
Oracle® Fusion Middleware
Adding WebLogic Logging Services to
Applications Deployed on Oracle WebLogic
Server

12c (12.2.1.4.0)
E90822-03
December 2022

Oracle Fusion Middleware Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic
Server, 12c (12.2.1.4.0)

E90822-03

Copyright © 2007, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Related Documentation vii

Conventions viii

1 Application Logging and WebLogic Logging Services

About WebLogic Logging Services 1-1

Integrating Application Logging with WebLogic Logging Services: Main Steps 1-1

Accessing the WebLogic Server Logger 1-2

2 Internationalization and Localization for WebLogic Server

About Internationalization and Localization Standards 2-1

Understanding Internationalization and Localization for WebLogic Server 2-1

Understanding Message Catalogs 2-2

Understanding Java Interfaces for Internationalization 2-2

Main Steps for Creating an Internationalized Message 2-3

3 Using Message Catalogs with WebLogic Server

Overview of Message Catalogs 3-1

Message Catalog Hierarchy 3-2

Guidelines for Naming Message Catalogs 3-2

Using Message Arguments 3-3

Retrieving Additional Information About an Error Message 3-4

Message Catalog Formats 3-4

Example Log Message Catalog 3-4

Elements of a Log Message Catalog 3-5

message_catalog Element 3-5

log_message Element 3-7

iii

Child Elements of log_message Element 3-9

Example Simple Text Catalog 3-10

Elements of a Simple Text Catalog 3-11

message_catalog Element 3-11

message Element 3-11

messagebody Element 3-12

Example Locale-Specific Catalog 3-13

Elements of a Locale-Specific Catalog 3-13

locale_message_catalog Element 3-14

log_message Element 3-14

Other locale_message_catalog Elements 3-14

4 Writing Messages to the WebLogic Server Log

Using the I18N Message Catalog Framework: Main Steps 4-1

Create Message Catalogs 4-1

Compile Message Catalogs 4-2

Example: Compiling Message Catalogs 4-3

Use Messages from Compiled Message Catalogs 4-5

Using the NonCatalogLogger APIs 4-6

Using ServletContext 4-7

Configuring Servlet and Resource Adapter Logging 4-8

Writing Messages from a Client Application 4-9

Writing Debug Messages 4-10

5 Using the WebLogic Server Message Editor

About the Message Editor 5-1

Starting the Message Editor 5-2

Working with Catalogs 5-3

Browsing to an Existing Catalog 5-4

Creating a New Catalog 5-6

Adding Messages to Catalogs 5-8

Entering a New Log Message 5-8

Entering a New Simple Text Message 5-10

Finding Messages 5-11

Finding a Log Message 5-11

Finding a Simple Text Message 5-12

Using the Message Viewer 5-13

Viewing All Messages in a Catalog 5-13

Viewing All Messages in Several Catalogs 5-14

iv

Selecting a Message to Edit from the Message Viewer 5-14

Editing an Existing Message 5-15

Retiring and Unretiring Messages 5-15

6 Using the WebLogic Server Internationalization Utilities

WebLogic Server Internationalization Utilities 6-1

WebLogic Server Internationalization and Localization 6-1

weblogic.i18ngen Utility 6-3

weblogic.l10ngen Utility 6-4

Message Catalog Localization 6-5

Examples 6-6

weblogic.GetMessage Utility 6-6

A Localizer Class Reference for WebLogic Server

About Localizer Classes A-1

Localizer Methods A-1

Localizer Lookup Class A-3

B Loggable Object Reference for WebLogic Server

About Loggable Objects B-1

How To Use Loggable Objects B-1

C TextFormatter Class Reference for WebLogic Server

About TextFormatter Classes C-1

Example of an Application Using a TextFormatter Class C-1

D Logger Class Reference for WebLogic Server

About Logger Classes D-1

Example of a Generated Logger Class D-1

v

Preface

This document describes how to use WebLogic Server logging services to monitor
application events. It describes WebLogic support for internationalization and
localization of log messages, and shows you how to use the templates and tools
provided with WebLogic Server to create or edit message catalogs that are locale-
specific.

Audience
This document is a resource for Java Platform, Enterprise Edition (Java EE)
application developers who want to use WebLogic message catalogs and logging
services as a way for their applications to produce log messages and want to integrate
their application logs with WebLogic Server logs. This document is relevant to all
phases of a software project, from development through test and production phases.

This document does not address how you configure logging, subscribe to and filter log
messages. For links to information on these topics, see Related Documentation.

It is assumed that the reader is familiar with Java EE and Web technologies, object-
oriented programming techniques, and the Java programming language.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documentation
The corporate Web site provides all documentation for WebLogic Server. Specifically, View
and configure logs in the Oracle WebLogic Server Administration Console Online Help
describes configuring log files and log messages that a WebLogic Server instance generates,
and Configuring WebLogic Logging Services in Configuring Log Files and Filtering Log
Messages for Oracle WebLogic Server describes configuring WebLogic Server to write
messages to log files, filtering message output, and listening for the log messages that
WebLogic Server broadcasts.

For general information about internationalization and localization, refer to the following
sources:

• The Java Developer Connection at http://www.oracle.com/technetwork/java/
index.html

• The Internationalization section of the World Wide Web Consortium (W3C) Web Site at
http://www.w3.org

Logging Samples and Tutorials
In addition to this document, we provide a variety of logging code samples and tutorials that
show logging configuration and API use.

Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server that
simulates an independent, centralized medical record management system. The MedRec
application provides a framework for patients, doctors, and administrators to manage patient
data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights recommended
best practices. MedRec is optionally installed with the WebLogic Server installation. You can
start MedRec from the ORACLE_HOME\user_projects\domains\medrec directory, where
ORACLE_HOME is the directory you specified as the Oracle Home when you installed Oracle
WebLogic Server. For more information, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

Logging Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in
ORACLE_HOME\wlserver\samples\server, where ORACLE_HOME represents the directory in
which you installed WebLogic Server. For more information, see Sample Applications and
Code Examples in Understanding Oracle WebLogic Server.

Internationalizing Applications Using Simple Message Catalogs Example

This example shows various methods for displaying localized text using simple message
catalogs. Using any of the languages supported by the example requires the appropriate
operating system localization software and character encoding. The package that contains
this example is:

java examples.i18n.simple.HelloWorld [lang [country]]
where lang is a two-character ISO language code (for example, en for English) and country
is a two-character ISO country code (for example, US for the United States).

Preface

vii

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.w3.org

The files are located in
ORACLE_HOME\wlserver\samples\server\examples\src\examples\i18n\simple,
where ORACLE_HOME represents the directory in which you installed WebLogic Server.
For more information, see Sample Applications and Code Examples in Understanding
Oracle WebLogic Server.

New and Changed WebLogic Server Features
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii

1
Application Logging and WebLogic Logging
Services

You can use WebLogic logging services for your application logging. You can keep a record
of which user invokes specific application components, to report error conditions, or to help
debug your application before releasing it to a production environment.

• About WebLogic Logging Services

• Integrating Application Logging with WebLogic Logging Services: Main Steps

• Accessing the WebLogic Server Logger

About WebLogic Logging Services
WebLogic logging services provide information about server and application events. Your
application can also use WebLogic logging services to communicate its status and respond to
specific events. See Understanding WebLogic Logging Services in Configuring Log Files and
Filtering Log Messages for Oracle WebLogic Server.
Two features of WebLogic logging services from which your application can benefit are its
extensibility and support for internationalization.

You can create your own catalog of log messages and use WebLogic utilities to generate
Java classes that you can use in your application code. The log messages generated from
your applications will be integrated with and treated in the same way as log messages
generated by the server. See Writing Messages to the WebLogic Server Log.

Log message catalogs you create can be written in any language and can be accompanied
by translations for different locales. WebLogic support for internationalization ensures that the
log messages are present in the appropriate language for the current locale under which
WebLogic Server is running. See Internationalization and Localization for WebLogic Server.

A major advantage of integrating your application logging with WebLogic logging framework
is ease of management. The WebLogic Server Administration Console lets you manage all of
the log files and related options. See View and configure logs in Oracle WebLogic Server
Administration Console Online Help.

Integrating Application Logging with WebLogic Logging
Services: Main Steps

To debug your applications, you must first generate the log messages from your applications
and integrate them with WebLogic logging services. There are several ways to do this
operation:

• Use WebLogic tools to build custom log message catalogs and their associated Java
APIs. Applications can invoke the log methods exposed by these interfaces to generate
log messages. The message catalogs can be easily internationalized. See Using
Message Catalogs with WebLogic Server.

1-1

• Use the WebLogic non-catalog logger to generate log messages. With
NonCatalogLogger, instead of calling messages from a catalog, you place the
message text directly in your application code. See Using the NonCatalogLogger
APIs.

• Use a log() method available to servlets and JSPs in
javax.servlet.ServletContext. See Using ServletContext.

Application developers who do not use WebLogic message catalogs,
NonCatalogLogger, or servlet logging can do the following:

• Use the Java Logging APIs to produce and distribute messages.

• Use Log4J to produce messages and configure the server to use Log4j or the
default, Java Logging, to distribute messages.

• Use the Commons API to produce messages.

See org.apache.commons.logging at http://jakarta.apache.org/commons/
logging/api/index.html.

• Use the Server Logging Bridge handler (for Java Logging), or appender (for
Log4j), which redirects application log messages to WebLogic logging services.

Note:

The use of Log4j with the WebLogic logging service, as an alternative to
Java logging, is deprecated as of WebLogic Server 12.1.3.

Accessing the WebLogic Server Logger
The WebLogic logging infrastructure supports a logger on each server that collects the
log events generated by your own applications and subsystems. WebLogic Server
provides direct access to the logger on each server, as well as to the domain logger on
the Administration Server.

By default, WebLogic logging services use an implementation based on the Java
Logging APIs. The LoggingHelper class provides access to the
java.util.logging.Logger object used for server logging. See the LoggingHelper
Javadoc.

Alternatively, you can direct WebLogic logging services to use Log4j instead of Java
Logging. When Log4j is enabled, you get a reference to the org.apache.log4j.Logger
that the server is using from the weblogic.logging.log4j.Log4jLoggingHelper class.
With a Log4j Logger reference, you can attach you own custom appender (handler) to
receive the log events or you can use the Logger reference to issue log requests to
WebLogic logging services. See the Log4jLoggingHelper Javadoc.

Note:

The use of Log4j with the WebLogic logging service, as an alternative to
Java logging, is deprecated as of WebLogic Server 12.1.3.

Chapter 1
Accessing the WebLogic Server Logger

1-2

http://jakarta.apache.org/commons/logging/api/index.html
http://jakarta.apache.org/commons/logging/api/index.html

In addition, WebLogic logging services provide an implementation of the Jakarta Commons
LogFactory and Log interface, so you can program to the Commons API and direct log
messages to the server log file or any of the registered destinations. This API provides you
with an abstraction that insulates you from the underlying logging implementation, which
could be Log4j or Java Logging.

See Server Logging Bridge in Configuring Log Files and Filtering Log Messages for Oracle
WebLogic Server.

For more information, including examples, see the following sections in Configuring Log Files
and Filtering Log Messages for Oracle WebLogic Server:

• How to Use Log4j with WebLogic Logging Services

• How to Use the Commons API with WebLogic Logging Services

• Best Practices: Integrating Java Logging or Log4j with WebLogic Logging Services

• Server Logging Bridge

Chapter 1
Accessing the WebLogic Server Logger

1-3

2
Internationalization and Localization for
WebLogic Server

The messages that are logged in WebLogic Server can be converted to multiple locale-
specific language. There are specific processes required for internationalization and
localization for WebLogic Server.

• About Internationalization and Localization Standards

• Understanding Internationalization and Localization for WebLogic Server

• Understanding Message Catalogs

• Understanding Java Interfaces for Internationalization

• Main Steps for Creating an Internationalized Message

About Internationalization and Localization Standards
Oracle has adopted the World Wide Web Consortium's (W3C) recommendations for standard
formats and protocols that are usable worldwide in all languages and in all writing systems.
These standards are part of the Java internationalization APIs that are used by WebLogic
Server.

Internationalization (I18N) refers to the process of designing software so that it can be
adapted to various languages and regions easily, cost-effectively, and, in particular, without
engineering changes to the software. Localization (L10N) is the use of locale-specific
language and constructs at runtime.

Understanding Internationalization and Localization for
WebLogic Server

Localization covers not only language, but collation, date and time formats, monetary
formats, and character encoding. Messages that are logged to the WebLogic Server log can
be localized to meet your particular requirements.WebLogic Server internationalization
supports localization of two types of data:

• Log messages - Log messages are informational messages that are written to the
server log, and may also contain error messages if the appropriate message arguments
are included in the message definition. See Elements of a Log Message Catalog.

• Simple text - Simple text is any text other than log messages and exceptions that the
server must display, such as the output from a utility. Examples of simple text include
usage messages, graphical user interface (GUI) labels, and error messages. See
Elements of a Simple Text Catalog.

2-1

Understanding Message Catalogs
All internationalized text is defined in message catalogs, each of which defines a
collection of log messages or simple text.

Log messages contain data that is written to the log file. This data is predominantly
dynamic and contains information that is specific to the current state of the application
and system. When merged with text in a localized log message catalog, this data
results in well-formatted, localized messages that describe the error condition in the
language of the user. The output sent to the WebLogic Server Administration Console
is simple text. As with log messages, simple text can be merged with dynamic data.

To create an internationalized message, you externalize all message strings in a
message catalog so that the strings can be converted to multiple locales without
changing or recompiling the code. The application code supplies runtime values to the
logging methods. The logging methods merge the code with the message string in the
catalog according to the current locale. The application code then prints a localized
message in the log files.

There are three types of message catalogs:

• Log message catalogs - Collections of log messages. See Elements of a Log
Message Catalog.

• Simple text message catalogs - Collections of simple text messages. See
Elements of a Simple Text Catalog.

