Oracle® Fusion Middleware
Administering JDBC Data Sources for Oracle
WebLogic Server

12¢ (12.2.1.4.0)
E90814-16
January 2024

ORACLE'

Oracle Fusion Middleware Administering JDBC Data Sources for Oracle WebLogic Server, 12¢ (12.2.1.4.0)
E90814-16
Copyright © 2007, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation,” or “limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience Xiv
Documentation Accessibility Xiv
Diversity and Inclusion Xiv
Related Documentation XV
Conventions XV

1 About WebLogic JDBC Resources

JDBC Resources 11
JDBC Data Sources 1-2
JMX and WLST Access for JDBC Resources 1-3
WebLogic Server with Oracle RAC 1-3
Advanced Configurations for Oracle Drivers and Databases 1-4

2 Configuring WebLogic JDBC Resources

JDBC System Modules 2-1
Generic Data Source Modules 2-2
Active GridLink Data Source System Modules 2-3
Multi Data Source System Modules 2-3

JDBC Application Modules 2-4
Standard Java EE Application Modules 2-4
Proprietary JDBC Application Modules 2-4

Including Drivers in EAR/WAR Files 2-5

JDBC Module File Naming Requirements 2-6

JDBC Modules in Versioned Applications 2-7

JDBC Schema 2-7

JDBC Data Source Type 2-8

JMX and WLST Access for JDBC Resources 2-8
JDBC MBeans for System Resources 2-8
JDBC Management Objects in the Java EE Management Model (JSR-77 Support) 2-9
Using WLST to Create JDBC System Resources 2-10

ORACLE iii

How to Modify and Monitor JDBC Resources 2-11

Best Practices when Using WLST to Configure JDBC Resources 2-12
Creating High-Availability JDBC Resources 2-12
3 Configure Database Connectivity

Using JDBC Drivers with WebLogic Server 3-1
Types of JDBC Drivers 3-1
JDBC Driver Support 34
JDBC Drivers Installed with WebLogic Server 3-5
Upgrading and Using Latest Oracle 19c JDBC Drivers with WebLogic Server 3-5
Adding Third-Party JDBC Drivers Not Installed with WebLogic Server 3-8
Globalization Support for the Oracle Thin Driver 3-11
Using the Oracle Thin Driver in Debug Mode 3-12
Configuring JDBC Data Sources 3-12
Creating a JDBC Data Source 3-12
Configure JDBC Data Source Properties 3-13
Configure Transaction Options 3-14
Configure Connection Properties 3-14
Configure Testing Options 3-15

Target JDBC Data Sources 3-15
Configuring Connection Pool Features 3-15
Enabling JDBC Driver-Level Features 3-16
Enabling Connection-based System Properties 3-16
Enabling Connection-based Encrypted Properties 3-17
Initializing Database Connections with SQL Code 3-18
Advanced Connection Properties 3-18
Define Fatal Error Codes 3-18

Using Edition-Based Redefinition 3-19
Configure Oracle Parameters 3-21
Configure ONS Client Parameters 3-21
Tuning Generic Data Source Connection Pools 3-22
Generic Data Source Handling for Oracle RAC Outages 3-22
Generic Data Source Handling of Driver-Level Failover 3-23

4 JDBC Data Sources Types

Using the Default Data Source 4-1
What is Default Data Source 4-1
Defining a Custom Default Data Source 4-3
Compatibility Limitations When Using a Default Data Source 4-4

ORACLE iv

Using Generic Data Sources
What is Generic Data Source
Configuring Generic Data Source
Using JDBC Multi Data Sources
What is Multi Data Source
Adding a Database Node
Removing a Database Node
Configuring Multi Data Sources
Choosing the Multi Data Source Algorithm
Multi Data Source Fail-Over Limitations and Requirements
Controlling Multi Data Source Failover with a Callback
Deploying JDBC Multi Data Sources on Servers and Clusters
Multi Data Source Failover Enhancements
Connection Request Routing Enhancements When a Generic Data Source Fails

Automatic Re-enablement on Recovery of a Failed Generic Data Source within a
Multi Data Source

Enabling Failover for Busy Generic Data Sources in a Multi Data Source
Controlling Multi Data Source Failback with a Callback
Planned Database Maintenance with a Multi Data Source
Shutting Down the Data Source
Using Active GridLink Data Sources
What is Active GridLink Data Source
Fast Connection Failover
Runtime Connection Load Balancing
GridLink Affinity
SCAN Addresses
Secure Communication using Oracle Wallet with ONS Listener
Support for Active Data Guard
Supported Oracle On-Premises and Cloud Database Services
Using Socket Direct Protocol
Configuring Active GridLink Data Source
Configure JDBC Data Source Properties
Configure Transaction Options
Configure Connection Properties
Test Connections
Configure ONS Client
Target the Data Source
Configuring Oracle Parameters
Configuring an ONS Client Using WLST
Configuring Runtime Load Balancing using SDP
Configuring Active GridLink Connection Pool Features

ORACLE

4-4
4-4
4-6
4-6
4-7

4-8
4-8
4-9

4-10

4-12

4-12

4-12

4-13
4-13
4-14
4-15
4-16
4-18
4-19
4-20
4-22
4-23
4-25
4-26
4-26
4-26
4-27
4-27
4-28
4-28
4-29
4-31
4-31
4-33
4-33
4-33
4-33
4-34

Enabling JDBC Driver-Level Features 4-34

Enabling Connection-based System Properties 4-35
Initializing Database Connections with SQL Code 4-35
Tuning Active GridLink Data Source Connection Pools 4-36
Monitoring Active GridLink JDBC Resources 4-36
Viewing Run-Time Statistics 4-36
Debug Active GridLink Data Sources 4-37
Using Active GridLink Data Sources without FAN Notification 4-38
Best Practices for Active GridLink Data Sources 4-39
Catch and Handle Exceptions 4-39
Connection Creation with Active GridLink Data Sources 4-39
Comparing Active GridLink and Multi Data Sources 4-40
Migrating from Multi Data Source to Active GridLink 4-40
Application Changes to Migrate a Multi Data Source 4-40
Configuration Changes to Migrate a Multi Data Source 4-41
Basic Migration Steps 4-41
Managing Database Downtime with Active GridLink Data Sources 4-42
Active GridLink Configuration for Database Outages 4-42
Planned Outage Procedures 4-43
Unplanned Outages 4-47
Gradual Draining 4-47
Using Universal Connection Pool Data Sources 4-50
What is Universal Connection Pool Data Source 4-51
Configuring Universal Connection Pool Data Source 4-52
Configuring a UCP in the WebLogic Server Administration Console 4-52
Configuring a UCP Using WLST 4-57
Universal Connection Pool Multi Tenant Shared Pool support 4-58
Monitoring Universal Connection Pool JDBC Resources 4-60
Oracle Sharding Support 4-60
Using Proxy Data Sources 4-61
What is Proxy Data Source 4-62
Configuring Proxy Data Source 4-62
Configuring a Proxy Data Source in the WebLogic Server Administration Console 4-63
Configuring a Proxy Data Source Using WLST 4-64
Monitoring Proxy Data Source JDBC Resources 4-65

5 JDBC Data Source Transaction Options

Enabling Support for Global Transactions with a Non-XA JDBC Driver 5-2
Understanding the Logging Last Resource Transaction Option 5-3
Advantages to Using the Logging Last Resource Optimization 5-4

ORACLE vi

Enabling the Logging Last Resource Transaction Optimization 5-4
Programming Considerations and Limitations for LLR Data Sources 5-4
Administrative Considerations and Limitations for LLR Data Sources 5-6
Understanding the Emulate Two-Phase Commit Transaction Option 5-7
Limitations and Risks When Emulating Two-Phase Commit Using a Non-XA Driver 5-8
Heuristic Completions and Data Inconsistency 5-8

Cannot Recover Pending Transactions 5-8
Possible Performance Loss with Non-XA Resources in Multi-Server Configurations 5-9
Multiple Non-XA Participants 5-9

Local Transaction Completion when Closing a Connection 5-9

6 Advanced Configurations for Oracle Drivers and Databases

JDBC Replay Driver 6-1
How JDBC Replay Driver Works 6-2
Requirements and Considerations 6-4
Configuring JDBC Replay Driver 6-4
Selecting the Driver for JDBC Replay Driver 6-5

Using a Connection Callback 6-5

Setting the Replay Timeout 6-6
Disabling JDBC Replay Driver for a Connection 6-7
Configuring Logging for JDBC Replay Driver 6-7
Enabling JDBC Driver Debugging 6-8
Viewing Runtime Statistics for JDBC Replay Driver 6-8
JDBC Replay Driver Auditing 6-11
Limitations with JDBC Replay Driver with Oracle 12c Database 6-12
Database Resident Connection Pooling 6-12
Requirements and Considerations 6-12
Configuring DRCP 6-13
Configuring a Data Source for DRCP 6-13
Configuring a Database for DRCP 6-14

Global Data Services 6-15
Requirements and Considerations 6-15
Creating a Active GridLink Data Source for GDS Connectivity 6-16
Container Database with Pluggable Databases 6-16
Creating Service for PDB Access 6-16
DRCP and CDB/PDB 6-17
Setting the PDB using JDBC 6-17
Service Switching 6-18

ORACLE

Vii

7 Using Connection Harvesting

What is Connection Harvesting 7-1
Enable Connection Harvesting 7-2
Marking Connections Harvestable 7-2
Recover Harvested Connections 7-2

8 Using Shared Pooling Data Sources

How shared Pooling Works 8-1
Requirements and Considerations when using Shared Pooling Data Sources 8-1
Configuring Shared Pooling 8-2
Configuring WebLogic Server-Specific Driver Properties for Shared Pooling 8-2
Configuring Database for Shared Pooling 8-4
o Using Oracle Databases with WebLogic Server
WebLogic JDBC Features for Oracle Database 12.1 9-1
JDBC 4.1 Support for JDK 7 9-2
JDBC Replay Driver Support 9-3
Database Resident Connection Pooling Support 9-3
Container Database with Pluggable Databases 9-3
Global Data Services Support 9-3
Automatic ONS Listeners 9-3
WebLogic JDBC Features for Oracle Database 12.2 9-3
JDBC 4.2 Interfaces 9-4
Database 12.2 JDBC Replay Driver 9-5
AGL Support for URL with @alias or @Idap 9-5

10 Labeling Connections

What is Connection Labeling 10-1
Implementing Labeling Callbacks 10-2
Creating a Labeling Callback 10-2

Example Labeling Callback 10-3
Registering a Labeling Callback 10-5

Removing a Labeling Callback 10-5

Applying Connection Labels 10-6
Reserving Labeled Connections 10-6
Checking Unmatched labels 10-7
Removing a Connection Label 10-7
Using Initialization and Reinitialization Costs to Select Connections 10-7

ORACLE viii

Considerations When Using Initialization and Reinitialization Costs 10-8
Using Connection Labeling with Packaged Applications 10-8

11 Understanding Data Source Security

About WebLogic Data Source Security Options 11-1
WebLogic Data Source Security Options 11-2
Credential Mapping vs. Database Credentials 11-3
Set Client Identifier on Connection 11-5
Oracle Proxy Session 11-6
Identity-based Connection Pooling 11-8
Connections within Transactions 11-9
WebLogic Data Source Resource Permissions 11-10
Data Source Security Example 11-11
Using Encrypted Connection Properties 11-12
Best Practices 11-13
WLST Examples 11-13
Using SSL and Encryption with Data Sources and Oracle Drivers 11-14
Using SSL with Data Sources and Oracle Drivers 11-15
Using SSL with Oracle Wallet 11-15

Active GridLink ONS over SSL 11-16

Using Data Encryption with Data Sources and Oracle Drivers 11-16

12 Creating and Managing Oracle Wallet

What is Oracle Wallet 12-1
Where to Keep Your Wallet 12-1
How to Create an External Password Store 12-2
Defining a WebLogic Server Data Source using the Wallet 12-3

Copy the Wallet Files 12-3

Update the Data Source Configuration 12-3
Using a TNS Alias instead of a DB Connect String 12-4

13 Deploying Data Sources on Servers and Clusters

Deploying Data Sources on Servers and Clusters 13-1
Minimizing Server Startup Hang Caused By an Unresponsive Database 13-1

14 Using WebLogic Server with Oracle RAC

Overview of Oracle Real Application Clusters 14-1
Software Requirements 14-2

ORACLE iX

JDBC Driver Requirements 14-2

Hardware Requirements 14-2
Configuration Options in WebLogic Server with Oracle RAC 14-3
Choosing a WebLogic Server Configuration for Use with Oracle RAC 14-3
Validating Connections when using WebLogic Server with Oracle RAC 14-4
Additional Considerations When Using WebLogic Server with Oracle RAC 14-4

15 Monitoring WebLogic JDBC Resources

Viewing Run-Time Statistics 15-1
Data Source Statistics 15-1
Prepared Statement Cache Statistics 15-1

Profile Logging 15-2

Collecting Profile Information 15-2
Profile Types 15-2

Connection Usage (WEBLOGIC.JDBC.CONN.USAGE) 15-3
Connection Reservation Wait (WEBLOGIC.JDBC.CONN.RESV.WAIT) 15-3
Connection Reservation Failed (WEBLOGIC.JDBC.CONN.RESV.FAIL) 15-4
Connection Leak (WEBLOGIC.JDBC.CONN.LEAK) 15-4
Connection Last Usage (WEBLOGIC.JDBC.CONN.LAST _USAGE) 15-4
Connection Multithreaded Usage (WEBLOGIC.JDBC.CONN.MT_USAGE) 15-5
Statement Cache Entry (WEBLOGIC.JDBC.STMT_CACHE.ENTRY) 15-5
Statements Usage (WEBLOGIC.JDBC.STMT.USAGE) 15-5
Connection Unwrap (WEBLOGIC.JDBC.CONN.UNWRAP) 15-5
JDBC Object Closed Usage (WEBLOGIC.JDBC.CLOSED_USAGE) 15-6
Local Transaction Connection Leak (WEBLOGIC.JDBC.CONN.LOCALTX_LEAK) 15-6
Example Profile Information Record Log 15-6
Accessing Diagnostic Data 15-7
Callbacks for Monitoring Driver-Level Statistics 15-7

Debugging JDBC Data Sources 15-7

Enabling Debugging 15-7
Enable Debugging Using the Command Line 15-8
Enable Debugging Using the WebLogic Server Administration Console 15-8
Enable Debugging Using the WebLogic Scripting Tool 15-8
Changes to the config.xml File 15-9

JDBC Debugging Scopes 15-10

Set Debugging for UCP or ONS 15-11

Request Dyeing 15-11

ORACLE X

16 Managing WebLogic JDBC Resources

Testing Data Sources and Database Connections 16-1
Managing the Statement Cache for a Data Source 16-2

Clearing the Statement Cache for a Data Source 16-2

Clearing the Statement Cache for a Single Connection 16-3
Shrinking a Connection Pool 16-3
Resetting a Connection Pool 16-4
Suspending a Connection Pool 16-4
Resuming a Connection Pool 16-5
Shutting Down a Data Source 16-6
Starting a Data Source 16-6
Managing DBMS Network Failures 16-7

17 Tuning Data Source Connection Pools

Increasing Performance with the Statement Cache 17-1
Statement Cache Algorithms 17-2
LRU (Least Recently Used) 17-2
Fixed 17-3
Statement Cache Size 17-3
Usage Restrictions for the Statement Cache 17-3
Calling a Stored Statement After a Database Change May Cause Errors 17-4
Using setNull In a Prepared Statement 17-4
Statements in the Cache May Reserve Database Cursors 17-4
Other Considerations When Using the Statement Cache 17-5
Initial Capacity Enhancement in the Connection Pool 17-5
Connection Testing Options for a Data Source 17-6
Database Connection Testing Semantics 17-8
Connection Testing When Database Connections are Created 17-8
Periodic Connection Testing 17-9
Testing Reserved Connections 17-9
Minimizing Connection Test Delay After Database Connectivity Loss 17-9
Minimizing Connection Request Delays After Loss of DBMS Connectivity 17-10
Minimizing Connection Request Delay with Seconds to Trust an Idle Pool
Connection 17-11
Database Connection Testing Configuration Recommendations 17-11
Database Connection Testing Using Default Test Table Name 17-12
Database Connection Testing Options 17-13
Enabling Connection Creation Retries 17-13
Enabling Connection Requests to Wait for a Connection 17-13
Connection Reserve Timeout 17-14

ORACLE Xi

Limiting the Number of Waiting Connection Requests 17-14

Automatically Recovering Leaked Connections 17-14
Avoiding Server Lockup with the Correct Number of Connections 17-15
Limiting Statement Processing Time with Statement Timeout 17-15
Using Pinned-To-Thread Property to Increase Performance 17-15
Changes to Connection Pool Administration Operations When PinnedToThread is
Enabled 17-16
Additional Database Resource Costs When PinnedToThread is Enabled 17-17
Using Unwrapped Data Type Objects 17-17
How to Disable Wrapping 17-18
Disable Wrapping using the Administration Console 17-18
Disable Wrapping using WLST 17-19
Tuning Maintenance Timers 17-19

A Configuring JDBC Application Modules for Deployment

Packaging a JDBC Module with an Enterprise Application: Main Steps A-1
Creating Packaged JDBC Modules A-2
Creating a JDBC Data Source Module Using the Administration Console A-2
JDBC Packaged Module Requirements A-3
JDBC Application Module Limitations A-3
Creating a Generic Data Source Module A-4
Creating an Active GridLink Data Source Module A-5
Creating a Multi Data Source Module A-5
Encrypting Database Passwords in a JDBC Module A-6
Deploying JDBC Modules to New Domains A-6
Application Scoping for a Packaged JDBC Module A-6
Referencing a JDBC Module in Java EE Descriptor Files A-6
Packaged JDBC Module References in weblogic-application.xml A-8
Packaged JDBC Module References in Other Descriptors A-8
Packaging an Enterprise Application with a JDBC Module A-9
Deploying an Enterprise Application with a JDBC Module A-9
Getting a Database Connection from a Packaged JDBC Module A-9

B Using Multi Data Sources with Oracle RAC

Overview of Oracle RAC B-2
Oracle RAC Scalability with WebLogic Server Multi Data Sources B-3
Oracle RAC Availability with WebLogic Server Multi Data Sources B-3
Oracle RAC Load Balancing with WebLogic Server Multi Data Sources B-3

Software Requirements B-3

JDBC Driver Requirements B-4

ORACLE Xii

Hardware Requirements
WebLogic Server Cluster
Oracle RAC Cluster
Shared Storage
Configuring Multi Data Sources with Oracle RAC
Choosing a Multi Data Source Configuration for Use with Oracle RAC
Configuring Multi Data Sources for use with Oracle RAC
Attributes of a Multi Data Source
Configuration Considerations for Failover
Multi Data Source-Managed Failover and Load Balancing
Delays During Failover
Failure Handling Walkthrough for Global Transactions
Configuring the Listener Process for Each Oracle RAC Instance
Configuring Multi Data Sources When Remote Listeners are Enabled or Disabled
Additional Configuration Considerations
Using Multi Data Sources with Global Transactions
Rules for Data Sources within a Multi Data Source Using Global Transactions

Required Attributes of Data Sources within a Multi Data Source Using Global
Transactions

Sample Configuration Code
Using Multi Data Sources without Global Transactions

Attributes of Data Sources within a Multi Data Source Not Using Global Transactions

Sample Configuration Code
Configuring Connections to Services on Oracle RAC Nodes
Configuring a Data Source to Connect to a Service
Service Connection Configurations
Workload Management
Load Balancing
Connection Pool Capacity Planning
Using SCAN Addresses with Multi Data Sources
XA Considerations and Limitations when using Multi Data Sources with Oracle RAC
Oracle RAC XA Requirements when using Multi Data Sources
Known Issue Occurring After Database Server Crash
JDBC Store Recovery with Oracle RAC
Configuring a JDBC Store for Use with Oracle RAC
Automatic Retry for IMS Connections

ORACLE

B-4
B-4
B-4
B-5
B-5

B-6
B-7
B-7
B-7
B-9

B-10
B-11
B-12
B-12

B-13
B-14
B-15
B-15
B-16
B-17
B-17
B-19
B-19
B-21
B-23
B-27
B-27
B-27
B-28
B-28
B-28
B-28

Xiii

Preface

Preface

Audience

This document contains Java Database Connectivity (JDBC) data source configuration
and administration information.

* Audience

e Documentation Accessibility
e Diversity and Inclusion

* Related Documentation

e Conventions

This document is a resource for software developers and system administrators who
develop and support applications that use the Java Database Connectivity (JDBC)
API. It also contains information that is useful for business analysts and system
architects who are evaluating WebLogic Server. The topics in this document are
relevant during the evaluation, design, development, pre-production, and production
phases of a software project.

This document does not address specific JDBC programming topics. For links to
WebLogic Server documentation and resources for this topic, see Related
Documentation.

It is assumed that the reader is familiar with Java EE and JDBC concepts. This
document emphasizes the value-added features provided by WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion

ORACLE

Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our

XV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

initiative to build a more inclusive culture that positively impacts our employees, customers,
and partners, we are working to remove insensitive terms from our products and
documentation. We are also mindful of the necessity to maintain compatibility with our
customers' existing technologies and the need to ensure continuity of service as Oracle's
offerings and industry standards evolve. Because of these technical constraints, our effort to
remove insensitive terms is ongoing and will take time and external cooperation.

Related Documentation

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

» Developing JDBC Applications for Oracle WebLogic Server is a guide to JDBC API
programming with WebLogic Server.

» Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic
Server applications.

» Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications in development and production
environments.

JDBC Samples and Tutorials

In addition to this document, Oracle provides a variety of JDBC code samples and tutorials
that show configuration and API use, and provide practical instructions on how to perform key
JDBC development tasks.

e Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server that
simulates an independent, centralized medical record management system. The MedRec
application provides a framework for patients, doctors, and administrators to manage
patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. You can optionally install MedRec with the WebLogic
Server. You can start MedRec from the ORACLE HOME\user projects\domains\medrec
directory, where ORACLE HOME is the directory you specified as the Oracle Home when
you installed Oracle WebLogic Server.

 JDBC Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in

EXAMPLES HOME\wl server\examples\src\examples, where EXAMPLES HOME represents
the directory in which the WebLogic Server code examples are configured. For more
information, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

New WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions

The following text conventions are used in this document:

ORACLE v

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

XVi

About WeblLogic JDBC Resources

To configure JDBC resources you need to understand how to use the different types of data
sources available such as Active GridLink (AGL) and Multi Data Source (MDS). Each data
source that you configure contains a pool of database connections that are created when the
data source instance is created—when it is deployed or targeted, or at server startup.

« JDBC Resources

« JDBC Data Sources

e JMX and WLST Access for JDBC Resources
e WebLogic Server with Oracle RAC

* Advanced Configurations for Oracle Drivers and Databases

JDBC Resources

The key to understanding WebLogic JDBC data source configuration is to understand who
creates a JDBC resource or how a JDBC resource is created and managed. This determines
how a resource will be deployed and modified.

Both system administrators and programmers can create and manage JDBC resources either
as system modules or as application modules. WebLogic supports either standard or
proprietary JDBC application modules. Regardless of whether you are using JDBC system
modules or JDBC application modules, each JDBC data source is represented by an XML file
(a module).

* System Modules: WebLogic Administrators typically use the WebLogic Server
Administration Console or the WebLogic Scripting Tool (WLST) to create and deploy
(target) JDBC modules. These JDBC modules are considered system modules. See
JDBC System Modules.

* Application Modules: Programmers create modules in a development tool that supports
creating an XML descriptor file, then package the JDBC modules with an application (for
example, an EAR or WAR file) and pass the application to a WebLogic Administrator to
deploy. These JDBC modules are considered application modules. See JDBC Application
Modules.

The standard JDBC application modules are created using the JEE 6 annotations or schema
definitions based on datasourcedefinition. The proprietary JDBC application modules are a
WebLogic-specific extension of Java EE modules and can be configured either within a Java
EE application or as stand-alone modules.

These documents conform to the jdbc-data-source.xsd schema (available at http://
www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html).

Table 1-1 lists the JDBC module types and how they can be configured and modified.

