTANCE NAME=myinstance)))

< Note:

If you add a node, you need to manually add a Generic data source member and add
it to the Multi Data Source.

Another way to avoid having SCAN do connection load-balancing is to specify a service name
that is available on a single instance and omit the instance name. Each member data source
must have it's own unique service name and each service name must be available on only one
instance that doesn't overlap with any other member data source.

XA Considerations and Limitations when using Multi Data
Sources with Oracle RAC

Learn about the certain requirements and limitations you need to consider when using XA
(Global transactions) withMulti Data Sources on Oracle RAC.

e Oracle RAC XA Requirements when using Multi Data Sources

« Known Issue Occurring After Database Server Crash

ORACLE 58

Appendix B
JDBC Store Recovery with Oracle RAC

Oracle RAC XA Requirements when using Multi Data Sources

Oracle RAC has the following requirements when using Multi Data Sources with Global
transactions:

* Always use a Multi Data Source when using XA transactions with Multi Data Sources for
Oracle RAC.

* Global transactions must be initiated, prepared, and concluded in the same instance of the
Oracle RAC cluster. WebLogic Server Generic data sources manage this for you when you
set KeepXAConnTillTxComplete="true" in the Generic data source configuration.

* When using global transactions, transaction IDs (XIDs) must be unique within the Oracle
RAC cluster. However, neither the Oracle Thin driver nor an Oracle RAC instance can
determine if an XID is unique within the Oracle RAC cluster. Transactions with the same
XID can execute SQL code on different instances of the Oracle RAC cluster without any
exception.

Known Issue Occurring After Database Server Crash

If, while a transaction is being processed, the database server instance crashes after the
PREPARE operation is complete but before the results of that operation have been written to the
transaction log, a coMMIT call from a client for that transaction may hang for several minutes
and possibly until the TCP timeout period has expired. The window of time in which this might
occur is small and the problem occurs rarely. There is no workaround for the issue at this time.

JDBC Store Recovery with Oracle RAC

If you are using a JDBC Store with Oracle RAC, there are features and limitations to consider
that concern Oracle RAC node failover.

For a list of the major services that use the JDBC store, see Monitoring Store Connections in
Administering the WebLogic Persistent Store.

e Configuring a JDBC Store for Use with Oracle RAC

e Automatic Retry for IMS Connections

Configuring a JDBC Store for Use with Oracle RAC

ORACLE

The way that a JDBC Store works limits the options you have for configuring one for use with
Oracle RAC. You cannot configure a JDBC store to use a generic data source that is
configured to support global transactions. The JDBC store must use a generic data source that
uses a non-XA JDBC driver. For more information about this configuration option, see Using
Multi Data Sources without Global Transactions.

A JDBC Store holds on to a connection until that connection fails, at which point it moves on to
the next connection and repeats the process. Therefore you cannot implement load balancing

with a JDBC Store, including using a load balancing multi data source. You should configure a
multi data source for a JDBC store to use the Failover algorithm.

In short, for a JDBC store:

e Use a non-XA driver

e Configure the multi data source for Failover mode.

B-26

Appendix B
JDBC Store Recovery with Oracle RAC

Automatic Retry for JIMS Connections

JMS has a limited connection retry mechanism which enables it to silently react to the failure of
the Oracle RAC node that hosts its database connection. If the database has experienced
either a minor network 'hiccup' or a Oracle RAC database has failed over to another node, the
second connection attempt (the retry) will succeed to the next Oracle RAC node.

The time within which this retry is attempted and the number of retries attempted are limited to
minimize the negative effects that an extended connection retry time could cause. If the
database connection remains unavailable for a long period of time, the delay can impede the
ability of JIMS to properly continue its processing (for example, to maintain proper message
ordering). Also, the transaction manager could declare the JMS resource of a transaction to be
dead if there is not enough processing progress made within this time period, or out-of memory
conditions could arise. There are system-level tuning guidelines that can help minimize the
Oracle RAC failover time frame which is critical to the success of the automatic retry.