• Locale message catalogs - Collections of locale-specific messages
corresponding to a top-level log message or simple text catalog. See Elements of
a Locale-Specific Catalog.

Message IDs in log message catalogs or locale message catalogs are unique across
all log message or locale message catalogs. Within the message catalog file, each
localized version of the message is assigned a unique message ID and message text
specific to the error. Ideally, a message is logged from only one location within the
system so that a support team can easily find it. Message IDs in simple text catalogs
are unique within each simple text catalog. See Using Message Catalogs with
WebLogic Server.

To view the WebLogic Server message catalogs, see Error Messages.

Understanding Java Interfaces for Internationalization
WebLogic Server uses the Java internationalization interfaces to provide
internationalization and localization.

In addition to understanding how WebLogic Server handles internationalization, you
should be familiar with the Java internationalization interfaces and the following
classes included in the Java Development Kit (JDK).

Table 2-1 Internationalization Classes in JDK

Class Description

java.util.Locale Represents a specific geographical, political, or cultural
region.

Chapter 2
Understanding Message Catalogs

2-2

Table 2-1 (Cont.) Internationalization Classes in JDK

Class Description

java.util.ResourceBundle Provides containers for locale-specific objects.

java.text.MessageFormat Produces concatenated messages in a language-neutral way.

Main Steps for Creating an Internationalized Message
Creating an internationalized message comprises creating a top-level message catalog or
local-specific catalog, running the WebLogic utility for validation, and configuring your
application to use the generated runtime classes.The following steps summarize how to
create an internationalized message to use with WebLogic Server. Later sections of this
guide describe these steps in more detail.

1. Create or edit a top-level log message catalog or simple text message catalog by defining
the messages in the catalog.

In addition to message text, include information about the type and placement of any
runtime values that the message contains. See Using the WebLogic Server Message
Editor.

2. Run weblogic.i18ngen to validate the catalog you created or edited in Step 1 and
generate runtime classes.

The generated classes contain a method for each message. The class is defined
according to information specified in the message catalog entry. The classes include
methods for logging or getting message text, depending on the type of catalog. The class
name ends with Logger or TextFormatter. See weblogic.i18ngen Utility.

3. Create locale-specific catalogs as required for the message catalog you created in Step
1. See Example Locale-Specific Catalog.

4. Run weblogic.l10ngen to process the locale-specific catalogs. See weblogic.l10ngen
Utility.

5. Configure your application to use the Logger or TextFormatter classes you generated in
Step 2. When the application logs or returns a message, the message is written using the
localized version of the text according to the Logger or TextFormatter classes used.

See Writing Messages to the WebLogic Server Log.

Chapter 2
Main Steps for Creating an Internationalized Message

2-3

3
Using Message Catalogs with WebLogic
Server

A message catalog is a single XML file that contains a collection of text messages, with each
message indexed by a unique identifier. You compile these XML files into classes that contain
methods, which are the objects used to log messages at run time.

• Overview of Message Catalogs

• Message Catalog Hierarchy

• Guidelines for Naming Message Catalogs

• Using Message Arguments

• Message Catalog Formats

Overview of Message Catalogs
Message catalogs support multiple locales or languages. For a specific message catalog,
there is exactly one default version known as the top-level catalog, which contains the
English version of the messages. Then there are corresponding locale-specific catalogs, one
for each additional supported locale. You use the weblogic.i18ngen utility during the build
process to compile the XML message catalog files. See weblogic.i18ngen Utility.
The top-level catalog (English version) includes all the information necessary to define the
message. The locale-specific catalogs contain only the message ID, the date changed, and
the translation of the message for the specific locale.

The message catalog files are defined by an XML document type definition (DTD). The DTDs
are stored in the weblogic\msgcat directory of WL_HOME\server\lib\weblogic.jar, where
WL_HOME represents the top-level installation directory for WebLogic Server. The default path
is c:\Oracle\Middleware\Oracle_Home\wlserver; however, you are not required to install
this directory in the Oracle home, represented as ORACLE_HOME.

Two DTDs are included in the WebLogic Server installation:

• msgcat.dtd - Describes the syntax of top-level, default catalogs.

• l10n_msgcat.dtd - Describes the syntax of locale-specific catalogs.

The weblogic\msgcat directory of WL_HOME\server\lib\weblogic.jar contains templates
that you can use to create top-level and locale-specific message catalogs.

You can create a single log message catalog for all logging requirements, or create smaller
catalogs based on a subsystem or Java package. Oracle recommends using multiple
subsystem catalogs so you can focus on specific portions of the log during viewing.

For simple text catalogs, we recommend creating a single catalog for each utility being
internationalized. You create message catalogs using the Message Editor as described in
Using the WebLogic Server Message Editor.

3-1

Message Catalog Hierarchy
All messages must be defined in the default, top-level catalog. The WebLogic Server
installation includes a collection of sample catalogs in the
ORACLE_HOME\wlserver\samples\server\examples\src\examples\i18n\msgcat
directory.

Catalogs that provide different localizations of the base catalogs are defined in msgcat
subdirectories named for the locale (for example, msgcat/de for Germany). You might
have a top-level catalog named mycat.xml, and a German translation of it called ..de/
mycat.xml. Typically the top-level catalog is English. However, English is not required
for any catalogs, except for those in the
ORACLE_HOME\wlserver\samples\server\examples\src\examples\i18n\msgcat
directory.

Locale designations (for example, de) also have a hierarchy as defined in the
java.util.Locale documentation. A locale can include a language, country, and
variant. Language is the most common locale designation. Language can be extended
with a country code. For instance, en\US, indicates American English. The name of the
associated catalog is ..en\US\mycat.xml. Variants are vendor or browser-specific and
are used to introduce minor differences (for example, collation sequences) between
two or more locales defined by either language or country.

Guidelines for Naming Message Catalogs
Because the name of a message catalog file (without the .xml extension) is used to
generate runtime class and property names, you must choose the name carefully.
Follow these guidelines for naming message catalogs:

• Do not choose a message catalog name that conflicts with the names of existing
classes in the target package for which you are creating the message catalog.

• The message catalog name should only contain characters that are allowed in
class names.

• Follow class naming standards.

For example, the resulting class names for a catalog named Xyz.xml are
XyzLogLocalizer and XyzLogger.

The following considerations also apply to message catalog files:

• Message IDs are generally six-character strings with leading zeros. Some
interfaces also support integer representations.

Note:

This only applies to log message catalogs. Simple text catalogs can
have any string value.

• Java lets you group classes into a collection called a package. A package name
should be consistent with the name of the subsystem in which a particular catalog
resides.

Chapter 3
Message Catalog Hierarchy

3-2

• The log Localizer "classes" are actually ResourceBundle property files.

Using Message Arguments
Your message contents must conform to the patterns specified by
java.text.MessageFormat.

The message body, message detail, cause, and action sections of a log message can include
message arguments, as described by java.text.MessageFormat. Only the message body
section in a simple text message can include arguments. Arguments are values that can be
dynamically set at runtime. These values are passed to routines, such as printing out a
message. A message can support up to 10 arguments, numbered 0-9. You can include any
subset of these arguments in any text section of the message definition (Message Body,
Message Detail, Probable Cause), although the message body must include all of the
arguments. You insert message arguments into a message definition during development,
and these arguments are replaced by the appropriate message content at runtime when the
message is logged.

The following excerpt from an XML log message definition shows how you can use message
arguments. The argument number must correspond to one of the arguments specified in the
method attribute. Specifically, {0} with the first argument, {1} with the second, and so on. In
Example 3-1, {0} represents the file that cannot be opened, while {1} represents the file that
will be opened in its place.

Example 3-1 Example of Message Arguments

<messagebody>Unable to open file, {0}. Opening {1}. All arguments must be in body.</
messagebody>

 <messagedetail> File, {0} does not exist. The server will restore the file
 contents from {1}, resulting in the use of default values for all future
 requests. </messagedetail>

 <cause>The file was deleted</cause>

 <action>If this error repeats then investigate unauthorized access to the
 file system.</action>

An example of a method attribute is as follows:

-method="logNoFile(String name, String path)"

The message example in Example 3-1 expects two arguments, {0} and {1}:

• Both are used in the <messagebody>
• Both are used in the <messagedetail>
• Neither is used in <cause> or <action>

Note:

A message can support up to 10 arguments, numbered 0-9. You can include
any subset of these arguments in any text section of the message definition
(message detail, cause, action), although the message body must include all of
the arguments.

Chapter 3
Using Message Arguments

3-3

In addition, the arguments are expected to be strings, or representable as strings.
Numeric data is represented as {n,number}. Dates are supported as {n,date}. You
must assign a severity level for log messages. Log messages are generated through
the generated Logger methods, as defined by the method attribute.

Retrieving Additional Information About an Error Message
You can retrieve the detailed description, cause, and action for any error message that
appears in the log files or on the console using the weblogic.GetMessage utility.

The weblogic.GetMessage utility displays the message content and can also be used
to list all or some subset of the installed messages. See weblogic.GetMessage Utility
for more information about using the utility.

Message Catalog Formats
The catalog format for top-level and locale-specific catalog files is slightly different. The
top-level catalogs define the textual messages for the base locale (by default, this is
the English language). Locale-specific catalogs (for example, those translated to
Spanish) only provide translations of text defined in the top-level version. Log
message catalogs are defined differently from simple text catalogs.Examples and
elements of each type of message catalog are described in the following sections:

• Example Log Message Catalog

• Elements of a Log Message Catalog

• Example Simple Text Catalog

• Elements of a Simple Text Catalog

• Example Locale-Specific Catalog

• Elements of a Locale-Specific Catalog

Example Log Message Catalog
The following example shows a log message catalog, MyUtilLog.xml, containing one
log message. This log message illustrates the usage of the messagebody,
messagedetail, cause, and action elements.

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 baseid="600000"
 endid="600100"
 <log_message
 messageid="600001"
 severity="warning"
 method="logNoAuthorization(String arg0, java.util.Date arg1,
 int arg2)"
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.

Chapter 3
Message Catalog Formats

3-4

 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </log_message>
</message_catalog>

Elements of a Log Message Catalog
The following sections provide reference information for the elements of a log message
catalog:

• message_catalog Element

• log_message Element

• Child Elements of log_message Element

message_catalog Element
The message_catalog element represents the log message catalog. The following table
describes the attributes that you can define for the message_catalog element.

Table 3-1 Attributes for message_catalog Element

Attribute Default Value Required/
Optional

Description

i18n_package weblogic.i18n Optional Java package containing generated Logger
classes for this catalog. The classes are
named after the catalog file name. For
example, for a catalog using mycat.xml, a
generated Logger class would be called
<i18n_package>.mycatLogger.class.

Syntax: standard Java package syntax

Example:
i18n_package="programs.utils"

Chapter 3
Message Catalog Formats

3-5

Table 3-1 (Cont.) Attributes for message_catalog Element

Attribute Default Value Required/
Optional

Description

l10n_package weblogic.i18n Optional A Java package containing generated
LogLocalizer properties for the catalog.
For example, for a catalog called
mycat.xml, the following property files
would be generated:
<l10n_package>.mycatLogLocalizer.pr
operties and
<l10n_package>mycatLogLocalizerDeta
il.properties.

Syntax: standard Java package syntax

Example:
l10n_package="programs.utils"

subsystem None Required An acronym identifying the subsystem
associated with this catalog. The name of the
subsystem is included in the server log and is
used for message isolation purposes.

Syntax: a String

Example: subsystem="MYUTIL"
version None Required Specifies the version of the msgcat.dtd

being used.

Use: Must be "1.0"
Syntax: x.y where x and y are numeric.

Example: version="1.0"
baseid 000000 for

WebLogic Server
catalogs

500000 for user-
defined catalogs

Optional Specifies the lowest message ID used in this
catalog.

Syntax: one to six decimal digits.

Example: baseid="600000"

endid 499999 for
WebLogic Server
catalogs

999999 for user-
defined catalogs

Optional Specifies the highest message ID used in
this catalog.

Syntax: one to six decimal digits.

Example: endid="600100"

loggable false Optional Indicates whether to generate additional
methods that return loggable objects.

Syntax: "true" or "false"
Example: loggable="true"

Chapter 3
Message Catalog Formats

3-6

Table 3-1 (Cont.) Attributes for message_catalog Element

Attribute Default Value Required/
Optional

Description

prefix Null for user-
defined catalogs

"BEA" for WebLogic
Server catalogs

Optional Specifies a String to be prepended to
message IDs when logged. Server messages
default to "BEA" as the prefix and may not
specify a different prefix. User messages can
specify any prefix. A prefixed message ID is
presented in a log entry as follows:

<[prefix-]id>
where prefix is this attribute and id is the
six-digit message ID associated with a
specific message.

For example, if prefix is "XYZ", then
message 987654 would be shown in a log
entry as <XYZ-987654>. If the prefix is not
defined, then the log entry would be
<987654>.

Syntax: any String (should be limited to five
characters)

Example: prefix="BEA"
description Null (no

description)
Optional An optional attribute that serves to document

the catalog content.

Syntax: any String

Example: description="Contains
messages logged by the foobar
application"

log_message Element
The following table describes the attributes that you can define for the log_message element.

Table 3-2 Attributes for log_message Element

Attribute Default
Value

Required/
Optional

Description

messageid None Required Unique identifier for this log message. Uniqueness
should extend across all catalogs. Value must be in
range defined by baseid and endid attributes.

Use: Value must be in the range defined by the baseid
and endid attributes defined in the message_catalog
attribute.

Syntax: one to six decimal digits.

Example: messageid="600001"

Chapter 3
Message Catalog Formats

3-7

Table 3-2 (Cont.) Attributes for log_message Element

Attribute Default
Value

Required/
Optional

Description

datelastcha
nged

None Optional Date/time stamp used for managing modifications to
this message. The date is supplied by utilities that run
on the catalogs.

