
Oracle® Database
Oracle GoldenGate Classic Documentation

(19c)
G11138-01
February 2025

Oracle Database Oracle GoldenGate Classic Documentation, (19c)

G11138-01

Copyright © 2024, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxi

Documentation Accessibility xxi

Related Information xxi

Conventions xxi

1 Concepts

Oracle GoldenGate 1-1

When Do You Use Oracle GoldenGate? 1-2

Topologies for Oracle GoldenGate 1-2

What is Oracle GoldenGate for Non-Oracle Databases? 1-3

Oracle GoldenGate Product Family 1-4

Getting Started with Oracle GoldenGate 1-4

Oracle GoldenGate Supported Processing Methods and Databases 1-7

Components of Oracle GoldenGate Classic Architecture 1-8

What is a Manager? 1-9

What is a Data Pump? 1-9

What is a Collector? 1-10

What is GGSCI? 1-10

Oracle GoldenGate Classic Architecture Programs and Utilities 1-11

Oracle GoldenGate Subdirectories 1-12

Other Oracle GoldenGate Files 1-14

Overview of Oracle GoldenGate Processes 1-16

What is an Extract? 1-17

What is a Trail? 1-18

What is a Replicat? 1-20

Oracle GoldenGate Processes and Key Terms 1-21

Oracle GoldenGate Key Terms and Concepts 1-21

About Process Types 1-21

About Commit Sequence Number (CSN) 1-21

Overview of Groups 1-22

iii

2 Install and Patch

Obtaining the Oracle GoldenGate Distribution 2-1

Verify Certification and System Requirements 2-1

Operating System Requirements 2-2

Memory Requirements 2-3

Disk Requirements 2-4

Network 2-5

Operating System Privileges 2-5

Other Operating System Requirements 2-6

Security and Other Considerations 2-7

Windows Console Character Sets 2-7

Prerequisites for Installing Oracle GoldenGate for DB2 z/OS 2-7

System Services 2-7

Memory Requirements 2-8

Disk Requirements for DB2 z/OS 2-8

Operating System Privileges for DB2 z/OS 2-8

Choosing an Installation Operating System 2-9

Prerequisites for Installing Oracle GoldenGate for DB2 for i 2-10

General Requirements 2-11

Prerequisite Setup the DB2 for i System 2-12

Prerequisites for Installing Oracle GoldenGate for DB2 LUW 2-14

Choosing an Installation System for DB2 LUW 2-14

Choosing and Configuring a System for Remote Capture or Delivery 2-15

Prerequisites for Installing Oracle GoldenGate for MySQL 2-15

Prerequisites for Installing Oracle GoldenGate for Oracle Database 2-16

Specifying Oracle Variables on UNIX and Linux Systems 2-17

Specifying Oracle Variables on Windows Systems 2-17

Prerequisites for Installing Oracle GoldenGate for PostgreSQL 2-18

Prerequisites for Installing Oracle GoldenGate for PostgreSQL 2-18

Prerequisites for Installing Oracle GoldenGate for SQL Server 2-19

Prerequisites for Installing Oracle GoldenGate for SQL Server 2-20

Prerequisites for Installing Oracle GoldenGate for Sybase 2-20

Setting Library Paths for Dynamic Builds on UNIX 2-22

Operating System Privileges 2-23

Prerequisites for Oracle GoldenGate for Teradata 2-24

Operating System Privileges for Teradata 2-24

Prerequisites for Installing Oracle GoldenGate for Oracle TimesTen 2-24

Operating System Privileges 2-24

System Requirements and Preinstallation Instructions 2-24

Supported Database Architectures 2-24

Supported Platforms and Database Versions 2-25

iv

Oracle TimesTen Software Installation 2-25

Client-only Instance Creation 2-25

Installing Oracle GoldenGate Classic Architecture 2-26

Installing Oracle GoldenGate Classic for Oracle Database 2-26

Performing an Interactive Installation with OUI 2-27

Performing a Silent Installation with OUI 2-28

Installing Oracle GoldenGate for Non-Oracle Databases 2-29

Installing for all Platforms 2-29

Specifying a Custom Manager Name for Windows 2-29

Installing Manager as a Windows Service 2-30

Patching for Classic Architecture 2-31

Downloading Patches for Oracle GoldenGate 2-32

Patching Oracle GoldenGate Classic Architechture for Oracle Database Using OPatch 2-33

Patching Oracle GoldenGate Classic Architecture for Non-Oracle Databases 2-35

Patching Oracle GoldenGate for SQL Server - Extract Requirements 2-36

Patching Oracle GoldenGate MySQL 5.7 with DDL Replication Enabled 2-37

Uninstalling the Patch for Oracle and Non-Oracle Databases Using OPatch 2-37

Uninstalling Oracle GoldenGate Classic Architecture for Oracle Database 2-38

Stopping Processes 2-38

Removing the DDL Environment 2-38

Removing Database Objects 2-39

Uninstalling Oracle GoldenGate Using Oracle Universal Installer 2-40

Uninstalling Oracle GoldenGate Manually 2-41

Manually Removing Oracle GoldenGate Windows Components 2-41

Manually Removing the Oracle GoldenGate Files 2-42

Uninstalling Oracle GoldenGate Classic Architecture for Non-Oracle Databases 2-42

Stopping Processes 2-42

Removing Oracle GoldenGate Database Objects 2-43

Uninstalling Oracle GoldenGate from a Source DB2 for i System 2-44

Uninstalling Oracle GoldenGate from a Linux System 2-44

Uninstalling Oracle GoldenGate from a Windows System 2-44

Removing Oracle GoldenGate from a Windows Cluster 2-45

Removing Oracle GoldenGate from a Remote Windows System 2-45

Removing Oracle GoldenGate Windows Components 2-46

3 Prepare

Prepare Your Database for Oracle GoldenGate Classic Architecture 3-1

Db2 LUW 3-1

Database User for Oracle GoldenGate Processes for DB2 LUW 3-1

Database Configuration for DB2 LUW 3-2

Preparing Tables for Processing 3-4

v

Understanding What's Supported for DB2 LUW 3-13

Db2 for i 3-17

Preparing the System for Oracle GoldenGate 3-17

Configuring Database Connections 3-19

Preparing Tables for Processing 3-22

Configuring Oracle GoldenGate for DB2 for i 3-25

Using Remote Journal 3-32

Understanding What's Supported for DB2 for i 3-35

Db2 z/OS 3-38

System Services 3-39

Database User for Oracle GoldenGate Processes 3-39

Database Configuration 3-40

Configure a Database Connection 3-45

Preparing Tables for Processing 3-47

Preparing the DB2 for z/OS Transaction Logs for Oracle GoldenGate 3-49

Understanding What's Supported for DB2 for z/OS 3-51

MySQL 3-53

Supported Databases 3-54

Database Storage Engine 3-54

Database User for Oracle GoldenGate Processes for MySQL 3-54

Database Configuration 3-56

Prepare Database Connection 3-61

Preparing Tables for Processing 3-61

Understanding What's Supported for MySQL 3-64

Oracle 3-68

Preparing the Database for Oracle GoldenGate 3-68

Establishing Oracle GoldenGate Credentials 3-82

Additional Oracle GoldenGate Configuration for Your Database 3-89

Supported Oracle Data Types, Objects, and Operations for DDL and DML 3-95

PostgreSQL 3-109

Preparing the Database for Oracle GoldenGate 3-110

Configuring Replicat 3-118

Additional Considerations 3-121

Understanding What's Supported for PostgreSQL 3-124

SQL Server 3-128

SQL Server Supported Versions 3-128

Globalization Support 3-129

Requirements for Installing Oracle GoldenGate for SQL Server 3-129

Prepare Database Users and Privileges 3-131

Database Connectivity 3-133

Preparing Tables for Processing 3-137

Preparing the Database for Oracle GoldenGate — CDC Capture 3-139

vi

Requirements Summary for Capture and Delivery of Databases in an Always On
Availability Group 3-144

CDC Capture Method Operational Considerations 3-146

Understanding What's Supported for SQL Server 3-150

Sybase 3-155

Preparing the System for Oracle GoldenGate 3-155

Understanding What's Supported for Sybase 3-159

Teradata 3-165

Supported Platforms for a Replication Server 3-165

Preparing the System for Oracle GoldenGate 3-165

Configuring Oracle GoldenGate 3-167

Common Maintenance Tasks 3-169

Understanding What's Supported for Teradata 3-169

TimesTen 3-172

Database Requirements 3-173

Preparing the System for Oracle GoldenGate 3-173

Understanding What's Supported for Oracle TimesTen 3-177

System Requirements and Preinstallation Instructions 3-179

Prepare Oracle GoldenGate Classic Architecture for Data Replication 3-180

Oracle GoldenGate Security Privileges 3-180

Oracle GoldenGate Security Privileges 3-180

Oracle GoldenGate Security Privileges on a DB2 for i System 3-181

Initializing the Transaction Logs 3-181

Details of Support for Data Types, Objects and Operations for Classic Extract 3-183

Details of Support for Objects and Operations in Oracle DDL 3-184

Details of Support for Objects and Operations in Oracle DML 3-187

Creating a Checkpoint Table 3-187

Options for Creating the Checkpoint Table 3-187

Adjusting for Coordinated Replicat in Oracle RAC 3-189

Specifying the DB2 LUW Database in Parameter Files 3-189

4 Manage

Overview of the Manager Process 4-1

Configure Network Communications 4-1

Assigning Manager a Port for Local Communication 4-1

Maintaining Ports for Remote Connections through Firewalls 4-2

Choosing an Internet Protocol 4-2

Creating the Manager Parameter File 4-3

Using the Recommended Manager Parameters 4-3

Controlling Manager 4-4

Starting Manager 4-4

vii

Starting Manager from the Command Shell of the Operating System 4-4

Starting Manager from GGSCI 4-5

Stopping Manager 4-5

Stopping Manager on UNIX and Linux 4-5

Stopping Manager on Windows 4-5

5 Extract

About Extract 5-1

About Integrated Extract 5-2

About Classic Extract 5-3

Deciding Which Extract Method to Use 5-3

Switching to a Different Process Mode 5-4

Configuring Extract 5-5

Add the Primary Extract 5-5

Add the Data Pump Extract Group 5-6

Registering Extract with the Mining Database 5-6

Creating an Online Extract Group 5-8

Configuring the Data Pump Extract 5-10

Configuring a Downstream Mining Database 5-11

Evaluating Capture Options for a Downstream Deployment 5-12

Preparing the Source Database for Downstream Deployment 5-12

Creating the Source User Account 5-12

Configuring Redo Transport from Source to Downstream Mining Database 5-12

Preparing the Downstream Mining Database 5-14

Creating the Downstream Mining User Account 5-14

Configuring the Mining Database to Archive Local Redo Log Files 5-14

Preparing a Downstream Mining Database for Real-time Capture 5-15

Example Downstream Mining Configuration 5-17

Example 1: Capturing from One Source Database in Real-time Mode 5-17

Example 2: Capturing from Multiple Sources in Archive-log-only Mode 5-20

Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-
only Mode 5-22

Positioning Extract to a Specific Start Point for MySQL 5-26

Additional Parameter Options for Extract 5-27

Additional Configuration Steps for Using Classic Capture 5-27

Configuring Oracle TDE Data in Classic Capture Mode 5-28

Overview of TDE Support in Classic Capture Mode 5-28

Requirements for Capturing TDE in Classic Capture Mode 5-28

Configuring Classic Capture for TDE Support 5-29

Recommendations for Maintaining Data Security after Decryption 5-31

Performing DDL while TDE Capture is Active 5-32

viii

Rekeying after a Database Upgrade 5-32

Updating the Oracle Shared Secret in the Parameter File 5-32

Using Classic Capture in an Oracle RAC Environment 5-33

Mining ASM-stored Logs in Classic Capture Mode 5-34

Accessing the Transaction Logs in ASM 5-34

Reading Transaction Logs Through the RDBMS 5-34

ASM Direct Connection 5-34

Ensuring ASM Connectivity 5-35

Ensuring Data Availability for Classic Capture 5-36

Log Retention Requirements per Extract Recovery Mode 5-36

Log Retention Options 5-36

Determining How Much Data to Retain 5-37

Purging Log Archives 5-37

Specifying the Archive Location 5-37

Mounting Logs that are Stored on Other Platforms 5-37

Configuring Classic Capture in Archived Log Only Mode 5-38

Limitations and Requirements for Using ALO Mode 5-38

Configuring Extract for ALO mode 5-38

Configuring Classic Capture in Oracle Active Data Guard Only Mode 5-39

Limitations and Requirements for Using ADG Mode 5-40

Configuring Classic Extract for ADG Mode 5-41

Migrating Classic Extract To and From an ADG Database 5-42

Handling Role Changes In an ADG Configuration 5-42

Avoiding Log-read Bottlenecks in Classic Capture 5-44

6 Replicat

About Replicat 6-1

Deciding Which Replicat Method to Use 6-1

About Parallel Replicat 6-6

Parallel Replication Architecture 6-7

Basic Parameters for Parallel Replicat 6-8

About Non-integrated Replicat 6-9

About Integrated Replicat 6-10

Benefits of Integrated Replicat 6-12

Integrated Replicat Requirements 6-12

About Classic Replicat Mode 6-13

About Coordinated Replicat Mode 6-13

About Barrier Transactions 6-15

How Barrier Transactions are Processed 6-16

Using Different Replicat Modes 6-16

Add the Replicat Group 6-16

ix

Creating a Parallel Replicat 6-17

Configuring Oracle GoldenGate Replicat 6-19

Prerequisites for Configuring Replicat 6-19

What to Expect from these Instructions 6-19

About Checkpoint Table 6-19

Adding the Checkpoint Table to the Target Database 6-20

Include the Checkpoint Table in the GLOBALS File 6-20

Disabling Default Asynchronous COMMIT to Checkpoint Table 6-21

Configuring Replicat 6-21

Additional Parameter Options for Integrated Replicat 6-24

Next Steps After Configuring Replicat 6-25

Additional Configuration Steps For Using Nonintegrated Replicat 6-25

Disabling Triggers and Referential Cascade Constraints on Target Tables 6-26

Understanding Replicat Processing in Relation to Parameter Changes 6-26

Controlling Extract and Replicat 6-26

Deleting Extract and Replicat 6-27

About the Global Watermark 6-28

7 Instantiate

Instantiating Oracle GoldenGate Using Initial Load 7-1

Prerequisites for Initial Load 7-1

Disable DDL Processing 7-1

Prepare the Target Tables 7-1

Configure the Manager Process 7-2

Create a Data-definitions File 7-2

Create Change-synchronization Groups 7-2

Sharing Parameters between Process Groups 7-3

Instantiation Requirements for DB2 LUW 7-3

Improving the Performance of an Initial Load 7-4

Loading Data with Oracle Data Pump 7-4

Using Automatic Per Table Instantiation 7-4

Using Oracle Data Pump Table Instantiation 7-5

Loading Data from File to Replicat 7-6

Loading Data with an Oracle GoldenGate Direct Load 7-11

Loading Data with a Direct Bulk Load to SQL*Loader 7-15

Precise Instantiation for MySQL to MySQL Replication Using the Dump Utility 7-20

Precise Instantiation for Oracle GoldenGate Extract for MySQL 7-21

Backing up the Oracle GoldenGate Environment 7-21

Monitoring and Controlling Processing After the Instantiation 7-21

Verifying Synchronization 7-22

x

8 Administer

Data Management 8-1

Details of Support for Data Types, Objects and Operations for Classic Extract 8-1

Details of Support for Objects and Operations in Oracle DDL 8-2

Details of Support for Objects and Operations in Oracle DML 8-3

Creating a Data Definitions File 8-3

Using DDL Replication 8-4

Plug-in Based DDL Configuration Prerequisites and Considerations 8-4

Installing DDL Replication 8-5

Using the Metadata Server 8-6

Using DDL Filtering for Replication 8-6

Troubleshooting Plug-in Based DDL Replication 8-8

Uninstalling Plug-In Based DDL Replication 8-8

Oracle: DDL Replication 8-9

Managing the DDL Replication Environment 8-9

Configuring DDL Support 8-15

Installing Trigger-Based DDL Capture 8-43

Configure DDL Modification for Oracle GoldenGate for Sybase 8-47

Using Procedural Replication 8-47

About Procedural Replication 8-47

Procedural Replication Process Overview 8-48

Enabling Procedural Replication 8-49

Determining Whether Procedural Replication Is On 8-49

Enabling and Disabling Supplemental Logging 8-49

Filtering Features for Procedural Replication 8-50

Handling Procedural Replication Errors 8-51

Procedural Replication Pragma Options 8-52

Listing the Procedures Supported for Oracle GoldenGate Procedural Replication 8-81

Monitoring Oracle GoldenGate Procedural Replication 8-82

Mapping and Manipulating Data 8-82

Guidelines for Using Self-describing Trails 8-82

Parameters that Control Mapping and Data Integration 8-83

Mapping between Dissimilar Databases 8-83

Deciding Where Data Mapping and Conversion Will Take Place 8-83

Globalization Considerations when Mapping Data 8-83

Mapping Columns Using TABLE and MAP 8-87

Selecting and Filtering Rows 8-94

Retrieving Before and After Values 8-99

Selecting Columns 8-100

Using Transaction History 8-100

Testing and Transforming Data 8-101

xi

Using Tokens 8-106

Error Management 8-108

Automatic Conflict Detection and Resolution 8-108

About Automatic Conflict Detection and Resolution 8-109

Configuring Automatic Conflict Detection and Resolution 8-114

Managing Automatic Conflict Detection and Resolution 8-116

Monitoring Automatic Conflict Detection and Resolution 8-120

Handling Processing Errors 8-123

Overview of Oracle GoldenGate Error Handling 8-123

Handling Extract Errors 8-123

Handling Replicat Errors during DML Operations 8-123

Handling Replicat errors during DDL Operations 8-127

Handling TCP/IP Errors 8-127

Maintaining Updated Error Messages 8-127

Resolving Oracle GoldenGate Errors 8-128

Trail File Management 8-128

Add the Local Trail 8-128

Add the Remote Trail 8-129

Encrypting the Extract and Replicat Passwords 8-129

Using Command Line Interfaces 8-129

Using Wildcards in Command Arguments 8-130

Globalization Support for the Command Interface 8-130

Using Command History 8-130

Storing and Calling Frequently Used Command Sequences 8-130

Getting Started with the Oracle GoldenGate Process Interfaces 8-131

Automating Commands 8-131

Issuing Commands Through the IBM i CLI 8-132

Specifying Object Names in Oracle GoldenGate Input 8-132

Specifying Filesystem Path Names in Parameter Files on Windows Systems 8-132

Supported Database Object Names 8-133

Specifying Names that Contain Slashes 8-134

Qualifying Database Object Names 8-134

Specifying Case-Sensitive Database Object Names 8-136

Using Wildcards in Database Object Names 8-137

Differentiating Case-Sensitive Column Names from Literals 8-140

Performing Administrative Operations 8-140

Shutting Down the System 8-140

Changing Database Attributes 8-141

Changing Database Metadata 8-141

Adding Tables to the Oracle GoldenGate Configuration 8-142

Coordinating Table Attributes between Source and Target 8-143

Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables 8-145

xii

Dropping and Recreating a Source Table 8-146

Changing the Number of Oracle RAC Threads when Using Classic Capture 8-146

Changing the ORACLE_SID 8-147

Purging Archive Logs 8-147

Reorganizing a DB2 Table (z/OS Platform) 8-147

Adding Process Groups to an Active Configuration 8-148

Before You Start 8-148

Adding Another Extract Group to an Active Configuration 8-148

Adding Another Data Pump to an Active Configuration 8-150

Adding Another Replicat Group to an Active Configuration 8-152

Changing the Size of Trail Files 8-154

Switching from Classic Extract 8-154

Switching Extract from Integrated Mode to Classic Mode 8-156

Switching Replicat from Non-Integrated Mode to Integrated Mode 8-157

Switching Replicat from Integrated Mode to Non-Integrated Mode 8-158

Switching Replicat to Coordinated Mode 8-159

Procedure Overview 8-159

Performing the Switch to Coordinated Replicat 8-160

Administering a Coordinated Replicat Configuration 8-162

Performing a Planned Re-partitioning of the Workload 8-162

Recovering Replicat After an Unplanned Re-partitioning 8-163

Synchronizing Threads After an Unclean Stop 8-164

Restarting a Primary Extract after System Failure or Corruption 8-165

Details of This Procedure 8-165

Performing the Recovery 8-166

Using Automatic Trail File Recovery 8-167

Customizing Oracle GoldenGate Processing 8-168

Executing Commands, Stored Procedures, and Queries with SQLEXEC 8-168

Performing Processing with SQLEXEC 8-168

Using SQLEXEC 8-168

Executing SQLEXEC within a TABLE or MAP Statement 8-168

Executing SQLEXEC as a Standalone Statement 8-170

Using Input and Output Parameters 8-170

Handling SQLEXEC Errors 8-173

Additional SQLEXEC Guidelines 8-173

Using Oracle GoldenGate Macros to Simplify and Automate Work 8-174

Defining a Macro 8-175

Calling a Macro 8-176

Calling Other Macros from a Macro 8-179

Creating Macro Libraries 8-180

Tracing Macro Expansion 8-181

Using User Exits to Extend Oracle GoldenGate Capabilities 8-182

xiii

When to Implement User Exits 8-182

Making Oracle GoldenGate Record Information Available to the Routine 8-182

Creating User Exits 8-182

Supporting Character-set Conversion in User Exits 8-184

Using Macros to Check Name Metadata 8-184

Describing the Character Format 8-185

Upgrading User Exits 8-187

Viewing Examples of How to Use the User Exit Functions 8-187

Using the Oracle GoldenGate Event Marker System to Raise Database Events 8-187

Case Studies in the Usage of the Event Marker System 8-188

Oracle GoldenGate Globalization Support 8-191

Preserving the Character Set 8-191

Character Set of Database Structural Metadata 8-191

Character Set of Character-type Data 8-191

Character Set of Database Connection 8-192

Character Set of Text Input and Output 8-192

Using Unicode and Native Characters 8-192

Using Oracle GoldenGate Parameter Files 8-192

Globalization Support for Parameter Files 8-192

Working with the GLOBALS File 8-193

Working with Runtime Parameters 8-194

Creating a Parameter File 8-196

Creating a Parameter File in GGSCI and Admin Client 8-196

Creating a Parameter File with a Text Editor 8-197

Validating a Parameter File 8-198

Viewing a Parameter File 8-201

Changing a Parameter File 8-202

Simplifying the Creation of Parameter Files 8-202

Using Macros 8-202

Using OBEY 8-203

Using Parameter Substitution 8-203

Using Wildcards 8-204

Getting Information about Oracle GoldenGate Parameters 8-204

Configure Bi-Directional Replication 8-204

Other Oracle GoldenGate Parameters for MySQL 8-205

9 Performance

Monitoring Oracle GoldenGate Processing 9-1

Using the Information Commands 9-1

Monitoring an Extract Recovery 9-3

Monitoring Lag 9-4

xiv

About Lag 9-4

Controlling How Lag is Reported 9-4

Using Automatic Heartbeat Tables to Monitor 9-4

Understanding Heartbeat Table End-To-End Replication Flow 9-5

Updating Heartbeat Tables 9-14

Purging the Heartbeat History Tables 9-14

Best Practice 9-14

Using the Automatic Heartbeat Commands 9-14

Monitoring Processing Volume 9-15

Using the Error Log 9-15

Using the Process Report 9-16

Scheduling Runtime Statistics in the Process Report 9-17

Viewing Record Counts in the Process Report 9-17

Preventing SQL Errors from Filling the Replicat Report File 9-17

Using the Discard File 9-17

Maintaining the Discard and Report Files 9-18

Reconciling Time Differences 9-19

Getting Help with Performance Tuning 9-19

Tuning the Performance of Oracle GoldenGate 9-19

Using Multiple Process Groups 9-19

Considerations for Using Multiple Process Groups 9-20

Using Parallel Replicat Groups on a Target System 9-22

Using Multiple Extract Groups with Multiple Replicat Groups 9-23

Splitting Large Tables Into Row Ranges Across Process Groups 9-24

Configuring Oracle GoldenGate to Use the Network Efficiently 9-25

Detecting a Network Bottleneck that is Affecting Oracle GoldenGate 9-25

Working Around Bandwidth Limitations by Using Data Pumps 9-26

Increasing the TCP/IP Packet Size 9-27

Eliminating Disk I/O Bottlenecks 9-27

Improving I/O performance Within the System Configuration 9-27

Improving I/O Performance Within the Oracle GoldenGate Configuration 9-28

Managing Virtual Memory and Paging 9-28

Optimizing Data Filtering and Conversion 9-29

Tuning Replicat Transactions 9-29

Tuning Coordination Performance Against Barrier Transactions 9-29

Applying Similar SQL Statements in Arrays 9-30

Preventing Full Table Scans in the Absence of Keys 9-30

Splitting Large Transactions 9-31

Adjusting Open Cursors 9-31

Improving Update Speed 9-31

Set a Replicat Transaction Timeout 9-31

Using Healthcheck Scripts to Monitor and Troubleshoot 9-32

xv

Installing, Running, and Uninstalling Healthcheck Scripts 9-32

How to Deal with Healthcheck Information? 9-32

Components of Healthcheck Information 9-33

10

Oracle GoldenGate Business Solutions

Configuring Online Change Synchronization 10-1

Overview of Online Change Synchronization 10-1

Initial Synchronization 10-1

Choosing Names for Processes and Files 10-2

Naming Conventions for Processes 10-2

Choosing File Names 10-3

Creating a Parameter File for Online Extraction 10-3

Creating an Online Replicat Group 10-5

About the Global Watermark 10-5

Creating the Replicat Group 10-5

Creating a Parameter File for Online Replication 10-7

Using Oracle GoldenGate for Live Reporting 10-9

Overview of the Reporting Configuration 10-9

Filtering and Conversion 10-9

Read-only vs. High Availability 10-10

Additional Information 10-10

Creating a Standard Reporting Configuration 10-10

Source System 10-11

Target System 10-12

Creating a Reporting Configuration with a Data Pump on the Source System 10-13

Source System 10-13

Target System 10-15

Creating a Reporting Configuration with a Data Pump on an Intermediary System 10-16

Source System 10-18

Intermediary System 10-19

Target System 10-20

Creating a Cascading Reporting Configuration 10-21

Source System 10-23

Second System in the Cascade 10-24

Third System in the Cascade 10-27

Using Oracle GoldenGate for Real-time Data Distribution 10-28

Overview of the Data-distribution Configuration 10-28

Considerations for a Data-distribution Configuration 10-29

Fault Tolerance 10-29

Filtering and Conversion 10-29

Read-only vs. High Availability 10-29

xvi

Additional Information 10-29

Creating a Data Distribution Configuration 10-29

Source System 10-30

Target Systems 10-32

Configuring Oracle GoldenGate for Real-time Data Warehousing 10-33

Overview of the Data Warehousing Configuration 10-33

Considerations for a Data Warehousing Configuration 10-34

Isolation of Data Records 10-34

Data Storage 10-34

Filtering and Conversion 10-34

Additional Information 10-34

Creating a Data Warehousing Configuration 10-35

Source Systems 10-35

Target System 10-38

Configuring Oracle GoldenGate to Maintain a Live Standby Database 10-40

Overview of a Live Standby Configuration 10-40

Considerations for a Live Standby Configuration 10-40

Trusted Source 10-40

Duplicate Standby 10-41

DML on the Standby System 10-41

Oracle GoldenGate Processes 10-41

Backup Files 10-41

Failover Preparedness 10-41

Sequential Values that are Generated by the Database 10-42

Additional Information 10-42

Creating a Live Standby Configuration 10-42

Prerequisites on Both Systems 10-43

Configuration from Active Source to Standby 10-43

Configuration from Standby to Active Source 10-45

Moving User Activity in a Planned Switchover 10-47

Moving User Activity to the Live Standby 10-47

Moving User Activity Back to the Primary System 10-48

Moving User Activity in an Unplanned Failover 10-50

Moving User Activity to the Live Standby 10-50

Moving User Activity Back to the Primary System 10-51

Configuring Oracle GoldenGate for Active-Active Configuration 10-53

Overview of an Active-Active Configuration 10-53

Considerations for an Active-Active Configuration 10-53

Application Design 10-53

Keys 10-54

Database-Generated Values 10-54

Database Configuration 10-54

xvii

Preventing Data Looping 10-54

Identifying Replicat Transactions 10-55

Preventing the Capture of Replicat Operations 10-56

Replicating DDL in a Bidirectional Configuration 10-57

Managing Conflicts 10-57

Additional Information 10-58

Creating an Active-Active Configuration 10-58

Prerequisites on Both Systems 10-58

Configuration from Primary System to Secondary System 10-58

Configuration from Secondary System to Primary System 10-61

Manual Conflict Detection and Resolution 10-64

Overview of the Oracle GoldenGate CDR Feature 10-64

Configuring the Oracle GoldenGate Parameter Files for Error Handling 10-64

Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution 10-69

Making the Required Column Values Available to Extract 10-69

Configuring Oracle GoldenGate CDR 10-70

CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD 10-71

CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX 10-77

CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE 10-79

11

Autonomous Database

Using Oracle GoldenGate with Autonomous Database 11-1

About Capturing and Replicating Data Using Autonomous Databases 11-1

Details of Support When Using Oracle GoldenGate with Autonomous Databases 11-2

Oracle GoldenGate Replicat Limitations for Autonomous Databases 11-2

Data Type Limitations for DDL and DML Replication 11-2

Details of Support for Archived Log Retention 11-2

Configuring Extract to Capture from an Autonomous Database 11-3

Establishing Oracle GoldenGate Credentials 11-3

Prerequisites for Configuring Oracle GoldenGate Extract to Capture from
Autonomous Databases 11-3

Configure Extract to Capture from an Autonomous Database 11-4

Configuring Replicat to Apply to an Autonomous Database 11-8

Prerequisites for Configuring Oracle GoldenGate Replicat to an Autonomous
Database 11-8

Configure Replicat to Apply to an Autonomous Database 11-10

12

Upgrade

Upgrading Oracle GoldenGate Classic Architecture 12-1

Overview of the Upgrade Procedure 12-1

Prerequisites 12-1

xviii

Upgrade Considerations if Using Character-Set Conversion 12-2

Upgrade Considerations if Using Quoted Object Names 12-2

Obtaining the Oracle GoldenGate Distribution 12-4

Upgrading Oracle GoldenGate Classic Architecture for Oracle Database 12-4

Upgrading Oracle GoldenGate from OUI 12-6

Upgrading Oracle GoldenGate using OUI – Silent 12-7

Upgrading a Configuration That Includes DDL Support 12-8

Upgrading Configuration that includes Berkeley Database - Oracle GoldenGate 12.2 or
later 12-9

Upgrading Oracle GoldenGate for Non-Oracle Databases 12-10

Oracle GoldenGate Upgrade Considerations 12-10

Extract Upgrade Considerations 12-10

Replicat Upgrade Considerations 12-11

Upgrading Oracle GoldenGate for Non-Oracle Databases 12-11

Overview of the Upgrade Procedure for Non-Oracle Databases 12-11

Obtaining the Oracle GoldenGate Distribution 12-12

Upgrading Oracle GoldenGate Classic Architecture for Non-Oracle Databases 12-12

Performing Application Patches 12-15

13

Appendix

Supported Character Sets 13-1

Supported Character Sets - Oracle 13-1

Supported Character Sets - Non-Oracle 13-8

Supported Locales 13-16

About the Oracle GoldenGate Trail 13-21

Trail Recovery Mode 13-22

Trail File Header Record 13-22

Trail Record Format 13-23

Example of an Oracle GoldenGate Record 13-23

Record Header Area 13-24

Description of Header Fields 13-24

Using Header Data 13-26

Record Data Area 13-26

Full Record Image Format (NonStop Sources) 13-26

Compressed Record Image Format (Windows, UNIX, Linux Sources) 13-27

Tokens Area 13-27

Oracle GoldenGate Operation Types 13-27

Oracle GoldenGate Trail Header Record 13-30

About Checkpoints 13-30

About Extract Checkpoints 13-31

About Extract read checkpoints 13-32

xix

About Extract Write Checkpoints 13-33

Replicat Checkpoints 13-33

About Replicat Checkpoints 13-34

Internal Checkpoint Information 13-35

Oracle GoldenGate Checkpoint Tables 13-35

Supporting Changes to XML Schemas 13-37

Supporting RegisterSchema 13-37

Supporting DeleteSchema 13-37

Supporting CopyEvolve 13-37

Preparing DBFS for an Active-Active Configuration 13-38

Supported Operations and Prerequisites 13-38

Applying the Required Patch 13-38

Examples Used in these Procedures 13-38

Partitioning the DBFS Sequence Numbers 13-39

Configuring the DBFS file system 13-40

Mapping Local and Remote Peers Correctly 13-41

xx

Preface

The Oracle GoldenGate Classic Architecture Documentation contains the Oracle GoldenGate
classic concepts, tasks, advance tasks, security, and other reference information.