ORACLE 1-1

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html

Chapter 1
JDBC Data Sources

Table 1-1 JDBC Module Types and Configuration and Management Options
|

Module Created with Add/ Modify Modify with Modify with
Type Remove with JSR-88 Administration
Modules JMX (non- Console
with (remotel remotely)
Administra y)
tion
Console
System WebLogic Server Yes Yes No Yes—via JMX
Administration Console
or WLST
Application Oracle Enterprise Pack No No Yes—viaa Yes—viaa
for Eclipse (OEPE), deployment deployment plan
Oracle JDeveloper, plan
another IDE, or an XML
editor

JDBC Data Sources

ORACLE

In WebLogic Server, you configure database connectivity by adding data sources to
your WebLogic domain. WebLogic JDBC data sources provide database access and
database connection management.

Each data source contains a pool of database connections that are created when the
data source is created and at server startup. Applications reserve a database
connection from the data source by looking up the data source on the JNDI tree or in
the local application context and then calling getConnection (). When finished with the
connection, the application should call connection.close () as early as possible,
which returns the database connection to the pool for other applications to use.

You can configure database connectivity by adding JDBC data sources to your
WebLogic domain. Configuring data sources requires several steps including choosing
a type of data source, creating the data source, configuring connection pools and
Oracle database parameters and so on. See Configuring JDBC Data Sources.

Types of WebLogic Server JDBC Data Sources
WebLogic Server provides the following types of data sources:

» Default data sources—Oracle provides a default data source required by a Java
EE 7-compliant runtime. Applications can use this pre-configured data source to
access the Derby database installed with the WebLogic Server. See Using the
Default Data Source.

* Generic data sources—Generic data sources and their connection pools provide
connection management processes that help keep your system running efficiently.
You can set options in the data source to suit your applications and your
environment. See Using Generic Data Sources.

* Active GridLink data sources—A data source that provides a connection pool
that spans one or more nodes in one or more Oracle RAC clusters. It supports
dynamic load balancing of connections across the nodes and handles events
indicating nodes added and removed from the cluster(s). See Using Active
GridLink Data Sources.

1-2

Chapter 1
JMX and WLST Access for JDBC Resources

* Multi Data Source —A MDS is an abstraction around a group of Generic data sources
that provides load balancing or failover processing. See Configuring JDBC Multi Data
Sources.

* Proxy data source—A data source that provides the ability to switch between databases
in a WebLogic Server Multitenant environment. See Using Proxy Data Sources.

* Universal Connection Pool (UCP) data source—A UCP data source provides an
option for users who wish to use Oracle Universal Connection Pooling to connect to
Oracle Databases. UCP provides an alternative connection pooling technology to Oracle
WebLogic Server connection pooling. See Using Universal Connection Pool Data
Sources.

JMX and WLST Access for JDBC Resources

You can create JDBC resources using any of the WebLogic Server administration tools.
When you create JDBC resources, WebLogic Server creates MBeans (Managed Beans) for
each of the resources. You can then access these MBeans using Java Management
Extensions (JMX) or the WebLogic Scripting Tool (WLST).

The WebLogic Scripting Tool is a complete, command-line scripting environment for
managing Oracle WebLogic Server domains, based on the Java scripting interpreter, Jython.
In addition to supporting standard Jython features such as local variables, conditional
variables, and flow control statements, the WebLogic Scripting Tool provides a set of scripting
functions (commands) that are specific to Oracle WebLogic Server. You can extend the
WebLogic scripting language to suit your needs by following the Jython language syntax.
See, Using the WebLogic Scripting Tool in Understanding the WebLogic Scripting Tool.

To integrate third-party management systems with the WebLogic Server management
system, WebLogic Server provides standards-based interfaces that are fully compliant with
the JMX specification. Software vendors can use these interfaces to monitor WebLogic
Server MBeans, to change the configuration of a WebLogic Server domain, and to monitor
the distribution (activation) of those changes to all server instances in the domain. See,
Understanding WebLogic Server MBeans in Developing Custom Management Ulilities Using
JMX for Oracle WebLogic Server.

For a complete list of WebLogic Server administration tools, see Summary of System
Administration Tools and APIs in Understanding Oracle WebLogic Server.

For detailed information, see JIMX and WLST Access for JDBC Resources.

WebLogic Server with Oracle RAC

Oracle WebLogic Server provides strong support for Oracle Real Application Clusters (RAC),
minimizing database access time while allowing transparent access to rich pooling
management functions that maximizes both connection performance and availability.

See:

* Using WebLogic Server with Oracle RAC
» Using Multi Data Sources with Oracle RAC
e #unique_36

ORACLE 1-3

Chapter 1
Advanced Configurations for Oracle Drivers and Databases

Advanced Configurations for Oracle Drivers and Databases

ORACLE

Oracle provides advanced configuration options such as JDBC Replay Driver,
database resident connection policy, and global database services to improve data
source and driver performance when using Oracle drivers and databases. These
configuration options help in the management of connection reservations in the data
source.

For more information, see Advanced Configurations for Oracle Drivers and Databases.

1-4

Configuring WeblLogic JDBC Resources

To configure the JDBC resource you need to understand how to use JDBC resources in a
WebLogic domain, ownership of resources, how to create MBeans for JDBC resources using
tools like IMX and WLST, and how to increase the availability of JDBC resources. In
WebLogic Server, you can configure database connectivity by configuring JDBC resources
and then targeting or deploying the JDBC resources to servers or clusters in your WebLogic
domain.

JDBC System Modules

When you create a JDBC resource (data source) using the WebLogic Server
Administration Console or using the WebLogic Scripting Tool (WLST), WebLogic Server
creates a JDBC module in the config/jdbc subdirectory of the domain directory and
adds a reference to the module in the domain's config.xml file.

JDBC Application Modules
In contrast to system resource modules, the developer creates, packs, and owns the
JDBC modules whereas the Administrator only deploys the module.

JDBC Module File Naming Requirements
All WebLogic JDBC module files must end with the -jdbc. xml suffix, such as examples-
demo-jdbc.xml.

JDBC Modules in Versioned Applications
WebLogic Server identifies the data source defined in the JDBC module with a specific
name.

JDBC Schema

In support of the modular deployment model for JDBC resources in WebLogic Server,
Oracle provides a schema for WebLogic JDBC objects: weblogic-jdbc.xsd. When you
create JDBC resource modules (descriptors), the modules must conform to the schema.
IDEs and other tools can validate JDBC resource modules based on the schema.

JDBC Data Source Type
Data sources should have a datasource-type set in the descriptor. This functionality was
added in WebLogic Server 12.2.1 and is optional for backward compatibility.

JMX and WLST Access for JDBC Resources
This section describes how to access WebLogic Server MBeans using JMX client or the
WebLogic Scripting Tool (WLST).

Creating High-Availability JDBC Resources

To improve the availability of your JDBC resource and load balance communication
between resources you can target or deploy a JDBC data source to the members of a
cluster using the WebLogic Server Administration Console.

JDBC System Modules

When you create a JDBC resource (data source) using the WebLogic Server Administration
Console or using the WebLogic Scripting Tool (WLST), WebLogic Server creates a JDBC
module in the config/jdbc subdirectory of the domain directory and adds a reference to the
module in the domain's config.xml file.

ORACLE

2-1

Chapter 2
JDBC System Modules

The JDBC module conforms to the jdbc-data-source.xsd schema (available at
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/
index.html).

JDBC data sources that you configure this way are known as system modules.
Administrator owns the system modules and can delete, modify, or add similar
resources at any time. System modules are globally available for targeting servers and
clusters configured in the domain and therefore are available to all applications
deployed on the same targets and to client applications. System modules are also
accessible through JMX as JDBCSystemResourceMBeans.

» Generic Data Source Modules
e Active GridLink Data Source System Modules

e Multi Data Source System Modules

Generic Data Source Modules

Generic data source system modules are included in the domain's config.xml file as a
JDBCSystemResource element, which includes the name of the JDBC module file and
the list of target servers and clusters on which the module is deployed. Figure 2-1
shows an example of a data source listing in a config.xml file and the module that it
maps to.

< Note:

Generic is the term used to distinguish a simple data source from a Multi
Data Source or Active GridLink data source.

Figure 2-1 Reference from config.xml to a Data Source System Module

Domain\ config Directory Domain\ config\jdbc Directory
. </> . </>
config.xml examples-demo-jdbc.xml
<jdbc-system-resource> <jdbc-data-source>
<name>examples-demo</name> — 3 <name>examples-demo</name>
<target>examplesServer</target> <jdbc-driver-params>

</jdbc-system-resource> e
</jdbc-driver-params>
<jdbc-connection-pool-params>

</jdbc-connection-pool-params>
<jdbc-data-source-params>

</jdbc-data-source-params>
<jdbc-xa-params>

</jdbc-xa-params>
</jdbc-data-source>

ORACLE 2-2

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html

Chapter 2
JDBC System Modules

In this illustration, the config.xml file lists the examples-demo data source as a jdbc-system-
resource element, which maps to the examples-demo-jdbc.xml module in the
domain\config\jdbc folder.

Active GridLink Data Source System Modules

Active GridLink data source system modules are included in the domain's config.xml file as
a JDBCSystemResource element, similar to Generic data source system modules. Active
GridLink data sources include a jdbc-oracle-params section that includes ONS and FAN.

For more information about Active GridLink data sources, see Using Active GridLink Data

Sources.

Multi Data Source System Modules

Similarly, Multi Data Source (MDS) system modules are included in the domain's config.xml
file as a jdbc-system-resource element. The MDS module includes a data-source-1list
parameter that maps to the data source modules used by the MDS. The individual data
source modules are also included in the config.xml. Figure 2-2 shows the relationship
between elements in the config.xml file and the system modules in the config/jdbc

directory.

Figure 2-2 Reference from config.xml to Multi Data Source and Data Source System Modules

Domain\config Directory
</>

config.xml

<jdbc-system-resource>

Domain\config\jdbc Directory

PB-MultiDataSource-jdbc.xml

<jdbc-data-source>

</>

<name>PB-MultiDataSource</name> — ——3 <name>PB-MultiDataSource</name>

<target>examplesServer</target>
</jdbc-system-resource>
<jdbc-system-resource>
<name>examples-demo</name>
<target>examplesServer</target>
</jdbc-system-resource>
<jdbc-system-resource>
<name>examples-demo-2</name>
<target>examplesServer</target>
</jdbc-system-resource>

ORACLE

<jdbc-data-source-params>

<jndi-name>PB-MultiDataSource</jndi-name>
<algorithm-type>Failover</algorithm-type>

</data-source-list>
</jdbc-data-source-params>
</jdbc-data-source>

<data-source-list>examples-demo-2, examples-demo

Y
</>

XML

examples-demo-2-jdbc.xml

<jdbc-data-source>
<name>examples-demo-2</name>
<jdbc-driver-params>

</jdbc-driver-params>
<jdbc-connection-pool-params>

</jdbc-connection-pool-params>
<jdbc-data-source-params>

</jdbc-data-source-params>
<jdbc-xa-params>

</jdbc-xa-params>
</jdbc-data-source>

Y

examples-demo-jdbc.xml

<jdbc-data-source>
<name>examples-demo</name>
<jdbc-driver-params>

</jdbc-driver-params>
<jdbc-connection-pool-params>

</jdbc-connection-pool-params>
<jdbc-data-source-params>

</jdbc-data-source-params>
<jdbc-xa-params>

</jdbc-xa-params>
</jdbc-data-source>

2-3

Chapter 2
JDBC Application Modules

In this illustration, the config.xml file lists three JDBC modules—one MDS and the
two Generic data sources used by the MDS, which are also listed within the MDS
module. Your application can look up any of these modules on the JNDI tree and
request a database connection. If you look up the MDS, the MDS determines which of
the Generic data sources to use to supply the database connection, depending on the
data sources in the data-source-1ist parameter, the order in which the data sources
are listed, and the algorithm specified in the algorithm-type parameter.

Note:

Members of a MDS must be Generic data sources; they cannot be MDS or
Active GridLink data sources.

For more information about MDS, see Configuring JDBC Multi Data Sources.

JDBC Application Modules

In contrast to system resource modules, the developer creates, packs, and owns the
JDBC modules whereas the Administrator only deploys the module.

This means that the Administrator has limited control over packaged modules. When
deploying a resource module, an Administrator can change the specified resource
properties in the module, but the Administrator cannot add or delete modules. (As with
other Java EE modules, deployment configuration changes for a resource module are
stored in a deployment plan for the module, leaving the original module untouched.)

e Standard Java EE Application Modules
* Proprietary JDBC Application Modules

Standard Java EE Application Modules

Java EE 7 provides the option to programmatically define bataSource resources as
application modules for a more flexible and portable method of database connectivity.
See Using DataSource Resource Definitions in Developing JDBC Applications for
Oracle WebLogic Server.

Proprietary JDBC Application Modules

ORACLE

JDBC resources can also be managed as application modules, similar to standard
Java EE modules. A proprietary JDBC application module is simply an XML file that
conforms to the jdbc-data-source.xsd schema (available at http://
www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html)
and represents a data source.

JDBC modules can be included as part of an Enterprise Application as a packaged
module. Packaged modules are bundled with an EAR or exploded EAR directory, and
are referenced in all appropriate deployment descriptors, such as the weblogic-
application.xml and ejb-jar.xml deployment descriptors. The JDBC module is
deployed along with the enterprise application, and can be configured to be available
only to the enclosing application or to all applications. Using packaged modules
ensures that an application always has access to required resources and simplifies the

2-4

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html

Chapter 2
JDBC Application Modules

process of moving the application into new environments. With packaged JDBC modules,
you can migrate your application and the required JDBC configuration from environment to
environment, such as from a testing environment to a production environment, without
opening an EAR file and without extensive manual data source reconfiguration.

By definition, packaged JDBC modules are included in an enterprise application, and
therefore are deployed when you deploy the enterprise application. For more information
about deploying applications with packaged JDBC modules, see Deploying Applications to
Oracle WebLogic Server.

A proprietary JDBC application module can also be deployed as a stand-alone resource
using the weblogic.Deployer utility or the WebLogic Server Administration Console, in which
case the resource is typically available to the server or cluster targeted during the deployment
process. JDBC resources deployed in this manner are called stand-alone modules and can
be reconfigured using the WebLogic Server Administration Console or a JSR-88 compliant
tool, but are unavailable through JMX or WLST.

Stand-alone JDBC modules promote sharing and portability of JDBC resources. You can
create a data source configuration and distribute it to other developers. Stand-alone JDBC
modules can also be used to move data source configuration between domains, such as
between the development domain and the staging domain.

" Note:

When deploying proprietary JDBC modules as standalone modules, a Multi Data
Source needs to have a deployment order that is greater than the deployment
orders of its member Generic data sources.

For more information about JDBC application modules, see Configuring JDBC Application
Modules for Deployment.

For information about deploying stand-alone JDBC modules, see Deploying JDBC, JMS, and
WLDF Application Modules in Deploying Applications to Oracle WebLogic Server.

e Including Drivers in EAR/WAR Files

Including Drivers in EAR/WAR Files

ORACLE

In WebLogic Server 10.3.6 and higher releases, you can include a database driver in the
APP-INF/1ib directory of the EAR/WAR file that contains a packaged data source. This
allows you to deploy a self-contained EAR/WAR file that has both the data source and driver
required for an application.

Note:

You do not need to update the classpath of the manifest file to include the driver
location.

An EAR has its own classloader and it is shared across all of the nested applications so any
of them can use it. You can deploy multiple EAR/WAR files, each with a different driver
version. However, if there are other versions of the driver in the system classpath, set

2-5

Chapter 2
JDBC Module File Naming Requirements

prefer-web-inf-classes=true in the weblogic.xml file to ensure that the application
uses the driver classes that it was packaged with which it was packaged.

When using the Oracle driver embedded in an EAR or WAR with ojdbc6.jar or
ojdbc7.7jar, there is a known problem related to cleaning up the associated
classloader. To resolve this problem, call
oracle.jdbc.OracleDriver.deregisterHack () from the contextDestroyed () method
of a ServletContextListener.

You can also use the WEB-INF/1ib directory to hold driver JAR files. The following
example shows the location of the various directories in WAR and EAR files.

Application (ear)
Web module (war)
WEB-INF/1ib
EJB module
META-INF
APP-INF/1ib

However, you cannot have two versions of the same JAR in both DOMAIN HOME/1lib
(see Using a Third-Party JAR File in DOMAIN_HOME/Iib or the system classpath and
WEB-INF/lib Or APP-INF/1ib, with prefer-web-inf-classes Or prefer-application-
packages set. That is, you should do only one of the following:

» Use DOMAIN HOME/lib or system classpath to get the driver into all applications in
the domain.

* Use the driver embedded in the application.

¢ Note:

If you do not adhere to this restriction, it is possible (depending on the JAR,
the version changes, and the order in which the JARs are referenced) that a
ClassCastException will occur in the application.

If the JAR files are present in multiple locations, the following rules apply:

e Ifprefer-web-inf-classes in the weblogic.xnl is false, the precedence is:
system classpath > DOMAIN_HOME/libAPP—INF/libWEB—INF/lib.

e Ifprefer-web-inf-classes in weblogic.xml is true, the classes in WEB-INF/1ib
will take precedence over all other locations.

JDBC Module File Naming Requirements

ORACLE

All WebLogic JDBC module files must end with the -jdbc. xml suffix, such as
examples-demo-jdbc.xml.

WebLogic Server checks the file name when you deploy the module. If the file does
not end in -jdbc.xml, the deployment will fail and the server will not boot.

2-6

Chapter 2
JDBC Modules in Versioned Applications

JDBC Modules in Versioned Applications

WebLogic Server identifies the data source defined in the JDBC module with a specific name.

When you use production redeployment (versioning) to deploy a version of an application that
includes a packaged JDBC module, WebLogic Server identifies the data source defined in
the JDBC module with a name in the following format:

application id#version id€module name€data source name

This name is used for data source run-time MBeans and for registering the data source
instance with the WebLogic Server transaction manager.

If transactions in a retiring version of an application time out and the version of the application
is then undeployed, you may have to manually resolve any pending or incomplete
transactions on the data source in the retired version of the application. After a data source is
undeployed (in this case, with the retired version of the application), the WebLogic Server
transaction manager cannot recover pending or incomplete transactions.

For more information about production redeployment, see Developing Applications for
Production Redeployment and Using Production Redeployment to Update Applications in
Deploying Applications to Oracle WebLogic Server.

JDBC Schema

ORACLE

In support of the modular deployment model for JDBC resources in WebLogic Server, Oracle
provides a schema for WebLogic JDBC objects: weblogic-jdbc.xsd. When you create JDBC
resource modules (descriptors), the modules must conform to the schema. IDEs and other
tools can validate JDBC resource modules based on the schema.

The schema is available at http://www.oracle.com/webfolder/technetwork/weblogic/
jdbc-data-source/index.html.

" Note:

The scope in the jdbc-data-source-params element of the schema may only be
set to Application for packaged data sources. The value Application is not valid
for:

e System resources in config/jdbc, including Generic, Multi Data Sources, and
Active GridLink data sources.

e Stand-alone data sources that are deployed dynamically or statically using the
<app-deployment> element in the config.xml file.

For these data source types, there is no application to scope the data source and
no associated module. WebLogic Server does not generate a scope of
Application. This omission was not flagged as an error in releases prior to
WebLogic Server 10.3.6.0 and is displayed in the console with an invalid name
similar to ds0@nul1@ds0. For WebLogic Server 10.3.6.0 and higher, an Error
message is logged for this configuration error and the system attempts to set the
scope to Global and display the data source name as ds0. In future releases, this
error may be treated as fatal.

2-7

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html

Chapter 2
JDBC Data Source Type

JDBC Data Source Type

Data sources should have a datasource-type set in the descriptor. This functionality
was added in WebLogic Server 12.2.1 and is optional for backward compatibility.

The valid values are:

Generic—Generic data source

MDS —Multi Data Source

AGL—Active GridLink data source
ucp—Universal Connection Pool data source

PROXY—Proxy for multiple tenant data sources

If the datasource-type is not set to UCP or Proxy, the following validations are
performed:

If datasource-type is set to AGL, it is treated as an Active GridLink data source
even if FAN enabled is false and no ONs list is configured, and the Active GridLink
flag is false.

If the datasource-type is not set to AGL, it is an error even if FAN enabled is true or
an ONS list is configured or the Active GridLink flag is true.

If no data source list exists (it does not have Multi Data Source members) and
datasource-type is set to anything other than GENERIC or AGL, it is an error.

If the data source list exists (it has Multi Data Source members) and the
datasource-type is set to anything other than MDs, it is an error.

JMX and WLST Access for JDBC Resources

This section describes how to access WebLogic Server MBeans using JMX client or
the WebLogic Scripting Tool (WLST).

JDBC MBeans for System Resources

JDBC Management Objects in the Java EE Management Model (JSR-77 Support)
Using WLST to Create JDBC System Resources

How to Modify and Monitor JDBC Resources

Best Practices when Using WLST to Configure JDBC Resources

JDBC MBeans for System Resources

Figure 2-3 shows the hierarchy of the MBeans for JDBC objects in a WebLogic
domain.

ORACLE

2-8

Chapter 2
JMX and WLST Access for JDBC Resources

Figure 2-3 JDBC Bean Tree

|
DomainMBean

L JDBCSystemResourceMBean
JavaBean representations of JDBC descriptor elements
JDBCDataSourceBean
— JDBCDriverParamsBean
— JDBCConnectionPoolParamsBean

- JDBCDataSourceParamsBean

— JDBCXAParamsBean

The JDBCSystemResourceMBean is a container for the JavaBeans created from a data source
module. However, all IMX access for a JDBC data source is through the
JDBCSystemResourceMBean. You cannot directly access the individual JavaBeans created
from the data source module.

JDBC Management Objects in the Java EE Management Model (JSR-77
Support)

The WebLogic Server JDBC subsystem supports JSR-77, which defines the Java EE
Management Model. The Java EE Management Model is used for monitoring the run-time
state of a Java EE Web application server and its resources. You can access the Java EE
Management Model to monitor resources, including the WebLogic JDBC subsystem as a
whole, JDBC drivers loaded into memory, and JDBC data sources.

To comply with the specification, Oracle added the following run-time MBean types for the
WebLogic JDBC subsystem:

* JDBCServiceRuntimeMBean—Which represents the JDBC subsystem and provides
methods to access the list of JDBCDriverRuntimeMBeans,
JDBCMultiDataSourceRuntimeMBean, and JDBCDataSourceRuntimeMBeans currently
available in the system.

ORACLE 2-9

Chapter 2
JMX and WLST Access for JDBC Resources

JDBCMultiDataSourceRuntimeMBean—Which represents a JDBC Multi Data
Source deployed on a server or cluster.

JDBCDriverRuntimeMBean—Which represents a JDBC driver that the server loaded
into memory.

JDBCDataSourceRuntimeMBeans—Which represents a JDBC Generic or Active
GridLink data source deployed on a server or cluster.

Note:

WebLogic JDBC run-time MBeans do not implement the optional
Statistics Provider interfaces specified by JSR-77.

For more information about using the Java EE management model with WebLogic
Server, see Developing Java EE Management Applications for Oracle WebLogic
Server.

Using WLST to Create JDBC System Resources

Basic tasks you need to perform when creating JDBC resources with the WLST are:

Start an edit session.

Create a JDBC system module that includes JDBC system resources, such as
pools, data sources, Multi Data Sources, and JDBC drivers.

Target your JDBC system module.

