
Oracle® Fusion Middleware
Developing Oracle Coherence Applications
for Oracle WebLogic Server

12c (12.2.1.4.0)
E90759-03
December 2022

Oracle Fusion Middleware Developing Oracle Coherence Applications for Oracle WebLogic Server, 12c
(12.2.1.4.0)

E90759-03

Copyright © 2007, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

Related Documentation v

Conventions vi

1 Getting Started

Introduction to Coherence Applications 1-1

Typical Uses for Coherence 1-1

Understanding Coherence Application Configuration Files 1-2

Packaging and Deployment Overview 1-3

Main Tasks for Creating Coherence Applications 1-3

Task One: Create a Coherence Application Directory Structure 1-3

Task Two: Include the Coherence Application's Artifacts 1-3

Task Three: Package the Coherence Application for Deployment 1-5

2 Creating Coherence Applications for WebLogic Server

Packaging Coherence Applications 2-1

Directory Structure Example 2-2

Packaging a Grid Archive In an Enterprise Application 2-2

Creating a Coherence Application Deployment Descriptor 2-3

Using JNDI to Override Configuration 2-3

Defining a Data Cache 2-4

Accessing a Data Cache 2-4

Using the Coherence API 2-5

Using a Coherence Application Lifecycle Listener 2-6

Accessing and Retrieving Relational Data 2-7

Specifying the Eclipse Persistence Provider 2-7

Packaging a Persistence Unit 2-7

Using Coherence for Session Management 2-8

iii

Creating Extend Clients in WebLogic Server 2-8

Using a JCache Cache in WebLogic Server 2-8

3 Deploying Coherence Applications in WebLogic Server

Understanding Coherence Deployment Tiers 3-1

Deploying Applications to Managed Coherence Servers 3-1

Deploying Coherence Applications as Shared Libraries 3-2

Referencing Shared Libraries from a Coherence Application 3-3

Performing a Rolling Redeploy 3-4

Loading Coherence From the Application Classloader 3-5

Securing Coherence Applications in WebLogic Server 3-6

A coherence-application.xml Deployment Descriptor Elements

coherence-application.xml Namespace Declaration and Schema Location A-1

application-lifecycle-listener A-1

cache-configuration-ref A-2

coherence-application A-2

configurable-cache-factory-config A-3

init-params A-3

pof-configuration-ref A-4

B weblogic-coh-app.xml Deployment Descriptor Elements

weblogic-coh-app.xml Namespace Declaration and Schema Location B-1

weblogic-coh-app B-1

library-ref B-1

iv

Preface

This preface describes the document accessibility features and conventions that are used in
this guide—Developing Oracle Coherence Applications for Oracle WebLogic Server.

Audience
This document is a resource for:

• Application developers and architects who want to develop and configure Coherence
applications for WebLogic Server.

• Administrators who want to deploy Coherence applications to WebLogic Server.

This book does not detail the Coherence API. See Developing Applications with Oracle
Coherence for details on using the Coherence API.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Related Documentation
For additional information, see the following Oracle Coherence and Oracle WebLogic Server
documents:

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Oracle Coherence

• Developing Applications with Oracle Coherence

• Developing Remote Clients for Oracle Coherence

• Administering HTTP Session Management with Oracle Coherence*Web

• Oracle Coherence Integration Guide

• Managing Oracle Coherence

• Securing Oracle Coherence

Oracle WebLogic Server

• Developing Applications for Oracle WebLogic Server

• Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

• Administering Clusters for Oracle WebLogic Server

• Oracle WebLogic Server Administration Console Online Help

New and Changed WebLogic Server Features

For a comprehensive listing of new Oracle WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

1
Getting Started

This chapter introduces Coherence applications for WebLogic Server and provides an
overview of creating and packaging Coherence Applications.

This chapter includes the following sections:

• Introduction to Coherence Applications

• Typical Uses for Coherence

• Understanding Coherence Application Configuration Files

• Packaging and Deployment Overview

• Main Tasks for Creating Coherence Applications

Introduction to Coherence Applications
Coherence is a distributed caching and in-memory data grid computing solution. Applications
typically use Coherence to improve scalability, availability, and performance.

Coherence is tightly integrated with WebLogic Server. The integration aligns the lifecycle of a
Coherence cluster member with the lifecycle of a managed server: starting or stopping a
managed server JVM starts and stops a Coherence cluster member. Managed servers that
are cluster members are referred to as managed Coherence servers. Some common use
cases for Coherence include data caching, HTTP session replication, and database cache
store (such as a Java Persistence API (JPA) level-two cache).

Like other Java EE modules, Coherence supports its own application module, which is called
a Grid ARchive (GAR). The GAR contains the artifacts of a Coherence application and
includes a deployment descriptor. A GAR is deployed and undeployed in the same way as
Java EE modules and the application lifecycle is decoupled from the cluster service lifetime.
Coherence applications and managed Coherence servers are not mandated by the JavaEE
specification and are specific to WebLogic Server.

Typical Uses for Coherence
Coherence is used to provide solutions such as application data caching, data grid
computing, session state persistence and management and access Java Persistence API
(JPA) entities in the data cache.

This section describes typical uses for Coherence in WebLogic Server. The WebLogic Server
Coherence integration allows applications to easily use Coherence data caches and
incorporate Coherence*Web for session management and TopLink Grid as an object-to-
relational persistence framework.

Providing Application Data Caching and Data Grid Computing

Applications use Coherence for replicated and distributed caching. Applications access data
caches either through resource injection or component-based JNDI lookup. The Oracle
WebLogic Server Administration Console and Oracle WebLogic Scripting Tool are used to

1-1

manage and configure Coherence clusters.Using the Coherence integration enables
you to create a data tier dedicated to caching application data and storing replicated
session state. This is separate from the application tier—the WebLogic Server
instances dedicated to running applications.

See Creating Coherence Applications for WebLogic Server.

Providing Session State Persistence and Management

Using Coherence*Web enables you to provide Coherence-based HTTP session state
persistence to applications running on WebLogic Server. Coherence*Web enables
HTTP session sharing and management across different Web applications, domains,
and heterogeneous application servers. Session data can be stored in data caches
outside of the application server, thus freeing application server heap space and
enabling server restarts without losing session data.