Audience
This guide is intended for system administrators and database users to learn about Oracle
GoldenGate. It is assumed that readers are familiar with web technologies and have a general
understanding of Windows and UNIX platforms.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Information
Oracle GoldenGate Documentation

Oracle GoldenGate for Distributed Applications and Analytics

OCI GoldenGate

Oracle Database High Availability

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, such as "From the File menu, select Save." Boldface also is used for
terms defined in text or in the glossary.

italic

italic
Italic type indicates placeholder variables for which you supply particular
values, such as in the parameter statement: TABLE table_name. Italic type
also is used for book titles and emphasis.

xxi

https://www.oracle.com/corporate/accessibility/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/goldengate/index.html
https://docs.oracle.com/en/middleware/goldengate/goldengate-daa.html
https://www.oracle.com/integration/goldengate/
https://www.oracle.com/database/technologies/high-availability.html

Convention Meaning

monospace
MONOSPACE

Monospace type indicates code components such as user exits and scripts;
the names of files and database objects; URL paths; and input and output text
that appears on the screen. Uppercase monospace type is generally used to
represent the names of Oracle GoldenGate parameters, commands, and user-
configurable functions, as well as SQL commands and keywords.

UPPERCASE Uppercase in the regular text font indicates the name of a process or utility
unless the name is intended to be a specific case. Keywords in upper case
(ADD EXTRACT, ADD EXTTRAIL, FORMAT RELEASE).

LOWERCASE Names of processes to be written in lower case. Examples: ADD EXTRACT
exte, ADD EXTRAIL ea.

{ } Braces within syntax enclose a set of options that are separated by pipe
symbols, one of which must be selected, for example: {option1 | option2 |
option3}.

[] Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLICAT group_name [,
SAVE count]. Multiple options within an optional element are separated by a
pipe symbol, for example: [option1 | option2].

Sample Locations Compass directions such as east, west, north, south to be used for
demonstrating Extract and Replicat locations.

Datacenters names to use the standard similar to dc1, dc2.

Group names Prefixes for each process, as follows:
• Extract: ext. Usage with location: extn, where n indicates 'north' compass

direction.
• Replicat: rep. Usage with location: repn, where n indicates 'north'

compass direction.
• Distribution Path: dp. Usage with location: dpn, where n indicates 'north'

compass direction.
• Checkpoint table: ggs_checkpointtable
• Trail file names: e or d depending on whether the trail file is for the Extract

or distribution path. Suffix derived in alphabetical order. Usage for an
Extract trail file: ea, eb, ec.

• Trail file subdirectory: The name will use compass directions to refer to the
trail subdirectories. Example for trail subdirectory name would be /
east, /west, /north, /south.

Preface

xxii

1
Concepts

Learn about the concepts of Oracle GoldenGate, its components, and Classic Architecture.

Oracle GoldenGate
Oracle GoldenGate is a comprehensive software package for real-time data integration and
replication. It enables high availability solutions, real-time data integration, transactional
change data capture, data replication, transformations, and verification between operational
and analytical enterprise systems.

Using Oracle GoldenGate, you can move committed transactions across multiple systems in
your enterprise. Oracle GoldenGate enables you to replicate data between Oracle databases
to other supported Non-Oracle databases, and between Non-Oracle databases. In addition,
you can replicate to Java Messaging Queues, Flat Files, and to Big Data targets in
combination with Oracle GoldenGate for Big Data. To know more, see https://www.oracle.com/
middleware/technologies/goldengate.html.

The product set enables high availability solutions, real-time data integration, transactional
change data capture, data replication, transformations, and verification between operational
and analytical enterprise systems. Oracle GoldenGate brings extreme performance with
simplified configuration and management, support for cloud environments, expanded
heterogeneity, and enhanced security.

This book is divided into parts so that you can easily find information that is relevant to your
environment.

See Installing Oracle GoldenGate for system requirements and installation details for each of
these databases.

See the Using Oracle GoldenGate on Oracle Cloud Marketplace to learn about provisioning
and other configurations in the Oracle GoldenGate on Marketplace environment.

For Oracle GoldenGate 21c (21.1.0), you can use the following supported non-Oracle
databases. This guide describes tasks related to these databases only.

• Db2 z/OS, Db2 for i, Db2 LUW

• MySQL

• SQL Server

• PostgreSQL

• Teradata

• TimesTen

For a full list of supported databases and variations, such as Amazon RDS and Azure
database services, view the certification matrix available at:
https://www.oracle.com/middleware/technologies/fusion-certification.html
Each database that Oracle GoldenGate supports has its own requirements and configuration.

1-1

https://www.oracle.com/middleware/technologies/goldengate.html
https://www.oracle.com/middleware/technologies/goldengate.html
https://www.oracle.com/middleware/technologies/fusion-certification.html

Parallel Replicat is supported by all databases available with Oracle GoldenGate 21c (21.1.0)
and higher. This guide provides information about this feature for each database.

When Do You Use Oracle GoldenGate?
Oracle GoldenGate meets almost any data movement requirements you might have. Some of
the most common use cases are described in this section.

You can use Oracle GoldenGate to meet the following business requirements:

Business Continuity and High Availability

Business Continuity is the ability of an enterprise to provide its functions and services without
any lapse in its operations. High Availability is the highest possible level of fault tolerance. To
achieve business continuity, systems are designed with multiple servers, storage, and data
centers that provide high enough availability. To establish and maintain such an environment,
data needs to be moved between these multiple servers and data centers, which is easily done
using Oracle GoldenGate.

Consider a scenario where you are working in a multinational bank that has its headquarters in
London, UK. You work in one of the banks’ branches in Bangalore, India. This bank uses a
specific account for its financial application that is used globally at all the branches. You have
been asked by your manager to daily synchronize the transactions that have happened for this
account in the database in the Bangalore branch with the centralized database situated at the
UK. The volume of transactions is massive, and even the slightest delay can greatly impact the
business. This same process is required at multiple destinations for every database in all the
branches of the bank worldwide. This process has to be monitored continuously, preferably
through some sort of GUI-based tool for the ease of management. Additionally, the bank has
several other, non-critical applications used at all the branches. These applications are based
on Non-Oracle databases, such as MySQL, but the transactions done over these databases
also must be loaded into an Oracle Database located at the headquarters. The replication
technology used must support both Oracle and Non-Oracle Databases so that they can talk to
each other. Oracle GoldenGate is an apt solution in such a scenario.

Initial Load and Database Migration

Initial load is a process of extracting data records from a source database and loading those
records onto a target database. Initial load is a data migration process that is performed only
once. Oracle GoldenGate allows you to perform initial load data migrations without taking your
systems offline.

Data Integration

Data integration involves combining data from several disparate sources, which are stored
using various technologies, and provide a unified view of the data. Oracle GoldenGate
provides real-time data integration.

Topologies for Oracle GoldenGate
After installation, Oracle GoldenGate can be configured to meet your organization's business
needs.

There are many different topologies that can be configured; which range from a simple
unidirectional topology to the more complex peer-to-peer. No matter the architecture, Oracle
GoldenGate provides similarities between them, making administration easier.

Chapter 1
Topologies for Oracle GoldenGate

1-2

For full information about processing methodology, supported topologies and functionality, and
configuration requirements, see the Oracle GoldenGate documentation for your database.

What is Oracle GoldenGate for Non-Oracle Databases?
Oracle GoldenGate is a comprehensive software package for real-time data capture and
replication in non-Oracle IT environments.

The product set enables high availability solutions, real-time data integration, transactional
change data capture, data replication, transformations, and verification between operational
and analytical enterprise systems. Oracle GoldenGate brings extreme performance with
simplified configuration and management, support for cloud environments, expanded
heterogeneity, and enhanced security.

This book is divided into parts so that you can easily find information that is relevant to your
environment.

See Installing Oracle GoldenGate for system requirements and installation details for each of
these databases.

See the Using Oracle GoldenGate on Oracle Cloud Marketplace to learn about provisioning
and other configurations in the Oracle GoldenGate on Marketplace environment.

What's New in This Guide

For Oracle GoldenGate 21c (21.1.0), you can use the following supported non-Oracle
databases. This guide describes tasks related to these databases only.

• Db2 z/OS, Db2 for i, Db2 LUW

• MySQL

• SQL Server

• PostgreSQL

• Teradata

• TimesTen

For a full list of supported databases and variations, such as Amazon RDS and Azure
database services, view the certification matrix available at:

Chapter 1
What is Oracle GoldenGate for Non-Oracle Databases?

1-3

https://www.oracle.com/middleware/technologies/fusion-certification.html
Each database that Oracle GoldenGate supports has its own requirements and configuration.

Parallel Replicat is supported by all databases available with Oracle GoldenGate 21c (21.1.0)
and higher. This guide provides information about this feature for each database.

Oracle GoldenGate Product Family
There are numerous products in the Oracle GoldenGate product family.

• Oracle GoldenGate Veridata : Oracle GoldenGate Veridata compares one set of data to
another and identifies data that is out-of-sync, and allows you to repair any data that is
found out-of-sync.

• Oracle GoldenGate Plug-in for EMCC: The Enterprise Manager Plug-in for Oracle
GoldenGate extends the Oracle Enterprise Manager Cloud Control and provides visual
support for monitoring and managing Oracle GoldenGateprocesses.

• Oracle GoldenGate Monitor: Oracle GoldenGate Monitor is a real-time, Web-based
monitoring console that delivers an at-a-glance, graphical view of all of the Oracle
GoldenGate instances and their associated databases within your enterprise.

• Oracle GoldenGate for Big Data: Oracle GoldenGate for Big Data contains built-in
support to write operation data from Oracle GoldenGate trail records into various Big Data
targets (such as, HDFS, HBase, Kafka, Flume, JDBC, Cassandra, and MongoDB).

• Oracle GoldenGate Application Adapters: Oracle GoldenGate Application Adapters
integrate with installations of the Oracle GoldenGatecore product to bring in Java Message
Service (JMS) information or to deliver information as JMS messages or files.

• Oracle GoldenGate for HP NonStop (Guardian): Oracle GoldenGate for HP NonStop
enables you to manage business data at a transactional level by extracting and replicating
selected data records and transactional changes across a variety of non-oracle
applications and platforms.

• Oracle GoldenGate Studio: Oracle GoldenGate Studio enables you to design and deploy
high-volume, real-time replication by automatically handling table and column mappings,
allowing drag and drop custom mappings, generating best practice configurations from
templates, and contains context sensitive help.

Getting Started with Oracle GoldenGate
Oracle GoldenGate supports two architectures, the Classic Architecture and the Microservices
Architecture (MA).

Oracle GoldenGate can be configured for the following purposes:

• A static extraction of data records from one database and the loading of those records to
another database.

• Continuous extraction and replication of transactional Data Manipulation Language (DML)
operations and data definition language (DDL) changes (for supported databases) to keep
source and target data consistent.

• Data extraction from supported database sources and replication to Big Data and file
targets using Oracle GoldenGate for Big Data.

Chapter 1
Oracle GoldenGate Product Family

1-4

https://www.oracle.com/middleware/technologies/fusion-certification.html

Oracle GoldenGate Architectures Overview

The following table describes the two Oracle GoldenGate architectures and when you should
use each of the architectures.

X Classic Architecture Microservices Architecture

What is it? Oracle GoldenGate Classic
Architecture is the original
architecture for enterprise
replication. This architecture
provides the processes and files
required to effectively transfer
transactional data across a
variety of topologies. These
processes and files form the main
components of the classic
architecture and was the main
product installation method until
the Oracle GoldenGate 12c
(12.3.0.1) release.

Oracle GoldenGate
Microservices Architecture is a
microservices architecture that
enables REST services as part of
the Oracle GoldenGate
environment. The REST-enabled
services provide API end-points
that can be leveraged for remote
configuration, administration, and
monitoring through web-based
consoles, an enhanced command
line interface, PL/SQL and
scripting languages.

Chapter 1
Getting Started with Oracle GoldenGate

1-5

X Classic Architecture Microservices Architecture

When should I use it? Oracle GoldenGate can be
installed and configured to use
the Oracle GoldenGate Classic
Architecture only if MA release is
not available for that platform,
mentioned in the following
scenarios:
• A static extraction of data

records from one database
and the loading of those
records to another database.

• Continuous extraction and
replication of transactional
Data Manipulation Language
(DML) operations and Data
Definition Language (DDL)
changes (for supported
databases) to keep source
and target data consistent.

• Extraction from a database
and replication to a file
outside the database.

• Capture from Non-Oracle
Database sources.

Oracle GoldenGate can be
installed and configured to use
the Oracle GoldenGate
Microservices Architecture for the
following purposes:
• Large scale and cloud

deployments with fully-
secure HTTPS interfaces
and Secure WebSockets for
streaming data.

• Simpler management of
multiple implementations of
Oracle GoldenGate
environments and control
user access for the different
aspects of Oracle
GoldenGate setup and
monitoring.

• Support system managed
database sharding to deliver
fine-grained, multi-master
replication where all shards
are writable, and each shard
can be partially replicated to
other shards within a
shardgroup.

• Support the following
features:

– Thin and browser-based
clients

– Network security
– User Authorization
– Distributed deployments
– Remote administration
– Performance monitoring

and orchestration
– Coordination with other

systems and services in
an Oracle Database
environment.

– Custom embedding of
Oracle GoldenGate into
applications or to use
secure, remote HTML5
applications.

Chapter 1
Getting Started with Oracle GoldenGate

1-6

X Classic Architecture Microservices Architecture

Which databases are
supported?

Classic Architecture supports all
supported databases as per the
certification matrix.

MA only supports the Oracle
database for an end-to-end MA-
only topology. However, it is
possible for a source Oracle
GoldenGate Classic associated
with Non-Oracle Databases to
replicate to a target Oracle
GoldenGate MA with Oracle, or a
source Oracle GoldenGate MA
with Oracle to replicate to a target
Oracle GoldenGate legacy with
heterogeneous databases.

Oracle GoldenGate Supported Processing Methods and Databases
Oracle GoldenGate enables the exchange and manipulation of data at the transaction level
among multiple, Non-Oracle platforms across the enterprise. It moves committed transactions
with transaction integrity and minimal overhead on your existing infrastructure. Its modular
architecture gives you the flexibility to extract and replicate selected data records, transactional
changes, and changes to DDL (data definition language) across a variety of topologies.

Note:

Support for DDL, certain topologies, and capture or delivery configurations varies by
the database type.

Here is a list of the supported processing methods.

Database Log-Based Extraction
(capture)

Non-Log-Based Extraction 1 (capture) Replication (delivery)

DB2 for i N/A N/A X

DB2 LUW X N/A X

DB2 z/OS X N/A X

Oracle Database X N/A X

MySQL X N/A X

SQL Server N/A X X

Terradata N/A N/A X

1 Non-Log-Based Extraction uses a capture module that communicates with the Oracle GoldenGate API to send change data to Oracle
GoldenGate.

Note:

Non-Log-Based Extraction uses a capture module that communicates with the Oracle
GoldenGate API to send change data to Oracle GoldenGate.

Chapter 1
Getting Started with Oracle GoldenGate

1-7

https://www.oracle.com/a/ocom/docs/ogg-19c-cert-matrix.xlsx

Components of Oracle GoldenGate Classic Architecture
You can use the Oracle GoldenGate Classic Architecture to configure and manage your
replications environments from the command line.

Note:

This is the basic configuration. Depending on your business needs and use case, you
can configure different variations of this model.

Chapter 1
Getting Started with Oracle GoldenGate

1-8

What is a Manager?
Manager is the control process of Oracle GoldenGate. Manager must be running on each
system in the Oracle GoldenGate configuration before the Extract or Replicat processes can
be started.

Manager must also remain running while the Extract and Replicat processes are running so
that resource management functions are performed. One Manager process can control many
Extract or Replicat processes.

Manager performs the following functions:

• Starts Oracle GoldenGate processes

• Starts dynamic processes

• Maintains port numbers for processes

• Purges Trail files based on retention rules

• Creates event, error, and threshold reports

One Manager process can control many Extract or Replicat processes. On Windows systems,
Manager can run as a service. See Configure the Manager Process for more information about
the Manager process and configuring TCP/IP connections.

What is a Data Pump?
Data pump is a secondary Extract group within the source Oracle GoldenGate configuration.

If you configure a data pump, the Extract process writes all the captured operations to a trail
file on the source database. The data pump reads the trail file on the source database and
sends the data operations over the network to the remote trail file on the target database.
Configuring a data pump is highly recommended for most configurations. If a data pump is not
used, the Extract streams all the captured operations to a trail file on the remote target
database. In a typical configuration with a data pump, however, the primary Extract group
writes to a trail on the source system. The data pump reads this trail and sends the data
operations over the network to a remote trail on the target. The data pump adds storage
flexibility and also serves to isolate the primary Extract process from TCP/IP activity.

In general, a data pump can perform data filtering, mapping, and conversion

The data pump can be configured in two ways:

• Perform data manipulation: Data Pump can be configured to perform data filtering,
mapping, and conversion.

• Perform no data manipulation: Data Pump can be configured in pass-through mode, where
data is passively transferred as-is, without manipulation. Pass-through mode increases the
throughput of the Data Pump, because all of the functionality that looks up object
definitions is bypassed.

Though configuring a data pump is optional, Oracle recommends it for most configurations.
Some reasons for using a data pump include the following:

• Protection against network and target failures: In a basic Oracle GoldenGate
configuration, with only a trail on the target system, there is nowhere on the source system
to store the data operations that Extract continuously extracts into memory. If the network
or the target system becomes unavailable, Extract could run out of memory and abend.
However, with a trail and data pump on the source system, captured data can be moved to

Chapter 1
Getting Started with Oracle GoldenGate

1-9

disk, preventing the abend of the primary Extract. When connectivity is restored, the data
pump captures the data from the source trail and sends it to the target system(s).

• You are implementing several phases of data filtering or transformation. When using
complex filtering or data transformation configurations, you can configure a data pump to
perform the first transformation either on the source system or on the target system, or
even on an intermediary system, and then use another data pump or the Replicat group to
perform the second transformation.

• Consolidating data from many sources to a central target. When synchronizing
multiple source databases with a central target database, you can store extracted data
operations on each source system and use data pumps on each of those systems to send
the data to a trail on the target system. Dividing the storage load between the source and
target systems reduces the need for massive amounts of space on the target system to
accommodate data arriving from multiple sources.

• Synchronizing one source with multiple targets. When sending data to multiple target
systems, you can configure data pumps on the source system for each target. If network
connectivity to any of the targets fails, data can still be sent to the other targets.

What is a Collector?
The Collector is started by the manager process and is a process that runs in the background
on the target system. It reassembles the transactional data into a target trail.

When the Manager receives a connection request from an Extract process, the Collector scans
and binds to an available port and sends the port number to the Manager for assignment to the
requesting Extract process. The Collector also receives the captured data that is sent by the
Extract process and writes them to the remote trail file.

Collector is started automatically by the Manager when a network connection is required, so
Oracle GoldenGate users do not interact with it. Collector can receive information from only
one Extract process, so there is one Collector for each Extract that you use. Collector
terminates when the associated Extract process terminates.

Note:

Collector can be run manually, if needed. This is known as a static Collector (as
opposed to the regular, dynamic Collector). Several Extract processes can share one
static Collector; however, a one-to-one ratio is optimal. A static Collector can be used
to ensure that the process runs on a specific port.

By default, Extract initiates TCP/IP connections from the source system to Collector on the
target, but Oracle GoldenGate can be configured so that Collector initiates connections from
the target. Initiating connections from the target might be required if, for example, the target is
in a trusted network zone, but the source is in a less trusted zone.

What is GGSCI?
You can use the Oracle GoldenGate Software Command Interface (GGSCI) commands to
create data replications. This is the command interface between you and Oracle GoldenGate
functional components.

To start either the Admin Client or GGSCI, you need to change the current working directory to
the Oracle GoldenGate home directory (OGG_HOME).

Chapter 1
Getting Started with Oracle GoldenGate

1-10

Note:

The environment variable OGG_HOME and OGG_VAR_HOME must be set before starting
the Admin Client or GGSCI.

Oracle GoldenGate Classic Architecture Programs and Utilities
This section describes programs installed in the Oracle GoldenGate installation directory.

Note:

Some programs may not exist in all installations. For example, if only capture or
delivery is supported by Oracle GoldenGate for your platform, the Extract or Replicat
program will not be installed, respectively.

Table 1-1 Oracle GoldenGate Installed Programs and Utilities

Program Description

convchk Converts checkpoint files to a newer release.

convprm Converts parameter files that do not use SQL-92 rules for quoted
names and literals to updated parameter files that use SQL-92 rules.
SQL-92 format for quoted object names and literals was introduced as
the default with the 12c release of Oracle GoldenGate.

defgen Generates data definitions and is referenced by Oracle GoldenGate
processes when source and target tables have dissimilar definitions.

extract Performs capture from database tables or transaction logs or receives
transaction data from a vendor access module.

ggcmd Associated program of ggsci. Launches and monitors external
applications, such as the JAgent of Oracle GoldenGate Monitor.
Integrates those applications into the GGSCI environment.

ggsci User interface to Oracle GoldenGate for issuing commands and
managing parameter files.

install Installs Oracle GoldenGate as a Windows service and provides other
Windows-based service options.

keygen Generates data-encryption keys.

logdump A utility for viewing and saving information stored in extract trails or
files.

mgr (Manager) Control process for resource management, control and
monitoring of Oracle GoldenGate processes, reporting, and routing of
requests through the GGSCI interface.

oggerr Manages Oracle GoldenGate error messages.

replicat Applies data to target database tables.

reverse A utility that reverses the order of transactional operations, so that
Replicat can be used to back out changes from target tables, restoring
them to a previous state.

server The Collector process, an Extract TCP/IP server collector that writes
data to remote trails.

Chapter 1
Getting Started with Oracle GoldenGate

1-11

Table 1-1 (Cont.) Oracle GoldenGate Installed Programs and Utilities

Program Description

vamserv Started by Extract to read the TMF audit trails generated by TMF-
enabled applications. Installed to support the NonStop SQL/MX
database.

Oracle GoldenGate Subdirectories
Learn about the subdirectories of the Oracle GoldenGate Classic Architecture installation
directories; it does not apply to the Oracle GoldenGate Microservices Architecture.

Table 1-2 Oracle GoldenGate Classic Architecture Installed Subdirectories

Directory Description

br Contains the checkpoint files for the bounded recover feature.

cfg Contains the property and XML files that are used to configure Oracle GoldenGate
Monitor.

dirdb Contains the data store that is used to persist information that is gathered from an
Oracle GoldenGate instance for use by the Oracle GoldenGate Monitor application or
within Oracle Enterprise Manager.

dirchk Contains the checkpoint files created by Extract and Replicat processes, which store
current read and write positions to support data accuracy and fault tolerance. Written in
internal Oracle GoldenGate format.

File name format is group_name+sequence_number.ext where sequence_number is
a sequential number appended to aged files and ext is either cpe for Extract checkpoint
files or cpr for Replicat checkpoint files.

Do not edit these files.

Examples:

ext1.cpe
rep1.cpr

dircrd Contains credential store files.

dirdat The default location for Oracle GoldenGate trail files and extract files that are created by
Extract processes to store extracted data for further processing by the Replicat process
or another application or utility. Written in internal Oracle GoldenGate format.

File name format is a user-defined two-character prefix followed by either a 9-digit
sequence number (trail files) or the user-defined name of the associated Extract process
group (extract files).

Do not edit these files.

Examples:

rt000001
finance

Chapter 1
Getting Started with Oracle GoldenGate

1-12

Table 1-2 (Cont.) Oracle GoldenGate Classic Architecture Installed Subdirectories

Directory Description

dirdef The default location for data definitions files created by the DEFGEN utility to contain
source or target data definitions used in a non-oracle synchronization environment.
Written in external ASCII. File name format is a user-defined name specified in the
DEFGEN parameter file.

These files may be edited to add definitions for newly created tables. If you are unsure of
how to edit a definitions file, contact Oracle GoldenGate technical support.

Example:

defs.dat
dirdmp Contains trace, or dump, files that support the internal activity logging mechanism. This

directory is only applicable to the Classic Architecture, see What is the Oracle
GoldenGate Classic Architecture.

dirjar Contains the Java executable files that support Oracle GoldenGate Monitor.

dirpcs Default location for status files. File name format is group.extension where group is
the name of the group and extension is either pce (Extract), pcr (Replicat), or pcm
(Manager).

These files are only created while a process is running. The file shows the program
name, the process name, the port number, and the process ID.

Do not edit these files.

Examples:

mgr.pcm
ext.pce

dirprm The default location for Oracle GoldenGate parameter files created by Oracle
GoldenGate users to store run-time parameters for Oracle GoldenGate process groups
or utilities. Written in external ASCII format. File name format is group name/user-
defined name.prm or mgr.prm .

These files may be edited to change Oracle GoldenGate parameter values after stopping
the process. They can be edited directly from a text editor or by using the EDIT PARAMS
command in GGSCI.

Examples:

defgen.prm
finance.prm

dirrec Not used by Oracle GoldenGate.

dirrpt The default location for process report files created by Extract, Replicat, and Manager
processes to report statistical information relating to a processing run. Written in external
ASCII format.

File name format is group name+sequence number.rpt where sequence number is
a sequential number appended to aged files.

Do not edit these files.

Examples:

FIN2.rpt
MGR4.rpt

dirsql Contains training scripts and any user-created SQL scripts that support Oracle
GoldenGate.

dirtmp The default location for storing transaction data when the size exceeds the memory size
that is allocated for the cache manager. Do not edit these files.

dirwlt Contains Oracle GoldenGate wallet files.

Chapter 1
Getting Started with Oracle GoldenGate

1-13

Table 1-2 (Cont.) Oracle GoldenGate Classic Architecture Installed Subdirectories

Directory Description

UserExitExa
mples

Contains sample files to help with the creation of user exits.

Other Oracle GoldenGate Files
Learn about other files, templates, and objects created or installed in the root Oracle
GoldenGate installation directory.

Table 1-3 Other Oracle GoldenGate Installed Files

Name Description

bcpfmt.tpl Template for use with Replicat when creating a run file for the Microsoft
BCP/DTS bulk-load utility.

bcrypt.txt Blowfish encryption software license agreement.

cagent.dll Contains the Windows dynamic link library for the Oracle GoldenGate
Monitor C sub-agent.

category.dll Windows dynamic link library used by the INSTALL utility.

chkpt_db_create.sql Script that creates a checkpoint table in the local database. A different
script is installed for each database type.

db2cntl.tpl Template for use with Replicat when creating a control file for the IBM
LOADUTIL bulk-load utility.

ddl_cleartrace.sql Script that removes the DDL trace file. (Oracle installations)

ddl_ddl2file.sql Script that saves DDL from the marker table to a file.

ddl_disable.sql Script that disables the Oracle GoldenGate DDL trigger.

ddl_enable.sql Script that enables the Oracle GoldenGate DDL trigger.

ddl_filter.sql Script that supports filtering of DDL by Oracle GoldenGate. This script
runs programmatically; do not run it manually.

ddl_nopurgeRecyclebin.sq
l

Empty script file for use by Oracle GoldenGate support staff.

ddl_ora11.sql
ddl_ora12.sql

Scripts that run programmatically as part of Oracle GoldenGate DDL
support; do not run these scripts.

ddl_pin.sql Script that pins DDL tracing, the DDL package, and the DDL trigger for
performance improvements.

ddl_purgeRecyclebin.sql Script that purges the Oracle recycle bin in support of the DDL
replication feature.

ddl_remove.sql Script that removes the DDL extraction trigger and package.

ddl_session.sql Supports the installation of the Oracle DDL objects. This script runs
programmatically; do not run it manually.

ddl_setup.sql Script that installs the Oracle GoldenGate DDL extraction and
replication objects.

ddl_status.sql Script that verifies whether or not each object created by the Oracle
GoldenGate DDL support feature exists and is functioning properly.

