
Oracle® Fusion Middleware
Administering Oracle GoldenGate for Big
Data

Release 19c (19.1.0.0)
F20574-06
April 2021

Oracle Fusion Middleware Administering Oracle GoldenGate for Big Data, Release 19c (19.1.0.0)

F20574-06

Copyright © 2015, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xii

Documentation Accessibility xii

Conventions xii

Related Information xii

Part I Understanding Oracle GoldenGate for Big Data

1 Understanding the Java Adapter and Oracle GoldenGate for Big
Data

1.1 Overview 1-1

1.1.1 Oracle GoldenGate Features 1-1

1.1.2 Adapter Integration Options 1-1

1.1.2.1 Capturing Transactions to a Trail 1-2

1.1.2.2 Applying Transactions from a Trail 1-2

1.2 Using Oracle GoldenGate Java Adapter Properties 1-3

1.2.1 Values in Property Files 1-3

1.2.2 Location of Property Files 1-3

1.2.3 Using Comments in the Property File 1-4

1.2.4 Variables in Property Names 1-4

1.3 Monitoring Performance 1-4

1.4 Oracle GoldenGate Documentation 1-4

2 Introducing the Java Adapter

2.1 Oracle GoldenGate VAM Message Capture 2-1

2.1.1 Message Capture Configuration Options 2-1

2.1.2 Typical Configuration 2-1

2.2 Oracle GoldenGate Java Delivery 2-2

2.3 Delivery Configuration Options 2-3

iii

3 Configuring Logging

3.1 Oracle GoldenGate Java Adapter Default Logging 3-1

3.1.1 Default Implementation Type 3-1

3.1.2 Default Message Logging 3-1

3.1.3 Log File Name 3-1

3.1.4 Logging Problems 3-1

3.2 Recommended Logging Settings 3-1

3.2.1 Changing to the Recommended Logging Type 3-1

4 Automatic Heartbeat for Big Data

4.1 Overview 4-1

4.2 Automatic Heartbeat Tables 4-2

4.2.1 ADD HEARTBEATTABLE 4-2

4.2.2 ALTER HEARTBEAT TABLE 4-2

4.2.3 INFO HEARTBEATTABLE 4-2

4.2.4 LAG 4-3

4.2.5 DELETE HEARTBEATTABLE 4-3

Part II Capturing JMS Messages

5 Configuring Message Capture

5.1 Configuring the VAM Extract 5-1

5.1.1 Adding the Extract 5-1

5.1.2 Configuring the Extract Parameters 5-1

5.1.3 Configuring Message Capture 5-2

5.2 Connecting and Retrieving the Messages 5-2

5.2.1 Connecting to JMS 5-2

5.2.2 Retrieving Messages 5-3

5.2.3 Completing the Transaction 5-3

6 Parsing the Message

6.1 Parsing Overview 6-1

6.1.1 Parser Types 6-1

6.1.2 Source and Target Data Definitions 6-1

6.1.3 Required Data 6-2

6.1.3.1 Transaction Identifier 6-2

6.1.3.2 Sequence Identifier 6-2

iv

6.1.3.3 Timestamp 6-2

6.1.3.4 Table Name 6-2

6.1.3.5 Operation Type 6-3

6.1.3.6 Column Data 6-3

6.1.4 Optional Data 6-3

6.1.4.1 Transaction Indicator 6-4

6.1.4.2 Transaction Name 6-4

6.1.4.3 Transaction Owner 6-4

6.2 Fixed Width Parsing 6-4

6.2.1 Header 6-4

6.2.1.1 Specifying Compound Table Names 6-5

6.2.1.2 Specifying timestamp Formats 6-5

6.2.1.3 Specifying the Function 6-6

6.2.2 Header and Record Data Type Translation 6-6

6.2.3 Key identification 6-7

6.2.4 Using a Source Definition File 6-7

6.3 Delimited Parsing 6-8

6.3.1 Metadata Columns 6-9

6.3.2 Parsing Properties 6-9

6.3.2.1 Properties to Describe Delimiters 6-9

6.3.2.2 Properties to Describe Values 6-10

6.3.2.3 Properties to Describe Date and Time 6-10

6.3.3 Parsing Steps 6-10

6.4 XML Parsing 6-10

6.4.1 Styles of XML 6-10

6.4.2 XML Parsing Rules 6-11

6.4.3 XPath Expressions 6-12

6.4.3.1 Supported Constructs: 6-12

6.4.3.2 Supported Expressions 6-13

6.4.3.3 Obtaining Data Values 6-13

6.4.4 Other Value Expressions 6-14

6.4.5 Transaction Rules 6-14

6.4.6 Operation Rules 6-15

6.4.7 Column Rules 6-16

6.4.8 Overall Rules Example 6-17

7 Message Capture Properties

7.1 Logging and Connection Properties 7-1

7.1.1 Logging Properties 7-1

7.1.1.1 gg.log 7-1

v

7.1.1.2 gg.log.level 7-1

7.1.1.3 gg.log.file 7-2

7.1.1.4 gg.log.classpath 7-2

7.1.2 JMS Connection Properties 7-2

7.1.2.1 jvm.boot options 7-2

7.1.2.2 jms.report.output 7-2

7.1.2.3 jms.report.time 7-3

7.1.2.4 jms.report.records 7-3

7.1.2.5 jms.id 7-3

7.1.2.6 jms.destination 7-4

7.1.2.7 jms.connectionFactory 7-4

7.1.2.8 jms.user, jms.password 7-4

7.1.3 JNDI Properties 7-4

7.2 Parser Properties 7-5

7.2.1 Setting the Type of Parser 7-5

7.2.1.1 parser.type 7-5

7.2.2 Fixed Parser Properties 7-5

7.2.2.1 fixed.schematype 7-5

7.2.2.2 fixed.sourcedefs 7-5

7.2.2.3 fixed.copybook 7-6

7.2.2.4 fixed.header 7-6

7.2.2.5 fixed.seqid 7-6

7.2.2.6 fixed.timestamp 7-6

7.2.2.7 fixed.timestamp.format 7-7

7.2.2.8 fixed.txid 7-7

7.2.2.9 fixed.txowner 7-7

7.2.2.10 fixed.txname 7-7

7.2.2.11 fixed.optype 7-8

7.2.2.12 fixed.optype.insertval 7-8

7.2.2.13 fixed.optype.updateval 7-8

7.2.2.14 fixed.optype.deleteval 7-8

7.2.2.15 fixed.table 7-8

7.2.2.16 fixed.schema 7-9

7.2.2.17 fixed.txind 7-9

7.2.2.18 fixed.txind.beginval 7-9

7.2.2.19 fixed.txind.middleval 7-9

7.2.2.20 fixed.txind.endval 7-9

7.2.2.21 fixed.txind.wholeval 7-10

7.2.3 Delimited Parser Properties 7-10

7.2.3.1 delim.sourcedefs 7-10

7.2.3.2 delim.header 7-10

vi

7.2.3.3 delim.seqid 7-10

7.2.3.4 delim.timestamp 7-11

7.2.3.5 delim.timestamp.format 7-11

7.2.3.6 delim.txid 7-11

7.2.3.7 delim.txowner 7-12

7.2.3.8 delim.txname 7-12

7.2.3.9 delim.optype 7-12

7.2.3.10 delim.optype.insertval 7-12

7.2.3.11 delim.optype.updateval 7-12

7.2.3.12 delim.optype.deleteval 7-13

7.2.3.13 delim.schemaandtable 7-13

7.2.3.14 delim.schema 7-13

7.2.3.15 delim.table 7-13

7.2.3.16 delim.txind 7-13

7.2.3.17 delim.txind.beginval 7-14

7.2.3.18 delim.txind.middleval 7-14

7.2.3.19 delim.txind.endval 7-14

7.2.3.20 delim.txind.wholeval 7-14

7.2.3.21 delim.fielddelim 7-14

7.2.3.22 delim.linedelim 7-14

7.2.3.23 delim.quote 7-15

7.2.3.24 delim.nullindicator 7-15

7.2.3.25 delim.fielddelim.escaped 7-15

7.2.3.26 delim.linedelim.escaped 7-16

7.2.3.27 delim.quote.escaped 7-16

7.2.3.28 delim.nullindicator.escaped 7-17

7.2.3.29 delim.hasbefores 7-17

7.2.3.30 delim.hasnames 7-17

7.2.3.31 delim.afterfirst 7-18

7.2.3.32 delim.isgrouped 7-18

7.2.3.33 delim.dateformat | delim.dateformat.table |
delim.dateform.table.column 7-18

7.2.4 XML Parser Properties 7-19

7.2.4.1 xml.sourcedefs 7-19

7.2.4.2 xml.rules 7-19

7.2.4.3 rulename.type 7-19

7.2.4.4 rulename.match 7-19

7.2.4.5 rulename.subrules 7-20

7.2.4.6 txrule.timestamp 7-20

7.2.4.7 txrule.timestamp.format 7-20

7.2.4.8 txrule.seqid 7-21

vii

7.2.4.9 txrule.txid 7-21

7.2.4.10 txrule.txowner 7-21

7.2.4.11 txrule.txname 7-22

7.2.4.12 oprule.timestamp 7-22

7.2.4.13 oprule.timestamp.format 7-22

7.2.4.14 oprule.seqid 7-22

7.2.4.15 oprule.txid 7-23

7.2.4.16 oprule.txowner 7-23

7.2.4.17 oprule.txname 7-23

7.2.4.18 oprule.schemandtable 7-23

7.2.4.19 oprule.schema 7-24

7.2.4.20 oprule.table 7-24

7.2.4.21 oprule.optype 7-24

7.2.4.22 oprule.optype.insertval 7-24

7.2.4.23 oprule.optype.updateval 7-24

7.2.4.24 oprule.optype.deleteval 7-25

7.2.4.25 oprule.txind 7-25

7.2.4.26 oprule.txind.beginval 7-25

7.2.4.27 oprule.txind.middleval 7-25

7.2.4.28 oprule.txind.endval 7-25

7.2.4.29 oprule.txind.wholeval 7-26

7.2.4.30 colrule.name 7-26

7.2.4.31 colrule.index 7-26

7.2.4.32 colrule.value 7-26

7.2.4.33 colrule.isnull 7-27

7.2.4.34 colrule.ismissing 7-27

7.2.4.35 colrule.before.value 7-27

7.2.4.36 colrule.before.isnull 7-27

7.2.4.37 colrule.before.ismissing 7-27

7.2.4.38 colrule.after.value 7-28

7.2.4.39 colrule.after.isnull 7-28

7.2.4.40 colrule.after.ismissing 7-28

Part III Oracle GoldenGate Java Delivery

8 Configuring Java Delivery

8.1 Configuring the JRE in the Properties File 8-1

8.2 Configuring Oracle GoldenGate for Java Delivery 8-1

8.2.1 Configuring a Replicat for Java Delivery 8-2

viii

8.3 Configuring the Java Handlers 8-3

9 Running Java Delivery

9.1 Starting the Application 9-1

9.1.1 Starting Using Replicat 9-1

9.2 Restarting the Java Delivery 9-1

9.2.1 Restarting Java Delivery in Replicat 9-2

10

Configuring Event Handlers

10.1 Specifying Event Handlers 10-1

10.2 JMS Handler 10-2

10.3 File Handler 10-3

10.4 Custom Handlers 10-3

10.5 Formatting the Output 10-3

10.6 Reporting 10-3

11

Java Delivery Properties

11.1 Common Properties 11-1

11.1.1 Logging Properties 11-1

11.1.1.1 gg.log 11-1

11.1.1.2 gg.log.level 11-1

11.1.1.3 gg.log.file 11-2

11.1.1.4 gg.log.classpath 11-2

11.1.2 JVM Boot Options 11-2

11.1.2.1 jvm.bootoptions 11-2

11.2 Delivery Properties 11-3

11.2.1 General Properties 11-3

11.2.1.1 goldengate.userexit.writers 11-3

11.2.1.2 goldengate.userexit.chkptprefix 11-3

11.2.1.3 goldengate.userexit.nochkpt 11-3

11.2.1.4 goldengate.userexit.usetargetcols 11-3

11.2.2 Statistics and Reporting 11-4

11.2.2.1 jvm.stats.time | jvm.stats.numrecs 11-4

11.3 Java Application Properties 11-4

11.3.1 Properties for All Handlers 11-4

11.3.1.1 gg.handlerlist 11-4

11.3.1.2 gg.handler.name.type 11-5

11.3.2 Properties for Formatted Output 11-5

11.3.2.1 gg.handler.name.format 11-5

ix

11.3.2.2 gg.handler.name.includeTables 11-6

11.3.2.3 gg.handler.name.excludeTables 11-7

11.3.2.4 gg.handler.name.mode, gg.handler.name.format.mode 11-7

11.3.3 Properties for CSV and Fixed Format Output 11-7

11.3.3.1 gg.handler.name.format.delim 11-7

11.3.3.2 gg.handler.name.format.quote 11-7

11.3.3.3 gg.handler.name.format.metacols 11-7

11.3.3.4 gg.handler.name.format.missingColumnChar 11-8

11.3.3.5 gg.handler.name.format.presentColumnChar 11-8

11.3.3.6 gg.handler.name.format.nullColumnChar 11-8

11.3.3.7 gg.handler.name.format.beginTxChar 11-8

11.3.3.8 gg.handler.name.format.middleTxChar 11-9

11.3.3.9 gg.handler.name.format.endTxChar 11-9

11.3.3.10 gg.handler.name.format.wholeTxChar 11-9

11.3.3.11 gg.handler.name.format.insertChar 11-9

11.3.3.12 gg.handler.name.format.updateChar 11-9

11.3.3.13 gg.handler.name.format.deleteChar 11-9

11.3.3.14 gg.handler.name.format.truncateChar 11-9

11.3.3.15 gg.handler.name.format.endOfLine 11-9

11.3.3.16 gg.handler.name.format.justify 11-10

11.3.3.17 gg.handler.name.format.includeBefores 11-10

11.3.4 File Writer Properties 11-10

11.3.4.1 gg.handler.name.file 11-10

11.3.4.2 gg.handler.name.append 11-10

11.3.4.3 gg.handler.name.rolloverSize 11-10

11.3.5 JMS Handler Properties 11-10

11.3.5.1 Standard JMS Settings 11-11

11.3.5.2 Group Transaction Properties 11-13

11.3.6 JNDI Properties 11-14

11.3.7 General Properties 11-14

11.3.7.1 gg.classpath 11-14

11.3.7.2 gg.report.time 11-14

11.3.7.3 gg.binaryencoding 11-15

11.3.8 Java Delivery Transaction Grouping 11-15

12

Developing Custom Filters, Formatters, and Handlers

12.1 Filtering Events 12-1

12.2 Custom Formatting 12-1

12.2.1 Coding a Custom Formatter in Java 12-1

12.2.2 Using a Velocity Template 12-3

x

12.3 Coding a Custom Handler in Java 12-3

12.4 Additional Resources 12-6

Part IV Troubleshooting the Oracle GoldenGate Adapters

13

Troubleshooting the Java Adapters

13.1 Checking for Errors 13-1

13.2 Reporting Issues 13-2

A List of Included Examples

xi

Preface

This guide contains information about configuring, and running Oracle GoldenGate for
Big Data to extend the capabilities of Oracle GoldenGate instances.

Audience
This guide is intended for system administrators who are configuring and running
Oracle GoldenGate for Big Data.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Related Information
The Oracle GoldenGate Product Documentation Libraries are found at:

https://docs.oracle.com/en/middleware/goldengate/index.html

Additional Oracle GoldenGate information, including best practices, articles, and
solutions, is found at:

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/goldengate/index.html

Oracle GoldenGate A-Team Chronicles

Preface

xiii

http://www.ateam-oracle.com/category/data-integration/di-ogg/

Part I
Understanding Oracle GoldenGate for Big
Data

This part of the book describes the concepts and basic structure of the Oracle
GoldenGate for Big Data.

1
Understanding the Java Adapter and
Oracle GoldenGate for Big Data

1.1 Overview
This section provides an overview of the Oracle GoldenGate Adapters.

1.1.1 Oracle GoldenGate Features
The Oracle GoldenGate Java Adapter integrates with Oracle GoldenGate instances.

The Oracle GoldenGate product enables you to:

• Captures transactional changes from a source database

• Sends and queues these changes as a set of database-independent files called
the Oracle GoldenGate trail

• Optionally alters the source data using mapping parameters and functions

• Applies the transactions in the trail to a target system database

Oracle GoldenGate performs this capture and apply in near real-time across
heterogeneous databases, platforms, and operating systems.

1.1.2 Adapter Integration Options
There are two major products which are based on the Oracle GoldenGate Adapter
architecture:

• The Oracle GoldenGate Java Adapter is the overall framework. This product
allows you to implement custom code to handle Oracle GoldenGate trail records
according to their specific requirements. It comes built-in with Oracle GoldenGate
File Writer module that can be used for flat file integration purposes.

• Oracle GoldenGate for Big Data. The Oracle GoldenGate for Big Data product
contains built-in support to write operation data from Oracle GoldenGate trail
records into various Big Data targets (such as, HDFS, HBase, Kafka, Flume,
JDBC, Cassandra, and MongoDB). You do not need to write custom code to
integrate with Big Data applications. The functionality is separated into handlers
that integrate with third party applications and formatters, which transform the data
into various formats, such as Avro, JSON, delimited text, and XML. In certain
instances, the integration to a third-party tool is proprietary, like the HBase API. In
these instances, the formatter exists without an associated handler.

The Oracle GoldenGate Java Adapter and the Oracle GoldenGate for Big Data
products have some crossover in functionality so the handler exists without an
associated formatter. The following list details the major areas of functionality and
in which product or products the functionality is included:

1-1

• Read JMS messages and deliver them as an Oracle GoldenGate trail. This feature
is included in both Oracle GoldenGate Adapters and Oracle GoldenGate for Big
Data products.

• Read an Oracle GoldenGate trail and deliver transactions to a JMS provider or
other messaging system or custom application. This feature is included in both
Oracle GoldenGate Adapters and Oracle GoldenGate for Big Data products.

• Read an Oracle GoldenGate trail and write transactions to a file that can be
used by other applications. This feature is only included in the Oracle GoldenGate
Adapters product.

• Read an Oracle GoldenGate trail and write transactions to a Big Data targets. The
Big Data integration features are only included in the Oracle GoldenGate for Big
Data product.

1.1.2.1 Capturing Transactions to a Trail
Oracle GoldenGate message capture can be used to read messages from a queue
and communicate with an Oracle GoldenGate Extract process to generate a trail
containing the processed data.

The message capture processing is implemented as a Vendor Access Module (VAM)
plug-in to a generic Extract process. A set of properties, rules and external files
provide messaging connectivity information and define how messages are parsed and
mapped to records in the target Oracle GoldenGate trail.

Currently this adapter supports capturing JMS text messages.

1.1.2.2 Applying Transactions from a Trail
Oracle GoldenGate Java Adapter delivery can be used to apply transactional changes
to targets other than a relational database: for example, ETL tools (DataStage, Ab
Initio, Informatica), JMS messaging, Big Data Applications, or custom APIs. There are
a variety of options for integration with Oracle GoldenGate:

• Flat file integration: predominantly for ETL, proprietary or legacy applications,
Oracle GoldenGate File Writer can write micro batches to disk to be consumed
by tools that expect batch file input. The data is formatted to the specifications of
the target application such as delimiter separated values, length delimited values,
or binary. Near real-time feeds to these systems are accomplished by decreasing
the time window for batch file rollover to minutes or even seconds.

• Messaging: transactions or operations can be published as messages (for
example, in XML) to JMS. The JMS provider is configurable to work with multiple
JMS implementation; examples include ActiveMQ, JBoss Messaging, TIBCO,
Oracle WebLogic JMS, WebSphere MQ, and others.

• Java API: custom handlers can be written in Java to process the transaction,
operation and metadata changes captured by Oracle GoldenGate on the source
system. These custom Java handlers can apply these changes to a third-party
Java API exposed by the target system.

• Big Data integration: writing transaction data from the source trail files into various
Big Data targets can be achieved by means of setting configuration properties.
The Oracle GoldenGate for Big Data product contains built in Big Data handlers to
write to HDFS, HBase, Kafka, and Flume targets.

Chapter 1
Overview

1-2

All four options have been implemented as extensions to the core Oracle GoldenGate
product.

• For Java integration using either JMS or the Java API, use Oracle GoldenGate for
Java.

• For Big Data integration, you can configure Oracle GoldenGate Replicat to
integrate with the Oracle GoldenGate Big Data module. Writing to Big Data
targets in various formats can be configured using a set of properties with no
programming required.

1.2 Using Oracle GoldenGate Java Adapter Properties
The Oracle GoldenGate Java Adapters, Big Data Handlers, and formatters are
configured through predefined properties. These properties are stored in a separate
properties file called the Adapter Properties file. Oracle GoldenGate functionality
requires that the Replicat process configuration files must be in the dirprm directory
and that configuration files must adhere to the following naming conventions:

Replicat process name.prm

It is considered to be a best practice that the Adapter Properties files are also located
in the dirprm directory and that the Adapter Properties files adhere to one of the
following naming conventions:

Replicat process name.props

or

Replicat process name.properties

1.2.1 Values in Property Files
All properties in Oracle GoldenGate Adapter property files are of the form:

property.name=value

1.2.2 Location of Property Files
Sample Oracle GoldenGate Adapter properties files are installed to the
AdapterExamples subdirectory of the installation directory. These files should be
copied, renamed, and the contents modified as needed and then moved to the dirprm
subdirectory.

You must specify each of these property files through parameters or environmental
variables as explained below. These settings allow you to change the name or
location, but it is recommended that you follow the best practice for naming and
location.

The following sample files are included:

• ffwriter.properties

This stores the properties for the file writer. It is set with the CUSEREXIT parameter.

• jmsvam.properties

Chapter 1
 Using Oracle GoldenGate Java Adapter Properties

1-3

This stores properties for the JMS message capture VAM. This is set with the
Extract VAM parameter.