Example 2-1 WLST Script to Create JDBC Resources

import sys

from java.lang import System

print "@@@ Starting the script ...

global props

url = sys.argv[l]
usr = sys.argv([2]

password = sys.argv[3]

connect (usr,password, url)

edit ()
startEdit ()

servermb=getMBean ("Servers/examplesServer")
if servermb is None:
print '@@E@ No server MBean found'

else:

def addJDBC (prefix):

print ("m

print ("*** Creating JDBC resources with property prefix " + prefix)

Create the Connection Pool. The system resource will have

ORACLE

2-10

Chapter 2
JMX and WLST Access for JDBC Resources

generated name of <PoolName>+"-jdbc"

myResourceName = props.getProperty (prefix+"PoolName")
print ("Here is the Resource Name: " + myResourceName)

jdbcSystemResource = wl.create (myResourceName, "JDBCSystemResource")
myFile = jdbcSystemResource.getDescriptorFileName ()
print ("HERE IS THE JDBC FILE NAME: " + myFile)

jdbcResource = jdbcSystemResource.getJDBCResource ()
jdbcResource.setName (props.getProperty (prefix+"PoolName"))

Create the DataSource Params
dpBean = jdbcResource.getJDBCDataSourceParams ()
myName=props.getProperty (prefix+"JNDIName")
dpBean.setJNDINames ([myName])

Create the Driver Params
drBean = jdbcResource.getJDBCDriverParams ()
drBean.setPassword (props.getProperty (prefix+"Password")
drBean.setUrl (props.getProperty (prefix+"URLName"))
drBean.setDriverName (props.getProperty (prefix+"DriverName"))

propBean = drBean.getProperties()
driverProps = Properties()
driverProps.setProperty ("user",props.getProperty (prefix+"UserName")

e = driverProps.propertyNames ()

while e.hasMoreElements ()
propName = e.nextElement ()
myBean = propBean.createProperty (propName)
myBean.setValue (driverProps.getProperty (propName))

Create the ConnectionPool Params
ppBean = jdbcResource.getJDBCConnectionPoolParams ()
ppBean.setInitialCapacity (int (props.getProperty(prefix+"InitialCapacity")))
ppBean.setMaxCapacity (int (props.getProperty (prefix+"MaxCapacity")))

if not props.getProperty(prefix+"ShrinkPeriodMinutes") == None:
ppBean.setShrinkFrequencySeconds (int (props.getProperty (prefix+"ShrinkPeriodMinutes")))
if not props.getProperty(prefix+"TestTableName") == None:

ppBean.setTestTableName (props.getProperty (prefix+"TestTableName"))

if not props.getProperty(prefix+"LoginDelaySeconds") == None:
ppBean.setlLoginDelaySeconds (int (props.getProperty (prefix+"LoginDelaySeconds")))

Adding KeepXaConnTillTxComplete to help with in-doubt transactions.
xaParams = jdbcResource.getJDBCXAParams ()

xaParams.setKeepXaConnTillTxComplete (1)

Add Target
jdbcSystemResource.addTarget (wl.getMBean ("/Servers/examplesServer")

How to Modify and Monitor JDBC Resources

You can modify or monitor JDBC objects and attributes by using the appropriate method
available from the MBean.

ORACLE' 211

Chapter 2
Creating High-Availability JDBC Resources

* You can modify JDBC objects and attributes using the set, target, untarget, and
delete methods.

* You can monitor JDBC run-time objects using get methods.

See Navigating MBeans (WLST Online) in Understanding the WebLogic Scripting
Tool.

Best Practices when Using WLST to Configure JDBC Resources

e Trap for Null MBean objects (such as pools, data sources, and drivers) before
trying to manipulate the MBean object.

* When using WLST offline, the following characters are not valid in names of
management objects: period (.), forward slash (/), or backward slash (\). See
Syntax for WLST Commands in Understanding the WebLogic Scripting Tool.

Creating High-Availability JDBC Resources

ORACLE

To improve the availability of your JDBC resource and load balance communication
between resources you can target or deploy a JDBC data source to the members of a
cluster using the WebLogic Server Administration Console.

However, connections do not failover in the event that a cluster member becomes
unavailable for any reason. New connections are created as needed on available
cluster members. See Deploying Data Sources on Servers and Clusters.

" Note:

A Multi Data Source can only use Generic data sources that are deployed on
the same cluster member (in the same JVM).

2-12

Configure Database Connectivity

In WebLogic Server, you configure database connectivity through JDBC data sources, either
in your WebLogic domain configuration or in your enterprise application.

Using JDBC Drivers with WebLogic Server
Configuring JDBC Data Sources

Using JDBC Drivers with WebLogic Server

WebLogic Server uses JDBC drivers to provide access to various databases. WebLogic
Server comes with a default set of JIDBC drivers but third-party JDBC drivers can also be
used.

Types of JDBC Drivers

JDBC drivers listed in the WebLogic Server Administration Console when creating a data
source are not necessarily certified for use with WebLogic Server. JDBC drivers are listed
as a convenience to help you create connections to many of the database management
systems available.

JDBC Driver Support
WebLogic Server provides support for application data access to any database using a
JDBC-compliant driver.

JDBC Drivers Installed with WebLogic Server

The Oracle JDBC Thin driver 19.3 is installed with Oracle WebLogic Server 12.2.1.4. In
addition to the Oracle Thin Driver, the mySQL Connector/J 8.0 (mysgl-connector-java-
commercial-8.0.14-bin.jar) JDBC driver, WebLogic-branded DataDirect drivers are
also installed with WebLogic Server.

Upgrading and Using Latest Oracle 19c JDBC Drivers with WebLogic Server

The Oracle Database 19.3 JDBC driver is included by default with WebLogic Server
12.2.1.4 and 14.1.1.0. This topic provides you with information on upgrading and using
the latest version of the Oracle Database 19c JDBC driver with WebLogic Server.

Adding Third-Party JDBC Drivers Not Installed with WebLogic Server
Globalization Support for the Oracle Thin Driver

Using the Oracle Thin Driver in Debug Mode

Types of JDBC Drivers

JDBC drivers listed in the WebLogic Server Administration Console when creating a data
source are not necessarily certified for use with WebLogic Server. JDBC drivers are listed as
a convenience to help you create connections to many of the database management systems
available.

ORACLE

You must install JIDBC drivers in order to use them to create database connections in a data
source on each server on which the data source is deployed. Drivers are listed in the

WebLogic Server Administration Console with known required configuration options to help
you configure a data source. The JDBC drivers in the list are not necessarily installed. Driver

3-1

ORACLE

Chapter 3

Using JDBC Drivers with WebLogic Server

installation can include setting system Path, Classpath, and other environment
variables. See Adding Third-Party JDBC Drivers Not Installed with WebLogic Server.

When a JDBC driver is updated, configuration requirements may change. The
WebLogic Server Administration Console uses known configuration requirements at
the time the WebLogic Server software was released. If configuration options for your
JDBC driver have changed, you may need to manually override the configuration
options when creating the data source or in the property pages for the data source

after it is created.

WebLogic Server provides the following JDBC drivers:

e Oracle Thin Drivers
— Oracle Thin Driver XA

— Oracle Thin Driver non-XA

The following table lists nine Oracle Thin Drivers as they appear in WebLogic
Server Administration Console, a sample of the URL format that is generated from
the input provided by the user, and the class name of the driver configured:

Oracle Drivers

URL Format

Description

Driver Class Name

Oracle’s Driver
(Thin XA) for JDBC
Replay Driver;
Versions: Any

jdbc:oracle:thin:@h
ostname:port/
service

Database is used
as service. This is
the default and
most popular
format for Generic
data sources. The
service should be
available on a
single instance for
Generic and Multi
Data Source.

oracle.jdbc.repl
ay.OracleXAData$S
ourcelImpl

Oracle’s Driver
(Thin XA) for
Instance
connections;
Versions: Any

jdbc:oracle:thin: @h
ostname:port:SID

Database is used
as SID, the use of
SID is deprecated.
Use service name
instead of SID in
this format.

oracle.jdbc.xa.c
lient.OracleXADa
taSource

Oracle’s Driver
(Thin XA) for RAC
Service-Instance
connections;
Versions: Any

jdbc:oracle:thin: @ (
DESCRIPTION= (ADDRES
S LIST=(ADDRESS= (PR
OTOCOL=TCP)
(HOST=hostname)
(PORT=hostname)))
(CONNECT DATA=(SERV
ICE NAME=service)
(INSTANCE_NAME:inst
ance)))

Use this format
when the service is
available on
multiple instances
and the URL
should map to a
single instance for
Generic and Multi
Data Source. A
long format URL is
generated so that
you can specify
instance name.

oracle.jdbc.xa.c
lient.OracleXADa
taSource

3-2

Chapter 3
Using JDBC Drivers with WebLogic Server

Oracle Drivers

URL Format

Description Driver Class Name

Oracle’s Driver
(Thin XA) for
Service
connections;
Versions: Any

jdbc:oracle:thin: @/

/hostname:port/
service

Database is used
as service. This is
the default and
most popular
format for Generic
data sources. The
service should be
available on a
single instance for
Generic and Multi
Data Source.

oracle.jdbc.xa.c
lient.OracleXADa
taSource

Oracle’s Driver
(Thin) for JIDBC
Replay Driver;
Versions: Any

jdbc:oracle:thin: @/

/hostname:port/
service

Database is used
as service. This is
the default and
most popular
format for Generic
data sources. The
service should be
available on a
single instance for
Generic and Multi
Data Source.

oracle.jdbc.repl
ay.OracleDataSou
rceImpl

Oracle’s Driver
(Thin) for Instance
connections;
Versions: Any

jdbc:oracle:thin: @h
ostname:port:SID

Database is used
as SID, the use of
SID is deprecated.
Use the service
name instead of
SID in this format.

oracle.jdbc.Orac
leDriver

Oracle’s Driver
(Thin) for Service
connections;
Versions: Any

jdbc:oracle:thin: @/

/hostname:port/
service

Database is used
as service. This is
the default and
most popular
format for Generic
data sources. The
service should be
available on a
single instance for
Generic and Multi
Data Source.

oracle.jdbc.Orac
leDriver

Oracle’s Driver
(Thin) for Service-
Instance
connections;
Versions: Any

jdbc:oracle:thin: @ (
DESCRIPTION=(ADDRES
S LIST=(ADDRESS= (PR

OTOCOL=TCP)
(HOST=hostname)
(PORT=port)))

(CONNECT_DATA: (SERV
ICE NAME=service)
(INSTANCE_NAME=inS t

ance))

Use this format oracle.jdbc.Orac
when the service is leDriver
available on

multiple instances

and the URL

should map to a

single instance for

Generic and Multi

Data Source. A

long format URL is

generated so that

you can specify

instance name.

ORACLE

3-3

Chapter 3
Using JDBC Drivers with WebLogic Server

Oracle Drivers URL Format Description Driver Class Name
Oracle’s Driver jdbc:oracle:thin:@h Databaseisused oracle.jdbc.pool
(Thin) for pooled ostname:port:SID as SID. Use this .OracleDataSourc
instance format to get a e
connections; pooled data source,
Versions: Any this is not a very

commonly used

format.

* MySQL (non-XA)
e Third-party JDBC drivers
For more information, see Using JDBC Drivers with WebLogic Server.

* WebLogic-branded DataDirect drivers: These drivers are available for the
following database management systems:

- DB2

— Informix

— Microsoft SQL Server
— Sybase

All of these drivers are referenced by the weblogic.jar manifest file and do not need
to be explicitly defined in a server's classpath.

When deciding which JDBC driver to use to connect to a database, you should try
drivers from various vendors in your environment. In general, JDBC driver
performance is dependent on many factors, especially the SQL code used in
applications and the JDBC driver implementation.

For information about supported JDBC drivers, see Supported Configurations in
What's New in Oracle WebLogic Server.

JDBC Driver Support

ORACLE

WebLogic Server provides support for application data access to any database using a
JDBC-compliant driver.

The JDBC-compliant driver needs to meet the following requirements:
e The driver must be thread-safe.

e The driver must implement standard JDBC transactional calls, such as
setAutoCommit () and setTransactionIsolation (), when used in transactional
aware environments.

« If the driver that does not implement serializable or remote interfaces, it cannot
pass objects to an RMI client application.

When WebLogic Server features use a database for internal data storage, database
support is more restrictive than for application data access. The following WebLogic
Server features require internal data storage:

e Container Managed Persistence (CMP)
* Rowsets
e JMS/JDBC Persistence and use of a WebLogic JDBC Store

» JDBC Session Persistence

3-4

Chapter 3
Using JDBC Drivers with WebLogic Server

 RDBMS Security Providers
» Database Leasing (for singleton services and server migration)

» JTA Logging Last Resource (LLR) optimization.

JDBC Drivers Installed with WebLogic Server

The Oracle JDBC Thin driver 19.3 is installed with Oracle WebLogic Server 12.2.1.4. In
addition to the Oracle Thin Driver, the mySQL Connector/J 8.0 (mysgl-connector-java-
commercial-8.0.14-bin.jar) JDBC driver, WebLogic-branded DataDirect drivers are also
installed with WebLogic Server.

The Oracle driver files are named ojdbc8.jar, ojdbc8 g.jar, and ojdbc8dms. jar for JDKS.

< Note:

See Using WebLogic-branded DataDirect Drivers in Developing JDBC Applications
for Oracle WebLogic Server.

These drivers are installed in subdirectories of $ORACLE HOME/oracle common/modules. The
manifest in the weblogic.jar lists this file so that it is loaded when weblogic.jar is loaded
(when the server starts). Therefore, you do not need to add this JDBC driver to your
CLASSPATH. If you plan to use a third-party JDBC driver that is not installed with WebLogic
Server, you must install the drivers, which includes updating your CLASSPATH with the path to
the driver files, and may include updating your PATH with the path to database client files.
See Supported Configurations in What's New in Oracle WebLogic Server.

" Note:

WebLogic Server includes a version of the Derby DBMS installed with the
WebLogic Server examples in the WL_HOME\common\derby directory. Derby is an all-
Java DBMS product included in the WebLogic Server distribution solely in support
of demonstrating the WebLogic Server examples. For more information about
Derby, see http://db.apache.org/derby.

Upgrading and Using Latest Oracle 19c JDBC Drivers with WebLogic

Server

ORACLE

The Oracle Database 19.3 JDBC driver is included by default with WebLogic Server 12.2.1.4
and 14.1.1.0. This topic provides you with information on upgrading and using the latest
version of the Oracle Database 19c JDBC driver with WebLogic Server.

Upgrading to Oracle 19c JDBC Driver

1. Go to Oracle Database Software Downloads page.
The download page now provides all the 14 JAR files in a single download file.

3-5

http://db.apache.org/derby
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html

< Note:

Oracle database client JAR files.

Chapter 3

Using JDBC Drivers with WebLogic Server

You must add these JAR files to the head of the CLASSPATH used for
running WebLogic Server. Place these JAR files before 12c or 19¢

2. Ensure to check the JAR filename and select the required o-jdbc files.

* If you are using WebLogic Server, then select the non-dms JAR file.

— ojdbc8-full/ojdbc8.jar

e If you are using Fusion Middleware, then select the *dms . jar file.

— ojdbc8-full/ojdbc8dms.jar

" Note:

* ojdbc8-full/ojdbc8 g.jar

e ojdbc8-full/ojdbc8dms g.jar

If you want to enable driver level logging, then select the * g. jar file.

3. You must select and install the required additional drivers.

Table 3-1 Additional 19c JDBC Driver Files

File

Description

ojdbc8-full/simplefan.jar

Fast Application Notification

ojdbc8-full/ucp.jar

Universal Connection Pool

ojdbc8-full/ons.jar

Oracle Network Server client

ojdbc8-full/orail8n.jar

Internationalization support

ojdbc8-full/oraclepki.jar

Oracle Wallet support

ojdbc8-full/osdt cert.jar

Oracle Wallet support

ojdbc8-full/osdt core.jar

Oracle Wallet support

ojdbc8-full/xdb6.jar

SQL XML support

ojdbc8-full/
xmlparserv2 sans_jaxp services.jar

SQL XML support

< Note:

The xmlparserv2.jar file is available in the archive download. Ensure
that you do not include xmlparserv2.jar inthe CLASSPATH.

4. For upgrading the driver jars included with the WebLogic installation:

a. Download the required jars from Oracle Database JDBC driver and

Companion Jars Downloads page.

ORACLE

3-6

https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html

ORACLE

Chapter 3
Using JDBC Drivers with WebLogic Server

b. Setthe CLASSPATH and PRE CLASSPATH as explained in Updating the WebLogic

Server CLASSPATH.

Updating the WebLogic Server CLASSPATH

To upgrade to the Oracle 19¢ JDBC driver, you must update the CLASSPATH in your WebLogic
Server environment. If you are using startWebLogic. sh, you need to set the

PRE CLASSPATH

The following code sample outlines a simple shell script that updates the PRE CLASSPATH of
your WebLogic environment. Make sure ORACLE_HOME is set appropriately to the directory

where the files were unpacked.

#!/bin/sh

source this file in to add the new 19.x jar files at the beginning of the

CLASSPATH

ORACLE19="full pathname to unpacked jar
PRE CLASSPATH=
case " uname "
*CYGWINY)
SEP=";"

in

Windows NT)

SEP=";"

*)

SEP:" : n

esac

dir=${ORACLE19:?}

We need one of the following
#o0jdbc8-full/ojdbc8.jar
#ojdbc8-full/lib/ojdbc8 g.jar
#o0jdbc8-full/lib/ojdbc8dms. jar
#ojdbc8-full/lib/ojdbc8dms g.jar

if [oe1n = "]
then
ojdbc=0jdbc8.jar
else

ojdbc="$1"

fi

case "$ojdbc" in
ojdbc8.jar)
ojdbc=0jdbc8-full/sojdbc

rr

file directory"

ojdbc8 g.jar|ojdbc8dms.jar|ojdbc8dms g.jar)

ojdbc=0jdbc8-diag/$ojdbc
*)

echo "Invalid argument - must be ojdbcS8.

ojdbc8dms_g.jar"
exit 1

rr

jar|ojdbc8 g.jarlojdbc8dms.jar]|

3-7

Chapter 3
Using JDBC Drivers with WebLogic Server

esac

PRE_CLASSPATH="${dir
PRE_CLASSPATH="${dir
PRE_CLASSPATH="${dir
PRE_CLASSPATH="${dir
PRE_CLASSPATH="${dir
PRE_CLASSPATH="${dir
PRE_CLASSPATH="${dir
PRE_CLASSPATH="${dir
PRE_CLASSPATH="${dir
PRE_CLASSPATH="${dir
{SEP}$PRE_CLASSPATH"
export PRE CLASSPATH
don't use xmlparserv2.jar - it conflicts with WLS classes

/${OjdbC}${SEP}$PRE_CLASSPATH"
/ojdbc8-full/simplefan.jar${SEP}SPRE CLASSPATH"
/ojdbc8-full/ucp.jar${SEP}SPRE CLASSPATH"
/ojdbc8-full/ons.jar${SEP}SPRE CLASSPATH"
/ojdbc8-full/orail8n.jar${SEP}$SPRE CLASSPATH"
/ojdbc8-full/oraclepki.jar${SEP}SPRE CLASSPATH"
/ojdbc8-full/osdt cert.ja ${SEP}SPRE CLASSPATH"
/ojdbc8-full/osdt core.jar${SEP}SPRE CLASSPATH"
/ojdoc8-full/xdb6.jars {SEP}$PRE CLASSPATH"
/ojdbc8-full/xmlparserv2 sans_jaxp services.jar$

T T e

For example, save this script in your environment with the name setdbl19 jars.sh.
Then run the script with ojdbc8.jar:

./setdbl9 jars.sh ojdbc8.jar # For WLS
./setdbl9 jars.sh ojdbc8dms.jar # For FMW

You can also put an explicit export PRE_CLASSPATH="literal path string" into
startWebLogic.sh and set CLASSPATH="$PRE CLASSPATH:$CLASSPATH" for any other
scripts used to start WebLogic Server.

Adding Third-Party JDBC Drivers Not Installed with WebLogic Server

ORACLE

To use third-party JDBC drivers that are not installed with WebLogic Server, you can
add them to the DOMAIN HOME/lib directory.Here, DOMAIN HOME represents the
directory in which the WebLogic Server domain is configured. The default path is
ORACLE HOME/user projects/domains.

For more information, see Adding JARs to the Domain /lib Directory in Developing
Applications for Oracle WebLogic Server.

" Note:

In previous releases, adding a new JDBC driver or updating a JDBC driver
where the replacement JAR has a different name than the original JAR
required updating the WebLogic Server's classpath to include the location of
the JDBC driver classes. This is no longer required.

Using a Third-Party JAR File in DOMAIN_HOMElIlib

Using a third-party JAR file in DOMAIN HOME/1ib is only supported for third-party
JDBC drivers that are not installed with WebLogic Server. The drivers installed with
WebLogic Server are described in JDBC Drivers Installed with WebLogic Server.

3-8

Chapter 3
Using JDBC Drivers with WebLogic Server

When you use a third-party JAR file in the DOMAIN HOME/1ib directory, note the following:

e The classloader that gets created is a child of the system classpath classloader in
WebLogic Server.

e Any classes that are in JARs in this directory are visible only to Java EE applications in
the server, such as EAR files.

* You can use the WebLogic Server Administration Console and WLST online to configure
and manage the JAR files. (You may also be able to use WLST offline because the data
source is not deployed.)

* These JAR files do not work when run from a standalone client (such as the t3 RMI
client) or standalone applications (such as java utils.Schema).

e If there are multiple domain directories involved (that is, multiple machines without a
shared file system), the JAR file must be installed in /1ib in each domain directory.

* WebLogic Server use of methods called on third-party drivers (such as TimesTen abort
and DB2 setDB2ClientUser) is supported.

" Note:

For details on WebLogic Server functionality supported with these JAR files, see
Database Interoperability in What's New in Oracle WebLogic Server, and the
appropriate version of the Oracle Fusion Middleware Supported System
Configurations matrix documentation for specific database driver and DB version
certification information.

Data Source Support
Third-party JAR files installed in /1ib can be used with the following:

» All data source types supported by WebLogic Server system resources including
Generic, Multi Data Source, and Active GridLink. The Universal Connection Pool data
source does not apply since the UCP JAR is not third-party.

» Packaged data sources in an EAR or a WAR.
« Java EE 6 data source definition defined in an EAR or WAR.

Although not JDBC methods, using a third-party JAR file in /1ib does apply to WebLogic
Server data source callbacks like Multi Data Source failover, connection, replay, and
harvesting.

Example 3-1 Example of Using a Third-Party JAR File in /lib

The following example shows the files contained in a standalone WAR file named
getversion.war. The Derby JAR files are located in WEB-INF/1ib or DOMAIN HOME/lib (Or
both). The class file is compiled and installed at WEB-INF/classes/demo/GetVersion.class.

<web-app>
<welcome-file-1list>
<welcome-file>welcome.jsp</welcome-file>
</welcome-file-1list>
<display-name>GetVersion</display-name>
<servlet>

ORACLE 3-9

https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

ORACLE

Chapter 3
Using JDBC Drivers with WebLogic Server

<description></description>
<display-name>GetVersion</display-name>
<servlet-name>GetVersion</servlet-name>
<servlet-class>
demo.GetVersion
</servlet-class>
</servlet>
<!-- Data source description can go in the web.xml descriptor or as an
annotation in the java code - see below
<data-source>
<name>java:global/DSD</name>
<class-name>org.apache.derby.jdbc.ClientDataSource</class-name>
<port-number>1527</port-number>
<server-name>localhost</server-name>
<database-name>examples</database-name>
<transactional>false</transactional>
</data-source>
-—>
</web-app>

WEB-INF/weblogic.xml

<weblogic-web-app>
<container-descriptor>
<prefer-web-inf-classes>true</prefer-web-inf-classes>
</container-descriptor>
</weblogic-web-app>

Java file
package demo;

import java.io.IOException;

import java.io.PrintWriter;

import java.sql.Connection;

import java.sql.SQLException;

import javax.annotation.Resource;

import javax.annotation.sqgl.DataSourceDefinition;
import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.sqgl.DataSource;

@DataSourceDefinition (name="java:global/DSD",
className="org.apache.derby.jdbc.ClientDataSource",
portNumber=1527,
serverName="localhost",
databaseName="examples",
transactional=false
)
@WebServlet (urlPatterns = "/GetVersion")
public class GetVersion extends javax.servlet.http.HttpServlet
implements javax.servlet.Servlet {
@Resource (lookup = "java:global/DSD")

3-10

Chapter 3
Using JDBC Drivers with WebLogic Server

private DataSource ds;

public GetVersion() {
super () ;

}

protected void doGet (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
doPost (request, response);

}

protected void doPost (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
response.setContentType ("text/html") ;

PrintWriter writer = response.getWriter();

writer.println ("<html>");

writer.println ("<head><title>GetVersion</title></head>");
writer.println ("<body>" + doit() +"</body>");
writer.println ("</html>");

writer.close();

v
v

private String doit() {
String ret = "FAILED";
Connection conn = null;

try {
conn = ds.getConnection();
ret = "Connection obtained with version= " +

conn.getMetaData () .getDriverVersion();
} catch(Exception e) {
e.printStackTrace () ;
} finally {
try {
if (conn != null)
conn.close();
} catch (Exception ignore) {}
}

return ret;

Globalization Support for the Oracle Thin Driver

ORACLE

For globalization support with the Oracle Thin driver, Oracle supplies the orail8n.jar

file.This file replaces nls charset.zip.