Chapter 1
Getting Started with Oracle GoldenGate

1-14

Table 1-3 (Cont.) Other Oracle GoldenGate Installed Files

Name Description

ddl_staymetadata_off.sql
ddl_staymetadata_on.sql

Scripts that control whether the Oracle DDL trigger collects metadata.
This script runs programmatically; do not run it manually.

ddl_trace_off.sql
ddl_trace_on.sql

Scripts that control whether DDL tracing is on or off.

ddl_tracelevel.sql Script that sets the level of tracing for the DDL support feature.

debug files Debug text files that may be present if tracing was turned on.

demo_db_scriptname.sql

demo_more_db_scriptname.s
ql

Scripts that create and populate demonstration tables for use with
tutorials and basic testing.

.dmp files Dump files created by Oracle GoldenGate processes for tracing
purposes.

ENCKEYS User-created file that stores encryption keys. Written in external ASCII
format.

exitdemo.c User exit example.

exitdemo_utf16.c User exit example that demonstrates how to use UTF16 encoded data
in the callback structures for information exchanged between the user
exit and the process.

freeBSD.txt License agreement for FreeBSD.

ggmessage.dat Data file that contains error, informational, and warning messages that
are returned by the Oracle GoldenGate processes. The version of this
file is checked upon process startup and must be identical to that of the
process in order for the process to operate.

ggserr.log File that logs processing events, messages, errors, and warnings
generated by Oracle GoldenGate.

ggsmsg.dll Windows dynamic link library used by the install program.

GLOBALS User-created file that stores parameters applying to the Oracle
GoldenGate instance as a whole.

help.txt Help file for the GGSCI command interface.

icudtxx.dll
icuinxx.dll
icuucxx.dll

Windows shared libraries for International Components for Unicode,
where xx is the currently used version.

jagent.bat Windows batch file for the JAgent for Oracle GoldenGate Monitor.

jagent.log
jagentjni.log

Log files for the Oracle GoldenGate Monitor Agent.

jagent.sh UNIX shell script for the JAgent for Oracle GoldenGate Monitor

LGPL.txt Lesser General Public License statement. Applies to free libraries from
the Free Software Foundation.

libodbc.so ODBC file for Ingres 2.6 on UNIX.

libodbc.txt License agreement for libodbc.so.

Chapter 1
Getting Started with Oracle GoldenGate

1-15

Table 1-3 (Cont.) Other Oracle GoldenGate Installed Files

Name Description

libxml2.dll Windows dynamic link library containing the XML library for the Oracle
GoldenGate XML procedures.

libxml2.txt License agreement for libxml2.dll .

marker_remove.sql Script that removes the DDL marker table.

marker_setup.sql Script that installs the Oracle GoldenGate DDL marker table.

marker_status.sql Script that confirms successful installation of the DDL marker table.

notices.txt Third-party software license file.

odbcinst.ini Ingres 2.6 on UNIX ODBC configuration file.

params.sql Script that contains configurable parameters for DDL support.

ogg_cdc_cleanup_setup.ba
t

Available for Oracle GoldenGate for SQL Server. Its used in creating
the Oracle GoldenGate CDC Cleanup job for SQL Server.

ogg_create_cdc_cleanup_j
ob.sql

Available for Oracle GoldenGate for SQL Server. Its used in creating
the Oracle GoldenGate CDC Cleanup job for SQL Server.

pthread-win32.txt License agreement for pthread-VC.dll .

pthread-VC.dll POSIX threads library for Microsoft Windows.

prvtclkm.plb Supports the replication of Oracle encrypted data.

pw_agent_util.bat
pw_agent_util.sh

Script files that support the Oracle GoldenGate Monitor Agent.

role_setup.sql Script that creates the database role necessary for Oracle GoldenGate
DDL support.

sampleodbc.ini Sample ODBC file for Ingres 2.6 on UNIX.

sqlldr.tpl Template for use with Replicat when creating a control file for the
Oracle SQL*Loader bulk-load utility.

tcperrs File containing user-defined instructions for responding to TCP/IP
errors.

usrdecs.h Include file for user exit API.

xerces-c_2_8.dll Apache XML parser library.

zlib.txt License agreement for zlib compression library.

Overview of Oracle GoldenGate Processes
The Oracle GoldenGate capture process is known as Extract. Each instance of an Extract
process is known as a group, which includes the process itself and the associated files that
support it.

An additional Extract process, known as a data pump, is recommended to be used on the
source system, so that captured data can be persisted locally to a series of files known as a
trail. The data pump does not capture data but rather reads the local trail and propagates the
data across the network to the target.

The Oracle GoldenGate apply process is known as Replicat. Each instance of a Replicat
process is known as a group, which includes the process itself and the associated files that

Chapter 1
Getting Started with Oracle GoldenGate

1-16

support it. Replicat reads data that is sent to local storage, known as a trail, and applies it to
the target database.

The following diagram illustrates the basic Oracle GoldenGate process configuration.

Note:

Oracle Databases must be in ARCHIVELOG mode so that Extract can process the log
files.

What is an Extract?
Extract is a process that is configured to run against the source database or configured to run
on a downstream mining database (Oracle only) with capturing data generated in the true
source database located somewhere else. This process is the extraction or the data capture
mechanism of Oracle GoldenGate.

You can configure an Extract for the following use cases:

• Initial Loads: When you set up Oracle GoldenGate for initial loads, the Extract process
captures the current, static set of data directly from the source objects.

• Change Synchronization: When you set up Oracle GoldenGate to keep the source data
synchronized with another set of data, the Extract process captures the DML and DDL
operations performed on the configured objects after the initial synchronization has taken
place. Extracts can run locally on the same server as the database or on another server
using the downstream Integrated Extract for reduced overhead. It stores these operations
until it receives commit records or rollbacks for the transactions that contain them. If it
receives a rollback, it discards the operations for that transaction. If it receives a commit, it
persists the transaction to disk in a series of files called a trail, where it is queued for
propagation to the target system. All the operations in each transaction are written to the
trail as a sequentially organized transaction unit and are in the order in which they were
committed to the database (commit sequence order). This design ensures both speed and
data integrity.

Chapter 1
Getting Started with Oracle GoldenGate

1-17

Note:

Extract ignores operations on objects that are not in the Extract configuration,
even though a transaction may also include operations on objects that are in the
Extract configuration.

The Extract process can be configured to extract data from three types of data sources:

• Source tables: This source type is used for initial loads.

• Database recovery logs or transaction logs: While capturing from the logs, the actual
method varies depending on the database type. An example of this source type is the
Oracle Database redo logs.

• Third-party capture modules: This method provides a communication layer that passes
data and metadata from an external API to the Extract API. The database vendor or a
third-party vendor provides the components that extract the data operations and pass them
to Extract.

What is a Trail?
A trail is a series of files on disk where Oracle GoldenGate stores the captured changes to
support the continuous extraction and replication of database changes.

A trail can exist on the source system, an intermediary system, the target system, or any
combination of those systems, depending on how you configure Oracle GoldenGate. On the
local system, it is known as an Extract trail (or local trail). On a remote system, it is known as a
remote trail. By using a trail for storage, Oracle GoldenGate supports data accuracy and fault
tolerance. The use of a trail also allows extraction and replication activities to occur
independently of each other. With these processes separated, you have more choices for how
data is processed and delivered. For example, instead of extracting and replicating changes
continuously, you could extract changes continuously and store them in the trail for replication
to the target later, whenever the target application needs them.

In addition, trails allow Oracle Database to operate in non-oracle environment. The data is
stored in a trail file in a consistent format, so it can be read by Replicat process for all
supported databases. For more information , see About the Oracle GoldenGate Trail.

Processes that Write to the Trail File:

In Oracle GoldenGate Classic, the Extract and the data pump processes write to the trail. Only
one Extract process can write to a given local trail. All local trails must have different full-path
names though you can use the same trail names in different paths.

Multiple data pump processes can each write to a trail of the same name, but the physical trails
themselves must reside on different remote systems, such as in a data-distribution topology.
For example, a data pump named pumpm and a data pump named pumpn can both reside on
sys01 and write to a remote trail named aa. Pumpm can write to trail aa on sys02, while pumpn
can write to trail aa on sys03.

In Oracle GoldenGate MA, Distribution Server and distribution paths are used to write the
remote trail.

Processes that Read from the Trail File:

The data pump, Replicat processes, and the Distribution Server read from the trail files. The
data pump extracts DML and DDL operations from a local trail that is linked to an Extract
process, performs further processing if needed, and transfers the data to a trail that is read by

Chapter 1
Getting Started with Oracle GoldenGate

1-18

the next Oracle GoldenGate process downstream (typically Replicat, but could be another data
pump if required). A Distribution Server process will read the trail file and send it across the
network to a waiting Receiver Server process or collector.

The Replicat process reads the trail and applies the replicated DML and DDL operations to the
target database.

Trail File Creation and Maintenance:

The trail files are created as needed during processing. You specify a two-character name for
the trail when you add it to the Oracle GoldenGate configuration with the ADD RMTTRAIL or ADD
EXTTRAIL command. By default, trails are stored in the dirdat sub-directory of the Oracle
GoldenGate directory. You can specify a six or nine digit sequence number using the
TRAIL_SEQLEN_9D | TRAIL_SEQLEN_6D GLOBALS parameter; TRAIL_SEQLEN_9D is set by default.
It is recommended to use the 9-digit sequence number when possible.

As each new file is created, it inherits the two-character trail name appended with a unique
nine digit sequence number from 000000000 through 999999999 (for example
c:\ggs\dirdat\tr000000001). When the sequence number reaches 999,999,999 or 999,999
(depending on the prior setting) the Extract process will abend.

Refer to Doc ID 1060554.1 for details on how to reset the sequence number. Trail files can be
purged on a routine basis by using the Manager parameter PURGEOLDEXTRACTS.

You can create more than one trail to separate the data from different objects or applications.
You link the objects that are specified in a TABLE or SEQUENCE parameter to a trail that is
specified with an EXTTRAIL or RMTTRAIL parameter in the Extract parameter file. To maximize
throughput, and to minimize I/O load on the system, extracted data is sent into and out of a trail
in large blocks. Transactional order is preserved.

Converting Existing Trails to 9 Digit Sequence Numbers

You can convert trail files from 6-digit to 9-digit checkpoint record for the named extract groups.
Use convchk native command to convert to 9-digit trail by stopping your Extract gracefully then
using convchk to upgrade as follows:

convchk extract trail seqlen_9d

Start your Extract

You can downgrade from a 9 to 6 digit trail with the same process using
this convchk command:

convchk extract trail seqlen_6d

Note:

Extract Files: You can configure Oracle GoldenGate to store extracted data in an
extract file instead of a trail. The extract file can be a single file, or it can be
configured to roll over into multiple files in anticipation of limitations on file size that
are imposed by the operating system. It is similar to a trail, except that checkpoints
are not recorded. The file or files are created automatically during the run. The same
versioning features that apply to trails also apply to extract files.

Chapter 1
Getting Started with Oracle GoldenGate

1-19

https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=105960988395387&id=1060554.1&_afrWindowMode=0&_adf.ctrl-state=dex85qet3_4

What is a Replicat?
Replicat is a process that delivers data to a target database. It reads the trail file on the target
database, reconstructs the DML or DDL operations, and applies them to the target database.

The Replicat process uses dynamic SQL to compile a SQL statement once and then executes
it many times with different bind variables. You can configure the Replicat process so that it
waits a specific amount of time before applying the replicated operations to the target
database. For example, a delay may be desirable to prevent the propagation of errant SQL, to
control data arrival across different time zones, or to allow time for other planned events to
occur.

For the two common uses cases of Oracle GoldenGate, the function of the Replicat process is
as follows:

• Initial Loads: When you set up Oracle GoldenGate for initial loads, the Replicat process
applies a static data copy to target objects or routes the data to a high-speed bulk-load
utility.

• Change Synchronization: When you set up Oracle GoldenGate to keep the target
database synchronized with the source database, the Replicat process applies the source
operations to the target objects using a native database interface or ODBC, depending on
the database type.

You can configure multiple Replicat processes with one or more Extract processes and Data
Pumps in parallel to increase throughput. To preserve data integrity, each set of processes
handles a different set of objects. To differentiate among Replicat processes, you assign each
one a group name

If you don't want to use multiple Replicat processes, you can configure a single Replicat
process in parallel, coordinated, integrated mode.

• Parallel mode Parallel Replicat supports all databases using the non-integrated option.
Parallel Replicat only supports replicating data from trails with full metadata, which requires
the classic trail format. It takes into account dependencies between transactions, similar to
Integrated Replicat. The dependency computation, parallelism of the mapping and apply is
performed outside the database so can be off-loaded to another server. The transaction
integrity is maintained in this process. In addition, parallel replicat supports the parallel
apply of large transactions by splitting a large transaction into chunks and applying them in
parallel. See About Parallel Replicat.

• Coordinated mode is supported on all databases that Oracle GoldenGate supports. In
coordinated mode, the Replicat process is threaded. One coordinator thread spawns and
coordinates one or more threads that execute replicated SQL operations in parallel. A
coordinated Replicat process uses one parameter file and is monitored and managed as
one unit. See About Coordinated Replicat Mode for more information.

• Integrated mode is supported for Oracle Database releases 11.2.0.4 or later. In integrated
mode, the Replicat process leverages the apply processing functionality that is available
within the Oracle Database. Within a single Replicat configuration, multiple inbound server
child processes known as apply servers apply transactions in parallel while preserving the
original transaction atomicity. See About Integrated Replicat for more information about
integrated mode.

You can delay Replicat so that it waits a specific amount of time before applying the replicated
operations to the target database. A delay may be desirable, for example, to prevent the
propagation of errant SQL, to control data arrival across different time zones, or to allow time
for other planned events to occur. The length of the delay is controlled by the
DEFERAPPLYINTERVAL parameter.

Chapter 1
Getting Started with Oracle GoldenGate

1-20

Oracle GoldenGate Processes and Key Terms
Oracle GoldenGate has common data replication processes and architecture-specific
processes as well.

Specific components of Classic Architecture are discussed in Components of Oracle
GoldenGate Classic Architecture.

Oracle GoldenGate Key Terms and Concepts
Apart from the two architectures and their components, there are some key terms that you
should get familiar with.

About Process Types
Depending on the requirement, Oracle GoldenGate can be configured with the following
processing types.

• An online Extract or Replicat process that runs until stopped by a user. Online processes
maintain recovery checkpoints so that processing can resume after interruptions. You use
online processes to continuously extract and replicate DML and DDL operations (where
supported) to keep source and target objects synchronized. The EXTRACT and REPLICAT
parameters apply to this process type.

• A source-is-table (also known as in initial-load Extract) Extract process extracts a current
set of static data directly from the source objects in preparation for an initial load to another
database. This process type does not use checkpoints. The SOURCEISTABLE parameter
applies to this process type.

• A special-run Replicat process applies data within known begin and end points. You use a
special-run Replicat for initial data loads, and it also can be used with an online Extract to
apply data changes from the trail in batches, such as once a day rather than continuously.
This process type does not maintain checkpoints because the run can be started over with
the same begin and end points. The SPECIALRUN parameter applies to this process type.

• A remote task is a special type of initial-load process in which Extract communicates
directly with Replicat over TCP/IP. Neither a Collector process nor temporary disk storage
in a trail or file is used. The task is defined in the Extract parameter file with the RMTTASK
parameter.

About Commit Sequence Number (CSN)
When working with Oracle GoldenGate, you might need to refer to a Commit Sequence
Number, or CSN. A CSN is an identifier that Oracle GoldenGate constructs to identify a
transaction for the purpose of maintaining transactional consistency and data integrity. It
uniquely identifies a point in time in which a transaction commits to the database.

The CSN can be required to position Extract in the transaction log, to reposition Replicat in the
trail, or for other purposes. It is returned by some conversion functions and is included in
reports and certain command line output.

A CSN is a monotonically increasing identifier generated by Oracle GoldenGate that uniquely
identifies a point in time when a transaction commits to the database. It purpose is to ensure
transactional consistency and data integrity as transactions are replicated from source to
target. Each kind of database management system generates some kind of unique serial
number of its own at the completion of each transaction, which uniquely identifies the commit

Chapter 1
Oracle GoldenGate Processes and Key Terms

1-21

of that transaction. For example, the Oracle RDBMS generates a System Change Number,
which is a monotonically increasing sequence number assigned to every event by Oracle
RDBMS. The CSN captures this same identifying information and represents it internally as a
series of bytes, but the CSN is processed in a platform-independent manner. A comparison of
any two CSN numbers, each of which is bound to a transaction-commit record in the same log
stream, reliably indicates the order in which the two transactions completed.

The CSN is cross-checked with the transaction ID (displayed as XID in Oracle GoldenGate
informational output). The XID-CSN combination uniquely identifies a transaction even in
cases where there are multiple transactions that commit at the same time, and thus have the
same CSN. For example, this can happen in an Oracle RAC environment, where there is
parallelism and high transaction concurrency.

The CSN value is stored as a token in any trail record that identifies the commit of a
transaction. This value can be retrieved with the @GETENV column conversion function and
viewed with the Logdump utility.

See Administering Oracle GoldenGate for more information about the CSN and a list of CSN
values per database.

Overview of Groups
To differentiate among multiple Extract or Replicat processes on a system, you can create
processing groups. For example, to replicate different sets of data, you would create two
Replicat groups.

A processing group consists of a process (either Extract or Replicat), its parameter file, its
checkpoint file, and any other files associated with the process. For Replicat, a group may also
include an associated checkpoint table. You define groups by using the ADD EXTRACT and ADD
REPLICAT commands in the Oracle GoldenGate command interface.

All files and checkpoints relating to a group share the name that is assigned to the group itself.
Any time that you issue a command to control or view processing, you supply a group name or
multiple group names by means of a wildcard.

Chapter 1
Oracle GoldenGate Processes and Key Terms

1-22

2
Install and Patch

Learn about installation prerequisites for Oracle GoldenGate, steps to install Oracle
GoldenGate for different databases, post-installation tasks, installing patches, and uninstalling
Oracle GoldenGate.

Obtaining the Oracle GoldenGate Distribution
You can download Oracle GoldenGate from the Oracle Software Delivery Cloud site at:

https://edelivery.oracle.com/osdc/faces/SoftwareDelivery

This site hosts the first Generally Available (GA) releases of Oracle GoldenGate software
versions and there may be a more recent patch version available on https://
support.oracle.com.

It is extremely important to ensure that your Oracle GoldenGate installation is running the most
recent release of the Oracle GoldenGate software. Oracle always recommends running the
latest bundle patch for all Oracle GoldenGate products and this is crucial if you are installing
GoldenGate for a new project or if you are upgrading an existing environment to the latest
bundle patch.

For Oracle GoldenGate for the Oracle Database, both Classic Architecture and Microservices
Architecture patches require the GA release to be installed first, followed by the patch to apply,
unless there is a patch listed with a description of ‘Complete Install’ in which case that patch
release can be installed directly without having to first install the GA release version.

In cases of Oracle GoldenGate Classic Architecture software for non-Oracle databases such
as PostgreSQL or MySQL, any patch posted on https://support.oracle.com is a complete build
which can be installed directly without having to apply the GA release first.

A list of the latest patches (both complete installs and incremental patches) for all GoldenGate
for Oracle, non-Oracle, and Mainframe databases can be found on https://support.oracle.com,
Knowledge Document - Primary Note for Oracle GoldenGate Core Product Patch Sets (Doc ID
1645495.1)

Verify Certification and System Requirements
Ensure that Oracle GoldenGate is installed on supported hardware and operating systems. For
more information, see the Certification Matrix for the release.

Oracle tests and verifies the performance of your product on all certified systems and
environments. As new certifications occur, they are added to the proper certification document.
New certifications can occur at any time, and for this reason the certification documents are
kept outside of the documentation libraries and are available on Oracle Technology Network.

Here are some additional details about the supported platforms:

• Cross Endian Support: Most Oracle GoldenGate products support cross endian replication,
which means that the source and target database can be a different platform (or even
endian) than the actual server where Oracle GoldenGate is installed.

2-1

https://edelivery.oracle.com/osdc/faces/SoftwareDelivery
https://support.oracle.com
https://support.oracle.com
https://support.oracle.com
https://support.oracle.com
https://www.oracle.com/integration/goldengate/certifications/

• Fully Certified Criteria: Oracle GoldenGate certifications are often phased in, for a
particular new release of the product. Oracle typically supports Oracle databases first and
then the various non-Oracle and Big Data technologies. In some cases, Oracle
GoldenGate may support the data store you are looking for, but you may need to check the
certification matrix for a previous release. Platforms that are in the certification matrix are
platforms where either full regression testing is done or where basic validation is performed
for continuity purposes.

• Fully Supported by Inference: There are other technologies that are supported for Oracle
GoldenGate that may not be explicitly listed in the certification matrix. For example, Oracle
certify its technologies based on a combination of Chipset, Operating System, Data Store
Type, and Data Store Version. As long as these four criteria are met, support is available.

• Fully Supported through Open Source Compatibility: There are a number of Open Source
technologies that Oracle GoldenGate is certified with such as Big Data and non-Oracle
databases. Sometimes, users may have open source environments and need Oracle
GoldenGate to provide support with such unique infrastructures, such as Apache HBase
on Azure Data Lake. In such cases, Oracle GoldenGate does support any unique open
source environment if the Chipset, Operating System, Open Source Framework and
Framework Version are certified by Oracle GoldenGate. For example, in case of Apache
HBase, Oracle GoldenGate support needs to check the version of Apache HBase, for
which Oracle GoldenGate is certified, and if that version happens to be running on some
Cloud, then Oracle GoldenGate will be supported. In each of these Open Source examples
(that are not explicitly certified), Oracle GoldenGate support is available using the base
open source configurations, such as Apache on certified hardware. However, Oracle may
not be obligated to support each possible infrastructure combination that users may select.

• Java JDBC Support: Many SQL, NoSQL and Big Data technologies support Java JDBC
capabilities. Oracle GoldenGate for Distributed Applications and Analytics enables
replication of transactions into any JDBC compliant drivers. Individual drivers may vary in
terms of performance and metadata coverage, so there is no specific guarantee that
Oracle GoldenGate JDBC support will work with every JDBC driver, but most common
JDBC drivers and commercial implementations usually work with Oracle GoldenGate
JDBC and these are supported. If you don’t find your technology in the certification matrix,
but you know that there is a JDBC drive available, then it could be that you may have both
technical compatibility and a supported configuration.

• Managed and Unmanaged Data Stores: With the advent of managed Cloud services such
as native cloud services, many data stores are now available with automated lifecycle,
patching, and other conveniences. In many cases, managed data stores are fully
compatible and consistent with Oracle GoldenGate certifications and support. However, in
some cases, a cloud vendor may turn-off or restrict access to features that Oracle
GoldenGate requires for full features compatibility, particularly with Oracle GoldenGate
Extract capabilities. If you have a question about a third party cloud managed service for a
data store that Oracle GoldenGate may usually support, but you do not see that managed
service listed in the Oracle GoldenGate certification matrix, directly contact Oracle
GoldenGate product management.

Operating System Requirements
This section outlines the operating system resources that are necessary to support Oracle
GoldenGate.

Chapter 2
Operating System Requirements

2-2

Memory Requirements
All Platforms

The amount of memory that is required for Oracle GoldenGate depends on the amount of data
being processed, the number of Oracle GoldenGate processes running, the amount of RAM
available to Oracle GoldenGate, and the amount of disk space that is available to Oracle
GoldenGate for storing pages of RAM temporarily on disk when the operating system needs to
free up RAM (typically when a low watermark is reached). This temporary storage of RAM to
disk is commonly known as swapping or paging (herein referred to as swapping). Depending
on the platform, the term swap space can be a swap partition, a swap file, a page file
(Windows) or a shared memory segment (IBM for i).

Modern servers have sufficient RAM combined with sufficient swap space and memory
management systems to run Oracle GoldenGate. However, increasing the amount of RAM
available to Oracle GoldenGate may significantly improve its performance, as well as that of
the system in general.

Typical Oracle GoldenGate installations provide RAM in multiples of gigabytes to prevent
excessive swapping of RAM pages to disk. The more contention there is for RAM the more
swap space that is used.

Excessive swapping to disk causes performance issues for the Extract process in particular,
because it must store data from each open transaction until a commit record is received. If
Oracle GoldenGate runs on the same system as the database, then the amount of RAM that is
available becomes critical to the performance of both.

RAM and swap usage are controlled by the operating system, not the Oracle GoldenGate
processes. The Oracle GoldenGate cache manager takes advantage of the memory
management functions of the operating system to ensure that the Oracle GoldenGate
processes work in a sustained and efficient manner. In most cases, users need not change the
default Oracle GoldenGate memory management configuration.

For more information about evaluating Oracle GoldenGate memory requirements, see the
CACHEMGR parameter in the Reference for Oracle GoldenGate.

Note:

On the DB2 for i host system allocate approximately 10-50 MB of memory for each
Oracle GoldenGate journal reader.

Windows Platforms

For Windows Server environments, the number of process groups that can be run are tightly
coupled to the non-interactive Windows desktop heap memory settings. The default settings
for Windows desktop heap may be enough to run very small numbers of process groups. As
you approach larger amounts of process groups, more than 60 or so, you have two choices:

• Adjust the non-interactive value of the SharedSection field in the registry based on
information from Microsoft (Windows desktop heap memory).

• Increase the number of Oracle GoldenGate homes and spread the total number of desired
process groups across these homes.

Chapter 2
Operating System Requirements

2-3

For more information on modifying the Windows Desktop Heap memory, review the following
Oracle Knowledge Base document (Doc ID 2056225.1).

Oracle GoldenGate for DB2 for i

Oracle GoldenGate for Db2 for i requires the following memory resources on the remote
system, and the database host system.

Disk Requirements
Disk space requirements vary based on the platform, database, and Oracle GoldenGate
architecture to be installed.

Disk Requirements for Oracle GoldenGate Installation Files

The disk space requirements for a Oracle GoldenGate installation vary based on your
operating system and database. Ensure that you have adequate disk space for the
downloaded file, expanded files, and installed files, which can be up to 2GB.

To determine the size of the Oracle GoldenGate download file, view the Size column before
downloading your selected build from Oracle Software Delivery Cloud. The value shown is the
size of the files in compressed form. The size of the expanded Oracle GoldenGate installation
directory is significantly larger on disk.

Temporary Disc Requirements

By default, the Oracle GoldenGate Classic Architecture maintains data that it writes to disk in
the dirtmp sub-directory of the Oracle GoldenGate installation directory. When total cached
transaction data exceeds the CACHESIZE setting of the CACHEMGR parameter, Extract will begin
writing cache data to temporary files. The cache manager assumes that all of the free space
on the file system is available. This directory can fill up quickly if there is a large transaction
volume with large transaction sizes. To prevent I/O contention and possible disk-related Extract
failures, dedicate a disk to this directory. You can assign a name to this directory with the
CACHEDIRECTORY option of the CACHEMGR parameter.

Note:

CACHEMGR is an internally self-configuring and self-adjusting parameter. It is rare that
this parameter requires modification. Doing so unnecessarily may result in
performance degradation. It is best to acquire empirical evidence before opening an
Oracle Service Request and consulting with Oracle Support.

It is typically more efficient for the operating system to swap to disk than it is for Extract to write
temporary files. The default CACHESIZE setting assumes this. Thus, there should be sufficient
disk space to account for this, because only after the value for CACHESIZE is exceeded will
Extract write transaction cached data to temporary files in the file system name space. If
multiple Extract processes are running on a system, the disk requirements can multiply. Oracle
GoldenGate writes to disk when there is not enough memory to store an open transaction.
Once the transaction has been committed or rolled back, committed data is written to trail files
and the data are released from memory and Oracle GoldenGate no longer keeps track of that
transaction. There are no minimum disk requirements because when transactions are
committed after every single operation these transactions are never written to disk.

Chapter 2
Operating System Requirements

2-4

Important:

Oracle recommends that you do not change the CACHESIZE because performance
can be adversely effected depending on your environment.

Other Disc Space Considerations

In addition to the disk space required for the files and binaries that are installed by Oracle
GoldenGate, allow additional disk space to hold the Oracle GoldenGate trails. Trails can be
created up to 2GB in size, with a default of 500MB. The space required depends upon the
selected size of the trails, the amount of data being captured for replication, and how long the
consumed trails are kept on the disk. The recommended minimum disk allocated for Trails may
be computed as:

((transaction log size * 0.33) * number of log switches per day) * number of days to
retain trails

Based on this equation, if the transaction logs are 1GB in size and there is an average of 10
log switches per day, it means that Oracle GoldenGate will capture 3.3GB data per day. To be
able to retain trails for 7 days, the minimum amount of disk space needed to hold the trails is
23GB.

A trail is a set of self-aging files that contain the working data at rest and during processing.
You may need more or less than this amount, because the space that is consumed by the trails
depends on the volume of data that will be processed.

Network
The following network resources must be available to support Oracle GoldenGate Classic
Architecture.

• For optimal performance and reliability, especially in maintaining low latency on the target,
use the fastest network possible and install redundancies at all points of failure.

• Configure the system to use both TCP and UDP services, including DNS. Oracle
GoldenGate supports IPv4 and IPv6 and can operate in a system that supports one or both
of these protocols.

• Configure the network with the host names or IP addresses of all systems that will be
hosting Oracle GoldenGate processes and to which Oracle GoldenGate will be connecting.

• Oracle GoldenGate requires some unreserved and unrestricted TCP/IP network ports, the
number of which depends on the number and types of processes in your configuration.
See Configure Network Communications.

• Keep a record of the ports that you assigned to Oracle GoldenGate processes. You specify
them with parameters when configuring deployments for the Microservices Architecture
and for the Manager and pumps with the Classic Architecture.

• Configure your firewalls to accept connections through the Oracle GoldenGate ports.