See Introduction to Coherence*Web.

Accessing Java Persistence API (JPA) Entities in the Data Cache

TopLink Grid's relational-to-object mapping capabilities allows you to store copies of
database queries and result sets in Coherence data caches. With this feature,
database access occurs only when no cached copy of the required data exists, or
when the application performs a create, update, or delete operation that must be
persisted to the database. This added optimization provides improved scalability and
performance to the system.

TopLink Grid allows JPA Entity caching. This lets you support very large, shared grid
caches that span cluster nodes. If the data cache does not contain the object, then the
database is queried.

TopLink Grid also enables you to direct queries to Coherence. If the desired query
result is not found in the cache, it can be read from the database and then placed in
the cache, making it available for subsequent queries. The ability of Coherence to
manage very large numbers of objects increases the likelihood of a result being found
in the cache, as read operations in one cluster member become immediately available
to others.

Writing JPA Entities to the database is also made possible by TopLink Grid.
Applications can directly write JPA Entities to the database, then put them into the data
cache (so that it reflects the database state), or put JPA Entities into the data cache,
and then have the data cache write them to the database.

See Accessing and Retrieving Relational Data.

Understanding Coherence Application Configuration Files
Coherence applications contain the Cache Configuration, POF Configuration, and
Coherence Application Deployment Descriptor files used to configure caches, data
types and so on.

A typical Coherence application that is deployed to WebLogic Server contains the
following configuration files. See Developing Applications with Oracle Coherence.

• Cache Configuration File – This file is used to specify the various types of caches
which can be used within a Coherence cluster and is most often named
coherence-cache-config.xml. This file is commonly referred to as the cache
configuration deployment descriptor. The schema for this file is the coherence-

Chapter 1
Understanding Coherence Application Configuration Files

1-2

cache-config.xsd file. See Developing Applications with Oracle Coherence for a
complete reference of the elements in this file.

• POF Configuration File – This file is used to specify custom data types when using
Portable Object Format (POF) to serialize objects and is typically named pof-
config.xml. This file is commonly referred to as the POF configuration deployment
descriptor. The schema for this file is the coherence-pof-config.xsd file. See
Developing Applications with Oracle Coherence for a complete reference of the elements
in this file.

• Coherence Application Deployment Descriptor – This file is used to configure a
Coherence application module that is deployed to a managed Coherence server. See
coherence-application.xml Deployment Descriptor Elements, for a complete reference of
the elements in the descriptor.

Packaging and Deployment Overview
Coherence applications use a specific directory structure for deployment. You can deploy a
Coherence application either in an exploded directory format, or as an archived file.

A Coherence application deployed as a collection of files within a specific directory structure
is known as exploded directory format. A Coherence application deployed as an archived file
is called a Grid ARchive (GAR) with a .gar extension. See Packaging Coherence
Applications. The directory structure is as follows:

MyCohApp/
 lib/
 META-INF/
 coherence-application.xml

A standalone GAR is deployed to all managed Coherence servers in a Coherence data tier. A
GAR must also be packaged within a EAR and deployed to all managed Coherence servers
that reside in an application tier. See Deploying Coherence Applications in WebLogic Server.

Main Tasks for Creating Coherence Applications
A Coherence application can be created both as a standalone GAR module and packaged as
part of an enterprise application.

The steps are detailed throughout this guide. For a complete Coherence application example,
see the WebLogic Server Code Examples that are available with the WebLogic Server
installation.

Task One: Create a Coherence Application Directory Structure
Create a staging directory that includes two subdirectories: META-INF/ and lib/:

MyCohApp/
 lib/
 META-INF/

Task Two: Include the Coherence Application's Artifacts
Include the Coherence application artifacts in the staging directory. For details on creating
Coherence applications, see Creating Coherence Applications for WebLogic Server.

Chapter 1
Packaging and Deployment Overview

1-3

1. Place the Coherence application class files in the root of the staging directory in
the appropriate package structure. For example:

MyCohApp/
 com/
 myco/
 MyClass.class
 MySerializer.class
 lib/
 META-INF/

2. Place application dependency libraries in the lib/ directory.

MyCohApp/
 com/
 myco/
 MyClass.class
 MySerializer.class
 lib/
 dependency.jar
 META-INF/

3. Include the coherence-cache-config.xml and the pof-config.xml file in the
META-INF/ directory:

MyCohApp/
 com/
 myco/
 MyClass.class
 lib/
 dependency.jar
 META-INF/
 coherence-cache-config.xml
 pof-config.xml

4. Create a coherence-application.xml file in the META-INF directory.

MyCohApp/
 com/
 myco/
 MyClass.class
 lib/
 dependency.jar
 META-INF/
 coherence-application.xml
 coherence-cache-config.xml
 pof-config.xml

5. Edit the coherence-application.xml file and include the location of the
configuration files using the <cache-configuration-ref> and <pof-
configuration-ref> elements, respectively:

<?xml version="1.0"?>
<coherence-application>
 xmlns="http://xmlns.oracle.com/coherence/coherence-application">
 <cache-configuration-ref>META-INF/coherence-cache-config.xml
 </cache-configuration-ref>
 <pof-configuration-ref>META-INF/pof-config.xml</pof-configuration-ref>
</coherence-application>

Chapter 1
Main Tasks for Creating Coherence Applications

1-4

Task Three: Package the Coherence Application for Deployment
Package the Coherence application as a GAR file for deployment to a Coherence data tier.
Then, package the GAR file within an EAR for deployment to a Coherence application tier.
SeeDeploying Coherence Applications in WebLogic Server.