• javaue.properties

This stores properties for the Java application used for message delivery. It is set
through the environmental variable:

The name and location of the Adapter properties file is resolved by configuration in
the Replicat process properties file.

The following explains how to resolve the name and location of the Adapter
Properties file in the Replicat process.

TARGETDB LIBFILE libggjava.so SET property=dirprm/javaue.properties

1.2.3 Using Comments in the Property File
Comments can be entered in the properties file with the # prefix at the beginning of
the line. For example:

This is a property comment
some.property=value

Properties themselves can also be commented. This allows testing configurations
without losing previous property settings.

1.2.4 Variables in Property Names
Some properties have a variable in the property name. This allows identification of
properties that are to be applied only in certain instances.

For example, you can declare more than one file writer using
goldengate.flatfilewriter.writers property and then use the name of the file
writer to set the properties differently:

1. Declare two file writers named writer and writer2:

goldengate.flatfilewriter.writers=writer,writer2

2. Specify the properties for each of the file writers:

writer.mode=dsv
writer.files.onepertable=true
writer2.mode=ldv
writer2.files.onpertable=false

1.3 Monitoring Performance
For more information about monitoring the performance, see Monitoring Performance
in Using Oracle GoldenGate Microservices Architecture.

1.4 Oracle GoldenGate Documentation
For information on installing and configuring the core Oracle GoldenGate software
for use with the Oracle GoldenGate adapter products, see the Oracle GoldenGate
documentation:

Chapter 1
Monitoring Performance

1-4

https://docs.oracle.com/en/middleware/goldengate/core/19.1/using/monitoring-performance.html#GUID-FC807565-C797-4202-A1C3-E788AEB689C5

• Installation and Setup guides: There is one such guide for each database
that is supported by Oracle GoldenGate. It contains system requirements, pre-
installation and post-installation procedures, installation instructions, and other
system-specific information for installing the Oracle GoldenGate replication
solution.

• Administering Oracle GoldenGate: Explains how to plan for, configure, and
implement the Oracle GoldenGate replication solution on the Windows and UNIX
platforms.

• Reference for Oracle GoldenGate: Contains detailed information about Oracle
GoldenGate parameters, commands, and functions for the Windows and UNIX
platforms.

Chapter 1
Oracle GoldenGate Documentation

1-5

2
Introducing the Java Adapter

2.1 Oracle GoldenGate VAM Message Capture
Oracle GoldenGate VAM Message Capture only works with the Oracle GoldenGate
Extract process. Oracle GoldenGate message capture connects to JMS messaging to
parse messages and send them through a VAM interface to an Oracle GoldenGate
Extract process that builds an Oracle GoldenGate trail of message data. This allows
JMS messages to be delivered to an Oracle GoldenGate system running for a target
database. Java 8 is a required dependency for Oracle GoldenGate VAM Message
Capture.

Using Oracle GoldenGate JMS message capture requires the dynamically linked
shared VAM library that is attached to the Oracle GoldenGate Extract process.

In a situation where a trail definition file is required to parse the resulting trail written
by the Extract process, a separate utility, gendef, can be used to create an Oracle
GoldenGate source definitions file.

2.1.1 Message Capture Configuration Options
The options for configuring the three parts of message capture are:

• Message connectivity: Values in the property file set connection properties such
as the Java classpath for the JMS client, the JMS source destination name, JNDI
connection properties, and security information.

• Parsing: Values in the property file set parsing rules for fixed width, comma
delimited, or XML messages. This includes settings such as the delimiter to be
used, values for the beginning and end of transactions and the date format.

• VAM interface: Parameters that identify the VAM, dll, or so library and a property
file are set for the Oracle GoldenGate core Extract process.

2.1.2 Typical Configuration
The following diagram shows a typical configuration for capturing JMS messages.

2-1

Figure 2-1 Configuration for JMS Message Capture

In this configuration, JMS messages are picked up by the Oracle GoldenGate Adapter
JMS Handler and transferred using the adapter's message capture VAM to an Extract
process. The Extract writes the data to a trail which is sent over the network by a Data
Pump Extract to an Oracle GoldenGate target instance. The target Replicat then uses
the trail to update the target database.

2.2 Oracle GoldenGate Java Delivery
Through the Oracle GoldenGate Java API, transactional data captured by Oracle
GoldenGate can be delivered to targets other than a relational database, such as
a JMS (Java Message Service), files written to disk, streaming data to a Big Data
application, or integration with a custom application Java API. Oracle GoldenGate
Java Delivery can work with either an Extract or Replicat process. Using the Oracle
GoldenGate Replicat process is considered the best practice. Oracle GoldenGate
Java Delivery requires Java 8 as a dependency.

Oracle GoldenGate for Java provides the ability to execute Java code from the
Oracle GoldenGate Replicat process. Using Oracle GoldenGate for Java requires the
following conditions to be met:

• A dynamically linked or shared library, implemented in C/C++, integrating an
extension module of Oracle GoldenGate Replicat process.

• A set of Java libraries (JARs), which comprise the Oracle GoldenGate Java API.
This Java framework communicates with the Replicat through the Java Native
Interface (JNI).

Chapter 2
Oracle GoldenGate Java Delivery

2-2

• Java 8 must be installed and accessible on the machine hosting the Oracle
GoldenGate Java Delivery process or processes. Environmental variables must
be correctly set to resolve Java and its associated libraries.

Figure 2-2 Configuration for Delivering JMS Messages

2.3 Delivery Configuration Options
The Java delivery module is loaded by the GoldenGate Replicat process, which
is configured using the Replicat parameter file. Upon loading, the Java Delivery
module is subsequently configured based on the configuration present in the Adapter
Properties file. Application behavior can be customized by:

• Editing the property files; for example to:

– Set target types, host names, port numbers, output file names, JMS
connection settings;

– Turn on/off debug-level logging, and so on.

– Identify which message format should be used.

• Records can be custom formatted by:

– Setting properties for the pre-existing format process (for fixed-length or field-
delimited message formats, XML, JSON, or Avro formats);

Chapter 2
Delivery Configuration Options

2-3

– Customizing message templates, using the Velocity template macro language;

– (Optional) Writing custom Java code.

• (Optional) Writing custom Java code to provide custom handling of transactions
and operations, do filtering, or implementing custom message formats.

There are existing implementations (handlers) for sending messages using JMS and
for writing out files to disk. For Big Data targets, there are built in integration handlers
to write to supported databases.

There are several predefined message formats for sending the messages (for
example, XML or field-delimited); or custom formats can be implemented using
templates. Each handler has documentation that describes its configuration properties;
for example, a file name can be specified for a file writer, and a JMS queue name can
be specified for the JMS handler. Some properties apply to more than one handler; for
example, the same message format can be used for JMS and files.

Chapter 2
Delivery Configuration Options

2-4

3
Configuring Logging

3.1 Oracle GoldenGate Java Adapter Default Logging
Logging is set up by default for the Oracle GoldenGate Adapters.

3.1.1 Default Implementation Type
The default type of implementation for the Oracle GoldenGate Adapters is the jdk
option. This is the built-in Java logging called java.util.logging.

3.1.2 Default Message Logging
The default log file is created in the standard report directory. It is named for the
associated Replicat process. Problems are logged to the report file and the log file.

3.1.3 Log File Name
By default log files are written to the installation_directory/dirrpt directory. The
name of the log file includes the Replicat group_name and it has an extension of log.

3.1.4 Logging Problems
An overview of a problem is written to the Replicat Report file and the details of the
problem are written to the log file.

3.2 Recommended Logging Settings
Oracle recommends that you use log4j logging instead of the JDK default for unified
logging for the Java user exit. Using log4j provides unified logging for the Java module
when running with the Oracle GoldenGate Replicat process.

3.2.1 Changing to the Recommended Logging Type
To change the recommended log4j logging implementation, add the configuration
shown in the following example to the Java Adapter Properties file.

gg.log=log4j
gg.log.level=info

The gg.log level can be set to none, error, warn, info, debug, or trace. The
default log level is info. The debug and trace log levels are only recommended for
troubleshooting as these settings can adversely affect performance.

3-1

The result is that a log file for the Java module will be created in the dirrpt directory
with the following naming convention:

<process name>_<log level>log4j.log

Therefore if the Oracle GoldenGate Replicat process is called javaue, and the
gg.log.level is set to debug, the resulting log file name is:

javaue_debug_log4j.log

Chapter 3
Recommended Logging Settings

3-2

4
Automatic Heartbeat for Big Data

This chapter describes how to enable Heartbeat for Oracle GoldenGate for Big Data
and how to manage and modify heartbeat across the replication environment.

4.1 Overview
To enable HEARTBEATTABLE for Oracle GoldenGate for BigData, you need to:

• Specify GGSCHEMA in GLOBALS with any value, for example, GGSCHEMA GGADMIN.

• Execute ADD HEARTBEATTABLE from GGSCI.

In Oracle GoldenGate for RDBMS, the HEARTBEATTABLE records are applied
to the following target HEARTBEATTABLE tables: GGADMIN.GG_HEARTBEAT and
GGADMIN.GG_HEARBEAT_HISTORY.

Two Modes of HEARTBEATTABLE in Oracle GoldenGate for Big Data

In mode1, the records that are handled by Oracle GoldenGate for Big Data are written
to HEARTBEATTABLE files. For example,
Table GGADMIN.GG_HEARTBEAT is stored in file dirtmp/<replicat name>-hb.json.
Here, the records are written to the replicat file hb.json.

Table GGADMIN.GG_HEARTBEAT_HISTORY is stored in dirtmp/<replicat-name>-hb-
<date>.json. Here, the History records re written to the hb-<date>.json file.

Mode 2 is passthrough that enables you to send a statement directly to a non-Oracle
system, such as Kafka without first being interpreted by Big Data.

To apply HEARTBEATTABLE as user data:

• Disable HEARTBEATTABLE by specifying DISABLEHEARTBEATTABLE in the replicat
parameter file.

• Specify HEARTBEATTABLE tables in the replicat MAP statements:

MAP GGADMIN.GG_HEARTBEAT, TARGET
GGADMIN.GG_HEARTBEAT;
MAP GGADMIN.GG_HEARTBEAT_HISTORY, TARGET
GGADMIN.GG_HEARTBEAT_HISTORY;

When applied as user data, the HEARTBEAT records GG_HEARTBEAT and
GG_HEARTBEAT_HISTORY are written to the handler as if they are user tables. The
HEARTBEAT records are not stored in tables like RDBMS, but in .json files.

4-1

4.2 Automatic Heartbeat Tables

4.2.1 ADD HEARTBEATTABLE

ADD HEARTBEATTABLE
[, RETENTION_TIME number in days] |
[, PURGE_FREQUENCY number in days]

RETENTION_TIME
Specifies when heartbeat entries older than the retention time in the history table are
purged. The default is 30 days.

PURGE FREQUENCY
Specifies how often the purge scheduler is run to delete table entries that are older
than the retention time from the heartbeat history. The default is 1 day.

Example:

GGSCI > ADD HEARTBEATTABLE
HEARTBEAT is now enabled:
HEARTBEAT configuration file in dirprm\heartbeat.properties
heartbeat.enabled=true
heartbeat.frequency=60
heartbeat.retention_time=30
heartbeat.purge.frequency=1
heartbeat.db.name=BigData

4.2.2 ALTER HEARTBEAT TABLE

ALTER HEARTBEATTABLE

[, RETENTION_TIME number in days] |

[, PURGE_FREQUENCY number in days]

RETENTION_TIME
Update heartbeat.retention_time in dirprm/heartbeat.properties; will take affect
on the next restart.

PURGE_FREQUENCY
Specifies how often entries older than the retention time are purged from the
GG_HEARTBEAT_HISTORY. The default is 1 day.

4.2.3 INFO HEARTBEATTABLE
Example

HEARTBEAT configuration file dirprm\heartbeat.properties
heartbeat.enabled=true
heartbeat.frequency=60
heartbeat.retention_time=30

Chapter 4
Automatic Heartbeat Tables

4-2

heartbeat.purge.frequency=1
heartbeat.db.name=BigData

4.2.4 LAG
LAG <replicat name>

Example

GGSCI> LAG rtpc
Lag Information From Heartbeat Table
LAG AGE FROM TO PATH
5.77s 10m 22.87s ORCL BIGDATA ETPC ==> PTPC ==>
RTPC

LAG <replicat name> HISTORY

GGSCI> LAG rtpc HISTORY

Example

Lag Information From Heartbeat Table
LAG AGE FROM TO PATH
5.77s 10m 22.87s ORCL ORCL ETPC ==> PTPC ==> RTPC
Lag History
DATE MIN AVG MAX
2018-07-01 5.77s 5.90s 6.20s
2018-07-02 6.77s 6.90s 7.20s
2018-07-03 7.77s 7.90s 8.20s
2018-07-04 8.77s 9.90s 9.20s

4.2.5 DELETE HEARTBEATTABLE
DELETE HEARTBEATTABLE

Example

GGSCI> DELETE HEARTBEATTABLE

Chapter 4
Automatic Heartbeat Tables

4-3

Part II
Capturing JMS Messages

This part of the book explains using the Oracle GoldenGate Adapter to capture Java
Message Service (JMS) messages to be written to an Oracle GoldenGate trail.

5
Configuring Message Capture

This chapter explains how to configure the VAM Extract to capture JMS messages.

5.1 Configuring the VAM Extract
JMS Capture only works with the Oracle GoldenGate Extract process. To run the Java
message capture application you need the following:

• Oracle GoldenGate for Java Adapter

• Extract process

• Extract parameter file configured for message capture

• Description of the incoming data format, such as a source definitions file.

• Java 8 installed on the host machine

5.1.1 Adding the Extract
To add the message capture VAM to the Oracle GoldenGate installation, add an
Extract and the trail that it will create using GGSCI commands:

ADD EXTRACT jmsvam, VAM
ADD EXTTRAIL dirdat/id, EXTRACT jmsvam, MEGABYTES 100

The process name (jmsvam) can be replaced with any process name that is no more
than 8 characters. The trail identifier (id) can be any two characters.

Note:

Commands to position the Extract, such as BEGIN or EXTRBA, are not
supported for message capture. The Extract will always resume by reading
messages from the end of the message queue.

5.1.2 Configuring the Extract Parameters
The Extract parameter file contains the parameters needed to define and invoke the
VAM. Sample Extract parameters for communicating with the VAM are shown in the
table.

Parameter Description

EXTRACT jmsvam
The name of the Extract process.

5-1

Parameter Description

VAM ggjava_vam.dll,
PARAMS dirprm/jmsvam.properties

Specifies the name of the VAM library and the location
of the properties file. The VAM properties should be
in the dirprm directory of the Oracle GoldenGate
installation location.

TRANLOGOPTIONS VAMCOMPATIBILITY 1
Specifies the original (1) implementation of the VAM is
to be used.

TRANLOGOPTIONS GETMETADATAFROMVAM
Specifies that metadata will be sent by the VAM.

EXTTRAIL dirdat/id
Specifies the identifier of the target trail Extract
creates.

5.1.3 Configuring Message Capture
Message capture is configured by the properties in the VAM properties file (Adapter
Properties file. This file is identified by the PARAMS option of the Extract VAM parameter
and used to determine logging characteristics, parser mappings and JMS connection
settings.

5.2 Connecting and Retrieving the Messages
To process JMS messages you must configure the connection to the JMS interface,
retrieve and parse the messages in a transaction, write each message to a trail,
commit the transaction, and remove its messages from the queue.

5.2.1 Connecting to JMS
Connectivity to JMS is through a generic JMS interface. Properties can be set to
configure the following characteristics of the connection:

• Java classpath for the JMS client

• Name of the JMS queue or topic source destination

• Java Naming and Directory Interface (JNDI) connection properties

– Connection properties for Initial Context

– Connection factory name

– Destination name

• Security information

– JNDI authentication credentials

– JMS user name and password

The Extract process that is configured to work with the VAM (such as the jmsvam in the
example) will connect to the message system. when it starts up.

Chapter 5
Connecting and Retrieving the Messages

5-2

Note:

The Extract may be included in the Manger's AUTORESTART list so it
will automatically be restarted if there are connection problems during
processing.

Currently the Oracle GoldenGate for Java message capture adapter supports only
JMS text messages.

5.2.2 Retrieving Messages
The connection processing performs the following steps when asked for the next
message:

• Start a local JMS transaction if one is not already started.

• Read a message from the message queue.

• If the read fails because no message exists, return an end-of-file message.

• Otherwise return the contents of the message.

5.2.3 Completing the Transaction
Once all of the messages that make up a transaction have been successfully
retrieved, parsed, and written to the Oracle GoldenGate trail, the local JMS transaction
is committed and the messages removed from the queue or topic. If there is an error
the local transaction is rolled back leaving the messages in the JMS queue.

Chapter 5
Connecting and Retrieving the Messages

5-3

6
Parsing the Message

6.1 Parsing Overview
The role of the parser is to translate JMS text message data and header properties
into an appropriate set of transactions and operations to pass into the VAM interface.
To do this, the parser always must find certain data:

• Transaction identifier

• Sequence identifier

• Timestamp

• Table name

• Operation type

• Column data specific to a particular table name and operation type

Other data will be used if the configuration requires it:

• Transaction indicator

• Transaction name

• Transaction owner

The parser can obtain this data from JMS header properties, system generated
values, static values, or in some parser-specific way. This depends on the nature of
the piece of information.

6.1.1 Parser Types
The Oracle GoldenGate message capture adapter supports three types of parsers:

• Fixed – Messages contain data presented as fixed width fields in contiguous text.

• Delimited – Messages contain data delimited by field and end of record
characters.

• XML – Messages contain XML data accessed through XPath expressions.

6.1.2 Source and Target Data Definitions
There are several ways source data definitions can be defined using a combination
of properties and external files. The Oracle GoldenGate Gendef utility generates a
standard source definitions file based on these data definitions and parser properties.
The options vary based on parser type:

• Fixed – COBOL copybook, source definitions or user defined

• Delimited – source definitions or user defined

• XML – source definitions or user defined

6-1

There are several properties that configure how the selected parser gets data and how
the source definitions are converted to target definitions.

6.1.3 Required Data
The following information is required for the parsers to translate the messages:

6.1.3.1 Transaction Identifier
The transaction identifier (txid) groups operations into transactions as they are written
to the Oracle GoldenGate trail file. The Oracle GoldenGate message capture adapter
supports only contiguous, non-interleaved transactions. The transaction identifier can
be any unique value that increases for each transaction. A system generated value
can generally be used.

6.1.3.2 Sequence Identifier
The sequence identifier (seqid) identifies each operation internally. This can be used
during recovery processing to identify operations that have already been written to
the Oracle GoldenGate trail. The sequence identifier can be any unique value that
increases for each operation. The length should be fixed.

The JMS Message ID can be used as a sequence identifier if the message identifier
for that provider increases and is unique. However, there are cases (for example,
using clustering, failed transactions) where JMS does not guarantee message order or
when the ID may be unique but not be increasing. The system generated Sequence
ID can be used, but it can cause duplicate messages under some recovery situations.
The recommended approach is to have the JMS client that adds messages to the
queue set the Message ID, a header property, or some data element to an application-
generated unique value that is increasing.

6.1.3.3 Timestamp
The timestamp (timestamp) is used as the commit timestamp of operations within the
Oracle GoldenGate trail. It should be increasing but this is not required, and it does not
have to be unique between transactions or operations. It can be any date format that
can be parsed.

6.1.3.4 Table Name
The table name is used to identify the logical table to which the column data belongs.
The adapter requires a two part table name in the form SCHEMA_NAME.TABLE_NAME. This
can either be defined separately (schema and table) or as a combination of schema
and table (schemaandtable).

A single field may contain both schema and table name, they may be in separate
fields, or the schema may be included in the software code so only the table name is
required. How the schema and table names can be specified depends on the parser.
In any case the two part logical table name is used to write records in the Oracle
GoldenGate trail and to generate the source definitions file that describes the trail.

Chapter 6
Parsing Overview

6-2

6.1.3.5 Operation Type
The operation type (optype) is used to determine whether an operation is an insert,
update or delete when written to the Oracle GoldenGate trail. The operation type value
for any specific operation is matched against the values defined for each operation
type.

The data written to the Oracle GoldenGate trail for each operation type depends on
the Extract configuration:

• Inserts

– The after values of all columns are written to the trail.

• Updates

– Default – The after values of keys are written. The after values of columns
that have changed are written if the before values are present and can be
compared. If before values are not present then all columns are written.

– NOCOMPRESSUPDATES – The after values of all columns are written to the trail.

– GETUPDATEBEFORES – The before and after values of columns that have
changed are written to the trail if the before values are present and can be
compared. If before values are not present only after values are written.

– If both NOCOMPRESSUPDATES and GETUPDATEBEFORES are included, the before
and after values of all columns are written to the trail if before values are
present

• Deletes

– Default – The before values of all keys are written to the trail.

– NOCOMPRESSDELETES – The before values of all columns are written to the trail.

Primary key update operations may also be generated if the before values of keys are
present and do not match the after values.

6.1.3.6 Column Data
All parsers retrieve column data from the message text and write it to the Oracle
GoldenGate trail. In some cases the columns are read in index order as defined by the
source definitions, in other cases they are accessed by name.

Depending on the configuration and original message text, both before and after or
only after images of the column data may be available. For updates, the data for
non-updated columns may or may not be available.

All column data is retrieved as text. It is converted internally into the correct data type
for that column based on the source definitions. Any conversion problem will result in
an error and the process will abend.

6.1.4 Optional Data
The following data may be included, but is not required.

Chapter 6
Parsing Overview

6-3

6.1.4.1 Transaction Indicator
The relationship of transactions to messages can be:

• One transaction per message

This is determined automatically by the scope of the message.

• Multiple transactions per message

This is determined by the transaction indicator (txind). If there is no transaction
indicator, the XML parser can create transactions based on a matching transaction
rule.