Operating System Privileges
The following are the privileges in the operating system that are required to install Oracle
GoldenGate and to run the processes:

Chapter 2
Operating System Requirements

2-5

• The person who installs Oracle GoldenGate must be granted read and write privileges on
the Oracle GoldenGate software home directory.

• To install on Windows, the person who installs Oracle GoldenGate must log in as an
Administrator.

• The Oracle GoldenGate Extract, Replicat, and Manager processes, and configuring
deployments using the oggca.sh script must operate as an operating system user that has
read, write, and delete privileges on files and subdirectories in the Oracle GoldenGate
directory. In addition, the oggca.sh process requires privileges to control the other Oracle
GoldenGate processes.

• In classic capture mode, the Extract process reads the redo or transaction logs directly. It
must operate as an operating system user that has read access to the log files, both online
and archived.

• Oracle recommends that you dedicate the Extract and Replicat operating system users to
Oracle GoldenGate. Sensitive information might be available to anyone who runs an
Oracle GoldenGate process, depending on how database authentication is configured.

Other Operating System Requirements
The following additional features of the operating system must be available to support Oracle
GoldenGate.

• To use Oracle GoldenGate user exits, install the C/C++ Compiler, which creates the
programs in the required shared object or DLL.

• Gzip to decompress the Oracle GoldenGate installation files. Otherwise, you must unzip
the installation on a PC by using a Windows-based product, and then FTP it to the AIX,
DB2 for i, or DB2 z/OS platforms.

• For best results on DB2 platforms, apply high impact (HIPER) maintenance on a regular
basis staying within one year of the current maintenance release. The HIPER process
identifies defects that could affect data availability or integrity. IBM provides Program
Temporary Fixes (PTF) to correct defects found in DB2 for i and DB2 z/OS.

• Oracle GoldenGate for SQL Server when installed on Linux requires the libnsl and
unixODBC packages to be installed prior to launching GGSCI.

• Before installing Oracle GoldenGate on a Windows system, install the Microsoft Visual C +
+ 2013 Redistributable Package and the Microsoft Visual C++ 2017 Redistributable
Package. These packages install runtime components of Visual C++ Libraries that are
required for Oracle GoldenGate processes.

Download and install the x64 version of Visual C++ 2013 package from :

https://support.microsoft.com/en-us/help/4032938/update-for-visual-c-2013-redistributable-
package

Download and install the x64 version of Visual C++ 2017 package from

https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads

• For Oracle GoldenGate for Oracle to be installed on a remote hub server, download and
install the Oracle Database 19c client for the operating system platform where Oracle
GoldenGate will be installed and ensure that you install the Administrator version of the
client.

Chapter 2
Operating System Requirements

2-6

https://support.microsoft.com/en-us/help/4032938/update-for-visual-c-2013-redistributable-package
https://support.microsoft.com/en-us/help/4032938/update-for-visual-c-2013-redistributable-package
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads

Security and Other Considerations
Oracle GoldenGate fully supports virtual machine environments created with any virtualization
software on any platform unless otherwise noted. When installing Oracle GoldenGate into a
virtual machine environment, select a build that matches the database and the operating
system of the virtual machine, not the host system.

Note:

Oracle customers with an active support contract and running supported versions of
Oracle products (including Oracle GoldenGate) receive assistance from Oracle when
running those products on VMware virtualized environments.

If Oracle identifies the underlying issue is not caused by Oracle’s products or is being
run in a computing environment not supported by Oracle, Oracle will refer customers
to VMware for further assistance and Oracle will provide assistance to VMware as
applicable in resolving the issue.

This support policy does not affect Oracle or VMware licensing policies.

Windows Console Character Sets
The operating system and the command console must have the same character sets.
Mismatches occur on Microsoft Windows systems, where the operating system is set to one
character set, but the DOS command prompt uses a different, older DOS character set. Oracle
GoldenGate uses the character set of the operating system to send information to GGSCI
command output; therefore a non-matching console character set causes characters not to
display correctly. You can set the character set of the console before opening a GGSCI session
by using the following DOS command:

chcp codepagenumber

For example, chcp 437.

For a code page overview, see https://msdn.microsoft.com/en-us/library/windows/desktop/
dd317752(v=vs.85).aspx and the list of code page identifiers https://msdn.microsoft.com/en-us/
library/windows/desktop/dd317756(v=vs.85).aspx.

Prerequisites for Installing Oracle GoldenGate for DB2 z/OS
Learn about the requirements to install Oracle GoldenGate for DB2 z/OS.

System Services
Activate UNIX System Services (USS) only if required to install the executables for the Extract
support modules.

Oracle GoldenGate supports Sysplex data sharing.

Chapter 2
Prerequisites for Installing Oracle GoldenGate for DB2 z/OS

2-7

https://msdn.microsoft.com/en-us/library/windows/desktop/dd317752(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd317752(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd317756(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd317756(v=vs.85).aspx

Memory Requirements
Oracle GoldenGate requires the following memory resources on the Oracle GoldenGate
remote system and the database host system.

On the remote system
The amount of memory that is required for Oracle GoldenGate depends on the amount of data
being processed, the number of Oracle GoldenGate processes running, the amount of RAM
available to Oracle GoldenGate, and the amount of disk space that is available to Oracle
GoldenGate for storing pages of RAM temporarily on disk when the operating system needs to
free up RAM (typically when a low watermark is reached). This temporary storage of RAM to
disk is commonly known as swapping or paging. Depending on the platform, the term swap
space can be a swap partition, a swap file, or a shared memory segment (IBM i platforms).
Modern servers have sufficient RAM combined with sufficient swap space and memory
management systems to run Oracle GoldenGate. However, increasing the amount of RAM
available to Oracle GoldenGate may significantly improve its performance, as well as that of
the system in general.
Typical Oracle GoldenGate installations provide RAM in multiples of gigabytes to prevent
excessive swapping of RAM pages to disk. The more contention there is for RAM the more
swap space that is used.
Excessive swapping to disk causes performance issues for the Extract process in particular,
because it must store data from each open transaction until a commit record is received. If
Oracle GoldenGate runs on the same system as the database, the amount of RAM that is
available becomes critical to the performance of both.
RAM and swap usage are controlled by the operating system, not the Oracle GoldenGate
processes. The Oracle GoldenGate cache manager takes advantage of the memory
management functions of the operating system to ensure that the Oracle GoldenGate
processes work in a sustained and efficient manner. In most cases, users need not change
the default Oracle GoldenGate memory management configuration.
For more information about evaluating Oracle GoldenGate memory requirements, see the
CACHEMGR parameter in the Reference for Oracle GoldenGate.

On the DB2 host system
Allocate approximately 10-50 MB of virtual memory for each Oracle GoldenGate log reader,
oggreadb, that is invoked depending on the size of the log buffer. There is one invocation per
Extract process on the remote system. To adjust the maximum log buffer size, use the
TRANLOGOPTIONS BUFSIZE parameter in the Extract parameter file.
When setting up the Workload Manager (WLM) environment for the Extract log read
components, it is recommended to set NUMTCB in the range of 10-40 depending on your
environment. Refer to the IBM documentation for more information.

Disk Requirements for DB2 z/OS
On the DB2 host system
(Only applicable if you are installing stored procedures.) Assign a zFS (zSeries file systems)
or hierarchical file system volume. To determine the size of the Oracle GoldenGate download
file, examine the size of zOSPrograms.zip on the remote DB2 system after extracting the
installation image.

Operating System Privileges for DB2 z/OS
The remote host requires privileges to use the chmod +rw command on the sub-directories in
the Oracle GoldenGate product directory.

Chapter 2
Prerequisites for Installing Oracle GoldenGate for DB2 z/OS

2-8

https://www.ibm.com/docs/en/db2-for-zos/13

Table 2-1 Operating System Privileges

DB2 z/OS User Privilege Extract Stored
Procedures

Replicat

CONNECT to the remote DB2 subsystem. X X X

Choosing an Installation Operating System
Oracle GoldenGate for DB2 for z/OS operates remotely on zLinux, AIX or Intel Linux systems.
To capture data, a small component must be installed on the DB2 z/OS system that contains
the DB2 instance that will allow Oracle GoldenGate to read the DB2 log data.

To install Oracle GoldenGate on a remote zLinux, AIX or Linux system, you have the following
options for connecting to DB2 on the z/OS system:

• DB2 Connect v10.5 or greater

• IBM Data Server Driver for ODBC and CLI v10.5 or greater

• IBM Data Server Client v10.5 or greater

• IBM Data Server Runtime Client v10.5 or greater

Consider the following:

• Extract uses Open Database Connectivity (ODBC) to connect to the DB2 subsystem on
the z/OS system. If one of the other drivers is not already installed, the IBM Data Server
Driver for ODBC and CLI is the most lightweight driver and is recommended for most
configurations, although the other drivers are suitable also.

• To capture DB2 log data, the log reader component must be installed in a Library (PDSE)
on the z/OS system. Load Libraries (PDS) are not supported. The library must be
authorized program facility (APF) helps your installation protect the system. APF-
authorized programs can access system facility (APF) authorized. The log read component
is called through SQL from the remote system and since it is APF authorized, an
authorized Workload Manager (WLM) environment must also be used to run these
programs since the default DB2 supplied WLM environment is not able to run authorized
workload.

• No special requirements beyond what capture already has for Oracle GoldenGate delivery.
Because this Oracle GoldenGate release is a fully-remote distribution, the former Oracle
GoldenGate DB2 Remote product is no longer shipped separately. However, Windows is
not supported in Oracle GoldenGate for DB2 z/OS in this release. If you still require
delivery to z/OS from Windows, then Oracle GoldenGate DB2 Remote 12.2 is still
available.

• UNIX System Services (USS) is no longer required (as in prior releases) except for a few
installation procedures.

• Windows only: To apply data to a DB2 target from Windows, Oracle GoldenGate DB2
Remote v12.2 must be used. Capture is not support in this scenario.

• Install Oracle GoldenGate DB2 Remote on a remote system for remote delivery to the DB2
target system. In this configuration, Replicat connects to the target DB2 database by using
the ODBC API that is supplied in DB2 Connect . This configuration requires DB2 LUW to
be installed on the remote system.

Chapter 2
Prerequisites for Installing Oracle GoldenGate for DB2 z/OS

2-9

Note:

All of the Oracle GoldenGate functionality that is supported for DB2 for z/OS is
supported by DB2Connect. In addition, ASCII character data is converted to
EBCDIC automatically by DB2 Connect.

• Although it is possible to install Oracle GoldenGate on zLinux, AIX, and Intel based Linux,
the best performance is seen with a system that has the lowest network latency to the
z/OS system that you use. Although it is possible to run over a wide area network, the
performance suffers due to the increased network latency. Oracle recommends using a
zLinux partition on the same physical hardware as the z/OS system that is running DB2
using Hipersockets or a VLAN between the partitions. Otherwise, systems connected with
OSA adapters in the same machine room, would be the next best choice. Alternatively, the
fastest Ethernet connection between the systems that is available would be acceptable.

Using the Remote Delivery to the DB2 z/OS using DB2Connect

1. For the intermediary system, select any platform that Oracle GoldenGate supports for the
DB2 for LUW database. This is the system on which Oracle GoldenGate is installed.

2. Install and run DB2 for LUW on the selected remote system so that the Replicat process
can use the supplied DB2 Connect driver.

3. Catalog the DB2 target node in the DB2 for LUW database on the remote system by using
the following DB2 command:

catalog tcpip node db2_node_name remote DNS_name server DB2_port-number

4. Add the target DB2 database to the DB2 for LUW catalog on the intermediary system by
using the following DB2 command:

catalog db database_name as database_alias at node db_node_name

See the IBM DB2 LUW documentation for more information about these commands.

Prerequisites for Installing Oracle GoldenGate for DB2 for i
Learn about the requirements for installing Oracle GoldenGate Classic Architecture for DB2 for
i.

Oracle GoldenGate for DB2 for i runs directly on a DB2 for i source system to capture data
from the transaction journals for replication to a target system. To apply data to a target DB2
for i, Oracle GoldenGate can run directly on the DB2 for i target system or on a remote
Windows or Linux system. If installed on a remote system, Replicat delivers the data by means
of an ODBC connection, and no Oracle GoldenGate software is installed on the DB2 for i
target.

Chapter 2
Prerequisites for Installing Oracle GoldenGate for DB2 for i

2-10

Note:

The DB2 for i platform uses one or more journals to keep a record of transaction
change data. For consistency of terminology in the supporting administrative and
reference Oracle GoldenGate documentation, the terms log or transaction log may
be used interchangeably with the term journal where the use of the term journal is not
explicitly required.

General Requirements
• Portable Application Solution Environment (PASE) must be installed on the system.

• Java 8 must be installed on the IBM i and the Linux host system where GoldenGate for
IBM i will run.

• OpenSSH is recommended to be installed on the system. OpenSSH is part of the IBM
Portable Utilities licensed program and allows SSH terminal access to the system in the
same manner as other Linux system.

• A library/schema should be dedicated to each install for Oracle GoldenGate on the IBM i
system.

• The IBM DB2 for i Program temporary fixes (PTFs) that are required by release for Oracle
GoldenGate are detailed in the following tables:

IBM i7.3 Group
PTF

Level Name Notes

SF99730 23103 Cumulative PTF NA

SF99731 12 All PTF groups
except cumulative
PTF package

.

IBM i7.4 Group
PTF

Level Name Notes

SF99740 23117 Cumulative PTF NA

SF99741 8 All PTF groups
except cumulative
PTF package

NA

IBM i7.5 Group PTF Level Name Notes

SF99750 23110 Cumulative PTF NA

SF99751 4 All PTF groups except
cumulative PTF
package

NA

These required PTFs are the levels at which Oracle GoldenGate has been tested against
for the 21c releases. To check the group PTF levels, you must use the WRKPTFGRP
command from a 5250 terminal session and check for the specific PTFs with the
commands shown in the preceding tables. The specific extra PTFs must be at least
temporarily applied.

Chapter 2
Prerequisites for Installing Oracle GoldenGate for DB2 for i

2-11

Prerequisite Setup the DB2 for i System
Follow these steps before you begin installing Oracle GoldenGate for a DB2 for i system.

Note:

The user profile running the install must have authority to the RSTOBJ command.

1. On the system where Oracle GoldenGate is to be installed, create a directory for Oracle
GoldenGate.

- MKDIR DIR('/GoldenGate')

2. You can create a library for Oracle GoldenGate on the installation system, or you can
create it through the installation script that you will run later in these steps.

- CRTLIB LIB(goldengate) TEXT('Oracle GoldenGate Product Library') ASP(1)

3. Unzip the downloaded file on your system.

4. FTP the resulting tar file from that system to the folder that you created on the DB2 for i
installation system.

ftp IBMi_IP_address
.
User (system:(none)):userid
.
331 Enter password.
. Password: password .
230 userid logged on. .
ftp> bin
.
ftp> cd goldengate
.
ftp> put install_file
.
ftp> quit

5. (If you created a library) From a 5250 terminal session, change your current library to the
Oracle GoldenGate library.

CHGCURLIB Oracle_GoldenGate_ library

6. Run a QP2TERM terminal session.

- CALL QP2TERM

7. Extract the installation objects from the tar file.

tar -xf tar_file

Chapter 2
Prerequisites for Installing Oracle GoldenGate for DB2 for i

2-12

8. In the Oracle GoldenGate directory, run the shell script ggos400install.

ggos400install -l goldengate

The default is to install the required objects into the current library (set in the preceding
steps), but you can create a library by using the -c option. Additional options are available.

Note:

There must be a separate Oracle GoldenGate library for each Oracle
GoldenGate directory. The install script checks for this condition and will prevent
installation to the same library that another installation is using. The reason for
this is to prevent mismatches between the Oracle GoldenGate installation and
the OGGPRCJRN *SRVPGM object.

Syntax:

./ggos400install [-h] [-f] [-u userid] [[-a aspname] | [-n aspnum]] [-c|-l
library name]

Options:

• -h shows this usage help.

• -f forces a change to a new installation library. This argument only affects an existing
installation.

• -u userid specifies the userid that will own the installation.

• -a aspname specifies the name of the ASP where objects will be restored. If no
aspname is provided, the system asp is assumed. This option cannot be used with -n.

• -n aspnum specifies the number of the user asp where the objects will be restored.
This option cannot be used with -a.

• -c library specifies the name of the library where the objects will be restored. The
library will be created.

• -l library specifies the name of the library where the objects will be restored. The
library must exist. If a library is not specified for a new installation, the installer will
attempt to use the current library of the user that is running the installer. If a library is
not specified for an existing installation, the installer will attempt to use the library that
is set in the oggprcjrn.srvpgm link.

Note:

If Oracle GoldenGate is reinstalled, you must run ggos400install again. On a
reinstall, ggos400install will recognize the prior configuration, so no arguments
are needed. If the oggprcjrn.srvpgm link is changed or removed,
ggos400install must be run again with the Oracle GoldenGate installation
library specified by the link.

Chapter 2
Prerequisites for Installing Oracle GoldenGate for DB2 for i

2-13

9. Exit QP2TERM.

- F3

Note:

On an DB2 for i system, it is not necessary to create any working directories in
the Oracle GoldenGate installation directory. The ggos400install script performs
this task.

10. Install Oracle GoldenGate on the DB2 for i database server, see Installing for all Platforms.

Prerequisites for Installing Oracle GoldenGate for DB2 LUW
Learn about the requirements for installing Oracle GoldenGate Classic Architecture for DB2
LUW.

Choosing an Installation System for DB2 LUW
To install Oracle GoldenGate for DB2 LUW, you can use either of the following configurations:

• Install Oracle GoldenGate on the DB2 LUW database server.

• Install Oracle GoldenGate on another server, and configure Oracle GoldenGate to connect
remotely to the database server through DB2 Connect. All of the Oracle GoldenGate
functionality that is supported for DB2 LUW is supported in this configuration. To use this
option, proceed to Choosing and Configuring a System for Remote Capture or Delivery.

To Use Remote Delivery to the DB2 LUW System Using DB2 Connect

1. For the intermediary system, select any supported for the DB2 for LUW database to be the
system that Oracle GoldenGate is installed on.

2. Install and run DB2 for LUW on the selected remote system so that the Replicat process
can use the supplied DB2 Connect driver.

3. Catalog the DB2 target node in the DB2 for LUW database on the remote system by using
the following DB2 command:

catalog tcpip node db2_node_name remote DNS_nameserver DB2_port-number

4. Add the target DB2 database to the DB2 for LUW catalog on the intermediary system by
using the following DB2 command:

catalog db database_name as database_alias at node db_node_name

Note:

Refer to the IBM DB2 LUW documentation for more information about these
commands.

Chapter 2
Prerequisites for Installing Oracle GoldenGate for DB2 LUW

2-14

5. Install Oracle GoldenGate. For CA, see Installing Oracle GoldenGate for Non-Oracle
Databases. For MA, see Installing Microservices Architecture for Oracle GoldenGate.

6. Specify the DB2 target database name with the Replicat parameter.TARGETDB when you
configure the Oracle GoldenGate processes.

Choosing and Configuring a System for Remote Capture or Delivery
In a remote installation, you install Oracle GoldenGate on a server that is remote from the
source or target database server. This server can be any Linux, UNIX, or Windows platform
that Oracle GoldenGate supports for the DB2 for LUW database. The Oracle GoldenGate build
must match the version of DB2 LUW that is running on the installation server.

In this configuration, the location of the database is transparent to Extract and Replicat. Extract
can read the DB2 logs on a source DB2 LUW database server, and Replicat can apply data to
a target DB2 LUW server.

To Configure Remote Capture or Delivery:

1. Install and run DB2 for LUW on the remote server that has DB2 Connect.

2. Catalog the remote server in the DB2 source or target database by using the following DB2
command.

catalog tcpip node db2_node_name remote remote_DNS_name
3. Catalog the DB2 target node in the DB2 for LUW database on the remote server by using

the following DB2 command:

catalog tcpip node db2_node_name remote remote_DNS_name server
remote_port_number

4. Add the DB2 source or target database to the DB2 catalog on the remote server by using
the following DB2 command:

catalog db database_name as database_alias at node db_node_name

Note:

Refer to the IBM DB2 LUW documentation for more information about these
commands.

5. Download and install the Oracle GoldenGate build that is appropriate for the DB2 LUW
database on the remote server.

Prerequisites for Installing Oracle GoldenGate for MySQL
Oracle GoldenGate 19c for MySQL and compatible databases, require the installation of
OpenSSL 1.0 on the Oracle GoldenGate server prior to running GGSCI.

Installing OpenSSL on Linux

OpenSSL 1.0 is included with the core operating system packages of OEL 7 / RHEL7 / OEL6 /
RHEL6 but is not included with OEL8 or RHEL 8, and therefore must be manually installed for
these operating systems/versions.

Chapter 2
Prerequisites for Installing Oracle GoldenGate for MySQL

2-15

To install the required OpenSSL 1.0 libraries (libssl.so.10 and libcrypto.so.10), download
and install the MySQL Connector/ODBC, version 8.0.17, using the following instructions:

1. Open this link in a web browser: https://downloads.mysql.com/archives/c-odbc/

2. Select version 8.0.17 from the Product Version drop-down menu, then select Linux-
Generic from the Operating System drop-down menu.

3. Click the Download link for the x86, 64-bit version of the package: Linux - Generic
(glibc 2.12) (x86, 64-bit), Compressed TAR Archive

4. Save the file to a location of your choice, such as /opt/app/, and untar the file:

tar -xvzf mysql-connector-odbc-8.0.17-linux-glibc2.12-x86-64bit

5. Add the path of the OpenSSL 1.0 libraries that are needed for Oracle GoldenGate to the
LD_LIBRARY_PATH system variable. The OpenSSL 1.0 libraries are located in the mysql-
connector-odbc-8.0.17-linux-glibc2.12-x86-64bit/lib folder.

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/app/mysql-connector-
odbc-8.0.17-linux-glibc2.12-x86-64bit/lib/

Installing OpenSSL on Windows

OpenSSL 1.0 needs to be installed on the Windows server for Oracle GoldenGate for MySQL.
To install the required OpenSSL 1.0 libraries (libcrypto-1_1-x64.dll and libssl-1_1-
x64.dll), download and install the MySQL Connector/ODBC version 8.0.33, using the
following instructions:

1. Open this link in a web browser: https://downloads.mysql.com/archives/c-odbc/

2. Select version 8.0.33 from the Product Version drop-down menu, then select Microsoft
Windows from the Operating System drop-down menu.

3. Click the Download link for the x86, 64-bit zip file version of the package Windows
(x86, 64-bit), ZIP Archive.

4. Save the file to a location of your choice, such as C:\mysql and extract the file:

tar -xvf mysql-connector-odbc-noinstall-8.0.33-winx64.zip

5. Add the path of the OpenSSL 1.0 libraries that are needed for Oracle GoldenGate to the
PATH system variable. The OpenSSL 1.0 libraries are located in the mysql-connector-
odbc-noinstall-8.0.33-winx64\lib folder.

set PATH=%PATH%;C:\mysql\ mysql-connector-odbc-noinstall-8.0.33-winx64\lib

Prerequisites for Installing Oracle GoldenGate for Oracle
Database

Oracle GoldenGate uses a single, unified build for capturing from and applying to multiple
major Oracle Database versions for supported operating systems by including the latest Oracle
database client libraries as part of Oracle GoldenGate. As a result, there are no prerequisites
for installing Oracle GoldenGate for Oracle database.

Chapter 2
Prerequisites for Installing Oracle GoldenGate for Oracle Database

2-16

https://downloads.mysql.com/archives/c-odbc/
https://downloads.mysql.com/archives/c-odbc/

Specifying Oracle Variables on UNIX and Linux Systems
If there is one instance of Oracle Database on the system, then set the ORACLE_HOME and
ORACLE_SID environment variables at the system level. If you cannot set them that way, then
use the following SETENV statements in the parameter file of every Extract and Replicat group
that will be connecting to the instance. The SETENV parameters override the system settings
and allow the Oracle GoldenGate process to set the variables at the session level when it
connects to the database.

SETENV (ORACLE_HOME = path_to_Oracle_home_location)

SETENV (ORACLE_SID = SID)

If there are multiple Oracle instances on the system with Extract and Replicat processes
connecting to them, then you must use a SETENV statement in the parameter file of each
process group. As input to the SETENV parameter, use the ORACLE_HOME and ORACLE_SID
environment variables to point Oracle GoldenGate to the correct Oracle instance. For example,
the following parameter file excerpts shows two Extract groups, each capturing from a different
Oracle instance.

Group 1:

EXTRACT edbaa
SETENV (ORACLE_HOME = "/home/oracle/ora/product")
SETENV (ORACLE_SID = "oraa")
USERIDALIAS tiger1
RMTHOST sysb
RMTTRAIL /home/ggs/dirdat/rt
TABLE hr.emp;
TABLE hr.salary;

Group 2:

EXTRACT orab
SETENV (ORACLE_HOME = "/home/oracle/ora/product")
SETENV (ORACLE_SID = "orab")
USERIDALIAS tiger1
RMTHOST sysb
RMTTRAIL /home/ggs/dirdat/st
TABLE fin.sales;
TABLE fin.cust;

Specifying Oracle Variables on Windows Systems
If there is one instance of Oracle on the system, then the Registry settings for ORACLE_HOME
and ORACLE_SID should be sufficient for Oracle GoldenGate. If those settings are incorrect in
the Registry and cannot be changed, then you can set an override as follows:

1. On the Desktop or Start menu, right-click My Computer, and then select Properties.

2. In Properties, click the Advanced tab.

3. Click Environment Variables.

4. Under System Variables, click New.

5. For the Variable Name, enter ORACLE_HOME.

6. For the Variable Value, enter the path to the Oracle binaries.

Chapter 2
Prerequisites for Installing Oracle GoldenGate for Oracle Database

2-17

7. Click OK.

8. Click New again.

9. For the Variable Name, enter ORACLE_SID.

10. For the Variable Value, enter the instance name.

11. Click OK.

If there are multiple Oracle instances on the system with Extract and Replicat processes
connecting to them, then use these steps:

1. Use the preceding procedure (single Oracle instance on system) to set the ORACLE_HOME
and ORACLE_SID system variables to the first Oracle instance.

2. Start all of the Oracle GoldenGate processes that will connect to that instance.

3. Edit the existing ORACLE_HOME and ORACLE_SID variables to specify the new information.,
then repeat the procedure for the next Oracle instance.

4. Start the Oracle GoldenGate processes that will connect to that instance.

5. Repeat the edit and startup procedure for the rest of the Oracle instances.

Prerequisites for Installing Oracle GoldenGate for PostgreSQL
Learn about the requirements to install Oracle GoldenGate for PostgreSQL.

Prerequisites for Installing Oracle GoldenGate for PostgreSQL
PostgreSQL libpq Module

For Oracle GoldenGate installations beginning with release version 19.1.0.0.220419 and after,
required PostgreSQL libpq libraries are now packaged with the Oracle GoldenGate
installation and do not need to be installed separately.

For Oracle GoldenGate installations prior to release version 19.1.0.0.220419, PostgreSQL
libpq libraries need to be manually installed where Oracle GoldenGate is to be installed.
Perform the instructions below to install the correct libpq module when running Oracle
GoldenGate release versions prior to 19.1.0.0.220419.

The steps to install the PostgreSQL libpq module are:

1. Follow the steps to install the required PostgreSQL package available at: https://
www.postgresql.org/download/.

2. Select the Linux operating system family and Red Hat/Rocky/CentOS Linux distribution
from the Packages and Installers drop-down list.

3. Select the PostgreSQL version based on the highest version of PostgreSQL that will be
used with Oracle GoldenGate.

4. Select the platform where Oracle GoldenGate will be installed, such as Red Hat
Enterprise, CentOS, Scientific, or Oracle version 7.

5. Select the architecture as x86_64from the Architecture drop-down list.

This will provide the PostgreSQL setup scripts needed to install the required package(s).

6. Install the repository RPM and the libs module. For example:

Chapter 2
Prerequisites for Installing Oracle GoldenGate for PostgreSQL

2-18

https://www.postgresql.org/download/
https://www.postgresql.org/download/

Install the repository RPM:
sudo yum install -y https://download.postgresql.org/pub/repos/yum/reporpms/
EL-7-x86_64/pgdg-redhat-repo-latest.noarch.rpm
Install PostgreSQL libs module:
sudo yum install -y postgresql12-libs

Database Software for Capture Requirements

To capture from a PostgreSQL database, Oracle GoldenGate requires the test_decoding
database plug-in be installed for the database. This plug-in might not have been installed by
default when the database was installed.

Ensure that the postgresqlversion#-contrib package is installed on the database server. For
example:

sudo yum install postgresql12-contrib

Additional Programs and Settings

Configure the LD_LIBARY_PATH and OGG_HOME environment variables prior to installing Oracle
GoldenGate.

• For Oracle GoldenGate installations prior to release version 19.1.0.0.220419, set the
following environment variables before installing Oracle GoldenGate:

1. OGG_HOME – The planned Oracle GoldenGate installation path.

2. LD_LIBARY_PATH – Includes the $OGG_HOME/lib and PostgreSQL libpq directories.

Example:

export OGG_HOME=<path_to_install_GoldenGate>
export LD_LIBRARY_PATH=$OGG_HOME/lib:/usr/pgsql-12/lib

• For Oracle GoldenGate installations of release version 19.1.0.0.220419 and after, set the
following environment variables before installing Oracle GoldenGate:

1. OGG_HOME – The planned Oracle GoldenGate installation path.

2. LD_LIBARY_PATH – Includes the $OGG_HOME/lib directory.

Example:

export OGG_HOME=<path_to_install_GoldenGate>
export LD_LIBRARY_PATH=$OGG_HOME/lib

• When installing Oracle GoldenGate on a remote server (one different from where the
database is running), set the remote server's time and time zone to that of the source
database server so that Oracle GoldenGate Extract can correctly position by time when
creating the Extract with the BEGIN option, otherwise, position by a valid LSN value.

Prerequisites for Installing Oracle GoldenGate for SQL Server
Learn about the requirements to install Oracle GoldenGate for SQL Server.

Chapter 2
Prerequisites for Installing Oracle GoldenGate for SQL Server

2-19

Oracle GoldenGate Capture for SQL Server supports change data capture installed on a local
or remote, Windows or Linux server. Oracle GoldenGate for SQL Server installed on Windows
supports local and remote Capture and Delivery for SQL Server running on Windows. For
Oracle GoldenGate installed on Linux, only remote Capture and Delivery are supported for
SQL Server running on Windows. Oracle GoldenGate does not support SQL Server running on
Linux.