The syntax is:

Long.toString(new Date().getTime());
Use: The date is supplied by utilities (such as
MessageEditor), that run on the catalogs.

Syntax: Long.toString(new Date().getTime());
severity None Required Indicates the severity of the log message. Must be one

of the following: debug, info, warning, error,
notice, critical, alert, or emergency. User-
defined catalogs may only use debug, info, warning,
and error.

Example: severity="warning"
method None Required Method signature for logging this message.

The syntax is the standard Java method signature,
without the qualifiers, semicolon, and extensions.
Argument types can be any Java primitive or class.
Classes must be fully qualified if not in java.lang.
Classes must also conform to
java.text.MessageFormat conventions. In general,
class arguments should have a useful toString()
method.

Arguments can be any valid name, but should follow the
convention of argn where n is 0 through 9. There can
be no more than 10 arguments. For each argn there
should be at least one corresponding placeholder in the
text elements described in Child Elements of
log_message Element. Placeholders are of the form
{n}, {n,number} or {n,date}.

methodtype logger Optional Specifies type of method to generate. Methods can be
loggers or getters. Logger methods format the message
body into the default locale and log the results. Getter
methods return the message body prefixed by the
subsystem and messageid, as follows:
[susbsystem:msgid]text
Syntax: values are "logger" and "getter"

stacktrace true Optional Indicates whether to generate a stack trace for
Throwable arguments. Possible values are true or
false. When the value is true, a trace is generated.

Syntax: stacktrace="true"

Chapter 3
Message Catalog Formats

3-8

Table 3-2 (Cont.) Attributes for log_message Element

Attribute Default
Value

Required/
Optional

Description

retired false Optional Indicates whether message is retired. A retired
message is one that was used in a previous release but
is now obsolete and not used in the current version.
Retired messages are not represented in any
generated classes or resource bundles.

Syntax: values are "true" and "false"

Example: retired="true"

Child Elements of log_message Element
The following table describes the child elements of the log_message element.

Table 3-3 Child Elements of log_message Element

Element Parent
Element

Required/
Optional

Description

messagebody log_message Required A short description for this message.

The messagebody element can contain a 0
to 10 placeholder as {n}, to be replaced by
the appropriate argument when the log
message is localized.

The message body must include
placeholders for all arguments listed in the
corresponding method attribute, unless the
last argument is throwable or a subclass.

Be careful when using single quotes,
because these are specially parsed by
java.text.MessageFormat. If it is
appropriate to quote a message argument,
use double quotes (as in the example below).
If a message has one or more placeholders,
in order for a single quote to appear correctly
(for example, as an apostrophe), it must be
followed by a second single quote.

Syntax: a String

Example:

<messagebody>Could not open file
"{0}" created on {1,date}.</
messagebody>

Chapter 3
Message Catalog Formats

3-9

Table 3-3 (Cont.) Child Elements of log_message Element

Element Parent
Element

Required/
Optional

Description

messagedetail log_message Optional A detailed description of the event. This
element may contain any argument place
holders.

Syntax: a String

Example:

<messagedetail>The configuration
for this application will be
defaulted to factory settings.</
messagedetail>

cause log_message Optional The root cause of the problem. This element
can contain any argument place holders.

Syntax: a String

Example: <cause>The user is not
authorized to use custom
configurations. The attempt has
been logged to the security log.</
cause>

action log_message Optional The recommended resolution. This element
can contain any argument place holders.

Syntax: a String

Example: <action>The user needs to
gain appropriate authorization or
learn to live with the default
settings.</action>

Example Simple Text Catalog
Example 3-2 shows a simple text catalog, MyUtilLabels.xml, with one simple text
definition:

<messagebody>
 File
</messagebody>

Example 3-2 Example of a Simple Text Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog>
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 <message>
 messageid="FileMenuTitle"
 <messagebody>
 File
 </messagebody>

Chapter 3
Message Catalog Formats

3-10

 </message>
</message_catalog>

Elements of a Simple Text Catalog
The following sections provide reference information for the simple text catalog elements:

• message_catalog Element

• message Element

• messagebody Element

message_catalog Element
The following table describes the attributes that you can define for the message_catalog
element.

Table 3-4 Attributes for message_catalog Element

Attribute Default Value Required/
Optional

Description

l10n_package weblogic.i18n Optional Java package containing generated
TextFormatter classes and
TextLocalizer properties for this catalog.
The classes are named after the catalog file
name. mycat.xml would have the
properties file,
<l10n_package>.mycatLogLocalizer.p
roperties generated.

Syntax: standard Java package syntax

Example:
l10n_package="programs.utils"

subsystem None Required An acronym identifying the subsystem
associated with this catalog. The name of
the subsystem is included in the server log
and is used for message isolation purposes.

Syntax: a String

Example: subsystem="MYUTIL"
version None Required Specifies the version of the msgcat.dtd

being used. The format is n.n, for example,
version="1.0". Must be at least "1.0".
Example: version="1.0"

description Null Optional An optional attribute that documents the
catalog content.

Syntax: a String

Example: description="Contains
labels used in the foobar GUI"

message Element
The following table describes the attributes that you can define for the message element.

Chapter 3
Message Catalog Formats

3-11

Table 3-5 Attributes for message Element

Attribute Default
Value

Required/
Optional

Description

messageid None Required Unique identifier for this log message in alpha-
numeric string format. Uniqueness is required
only within the context of this catalog.
message is a child element of
message_catalog.

datelastchang
ed

None Optional Date/time stamp useful for managing
modifications to this message.

method None Optional Method signature for formatting this message.

The syntax is a standard Java method
signature, less return type, qualifiers,
semicolon, and extensions. The return type is
always String. Argument types can be any
Java primitive or class. Classes must be fully
qualified if not in java.lang. Classes must
also conform to java.text.MessageFormat
conventions. In general, class arguments
should have a useful toString() method,
and the corresponding MessageFormat
placeholders must be strings; they must be of
the form {n}. Argument names can be any
valid name. There can be no more than 10
arguments.

For each argument there must be at least one
corresponding placeholder in the
messagebody element described below.
Placeholders are of the form {n},
{n,number} or {n,date}.

Example:

method="getNoAuthorization
(String filename, java.util.Date
creDate)"
This example would result in a method in the
TextFormatter class as follows:

public String getNoAuthorization
(String filename, java.util.Date
creDate)

messagebody Element
The following table describes the child element of the message element.

Chapter 3
Message Catalog Formats

3-12

Table 3-6 Child Elements of message Element

Element Parent
Element

Required/
Optional

Description

messagebody message Required The text associated with the message.

This element may contain zero or more
placeholders {n} that will be replaced by the
appropriate arguments when the log message is
localized.

Example Locale-Specific Catalog
Example 3-3 shows a French translation of a message that is available
in ...\msgcat\fr\MyUtilLabels.xml.
The translated message appears as shown in Example 3-3.

Example 3-3 Example of a Message Translated to French

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC
 "weblogic-locale-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">
<locale_message_catalog
 l10n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0">
 <message>
 <messageid="FileMenuTitle">
 <messagebody> Fichier </messagebody>
 </message>
</locale_message_catalog>

When entering text in the messagebody, messagedetail, cause, and action elements, you
must use a tool that generates valid Unicode Transformation Format-8 (UTF-8) characters,
and have appropriate keyboard mappings installed. UTF-8 is an efficient encoding of Unicode
character-strings that optimizes the encoding ASCII characters. Message catalogs always
use UTF-8 encoding. The MessageLocalizer utility that is installed with WebLogic Server is a
tool that can be used to generate valid UTF-8 characters.

Elements of a Locale-Specific Catalog
The locale-specific catalogs are subsets of top-level catalogs. They are maintained in
subdirectories named for the locales they represent. The elements and attributes described in
the following sections are valid for locale-specific catalogs.

• locale_message_catalog Element

• log_message Element

• Other locale_message_catalog Elements

Chapter 3
Message Catalog Formats

3-13

locale_message_catalog Element
The following table describes the attributes that you can define for the
locale_message_catalog element.

Table 3-7 Attributes for locale_message_catalog Element

Attribute Default Value Required/
Optional

Description

l10n_package weblogic.i18n Optional Java package containing generated
LogLocalizer or TextLocalizer
properties for this catalog.properties file
are named after the catalog file name.

For example, for a French log message
catalog called mycat.xml, a properties
file called
<l10n_package>.mycatLogLocalizer
_fr_FR.properties is generated.

version None Required Specifies the version of the msgcat.dtd
being used. The format is n.n, for
example, version="1.0". Must be at
least "1.0".

log_message Element
The locale-specific catalog uses the attributes defined for the log_message element in
the top-level log message catalog so this element does not need to be defined.

Other locale_message_catalog Elements
The locale-specific catalog uses the messagebody, messagedetail, cause, and action
catalog elements defined for the top-level log message catalog so these elements do
not need to be defined.

Chapter 3
Message Catalog Formats

3-14

4
Writing Messages to the WebLogic Server
Log

You can facilitate the management of your application by writing log messages to the
WebLogic Server log file.

• Using the I18N Message Catalog Framework: Main Steps

• Using the NonCatalogLogger APIs

• Using ServletContext

• Configuring Servlet and Resource Adapter Logging

• Writing Messages from a Client Application

• Writing Debug Messages

Using the I18N Message Catalog Framework: Main Steps
The internationalization (I18N) message catalog framework provides a set of utilities and
APIs that your application can use to send its own set of messages to the WebLogic Server
log.To write log messages using the I18N message catalog framework, complete the tasks
described in the following sections:

• Create Message Catalogs

• Compile Message Catalogs

• Use Messages from Compiled Message Catalogs

Create Message Catalogs
A message catalog is an XML file that contains a collection of text messages. Usually, an
application uses one message catalog to contain a set of messages in a default language
and optionally, additional catalogs to contain messages in other languages.

To create and edit a properly formatted message catalog, use the WebLogic Message Editor
utility, which is a graphical user interface (GUI) that is installed with WebLogic Server. To
create corresponding messages in local languages, use the Message Localizer, which is also
a GUI that WebLogic Server installs.

To access the Message Editor, do the following from a WebLogic Server host:

1. Set the classpath by entering WL_HOME\server\bin\setWLSEnv.cmd (setWLSEnv.sh on
UNIX), where WL_HOME is the directory in which you installed WebLogic Server.

2. Enter the following command: java weblogic.MsgEditor
3. To create a new catalog, choose File > New Catalog.

See Using the WebLogic Server Message Editor.

4. When you finish adding messages in the Message Editor, select File > Save Catalog.

4-1

5. Then select File > Exit.

To access the Message Localizer, do the following from a WebLogic Server host:

1. Set the classpath by entering WL_HOME\server\bin\setWLSEnv.cmd (setWLSEnv.sh
on UNIX), where WL_HOME is the directory in which you installed WebLogic Server.

2. Enter the following command: java weblogic.MsgLocalizer
3. Use the Message Localizer GUI to create locale-specific catalogs.

For basic command line help, type: java weblogic.MsgEditor -help

Compile Message Catalogs
After you create message catalogs, you use the i18ngen and l10ngen command-line
utilities to generate properties files and to generate and compile Java class files. The
utilities take the message catalog XML files as input and create compiled Java
classes. The Java classes contain methods that correspond to the messages in the
XML files. See Using the WebLogic Server Internationalization Utilities.

To compile the message catalogs, do the following:

1. From a command prompt, use WL_HOME\server\bin\setWLSEnv.cmd
(setWLSEnv.sh on UNIX) to set the classpath, where WL_HOME is the directory in
which you installed WebLogic Server.

2. Enter the following command:

java weblogic.i18ngen -build -d targetdirectory source-files

In the preceding command:

• targetdirectory represents the root directory in which you want the i18ngen
utility to locate the generated and compiled files. The Java files are placed in
sub-directories based on the i18n_package and l10n_package values in the
message catalog.

The catalog properties file, i18n_user.properties, is placed in the
targetdirectory. The default target directory is the current directory.

• source-files represents the message catalog files that you want to compile.
If you specify one or more directory names, i18ngen processes all XML files in
the listed directories. If you specify file names, the names of all files must
include an XML suffix. All XML files must conform to the msgcat.dtd syntax.

Note that when the i18ngen generates the Java files, it appends Logger to the
name of each message catalog file.

3. If you created locale-specific catalogs in Create Message Catalogs, do the
following to generate properties files:

a. In the current command prompt, add the targetdirectory that you specified
in step 2, above, to the CLASSPATH environment variable. To generate
locale-specific properties files, all of the classes that the i18ngen utility
generated must be on the classpath.

b. Enter the following command:

java weblogic.l10ngen -d targetdirectory source-files

In the preceding command:

Chapter 4
Using the I18N Message Catalog Framework: Main Steps

4-2

• targetdirectory represents the root directory in which you want the l10ngen
utility to locate the generated properties files. Usually this is the same
targetdirectory that you specified in step 2. The properties files are placed in
sub-directories based on the l10n_package values in the message catalog.

• source-files represents the message catalogs for which you want to generate
properties files. You must specify top-level catalogs that the Message Editor
creates; you do not specify locale-specific catalogs that the Message Localizer
creates. Usually this is the same set of source-files or source directories that
you specified in step 2.

4. In most cases, the recommended practice is to include the message class files and
properties files in the same package hierarchy as your application.

However, if you do not include the message classes and properties in the application's
package hierarchy, you must make sure the classes are in the application's classpath.

For complete documentation of the i18ngen commands, see Using the WebLogic Server
Internationalization Utilities.

Example: Compiling Message Catalogs
In this example, the Message Editor created a message catalog that contains one message
of type loggable. The Message Editor saves the message catalog as the following file:
c:\MyMsgCat\MyMessages.xml.

Example 4-1 shows the contents of the message catalog.