The tight loop on the automatic retry is particularly important when JMS processing occurs with
transactions. If an I/O failure occurs in the JDBC Store, the store record is in an unknown state
which will put the message itself in an unknown state. To prevent the message from being
committed in this unknown state, JMS will mark the transaction associated with the message
as a "failedTransaction.” Any future attempts by the transaction manager to finishing
committing the message will cause JMS to throw a javax.transaction.xa.XAException with an
errorCode set to XAException.XAER RMERR. This exception is an indication to the transaction
manager that a transient error has occurred in the resource manager (JMS) and that the
transaction manager should retry commit processing. The retry logic provides a second
attempt to establish the connection before JIMS communicates any failure to the upper layer
which would translate into an RMERR. If the RVMERR is generated, then the only way to recover
the message and complete the transaction is to either restart WebLogic Server or configure
Automatic Service Migration (ASM) restart-in-place option for Singleton Services.
Otherwise, when the /O fails, the transaction is marked in a way that cannot be recovered until
the JMS server is restarted.

The automatic connection retry logic is currently governed by an option on WebLogic Server as
follows:

-Dweblogic.store.jdbc.IORetryDelayMillis=x

Where x is the number of milliseconds to elapse before the connection to the database is
retried. The default value is 1000 milliseconds. This value is restricted to the range 0 to 15000
milliseconds, and the retry is only be attempted once. If a failure occurs on the second attempt,
an exception is propagated up the call stack and a manual restart is required to recover the
messages associated with the failed transaction.

Note:

In the event that an automatic retry attempt is not successful, you must restart
WebLogic Server. Automatic Service Migration (ASM) restart-in-place option for
Singleton Services can be used to trigger an automatic restart of failed JMS Services.

The automatic retry delay only applies to the connection retry mechanism. There is
no configurable retry delay available for JDBC Store /O failures.

ORACLE B-27

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 About WebLogic JDBC Resources
	JDBC Resources
	JDBC Data Sources
	JMX and WLST Access for JDBC Resources
	WebLogic Server with Oracle RAC
	Advanced Configurations for Oracle Drivers and Databases

	2 Configuring WebLogic JDBC Resources
	JDBC System Modules
	Generic Data Source Modules
	Active GridLink Data Source System Modules
	Multi Data Source System Modules

	JDBC Application Modules
	Standard Java EE Application Modules
	Proprietary JDBC Application Modules
	Including Drivers in EAR/WAR Files

	JDBC Module File Naming Requirements
	JDBC Modules in Versioned Applications
	JDBC Schema
	JDBC Data Source Type
	JMX and WLST Access for JDBC Resources
	JDBC MBeans for System Resources
	JDBC Management Objects in the Java EE Management Model (JSR-77 Support)
	Using WLST to Create JDBC System Resources
	How to Modify and Monitor JDBC Resources
	Best Practices when Using WLST to Configure JDBC Resources

	Creating High-Availability JDBC Resources

	3 Configure Database Connectivity
	Using JDBC Drivers with WebLogic Server
	Types of JDBC Drivers
	JDBC Driver Support
	JDBC Drivers Installed with WebLogic Server
	Upgrading and Using Latest Oracle 19c JDBC Drivers with WebLogic Server
	Adding Third-Party JDBC Drivers Not Installed with WebLogic Server
	Globalization Support for the Oracle Thin Driver
	Using the Oracle Thin Driver in Debug Mode

	Configuring JDBC Data Sources
	Creating a JDBC Data Source
	Configure JDBC Data Source Properties
	Configure Transaction Options
	Configure Connection Properties
	Configure Testing Options
	Target JDBC Data Sources

	Configuring Connection Pool Features
	Enabling JDBC Driver-Level Features
	Enabling Connection-based System Properties
	Enabling Connection-based Encrypted Properties
	Initializing Database Connections with SQL Code

	Advanced Connection Properties
	Define Fatal Error Codes
	Using Edition-Based Redefinition

	Configure Oracle Parameters
	Configure ONS Client Parameters
	Tuning Generic Data Source Connection Pools
	Generic Data Source Handling for Oracle RAC Outages
	Generic Data Source Handling of Driver-Level Failover