1. From the command line, change directories to the root of the staging directory.

2. Use the Java jar command to compress the archive with a .gar extension. For example:

jar cvf MyCohApp.gar *
3. Copy the GAR and package it within an enterprise application directory structure. See

Developing Applications for Oracle WebLogic Server for details on developing EAR. For
example:

MyEAR/
 META-INF/
 application.xml
 weblogic-application.xml
 MyWAR.war
 MyEJB.jar
 MyCohApp.gar

The weblogic-application.xml file must contain a module reference for the GAR. For
example:

<weblogic-application>
 <module>
 <name>MyCohApp</name>
 <type>GAR</type>
 <path>MyCohApp.gar</path>
 </module>
</weblogic-application>

Chapter 1
Main Tasks for Creating Coherence Applications

1-5

2
Creating Coherence Applications for
WebLogic Server

Coherence caches can be accessed using dependency injection and JNDI. Coherence
applications can be packaged as a Grid ARchive (GAR).
This chapter includes the following sections:

• Packaging Coherence Applications

• Creating a Coherence Application Deployment Descriptor

• Using JNDI to Override Configuration

• Defining a Data Cache

• Accessing a Data Cache

• Using the Coherence API

• Using a Coherence Application Lifecycle Listener

• Accessing and Retrieving Relational Data

• Using Coherence for Session Management

• Creating Extend Clients in WebLogic Server

• Using a JCache Cache in WebLogic Server

Packaging Coherence Applications
Coherence applications use a specific directory structure. You can deploy a Coherence
application as a collection of files within this directory structure, known as exploded directory
format, or as an archived file called a Grid ARchive (GAR) with a .gar extension.

A GAR module includes the artifacts that comprise a Coherence application. The /META-INF
directory contains the deployment descriptor for the Coherence application (cohererence-
application.xml). The presence of the deployment descriptor indicates a valid GAR. An
additional subdirectory, the /lib directory, is used for storing dependency JAR files.
Compiled Java classes that make up a Coherence application (entry processors,
aggregators, filters, and so on) are placed in the root directory in the appropriate Java
package structure.

A GAR module can also contain a cache configuration file (coherence-cache-config.xml)
and a Portable Object Format (POF) serialization configuration file (pof-config.xml). The
location of these files is defined within the Coherence application deployment descriptor.
Typically, the files are placed in the /META-INF directory; however, they can be located
anywhere in the GAR relative to the root or even at a URL-accessible network location.

2-1

Note:

• If the configuration files are not found at runtime, then the default
configuration files that are included in the coherence.jar, which is
located in the system classpath, are used.

• If the configuration files are located in the root directory of the GAR, then
they must not use the default file names; otherwise, the configuration
files that are included in the coherence.jar file are found first and the
configuration files in the GAR are never loaded.

The entire directory, once staged, is bundled into a GAR file using the jar command.
GAR files are deployed as standalone archives to managed Coherence servers that
are configured to store cached data.

Client applications that rely on the caches and resources in a GAR module must be
packaged within an EAR that includes the dependent GAR. An EAR cannot contain
multiple GAR modules. Multiple GAR modules must be merged into a single GAR.
That is, a GAR must contain one application deployment descriptor, one cache
configuration file, and one POF configuration file.

Directory Structure Example
The following is an example of a Coherence application directory structure, in which
myCohApp/ is the staging directory:

Example 2-1 Coherence Application Directory Structure

MyCohApp/
 lib/
 META-INF/
 coherence-application.xml
 coherence-cache-config.xml
 pof-config.xml
 com/myco/
 MyClass.class

Packaging a Grid Archive In an Enterprise Application
A GAR must be packaged in an EAR to be referenced by other JavaEE modules. See
Developing Applications for Oracle WebLogic Server for details on creating an EAR.
The following is an example of a Coherence application that is packaged within an
EAR:

Example 2-2 Coherence Application Packaged in an EAR

MyEAR/
 META-INF/
 application.xml
 weblogic-application.xml
 MyWAR.war
 MyEJB.jar
 MyGAR.gar

Chapter 2
Packaging Coherence Applications

2-2

Edit the META-INF/weblogic-application.xml descriptor and include a reference to the GAR
using the <module> element. The reference is required so that the GAR is deployed when the
EAR is deployed. For example:

<?xml version="1.0"?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-application
 http://xmlns.oracle.com/weblogic/weblogic-application/1.6/
 weblogic-application.xsd"
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-application">
 <module>
 <name>MyGAR</name>
 <type>GAR</type>
 <path>MyGAR.gar</path>
 </module>
</weblogic-application>

Creating a Coherence Application Deployment Descriptor
The presence of the deployment descriptor indicates a valid GAR. A GAR file must contain a
Coherence application deployment descriptor (cohererence-application.xml) located in the
META-INF directory.

For a detailed reference of all the available elements in the descriptor, see coherence-
application.xml Deployment Descriptor Elements. The following is an example of a
Coherence deployment descriptor that declares a cache configuration file and a POF
configuration file that is located in the META-INF directory of the GAR.

<?xml version="1.0"?>
<coherence-application
 xmlns="http://xmlns.oracle.com/coherence/coherence-application">
 <cache-configuration-ref>META-INF/coherence-cache-config.xml
 </cache-configuration-ref>
 <pof-configuration-ref>META-INF/pof-config.xml</pof-configuration-ref>
</coherence-application>

Using JNDI to Override Configuration
Coherence provides the ability to override any XML element value in a configuration file using
JNDI properties.

The use of JNDI properties allows a single version of a configuration file to be used for
deployment and then altered as required at runtime.

To define a JNDI property, add an override-property attribute to an XML element with a
value set to a JNDI context. The following example defines a JNDI property with a cache-
config/MyGar context for the <cache-configuration-ref> element in a coherence-
application.xml deployment descriptor. The JNDI property is used at runtime to override the
cache configuration reference and specify a different cache configuration file. The JNDI
context of cache-config is a well known context used and registered by a managed
Coherence server.

<?xml version="1.0"?>
<coherence-application
 xmlns="http://xmlns.oracle.com/coherence/coherence-application">
 <cache-configuration-ref override-property="cache-config/MyGar">
 META-INF/coherence-cache-config.xml</cache-configuration-ref>

Chapter 2
Creating a Coherence Application Deployment Descriptor

2-3

 <pof-configuration-ref>META-INF/pof-config.xml</pof-configuration-ref>
</coherence-application>

Defining a Data Cache
Data caches are defined in a coherence-cache-config.xml file that is packaged in a
GAR file.
See Developing Applications with Oracle Coherence for details on Coherence caches
and their configuration.