If you use character sets other than USTASCII, WESDEC, WE8IS08859P1 and UTF8 with CHAR and

NCHAR data in Oracle object types and collections, you must include orail8n.jar and
orail8n-mapping.jar in your CLASSPATH

The orail8n.jar and orail8n-mapping.jar are included with the WebLogic Server

installation in the ORACLE HOME\oracle common\modules\oracle.nlsrtl 12.1.0 folder.

These files are not referenced by the weblogic.jar manifest file, so you must add them to
your CLASSPATH before they can be used.

3-11

Chapter 3
Configuring JDBC Data Sources

Using the Oracle Thin Driver in Debug Mode

The ORACLE HOME\oracle common\modules\oracle.jdbc folder includes the
ojdbc8_g.jar (for JDK8), which is the version of the Oracle Thin driver with classes to
support debugging and tracing. To use the Oracle Thin driver in debug mode, add the
path to these files at the beginning of your CLASSPATH.

Configuring JDBC Data Sources

In WebLogic Server, you configure database connectivity by adding JDBC data
sources to your WebLogic domain. Configuring data sources requires several steps
including choosing a type of data source, creating the data source, configuring
connection pools and Oracle database parameters and so on.

» Creating a JDBC Data Source
WebLogic JDBC data sources provide database access and database connection
management.

» Configuring Connection Pool Features

* Advanced Connection Properties
You can set up advanced connection properties like fatal error codes and use of
Edition-Based Redefinition (EBR). You define fatal error codes which indicate the
database server with which the data source communicates is no longer accessible
on a connection. EBR provides the ability to upgrade the database component of
an application while it is in use, thereby minimizing or eliminating down time.

» Configure Oracle Parameters
WebLogic Server provides several attributes that provide improved data source
performance when using Oracle drivers.

» Configure ONS Client Parameters
e Tuning Generic Data Source Connection Pools
* Generic Data Source Handling for Oracle RAC Outages

* Generic Data Source Handling of Driver-Level Failover

Creating a JDBC Data Source

ORACLE

WebLogic JDBC data sources provide database access and database connection
management.

You can create and manage JDBC data sources using the following management
tools:

* Oracle WebLogic Server Administration Console: See Create a JDBC Data
Source in Oracle Weblogic Server Administration Console Online Help.

* WebLogic Scripting Tool (WLST): See WLST Online Sample Scripts in
Understanding the WebLogic Scripting Tool.

Example:

EXAMPLES HOME\wl server\examples\src\examples\wlst\online\jdbc data
source_creation.py

3-12

Chapter 3
Configuring JDBC Data Sources

where EXAMPLES HOME represents the directory in which the WebLogic Server code
examples are configured.

Data source configuration in the Weblogic Server Administration Console is done using the
Data Source configuration wizard.

* Configure JDBC Data Source Properties
JDBC data source properties include options that determine the identity of the data
source and the way database connection handles the data.

* Configure Transaction Options
When you configure a JDBC data source using the WebLogic Server Administration
Console, WebLogic Server automatically selects specific transaction options based on
the type of JDBC driver. XA, non-XA, and Global transaction options are supported by
WebLogic JDBC data sources.

* Configure Connection Properties
Connection Properties allows you to configure the connection between the data source
and the DBMS. Typical attributes are the database name, host name, port number, user
name, and password.

* Configure Testing Options
Test Database Connection allows you to test a database connection before the data
source configuration is finalized using a table name or SQL statement.

e Target JDBC Data Sources
You can select one or more targets to which to deploy your new JDBC data source. If you
don't select a target, the data source will be created but not deployed. You will need to
deploy the data source at a later time before getting connections.

Configure JDBC Data Source Properties

ORACLE

JDBC data source properties include options that determine the identity of the data source
and the way database connection handles the data.

Data Source Names: You can use JDBCA data source name to identify the data source
within the WebLogic domain. For system resource data sources, names must be unique
among all other JDBC system resources. To avoid naming conflicts, data source names
should also be uniqgue among other configuration object names, such as servers,
applications, clusters, and JMS queues, topics, and servers. For JDBC application modules
packaged in an application, data source names must be unique among JDBC data sources
with a similar scope.

Data Source Scope: You can select the scope for the data source and set the scope to
Global (at the domain level), or to any existing Resource Group or Resource Group Template.

JNDI Names: You can configure a data source so that it binds to the JNDI tree with a single
or multiple names. See Developing JNDI Applications for Oracle WebLogic Server.

Database Type: You can select the Database Management System (DBMS) of the database
you want to connect. For information about supported databases, see Supported
Configurations in What's New in Oracle WebLogic Server.

JDBC Driver: You can select a JDBC database driver that is preferred to create a database
connection. You should verify, however, that the URL is as you want it before asking the
console to test it. The driver you select must be in the classpath on all servers on which you
intend to deploy the data source.

3-13

Chapter 3
Configuring JDBC Data Sources

Some but not all IDBC drivers listed in the WebLogic Server Administration Console
are shipped (and/or are already in the classpath) with WebLogic Server. See Types of
JDBC Drivers.

All of these drivers are referenced by the weblogic.jar manifest file and do not need
to be explicitly defined in a server's classpath.

When deciding which JDBC driver to use to connect to a database, you should try
drivers from various vendors in your environment. In general, JDBC driver
performance is dependent on many factors, especially the SQL code used in
applications and the JDBC driver implementation.

For information about supported JDBC drivers, see Supported Configurations in
What's New in Oracle WebLogic Server.

Configure Transaction Options

When you configure a JDBC data source using the WebLogic Server Administration
Console, WebLogic Server automatically selects specific transaction options based on
the type of JDBC driver. XA, non-XA, and Global transaction options are supported by
WebLogic JDBC data sources.

For more information on configuring transaction support for a data source, see JDBC
Data Source Transaction Options.

Configure Connection Properties

Connection Properties allows you to configure the connection between the data
source and the DBMS. Typical attributes are the database name, host name, port
number, user name, and password.

< Note:

You can use a Single Client Access Name (SCAN) address to represent the
host name. When using Oracle RAC 11.2 and higher, consider the following:

* If you set the Oracle RAC REMOTE LISTENER parameter for your data
source to SCAN, then the data source connection URL can only use a
SCAN address.

e If you set the Oracle RAC REMOTE LISTENER parameter for your data
source to List of Node VIPs, then the data source connection URL can
only use a list of VIP addresses.

* If you set the Oracle RAC REMOTE LISTENER parameter for your data
source to Mix of SCAN and List of Node VIPs, then the data source
connection URL can use both SCAN and VIP addresses.

For more information on using SCAN addresses, see Introduction to
Automatic Workload Management in Real Application Clusters
Administration and Deployment Guide 11g Release 2 (11.2).

Configuring Connection Properties for Oracle Bl Server: If you selected Oracle Bl
Server as your DBMS, configure the additional connection properties on the

ORACLE 3-14

https://docs.oracle.com/cd/E11882_01/rac.112/e41960/hafeats.htm#RACAD076
https://docs.oracle.com/cd/E11882_01/rac.112/e41960/hafeats.htm#RACAD076

Chapter 3
Configuring JDBC Data Sources

Connection Properties page as described in Connection String in Oracle Business
Intelligence Publisher Administrator's and Developer's Guide.

Configure Testing Options

Test Database Connection allows you to test a database connection before the data source
configuration is finalized using a table name or SQL statement.

If necessary, you can test additional configuration information using the Properties and
System Properties attributes.

Target JDBC Data Sources

You can select one or more targets to which to deploy your new JDBC data source. If you
don't select a target, the data source will be created but not deployed. You will need to deploy
the data source at a later time before getting connections.

For more information, see Target JDBC data sources in Oracle WebLogic Server
Administration Console Online Help and Using JDBC Drivers with WebLogic Server.

Configuring Connection Pool Features

ORACLE

Each JDBC data source has a pool of JDBC connections that are created when the data
source is deployed or at server startup. Applications use a connection from the pool then
return it when finished using the connection. Connection pooling enhances performance by
eliminating the costly task of creating database connections for the application.

Note:

If a non-dynamic data source attribute is updated, the data source needs to be
undeployed or redeployed for the attribute to take effect. To determine whether an
attribute is dynamic or non-dynamic, see the MBean reference MBean Reference
for Oracle WebLogic Server for the attribute. If the attribute definition contains the
Redeploy or Restart required text, then it is a non-dynamic attribute.

See JDBC Data Source: Configuration: Connection Pool in Oracle WebLogic Server
Administration Console Online Help and JDBCConnectionPoolParamsBean in MBean
Reference for Oracle WebLogic Server.

Note:

Certain Oracle JDBC extensions, and possibly other non-standard methods
available from other drivers may durably alter a connection's behavior in a way that
future users of the pooled connection will inherit. WebLogic Server attempts to
protect connections against some types of these calls when possible.

The following topics include information about connection pool options for a JDBC data
source. Some of these options are dynamically changeable and others are non-dynamic.

» Enabling JDBC Driver-Level Features

3-15

https://docs.oracle.com/middleware/12213/wls/WLACH/taskhelp/jdbc/jdbc_datasources/TargetAndDeployDataSources.html

Chapter 3
Configuring JDBC Data Sources

» Enabling Connection-based System Properties
» Enabling Connection-based Encrypted Properties

* Initializing Database Connections with SQL Code

Enabling JDBC Driver-Level Features

WebLogic JDBC data sources support the javax.sql.ConnectionPoolDataSource
interface implemented by JDBC drivers. You can enable driver-level features by
adding the property and its value to the Properties attribute in a JDBC data source.
Driver-level properties in the Properties attribute are set on the driver's
ConnectionPoolDataSource object.

Enabling Connection-based System Properties

ORACLE

WebLogic JDBC data sources support setting driver properties using the value of
system properties. The value of each property is derived at runtime from the named
system property. You can configure connection-based system properties using the
WebLogic Server Administration Console by editing the System Properties attribute
of your data source configuration.

If a system property value is set, it overrides an encrypted property value, which
overrides a normal property value (you can only have one property value for each
property name).

A system property value can contain one of the variables listed in Table 3-2. If one or
more of these variables is included in the system property, it is substituted with the
corresponding value. If a value is not found, no substitution is performed. If none of
these variables are found in the system property, then the value is taken as a system
property name.

Table 3-2 Variables Supported in System Property Values for JDBC Data
Source

Variable Value Description

${pid} First half (up to @) of
ManagementFactory.getRuntimeMXBean ()
.getName ()

${machine} Second half of
ManagementFactory.getRuntimeMXBean ()
.getName ()

${user.name} Java system property user.name

${os.name} System property os.name

${datasourcename} Data source name from the JDBC descriptor. It
does not contain the partition name.

S{partition} Partition name or DOMAIN

${serverport} WebLogic Server server listen port

${serversslport} WebLogic Server server SSL listen port

${servername} WebLogic Server server name

${domainname} WebLogic Server domain name

3-16

Chapter 3
Configuring JDBC Data Sources

A sample set of properties is shown in the following example:

<properties>
<property>
<name>user</name>
<sys-prop-value>user</sys-prop-value>
</property>
<property>
<name>v$session.osuser</name>
<sys-prop-value>${user.name}</sys-prop-value>
</property>
<property>
<name>v$session.process</name>
<sys-prop-value>${pid}</sys-prop-value>
</property>
<property>
<name>v$session.machine</name>
<sys-prop-value>${machine}</sys-prop-value>
</property>
<property>
<name>v$session.terminal</name>
<sys-prop-value>${datasourcename}</sys-prop-value>
</property>
<property>
<name>v$session.program</name>
<sys-prop-value>WebLogic ${servername} Partition ${partition}</sys-prop-
value>
</property>
</properties>

In this example:
e user is set to the value of -Duser=value
e vS$session values are set as described in Table 3-2

For example, vSsession.program running on myserver is set to WebLogic myserver
Partition DOMAIN

Note that the values have the following length limitations:
* osuser—30

e process—24

* machine—64

° terminal—30

* program—48

Enabling Connection-based Encrypted Properties

ORACLE

WebLogic JDBC data sources support setting driver properties using encrypted values. You
can configure connection-based encrypted properties using the WebLogic Server
Administration Console by editing the Encrypted Properties attribute of your data source
configuration. See Using Encrypted Connection Properties.

3-17

Chapter 3
Configuring JDBC Data Sources

Initializing Database Connections with SQL Code

When WebLogic Server creates database connections in a data source, the server can
automatically run SQL code to initialize the database connection. To enable this
feature, enter sQL followed by a space and the SQL code you want to run in the Init
SQL attribute on the JDBC Data Source: Configuration: Connection Pool page in the
WebLogic Server Administration Console. Alternatively, you can specify simply a table
name without SQL and the statement SELECT COUNT (*) FROM tablename is used. If you
leave this attribute blank (the default), WebLogic Server does not run any code to
initialize database connections.

WebLogic Server runs this code whenever it creates a database connection for the
data source, which includes at server startup, when expanding the connection pool,
and when refreshing a connection.

You can use this feature to set DBMS-specific operational settings that are connection-
specific or to ensure that a connection has memory or permissions to perform required
actions.

Start the code with sQL followed by a space. An Oracle DBMS example:

SQL alter session set NLS DATE FORMAT='YYYY-MM-DD HH24:MI:SS'

or an Informix DBMS:

SQL SET LOCK MODE TO WAIT

The SQL statement is executed using JDBC Statement.execute (). Options that you
can set using InitSQL vary by DBMS. See the documentation from your database
vendor for supported statements. If you want to execute multiple statements, you may
want to create a stored procedure and execute it. The syntax is vendor specific. For
example, to execute an Oracle stored procedure:

SQL CALL MYPROCEDURE ()

Advanced Connection Properties

You can set up advanced connection properties like fatal error codes and use of
Edition-Based Redefinition (EBR). You define fatal error codes which indicate the
database server with which the data source communicates is no longer accessible on
a connection. EBR provides the ability to upgrade the database component of an
application while it is in use, thereby minimizing or eliminating down time.

e Define Fatal Error Codes

e Using Edition-Based Redefinition

Define Fatal Error Codes

ORACLE

You can define fatal error codes that indicate that the database server with which the
data source communicates is no longer accessible on a connection. The connection is
marked invalid and taken out of the pool but the data source is not suspended. These
errors include deployment errors that cause a server to fail to boot and connection
errors that prevent a connection from being put back in the connection pool.

3-18

Chapter 3
Configuring JDBC Data Sources

When specified as the exception code within a SQLException (retrieved by
sqlException.getErrorCode ()), it indicates that a fatal error has occurred, the connection is
no longer good, and it is removed from the connection pool. For Oracle databases the
following fatal error codes are predefined within WLS and do not need to be placed in the
configuration file:

Error Code Description

3113 end-of-file on communication channel

3114 not connected to ORACLE

1033 ORACLE initialization or shutdown in progress

1034 ORACLE not available

1089 immediate shutdown in progress - no operations are permitted
1090 shutdown in progress - connection is not permitted

17002 I/O exception

For DB2, the following fatal error codes are predefined: -4498, -4499, -1776, -30108, -30081,
-30080, -6036, -1229, -1224, -1035, -1034, -1015, -924, -923, -906, -518, -514, 58004.

For Informix, the following fatal error codes are predefined: -79735, -79716, -43207, -27002,
-25580, -4499, -908, -710, 43012.

To define fatal error codes in the WebLogic Server Administration Console, see Define Fatal
Error Codes in Oracle WebLogic Server Administration Console Online Help.

Using Edition-Based Redefinition

ORACLE

Edition-based redefinition (EBR) provides the ability to upgrade the database component of
an application while it is in use, thereby minimizing or eliminating down time. It allows a pre-
upgrade and post-upgrade view of the data to exist at the same time, providing a hot upgrade
capability. You can then specify which view you want for a particular session.

See:

* Using Edition-Based Redefinition in Oracle Database Development Guide

» Edition-Based Redefinition White Paper at http://www.oracle.com/technetwork/
database/features/availability/edition-based-redefinition-1-133045.pdf

Using EBR with JDBC Connections
There are two approaches to using EBR with JDBC connections:

» If you use a database service to connect to the database and an initial session edition
was specified for that service, then the initial session edition for the service is your initial
session edition on the connection. This approach is recommended for minimal overhead
on the connection.

When you create or modify a database service, you can specify its initial session edition.
To create or modify a database service, Oracle recommends using the srvctl add
service Of srvctl modify service command. To specify the default initial session
edition of the service, use the -edition option.

Alternatively, you can create or modify a database service with the
DBMS SERVICE.CREATE SERVICE or DBMS SERVICE.MODIFY SERVICE procedure, and
specify the default initial session edition of the service with the EDITION attribute.

3-19

http://www.oracle.com/technetwork/database/features/availability/edition-based-redefinition-1-133045.pdf
http://www.oracle.com/technetwork/database/features/availability/edition-based-redefinition-1-133045.pdf

ORACLE

Chapter 3
Configuring JDBC Data Sources

» Changing your session edition after connecting to the database using the SQL
statement ALTER SESSION SET EDITION. You can change your session edition to
any edition on which you have the USE privilege. Note that changing the edition
can require re-generating a significant amount of state on session and database
server. Oracle recommends using DBMS SESSION.RESET PACKAGE to clean-up some
of this state when changing the edition on a session.

Using Edition-based redefinition does not require any new WebLogic Server
functionality.

To make use of EBR, your environment needs to consist of an earlier version of the
application with a data source that references the earlier EDITION and a later version
of the application with a data source that references the later EDITION. When referring
to multiple versions of a WebLogic Server application, you should be using WebLogic
Server versioned applications in the production redeployment feature. See Developing
Applications for Production Redeployment in Developing Applications for Oracle
WebLogic Server. By combining Oracle database EBR and WebLogic Server
versioned applications, the application can be upgraded with no downtime, making the
combination of features more powerful than either feature independently.

You need to run with a versioned database and a versioned application initially so that
you can switch versions. To version a WebLogic Server application, simply add the
Weblogic-Application-Version property in the MANIFEST.MF file (you can also specify
it at deployment time).

Configuring WebLogic Data Sources to Use Editions

The following list describes the different ways you can configure WebLogic data
sources to use Oracle database editions.

- Packaged Data Source Using a Single Edition—The recommended way to
configure the data source is to use a packaged data source descriptor that is
stored in the application EAR or WAR file so that everything is self-contained. By
doing so, you can use the same name for each data source and you do not need
to change the application to use a variable name based on the edition. The data
source URL in the descriptor should reference the database service associated
with the correct edition. If for some reason you are using a SID instead of a
database service (no longer recommended), the alternative is to specify SQL
ALTER SESSION SET EDITION = name in the Init SQL parameter in the data source
descriptor. This SQL statement is executed for each newly created physical
database connection in the data source pool. This approach assumes that a data
source references only a single edition of the database and all connections use
that edition.

Note the following restrictions when using a packaged data source.

— You cannot use a packaged data source with Logging Last Resource (LLR).
You must use a system resource.

— You cannot use an application-scoped packaged data source with
EmulateTwoPhaseCommit for the global-transactions-protocol with a
versioned application. You must use a global-scoped data source.

Therefore, if you need to use LoggingLastResource or
EmulateTwoPhaseCommit, you cannot use this approach. See JDBC
Application Module Limitations.

* System Resource Data Source Using a Single Edition—You can use a system
resource as an alternative to a packaged data source. In this case, each data

3-20

Chapter 3
Configuring JDBC Data Sources

source must have a unique name and JNDI name. The application needs to be flexible
enough to use that name at runtime. For example, you can pass in the data source JNDI
name as a system property and the code that looks up the data source in JNDI will use
that value.

The disadvantage of using a single edition per data source, whether packaged or as a
system resource, is that it requires more database connections. A single edition approach
can work when the period during which the old and new editions are running is relatively
short. For applications that are using a lot of data sources and/or connections, this is not
a viable approach.

» System Resource Data Source Using Multiple Editions—An alternative is to have a
data source that references multiple editions. The recommended configuration would still
use a database service associated with a single edition. However, the connections will be
re-associated with different editions during the lifetime of the connection.

* Multiple Editions by Setting the Edition for Every Reservation—It is possible for the
application to set the database edition every time it gets a connection. There is some
overhead associated with making this call each time (round trip to the database server
and setting the session) and the application code needs to be modified everywhere that a
connection is reserved. If you are using the JDBC Replay Driver, this initialization should
be done in the ConnectionInitializationCallback. See Using a Connection Callback.

It's important to optimize for the normal use case instead of optimizing for the (hopefully)
short period during which the migration is done to a new edition. This approach doesn't
optimize for the normal case where all connections are on the needed edition.

* Multiple Editions using Connection Labeling—You can also associate an edition with
the connection and try to reserve a connection with the correct edition. The
recommended way to tag a connection with a property is to use connection labeling. The
application then needs to implement the pieces associated with connection labeling.

— When a connection is reserved, it needs to determine the edition needed in the
context.

— A matching method is needed to determine if the property, in this case just the
edition, matches.

— A labeling initialization method is needed to make the connection match if it doesn't
already match by using SQL. ALTER SESSION SET EDITION = name.

There is overhead associated with connection labeling, particularly when exclusively
scanning the list of existing connections to find a mach. On the other hand, the normal
use case is that every connection matches the current edition so there is no need to look
far to find a match. It is only during migration that there will be thrashing between editions
and potentially longer searches to find a match (or to determine that there is no match).

Configure Oracle Parameters

WebLogic Server provides several attributes that provide improved data source performance
when using Oracle drivers.

For detailed information, see Advanced Configurations for Oracle Drivers and Databases.

Configure ONS Client Parameters

ONS client configuration allows the data source to subscribe to and process Oracle FAN
events.

ORACLE 3-21

Chapter 3
Configuring JDBC Data Sources

When configuring the ONS node list, Oracle recommends not specifying a value and
allowing auto-ONS to perform the ONS configuration. In some cases, however, it is
necessary to explicitly configure the ONS configuration, for example if you need to
specify an Oracle Wallet and password, or if you want to explicitly specify the ONS

topology.

You can configure an ONS client using any one of the following options:

Configuring an ONS Client using WLST

Configuring an ONS Client Parameters using Oracle WebLogic Server
Administration Console

Tuning Generic Data Source Connection Pools

You can improve application and system performance by ensuring a proper
configuration of the connection pool attributes in JDBC data sources in your WebLogic
Server domain.

For more information, see Tuning Data Source Connection Pools.

Generic Data Source Handling for Oracle RAC Outages

It is possible to use a Generic data source with Oracle RAC with some limitations.
These limitations complicate transaction processing, monitoring, and graceful handling
of RAC outages.

ORACLE

Note:

Oracle recommends using a Multi Data Source (MDS) or Active GridLink
(AGL) data source instead of a Generic data source using driver-level
failover. See Using Active GridLink Data Sources or Using Multi Data
Sources with Oracle RAC.

The following limitations are due to WebLogic Server instances not being aware of the
RAC instances associated with the connections in the pool:

A Generic data source does not have the ability to disable a single instance in the
pool that a MDS or AGL data source provides. If one of the RAC instances goes
down (planned or unplanned), the data source tests all connections in the pool for
the down instance, disabling them individually. In addition to more overhead and
application delays, the pool sees multiple failures which cause the entire pool to be
disabled. To prevent the pool from being disabled, set the value of Count 0f Test
Failures Till Flushto 0. See JDBC Data Source: Configuration: Connection
Pool page in Oracle WebLogic Server Administration Console Online Help or see
JDBCConnectionPoolParamsBean in MBean Reference for Oracle WebLogic
Server.

JTA or global transactions should not be used with this configuration. Because
WebLogic Server is not aware of the RAC instances, it cannot guarantee
transaction affinity. This is a problem if the transaction spans multiple servers or if
a failure occurs such that another connection is used to complete the transaction.
Since the additional connections required to complete the transaction may not be
within the same RAC instance, transaction processing may fail.

3-22

Chapter 3
Configuring JDBC Data Sources

It is not possible to monitor the connections based on the RAC instances.