	4 JDBC Data Sources Types
	Using the Default Data Source
	What is Default Data Source
	Defining a Custom Default Data Source
	Compatibility Limitations When Using a Default Data Source

	Using Generic Data Sources
	What is Generic Data Source
	Configuring Generic Data Source

	Using JDBC Multi Data Sources
	What is Multi Data Source
	Adding a Database Node
	Removing a Database Node

	Configuring Multi Data Sources
	Choosing the Multi Data Source Algorithm
	Failover
	Load Balancing

	Multi Data Source Fail-Over Limitations and Requirements
	Test Connections on Reserve to Enable Fail-Over
	No Fail-Over for In-Use Connections

	Controlling Multi Data Source Failover with a Callback
	Callback Handler Requirements
	Callback Handler Configuration
	How It Works—Failover

	Deploying JDBC Multi Data Sources on Servers and Clusters

	Multi Data Source Failover Enhancements
	Connection Request Routing Enhancements When a Generic Data Source Fails
	Automatic Re-enablement on Recovery of a Failed Generic Data Source within a Multi Data Source
	Enabling Failover for Busy Generic Data Sources in a Multi Data Source
	Controlling Multi Data Source Failback with a Callback
	How It Works—Failback

	Planned Database Maintenance with a Multi Data Source
	Shutting Down the Data Source

	Using Active GridLink Data Sources
	What is Active GridLink Data Source
	Fast Connection Failover
	JDBC Driver Configuration for use with Oracle Fast Connection Failover

	Runtime Connection Load Balancing
	GridLink Affinity
	Session Affinity Policy
	XA Affinity Policy

	SCAN Addresses
	Secure Communication using Oracle Wallet with ONS Listener
	Support for Active Data Guard
	Supported Oracle On-Premises and Cloud Database Services
	Using Socket Direct Protocol

	Configuring Active GridLink Data Source
	Configure JDBC Data Source Properties
	Configure Transaction Options
	Configure Connection Properties
	Enter Connection Properties
	Enter a Complete URL
	Supported Active GridLink Data Source URL Formats

	Test Connections
	Configure ONS Client
	Enabling FAN Events
	Configure ONS Host and Port
	Secure ONS Client Communication
	Test ONS Client Configuration

	Target the Data Source
	Configuring Oracle Parameters
	Configuring an ONS Client Using WLST

	Configuring Runtime Load Balancing using SDP
	Configuring Active GridLink Connection Pool Features
	Enabling JDBC Driver-Level Features
	Enabling Connection-based System Properties
	Initializing Database Connections with SQL Code

	Tuning Active GridLink Data Source Connection Pools
	Monitoring Active GridLink JDBC Resources
	Viewing Run-Time Statistics
	JDBCOracleDataSourceRuntimeMBean
	JDBCOracleDataSourceInstanceRuntimeMBean
	ONSDaemonRuntimeMBean

	Debug Active GridLink Data Sources
	JDBC Debugging Scopes
	UCP JDK Logging
	Enable Debugging Using the Command Line

	Using Active GridLink Data Sources without FAN Notification
	Best Practices for Active GridLink Data Sources
	Catch and Handle Exceptions
	Connection Creation with Active GridLink Data Sources

	Comparing Active GridLink and Multi Data Sources
	Migrating from Multi Data Source to Active GridLink
	Application Changes to Migrate a Multi Data Source
	Configuration Changes to Migrate a Multi Data Source
	Basic Migration Steps

	Managing Database Downtime with Active GridLink Data Sources
	Active GridLink Configuration for Database Outages
	Planned Outage Procedures
	Unplanned Outages

	Gradual Draining

	Using Universal Connection Pool Data Sources
	What is Universal Connection Pool Data Source
	Configuring Universal Connection Pool Data Source
	Configuring a UCP in the WebLogic Server Administration Console
	Configuring a UCP Using WLST

	Universal Connection Pool Multi Tenant Shared Pool support
	Monitoring Universal Connection Pool JDBC Resources
	Oracle Sharding Support