The following example creates a distributed cache named myCache. As an alternative,
a cache mapping may be defined with the asterisk (*) wildcard, which allows an
application to use the distributed cache by specifying any name.

<?xml version="1.0" encoding="windows-1252"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>myCache</cache-name>
 <scheme-name>distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>DistributedService</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

Coherence does not support the use of a replicated cache scheme if a GAR module is
used in multiple EAR modules (packaged either individually or as a shared GAR) on a
managed Coherence server. An alternative is to use a near cache instead of a
replicated cache.

Accessing a Data Cache
Applications use the Coherence NamedCache API to interact with a Coherence cache.
The Coherence cache holds resources that are shared among members of a
Coherence cluster. An application can obtain a NamedCache object either by
dependency injection or by using a JNDI lookup.

To Obtain a Cache by Dependency Injection

An @Resource annotation can be used in a servlet or an EJB to dynamically inject the
NamedCache. This annotation cannot be used in a JSP. The name of the cache used in
the annotation must be defined in the application's coherence-cache-config.xml file.

Chapter 2
Defining a Data Cache

2-4

Example 2-3 illustrates using dependency injection to get a cache named myCache. See
Developing Applications for Oracle WebLogic Server for details on JavaEE annotations and
dependency injection.

Example 2-3 Obtaining a Cache Resource by Dependency Injection

...
@Resource(mappedName="MyCache")
com.tangosol.net.NamedCache nc;
...

To Obtain the NamedCache by JNDI Lookup

A component-scoped JNDI tree can be used in EJBs, servlets, or JSPs to get a NamedCache
reference.

To use a JNDI lookup, define a resource-ref of type com.tangosol.net.NamedCache in
either the web.xml or ejb-jar.xml file. Example 2-4 illustrates a <resource-ref> element
that identifies myCache as the NamedCache. See Developing JNDI Applications for Oracle
WebLogic Server for details on using JNDI in Oracle WebLogic Server.

Note:

The <res-auth> and <res-sharing-scope> elements do not appear in the example.
The <res-auth> element is ignored because currently no resource sign-on is
performed to access data caches. The <res-sharing-scope> element is ignored
because data caches are sharable by default and this behavior cannot be
overridden.

Example 2-4 Defining a NamedCache as resource-ref for JNDI Lookup

...
<resource-ref>
 <res-ref-name>coherence/myCache</res-ref-name>
 <res-type>com.tangosol.net.NamedCache</res-type>
 <mapped-name>MyCache</mapped-name>
</resource-ref>
...

The following example performs a JNDI lookup to get a NamedCache reference that is defined
in Example 2-4:

try {
 Context ctx = new InitialContext();
 cache = (NamedCache) ctx.lookup("java:comp/env/coherence/myCache");
 cache.put(key, value);
}
catch (NamingException ne)

Using the Coherence API
Coherence provides a full-featured API for interacting with a cache and for performing data
grid operations.
Some of the features of the Coherence API include:

Chapter 2
Using the Coherence API

2-5

• basic get, put, and putAll operations

• querying a cache

• processing data in a cache using entry processors and aggregators

• event notifications

See Developing Applications with Oracle Coherence for details on using the API to
develop applications. See Java API Reference for Oracle Coherence for a reference of
the Coherence API.

Using POF for Serialization

Objects that are placed in a cache must be serializable. The Portable Object Format
(also referred to as POF) is a language agnostic binary format. POF is designed to be
efficient in both space and time and is the recommended serialization option in
Coherence. See Developing Applications with Oracle Coherence for details on using
POF in your applications.

Using a Coherence Application Lifecycle Listener
The Coherence Application Lifecycle listener allows custom processing to occur before
and after the creation and destruction of Coherence caches and clustered services.

Coherence applications support the use of an application lifecycle listener. The listener
class must implement the com.tangosol.application.LifecycleListener interface.
See the Java API Reference for Oracle Coherence for details on the interface.

Override the following methods provided in the LifecycleListener interface and add
any required functionality:

• preStart(Context) – called before the application is activated

• postStart(Context) – called after the application is started

• preStop(Context) – called before the application stops its services

• postStop(Context) – called after the application is stopped

To use an application lifecycle listener class, declare the fully qualified name of the
class within the <application-lifecycle-listener> element in the coherence-
application.xml deployment descriptor and include the class in the /lib directory of
the GAR. The following is an example of declaring an application lifecycle listener
class that is named MyAppLifecycleListener.

<?xml version="1.0"?>
<coherence-application
 xmlns="http://xmlns.oracle.com/coherence/coherence-application">
 <cache-configuration-ref>META-INF/coherence-cache-config.xml
 </cache-configuration-ref>
 <pof-configuration-ref>META-INF/pof-config.xml</pof-configuration-ref>
 <application-lifecycle-listener>
 <class-name>package.MyAppLifecycleListener</class-name>
 </application-lifecycle-listener>
</coherence-application>

Chapter 2
Using a Coherence Application Lifecycle Listener

2-6

https://docs.oracle.com/en/middleware/fusion-middleware/coherence/12.2.1.4/java-reference/index.html
https://docs.oracle.com/en/middleware/fusion-middleware/coherence/12.2.1.4/java-reference/index.html

Accessing and Retrieving Relational Data
Developers use the standard Java Persistence API (JPA) in their applications and take
advantage of the scalability of Coherence to access and retrive relational data.

TopLink Grid is an integration between TopLink and Coherence. TopLink Grid is used to store
some or all of a domain model in the Coherence data grid and can also be used as a level 2
cache. See Integrating Oracle Coherence.

The TopLink Grid library (toplink-grid.jar) is located in the
INSTALL_HOME\oracle_common\modules\oracle.toplink_version directory. The library is
included as part of the WebLogic Server system classpath and does not need to be included
as part of a GAR or an application (EAR) module.

Specifying the Eclipse Persistence Provider
The persistence.xml file is the JPA persistence descriptor file. This is where you configure
the persistence unit, the persistence provider, and any vendor-specific extensions that this
reference describes.