Generic Data Source Handling of Driver-Level Failover

Several database drivers support a feature to define multiple database instances in the URL
and failover from one database to the next. It is possible to use a Generic data source with
driver-level failover with some limitations. These limitations complicate transaction
processing, monitoring, and graceful handling of database instance outages.

The following limitations are due to WebLogic Server instances not being aware of the
database instances associated with the connections in the pool:

ORACLE

A Generic data source does not have the ability to disable a single instance in the pool
that a Multi Data Source provides. If one of the database instances goes down (planned
or unplanned), the data source tests all connections in the pool for the down instance,
disabling them individually. In addition to more overhead and application delays, the pool
sees multiple failures which cause the entire pool to be disabled. To prevent the pool from
being disabled, set the value of Count Of Test Failures Till Flush to 0.

For more information, see JDBC Data Source: Configuration: Connection Pool in Oracle
WebLogic Server Administration Console Online Help and
JDBCConnectionPoolParamsBean in MBean Reference for Oracle WebLogic Server.

JTA or global transactions should not be used with this configuration. Because WebLogic
Server is not aware of the database instances, it cannot guarantee transaction affinity.
This is a problem if the transaction spans multiple servers or if a failure occurs such that
another connection is used to complete the transaction. Since the additional connections
required to complete the transaction may not be within the same database instance,
transaction processing may fail.

It is not possible to monitor the connections based on the database instances.

3-23

JDBC Data Sources Types

Oracle WebLogic Server provides different types of JDBC data sources such as Generic data
source, Multi Data Sources, and so on. You can configure database connectivity by
configuring JDBC data sources and then targeting or deploying the JDBC resources to
servers or clusters in your WebLogic domain.

e Using the Default Data Source
Oracle provides a default data source required by a Java EE 7-compliant runtime. This
pre-configured data source can be used by an application to access the Derby Database
installed with WebLogic Server.

e Using Generic Data Sources
e Using JDBC Multi Data Sources
e Using Active GridLink Data Sources

e Using Universal Connection Pool Data Sources
A Universal Connection Pool (UCP) data source is provided as an option for users who
wish to use Oracle Universal Connection Pooling to connect to Oracle Databases. UCP
provides an alternative connection pooling technology to Oracle WebLogic Server
connection pooling.

e Using Proxy Data Sources
Proxy data sources provide the ability to switch between databases in a WebLogic Server
Multitenant environment.

Using the Default Data Source

Oracle provides a default data source required by a Java EE 7-compliant runtime. This pre-
configured data source can be used by an application to access the Derby Database installed
with WebLogic Server.

* What is Default Data Source
Oracle provides a default data source required by a Java EE 7-compliant runtime.

* Defining a Custom Default Data Source
You can implement a custom default data source by defining a custom data source
descriptor that is bound to java:comp/DefaultDataSource or overidding the default data
source to point to another JNDI name.

e Compatibility Limitations When Using a Default Data Source
Learn about the limitations when using a default data source.

What is Default Data Source

Oracle provides a default data source required by a Java EE 7-compliant runtime.

ORACLE 4-1

ORACLE

Chapter 4
Using the Default Data Source

It is accessible under the INDI name:

java:comp/DefaultDataSource

which is equivalent to:

@Resource (lookup="java:comp/DefaultDataSource")
DataSource myDS;

You can explicitly bind a Data Source resource reference to the Default data source
using the lookup element of the resource annotation or the lookup-name element of
the resource-ref deployment descriptor element.

¢ Note:

The Derby database is started by the startWebLogic command by default.
For more information on starting and stopping a WebLogic Server instance,
see Starting and Stopping Servers in Administering Server Startup and
Shutdown for Oracle WebLogic Server.

Characteristics of a Default Data Source
A default data source has the following characteristics:

* Must be available for each component that is deployed.

» Only accessible for deployed components, not for data sources that are system
resources or stand-alone deployments.

* Only visible in a console after it has been referenced.
* Appears as a deployment for each component, like other Java EE deployments.
* Not configurable.

* Has the lifecycle of the associated application.

Configuring a Default Data Source
The following table provides the configuration settings that define the WebLogic Server
default data source definition:

Table 4-1 Default Data Source Configuration
|

Attribute Value

Name java:comp/DefaultDataSource

Initial capacity 0

Min capacity 0

Max capacity 15

Classname org.apache.derby.jdbc.ClientDataSour
ce

Port 1527

Host localhost

4-2

Chapter 4
Using the Default Data Source

Table 4-1 (Cont.) Default Data Source Configuration

Attribute Value

Database name DefaultDataSource
User none

Password none
Transactional false
MaxStatements 0

MaxldleTimeout not set

Defining a Custom Default Data Source

ORACLE

You can implement a custom default data source by defining a custom data source descriptor
that is bound to java:comp/DefaultDataSource or overidding the default data source to point
to another JNDI name.

See:

* Creating a Custom Default Data Source Descriptor
e Overriding the Default Data Source

After the component is deployed, if java:comp/DefaultDataSource is not available for the
component, the WebLogic Server preconfigured default data source is available to the
component. However, if you disabled the Derby database by setting DERBY FLAG=false)
before running startWebLogic.sh script, the WebLogic Server preconfigured default data
source is not available.

Creating a Custom Default Data Source Descriptor

You can configure a data source descriptor that is bound to java:comp/DefaultDataSource
replacing the preconfigured default data source. For example, the following provides an
example of Java EE 6 annotations in a EAR application:

@Stateless (mappedName="DSBean")

@DataSourceDefinition (name="java:comp/DefaultDataSource",
className="oracle.jdbc.OracleDriver",

portNumber=1521,

serverName="myServer",

databaseName="myDB",

user="a username",

password="a password",

transactional=false

)

public class DSBean implements DSInterface

Overriding the Default Data Source

You can override the preconfigured default data source provided by WebLogic Server by
updating the JNDI name in the default data source attribute in the configuration of a server or
server template to point to another existing data source.

4-3

Chapter 4
Using Generic Data Sources

Compatibility Limitations When Using a Default Data Source

Learn about the limitations when using a default data source.

In releases prior to Weblogic Server 12.2.1, WebLogic Server tries to satisfy
unresolved data source res-ref references automatically by attempting to lookup the
data source in JNDI using the name of the res-ref. This behavior is undefined prior to
Java EE 7. This WebLogic Server release uses the default data source as defined by
Java EE 7.

Using Generic Data Sources

Generic data sources provide database access and database connection
management. Generic data sources and their connection pools provide connection
management processes that help keep your system running efficiently.

What is Generic Data Source

* Configuring Generic Data Source
This topic describes the steps required to create and configure Generic data
sources.

What is Generic Data Source

Generic data sources provide database access and database connection
management.

Each data source contains a pool of database connections that are created when the
data source is created and at server startup. Applications reserve a database
connection from the data source by looking up the data source on the JNDI tree or in
the local application context and then calling getConnection () . When finished with the
connection, the application should call connection.close () as early as possible,
which returns the database connection to the pool for other applications to use.

Configuring Generic Data Source

ORACLE

This topic describes the steps required to create and configure Generic data sources.

Configure JDBC Data Source Properties

Data Source Names: You can use JDBCA data source name to identify the data
source within the WebLogic domain. For system resource data sources, names must
be unique among all other JDBC system resources. To avoid naming conflicts, data
source names should also be unique among other configuration object names, such
as servers, applications, clusters, and JMS queues, topics, and servers. For JDBC
application modules packaged in an application, data source hames must be unique
among JDBC data sources with a similar scope.

Data Source Scope: You can select the scope for the data source and set the scope
to Global (at the domain level), or to any existing Resource Group or Resource Group
Template.

JNDI Names: You can configure a data source so that it binds to the JNDI tree with a
single or multiple names. See Using WebLogic JNDI in a Clustered Environment in
Developing JNDI Applications for Oracle WebLogic Server.

4-4

ORACLE

Chapter 4
Using Generic Data Sources

Database Type: You can select the Database Management System (DBMS) of the database
you want to connect. See Supported Configurations in What's New in Oracle WebLogic
Server.

JDBC Driver: You must select a JDBC database driver that is preferred to create a database
connection. You should verify, however, that the URL is as you want it before asking the
console to test it. The driver you select must be in the classpath on all servers on which you
intend to deploy the data source.

Some but not all JIDBC drivers listed in the WebLogic Server Administration Console are
shipped (and/or are already in the classpath) with WebLogic Server. See Types of JDBC
Drivers.

All of these drivers are referenced by the weblogic.jar manifest file and do not need to be
explicitly defined in a server's classpath.

When deciding which JDBC driver to use to connect to a database, you should try drivers
from various vendors in your environment. In general, JDBC driver performance is dependent
on many factors, especially the SQL code used in applications and the JDBC driver
implementation. See Supported Configurations in What's New in Oracle WebLogic Server.

Configure Transaction Options

When you configure a JDBC data source using the WebLogic Server Administration Console,
WebLogic Server automatically selects specific transaction options based on the type of
JDBC driver. XA, non-XA, and Global transaction options are supported by WebLogic JDBC
data sources. See JDBC Data Source Transaction Options.

Configure Testing Options

You can set database connection testing options in a data source to make sure that the
database connections remain healthy, which helps keep your applications running properly.

Connection Properties are used to configure the connection between the data source and
the DBMS. Typical attributes are the database name, host name, port number, user name,
and password.

Test Database Connection allows you to test a database connection before the data source
configuration is finalized using a table name or SQL statement. If necessary, you can test
additional configuration information using the Properties and System Properties attributes.
See Configure testing options for a JDBC data source in Oracle FMW Administration Console
Online Help.

Configure Oracle Parameters

WebLogic Server provides several attributes that provide improved data source performance
when using Oracle drivers. See Advanced Configurations for Oracle Drivers and Databases.

Target JDBC Data Sources

You can select one or more targets to which to deploy your new JDBC data source. If you
don't select a target, the data source will be created but not deployed. You will need to deploy
the data source at a later time before getting connections. See Target JDBC data sources in
Oracle WebLogic Server Administration Console Online Help and Using JDBC Drivers with
WebLogic Server.

4-5

https://docs.oracle.com/middleware/12213/wls/WLACH/taskhelp/jdbc/jdbc_datasources/ConfigureTestingOptionsForADataSource.html
https://docs.oracle.com/middleware/12213/wls/WLACH/taskhelp/jdbc/jdbc_datasources/TargetAndDeployDataSources.html

Chapter 4
Using JDBC Multi Data Sources

Using JDBC Multi Data Sources

A Multi Data Source (MDS) is an abstraction around a group of Generic data sources
that is bound to the JNDI tree or local application context just like Generic data
sources are bound to the JNDI tree. You can configure a MDS to provide load
balancing or failover processing at the time of connection requests, between the
Generic data sources associated with the MDS.

For information about Generic data sources, see Using Generic Data Sources.

Applications lookup a MDS on the JNDI tree or in the local application context
(java:comp/env) just as they do for generic data sources, and then request a database
connection. The MDS determines which generic data source to use to satisfy the
request depending on the algorithm selected in the MDS configuration: load balancing
or failover.

Note:

Active GridLink and Multi Data Source are designed to work with Oracle RAC
clusters. Oracle does not recommend using Generic data sources with
Oracle RAC clusters. See Generic Data Source Handling for Oracle RAC
Outages.

What is Multi Data Source
e Configuring Multi Data Sources
e Multi Data Source Failover Enhancements

* Planned Database Maintenance with a Multi Data Source
Learn how to handle planned maintenance, without service interruption, on the
database server used by a Multi Data Source.

e Shutting Down the Data Source
Shutting down the data source involves first suspending the data source and then
releasing the associated resources including the connections.

What is Multi Data Source

ORACLE

Multi Data Source is used for failover or load balancing between nodes of a highly
available database system such as Oracle Real Application Clusters (Oracle RAC).
The Generic data source member list for a MDS source supports dynamic updates.
This feature allows Oracle RAC environments to add and remove database nodes and
corresponding Generic data sources without redeployment, grow and shrink RAC
clusters in response to throughput, and shutdown Oracle RAC node for maintenance.

Note:

Multi Data Sources do not provide any synchronization between databases.
It is assumed that database synchronization is handled properly outside of
WebLogic Server so that data integrity is maintained.

4-6

Chapter 4
Using JDBC Multi Data Sources

Adding and removing database nodes is a manual operation performed by the database
administrator.

Adding a Database Node

You can add a database node and corresponding Generic data sources without
redeployment. This capability provides you the ability to start a node after maintenance or
grow a cluster.

Removing a Database Node

You can remove a database node and corresponding Generic data sources without
redeployment. This capability provides you the ability to shutdown a node for
maintenance or shrink a cluster.

Adding a Database Node

You can add a database node and corresponding Generic data sources without
redeployment. This capability provides you the ability to start a node after maintenance or
grow a cluster.

Use the following high-level steps to add a database node:

1.
2.

Restart the database node.

Restart the Generic data source. See Start JDBC data sources in Oracle WebLogic
Server Administration Console Online Help.

Add the Generic data source back to the Multi Data Source. See Add or remove data
sources in a JDBC Multi Data Sources in Oracle WebLogic Server Administration
Console Online Help.

Removing a Database Node

ORACLE

You can remove a database node and corresponding Generic data sources without
redeployment. This capability provides you the ability to shutdown a node for maintenance or
shrink a cluster.

Use the following high-level steps to shutdown a database node:

" Note:

Failure to follow these step may cause transaction roll-backs.

Remove the Generic data source from the Multi Data Source. See Add or remove data
sources in a JDBC multi data sources in Oracle WebLogic Server Administration Console
Online Help.

When all transactions have completed, suspend the Generic data source. See Suspend
JDBC data sources in Oracle WebLogic Server Administration Console Online Help.

When all transactions have completed, shut down the Generic data source. See Shut
down JDBC data sources in Oracle WebLogic Server Administration Console Online
Help.

Shut down the database node.

4-7

Chapter 4
Using JDBC Multi Data Sources

Configuring Multi Data Sources

Perform the steps mentioned in this topic to create and configure Multi Data Source.
1. Create Generic data sources. See Using Generic Data Sources.

2. Create the Multi Data Source using either the WebLogic Server Administration
Console or the WebLogic Scripting Tool. See, Configure JDBC Multi Data Sources
in the Oracle WebLogic Server Administration Console Online Help.

3. Assign the Generic data sources to the Multi Data Source.

For information about the configuration files created when configuring a Multi Data
Source, see Understanding JDBC Resources in WebLogic Server and Creating a
Multi Data Source Module.

" Note:

In general, if a WebLogic Server data source setting of initial capacity is set
to Zero, WebLogic Server makes no DBMS connections at startup. But to
startup a Multi Data Source of LLR data sources, WebLogic Server makes a
connection at startup to see if the DBMS is a RAC or not. For a generic LLR
Multi Data Source, all the data sources need to be available, but if it is using
RAC, only one node needs to be accessible for LLR processing.

e Choosing the Multi Data Source Algorithm
Before you set up a Multi Data Source, you need to determine the primary purpose
of the Multi Data Source—failover or load balancing. You can choose the algorithm
that corresponds with your requirements.

e Multi Data Source Fail-Over Limitations and Requirements

e Controlling Multi Data Source Failover with a Callback
You can register a callback handler with WebLogic Server that controls when a
MDS with the Failover algorithm fails over connection requests from one JDBC
Generic data source in the MDS to the next Generic data source in the list.

* Deploying JDBC Multi Data Sources on Servers and Clusters

Choosing the Multi Data Source Algorithm

Failover

ORACLE

Before you set up a Multi Data Source, you need to determine the primary purpose of
the Multi Data Source—failover or load balancing. You can choose the algorithm that
corresponds with your requirements.

e Failover

e Load Balancing

The Failover algorithm provides an ordered list of Generic data sources to use to
satisfy connection requests. Normally, every connection request to this kind of Multi
Data Source is served by the first Generic data source in the list. If a database
connection test fails and the connection cannot be replaced, or if the Generic data

4-8

Chapter 4
Using JDBC Multi Data Sources

source is suspended, a connection is sought sequentially from the next Generic data source
on the list.

Note:

This algorithm requires that Test Reserved Connections
(TestConnectionsOnReserve) on the Generic data source is enabled. If enabled, a
connection in the first Generic data source is tested to verify if the Generic data
source is healthy. If the connection fails the test, the Multi Data Source uses a
connection from the next Generic data source listed in the Multi Data Source. See
Connection Testing Options for a Data Source for information about configuring
TestConnectionsOnReserve.

JDBC is a highly stateful client-DBMS protocol, in which the DBMS connection and
transactional state are tied directly to the socket between the DBMS process and
the client (driver). For this reason, failover of a connection while it is in use is not
supported.

Load Balancing

Connection requests to a load-balancing Multi Data Source are served from any Generic data
source in the list. The MDS selects Generic data sources to use to satisfy connection
requests using a round-robin scheme. When the MDS provides a connection, it selects a
connection from the Generic data source listed just after the last Generic data source that
was used to provide a connection. Multi Data Sources that use the Load Balancing algorithm
also fail over to the next Generic data source in the list if a database connection test fails and
the connection cannot be replaced, or if the Generic data source is suspended.

Multi Data Source Fail-Over Limitations and Requirements

WebLogic Server provides a failover algorithm for Multi Data Sources so that if a Generic
data source fails (for example, if the database management system crashes), your system
can continue to operate. However, there are certain limitations and requirements you must
consider when configuring the Multi Data Source.

» Test Connections on Reserve to Enable Fail-Over

* No Fail-Over for In-Use Connections

Test Connections on Reserve to Enable Fail-Over

Generic data sources rely on the Test Reserved Connections (TestConnectionsOnReserve)
feature on the Generic data source to know when database connectivity is lost. Testing
reserved connections must be enabled for the Generic data sources within the Multi Data
Source. WebLogic Server will test each connection before giving it to an application. With the
Failover algorithm, the Multi Data Source uses the results from connection test to determine
when to fail over to the next Generic data source in the Multi Data Source. After a test failure,
the Generic data source attempts to recreate the connection. If that attempt fails, the Multi
Data Source fails over to the next Generic data source.

ORACLE 4.9

Chapter 4
Using JDBC Multi Data Sources

No Fail-Over for In-Use Connections

It is possible for a connection to fail after being reserved, in which case your
application must handle the failure. WebLogic Server cannot provide fail-over for
connections that fail while being used by an application. Any failure while using a
connection requires that the application code close the failed connection, and the
transaction must be restarted from the beginning with a new connection.

Controlling Multi Data Source Failover with a Callback

You can register a callback handler with WebLogic Server that controls when a MDS
with the Failover algorithm fails over connection requests from one JDBC Generic data
source in the MDS to the next Generic data source in the list.

You can use callback handlers to control if or when the failover occurs so that you can
make any other system preparations before the failover, such as priming a database or
communicating with a high-availability framework.

Callback handlers are registered using the Failover Callback Handler attribute of the
MDS and are registered per MDS. You must register the callback handler for each
MDS to which you want the callback handler to apply. And you can register different
callback handlers for each MDS in your domain.

e Callback Handler Requirements
» Callback Handler Configuration

How It Works—Failover

Callback Handler Requirements

ORACLE

A callback handler used to control the failover and failback within a Multi Data Source
must include an implementation of the
weblogic.jdbc.extensions.ConnectionPoolFailoverCallback interface. When the
Multi Data Source needs to failover to the next Generic data source in the list or when
a previously disabled Generic data source becomes available, WebLogic Server calls
the allowPoolFailover () method in the ConnectionPoolFailoverCallback interface,
and passes a value for the three parameters, currPool, nextPool, and opcode, as
defined below. WebLogic Server then waits for the return from the callback handler
before completing the task.

Your application must return OK, RETRY CURRENT, or DONOT FAILOVER as defined below.
The application should handle failover and failback cases.

See the weblogic.jdbc.extensions.ConnectionPoolFailoverCallback interface.

" Note:

Failover callback handlers are optional. If no callback handler is specified in
the Multi Data Source configuration, WebLogic Server proceeds with the
operation (failing over or re-enabling the disabled Generic data source).

4-10

Chapter 4
Using JDBC Multi Data Sources

Callback Handler Configuration

There are two Multi Data Source configuration attributes associated with the failover and
failback functionality:

* Failover Callback Handler (ConnectionPoolFailoverCallbackHandler)—To register a
failover callback handler for a Multi Data Source, you add a value for this attribute to the
Multi Data Source configuration. The value must be an absolute nhame, such as
com.bea.samples.wls.jdbc.MultiDataSourceFailoverCallbackApplication. YOU can
set the Failover Callback Handler using the WebLogic Server Administration Console
(see Register a failover callback handler in the Oracle WebLogic Server Administration
Console Online Help) or on the JDBCDataSourceParamsBean for the Multi Data Source
using WLST.

e Test Frequency (TestFrequencySeconds)—To control how often the Multi Data Source
checks disabled (dead) Generic data sources to see if they are now available. See
Automatic Re-enablement on Recovery of a Failed Generic Data Source within a Multi
Data Source for more details.

How It Works—Failover

ORACLE

WebLogic Server attempts to failover connection requests to the next Generic data source in
the list when the current Generic data source fails a connection test or, if you enabled
FailoverRequestIfBusy, when all connections in the current Generic data source are busy.

To enable the callback feature, you register the callback handler with Weblogic Server using
Failover Callback Handler in the Multi Data Source configuration.

With the Failover algorithm, connection requests are served from the first Generic data
source in the list. If a connection from that Generic data source fails a connection test,
WebLogic Server marks the Generic data source as dead and disables it. If a callback
handler is registered, WebLogic Server calls the callback handler, passing the following
information, and waits for a return:

* currPool—For failover, this is the name of Generic data source currently being used to
supply database connections. This is the "failover from" Generic data source.

* nextPool—The name of next available Generic data source listed in the Multi Data
Source. For failover, this is the "failover to" Generic data source.

e opcode—A code that indicates the reason for the call:

— OPCODE_CURR_POOL DEAD—WebLogic Server determined that the current Generic data
source is dead and has disabled it.

— OPCODE_CURR _POOL BUSY—AIl database connections in the Generic data source are in
use. (Requires FailoverIfBusy=true in the Multi Data Source configuration. See
Enabling Failover for Busy Generic Data Sources in a Multi Data Source.)

Failover is synchronous with the connection request: Failover occurs only when WebLogic
Server is attempting to satisfy a connection request.

The return from the callback handler can indicate one of three options:

e OK—proceed with the operation. In this case, that means to failover to the next Generic
data source in the list.

* RETRY CURRENT—Retry the connection request with the current Generic data source.

4-11

Chapter 4
Using JDBC Multi Data Sources

* DONOT FAILOVER—Do not retry the current connection request and do not failover.
WebLogic Server will throw a
weblogic.jdbc.extensions.PoolUnavailableSQLException.

WebLogic Server acts according to the value returned by the callback handler.

If the secondary Generic data sources fails, WebLogic Server calls the callback
handler again, as in the previous failover, in an attempt to failover to the next available
Generic data source in the Multi Data Source, if there is one.

¢ Note:

WebLogic Server does not call the callback handler when you manually
disable a Generic data source.

For Multi Data Sources with the Load-Balancing algorithm, WebLogic Server does not
call the callback handler when a Generic data source is disabled. However, it does call
the callback handler when attempting to re-enable a disabled Generic data source.
See the following section for more details.

Deploying JDBC Multi Data Sources on Servers and Clusters

All Generic data sources used by a Multi Data Source to satisfy connection requests
must be deployed on the same servers and clusters as the Multi Data Source. A Multi
Data Source always uses a Generic data source deployed on the same server to
satisfy connection requests. Multi Data Sources do not route connection requests to
other servers in a cluster or in a domain.

To deploy a Multi Data Source to a cluster or server, you select the server or cluster as
a deployment target. When a Multi Data Source is deployed on a server, WebLogic
Server creates an instance of the Multi Data Source on the server. When you deploy a
Multi Data Source to a cluster, WebLogic Server creates an instance of the Multi Data
Source on each server in the cluster.

For instructions, see Target and deploy JDBC Multi Data Sources in the Oracle
WebLogic Server Administration Console Online Help.

Multi Data Source Failover Enhancements

Learn how to improve failover processing for Multi Data Sources.