Example 4-1 Sample Message Catalog

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
 i18n_package="com.xyz.msgcat"
 l10n_package="com.xyz.msgcat.l10n"
 subsystem="MyClient"
 version="1.0"
 baseid="700000"
 endid="800000"
 loggables="true"
 prefix="XYZ-"
>
<!-- Welcome message to verify that the class has been invoked-->
 <logmessage
 messageid="700000"
 datelastchanged="1039193709347"
 datehash="-1776477005"
 severity="info"
 method="startup()"
>
 <messagebody>
 The class has been invoked.
 </messagebody>
 <messagedetail>
 Verifies that the class has been invoked
 and is generating log messages
 </messagedetail>
 <cause>
 Someone has invoked the class in a remote JVM.

Chapter 4
Using the I18N Message Catalog Framework: Main Steps

4-3

 </cause>
 <action> </action>
 </logmessage>
</message_catalog>

In addition, the Message Localizer creates a Spanish version of the message in
MyMessages.xml. The Message Localizer saves the Spanish catalog as
c:\MyMsgCat\es\ES\MyMessages.xml, shown in Example 4-2.

Example 4-2 Locale-Specific Catalog for Spanish

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE locale_message_catalog PUBLIC
"weblogic-locale-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">
<locale_message_catalog
version="1.0"
>
<!-- Mensaje agradable para verificar que se haya invocado la clase. -->
<logmessage
 messageid="700000"
 datelastchanged="1039546411623"
 >
 <messagebody>
 La clase se haya invocado.
 </messagebody>
 <messagedetail>
 Verifica que se haya invocado la clase y está
 generando mensajes del registro.
 </messagedetail>
 <cause>Alguien ha invocado la clase en un JVM alejado.</cause>
 <action> </action>
 </logmessage>
</locale_message_catalog>

Compiling the Message Catalog
To compile the message catalog that the Message Editor created, enter the following
command:

java weblogic.i18ngen -build -d c:\MessageOutput c:\MyMsgCat\MyMessages.xml

The i18ngen utility creates the following files:

• c:\MessageOutput\i18n_user.properties
• c:\MessageOutput\com\xyz\msgcat\MyMessagesLogger.java

• c:\MessageOutput\com\xyz\msgcat\MyMessagesLogger.class
• c:\MessageOutput\com\xyz\msgcat\l10n\MyMessagesLogLocalizer.properties
• c:\MessageOutput\com\xyz\msgcat\l10n\MyMessagesLogLocalizerDetails.pro

perties

Creating Properties Files
To create properties files for the Spanish catalog, do the following:

1. Add the i18n classes to the command prompt's classpath by entering the
following:

Chapter 4
Using the I18N Message Catalog Framework: Main Steps

4-4

2. set CLASSPATH=%CLASSPATH%;c:\MessageOutput
3. Enter the following command:

java weblogic.l10ngen -d c:\MessageOutput c:\MyMsgCat\MyMessages.xml
The l10ngen utility creates the following files:

• c:\MessageOutput\com\xyz\msgcat\l10n\MyMessagesLogLocalizer_es_ES.properties
• c:\MessageOutput\com\xyz\msgcat\l10n\MyMessagesLogLocalizerDetails_es_ES.pro

perties

Use Messages from Compiled Message Catalogs
The classes and properties files generated by i18ngen and l10ngen provide the interface for
sending messages to the WebLogic Server log. Within the classes, each log message is
represented by a method that your application calls.

To use messages from compiled message catalogs:

1. In the class files for your application, import the Logger classes that you compiled in
Compile Message Catalogs.

To verify the package name, open the message catalog XML file in a text editor and
determine the value of the i18n_package attribute. For example, the following segment of
the message catalog in Example 4-1 indicates the package name:

<message_catalog
i18n_package="com.xyz.msgcat"
To import the corresponding class, add the following line:

import com.xyz.msgcat.MyMessagesLogger;
2. Call the method that is associated with a message name.

Each message in the catalog includes a method attribute that specifies the method you
call to display the message. For example, the following segment of the message catalog
in Example 4-1 shows the name of the method:

<logmessage
 messageid="700000"
 datelastchanged="1039193709347"
 datehash="-1776477005"
 severity="info"
 method="startup()"
>

The following example illustrates a simple class that calls this startup method.

import com.xyz.msgcat.MyMessagesLogger;
public class MyClass {
 public static void main (String[] args) {
 MyMessagesLogger.startup();
 }
}

If the JVM's system properties specify that the current location is Spain, then the message is
printed in Spanish.

Chapter 4
Using the I18N Message Catalog Framework: Main Steps

4-5

Using the NonCatalogLogger APIs
In addition to using the I18N message catalog framework, your application can use the
weblogic.logging.NonCatalogLogger APIs to send messages to the WebLogic
Server log. With NonCatalogLogger, instead of calling messages from a catalog, you
place the message text directly in your application code.Oracle recommends that you
do not use this facility as the sole means for logging messages if your application
needs to be internationalized.
NonCatalogLogger is also intended for use by client code that is running in its own
JVM (as opposed to running within a WebLogic Server JVM). A subsequent section,
Writing Messages from a Client Application, provides more information.

To use NonCatalogLogger in an application that runs within the WebLogic Server JVM,
add code to your application that does the following:

1. Imports the weblogic.logging.NonCatalogLogger interface.

2. Uses the following constructor to instantiate a NonCatalogLogger object:

NonCatalogLogger(java.lang.String myApplication)

In the preceding syntax, myApplication represents a name that you supply to
identify messages that your application sends to the WebLogic Server log.

3. Calls any of the NonCatalogLogger methods.

Use the following methods to report normal operations:

• info(java.lang.String msg)
• info(java.lang.String msg, java.lang.Throwable t)
Use the following methods to report a suspicious operation, event, or configuration
that does not affect the normal operation of the server or application:

• warning(java.lang.String msg)
• warning(java.lang.String msg, java.lang.Throwable t)
Use the following methods to report errors that the system or application can
handle with no interruption and with limited degradation in service.

• error(java.lang.String msg)
• error(java.lang.String msg, java.lang.Throwable t)
Use the following methods to provide detailed information about operations or the
state of the application. These debug messages are not broadcast as JMX
notifications. If you use this severity level, we recommend that you create a "debug
mode" for your application. Then, configure your application to output debug
messages only when the application is configured to run in the debug mode. For
information about using debug messages, see Writing Debug Messages.

• debug(java.lang.String msg)
• debug(java.lang.String msg, java.lang.Throwable t)

All methods that take a Throwable argument can print the stack trace in the server log.
For information on the NonCatalogLogger APIs, see the
weblogic.logging.NonCatalogLogger Javadoc.

Chapter 4
Using the NonCatalogLogger APIs

4-6

The following example illustrates a servlet that uses NonCatalogLogger APIs to write
messages of various severity levels to the WebLogic Server log.

import java.io.PrintWriter;
import java.io.IOException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;
import javax.naming.Context;
import weblogic.jndi.Environment;
import weblogic.logging.NonCatalogLogger;
public class MyServlet extends HttpServlet {
 public void service (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 PrintWriter out = response.getWriter();
 NonCatalogLogger myLogger = null;
 try {
 out.println("Testing NonCatalogLogger. See
 WLS Server log for output message.");
// Constructing a NonCatalogLogger instance. All messages from this
// instance will include a <MyApplication> string.
 myLogger = new NonCatalogLogger("MyApplication");
// Outputting an INFO message to indicate that your application has started.
 mylogger.info("Application started.");
// For the sake of providing an example exception message, the next
// lines of code purposefully set an initial context. If you run this
// servlet on a server that uses the default port number (7001), the
// servlet will throw an exception.
 Environment env = new Environment();
 env.setProviderUrl("t3://localhost:8000");
 Context ctx = env.getInitialContext();
 }
 catch (Exception e){
 out.println("Can't set initial context: " + e.getMessage());
// Prints a WARNING message that contains the stack trace.
 mylogger.warning("Can't establish connections. ", e);
 }
 }
}

When the servlet illustrated in the previous example runs on a server that specifies a listen
port other than 8000, the following messages are printed to the WebLogic Server log file.
Note that the message consists of a series of strings, or fields, surrounded by angle brackets
(< >).

####<May 27, 2004 8:45:42 AM EDT> <Error> <MySubsystem> <myhost> <adminServer>
 <ExecuteThread: '0' for queue: 'weblogic.kernel.Default (self-tuning)'> <system>
<> <> <1085661942864> <BEA-000000> <Test NonCatalogLogger message
java.lang.Exception: Test NonCatalogLogger message
...
>

Using ServletContext
The servlet specification provides the log(java.lang.String msg)and
log(java.lang.String msg, java.lang.Throwable t) APIs in
javax.servlet.ServletContext that your servlets and JSPs can use to write a simple

Chapter 4
Using ServletContext

4-7

message to the WebLogic Server log.For more information on using these APIs, see
the Javadoc for the javax.servlet.ServletContext interface at http://
docs.oracle.com/cd/E17802_01/products/products/servlet/2.3/javadoc/javax/
servlet/ServletContext.html.
The following example illustrates JSP logging using the ServletContext:

<%@ page language="java" %>
<!DOCTYPE HTML PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<title>INDEX</title>
</head>
<body bgcolor="#FFFFFF">
<%
config.getServletContext().log("Invoked ServletContext.log() From a JSP");
out.write("Request param arg0 = " + request.getParameter("arg0"));
%>
</body>
</html>

Configuring Servlet and Resource Adapter Logging
You can configure Web application and resource adapter logging behavior using
WebLogic specific deployment descriptors. The logging configuration deployment
descriptor elements define similar attributes used to configure server logging through
the LogMBean interface, such as the log file name, location, and rotation policy.

When configured, application events are directed to a Web application specific log file.
When the deployment descriptor does not include any logging configuration
information, the default behavior is to write these events in the server log file.

Similarly, WebLogic logging services are provided to Java EE resource adapters for
ManagedConnectionFactory scoped logging. You configure the log file name, location,
and rotation policy for resource adapter logs through the weblogic-ra.xml deployment
descriptor. See weblogic-ra.xml Schema in Developing Resource Adapters for Oracle
WebLogic Server.

The following example illustrates a snippet of the deployment descriptor for configuring
the logging behavior of Web application and resource adapter logging. The elements
of logging correspond to attribute definitions on the LogMBean interface. All the
LogMBean attributes are not listed in this example. Logging configuration is defined in
the WEB-INF/weblogic.xml file for Web applications and in the META-INF/weblogic-
ra.xml file for resource adapters.

<!DOCTYPE weblogic-web-app PUBLIC "//DTD Web Application 9.0//EN"
"http://www.bea.com/servers/wls90/dtd/weblogic90-web-jar.dtd">
<weblogic-web-app>
 <logging>
 <log-filename>d:\tmp\mywebapp.log</log-filename>
 <rotation-type>bySize</rotation-type>
 <number-of-files-limited>true</number-of-files-limited>
 <file-count>3</file-count>
 <file-size-limit>50</file-size-limit>
 <rotate-log-on-startup>true</rotate-log-on-startup>
 <log-file-rotation-dir>config/MedRecDomain/WebApp</log-file-rotation-dir>
 </logging>
</weblogic-web-app>
<weblogic-connector xmlns="http://www.bea.com/ns/weblogic/90">

Chapter 4
Configuring Servlet and Resource Adapter Logging

4-8

http://docs.oracle.com/cd/E17802_01/products/products/servlet/2.3/javadoc/javax/servlet/ServletContext.html
http://docs.oracle.com/cd/E17802_01/products/products/servlet/2.3/javadoc/javax/servlet/ServletContext.html
http://docs.oracle.com/cd/E17802_01/products/products/servlet/2.3/javadoc/javax/servlet/ServletContext.html

 <jndi-name>eis/900BlackBoxNoTxConnector</jndi-name>
 <outbound-resource-adapter>
 <connection-definition-group>
 <connection-factory-interface>javax.sql.DataSource</connection-factory-interface>
 <connection-instance>
 <jndi-name>eis/900BlackBoxNoTxConnectorJNDINAME</jndi-name>
 <connection-properties>
 <pool-params>
 <initial-capacity>5</initial-capacity>
 <max-capacity>10</max-capacity>
 <capacity-increment>1</capacity-increment>
 <shrinking-enabled>true</shrinking-enabled>
 <shrink-frequency-seconds>60</shrink-frequency-seconds>
 <highest-num-waiters>1</highest-num-waiters>
 <highest-num-unavailable>3</highest-num-unavailable>
 <connection-reserve-timeout-seconds>11</connection-reserve-timeout-seconds>
 </pool-params>
 <logging>
 <log-filename>900BlackBoxNoTxOne.log</log-filename>
 <logging-enabled>true</logging-enabled>
 <rotation-type>bySize</rotation-type>
 <number-of-files-limited>true</number-of-files-limited>
 <file-count>3</file-count>
 <file-size-limit>100</file-size-limit>
 <rotate-log-on-startup>true</rotate-log-on-startup>
 <log-file-rotation-dir>c:/mylogs</log-file-rotation-dir>
 <rotation-time>3600</rotation-time>
 <file-time-span>7200</file-time-span>
 </logging>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>jdbc:oracle:thin:@bcpdb:1531:bay920</value>
 </property>
 <property>
 <name>unique_ra_id</name>
 <value>blackbox-notx.oracle.810</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 </connection-definition-group>
 </outbound-resource-adapter>
</weblogic-connector>

Writing Messages from a Client Application
If your application runs in a JVM that is separate from a WebLogic Server instance, it can use
message catalogs and NonCatalogLogger, but the messages are not written to the WebLogic
Server log. Instead, the application's messages are written to the client JVM's standard out.

If you want the WebLogic logging service to send these messages to a log file that the client
JVM maintains, include the following argument in the command that starts the client JVM:

-Dweblogic.log.FileName=logfilename

In the preceding argument, logfilename represents the name that you want to use for the
remote log file.

Chapter 4
Writing Messages from a Client Application

4-9

If you want a subset of the message catalog and NonCatalogLogger messages to go
to standard out as well as the remote JVM log file, include the following additional
startup argument:

-Dweblogic.log.StdoutSeverityLevel=String

In the preceding argument, valid values for StdoutSeverityLevel are Debug, Info,
Warning, Error, Notice, Critical, Alert, Emergency, and Off.

