
Oracle® Fusion Middleware
Developing Manageable Applications Using
JMX for Oracle WebLogic Server

12c (12.2.1.4.0)
E90820-02
December 2022

Oracle Fusion Middleware Developing Manageable Applications Using JMX for Oracle WebLogic Server, 12c
(12.2.1.4.0)

E90820-02

Copyright © 2007, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

Related Documentation vi

Conventions vi

1 Understanding JMX

Introduction 1-1

What Management Services Can You Develop with JMX? 1-1

Creating Management-Aware Applications 1-2

When Is It Appropriate to Use JMX? 1-2

What Management Services Have BEA Partners Developed? 1-3

JMX Layers 1-3

Indirection and Introspection 1-3

Notifications and Monitor MBeans 1-4

How JMX Notifications Are Broadcast and Received 1-4

Active Polling with Monitor MBeans 1-5

2 Designing Manageable Applications

Benefits of Oracle Best Practices 2-1

Use Standard MBeans 2-1

Registering Custom MBeans in the WebLogic Server Runtime Bean Server 2-2

Registering Custom MBeans in the Domain Runtime MBean Server 2-2

Use ApplicationLifecycleListener to Register Application MBeans 2-3

Unregister Application MBeans When Applications Are Undeployed 2-3

Place Management Logic for EJBs and Servlets in a Delegate Class 2-3

Use Open MBean Data Types 2-4

Emit Notifications Only When Necessary 2-4

Additional Design Considerations 2-5

Registering MBeans in the JVM Platform MBean Server 2-5

iii

Registering Application MBeans by Using Only JDK Classes 2-5

Organizing Managed Objects and Business Objects 2-6

Packaging and Accessing Management Classes 2-6

Securing Custom MBeans with Roles and Policies 2-6

3 Instrumenting and Registering Custom MBeans

Overview of the MBean Development Process 3-1

Create and Implement a Management Interface 3-2

Modify Business Methods to Push Data 3-4

Register the MBean 3-5

Package Application and MBean Classes 3-7

4 Using the WebLogic Server JMX Timer Service

Overview of the WebLogic Server JMX Timer Service 4-1

Creating the Timer Service: Main Steps 4-1

Configuring a Timer MBean to Emit Notifications 4-2

Creating Date Objects 4-4

Example: Generating a Notification Every Five Minutes After 9 AM 4-4

Removing Notifications 4-6

5 Accessing Custom MBeans

Accessing Custom MBeans from JConsole 5-1

Accessing Custom MBeans from WebLogic Scripting Tool 5-3

Accessing Custom MBeans from an Administration Console Extension 5-3

iv

Preface

This document describes how to use JMX to make your applications manageable.

Audience
This document is a resource for software developers who develop management services for
Java EE applications. It also contains information that is useful for business analysts and
system architects who are evaluating WebLogic Server or considering the use of JMX for a
particular application.

It is assumed that the reader is familiar with Java EE and general application management
concepts.

The information in this document is relevant during the design and development phases of a
software project. This document does not address production phase administration,
monitoring, or performance tuning topics. For links to WebLogic Server documentation and
resources related to these topics, see Related Documentation.

This document emphasizes a hands-on approach to developing a limited but useful set of
JMX management services. For information on applying JMX to a broader set of
management problems, refer to the JMX specification or other documents listed in Related
Documentation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documentation
The Oracle Technology Network includes a Web site that provides links to books, white
papers, and additional information on JMX: http://www.oracle.com/technetwork/
java/javase/tech/javamanagement-140525.html.

WebLogic Server supports JMX 1.4 by leveraging the JMX implementation in the JDK
on which it is running. To view the JMX 1.4 specification, download it from http://
docs.oracle.com/javase/8/docs/technotes/guides/jmx/
To view the JMX Remote API 1.0 specification, download it from http://jcp.org/
aboutJava/communityprocess/final/jsr160/index.html.

You can view the API reference for the javax.management* packages from: http://
docs.oracle.com/javase/8/docs/api/overview-summary.html.

For guidelines on developing other types of management services for WebLogic
Server applications, see the following documents:

• Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic
Server describes WebLogic support for internationalization and localization of log
messages and shows you how to use the templates and tools provided with
WebLogic Server to create or edit message catalogs that are locale-specific.

• Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
describes how system administrators can collect application monitoring data that
has not been exposed through JMX, logging, or other management facilities.

For guidelines on developing and tuning WebLogic Server applications, see
Developing Applications for Oracle WebLogic Server.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://docs.oracle.com/javase/8/docs/technotes/guides/jmx/
http://docs.oracle.com/javase/8/docs/technotes/guides/jmx/
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://docs.oracle.com/javase/8/docs/api/overview-summary.html
http://docs.oracle.com/javase/8/docs/api/overview-summary.html

1
Understanding JMX

This chapter provides an overview of Java Management Extensions (JMX), a specification for
monitoring and managing Java applications. JMX enables a generic management system to
monitor your application; raise notifications when the application needs attention; and change
the state of your application to remedy problems. Like SNMP and other management
standards, JMX is a public specification and many vendors of commonly used monitoring
products support it. WebLogic Server uses the Java Management Extensions (JMX) 1.4
implementation that is included in the JDK.
This chapter includes the following sections:

• Introduction

• What Management Services Can You Develop with JMX?

• Creating Management-Aware Applications

• When Is It Appropriate to Use JMX?

• What Management Services Have BEA Partners Developed?

• JMX Layers

• Indirection and Introspection

• Notifications and Monitor MBeans

For information about other APIs and utilities that you can use to manage Java EE
applications on WebLogic Server, see Overview of WebLogic Server System Administration
in Understanding Oracle WebLogic Server.

Introduction
This document describes how to use the Java Management Extensions (JMX) to how to
reduce the cost of operating and maintaining your applications by building management
facilities into your applications.
The simplest facility is message logging, which reports events within your applications as
they occur and writes messages to a file or other repository. Depending on the criticality of
your application, the complexity of the production environment, and the types of monitoring
systems your organization uses in its operations center, your needs might be better served by
building richer management facilities based on Java Management Extensions (JMX). JMX
enables a generic management system to monitor your application; raise notifications when
the application needs attention; and change the configuration or run-time state of your
application to remedy problems.

What Management Services Can You Develop with JMX?
When used to monitor and manage applications, JMX typically provides management
applications access to properties in your Java classes that collect management data (see
Figure 1-1). Often, these class properties are simple counters that keep track of the
resources your application is consuming. JMX can also provide access to methods in your
Java classes that start or stop processes in the application or reset the value of the class

1-1

properties. Any class that exposes management data through JMX is called a
managed bean (MBean). Class properties that are exposed through MBeans are
called attributes and methods that are exposed through MBeans are called operations.

Figure 1-1 JMX Provides Access to Management Properties

JMX

MBean

simpleCounter

resetCounter()
Management

System

Once you provide this type of access to JMX-enabled management utilities, system
administrators or the operations staff can integrate the data into their overall view of
the system. They can use a JMX management utility to view the current value of an
MBean attribute, or they can set up JMX monitors to periodically poll the value of your
MBean attributes and emit notifications to the management utility only when the values
exceed specific thresholds.

Creating Management-Aware Applications
Instead of placing all management responsibility on system administrators or the
operations staff, you can create management-aware applications that monitor MBeans
and then perform some automated task. For example:

• An application that monitors connection pools and grows or shrinks the pools to
meet demand.

• A portal application that monitors the set of deployed applications. If a new
application is deployed, the portal application automatically displays it as a new
portlet.