In the file, the provider element specifies the name of the vendor's persistence provider
class. When working with Oracle TopLink, enter
org.eclipse.persistence.jpa.PersistenceProvider as the value for this element.

Example 2-5 Sample persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/
persistence/persistence_2_0.xsd">
 <persistence-unit name="JPA" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>com.oracle.handson.Employees</class>
 ...

Packaging a Persistence Unit
JPA persistence units (entity classes and resources, including the persistence.xml file) that
use TopLink Grid should be packaged as a JAR and included within an EAR module. For
example, the JAR can be placed in the APP-INF/lib directory or root of the EAR module that
contains the GAR module.

Example 2-6 Coherence and JPA Application Packaged in an EAR

MyEAR/
 APP-INF
 /lib/MyPersistenceUnit.jar
 META-INF/
 application.xml
 weblogic-application.xml
 MyWAR.war
 MyEJB.jar
 MyGAR.gar

Chapter 2
Accessing and Retrieving Relational Data

2-7

Note:

Persistence files cannot be placed in a WAR file. Any persistence files
placed in the WAR file will not be found at runtime. Coherence only has
access to the application classloader.

Unlike the application tier, the Coherence data tier only requires the deployment of a
GAR. For the data tier, include the persistence unit JAR within the /lib directory of the
GAR. For example:

MyCohApp/
 lib/
 MyPersistence.jar
 META-INF/
 coherence-application.xml
 coherence-cache-config.xml
 pof-config.xml
 com/myco/
 MyClass.class

Using Coherence for Session Management
Web applications can chose to use Coherence for storing and replicating session
state.
The session management features of Coherence are implemented by the
Coherence*Web component. See Administering HTTP Session Management with
Oracle Coherence*Web for details on setting up, configuring, and using
Coherence*Web in WebLogic Server.

Creating Extend Clients in WebLogic Server
Client applications can chose to use Coherence*Extend to interact with Coherence
caches without becoming members of a Coherence cluster.
Client applications connect to managed Coherence proxy servers and are unaware
that cache and invocation service requests are being executed remotely. Remote
clients may be deployed within a WebLogic Server domain or may be external to
WebLogic Server. See Administering Clusters for Oracle WebLogic Server for details
on setting up a Coherence proxy server tier in WebLogic Server to allow remote
connections. See Developing Remote Clients for Oracle Coherence for details on
creating Coherence*Extend client applications,.

Using a JCache Cache in WebLogic Server
Applications that are deployed to a managed Coherence container can use the
JCache API and JCache provider that is implemented by Coherence.

See Developing Applications with Oracle Coherence for details on using JCache with
Coherence.

1. Add the COHERENCE_HOME/lib/cache-api.jar and
COHERENCE_HOME/lib/coherence-jcache.jar libraries to the /lib directory
in a GAR file.

Chapter 2
Using Coherence for Session Management

2-8

2. Edit the cache configuration file that is referenced in the coherence-application.xml file
to include either the JCache namespace or JCacheExtend namespace. For example:

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xmlns:jcache="class://com.tangosol.coherence.jcache.JCacheNamespace"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-
config
 coherence-cache-config.xsd">
 ...

3. Use the JCahe API to create and use a JCache cache. For example within a servlet:

static private Cache<ContactId, Contact> getCache(String cacheName)
 {
 CachingProvider provider = Caching.getCachingProvider();
 CacheManager mgr = Caching.getCachingProvider().getCacheManager();

 Cache<ContactId, Contact> cache = null;

 try {
 cache = mgr.getCache(cacheName, ContactId.class, Contact.class);
 }

 catch (IllegalStateException e) {

 if (cache == null) {
 PartitionedCacheConfiguration config = new
 PartitionedCacheConfiguration<ContactId, Contact>();
 config.setTypes(ContactId.class, Contact.class);
 config.setStatisticsEnabled(true);
config.setManagementEnabled(true);
 cache = mgr.createCache(cacheName, config);
 }
 return cache;
}

Chapter 2
Using a JCache Cache in WebLogic Server

2-9

3
Deploying Coherence Applications in
WebLogic Server

To manage Coherence servers in a WebLogic Server domain, you must deploy Coherence
applications packaged as a Grid ARchive (GAR).
See Packaging Coherence Applications for details on creating a GAR.

This chapter includes the following sections:

• Understanding Coherence Deployment Tiers

• Deploying Applications to Managed Coherence Servers

• Deploying Coherence Applications as Shared Libraries

• Referencing Shared Libraries from a Coherence Application

• Performing a Rolling Redeploy

• Loading Coherence From the Application Classloader

• Securing Coherence Applications in WebLogic Server

Understanding Coherence Deployment Tiers
Coherence is setup in tiers within a WebLogic Server domain. The tiers often include: a data
tier for storing data; an application tier for consuming cached data; and a proxy tier for
allowing remote clients (non cluster members) to use a cluster.
The use of a dedicated storage tier that is separate from the application tier and proxy tier is
a best practice that ensures optimal performance of a Coherence cluster.

The deployment tiers contain managed servers that are part of a Coherence cluster.
Managed servers that are part of a Coherence cluster are referred to as managed Coherence
servers. Coherence tiers are typically associated with respective WebLogic Server clusters.
The use of WebLogic Server clusters simplifies the deployment of an application and the
management of the deployment topology, especially in large clusters. However, managed
Coherence servers in each tier can be individually managed as required.

During development and simple testing, setting up Coherence deployment tiers may be
impractical. In this case, a Coherence application can be deployed to a single managed
server and a single-server cluster is automatically created using default cluster settings.

See Administering Clusters for Oracle WebLogic Server.

Deploying Applications to Managed Coherence Servers
Coherence application GAR contains the artifacts of a Coherence application and includes a
deployment descriptor. A GAR can be deployed as a standalone module or as a part of an
EAR using any WebLogic Server deployment tool.
Coherence application GAR modules get deployed the same way as JavaEE modules and
can be deployed using any WebLogic Server deployment tool: the WebLogic Server

3-1

Administration Console, the Oracle WebLogic Scripting Tool (WLST), the WebLogic
Server Deployer class, and the WebLogic Server <wldeploy> ANT target.