• Multiple messages per transaction

The transaction indicator (txind) is required to specify whether the operation is the
beginning, middle, end or the whole transaction. The transaction indicator value for
any specific operation is matched against the values defined for each transaction
indicator type. A transaction is started if the indicator value is beginning or whole,
continued if it is middle, and ended if it is end or whole.

6.1.4.2 Transaction Name
The transaction name (txname) is optional data that can be used to associate an
arbitrary name to a transaction. This can be added to the trail as a token using a
GETENV function.

6.1.4.3 Transaction Owner
The transaction owner (txowner) is optional data that can be used to associate an
arbitrary user name to a transaction. This can be added to the trail as a token using
a GETENV function, or used to exclude certain transactions from processing using the
EXCLUDEUSER Extract parameter.

6.2 Fixed Width Parsing
Fixed width parsing is based on a data definition that defines the position and the
length of each field. This is in the format of a Cobol copybook. A set of properties
define rules for mapping the copybook to logical records in the Oracle GoldenGate trail
and in the source definitions file.

The incoming data should consist of a standard format header followed by a data
segment. Both should contain fixed width fields. The data is parsed based on the PIC
definition in the copybook. It is written to the trail translated as explained in Header
and Record Data Type Translation.

6.2.1 Header
The header must be defined by a copybook 01 level record that includes the following:

• A commit timestamp or a change time for the record

• A code to indicate the type of operation: insert, update, or delete

• The copybook record name to use when parsing the data segment

Chapter 6
Fixed Width Parsing

6-4

Any fields in the header record that are not mapped to Oracle GoldenGate header
fields are output as columns.

The following example shows a copybook definition containing the required header
values

Example 6-1 Specifying a Header

01 HEADER.
20 Hdr-Timestamp PIC X(23)
20 Hdr-Source-DB-Function PIC X
20 Hdr-Source-DB-Rec-ID PIC X(8)

For the preceding example, you must set the following properties:

fixed.header=HEADER
fixed.timestamp=Hdr-Timestamp
fixed.optype=Hdr-Source-DB-Function
fixed.table=Hdr-Source-DB-Rec-Id

The logical name table output in this case will be the value of Hdr-Source-DB-Rec-Id.

6.2.1.1 Specifying Compound Table Names
More than one field can be used for a table name. For example, you can define the
logical schema name through a static property such as:

fixed.schema=MYSCHEMA

You can then add a property that defines the data record as multiple fields from the
copybook header definition.

Example 6-2 Specifying Compound Table Names

01 HEADER.
 20 Hdr-Source-DB PIC X(8).
 20 Hdr-Source-DB-Rec-Id PIC X(8).
 20 Hdr-Source-DB-Rec-Version PIC 9(4).
 20 Hdr-Source-DB-Function PIC X.
 20 Hdr-Timestamp PIC X(22).

For the preceding example, you must set the following properties:

fixed.header=HEADER
fixed.table=Hdr-Source-DB-Rec-Id,Hdr-Source-DB-Rec-Version
fixed.schema=MYSCHEMA

The fields will be concatenated to result in logical schema and table names of the
form:

MYSCHEMA.Hdr-Source-DB-Rec-Id+Hdr-Source-DB-Rec-Version

6.2.1.2 Specifying timestamp Formats
A timestamp is parsed using the default format YYYY-MM-DD HH:MM:SS.FFF, with FFF
depending on the size of the field.

Specify different incoming formats by entering a comment before the datetime field as
shown in the next example.

Chapter 6
Fixed Width Parsing

6-5

Example 6-3 Specifying timestamp formats

01 HEADER.
* DATEFORMAT YYYY-MM-DD-HH.MM.SS.FF
 20 Hdr-Timestamp PIC X(23)

6.2.1.3 Specifying the Function
Use properties to map the standard Oracle GoldenGate operation types to the optype
values. The following example specifies that the operation type is in the Hdr-Source-
DB-Function field and that the value for insert is A, update is U and delete is D.

Example 6-4 Specifying the Function

fixed.optype=Hdr-Source-DB-Function
fixed.optype.insert=A
fixed.optype.update=U
fixed.optype.delete=D

6.2.2 Header and Record Data Type Translation
The data in the header and the record data are written to the trail based on the
translated data type.

• A field definition preceded by a date format comment is translated to an Oracle
GoldenGate datetime field of the specified size. If there is no date format
comment, the field will be defined by its underlying data type.

• A PIC X field is translated to the CHAR data type of the indicated size.

• A PIC 9 field is translated to a NUMBER data type with the defined precision and
scale. Numbers that are signed or unsigned and those with or without decimals
are supported.

The following examples show the translation for various PIC definitions.

Input Output

PIC XX CHAR(2)

PIC X(16) CHAR(16)

PIC 9(4) NUMBER(4)

* YYMMDD
PIC 9(6)

DATE(10)
YYYY-MM-DD

PIC 99.99 NUMBER(4,2)

In the example an input YYMMDD date of 100522 is translated to 2010-05-22. The
number 1234567 with the specified format PIC 9(5)V99 is translated to a seven digit
number with two decimal places, or 12345.67.

Chapter 6
Fixed Width Parsing

6-6

6.2.3 Key identification
A comment is used to identify key columns within the data record. The Gendef utility
that generates the source definitions uses the comment to locate a key column.

In the following example Account has been marked as a key column for TABLE1.

01 TABLE1
* KEY
20 Account PIC X(19)
20 PAN_Seq_Num PIC 9(3)

6.2.4 Using a Source Definition File

You can use fixed width parsing based on a data definition that comes from an Oracle
GoldenGate source definition file. This is similar to Cobol copybook because a source
definition file contains the position and the length of each field of participating tables.
To use a source definition file, you must set the following properties:

fixed.userdefs.tables=qasource.HEADER
fixed.userdefs.qasource.HEADER.columns=optype,schemaandtable
fixed.userdefs.qasource.HEADER.optype=vchar 3
fixed.userdefs.qasource.HEADER.schemaandtable=vchar 30

fixed.header=qasource.HEADER

The following example defines a header section of a total length of 33 characters;
the first 3 characters are the operation type, and the last 30 characters is the table
name. The layout of all records to be parsed must start with the complete header
section as defined in the fixed.userdefs properties. For each record, the header
section is immediately followed by the content of all column data for the corresponding
table. The column data must be strictly laid out according to its offset and length
defined in the source definition file. Specifically, the offset information is the fourth
field (Fetch Offset) of the column definition and the length information is the third field
(External Length) of the column definition. The following is an example of a definition
for GG.JMSCAP_TCUSTMER:

Definition for table GG.JMSCAP_TCUSTMER
Record length: 78
Syskey: 0
Columns: 4
CUST_CODE 64 4 0 0 0 1 0 4 4 0 0 0 0 0
1 0 1 0
NAME 64 30 10 0 0 1 0 30 30 0 0 0 0 0
1 0 0 0
CITY 64 20 46 0 0 1 0 20 20 0 0 0 0 0
1 0 0 0
STATE 0 2 72 0 0 1 0 2 2 0 0 0 0 0
1 0 0 0
End of definition

Chapter 6
Fixed Width Parsing

6-7

The fixed width data for GG.JMSCAP_TCUSTMER may be similar to the following
where the offset guides have been added to each section for clarity:

0 1 2 3 0 1 2
3 4 5 6 7 8
012345678901234567890123456789012012345678901234567890123456789012345678
901234567890123456789012345678901234567890
I GG.JMSCAP_TCUSTMER WILL BG SOFTWARE
CO. SEATTLE WA
I GG.JMSCAP_TCUSTMER JANE ROCKY FLYER
INC. DENVER CO
I GG.JMSCAP_TCUSTMER DAVE DAVE'S PLANES
INC. TALLAHASSEE FL
I GG.JMSCAP_TCUSTMER BILL BILL'S USED
CARS DENVER CO
I GG.JMSCAP_TCUSTMER ANN ANN'S
BOATS SEATTLE WA
U GG.JMSCAP_TCUSTMER ANN ANN'S
BOATS NEW YORK NY

You can choose to specify shorter data records, which means that only some of the
earlier columns are present. To do this, the following requirements must be met:

• None of the missing or omitted columns are part of the key and

• all columns that are present contain complete data according to their respective
External Length information

.

6.3 Delimited Parsing
Delimited parsing is based a preexisting source definitions files and a set of properties.
The properties specify the delimiters to use and other rules, such as whether there
are column names and before values. The source definitions file determines the valid
tables to be processed and the order and data type of the columns in the tables.

The format of the delimited message is:

METACOLSn[,COLNAMES]m[,COLBEFOREVALS]m,{COLVALUES}m\n

Where:

• There can be n metadata columns each followed by a field delimiter such as the
comma shown in the format statement.

• There can be m column values. Each of these are preceded by a field delimiter
such as a comma.

• The column name and before value are optional.

• Each record is terminated by an end of line delimiter, such as \n.

The message to be parsed must contain at least the header and metadata columns.
If the number of columns is fewer than the number of header and meta columns, then
the capture process terminates and provides an error message.

Chapter 6
Delimited Parsing

6-8

The remaining number of columns after the header and metadata columns are the
column data for the corresponding table, specified in the order of the columns in the
resolved metadata. Ideally, the number of table columns present in the message is
exactly the same as the expected number of columns according to the metadata.
However, missing columns in the message towards the end of message is allowed
and the parser marks those last columns (not present in the rest of the message) as
missing column data.

Although missing data is allowed from parser perspective, if the key @ column(s)
is/are missing, then the capture process will also terminate.

Oracle GoldenGate primary key updates and unified updates are not supported. The
only supported operations are inserts, updates, deletes, and truncates.

6.3.1 Metadata Columns
The metadata columns correspond to the header and contain fields that have special
meaning. Metadata columns should include the following information.

• optype contains values indicating if the record is an insert, update, or delete. The
default values are I, U, and D.

• timestamp indicates type of value to use for the commit timestamp of the record.
The format of the timestamp defaults to YYYY-DD-MM HH:MM:SS.FFF.

• schemaandtable is the full table name for the record in the format SCHEMA.TABLE.

• schema is the record's schema name.

• table is the record's table name.

• txind is a value that indicates whether the record is the beginning, middle, end or
the only record in the transaction. The default values are 0, 1, 2, 3.

• id is the value used as the sequence number (RSN or CSN) of the record. The id
of the first record (operation) in the transaction is used for the sequence number of
the transaction.

6.3.2 Parsing Properties
Properties can be set to describe delimiters, values, and date and time formats.

6.3.2.1 Properties to Describe Delimiters
The following properties determine the parsing rules for delimiting the record.

• fielddelim specifies one or more ASCII or hexadecimal characters as the value for
the field delimiter

• recorddelim specifies one or more ASCII or hexadecimal characters as the value
for the record delimiter

• quote specifies one or more ASCII or hexadecimal characters to use for quoted
values

• nullindicator specifies one or more ASCII or hexadecimal characters to use for
NULL values

You can define escape characters for the delimiters so they will be replaced if the
characters are found in the text. For example if a backslash and apostrophe (\') are

Chapter 6
Delimited Parsing

6-9

specified, then the input "They used Mike\'s truck" is translated to "They used Mike's
truck". Or if two quotes ("") are specified, "They call him ""Big Al""" is translated to
"They call him "Big Al"".

Data values may be present in the record without quotes, but the system only removes
escape characters within quoted values. A non-quoted string that matches a null
indicator is treated as null.

6.3.2.2 Properties to Describe Values
The following properties provide more information:

• hasbefores indicates before values are present for each record

• hasnames indicates column names are present for each record

• afterfirst indicates column after values come before column before values

• isgrouped indicates all column names, before values and after values are
grouped together in three blocks, rather than alternately per column

6.3.2.3 Properties to Describe Date and Time
The default format YYYY-DD-MM HH:MM:SS.FFF is used to parse dates. You can use
properties to override this on a global, table or column level. Examples of changing the
format are shown below.

delim.dateformat.default=MM/DD/YYYY-HH:MM:SS
delim.dateformat.MY.TABLE=DD/MMM/YYYY
delim.dateformat.MY.TABLE.COL1=MMYYYY

6.3.3 Parsing Steps
The steps in delimited parsing are:

1. The parser first reads and validates the metadata columns for each record.

2. This provides the table name, which can then be used to look up column
definitions for that table in the source definitions file.

3. If a definition cannot be found for a table, the processing will stop.

4. Otherwise the columns are parsed and output to the trail in the order and format
defined by the source definitions.

6.4 XML Parsing
XML parsing is based on a preexisting source definitions file and a set of properties.
The properties specify rules to determine XML elements and attributes that correspond
to transactions, operations and columns. The source definitions file determines the
valid tables to be processed and the ordering and data types of columns in those
tables.

6.4.1 Styles of XML
The XML message is formatted in either dynamic or static XML. At runtime the
contents of dynamic XML are data values that cannot be predetermined using a

Chapter 6
XML Parsing

6-10

sample XML or XSD document. The contents of static XML that determine tables
and column element or attribute names can be predetermined using those sample
documents.

The following two examples contain the same data.

Example 6-5 An Example of Static XML

<NewMyTableEntries>
 <NewMyTableEntry>
 <CreateTime>2010-02-05:10:11:21</CreateTime>
 <KeyCol>keyval</KeyCol>
 <Col1>col1val</Col1>
 </NewMyTableEntry>
</NewMyTableEntries>

The NewMyTableEntries element marks the transaction boundaries. The
NewMyTableEntry indicates an insert to MY.TABLE. The timestamp is present in an
element text value, and the column names are indicated by element names.

You can define rules in the properties file to parse either of these two styles of XML
through a set of XPath-like properties. The goal of the properties is to map the XML to
a predefined source definitions file through XPath matches.

Example 6-6 An Example of Dynamic XML

<transaction id="1234" ts="2010-02-05:10:11:21">
 <operation table="MY.TABLE" optype="I">
 <column name="keycol" index="0">
 <aftervalue><![CDATA[keyval]]></aftervalue>
 </column>
 <column name="col1" index="1">
 <aftervalue><![CDATA[col1val]]></aftervalue>
 </column>
 </operation>
</transaction>

Every operation to every table has the same basic message structure consisting
of transaction, operation and column elements. The table name, operation type,
timestamp, column names, column values, etc. are obtained from attribute or element
text values.

6.4.2 XML Parsing Rules
Independent of the style of XML, the parsing process needs to determine:

• Transaction boundaries

• Operation entries and metadata including:

– Table name

– Operation type

– Timestamp

• Column entries and metadata including:

– Either the column name or index; if both are specified the system will check to
see if the column with the specified data has the specified name.

– Column before or after values, sometimes both.

Chapter 6
XML Parsing

6-11

This is done through a set of interrelated rules. For each type of XML message that
is to be processed you name a rule that will be used to obtain the required data. For
each of these named rules you add properties to:

• Specify the rule as a transaction, operation, or column rule type. Rules of any type
are required to have a specified name and type.

• Specify the XPath expression to match to see if the rule is active for the document
being processed. This is optional; if not defined the parser will match the node of
the parent rule or the whole document if this is the first rule.

• List detailed rules (subrules) that are to be processed in the order listed. Which
subrules are valid is determined by the rule type. Subrules are optional.

In the following example the top-level rule is defined as genericrule. It is a
transaction type rule. Its subrules are defined in oprule and they are of the type
operation.

xmlparser.rules=genericrule
xmlparser.rules.genericrule.type=tx
xmlparser.rules.genericrule.subrules=oprule
xmlparser.rules.oprule.type=op

6.4.3 XPath Expressions
The XML parser supports a subset of XPath expressions necessary to match elements
and Extract data. An expression can be used to match a particular element or to
Extract data.

When doing data extraction most of the path is used to match. The tail of the
expression is used for extraction.

6.4.3.1 Supported Constructs:

Supported
Construct
s

Description

/e Use the absolute path from the root of the document to match e.

./e or e Use the relative path from current node being processed to match e.

../e Use a path based on the parent of the current node (can be repeated) to match e.

//e Match e wherever it occurs in a document.

*
Match any element. Note: Partially wild-carded names are not supported.

[n]
Match the nth occurrence of an expression.

Chapter 6
XML Parsing

6-12

Supported
Construct
s

Description

[x=v]
Match when x is equal to some value v where x can be:

• @att - some attribute value
• text() - some text value
• name() - some name value
• position() - the element position

6.4.3.2 Supported Expressions

Supported Expressions Descriptions

Match root element
/My/Element

Match sub element to current node
./Sub/Element

Match nth element
 /My/*[n]

Match nth Some element
/My/Some[n]

Match any text value
/My/*[text() ='value']

Match the text in Some element
/My/Some[text() = 'value']

Match any attribute
/My/*[@att = 'value']

Match the attribute in Some element
/My/Some[@att = 'value']

6.4.3.3 Obtaining Data Values
In addition to matching paths, the XPath expressions can also be used to obtain data
values, either absolutely or relative to the current node being processed. Data value
expressions can contain any of the path elements in the preceding table, but must end
with one of the value accessors listed below.

Value Accessors Description

@att
Some attribute value.

text()
The text content (value) of an element.

content()
The full content of an element, including any child XML nodes.

name()
The name of an element.

Chapter 6
XML Parsing

6-13

Value Accessors Description

position()
The position of an element in its parent.

Example 6-7 Examples of Extracting Data Values

To extract the relative element text value:

/My/Element/text()

To extract the absolute attribute value:

/My/Element/@att

To extract element text value with a match:

/My/Some[@att = 'value']/Sub/text()

Note:

Path accessors, such as ancestor/descendent/self, are not supported.

6.4.4 Other Value Expressions
The values extracted by the XML parser are either column values or properties of the
transaction or operation, such as table or timestamp. These values are either obtained
from XML using XPath or through properties of the JMS message, system values, or
hard coded values. The XML parser properties specify which of these options are valid
for obtaining the values for that property.

The following example specifies that timestamp can be an XPath expression, a JMS
property, or the system generated timestamp.

{txrule}.timestamp={xpath-expression}|${jms-property}|*ts

The next example specifies that table can be an XPath expression, a JMS property,
or hard coded value.

{oprule}.table={xpath-expression}|${jms-property}|"value"

The last example specifies that name can be a XPath expression or hard coded value.

{colrule}.timestamp={xpath-expression}|"value"

6.4.5 Transaction Rules
The rule that specifies the boundary for a transaction is at the highest level. Messages
may contain a single transaction, multiple transactions, or a part of a transaction that
spans messages. These are specified as follows:

• single - The transaction rule match is not defined.

• multiple - Each transaction rule match defines new transaction.

Chapter 6
XML Parsing

6-14

• span – No transaction rule is defined; instead a transaction indicator is specified in
an operation rule.

For a transaction rule, the following properties of the rule may also be defined through
XPath or other expressions:

• timestamp – The time at which the transaction occurred.

• txid – The identifier for the transaction.

Transaction rules can have multiple subrules, but each must be of type operation.

The following example specifies a transaction that is the whole message and includes
a timestamp that comes from the JMS property.

Example 6-8 JMS Timestamp

singletxrule.timestamp=$JMSTimeStamp

The following example matches the root element transaction and obtains the
timestamp from the ts attribute.

Example 6-9 ts Timestamp

dyntxrule.match=/Transaction
dyntxrule.timestamp=@ts

6.4.6 Operation Rules
An operation rule can either be a sub rule of a transaction rule, or a highest level rule
(if the transaction is a property of the operation).

In addition to the standard rule properties, an operation rule should also define the
following through XPath or other expressions:

• timestamp – The timestamp of the operation. This is optional if the transaction
rule is defined.

• table – The name of the table on which this is an operation. Use this with schema.

• schema – The name of schema for the table.

• schemaandtable – Both schema and table name together in the form
SCHEMA.TABLE. This can be used in place of the individual table and schema
properties.

• optype – Specifies whether this is an insert, update or delete operation based on
optype values:

– optype.insertval – The value indicating an insert. The default is I.

– optype.updateval – The value indicating an update. The default is U.

– optype.deleteval – The value indicating a delete. The default is D.

• seqid – The identifier for the operation. This will be the transaction identifier if txid
has not already been defined at the transaction level.

• txind – Specifies whether this operation is the beginning of a transaction, in the
middle or at the end; or if it is the whole operation. This property is optional and
not valid if the operation rule is a sub rule of a transaction rule.

Operation rules can have multiple sub rules of type operation or column.

Chapter 6
XML Parsing

6-15

The following example dynamically obtains operation information from the /Operation
element of a /Transaction.

Example 6-10 Operation

dynoprule.match=./Operation
dynoprule.schemaandtable=@table
dynoprule.optype=@type

The following example statically matches /NewMyTableEntry element to an insert
operation on the MY.TABLE table.

Example 6-11 Operation example

statoprule.match=./NewMyTableEntry
statoprule.schemaandtable="MY.TABLE"
statoprule.optype="I"
statoprule.timestamp=./CreateTime/text()

6.4.7 Column Rules
A column rule must be a sub rule of an operation rule. In addition to the standard
rule properties, a column rule should also define the following through XPath or other
expressions.

• name – The name of the column within the table definition.

• index – The index of the column within the table definition.

Note:

If only one of name and index is defined, the other will be determined.

• before.value – The before value of the column. This is required for deletes, but is
optional for updates.

• before.isnull – Indicates whether the before value of the column is null.

• before.ismissing – Indicates whether the before value of the column is missing.

• after.value – The before value of the column. This is required for deletes, but is
optional for updates.

• after.isnull – Indicates whether the before value of the column is null.

• after.ismissing – Indicates whether the before value of the column is missing.

• value – An expression to use for both before.value and after.value unless
overridden by specific before or after values. Note that this does not support
different before values for updates.

• isnull – An expression to use for both before.isnull and after.isnull unless
overridden.

• ismissing – An expression to use for both before.ismissing and after.ismissing
unless overridden.