• An application that listens for deployments of connector modules and then
configures itself to use newly deployed modules.

When Is It Appropriate to Use JMX?
Any critical Java EE application that is a heavy consumer of resources, such as
database or JMS connections or caches, should provide some facility for monitoring
the application's resource consumption. For these kinds of applications, which might
be writing or reading from a database many times each minute, it is not feasible to use
logging facilities to output messages with each write and read operation. Using JMX
for this type of monitoring enables you to write management (instrumentation) code
that is easy to maintain and that optimizes your use of network resources.

If you want to monitor basic run-time metrics for your application, WebLogic Server
already provides a significant number of its own MBeans that you can use (see Best
Practices: Listening for WebLogic Server Events in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server). For example, you can use existing
WebLogic Server MBeans to track the hit rate on your application's servlets and the
amount of time it takes to process servlet requests.

Although WebLogic Server MBeans can indicate to an operations center the general
state of resources, it cannot provide detailed information about how a specific

Chapter 1
Creating Management-Aware Applications

1-2

application is using the resources. For example, WebLogic Server MBeans can indicate how
many connections are being used in a connection pool, but they do not indicate which
applications are using the connection pools. If your domain contains several active
applications and you notice that some connections are always in use, consider creating
MBeans that monitor when each application session gets and releases a connection. You
could also include a management operation that ends sessions that appear to be stuck.

In addition, if your application creates and maintains its own cache or writes to a data
repository that is outside the control of the application container, consider creating MBeans to
monitor the size of the cache or the amount of data written to the repository.

What Management Services Have BEA Partners Developed?
Oracle Partners have developed an extensive set of management consoles that can monitor
and analyze data from WebLogic Server MBeans and potentially from MBeans that you
develop for your own applications. These consoles can integrate WebLogic Server into an
overall management strategy for your network or data center operations. To see the list of
management software available, visit the Partners page on www.bea.com.

JMX Layers
Like most of Java EE, JMX is a component-based technology in which different types of
software vendors provide different types of components. This division of labor enables each
type of vendor to focus on providing only the software that falls within its area of expertise.
JMX organizes its components into the following layers:

• Instrumentation

Consists of applications that you write, resources, and other manageable objects. In this
layer, application developers create managed beans (MBeans), which contain the
properties (attributes) and methods (operations) that they want to expose to external
management systems.

• Agent

Consists of the JVM and application servers such as WebLogic Server. This layer
includes a registry of MBeans and standard interfaces for creating, destroying, and
accessing MBeans.

The agent layer also provides services for remote clients as well as a monitoring and a
timer service. See Using the WebLogic Server JMX Timer Service, and Using
Notifications and Monitor MBeans in Developing Custom Management Utilities Using
JMX for Oracle WebLogic Server.

• Distributed Services

Consists of Management consoles or other Java EE applications. A management
application sends or receives requests from the agent layer. Often this layer is available
as a plug-in or as an adapter that enables a management console to support a variety of
management protocols, such as JMX and SNMP.

Indirection and Introspection
Two key concepts for understanding JMX are indirection and introspection, which enable a
JMX application to manage proprietary resources without requiring access to proprietary
class definitions.

Chapter 1
What Management Services Have BEA Partners Developed?

1-3

The general model for JMX is that applications in the distributed services layer never
interact directly with classes in the instrumentation layer. Instead, under this model of
indirection, the JMX agent layer provides standard interfaces, such as
javax.management.MBeanServerConnection, that:

• Expose a class management interface to management clients in the distributed
services layer

• Receive requests from management clients, such as a request to get the value of
a property that a class is exposing through JMX

• Interact with the class to carry out the request and return the result to the
management client

Each class describes to the MBean server the set of properties and methods that it
wants to expose through JMX. A property that a class exposes through JMX is called
an MBean attribute, and a method that it exposes is called an operation. JMX
specifies multiple techniques (design patterns) that a class can use to describe its
attributes and operations, and these design patterns are formalized as the following
MBean types: standard, dynamic, model, and open.

A class that implements the standard MBean type describes its management interface
in way that is most like Java programming: a developer creates a JMX interface file
that contains getter and setter methods for each class property that is to be exposed
through JMX. The interface file also contains a wrapper method for each class method
that is to be exposed. Then the class declares the name of its JMX interface. When
you register a standard MBean with the MBean server, the MBean server introspects
the class and its JMX interface to determine which attributes and operations it will
expose to the distributed services layer. The MBean server also creates an object,
MBeanInfo, that describes the interface. Management clients inspect this MBeanInfo
object to learn about a class's management interface.

A class that implements the model MBean type describes its management interface by
constructing its own MBeanInfo object, which is a collection of metadata objects that
describe the properties and methods to expose through JMX. When you register a
model MBean with the MBean server, the MBean server uses the existing MBeanInfo
object instead of introspecting the class.

Notifications and Monitor MBeans
JMX provides two ways to monitor changes in MBeans: MBeans can emit notifications
when specific events occur (such as a change in an attribute value), or monitor
MBeans can poll an MBean periodically to retrieve the value of an attribute.

The following sections describe JMX notifications and monitor MBeans:

• How JMX Notifications Are Broadcast and Received

• Active Polling with Monitor MBeans

How JMX Notifications Are Broadcast and Received
As part of MBean creation, you can implement the
javax.management.NotificationEmitter interface, which enables the MBean to emit
notifications when different types of events occur. For example, you create an MBean
that manages your application's use of a connection pool. You can configure the

Chapter 1
Notifications and Monitor MBeans

1-4

MBean to emit a notification when the application creates a connection and another
notification when the application drops a connection.

To listen for notifications, you create a listener class that implements the
javax.management.NotificationListener.handleNotification() method. Your
implementation of this method includes the logic that causes the listener to carry out an
action when it receives a notification. After you create the listener class, you create another
class that registers the listener with an MBean.

By default, an MBean broadcasts all its notifications to all its registered listeners. However,
you can create and register a filter for a listener. A filter is a class that implements the
javax.management.NotificationFilter.isNotificationEnabled() method. The
implementation of this method specifies one or more notification types. (In this case, type
refers to a unique string within a notification object that identifies an event, such as
vendorA.appB.eventC.) When an event causes an MBean to generate a notification, the
MBean invokes a filter's isNotificationEnabled() method before it sends the notification to
the listener. If the notification type matches one of the types specified in
isNotificationEnabled(), then the filter returns true and the MBean broadcasts the
message to the associated listener.

For information on creating and registering listeners and filters, see Listening for Notifications
from WebLogic Server MBeans: Main Steps in Developing Custom Management Utilities
Using JMX for Oracle WebLogic Server. For a complete description of JMX notifications, refer
to the JMX 1.4 specification. See Related Documentation.

Figure 1-2 shows a basic system in which a notification listener receives only a subset of the
notifications that an MBean broadcasts.

Figure 1-2 Receiving Notifications from an MBean

MBean

implements NotificationEmi"er

MyFilter

isNotificationEnabled()

MyNotificationListener

handleNotification()

Filter and listener
registered with MBean

If a notification satisfies filter
criteria, MBean passes the
notification to the listener

Notification

type=vendorA.appB.eventC

Active Polling with Monitor MBeans
JMX includes specifications for a type of MBeans called monitor MBeans, which can be
instantiated and configured to periodically observe other MBeans. Monitor MBeans emit JMX
notifications only if a specific MBean attribute has changed beyond a specific threshold. A
monitor MBean can observe the exact value of an attribute in an MBean, or optionally, the
difference between two consecutive values of a numeric attribute. The value that a monitor
MBean observes is called the derived gauge.