	Using Proxy Data Sources
	What is Proxy Data Source
	Configuring Proxy Data Source
	Configuring a Proxy Data Source in the WebLogic Server Administration Console
	Configuring a Proxy Data Source Using WLST

	Monitoring Proxy Data Source JDBC Resources

	5 JDBC Data Source Transaction Options
	Enabling Support for Global Transactions with a Non-XA JDBC Driver
	Understanding the Logging Last Resource Transaction Option
	Advantages to Using the Logging Last Resource Optimization
	Enabling the Logging Last Resource Transaction Optimization
	Programming Considerations and Limitations for LLR Data Sources
	Administrative Considerations and Limitations for LLR Data Sources

	Understanding the Emulate Two-Phase Commit Transaction Option
	Limitations and Risks When Emulating Two-Phase Commit Using a Non-XA Driver
	Heuristic Completions and Data Inconsistency
	Cannot Recover Pending Transactions
	Possible Performance Loss with Non-XA Resources in Multi-Server Configurations
	Multiple Non-XA Participants

	Local Transaction Completion when Closing a Connection

	6 Advanced Configurations for Oracle Drivers and Databases
	JDBC Replay Driver
	How JDBC Replay Driver Works
	Requirements and Considerations
	Configuring JDBC Replay Driver
	Selecting the Driver for JDBC Replay Driver
	Using a Connection Callback
	Create an Initialization Callback
	Registering an Initialization Callback
	Unregister an Initialization Callback

	Setting the Replay Timeout
	Disabling JDBC Replay Driver for a Connection
	Configuring Logging for JDBC Replay Driver
	Enabling JDBC Driver Debugging

	Viewing Runtime Statistics for JDBC Replay Driver
	JDBC Replay Driver Auditing
	Limitations with JDBC Replay Driver with Oracle 12c Database

	Database Resident Connection Pooling
	Requirements and Considerations
	Configuring DRCP
	Configuring a Data Source for DRCP
	Configuring a Database for DRCP

	Global Data Services
	Requirements and Considerations
	Creating a Active GridLink Data Source for GDS Connectivity

	Container Database with Pluggable Databases
	Creating Service for PDB Access
	DRCP and CDB/PDB
	Setting the PDB using JDBC

	Service Switching

	7 Using Connection Harvesting
	What is Connection Harvesting
	Enable Connection Harvesting
	Marking Connections Harvestable
	Recover Harvested Connections

	8 Using Shared Pooling Data Sources
	How shared Pooling Works
	Requirements and Considerations when using Shared Pooling Data Sources
	Configuring Shared Pooling
	Configuring WebLogic Server-Specific Driver Properties for Shared Pooling
	Configuring Database for Shared Pooling

	9 Using Oracle Databases with WebLogic Server
	WebLogic JDBC Features for Oracle Database 12.1
	JDBC 4.1 Support for JDK 7
	JDBC Replay Driver Support
	Database Resident Connection Pooling Support
	Container Database with Pluggable Databases
	Global Data Services Support
	Automatic ONS Listeners

	WebLogic JDBC Features for Oracle Database 12.2
	JDBC 4.2 Interfaces
	Database 12.2 JDBC Replay Driver
	AGL Support for URL with @alias or @ldap

	10 Labeling Connections
	What is Connection Labeling
	Implementing Labeling Callbacks
	Creating a Labeling Callback
	Example Labeling Callback

	Registering a Labeling Callback
	Removing a Labeling Callback
	Applying Connection Labels

	Reserving Labeled Connections
	Checking Unmatched labels
	Removing a Connection Label
	Using Initialization and Reinitialization Costs to Select Connections
	Considerations When Using Initialization and Reinitialization Costs

	Using Connection Labeling with Packaged Applications

	11 Understanding Data Source Security
	About WebLogic Data Source Security Options
	WebLogic Data Source Security Options
	Credential Mapping vs. Database Credentials
	Set Client Identifier on Connection
	Oracle Proxy Session
	Identity-based Connection Pooling

	Connections within Transactions
	WebLogic Data Source Resource Permissions
	Data Source Security Example
	Using Encrypted Connection Properties
	Best Practices
	WLST Examples