See Oracle WebLogic Server Administration Console Online Help.

See Understanding the WebLogic Scripting Tool.

See Deploying Applications to Oracle WebLogic Server.

Note:

Production redeployment of an EAR containing a GAR is only supported for
storage-disabled cluster clients. In addition, any changes to the code in the
GAR must be backward compatible with the existing deployment. For
example, entity classes that are changing must implement the Evolvable
interface. See Deploying Applications to Oracle WebLogic Server.

GAR modules should be deployed as standalone modules and also as part of an EAR.
The following list describes how GAR modules are deployed in a WebLogic Server
domain that uses Coherence tiers. See Administering Clusters for Oracle WebLogic
Server.

• Data Tier – Deploy a standalone GAR to each managed Coherence server of the
data tier. If the data tier is setup as a WebLogic Server cluster, deploy the GAR to
the cluster and have the module copied to each managed Coherence server.

• Application Tier – Deploy the EAR that contains both the client implementation
(Web Application, EJB, and so on) and the GAR to each managed Coherence
server in the cluster. If the application tier is setup as a WebLogic Server cluster,
deploy the EAR to the cluster and have the module copied to each managed
Coherence server.

• Proxy Tier – Deploy the standalone GAR to each managed Coherence server of
the proxy tier. The cache configuration file packaged in the GAR must include a
proxy service definition. If the application tier is setup as a WebLogic Server
cluster, deploy the GAR to the cluster and have the module copied to each
managed Coherence server.

• Extend Client Tier – Deploy the EAR that contains the extend client
implementation (Web Application, EJB, and so on) as well as the GAR to each
managed server that hosts the extend client. The client's cache configuration file
must include a remote cache service definition that defines the address of a proxy
server. If the extend client tier is setup as a WebLogic Server cluster, deploy the
EAR to the cluster and the WebLogic deployment infrastructure copies the module
to each managed Coherence server.

Deploying Coherence Applications as Shared Libraries
Coherence applications are packaged as Grid ARchive (GAR) and deployed as shared
libraries in a single-tier or multi-tier domain.
A standalone GAR can be deployed as a shared library and referenced by multiple
EAR files. For general information about shared libraries and their deployment, see
Creating Shared Java EE Libraries and Optional Packages in Developing Applications
for Oracle WebLogic Server.

Chapter 3
Deploying Coherence Applications as Shared Libraries

3-2

To use the GAR at runtime, the weblogic-application.xml deployment descriptor in an EAR
must contain a reference to the GAR. For example:

<weblogic-application>
 <library-ref>
 <library-name>ExampleGAR</library-name>
 </library-ref>
</weblogic-application>

The above configuration works in single-tier domain where both the application tier and data
tier are on a single managed Coherence server. However, in a multi-tiered domain, additional
configuration is required to ensure that a GAR that is deployed as a shared library results in
storage-enabled members starting as expected.

To deploy a GAR as shared library in multi-tiered domain:

1. Edit the cache configuration file in the GAR and explicitly set the <scope-name> element
to the GAR name. For details about configuring the scope name, see Administering
Oracle Coherence.

For example, if the GAR is named ExampleGAR.gar, the <scope-name> element is defined
as follows:

<cache-config>
 <defaults>
 <scope-name>ExampleGAR</scope-name>
 </defaults>
 ...

2. Deploy the GAR to the application (storage-disabled) tier as a shared library and specify
the GAR name as the application name. For example, if the GAR is named
ExampleGAR.gar, then the GAR name is specified as ExampleGAR.

3. Edit the weblogic-application.xml deployment descriptor in the EAR and include a
reference for the GAR. For example:

<weblogic-application>
 <library-ref>
 <library-name>ExampleGAR</library-name>
 </library-ref>
</weblogic-application>

4. Deploy the EAR to the application tier.

5. Deploy the same GAR to the data (storage-enabled) tier and modify the name. For
example, ExampleGAR-DataTier. If a name is not specified, a -1 is appended to the
deployment name because the GAR already exists as a shared library.

6. After the deployment completes, the GARs that are deployed to both tiers (for example,
ExampleGAR and ExampleGAR-DataTier) join the same services and client request
processing and data storage are separated as expected.

Referencing Shared Libraries from a Coherence Application
A GAR module can use shared libraries that are deployed to WebLogic Server.

To use a shared library, reference the shared library within a <library-ref> node in the
weblogic-coh-app.xml deployment descriptor and package the deployment descriptor in
the /META-INF directory of the GAR module.

Chapter 3
Referencing Shared Libraries from a Coherence Application

3-3

For a detailed reference of the available elements in the descriptor, see weblogic-coh-
app.xml Deployment Descriptor Elements. For example:

<?xml version="1.0"?>
<weblogic-coh-app
 xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-coh-app">
 <library-ref>
 <library-name>mySharedLibrary</library-name>
 <specification-version>2.0</specification-version>
 <implementation-version>8.1beta</implementation-version>
 <exact-match>false</exact-match>
 </library-ref>
</weblogic-coh-app>

Performing a Rolling Redeploy
GAR modules that are targeted to a WebLogic Server cluster are simultaneously
redeployed to all managed Coherence servers.
There are no provisions that guard against data loss by ensuring that the data
partitions on a server are fully transmitted to another server during redeployment.

A rolling redeploy is a technique for updating a GAR across a WebLogic Server cluster
by individually redeploying the GAR on each managed Coherence server and cycling
through all servers. A rolling redeploy allows cached data to be redistributed while the
GAR is redeployed. Cached data is otherwise lost if a GAR is redeployed to all cache
servers simultaneously.

Note:

Always check the StatusHA metric on the partitioned service between server-
targeted deployments to ensure MACHINE_SAFE status. See Managing Oracle
Coherence for details on this metric.

To perform a rolling redeploy, a GAR must be deployed using the
specifiedtargetsonly option, which ensures that subsequent updates to the GAR
results in a deployment on the current target and not on all targets that contain the
GAR. The specifiedtargetsonly option is not available through the WebLogic Server
Administration Console and must be specified using either WLST, weblogic.Deployer,
or the <wldeploy> ANT target.