Chapter 1
Notifications and Monitor MBeans

1-5

When the value of the derived gauge satisfies a set of conditions, the monitor MBean
emits a specific notification type. Monitors can also send notifications when certain
error cases are encountered while monitoring an attribute value.

To use monitor MBeans, you configure a monitor MBean and register it with the
MBean you want to observe. Then you create a listener class and register the class
with the monitor MBean. Because monitor MBeans emit only very specific types of
notification, you usually do not use filters when listening for notifications from monitor
MBeans.

Figure 1-3 shows a basic system in which a monitor MBean is registered with an
MBean. A NotificationListener is registered with the monitor MBean, and it
receives notifications when the conditions within the monitor MBean are satisfied.

Figure 1-3 Monitor MBeans

Observed MBean

MyMonitor MBean

MyFilter

Monitor MBean registered with an
observed MBean. Monitor MBean

periodically polls the observed MBean

Filter and listener registered with
the monitor MBean

If a notification satisfies filter
criteria, MBean passes the
notification to the listener

Notification

MyNotificationListener

Chapter 1
Notifications and Monitor MBeans

1-6

2
Designing Manageable Applications

This chapter describes Oracle best practices for designing manageable applications. The last
section, Additional Design Considerations, provides alternatives to some Oracle
recommendations and discusses additional design considerations.
This chapter includes the following sections:

• Benefits of Oracle Best Practices

• Use Standard MBeans

• Registering Custom MBeans in the WebLogic Server Runtime Bean Server

• Registering Custom MBeans in the Domain Runtime MBean Server

• Use ApplicationLifecycleListener to Register Application MBeans

• Unregister Application MBeans When Applications Are Undeployed

• Place Management Logic for EJBs and Servlets in a Delegate Class

• Use Open MBean Data Types

• Emit Notifications Only When Necessary

• Additional Design Considerations

Benefits of Oracle Best Practices
Several viable JMX design patterns and deployment options can make your application more
manageable. The design patterns that Oracle recommends are based on the assumption that
the instrumentation of your Java classes should:

• Use as few system resources as possible; management functions must not interfere with
business functions.

• Be separate from your business code whenever possible.

• Deploy along with the business code and share its life cycle; you should not require the
operations staff to take additional steps to enable the management of your application.

Use Standard MBeans
Of the many design patterns that JMX defines, Oracle recommends that you use standard
MBeans, which are the easiest to code. To use the simplest design pattern for standard
MBeans:

1. Create an interface for the management properties and operations that you want to
expose.

2. Implement the interface in your Java class.

3. Create and register the MBean in the WebLogic Server Runtime MBean Server by
invoking the Runtime MBean Server's

2-1

javax.management.MBeanServerConnection.createMBean() method and passing
your management interface in the method's parameter.

When you invoke the createMBean() method, the Runtime MBean Server
introspects your interface, finds the implementation, and registers the interface
and implementation as an MBean.

In this design pattern, the management interface and its implementation must follow
strict naming conventions so that the MBean server can introspect your interface. You
can circumvent the naming requirements by having your Java class extend
javax.management.StandardMBean. See StandardMBean in the Java SE 8 API
Specification at http://docs.oracle.com/javase/8/docs/api/javax/management/
StandardMBean.html.

Registering Custom MBeans in the WebLogic Server
Runtime Bean Server

A JVM can contain multiple MBean servers, and another significant design decision is
which MBean server you use to register your custom MBeans.

Oracle recommends that you register custom MBeans in the WebLogic Server
Runtime MBean Server. (Each WebLogic Server instance contains its own instance of
the Runtime MBean Server. See MBean Servers in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server.) As of WebLogic Server 10.3.3, the
WebLogic Runtime MBean Server is the JVM's platform MBean server. See
Registering MBeans in the JVM Platform MBean Server.

With this option:

• Your MBeans exist in the same MBean server as WebLogic Server MBeans.
Remote JMX clients need to maintain only a single connection to monitor your
application's MBeans and WebLogic Server MBeans.

• JMX clients must authenticate and be authorized through the WebLogic Server
security framework to access your custom MBeans and WebLogic Server
MBeans. See Securing Custom MBeans with Roles and Policies.

The WebLogic Server Runtime MBean Server registers its
javax.management.MBeanServer interface in the JNDI tree. See Make Local
Connections to the Runtime MBean Server in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server.

Registering Custom MBeans in the Domain Runtime MBean
Server

If you need to register aggregation-type MBeans whose implementation will invoke on
other MBeans located in Managed Servers, register those MBeans in the Domain
Runtime MBean Server.

The WebLogic Server Domain Runtime MBean Server registers its
javax.management.MBeanServer interface in the JNDI tree. See Make Local
Connections to the Domain Runtime MBean Server in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

Chapter 2
Registering Custom MBeans in the WebLogic Server Runtime Bean Server

2-2

http://docs.oracle.com/javase/8/docs/api/javax/management/StandardMBean.html
http://docs.oracle.com/javase/8/docs/api/javax/management/StandardMBean.html

Use ApplicationLifecycleListener to Register Application
MBeans

If you are creating MBeans for EJBs, servlets within Web applications, or other modules that
are deployed, and if you want your MBeans to be available as soon as you deploy your
application, listen for notifications from the deployment service. When you deploy an
application (and when you start a server on which you have already deployed an application),
the WebLogic Server deployment service emits notifications at specific stages of the
deployment process. When you receive a notification that the application has been deployed,
you can create and register your MBeans.

There are two steps for listening to deployment notifications with
ApplicationLifecycleListener:

1. Create a class that extends weblogic.application.ApplicationLifecycleListener.
Then implement the ApplicationLifecycleListener.postStart method to create and
register your MBean in the MBean server. The class invokes your postStart() method
only after it receives a postStart notification from the deployment service. See
Programming Application Life Cycle Events in Developing Applications for Oracle
WebLogic Server.

2. In the weblogic-application.xml deployment descriptor, register your class as an
application listener class.

If you do not want to use proprietary WebLogic Server classes and deployment descriptors to
register application MBeans, see Registering Application MBeans by Using Only JDK
Classes.

Unregister Application MBeans When Applications Are
Undeployed

Regardless of how you create your MBeans, Oracle recommends that you unregister your
MBeans whenever you receive a deployment notification that your application has been
undeployed. Failure to do so introduces a potential memory leak.

If you create a class that extends ApplicationLifecycleListener, you can implement the
ApplicationLifecycleListener.preStop method to unregister your MBeans. For
information on implementing the preStop method, see Register the MBean.

Place Management Logic for EJBs and Servlets in a Delegate
Class

If you want to expose management attributes or operations for any type of EJB (session,
entity, message-driven) or servlet, Oracle recommends that you implement the management
attributes and operations in a separate, delegate class so that your EJB or servlet
implementation classes contain only business logic, and so that their business interfaces
present only business logic. See Figure 2-1.

Chapter 2
Use ApplicationLifecycleListener to Register Application MBeans

2-3

Figure 2-1 Place Management Properties and Operations in a Delegate Class

MBean Server

My standard MBean
implementation
(delegate class)

My standard MBean
interface

Session EJBSession EJBSession EJB

Push management
data to MBean

Gets management
data through the

MBean server

JMX Client

In Figure 2-1, business methods in the EJB push their data to the delegate class. For
example, each time a specific business method is invoked, the method increments a
counter in the delegate class, and the MBean interface exposes the counter value as
an attribute.