The following example dynamically obtains column information from the /Column
element of an /Operation

Chapter 6
XML Parsing

6-16

Example 6-12 Dynamic Extraction of Column Information

dyncolrule.match=./Column
dyncolrule.name=@name
dyncolrule.before.value=./beforevalue/text()
dyncolrule.after.value=./aftervalue/text()

The following example statically matches the /KeyCol and /Col1 elements to columns
in MY.TABLE.

Example 6-13 Static Matching of Elements to Columns

statkeycolrule.match=/KeyCol
statkeycolrule.name="keycol"
statkeycolrule.value=./text()
statcol1rule.match=/Col1
statcol1rule.name="col1"
statcol1rule.value=./text()

6.4.8 Overall Rules Example
The following example uses the XML samples shown earlier with appropriate rules to
generate the same resulting operation on the MY.TABLE table.

Dynamic XML Static XML

<transaction id="1234"
 ts="2010-02-05:10:11:21">
 <operation table="MY.TABLE"
optype="I">
 <column name="keycol" index="0">
 <aftervalue>
<![CDATA[keyval]]>
 </aftervalue>
 </column>
 <column name="col1" index="1">
 <aftervalue>
 <![CDATA[col1val]]>
 </aftervalue>
 </column>
 </operation>
</transaction>

NewMyTableEntries>
 <NewMyTableEntry>
 <CreateTime>
 2010-02-05:10:11:21
 </CreateTime>
 <KeyCol>keyval</KeyCol>
 <Col1>col1val</Col1>
 </NewMyTableEntry>
</NewMyTableEntries>

Dynamic Static

dyntxrule.match=/Transaction
dyntxrule.timestamp=@ts
dyntxrule.subrules=dynoprule
dynoprule.match=./Operation
dynoprule.schemaandtable=@table
dynoprule.optype=@type
dynoprule.subrules=dyncolrule
dyncolrule.match=./Column
dyncolrule.name=@name

stattxrule.match=/NewMyTableEntries
stattxrule.subrules= statoprule
statoprule.match=./NewMyTableEntry
statoprule.schemaandtable="MY.TABLE"
statoprule.optype="I"
statoprule.timestamp=./CreateTime/text()
statoprule.subrules= statkeycolrule,
statcol1rule
statkeycolrule.match=/KeyCol

INSERT INTO MY.TABLE (KEYCOL, COL1)
VALUES ('keyval', 'col1val')

Chapter 6
XML Parsing

6-17

7
Message Capture Properties

7.1 Logging and Connection Properties
The following properties control the connection to JMS and the log file names, error
handling, and message output.

7.1.1 Logging Properties
Logging is controlled by the following properties.

7.1.1.1 gg.log
Specifies the type of logging that is to be used. The default implementation is the
JDK option. This is the built-in Java logging called java.util.logging (JUL). The other
logging options are log4j or logback. The syntax is:

gg.log={JDK|log4j|logback}

For example, to set the type of logging to log4j:

gg.log=log4j

The log file is created in the report subdirectory of the installation. The default log file
name includes the group name of the associated Extract and the file extension is log.

7.1.1.2 gg.log.level
Specifies the overall log level for all modules. The syntax is:

gg.log.level={ERROR|WARN|INFO|DEBUG}

The log levels are defined as follows:

• ERROR – Only write messages if errors occur

• WARN – Write error and warning messages

• INFO – Write error, warning and informational messages

• DEBUG – Write all messages, including debug ones.

The default logging level is INFO. The messages in this case will be produced on
startup, shutdown and periodically during operation. If the level is switched to DEBUG,
large volumes of messages may occur which could impact performance. For example,
the following sets the global logging level to INFO:

global logging level
gg.log.level=INFO

7-1

7.1.1.3 gg.log.file
Specifies the path to the log file. The syntax is:

gg.log.file=path_to_file

Where the path_to_file is the fully defined location of the log file. This allows a
change to the name of the log, but you must include the Replicat name if you have
more than one Replicat to avoid one overwriting the log of the other.

7.1.1.4 gg.log.classpath
Specifies the classpath to the JARs used to implement logging.

gg.log.classpath=path_to_jars

7.1.2 JMS Connection Properties
The JMS connection properties set up the connection, such as how to start up the
JVM for JMS integration.

7.1.2.1 jvm.boot options
Specifies the classpath and boot options that will be applied when the JVM starts up.
The path needs colon (:) separators for UNIX/Linux and semicolons (;) for Windows.

The syntax is:

jvm.bootoptions=option[, option][. . .]

The options are the same as those passed to Java executed from the command line.
They may include classpath, system properties, and JVM memory options (such as
maximum memory or initial memory) that are valid for the version of Java being used.
Valid options may vary based on the JVM version and provider.

For example (all on a single line):

jvm.bootoptions= -Djava.class.path=ggjava/ggjava.jar
-Dlog4j.configuration=my-log4j.properties

The log4j.configuration property could be a fully qualified URL to a log4j
properties file; by default this file is searched for in the classpath. You may
use your own log4j configuration, or one of the pre-configured log4j settings:
log4j.properties (default level of logging), debug-log4j.properties (debug logging)
or trace-log4j.properties (very verbose logging).

7.1.2.2 jms.report.output
Specifies where the JMS report is written. The syntax is:

jms.report.output={report|log|both}

Where:

• report sends the JMS report to the Oracle GoldenGate report file. This is the
default.

Chapter 7
Logging and Connection Properties

7-2

• log will write to the Java log file (if one is configured)

• both will send to both locations.

7.1.2.3 jms.report.time
Specifies the frequency of report generation based on time.

jms.report.time=time_specification

The following examples write a report every 30 seconds, 45 minutes and eight hours.

jms.report.time=30sec
jms.report.time=45min
jms.report.time=8hr

7.1.2.4 jms.report.records
Specifies the frequency of report generation based on number of records. The syntax
is:

jms.report.records=number

The following example writes a report every 1000 records.

jms.report.records=1000

7.1.2.5 jms.id
Specifies that a unique identifier with the indicated format is passed back from the
JMS integration to the message capture VAM. This may be used by the VAM as a
unique sequence ID for records.

jms.id={ogg|time|wmq|activemq|message_header|custom_java_class}

Where:

• ogg - returns the message header property GG_ID which is set by Oracle
GoldenGate JMS delivery.

• time - uses a system timestamp as a starting point for the message ID

• wmq - reformats a WebSphere MQ Message ID for use with the VAM

• activemq - reformats an ActiveMQ Message ID for use with the VAM

• message_header - specifies your customized JMS message header to be
included, such as JMSMessageID, JMSCorrelationID, or JMSTimestamp.

• custom_java_class - specifies a custom Java class that creates a string to be
used as an ID.

For example:

jms.id=time
jms.id=JMSMessageID

The ID returned must be unique, incrementing, and fixed-width. If there are duplicate
numbers, the duplicates are skipped. If the message ID changes length, the Extract
process will abend.

Chapter 7
Logging and Connection Properties

7-3

7.1.2.6 jms.destination
Specifies the queue or topic name to be looked up using JNDI.

jms.destination=jndi_name

For example:

jms.destination=sampleQ

7.1.2.7 jms.connectionFactory
Specifies the connection factory name to be looked up using JNDI.

jms.connectionFactory=jndi_name

For example

jms.connectionFactory=ConnectionFactory

7.1.2.8 jms.user, jms.password
Sets the user name and password of the JMS connection, as specified by the JMS
provider.

jms.user=user_name
jms.password=password

This is not used for JNDI security. To set JNDI authentication, see the JNDI
java.naming.security properties.

For example:

jms.user=myuser
jms.password=mypasswd

7.1.3 JNDI Properties
In addition to specific properties for the message capture VAM, the JMS integration
also supports setting JNDI properties required for connection to an Initial Context to
look up the connection factory and destination. The following properties must be set:

java.naming.provider.url=url
java.naming.factory.initial=java_class_name

If JNDI security is enabled, the following properties may be set:

java.naming.security.principal=user_name
java.naming.security.credentials=password_or_other_authenticator

For example:

java.naming.provider.url= t3://localhost:7001
java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.security.principal=jndiuser
java.naming.security.credentials=jndipw

Chapter 7
Logging and Connection Properties

7-4

7.2 Parser Properties
Properties specify the formats of the message and the translation rules for each type
of parser: fixed, delimited, or XML. Set the parser.type property to specify which
parser to use. The remaining properties are parser specific.

7.2.1 Setting the Type of Parser
The following property sets the parser type.

7.2.1.1 parser.type
Specifies the parser to use.

parser.type={fixed|delim|xml}

Where:

• fixed invokes the fixed width parser

• delim invokes the delimited parser

• xml invokes the XML parser

For example:

parser.type=delim

7.2.2 Fixed Parser Properties
The following properties are required for the fixed parser.

7.2.2.1 fixed.schematype
Specifies the type of file used as metadata for message capture. The two valid options
are sourcedefs and copybook.

fixed.schematype={sourcedefs|copybook}

For example:

fixed.schematype=copybook

The value of this property determines the other properties that must be set in order to
successfully parse the incoming data.

7.2.2.2 fixed.sourcedefs
If the fixed.schematype=sourcedefs, this property specifies the location of the source
definitions file that is to be used.

fixed.sourcedefs=file_location

For example:

fixed.sourcedefs=dirdef/hrdemo.def

Chapter 7
Parser Properties

7-5

7.2.2.3 fixed.copybook
If the fixed.schematype=copybook, this property specifies the location of the
copybook file to be used by the message capture process.

fixed.copybook=file_location

For example:

fixed.copybook=test_copy_book.cpy

7.2.2.4 fixed.header
Specifies the name of the sourcedefs entry or copybook record that contains header
information used to determine the data block structure:

fixed.header=record_name

For example:

fixed.header=HEADER

7.2.2.5 fixed.seqid
Specifies the name of the header field, JMS property, or system value that contains
the seqid used to uniquely identify individual records. This value must be continually
incrementing and the last character must be the least significant.

fixed.seqid={field_name|$jms_property|*seqid}

Where:

• field_name indicates the name of a header field containing the seqid

• jms_property uses the value of the specified JMS header property. A special
value of this is $jmsid which uses the value returned by the mechanism chosen by
the jms.id property

• seqid indicates a simple incrementing 64-bit integer generated by the system

For example:

fixed.seqid=$jmsid

7.2.2.6 fixed.timestamp
Specifies the name of the field, JMS property, or system value that contains the
timestamp.

fixed.timestamp={field_name|$jms_property|*ts}

For example:

fixed.timestamp=TIMESTAMP
fixed.timestamp=$JMSTimeStamp
fixed.timestamp=*ts

Chapter 7
Parser Properties

7-6

7.2.2.7 fixed.timestamp.format
Specifies the format of the timestamp field.

fixed.timestamp.format=format

Where the format can include punctuation characters plus:

• YYYY – four digit year

• YY – two digit year

• M[M] – one or two digit month

• D[D] – one or two digit day

• HH – hours in twenty four hour notation

• MI – minutes

• SS – seconds

• Fn – n number of fractions

The default format is "YYYY-MM-DD:HH:MI:SS.FFF"

For example:

fixed.timestamp.format=YYYY-MM-DD-HH.MI.SS

7.2.2.8 fixed.txid
Specifies the name of the field, JMS property, or system value that contains the txid
used to uniquely identify transactions. This value must increment for each transaction.

fixed.txid={field_name|$jms_property|*txid}

For most cases using the system value of *txid is preferred.

For example:

fixed.txid=$JMSTxId
fixed.txid=*txid

7.2.2.9 fixed.txowner
Specifies the name of the field, JMS property, or static value that contains a user name
associated with a transaction. This value may be used to exclude certain transactions
from processing. This is an optional property.

fixed.txowner={field_name|$jms_property|"value"}

For example:

fixed.txowner=$MessageOwner
fixed.txowner="jsmith"

7.2.2.10 fixed.txname
Specifies the name of the field, JMS property, or static value that contains an arbitrary
name to be associated with a transaction. This is an optional property.

Chapter 7
Parser Properties

7-7

fixed.txname={field_name|$jms_property|"value"}

For example:

fixed.txname="fixedtx"

7.2.2.11 fixed.optype
Specifies the name of the field, or JMS property that contains the operation type,
which is validated against the fixed.optype values specified in the next sections.

fixed.header.optype={field_name|$jms_property}

For example:

fixed.header.optype=FUNCTION

7.2.2.12 fixed.optype.insertval
This value identifies an insert operation. The default is I.

fixed.optype.insertval={value|\xhex_value}

For example:

fixed.optype.insertval=A

7.2.2.13 fixed.optype.updateval
This value identifies an update operation. The default is U.

fixed.optype.updateval={value|\xhex_value}

For example:

fixed.optype.updateval=M

7.2.2.14 fixed.optype.deleteval
This value identifies a delete operation.The default is D.

fixed.optype.deleteval={value|\xhex_value}

For example:

fixed.optype.deleteval=R

7.2.2.15 fixed.table
Specifies the name of the table. This enables the parser to find the data record
definition needed to translate the non-header data portion.

fixed.table=field_name|$jms_property[, . . .]

More than one comma delimited field name may be used to determine the name of
the table Each field name corresponds to a field in the header record defined by the
fixed.header property or JMS property. The values of these fields are concatenated
to identify the data record.

Chapter 7
Parser Properties

7-8

For example:

fixed.table=$JMSTableName
fixed.table=SOURCE_Db,SOURCE_Db_Rec_Version

7.2.2.16 fixed.schema
Specifies the static name of the schema when generating SCHEMA.TABLE table names.

fixed.schema="value"

For example:

fixed.schema="OGG"

7.2.2.17 fixed.txind
Specifies the name of the field or JMS property that contains a transaction indicator
that is validated against the transaction indicator values. If this is not defined,
all operations within a single message will be seen to have occurred within a
whole transaction. If defined, then it determines the beginning, middle and end of
transactions. Transactions defined in this way can span messages. This is an optional
property.

fixed.txind={field_name|$jms_property}

For example:

fixed.txind=$TX_IND

7.2.2.18 fixed.txind.beginval
This value identifies an operation as the beginning of a transaction. The defaults is B.

fixed.txind.beginval={value|\xhex_value}

For example:

fixed.txind.beginval=0

7.2.2.19 fixed.txind.middleval
This value identifies an operation as the middle of a transaction. The default is M.

fixed.txind.middleval={value|\xhex_value}

For example:

fixed.txind.middleval=1

7.2.2.20 fixed.txind.endval
This value identifies an operation as the end of a transaction. The default is E.

fixed.txind.endval={value|\xhex_value}

For example:

fixed.txind.endval=2

Chapter 7
Parser Properties

7-9

7.2.2.21 fixed.txind.wholeval
This value identifies an operation as a whole transaction. The default is W.

fixed.txind.wholeval={value|\xhex_value}

For example:

fixed.txind.wholeval=3

7.2.3 Delimited Parser Properties
The following properties are required for the delimited parser except where otherwise
noted.

7.2.3.1 delim.sourcedefs
Specifies the location of the source definitions file to use.

delim.sourcedefs=file_location

For example:

delim.sourcedefs=dirdef/hrdemo.def

7.2.3.2 delim.header
Specifies the list of values that come before the data and assigns names to each.

delim.header=name[,name2][. . .]

The names must be unique. They can be referenced in other delim properties or
wherever header fields can be used.

For example:

delim.header=optype, tablename, ts
delim.timestamp=ts

7.2.3.3 delim.seqid
Specifies the name of the header field, JMS property, or system value that contains the
seqid used to uniquely identify individual records. This value must increment and the
last character must be the least significant.

delim.seqid={field_name|$jms_property|*seqid}

Where:

• field_name indicates the name of a header field containing the seqid

• jms_property uses the value of the specified JMS header property, a special
value of this is $jmsid which uses the value returned by the mechanism chosen
by the jms.id property

• seqid indicates a simple continually incrementing 64-bit integer generated by the
system

Chapter 7
Parser Properties

7-10

For example:

delim.seqid=$jmsid

7.2.3.4 delim.timestamp
Specifies the name of the JMS property, header field, or system value that contains the
timestamp.

delim.timestamp={field_name|$jms_property|*ts}

For example:

delim.timestamp=TIMESTAMP
delim.timestamp=$JMSTimeStamp
delim.timestamp=*ts

7.2.3.5 delim.timestamp.format
Specifies the format of the timestamp field.

delim.timestamp.format=format

Where the format can include punctuation characters plus:

• YYYY – four digit year

• YY – two digit year

• M[M] – one or two digit month

• D[D] – one or two digit day

• HH – hours in twenty four hour notation

• MI – minutes

• SS – seconds

• Fn – n number of fractions

The default format is "YYYY-MM-DD:HH:MI:SS.FFF"

For example:

delim.timestamp.format=YYYY-MM-DD-HH.MI.SS

7.2.3.6 delim.txid
Specifies the name of the JMS property, header field, or system value that contains
the txid used to uniquely identify transactions. This value must increment for each
transaction.

delim.txid={field_name|$jms_property|*txid}

For most cases using the system value of *txid is preferred.

For example:

delim.txid=$JMSTxId
delim.txid=*txid

Chapter 7
Parser Properties

7-11

7.2.3.7 delim.txowner
Specifies the name of the JMS property, header field, or static value that contains an
arbitrary user name associated with a transaction. This value may be used to exclude
certain transactions from processing. This is an optional property.

delim.txowner={field_name|$jms_property|"value"}

For example:

delim.txowner=$MessageOwner
delim.txowner="jsmith"

7.2.3.8 delim.txname
Specifies the name of the JMS property, header field, or static value that contains an
arbitrary name to be associated with a transaction. This is an optional property.

delim.txname={field_name|$jms_property|"value"}

For example:

delim.txname="fixedtx"

7.2.3.9 delim.optype
Specifies the name of the JMS property or header field that contains the
operation type. This is compared to the values for delim.optype.insertval,
delim.optype.updateval and delim.optype.deleteval to determine the operation.

delim.optype={field_name|$jms_property}

For example:

delim.optype=optype

7.2.3.10 delim.optype.insertval
This value identifies an insert operation. The default is I.

delim.optype.insertval={value|\xhex_value}

For example:

delim.optype.insertval=A

7.2.3.11 delim.optype.updateval
This value identifies an update operation. The default is U.

delim.optype.updateval={value|\xhex_value}

For example:

delim.optype.updateval=M

Chapter 7
Parser Properties

7-12

7.2.3.12 delim.optype.deleteval
This value identifies a delete operation. The default is D.

delim.optype.deleteval={value|\xhex_value}

For example:

delim.optype.deleteval=R

7.2.3.13 delim.schemaandtable
Specifies the name of the JMS property or header field that contains the schema and
table name in the form SCHEMA.TABLE.

delim.schemaandtable={field_name|$jms_property}

For example:

delim.schemaandtable=$FullTableName

7.2.3.14 delim.schema
Specifies the name of the JMS property, header field, or hard-coded value that
contains the schema name.

delim.schema={field_name|$jms_property|"value"}

For example:

delim.schema="OGG"

7.2.3.15 delim.table
Specifies the name of the JMS property or header field that contains the table name.

delim.table={field_name|$jms_property}

For example:

delim.table=TABLE_NAME

7.2.3.16 delim.txind
Specifies the name of the JMS property or header field that contains the transaction
indicator to be validated against beginval, middleval, endval or wholeval. All
operations within a single message will be seen as within one transaction if this
property is not set. If it is set it determines the beginning, middle and end of
transactions. Transactions defined in this way can span messages. This is an optional
property.

delim.txind={field_name|$jms_property}

For example:

delim.txind=txind

Chapter 7
Parser Properties

7-13

7.2.3.17 delim.txind.beginval
The value that identifies an operation as the beginning of a transaction. The default is
B.

delim.txind.beginval={value|\xhex_value}

For example:

delim.txind.beginval=0

7.2.3.18 delim.txind.middleval
The value that identifies an operation as the middle of a transaction. The default is M.

delim.txind.middleval={value|\xhex_value}

For example:

delim.txind.middleval=1

7.2.3.19 delim.txind.endval
The value that identifies an operation as the end of a transaction. The default is E.

delim.txind.endval={value|\xhex_value}

For example:

delim.txind.endval=2

7.2.3.20 delim.txind.wholeval
The value that identifies an operation as a whole transaction. The default is W.

delim.txind.wholeval={value|\xhex_value}

For example:

delim.txind.wholeval=3

7.2.3.21 delim.fielddelim
Specifies the delimiter value used to separate fields (columns) in the data. This value
is defined through characters or hexadecimal values:

delim.fielddelim={value|\xhex_value}

For example:

delim.fielddelim=,
delim.fielddelim=\xc7

7.2.3.22 delim.linedelim
Specifies the delimiter value used to separate lines (records) in the data. This value is
defined using characters or hexadecimal values.

Chapter 7
Parser Properties

7-14

delim.linedelim={value|\xhex_value}

For example:

delim.linedelim=||
delim.linedelim=\x0a

7.2.3.23 delim.quote
Specifies the value used to identify quoted data. This value is defined using characters
or hexadecimal values.

delim.quote={value|\xhex_value}

For example:

delim.quote="

7.2.3.24 delim.nullindicator
Specifies the value used to identify NULL data. This value is defined using characters
or hexadecimal values.

delim.nullindicator={value|\xhex_value}

For example:

delim.nullindicator=NULL

7.2.3.25 delim.fielddelim.escaped
Specifies the value that will replace the field delimiter when the field delimiter occurs in
the input field. The syntax is:

delim.fielddelim.escaped={value|\xhex_value}

For example, given the following property settings:

delim.fielddelim=-
delim.fielddelim.escaped=$#$

If the data does not contain the hyphen delimiter within any of the field values:

one two three four

The resulting delimited data is:

one-two-three-four

If there are hyphen (-) delimiters within the field values:

one two three four-fifths two-fifths

The resulting delimited data is:

one-two-three-four$#$fifths-two$#$fifths

Chapter 7
Parser Properties

7-15

7.2.3.26 delim.linedelim.escaped
Specifies the value that will replace the line delimiter when the line delimiter occurs in
the input data. The syntax is:

delim.linedelim.escaped={value|\xhex_value}

For example, given the following property settings:

delim.linedelim=\
delim.linedelim.escaped=%/%

If the input lines are:

These are the lines and they
do not contain the delimiter.