To apply to a SQL Server database, you can install Oracle GoldenGate on the database server
or on a remote Linux or Windows server.

Prerequisites for Installing Oracle GoldenGate for SQL Server
Observe the following program and settings information for Oracle GoldenGate for SQL
Server:

• Install either the Microsoft ODBC Driver 17 or Microsoft ODBC Driver 18 for the operating
system where Oracle GoldenGate is to be installed:

For Oracle GoldenGate on Windows, install the driver available at the following link:

https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server?
view=sql-server-2017

For Oracle GoldenGate on Linux, install the driver available at this link, and follow the
instructions for RHEL and Oracle Linux packages:

https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-
driver-for-sql-server?view=sql-server-2017

Note:

Support for Microsoft ODBC Driver 18 was added with Oracle GoldenGate
release 19.1.0.0.221021. Versions prior to release 19.1.0.0.221021 do not
support the Microsoft ODBC Driver 18 for SQL Server.

• Installation of the Oracle GoldenGate CDC cleanup tasks requires the Microsoft sqlcmd
Utility. Download instructions for Windows and Linux systems can be found at:

https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15

• To install capture on a remote Linux or Windows server, set the remote server's time and
time zone to that of the database server, or use LSN based positioning for the Extract.

Prerequisites for Installing Oracle GoldenGate for Sybase
Learn about the requirements to install Oracle GoldenGate for Sybase.

Oracle GoldenGate uses shared libraries. When you install Oracle GoldenGate on a UNIX
system, the following must be done before you run GGSCI or any other Oracle GoldenGate
process . If you will be running an Oracle GoldenGate program from outside the Oracle
GoldenGate installation directory on a UNIX system:

• (Optional) Add the Oracle GoldenGate installation directory to the PATH environment
variable.

• (Required) Add the Oracle GoldenGate installation directory to the shared-libraries
environment variable.

Chapter 2
Prerequisites for Installing Oracle GoldenGate for Sybase

2-20

https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15

When Oracle GoldenGate connects remotely to the database server through SQL*Net, the
following are required:

• Replicat: The Oracle client library and the Oracle GoldenGate build must have the same
Oracle version, bit type (64-bit or IA64), and operating system version.

• Extract: The Oracle client library and the Oracle GoldenGate build must have the same
Oracle version, bit type (64-bit or IA64), and operating system version. In addition, both
operating systems must be the same endian.

For example, given an Oracle GoldenGate installation directory of /users/ogg, the second
command in the following example requires these variables to be set:

Table 2-2 Command Requiring Library Variable

Command Requires GG libraries in environment variable?

$ users/ogg > ./ggsci No

$ users > ./ogg/ggsci Yes

Set the Variables in Korn Shell

PATH=installation_directory:$PATH
export PATH
shared_libraries_variable=absolute_path_of_installation_directory:$shared_librari
es_variable
export shared_libraries_variable

Set the Variables in Bourne Shell

export PATH=installation_directory:$PATH
export
shared_libraries_variable=absolute_path_of_installation_directory:$shared_librari
es_variable

Set the Variables in C Shell

setenv PATH installation_directory:$PATH
setenv shared_libraries_variable
absolute_path_of_installation_directory:$shared_libraries_variable

Where: shared_libraries_variable is one of the variables shown in Table 2-3:

Table 2-3 UNIX/Linux Library Path Variables per Platform

Platform1 Environment variable

IBM AIX
IBM z/OS

LIBPATH

HP-UX SHLIB_PATH
Sun Solaris
LINUX

LD_LIBRARY_PATH2

1 A specific platform may or may not be supported by Oracle GoldenGate for your database.
2 In 64-bit environments with 32-bit Oracle databases, Oracle GoldenGate requires the LD_LIBRARY_PATH to

include the 32-bit Oracle libraries.

Chapter 2
Prerequisites for Installing Oracle GoldenGate for Sybase

2-21

Example

export LD_LIBRARY_PATH=/ggs/12.0:$LD_LIBRARY_PATH

Note:

To view the libraries that are required by an Oracle GoldenGate process, use the ldd
goldengate_process shell command before starting the process. This command also
shows an error message for any that are missing.

To install Oracle GoldenGate for Sybase, see Installing for all Platforms.

Setting Library Paths for Dynamic Builds on UNIX
Oracle GoldenGate uses shared libraries. When you install Oracle GoldenGate on a UNIX
system, the following must be done before you run GGSCI or any other Oracle GoldenGate
process . If you will be running an Oracle GoldenGate program from outside the Oracle
GoldenGate installation directory on a UNIX system:

• (Optional) Add the Oracle GoldenGate installation directory to the PATH environment
variable.

• (Required) Add the Oracle GoldenGate installation directory to the shared-libraries
environment variable.

When Oracle GoldenGate connects remotely to the database server through SQL*Net, the
following are required:

• Replicat: The Oracle client library and the Oracle GoldenGate build must have the same
Oracle version, bit type (64-bit or IA64), and operating system version.

• Extract: The Oracle client library and the Oracle GoldenGate build must have the same
Oracle version, bit type (64-bit or IA64), and operating system version. In addition, both
operating systems must be the same endian.

For example, given an Oracle GoldenGate installation directory of /users/ogg, the second
command in the following example requires these variables to be set:

Table 2-4 Command Requiring Library Variable

Command Requires GG libraries in environment variable?

$ users/ogg > ./ggsci No

$ users > ./ogg/ggsci Yes

To Set the Variables in Korn Shell:

PATH=installation_directory:$PATH
export PATH
shared_libraries_variable=absolute_path_of_installation_directory:$shared_librari
es_variable
export shared_libraries_variable

Chapter 2
Prerequisites for Installing Oracle GoldenGate for Sybase

2-22

To Set the Variables in Bourne Shell:

export PATH=installation_directory:$PATH
export
shared_libraries_variable=absolute_path_of_installation_directory:$shared_librari
es_variable

To Set the Variables in C Shell:

setenv PATH installation_directory:$PATH
setenv shared_libraries_variable
absolute_path_of_installation_directory:$shared_libraries_variable

Where: shared_libraries_variable is one of the variables shown in #unique_79/
unique_79_Connect_42_BABIECHF:

Table 2-5 UNIX/Linux Library Path Variables per Platform

Platform1 Environment variable

IBM AIX
IBM z/OS

LIBPATH

HP-UX SHLIB_PATH
Sun Solaris
LINUX

LD_LIBRARY_PATH2

1 A specific platform may or may not be supported by Oracle GoldenGate for your database.
2 In 64-bit environments with 32-bit Oracle databases, Oracle GoldenGate requires the LD_LIBRARY_PATH to

include the 32-bit Oracle libraries.

Example

export LD_LIBRARY_PATH=/ggs/12.0:$LD_LIBRARY_PATH

Note:

To view the libraries that are required by an Oracle GoldenGate process, use the ldd
goldengate_process shell command before starting the process. This command also
shows an error message for any that are missing.

Operating System Privileges
The following are the privileges in the operating system that are required to install Oracle
GoldenGate and to run the processes.

• To install on Windows, the person who installs Oracle GoldenGate must log in as
Administrator.

• To install on UNIX, the person who installs Oracle GoldenGate must have read and write
privileges on the Oracle GoldenGate installation directory.

• The Oracle GoldenGate Extract, Replicat, and Manager processes must operate as an
operating system user that has privileges to read, write, and delete files and subdirectories

Chapter 2
Prerequisites for Installing Oracle GoldenGate for Sybase

2-23

in the Oracle GoldenGate directory. In addition, the Manager process requires privileges to
control the other Oracle GoldenGate processes.

• The Extract process must operate as an operating system user that has read access to the
transaction log files, both online and archived. If you install the Manager process as a
Windows service during the installation steps in this documentation, you must install as
Administrator for the correct permissions to be assigned. If you cannot install Manager as a
service, assign read access to the Extract process manually, and then always run Manager
and Extract as Administrator.

• Dedicate the Extract, Replicat, and Manager operating system users to Oracle
GoldenGate. Sensitive information might be available to anyone who runs an Oracle
GoldenGate process.

Prerequisites for Oracle GoldenGate for Teradata
Learn about the requirements to install Oracle GoldenGate for Teradata.

Operating System Privileges for Teradata
The Manager process requires an operating system user that has privileges to control Oracle
GoldenGate processes and to read, write, and purge files and subdirectories in the Oracle
GoldenGate directory. The Replicat processes require privileges to access the database.

Prerequisites for Installing Oracle GoldenGate for Oracle
TimesTen

Learn about the prerequisites for installing Oracle GoldenGate for Oracle TimesTen.

Operating System Privileges
The operating system privileges for using Oracle GoldenGate for Oracle TimesTen are:

• You need read and write privileges on the Oracle GoldenGate installation directory.

• Oracle GoldenGate Replicat and Manager processes must operate as an operating system
user that has privileges to read, write, and delete files and subdirectories in the Oracle
GoldenGate directory. In addition, the Manager process requires privileges to control all
other Oracle GoldenGate processes.

• Dedicate the Replicat and Manager operating system users to Oracle GoldenGate to avoid
access to sensitive information to other users who run Oracle GoldenGate processes.

System Requirements and Preinstallation Instructions
This chapter contains the requirements for the system and database resources that support
Oracle GoldenGate.

Supported Database Architectures
Oracle GoldenGate for Oracle TimesTen supports the Classic and Scaleout architectures of the
TimesTen database.

Chapter 2
Prerequisites for Oracle GoldenGate for Teradata

2-24

Supported Platforms and Database Versions
Oracle TimesTen supports installing Oracle GoldenGate on Linux.

For supported platform and database version information, review the certification matrix:

https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-
certification-100350.html.

Oracle TimesTen Software Installation
The Oracle TimesTen Client needs to be installed on the server where Oracle GoldenGate is
going to be installed. If Oracle GoldenGate is installed on the Oracle TimesTen database
server, then the required components are already available. However, if you are installing
Oracle GoldenGate on a hub server, then you must separately install the Oracle TimesTen
Client.

In both cases you will need to configure the ODBC connection information.

For Linux platforms there is only one TimesTen software distribution that provides both server
and client components. To download the Oracle TimesTen Software, visit:

https://www.oracle.com/database/technologies/timesten-downloads.html

Before beginning to install Oracle GoldenGate with Oracle TimesTen, you must also set the
LD_LIBRARY_PATH variable:

1. Download the TimesTen Scaleout and TimesTen Classic/Cache 18.x for Linux x86 (64-bit)
build.

2. Extract the Oracle TimesTen installation files to the designated location, based on the
instructions provided in Oracle TimesTen In-Memory Database Installation Guide.

3. Set the LD_LIBARY_PATH system variable to include the TimesTen installation’s lib
directory. This system variable must be set to install and run Oracle GoldenGate. Example:

export LD_LIBRARY_PATH=/installpath/tt18.1.2.2.0/lib:$LD_LIBRARY_PATH

Client-only Instance Creation
For non-database server environments where you plan to install Oracle GoldenGate, after
installing the Oracle TimesTen client libraries, follow the TimesTen document instructions to
create a client-only instance of TimesTen.

1. Perform the following:

[oracle@tt_installation_dir]$./tt18.1.2.1.0/bin/ttInstanceCreate -
clientonly

2. Follow the instance installation prompts, taking note of where the TimesTen instance is
installed. This information will be required when setting up a Replicat’s ODBC connection
to TimesTen.

3. Set the TIMESTEN_HOME system variable to the TimesTen instance path.

Example:

export TIMESTEN_HOME=/instancepath/tt181

Chapter 2
Prerequisites for Installing Oracle GoldenGate for Oracle TimesTen

2-25

https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/database/technologies/timesten-downloads.html

Installing Oracle GoldenGate Classic Architecture
Learn about the steps to install Oracle GoldenGate Classic Architecture with various supported
databases.

Installing Oracle GoldenGate Classic for Oracle Database
Installing Oracle GoldenGate installs all of the components that are required to run and
manage the processing (excluding any components required from other vendors, such as
drivers or libraries) and it installs the Oracle GoldenGate utilities.

Oracle GoldenGate for Oracle Database is installed from the Oracle Universal Installer (OUI).
OUI is a graphic installation program that prompts you for the input required to install the
Oracle GoldenGate binaries and working files. It also sets the correct database environment
that Oracle GoldenGate will operate in.

You can use OUI on any of the Linux, UNIX, and Windows platforms supported by OUI and
Oracle GoldenGate.

An instance of Oracle GoldenGate can be installed for only one major Oracle Database version
in any given Oracle home. For example, if you have Oracle Database 11.2 and 12.1, you must
have separate Oracle GoldenGate installations for each one. This does not apply to data patch
levels within the same major release. You can install multiple instances of Oracle GoldenGate
for the same or different database versions on the same host.

The installer registers the Oracle GoldenGate home directory with the central inventory that is
associated with the selected database. The inventory stores information about all Oracle
software products installed on a host, provided the product was installed using OUI.

1. Copy the Oracle GoldenGate installation file to the system and directory where you want to
install Oracle GoldenGate, and then extract it.

Note:

The path cannot contain any spaces.

2. Install using one of these installation methods:

• Performing an Interactive Installation with OUI.

• Performing a Silent Installation with OUI.

3. From this directory, run the GGSCI program, ggsci.exe. For Linux and UNIX, open a
command shell to run ggsci.sh.

For Windows, it may be necessary to run ggsci.exe as an Administrator based on the
systems User Account Control settings. Right-click the executable file then select Run as
administrator.

4. In GGSCI, issue the following command to create the Oracle GoldenGate working
directories.

CREATE SUBDIRS

Chapter 2
Installing Oracle GoldenGate Classic Architecture

2-26

5. Exit GGSCI.

EXIT

Performing an Interactive Installation with OUI
The interactive installation provides a graphical user interface that prompts for the required
installation information. These instructions apply to new installations as well as upgrades.
However, to perform an upgrade to Oracle GoldenGate, follow the instructions in the Upgrade
section of this guide, which includes a prompt to run OUI at the appropriate time.

1. Expand the installation file.

2. From the expanded directory, run the runInstaller program on UNIX or Linux, or run
setup.exe on Windows.

3. On the Select Installation Option page, select the Oracle GoldenGate version to install,
and then click Next to continue.

4. On the Specify Installation Details page, specify the following:

• For Software Location, specify the Oracle GoldenGate installation directory. It can be
a new or existing directory that is empty and has the amount of disk space shown on
the screen or in the existing Oracle GoldenGate installation location (if you are
upgrading an existing Oracle GoldenGate installation). The default location is under
the installing user's home directory, but Oracle recommends changing it to a local
directory that is not mounted and has no quotas. The specified directory cannot be a
registered home in the Oracle central inventory. If installing in a cluster, install Oracle
GoldenGate on local storage on each node in the cluster to provide high availability
options for upgrading and software patching.

Note:

The software location path cannot contain any whitespace.

• (Optional) Select Start Manager to perform configuration functions, such as creating
the Oracle GoldenGate subdirectories in the installation location, setting library paths,
and starting Manager on the specified port number. To proceed, a database must exist
on the system. When Start Manager is selected, the Database Location and
Manager Port fields are displayed.

– For Database Location, the database version in the specified location must be
Oracle Database 12c if you are installing Oracle GoldenGate for Oracle Database
12c or Oracle Database 11g if you are installing Oracle GoldenGate for Oracle
Database11g. The database must have a registered home in the Oracle central
inventory. The installer registers the Oracle GoldenGate home directory with the
central inventory.

– For Manager Port, accept the default port number or enter a different unreserved,
unrestricted port number for the Manager process to use for interprocess
communication. The default port is the first available one starting with 7809. If you
are installing multiple instances of Oracle GoldenGate on the same system, each
must use a different port number.

• Click Next to continue. If this is an upgrade to an existing Oracle GoldenGate
installation, OUI prompts that the selected software location has files or directories.
Click Yes.

Chapter 2
Installing Oracle GoldenGate Classic Architecture

2-27

5. The Create Inventory page is displayed if this is the first Oracle product to be installed
from OUI on a host that does not have a central inventory.

• For Inventory Directory, specify a directory for the central inventory. It can be a new
directory or an existing directory that is empty and has the amount of disk space
shown on the screen. The directory cannot be on a shared drive.

• Select an operating system group in which the members have write permission to the
inventory directory. This group is used to add inventory information to the Oracle
GoldenGate subfolder.

6. On the Summary page, confirm that there is enough space for the installation and that the
installation selections are correct. Optionally, click Save Response File to save the
installation information to a response file. You can run the installer from the command line
with this file as input to duplicate the results of a successful installation on other systems.
You can edit this file or create a new one from a template. See Performing a Silent
Installation with OUI.

7. Click Install to begin the installation or Back to go back and change any input
specifications. When upgrading an existing Oracle GoldenGate installation, OUI notifies
you that the software location has files or directories. Click Yes to continue. You are
notified when the installation is finished.

8. If you created a central inventory directory, you are prompted to run the
INVENTORY_LOCATION/orainstRoot.sh script. This script must be executed as the root
operating system user. This script establishes the inventory data and creates
subdirectories for Oracle GoldenGate.

Performing a Silent Installation with OUI
These instructions apply to new installations, as well as upgrades.

You can perform a silent installation from the command console if the system has no X-
Windows interface or to perform an automated installation. Silent installations can ensure that
multiple users in your organization use the same installation options when they install your
Oracle products.

You perform a silent installation by running a response file. You can create a response file by
selecting the Save Response File option during an interactive OUI session or by editing a
template. To run a response file, issue the following command.

runInstaller -silent -nowait -responseFile absolute_path_to_response_file

The response files and the template are stored in the response subdirectory of the Oracle
GoldenGate installation directory. The Oracle GoldenGate response file contains a standard
set of Oracle configuration parameters in addition to parameters that are specific to Oracle
GoldenGate. These parameters correspond to the fields in the interactive session.

Chapter 2
Installing Oracle GoldenGate Classic Architecture

2-28

Note:

If you are upgrading an existing Oracle GoldenGate installation with the silent option,
you might get the following warning:

WARNING:OUI-10030:You have specified a non-empty directory to install this
product. It is recommended to specify either an empty or a non-existent
directory.
You may, however, choose to ignore this message if the directory contains
Operating System generated files or subdirectories like lost+found. Do you
want to proceed with installation in this Oracle Home?

Press ENTER to continue.

Installing Oracle GoldenGate for Non-Oracle Databases
Learn how to install Oracle GoldenGate on Linux, UNIX, and Windows environments for non-
Oracle databases.

Consult the section for your database to meet any prerequisites and learn about any
installation considerations.

Installing for all Platforms
1. Copy the Oracle GoldenGate installation file to the system and directory where you want to

install Oracle GoldenGate, and then unzip it.

Note:

The installation path cannot contain any spaces.

2. From this directory, run GGSCI. For Linux and UNIX, open a command shell to run
ggsci.sh.

For Windows, it may be necessary to run ggsci.exe as an Administrator based on the
systems User Account Control settings. Right-click the executable file then select Run as
administrator.

3. In GGSCI, issue the following command to create the Oracle GoldenGate working
directories.

CREATE SUBDIRS
4. Exit GGSCI.

EXIT

Specifying a Custom Manager Name for Windows
If you plan to install the Manager process as a Windows service and either of the following is
true, then you must specify a custom name for the Manager service:

• You are installing the Manager as a Windows service and want to use a service name
other then the default, which is GGSMGR.

Chapter 2
Installing Oracle GoldenGate Classic Architecture

2-29

• You want to have multiple Manager processes running as Windows services on this
system. Each Manager service on a system must have a unique name.

To specify a custom Manager service name:

1. From the Oracle GoldenGate installation directory, run ggsci.exe from the Oracle
GoldenGate directory.

2. Issue the following command:

EDIT PARAMS ./GLOBALS

Note:

The ./ portion of this command must be used, because the GLOBALS file must
reside at the root of the Oracle GoldenGate installation file.

3. In the file, add the following line, where name is a unique, one-word name for the Manager
service.

MGRSERVNAME name
4. Save the file. The file is saved automatically with the name GLOBALS, but without a file

extension. Do not move this file because it is used during installation of the Windows
service and during data processing.

Installing Manager as a Windows Service
By default, Manager is not installed as a service and can be run by a local or domain account.
However, when run this way, Manager will stop when the user logs out. When you install
Manager as a service, you can operate it independently of user connections, and you can
configure it to start manually or at system startup.

Installing Manager as a service is required on a Windows Cluster, but optional otherwise.

To install Manager as a Windows service:

1. Click Start, then Run, and then type cmd in the Run dialog box.

2. Go to the directory that contains the Manager program that you are installing as a service,
then run the INSTALL utility with the following syntax:

install option [...]

Where option is one of the following:

Table 2-6 INSTALL Utility Options

Option Description

ADDEVENTS Adds Oracle GoldenGate events to the Windows Event Manager.

Chapter 2
Installing Oracle GoldenGate Classic Architecture

2-30

Table 2-6 (Cont.) INSTALL Utility Options

Option Description

ADDSERVICE Adds Manager as a service with the name that is specified with the
MGRSERVNAME parameter in the GLOBALS file, if one exists, or the
GGSMGR default. The ADDSERVICE configures the service to run as
the Local System account, the standard for most Windows
applications because the service can be run independently of user
logins and password changes. To run Manager as a specific
account, use the USER and PASSWORD options.

Note:

A user account can be changed by selecting the
Properties action from the Services applet of the
Windows Control Panel.

The service is installed to start at system boot time (see
AUTOSTART). To start it after installation, either reboot the system or
start the service manually from the Services applet in the Control
Panel.

AUTOSTART Sets the service that is created with ADDSERVICE to start at system
boot time. This is the default unless MANUALSTART is used.

MANUALSTART Sets the service that is created with ADDSERVICE to start manually
through GGSCI, a script, or the Services applet in the Control
Panel. The default is AUTOSTART.

USER name Specifies a domain user account that executes Manager. For the
name, include the domain name, a backward slash, and the user
name, for example HEADQT\GGSMGR .

By default, the Manager service is installed to use the Local System
account.

PASSWORD password Specifies the password for the user that is specified with USER.

3. If Windows User Account Control (UAC) is enabled, you are prompted to allow or deny the
program access to the computer. Select Allow to enable the INSTALL utility to run.

The INSTALL utility installs the Manager service with a local system account running with
administrator privileges. No further UAC prompts will be encountered when running
Manager if installed as a service.

Note:

If Manager is not installed as a service, Oracle GoldenGate users will receive a UAC
prompt to confirm the elevation of privileges for Manager when it is started from the
GGSCI command prompt. Running other Oracle GoldenGate programs also returns
a prompt.

Patching for Classic Architecture

Chapter 2
Patching for Classic Architecture

2-31

Patches for Oracle GoldenGate for Oracle Database can be found on My Oracle Support when
available, and are located under the Patches and Updates section of MOS.

Cumulative and one-off patches for Oracle GoldenGate can be applied on top of a base
release or previously patched release, or they may be a one-off patch that should be applied to
a specific Oracle GoldenGate version. The instructions in the subsequent topic apply to both
types of patches.

Learn to prepare and install patches using OPatch for Classic Architecture.

Downloading Patches for Oracle GoldenGate
Download the appropriate patches for the Oracle GoldenGate build for each system that will be
part of the Oracle GoldenGate configuration.

1. Using a browser, navigate to https://support.oracle.com.

2. Log in with your Oracle ID and password.

3. Select the Patches and Upgrades tab.

4. On the Search tab, click Product or Family.

5. In the Product field, type Oracle GoldenGate.

6. From the Release drop-down list, select the release version that you want to download.

7. Make certain that Platform is displayed as the default in the next field, and then select the
platform from the drop-down list.

8. Leave the last field blank.

9. Click Search.

10. In the Patch Advanced Search Results list, select the patch that best meets your search
criteria, making certain that the Oracle GoldenGate patch that you select corresponds to
the database that will be used.

When you select the build, a dialog box pops up under the build description, and then you
are advanced to the download page.

11. Click the Patch file name link for each patch that you want to download. The File Download
dialog box appears.

12. Select either Open with or Save File:

To... Select...

Extract the patch immediately Open with, then select the desired file extraction
utility and extract the files to a location on your file
system.

Save the patch for later extraction Select Save file, then save to a directory on your
file system.

Note:

Before installing the software, see Oracle GoldenGate Release Notes for any new
features, parameter changes, upgrade requirements, known issues, or bug fixes that
affect your current configuration.

Chapter 2
Patching for Classic Architecture

2-32

http://support.oracle.com

Patching Oracle GoldenGate Classic Architechture for Oracle Database
Using OPatch

This topic lists the prerequisites and the steps to be performed for patching Oracle GoldenGate
Classic Architecture for Oracle database only, using OPatch.

Perform the following prerequisites before installing the patch:

1. Download and install the most recent release of OPatch, and keep a note of the installation
directory where you installed the latest release of OPatch.

Details from where to download OPatch is available at: How To Download And Install The
Latest OPatch(6880880) Version (Doc ID 274526.1)

2. Download the Oracle GoldenGate patch and maintain a location for storing the contents of
the patch ZIP file. This location or the absolute path is referred to as patch_top_dir in the
subsequent steps.

3. Navigate to the patch_top_dir directory and run the following command to extract the
contents of the patch ZIP file to the location you created previously.

$ cd patch_top_dir
$ unzip patch_number_version_platform.zip

4. Navigate to the unzipped patch directory:

$ cd patch_top_dir/patch_number_dir
5. Set the ORACLE_HOME environment variable to the Oracle GoldenGate installation directory:

$ export ORACLE_HOME=GoldenGate_Installation_Path
6. Set the PATH environment variable to include the locations of the $ORACLE_HOME and OPatch

directories.

$ export PATH=$PATH:$ORACLE_HOME:/OPatch

7. Run the following command to verify the Oracle inventory, which OPatch accesses to
install the patches:

$ opatch lsinventory

If the command displays any errors, contact Oracle Support to resolve the issue.

8. Run the OPatch prerequisites check and verify that it passes.

$ opatch prereq CheckConflictAgainstOHWithDetail -ph ./

If any errors are displayed, identify the error type. OPatch categorizes conflicts in the
following types:

• Conflicts with a patch already applied to the ORACLE_HOME: In this case, stop the patch
installation and contact Oracle Support Services.

• Conflicts with a patch already applied to the ORACLE_HOME that is a subset of the patch
you are trying to apply: In this case, continue with the patch installation because the
new patch contains all the fixes from the existing patch in the ORACLE_HOME. The subset
patch will automatically be rolled back prior to the installation of the new patch.

Chapter 2
Patching for Classic Architecture

2-33

https://support.oracle.com/knowledge/Oracle%20Database%20Products/274526_1.html
https://support.oracle.com/knowledge/Oracle%20Database%20Products/274526_1.html

9. Before patching Oracle GoldenGate, ensure that you shut down all processes such as
Extracts and Replicats, and stop all other services such as the Oracle GoldenGate Monitor
JAgent and Performance Metrics Service.

a. Use the Oracle GoldenGate Software Command Interface (ggsci) in the GoldenGate
Software Home to stop all processes.

$./ggsci

b. Stop the Extract and Replicat processes and the Distribution Paths.

GGSCI> STOP ER *

c. If monitoring is enabled, stop the GoldenGate Monitor JAgent and Performance
Metrics Service.

GGSCI> STOP PMSRVR
GGSCI> STOP JAGENT

d. Stop the Manager process.

GGSCI> STOP MGR!

e. Re-check to verify that all processes have stopped.

GGSCI> INFO ALL

f. Exit the Oracle GoldenGate Software Command Interface.

GGSCI> EXIT

Perform the following steps to install the patch:

10. Install the patch by running the following command:

$ opatch apply

When the OPatch command starts, it validates the patch and ensures that there are no
conflicts with the software already installed in ORACLE_HOME of the Oracle GoldenGate
release.

11. After the patch installation completes, run the following command to verify that the Oracle
inventory contains the installed patch:

$ opatch lsinventory

12. Start the Manager, followed by the other services such as GoldenGate Monitor JAgent and
Performance Metrics Service, and the Oracle GoldenGate processes.

a. Use Oracle GoldenGate Software Command Interface (ggsci) in the GoldenGate
Software Home to start all processes and services.

$./ggsci

Chapter 2
Patching for Classic Architecture

2-34

b. Start the Manager process.

GGSCI> START MGR

c. If monitoring was enabled, start the GoldenGate Monitor JAgent and Performance
Metrics Service.

GGSCI> START PMSRVR
GGSCI> START JAGENT

d. Start the Extracts and the Replicats.

GGSCI> START ER *

e. Check the status and verify that all processes and services are running.

GGSCI> INFO ALL

Patching Oracle GoldenGate Classic Architecture for Non-Oracle
Databases

The following steps guide you to install patches for any of the non-Oracle databases released
for Oracle GoldenGate.

1. (Source and target systems) Back up the current Oracle GoldenGate installation directory
on the source and target systems, and any working directories that you have installed on a
shared drive in a cluster (if applicable).

2. (Source and target systems, as applicable) Expand the patch version 19c (19.1.0) of
Oracle GoldenGate into a new directory on each system (not the current Oracle
GoldenGate directory). Do not create the sub-directories, just complete the steps to the
point where the installation files are expanded.

3. (Source system) Stop user activity on objects in the Oracle GoldenGate configuration.

4. (Source system) In GGSCI on the source system, issue the SEND EXTRACT command with
the LOGEND option until it shows there is no more data in transaction log to process.

GGSCI> SEND EXTRACT group LOGEND

5. (Source system) In GGSCI, stop Extract and data pumps:

 GGSCI> STOP EXTRACT group

6. (Target systems) In GGSCI on each target system, issue the SEND REPLICAT command
with the STATUS option until it shows a status of "At EOF" to indicate that it finished
processing all of the data in the trail. This must be done on all target systems until all
Replicat processes return At EOF.

GGSCI> SEND REPLICAT group STATUS

7. (Target systems) In GGSCI, stop all Replicat processes:

GGSCI> STOP REPLICAT group

Chapter 2
Patching for Classic Architecture

2-35

8. (Source and target systems) In GGSCI, stop Manager on the source and target systems.