This separation of business logic from management logic might be less efficient than
combining the logic into the same class, especially if the counter in the delegate class
is incremented frequently. However, in practice, most JVMs can optimize the method
calls so that the potential inefficiency is negligible.

If this negligible difference is not acceptable for your application, your business class in
the EJB can contain the management value and the delegate class can retrieve the
value whenever a JMX client requests it.

Use Open MBean Data Types
If a remote JMX client will access your custom MBeans, Oracle recommends that you
limit the data types of your MBean attributes and the data types that your operations
return to those defined in javax.management.openmbean.OpenType. All JVMs have
access to these basic types. See OpenType in the Java SE 7 API Specification at
http://docs.oracle.com/javase/7/docs/api/javax/management/openmbean/
OpenType.html.

If your MBeans expose other data types, the types must be serializable and the
remote JMX clients must include your types on their class paths.

Emit Notifications Only When Necessary
Each time an MBean emits a notification, it uses memory and network resources. For
MBean attributes whose values change frequently, such memory and resource uses
might be unacceptable.

Chapter 2
Use Open MBean Data Types

2-4

http://docs.oracle.com/javase/7/docs/api/javax/management/openmbean/OpenType.html
http://docs.oracle.com/javase/7/docs/api/javax/management/openmbean/OpenType.html

Instead of configuring your MBeans to emit notifications each time its attributes change,
Oracle recommends that you use monitor MBeans to poll your custom MBeans periodically to
determine whether attributes have changed. You can configure the monitor MBean to emit a
notification only after an attribute changes in a specific way or reaches a specific threshold.

See Best Practices: Listening Directly Compared to Monitoring in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

Additional Design Considerations
In addition to Oracle best practices, bear in mind the following considerations when designing
manageable applications.

Registering MBeans in the JVM Platform MBean Server
In this release of WebLogic Server, the WebLogic Runtime MBean Server is the JVM platform
MBean server. As such, JMX clients can monitor your custom MBeans, WebLogic Server
MBeans, and the JVM's platform MXBeans through a single MBean server. With this option:

• Local applications can access all of the MBeans through the MBeanServer interface that
java.lang.management.ManagementFactory.getPlatformMBeanServer() returns.

• If you want to enable remote JMX clients to access custom MBeans, platform MXBeans,
and WebLogic Server MBeans, consider the following configuration:

– By the default, the WebLogic Server Runtime MBean Server is configured to be the
platform MBean server.

– Remote access to the platform MBean server is not enabled.

– Remote JMX clients access platform MXBeans by connecting to the Runtime MBean
Server.

See Using the Platform MBean Server in the Developing Custom Management Utilities Using
JMX for Oracle WebLogic Server.

Registering Application MBeans by Using Only JDK Classes
Using Oracle's ApplicationLifecycleListener is the easiest technique for making an
MBean share the life cycle of its parent application. If you do not want to use proprietary
WebLogic Server classes and deployment descriptor elements for managing a servlet or an
EJB, you can do the following:

• For a servlet, configure a javax.servlet.Filter that creates and registers your MBean
when a servlet calls a specific method or when the servlet itself is instantiated. See
Filter in the Java EE 7 API Specification at http://docs.oracle.com/javaee/7/api/
javax/servlet/Filter.html.

• For an EJB, implement its javax.ejb.EntityBean.ejbActivate() method to create and
register your MBean. For a session EJB whose instances share a single MBean instance,
include logic that creates and registers your MBean only if it does not already exist. See
EntityBean in the Java EE 7 API Specification at http://docs.oracle.com/
javaee/7/api/javax/ejb/EntityBean.html.

Chapter 2
Additional Design Considerations

2-5

http://docs.oracle.com/javaee/7/api/javax/servlet/Filter.html
http://docs.oracle.com/javaee/7/api/javax/servlet/Filter.html
http://docs.oracle.com/javaee/7/api/javax/ejb/EntityBean.html
http://docs.oracle.com/javaee/7/api/javax/ejb/EntityBean.html

Organizing Managed Objects and Business Objects
While you might design one managed object for each business object, there is no
requirement for how your management objects should relate to your business objects.
One management object could aggregate information from multiple business objects
or conversely, you could split information from one business object into multiple
managed objects.

For example, if a servlet uses multiple helper classes and you want one MBean to
represent the servlet, each helper class should push its management data into a single
MBean implementation class.

The organization that you choose depends on the number of MBeans you want to
provide to the system administrator or operations staff contrasted with the difficulty of
maintaining a complex management architecture.

Packaging and Accessing Management Classes
If you package your management classes in an application's APP-INF directory, all
other classes in the application can access them. If you package the classes in a
module's archive file, then only the module can access the management classes.

For example, consider an application that contains multiple Web applications, each of
which contains its own copy of a session EJB named EJB1. If you want one MBean to
collect information for all instances of the session EJB across all applications, you
must package the MBean's classes in the APP-INF directory. If you want each Web
application's copy of the EJB to maintain its own copy of the MBean, then package the
MBean's classes in the EJB's JAR file. (If you package the classes in the EJB's JAR,
then you distribute the MBean classes to each Web application when you copy the
JAR to the Web application.)

Securing Custom MBeans with Roles and Policies
If you register your MBeans in the WebLogic Server Runtime MBean Server, in
addition to limiting access only to users who have authenticated and been authorized
through the WebLogic Server security framework, you can further restrict access by
creating roles and polices. A security role, like a security group, grants an identity to a
user. Unlike a group, however, membership in a role can be based on a set of
conditions that are evaluated at run time. A security policy is another set of run-time
conditions that specify which users, groups, or roles can access a resource.

Note the following restrictions to securing custom MBeans with roles and policies:

• Your MBean's object name must include a "Type=value" key property.

• You must describe your roles and policy in a XACML 2.0 document and then use
the WebLogic Scripting Tool to add the data to your realm.

• If your XACML document describes authorization policies, your security realm
must use either the WebLogic Server XACML Authorization Provider or some
other provider that implements the
weblogic.management.security.authorization.PolicyStoreMBean interface.

• If your XACML document describes role assignments, your security realm must
use either the WebLogic Server XACML Role Mapping Provider or some other

Chapter 2
Additional Design Considerations

2-6

provider that implements the
weblogic.management.security.authorization.PolicyStoreMBean interface.

For information about creating XACML roles policies and adding them to your realm, see
Using XACML Documents to Secure WebLogic Resources in Securing Resources Using
Roles and Policies for Oracle WebLogic Server.

Chapter 2
Additional Design Considerations

2-7

3
Instrumenting and Registering Custom
MBeans

This chapter describes how to instrument and register standard MBeans for application
modules.
This chapter includes the following sections:

• Overview of the MBean Development Process

• Create and Implement a Management Interface

• Modify Business Methods to Push Data

• Register the MBean

• Package Application and MBean Classes

Overview of the MBean Development Process
Figure 3-1 illustrates the MBean development process. The steps in the process, and the
results of each are described in Table 3-1. Subsequent sections detail each step in the
process.

Figure 3-1 Standard MBean Development Overview

Create and implement a
management interface

.java files

.class files

Application Archive
(EAR)

Compile source files

Register listener in
weblogic-application.xml

Package classes

Deploy application

Modify business methods
to push management data
to the management class

Create an Application Life
Cycle Listener that registers

your MBean

3-1

Table 3-1 Model MBean Development Tasks and Results

Step Description Result

1. Create and Implement a
Management Interface

Create a standard Java interface that
describes the properties
(management attributes) and
operations you want to expose to
JMX clients.