	Using SSL and Encryption with Data Sources and Oracle Drivers
	Using SSL with Data Sources and Oracle Drivers
	Using SSL with Oracle Wallet
	Active GridLink ONS over SSL

	Using Data Encryption with Data Sources and Oracle Drivers

	12 Creating and Managing Oracle Wallet
	What is Oracle Wallet
	Where to Keep Your Wallet
	How to Create an External Password Store
	Defining a WebLogic Server Data Source using the Wallet
	Copy the Wallet Files
	Update the Data Source Configuration

	Using a TNS Alias instead of a DB Connect String

	13 Deploying Data Sources on Servers and Clusters
	Deploying Data Sources on Servers and Clusters
	Minimizing Server Startup Hang Caused By an Unresponsive Database

	14 Using WebLogic Server with Oracle RAC
	Overview of Oracle Real Application Clusters
	Software Requirements
	JDBC Driver Requirements
	Hardware Requirements
	Configuration Options in WebLogic Server with Oracle RAC
	Choosing a WebLogic Server Configuration for Use with Oracle RAC
	Validating Connections when using WebLogic Server with Oracle RAC
	Additional Considerations When Using WebLogic Server with Oracle RAC

	15 Monitoring WebLogic JDBC Resources
	Viewing Run-Time Statistics
	Data Source Statistics
	Prepared Statement Cache Statistics

	Profile Logging
	Collecting Profile Information
	Profile Types
	Connection Usage (WEBLOGIC.JDBC.CONN.USAGE)
	Connection Reservation Wait (WEBLOGIC.JDBC.CONN.RESV.WAIT)
	Connection Reservation Failed (WEBLOGIC.JDBC.CONN.RESV.FAIL)
	Connection Leak (WEBLOGIC.JDBC.CONN.LEAK)
	Connection Last Usage (WEBLOGIC.JDBC.CONN.LAST_USAGE)
	Connection Multithreaded Usage (WEBLOGIC.JDBC.CONN.MT_USAGE)
	Statement Cache Entry (WEBLOGIC.JDBC.STMT_CACHE.ENTRY)
	Statements Usage (WEBLOGIC.JDBC.STMT.USAGE)
	Connection Unwrap (WEBLOGIC.JDBC.CONN.UNWRAP)
	JDBC Object Closed Usage (WEBLOGIC.JDBC.CLOSED_USAGE)
	Local Transaction Connection Leak (WEBLOGIC.JDBC.CONN.LOCALTX_LEAK)
	Example Profile Information Record Log

	Accessing Diagnostic Data
	Callbacks for Monitoring Driver-Level Statistics

	Debugging JDBC Data Sources
	Enabling Debugging
	Enable Debugging Using the Command Line
	Enable Debugging Using the WebLogic Server Administration Console
	Enable Debugging Using the WebLogic Scripting Tool
	Changes to the config.xml File

	JDBC Debugging Scopes
	Set Debugging for UCP or ONS
	Request Dyeing

	16 Managing WebLogic JDBC Resources
	Testing Data Sources and Database Connections
	Managing the Statement Cache for a Data Source
	Clearing the Statement Cache for a Data Source
	Clearing the Statement Cache for a Single Connection

	Shrinking a Connection Pool
	Resetting a Connection Pool
	Suspending a Connection Pool
	Resuming a Connection Pool
	Shutting Down a Data Source
	Starting a Data Source
	Managing DBMS Network Failures

	17 Tuning Data Source Connection Pools
	Increasing Performance with the Statement Cache
	Statement Cache Algorithms
	LRU (Least Recently Used)
	Fixed

	Statement Cache Size
	Usage Restrictions for the Statement Cache
	Calling a Stored Statement After a Database Change May Cause Errors
	Using setNull In a Prepared Statement
	Statements in the Cache May Reserve Database Cursors
	Other Considerations When Using the Statement Cache