For a description of the supported severity levels, see weblogic.logging.Severities
in Java API Reference for Oracle WebLogic Server.

Writing Debug Messages
While your application is under development, you can create and use messages that
provide verbose descriptions of low-level activity within the application. You can use
the DEBUG severity level to categorize these low-level messages.

All DEBUG messages that your application generates are sent to all WebLogic Server
logging destinations, depending on the configured minimum threshold severity level.

If you use the DEBUG severity level, we recommend that you create a "debug mode" for
your application. For example, your application can create an object that contains a
Boolean value. To enable or disable the debug mode, you toggle the value of the
Boolean. Then, for each DEBUG message, you can create a wrapper that outputs the
message only if your application's debug mode is enabled.

For example, the following code can produce a debug message:

private static boolean debug = Boolean.getBoolean("my.debug.enabled");
if (debug) {
 mylogger.debug("Something debuggy happened");
}

You can use this type of wrapper both for DEBUG messages that use the message
catalog framework and that use the NonCatalogLogger API.

To enable your application to print this message, you include the following Java option
when you start the application's JVM:

-Dmy.debug.enabled=true

Chapter 4
Writing Debug Messages

4-10

5
Using the WebLogic Server Message Editor

You can use the Message Editor, which is a graphical interface tool that lets you create, read,
and write XML message catalogs.

• About the Message Editor

• Starting the Message Editor

• Working with Catalogs

• Adding Messages to Catalogs

• Finding Messages

• Using the Message Viewer

• Editing an Existing Message

• Retiring and Unretiring Messages

About the Message Editor
Message Editor is used to create and manage the XML catalogs, and the messages in the
catalog. The Message Editor is installed when you install WebLogic Server.

Optionally, you can edit the XML catalogs in a text editor or with any XML editing tool.

Note:

WebLogic Server provides its own message catalogs which contain all the
messages relating to WebLogic Server subsystems and functionality. You cannot
edit these catalogs. For descriptions of WebLogic Server catalogs, see Error
Messages.

You can use the Message Editor to perform the following tasks:

• Create XML message catalogs

• Create and edit messages

• View all the messages in one catalog

• View the messages in several catalogs simultaneously

• Search for messages

• Validate the XML in catalog entries

• Retire and unretire messages

5-1

Note:

The Message Editor does not support the editing of localized catalogs.

Starting the Message Editor
You can use the java weblogic.MsgEditor or java
weblogic.i18ntools.gui.MessageEditor commands to start the Message Editor.

Before you start the Message Editor, install and configure your WebLogic Server
system and set the environment variables,
ORACLE_HOME\user_projects\domains\wl_server\setExamplesEnv.cmd. Make sure
that your classpath is set correctly. See Planning the Oracle WebLogic Server
Installation in Installing and Configuring Oracle WebLogic Server and Coherence.

Sample message catalog files are located in your ORACLE_HOME/wlserver/samples/
server/examples/src/examples/i18n/msgcat directory.

You can use the sample message catalogs as templates to create your own
messages. You simply modify the provided information, such as the package name
and class name. Then translate the message text and save the catalog. See Writing
Messages to the WebLogic Server Log.

To access basic command line help, enter:

java weblogic.MsgEditor -help

The main WebLogic Message Editor window for Log Messages appears, as shown in
Figure 5-1.

Chapter 5
Starting the Message Editor

5-2

Figure 5-1 WebLogic Message Editor for Log Messages

Working with Catalogs
You can use the Message Editor to manage catalogs tasks.The following sections describe
how to use the Message Editor to manage catalogs:

• Browsing to an Existing Catalog

• Creating a New Catalog

Chapter 5
Working with Catalogs

5-3

Browsing to an Existing Catalog
To find an existing catalog from the main WebLogic Message Editor window, enter the
full pathname in the Message Catalog field, or click Browse and navigate to the
existing catalog from the Open dialog.

Figure 5-2 Navigating to a Catalog

The sample catalogs included with your WebLogic Server installation are in the
ORACLE_HOME/wlserver/samples/server/examples/src/examples/i18n/msgcat
directory.

Note:

Your directory path might be different, depending on where you installed
WebLogic Server.

You can place your user-defined catalogs in any directory you designate.

Once you locate the catalog, Packages, Subsystem, Version, Base ID, and End ID
(if any) are displayed, and the displayed catalog is the context catalog in which all
other actions are performed.

You are now ready to enter new messages, edit existing messages, search for a
message, or view all messages in the catalog.

Chapter 5
Working with Catalogs

5-4

If you select a log message catalog in the Message catalog field, the WebLogic Message
Editor window for Log Messages appears, as shown in Figure 5-3.

Figure 5-3 WebLogic Message Editor for Log Messages

If you select a simple messages catalog in the Message catalog field, the WebLogic
Message Editor window for Simple Messages appears, as shown in Figure 5-4.

Chapter 5
Working with Catalogs

5-5

Figure 5-4 WebLogic Message Editor for Simple Messages

Creating a New Catalog
To create a new catalog, complete the following procedure:

1. From the main menu bar of the WebLogic Message Editor window, choose File >
New Catalog.

The Create New Catalog dialog appears, as shown in Figure 5-5.

Chapter 5
Working with Catalogs

5-6

Figure 5-5 Create New Catalog

2. In the Message Catalog field, enter the full pathname and the name of the new catalog,
which must include the xml extension. Or, click Browse and navigate to the appropriate
catalog directory. (This would be the msgcat directory, if you are using WebLogic Server
example messages.)

3. Use the drop-down Catalog type list to indicate whether your catalog is a Log
messages or a Simple messages catalog.

If you select a log message catalog, the Base ID and End ID fields are displayed. These
fields indicate the range of ID numbers for messages in the catalog. If you select a simple
text message catalog, these fields are not present.

4. Enter the name of the package in which you want to place the generated Logger classes
in the I18n Package field.

The default is weblogic.i18n. If you want to place the logger classes in another package
with your application, specify the package name here.

5. Enter the name of the package where you want to place the catalog data in the L10n
Package field.

The default is weblogic.l10n. If you want to place your catalog data in another package
with your application, specify the package name here.

Note:

In most cases, the recommended practice is to include the message class files
and properties files in the same package hierarchy as your application.

However, if you do not include the message classes and properties in the
application's package hierarchy, you must make sure the classes are in the
application's classpath.

6. Enter a name in the Subsystem field to indicate which part of the system will log the
message.

Chapter 5
Working with Catalogs

5-7

This name is logged with the message. For applications, the application name is
typically entered in the Subsystem field.

7. In the Prefix field, enter a prefix to be prepended to the message ID when logged.

The default server message prefix is BEA. You can enter any prefix for user
messages. (Oracle recommends that the prefix be less that 10 characters in
length. Also, make sure you use standard java naming conventions.)

8. Click Create Catalog.

The Create New Catalog dialog closes, and the catalog you just created is
displayed as the context catalog in the Message Editor window.

Adding Messages to Catalogs
You can use Message Editor to add messages to catalogs.The following sections
describe how to use Message Editor to add messages to catalogs:

• Entering a New Log Message

• Entering a New Simple Text Message

Entering a New Log Message
To enter a new message into a log catalog:

1. In the WebLogic Message Editor main dialog (Figure 5-6), enter the full path name
in the Message Catalog field or click Browse and navigate to an existing catalog.

Chapter 5
Adding Messages to Catalogs

5-8

Figure 5-6 Log Messages

2. Click Get next ID to generate the next unique numerical ID in the context catalog.

The ID appears in the Message ID field.

3. Enter any relevant comments about the message in the Comment field.

4. Enter the appropriate Method for your log message, including parentheses and any
arguments. For example, logErrorSavingTimestamps(Exception ioExcep)

5. Set the Method Type for the log message.

Your options are logger and getter. The default method type is logger, which is used
for messages that will be logged. The getter option is for messages that are used for
non-logging purposes, such as exceptions.

6. Choose a Severity from the list of possible levels.

7. Enter text for the Message body.

Chapter 5
Adding Messages to Catalogs

5-9

Parameters are denoted by {n}. For example, "Exception occurred while
loading _WL_TIMESTAMP FILE."

8. Enter text for the Message detail.

Parameters are denoted by {n}. For example, "Exception occurred while
loading _WL_TIMESTAMP FILE. Forcing recompilation: {0}."

9. Enter text for the Probable Cause.

Parameters are denoted by {n}. For example, "There was an error reading
this file."

10. Enter text for the Action.

Parameters are denoted by {n}. For example, "No action required."
11. Toggle the Display stacktrace option by selecting or clearing the check box.

Use this option to print a stacktrace along with the message when a Logger
method takes an exception as one of its arguments.

12. Toggle the Retired message option by selecting or clearing the check box.

Use this option to retire (hide) obsolete messages. Retired messages are deleted
in the sense that they are not represented in the generated classes. However, the
message data does remain in the .xml file.

13. Click Add.

The message is added and the entire catalog is immediately written to disk.

Entering a New Simple Text Message
To enter a new message into a log catalog:

1. In the WebLogic Message Editor main dialog, enter the full pathname in the
Message Catalog field or click Browse and navigate to the existing catalog.

The WebLogic Message Editor for Simple Messages dialog appears, as shown in
Figure 5-7.

Chapter 5
Adding Messages to Catalogs

5-10

Figure 5-7 Simple Messages

2. Enter a unique alphanumeric Message ID.

3. Enter a Comment if required.

4. Enter the appropriate Method for your simple message, including parentheses and any
arguments. For example, startingClusterService()

5. Enter the Message body text. For example, startingClusterService
6. Click Add.

The message is added and the entire catalog is immediately written to disk.

Finding Messages
You can use the Message Editor to find messages. The following sections describe how to
use the Message Editor to find messages:

• Finding a Log Message

• Finding a Simple Text Message

Finding a Log Message
To find a log message:

1. Make sure that the context catalog is a log message catalog and the WebLogic Message
Editor Log Messages window appears, as shown in Figure 5-3.

Chapter 5
Finding Messages

5-11

2. Choose Edit from the main menu bar.

3. Choose Search to display the Search for Log Message dialog, as shown in
Figure 5-8

Figure 5-8 Search for Log Message

4. Enter the Message ID and the Method name.

5. Enter as much information as needed in the Message text search field to find the
correct message.

The search for text does a partial match in any of the text fields.

6. Click Find first or Find next.

The fields are strung together to find the message. If a matching message is
found, it is displayed in the Message Editor window, as shown in Figure 5-1.

Finding a Simple Text Message
To find a simple text message, complete the following procedure:

1. Make sure that the context catalog is a simple text message catalog and the
WebLogic Message Editor Simple Messages window appears, as shown in
Figure 5-4 window appears.

2. Choose Edit from the main menu bar.

3. Choose Search to display the Search for Simple Message dialog, as shown in
Figure 5-9.

Figure 5-9 Search for Simple Message

4. Enter the Message ID.

5. Enter as much information as needed in the Message text search field to find the
correct message.

Chapter 5
Finding Messages

5-12

The search for text does a partial match in any of the text fields.

6. Click Find first or Find next.

The fields are strung together to find the message. If a matching message is found, it is
displayed in the Message Editor window, as shown in Figure 5-4.

Using the Message Viewer
The WebLogic Message Editor contains a Message Viewer that lets you view all messages in
a catalog, view all messages in multiple catalogs, and select any message to edit.The
following sections describe how to use the Message Viewer to view and select messages to
edit:

• Viewing All Messages in a Catalog

• Viewing All Messages in Several Catalogs

• Selecting a Message to Edit from the Message Viewer

Viewing All Messages in a Catalog
To view all the messages in a catalog:

1. Open the WebLogic Message Editor.

The WebLogic Message Editor window displays the catalog for the last message viewed
as the current context catalog.

2. Choose View from the menu bar.

3. Choose All messages.

All the messages for the current context catalog are displayed in the Message Viewer
window, as shown in Figure 5-10. The Message Editor window remains open.

Figure 5-10 Message Viewer

Chapter 5
Using the Message Viewer

5-13

Viewing All Messages in Several Catalogs
If you view the messages from the current context catalog and then change the
context by navigating to a new catalog, a second Message Viewer window opens
displaying the new catalog. You can view messages for as many catalogs as you
require (or can reasonably fit on your screen). Each catalog is displayed in a separate
Message Viewer window. See Browsing to an Existing Catalog.

Selecting a Message to Edit from the Message Viewer
You can select any message displayed in the Message Viewer and the selected
message becomes the context catalog. The message is displayed in the Message
Editor window.

Figure 5-11 Message Viewer and Message Editor for Message 909001

Chapter 5
Using the Message Viewer

5-14

Editing an Existing Message
You can use the Message Editor to find and update an existing message in a catalog.

To edit an existing message:

1. Find the message you want to edit.

You can use the Search dialog, described in Finding a Log Message, and Finding a
Simple Text Message, or select the message in the message viewer, described in
Selecting a Message to Edit from the Message Viewer.

The message appears in the Message Editor window.

2. Edit the fields you want to change.

3. Click Update.

The message is updated and the entire catalog is immediately written to disk.

Retiring and Unretiring Messages
You can retire and unretire messages in the Message Editor window. Retiring a message
does not mean that the message is deleted from the master catalog; it is simply hidden from
user view.

This feature is useful for removing obsolete messages. If you need to bring a retired message
back into view, you can unretire it.

To retire or unretire a message, complete the following procedure:

1. Find the message you want to retire or unretire.

2. In the Message Editor window, toggle the Retired message option by selecting or
clearing the check box.

3. Click Update.

Chapter 5
Editing an Existing Message

5-15

6
Using the WebLogic Server
Internationalization Utilities

WebLogic Server utilities are used for internationalization and localization of log messages in
WebLogic Server.