Create a Java class that implements
the interface. Because management
logic should be separate from
business logic, the implementation
should not be in the same class that
contains your business methods.

Source files that describe
and implement your
management interface.

2. Modify Business
Methods to Push Data

If your management attributes
contain data about the number of
times a business method has been
invoked, or if you want management
attributes to contain the same value
as a business property, modify your
business methods to push (update)
data into the management
implementation class.

For example, if you want to keep
track of how frequently your business
class writes to the database, modify
the business method that is
responsible for writing to the
database to also increment a counter
property in your management
implementation class. This design
pattern enables you to insert a
minimal amount of management
code in your business code.

A clean separation
between business logic
and management logic.

3.Register the MBean If you want to instantiate your
MBeans as part of application
deployment, create a WebLogic
Server
ApplicationLifecycleListener
class to register your MBean.

A Java class and added
entries in weblogic-
application.xml.

4. Package Application and
MBean Classes

Package your compiled classes into
a single archive.

A JAR, WAR, EAR file or
other deployable archive
file.

Create and Implement a Management Interface
One of the main advantages to the standard MBeans design pattern is that you define
and implement management properties (attributes) as you would any Java property
(using getxxx, setxxx, and isxxx methods); similarly, you define and implement
management methods (operations) as you would any Java method.

When you register the MBean, the MBean server examines the MBean interface and
determines how to represent the data to JMX clients. Then, JMX clients use the
MBeanServerConnection.getAttribute() and setAttribute() methods to get and

Chapter 3
Create and Implement a Management Interface

3-2

set the values of attributes in your MBean and they use MBeanServerConnection.invoke() to
invoke its operations. See MBeanServerConnection in the Java SE 8 API Specification at
http://docs.oracle.com/javase/8/docs/api/javax/management/
MBeanServerConnection.html.

To create an interface for your standard MBean:

1. Declare the interface as public.

2. Oracle recommends that you name the interface as follows:

Business-objectMBean.java

where Business-object is the object that is being managed.

Oracle's recommended design pattern for standard MBeans enables you to follow
whatever naming convention you prefer. In other standard MBean design patterns
(patterns in which the MBean's implementation file does not extend
javax.management.StandardMBean), the file name must follow this pattern: Impl-
fileMBean.java where Impl-file is the name of the MBean's implementation file.

3. For each read-write attribute that you want to make available in your MBean, define a
getter and setter method that follows this naming pattern:

getAttribute-name

setAttribute-name

where Attribute-name is a case-sensitive name that you want to expose to JMX clients.

If your coding conventions prefer that you use an isAttribute-name as the getter
method for attributes of type Boolean, you may do so. However, JMX clients use the
MBeanServerConnection.getAttribute() method to retrieve an attribute's value
regardless of the attribute's data type; there is no
MBeanServerConnection.isAttribute() method.

4. For each read-only attribute that you want to make available, define only an is or a
getter method.

For each write-only attribute, define only a setter method.

5. Define each management operation that you want to expose to JMX clients.

Example 3-1 is an MBean interface that defines a read-only attribute of type int and an
operation that JMX clients can use to set the value of the attribute to 0.

1. Create a public class.

Oracle recommends the following pattern as a naming convention for implementation
files: MBean-InterfaceImpl.java.

2. Extend javax.management.StandardMBean to enable this flexibility in the naming
requirements.

See StandardMBean in the Java SE 8 API Specification at http://docs.oracle.com/
javase/8/docs/api/javax/management/StandardMBean.html.

3. Implement the StandardMBean(Object implementation, Class mbeanInterface)
constructor.

With Oracle's recommended design pattern in which you separate the management logic
into a delegate class, you must provide a public constructor that implements the
StandardMBean(Object implementation, Class mbeanInterface) constructor.

Chapter 3
Create and Implement a Management Interface

3-3

http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServerConnection.html
http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServerConnection.html
http://docs.oracle.com/javase/8/docs/api/javax/management/StandardMBean.html
http://docs.oracle.com/javase/8/docs/api/javax/management/StandardMBean.html

4. Implement the methods that you defined in the management interface.

Follow these guidelines:

• If you are using Oracle's recommended design pattern, in which business
objects push management data into the management object, provide a
method in this implementation class that the business methods use to set the
value of the management attribute. In Example 3-2, the incrementTotalRx()
method is available to business methods but it is not part of the management
interface.

• If multiple instances of an EJB, servlet, or other class can set the value of a
management attribute, make sure to increment the property atomically and do
not make its getter and setter (or increment method) synchronized. While
synchronizing guarantees the accuracy of management data, it blocks
business threads until the management operation has completed.

Example 3-1 Management Interface

package com.bea.medrec.controller;
public interface RecordSessionEJBMBean {
 public int getTotalRx();
 public void resetTotalRx();
}

To implement the interface:

Example 3-2 MBean Implementation

package com.bea.medrec.controller;

import javax.management.StandardMBean;
import com.bea.medrec.controller.RecordSessionEJBMBean;
public class RecordSessionEJBMBeanImpl extends StandardMBean
 implements RecordSessionEJBMBean {

 public RecordSessionEJBMBeanImpl() throws
 javax.management.NotCompliantMBeanException {
 super(RecordSessionEJBMBean.class);
 }

 public int TotalRx = 0;
 public int getTotalRx() {
 return TotalRx;
 }
 public void incrementTotalRx() {
 TotalRx++;
 }
 public void resetTotalRx() {
 TotalRx = 0;
 }
}

Modify Business Methods to Push Data
If your management attributes contain data about the number of times a business
method has been invoked, or if you want management attributes to contain the same
value as a business property, modify your business methods to push (update) data into
the management implementation class.

Chapter 3
Modify Business Methods to Push Data

3-4

Example 3-3 shows a method in an EJB that increments the integer in the TotalRx property
each time the method is invoked.

Example 3-3 EJB Method That Increments the Management Attribute

private Collection addRxs(Collection rXs, RecordLocal recordLocal)
 throws CreateException, Exception {
 ...
 com.bea.medrec.controller.RecordSessionEJBMBeanImpl.incrementTotalRx();
 ...
}

Register the MBean
If you want to instantiate your MBeans as part of application deployment, create an
ApplicationLifecycleListener that registers your MBean when the application deploys
(see Use ApplicationLifecycleListener to Register Application MBeans):

1. Create a class that extends weblogic.application.ApplicationLifecycleListener.

2. In this ApplicationLifecycleListener class, implement the
ApplicationLifecycleListener.postStart(ApplicationLifecycleEvent evt) method.

In your implementation of this method:

a. Construct an object name for your MBean.

Oracle recommends this naming convention:

your.company:Name=Parent-module,Type=MBean-interface-classname

To get the name of the parent module, use ApplicationLifecycleEvent to get an
ApplicationContext object. Then use ApplicationContext to get the module's
identification.

b. If you are registering the MBean on the WebLogic Server Runtime MBean
Server:

Access the WebLogic Server Runtime MBean Server through JNDI.

If the classes for the JMX client are part of a Java EE module, such as an EJB or
Web application, the JNDI name for the Runtime MBeanServer is:

java:comp/weblogic/jmx/runtime

For example:

InitialContext ctx = new InitialContext();
MBeanServer server = (MBeanServer)
 ctx.lookup("java:comp/weblogic/jmx/runtime");

If the classes for the JMX client are not part of a Java EE module, the JNDI name for
the Runtime MBean Server is:

java:comp/jmx/runtime

See Make Local Connections to the Runtime MBean Server in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

c. If you are registering the MBean on the Domain Runtime MBean Server:

Access the Domain Runtime MBean Server through JNDI.