» Connection Request Routing Enhancements When a Generic Data Source Fails

« Automatic Re-enablement on Recovery of a Failed Generic Data Source within a
Multi Data Source

» Enabling Failover for Busy Generic Data Sources in a Multi Data Source

e Controlling Multi Data Source Failback with a Callback

Connection Request Routing Enhancements When a Generic Data Source
Fails

To improve performance when a Generic data source within a Multi Data Source fails,
WebLogic Server automatically disables the Generic data source when a pooled

ORACLE 4-12

Chapter 4
Using JDBC Multi Data Sources

connection fails a connection test. After a Generic data source is disabled, WebLogic Server
does not route connection requests from applications to the Generic data source. Instead, it
routes connection requests to the next available Generic data source listed in the Multi Data
Source.

This feature requires that Generic data source testing options are configured for allGeneric
data sources in a Multi Data Source, specifically Test Table Name and Test Reserved
Connections. See Connection Testing Options for a Data Source.

If a callback handler is registered for the Multi Data Source, WebLogic Server calls the
callback handler before failing over to the next Generic data source in the list. See Controlling
Multi Data Source Failover with a Callback for more details.

Automatic Re-enablement on Recovery of a Failed Generic Data Source within a
Multi Data Source

After a Generic data source is automatically disabled because a connection failed a
connection test, the Multi Data Source periodically tests a connection from the disabled
Generic data source to determine when the Generic data source (or underlying database) is
available again. When the Generic data source becomes available, the Multi Data Source
automatically re-enables the Generic data source and resumes routing connection requests
to the Generic data source, depending on the Multi Data Source algorithm and the position of
the Generic data source in the list of included Generic data sources. Frequency of these tests
is controlled by the Test Frequency Seconds attribute of the Multi Data Source. The default
value for Test Frequency is 120 seconds, so if you do not specifically set a value for the
option, the Multi Data Source will test disabled Generic data sources every 120 seconds. See
JDBC Multi Data Source: Configuration: General in the Oracle WebLogic Server
Administration Console Online Help.

WebLogic Server does not test and automatically re-enable Generic data sources that you
manually disable. It only tests Generic data sources that are automatically disabled.

If a callback handler is registered for the Multi Data Source, WebLogic Server calls the
callback handler before re-enabling the Generic data source. See Controlling Multi Data
Source Failback with a Callback for more details.

Enabling Failover for Busy Generic Data Sources in a Multi Data Source

ORACLE

By default, for Multi Data Sources with the Failover algorithm, when the number of requests
for a database connection exceeds the number of available connections in the current
Generic data source in the Multi Data Source, subsequent connection requests fail.

To enable the Multi Data Source to failover when all connections in the current Generic data
source are in use, you can enable the Failover Request if Busy option on the JDBC Multi
Data Source: Configuration: General page in the WebLogic Server Administration Console.
(Also available as the FailoverRequestIfBusy attribute in the
JDBCDataSourceParamsBean). If enabled (set to true), when all connections in the current
Generic data source are in use, application requests for connections will be routed to the next
available Generic data source within the Multi Data Source. When disabled (set to false, the
default), connection requests do not failover.

If a ConnectionPoolFailoverCallbackHandler is included in the Multi Data Source

configuration, WebLogic Server calls the callback handler before failing over. See Controlling
Multi Data Source Failover with a Callback for more details.

4-13

Chapter 4
Using JDBC Multi Data Sources

Controlling Multi Data Source Failback with a Callback

If you register a failover callback handler for a Multi Data Source, WebLogic Server
calls the same callback handler when re-enabling a Generic data source that was
automatically disabled. You can use the callback to control if or when the disabled
Generic data source is re-enabled so that you can make any other system
preparations before the Generic data source is re-enabled, such as priming a
database or communicating with a high-availability framework.

See the following sections for more details about the callback handler:

¢ How It Works—Failback

How It Works—Failback

ORACLE

WebLogic Server periodically checks the status of Generic data sources in a Multi
Data Source that were automatically disabled. (See Automatic Re-enablement on
Recovery of a Failed Generic Data Source within a Multi Data Source.) If a disabled
Generic data source becomes available and if a failover callback handler is registered,
WebLogic Server calls the callback handler with the following information and waits for
a return:

* currPool—For failback, this is the name of the Generic data source that was
previously disabled and is now available to be re-enabled.

* nextPool—For failback, this is null.

* opcode—A code that indicates the reason for the call. For failback, the code is
always OPCODE REENABLE CURR_POOL, which indicates that the Generic data source
named in currPool is now available.

Failback, or automatically re-enabling a disabled Generic data source, differs from
failover in that failover is synchronous with the connection request, but failback is
asynchronous with the connection request.

The callback handler can return one of the following values:

e OK—proceed with the operation. In this case, that means to re-enable the indicated
Generic data source. WebLogic Server resumes routing connection requests to
the Generic data source, depending on the Multi Data Source algorithm and the
position of the Generic data source in the list of included Generic data sources.

* DONOT FAILOVER—DO not re-enable the currPool Generic data source. Continue
to serve connection requests from the Generic data sources in use.

WebLogic Server acts according to the value returned by the callback handler.

If the callback handler returns DONOT_FAILOVER, WebLogic Server will attempt to
re-enable the Generic data source during the next testing cycle as determined by the
TestFrequencySeconds attribute in the Multi Data Source configuration, and will call
the callback handler as part of that process.

The order in which Generic data sources are listed in a Multi Data Source is very
important. A Multi Data Source with the Failover algorithm will always attempt to serve
connection requests from the first available Generic data source in the list of Generic
data sources in the Multi Data Source. Consider the following scenario:

4-14

Chapter 4
Using JDBC Multi Data Sources

1. MultiDataSource 1 uses the Failover algorithm, has a registered
ConnectionPoolFailoverCallbackHandler, and includes three Generic data sources:
DS1, DS2, and DS3, listed in that order.

2. Ds1 becomes disabled, so MultiDataSource 1 fails over connection requests to DS2.
3. Ds2 then becomes disabled, so MultiDataSource 1 fails over connection requests to DS3.

4. After some time, DS1 becomes available again and the callback handler allows WebLogic
Server to re-enable the Generic data source. Future connection requests will be served
by DS1 because Ds1 is the first Generic data source listed in the Multi Data Source.

5. If DS2 subsequently becomes available and the callback handler allows WebLogic Server
to re-enable the Generic data source, connection requests will continue to be served by
DS1 because Ds1 is listed before Ds2 in the list of Generic data sources.

Planned Database Maintenance with a Multi Data Source

ORACLE

Learn how to handle planned maintenance, without service interruption, on the database
server used by a Multi Data Source.

To avoid service interruption, multiple database instances must be available so that the
database can be updated in a rolling fashion. Oracle RAC cluster and Oracle GoldenGate, or
a combination of these products, can be used to help accomplish this goal. (Note that Oracle
DataGuard cannot be used for planned maintenance without service interruption). Each
database instance is configured as a Generic data source member of the Multi Data Source.
This approach assumes that the application is returning connections to the pool on a regular
basis.

Process Overview
The following steps provide a high-level overview of the planned maintenance process:

1. On mid-tier systems—Shutdown all member data sources associated with the Oracle
RAC instance that will be shut down for maintenance. It is important that you do not shut
down all data sources in each Multi Data Source list so that connections can be reserved
for the other member(s). Wait for data source shutdown to complete. See:

e Shutting Down the Data Source

* JDBCDataSourceRuntimeMBean shutdown operation in MBean Reference for
Oracle WebLogic Server

2. If required, you may want to reduce the remaining connections on the database side that
are not associated with the WebLogic data source. For the Oracle database server, this
might include stopping (or relocating) the application services at the instances that will be
shut down for maintenance, stopping the listener, and/or issuing a transactional
disconnect for the services on the database instance.

Shut down the database instance using your preferred tools.
Perform the planned maintenance
Restart the database instance using your preferred tools.

Startup the services when the database instances are ready for application use.

N o o e

On mid-tier systems—Start the member data sources. See
JDBCDataSourceRuntimeMBean start operation in MBean Reference for Oracle
WebLogic Server.

4-15

Chapter 4
Using JDBC Multi Data Sources

Shutting Down the Data Source

ORACLE

Shutting down the data source involves first suspending the data source and then
releasing the associated resources including the connections.

When a member data source in a Multi Data Source is marked as suspended, the
Multi Data Source will not try to get connections from the suspended pool. Instead, to
reserve connections, it will go to the next member data source. It is important that you
do not shut down all member data sources in a Multi Data Source list at the same
time. If all members are shut down or fail, then access to the Multi Data Source fails
and the application will see failures.

When you gracefully suspend a data source, which is the first step of the shut down
process, the following occurs:

* The data source is immediately marked as suspended at the beginning of the
operation and no further connections are created on the data source.

* lIdle (not reserved) connections are marked closed

» After a timeout period for the suspend operation, all remaining connections in the
pool are marked as suspended and the following exception is thrown for any
operations on the connection, indicating that the data source is suspended:

java.sqgl.SQLRecoverableException: Connection has been administratively
disabled. Try later.

» All the remaining connections are then closed. We won't know until the data
source is resumed if they are good or not. In this case, we know that the database
will be shut down and the connections in the pool will not be good if the data
source is resumed. Instead, we are doing a data source shutdown which will close
all of the disabled connections.

The shutdown operation can be done synchronously or asynchronously. If you do
a synchronous shutdown, the default timeout period is 60 seconds. You can
change the value of this timeout period by configuring or dynamically setting
Inactive Connection Timeout Seconds to a non-zero value. There is no upper
limit on the inactive timeout period. Note that the processing actually checks for in-
use (reserved) resources every tenth of a second so if the timeout value is set to 2
hours and all reserved resources are released a second later, the shut down will
complete a second later. If you do an asynchronous operation, the timeout period
is specified on the method itself. If set to 0, the default is used. The default is to
use Inactive Connection Timeout Seconds if set or 60 seconds. If you want a
minimal timeout, set the value to 1. If you want no timeout, set it to a large value
(not recommended).

This shutdown operation runs synchronously; there is no asynchronous version of the
MBean operation available.

You can also use this for Multi Data Sources configured with either Load-Balancing or
Failover.

Example 4-1 WLST Example

The following WLST example script demonstrates how to edit the configuration to
increase the suspend timeout period and then use the runtime MBean to shutdown a

4-16

ORACLE

Chapter 4
Using JDBC Multi Data Sources

data source. This script must be integrated into the existing framework for all WebLogic
Server servers and data sources.

import sys, socket, os
hostname = 'hostname'
datasource="'ds"
svr='myserver'
connect ("weblogic", "password","t3://"+hostname+":7001")
Shutdown the data source serverRuntime ()
serverRuntime ()
cd('/JDBCServiceRuntime/' + svr + '/JDBCDataSourceRuntimeMBeans/'
+datasource)
task = cmo.shutdown (10000)
while (task.isRunning ()):
print 'SHUTTING DOWN'
java.lang.Thread.sleep(2000)
print 'Datasource task is in status' + task.getStatus()
exit ()
$ java weblogic.WLST myscript2.py
Intializing Weblogic Scripting Tool (WLST)...
Welcome to WebLogic Server Administration Scripting Shell

Location changed to serverRuntime tree.

This is a read-only tree with ServerRuntimeMBean as the root. For more help,
use help('serverRuntime').

SHUTTING DOWN

Datasource task is in status

SUCCESS

Datasource task is in status

SUCCESS

Exiting WebLogic Scripting Tool.

Important Considerations

The following list describes issues you should be aware of when performing planned
maintenance:

» If the Multi Data Source is using a database service, you cannot stop or relocate the
database service before suspending or shutting down the Multi Data Source. If you do,
the Multi Data Source may attempt to create a connection to the now missing service and
it will react as though the database is down and kill all connections, preventing a graceful
shutdown. Because suspending a Multi Data Source ensures that no new connections
are created at the associated instance, it is not necessary to stop the service. (Note that
the Multi Data Source only creates connections on this instance. It will never create
connections on another instance even if it is relocated). Also, suspending a Multi Data
Source ceases operations on all connections, therefore no further progress occurs on
any sessions (the transactions will not complete) that remain in the Multi Data Source
pool.

* You may encounter an issue related to XA affinity that is enforced by the Multi Data
Source algorithms. When an XA branch is created on an Oracle RAC instance, all
additional branches are created on the same instance. While Oracle RAC supports XA
across instances, there are some significant limitations that applications run into before
the prepare phase, and the Multi Data Source enforces that all operations are on the
same instance. As soon as the graceful suspend operation starts, the member data
source is marked as suspended and no further connections are allocated there. If an

4-17

Chapter 4
Using Active GridLink Data Sources

application using global transactions tries to start another branch on the
suspending data source, it will fail to get a connection and the transaction fails. In
the case of an XA transaction spanning multiple WebLogic servers, the suspend is
not graceful. This issue does not apply to Emulate Two-Phase Commit or one-
phase commit, which use a single connection for all work, and Logging Last
Resource (LLR).

» If for some reason you must separate suspending the data source, at which point
all connections are disabled, from releasing the resources, you can perform a
suspend followed by forceShutdown. You must use a forced shutdown to avoid
going through the waiting period a second time. Oracle does not recommend using
this process.

* To get a graceful shutdown of the data source when shutting down the database,
the data source must be involved. This process of shutting down the data source
followed by shutdown of the database requires coordination between the mid-tier
and the database server processing. Processing is simplified by using Active
GridLink instead of Multi Data Source. See Using Active GridLink Data Sources.

* When using the Oracle database, Oracle recommends that an application service
be configured for each database so that it can be configured for high availability.
By using an application service, you can start up the database on its own without
the data source starting to use it. Once the application service is explicitly started,
the administrator can make the database available to the data source.

Using Active GridLink Data Sources

ORACLE

An Active GridLink (AGL) data source provides connectivity between WebLogic Server
and an Oracle database. Oracle database offers both on-premises and cloud database
services with cluster capabilities of Oracle Grid Infrastructure and Oracle Clusterware.
For more information, see Supported Oracle On-Premises and Cloud Database
Services and Understanding the ActiveGridlink Attribute.

Using an AGL data source involves creating the AGL data source, configuring the
connection pool and Oracle database parameters, tuning, monitoring, and so on. The
following sections explain in detail these concepts:

What is Active GridLink Data Source

» Configuring Active GridLink Data Source
Use the WebLogic Server Administration Console or WLST to configure Active
GridLink Data Source in a WebLogic domain.

» Configuring Runtime Load Balancing using SDP
To configure load balancing across SDP connections, you must edit the
TNSNAMES . ORA file on all nodes and add an SDP end-point to the
LISTENER IBLOCAL entry.

» Configuring Active GridLink Connection Pool Features

e Tuning Active GridLink Data Source Connection Pools
By properly configuring the connection pool attributes in JDBC data sources in
your WebLogic Server domain, you can improve application and system
performance.

* Monitoring Active GridLink JDBC Resources
Learn about monitoring and debugging Active GridLink data sources.

» Using Active GridLink Data Sources without FAN Notification

4-18

Chapter 4
Using Active GridLink Data Sources

* Best Practices for Active GridLink Data Sources
Learn about the best practices for using Active GridLink data sources by understanding
the catch and handle exceptions and how connections are created when using an Active
GridLink data source.

e Comparing Active GridLink and Multi Data Sources
There are several benefits to using Active GridLink data sources over Multi Data Sources
when using Oracle RAC clusters.

* Migrating from Multi Data Source to Active GridLink
You can migrate to Multi Data Source from Active GridLink data sources using simple
manual process.

* Managing Database Downtime with Active GridLink Data Sources
Learn several ways to handle database downtime with Active GridLink data sources in an
Oracle RAC database environment.

e Gradual Draining
During planned database maintenance, gradually close the database connections instead
of closing all of the connections immediately. This strategy prevents uneven performance
by the application.

What is Active GridLink Data Source

ORACLE

An Active GridLink Data Source (AGL) data source provides connectivity between WebLogic
Server and an Oracle database service, which may include one or more Oracle RAC clusters.
An Oracle database service represents a workload with common attributes that enables
system administrators to manage the workload as a single entity.

You scale the number of AGL data sources as the number of services increases in the data
base, independent of the number of nodes in the Oracle RAC cluster(s). Examples of High
Availability support for multiple clusters include Data Guard, GoldenGate, and Global
Database Service.

Note:

Active GridLink and Multi Data Source are designed to work with Oracle RAC
clusters. Oracle does not recommend using Generic data sources with Oracle RAC
clusters. See Comparing AGL and Multi Data Sources.

4-19

Chapter 4
Using Active GridLink Data Sources

Figure 4-1 Active GridLink Data Source Connectivity

WebLogic Server Szﬁ/(i:cg)A
Single WLS connection
pool for service A T '-{ ONS D‘aemon ’
I A
|
Polli
e | v
oo -/ ONS Daemon |
|
Advisories : :
| I
ONS H
UCP-RAC module client —-=
RAC (2)
Service A

An Active GridLink data source includes the features of Generic data sources plus the
following support for Oracle RAC:

* Fast Connection Failover

* Runtime Connection Load Balancing

e GridLink Affinity

* SCAN Addresses

* Secure Communication using Oracle Wallet with ONS Listener
e Support for Active Data Guard

e Supported Oracle On-Premises and Cloud Database Services

» Using Socket Direct Protocol

Fast Connection Failover

ORACLE

Fast Connection Failover feature provides an application-independent method to
implement Oracle RAC event notifications such as detection and cleanup of invalid
connections, load balancing of available connections, and work redistribution on active
Oracle RAC instances.

WebLogic Server supports Fast Connection Failover. See About Fast Connection
Failover in Universal Connection Pool for JDBC Developer's Guide.

An AGL data source uses Fast Connection Failover and responds to Oracle RAC
events using Oracle Notification Service (ONS). This ensures that the connection pool
in the AGL data source contains valid connections (including reserved connections)

4-20

Chapter 4

Using Active GridLink Data Sources

without the need to poll and test connections. It also ensures that connections are created on
new nodes as they become available.

Figure 4-2 Fast Connection Failover

WebLogic RAC Aware

Connection Pool

RAC Database
X
Instance 1
| |
Start —> === —— ONS Subscribe —>
———
<— Handle =——= <—ONSPublish
Event /-
Fail-over Instance 2
Handler Thread
Instance 3

An AGL data source uses Fast Connection Failover to:

» Provide rapid failure detection.

* Abort and remove invalid connections from the connection pool.

» Perform graceful shutdown for planned and unplanned Oracle RAC node outages. See
Planned Outage Procedures and Unplanned Outages.

» Adapt to changes in topology, such as adding or removing a node.

» Distribute runtime work requests to all active Oracle RAC instances, including those

rejoining a cluster.

" Note:

connections.

» JDBC Driver Configuration for use with Oracle Fast Connection Failover
To enable Fast Connection Failover on a data source, you need to set specific values for
the Driver Class Name and ONS configuration string properties.

ORACLE

AGL data sources do not support the deprecated FastConnectionFailoverEnabled
connection property. An attempt to create an XA connection with this property
enabled results in a java.sql.SQLException: Can not use getXAConnection ()
when connection caching is enabled exception because the driver
implementation of Fast Connection Failover for this property does not support XA

4-21

Chapter 4
Using Active GridLink Data Sources

JDBC Driver Configuration for use with Oracle Fast Connection Failover

To enable Fast Connection Failover on a data source, you need to set specific values
for the Driver Class Name and ONS configuration string properties.

Set the following connection pool properties:

e In Driver Class Name—set the class name to
oracle.jdbc.pool.OracleDataSource.

* In Properties—set the ONS configuration string to remotely subscribe the Oracle
RAC nodes to Oracle FAN/ONS events. For example:
ONSConfiguration=nodes=hostnamel:portl,hostname2:port?2

¢ Note:

Oracle's OracleDataSource class is not XA-capable, so the resulting
data source does not implement a XA connection pool.

Runtime Connection Load Balancing

ORACLE

AGL data sources provide load balancing. AGL data sources use runtime connection
load balancing (RCLB) to distribute connections to Oracle RAC instances based on
Oracle FAN events issued by the database. This simplifies data source configuration
and improves performance as the database drives load balancing of connections
through the AGL data source, independent of the database topology.

Runtime Connection Load Balancing allows WebLogic Server to:

* Adjust the distribution of work based on back end node capacities such as CPU,
availability, and response time.

* React to changes in Oracle RAC topology.

* Manage pooled connections for high performance and scalability.

4-22

Chapter 4
Using Active GridLink Data Sources

Figure 4-3 Runtime Connection Load Balancing

WebLogic Connection Pool RAC Database

30% Connections

Y

Y

I'm busy

Instance 1

10% Connections ———»

e)
<——|'m very busy —————

Application Instance 2

T I'midle

YVYY

60% Connections

Instance 3

If FAN is not enabled, AGL data sources use a round-robin load balancing algorithm to
allocate connections to Oracle RAC nodes.

" Note:

Connections may be shut down periodically on AGL data sources. If the
connections allocated to various RAC instances do not correspond to the Runtime
Load Balancing percentages in the FAN load-balancing advisories, connections to
overweight instances are destroyed and new connections opened. This process
occurs every 30 seconds by default.

You can tune this behavior using the
weblogic.jdbc.gravitationShrinkFrequencySeconds System property which
specifies the amount of time, in seconds, the system waits before rebalancing
connections. A value of 0 disables the rebalancing process.

GridLink Affinity

WebLogic Server GridLink affinity policies are designed to improve application performance
by maximizing RAC cluster utilization.

e Session Affinity Policy
e XA Affinity Policy
Session Affinity Policy

Web applications have better performance when repeated operations against the same set of
records are processed by the same RAC instance. Business applications such as online
shopping and online banking are typical examples of this pattern.

ORACLE 4-23

ORACLE

Chapter 4
Using Active GridLink Data Sources

An AGL data source uses the Session Affinity policy to ensure all the data base
operations for a web session, including transactions, are directed to the same Oracle
RAC instance of a RAC cluster.

Note:

The context is stored in the HTTP session. It is up to the application how
windows (within a browser or across browsers) are mapped to HTTP
sessions.

If an AGL data source with a session affinity policy is accessed outside the context of a
web session, the affinity policy changes to the XA affinity policy. See XA Affinity Policy.

Figure 4-4 Session Affinity

Tee RAC
@ Database
Application
Connect to me
Instance 1
Data
BB — source
Data .
ISP > source D e
Data _Ii
Servlet —> g5irce Instance 2
— WebLogic Connection Pool
=
=|1>=
WebLogic Server
Instance 3

Key

Connection

Affinity Context @

An AGL data source monitors RAC load balancing advisories (LBAs) using the
AffEnabled attribute to determine if RAC affinity is enabled for a RAC cluster. The first
connection request is load balanced using Runtime Connection Load-Balancing
(RCLB) and is assigned an Affinity context. All subsequent connection requests are
routed to the same Oracle RAC instance using the Affinity context of the first
connection until the session ends or the transaction completes. Affinity is based on the
database name, service name, and instance name. Although the Session Affinity
policy for an AGL data source is always enabled by default, a Web session is active for
Session Affinity if:

4-24

Chapter 4
Using Active GridLink Data Sources

* Oracle RAC is enabled, active, and the service has enabled RCLB. RCLB is enabled for
a service if the service GOAL (NOT CLB_GOAL) is set to either SERVICE TIME or THROUGHPUT.

* The database determines there is sufficient performance improvement in the cluster wait
time and the Affinity flag in the payload in the information from ONS is set to TRUE.

If the database determines it is not advantageous to implement session affinity, such as a
high database availability condition, the database load balancing algorithm reverts to its
default work allocation policy and the Affinity flag in the payload is set to FALSE.

XA Affinity Policy

XA Affinity for global transactions ensures all the data base operations for a global
transaction performed on an Oracle RAC cluster are directed to the same Oracle RAC
instance. There are limitations to consider:

* XA transaction can't span instances.

» Strict affinity is enforced for connections within an XA transaction. If a connection cannot
be created on the correct instance, an exception is thrown.