• WebLogic Server Internationalization Utilities

• WebLogic Server Internationalization and Localization

• weblogic.i18ngen Utility

• weblogic.l10ngen Utility

• weblogic.GetMessage Utility

WebLogic Server Internationalization Utilities
WebLogic Server provides three internationalization utilities: weblogic.i18ngen Utility,
weblogic.l10ngen Utility, and weblogic.GetMessage Utility.

• weblogic.i18ngen Utility - Message catalog parser. Use this utility to validate and
generate classes used for localizing text in log messages. See weblogic.i18ngen Utility.

• weblogic.l10ngen Utility - Locale-specific message catalog parser. Use this utility to
process locale-specific catalogs. See weblogic.l10ngen Utility.

• weblogic.GetMessage Utility - Utility that lists installed log messages. Use this utility to
generate a list of installed log messages or display a message. See
weblogic.GetMessage Utility.

Note:

Text in the catalog definitions may contain formatting characters for readability (for
example, end of line characters), but these are not preserved by the parsers. Text
data is normalized into a one-line string. All leading and trailing white space is
removed. All embedded end of line characters are replaced by spaces as required
to preserve word separation. Tabs are left intact.

Use escapes to embed new lines (for example '\n'). These are stored and result in
new lines when printed.

WebLogic Server Internationalization and Localization
You can use the weblogic.i18ngen utility to validate message catalogs and create the
necessary runtime classes for producing localized messages.

6-1

The weblogic.l10ngen utility validates locale-specific catalogs, creating additional
properties files for the different locales defined by the catalogs.

You can internationalize simple text-based utilities that you are running on WebLogic
Server by specifying that those utilities use Localizers to access text data. You
configure the applications with Logger and TextFormatter classes generated from the
weblogic.i18ngen utility.

For more information on Logger and TextFormatter classes, see TextFormatter Class
Reference for WebLogic Server, and Logger Class Reference for WebLogic Server.

The generated Logger classes are used for logging purposes, as opposed to the
traditional method of writing English text to a log. For example, weblogic.i18ngen
generates a class xyzLogger in the appropriate package for the catalog xyz.xml. For
the MyUtilLog.xml catalog, the class, programs.utils.MyUtilLogger.class, would
be generated. For each log message defined in the catalog, this class contains static
public methods as defined by the method attributes.

TextFormatter classes are generated for each simple message catalog. These
classes include methods for accessing localized and formatted text from the catalog.
They are convenience classes that handle the interface with the message body,
placeholders, and MessageFormat. You specify the formatting methods through the
method attribute in each message definition. For example, if the definition of a
message in a catalog includes the attribute, method=getErrorNumber(int err), the
TextFormatter class shown in Example 6-1 is generated.

Example 6-1 Example of a TextFormatter Class

package my.text;
public class xyzTextFormatter
{
 . . .
 public String getErrorNumber(int err)
 {
 . . .
 }
}

Example 6-2 shows an example of how the getErrorNumber method could be used in
code.

Example 6-2 Example of getErrorNumber Method

import my.text.xyzTextFormatter
. . .

xyzTextFormatter xyzL10n = new xyzTextFormatter();
System.out.println(xyzL10n.getErrorNumber(someVal));

The output prints the message text in the current locale, with the someVal argument
inserted appropriately.

Chapter 6
WebLogic Server Internationalization and Localization

6-2

weblogic.i18ngen Utility
The weblogic.i18ngen utility parses message catalogs (XML files) to produce Logger and
TextFormatter classes that are used for localizing the text in log messages.

The utility creates or updates the following properties file, which is used to load the message
ID lookup class hashtable weblogic.i18n.L10nLookup:

targetdirectory\i18n_user.properties

Any errors, warnings, or informational messages are sent to stderr.

In order for user catalogs to be recognized, the i18n_user.properties file must reside in a
directory identified in the WebLogic classpath.

For example: targetdirectory\i18n_user.properties
Oracle recommends that the i18n_user.properties file reside in the server classpath. If the
i18n_user.properties file is in targetdirectory, then targetdirectory should be in the
server classpath.

Syntax

java weblogic.i18ngen [options] [filelist]

Note:

Utilities can be run from any directory, but if files are listed on the command line,
then their path is relative to the current directory.

Options

Table 6-1 Options Available for weblogic.i18ngen Utility

Option Definition

-build Generates all necessary files and compiles them.

The -build option combines the -i18n, -l10n, -keepgenerated, and ‐
compile options.

-d targetdirectory Specifies the root directory to which generated Java source files are
targeted. User catalog properties are placed in i18n_user.properties,
relative to the designated target directory. Files are placed in appropriate
directories based on the i18n_package and l10n_package values in the
corresponding message catalog. The default target directory is the current
directory. This directory is created as necessary.

If this argument is omitted, all classes are generated in the current directory,
without regard to any class hierarchy described in the message catalog.

-n Parse and validate, but do not generate classes.

-keepgenerated Keep generated Java source (located in the same directory as the class
files).

-ignore Ignore errors.

Chapter 6
weblogic.i18ngen Utility

6-3

Table 6-1 (Cont.) Options Available for weblogic.i18ngen Utility

Option Definition

-i18n Generates internationalizers (for example, Loggers and
TextFormatters).

i18ngen -i18n creates the internationalizer source (for example,
*Logger.java) that supports the logging of internationalized messages.

-l10n Generates localizers (for example, LogLocalizers and
TextLocalizers).

i18ngen -l10n creates the localizer source (resource bundles) that
provide access to each message defined in the message catalog. These
classes are used by localization utilities to localize messages.

-compile Compiles generated Java files using the current CLASSPATH. The resulting
classes are placed in the directory identified by the -d option. The resulting
classes are placed in the same directory as the source.

Errors detected during compilation generally result in no class files or
properties file being created. i18ngen exits with a bad exit status.

-nobuild Parse and validate only.

-debug Debugging mode.

-dates Causes weblogic.i18ngen to update message timestamps in the catalog.
If the catalog is writable and timestamps have been updated, the catalog is
rewritten.

filelist Process the files and directories in this list of files. If directories are listed,
the command processes all XML files in the listed directories. The names of
all files must include an XML suffix. All files must conform to the
msgcat.dtd syntax. weblogic.i18ngen prints the fully-qualified list of
names (Java source) to the stdout log for those files actually generated.

weblogic.l10ngen Utility
The weblogic.l10ngen utility generates property resources for localizations of
message catalogs named in the file list. The file list identifies the top-level catalogs,
not translated catalogs.

Similarly, the target directory (-d option) identifies the same target directory where the
default localizations reside. For example, if the default catalogs are located
in $SRC\weblogic\msgcat and the generated resources are to be placed
in $CLASSESDIR, the appropriate l10ngen invocation would be:

java weblogic.l10ngen -d $CLASSESDIR $SRC\weblogic\msgcat

This command generates localized resources for all locales defined in the
weblogic\msgcat subdirectories.

Syntax

java weblogic.l10ngen [options] [filelist]

Chapter 6
weblogic.l10ngen Utility

6-4

Note:

Utilities can be run from any directory, but if files are listed on the command line,
then their path is relative to the current directory.

Options

Table 6-2 Options Available for weblogic.l10ngen Utility

Option Definition

-d target Directory in which to place properties. Default is the current directory.

-language code Language code. Default is all.

-country code Country code. Default is all.

-variant code Variant code. Default is all.

filelist Specifies the message catalogs for which you want to generate properties
files. You must specify top-level catalogs that the Message Editor creates;
you do not specify locale-specific catalogs that the Message Localizer
creates. Usually, this is the same set of source files or source directories that
you specified in the i18ngen command.

Message Catalog Localization
Catalog subdirectories are named after lowercase, two-letter ISO 639 language codes (for
example, ja for Japanese and fr for French). You can find supported language codes in the
java.util.Locale javadoc.

Variations to language codes are achievable through the use of uppercase, two-letter ISO
3166 country codes and variants, each of which are subordinate to the language code. The
generic syntax is lang\country\variant.

For example, zh is the language code for Chinese. CN is a country code for simplified
Chinese, whereas TW is the country code for traditional Chinese. Therefore zh\CN and zh\TW
are two distinct locales for Chinese.

Variants are of use when, for instance, there is a functional difference in platform vendor
handling of specific locales. Examples of vendor variants are WIN, MAC, and POSIX. There
may be two variants used to further qualify the locale. In this case, the variants are separated
with an underscore (for example, Traditional_Mac as opposed to Modern_MAC).

Note:

Language, country, and variants are all case sensitive.

A fully-qualified locale would look like zh\TW\WIN, identifying traditional Chinese on a Win32
platform.

Message catalogs to support the above locale would involve the following files:

Chapter 6
weblogic.l10ngen Utility

6-5

• *.xml - default catalogs

• \zh*.xml - Chinese localizations

• \zh\TW*.xml - Traditional Chinese localizations

• \zh\TW\WIN*.xml - Traditional Chinese localizations for Win32 code sets

Specific localizations do not need to cover all messages defined in parent
localizations.

Examples
1. To generate localization properties for all locales:

java weblogic.l10ngen -d $CLASSESEDIR catalogdirectory
2. To generate localization properties for all traditional Chinese locales:

java weblogic.l10ngen -d $CLASSESEDIR -language zh -country TW
catalogdirectory

3. To generate localization properties for all Chinese locales:

java weblogic.l10ngen -d $CLASSESEDIR -language zh catalogdirectory
4. To generate localization properties for the JMS catalog in all locales:

java weblogic.l10ngen -d $CLASSESEDIR catalogdirectory

Note:

Example 2 is a subset of example 3. All Chinese (zh) would include any
country designations (for example, TW) and variants.

weblogic.l10ngen does not validate the locale designators (language,
country, variant).

weblogic.GetMessage Utility
The weblogic.GetMessage utility displays message content. It can also list all or some
subset of installed messages.By default (no options), weblogic.GetMessage prints a
usage statement.
The weblogic.GetMessage utility replaces the CatInfo utility provided with the earlier
releases of WebLogic Server.

Syntax

java weblogic.GetMessage [options]

Options

Note:

All options may be abbreviated to a single character except -verbose.

Chapter 6
weblogic.GetMessage Utility

6-6

Table 6-3 Options Available for weblogic.GetMessage Utility

Option Definition

-id nnnnnn where nnnnnn represents the message ID.

The -id option is used to specify a particular message.

-subsystem identifier The subsystem identifier. The -subsystem option prints only
those messages that match the specified subsystem.

-nodetail Requests a non-detailed listing, and only outputs the
message body of a message. By default, a detailed listing is
output, which includes severity, subsystem, message detail,
cause, and action information.

-verbose Requests more detail on the listing. The -verbose option
also prints packaging, stacktrace option, severity, subsystem,
message detail, cause, and action information.

-lang code The language to use. For example, en for English.

-country code The country code to use. For example, US for United States.

-variant code The variant designator for locale.

-help Provides usage information.

-retired Lists all retired messages. Retired messages are not
displayed unless this option is used. Only the subsystem and
ID's of such messages are listed.

If no arguments are provided, weblogic.GetMessage outputs a usage message, equivalent to
-help.

Chapter 6
weblogic.GetMessage Utility

6-7

A
Localizer Class Reference for WebLogic
Server

The Localizer class created for each catalog file inlcudes the Localizer methods, key
values for Localizers, and lookup properties for Localizers.

• About Localizer Classes

• Localizer Methods

• Localizer Lookup Class

Note:

This information on Localizer class methods is provided as reference for advanced
users. Normally, you do not need to use these interfaces directly. Instead, you
would typically use the generated methods in the catalogs.

About Localizer Classes
The weblogic.i18ngen utility creates Localizer classes based on the content of the
message catalog.

One Localizer class is generated for each catalog file. The name of the class is the catalog
name (without the .xml extension, which is stripped by the utility), followed by LogLocalizer
for log message catalogs and TextLocalizer for simple text catalogs. A Localizer class for
the catalog ejb.xml is ejbLogLocalizer.

Localizer Methods
Localizers are PropertyResourceBundle objects. Four additional methods are provided to
simplify the access of the localization data in the Localizer.These methods are not part of
the Localizer. Rather, they are part of the Localizer class.
The methods are described in Table A-1. The Localizer class is used by the Logger and
TextFormatter classes to extract data out of the Localizer. Each Localizer has an
associated Localizer class that is obtained through L10nLookup, the Localizer lookup
object.

Table A-1 Methods for Localization Data Access

Method Description

public Object getObject(String key,
String id)

Returns localization text for the key element for
message id.

A-1

Table A-1 (Cont.) Methods for Localization Data Access

Method Description

public Object getObject(String key, int
id)

Returns localization text for the key element for
message id.

public String getString(String key,
String id)

Returns localization text for the key element for
message id.

public String getString(String key, int
id)

Returns localization text for the key element for
message id.

Each of the methods for accessing localization data has a key argument. The following
list shows the recognized values for the key argument:

• Localizer.SEVERITY
• Localizer.MESSAGE_ID
• Localizer.MESSAGE_BODY
• Localizer.MESSAGE_DETAIL
• Localizer.CAUSE
• Localizer.ACTION
With the exception of the Localizer.SEVERITY key, the localization data returned by
Localizers are String objects that return an integer object.

The following list shows the severity values that are returned:

• weblogic.logging.severities.EMERGENCY
• weblogic.logging.severities.ALERT
• weblogic.logging.severities.CRITICAL
• weblogic.logging.severities.NOTICE
• weblogic.logging.severities.ERROR
• weblogic.logging.severities.WARNING
• weblogic.logging.severities.INFO
• weblogic.logging.severities.DEBUG
The specific strings returned are defined in the message catalogs.

The key argument to the get*() methods identify which element of a definition to
return. Acceptable values are defined in the Localizer class definition. The returned
text can be further expanded through java.text.MessageFormat.format(). The
message body, detail, cause, and action elements are all localizable. The other
elements, message ID, severity, and subsystem are not localizable and do not require
further processing by MessageFormat.