The full path and name to the GAR file must match exactly the path and name that
was used to originally deploy the GAR. If a different path or name is used, then a -1,
-2, or, -1 and -2 is appended to the GAR name and the rolling redeploy will not work
correctly. In addition, if the GAR was originally deployed using the upload=true option,
then you must redeploy using the upload=true option; otherwise, the rolling redeploy
will not work correctly.

For a complete example (including a WLST script) of redeploying Coherence
applications (including ensuring MACHINE_SAFE status), see the Coherence examples
that are part of the WebLogic Server examples. The examples are available by

Chapter 3
Performing a Rolling Redeploy

3-4

performing a custom WebLogic Server installation and selecting to install the Server
Examples. See Understanding Oracle WebLogic Server.

WLST

deploy('MyCohApp', '/myapps/MyCohApp.gar', 'server1', specifiedTargetsOnly='true')

<wldeploy> ANT Target

<wldeploy
 user="${admin.username}"
 password="${admin.password}"
 adminurl="t3://${admin.host}:${admin.port}"
 debug="false"
 action="deploy"
 name="Coherence GAR"
 source="${gar.filename}"
 targets="ms3"
 specifiedtargetsonly="true"
 failonerror="true"/>

weblogic.Deployer

java weblogic.Deployer -adminurl t3://localhost:7001 -username username -password
password -targets ms3 -deploy -name MyCohApp /myapps/MyCohApp.gar -specifiedtargetsonly

Loading Coherence From the Application Classloader
The Coherence library (coherence.jar) is included in the system classpath of WebLogic
Server. It is a best practice to always use this library and not include the coherence.jar
library within the /lib directory of a Web application.
For advanced use cases that include the coherence.jar library in a Web application, the
Coherence resources must be defined in the weblogic.xml file using the <prefer-
application-packages> and <prefer-application-resources> elements. For example:

<container-descriptor>
 <prefer-application-packages>
 <package-name>com.tangosol.*</package-name>
 <package-name>com.oracle.common.**</package-name>
 </prefer-application-packages>

 <prefer-application-resources>
 <resource-name>com.tangosol.*</resource-name>
 <resource-name>com.oracle.common.*</resource-name>
 <resource-name>coherence-*.xml</resource-name>
 <resource-name>coherence-*.xsd</resource-name>
 <resource-name>tangosol-*.xml</resource-name>
 <resource-name>tangosol.properties</resource-name>
 <resource-name>tangosol.cer</resource-name>
 <resource-name>tangosol.dat</resource-name>
 <resource-name>internal-txn-cache-config.xml</resource-name>
 <resource-name>txn-pof-config.xml</resource-name>
 <resource-name>pof-config.xml</resource-name>
 <resource-name>management-config.xml</resource-name>
 <resource-name>processor-dictionary.xml</resource-name>
 <resource-name>reports/*</resource-name>
 </prefer-application-resources>
 </container-descriptor>

Chapter 3
Loading Coherence From the Application Classloader

3-5

Securing Coherence Applications in WebLogic Server
Coherence applications that are deployed to managed Coherence servers can be
secured.
See Securing Oracle Coherence for details on securing the Coherence applications.

Chapter 3
Securing Coherence Applications in WebLogic Server

3-6

A
coherence-application.xml Deployment
Descriptor Elements

This appendix provides a complete reference for the elements in the Coherence application
deployment descriptor coherence-application.xml.
This appendix includes the following sections:

• coherence-application.xml Namespace Declaration and Schema Location

• application-lifecycle-listener

• cache-configuration-ref

• coherence-application

• configurable-cache-factory-config

• init-params

• pof-configuration-ref

coherence-application.xml Namespace Declaration and Schema
Location

The Coherence application deployment descriptor schema is defined in the coherence-
application.xsd file, which is located in the root of the coherence.jar library and at the
following Web URL:

http://xmlns.oracle.com/coherence/coherence-application/1.0/coherence-application.xsd

The <coherence-application> element is the root element of the descriptor and includes the
XSD reference, the namespace reference, and the location of the coherence-
application.xsd file. For example:

<?xml version='1.0'?>
<coherence-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-application"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-application
 coherence-application.xsd">

application-lifecycle-listener
The application-lifecycle-listener elements specify the fully qualified name of a class or the
initialization parameter that is required by the implementation.

The application-lifecycle-listener element specifies the fully qualified name of a class
that implements the com.tangosol.application.LifeCycleListener interface. The class
allows custom processing before and after the creation and destruction of Coherence cache
and clustered services.

A-1

http://xmlns.oracle.com/coherence/coherence-application/1.0/coherence-application.xsd

The following table describes the elements you can define within an application-
lifecycle-listener element.

Table A-1 application-lifecycle-listener Elements

Element Required/
Optional

Description

class-name Required Specifies the fully qualified name of a class that implements the
com.tangosol.application.LifeCycleListener interface.

init-params Optional Specifies an initialization parameter that is required by the
implementation. Any number of init-params elements may be
defined.

cache-configuration-ref
The cache-configuration-ref element specifies the name and location of a
Coherence cache configuration file. The location of the file is relative to the root
directory within a Coherence Grid Archive (GAR). A URL may also be specified. If the
file is not found, or if this element is not specified, then the predefined cache
configuration file (coherence-cache-config.xml) that is located in the coherence.jar
library on the system classpath is used by default.

Note:

If the configuration file is located in the root directory of the GAR, then it must
not use the default file name (coherence-cache-config.xml); otherwise, the
configuration file that is included in the coherence.jar file which is located in
the system classpath is found first and the configuration file in the GAR is
never loaded. An alternative to renaming the file is to place the configuration
file in the META-INF directory of the GAR.

coherence-application
The coherence-application element is the root element of the Coherence application
deployment descriptor.

The following table describes the elements you can define within a coherence-
application element.

Table A-2 coherence-application Elements

Element Required/
Optional

Description

cache-configuration-ref Optional Specifies the name and location of the
Coherence cache configuration file.

pof-configuration-ref Optional Specifies the name and location of the
Coherence Portable Object Format (POF)
configuration file.