Chapter 3
Register the MBean

3-5

If the classes for the JMX client are part of a Java EE module, such as an EJB
or Web application, the JNDI name for the Domain Runtime MBean server is:

java:comp/weblogic/jmx/domainRuntime

For example:

Initial context ctx = new InitialContext();
server = (MBeanServer)ctx.lookup("java:comp/weblogic/jmx/domainRuntime");

If the classes for the JMX client are not part of a Java EE module, the JNDI
name for the Domain Runtime MBean Server is:

java:comp/jmx/domainRuntime

Note:

The Domain Runtime MBean Server is present only on the
Administration Server. Therefore, since the ctx.lookup() call
returns a reference to the local MBean Server, the lookup method
can only be called when running on the Administration Server. If
called when running on a managed server, a NameNotFound
exception is thrown.

See Make Local Connections to the Domain Runtime MBean Server in
Developing Custom Management Utilities Using JMX for Oracle WebLogic
Server

d. Register your MBean using MBeanServer.registerMBean(Object object,
ObjectName name), where:

object represents an instance of your MBean implementation class.

name represents the JMX object name for your MBean.

When your application deploys, the WebLogic deployment service emits
ApplicationLifecycleEvent notifications to all its registered listeners. When the
listener receives a postStart notification, it invokes its postStart method. See
Programming Application Life Cycle Events in Developing Applications for Oracle
WebLogic Server.

3. In the same class, implement the
ApplicationLifecycleListener.preStop(ApplicationLifecycleEvent evt)
method.

In your implementation of this method, invoke the
javax.management.MBeanServer.unregister(ObjectName MBean-name) method
to unregister your MBean.

4. Register your class as an ApplicationLifecycleListener by adding the following
element to the weblogic-application.xml file of your application:

<listener>
 <listener-class>
 fully-qualified-class-name
 </listener-class>
</listener>

Chapter 3
Register the MBean

3-6

Package Application and MBean Classes
Package your MBean classes in the application's APP-INF directory or in a module's JAR,
WAR or other type of archive file depending on the access that you want to enable for the
MBean. See Additional Design Considerations.

Chapter 3
Package Application and MBean Classes

3-7

4
Using the WebLogic Server JMX Timer
Service

This chapter describes how to use the WebLogic Server JMX timer service, which can be
used by JMX clients to carry out a task at a specified time or a regular time interval.
This chapter includes the following sections:

• Overview of the WebLogic Server JMX Timer Service

• Creating the Timer Service: Main Steps

• Configuring a Timer MBean to Emit Notifications

• Creating Date Objects

• Example: Generating a Notification Every Five Minutes After 9 AM

• Removing Notifications

Overview of the WebLogic Server JMX Timer Service
A JMX timer service can be configured to emit notifications, and a listener to respond to the
notifications with a specified action. For example, you want a JMX monitor to run between
9am and 9pm each day. You configure the JMX timer service to emit a notification daily at
9am, which triggers a JMX listener to start your monitor. The timer service emits another
notification at 9pm, which triggers the listener to stop the monitor MBean.

The JDK includes an implementation of the JMX timer service (see
javax.management.timer.Timer in the Java SE 8 API Specification at http://
docs.oracle.com/javase/8/docs/api/javax/management/timer/Timer.html); however,
listeners for this timer service run in their own thread in a server's JVM.

WebLogic Server includes an extension of the standard timer service that causes timer
listeners to run in a thread that WebLogic Server manages and within the security context of
a WebLogic Server user account.

Creating the Timer Service: Main Steps
You construct and manage instances of the timer service for each JMX client. WebLogic
Server does not provide a centralized timer service that all JMX clients use. Each time you
restart a server instance, each JMX client must re-instantiate any timer service configurations
it needs.

To create the WebLogic Server timer service:

1. Create a JMX listener class in your application.

For general instructions on creating a JMX listener, see Creating a Notification Listener in
Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.

2. Create a class that does the following:

4-1

http://docs.oracle.com/javase/8/docs/api/javax/management/timer/Timer.html
http://docs.oracle.com/javase/8/docs/api/javax/management/timer/Timer.html

a. Configures an instance of weblogic.management.timer.TimerMBean to emit
javax.management.timer.TimerNotification notifications at a specific time
or at a recurring interval. See TimerNotification in the Java SE 7 API
Specification at http://docs.oracle.com/javase/8/docs/api/javax/
management/timer/TimerNotification.html.

For each notification that you configure, include a String in the notification's
Type attribute that identifies the event that caused the timer to emit the
notification.

See Configuring a Timer MBean to Emit Notifications.

b. Registers your listener and an optional filter with the timer MBean that you
configured.

c. Starts the timer in the timer MBean that you configured.

See Configuring a Notification Filter and Registering a Notification Listener
and Filter in Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server.

d. Unregisters the timer MBean and closes its connection to the MBean server
when it finishes using the timer service.

3. Package and deploy the listener and other JMX classes to WebLogic Server. See
Packaging and Deploying Listeners on WebLogic Server in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

Configuring a Timer MBean to Emit Notifications
To configure a Timer MBean instance to emit a notification:

1. Initialize a connection to the Domain Runtime MBean Server.

See Make Remote Connections to an MBean Server in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

2. Create an ObjectName for your timer MBean instance.

See javax.management.ObjectName in the Java SE 8 API Specification at http://
docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html.

Oracle recommends that your object name start with the name of your
organization and include key properties that clearly identify the purpose of the
timer MBean instance.

For example, "mycompany:Name=myDailyTimer,Type=weblogicTimer"
3. Create and register the timer MBean.

Use javax.management.MBeanServerConnection.createMBean(String
classname ObjectName name) method, where:

• classname is weblogic.management.timer.Timer
• name represents the object name that you created for the timer MBean

instance.

Chapter 4
Configuring a Timer MBean to Emit Notifications

4-2

http://docs.oracle.com/javase/8/docs/api/javax/management/timer/TimerNotification.html
http://docs.oracle.com/javase/8/docs/api/javax/management/timer/TimerNotification.html
http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html

Note:

The timer MBean that you create runs in the JMX agent on WebLogic
Server (it does not run in a client JVM even if you create the timer MBean
from a remote JMX client).

4. Configure the timer MBean to emit a notification.

Invoke the MBean's addNotification operation. Table 4-1 describes each parameter of
the addNotification operation. See weblogic.management.timer.Timer in the
WebLogic Server API Reference.

The addNotification operation creates a TimerNotification object and returns a
handback object of type Integer, which contains an integer that uniquely identifies the
TimerNotification object.

5. Repeat step 4 for each timer notification that your JMX client needs to receive.

6. Start the timers in your timer MBean by invoking the timer MBean's start() operation.

When the time that you specify arrives, the timer service emits the TimerNotification object
along with a reference to the handback object.

Table 4-1 Parameters of the addNotification Operation

Parameter Description

java.lang.String
type

A string that you use to identify the event that triggers this notification to be
broadcast. For example, you can specify midnight for a notification that you
configure to be broadcast each day at midnight.

java.lang.String
message

Specifies the value of the TimerNotification object's message attribute.

java.lang.Object
userData

Specifies the name of an object that contains whatever data you want to
send to your listeners. Usually, you specify a reference to the class that
registered the notification, which functions as a callback.

java.util.Date
startTime

Specifies a Date object that contains the time and day at which the timer
emits your notification.