Because the lines do not contain the backslash (\), the result is:

These are the lines and they\
do not contain the delimiter.\

However, if the input lines do contain the delimiter:

These are the lines\data values
and they do contain the delimiter.

So the results are:

These are the lines%/%data values\
and they do contain the delimiter.\

7.2.3.27 delim.quote.escaped
Specifies the value that will replace a quote delimiter when the quote delimiter occurs
in the input data. The syntax is:

delim.quote.escaped={value|\xhex_value}

For example, given the following property settings:

delim.quote="
delim.quote.escaped="'"

If the input data does not contain the quote (") delimiter:

It was a very original play.

The result is:

"It was a very original play."

However, if the input data does contain the quote delimiter:

It was an "uber-original" play.

The result is:

"It was an "'"uber-original"'" play."

Chapter 7
Parser Properties

7-16

7.2.3.28 delim.nullindicator.escaped
Specifies the value that will replace a null indicator when a null indicator occurs in the
input data. The syntax is:

delim.nullindicator.escaped={value|\xhex_value}

For example, given the following property settings:

delim.fielddelim=,
delim.nullindicator=NULL
delim.nullindicator.escaped=$NULL$

When the input data does not contain a NULL value or a NULL indicator:

1 2 3 4 5

The result is

1,2,3,4,5

When the input data contains a NULL value:

1 2 4 5

The result is

1,2,NULL,4,5

When the input data contains a NULL indicator:

1 2 NULL 4 5

The result is:

1,2,$NULL$,4,5

7.2.3.29 delim.hasbefores
Specifies whether before values are present in the data.

delim.hasbefores={true|false}

The default is false. The parser expects to find before and after values of columns for
all records if delim.hasbefores is set to true. The before values are used for updates
and deletes, the after values for updates and inserts. The afterfirst property
specifies whether the before images are before the after images or after them. If
delim.hasbefores is false, then no before values are expected.

For example:

delim.hasbefores=true

7.2.3.30 delim.hasnames
Specifies whether column names are present in the data.

delim.hasnames={true|false}

Chapter 7
Parser Properties

7-17

The default is false. If true, the parser expects to find column names for all records.
The parser validates the column names against the expected column names. If false,
no column names are expected.

For example:

delim.hasnames=true

7.2.3.31 delim.afterfirst
Specifies whether after values are positioned before or after the before values.

delim.afterfirst={true|false}

The default is false. If true, the parser expects to find the after values before the before
values. If false, the after values are before the before values.

For example:

delim.afterfirst=true

7.2.3.32 delim.isgrouped
Specifies whether the column names and before and after images should be expected
grouped together for all columns or interleaved for each column.

delim.isgrouped={true|false}

The default is false. If true, the parser expects find a group of column names (if
hasnames is true), followed by a group of before values (if hasbefores), followed by a
group of after values (the afterfirst setting will reverse the before and after value
order). If false, the parser will expect to find a column name (if hasnames), before value
(if hasbefores) and after value for each column.

For example:

delim.isgrouped=true

7.2.3.33 delim.dateformat | delim.dateformat.table |
delim.dateform.table.column

Specifies the date format for column data. This is specified at a global level, table level
or column level.The format used to parse the date is a subset of the formats used for
parser.timestamp.format.

delim.dateformat=format
delim.dateformat.TABLE=format
delim.dateformat.TABLE.COLUMN=format

Where:

• format is the format defined for parser.timestamp.format.

• table is the fully qualified name of the table that is currently being processed.

• column is a column of the specified table.

For example:

Chapter 7
Parser Properties

7-18

delim.dateformat=YYYY-MM-DD HH:MI:SS
delim.dateformat.MY.TABLE=DD/MM/YY-HH.MI.SS
delim.dateformat.MY.TABLE.EXP_DATE=YYMM

7.2.4 XML Parser Properties
The following properties are used by the XML parser.

7.2.4.1 xml.sourcedefs
Specifies the location of the source definitions file.

xml.sourcedefs=file_location

For example:

xml.sourcedefs=dirdef/hrdemo.def

7.2.4.2 xml.rules
Specifies the list of XML rules for parsing a message and converting to transactions,
operations and columns:

xml.rules=xml_rule_name[, . . .]

The specified XML rules are processed in the order listed. All rules matching a
particular XML document may result in the creation of transactions, operations and
columns. The specified XML rules should be transaction or operation type rules.

For example:

xml.rules=dyntxrule, statoprule

7.2.4.3 rulename.type
Specifies the type of XML rule.

rulename.type={tx|op|col}

Where:

• tx indicates a transaction rule

• op indicates an operation rule

• col indicates a column rule

For example:

dyntxrule.type=tx
statoprule.type=op

7.2.4.4 rulename.match
Specifies an XPath expression used to determine whether the rule is activated for a
particular document or not.

rulename.match=xpath_expression

Chapter 7
Parser Properties

7-19

If the XPath expression returns any nodes from the document, the rule matches and
further processing occurs. If it does not return any nodes, the rule is ignored for that
document.

The following example activates the dyntxrule if the document has a root element of
Transaction

dyntxrule.match=/Transaction

Where statoprule is a sub rule of stattxtule, the following example activates
the statoprule if the parent rule's matching nodes have child elements of
NewMyTableEntry.

statoprule.match=./NewMyTableEntry

7.2.4.5 rulename.subrules
Specifies a list of rule names to check for matches if the parent rule is activated by its
match.

rulename.subrules=xml_rule_name[, . . .]

The specified XML rules are processed in the order listed. All matching rules may
result in the creation of transactions, operations and columns.

Valid sub-rules are determined by the parent type. Transaction rules can only have
operation sub-rules. Operation rules can have operation or column sub-rules. Column
rules cannot have sub-rules.

For example:

dyntxrule.subrules=dynoprule
statoprule.subrules=statkeycolrule, statcol1rule

7.2.4.6 txrule.timestamp
Controls the transaction timestamp by instructing the adapter to 1) use the transaction
commit timestamp contained in a specified XPath expression or JMS property or 2)
use the current system time. This is an optional property.

txrule.timestamp={xpath_expression|$jms_property|*ts}

The timestamp for the transaction may be overridden at the operation level, or may
only be present at the operation level. Any XPath expression must end with a value,
accessor, such as @att or text().

For example:

dyntxrule.timestamp=@ts

7.2.4.7 txrule.timestamp.format
Specifies the format of the timestamp field.

txrule.timestamp.format=format

Where the format can include punctuation characters plus:

• YYYY – four digit year

Chapter 7
Parser Properties

7-20

• YY – two digit year

• M[M] – one or two digit month

• D[D] – one or two digit day

• HH – hours in twenty four hour notation

• MI – minutes

• SS – seconds

• Fn – n number of fractions

The default format is "YYYY-MM-DD:HH:MI:SS.FFF"

For example:

dyntxrule.timestamp.format=YYYY-MM-DD-HH.MI.SS

7.2.4.8 txrule.seqid
Specifies the seqid for a particular transaction. This can be used when there are
multiple transactions per message. Determines the XPath expression, JMS property,
or system value that contains the transactions seqid. Any XPath expression must end
with a value accessor such as @att or text().

txrule.seqid={xpath_expression|$jms_property|*seqid}

For example:

dyntxrule.seqid=@seqid

7.2.4.9 txrule.txid
Specifies the XPath expression, JMS property, or system value that contains the txid
used to unique identify transactions. This value must increment for each transaction.

txrule.txid={xpath_expression|$jms_property|*txid}

For most cases using the system value of *txid is preferred.

For example:

dyntxrule.txid=$JMSTxId
dyntxrule.txid=*txid

7.2.4.10 txrule.txowner
Specifies the XPath expression, JMS property, or static value that contains an arbitrary
user name associated with a transaction. This value may be used to exclude certain
transactions from processing.

txrule.txowner={xpath_expression|$jms_property|"value"}

For example:

dyntxrule.txowner=$MessageOwner
dyntxrule.txowner="jsmith"

Chapter 7
Parser Properties

7-21

7.2.4.11 txrule.txname
Specifies the XPath expression, JMS property, or static value that contains an arbitrary
name to be associated with a transaction. This is an optional property.

txrule.txname={xpath_expression|$jms_property|"value"}

For example:

dyntxrule.txname="fixedtx"

7.2.4.12 oprule.timestamp
Controls the operation timestamp by instructing the adapter to 1) use the transaction
commit timestamp contained in a specified XPath expression or JMS property or 2)
use the current system time. This is an optional property.

oprule.timestamp={xpath_expression|$jms_property|*ts}

The timestamp for the operation will override a timestamp at the transaction level.

Any XPath expression must end with a value accessor such as @att or text().

For example:

statoprule.timestamp=./CreateTime/text()

7.2.4.13 oprule.timestamp.format
Specifies the format of the timestamp field.

oprule.timestamp.format=format

Where the format can include punctuation characters plus:

• YYYY – four digit year

• YY – two digit year

• M[M] – one or two digit month

• D[D] – one or two digit day

• HH – hours in twenty four hour notation

• MI – minutes

• SS – seconds

• Fn – n number of fractions

The default format is "YYYY-MM-DD:HH:MI:SS.FFF"

For example:

statoprule.timestamp.format=YYYY-MM-DD-HH.MI.SS

7.2.4.14 oprule.seqid
Specifies the seqid for a particular operation. Use the XPath expression, JMS
property, or system value that contains the operation seqid. This overrides any seqid

Chapter 7
Parser Properties

7-22

defined in parent transaction rules. Must be present if there is no parent transaction
rule.

Any XPath expression must end with a value accessor such as @att or text().

oprule.seqid={xpath_expression|$jms_property|*seqid}

For example:

dynoprule.seqid=@seqid

7.2.4.15 oprule.txid
Specifies the XPath expression, JMS property, or system value that contains the
txid used to uniquely identify transactions. This overrides any txid defined in parent
transaction rules and is required if there is no parent transaction rule. The value must
be incremented for each transaction.

oprule.txid={xpath_expression|$jms_property|*txid}

For most cases using the system value of *txid is preferred.

For example:

dynoprule.txid=$JMSTxId
dynoprule.txid=*txid

7.2.4.16 oprule.txowner
Specifies the XPath expression, JMS property, or static value that contains an arbitrary
user name associated with a transaction. This value may be used to exclude certain
transactions from processing. This is an optional property.

oprule.txowner={xpath_expression|$jms_property|"value"}

For example:

dynoprule.txowner=$MessageOwner
dynoprule.txowner="jsmith"

7.2.4.17 oprule.txname
Specifies the XPath expression, JMS property, or static value that contains an arbitrary
name to be associated with a transaction. This is an optional property.

oprule.txname={xpath_expression|$jms_property|"value"}

For example:

dynoprule.txname="fixedtx"

7.2.4.18 oprule.schemandtable
Specifies the XPath expression JMS property or hard-coded value that contains the
schema and table name in the form SCHEMA.TABLE. Any XPath expression must end
with a value accessor such as @att or text(). The value is verified to ensure the table
exists in the source definitions.

oprule.schemaandtable={xpath_expression|$jms_property|"value"}

Chapter 7
Parser Properties

7-23

For example:

statoprule.schemaandtable="MY.TABLE"

7.2.4.19 oprule.schema
Specifies the XPath expression, JMS property or hard-coded value that contains the
schema name. Any XPath expression must end with a value accessor such as @att or
text().

oprule.schema={xpath_expression|$jms_property|"value"}

For example:

statoprule.schema=@schema

7.2.4.20 oprule.table
Specifies the XPath expression, JMS property or hard-coded value that contains the
table name. Any XPath expression must end with a value accessor such as @att or
text().

oprule.table={xpath_expression|$jms_property|"value"}

For example:

statoprule.table=$TableName

7.2.4.21 oprule.optype
Specifies the XPath expression, JMS property or literal value that contains the optype
to be validated against an optype insertval. Any XPath expression must end with a
value accessor such as @att or text().

oprule.optype={xpath_expression|$jms_property|"value"}

For example:

dynoprule.optype=@type
statoprule.optype="I"

7.2.4.22 oprule.optype.insertval
Specifies the value that identifies an insert operation. The default is I.

oprule.optype.insertval={value|\xhex_value}

For example:

dynoprule.optype.insertval=A

7.2.4.23 oprule.optype.updateval
Specifies the value that identifies an update operation. The default is U.

oprule.optype.updateval={value|\xhex_value}

For example:

Chapter 7
Parser Properties

7-24

dynoprule.optype.updateval=M

7.2.4.24 oprule.optype.deleteval
Specifies the value that identifies a delete operation. The default is D.

oprule.optype.deleteval={value|\xhex_value}

For example:

dynoprule.optype.deleteval=R

7.2.4.25 oprule.txind
Specifies the XPath expression or JMS property that contains the transaction indicator
to be validated against beginval or other value that identifies the position within the
transaction. All operations within a single message are regarded as occurring within a
whole transaction if this property is not defined. Specifies the begin, middle and end
of transactions. Any XPath expression must end with a value accessor such as @att
or text(). Transactions defined in this way can span messages. This is an optional
property.

oprule.txind={xpath_expression|$jms_property}

For example:

dynoprule.txind=@txind

7.2.4.26 oprule.txind.beginval
Specifies the value that identifies an operation as the beginning of a transaction. The
default is B.

oprule.txind.beginval={value|\xhex_value}

For example:

dynoprule.txind.beginval=0

7.2.4.27 oprule.txind.middleval
Specifies the value that identifies an operation as the middle of a transaction. The
default is M.

oprule.txind.middleval={value|\xhex_value}

For example:

dynoprule.txind.middleval=1

7.2.4.28 oprule.txind.endval
Specifies the value that identifies an operation as the end of a transaction. The default
is E.

oprule.txind.endval={value|\xhex_value}

For example:

Chapter 7
Parser Properties

7-25

dynoprule.txind.endval=2

7.2.4.29 oprule.txind.wholeval
Specifies the value that identifies an operation as a whole transaction. The default is W.

oprule.txind.wholeval={value|\xhex_value}

For example:

dynoprule.txind.wholeval=3

7.2.4.30 colrule.name
Specifies the XPath expression or hard-coded value that contains a column name. The
column index must be specified if this is not and the column name will be resolved
from that. If specified the column name will be verified against the source definitions
file. Any XPath expression must end with a value accessor such as @att or text().

colrule.name={xpath_expression|"value"}

For example:

dyncolrule.name=@name
statkeycolrule.name="keycol"

7.2.4.31 colrule.index
Specifies the XPath expression or hard-coded value that contains a column index. If
not specified then the column name must be specified and the column index will be
resolved from that. If specified the column index will be verified against the source
definitions file. Any XPath expression must end with a value accessor such as @att or
text().

colrule.index={xpath_expression|"value"}

For example:

dyncolrule.index=@index
statkeycolrule.index=1

7.2.4.32 colrule.value
Specifies the XPath expression or hard-coded value that contains a column value. Any
XPath expression must end with a value accessor such as @att or text(). If the
XPath expression fails to return any data because a node or attribute does not exist,
the column value will be deemed as null. To differentiate between null and missing
values (for updates) the isnull and ismissing properties should be set. The value
returned is used for delete before values, and update/insert after values.

colrule.value={xpath_expression|"value"}

For example:

statkeycolrule.value=./text()

Chapter 7
Parser Properties

7-26

7.2.4.33 colrule.isnull
Specifies the XPath expression used to discover if a column value is null. The XPath
expression must end with a value accessor such as @att or text(). If the XPath
expression returns any value, the column value is null. This is an optional property.

colrule.isnull=xpath_expression

For example:

dyncolrule.isnull=@isnull

7.2.4.34 colrule.ismissing
Specifies the XPath expression used to discover if a column value is missing. The
XPath expression must end with a value accessor such as @att or text(). If the
XPath expression returns any value, then the column value is missing. This is an
optional property.

colrule.ismissing=xpath_expression

For example:

dyncolrule.ismissing=./missing

7.2.4.35 colrule.before.value
Overrides colrule.value to specifically say how to obtain before values used for
updates or deletes. This has the same format as colrule.value. This is an optional
property.

For example:

dyncolrule.before.value=./beforevalue/text()

7.2.4.36 colrule.before.isnull
Overrides colrule.isnull to specifically say how to determine if a before value is
null for updates or deletes. This has the same format as colrule.isnull. This is an
optional property.

For example:

dyncolrule.before.isnull=./beforevalue/@isnull

7.2.4.37 colrule.before.ismissing
Overrides colrule.ismissing to specifically say how to determine if a before value is
missing for updates or deletes. This has the same format as colrule.ismissing. This
is an optional property.

For example:

dyncolrule.before.ismissing=./beforevalue/missing

Chapter 7
Parser Properties

7-27

7.2.4.38 colrule.after.value
Overrides colrule.value to specifically say how to obtain after values used for
updates or deletes. This has the same format as colrule.value. This is an optional
property.

For example:

dyncolrule.after.value=./aftervalue/text()

7.2.4.39 colrule.after.isnull
Overrides colrule.isnull to specifically say how to determine if an after value is
null for updates or deletes. This has the same format as colrule.isnull. This is an
optional property.

For example:

dyncolrule.after.isnull=./aftervalue/@isnull

7.2.4.40 colrule.after.ismissing
Overrides colrule.ismissing to specifically say how to determine if an after value is
missing for updates or deletes. This has the same format as colrule.ismissing. This
is an optional property.

For example:

dyncolrule.after.ismissing=./aftervalue/missing

Chapter 7
Parser Properties

7-28

Part III
Oracle GoldenGate Java Delivery

This part of the book contains information on using Oracle GoldenGate Adapters to
process transaction records and apply it to various targets by means of Java module.

Introduction to GoldenGate for Big Data discusses how to use the Oracle GoldenGate
Java Adapter to apply transaction records into various Big Data targets.

8
Configuring Java Delivery

8.1 Configuring the JRE in the Properties File
The current release of Oracle GoldenGate Java Delivery requires Java 8. Refer to the
section on configuring Java for how to correctly access Java and the required Java
shared libraries. Modify the Adapter Properties file to point to the location of the Oracle
GoldenGate for Java main JAR (ggjava.jar) and set any additional JVM runtime boot
options as required (these are passed directly to the JVM at startup):

jvm.bootoptions=-Djava.class.path=.:ggjava/ggjava.jar -Xmx512m -Xmx64m

Note the following options in particular:

• java.class.path must include pathing to the core application (ggjava/
ggjava.jar). The current directory (.) should be included as well in the classpath.
Logging initializes when the JVM is loaded therefore the java.class.path variable
should including any pathing to logging properties files (such as log4j properties
files). The dependency JARs required for logging functionality are included in
ggjava.jar and do not need to be explicitly included. Pathing can reference files
and directories relative to the Oracle GoldenGate install directory, to allow storing
Java property files, Velocity templates and other classpath resources in the dirprm
subdirectory. It is also possible to append to the classpath in the Java application
properties file. Pathing to handler dependency JARs can be added here as well.
However, it is considered to be a better practice to use the gg.classpath variable
to include any handler dependencies.

• The jvm.bootoptions property also allows you to control the initial heap size of
the JVM (Xms) and the maximum heap size of the JVM (Xmx). Increasing the
maximum heap size can improve performance by requiring less frequent garbage
collections. Additionally, you may need to increase the maximum heap size if a
Java out of memory exception occurs.

Once the properties file is correctly configured for your system, it usually remains
unchanged. See Common Properties, for additional configuration options.

8.2 Configuring Oracle GoldenGate for Java Delivery
Java Delivery is compatible with the Oracle GoldenGate Replicat process. Transaction
data is read from the Oracle GoldenGate trail files and delivered to the Oracle
GoldenGate Java Delivery module across JNI interface. The data is transferred to
the Oracle GoldenGate Java Delivery module using the JNI interface. The Java
Delivery module is configurable to allow data to be streamed into various targets. The
supported targets for the Oracle GoldenGate Java Adapter product include JMS, file
writing, and custom integrations. The Oracle GoldenGate for Big Data product includes
all of those integrations and streaming capabilities to Big Data targets.

8-1

8.2.1 Configuring a Replicat for Java Delivery
The Oracle GoldenGate Replicat process can be configured to send transaction
data to the Oracle GoldenGate for Java module. Replicat consumes a local trail
(for example dirdat/aa) and sends the data to the Java Delivery module. The Java
module is responsible for processing all the data and applying it to the desired target.

Following is an example of adding a Replicat process:

ADD REPLICAT javarep, EXTTRAIL ./dirdat/aa

The process names and trail names used in the preceding example can be replaced
with any valid name. Process names must be 8 characters or less, trail names must to
be two characters. In the Replicat parameter file (javarep.prm), specify the location of
the user exit library.

The Replicat process has transaction grouping built into the application. Transaction
grouping can significantly improve performance when streaming data to a target
database. Transaction grouping can also significantly improve performance when
streaming data to Big Data applications. The Replicat parameter to control transaction
grouping is the GROUPTRANSOPS variable in the Replicat configuration file. The default
value of this variable is 1000 which means the Replicat process will attempt to group
1000 operations into single target transaction. Performance testing has generally
shown that the higher the GROUPTRANSOPS the better the performance when streaming
data to Big Data applications. Setting the GROUPTRANSOPS variable to 1 means that
the original transaction boundaries from the source trail file (source database) will be
maintained.

Table 8-1 User Exit Replicat Parameters

Parameter Explanation

REPLICAT javarep
All Replicat parameter files start with the Replicat
name

SOURCEDEFS ./dirdef/tcust.def
(Optional) If the input trail files do not contain the
metadata records, the Replicat process requires
metadata describing the trail data. This can come
from a database or a source definitions file. This
metadata defines the column names and data types
in the trail being read (./dirdat/aa).