Figure 4-5 XA Affinity

Oracle WebLogic Oracle RAC Oracle WebLogic Oracle RAC
Servers Server Servers Server
***************** RAC 1 F——————————————1 i RAC 1

|
|
| Instance
|
|

|
|
|
: l
> 3 1
| i |
| | |
ffffffffffffffffff | RAC 2 RN, | | RAC2
| | WebLogic Instance 2 ! ngggecg& || WebLogic Instance 2 | | !
| | Affinity | | ¥ ‘
» WebLogic 2 ! | ' WebLogic 2 P ;
B | 4 I I
;| ! ;! N !
(1| APP2 | webLogic ' RAC3 1/ App2 | weblogic || | Racs
I Conn —+— o 1 Conn —
| Pool ! Pool I}
| State Notification | State ; Notification
s ! Service | R ———, | Service

There are two options to load balance connections across nodes:

* Use a single Oracle Single Client Access Name (SCAN) address

jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS= (PROTOCOL=TCP) (HOST=scanname)
(PORT=scanport)) (CONNECT DATA=(SERVICE NAME=myservice)))

* Use multiple non-SCAN addresses with LOAD_BALANCE=0n

jdbc:oracle:thin:@ (DESCRIPTION=(ADDRESS LIST=(LOAD BALANCE=0ON)
(ADDRESS= (PROTOCOL=TCP) (HOST=hostl) (PORT=1521)) (ADDRESS= (PROTOCOL=TCP)
(HOST=host2) (PORT=1521))) (CONNECT DATA=(SERVICE NAME=myservice)))

ORACLE 4-25

Chapter 4
Using Active GridLink Data Sources

Using a SCAN address is recommended over using multiple non-SCAN addresses.
However, a SCAN address can only be used if your database is configured to use it.
Contact your network administrator for appropriately configured SCAN URLSs for your
environment.

Note:
When using Oracle RAC 11.2 and higher, consider the following:

« |f the Oracle RAC listener is set to SCAN, the AGL data source
configuration can only use a SCAN address.

e If the Oracle RAC listener is setto List of Node VIPs, the AGL data
source configuration can only use a list of VIP addresses.

e If the Oracle RAC listener is setto Mix of SCAN and List of Node
VIPs, the AGL data source configuration can use both SCAN and VIP
addresses.

See:

e Overview of Automatic Workload Management with Dynamic Database
Services in Real Application Clusters Administration and Deployment
Guide.

e Oracle Single Client Access Name (SCAN) White Paper at http://
www.oracle.com/technetwork/database/clustering/overview/
scan-129069.pdf

Secure Communication using Oracle Wallet with ONS Listener

This feature allows you to configure secure communication with the ONS listener using
Oracle Wallet. See Secure ONS Client Communication.

Support for Active Data Guard

Active GridLink data source also works with Oracle Active Data Guard. Oracle
Clusterware must be installed and active on the primary and standby sites for both
single instance (using Oracle Restart) and Oracle RAC databases. Oracle Data Guard
broker coordinates with Oracle Clusterware to properly fail over role-based services to
a new primary database after a Data Guard failover has occurred. Cluster Ready
Services (CRS) posts FAN events when the role change occurs.

Supported Oracle On-Premises and Cloud Database Services

ORACLE

Oracle database offers both on-premises and cloud database services that use the
Fast Application Notification (FAN) feature provided with the cluster capabilities of
Oracle Grid Infrastructure and Oracle Clusterware.

Oracle database on-premises services that use the FAN feature include the following
products and features:

e Oracle Real Application Clusters (RAC). See, Using WebLogic Server with Oracle
RAC.

4-26

http://www.oracle.com/pls/topic/lookup?ctx=fmw122140&id=RACAD7276
http://www.oracle.com/pls/topic/lookup?ctx=fmw122140&id=RACAD7276
http://www.oracle.com/technetwork/database/clustering/overview/scan-129069.pdf
http://www.oracle.com/technetwork/database/clustering/overview/scan-129069.pdf
http://www.oracle.com/technetwork/database/clustering/overview/scan-129069.pdf

Chapter 4
Using Active GridLink Data Sources

» Oracle Real Application Clusters (RAC) One Node. See Overview of Oracle Real
Application Clusters One Node and Administering Oracle RAC One Node in Real
Application Clusters Administration and Deployment Guide.

* Oracle Data Guard (with Broker). See Oracle Data Guard Broker Concepts in Oracle®
Data Guard Broker Guide.

» Oracle Standard Edition High Availability. See About Standard Edition High Availability
and Installing Standard Edition High Availability in Database Installation Guide.

* Oracle Database Global Data Services. See Global Data Services.

Oracle Database related cloud services that use the FAN feature includes the following
products:

e Oracle Autonomous Transaction Processing Dedicated (ATP-D). See About Dedicated
Autonomous Database and Access Dedicated Autonomous Database in the Oracle
Cloud Infrastructure Console in Oracle Autonomous Database on Dedicated Exadata
Infrastructure Guide.

e Oracle Autonomous Database Dedicated (ADB-D). See About Dedicated Autonomous
Database in Oracle Autonomous Database on Dedicated Exadata Infrastructure Guide.

e Oracle Exadata Cloud@Customer. See About Oracle Exadata Cloud at Customer in
Exadata Database Service on Cloud@Customer Administrator's Guide.

» Oracle Exadata Cloud Service. See About Exadata Cloud Service Instances in
Administering Oracle Database Exadata Cloud Service Guide.

* Oracle Database Cloud Service. See About Oracle Database Cloud Services in
Administering Oracle Database Classic Cloud Service Guide.

Using Socket Direct Protocol

To use the Socket Direct Protocol (SDP), your database network must be configured to use
Infiniband. SDP does not support SCAN addresses.

See Configuring SDP Support for InfiniBand Connections in the Oracle Database Net
Services Administrator's Guide.

Configuring Active GridLink Data Source

ORACLE

Use the WebLogic Server Administration Console or WLST to configure Active GridLink Data
Source in a WebLogic domain.

See:

* Create JDBC GridLink data sources in the Oracle WebLogic Server Administration
Console Online Help.

* The sample WLST script
EXAMPLES HOME\wl server\examples\src\examples\wlst\online\jdbc data source c

reation.py, where EXAMPLES HOME represents the directory in which the WebLogic
Server code examples are configured. This example creates a Generic data source. See
WLST Online Sample Scripts in Understanding the WebLogic Scripting Tool.

You must perform the following basic steps to create a data source using the WebLogic
Server Administration Console:

e Configure JDBC Data Source Properties

4-27

http://docs.oracle.com/database/121/NETAG/performance.htm#NETAG014

Chapter 4
Using Active GridLink Data Sources

Configure Transaction Options
Configure Connection Properties
Test Connections

Configure ONS Client

Target the Data Source
Configuring Oracle Parameters

Configuring an ONS Client Using WLST

Configure JDBC Data Source Properties

JDBC Data Source Properties include options that determine the identity of the data
source and the way the data is handled on a database connection.

Data Source Names: JDBC data source names are used to identify the data
source within the WebLogic domain. For system resource data sources, hames
must be unique among all other JDBC system resources, including data sources.
To avoid naming conflicts, data source names should also be uniqgue among other
configuration object names, such as servers, applications, clusters, and JMS
gueues, topics, and servers. For JDBC application modules scoped to an
application, data source names must be unique among JDBC data sources that
are similarly scoped.

Data Source Scope: You can select the scope for the data source and set the
scope to Global (at the domain level), or to any existing Resource Group or
Resource Group Template.

JNDI Names: You can configure a data source so that it binds to the JNDI tree
with a single or multiple names. You can use a multi-JNDI-named data source in
place of legacy configurations that included multiple data sources that pointed to a
single JDBC connection pool. See Developing JNDI Applications for Oracle
WebLogic Server.

Driver: Select the replay driver for JIDBC Replay Driver, or the XA or non-XA Thin
driver.

Note:

The JDBC Replay Driver does not currently support XA transactions.

Configure Transaction Options

ORACLE

When you configure a JDBC data source using the WebLogic Server Administration
Console, WebLogic Server automatically selects specific transaction options based on
the type of JDBC driver. WebLogic JDBC data sources supports XA, non-XA, and
Global transaction options.

For more information on configuring transaction support for a data source, see JDBC
Data Source Transaction Options.

4-28

Chapter 4
Using Active GridLink Data Sources

Configure Connection Properties

Connection Properties are used to configure the connection between the data source and
the DBMS. Typical attributes are the service name, database name, host name, port number,
user name, and password.

Note:
Using service hames:

* When a Database Domain is used, service names must be suffixed with the
domain name. For example, if the database name is db.country.myCorp.com,
the service name myservice would need to be entered as
myservice.db.country.myCorp.com.

The console allows you to enter connection properties in one of the following ways:
* Enter Connection Properties

* Enter a Complete URL

e Supported Active GridLink Data Source URL Formats

Enter Connection Properties

On the GridLink data source connection Properties Options page, select Enter
individual listener information and click Next. Enter the connection properties. For
example:

* Enter myService in Service Name.

» Enter left:1234, center:1234, right:1234 in the Host and Port:. Separate the host and
port of each listener with colon.

e Enter myDataBase in Database User Name.

* Enter myPasswordl in Password.

* If required, set Protocol to SDP.

The console automatically generates the complete JDBC URL. For example:

jdbc:oracle:thin:@(DESCRIPTION = (ADDRESS LIST = (LOAD BALANCE=on)
(FAILOVER=ON) (ADDRESS=(PROTOCOL=TCP) (HOST=1left) (PORT=1521))

(ADDRESS= (PROTOCOL=TCP) (HOST=center) (PORT=1521)) (ADDRESS=(PROTOCOL=TCP)
(HOST=right) (PORT=1521))) (CONNECT DATA=(SERVICE NAME=myService)))

Enter a Complete URL

ORACLE

On the GridLink data source connection Properties Options page, select Enter complete
JDBC URL and click Next. Enter the connection properties. For example:

e In Complete JDBC URL, enter the JDBC URL. For example:

jdbc:oracle:thin:@(DESCRIPTION = (ADDRESS LIST = (LOAD BALANCE=o0n)
(FAILOVER=ON) (ADDRESS=(PROTOCOL=TCP) (HOST=1left) (PORT=1521))

4-29

Chapter 4
Using Active GridLink Data Sources

(ADDRESS= (PROTOCOL=TCP) (HOST=center) (PORT=1521))
(ADDRESS= (PROTOCOL=TCP) (HOST=right) (PORT=1521)))
(CONNECT DATA=(SERVICE NAME=myService)))

You can also use a SCAN address. For example:

jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS LIST=(ADDRESS=(PROTOCOL=TCP)
(HOST=MyScanAddr-scn.myCompany.com) (PORT=1234)))

(CONNECT DATA=(SERVICE NAME=myService)))

* Enter myDataBase in Database User Name.
* Enter myPassword1 in Password.

* If required, set Protocol to spp.

Supported Active GridLink Data Source URL Formats

ORACLE

AGL data sources only support long format JDBC URLs. The supported long format
pattern is:

jdbc:oracle:thin:@ (DESCRIPTION=(ADDRESS LIST=(ADDRESS=(PROTOCOL=TCP)
(HOST=[SCAN VIP]) (PORT=[SCAN PORT])))
(CONNECT DATA=(SERVICE NAME=[SERVICE NAME])))

Easy Connect (short) format URLSs are not supported for AGL data sources. The
following is an example of a Easy Connect URL pattern that is not supported for use
with AGL data sources:

jdbc:oracle:thin: [SCAN VIP]:[SCAN PORT]/[SERVICE NAME]

Recommendations for AGL Data Source URLs

The following section provides general recommendations when creating AGL data
source URLs.

* Use a single DESCRIPTION. Avoid a DESCRIPTION LIST to avoid connection delays.
» Use one ADDRESS LIST for each RAC cluster or DataGuard database

e Enter RETRY COUNT, RETRY DELAY, CONNECT TIMEOUT atthe DESCRIPTION level so
that all ADDRESS LIST entries use the same value.

* RETRY DELAY specifies the delay, in seconds, between the connection retries. This
attribute is new in the Oracle 12.1.0.2 release.

* RETRY COUNT is used to specify the number of times an ADDRESS list is traversed
before the connection attempt is terminated. The default value is 0. When using
SCAN listeners with FAILOVER=on, Setting RETRY COUNT to a value of 2 means that if
you had 3 sCAN 1P addresses, each would be traversed three times each,
resulting in a total of nine connect attempts (3 * 3)

» Specify LOAD BALANCE=on for each address list to balance the SCaN addresses.

e The service name should be a configured application service, not a PDB or
administration service.

* CONNECT TIMEOUT is used to specify the overall time used to complete the Oracle
Net connect. Set CONNECT TIMEOUT=90 or higher to prevent logon storms. For
JDBC driver 12.1.0.2 and earlier, CONNECT TIMEOUT is also used for the TCP/IP
connection timeout for each address in the URL. When considering TCP/IP

4-30

Chapter 4
Using Active GridLink Data Sources

connections, a shorter CONNECT TIMEOUT is preferred though secondary to overall timeout
requirements.

» Do not set the oracle.net.CONNECT TIMEOUT driver property on the data source because
it is overridden by the URL property.

Test Connections

Test Database Connection allows you to test a database connection before the data source
configuration is finalized using a table name or SQL statement. If necessary, you can test
additional configuration information using the Properties and System Properties attributes.

Configure ONS Client

ONS client configuration allows the data source to subscribe to and process Oracle FAN
events. When configuring the ONS node list, Oracle recommends not specifying a value and
allowing auto-ONS to perform the ONS configuration. In some cases, however, it is
necessary to explicitly configure the ONS configuration, for example if you need to specify an
Oracle Wallet and password, or if you want to explicitly specify the ONS topology.

You can also configure an ONS client using WLST. For an example, see Configuring an ONS
Client Using WLST.

To configure an ONS client from the Summary of Data Sources page in the Administration
Console, see Configure ONS client parameters in Oracle WebLogic Server Administration
Console Online Help.

Other Considerations

In general, if a WebLogic Server data source setting of initial capacity is set to 0, WebLogic
Server makes no DBMS connections at startup. For Active GridLink data sources with Auto-
ONS, WebLogic Server needs to connect to the DBMS once at startup to get the ONS
information.

e Enabling FAN Events
e Configure ONS Host and Port
e Secure ONS Client Communication

e Test ONS Client Configuration

Enabling FAN Events

To ensure that the data source is configured to subscribe to and process Oracle Fast
Application Notification (FAN) events, select Fan Enabled.

Configure ONS Host and Port

ORACLE

There are two methods that you can use to configure the OnsNodeList value: a single node
list or a property node list. You can use one or the other, but not both. If the WebLogic Server
OnsNodeList contains an equals sign (=), it is assumed to be a property node list.

For both types of node lists you can use a Single Client Access Name (SCAN) address
instead of a host name, and to access FAN notifications. For more information about SCAN
addresses, see Scan Addresses.

To configure the OnsNodelList value using a:

4-31

Chapter 4
Using Active GridLink Data Sources

Single node list—Specify a comma separated list of ONS daemon listen
addresses and ports for receiving ONS-based FAN events. For example,
racl:6200,rac2:6200. You can enter a single node list in the ONS host and port
field in the Administration Console when creating an AGL Data Source.

Property node list—Specify a string composed of multiple records, with each
record consisting of a key=value pair and terminated by a new line ("\n) character.
For example, nodes.1=rac1:6200, rac2:6200. You cannot enter a property node
list in the ONS host and port field when creating a data source. Instead, you
should leave this field blank. After you finish creating the data source, you can
enter the property node list on the Configuration: ONS tab on the settings page for
the data source.

You can specify the following keys in a property node list:

nodes.id—A list of nodes representing a unique topology of remote ONS servers.
id specifies a unique identifier for the node list. Duplicate entries are ignored. The
list of nodes configured in any list must not include any nodes configured in any
other list for the same client or duplicate notifications will be sent and delivered.
The list format is a comma separated list of ONS daemon listen addresses and
ports pairs separated by colon.

maxconnections.id—Specifies the maximum number of concurrent connections
maintained with the ONS servers. id specifies the node list to which this parameter
applies. The default is 3

active.id If true, the list is active and connections are automatically established
to the configured number of ONS servers. If false, the list is inactive and is only be
used as a fail over list in the event that no connections for an active list can be
established. An inactive list can only serve as a fail over for one active list at a
time, and once a single connection is re-established on the active list, the fail-over
list reverts to being inactive. Note that only notifications published by the client
after a list has failed over are sent to the fail over list. id specifies the node list to
which this parameter applies. The default is true

remotetimeout —The timeout period, in milliseconds, for a connection to each
remote server. If the remote server has not responded within this timeout period,
the connection is closed. The default is 30 seconds

< Note:

Although walletfile and walletpassword are supported in the string,
WebLogic Server has separate configuration elements for these values,
OnsWalletFile and OnsWalletPasswordEncrypted.

Secure ONS Client Communication

ORACLE

To use an Oracle Wallet file with WebLogic Server, you must:

Update your Active GridLink data source configuration to include the directory of
the Oracle wallet file in which the SSL certificates are stored and optionally, the
ONS Wallet password. See Secure ONS Listener using Oracle Wallet in Oracle
WebLogic Server Administration Console Online Help.

For more information on Oracle Wallet, see the Creating and Managing Oracle
Wallet.

4-32

Chapter 4
Using Active GridLink Data Sources

Test ONS Client Configuration

Test ONS client configuration allows you to test a connection to the ONS listener before
the data source configuration is finalized.

Target the Data Source

You can select one or more targets to which to deploy your new Active GridLink data source.
If you don't select a target, the data source will be created but not deployed. You will need to
deploy the data source at a later time.

Configuring Oracle Parameters

WebLogic Server provides several attributes that provide improved data source performance
when using Oracle drivers. See Advanced Configurations for Oracle Drivers and Databases.

Configuring an ONS Client Using WLST

Use WLST to configure an ONS client.

The following fragment provides an example for setting the Oracle parameters of an Active
GridLink data source.

cd('/JDBCSystemResources/' + dsName + '/JDBCResource/' + dsName + '/
JDBCOracleParams/' + dsName)

cmo.setFanEnabled (true)

cmo.setOnsNodeList ('nodes.l=racl:6200,rac2:6200\nmaxconnections.1=3\n")

For more information about configuring an ONS client, see ONS Client Communication.

Configuring Runtime Load Balancing using SDP

To configure load balancing across SDP connections, you must edit the TNSNAMES . ORA file on
all nodes and add an SDP end-point to the LISTENER IBLOCAL entry.

" Note:

The TNSNAMES.ORA file is only read at instance startup or when using an ALTER
SYSTEM SET LISTENER NETWORKS="Iistener address" command. After updating
the TNSNAMES. ORA file, restart all instances or run the ALTER SYSTEM SET
LISTENER NETWORKS command on all networks.

For example:

LISTENER IBLOCAL =
(DESCRIPTION =
(ADDRESS LIST =
(ADDRESS = (PROTOCOL = TCP) (HOST =

ORACLE 4-33

Chapter 4
Using Active GridLink Data Sources

sclcgdb02ibvip.country.myCorp.com) (PORT=1522))
(ADDRESS = (PROTOCOL = SDP) (HOST =
sclcgdb02-bvip.country.myCorp.com) (PORT=1522))
)
)

You should then distribute connections on the LISTERNER IB network using the
following URL:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=SDP)
(HOST=sclcgdb0l-bvip.country.myCorp.com) (PORT=1522)) (ADDRESS= (PROTOCOL=SDP)
(HOST=sclcgdb02-ibvip.country.myCorp.com) (PORT=1522)))
(CONNECT_DATA=(SERVICE_NAME=elservice)))

Configuring Active GridLink Connection Pool Features

Applications use a connection from the pool then return it when finished using the
connection. Connection pooling enhances performance by eliminating the costly task
of creating database connections for the application. Connection pools have options
that allow you to control JDBC driver features and system properties associated with
connection pools as well as use SQL for database connection initialization.

< Note:

Certain Oracle JDBC extensions may durably alter a connection's behavior
in a way that future users of the pooled connection will inherit. WebLogic
Server attempts to protect connections against some types of these calls
when possible.

For more information, see JDBC Data Source: Configuration: Connection Pool in
Oracle WebLogic Server Administration Console Online Help and
JDBCConnectionPoolParamsBean in MBean Reference for Oracle WebLogic Server.

The following connection pool options are available for a JDBC data source:
e Enabling JDBC Driver-Level Features

e Enabling Connection-based System Properties

e Initializing Database Connections with SQL Code

Enabling JDBC Driver-Level Features

WebLogic JDBC data sources support the javax.sql.ConnectionPoolDataSource
interface implemented by JDBC drivers. You can enable driver-level features by
adding the property and its value to the Properties attribute in a JDBC data source.
Driver-level properties in the Properties attribute are set on the driver's
ConnectionPoolDataSource object.

ORACLE 4-34

Chapter 4
Using Active GridLink Data Sources

< Note:

Do not use FastConnectionFailoverEnabled, ConnectionCachingEnabled, Or
ConnectionCacheName as Driver-level properties in the Properties attribute in a
JDBC data source.

Enabling Connection-based System Properties

WebLogic JDBC data sources support setting driver properties using the value of system
properties. The value of each property is derived at runtime from the named system property.
You can configure connection-based system properties using the WebLogic Server
Administration Console by editing the System Properties attribute of your data source
configuration.

Note:

Do not specify oracle.jdbc.FastConnectionFailover as a Java system property
when starting the WebLogic Server.

Initializing Database Connections with SQL Code

ORACLE

When WebLogic Server creates database connections in a data source, the server can
automatically run SQL code to initialize the database connection. To enable this feature, enter
SQL followed by a space and the SQL code you want to run in the Init SQL attribute on the
JDBC Data Source: Configuration: Connection Pool page in the WebLogic Server
Administration Console. Alternatively, you can specify simply a table name without sQr. and
the statement SELECT COUNT (*) FROM tablename is used. If you leave this attribute blank (the
default), WebLogic Server does not run any code to initialize database connections.

WebLogic Server runs this code whenever it creates a database connection for the data
source, which includes at server startup, when expanding the connection pool, and when
refreshing a connection.

You can use this feature to set DBMS-specific operational settings that are connection-
specific or to ensure that a connection has memory or permissions to perform required
actions.

Start the code with sQL followed by a space. An Oracle DBMS example:

SQL alter session set NLS DATE FORMAT='YYYY-MM-DD HH24:MI:SS'

or an Informix DBMS:

SQL SET LOCK MODE TO WAIT

The SQL statement is executed using JDBC Statement.execute (). Options that you can set
using InitSQL vary by DBMS. See the documentation from your database vendor for
supported statements. If you want to execute multiple statements, you may want to create a
stored procedure and execute it. The syntax is vendor specific. For example, to execute an
Oracle stored procedure:

4-35

Chapter 4
Using Active GridLink Data Sources

SQL CALL MYPROCEDURE ()

Tuning Active GridLink Data Source Connection Pools

By properly configuring the connection pool attributes in JDBC data sources in your
WebLogic Server domain, you can improve application and system performance.

See Tuning Data Source Connection Pools.

Monitoring Active GridLink JDBC Resources

Learn about monitoring and debugging Active GridLink data sources.
For more information, see Monitoring WebLogic JDBC Resources.

* Viewing Run-Time Statistics

» Debug Active GridLink Data Sources

Viewing Run-Time Statistics

You can view run-time statistics for an Active GridLink data source via the WebLogic
Server Administration Console or through the associated runtime MBeans.

 JDBCOracleDataSourceRuntimeMBean
 JDBCOracleDataSourcelnstanceRuntimeMBean

« ONSDaemonRuntimeMBean

JDBCOracleDataSourceRuntimeMBean

The JDBCOracleDataSourceRuntimeMBean provides methods for getting the current
state of the data source instance and for getting statistics about the data source, such
as the average number of active connections, the current number of active
connections, and the highest number of active connections. This MBean also has a
child JpBCOracleDataSourceInstanceRuntimeMBean for each node that is active in the
Active GridLink data source. See JDBCOracleDataSourceRuntimeMBean in the
MBean Reference for Oracle WebLogic Server.

JDBCOracleDataSourceInstanceRuntimeMBean

The JDBCOracleDataSourcelInstanceRuntimeMBean provides methods for getting the
current state of the data source instance. There an instance for each ONS listener that
is active. In a configuration that uses auto-0NS where the administrator doesn't
configure the ONS string, this is the only way to discover which ONS listeners are
available. See JDBCOracleDataSourcelnstanceRuntimeMBean in the MBean
Reference for Oracle WebLogic Server.

ONSDaemonRuntimeMBean

The ONSDaemonRuntimeMBean provides methods for monitoring the ONS client
configuration that is associated with an Active GridLink data source.