See Creating Date Objects.

long period (Optional) Specifies the interval in milliseconds between notification
occurrences. Repeating notifications are not enabled if this parameter is
zero or is not defined (null).

long nbOccurences (Optional) Specifies the total number of times that the notification will occur.
If the value of this parameter is zero or is not defined (null) and if the period
is not zero or null, then the notification will repeat indefinitely.

If you specify this parameter, each time the Timer MBean emits the
associated notification, it decrements the number of occurrences by one.
You can use the timer MBean's getNbOccurrences operation to determine
the number of occurrences that remain. When the number of occurrences
reaches zero, the timer MBean removes the notification from its list of
configured notifications.

Chapter 4
Configuring a Timer MBean to Emit Notifications

4-3

Creating Date Objects
The constructor for the java.util.Date object initializes the object to represent the
time at which you created the Date object measured to the nearest millisecond. To
specify a different time or date:

1. Create an instance of java.util.Calendar.

2. Configure the fields in the Calendar object to represent the time or date.

3. Invoke the Calendar object's getTime() method, which returns a Date object that
represents the time in the Calendar object.

For example, the following code configures a Date object that represents midnight:

java.util.Calendar cal = java.util.Calendar.getInstance();
cal.set(java.util.Calendar.HOUR_OF_DAY, 24);
java.util.Date morning = cal.getTime();

See java.util.Calendar in the Java SE 8 API Specification at http://
docs.oracle.com/javase/8/docs/api/java/util/Calendar.html.

Example: Generating a Notification Every Five Minutes After
9 AM

The code in Example 4-1 creates an instance of weblogic.management.timer.Timer
that emits a notification every 5 minutes after 9am.

Note the following about the code:

• It creates and registers the timer MBean in the WebLogic Server Runtime MBean
Server, under the assumption that the JMX client runs alongside applications that
are deployed on multiple server instances. In this case, your JMX client would
register a timer MBean in each Runtime MBean Server in the domain.

• Even though it creates an instance of the WebLogic Server timer MBean, the class
does not import WebLogic Server classes. Only the MBean server needs access
to the WebLogic Server Timer class, not the JMX client.

• Any generic JMX listener can be used to listen for timer notifications, because all
timer notifications extend javax.management.Notification.

Example 4-1 Create, Register, and Configure a Timer MBean

import java.util.Hashtable;
import java.io.IOException;
import java.net.MalformedURLException;

import javax.management.MBeanServerConnection;
import javax.management.ObjectName;
import javax.management.MalformedObjectNameException;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

import javax.management.NotificationFilterSupport;

Chapter 4
Creating Date Objects

4-4

http://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html
http://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html

public class RegisterTimer {
 private static MBeanServerConnection connection;
 private static JMXConnector connector;
 private static final ObjectName service;

 // Initialize the object name for RuntimeServiceMBean
 // so it can be used throughout the class.
 static {
 try {
 service = new ObjectName(
 "com.bea:Name=RuntimeService,Type=weblogic.management.mbeanservers.ru
 ntime.RuntimeServiceMBean");
 }catch (MalformedObjectNameException e) {
 throw new AssertionError(e.getMessage());
 }
 }

 /*
 * Initialize connection to the Runtime MBean Server.
 * This MBean is the root of the runtime MBean hierarchy, and
 * each server in the domain hosts its own instance.
 */
 public static void initConnection(String hostname, String portString,
 String username, String password) throws IOException,
 MalformedURLException {
 String protocol = "t3";
 Integer portInteger = Integer.valueOf(portString);
 int port = portInteger.intValue();
 String jndiroot = "/jndi/";
 String mserver = "weblogic.management.mbeanservers.runtime";
 JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname, port,
 jndiroot + mserver);

 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, username);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 connector = JMXConnectorFactory.connect(serviceURL, h);
 connection = connector.getMBeanServerConnection();
 }

 public static void main(String[] args) throws Exception {
 String hostname = args[0];
 String portString = args[1];
 String username = args[2];
 String password = args[3];

 try {
 /* Invokes a custom method that establishes a connection to the
 * Runtime MBean Server and uses an instance of
 * MBeanServerConnection to represents the connection. The custom
 * method assigns the MBeanServerConnection to a class-wide, static
 * variable named "connection".
 */
 initConnection(hostname, portString, username, password);

 //Creates and registers the timer MBean.
 ObjectName timerON = new
 ObjectName("mycompany:Name=myDailyTimer,Type=weblogicTimer");

Chapter 4
Example: Generating a Notification Every Five Minutes After 9 AM

4-5

 String classname = "weblogic.management.timer.Timer";
 connection.createMBean(classname, timerON);
 System.out.println("===> created timer mbean "+timerON);

 // Configures the timer MBean to emit a morning notification.
 // Assigns the return value of addNotification to a variable so that
 // it will be possible to invoke other operations for this specific
 // notification.
 java.util.Calendar cal = java.util.Calendar.getInstance();
 cal.set(java.util.Calendar.HOUR_OF_DAY, 9);
 java.util.Date morning = cal.getTime();
 String myData = "Timer notification";
 Integer morningTimerID = (Integer) connection.invoke(timerON,
 "addNotification",
 new Object[] { "mycompany.timer.notification.after9am" ,
 "After 9am!", myData, morning, new Long(300000) },
 new String[] {"java.lang.String", "java.lang.String",
 "java.lang.Object", "java.util.Date", "long" });

 //Instantiates your listener class and configures a filter to
 // forward only timer messages.
 MyListener listener = new MyListener();
 NotificationFilterSupport filter = new NotificationFilterSupport();
 filter.enableType("mycompany.timer");

 //Uses the MBean server's addNotificationListener method to
 //register the listener and filter with the timer MBean.
 System.out.println("===> ADD NOTIFICATION LISTENER TO "+ timerON);
 connection.addNotificationListener(timerON, listener, filter, null);
 System.out.println("\n[myListener]: Listener registered ...");

 //Starts the timer.
 connection.invoke(timerON, "start", new Object[] { }, new String[] {});

 //Keeps the remote client active.
 System.out.println("Pausing. Press Return to end...........");
 System.in.read();
 } catch(Exception e) {
 System.out.println("Exception: " + e);
 e.printStackTrace();
 }
 }
}

Removing Notifications
The timer MBean removes notifications from its list when either of the following occurs:

• A non-repeating notification is emitted.

• A repeating notification exhausts its number of occurrences.

The timer MBean also provides the following operations to remove notifications:

• removeAllNotifications(), which removes all notifications that are registered
with the timer MBean instance.

• removeNotification(java.lang.Integer id), which removes the notification
whose handback object contains the integer value that you specify. The
addNotification method returns this handback object when you invoke it (see
Step 4 in Configuring a Timer MBean to Emit Notifications.

Chapter 4
Removing Notifications

4-6

• removeNotifications(java.lang.String type), which removes all notifications whose
type corresponds to the type that you specify. You define a notification's type value when
you create the notification object. See Table 4-1.

See weblogic.management.timer.Timer in the WebLogic Server API Reference.

Chapter 4
Removing Notifications

4-7

5
Accessing Custom MBeans

This chapter describes ways to access your custom MBeans by means other than
programmatic JMX access to them. You can use any JMX-compliant management system to
access your MBeans. See the Oracle Technology Network Web site, which provides links to
books, white papers, and other information on JMX: http://www.oracle.com/technetwork/
java/javase/tech/javamanagement-140525.html.
This chapter includes the following sections:

• Accessing Custom MBeans from JConsole

• Accessing Custom MBeans from WebLogic Scripting Tool

• Accessing Custom MBeans from an Administration Console Extension

Accessing Custom MBeans from JConsole
The JDK includes JConsole, a Swing-based JMX client that you can use to browse MBeans.
You can browse the MBeans in any WebLogic Server MBean server and in the JVM platform
MBean server.