TARGETDB LIBFILE libggjava.so
SET properties= dirprm/
javarep.properties

The TARGETDB LIBFILE libggjava.so parameter
serves as a trigger to initialize the Java module.
The SET clause to specify the Java properties file is
optional. If specified, it should contain an absolute or
relative path (relative to the Replicat executable) to
the properties file for the Java module. The default
value is replicat_name.properties in the dirprm
directory.

MAP schema.*, TARGET *.*;
The tables to pass to the Java module; tables
not included will be skipped. If mapping from
source to target tables is required, one can
use the MAP source_specification TARGET
target_specification as describe in "Mapping
and Manipulating Data" in Administering Oracle
GoldenGate.

Chapter 8
Configuring Oracle GoldenGate for Java Delivery

8-2

Table 8-1 (Cont.) User Exit Replicat Parameters

Parameter Explanation

GROUPTRANSOPS 1000
Group source transactions into a single larger
target transaction for improved performance.
GROUPTRANSOPS of 1000 is the default setting.
GROUPTRANSOPS sets a minimum value rather than
an absolute value, to avoid splitting apart source
transactions. Replicat waits until it receives all
operations from the last source transaction in the
group before applying the target transaction.

For example, if transaction 1 contains 200 operations,
and transaction 2 contains 400 operations, and
transaction 3 contains 500 operations, then Replicat
transaction contains all 1,100 operations even though
GROUPTRANSOPS is set to the default of 1,000.
Conversely, Replicat might apply a transaction before
reaching the value set by GROUPTRANSOPS if there is
no more data in the trail to process.

8.3 Configuring the Java Handlers
The Handlers are integrations with target applications which plug into the Oracle
GoldenGate Java Delivery module. It is the Java Handlers which provide the
functionality to push data to integration targets such as JMS or Big Data applications.
The Java Adapter properties file is used to configure Java Delivery and Java handlers.
To test the configuration, users may use the built-in file handler. Here are some
example properties, followed by explanations of the properties (comment lines start
with #):

the list of active handlers
gg.handlerlist=myhandler
set properties on 'myhandler'
gg.handler.myhandler.type=file
gg.handler.myhandler.format=tx2xml.vm
gg.handler.myhandler.file=output.xml

This property file declares the following:

• Active event handlers. In the example a single event handler is active, called
myhandler. Multiple handlers may be specified, separated by commas. For
example: gg.handlerlist=myhandler, yourhandler

• Configuration of the handlers. In the example myhandler is declared to be a file
type of handler: gg.handler.myhandler.type=file

Note:

See the documentation for each type of handler (for example, the JMS
handler or the file writer handler) for the list of valid properties that can
be set.

Chapter 8
Configuring the Java Handlers

8-3

• The format of the output is defined by the Velocity template tx2xml.vm. You may
specify your own custom template to define the message format; just specify the
path to your template relative to the Java classpath.

This property file is actually a complete example that will write captured transactions
to the output file output.xml. Other handler types can be specified using the keywords:
jms_text (or jms), jms_map, singlefile (a file that does not roll), and others. Custom
handlers can be implemented, in which case the type would be the fully qualified
name of the Java class for the handler. Oracle GoldenGate Big Data package also
contains built in Big Data target types. For more information, see Integrating Oracle
GoldenGate for Big Data.

Note:

See the documentation for each type of handler (for example, the JMS
handler or the file writer handler) for the list of valid properties that can be
set.

Chapter 8
Configuring the Java Handlers

8-4

9
Running Java Delivery

9.1 Starting the Application
To run the Java Delivery and execute the Java application, you only need an existing
Oracle GoldenGate trail file. If the trail file does not contain metadata records, a source
definitions file is also required to describe the schema for operations in the trail file. For
the examples that follow, a simple TCUSTMER and TCUSTORD trail is used (matching the
demo SQL provided with the Oracle GoldenGate software download).

9.1.1 Starting Using Replicat
To run Java Delivery using Replicat, simply start the Replicat process from GGSCI:

GGSCI> START REPLICAT javarep
GGSCI> INFO REPLICAT javarep

The INFO command returns information similar to the following:

REPLICAT JAVAREP Last Started 2015-09-10 17:25 Status RUNNING
Checkpoint Lag 00:00:00 (updated 00:00:00 ago)
Log Read Checkpoint File ./dirdat/aa0000002015-09-10 17:50:41.000000
 RBA 2702

9.2 Restarting the Java Delivery
There are two possible checkpoint files when running with Replicat, the Replicat
process checkpoint file and the Java Delivery checkpoint file. Both files are located
in the dirchk directory and created using the following naming conventions.

Replicat checkpoint file
group_name.cpr

Java delivery checkpoint file:
group_name.cpj

To suppress the creation and use of the Java Delivery checkpoint the Replicat process
should be created using the following syntax:

ADD REPLICAT myrep EXTTRAIL ./dirdat/tr NODBCHECKPOINT

It is the NODBCHECKPOINT syntax that disables the creation and use of the Java Delivery
checkpoint file.

9-1

9.2.1 Restarting Java Delivery in Replicat
The checkpoint handling in Replicat is more straightforward as it includes logic to pick
which one out of the two checkpoint information is of higher priority. The logic is as
follows:

• If the Java Delivery is started after user manually performed an ADD or ALTER
REPLICAT, then the checkpoint information held by Replicat process will be used
as the starting position.

• If the Java Delivery is started without prior manual intervention to alter checkpoint
(for example, upon graceful stop or an abend), then the checkpoint information
held by Java module will be used as the starting position.

For example, restarting a Java Delivery using Replicat at the beginning of a trail
looks like the following:

1. Reset the Replicat to the beginning of the trail data:

GGSCI> ALTER REPLICAT JAVAREP, EXTSEQNO 0, EXTRBA 0

2. Reset the Replicat

GGSCI> START JAVAREP
GGSCI> INFO JAVAREP
REPLICAT JAVAREP Last Started 2015-09-10 17:25 Status RUNNING
Checkpoint Lag 00:00:00 (updated 00:00:00 ago)
Log Read Checkpoint File ./dirdat/aa000000
2015-09-10 17:50:41.000000 RBA 2702

It may take a few seconds for the Replicat process status to report itself as
running. Check the report file to see if it abended or is still in the process of
starting:

GGSCI> VIEW REPORT JAVAREP

In the case where the Java Delivery is restarted after a crash or an abend,
the last position kept by the Java module will be used when the application
restarts.

Chapter 9
Restarting the Java Delivery

9-2

10
Configuring Event Handlers

This chapter discusses types of event handlers explaining how to specify the event
handler to use and what your options are. It explains how to format the output and
what you can expect from the Oracle GoldenGate Report file.

10.1 Specifying Event Handlers
Processing transaction, operation and metadata events in Java works as follows:

• The Oracle GoldenGate Replicat or Extract process reads local trail data and
passes the transactions, operations and database metadata to the Java Delivery
Module. Metadata can come from the trail itself, a source definitions file.

• Events are fired by the Java framework, optionally filtered by custom Event Filters.

• Handlers (event listeners) process these events, and process the transactions,
operations and metadata. Custom formatters may be applied for certain types of
targets.

There are several existing handlers:

• Various built in Big Data handlers to apply records to supported Big Data targets,
see Introduction to GoldenGate for Big Data to configure this type of handler.

• JMS message handlers to send to a JMS provider using either a MapMessage, or
using a TextMessage with customized formatters.

• A specialized message handler to send JMS messages to Oracle Advanced
Queuing (AQ).

• A file writer handler, for writing to a single file, or a rolling file.

Note:

The file writer handler is particularly useful as development utility, since
the file writer can take the exact same formatter as the JMS TextMessage
handler. Using the file writer provides a simple way to test and tune the
formatters for JMS without actually sending the messages to JMS

Event handlers can be configured using the main Java property file or they
may optionally read in their own properties directly from yet another property file
(depending on the handler implementation). Handler properties are set using the
following syntax:

gg.handler.{name}.someproperty=somevalue

This will cause the property someproperty to be set to the value somevalue for the
handler instance identified in the property file by name. This name is used in the
property file to define active handlers and set their properties; it is user-defined.

10-1

Implementation note (for Java developers): Following the preceding example: when
the handler is instantiated, the method void setSomeProperty(String value) will be
called on the handler instance, passing in the String value somevalue. A JavaBean
PropertyEditor may also be defined for the handler, in which case the string can be
automatically converted to the appropriate type for the setter method. For example, in
the Java application properties file, we may have the following:

the list of active handlers: only two are active
gg.handlerlist=one, two
set properties on 'one'
gg.handler.one.type=file
gg.handler.one.format=com.mycompany.MyFormatter
gg.handler.one.file=output.xml
properties for handler 'two'
gg.handler.two.type=jms_text
gg.handler.two.format=com.mycompany.MyFormatter
gg.handler.two.properties=jboss.properties
set properties for handler 'foo'; this handler is ignored
gg.handler.foo.type=com.mycompany.MyHandler
gg.handler.foo.someproperty=somevalue

The type identifies the handler class; the other properties depend on the type of
handler created. If a separate properties file is used to initialize the handler (such
as the JMS handlers), the properties file is found in the classpath. For example, if
properties file is at: {gg_install_dir}/dirprm/foo.properties, then specify in the
properties file as follows: gg.handler.name.properties=foo.properties.

10.2 JMS Handler
The main Java property file identifies active handlers. The JMS handler may optionally
use a separate property file for JMS-specific configuration. This allows more than one
JMS handler to be configured to run at the same time.

There are examples included for several JMS providers (JBoss, TIBCO, Solace,
ActiveMQ, WebLogic). For a specific JMS provider, you can choose the appropriate
properties files as a starting point for your environment. Each JMS provider has slightly
different settings, and your environment will have unique settings as well.

The installation directory for the Java JARs (ggjava) contains the core application
JARs (ggjava.jar) and its dependencies in resources/lib/*.jar. The resources
directory contains all dependencies and configuration, and is in the classpath.

If the JMS client JARs already exist somewhere on the system, they can be
referenced directly and added to the classpath without copying them.

The following types of JMS handlers can be specified:

• jms – sends text messages to a topic or queue. The messages may be formatted
using Velocity templates or by writing a formatter in Java. The same formatters
can be used for a jms_text message as for writing to files. (jms_text is a synonym
for jms.)

• aq – sends text messages to Oracle Advanced Queuing (AQ). The aq handler is a
jms handler configured for delivery to AQ. The messages can be formatted using
Velocity templates or a custom formatter.

Chapter 10
JMS Handler

10-2

• jms_map – sends a JMS MapMessage to a topic or queue. The JMSType of the
message is set to the name of the table. The body of the message consists of the
following metadata, followed by column name and column value pairs:

– GG_ID – position of the record, uniquely identifies this operation

– GG_OPTYPE – type of SQL (insert/update/delete),

– GG_TABLE – table name on which the operation occurred

– GG_TX_TIMESTAMP – timestamp of the operation

10.3 File Handler
The file handler is often used to verify the message format when the actual target
is JMS, and the message format is being developed using custom Java or Velocity
templates. Here is a property file using a file handler:

one file handler active, using Velocity template formatting
gg.handlerlist=myfile
gg.handler.myfile.type=file
gg.handler.myfile.rollover.size=5M
gg.handler.myfile.format=sample2xml.vm
gg.handler.myfile.file=output.xml

This example uses a single handler (though, a JMS handler and the file handler
could be used at the same time), writing to a file called output.xml, using a Velocity
template called sample2xml.vm. The template is found using the classpath.

10.4 Custom Handlers
For information on coding a custom handler, see Coding a Custom Handler in Java.

10.5 Formatting the Output
As previously described, the existing JMS and file output handlers can be configured
through the properties file. Each handler has its own specific properties that can be
set: for example, the output file can be set for the file handler, and the JMS destination
can be set for the JMS handler. Both of these handlers may also specify a custom
formatter. The same formatter may be used for both handlers. As an alternative to
writing Java code for custom formatting, a Velocity template may be specified For
further information, see Filtering Events .

10.6 Reporting
Summary statistics about the throughput and amount of data processed are generated
when the Replicat or Extract process stops. Additionally, statistics can be written
periodically either after a specified amount of time or after a specified number of
records have been processed. If both time and number of records are specified, then
the report is generated for whichever event happens first. These statistical summaries
are written to the Oracle GoldenGate report file and the log files.

Chapter 10
File Handler

10-3

11
Java Delivery Properties

11.1 Common Properties
The following properties are common to Java Delivery using either Replicat or Extract.

11.1.1 Logging Properties
Logging is controlled by the following properties.

11.1.1.1 gg.log
Specifies the type of logging that is to be used. The default implementation for the
Oracle GoldenGate Adapters is the jdk option. This is the built-in Java logging called
java.util.logging (JUL). The other logging options are log4j or logback.

For example, to set the type of logging to log4j:

gg.log=log4j

The recommended setting is log4j. The log file is created in the dirrpt subdirectory
of the installation. The default log file name includes the group name of the associated
Extract and the file extension is .log.

<process name>_<log level>_log4j.log

Therefore if the Oracle GoldenGate Replicat process is called javaue, and the
gg.log.level is set to debug, the resulting log file name will be:

javaue_debug_log4j.log

11.1.1.2 gg.log.level
Specifies the overall log level for all modules. The syntax is:

gg.log.level={ERROR|WARN|INFO|DEBUG|TRACE}

The log levels are defined as follows:

• ERROR – Only write messages if errors occur

• WARN – Write error and warning messages

• INFO – Write error, warning and informational messages

• DEBUG – Write all messages, including debug ones.

• TRACE - Highest level of logging, includes all messages.

The default logging level is INFO. The messages in this case will be produced on
startup, shutdown and periodically during operation. If the level is switched to DEBUG,

11-1

large volumes of messages may occur which could impact performance. For example,
the following sets the global logging level to INFO:

global logging level
gg.log.level=INFO

11.1.1.3 gg.log.file
Specifies the path to the log file. The syntax is:

gg.log.file=path_to_file

Where the path_to_file is the fully defined location of the log file. This allows a
change to the name of the log, but you must include the Replicat name if you have
more than one Replicat to avoid one overwriting the log of the other.

11.1.1.4 gg.log.classpath
Specifies the classpath to the JARs used to implement logging. This configuration
property is not typically used as the ggjava.jar library includes the required logging
dependency libraries.

gg.log.classpath=path_to_jars

11.1.2 JVM Boot Options
The following options configure the Java Runtime Environment. Java classpath and
memory options are configurable.

11.1.2.1 jvm.bootoptions
Specifies the initial Java classpath and other boot options that will be applied when
the JVM starts. The java.class.path needs colon (:) separators for UNIX/Linux and
semicolons (;) for Windows. This is where to specify various options for the JVM, such
as initial and maximum heap size and classpath; for example:

• -Xms: initial java heap size

• -Xmx: maximum java heap size

• -Djava.class.path: classpath specifying location of at least the main application
JAR, ggjava.jar. Other JARs, such as JMS provider JARs, may also be specified
here as well; alternatively, these may be specified in the Java application
properties file. If using a separate log4j properties file then the location of the
properties file must be included in the bootoptions java.class.path included in
the bootoptions variable.

• -verbose:jni: run in verbose mode (for JNI)

For example (all on a single line):

jvm.bootoptions= -Djava.class.path=ggjava/ggjava.jar
-Dlog4j.configuration=my-log4j.properties -Xmx512m

The log4j.configuration property identifies a log4j properties file that is resolved
by searching the classpath. You may use your own log4j configuration, or one
of the preconfigured log4j settings: log4j.properties (default level of logging),

Chapter 11
Common Properties

11-2

debug-log4j.properties (debug logging) or trace-log4j.properties (very verbose
logging). To use log4j logging with the Replicat process gg.log=log4j must be set.

Use of the one of the preconfigured log4j settings does not require any change
to the classpath since those files are already included in the classpath. The -
Djava.class.path variable must include the path to the directory containing a custom
log4j configuration file without the * wild card appended.

11.2 Delivery Properties
The following properties are available to Java Delivery:

11.2.1 General Properties
The following properties apply to all writer configurations:

11.2.1.1 goldengate.userexit.writers
Specifies the name of the writer. This is always jvm and should not be modified.

For example:

goldengate.userexit.writers=jvm

All other properties in the file should be prefixed by the writer name, jvm.

11.2.1.2 goldengate.userexit.chkptprefix
Specifies a string value for the prefix added to the Java checkpoint file name. For
example:

goldengate.userexit.chkptprefix=javaue_

11.2.1.3 goldengate.userexit.nochkpt
Disables or enables the checkpoint file. The default is false, the checkpoint file is
enabled. Set this property to true if transactions are supported and enabled on the
target.

For example, Java Adapter Properties if JMS is the target and JMS local
transactions are enabled (the default), set goldengate.userexit.nochkpt=true to
disable the user exit checkpoint file. If JMS transactions are disabled by setting
localTx=false on the handler, the checkpoint file should be enabled by setting
goldengate.userexit.nochkpt=false.

goldengate.userexit.nochkpt=true|false

11.2.1.4 goldengate.userexit.usetargetcols
Specifies whether or not mapping to target columns is allowed. The default is false,
no target mapping.

goldengate.userexit.usetargetcols=true|false

Chapter 11
Delivery Properties

11-3

11.2.2 Statistics and Reporting
Disables or enables the checkpoint file handling. This causes the standard Oracle
GoldenGate reporting to be incomplete. Oracle GoldenGate for Java adds its own
reporting to handle this issue.

Statistics can be reported every t seconds or every n records - or if both are specified,
whichever criteria is met first.

There are two sets of statistics recorded: those maintained by the Replicat module and
those obtained from the Java module. The reports received from the Java side are
formatted and returned by the individual handlers.

The statistics include the total number of operations, transactions and corresponding
rates.

11.2.2.1 jvm.stats.time | jvm.stats.numrecs
Specifies a time interval, in seconds or a number of records, after which statistics
will be reported. The default is to report statistics every hour or every 10000 records
(which ever occurs first).

For example, to report ever 10 minutes or every 1000 records, specify:

jvm.stats.time=600
jvm.stats.numrecs=1000

The Java application statistics are handler-dependent:

• For the all handlers, there is at least the total elapsed time, processing time,
number of operations, transactions;

• For the JMS handler, there is additionally the total number of bytes received and
sent.

• The report can be customized using a template.

11.3 Java Application Properties
The following defines the properties which may be set in the Java application property
file.

11.3.1 Properties for All Handlers
The following properties apply to all handlers:

11.3.1.1 gg.handlerlist
The handler list is a list of active handlers separated by commas. These values are
used in the rest of the property file to configure the individual handlers. For example:

gg.handlerlist=name1, name2
gg.handler.name1.propertyA=value1
gg.handler.name1.propertyB=value2
gg.handler.name1.propertyC=value3
gg.handler.name2.propertyA=value1

Chapter 11
Java Application Properties

11-4

gg.handler.name2.propertyB=value2
gg.handler.name2.propertyC=value3

Using the handlerlist property, you may include completely configured handlers in
the property file and just disable them by removing them from the handlerlist.

11.3.1.2 gg.handler.name.type
This type of handler. This is either a predefined value for built-in handlers, or a fully
qualified Java class name. The syntax is:

gg.handler.name.type={jms|jms_map|aq|singlefile|rollingfile|custom_java_class}

Where:

All but the last are pre-defined handlers:

• jms – Sends transactions, operations, and metadata as formatted messages to a
JMS provider

• aq – Sends transactions, operations, and metadata as formatted messages to
Oracle Advanced Queuing (AQ)

• jms_map – Sends JMS map messages

• singlefile – Writes to a single file on disk, but does not roll the file

• rollingfile – Writes transactions, operations, and metadata to a file on disk, rolling
the file over after a certain size, amount of time, or both. For example:

gg.handler.name1.rolloverSize=5000000
gg.handler.name1.rolloverTime=1m

• custom_java_class – Any class that extends the Oracle GoldenGate for Java
AbstractHandler class and can handle transaction, operation, or metadata
events

The Oracle GoldenGate foe Big Data package also contains more predefined
handlers to write to various Big Data targets.

11.3.2 Properties for Formatted Output
The following properties apply to all handlers capable of producing formatted output;
this includes:

• The jms_text handler (but not the jms_map handler)

• The aq handler

• The singlefile and rolling handlers, for writing formatted output to files

• The predefined Big Data handlers

11.3.2.1 gg.handler.name.format
Specifies the format used to transform operations and transactions into messages sent
to JMS, to the Big Data target or to a file. The format is specified uniquely for each
handler. The value may be:

• Velocity template

Chapter 11
Java Application Properties

11-5

• Java class name (fully qualified - the class specified must be a type of formatter)

• csv for delimited values (such as comma separated values; the delimiter can be
customized)

• fixed for fixed-length fields

• Built-in formatter, such as:

– xml – demo XML format

– xml2 – internal XML format

For example, to specify a custom Java class:

gg.handlerlist=abc
gg.handler.abc.format=com.mycompany.MyFormat

Or, for a Velocity template:

gg.handlerlist=xyz
gg.handler.xyz.format=path/to/sample.vm

If using templates, the file is found relative to some directory or JAR that is in the
classpath. By default, the Oracle GoldenGate installation directory is in the classpath,
so the preceding template could be placed in the dirprm directory of the Oracle
GoldenGate installation location.

The default format is to use the built-in XML formatter.

11.3.2.2 gg.handler.name.includeTables
Specifies a list of tables this handler will include.

If the schema (or owner) of the table is specified, then only that schema matches
the table name; otherwise, the table name matches any schema. A comma separated
list of tables can be specified. For example, to have the handler only process tables
foo.customer and bar.orders:

gg.handler.myhandler.includeTables=foo.customer, bar.orders

If the catalog and schema (or owner) of the table are specified, then only that catalog
and schema matches the table name; otherwise, the table name matches any catalog
and schema. A comma separated list of tables can be specified. For example, to have
the handler only process tables dbo.foo.customer and dbo.bar.orders:

gg.handler.myhandler.includeTables=dbo.foo.customer, dbo.bar.orders

Note:

In order to selectively process operations on a table by table basis, the
handler must be processing in operation mode. If the handler is processing
in transaction mode, then when a single transaction contains several
operations spanning several tables, if any table matches the include list of
tables, the transaction will be included.