The following is a WLST script for testing an ONS connection. In this example, the
Active GridLink data source is named glds and it is targeted to myserver:

ORACLE 4-36

Chapter 4
Using Active GridLink Data Sources

connect (<wluser>, <wlpassword>, 't3://localhost:7001")
serverRuntime ()

cd (
cd (
cd (
cd (
cd (
cd (
cd (

cd (
cmo

'JDBCServiceRuntime')
'myserver')
'JDBCDataSourceRuntimeMBeans')
'glds"')

'ONSClientRuntime')

'glds"')

'ONSDaemonRuntimes"')

'glds 0')

.ping ()

See ONSDaemonRuntimeMBean in the MBean Reference for Oracle WebL ogic Server.

Debug Active GridLink Data Sources

You can activate WebLogic Server's debugging features to track down the specific problem
within the application.

JDBC Debugging Scopes
UCP JDK Logging
Enable Debugging Using the Command Line

JDBC Debugging Scopes

UCP JDK Logging

The following are registered debugging scopes for JDBC:

DebugJDBCRAC—prints information about Active GridLink data source lifecycle, Universal
Connection Pool callback, and connection information.

DebugJDBCONS—traces ONS client information, including the LBA event body. One trace is
available for each ONS listener that is active. In a configuration that uses auto-ONS
where the administrator doesn't configure the ONS string, this is the only way to see what
ONS listeners are available.

DebugJDBCReplay—traces JDBC Replay Driver replay information.

DebugJDBCUCP—traces low level RAC information from the UCP driver.

For enabling UCP JDK logging, see Overview of Logging in UCP in Universal Connection
Pool for JDBC Developer's Guide.

Enable Debugging Using the Command Line

ORACLE

Set the appropriate AGL data source debugging properties on the command line. For
example,

-Dweblogic.debug.DebugIDBCRAC=true
-Dweblogic.debug.DebugIDBCONS=true
-Dweblogic.debug.DebugIDBCUCP=true
-Dweblogic.debug.DebugIDBCREPLAY=true

Setting these values is static and can only be used at server startup.

4-37

Chapter 4
Using Active GridLink Data Sources

To enable ONS debugging, you must configure Java Util Logging. To do so, set the
following properties on the command line as follows:

-Doracle.ons.debug=true

See java.util.logging in Java Platform Standard Edition API Specification.

Using Active GridLink Data Sources without FAN Notification

You can configure and use an Active GridLink data source without enabling Fast
Application Notification (FAN). In this configuration, disabling a connection to a RAC
node occurs after two successive connection test failures. Connectivity is
reestablished after a successful connection test.

ORACLE

" Note:

This is not a standard recommendation from Oracle.

Oracle recommends that you enable TestConnectionsOnReserve. You might need to
turn off FAN if a configured firewall doesn't allow this protocol to flow.

The following table indicates the availability of Active GridLink data source features

when FAN Enabled set to false.

Table 4-2 Active GridLink Features when FAN Enabled is False
]

Active GridLink Feature

Available when FAN Enabled is False?

Single data source configuration for accessto Yes
RAC cluster

Runtime MBeans for individual RAC cluster Yes
instances

Connection load balancing using Runtime No
Load Balancing (RLB)

Fast Application Notification (FAN) No
Fast Connection Failover (FCF) No
Graceful shutdown No
Gravitation (rebalancing connections) No
ONS Client Support, including password and Yes
encrypted wallet configurations

Transaction affinity Yes
Session affinity No

Understanding the ActiveGridlink Attribute

In WebLogic Server 12.1.2 and higher, the ActiveGridlink attribute is used to
explicitly declare a data source configuration as an Active GridLink data source. It is
automatically enabled by the WebLogic Server Administration Console when creating

4-38

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/logging/package-summary.html

Chapter 4
Using Active GridLink Data Sources

a Active GridLink data source. If you create data source configurations using WLST, you must
remember to set ActiveGridlink=true.

" Note:

To maintain backward compatibility with releases prior to WebLogic Server 12.1.2, a
data source configuration is always an Active GridLink data source configuration if
FanEnabled=true or the OnsNodeList is non-null. In this case, the ActiveGridlink

value is ignored.

Legacy data source configurations are not updated during the upgrade process. If you need
to update a legacy Active GridLink data source to access RAC clusters without enabling Fast
Application Notification (FAN), edit or use WLST to set ActiveGridlink=true in the

configuration.

Best Practices for Active GridLink Data Sources

Learn about the best practices for using Active GridLink data sources by understanding the
catch and handle exceptions and how connections are created when using an Active
GridLink data source.

* Catch and Handle Exceptions

e Connection Creation with Active GridLink Data Sources

Catch and Handle Exceptions

Applications need to catch and handle all exceptions. Applications using AGL data sources
should expect exceptions, such as an I0 socket read error, when performing JDBC
operations on borrowed connections. Best practice is to check the connection validity and
reconnect if necessary. Connection exceptions can occur if the driver detects an outage
earlier than FAN event arrival or as a result of the cleanup of a connection. For unplanned
down events, a connection pool aborts all borrowed connections that are affected by the
outage.

Connection Creation with Active GridLink Data Sources

ORACLE

This section summarizes the change in connections in Active GridLink data source, assuming
FAN and ONS are enabled:

« Connections are added to the pool initially based on the configured initial capacity. That
uses connect time load balancing based on the listener. For that to work correctly, you
must either specify LOAD BALANCE=0N for multiple non-scan addresses or use SCAN.

e Connections are added to the pool on demand based on runtime load balancing.
However, this is overridden by XA affinity or Web session affinity, in which case
connections are added on the instance providing affinity to the last request in the
transaction or Web session.

e When a planned down event occurs, unused connections for that instance are released
immediately and connections in use are released when returned to the pool.

e When an unplanned down event occurs, all connections for that instance are destroyed
immediately.

4-39

Chapter 4
Using Active GridLink Data Sources

When an up event occurs, connections are proactively created on the new
instance.

When gravitation shrinking occurs, one unused connection is destroyed on a
heavily loaded instance (per period).

When normal shrinking occurs, half of the unused connections down to minimum
capacity are destroyed without respect to load (per period).

Comparing Active GridLink and Multi Data Sources

There are several benefits to using Active GridLink data sources over Multi Data
Sources when using Oracle RAC clusters.

The benefits include:

Requires one data source with a single URL. Multi Data Sources require a
configuration with n Generic data sources and a Multi Data Source.

Eliminates a polling mechanism that can fail if one of the Generic data sources is
performing slowly.

Eliminates the need to manually add or delete a node to/from the cluster.

Provides a fast internal notification (out-of-band) when nodes are available so that
connections are load-balanced to the new nodes using Oracle Natification Service
(ONS).

Provides a fast internal notification when a node goes down so that connections
are steered away from the node using ONS.

Provides load balancing advisories (LBA) so that new connections are created on
the node with the least load, and the LBA information is also used for gravitation to
move idle connections around based on load.

Provides affinity based on your XA transaction or your web session which may
significantly improve performance.

Leverages all the advantages of HA configurations like DataGuard. For more
information, see Oracle WebLogic Server and Highly Available Oracle Databases:
Oracle Integrated Maximum Availability Solutions on the Oracle Technology
network at http://www.oracle.com/technetwork/middleware/weblogic/learnmore/
index.html.

Migrating from Multi Data Source to Active GridLink

You can migrate to Multi Data Source from Active GridLink data sources using simple
manual process.

Application Changes to Migrate a Multi Data Source
Configuration Changes to Migrate a Multi Data Source

Basic Migration Steps

Application Changes to Migrate a Multi Data Source

No changes should be required to your applications. A standard application looks up
the Multi Data Source in JNDI and uses it to get connections. By giving the Active

ORACLE

4-40

http://www.oracle.com/technetwork/middleware/weblogic/learnmore/index.html
http://www.oracle.com/technetwork/middleware/weblogic/learnmore/index.html

Chapter 4
Using Active GridLink Data Sources

GridLink data source the same JNDI name as the Multi Data Source, the process is exactly
the same in the application to use a data source name from JNDI.

Configuration Changes to Migrate a Multi Data Source

The only changes necessary should be to your configuration. An Active GridLink data source
(AGL) is composed of information from the Multi Data Source (MDS) and the member generic
data sources combined into a single AGL descriptor. The only additional information that is
needed is the configuration of Oracle Notification Service (ONS) on the RAC cluster. In many
cases, the ONS information consists of the same host names as used in the MDS and the
only additional information is the port number, and which can be simplified by the use of a
SCAN address.

A MDS descriptor does not contain much information. The key components are:

The JNDI name. It must become the name of your new AGL data source to keep things
transparent to the application. If you want to run the MDS in parallel with the AGL data
source, then you must give the AGL data source a new JNDI name but you must also
update the application to use that new JNDI name.

A list of the member Generic data sources which provide any remaining information that
you need to configure the AGL data source.

Each of the member Generic data sources has its own URL. As described in Using Multi
Data Sources with Oracle RAC, it has the following pattern:

jdbc:oracle:thin:@ (DESCRIPTION= (ADDRESS=
(PROTOCOL=TCP) (HOST=hostl-vip) (PORT=1521)
(CONNECT DATA= (SERVICE NAME=dbservice) (INSTANCE NAME=instl)))

Each member should have its own host and port pair. The members probably have the
same service and often have the same port on different hosts. The URL for the AGL data
source is a combination of the host and port pairs. For example:

jdbc:oracle:thin:@ (DESCRIPTION=(ADDRESS LIST=
(ADDRESS= (PROTOCOL=TCP) (HOST=host1l-vip) (PORT=1521))
(ADDRESS= (PROTOCOL=TCP) (HOST=host2-vip) (PORT=1521)))
(CONNECT DATA=(SERVICE NAME=dbservice))

It is preferable to use an Oracle Single Client Access Name (SCAN) address instead of
multiple host or Virtual IP (VIP) addresses. SCAN addresses are simpler and makes
changes to the nodes in the cluster transparent. For more information on SCAN
addresses, see the Oracle Real Application Clusters Administration and Deployment
Guide. For example:

jdbc:oracle:thin:@ (DESCRIPTION= (Z—\DDRESSiLIST= (ADDRESS= (PROTOCOL=TCP)
(HOST=scanaddress) (PORT=1521))) (CONNECT DATA=(SERVICE NAME=dbservice))

Ignore the Algorithm Type.

Basic Migration Steps

ORACLE

The following section provides the basic steps needed to migrate a Multi Data Source to an
Active GridLink data source:

Delete the Multi Data Source and the Generic data sources from the configuration using
the WebLogic Server Administration Console.

Add a single Active GridLink data source using the WebLogic Server Administration
Console.

4-41

Chapter 4
Using Active GridLink Data Sources

— Give it the same JNDI name as the Multi Data Source.

— Select an XA or non-XA driver based on your what Generic data sources
used.

— Enter the complete URL as described in Configuration Changes to Migrate a
Multi Data Source.

— Set the user and password, it should be the same as what you had on the
Multi Data Source members.

— On the Test GridLink Datasource Connection page, click Test All Listeners
and verify the new URL.

— Enter the information for the ONS connections. Specify one or more host: port
pairs. For example, host1-vip:6200 or scanaddress:6200. If possible, use a
single SCAN address and port. Make sure that FAN Enabled is checked.

— Test the ONS connections.
Deploy the data source.
Edit the Active GridLink data source and configure additional parameters.

There are many data source parameters that can't be configured while creating a
new data source. In most cases, you should be able to use the parameter setting
used in the Multi Data Source. If there are conflicts, you will need to resolve them
and select the appropriate settings for your environment.

For more information on creating Active GridLink data sources using the WebLogic
Server Administration Console, see Configure JDBC GridLink data sources in Oracle
WebLogic Server Administration Console Online Help.

Managing Database Downtime with Active GridLink Data Sources

Learn several ways to handle database downtime with Active GridLink data sources in
an Oracle RAC database environment.

Active GridLink Configuration for Database Outages
Planned Outage Procedures

Unplanned Outages

Active GridLink Configuration for Database Outages

ORACLE

Ensure that the Active GridLink data source is configured as follows:

Fast Application Natification (FAN) is enabled. FAN provides rapid notification
about state changes for database services, instances, the databases themselves,
and the nodes that form the cluster. It allows for draining of work during planned
maintenance with no errors returned to applications.

Is using auto-ONS, or an explicitly defined ONS configuration. See ONS Client
Configuration.

Is using a dynamic database service. Do not connect using the administrative
service or PDB service. They are for intended for administration purposes only and
are not supported for FAN.

Test connections is enabled. Depending on the outage, applications may receive
stale connections when connections are borrowed before a down event is

4-42

Chapter 4
Using Active GridLink Data Sources

processed. This can occur, for example, on a clean instance down when sockets are
closed coincident with incoming connection requests. To prevent the application from
receiving any errors, connection checks should be enabled at the connection pool. This
requires setting test-connections-on-reserve to true and setting the test-table (the
recommended value for Oracle is SQL ISVALID).

e SCAN usage is optimized. For database drivers 12.1.0.2 and later, set the URL setting
LOAD BALANCE=TRUE for the ADDRESSLIST as an optimization to force re-ordering of the
SCAN IP addresses that are returned from DNS for a SCAN address.

For database drivers before 12.1.0.2, use the connection property
oracle.jdbc.thinForceDNSLoadBalancing=true. See SCAN Addresses.

Planned Outage Procedures

For planned downtime, the primary goal is to manage scheduled maintenance with no
application interruption while maintenance is underway at the database server. Achieving this
goal requires the following:

* Transparent scheduled maintenance—Ensures that the scheduled maintenance process
at the database servers is transparent to applications.

* Session Draining—When an instance is brought down for maintenance at the database
server, session draining ensures that all work using instances at that node completes and
that idle sessions are removed. Sessions are drained without impacting in-flight work.

For maintenance purposes (such as software and hardware upgrades, repairs, changes,
migrations within and across systems), the services used are shutdown gracefully one or
several at a time without disrupting the operations and availability of the WebLogic Server
applications. Upon a FAN DOWN event, Active GridLink drains sessions away from the
instance(s) targeted for maintenance. It is necessary to stop non-singleton services running
on the target database instance (assuming that they are still available on the remaining
running instances) or relocate singleton services from the target instance to another instance.
Once the services have drained, the instance is stopped with no application errors

The following steps provide a high level overview of the planned maintenance process:
1. Detect DOWN event triggered by DBA on instances targeted for maintenance.

2. Drain sessions away from the targeted instance(s).

3. Perform scheduled maintenance on the database servers.

4. Resume operations on the upgraded node(s).

Unlike Multi Data Source where operations need to be coordinated on both the database
server and the mid tier, Active GridLink co-operates with the database so that all of these
operations are managed from the database server, simplifying the process. Table 4-3 lists the
steps that are executed on the database server and the corresponding reactions at the mid
tier.

ORACLE 4-43

ORACLE

Chapter 4
Using Active GridLink Data Sources

Table 4-3 Steps Performed on Database Server for Active GridLink Planned
Maintenance

Step # Database Server Steps Command Mid-Tier Reaction
1. Stop the non-singleton service $ srvctl stop The FAN Planned Down
without -force or relocate the service -db (reason=USER) event for the
singleton service. db name - service informs the connection
Omitting the —server option service pool that a service is no longer
operates on all servicesonthe service name available for use and
instance. —instance connections should be drained.
instance name Idle .connectlons on the stopped
- service are released
or immediately. In-use connections
$ srvctl are released when returned
relocate (logically closed) by the
service -db application. New connections
db name - are reserved on other
service instance(s) and databases
service name offering the services. This FAN
—oldinsE action invokes draining the
. sessions from the instance
oldins - . . .
. without disrupting the
newinst L
) application.
newlnst
2. Disable the stopped serviceto $ srvctl No new connections are
ensure it is not automatically disable associated with the stopped/
started again. Disabling the service -db disabled service at the mid-tier.
service is optional. This stepis gp name -
recommended for maintenance se;vice
actions where the gervnce m.ust service name
not restart automatically until . -
. -instance
the action has completed. .
instance name
3. Allow sessions to drain. Not applicable The amount of time depends on

the application. There may be
long-running queries. Batch
programs may not be written to
periodically return connections
and get new ones. Itis
recommended that batch be
drained in advance of the
maintenance.

4-44

Chapter 4
Using Active GridLink Data Sources

Table 4-3 (Cont.) Steps Performed on Database Server for Active GridLink

Planned Maintenance

Step # Database Server Steps Command Mid-Tier Reaction
4. Check for long-running SQL> select The connection on the mid-tier
sessions. Terminate these count (*) from will getan error. If using JDBC
sessions using a transactional (select 1 Replay Driver, it is possible to
disconnect. Wait for the from hide the error from the
sessions to drain. You can run v$sessionwher application by automatically
the query again to check if any e replaying the operations on a
sessions remain. service name hew connection qn another
in - instance. Otherwise, the
i application gets a
upper ('servic SQLException.
e name')
union all
select 1 from
vStransaction
where status
= '"ACTIVE')
SQL> exec
dbms_service.
disconnect se
ssion('servi
ce name',
DBMS SERVICE.
POST TRANSACT
ION)
5. Repeat steps 1 through 4. Repeat for all Not Applicable
services targeted
for planned
maintenance
6. Stop the database instance $ srvctl stop Noimpact on the mid-tier until
using the immediate option. instance -db the database and service are
db name - re-started.
instance
instance name
-stopoption
immediate
7. Optionally, disable the instance $ srvctl Not Applicable
so that it will not automatically disable
start again during maintenance. ipstance -db
This step is for maintenance db name -
operations where the services instance
cannot resume during the instance name
maintenance. B
8. Perform the scheduled Not Applicable Not Applicable

maintenance work (patches,
repairs, and changes).

ORACLE

4-45

Chapter 4
Using Active GridLink Data Sources

Table 4-3 (Cont.) Steps Performed on Database Server for Active GridLink

Planned Maintenance

Step # Database Server Steps

Command Mid-Tier Reaction

9. Enable and start the instance.

$ srvctl Not Applicable
enable

instance -db

db_name -

instance

instance name

$ srvctl
start
instance -db
db _name -
instance
instance name

10. Enable and start the service
back. Check that the service is
up and running.

$ srvetl The FAN UP event for the
enable service informs the connection
service -db pool that a new instance is

db name - available for use, allowing

- sessions to be created on this
instance at the next request
submission. Automatic
rebalancing of sessions starts.

service
service name
-instance
instance name

$ srvctl
start service
—-db db_name -
service
service name
-instance
instance name

The following figure shows the distribution of connections for a service across two
Oracle RAC instances before and after Planned Downtime. Notice that the connection
workload moves from fifty-fifty across both instances to hundred-zero. In other words,
RAC_INST_1 can be taken down for maintenance without any impact on the business

operation.

ORACLE

4-46

Chapter 4
Using Active GridLink Data Sources

Figure 4-6 Distribution of Connections Across Two Oracle RAC Instances

rig 1: Flanned Downtime

Unplanned Outages

There are several differences when an unplanned outage occurs:

e A component at the database server may fail making all services unavailable on the
instances running at that node. There is no stop or disable on the services because they
have failed.

e The FAN unplanned DOWN event (reason=FAILURE) is delivered to the mid-tier.

* All sessions are closed immediately, preventing the application from hanging on TCP/IP
timeouts. Existing connections on other instances remain usable, and new connections
are opened to these instances as needed.

* There is no graceful draining of connections. For those applications using services that
are configured to use JDBC Replay Driver, active sessions are restored on a surviving
instance and recovered by replaying the operations, masking the outage from
applications. If not protected by JDBC Replay Driver, any sessions in active
communication with the instance receive a SQLException.

Gradual Draining

During planned database maintenance, gradually close the database connections instead of
closing all of the connections immediately. This strategy prevents uneven performance by the
application.

When planned database maintenance occurs, a planned down service event is processed by
the WebLogic Server JDBC data source. By default, all unreserved connections in the pool
are closed immediately and borrowed connections are closed when they are returned to the
pool. This shutdown process can cause uneven application performance because:

* New connections need to be created on the alternative instances.
e Alogon storm can occur on the other instances.

This feature is supported for an Active GridLink data source running with Oracle RAC.

ORACLE 4-47

ORACLE

Chapter 4
Using Active GridLink Data Sources

Setting the Drain Timeout Period

The connection property weblogic.jdbc.drainTimeout is recognized to define the
draining period in seconds. The value must be a non-negative integer. For example,
the following is a sample from a WLST script that creates a data source.

jdbcSR = create (dsname, 'JDBCSystemResource')

jdbcResource = jdbcSR.getJDBCResource ()

driverParams = jdbcResource.getJDBCDriverParams ()
driverProperties = driverParams.getProperties()

drainprop =
driverProperties.createProperty('weblogic.jdbc.drainTimeout")
drainprop.setValue ('60")

When running with the Oracle database 12.2 driver and the Oracle database 12.2
server, the drain timeout can be configured on the database server side by setting -
drain timeout on the database service. For example, a repayable service can be
created by using:

srvctl add service -db ORCL -service otrade -clbgoal SHORT -preferred
orcll,orcl?2 -rlbgoal SERVICE TIME -failoverretry 30 -failoverdelay 10 -
failovertype TRANSACTION -commit outcome TRUE -replay init time 1800 -
retention 86400 -notification TRUE -drain timeout 60

If both the connection property and the server-side drain timeout are set on an Oracle
database 12.2 configuration, the server-side value takes precedence. This value is
only used during a planned down event to stop some but not all of the instances on
which a service is running. For example,

srvctl stop service -db ORCL -instance orcl2 -service otrade.example.com

If the drain period is not set or set to 0, then by default, there is no drain period and
connections are closed immediately.

A small value accelerates the migration, but might cause applications to experience
higher response times, as requests on the target node hit a cold buffer cache. A larger
value migrates work more gently and gives the buffer cache on the target node more
time to warm-up, which in consequence leads to reduced impact on the application,
but a longer overall migration duration.

Gradual Draining Processing

Processing starts when a database service that is configured for an Active GridLink
data source is stopped using srvctl stop service -db dbname -instance
instancename -service servicename.

< Note:

Draining is not done if all services are shutdown (for example, when no
instance name is specified).

4-48

Chapter 4
Using Active GridLink Data Sources

» If the drain timeout is not set or set to 0, there is no drain period. Unreserved connections
are immediately closed and borrowed connections are closed when returned to the pool.

» If the drain timeout is specified, it takes effect only if the service is available at another
RAC instance. For active/active services draining is gradual. For active/passive services,
version 12.2 of RAC relocates the service first, so gradual draining is also supported.
This feature does not work with Oracle DataGuard, which has only one primary active
service at a time.

« If an alternative instance is available, the drain timeout period is started. The granularity
and reducing the connections is done on a five-second interval. The total connection
count is the count of the unreserved and the count of the reserved connections. The total
count is divided by the value “(drain period/5)” to compute the number of connections to
be released per interval (note that if the number is less than 1, then some intervals may
not have any connections drained). After each five-second interval, harvestable
connections are harvested and interval count connections are closed if they are
unreserved or marked for closure on return to the pool. After the last interval, the instance
is marked as down (with respect to monitor status).

» If a data source is suspended or shut down, draining is stopped on any instance that is
currently draining. Unreserved connections are immediately closed and borrowed
connections are closed when returned to the pool.

» If a service is started again on an instance that is draining for that service, draining is
stopped.

» If a service is stopped on all instances by not specifying a instance name or the last
instance is stopped, draining is stopped on all instances. For all instances, unreserved
connections are immediately closed and borrowed connections are closed when returned
to the pool.

* When draining is happening on an instance, connection gravitation on the data source
(rebalancing connections based on the runtime load balancing information) is stopped
until the draining completes.

* When the service is stopped, the Load Balance Advisories (LBA) indicates that the
percentage for the stopped service should be 0. This causes the preference for allocating
existing connections to other instances first. If a connection does not exists on the other
instances and a connection exists on the stopped service, it will pick that one instead of
creating a connection. This applies to connections created using LBA or Session
Affinity. XA affinity will try to create a new connection for the instance in the affinity
context, and only use a different instance or branch if a new connection can't be created.

Example

The following figure shows the effect of gradual draining when a service on an instance is
stopped. In this case, the service is stopped on instance beadev? just after 25:00. Note that it
takes a while for the Load Balancing Advisories (LBA) to respond to the shut down at around
25:25 and the percentage goes to 0 for instance beadev2. WebLogic Server receives the
shutdown event almost instantly and starts to take action. If gradual draining were not
configured, the graph of Current Capacity would show the capacity dropping to 0 (or the
count of active connections) immediately when the event is received. Instead, you can see
that the capacity gradually goes down every five- second