Oracle recommends that you use JConsole only in a development environment; it consumes
significant amounts of resources. See Using JConsole to Monitor Applications at http://
www.oracle.com/technetwork/articles/java/jconsole-1564139.html. Also, see Managing
WebLogic Servers With JConsole at https://blogs.oracle.com/WebLogicServer/entry/
managing_weblogic_servers_with.

To access custom MBeans from JConsole:

1. If wljmxclient.jar and wlclient.jar are not in the JConsole classpath:

a. Enable the IIOP protocol for the WebLogic Server instance that hosts your MBeans.

b. Configure the default IIOP user to be a WebLogic Server user with Administrator
privileges. In this scenario, the login and password you provide in Step 5d or Step 6d
is irrelevant, and the default IIOP user will be associated with each request.

See Enable and Configure IIOP in the Oracle WebLogic Server Administration Console
Online Help.

If wljmxclient.jar and wlclient.jar are in the JConsole classpath, there is no need to
enable the default IIOP user. Go to Step 2.

5-1

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html
http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html
https://blogs.oracle.com/WebLogicServer/entry/managing_weblogic_servers_with
https://blogs.oracle.com/WebLogicServer/entry/managing_weblogic_servers_with

Note:

wlclient.jar is included in wljmxclient.jar's MANIFEST ClassPath
entry, so wlclient.jar and wljmxclient.jar need to be in the same
directory, or both jars need to be specified on the classpath.

Ensure that weblogic.jar or wlfullclient.jar is not included in the
classpath if wljmxclient.jar is included. Only the thin client
wljmxclient.jar/wlclient.jar or the thick client wlfullclient.jar
should be used, but not a combination of both.

2. From a command prompt, make sure that the JDK is on the path.

3. JConsole can be invoked with either wljmxclient.jar or weblogic.jar in the
JConsole classpath.

• To start JConsole with wljmxclient.jar in the classpath:

Unix:

$ jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$ORACLE_HOME/wlserver/
server/lib/wljmxclient.jar

Windows:

c:> jconsole -J-Djava.class.path=%JAVA_HOME%\lib\jconsole.jar;%ORACLE_HOME%
\wlserver\server\lib\wljmxclient.jar

• To start JConsole with weblogic.jar in the classpath:

Unix:

$ jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$ORACLE_HOME/
wlserver/server/lib/weblogic.jar

Windows:

c:> jconsole -J-Djava.class.path=%JAVA_HOME%
\lib\jconsole.jar;%ORACLE_HOME%\wlserver\server\lib\weblogic.jar

Note:

Note the following:

• You must explicitly set the classpath using -J-
Djava.class.path=option. The current classpath is not taken by
JConsole.

• If your configuration is as described in Step 4, you can start
JConsole simply by executing the command jconsole. If you start
JConsole this way, however, only the user who started the WLS
process can connect locally.

4. If your custom MBeans are registered in the JVM platform MBean server (or if you
have configured the WebLogic Server Runtime MBean Server to be the JVM
platform MBean server) and you are running JConsole on the same machine as
your WebLogic Server instance:

Chapter 5
Accessing Custom MBeans from JConsole

5-2

a. In the JConsole window, select Connection, and click New Connection.

b. In the New Connection window, select the Local Process tab, select
WebLogic.Server, and click Connect.

5. If your custom MBeans are registered in the WebLogic Server Runtime MBean Server:

a. In the JConsole window, select Connection, and click New Connection.

b. In the New Connection window, select the Remote Process option.

c. In the Remote Process JMX URL text box, enter the following:

service:jmx:iiop://host:port/jndi/weblogic.management.mbeanservers.runtime

where host:port represents the host name and port of the WebLogic Server
instance that hosts your MBeans. For example, localhost:7001.

d. In the User Name and Password fields, enter the user name and password of any
user account that is assigned the administrator role. This login will be used to
authenticate the client and create the Subject that will be associated with each JMX
request coming from the client.

e. Click Connect.

6. If your custom MBeans are registered in the WebLogic Server Domain Runtime MBean
Server:

a. In the Console window, select Connection, and click New Connection.

b. In the New Connection window, select the Remote Process option.

c. In the Remote Process JMX URL text box, enter the following:

service:jmx:iiop://host:port/jndi/
weblogic.management.mbeanservers.domainruntime

where host:port represents the host name and port of the WebLogic Server
instance that hosts your MBeans. For example, localhost:7001.

d. In the User Name and Password fields, enter the user name and password of any
user account that is assigned the administrator role. This login will be used to
authenticate the client and create the Subject that will be associated with each JMX
request coming from the client.

e. Click Connect.

Accessing Custom MBeans from WebLogic Scripting Tool
If you register your MBeans in the Runtime MBean Server or Domain Runtime MBean
Server, you can use WebLogic Scripting Tool to access your custom MBeans. See Accessing
Other WebLogic MBeans and Custom MBeans in Understanding the WebLogic Scripting
Tool.

Accessing Custom MBeans from an Administration Console
Extension

You can extend the WebLogic Server Administration Console by creating Java Server Pages
(JSPs) that conform to a specific template. Your JSP can include JMX code that connects to

Chapter 5
Accessing Custom MBeans from WebLogic Scripting Tool

5-3

the JVM platform MBean server, the WebLogic Server Runtime MBean Server, or the
Domain Runtime MBean Server and looks up your MBeans.

Chapter 5
Accessing Custom MBeans from an Administration Console Extension

5-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Understanding JMX
	Introduction
	What Management Services Can You Develop with JMX?
	Creating Management-Aware Applications
	When Is It Appropriate to Use JMX?
	What Management Services Have BEA Partners Developed?
	JMX Layers
	Indirection and Introspection
	Notifications and Monitor MBeans
	How JMX Notifications Are Broadcast and Received
	Active Polling with Monitor MBeans

	2 Designing Manageable Applications
	Benefits of Oracle Best Practices
	Use Standard MBeans
	Registering Custom MBeans in the WebLogic Server Runtime Bean Server
	Registering Custom MBeans in the Domain Runtime MBean Server
	Use ApplicationLifecycleListener to Register Application MBeans
	Unregister Application MBeans When Applications Are Undeployed
	Place Management Logic for EJBs and Servlets in a Delegate Class
	Use Open MBean Data Types
	Emit Notifications Only When Necessary
	Additional Design Considerations
	Registering MBeans in the JVM Platform MBean Server
	Registering Application MBeans by Using Only JDK Classes
	Organizing Managed Objects and Business Objects
	Packaging and Accessing Management Classes
	Securing Custom MBeans with Roles and Policies

	3 Instrumenting and Registering Custom MBeans
	Overview of the MBean Development Process
	Create and Implement a Management Interface
	Modify Business Methods to Push Data
	Register the MBean
	Package Application and MBean Classes

	4 Using the WebLogic Server JMX Timer Service
	Overview of the WebLogic Server JMX Timer Service
	Creating the Timer Service: Main Steps
	Configuring a Timer MBean to Emit Notifications
	Creating Date Objects
	Example: Generating a Notification Every Five Minutes After 9 AM
	Removing Notifications

	5 Accessing Custom MBeans
	Accessing Custom MBeans from JConsole
	Accessing Custom MBeans from WebLogic Scripting Tool
	Accessing Custom MBeans from an Administration Console Extension