GGSCI> STOP MANAGER

9. (Source for MySQL with DDL replication enabled) Ensure that there are no new DDL
operations during the patching process, then stop the metadata server by executing the
following:

./ddl_install.sh stop user-id password port-number

10. (Source and target systems) Move the expanded Oracle GoldenGate files from the new
directory to your existing Oracle GoldenGate directory on the source and target systems.

11. (DB2 for i) Run ggos400install without arguments. No arguments are necessary for an
upgrade, however, if you change the library, the old library is left on the system until you
remove it. For more information about ggos400install, see Prerequisites for Installing
Oracle GoldenGate for DB2 for i.

12. Note:

(Only for the Oracle GoldenGate for SQL Server Extract) Before performing this
step, review the steps for Patching Oracle GoldenGate for SQL Server - Extract
Requirements .

In GGSCI, start the Oracle GoldenGate processes on the source and target systems in the
following order:

GGSCI> START MANAGER
GGSCI> START EXTRACT group
GGSCI> START EXTRACT pump
GGSCI> START REPLICAT group

13. (Source for MySQL with DDL replication enabled) Restart the metadata_server by
executing the following:

./ddl_install.sh start user-id password port-number

Also see:

• For MySQL 5.7, see instructions for patching in Patching Oracle GoldenGate MySQL 5.7
with DDL Replication Enabled

• For SQL Server, see Patching Oracle GoldenGate for SQL Server - Extract Requirements

Patching Oracle GoldenGate for SQL Server - Extract Requirements

You must follow the existing patching procedures in Patching Oracle GoldenGate for Non-
Oracle Databases. In addition, you must re-run ADD TRANDATA for each table that is already
enabled for TRANDATA using these steps:

1. Stop all Oracle GoldenGate processes.

2. Follow normal patch procedures for binary replacement but do not start any Oracle
GoldenGate processes.

Chapter 2
Patching for Classic Architecture

2-36

3. Manually stop the SQL Server CDC Capture job for the database. If the job is processing a
large transaction, it may take some time before it actually stops.

4. Ensure that the Extract is stopped.

5. Using GGSCI, run ADD TRANDATA again for every table that you previously enabled it for,
including the heartbeat tables and any Replicat checkpoint table used as a FILTERTABLE
object for active/active configurations.

Note:

Do not run the DELETE TRANDATA command.

6. Manually restart the SQL Server CDC Capture job.

7. Manually restart the Oracle GoldenGate processes such as Extract, Replicat, and
Manager.

Patching Oracle GoldenGate MySQL 5.7 with DDL Replication Enabled

To patch Oracle GoldenGate MySQL 5.7 with DDL replication enabled:

1. Stop the metadata server using the following DDL install script stop option.

./ddl_install.sh stop user-id password port-number

2. Replace the metadata_server executable in the installation directory.

3. Start the metadata server running currently using ddl install script start option:

./ddl_install.sh start user-id password port-number

Note:

The DDL operations issued in between starting and stopping the metadata_server
would be lost.

Uninstalling the Patch for Oracle and Non-Oracle Databases Using OPatch
To uninstall the patch, follow these steps:

1. Install the latest OPatch version, set the required environment variables, and stop the
Oracle GoldenGate processes and services. The patch installation steps are documented
in the previous topic.

2. Navigate to the patch_top_dir/patch_number directory:

$ cd patch_top_dir/patch_number

3. Uninstall the patch by running the following command:

$ opatch rollback -id patch_number

Chapter 2
Patching for Classic Architecture

2-37

4. Start the services and processes from the Oracle GoldenGate home.

Uninstalling Oracle GoldenGate Classic Architecture for Oracle
Database

Learn about uninstallling Oracle GoldenGate Classic Architecture processes and files from the
host in Linux, UNIX, and Windows environments.

It is assumed that you no longer need the data in the Oracle GoldenGate trails, and that you no
longer need to preserve the current Oracle GoldenGate environment. To preserve your current
environment and data, make a backup of the Oracle GoldenGate directory and all
subdirectories before starting this procedure.

Stopping Processes
This procedure stops the Extract and Replication processes. Leave Manager running until
directed to stop it.

On all Systems:

1. Run the command shell.

2. Log on as the system administrator or as a user with permission to issue Oracle
GoldenGate commands and delete files and directories from the operating system.

3. Change directories to the Oracle GoldenGate installation directory.

4. Run ggsci.

5. Stop all Oracle GoldenGate processes.

STOP ER *
6. Stop the Manager process.

STOP MANAGER

Removing the DDL Environment
(Valid when the DDL trigger is being used to support DDL replication.) This procedure removes
all of the Oracle GoldenGate DDL objects from the DDL schema on a source system.

1. Log on as the system administrator or as a user with permission to issue Oracle
GoldenGate commands and delete files and directories from the operating system.

2. Run ggsci from your Oracle GoldenGate directory.

3. Stop all Oracle GoldenGate processes.

STOP ER *
4. Log in to SQL*Plus as a user that has SYSDBA privileges.

5. Disconnect all sessions that ever issued DDL, including those of Oracle GoldenGate
processes, SQL*Plus, business applications, and any other software that uses Oracle.
Otherwise the database might generate an ORA-04021 error.

6. Run the ddl_disable script to disable the DDL trigger.

7. Run the ddl_remove script to remove the Oracle GoldenGate DDL trigger, the DDL history
and marker tables, and other associated objects. This script produces a

Chapter 2
Uninstalling Oracle GoldenGate Classic Architecture for Oracle Database

2-38

ddl_remove_spool.txt file that logs the script output and a ddl_remove_set.txt file that
logs environment settings in case they are needed for debugging.

8. Run the marker_remove script to remove the Oracle GoldenGate marker support system.
This script produces a marker_remove_spool.txt file that logs the script output and a
marker_remove_set.txt file that logs environment settings in case they are needed for
debugging.

Removing Database Objects
Follow these instructions to remove supplemental logging and any Oracle GoldenGate CDC
Cleanup objects (for SQL Server) from the source database in the Oracle GoldenGate Extract
configuration, and to remove the checkpoint table in the Replicat configuration. Specific steps
and commands may not apply to your configuration.

On a Source System:

1. Log on as the system administrator or as a user with permission to issue Oracle
GoldenGate commands and delete files and directories from the operating system.

2. Run ggsci from your Oracle GoldenGate directory.

3. Stop all Oracle GoldenGate processes.

STOP ER *

4. Stop the Manager process.

STOP MANAGER

5. In GGSCI, log into the database with the DBLOGIN (or the MININGDBLOGIN command if you
need to remove a database logmining server from a downstream mining database).
[MINING]DBLOGIN requires privileges granted in the
dbms_goldengate_auth.grant_admin_privilege procedure.

[MINING]DBLOGIN USERIDALIAS alias

6. In GGSCI, run any or all of the following commands, depending on your configuration.

• Disable schema-level supplemental logging (wildcards are not allowed):

DELETE SCHEMATRANDATA schema [NOSCHEDULINGCOLS | ALLCOLS]

• Disable table-level supplemental logging.

DELETE TRANDATA [container.]schema.table [NOSCHEDULINGCOLS | ALLCOLS]

• (Bidirectional configuration) Remove the Oracle trace table.

DELETE TRACETABLE [container.]schema.table

• (Classic capture configuration) Disable log retention. DBLOGIN requires privileges
shown in Log Retention Options.

UNREGISTER EXTRACT group LOGRETENTION

Chapter 2
Uninstalling Oracle GoldenGate Classic Architecture for Oracle Database

2-39

• (Integrated capture configuration) Remove the database logmining server from an
Oracle mining database.

DELETE EXTRACT group
UNREGISTER EXTRACT group DATABASE

7. Run the following Oracle procedure to remove the privileges from the Oracle GoldenGate
administration users for both classic and integrated processes.

dbms_goldengate_auth.revoke_admin_privilege('ggadm')

On a Target System:

1. Stop Replicat.

STOP REPLICAT group

2. Log into the database.

DBLOGIN USERIDALIAS alias

3. (Integrated Replicat) Delete the Replicat group, which also deletes the inbound server from
the target database.

DELETE REPLICAT group

4. (Nonintegrated Replicat) Remove the Replicat checkpoint table by running the DELETE
CHECKPOINTTABLE command.

DELETE CHECKPOINTTABLE [container.]schema.table

Uninstalling Oracle GoldenGate Using Oracle Universal Installer
Follow these instructions to uninstall Oracle GoldenGate through an interactive session of
Oracle Universal Installer (OUI).

WARNING:

Before removing Oracle GoldenGate through OUI, follow the instructions in
Removing the DDL Environment (if using trigger-based DDL capture) and Removing
Database Objects. These procedures require the use of Oracle GoldenGate
commands and scripts, which are removed by the OUI uninstaller.

The following items are removed in this process.

• The Oracle GoldenGate home directory in the Oracle central inventory.

• The Oracle GoldenGate installation directory.

• The Oracle GoldenGate Manager service, if installed on Windows.

• The Oracle GoldenGate Windows Registry entries

To remove Oracle GoldenGate from the system:

Chapter 2
Uninstalling Oracle GoldenGate Classic Architecture for Oracle Database

2-40

1. Log on as the system administrator or as a user with permission to issue Oracle
GoldenGate commands and delete files and directories from the operating system.

2. Run ggsci from your Oracle GoldenGate directory.

3. Stop all Oracle GoldenGate processes.

STOP ER *

4. Stop the Manager process.

STOP MANAGER

5. Run the following script from the Oracle GoldenGate installation directory.

UNIX and Linux:

OGG_HOME/deinstall/deinstall.sh

Windows:

OGG_HOME/deinstall/deinstall.bat

Uninstalling Oracle GoldenGate Manually
Follow these instructions to remove the Oracle GoldenGate environment from the system
manually through the operating system.

Manually Removing Oracle GoldenGate Windows Components
This procedure:

• Removes Oracle GoldenGate as a Windows cluster resource from a source or target
Windows system

• Stops Oracle GoldenGate events from being reported to the Windows Event Manager

• Removes the Manager service

Perform these steps on source and target systems:

1. Log on as the system administrator or as a user with permission to issue Oracle
GoldenGate commands and to delete files and directories from the operating system.

2. (Cluster) Working from the node in the cluster that owns the cluster group that contains the
Manager resource, run ggsci and make certain that all Extract and Replicat processes are
stopped. Stop any that are running.

STATUS ER *

STOP ER *

3. (Cluster) Use the Cluster Administrator tool to take the Manager resource offline.

4. (Cluster) Right click the resource and select Delete to remove it.

Chapter 2
Uninstalling Oracle GoldenGate Classic Architecture for Oracle Database

2-41

5. Click Start then Run, and then type cmd in the Run dialog box to open the command
console.

6. Change directories to the Oracle GoldenGate installation directory.

7. Run the INSTALL utility with the following syntax.

INSTALL DELETEEVENTS DELETESERVICE

8. (Cluster) Move the cluster group to the next node in the cluster, and repeat from Step 5.

Manually Removing the Oracle GoldenGate Files
These steps apply when the Oracle GoldenGate installation isn't done using the Oracle
GoldenGate installer.

Perform these steps on all systems to remove the Oracle GoldenGate installation directory:

Note:

If Oracle GoldenGate has been installed using the installer, then you must uninstall
Oracle GoldenGate with the uninstall script as well. Otherwise, you will have
orphaned fragments within ora inventory.

1. In GGSCI, verify that all processes are stopped. Stop any that are running.

STOP ER *
STATUS ER *
STOP MANAGER
STATUS MANAGER

2. Exit GGSCI.

EXIT
3. Remove the Oracle GoldenGate installation directory.

Uninstalling Oracle GoldenGate Classic Architecture for Non-
Oracle Databases

Learn how to uninstall Oracle GoldenGate for non-Oracle databases.

Stopping Processes
This procedure stops the Extract and Replication processes. Leave Manager running until
directed to stop it.

1. Log on as the system administrator or as a user with permission to issue Oracle
GoldenGate commands and delete files and directories from the operating system.

2. Run GGSCI from the Oracle GoldenGate directory.

3. Stop all Oracle GoldenGate processes.

STOP ER *

Chapter 2
Uninstalling Oracle GoldenGate Classic Architecture for Non-Oracle Databases

2-42

Removing Oracle GoldenGate Database Objects
Use the following instructions to remove database objects and stopping processes for your
configuration. Some steps and commands may not apply to your configuration, however other
instructions are applicable to all databases (until specified).

For SQL Server, use these steps to remove supplemental logging and any Oracle GoldenGate
CDC Cleanup objects from the source database in the Oracle GoldenGate capture
configuration, and to remove the Replicat checkpoint table in the apply configuration.

On a Source System:

1. Log on as the system administrator or as a user with permission to issue Oracle
GoldenGate commands and delete files and directories from the operating system.

2. Run ggsci from the Oracle GoldenGate directory.

3. Stop all Oracle GoldenGate processes if not already done.

STOP EXTRACT *

4. Stop the Manager process.

STOP MANAGER

5. Issue the following command to log into the source database, see SOURCEDB.

DBLOGIN SOURCEDB {data_source | database@host:port} USERIDALIAS alias

6. Remove any heartbeat table entries by running the DELETE HEARTBEATTABLE command.

7. For a SQL Server Extract configuration, remove the Oracle GoldenGate CDC cleanup job
and objects if they were created.

a. Open a command prompt and change to the Oracle GoldenGate installation folder.

b. Run the ogg_cdc_cleanup_setup.sh/bat file as follows:

ogg_cdc_cleanup_setup.sh/bat dropJob userid password database_name
servername\instancename schema

The userid password must be a valid SQL Server login and password for a sysadmin
user. database_name servername\instancename are the source database name and
instance name. If only server name is listed, then the default instance will be used to
connect to the database server. schema is the schema name listed in the GLOBALS file,
with the GGSCHEMA parameter.

For example:

ogg_cdc_cleanup_setup.bat dropJob ggsuser ggspword db1 server1\inst1 ogg

8. Remove supplemental logging from tables that were enabled with it. See DELETE
TRANDATA. Remove supplemental logging for any filter tables used for bi-directional
replication as well. You can use a wildcard to specify multiple table names.

DELETE TRANDATA owner.table

Chapter 2
Uninstalling Oracle GoldenGate Classic Architecture for Non-Oracle Databases

2-43

9. For PostgreSQL, the registered replication slot must be deleted after removing the Extract,
otherwise the database logs will continue to grow.

DELETE EXTRACT extname
UNREGISTER EXTRACT extname

On a Target System:

1. Stop Replicat.

STOP REPLICAT group

2. Issue the following command to log into the target database. See SOURCEDB.

DBLOGIN SOURCEDB {data_source | database@host:port} USERIDALIAS alias

3. Remove the Replicat checkpoint tables and heartbeat by running the DELETE
CHECKPOINTTABLE and DELETE HEARTBEATTABLE commands.

DELETE CHECKPOINTTABLE schema.table

DELETE HEARTBEATTABLE

Uninstalling Oracle GoldenGate from a Source DB2 for i System
1. Ensure that all Oracle GoldenGate processes are stopped, and any database objects are

removed, based on instructions provided in Removing Database Objects.

2. Delete the Oracle GoldenGate library. Specify I (ignore) for any prompts about unsaved
journal receivers.

clrlib library
dltlib library

Uninstalling Oracle GoldenGate from a Linux System
Follow these instructions to remove Oracle GoldenGate from a Linux system.

1. Run the command shell of the operating system.

2. Ensure all Oracle GoldenGate processes are stopped, and any database objects have
been removed, based on the instructions in Removing Oracle GoldenGate Database
Objects.

3. Remove the Oracle GoldenGate files by removing the installation directory.

Uninstalling Oracle GoldenGate from a Windows System
Follow these instructions to remove Oracle GoldenGate from a Windows system.

1. Log on to the operating system as the system administrator or as a user with permission to
issue Oracle GoldenGate commands and to delete files and directories from the operating
system.

Chapter 2
Uninstalling Oracle GoldenGate Classic Architecture for Non-Oracle Databases

2-44

2. Ensure all Oracle GoldenGate processes are stopped, and any database objects have
been removed based on instructions in Removing Database Objects.

3. (Windows Cluster) Use the Cluster Administrator tool to take the Manager resource offline.

4. (Windows Cluster) Right click the resource and select Delete to remove it.

5. Click Start, Run, and then type cmd in the Run dialog box to open the command console.

6. Change directories to the Oracle GoldenGate installation directory.

7. Remove the Manager service and events using the INSTALL utility with the following
syntax:

INSTALL DELETEEVENTS DELETESERVICE

8. (Windows Cluster) Move the cluster group to the next node in the cluster and repeat the
process from step 6.

9. Remove the Oracle GoldenGate files by removing the installation directory.

Removing Oracle GoldenGate from a Windows Cluster
1. Working from the node in the cluster that owns the Windows Cluster group that contains

the Manager resource, run GGSCI and then stop any Extract and Replicat processes that
are still running.

2. Use the Windows Cluster Administrator tool to take the Manager resource offline.

3. Right click the resource and select Delete to remove it.

4. Click Start, then Run, and type cmd in the Run dialog box to open the command console.

5. Change directories to the Oracle GoldenGate installation directory.

6. Run the INSTALL utility using the following syntax.

install deleteevents deleteservice

This command stops Oracle GoldenGate events from being reported to the Windows
Event Manager and removes the Manager service.

7. Move the Windows Cluster group to the next node in the cluster.

Removing Oracle GoldenGate from a Remote Windows System

On all systems:

1. (Suggested) Log on to the operating system as the system administrator or as a user with
permission to issue Oracle GoldenGate commands and to delete files and directories from
the operating system.

2. From the Oracle GoldenGate installation folder, run GGSCI.

3. Stop all Oracle GoldenGate processes.

STOP ER *
4. Stop the Manager process.

STOP MANAGER

Chapter 2
Uninstalling Oracle GoldenGate Classic Architecture for Non-Oracle Databases

2-45

5. Note:

Skip Steps 5 through 8 if you already performed them when removing Oracle
GoldenGate from a Windows Cluster.

6. Click Start, then Run, and type cmd in the Run dialog box to open the command console.

7. Change directories to the Oracle GoldenGate installation directory.

8. Run the INSTALL utility using the following syntax.

install deleteevents deleteservice

This command stops Oracle GoldenGate events from being reported to the Windows
Event Manager and removes the Manager service.

9. Log into the database with the DBLOGIN command.

DBLOGIN SOURCEDB database, USERID db_user [, PASSWORD pw [encryption options]]

Note:

Only BLOWFISH encryption is supported for DB2 for i systems.

10. Remove the Replicat checkpoint table by running the DELETE CHECKPOINTTABLE command.

DELETE CHECKPOINTTABLE owner.table
11. Remove the Oracle GoldenGate files by removing the installation directory.

Removing Oracle GoldenGate Windows Components
(Valid for Windows installations) This procedure does the following:

• Removes Oracle GoldenGate as a Windows cluster resource from a source or target
Windows system.

• Stops Oracle GoldenGate events from being reported to the Windows Event Manager.

• Removes the Manager service.

Perform these steps on source and target systems.

1. Log on as the system administrator or as a user with permission to issue Oracle
GoldenGate commands and to delete files and directories from the operating system.

2. Run GGSCI and make certain that all Extract and Replicat processes are stopped. Stop
any that are running.

STATUS ER *
STOP ER *

3. (Cluster) Use the Cluster Administrator tool to take the Manager resource offline.

4. (Cluster) Right click the resource and select Delete to remove it.

5. Click Start then Run, and then type cmd in the Run dialog box to open the command
console.

Chapter 2
Uninstalling Oracle GoldenGate Classic Architecture for Non-Oracle Databases

2-46

6. Change directories to the Oracle GoldenGate installation directory.

7. Run the INSTALL utility with the following syntax.

install deleteevents deleteservice
8. (Cluster) Move the cluster group to the next node in the cluster, and repeat from step 5.

Chapter 2
Uninstalling Oracle GoldenGate Classic Architecture for Non-Oracle Databases

2-47

3
Prepare

Learn about the tasks for preparing databases for Oracle GoldenGate and prerequisites for
connecting Oracle GoldenGate to databases before beginning the configuration of Extract and
Replicat processes.

Prepare Your Database for Oracle GoldenGate Classic
Architecture

Learn about the tasks for preparing databases for Oracle GoldenGate and prerequisites for
connecting Oracle GoldenGate to databases before beginning the configuration of Extract and
Replicat processes.

Db2 LUW
With Oracle GoldenGate for Db2 LUW, you can perform initial loads and capture transactional
data from supported Db2 LUW database versions and replicate the data to a Db2 LUW
database or other supported Oracle GoldenGate targets, such as an Oracle Database.

Oracle GoldenGate for Db2 LUW supports data filtering, mapping, and transformations unless
noted otherwise in this documentation.

Database User for Oracle GoldenGate Processes for DB2 LUW
• Create a database user that is dedicated to Oracle GoldenGate. It can be the same user

for all of the Oracle GoldenGate processes that must connect to a database:

– Extract (source database)

– Replicat (target database)

– DEFGEN (source or target database)

• To preserve the security of your data, and to monitor Oracle GoldenGate processing
accurately, do not permit other users, applications, or processes to log on as, or operate
as, the Oracle GoldenGate database user. It is recommended that you store the login
credentials in an Oracle GoldenGate credential store. The credential store makes use of
local secure storage for the login names and passwords, and permits you to specify only
an alias in the Oracle GoldenGate parameter files.

• Assign system administrator (SYSADM) or database administrator (DBADM) authority to the
database user under which Extract runs. To give the Extract user DBADM authority, a user
with SYSADM authority can issue the following grant statement.

GRANT DBADM ON DATABASE TO USER user

This authority can also be granted from the User and Group Objects folder in the DB2
Control Center. The database tab for the user that is assigned to an Oracle GoldenGate
process should have the Database Administrative Authority box checked.

3-1

Note:

If the Extract user does not have the required authority, Extract will log the
following errors and stop.

[SC=-1224:SQL1224N A database agent could not be started to
service a request, or was terminated as a result of a database
system shutdown or a force command.
SQL STATE 55032: The CONNECT statement is invalid, because the
database manager was stopped after this application was started]

• Grant at least the following privileges to the database user under which Replicat runs:

– Local CONNECT to the target database

– SELECT on the system catalog views

– SELECT, INSERT, UPDATE, and DELETE on the target tables

Database Configuration for DB2 LUW
• The Oracle GoldenGate Extract process calls the DB2READLOG function in the Administrative

API to read the transaction log files of a DB2 LUW source database. In addition to
DB2READLOG, Extract uses a small number of other API routines to check the source
database configuration on startup.

• The Oracle GoldenGate Replicat process uses the DB2 CLI interface on a DB2 LUW
target database. For instructions on installing this interface, see the DB2 documentation.

• The database can reside on a different server from the one where Oracle GoldenGate is
installed, so long as the database is defined locally. For example, the following enables
you to use database mydb locally with data that is on abc123:

catalog tcpip node abc123 remote abc123.us.mycompany.com server 00000
catalog db mydb as abc123 at node abc123 AUTHENTICATION server

• The DB2 Universal Database has an internal trace facility called db2trc, which acquires
Interprocess Communication resources (IPC) (both semaphore and shared memory). Even
though a DB2 trace is not turned on, it may issue semget() calls to the operating system.
These calls fail since no IPC resources are acquired so you must issue the following
command on the DB2 client:

db2trc alloc

• For best performance for DB2 clients with a local database, Oracle recommends that you
create a local node catalog instead of TCP/IP when connecting Oracle GoldenGate to a
database that resides on the same machine. This is because local node uses IPC, which is
much faster than a TCP/IP node that uses a socket API to access the local database.

• To connect to DB2 LUW remotely from another system, you must use the following driver
packages from IBM:

– IBM Data Server Runtime Client

– IBM Data Server Driver Package (DS Driver)

– IBM Data Server Client

The IBM Data Server Driver for ODBC and CLI (CLI Driver) is not supported for DB2 LUW.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-2

Setting the Session Character Set
To support the conversion of character sets between the source and target databases, make
certain that the session character set is the same as the database character set. You can set
the session character set with the DB2CODEPAGE environment variable.

Configuring the Transaction Logs for Oracle GoldenGate
To capture DML operations, Oracle GoldenGatereads the DB2 LUW online logs by default.
However, it reads the archived logs if an online log is not available. To ensure the continuity
and integrity of Oracle GoldenGateprocessing, configure the logs as follows.

Retaining the Transaction Logs

Configure the database to retain the transaction logs for roll forward recovery by enabling one
of the following parameter sets, depending on the database version.

• DB2 LUW 9.5 and later:

Set the LOGARCHMETH parameters as follows:

– Set LOGARCHMETH1 to LOGRETAIN.

– Set LOGARCHMETH2 to OFF.

Alternatively, you can use any other LOGARCHMETH options, as long as forward recovery is
enabled. For example, the following is valid:

– Set LOGARCHMETH1 to DISK.

– Set LOGARCHMETH2 to TSM.

To determine the log retention parameters:

1. Connect to the database.

db2 connect to database user username using password
2. Get the database name.

db2 list db directory
3. Get the database configuration for the database.

db2 get db cfg for database

The fields to view are:

Log retain for recovery status = RECOVERY
User exit for logging status = YES

To set the log retention parameters:

1. Issue one of the following commands.

To enable USEREXIT:

db2 update db cfg for database using USEREXIT ON

If not using USEREXIT, use this command:

db2 update db cfg for database using LOGRETAIN RECOVERY

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-3

To set LOGARCHMETH:

db2 update db cfg for database using LOGARCHMETH1 LOGRETAIN
db2 update db cfg for database using LOGARCHMETH2 OFF

2. Make a full backup of the database by issuing the following command.

db2 backup db database to device
3. Place the backup in a directory to which DB2 LUW has access rights. If you get the

following message, contact your systems administrator:

SQL2061N An attempt to access media "device" is denied.

Specifying the Archive Path

Set the DB2 LUW OVERFLOWLOGPATH parameter to the archive log directory. The node attaches
automatically to the path variable that you specify.

db2 connect to database
db2 update db cfg using overflowlogpath "path"

Exclude the node itself from the path. For example, if the full path to the archive log directory
is /sdb2logarch/oltpods1/archive/OLTPODS1/NODE0000, then the OVERFLOWLOGPATH value
should be specified as /sdb2logarch/oltpods1/archive/OLTPODS1.

Preparing Tables for Processing
The following table attributes must be addressed in an Oracle GoldenGate environment.

Triggers and Cascade Constraints Considerations

Triggers

Disable triggers on the target tables, or alter them to ignore changes made by the Oracle
GoldenGate database user. Oracle GoldenGate replicates DML that results from a trigger. If
the same trigger gets activated on the target table, then it becomes redundant because of the
replicated version, and the database returns an error.

Cascade Constraints Considerations

Cascading updates and deletes captured by Oracle GoldenGate are not logged in binary log,
so they are not captured. This is valid for both MySQL and MariaDB. For example, when you
run the delete statement in the parent table with a parent child relationship between tables, the
cascading deletes (if there are any) happens for child table, but they are not logged in binary
log. Only the delete or update record for the parent table is logged in the binary log and
captured by Oracle GoldenGate.

See https://mariadb.com/kb/en/replication-and-foreign-keys/ and https://dev.mysql.com/doc/
refman/8.0/en/innodb-and-mysql-replication.html for details.

To properly handle replication of cascading operations, it is recommended to disable cascade
deletes and updates on the source and code your application to explicitly delete or update the
child records prior to modifying the parent record. Alternatively, you must ensure that the target
parent table has the same cascade constraints configured as the source parent table, but this
could lead to an out-of-sync condition between source and target, especially in cases of bi-
directional replication.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-4

https://mariadb.com/kb/en/replication-and-foreign-keys/
https://dev.mysql.com/doc/refman/8.0/en/innodb-and-mysql-replication.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-and-mysql-replication.html

Ensuring Row Uniqueness for Tables
Oracle GoldenGate requires some form of unique row identifier on the source and target tables
to locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use
a larger, less efficient WHERE clause.

4. If a table does not have an appropriate key, or if you prefer that the existing key(s) are not
used, you can define a substitute key, if the table has columns that always contain unique
values. You define this substitute key by including a KEYCOLS clause within the Extract
TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds. See TABLE | MAP in
Reference for Oracle GoldenGate.

How Oracle GoldenGate Determines the Kind of Row Identifier to Use

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-5

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use a
larger, less efficient WHERE clause.

Using KEYCOLS to Specify a Custom Key

If a table does not have one of the preceding types of row identifiers, or if you prefer those
identifiers not to be used, you can define a substitute key if the table has columns that always
contain unique values. You define this substitute key by including a KEYCOLS clause within the
Extract TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds.

Preventing Key Changes
Do not add columns to a key after Oracle GoldenGate starts extracting data from the table.
This rule applies to a primary key, a unique key, a KEYCOLS key, or an all-column key. DB2 LUW
does not supply a before image for columns that are added to a table. If any columns in a key
are updated on the source, Oracle GoldenGate needs a before image to compare with the
current values in the target table when it replicates the update.

Enabling Change Capture
Configure DB2 to log data changes in the expanded format that is supplied by the DATA
CAPTURE CHANGES feature of the CREATE TABLE and ALTER TABLE commands. This format
provides Oracle GoldenGate with the entire before and after images of rows that are changed
by update statements. You can use GGSCI to issue the ALTER TABLE command as follows.

To Enable Change Capture from GGSCI:

1. From the Oracle GoldenGate directory, run GGSCI.

2. Log on to DB2 from GGSCI as a user that has ALTER TABLE privileges. Specify the data
source name with SOURCEDB and specify the user login with USERID and PASSWORD.

DBLOGIN SOURCEDB dsn, USERID user[, PASSWORD password]
3. Issue the following command. where owner.table is the fully qualified name of the table.

You can use a wildcard to specify multiple table names. Only the asterisk (*) wildcard is
supported for DB2 LUW.

ADD TRANDATA owner.table

ADD TRANDATA issues the following command, which includes logging the before image of
LONGVAR columns:

ALTER TABLE name DATA CAPTURE CHANGES INCLUDE LONGVAR COLUMNS;
Example 3-1 To Exclude LONGVAR Logging:

To omit the INCLUDE LONGVAR COLUMNS clause from the ALTER TABLE command, use ADD
TRANDATA with the EXCLUDELONG option.