Appendix A
cache-configuration-ref

A-2

Table A-2 (Cont.) coherence-application Elements

Element Required/
Optional

Description

application-lifecycle-listener Optional Specifies the fully qualified name of a class
that implements the
com.tangosol.application.LifeCycleLi
stener interface.

configurable-cache-factory-config Optional Specifies the fully qualified name of a class
that implements the
com.tangosol.net.ConfigurableCacheFa
ctory interface.

configurable-cache-factory-config
The configurable-cache-factory-config element specifies the fully qualified name of a
class that implements the com.tangosol.net.ConfigurableCacheFactory interface. The
default implementation is the com.tangosol.net.ExtensibleConfigurableCacheFactory
class.

Using a custom ConfigurableCacheFactory implementation is an advanced use case and is
typically used to allow applications that are scoped by different class loaders to use separate
cache configuration files.

The following table describes the elements you can define within a configurable-cache-
factory-config element.

Table A-3 configurable-cache-factory-config Elements

Element Required/
Optional

Description

class-name Required Specifies the fully qualified name of a class that implements the
com.tangosol.net.ConfigurableCacheFactory interface.

init-params Optional Specifies an initialization parameter that is required by the
implementation. Any number of init-params elements may be
defined.

init-params
The init-params element specifies an initialization parameter. Any number of init-params
elements may be defined.

The following table describes the elements you can define within an init-params element.

Appendix A
configurable-cache-factory-config

A-3

Table A-4 init-params Elements

Element Required/
Optional

Description

param-type Optional Specifies the Java type of the initialization parameter. The
following standard types are supported:

• java.lang.String (string)

• java.lang.Boolean (boolean)

• java.lang.Integer (int)

• java.lang.Long (long)

• java.lang.Double (double)

• java.math.BigDecimal
• java.io.File
• java.sql.Date
• java.sql.Time
• java.sql.Timestamp

param-value Optional Specifies the value of the initialization parameter. The value
is in the format specific to the Java type of the parameter.

For example:

<init-params>
 <param-type>java.lang.String</param-type>
 <param-value>EmployeeTable</param-value>
</init-params>

pof-configuration-ref
The pof-configuration-ref element specifies the name and location of a Coherence
POF configuration file. The location of the file is relative to the root directory within a
Coherence Grid Archive (GAR). A URL may also be specified. If the file is not found,
or if this element is not specified, then the predefined POF configuration file (pof-
config.xml) that is located in the coherence.jar library on the system classpath is
used by default.

Note:

If the configuration file is located in the root directory of the GAR, then it must
not use the default file name (pof-config.xml); otherwise, the configuration
file that is included in the coherence.jar file which is located in the system
classpath is found first and the configuration file in the GAR is never loaded.
An alternative to renaming the file is to place the configuration file in the
META-INF directory of the GAR.

Appendix A
pof-configuration-ref

A-4

B
weblogic-coh-app.xml Deployment Descriptor
Elements

This appendix provides a complete reference for the elements in the WebLogic Coherence
application deployment descriptor weblogic-coh-app.xml.

This appendix includes the following sections:

• weblogic-coh-app.xml Namespace Declaration and Schema Location

• weblogic-coh-app

• library-ref

weblogic-coh-app.xml Namespace Declaration and Schema
Location

The correct text for the namespace declaration and schema location for the weblogic-coh-
app.xml file is as follows.

<weglogic-coh-app
 xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-coh-app">

weblogic-coh-app
The weblogic-coh-app element is the root element of the WebLogic Coherence application
deployment descriptor.

The following table describes the elements you can define within a weblogic-coh-app
element.

Table B-1 weblogic-coh-app Elements

Element Required/ Optional Description

description Optional Specifies a description.

library-ref Optional Specifies a shared library module that is intended
to be used as a library in a Coherence application.

library-ref
The library-ref element specifies a shared library module that is intended to be used as a
library in a Coherence application.

The following table describes the elements you can define within a library-ref element.

B-1

Table B-2 library-ref Elements

Element Required/
Optional

Description

library-
name

Required Specifies the name of the referenced shared library.

specificat
ion

Optional Specifies the minimum specification-version required.

implementa
tion-
version

Optional Specifies the minimum implementation-version required.

exact-
match

Optional Specifies whether there must be an exact match between the
specification and implementation version that is specified and that
of the referenced library. Default value is false.

Appendix B
library-ref

B-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Getting Started
	Introduction to Coherence Applications
	Typical Uses for Coherence
	Understanding Coherence Application Configuration Files
	Packaging and Deployment Overview
	Main Tasks for Creating Coherence Applications
	Task One: Create a Coherence Application Directory Structure
	Task Two: Include the Coherence Application's Artifacts
	Task Three: Package the Coherence Application for Deployment

	2 Creating Coherence Applications for WebLogic Server
	Packaging Coherence Applications
	Directory Structure Example
	Packaging a Grid Archive In an Enterprise Application

	Creating a Coherence Application Deployment Descriptor
	Using JNDI to Override Configuration
	Defining a Data Cache
	Accessing a Data Cache
	Using the Coherence API
	Using a Coherence Application Lifecycle Listener
	Accessing and Retrieving Relational Data
	Specifying the Eclipse Persistence Provider
	Packaging a Persistence Unit

	Using Coherence for Session Management
	Creating Extend Clients in WebLogic Server
	Using a JCache Cache in WebLogic Server

	3 Deploying Coherence Applications in WebLogic Server
	Understanding Coherence Deployment Tiers
	Deploying Applications to Managed Coherence Servers
	Deploying Coherence Applications as Shared Libraries
	Referencing Shared Libraries from a Coherence Application
	Performing a Rolling Redeploy
	Loading Coherence From the Application Classloader
	Securing Coherence Applications in WebLogic Server

	A coherence-application.xml Deployment Descriptor Elements
	coherence-application.xml Namespace Declaration and Schema Location
	application-lifecycle-listener
	cache-configuration-ref
	coherence-application
	configurable-cache-factory-config
	init-params
	pof-configuration-ref

	B weblogic-coh-app.xml Deployment Descriptor Elements
	weblogic-coh-app.xml Namespace Declaration and Schema Location
	weblogic-coh-app
	library-ref