Appendix A
Localizer Methods

A-2

Localizer Lookup Class
To obtain the correct Localizer for a message, you must use the L10nLookup class, which is
a property class extension that is loaded at system startup from the property file,
i18n_user.properties.This property file is created by weblogic.i18ngen and is included in
the WebLogic Server installation. When you start up a user application, any
i18n_user.properties files in its classpath are also loaded into L10nLookup.
Properties in the lookup (i18n_user.properties) file have the following format:

nnnnnn=subsystem:Localizer class

The arguments on this line are defined as follows:

• nnnnnn is the message ID

• subsystem is the related subsystem

• Localizer class is the name of the generated Localizer class

For example, message 001234 is identified as an EJB subsystem message ID from the
weblogic.i18n.ejbLogLocalizer class by the following property in the lookup file:

001234=EJB:weblogic.i18n.ejbLogLocalizer

Appendix A
Localizer Lookup Class

A-3

B
Loggable Object Reference for WebLogic
Server

Loggable objects are used for generating log messages that are logged at a later time.

• About Loggable Objects

• How To Use Loggable Objects

About Loggable Objects
By default, all log message catalogs create Logger classes with methods that are used to log
the messages to the WebLogic Server log. The Logger classes can optionally include
methods that return a loggable object instead of logging the message. Loggable objects are
useful when you want to generate the log message but actually log it at a later time. They are
also useful if you want to use the message text for other purposes, such as throwing an
exception.

How To Use Loggable Objects
To create a Logger class that provides methods to return loggable objects, you must set the
loggables attribute in the message catalog. For example, consider the test.xml catalog
shown in Example B-1.

Example B-1 test.xml Message Catalog

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd" "http://www.bea.com/
servers/wls90/dtd/msgcat.dtd">
<message_catalog
 subsystem="Examples"
 version="1.0"
 baseid="500000"
 endid="500001"
 loggables="true"
 >
 <logmessage
 messageid="500000"
 severity="error"
 method="logIOError(Throwable t)"
 >
 <messagebody>
 IO failure detected.
 </messagebody>
 <messagedetail>
 </messagedetail>
 <cause>
 </cause>
 <action>
 </action>

B-1

 </logmessage>
</message_catalog>

When you run this catalog through the weblogic.i18ngen utility, a Logger class is
created for this catalog with the following two methods:

• logIOError (throwable) - logs the message

• logIOErrorLoggable (throwable) - returns a loggable object

The loggable object can be used as shown in Example B-2.

Example B-2 Example of Use of Loggable Object

package test;
import weblogic.logging.Loggable;
import weblogic.i18n.testLogger;
...
try {
 // some IO
} catch (IOException ioe) {
 Loggable l = testLogger.logIOErrorLoggable(ioe);
 l.log(); // log the error
 throw new Exception(l.getMessage());//throw new exception with
 same text as logged
}

Appendix B
How To Use Loggable Objects

B-2

C
TextFormatter Class Reference for WebLogic
Server

The TextFormatter classes provide methods for generating localized versions of message
text at runtime.

• About TextFormatter Classes

• Example of an Application Using a TextFormatter Class

About TextFormatter Classes
TextFormatter classes are generated by weblogic.i18ngen from simple message catalogs.
These classes provide methods for generating localized versions of message text at run time.

Example of an Application Using a TextFormatter Class
The TextFormatter class can be generated from simple message catalogs of your
application. The following example shows the TextFormatter class generated for a simple
Hello_World application:

Example C-1 Example of a Simple Message Catalog

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd" "http://www.bea.com/
servers/wls90/dtd/msgcat.dtd">
<message_catalog
 l10n_package="examples.i18n.simple"
 subsystem="I18N"
 version="1.0"
 >
 <message
 messageid="HELLO_WORLD"
 datelastchanged="967575717875"
 method="helloWorld()"
 >
 <messagebody>
 Hello World!
 </messagebody>
 </message>
 <!-- -->
 <message
 messageid="HELLO_AGAIN"
 datelastchanged="967575717804"
 method="helloAgain()"
 >
 <messagebody>
 Hello again
 </messagebody>
 </message>
 <!-- -->

C-1

 <message
 messageid="NTH_HELLO"
 datelastchanged="967575770971"
 method="nthHello(int count)"
 >
 <messagebody>
 This is hello number {0,number}.
 </messagebody>
 </message>
 <!-- -->
 <message
 messageid="VERSION"
 datelastchanged="967578656214"
 method="version(String version)"
 >
 <messagebody>
 Catalog version: {0}
 </messagebody>
 </message>
 <!-- -->
 <message
 messageid="I18N_PACKAGE"
 datelastchanged="967578691394"
 method="i18nPackage(String pkg)"
 >
 <messagebody>
 I18n Package: {0}
 </messagebody>
 </message>
 <!-- -->
 <message
 messageid="L10N_PACKAGE"
 datelastchanged="967578720156"
 method="l10nPackage(String pkg)"
 >
 <messagebody>
 L10n Package: {0}
 </messagebody>
 </message>
 <!-- -->
 <message
 messageid="SUBSYSTEM"
 datelastchanged="967578755587"
 method="subSystem(String sub)"
 >
 <messagebody>
 Catalog subsystem: {0}
 </messagebody>
 </message>
</message_catalog>

The following is an example of an application using the HelloWorld catalog. The
example shows various ways of internationalizing an application using simple
message catalogs.

Example C-2 Example of an Application Using the HelloWorld Catalog

package examples.i18n.simple;
import java.util.Locale;
import java.text.MessageFormat;
import weblogic.i18n.Localizer;

Appendix C
Example of an Application Using a TextFormatter Class

C-2

import weblogic.i18ntools.L10nLookup;

/**
 * This example shows various ways of internationalizing an application
 * using simple message catalogs.
 * <p>
 * Usage: java examples.i18n.simple.HelloWorld [lang [country]]
 * <p>
 * lang is a 2 character ISO language code. e.g. "en"
 * country is a 2 character ISO country code. e.g. "US"
 * <p>
 * Usage of any of the languages supported by this example presumes
 * the existence of the appropriate OS localization software and character
 * encodings.
 * <p>
 * The example comes with catalogs for English (the default) and French.
 * The catalog source is in the following files, and were built
 * using the catalog editing utility, weblogic.i18ntools.gui.MessageEditor.
 * <p>
 * <pre>
 * English(base language) ../msgcat/Helloworld.xml
 * French ../msgcat/fr/FR/HelloWorld.xml
 * </pre>
 * <p>
 * To build this example run the bld.sh(UNIX) or bld.cmd (NT) scripts from
 * the examples/i18n/simple directory. CLIENT_CLASSES must be set up and
 * needs to be in the classpath when running the example.
 */

public final class HelloWorld {

 public static void main(String[] argv) {
 /*
 * The easiest method for displaying localized text is to
 * instantiate the generated formatter class for the HelloWorld catalog.
 * This class contains convenience methods that return localized text for
 * each message defined in the catalog. The class name is
 * the catalog name followed by "TextFormatter".
 *
 * Typically, you would use the default constructor to obtain
 * formatting in the current locale. This example uses a locale
 * based on arguments to construct the TextFormatter.
 */
 Locale lcl;
 if (argv.length == 0) { // default is default locale for JVM
 lcl = Locale.getDefault();
 }
 else {
 String lang = null;
 String country = null;
 //get the language code
 lang = argv[0];
 if (argv.length >= 2) { // get the country code
 country = argv[1];
 }
 lcl = new Locale(lang,country);
 }
 /*
 * Get formatter in appropriate locale.
 */
 HelloWorldTextFormatter fmt = new HelloWorldTextFormatter(lcl);

Appendix C
Example of an Application Using a TextFormatter Class

C-3

 fmt.setExtendedFormat(true);
 /*
 * Print the text in the current locale.
 */
 System.out.println(fmt.helloWorld());
 /*
 * Alternatively, text can be accessed and formatted manually. In this
 * case you must obtain the Localizer class for the catalog. The
 * Localizer class is formed from the l10n_package attribute in the
 * catalog, the catalog name, and the string "TextLocalizer".
 */
 Localizer l10n = L10nLookup.getLocalizer
 (lcl,"examples.i18n.simple.HelloWorldTextLocalizer");
 System.out.println(l10n.get("HELLO_AGAIN"));
 /*
 * If the message accepts arguments, they can be passed to the
 * method defined for the message.
 */
 System.out.println(fmt.nthHello(3));
 /*
 * If using the manual method, you must manually apply the argument to
 * the text using the MessageFormat class.
 */
 String text = l10n.get("NTH_HELLO");
 Object[] args = {new Integer(4)};
 System.out.println(MessageFormat.format(text,args));
 /*
 * The Localizer class also provides methods for accessing catalog
 * information.
 */
 System.out.println(fmt.version(l10n.getVersion()));
 System.out.println(fmt.l10nPackage(l10n.getL10nPackage()));
 System.out.println(fmt.i18nPackage(l10n.getI18nPackage()));
 System.out.println(fmt.subSystem(l10n.getSubSystem()));
 }
}

The following listing shows an example of the generated TextFormatter for the
HelloWorld catalog.

Example C-3 Example of Generated TextFormatter Class for the HelloWorld
Catalog

package examples.i18n.simple;import java.text.MessageFormat;
import java.text.DateFormat;
import java.util.Date;
import java.util.Locale;
import weblogic.i18n.Localizer;
import weblogic.i18ntools.L10nLookup;
public class HelloWorldTextFormatter {
 private Localizer l10n;
 private boolean format=false;
 // constructors
 public HelloWorldTextFormatter() {
 l10n = L10nLookup.getLocalizer(Locale.getDefault(),
"examples.i18n.simple.HelloWorldTextLocalizer");
 }
 public HelloWorldTextFormatter(Locale l) {
 l10n =
 L10nLookup.getLocalizer(l,"examples.i18n.simple.HelloWorldTextLocalizer");
 }

Appendix C
Example of an Application Using a TextFormatter Class

C-4

 public static HelloWorldTextFormatter getInstance() {
 return new HelloWorldTextFormatter();
 }
 public static HelloWorldTextFormatter getInstance(Locale l) {
 return new HelloWorldTextFormatter(l);
 }
 public void setExtendedFormat(boolean fmt) {
 format = fmt;
 }
 public boolean getExtendedFormat() { return format;
 /**
 * Hello World!
 */
 public String helloWorld() {
 String fmt = "";
 String id = "HELLO_WORLD" ;
 String subsystem = "I18N" ;
 Object [] args = { };
 String output = MessageFormat.format(l10n.get(id) , args);
 if (getExtendedFormat()) {
 DateFormat dformat = DateFormat.getDateTimeInstance(DateFormat.MEDIUM,
DateFormat.LONG);
 fmt = "<"+dformat.format(new Date())+"><"+subsystem+"><"+id+"> ";
 }
 return fmt+output;
 }
 /**
 * Hello again
 */
 public String helloAgain() {
 String fmt = "";
 String id = "HELLO_AGAIN" ;
 String subsystem = "I18N" ;
 Object [] args = { };
 String output = MessageFormat.format(l10n.get(id) , args);
 if (getExtendedFormat()) {
 DateFormat dformat = DateFormat.getDateTimeInstance(DateFormat.MEDIUM,
DateFormat.LONG);
 fmt = "<"+dformat.format(new Date())+"><"+subsystem+"><"+id+">";
 }
 return fmt+output;
 }
 /**
 * This is hello number {0,number}.
 */
 public String nthHello(int arg0) {
 String fmt = "";
 String id = "NTH_HELLO" ;
 String subsystem = "I18N" ;
 Object [] args = { new Integer(arg0) };
 String output = MessageFormat.format(l10n.get(id) , args);
 if (getExtendedFormat()) {
 DateFormat dformat = DateFormat.getDateTimeInstance(DateFormat.MEDIUM,
DateFormat.LONG);
 fmt = "<"+dformat.format(new Date())+"><"+subsystem+"><"+id+">";
 }
 return fmt+output;
 }
 /**
 * Catalog version: {0}
 */

Appendix C
Example of an Application Using a TextFormatter Class

C-5

 public String version(String arg0) {
 String fmt = "";
 String id = "VERSION" ;
 String subsystem = "I18N" ;
 Object [] args = { arg0 };
 String output = MessageFormat.format(l10n.get(id) , args);
 if (getExtendedFormat()) {
 DateFormat dformat = DateFormat.getDateTimeInstance(DateFormat.MEDIUM,
DateFormat.LONG);
 fmt = "<"+dformat.format(new Date())+"><"+subsystem+"><"+id+">";
 }
 return fmt+output;
 }
 /**
 * I18n Package: {0}
 */
 public String i18nPackage(String arg0) {
 String fmt = "";
 String id = "I18N_PACKAGE" ;
 String subsystem = "I18N" ;
 Object [] args = { arg0 };
 String output = MessageFormat.format(l10n.get(id) , args);
 if (getExtendedFormat()) {
 DateFormat dformat = DateFormat.getDateTimeInstance(DateFormat.MEDIUM,
DateFormat.LONG);
 fmt = "<"+dformat.format(new Date())+"><"+subsystem+"><"+id+">";
 }
 return fmt+output;
 }
 /**
 * L10n Package: {0}
 */
 public String l10nPackage(String arg0) {
 String fmt = "";
 String id = "L10N_PACKAGE" ;
 String subsystem = "I18N" ;
 Object [] args = { arg0 };
 String output = MessageFormat.format(l10n.get(id) , args);
 if (getExtendedFormat()) {
 DateFormat dformat = DateFormat.getDateTimeInstance(DateFormat.MEDIUM,
DateFormat.LONG);
 fmt = "<"+dformat.format(new Date())+"><"+subsystem+"><"+id+">";
 }
 return fmt+output;
 }
 /**
 * Catalog subsystem: {0}
 */
 public String subSystem(String arg0) {
 String fmt = "";
 String id = "SUBSYSTEM" ;
 String subsystem = "I18N" ;
 Object [] args = { arg0 };
 String output = MessageFormat.format(l10n.get(id) , args);
 if (getExtendedFormat()) {
 DateFormat dformat = DateFormat.getDateTimeInstance(DateFormat.MEDIUM,
DateFormat.LONG);
 fmt = "<"+dformat.format(new Date())+"><"+subsystem+"><"+id+">";
 }
 return fmt+output;

Appendix C
Example of an Application Using a TextFormatter Class

C-6

 }
}

Appendix C
Example of an Application Using a TextFormatter Class

C-7

D
Logger Class Reference for WebLogic Server

Logger classes provide the interface to WebLogic Server logging. The appendix describes
Logger classes and provides an example of a message catalog and its corresponding Logger
class.