ADD TRANDATA owner.table, EXCLUDELONG

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-6

Note:

If LONGVAR columns are excluded from logging, the Oracle GoldenGate features that
require before images, such as the GETUPDATEBEFORES, NOCOMPRESSUPDATES, and
NOCOMPRESSDELETES parameters, might return errors if tables contain those columns.
For a workaround, see the REQUIRELONGDATACAPTURECHANGES |
NOREQUIRELONGDATACAPTURECHANGES options of the TRANLOGOPTIONS parameter.

Maintaining Materialized Query Tables
To maintain parity between source and target materialized query tables (MQT), you replicate
the base tables, but not the MQTs. The target database maintains the MQTs based on the
changes that Replicat applies to the base tables.

The following are the rules for configuring these tables:

• Include the base tables in your TABLE and MAP statements.

• Do not include MQTs in the TABLE and MAP statements.

• Wildcards can be used in TABLE and MAP statements, even though they might resolve MQT
names along with regular table names. Oracle GoldenGate automatically excludes MQTs
from wildcarded table lists. However, any MQT that is explicitly listed in an Extract TABLE
statement by name will cause Extract to abend.

Creating a Temporal Table
A temporal table is a table that maintains the history of its data and the time period when its
data are valid. Temporal tables are used in Oracle GoldenGate to keep track of all the old rows
that are deleted or updated in the table. Temporal tables are also used to maintain the
business validity of its rows and data. For example, Oracle GoldenGate keeps track of the time
period during which a row is valid. There are three types of temporal tables, system-period,
application-period, and bitemporal table.

Support for Temporal Tables

• Replication between system-period temporal tables and application-period temporal tables
is not supported.

• Replication from a non-temporal table to a temporal table is not supported.

• Replication of temporal tables with the INSERTALLRECORDS parameter is not supported.

• Bidirectional replication is supported only with the default replication.

• CDR in bidirectional replication is not supported.

• CDR in application-period temporal tables is supported.

Replicating with Temporal Tables

You can choose one of the following methods to replicate a system-period or a bitemporal
temporal table as follows:

• You can replicate a temporal table to another temporal table only; this is the default
behavior. Oracle GoldenGate will not replicate the SYSTEM_TIME period and transaction id
columns because these are automatically generated columns at the apply side. The
database manager populates the columns in the target temporal table using the system

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-7

clock time and with the default values. You can preserve the original values these columns
then use any of the following:

– Add extra timestamp columns in the target temporal table and map the columns
accordingly. The extra columns are automatically added to the associated history table.

– Use a non-temporal table at the apply side and map the columns appropriately. In this
scenario, you will not be able to maintain the history table.

– In a non-oracle configuration where the source is DB2 LUW and the target is a
different database, you can either ignore the automatically generated columns or use
an appropriate column conversion function to convert the columns value in the format
that target database supports and map them to target columns accordingly.

Or

• You can replicate a temporal table, with the associated history table, to a temporal and
history table respectively then you must specify the replicate parameter, DBOPTIONS
SUPPRESSTEMPORALUPDATES. You must specify both the temporal table and history table to
be captured in the Extract parameter file. Oracle GoldenGate replicates the SYSTEM_TIME
period and transactions id columns value. You must ensure that the database instance has
the execute permission to run the stored procedure at the apply side.

Oracle GoldenGate cannot detect and resolve conflicts while using default replication as
SYSTEM_TIME period and transactionstart id columns remains auto generated. These
columns cannot be specified in set and where clause. If you use the
SUPPRESSTEMPORALUPDATES parameter, then Oracle GoldenGate supports CDR.

Converting

You can convert an already existing table into a temporal table, which changes the structure of
the table. This section describes how the structure of the tables changes. The following sample
existing table is converted into all three temporal tables types in the examples in this section:.

Table policy_info
(
Policy_id char[4] not null primary key,
Coverage int not null
)
And the tables contains the following initial rows
 POLICY_ID COVERAGE
 ------------- -----------
 ABC 12000
 DEF 13000
 ERT 14000

Example 1 Converting an existing table into System-period temporal table.
You convert the sample existing table into a system-period temporal table by adding
SYSTEM_PERIOD, transaction id columns, and SYSTEM_TIME period as in the following:

ALTER TABLE policy_info
 ADD COLUMN sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN;
ALTER TABLE policy_info
 ADD COLUMN sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END;
ALTER TABLE policy_info
 ADD COLUMN ts_id TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID;
ALTER TABLE policy_info ADD PERIOD SYSTEM_TIME(sys_start, sys_end);

Then you create a history table for the new temporal table using one of the following two
methods:

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-8

• CREATE TABLE hist_policy_info
(
 policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
sys_start TIMESTAMP(12) NOT NULL ,
sys_end TIMESTAMP(12) NOT NULL,
ts_id TIMESTAMP(12) NOT NULL
);
 ALTER TABLE hist_policy_info ADD RESTRICT ON DROP;

• CREATE TABLE hist_policy_info LIKE policy_info with RESTRICT ON DROP;

The RESTRICT ON DROP clause will not allow the history table to get dropped while
dropping system-period temporal table. Otherwise the history table gets implicitly dropped
while dropping its associated temporal table. You can create a history table without
RESTRICT ON DROP. A history table cannot be explicitly dropped.

You should not use the GENERATED ALWAYS clause while creating a history table. The
primary key of the system-period temporal table also does not apply here as there could
be many updates for a particular row in the base table, which triggers many inserts into
the history table for the same set of primary keys. Apart from these, the structure of a
history table should be exactly same as its associated system-period temporal table. The
history table must have the same number and order of columns as system-period
temporal table. History table columns cannot explicitly be added, dropped, or changed.
You must associate a system-period temporal table with its history table with the following
statement:

 ALTER TABLE policy_info ADD VERSIONING USE HISTORY TABLE hist_policy_info.

The GENERATED ALWAYS columns of the table are the ones that are always populated by
the database manager so you do not have any control over these columns. The database
manager populates these columns based on the system time.

The extra added SYSTEM_PERIOD and transaction id columns will have default values for
already existing rows as in the following:

POLICY_ID COVERAGE
SYS_START
SYS_END TS_ID
--------- ----------- --------------------------------

ABC 12000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000
DEF 13000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000
ERT 14000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000

The associated history table is populated with the before images once you start updating
the temporal table.

Example 2 Converting an existing table into application-period temporal table.
You can convert the sample existing table into application-period temporal table by adding
time columns and a BUSINESS_TIME period as in the following:

ALTER TABLE policy_info ADD COLUMN bus_start DATE NOT NULL DEFAULT '10/10/2001'"
ALTER TABLE policy_info ADD COLUMN bus_end DATE NOT NULL DEFAULT '10/10/2002'
ALTER TABLE policy_info ADD PERIOD BUSINESS_TIME(bus_start, bus_end)

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-9

While adding time columns, you need to make sure that while entering business validity time
values of the existing time columns, the bus_start column always has value lesser than
bus_end because these columns specify the business validity of the rows.
The new application-period temporal table will look similar to:

POLICY_ID COVERAGE BUS_START BUS_END
--------- ----------- ---------- -------------------------------
ERT 14000 10/10/2001 10/10/2002
DEF 13000 10/10/2001 10/10/2002
ABC 12000 10/10/2001 10/10/2002

Example 3 Converting an existing table into bitemporal table.
You can convert the sample existing table into bitemporal table by adding SYSTEM_PERIOD,
time columns along with the SYSTEM_TIME and BUSINESS_TIME period as in the following:

ALTER TABLE policy_info
 ADD COLUMN sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN;
ALTER TABLE policy_info
 ADD COLUMN sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END;
ALTER TABLE policy_info
 ADD COLUMN ts_id TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID;
ALTER TABLE policy_info ADD PERIOD SYSTEM_TIME(sys_start, sys_end);

ALTER TABLE policy_info ADD COLUMN bus_start DATE NOT NULL DEFAULT '10/10/2001'"
ALTER TABLE policy_info ADD COLUMN bus_end DATE NOT NULL DEFAULT '10/10/2002'
ALTER TABLE policy_info ADD PERIOD BUSINESS_TIME(bus_start, bus_end)

While adding the time columns, you must make sure that while entering business validity time
values of already existing time columns, the bus_start column always has value lesser than
bus_end because these columns specify the business validity of the rows.
Then you create a history table for the new temporal table using one of the following two
methods:

• CREATE TABLE hist_policy_info
(
 policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
sys_start TIMESTAMP(12) NOT NULL ,
sys_end TIMESTAMP(12) NOT NULL,
ts_id TIMESTAMP(12) NOT NULL
);
 ALTER TABLE hist_policy_info ADD RESTRICT ON DROP;
CREATE TABLE hist_policy_info LIKE policy_info with RESTRICT ON DROP;

• The RESTRICT ON DROP clause will not allow the history table to get dropped while
dropping system-period temporal table. Otherwise the history table gets implicitly dropped
while dropping its associated temporal table. You can create a history table without
RESTRICT ON DROP. A history table cannot be explicitly dropped.

You should not use the GENERATED ALWAYS clause while creating a history table. The
primary key of the system-period temporal table also does not apply here as there could
be many updates for a particular row in the base table, which triggers many inserts into
the history table for the same set of primary keys. Apart from these, the structure of a
history table should be exactly same as its associated system-period temporal table. The
history table must have the same number and order of columns as system-period
temporal table. History table columns cannot explicitly be added, dropped, or changed.
You must associate a system-period temporal table with its history table with the following
statement:

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-10

 ALTER TABLE policy_info ADD VERSIONING USE HISTORY TABLE hist_policy_info.

The GENERATED ALWAYS columns of the table are the ones that are always populated by
the database manager so you do not have any control over these columns. The database
manager populates these columns based on the system time.

The extra added SYSTEM_PERIOD and transaction id columns will have default values for
already existing rows as in the following:

POLICY_ID COVERAGE
SYS_START
SYS_END TS_ID
--------- ----------- --------------------------------

ABC 12000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000
DEF 13000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000
ERT 14000 0001-01-01-00.00.00.000000000000
9999-12-30-00.00.00.000000000000 0001-01-01-00.00.00.000000000000

The associated history table is populated with the before images once you start updating
the temporal table.

The extra added SYSTEM_TIME period, transaction id and time columns will have default values
for already existing rows as in the following:

POLICY_ID COVERAGE SYS_START SYS_END
TS_ID BUS_START BUS_END
--------- ----------- -------------------------------- --------------------------------
-------------------------------- ---------- -------------------------------------
ABC 12000 0001-01-01-00.00.00.000000000000 9999-12-30-00.00.00.000000000000
0001-01-01-00.00.00.000000000000 10/10/2001 10/10/2002
DEF 13000 0001-01-01-00.00.00.000000000000 9999-12-30-00.00.00.000000000000
0001-01-01-00.00.00.000000000000 10/10/2001 10/10/2002
ERT 14000 0001-01-01-00.00.00.000000000000 9999-12-30-00.00.00.000000000000
0001-01-01-00.00.00.000000000000 10/10/2001 10/10/2002

The history table is populated with the before images once user starts updating the temporal
table.

Example 4 Replication in Non-Oracle Environment.
In a non-oracle configuration in which you do not have temporal tables at the apply side, you
can only replicate the system-period and bitemporal tables though not the associated history
tables. While performing replication in this situation, you must take care of the SYSTEM_PERIOD
and transaction id columns value. These columns will have some values that the target
database might not support. You should first use the map conversion functions to convert
these values into the format that the target database supports, and then map the columns
accordingly.
For example, MySQL has a DATETIME range from 1000-01-01 00:00:00.000000 to
9999-12-31 23:59:59.999999. You cannot replicate a timestamp value of
0001-01-01-00.00.00.000000000000 to MySQL. To replicate such values, you must convert
this value into the MySQL DATETIME value 1000-01-01 00:00:00.000000, and then map the
columns. If you have the following row in the policy_info system-period table:

POLICY_ID COVERAGE
SYS_START
SYS_END TS_ID

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-11

--------- ----------- -------------------------------- --------------------------------

ABC 12000 0001-01-01-00.00.00.000000000000 9999-12-30-00.00.00.000000000000
0001-01-01-00.00.00.000000000000

To replicate the row into MySQL, you would use the colmap() function:

map source_schema.policy_info, target target_schema.policy_info colmap
(policy_id=policy_id, coverage=coverage, sys_start= @IF((@NUMSTR(@STREXT(sys_
start,1,4))) > 1000, sys_start, '1000-01-01 00.00.00.000000'), sys_end=sys_end,
 ts_id= @IF((@NUMSTR(@STREXT(ts_id,1,4))) > 1000, ts_id, '1000-01-01
 00.00.00.000000'));

Creating a Checkpoint Table

The checkpoint table is a required component of Replicat.

Replicat maintains its recovery checkpoints in the checkpoint table, which is stored in the
target database. Checkpoints are written to the checkpoint table within the Replicat
transaction. Because a checkpoint either succeeds or fails with the transaction, Replicat
ensures that a transaction is only applied once, even if there is a failure of the process or the
database.

To configure a checkpoint table, see Creating a Checkpoint Table in Administering Oracle
GoldenGate.

Configuring the Replicat Parameter File

These steps configure the Replicat process. This process applies replicated data to a DB2
LUW target database.

1. In GGSCI on the target system, create the Replicat parameter file.

EDIT PARAMS name

Where: name is the name of the Replicat group.

2. Enter the Replicat parameters in the order shown, starting a new line for each parameter
statement.

Basic parameters for the Replicat group:

REPLICAT financer
TARGETDB mytarget, USERIDALIAS myalias
ASSUMETARGETDEFS
MAP hr.*, TARGET hr2.*;

Parameter Description

REPLICAT group group is the name of the Replicat group.

TARGETDB
database,
USERIDALIAS alias

Specifies the real name of the target DB2 LUW database (not an alias), plus
the alias of the database login credential of the user that is assigned to
Replicat. This credential must exist in the Oracle GoldenGate credential
store. For more information, see Database User for Oracle GoldenGate
Processes.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-12

Parameter Description

ASSUMETARGETDEFS Specifies how to interpret data definitions. ASSUMETARGETDEFS assumes
the source and target tables have identical definitions. (This procedure
assume identical definitions.)

Use the alternative SOURCEDEFS if the source and target tables have
different definitions, and create a source data-definitions file with the
DEFGEN utility.

MAP
schema.object,
TARGET
schema.object;

Specifies the relationship between a source table or multiple objects, and
the corresponding target object or objects.

• MAP specifies the source portion of the MAP statement and is a required
keyword. Specify the source objects in this clause.

• TARGET specifies the target portion of the MAP statement and is a
required keyword. Specify the target objects to which you are mapping
the source objects.

• schema is the schema name or a wildcarded set of schemas.

• object is the name of a table or a wildcarded set of objects.

Terminate this parameter statement with a semi-colon.

Note that only the asterisk (*) wildcard is supported for DB2 LUW. The
question mark (?) wildcard is not supported for this database. To exclude
objects from a wildcard specification, use the MAPEXCLUDE parameter.

3. Enter any optional Replicat parameters that are recommended for your configuration. You
can edit this file at any point before starting processing by using the EDIT PARAMS
command in GGSCI.

4. Save and close the file.

Understanding What's Supported for DB2 LUW
This chapter contains information on database and table features supported by Oracle
GoldenGate for DB2 LUW.

Supported DB2 LUW Data Types
Oracle GoldenGate supports all DB2 LUW data types, except those listed in Non-Supported
DB2 LUW Data Types.

Limitations of Support

Oracle GoldenGate has the following limitations for supporting DB2 LUW data types:

• Oracle GoldenGate supports multi-byte character data types and multi-byte data stored in
character columns. Multi-byte data is only supported in a like-to-like configuration.
Transformation, filtering, and other types of manipulation are not supported for multi-byte
character data.

• BLOB and CLOB columns must have a LOGGED clause in their definitions.

• Due to limitations in the IBM DB2READLOG interface, Oracle GoldenGate does not
support coordination of transactions across nodes in a DB2 Database Partitioning Feature
(DPF) environment. In DPF, a transaction may span multiple nodes, depending upon how
the data is partitioned.

However, if you need to capture from it, you can do it with certain limitations. Check the
Oracle Support note Does Oracle GoldenGate Support DB2 LUW Data Partitioning
Feature (DPF)? (DocID 2763006.1)

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-13

https://support.oracle.com/knowledge/Middleware/2763006_1.html
https://support.oracle.com/knowledge/Middleware/2763006_1.html

.

• GRAPHIC and VARGRAPHIC columns must be in a database, where the character set is
UTF16. Any other character set causes the Oracle GoldenGate to abend.

• The support of range and precision for floating-point numbers depends on the host
machine. In general, the precision is accurate to 16 significant digits, but you should review
the database documentation to determine the expected approximations. Oracle
GoldenGate rounds or truncates values that exceed the supported precision.

• Extract fully supports the capture and apply of TIMESTAMP(0) through TIMESTAMP(12) when
the output trail format is 19.1 or higher. Otherwise Extract truncates data from
TIMESTAMP(10) through TIMESTAMP(12) to nanoseconds (maximum of nine digits of
fractional time) and issues a warning to the report file.

• Oracle GoldenGate supports timestamp data from 0001/01/03:00:00:00 to
9999/12/31:23:59:59. If a timestamp is converted from GMT to local time, these limits also
apply to the resulting timestamp. Depending on the timezone, conversion may add or
subtract hours, which can cause the timestamp to exceed the lower or upper supported
limit.

• Oracle GoldenGate does not support the filtering, column mapping, or manipulation of
large objects that are larger than 4K. You can use the full Oracle GoldenGate functionality
for objects that are 4K or smaller.

• Replication of XML columns between source and target databases with the same
character set is supported. If the source and target database character sets are different,
then XML replication may fail with a database error because some characters may not be
recognized (or valid) in the target database character set.

Non-Supported DB2 LUW Data Types
The non-supported DB2 LUW data types are:

• XMLType
• User-defined types

• Negative dates

Supported Objects and Operations for DB2 LUW
Object and operations that are supported for DB2 LUW are:

• Oracle GoldenGate Extract supports cross-endian capture where the database and Oracle
GoldenGate are running on different byte order servers. The byte order is detected
automatically for DB2 LUW version 10.5 or higher. If the DB2 database auto-detection on
the DB2 LUW 10.5 database is not required then you can override it by specifying the
TRANLOGOPTIONS MIXEDENDIAN [ON|OFF] parameter. For DB2 LUW version 10.1, this
parameter must be used in the Extract parameter file for cross-endian capture. See
TRANLOGOPTIONS in Reference for Oracle GoldenGate.

• DB2 pureScale environment is supported.

• Oracle GoldenGate supports the maximum number of columns and column size per table
that is supported by the database.

• TRUNCATE TABLE.

• Multi-Dimensional Clustered Tables (MDC).

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-14

• Materialized Query Tables. Oracle GoldenGate does not replicate the MQT itself, but only
the base tables. The target database automatically maintains the content of the MQT
based on the changes that are applied to the base tables by Replicat.

• Tables with ROW COMPRESSION. In DB2 LUW version 10.1 and later, COMPRESS YES STATIC
is supported and COMPRESS YES ADAPTIVE are supported.

• Extended row size feature is enabled by default. It is supported with a workaround using
FETCHCOLS. For any column values that are VARCHAR or VARGRAPHIC data types and are
stored out of row in the database, you must fetch these extended rows by specifying these
columns using the FETCHCOLS option in the TABLE parameter in the extract parameter file.
With this option set, when the column values are out of row then Oracle GoldenGate will
fetch its value. If the value is out of and FETCHCOLS is not specified then Extract will abend
to prevent any data loss. If you do not want to use this feature, set the extended_row_size
parameter to DISABLE.

Extended row size feature is enabled, by default. It is supported with a workaround using
FETCHCOLS for DB2 LUW 10.1. For any column values that are VARCHAR or VARGRAPHIC data
types and are stored out of row in the database, you must fetch these extended rows by
specifying these columns using the FETCHCOLS option in the TABLE parameter in the Extract
parameter file. With this option set, when the column values are out of row, then Oracle
GoldenGate fetches its value. If the value is out of and FETCHCOLS is not specified then
Extract abends to prevent any data loss. If you do not want to use this feature, set the
extended_row_size parameter to DISABLE. For DB2 LUW 10.5 and higher out of row
values are captured seamlessly by Extract. FETCHCOLS is no more needed to capture out of
row columns from these database versions.

• Temporal tables with DB2 LUW 10.1 FixPack 2 and greater are supported. This is the
default for Replicat.

• Supported options with SHOWTRANS

SHOWTRANS [transaction_ID] [COUNT n]
[DURATION duration unit]
[TABULAR][FILE file_name] |

• Options with SKIPTRANS and FORCETRANS.

SKIPTRANS transaction_ID
[FORCE] FORCETRANS transaction_ID [FORCE]

• Limitations on Automatic Heartbeat Table support are as follows:

– [THREAD n] [DETAIL] is not supported.

– Oracle GoldenGate heartbeat parameters frequency and purge frequency are
accepted in seconds and days. However, the DB2 LUW task scheduler accepts its
schedule only in cron format so the Oracle GoldenGate input value to cron format may
result in some loss of accuracy. For example:

ADD HEARTBEATTABLE, FREQUENCY 150, PURGE_FREQUENCY 20

This example sets the FREQUENCY to 150 seconds, which is converted to the closest
minute value of 2 minutes, so the heartbeat table is updated every 120 seconds
instead of every 150 seconds. Setting PURGE_FREQUENCY to 20 means that the history
table is purged at midnight on every 20th day.

– The following are steps are necessary for the heartbeat scheduled tasks to run:

1. Set the DB2_ATS_ENABLE registry variable to db2set DB2_ATS_ENABLE=YES.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-15

2. Create the SYSTOOLSPACE tablespace if it does not already exist:

CREATE TABLESPACE SYSTOOLSPACE IN IBMCATGROUP MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE 4

3. Ensure instance owner has Database administration authority (DBADM):

GRANT DBADM ON DATABASE TO instance_owner_name

Non-Supported Objects and Operations for DB2 LUW
Objects and operations for DB2 LUW that are not supported by Oracle GoldenGate are:

• Schema, table or column names that have trailing spaces

• Multiple instances of a database

• Datalinks

• Extraction or replication of DDL (data definition language) operations

• Generated columns (GENERATE ALWAYS clause)

Note:

• DB2 Data Partitioning Feature (DPF) is not supported. DPF doesn't provide a way to read
the log records in a coordinated fashion across all the nodes in a partition. So, there is no
way to ensure that even if all nodes are being replicated with separate Extracts, it would be
possible to ensure that all records from all transactions are applied in the correct temporal
order. This may occur due to a number of factors including caching in the database and the
underlying operating system not allowing the Extracts to have visibility into whether there
are any cached and not yet visible entries that may affect the ordering of the record
operations across all partitions. Due to this uncertainty, it is not possible to ensure that
transactions that span partitions, or primary key updates can be replicated in a consistent
manner.

System Schemas
The following schemas or objects are not be automatically replicated by Oracle GoldenGate
unless they are explicitly specified without a wildcard.

• "SYSIBM"
• "SYSCAT"
• "SYSSTAT"
• "SYSPROC"
• "SYSFUN"
• "SYSIBMADMIN"
• "SYSTOOLS"
• "SYSPUBLIC"

Supported Object Names
For a list of characters that are supported in object names, see Supported Database Object
Names in Administering Oracle GoldenGate.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-16

Db2 for i
With Oracle GoldenGate for Db2 for i, you can perform initial loads and capture transactional
data from supported Db2 for i versions and replicate the data to a Db2 for i database or other
supported Oracle GoldenGate targets, such as an Oracle Database.

Oracle GoldenGate for Db2 for i supports data filtering, mapping, and transformations unless
noted otherwise in this documentation.

Preparing the System for Oracle GoldenGate
This chapter contains guidelines for preparing the DB2 for i system to support Oracle
GoldenGate.

Preparing the Journals for Data Capture by Extract
All tables for which you want data to be captured must be journaled, either explicitly or by
default by means of a QSQJRN journal in the same library. To preserve data integrity, data
journal entries are sent to the Extract process in time order as they appear on the system. This
section provides guidelines for configuring the journals to support capture by the Extract
process.

Allocating Journals to an Extract Group

One Extract process can process a single journal. If using more journals than that, use
additional Extract processes to handle the extra journals. You can also use additional Extract
processes to improve capture performance if necessary.

Note:

To ensure transaction integrity, all objects that correspond to any given transaction
must be read by the same Extract group. For more information about using multiple
Extract processes, see Tuning the Performance of Oracle GoldenGate in
Administering Oracle GoldenGate.

Setting Journal Parameters

To support the capture of data by the Extract process, the following are the minimal journaling
parameter settings that are required.

• Manage Receivers (MNGRCV): *SYSTEM
• Delete Receivers (DLTRCV): *NO
• Receiver Size Option (RCVSIZOPT): *MAXOPT2 (*MAXOPT3 recommended to avoid the

necessity to perform an ALTER EXTRACT with the ETROLLOVER option when the journal
sequence numbers run out if *MAXOPT2 is used.)

• Journal State (JRNSTATE): *ACTIVE
• Minimize Entry Specific Data (MINENTDTA): *NONE
• Fixed Length Data (FIXLENDTA): *USR

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-17

In the following example, the command to set these attributes for a journal JRN1 in library LIB1
would be:

CHGJRN JRN(LIB1/JRN1) MNGRCV(*SYSTEM) DLTRCV(*NO) RCVSIZOPT(*MAXOPT3)
JRNSTATE(*ACTIVE) MINENTDTA(*NONE) FIXLENDTA(*USR)

Note:

To check the attributes of a journal, use the command WRKJRNA JRN(LIB1/JRN1)
DETAIL(*CURATR).

When the journaling is set to the recommended parameter settings, you are assured that the
entries in the journals contain all of the information necessary for Oracle GoldenGate
processing to occur. These settings also ensure that the system does not delete the journal
receivers automatically, but retains them in case Extract needs to process older data.

Deleting Old Journal Receivers

Although the DLTRCV parameter is set to NO in the recommended configuration for Extract, you
can delete old journal receivers manually once Extract is finished capturing from them.

If using another application that is using the journals that Oracle GoldenGate will be reading,
consideration must be given regarding any automatic journal receiver cleanup that may be in
place. Oracle GoldenGate must be able to read the journal receivers before they are detached
or removed.

To Delete Journal Receivers

1. Run GGSCI.

2. In GGSCI, issue the following command to view the journal positions in which Extract has
current processing points, along with their journal receivers.

INFO EXTRACT group
3. Use the following DB2 for i command to delete any journal receivers that were generated

prior to the ones that are shown in the INFO EXTRACT command.

DLTJRNRCV JRNRCV(library/journal_receiver)

Where:

library and journal_receiver are the actual names of the library and journal receiver to
be deleted. See the DB2 for i Information Center for more information about this command.

Specifying Object Names
Oracle GoldenGate commands and parameters support input in the form of SQL names, native
names in the format of library_name/file_name(member_name), or a mix of the two. If a native
file system name does not include the member name, all members are implicitly selected by
the Oracle GoldenGate process. For a SQL name only the first member is used.

To support case sensitivity of double quoted object names, specify those names within double
quotes in the Oracle GoldenGate parameter files. This is true of both SQL and native file
system names.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-18

When specifying a native table name in a MAP statement on a platform other than DB2 for i, the
name must be enclosed within double quotes so that Oracle GoldenGate correctly interprets it
as a separator character.

For consistency of terminology in other administrative and reference Oracle GoldenGate
documentation, the SQL terms "schema" and "table" are used to reference the containers for
the DB2 for i data, as shown here.

Table 3-1 Native-SQL object name relationships

Native SQL Notes

Library

(maximum length 10)

Schema

(maximum length 128)

The operating system creates a
corresponding native name for a
SQL-created schema.

File

(maximum length 10)

Table

(maximum length 128)

The operating system creates a
corresponding native name for a
SQL-created table.

Member Not Applicable Contains the actual data. Only
the first member of a FILE object
can be accessed through SQL.
To access data in other members
the native system name must be
used.

Adjusting the System Clock
It is recommended that you set the system clock to UTC (Universal Time Coordinate) time and
use the timezone offset in the DB2 for i system values to represent the correct local time. If this
setup is done correctly, local daylight savings time adjustments can occur automatically with no
disruption to replication.

Configuring Database Connections
This section applies only if you installed Replicat on a Windows or Linux system to operate
remotely from the DB2 for i target. In this configuration, Replicat must connect to the target
system over a database connection that is specified with ODBC. The following steps show how
to install and configure ODBC to connect to the DB2 for i target system.

Configuring ODBC on Linux

Configuring ODBC on Windows

Configuring ODBC on Linux
To configure ODBC, you can use the graphical user interface to run the ODBC configuration
utility that is supplied with your Linux distribution, or you can edit the odbc.ini file with the
settings described in these steps. (These steps show the ODBC Administrator tool launched
from the ODBCConfig graphical interface utility for Linux.)

1. Download and install the 32-bit or 64-bit iSeries Access ODBC driver on the remote Linux
system according to the vendor documentation. The iSeries ODBC driver is supplied as a
free component of iSeries Access.

2. Issue one of the following commands, depending on the driver that you want to use.

32-bit driver:

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-19

rpm -ivh iSeriesAccess-7.1.0-1.0.i386.rpm

64-bit driver:

rpm -ivh iSeriesAccess-7.1.0-1.0.x86_64.rpm
3. You can create a user DSN (a connection that is available only to the user that created it)

or a system DSN (a connection that is available to all users on the system). To create a
user DSN, log on to the system as the user that you will be using for the Replicat process.

4. Run the ODBC configuration utility.

5. On the initial page of the ODBC configuration tool, select the User DSN tab to create a
user DSN or the System DSN tab to create a system DSN. (These steps create a user
DSN; creating a system DSN is similar.)

6. On the tab you selected, click Add.

7. Select the appropriate iSeries Access ODBC driver, click OK. If the correct driver is not
shown in the Select the DRIVER list, click the Add button and then complete the fields.

Steps to complete the Driver Properties fields when the driver is not found:

• Set Name to the name of the driver.

• Set Driver to the path where the driver is installed.

• Set Setup to the libcwbodbci.so file that is in the driver installation directory.

• Leave the other settings to their defaults.

• Click the check mark above the Name field to save your settings.

8. In the Name field of the Data Source Properties dialog, supply a one-word name for the
data source. In the System field, enter the fully qualified name of the target DB2 for i
system, for example: sysname.company.com. Leave the UserID and Password fields
blank, to allow Replicat to supply credentials when it connects to the database. Leave the
remaining fields set to their defaults, and then click the check mark above the Name field
to save your settings.