Chapter 11
Java Application Properties

11-6

11.3.2.3 gg.handler.name.excludeTables
Specifies a list of tables this handler will exclude.

If the schema (or owner) of the table is specified, then only that schema matches the
table name; otherwise, the table name matches any schema. A list of tables may be
specified, comma-separated. For example, to have the handler process all operations
on all tables except table date_modified in all schemas:

gg.handler.myhandler.excludeTables=date_modified

If the catalog and schema (or owner) of the table are specified, then only that catalog
and schema matches the table name; otherwise, the table name matches any catalog
and schema. A list of tables may be specified, comma-separated. For example, to
have the handler process all operations on all tables except table date_modified in
catalog dbo and schema bar:

gg.handler.myhandler.excludeTables=dbo.bar.date_modified

11.3.2.4 gg.handler.name.mode, gg.handler.name.format.mode
Specifies whether to output one operation per message (op) or one transaction per
message (tx). The default is op. Use gg.handler.name.format.mode when you have a
custom formatter.

11.3.3 Properties for CSV and Fixed Format Output
If the handler is set to use either comma separated values (CSV) CSV or fixed format
output, the following properties may also be set.

11.3.3.1 gg.handler.name.format.delim
Specifies the delimiter to use between fields. Set this to no value to have no delimiter
used. For example:

gg.handler.handler1.format.delim=,

11.3.3.2 gg.handler.name.format.quote
Specifies the quote character to be used if column values are quoted. For example:

gg.handler.handler1.format.quote='

11.3.3.3 gg.handler.name.format.metacols
Specifies the metadata column values to appear at the beginning of the record, before
any column data. Specify any of the following, in the order they should appear:

• position – unique position indicator of records in a trail

• opcode – I, U, or D for insert, update, or delete records (see: insertChar,
updateChar, deleteChar)

• txind – transaction indicator – such as 0=begin, 1=middle, 2=end, 3=whole tx (see
beginTxChar, middleTxChar, endTxChar, wholeTxChar)

Chapter 11
Java Application Properties

11-7

• opcount – position of a record in a transaction, starting from 0

• catalog – catalog of the schema for the record

• schema – schema/owner of the table for the record

• tableonly – just table (no schema/owner)

• table – full name of table, catalog.schema.table

• timestamp – commit timestamp of record

For example:

gg.handler.handler1.format.metacols=opcode, table, txind, position

11.3.3.4 gg.handler.name.format.missingColumnChar
Specifies a special column prefix for a column value that was not captured from the
source database transaction log. The column value is not in trail and it is unknown if it
has a value or is NULL

The character used to represent the missing state of the column value can be
customized. For example:

gg.handler.handler1.format.missingColumnChar=M

By default, the missing column value is set to an empty string and does not show.

11.3.3.5 gg.handler.name.format.presentColumnChar
Specifies a special column prefix for a column value that exists in the trail and is not
NULL.

The character used to represent the state of the column can be customized. For
example:

gg.handler.handler1.format.presentColumnChar=P

By default, the present column value is set to an empty string and does not show.

11.3.3.6 gg.handler.name.format.nullColumnChar
Specifies a special column prefix for a column value that exists in the trail and is set to
NULL.

The character used to represent the state of the column can be customized. For
example:

gg.handler.handler1.format.nullColumnChar=N

By default, the null column value is set to an empty string and does not show.

11.3.3.7 gg.handler.name.format.beginTxChar
Specifies the header metadata character (see metacols) used to identify a record as
the begin of a transaction. For example:

gg.handler.handler1.format.beginTxChar=B

Chapter 11
Java Application Properties

11-8

11.3.3.8 gg.handler.name.format.middleTxChar
Specifies the header metadata characters (see metacols) used to identify a record as
the middle of a transaction. For example:

gg.handler.handler1.format.middleTxChar=M

11.3.3.9 gg.handler.name.format.endTxChar
Specifies the header metadata characters (see metacols) used to identify a record as
the end of a transaction. For example:

gg.handler.handler1.format.endTxChar=E

11.3.3.10 gg.handler.name.format.wholeTxChar
Specifies the header metadata characters (see metacols) used to identify a record as
a complete transaction; referred to as a whole transaction. For example:

gg.handler.handler1.format.wholeTxChar=W

11.3.3.11 gg.handler.name.format.insertChar
Specifies the character to identify an insert operation. The default I.

For example, to use INS instead of I for insert operations:

gg.handler.handler1.format.insertChar=INS

11.3.3.12 gg.handler.name.format.updateChar
Specifies the character to identify an update operation. The default is U.

For example, to use UPD instead of U for update operations:

gg.handler.handler1.format.updateChar=UPD

11.3.3.13 gg.handler.name.format.deleteChar
Specifies the character to identify a delete operation. The default is D.

For example, to use DEL instead of D for delete operations:

gg.handler.handler1.format.deleteChar=DEL

11.3.3.14 gg.handler.name.format.truncateChar
Specifies the character to identify a truncate operation. The default is T.

For example, to use TRUNC instead of T for truncate operations:

gg.handler.handler1.format.truncateChar=TRUNC

11.3.3.15 gg.handler.name.format.endOfLine
Specifies the end-of-line character as:

Chapter 11
Java Application Properties

11-9

• EOL - Native platform

• CR - Neutral (UNIX-style \n)

• CRLF - Windows (\r\n)

For example:

gg.handler.handler1.format.endOfLine=CR

11.3.3.16 gg.handler.name.format.justify
Specifies the left or right justification of fixed fields. For example:

gg.handler.handler1.format.justify=left

11.3.3.17 gg.handler.name.format.includeBefores
Controls whether before images should be included in the output. There must be
before images in the trail. For example:

gg.handler.handler1.format.includeBefores=false

11.3.4 File Writer Properties
The following properties only apply to handlers that write their output to files: the file
handler and the singlefile handler.

11.3.4.1 gg.handler.name.file
Specifies the name of the output file for the given handler. If the handler is a rolling file,
this name is used to derive the rolled file names. The default file name is output.xml.

11.3.4.2 gg.handler.name.append
Controls whether the file should be appended to (true) or overwritten upon restart
(false).

11.3.4.3 gg.handler.name.rolloverSize
If using the file handler, this specifies the size of the file before a rollover should
be attempted. The file size will be at least this size, but will most likely be larger.
Operations and transactions are not broken across files. The size is specified in bytes,
but a suffix may be given to identify MB or KB. For example:

gg.handler.myfile.rolloverSize=5MB

The default rollover size is 10MB.

11.3.5 JMS Handler Properties
The following properties apply to the JMS handlers. Some of these values may be
defined in the Java application properties file using the name of the handler. Other
properties may be placed into a separate JMS properties file, which is useful if using
more than one JMS handler at a time. For example:

Chapter 11
Java Application Properties

11-10

gg.handler.myjms.type=jms_text
gg.handler.myjms.format=xml
gg.handler.myjms.properties=weblogic.properties

Just as with Velocity templates and formatting property files, this
additional JMS properties file is found in the classpath. The preceding
properties file weblogic.properties would be found in {gg_install_dir}/dirprm/
weblogic.properties, since the dirprm directory is included by default in the
classpath.

Settings that can be made in the Java application properties file will
override the corresponding value set in the supplemental JMS properties file
(weblogic.properties in the preceding example). In the following example, the
destination property is specified in the Java application properties file. This allows
the same default connection information for the two handlers myjms1 and myjms2, but
customizes the target destination queue.

gg.handlerlist=myjms1,myjms2
gg.handler.myjms1.type=jms_text
gg.handler.myjms1.destination=queue.sampleA
gg.handler.myjms1.format=sample.vm
gg.handler.myjms1.properties=tibco-default.properties
gg.handler.myjms2.type=jms_map
gg.handler.myjms2.destination=queue.sampleB
gg.handler.myjms2.properties=tibco-default.properties

To set a property, specify the handler name as a prefix; for example:

gg.handlerlist=sample
gg.handler.sample.type=jms_text
gg.handler.sample.format=my_template.vm
gg.handler.sample.destination=gg.myqueue
gg.handler.sample.queueortopic=queue
gg.handler.sample.connectionUrl=tcp://host:61616?jms.useAsyncSend=true
gg.handler.sample.useJndi=false
gg.handler.sample.connectionFactory=ConnectionFactory
gg.handler.sample.connectionFactoryClass=\
 org.apache.activemq.ActiveMQConnectionFactory
gg.handler.sample.timeToLive=50000

11.3.5.1 Standard JMS Settings
The following outlines the JMS properties which may be set, and the accepted
values. These apply for both JMS handler types: jms_text (TextMessage) and jms_map
(MapMessage).

11.3.5.1.1 gg.handler.name.destination
The queue or topic to which the message is sent. This must be correctly configured on
the JMS server. Typical values may be: queue/A, queue.Test, example.MyTopic, etc.

gg.handler.name.destination=queue_or_topic

11.3.5.1.2 gg.handler.name.user
(Optional) User name required to send messages to the JMS server.

gg.handler.name.user=user_name

Chapter 11
Java Application Properties

11-11

11.3.5.1.3 gg.handler.name.password
(Optional) Password required to send messages to the JMS server

gg.handler.name.password=password

11.3.5.1.4 gg.handler.name.queueOrTopic
Whether the handler is sending to a queue (a single receiver) or a topic (publish /
subscribe). This must be correctly configured in the JMS provider. This property is an
alias of gg.handler.name.destination. The syntax is:

gg.handler.name.queueOrTopic=queue|topic

Where:

• queue – a message is removed from the queue once it has been read. This is the
default.

• topic – messages are published and may be delivered to multiple subscribers.

11.3.5.1.5 gg.handler.name.persistent
If the delivery mode is set to persistent or not. If the messages are to be persistent, the
JMS provider must be configured to log the message to stable storage as part of the
client's send operation. The syntax is:

gg.handler.name.persistent={true|false}

11.3.5.1.6 gg.handler.name.priority
JMS defines a 10 level priority value, with 0 as the lowest and 9 as the highest. Priority
is set to 4 by default. The syntax is:

gg.handler.name.priority=integer

For example:

gg.handler.name.priority=5

11.3.5.1.7 gg.handler.name.timeToLive
The length of time in milliseconds from its dispatch time that a produced message
should be retained by the message system. A value of zero specifies the time is
unlimited. The default is zero. The syntax is:

gg.handler.name.timeToLive=milliseconds

For example:

gg.handler.name.timeToLive= 36000

11.3.5.1.8 gg.handler.name.connectionFactory
Name of the connection factory to lookup using JNDI. ConnectionFactoryJNDIName is
an alias. The syntax is:

gg.handler.name.connectionFactory=JNDI_name

Chapter 11
Java Application Properties

11-12

11.3.5.1.9 gg.handler.name.useJndi
If gg.handler.name.usejndi is false, then JNDI is not used to configure the JMS
client. Instead, factories and connections are explicitly constructed. The syntax is:

gg.handler.name.useJndi=true|false

11.3.5.1.10 gg.handler.name.connectionUrl
Connection URL is used only when not using JNDI to explicitly create the connection.
The syntax is:

gg.handler.name.connectionUrl=url

11.3.5.1.11 gg.handler.name.connectionFactoryClass
The Connection Factory Class is used to access a factory only when not using JNDI.
The value of this property is the Java class name to instantiate; constructing a factory
object explicitly.

gg.handler.name.connectionFactoryClass=java_class_name

11.3.5.1.12 gg.handler.name.localTX
Specifies whether or not local transactions are used. The default is true, local
transactions are used. The syntax is:

gg.handler.name.localTX=true|false

11.3.5.1.13 gg.handlerlist.nop
Disables the sending of JMS messages to allow testing of message generation. This is
a global property used only for testing. The events are still generated and handled and
the message is constructed. The default is false; do not disable message send. The
syntax is:

gg.handlerlist.nop=true|false

Users can take advantage of this option to measure the performance of trail records
processing without involving the handler module. This approach can narrow down the
possible culprits of a suspected performance issue while applying trail records to the
target system.

11.3.5.1.14 gg.handler.name.physicalDestination
Name of the queue or topic object, obtained through the ConnectionFactory API
instead of the JNDI provider.

gg.handler.name.physicalDestination=queue_name

11.3.5.2 Group Transaction Properties
These properties set limits for grouping transactions.

Chapter 11
Java Application Properties

11-13

11.3.6 JNDI Properties
These JNDI properties are required for connection to an Initial Context to look up the
connection factory and initial destination.

java.naming.provider.url=url
java.naming.factory.initial=java-class-name

If JNDI security is enabled, the following properties may be set:

java.naming.security.principal=user-name
java.naming.security.credentials=password-or-other-authenticator

For example:

java.naming.provider.url= t3://localhost:7001
java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.security.principal=jndiuser
java.naming.security.credentials=jndipw

11.3.7 General Properties
The following are general properties that are used for the Java framework:

11.3.7.1 gg.classpath
Specifies a comma delimited list of additional paths to directories or JARs to add to the
classpath. Optionally, the list can be delimited by semicolons for Windows systems or
by colons for UNIX. For example:

gg.classpath=C:\Program Files\MyProgram\bin;C:\Program Files\ProgramB\app\bin;

This Adapter properties file configuration property should be used to configure pathing
to custom Java JARs or to the external dependencies of Big Data applications.

11.3.7.2 gg.report.time
Specifies how often statistics are calculated and sent to Extract for the processing
report. If Extract is configured to print a report, these statistics are included. The
syntax is:

gg.report.time=report_interval{s|m|h}

Where:

• report_interval is an integer

• The valid time units are:

– s - seconds

– m - minutes

– h - hours

If no value is entered, the default is to calculate and send every 24 hours.

Chapter 11
Java Application Properties

11-14

11.3.7.3 gg.binaryencoding
Specifies the binary encoding type. The desired output encoding for binary data can
be configured using this property. For example:

gg.binaryencoding=base64|hex

The default value is base64. The valid values to represent binary data are:

• base64 - a base64 string

• hex - a hexadecimal string

11.3.8 Java Delivery Transaction Grouping
Transaction grouping can significantly improve the performance of Java integrations
especially Big Data integrations. Java Delivery provides functionality to perform
transaction grouping. When Java Delivery is hosted by a Replicat process then the
GROUPTRANSOPS Replicat configuration should be used to perform transaction grouping.

Chapter 11
Java Application Properties

11-15

12
Developing Custom Filters, Formatters,
and Handlers

12.1 Filtering Events
By default, all transactions, operations and metadata events are passed to the
DataSourceListener event handlers. An event filter can be implemented to filter the
events sent to the handlers. The filter could select certain operations on certain tables
containing certain column values, for example

Filters are additive: if more than one filter is set for a handler, then all filters must return
true in order for the event to be passed to the handler.

You can configure filters using the Java application properties file:

handler "foo" only receives certain events
gg.handler.one.type=jms
gg.handler.one.format=mytemplate.vm
gg.handler.one.filter=com.mycompany.MyFilter

To activate the filter, you write the filter and set it on the handler; no additional logic
needs to be added to specific handlers.

12.2 Custom Formatting
You can customize the output format of a built-in handler by:

• Writing a custom formatter in Java or

• Using a velocity template

12.2.1 Coding a Custom Formatter in Java
The preceding examples show a JMS handler and a file output handler using the
same formatter (com.mycompany.MyFormatter). The following is an example of how
this formatter may be implemented.

Example 12-1 Custom Formatting Implementation

package com.mycompany.MyFormatter;
import oracle.goldengate.datasource.DsOperation;
import oracle.goldengate.datasource.DsTransaction;
import oracle.goldengate.datasource.format.DsFormatterAdapter;
import oracle.goldengate.datasource.meta.ColumnMetaData;
import oracle.goldengate.datasource.meta.DsMetaData;
import oracle.goldengate.datasource.meta.TableMetaData;
import java.io.PrintWriter;
public class MyFormatter extends DsFormatterAdapter {

12-1

 public MyFormatter() { }
 @Override
 public void formatTx(DsTransaction tx,

DsMetaData meta,
PrintWriter out)

 {

 out.print("Transaction: ");
 out.print("numOps=\'" + tx.getSize() + "\' ");
 out.println("ts=\'" + tx.getStartTxTimeAsString() + "\'");
 for(DsOperation op: tx.getOperations()) {
TableName currTable = op.getTableName();
TableMetaData tMeta = dbMeta.getTableMetaData(currTable);
String opType = op.getOperationType().toString();
String table = tMeta.getTableName().getFullName();
out.println(opType + " on table \"" + table + "\":");
int colNum = 0;
for(DsColumn col: op.getColumns())
{

ColumnMetaData cMeta = tMeta.getColumnMetaData(colNum++);
out.println(
cMeta.getColumnName() + " = " + col.getAfterValue());
}

 }
 @Override
 public void formatOp(DsTransaction tx,

DsOperation op,
TableMetaData tMeta,
PrintWriter out)

 {

 // not used...

 }

}

The formatter defines methods for either formatting complete transactions (after they
are committed) or individual operations (as they are received, before the commit). If
the formatter is in operation mode, then formatOp(...) is called; otherwise, formatTx(...)
is called at transaction commit.

To compile and use this custom formatter, include the Oracle GoldenGate for Java
JARs in the classpath and place the compiled .class files in gg_install_dir/dirprm:

javac -d gg_install_dir/dirprm
-classpath ggjava/ggjava.jar MyFormatter.java

The resulting class files are located in resources/classes (in correct package
structure):

gg_install_dir/dirprm/com/mycompany/MyFormatter.class

Alternatively, the custom classes can be put into a JAR; in this case, either include the
JAR file in the JVM classpath using the user exit properties (using java.class.path

Chapter 12
Custom Formatting

12-2

in the jvm.bootoptions property), or by setting the Java application properties file to
include your custom JAR:

set properties on 'one'
gg.handler.one.type=file
gg.handler.one.format=com.mycompany.MyFormatter
gg.handler.one.file=output.xml
gg.classpath=/path/to/my.jar,/path/to/directory/of/jars/*

12.2.2 Using a Velocity Template
As an alternative to writing Java code for custom formatting, Velocity templates can be
a good alternative to quickly prototype formatters. For example, the following template
could be specified as the format of a JMS or file handler:

Transaction: numOps='$tx.size' ts='$tx.timestamp'
#for each($op in $tx)
operation: $op.sqlType, on table "$op.tableName":
#for each($col in $op)
$op.tableName, $col.meta.columnName = $col.value
#end
#end

If the template were named sample.vm, it could be placed in the classpath, for
example:

gg_install_dir/dirprm/sample.vm

Update the Java application properties file to use the template:

set properties on 'one'
gg.handler.one.type=file
gg.handler.one.format=sample.vm
gg.handler.one.file=output.xml

When modifying templates, there is no need to recompile any Java source; simply
save the template and re-run the Java application. When the application is run, the
following output would be generated (assuming a table named SCHEMA.SOMETABLE, with
columns TESTCOLA and TESTCOLB):

Transaction: numOps='3' ts='2008-12-31 12:34:56.000'
operation: UPDATE, on table "SCHEMA.SOMETABLE":
SCHEMA.SOMETABLE, TESTCOLA = value 123
SCHEMA.SOMETABLE, TESTCOLB = value abc
operation: UPDATE, on table "SCHEMA.SOMETABLE":
SCHEMA.SOMETABLE, TESTCOLA = value 456
SCHEMA.SOMETABLE, TESTCOLB = value def
operation: UPDATE, on table "SCHEMA.SOMETABLE":
SCHEMA.SOMETABLE, TESTCOLA = value 789
SCHEMA.SOMETABLE, TESTCOLB = value ghi

12.3 Coding a Custom Handler in Java
A custom handler can be implemented by extending AbstractHandler as in the
following example:

import oracle.goldengate.datasource.*;
import static oracle.goldengate.datasource.GGDataSource.Status;

Chapter 12
Coding a Custom Handler in Java

12-3

public class SampleHandler extends AbstractHandler {
 @Override
 public void init(DsConfiguration conf, DsMetaData metaData) {
 super.init(conf, metaData);
 // ... do additional config...
 }
 @Override
 public Status operationAdded(DsEvent e, DsTransaction tx, DsOperation
op) { ... }
 @Override
 public Status transactionCommit(DsEvent e, DsTransaction tx) { ... }
 @Override
 public Status metaDataChanged(DsEvent e, DsMetaData meta) { }
 @Override
 public void destroy() { /* ... do cleanup ... */ }
 @Override
 public String reportStatus() { return "status report..."; }
 @Override
 public Status ddlOperation(OpType opType, ObjectType objectType, String
objectName, String ddlText) }

The method in AbstractHandler is not abstract rather it has a body. In the body it
performs cached metadata invalidation by marking the metadata object as dirty. It
also provides TRACE-level logging of DDL events when the ddlOperation method
is specified. You can override this method in your custom handler implementations.
You should always call the super method before any custom handling to ensure the
functionality in AbstractHandler is executed

When a transaction is processed from the Extract, the order of calls into the handler is
as follows:

1. Initialization:

• First, the handler is constructed.

• Next, all the "setters" are called on the instance with values from the property
file.

• Finally, the handler is initialized; the init(...) method is called before any
transactions are received. It is important that the init(...) method call
super.init(...) to properly initialize the base class.

2. Metadata is then received. If the Java module is processing an operation
on a table not yet seen during this run, a metadata event is fired, and the
metadataChanged(...) method is called. Typically, there is no need to implement
this method. The DsMetaData is automatically updated with new data source
metadata as it is received.

3. A transaction is started. A transaction event is fired, causing the
transactionBegin(...) method on the handler to be invoked (this is not shown).
This is typically not used, since the transaction has zero operations at this point.

4. Operations are added to the transaction, one after another. This causes the
operationAdded(...) method to be called on the handler for each operation
added. The containing transaction is also passed into the method, along with the
data source metadata that contains all processed table metadata. The transaction
has not yet been committed, and could be aborted before the commit is received.