	Initial Capacity Enhancement in the Connection Pool
	Connection Testing Options for a Data Source
	Database Connection Testing Semantics
	Connection Testing When Database Connections are Created
	Periodic Connection Testing
	Testing Reserved Connections
	Minimizing Connection Test Delay After Database Connectivity Loss
	Minimizing Connection Request Delays After Loss of DBMS Connectivity
	Minimizing Connection Request Delay with Seconds to Trust an Idle Pool Connection

	Database Connection Testing Configuration Recommendations
	Database Connection Testing Using Default Test Table Name
	Database Connection Testing Options

	Enabling Connection Creation Retries
	Enabling Connection Requests to Wait for a Connection
	Connection Reserve Timeout
	Limiting the Number of Waiting Connection Requests

	Automatically Recovering Leaked Connections
	Avoiding Server Lockup with the Correct Number of Connections
	Limiting Statement Processing Time with Statement Timeout
	Using Pinned-To-Thread Property to Increase Performance
	Changes to Connection Pool Administration Operations When PinnedToThread is Enabled
	Additional Database Resource Costs When PinnedToThread is Enabled

	Using Unwrapped Data Type Objects
	How to Disable Wrapping
	Disable Wrapping using the Administration Console
	Disable Wrapping using WLST

	Tuning Maintenance Timers
	JDBC Connection Creation Limits

	A Configuring JDBC Application Modules for Deployment
	Packaging a JDBC Module with an Enterprise Application: Main Steps
	Creating Packaged JDBC Modules
	Creating a JDBC Data Source Module Using the Administration Console
	JDBC Packaged Module Requirements
	JDBC Application Module Limitations
	Creating a Generic Data Source Module
	Creating an Active GridLink Data Source Module
	Creating a Multi Data Source Module
	Encrypting Database Passwords in a JDBC Module
	Deploying JDBC Modules to New Domains

	Application Scoping for a Packaged JDBC Module

	Referencing a JDBC Module in Java EE Descriptor Files
	Packaged JDBC Module References in weblogic-application.xml
	Packaged JDBC Module References in Other Descriptors

	Packaging an Enterprise Application with a JDBC Module
	Deploying an Enterprise Application with a JDBC Module
	Getting a Database Connection from a Packaged JDBC Module

	B Using Multi Data Sources with Oracle RAC
	Overview of Oracle RAC
	Oracle RAC Scalability with WebLogic Server Multi Data Sources
	Oracle RAC Availability with WebLogic Server Multi Data Sources
	Oracle RAC Load Balancing with WebLogic Server Multi Data Sources

	Software Requirements
	JDBC Driver Requirements
	Hardware Requirements
	WebLogic Server Cluster
	Oracle RAC Cluster
	Shared Storage

	Configuring Multi Data Sources with Oracle RAC
	Choosing a Multi Data Source Configuration for Use with Oracle RAC
	Configuring Multi Data Sources for use with Oracle RAC
	Attributes of a Multi Data Source

	Configuration Considerations for Failover
	Multi Data Source-Managed Failover and Load Balancing
	Delays During Failover
	Failure Handling Walkthrough for Global Transactions

	Configuring the Listener Process for Each Oracle RAC Instance
	Configuring Multi Data Sources When Remote Listeners are Enabled or Disabled
	Additional Configuration Considerations

	Using Multi Data Sources with Global Transactions
	Rules for Data Sources within a Multi Data Source Using Global Transactions
	Required Attributes of Data Sources within a Multi Data Source Using Global Transactions
	Sample Configuration Code

	Using Multi Data Sources without Global Transactions
	Attributes of Data Sources within a Multi Data Source Not Using Global Transactions
	Sample Configuration Code

	Configuring Connections to Services on Oracle RAC Nodes
	Configuring a Data Source to Connect to a Service
	Service Connection Configurations
	Workload Management
	Load Balancing

	Connection Pool Capacity Planning

	Using SCAN Addresses with Multi Data Sources
	XA Considerations and Limitations when using Multi Data Sources with Oracle RAC
	Oracle RAC XA Requirements when using Multi Data Sources
	Known Issue Occurring After Database Server Crash

	JDBC Store Recovery with Oracle RAC
	Configuring a JDBC Store for Use with Oracle RAC
	Automatic Retry for JMS Connections