• About Logger Classes

• Example of a Generated Logger Class

About Logger Classes
The classes generated by i18ngen are known as Logger classes. Logger classes provide the
interface to WebLogic logging. For a catalog Xyz.xml, a Logger class XyzLogger is
generated.
The Logger class provides methods to log all messages defined in a catalog to the WebLogic
Server log. The methods included are the same as those defined in the associated catalog. If
the catalog specifies the loggables attribute as true, then Loggable methods are also
generated for each message. See Loggable Object Reference for WebLogic Server.

Example of a Generated Logger Class
You can use the weblogic.i18ngen utility to generate Logger classes that are used for
localizing the text in log messages.Example D-1 contains an example of a generated logger
class.

Example D-1 Example of Generated Logger Class

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
 i18n_package="examples.i18n.logging"
 l10n_package="examples.i18n.logging"
 subsystem="I18N"
 version="1.0"
 baseid="600000"
 endid="610000"
 loggables="true"
 >
 <logmessage
 messageid="600000"
 method="logEntry()"
 severity="info"
 >
 <messagebody>Starting I18nLog example...</messagebody>
 <messagedetail></messagedetail>
 <cause></cause>
 <action></action>
 </logmessage>
 <logmessage
 messageid="600001"

D-1

 method="testArgs(String name,int cnt)"
 severity="debug"
 >
 <messagebody>Class {0} started with {1,number} arguments.</messagebody>
 <messagedetail></messagedetail>
 <cause></cause>
 <action></action>
 </logmessage>
 <logmessage
 messageid="600002"
 method="logTrace(Throwable t)"
 severity="error"
 stacktrace="true"
 >
 <messagebody>This message is followed by a trace</messagebody>
 <messagedetail></messagedetail>
 <cause></cause>
 <action></action>
 </logmessage>
 <logmessage
 messageid="600003"
 method="logNoTrace(Throwable t)"
 severity="warning"
 stacktrace="false"
 >
 <messagebody>This message is not followed by a trace, but we can insert its
text : {0}</messagebody>
 <messagedetail></messagedetail>
 <cause></cause>
 <action></action>
 </logmessage>
 <logmessage
 messageid="600004"
 method="getId()"
 severity="info"
 >
 <messagebody>This message's id will be in the next message</messagebody>
 <messagedetail>A message can contain additional detailed information.</
messagedetail>
 <cause>This message is displayed on purpose</cause>
 <action>Nothing to do, the example is working</action>
 </logmessage>
 <logmessage
 messageid="600005"
 method="showId(String id)"
 severity="info"
 >
 <messagebody>The previous message logged had message id {0}</messagebody>
 <messagedetail></messagedetail>
 <cause></cause>
 <action></action>
 </logmessage>
</message_catalog>

Example D-2 shows the corresponding Java source code generated by
weblogic.i18ngen.

Example D-2 Example of Generated Logger Class

package examples.i18n.logging;

Appendix D
Example of a Generated Logger Class

D-2

import weblogic.logging.MessageLogger;
import weblogic.logging.Loggable;
import java.util.MissingResourceException;
public class I18nLogLogger
{
 /**
 * Starting I18nLog example...
 * @exclude
 *
 * messageid: 600000
 * severity: info
 */
 public static String logEntry() {
 Object [] args = { };
 MessageLogger.log(
 "600000",
 args,
 "examples.i18n.logging.I18nLogLogLocalizer");
 return "600000";
 }
 public static Loggable logEntryLoggable() throws MissingResourceException {
 Object[] args = { };
 return new Loggable("600000", args);
 }
 /**
 * Class {0} started with {1,number} arguments.
 * @exclude
 *
 * messageid: 600001
 * severity: debug
 */
 public static String testArgs(String arg0, int arg1) {
 Object [] args = { arg0, new Integer(arg1) };
 MessageLogger.log(
 "600001",
 args,
 "examples.i18n.logging.I18nLogLogLocalizer");
 return "600001";
 }
 public static Loggable testArgsLoggable(String arg0, int arg1) throws
MissingResourceException {
 Object[] args = { arg0, new Integer(arg1) };
 return new Loggable("600001", args);
 }
 /**
 * This message is followed by a trace
 * @exclude
 *
 * messageid: 600002
 * severity: error
 */
 public static String logTrace(Throwable arg0) {
 Object [] args = { arg0 };
 MessageLogger.log(
 "600002",
 args,
 "examples.i18n.logging.I18nLogLogLocalizer");
 return "600002";
 }
 public static Loggable logTraceLoggable(Throwable arg0) throws
MissingResourceException {

Appendix D
Example of a Generated Logger Class

D-3

 Object[] args = { arg0 };
 return new Loggable("600002", args);
 }
 /**
 * This message is not followed by a trace, but we can insert its text : {0}
 * @exclude
 *
 * messageid: 600003
 * severity: warning
 */
 public static String logNoTrace(Throwable arg0) {
 Object [] args = { arg0 };
 MessageLogger.log(
 "600003",
 args,
 "examples.i18n.logging.I18nLogLogLocalizer");
 return "600003";
 }
 public static Loggable logNoTraceLoggable(Throwable arg0) throws
MissingResourceException {
 Object[] args = { arg0 };
 return new Loggable("600003", args);
 }
 /**
 * This message's id will be in the next message
 * @exclude
 *
 * messageid: 600004
 * severity: info
 */
 public static String getId() {
 Object [] args = { };
 MessageLogger.log(
 "600004",
 args,
 "examples.i18n.logging.I18nLogLogLocalizer");
 return "600004";
 }
 public static Loggable getIdLoggable() throws MissingResourceException {
 Object[] args = { };
 return new Loggable("600004", args);
 }
 /**
 * The previous message logged had message id {0}
 * @exclude
 *
 * messageid: 600005
 * severity: info
 */
 public static String showId(String arg0) {
 Object [] args = { arg0 };
 MessageLogger.log(
 "600005",
 args,
 "examples.i18n.logging.I18nLogLogLocalizer");
 return "600005";
 }
 public static Loggable showIdLoggable(String arg0) throws
MissingResourceException {
 Object[] args = { arg0 };
 return new Loggable("600005", args);

Appendix D
Example of a Generated Logger Class

D-4

 }

}

Example D-3 shows an example application that uses the weblogic.i18nLog
(internationalized (I18n) logging interfaces). The example logs an informational message.

Example D-3 Example of Application Using i18nLog

package examples.i18n.logging;

import java.util.Locale;

import weblogic.i18n.Localizer;
import weblogic.i18ntools.L10nLookup;
import weblogic.logging.Loggable;

/**
 * This example shows how to use the internationalized (I18n) logging interfaces.
 * <p>
 * usage: java examples.i18n.logging.I18nLog
 * <p>
 * Build procedure: run bld.sh (UNIX) or bld.cmd (NT). These scripts
 * process the I18nLog.xml catalog, producing the logging class,
 * <tt>examples.i18n.logging.I18nLogLogger</tt>. This class contains static
 * methods for logging messages to the WLS server log. The methods
 * and arguments are defined in the I18nLog.xml catalog. This example also
 * uses a simple message catalog, I18nSimple.xml.
 */

public class I18nLog {

 public I18nLog() {}

 public static void main(String[] argv) {
 /**
 * This call just logs an info message. There are no arguments defined
 * for this method.
 *
 * This also shows how to use the Loggable form of the method.
 */

 Loggable ll = I18nLogLogger.logEntryLoggable();
 ll.log();
 System.out.println(ll.getMessage());

 /**
 * Here's an example of a message including a variety
 * of arguments.
 */
 I18nLogLogger.testArgs(I18nLog.class.getName(),argv.length);
 /**
 * If a Throwable is passed then it will result in a stack trace
 * being logged along with the method by default.
 */
 Throwable t = new Throwable("Test with stack trace");
 I18nLogLogger.logTrace(t);
 /**
 * Messages can optionally be defined to not log a stack trace.
 */

Appendix D
Example of a Generated Logger Class

D-5

 I18nLogLogger.logNoTrace(t);
 /**
 * The logger methods return the message id for applications
 * that want to do more than just log these messages.
 */
 String messageId = I18nLogLogger.getId();
 I18nLogLogger.showId(messageId);
 /**
 * The message id can be used to obtain the different attributes
 * of a message. The L10nLookup object provides access to the catalogs
 * via Localizer classes. Localizers provide the access to individual
 * messages. Each log message catalog has two Localizers: one for
 * general message information and one for the detailed attributes.
 *
 * The basic Localizer provides access to catalog information:
 * Version
 * L10n Package - package for catalog data
 * I18n Package - package for Logger methods
 * Subsystem - catalog subsystem
 * For each message it also provides:
 * Severity: debug, info, warning, error
 * Message Body - the message text
 * Stack option - whether to log a stack trace
 *
 * First get to the L10nLookup properties, then use them to get the
 * Localizers for the message.
 */
 L10nLookup l10n = L10nLookup.getL10n();
 /**
 * This returns the basic Localizer (arg 3 = false)
 */
 Localizer lcl = l10n.getLocalizer(messageId,Locale.getDefault(),false);
 /**
 * This returns the detailed Localizer (arg 3 = true)
 */
 Localizer lclDetail =
l10n.getLocalizer(messageId,Locale.getDefault(),true);
 /**
 * Use this appplication's simple message catalog to display the
 * log message catalog information
 */
 I18nSimpleTextFormatter fmt = new I18nSimpleTextFormatter();
 System.out.println(fmt.version(messageId,lcl.getVersion()));
 System.out.println(fmt.l10nPackage(messageId,lcl.getL10nPackage()));
 System.out.println(fmt.i18nPackage(messageId,lcl.getI18nPackage()));
 System.out.println(fmt.subsystem(messageId,lcl.getSubSystem()));
 System.out.println(fmt.severity(messageId,lcl.getSeverity(messageId)));
 System.out.println(fmt.body(messageId,lcl.getBody(messageId)));
 System.out.println(fmt.stack(messageId,lcl.getStackTrace(messageId)));
 /**
 * Now for the detailed information.
 */
 System.out.println(fmt.detail(messageId,lclDetail.getDetail(messageId)));
 System.out.println(fmt.cause(messageId,lclDetail.getCause(messageId)));
 System.out.println(fmt.action(messageId,lclDetail.getAction(messageId)));

 }
}

Appendix D
Example of a Generated Logger Class

D-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Logging Samples and Tutorials
	New and Changed WebLogic Server Features

	Conventions

	1 Application Logging and WebLogic Logging Services
	About WebLogic Logging Services
	Integrating Application Logging with WebLogic Logging Services: Main Steps
	Accessing the WebLogic Server Logger

	2 Internationalization and Localization for WebLogic Server
	About Internationalization and Localization Standards
	Understanding Internationalization and Localization for WebLogic Server
	Understanding Message Catalogs
	Understanding Java Interfaces for Internationalization
	Main Steps for Creating an Internationalized Message

	3 Using Message Catalogs with WebLogic Server
	Overview of Message Catalogs
	Message Catalog Hierarchy
	Guidelines for Naming Message Catalogs
	Using Message Arguments
	Retrieving Additional Information About an Error Message

	Message Catalog Formats
	Example Log Message Catalog
	Elements of a Log Message Catalog
	message_catalog Element
	log_message Element
	Child Elements of log_message Element

	Example Simple Text Catalog
	Elements of a Simple Text Catalog
	message_catalog Element
	message Element
	messagebody Element

	Example Locale-Specific Catalog
	Elements of a Locale-Specific Catalog
	locale_message_catalog Element
	log_message Element
	Other locale_message_catalog Elements

	4 Writing Messages to the WebLogic Server Log
	Using the I18N Message Catalog Framework: Main Steps
	Create Message Catalogs
	Compile Message Catalogs
	Example: Compiling Message Catalogs
	Compiling the Message Catalog
	Creating Properties Files

	Use Messages from Compiled Message Catalogs

	Using the NonCatalogLogger APIs
	Using ServletContext
	Configuring Servlet and Resource Adapter Logging
	Writing Messages from a Client Application
	Writing Debug Messages

	5 Using the WebLogic Server Message Editor
	About the Message Editor
	Starting the Message Editor
	Working with Catalogs
	Browsing to an Existing Catalog
	Creating a New Catalog

	Adding Messages to Catalogs
	Entering a New Log Message
	Entering a New Simple Text Message

	Finding Messages
	Finding a Log Message
	Finding a Simple Text Message

	Using the Message Viewer
	Viewing All Messages in a Catalog
	Viewing All Messages in Several Catalogs
	Selecting a Message to Edit from the Message Viewer

	Editing an Existing Message
	Retiring and Unretiring Messages

	6 Using the WebLogic Server Internationalization Utilities
	WebLogic Server Internationalization Utilities
	WebLogic Server Internationalization and Localization
	weblogic.i18ngen Utility
	weblogic.l10ngen Utility
	Message Catalog Localization
	Examples

	weblogic.GetMessage Utility

	A Localizer Class Reference for WebLogic Server
	About Localizer Classes
	Localizer Methods
	Localizer Lookup Class

	B Loggable Object Reference for WebLogic Server
	About Loggable Objects
	How To Use Loggable Objects

	C TextFormatter Class Reference for WebLogic Server
	About TextFormatter Classes
	Example of an Application Using a TextFormatter Class

	D Logger Class Reference for WebLogic Server
	About Logger Classes
	Example of a Generated Logger Class