Each operation contains the column values from the transaction (possibly just
the changed values when Extract is processing with compressed updates.) The
column values may contain both before and after values.

Chapter 12
Coding a Custom Handler in Java

12-4

For the ddlOperation method, the options are:

• opType - Is an enumeration that identifies the DDL operation type that is
occurring (CREATE, ALTER, and so on).

• objectType - Is an enumeration that identifies the type of the target of the DDL
(TABLE, VIEW, and so on).

• objectName - Is the fully qualified source object name; typically a fully qualified
table name.

• ddlText - Is the raw DDL text executed on the source relational database.

5. The transaction is committed. This causes the transactionCommit(...) method
to be called.

6. Periodically, reportStatus may be called; it is also called at process shutdown.
Typically, this displays the statistics from processing (the number of operations
andtransactions processed and other details).

An example of a simple printer handler, which just prints out very basic event
information for transactions, operations and metadata follows. The handler also has
a property myoutput for setting the output file name; this can be set in the Java
application properties file as follows:

gg.handlerlist=sample
set properties on 'sample'
gg.handler.sample.type=sample.SampleHandler
gg.handler.sample.myoutput=out.txt

To use the custom handler,

1. Compile the class

2. Include the class in the application classpath,

3. Add the handler to the list of active handlers in the Java application properties file.

To compile the handler, include the Oracle GoldenGate for Java JARs in the classpath
and place the compiled .class files in gg_install_dir/javaue/resources/classes:

javac -d gg_install_dir/dirprm
-classpath ggjava/ggjava.jar SampleHandler.java

The resulting class files would be located in resources/classes, in correct package
structure, such as:

gg_install_dir/dirprm/sample/SampleHandler.class

Note:

For any Java application development beyond hello world examples, either
Ant or Maven would be used to compile, test and package the application.
The examples showing javac are for illustration purposes only.

Alternatively, custom classes can be put into a JAR and included in the classpath.
Either include the custom JAR files in the JVM classpath using the Java properties
(using java.class.path in the jvm.bootoptions property), or by setting the Java
application properties file to include your custom JAR:

Chapter 12
Coding a Custom Handler in Java

12-5

set properties on 'one'
gg.handler.one.type=sample.SampleHandler
gg.handler.one.myoutput=out.txt
gg.classpath=/path/to/my.jar,/path/to/directory/of/jars/*

The classpath property can be set on any handler to include additional individual
JARs, a directory (which would contain resources or extracted class files) or a whole
directory of JARs. To include a whole directory of JARs, use the Java 6 style syntax:

c:/path/to/directory/* (or on UNIX: /path/to/directory/*)

Only the wildcard * can be specified; a file pattern cannot be used. This automatically
matches all files in the directory ending with the .jar suffix. To include multiple JARs
or multiple directories, you can use the system-specific path separator (on UNIX, the
colon and on Windows the semicolon) or you can use platform-independent commas,
as shown in the preceding example.

If the handler requires many properties to be set, just include the property in the
parameter file, and your handler's corresponding "setter" will be called. For example:

gg.handler.one.type=com.mycompany.MyHandler
gg.handler.one.myOutput=out.txt
gg.handler.one.myCustomProperty=12345

The preceding example would invoke the following methods in the custom handler:

public void setMyOutput(String s) {

 // use the string...

} public void setMyCustomProperty(int j) {

 // use the int...

}

Any standard Java type may be used, such as int, long, String, boolean. For custom
types, you may create a custom property editor to convert the String to your custom
type.

12.4 Additional Resources
There is Javadoc available for the Java API. The Javadoc has been intentionally
reduced to a set of core packages, classes and interfaces in order to only distribute
the relevant interfaces and classes useful for customizing and extension.

In each package, some classes have been intentionally omitted for clarity. The
important classes are:

• oracle.goldengate.datasource.DsTransaction: represents a database
transaction. A transaction contains zero or more operations.

• oracle.goldengate.datasource.DsOperation: represents a database operation
(insert, update, delete). An operation contains zero or more column values
representing the data-change event. Columns indexes are offset by zero in the
Java API.

Chapter 12
Additional Resources

12-6

• oracle.goldengate.datasource.DsColumn: represents a column value. A column
value is a composite of a before and an after value. A column value may be
'present' (having a value or be null) or 'missing' (is not included in the source trail).

– oracle.goldengate.datasource.DsColumnComposite is the composite

– oracle.goldengate.datasource.DsColumnBeforeValue is the column value
before the operation (this is optional, and may not be included in the
operation)

– oracle.goldengate.datasource.DsColumnAfterValue is the value after the
operation

• oracle.goldengate.datasource.meta.DsMetaData: represents all database
metadata seen; initially, the object is empty. DsMetaData contains a hash map of
zero or more instances of TableMetaData, using the TableName as a key.

• oracle.goldengate.datasource.meta.TableMetaData: represents all metadata
for a single table; contains zero or more ColumnMetaData.

• oracle.goldengate.datasource.meta.ColumnMetaData: contains column names
and data types, as defined in the database and/or in the Oracle GoldenGate
source definitions file.

See the Javadoc for additional details.

Chapter 12
Additional Resources

12-7

Part IV
Troubleshooting the Oracle GoldenGate
Adapters

This part of the book provides information on troubleshooting problems with the Oracle
GoldenGate Adapters.

13
Troubleshooting the Java Adapters

This chapter includes the following sections:

Topics:

13.1 Checking for Errors
There are two types of errors that can occur in the operation of Oracle GoldenGate for
Java:

• The Replicat process running or VAM does not start or abends

• The process runs successfully, but the data is incorrect or nonexistent

If the Replicat or Extract process does not start or abends, check the error messages
in order from the beginning of processing through to the end:

1. Check the Oracle GoldenGate event log for errors, and view the Extract report file:

GGSCI> VIEW GGSEVT
GGSCI> VIEW REPORT {replicat/extract name}

2. Check the applicable log file.

For the native log file:

• Look at the last messages reported in the log file for the native library. The
file name is the log file prefix (log.logname) set in the property file and the
current date.

shell> more {log.logname}_{yyyymmdd}.log

Note:

This is the only log file for the shared library, not the Java
application.

3. If the Replicat, or VAM was able to launch the Java runtime, then a log4j log file
will exist.

The name of the log file is defined in your log4j.properties file. By default, the
log file name is ggjava-version-log4j.log, where version is the version number
of the JAR file being used. For example:

shell> more ggjava-*log4j.log

To set a more detailed level of logging for the Java application, either:

• Edit the current log4j properties file to log at a more verbose level or

• Re-use one of the existing log4j configurations by editing properties file:

13-1

jvm.bootoptions=-Djava.class.path=ggjava/ggjava.jar
-Dlog4j.configuration=debug-log4j.properties –Xmx512m

These pre-configured log4j property files are found in the classpath, and are
installed in:

./ggjava/resources/classes/*log4j.properties

4. If one of these log files does not reveal the source of the problem, run the native
process directly from the shell (outside of GGSCI) so that stderr and stdout
can more easily be monitored and environmental variables can be verified. For
example:

shell> REPLICAT PARAMFILE dirprm/javaue.prm

If the process runs successfully, but the data is incorrect or nonexistent, check for
errors in any custom filter, formatter or handler you have written.

To restart the Replicat from the beginning of a trail, see Restarting the Java Delivery.

13.2 Reporting Issues
If you have a support account for Oracle GoldenGate, submit a support ticket and
include the following:

• Operating system and Java versions

The version of the Java Runtime Environment can be displayed by:

$ java -version

• Configuration files:

– Parameter file for the Replicat

– All properties files used, including any JMS or JNDI properties files

– Velocity templates for formatting purposes

– If applicable, also include the target-specific configuration file

• Log files:

In the Oracle GoldenGate install directory, all .log files: the Java log4j log files
and the native module or VAM log file.

Chapter 13
Reporting Issues

13-2

A
List of Included Examples

The following examples are located in the AdaptersExamples subdirectory of the
installation location.

Flat File Writer

• Using the Oracle GoldenGate Flat File Adapter to convert Oracle GoldenGate trail
data to text files.

Message Delivery

• Using the Oracle GoldenGate Java Adapter to send JMS messages with a custom
message format.

• Using the Oracle GoldenGate Java Adapter to send JMS messages with custom
message header properties.

Message Capture

• Using the Oracle GoldenGate Java Adapter to process JMS messages, creating
an Oracle GoldenGate trail.

Java API

• Using the Oracle GoldenGate Java Adapter API to write a custom event handler.

A-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions
	Related Information

	Part I Understanding Oracle GoldenGate for Big Data
	1 Understanding the Java Adapter and Oracle GoldenGate for Big Data
	1.1 Overview
	1.1.1 Oracle GoldenGate Features
	1.1.2 Adapter Integration Options
	1.1.2.1 Capturing Transactions to a Trail
	1.1.2.2 Applying Transactions from a Trail

	1.2 Using Oracle GoldenGate Java Adapter Properties
	1.2.1 Values in Property Files
	1.2.2 Location of Property Files
	1.2.3 Using Comments in the Property File
	1.2.4 Variables in Property Names

	1.3 Monitoring Performance
	1.4 Oracle GoldenGate Documentation

	2 Introducing the Java Adapter
	2.1 Oracle GoldenGate VAM Message Capture
	2.1.1 Message Capture Configuration Options
	2.1.2 Typical Configuration

	2.2 Oracle GoldenGate Java Delivery
	2.3 Delivery Configuration Options

	3 Configuring Logging
	3.1 Oracle GoldenGate Java Adapter Default Logging
	3.1.1 Default Implementation Type
	3.1.2 Default Message Logging
	3.1.3 Log File Name
	3.1.4 Logging Problems

	3.2 Recommended Logging Settings
	3.2.1 Changing to the Recommended Logging Type

	4 Automatic Heartbeat for Big Data
	4.1 Overview
	4.2 Automatic Heartbeat Tables
	4.2.1 ADD HEARTBEATTABLE
	4.2.2 ALTER HEARTBEAT TABLE
	4.2.3 INFO HEARTBEATTABLE
	4.2.4 LAG
	4.2.5 DELETE HEARTBEATTABLE

	Part II Capturing JMS Messages
	5 Configuring Message Capture
	5.1 Configuring the VAM Extract
	5.1.1 Adding the Extract
	5.1.2 Configuring the Extract Parameters
	5.1.3 Configuring Message Capture

	5.2 Connecting and Retrieving the Messages
	5.2.1 Connecting to JMS
	5.2.2 Retrieving Messages
	5.2.3 Completing the Transaction

	6 Parsing the Message
	6.1 Parsing Overview
	6.1.1 Parser Types
	6.1.2 Source and Target Data Definitions
	6.1.3 Required Data
	6.1.3.1 Transaction Identifier
	6.1.3.2 Sequence Identifier
	6.1.3.3 Timestamp
	6.1.3.4 Table Name
	6.1.3.5 Operation Type
	6.1.3.6 Column Data

	6.1.4 Optional Data
	6.1.4.1 Transaction Indicator
	6.1.4.2 Transaction Name
	6.1.4.3 Transaction Owner

	6.2 Fixed Width Parsing
	6.2.1 Header
	6.2.1.1 Specifying Compound Table Names
	6.2.1.2 Specifying timestamp Formats
	6.2.1.3 Specifying the Function

	6.2.2 Header and Record Data Type Translation
	6.2.3 Key identification
	6.2.4 Using a Source Definition File

	6.3 Delimited Parsing
	6.3.1 Metadata Columns
	6.3.2 Parsing Properties
	6.3.2.1 Properties to Describe Delimiters
	6.3.2.2 Properties to Describe Values
	6.3.2.3 Properties to Describe Date and Time

	6.3.3 Parsing Steps

	6.4 XML Parsing
	6.4.1 Styles of XML
	6.4.2 XML Parsing Rules
	6.4.3 XPath Expressions
	6.4.3.1 Supported Constructs:
	6.4.3.2 Supported Expressions
	6.4.3.3 Obtaining Data Values

	6.4.4 Other Value Expressions
	6.4.5 Transaction Rules
	6.4.6 Operation Rules
	6.4.7 Column Rules
	6.4.8 Overall Rules Example

	7 Message Capture Properties
	7.1 Logging and Connection Properties
	7.1.1 Logging Properties
	7.1.1.1 gg.log
	7.1.1.2 gg.log.level
	7.1.1.3 gg.log.file
	7.1.1.4 gg.log.classpath

	7.1.2 JMS Connection Properties
	7.1.2.1 jvm.boot options
	7.1.2.2 jms.report.output
	7.1.2.3 jms.report.time
	7.1.2.4 jms.report.records
	7.1.2.5 jms.id
	7.1.2.6 jms.destination
	7.1.2.7 jms.connectionFactory
	7.1.2.8 jms.user, jms.password

	7.1.3 JNDI Properties

	7.2 Parser Properties
	7.2.1 Setting the Type of Parser
	7.2.1.1 parser.type

	7.2.2 Fixed Parser Properties
	7.2.2.1 fixed.schematype
	7.2.2.2 fixed.sourcedefs
	7.2.2.3 fixed.copybook
	7.2.2.4 fixed.header
	7.2.2.5 fixed.seqid
	7.2.2.6 fixed.timestamp
	7.2.2.7 fixed.timestamp.format
	7.2.2.8 fixed.txid
	7.2.2.9 fixed.txowner
	7.2.2.10 fixed.txname
	7.2.2.11 fixed.optype
	7.2.2.12 fixed.optype.insertval
	7.2.2.13 fixed.optype.updateval
	7.2.2.14 fixed.optype.deleteval
	7.2.2.15 fixed.table
	7.2.2.16 fixed.schema
	7.2.2.17 fixed.txind
	7.2.2.18 fixed.txind.beginval
	7.2.2.19 fixed.txind.middleval
	7.2.2.20 fixed.txind.endval
	7.2.2.21 fixed.txind.wholeval

	7.2.3 Delimited Parser Properties
	7.2.3.1 delim.sourcedefs
	7.2.3.2 delim.header
	7.2.3.3 delim.seqid
	7.2.3.4 delim.timestamp
	7.2.3.5 delim.timestamp.format
	7.2.3.6 delim.txid
	7.2.3.7 delim.txowner
	7.2.3.8 delim.txname
	7.2.3.9 delim.optype
	7.2.3.10 delim.optype.insertval
	7.2.3.11 delim.optype.updateval
	7.2.3.12 delim.optype.deleteval
	7.2.3.13 delim.schemaandtable
	7.2.3.14 delim.schema
	7.2.3.15 delim.table
	7.2.3.16 delim.txind
	7.2.3.17 delim.txind.beginval
	7.2.3.18 delim.txind.middleval
	7.2.3.19 delim.txind.endval
	7.2.3.20 delim.txind.wholeval
	7.2.3.21 delim.fielddelim
	7.2.3.22 delim.linedelim
	7.2.3.23 delim.quote
	7.2.3.24 delim.nullindicator
	7.2.3.25 delim.fielddelim.escaped
	7.2.3.26 delim.linedelim.escaped
	7.2.3.27 delim.quote.escaped
	7.2.3.28 delim.nullindicator.escaped
	7.2.3.29 delim.hasbefores
	7.2.3.30 delim.hasnames
	7.2.3.31 delim.afterfirst
	7.2.3.32 delim.isgrouped
	7.2.3.33 delim.dateformat | delim.dateformat.table | delim.dateform.table.column

	7.2.4 XML Parser Properties
	7.2.4.1 xml.sourcedefs
	7.2.4.2 xml.rules
	7.2.4.3 rulename.type
	7.2.4.4 rulename.match
	7.2.4.5 rulename.subrules
	7.2.4.6 txrule.timestamp
	7.2.4.7 txrule.timestamp.format
	7.2.4.8 txrule.seqid
	7.2.4.9 txrule.txid
	7.2.4.10 txrule.txowner
	7.2.4.11 txrule.txname
	7.2.4.12 oprule.timestamp
	7.2.4.13 oprule.timestamp.format
	7.2.4.14 oprule.seqid
	7.2.4.15 oprule.txid
	7.2.4.16 oprule.txowner
	7.2.4.17 oprule.txname
	7.2.4.18 oprule.schemandtable
	7.2.4.19 oprule.schema
	7.2.4.20 oprule.table
	7.2.4.21 oprule.optype
	7.2.4.22 oprule.optype.insertval
	7.2.4.23 oprule.optype.updateval
	7.2.4.24 oprule.optype.deleteval
	7.2.4.25 oprule.txind
	7.2.4.26 oprule.txind.beginval
	7.2.4.27 oprule.txind.middleval
	7.2.4.28 oprule.txind.endval
	7.2.4.29 oprule.txind.wholeval
	7.2.4.30 colrule.name
	7.2.4.31 colrule.index
	7.2.4.32 colrule.value
	7.2.4.33 colrule.isnull
	7.2.4.34 colrule.ismissing
	7.2.4.35 colrule.before.value
	7.2.4.36 colrule.before.isnull
	7.2.4.37 colrule.before.ismissing
	7.2.4.38 colrule.after.value
	7.2.4.39 colrule.after.isnull
	7.2.4.40 colrule.after.ismissing

	Part III Oracle GoldenGate Java Delivery
	8 Configuring Java Delivery
	8.1 Configuring the JRE in the Properties File
	8.2 Configuring Oracle GoldenGate for Java Delivery
	8.2.1 Configuring a Replicat for Java Delivery

	8.3 Configuring the Java Handlers

	9 Running Java Delivery
	9.1 Starting the Application
	9.1.1 Starting Using Replicat

	9.2 Restarting the Java Delivery
	9.2.1 Restarting Java Delivery in Replicat

	10 Configuring Event Handlers
	10.1 Specifying Event Handlers
	10.2 JMS Handler
	10.3 File Handler
	10.4 Custom Handlers
	10.5 Formatting the Output
	10.6 Reporting

	11 Java Delivery Properties
	11.1 Common Properties
	11.1.1 Logging Properties
	11.1.1.1 gg.log
	11.1.1.2 gg.log.level
	11.1.1.3 gg.log.file
	11.1.1.4 gg.log.classpath

	11.1.2 JVM Boot Options
	11.1.2.1 jvm.bootoptions

	11.2 Delivery Properties
	11.2.1 General Properties
	11.2.1.1 goldengate.userexit.writers
	11.2.1.2 goldengate.userexit.chkptprefix
	11.2.1.3 goldengate.userexit.nochkpt
	11.2.1.4 goldengate.userexit.usetargetcols

	11.2.2 Statistics and Reporting
	11.2.2.1 jvm.stats.time | jvm.stats.numrecs

	11.3 Java Application Properties
	11.3.1 Properties for All Handlers
	11.3.1.1 gg.handlerlist
	11.3.1.2 gg.handler.name.type

	11.3.2 Properties for Formatted Output
	11.3.2.1 gg.handler.name.format
	11.3.2.2 gg.handler.name.includeTables
	11.3.2.3 gg.handler.name.excludeTables
	11.3.2.4 gg.handler.name.mode, gg.handler.name.format.mode

	11.3.3 Properties for CSV and Fixed Format Output
	11.3.3.1 gg.handler.name.format.delim
	11.3.3.2 gg.handler.name.format.quote
	11.3.3.3 gg.handler.name.format.metacols
	11.3.3.4 gg.handler.name.format.missingColumnChar
	11.3.3.5 gg.handler.name.format.presentColumnChar
	11.3.3.6 gg.handler.name.format.nullColumnChar
	11.3.3.7 gg.handler.name.format.beginTxChar
	11.3.3.8 gg.handler.name.format.middleTxChar
	11.3.3.9 gg.handler.name.format.endTxChar
	11.3.3.10 gg.handler.name.format.wholeTxChar
	11.3.3.11 gg.handler.name.format.insertChar
	11.3.3.12 gg.handler.name.format.updateChar
	11.3.3.13 gg.handler.name.format.deleteChar
	11.3.3.14 gg.handler.name.format.truncateChar
	11.3.3.15 gg.handler.name.format.endOfLine
	11.3.3.16 gg.handler.name.format.justify
	11.3.3.17 gg.handler.name.format.includeBefores

	11.3.4 File Writer Properties
	11.3.4.1 gg.handler.name.file
	11.3.4.2 gg.handler.name.append
	11.3.4.3 gg.handler.name.rolloverSize

	11.3.5 JMS Handler Properties
	11.3.5.1 Standard JMS Settings
	11.3.5.1.1 gg.handler.name.destination
	11.3.5.1.2 gg.handler.name.user
	11.3.5.1.3 gg.handler.name.password
	11.3.5.1.4 gg.handler.name.queueOrTopic
	11.3.5.1.5 gg.handler.name.persistent
	11.3.5.1.6 gg.handler.name.priority
	11.3.5.1.7 gg.handler.name.timeToLive
	11.3.5.1.8 gg.handler.name.connectionFactory
	11.3.5.1.9 gg.handler.name.useJndi
	11.3.5.1.10 gg.handler.name.connectionUrl
	11.3.5.1.11 gg.handler.name.connectionFactoryClass
	11.3.5.1.12 gg.handler.name.localTX
	11.3.5.1.13 gg.handlerlist.nop
	11.3.5.1.14 gg.handler.name.physicalDestination

	11.3.5.2 Group Transaction Properties

	11.3.6 JNDI Properties
	11.3.7 General Properties
	11.3.7.1 gg.classpath
	11.3.7.2 gg.report.time
	11.3.7.3 gg.binaryencoding

	11.3.8 Java Delivery Transaction Grouping

	12 Developing Custom Filters, Formatters, and Handlers
	12.1 Filtering Events
	12.2 Custom Formatting
	12.2.1 Coding a Custom Formatter in Java
	12.2.2 Using a Velocity Template

	12.3 Coding a Custom Handler in Java
	12.4 Additional Resources

	Part IV Troubleshooting the Oracle GoldenGate Adapters
	13 Troubleshooting the Java Adapters
	13.1 Checking for Errors
	13.2 Reporting Issues

	A List of Included Examples