9. You are returned to the ODBC Data Source Administrator dialog. Click OK to exit the
ODBC configuration utility.

10. To support GRAPHIC, VARGRAPHIC and DBCLOB types, edit the .odbc.ini file and add the
following line.

GRAPHIC = 1

Note:

If you created a user Data Source Name, this file is located in the home directory
of the user that created it. If you created a system DSN, this file is in /etc/
odbc.ini or /usr/local/etc/odbc.ini.

11. From the Oracle GoldenGate directory on the target, run GGSCI and issue the DBLOGIN
command to log into the target database.

DBLOGIN SOURCEDB database, USERID db_user [, PASSWORD pw [encryption options]]

Where:

• SOURCEDB database specifies the new Data Source Name.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-20

• USERID db_user, PASSWORD pw are the Replicat database user profile and password.

• encryption options is optional password encryption.

Note:

Only BLOWFISH encryption is supported for DB2 for i systems.

Configuring ODBC on Windows
On Windows, the ODBC Administration tool is in the Administrative Tools folder as Data
Sources (ODBC).

1. Download and install the 32-bit or 64-bit iSeries Access ODBC driver from the DB2 for
iSeries Access package on the remote Windows system according to the vendor
documentation. The iSeries ODBC driver is supplied as a free component of iSeries
Access.

2. You can create a user DSN (a connection that is available only to the user that created it)
or a system DSN (a connection that is available to all users on the system). To create a
user DSN, log on to the system as the user that you will be using for the Replicat process.

3. From the Windows Control Panel, select Administrative Tools, then Data Sources
(ODBC).

4. On the first page of the ODBC configuration tool, select the User DSN tab to create a user
DSN or the System DSN tab to create a system DSN. (These steps create a user DSN;
creating a system DSN is similar.)

5. On the tab that you selected, click Add.

6. Select the appropriate iSeries Access ODBC Driver from the list of drivers, and then click
Finish.

7. On the General tab of the DB2 for i Access for Windows ODBC Setup dialog, provide a
name (without any spaces) in the Data Source Name field, add an optional description in
the Description field, and then select the system name from the System selection list.

8. On the Server tab, set Naming Convention to SQL Naming Convention (*SQL). Leave
the other fields set to their defaults.

9. On the Data Types tab, select the Report as Supported check box under Double Byte
Character Set (DBCS) graphic data types.

10. On the Conversions tab, clear the Convert binary data (CCSID 65535) to text check box.

11. Click Apply, then OK. You are returned to the ODBC Data Source Administrator dialog.

12. Confirm that the new Data Source Name appears under User Data Sources.

13. Click OK to exit the ODBC configuration utility.

14. From the Oracle GoldenGate directory on the target, run GGSCI and issue the DBLOGIN
command to log into the target database. See Reference for Oracle GoldenGate for
detailed syntax.

DBLOGIN SOURCEDB database, USERID db_user [, PASSWORD pw [encryption_options]]

Where:

• SOURCEDB database specifies the new data source name.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-21

• USERID db_user, PASSWORD pw are the Replicat database user profile and password.

• encryption_options is optional password encryption.

Note:

Only BLOWFISH encryption is supported for DB2 for i systems.

Preparing Tables for Processing
The following table attributes must be addressed in an Oracle GoldenGate environment.

Ensuring Row Uniqueness for Tables
Oracle GoldenGate requires some form of unique row identifier on the source and target tables
to locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use
a larger, less efficient WHERE clause.

4. If a table does not have an appropriate key, or if you prefer that the existing key(s) are not
used, you can define a substitute key, if the table has columns that always contain unique
values. You define this substitute key by including a KEYCOLS clause within the Extract
TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds. See TABLE | MAP in
Reference for Oracle GoldenGate.

How Oracle GoldenGate Determines the Kind of Row Identifier to Use

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-22

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use a
larger, less efficient WHERE clause.

Using KEYCOLS to Specify a Custom Key

If a table does not have one of the preceding types of row identifiers, or if you prefer those
identifiers not to be used, you can define a substitute key if the table has columns that always
contain unique values. You define this substitute key by including a KEYCOLS clause within the
Extract TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds.

Preventing Key Changes
If you must add columns to the key that Extract is using as the row identifier for a table
(primary key, unique key, KEYCOLS key, or all-column key) after Oracle GoldenGate has started
processing journal data, follow these steps to make the change.

1. Stop Extract.

STOP EXTRACT group
2. Issue the following command until it returns EOF, indicating that it has processed all of the

existing journal data.

INFO EXTRACT group
3. Make the change to the key.

4. Start Extract.

START EXTRACT group

Disabling Constraints on the Target
Triggers and cascade constraints must be disabled on the target tables or configured to ignore
changes made by Replicat. Constraints must be disabled because Oracle GoldenGate
replicates DML that results from a trigger or a cascade constraint. If the same trigger or
constraint gets activated on the target table, it becomes redundant because of the replicated
version, and the database returns an error. Consider the following example, where the source
tables are emp_src and salary_src and the target tables are emp_targ and salary_targ.

1. A delete is issued for emp_src.

2. It cascades a delete to salary_src.

3. Oracle GoldenGate sends both deletes to the target.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-23

4. The parent delete arrives first and is applied to emp_targ.

5. The parent delete cascades a delete to salary_targ.

6. The cascaded delete from salary_src is applied to salary_targ.

7. The row cannot be located because it was already deleted in step 5.

Enabling Change Capture
To capture changes to a table in a journal, you can run the STRJRNPF command on the OS/400
command line or run the ADD TRANDATA command from GGSCI. The ADD TRANDATA command
calls STRJRNPF and is the recommended method to start journaling for tables, because it
ensures that the required journal image attribute of Record Images (IMAGES): *BOTH is set on
the STRJRNPF command.

To Run ADD TRANDATA
1. Run GGSCI on the source system.

2. Issue the DBLOGIN command.

DBLOGIN SOURCEDB database USERID user, PASSWORD password
[encryption_options]

Where: SOURCEDB specifies the default DB 2 for i database, USERID specifies the Extract
user profile, and PASSWORD specifies that profile's password.

3. Issue the ADD TRANDATA command.

ADD TRANDATA table_specification

Where: table_specification is one of the following:

• schema.table [JOURNAL library/journal]

• library/file [JOURNAL library/journal]

Specifying a Default Journal

To specify a default journal for multiple tables or files in the ADD TRANDATA command, instead of
specifying the JOURNAL keyword, use the following GGSCI command before issuing ADD
TRANDATA.

DEFAULTJOURNAL library/journal

Any ADD TRANDATA command used without a journal assumes the journal from
DEFAULTJOURNAL.

To display the current setting of DEFAULTJOURNAL, you can issue the command with no
arguments.

Removing a Default Journal Specification

To remove the use of a default journal, use the following GGSCI command:

DEFAULTJOURNAL CLEAR

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-24

Maintaining Materialized Query Tables
To maintain parity between source and target materialized query tables (MQT), you replicate
the base tables, but not the MQTs. The target database maintains the MQTs based on the
changes that Replicat applies to the base tables.

The following are the rules for configuring these tables:

• Include the base tables in your TABLE and MAP statements.

• Do not include MQTs in the TABLE and MAP statements.

• Wildcards can be used in TABLE and MAP statements, even though they might resolve MQT
names along with regular table names. Oracle GoldenGate automatically excludes MQTs
from wildcarded table lists. However, any MQT that is explicitly listed in an Extract TABLE
statement by name will cause Extract to abend.

Specifying the Oracle GoldenGate Library
Before starting Oracle GoldenGate, specify the name of the Oracle GoldenGate for DB2 for i
library when running the ggos400install script. This creates a link to the OGGPRCJRN *SRVPGM
(service program) object that was restored to that library. If the link to the oggprcjrn service
program is deleted you could just re-run the ggos400install shell script and specify the same
library, or use the command "ln -s /qsys.lib/OGG_library.lib/oggprcjrn.srvpgm
oggprcjrn.srvpgm". If this link is incorrect or missing, Extract will abend.

Configuring Oracle GoldenGate for DB2 for i
This chapter contains instructions for configuring Oracle GoldenGate to capture source DB2 for
i data and apply it to a supported target database.

Creating a GLOBALS File
The GLOBALS parameter file contains parameters that affect all processes within an Oracle
GoldenGate instance.

GGSCHEMA is a mandatory parameter for Oracle GoldenGate 21c (21.3.0) onwards and
defines the schema, which Oracle GoldenGate uses on the remote system for necessary
Oracle GoldenGate database objects.

The GLOBALS parameter NAMECCSID is specific to DB2 for i and may be required, if the SQL
catalog contains object names that are referenced by a different CCSID than the system
CCSID. The SQL catalog is created in the system CCSID and does not indicate this difference
when queried. Oracle GoldenGate makes queries to the catalog and could retrieve the name
incorrectly unless NAMECCSID is used to supply the correct CCSID value. For more information,
see Reference for Oracle GoldenGate.

Creating a Data Definitions File
When replicating data from one table to another, an important consideration is whether the
column structures (metadata) of the source and target tables are identical. Oracle GoldenGate
looks up metadata for the following purposes:

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-25

Note:

This is only required when writing trails for Oracle GoldenGate 11.2 or earlier.

• On the source, to supply complete information about captured operations to the Replicat
process.

• On the target, to determine the structures of the target tables, so that the replicated data is
correctly mapped and converted (if needed) by Replicat.

When source and target table definitions are dissimilar, Oracle GoldenGate must perform a
conversion from one format to the other. To perform conversions, both sets of definitions must
be known to Oracle GoldenGate. Oracle GoldenGate can query the local database to get one
set of definitions, but it must rely on a data-definitions file to get definitions from the remote
database. The data-definitions file contains information about the metadata of the data that is
being replicated.

To create a definitions file, you configure and run the DEFGEN utility and then transfer the
definitions file to the target system. This file must be in place on the target system before you
start the Oracle GoldenGate processes for the first time.

Encrypting the Extract and Replicat Passwords
It is strongly recommended that you encrypt the passwords of the user profiles that will be
used for the primary and data pump Extracts, and for the Replicat process. The standard
Oracle GoldenGate encryption method of AES (Advanced Encryption Standard) is supported
by the IBM i platform. To encrypt the password, see Working with Runtime Parameters. It also
contains information about how to encrypt data within disk storage and across TCP/IP.

Note:

The Oracle GoldenGate credential store is not supported by the iSeries platform.

Configuring Extract for Change Capture from DB2 for i
Perform these steps on the source system to configure the primary Extract and the data pump
Extract that support change capture and transport across the network.

Configuring the Primary Extract

These steps configure the primary Extract to capture transaction data from a source DB2 for i
and write the data to a local trail for temporary storage.

1. In GGSCI on the source system, create the Extract parameter file.

EDIT PARAMS name

Where: name is the name of the primary Extract.

2. Enter the Extract parameters in the order shown, starting a new line for each parameter
statement.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-26

Basic parameters for the primary Extract

EXTRACT finance
SOURCEDB mysource, USERIDALIAS myalias
ENCRYPTTRAIL AES192
EXTTRAIL /ggs/dirdat/lt
TABLE hr.*;

Parameter Description

EXTRACT group group is the name of the Extract group.

SOURCEDB database,
USERIDALIAS alias

Specifies the real name of the source DB2 for i database (not an alias), plus the alias of
the database login credential of the user that is assigned to Extract. This credential must
exist in the Oracle GoldenGate credential store. For more information, see Database User
for Oracle GoldenGate Processes.

ENCRYPTTRAIL algorithm Encrypts the local trail.

EXTTRAIL pathname Specifies the path name of the local trail to which the primary Extract writes captured data
for temporary storage.

TABLE schema.object;
TABLE library/file;
TABLE library/
file(member);

Specifies the database object for which to capture data.

TABLE is a required keyword.

schema is the schema name or a wildcarded set of schemas.

object is the table name, or a wildcarded set of tables.

library is the IBM i library name or a wildcarded set of libraries.

file is the IBM i physical file name or a wildcarded set of physical files.

member is the IBM i physical file member name or a wildcarded set of member names.

When using the IBM i native name format (library/file with optional member) the only valid
wildcards are a name with at least one valid character followed by a trailing asterisk (*) or
*ALL which matches any name.

Note:

The member name is optional, and must be provided if the member names are
required to be written in the trail as part of the object name. Without member
names all members in a physical file be implicitly merged as a single object in
the trail.

Terminate the parameter statement with a semi-colon.

To exclude tables from a wildcard specification, use the TABLEEXCLUDE parameter.

3. Enter any optional Extract parameters that are recommended for your configuration. You
can edit this file at any point before starting processing by using the EDIT PARAMS
command in GGSCI.

4. Save and close the file.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-27

Configuring the Data Pump

These steps configure the data pump that reads the local trail and sends the data across the
network to a remote trail.

1. In GGSCI on the source system, create the data-pump parameter file.

EDIT PARAMS name

Where: name is the name of the data pump Extract group.

2. Enter the data-pump parameters in the order shown, starting a new line for each
parameter statement. Your input variables will be different. See the following table for
description.

Basic parameters for the data-pump Extract group:

EXTRACT extpump
SOURCEDB FINANCE USERID ogg, PASSWORD AACAAAAAAAAAAA, BLOWFISH ENCRYPTKEY
mykey
RMTHOST fin1, MGRPORT 7809
RMTTRAIL /ggs/dirdat/rt
TABLE hr.*;

Parameter Description

EXTRACT group group name is the name of the data pump.

SOURCEDB database
USERID user,
PASSWORD password,
BLOWFISH ENCRYPTKEY
keyname

Specifies database connection information.

• SOURCEDB specifies the default DB 2 for i database.

• USERID specifies the Extract database user profile.

• PASSWORD specifies the user's password that was encrypted with the ENCRYPT
PASSWORD command. Enter or paste the encrypted password after the PASSWORD
keyword.

• BLOWFISH ENCRYPTKEY keyname specifies the name of the lookup key in the local
ENCKEYS file.

DECRYPTTRAIL BLOWFISH Decrypts the input trail.

RMTHOST hostname,
MGRPORT portnumber

• RMTHOST specifies the name or IP address of the target system.

• MGRPORT specifies the port number where Manager is running on the target.

ENCRYPTTRAIL BLOWFISH Encrypts the remote trail with Blowfish encryption.

RMTTRAIL pathname Specifies the path name of the remote trail.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-28

Parameter Description

TABLE schema.object;
TABLE library/file;
TABLE library/
file(member);

Specifies a table or tables to process.

Terminate the TABLE statement with a semi-colon.

To exclude tables from a wildcard specification, use the TABLEEXCLUDE parameter after the
TABLE statement.

3. Enter any optional Extract parameters that are recommended elsewhere in this manual
and any others shown in Summary of Extract Parameters in Reference for Oracle
GoldenGate.

4. Save and close the file.

Configuring Replicat for Change Delivery to DB2 for i
These steps configure Replicat to apply data to a DB2 for i target database, operating on a
remote Linux system. To configure Replicat for change delivery to a different database type,
such as an Oracle database, follow the directions in the Oracle GoldenGate Installation and
Configuration guide for that database. There may be additional parameters and requirements
for delivery to that database type.

Note:

There does not have to be a database on a Windows or Linux machine to support
connection by ODBC by Replicat.

Creating a Checkpoint Table

Replicat maintains its checkpoints in a checkpoint table in the DB2 for i target database. Each
checkpoint is written to the checkpoint table, that must be journaled, within the Replicat
transaction. Because a checkpoint either succeeds or fails with the transaction, Replicat
ensures that a transaction is only applied once, even if there is a failure of the process or the
database.

A common method of create the checkpoint table with journaling is as follows:

1. In GGSCI on the target system, create the Replicat checkpoint file.

Set the name of the journal that is intended to be used for the checkpoint file. The default
will be <GGSCHEMA>/OGGJRN. You can change it by setting the default for the current GGSCI
session using the DEFAULTJOURNAL command. The syntax of the DEFAULTJOURNAL
command is:

DEFAULTJOURNAL library_name/journal_name

Where: library_name is the name of the library and journal_name is the name of the
journal to be used for subsequent operations that may optionally have a journal specified..

2. Add the checkpoint table.

ADD CHECKPOINTTABLE library_name.chkptab

Successfully created checkpoint table kgr.chkptab
3. Add journaling to the checkpoint table.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-29

ADD TRANDATA library_name.CHKPTAB
For more information about creating a checkpoint table, see Administering Oracle GoldenGate.

Configuring Replicat

These steps configure the Replicat process in a basic way without any special mapping or
conversion of the data.

1. In GGSCI on the target system, create the Replicat parameter file.

EDIT PARAMS name

Where: name is the name of the Replicat group.

2. Enter the Replicat parameters in the order shown, starting a new line for each parameter
statement.

REPLICAT financer
TARGETDB FINANCIAL USERID ogg, PASSWORD AACAAAAAAAAAAA, BLOWFISH
ENCRYPTKEY mykey
DISCARDFILE /users/ogg/disc
MAP hr.*, TARGET hr2.*;

Parameter Description

REPLICAT group group is the name of the Replicat group.

TARGETDB database
USERID user,
PASSWORD password,
BLOWFISH ENCRYPTKEY
keyname

Specifies database connection information.

• SOURCEDB specifies the data source name (DSN) of the target DB2 for i database.

• USERID specifies the Replicat database user profile.

• PASSWORD specifies the user's password that was encrypted with the ENCRYPT
PASSWORD command. Enter or paste the encrypted password after the PASSWORD
keyword.

• BLOWFISH ENCRYPTKEY keyname specifies the name of the lookup key in the local
ENCKEYS file.

DECRYPTTRAIL BLOWFISH Decrypts the input trail.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-30

Parameter Description

MAP owner.table,
TARGET owner.table;
MAP owner.table,
TARGET library/file;
MAP library/file,
TARGET owner.table;
MAP library/file,
TARGET library/file;

Specifies a relationship between a source and target table or tables. The MAP clause
specifies the source objects, and the TARGET clause specifies the target objects to which the
source objects are mapped.

• owner is the schema name.

• table is the name of a table or a wildcard definition for multiple tables.

• library is the IBM i library name or a wildcard definition for multiple libraries.

• file is the IBM i physical file name or a wildcard definition for multiple physical files.

Note:

There is an optional physical file member name also allowed with the physical file
of the form file(member) and member may also be a wildcard definition for
multiple members.

To exclude tables from a wildcard specification, use the MAPEXCLUDE parameter.

For more information and for additional options that control data filtering, mapping, and
manipulation, see MAP in Reference for Oracle GoldenGate.

3. Enter any optional Extract parameters that are recommended elsewhere in this manual
and any others shown in Summary of Extract Parameters.

4. Save and close the file.

Next Steps in the Deployment
Because of its flexibility, Oracle GoldenGate offers numerous features and options that must be
considered before you start any processes. To further configure Oracle GoldenGate to suit
your business needs, see the following:

• For additional configuration guidelines to achieve specific replication topologies, see
Administering Oracle GoldenGate. This guide also contains information about:

– Oracle GoldenGate architecture

– Oracle GoldenGate commands

– Oracle GoldenGate initial load methods

– Using customization features

– Mapping columns that contain dissimilar data

– Data filtering and manipulation

• For syntax options and descriptions of Oracle GoldenGate GGSCI commands and Oracle
GoldenGate parameters shown in this guide, see Reference for Oracle GoldenGate.

When to Start Replicating Transactional Changes
You must start replication when the source and target data is in a synchronized state, where
the corresponding rows in the source and target tables contain identical data values. Unless
you are starting with brand new source and target databases with no current user activity, you
will need to activate change capture and apply processes to handle ongoing transactional
changes while an initial load is being applied to the target. This process is known as initial
synchronization, or also as instantiation. The initial load captures a point-in-time snapshot of

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-31

the source data and applies it to the target, while Oracle GoldenGate maintains any changes
that are made after that point.

See Instantiating Oracle GoldenGate with an Initial Load in Administering Oracle GoldenGate
for instantiation options.

Starting Extract During Instantiation

When Extract starts for the first time to begin capturing data during the instantiation process, it
captures all of the transaction data that it encounters after the specified start point, but none of
the data that occurred before that point. To ensure that Extract does not start in the middle of
ongoing transactions that would be discarded, set the tables that are to be captured to an
inactive state. You can either put the system into a restricted state by using the ALCOBJ
command to lock the objects or libraries, or you can force all of the current transactions on
those tables to stop at a certain point.

After initialization is complete, remember to unlock any objects that you locked. To do so, log
off of the session that locked the objects or use the DLCOBJ command from the OS/400
command line.

Changing the Position of Extract to a Later Time

You may at some point, over the life of an Extract run, need to set the position of Extract in the
data stream manually. To reposition Extract, use the ALTER EXTRACT command in GGSCI. To
help you identify any given Extract read position, the INFO EXTRACT command shows the
positions for each journal in an Extract configuration, including the journal receiver information.
See Reference for Oracle GoldenGate to know more.

Testing Your Configuration
It is important to test your configuration in a test environment before deploying it live on your
production machines. This is especially important in an active-active or high availability
configuration, where trusted source data may be touched by the replication processes. Testing
enables you to find and resolve any configuration mistakes or data issues without the need to
interrupt user activity for re-loads on the target or other troubleshooting activities.

Using Remote Journal
Learn about remote journal preparation and adding a remote journal.
Remote Journal support in the IBM DB2 for i operating system provides the ability for a system
to replicate, in its entirety, a sequence of journal entries from one DB2 for i system to another.
Once setup, this replication is handled automatically and transparently by the operating
system. The entries that are replicated are placed in a journal on the target system that is
available to be read by an application in the same way as on the source system.

You must have an understanding of how to setup and use remote journaling on an DB2 for i
system to use this feature with Oracle GoldenGate. There are no special software
requirements for either Oracle GoldenGate or the DB2 for i systems to use remote journaling.

Preparing to Use Remote Journals
Before establishing the remote journal environment, complete the following steps:

1. Determine the extent of your remote journal network or environment.

2. Library redirection is the ability to allow the remote journal and associated journal receivers
to reside in different libraries on the target system from the corresponding source journal
and its associated journal receivers.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-32

Determine what library redirection, if any, you will be using for the remote journals and
associated journal receivers.

3. Ensure that all selected libraries exist on the target systems. You must consider whether or
not library redirection will be used when adding the remote journal.

4. Create the appropriate local journal if it does not already exist.

5. Configure and activate the communications protocol you have chosen to use.

6. After you have configured the communications protocol, it must be active while you are
using the remote journal function.

For example, if you are using the OptiConnect for IBM i bus transport method, then the
OptiConnect for IBM i subsystem, QSOC, must be active. QSOC must be active for both
the source system and the target system, and the appropriate controllers and devices must
be varied on. If you are using a SNA communications transport, vary on the appropriate
line, controller, and devices and ensure subsystem QCMN is active on both systems. Start
of change If you are using TCP/IP or Sockets IPv6, you must start TCP/IP by using the
Start TCP/IP (STRTCP) command, including the distributed data management (DDM)
servers. If you are using data port, you must configure a cluster, make sure that the cluster
is active, and start the internet Daemon (inetd) server using the Start TCP/IP Server
(STRTCPSVR) command.End of change

7. If one does not already exist, create the appropriate relational database (RDB) directory
entry that will be used to define the communications protocol for the remote journal
environment. When TCP communications are being used to connect to an independent
disk pool, the RDB entry to the independent disk pool must have the Relational database
value set to the target system's local RDB entry and the relational database alias value set
to the independent disk pool's name.

8. Now you should be able to see the remote database connection by issuing the WRKRDBDIRE
command.

 Work with Relational Database Directory Entries

 Position to

 Type options, press Enter.
 1=Add 2=Change 4=Remove 5=Display details 6=Print details

 Remote
 Option Entry Location Text

 SYS1 system1
 SYS2 system2
 MYSYSTEM *LOCAL Entry added by system

 Bottom
 F3=Exit F5=Refresh F6=Print list F12=Cancel F22=Display entire field
 (C) COPYRIGHT IBM CORP. 1980, 2007.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-33

Adding a Remote Journal
Adding a remote journal creates a remote journal on a target system or independent disk pool
and associates that remote journal with the journal on the source system. This occurs if this is
the first time the remote journal is being established for a journal. The journal on the source
system can be either a local or remote journal.

If a remote journal environment has previously been established, adding a remote journal
reassociates the remote journal on the target system with the journal on the source system.

You can establish and associate a remote journal on a target system with a journal on the
source system by one of the following methods:

• System i Navigator.

• Add the Remote Journal (QjoAddRemoteJournal) API on the source system.

• Add the Remote Journal (ADDRMTJRN) command on the source system.

What Happens During Add Remote Journal Processing?

The processing that takes place as part of adding a remote journal includes the following:

• A check is performed on the target system to verify that the user profile adding the remote
journal exists. A user profile with the same name as the user profile which is adding a
remote journal must exist on the target system. If the profile does not exist on the target
system, then an exception is signaled, and the processing ends.

• A check is performed to verify that the target system has a library by the same name as
the library for the journal on the source system. If the library does not exist on the target
system, then an exception is signaled, and the processing ends.

• A check is performed on the target system to determine if a journal by the same qualified
name as the journal on the source system already exists. If a journal already exists, it can
be used for the remainder of the add remote journal processing if it meets the following
criteria:

1. It is a remote journal.

2. It was previously associated with this same source journal or part of the same remote
journal network.

3. The type of the remote journal matches the specified remote journal type.

• If a journal was found, but does not meet the preceding criteria, then an exception is
signaled, and the processing ends. Otherwise, the remote journal is used for the rest of the
add remote journal processing.

• If no journal is found on the specified target system, then a remote journal is created on the
target system. The new remote journal has the same configuration, authority, and audit
characteristics of the source journal. The journal that is created has a journal type of
*REMOTE.

When adding the remote journal, you must specify the type of remote journal to add. The
remote journal type influences the library redirection rules and other operational characteristics
for the journal.

Guidelines For Adding a Remote Journal

You should observe the following guidelines for adding a remote journal:

• You can only associate a remote journal with a single source journal.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-34

Note: The same remote journal can then have additional remote journals that are
associated with it that are located on other target systems. This is the cascade
configuration that is shown in Network configurations for remote journals.

• The remote journal will only have its attached receiver populated with journal entries that
are replicated from the corresponding journal receiver on the source system. No journal
entries can be directly deposited to a remote journal.

• A maximum of 255 remote journals can be associated with a single journal on a source
system. This can be any combination of asynchronously maintained or synchronously
maintained remote journals.

To Add a Remote Journal

The following is an example using the physical file QGPL/TESTPF setup to have remote
journaling enabled to a second system.

1. Create the physical file.:

> CRTPF FILE(QGPL/TESTPF) RCDLEN(10)
 File TESTPF created in library QGPL.
 Member TESTPF added to file TESTPF in QGPL.

2. Create the local journal receiver and journals, and enable the journaling of the physical file
created:

> crtjrnrcv jrnrcv(qgpl/jrcvrmt)
 Journal receiver JRCVRMT created in library QGPL

> crtjrn jrn(qgpl/jrnrmt) jrnrcv(qgpl/jrcvrmt) fixlendta(*job *usr *pgm *sysseq)
 Journal JRNRMT created in library QGPL

strjrnpf file(qgpl/testpf) jrn(qgpl/testpf)
 1 of 1 files have started journaling

3. Add the remote journal:

> addrmtjrn rdb(sys2) srcjrn(qgpl/JRNRMT) rmtjrntype(*TYPE2)
 Remote journal JRNRMT in QGPL was added

4. Activate the remote journaling:

> chgrmtjrn rbd(sys2) srcjrn(qgpl/jrnrmt) jrnstate(*active)
 Remote journal JRNRMT in library QGPL was activated

Understanding What's Supported for DB2 for i
This chapter contains information on database and table features supported by Oracle
GoldenGate for DB2 for i.

Oracle GoldenGate on DB2 for i supports the filtering, mapping, and transformation of data
unless otherwise noted in this documentation.

Oracle GoldenGate for DB2 for i runs remotely from a Linux system on a DB2 for i source
system to capture data from the transaction journals for replication to a target system. To apply
data to a target DB2 for i database, Oracle GoldenGate can run remotely from a Linux system.
Oracle GoldenGate communicates with the IBM i system by means of an ODBC connection,
and no Oracle GoldenGate software is installed on the DB2 for i target.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-35

Note:

The DB2 for i platform uses one or more journals to keep a record of transaction
change data. For consistency of terminology in the supporting administrative and
reference Oracle GoldenGate documentation, the terms "log" or "transaction log"
may be used interchangeably with the term "journal" where the use of the term
"journal" is not explicitly required.

Supported DB2 for i Data Types
Oracle GoldenGate supports all DB2 for i data types, except those listed in Non-Supported
DB2 for i Data Types.

Limitations of support

Extract fully supports the capture and apply of TIMESTAMP(0) through TIMESTAMP(12) when the
output trail format is 19.1 or higher. Otherwise Extract truncates data from TIMESTAMP(10)
through TIMESTAMP(12) to nanoseconds (maximum of nine digits of fractional time) and issues
a warning to the report file.

Oracle GoldenGate supports timestamp data from 0001/01/03:00:00:00.000000 to
9999/12/31:23:59:59.999999. If a timestamp is converted from GMT to local time, these limits
also apply to the resulting timestamp. Depending on the time zone, conversion may add or
subtract hours, which can cause the timestamp to exceed the lower or upper supported limit.

Non-Supported DB2 for i Data Types
Oracle GoldenGate does not support the following DB2 for i data types:

• XML
• DATALINK
• User-defined types

Supported Objects and Operations for DB2 for i
Oracle GoldenGate supports the following DB2 for i objects and operations.

• Extraction and replication of DML operations .

• Tables with the maximum row length supported by the database.

• Tables that contain up to the maximum number of columns that is supported by the
database, up to the maximum supported column size.

• TRUNCATE operations are supported and are represented by DELETE FROM with no WHERE
clause SQL statements and Clear Physical File Member (CLRPFM).

• Base tables underlying Materialized Query Tables, but not the MQTs themselves. The
target database automatically maintains the content of the MQT based on the changes that
are applied to the base tables by Replicat.

• Both Library (Native) names including members, and SQL names are allowed.

• Partitioned tables

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-36

• Supported options with SHOWTRANS:

SHOWTRANS [transaction_ID] [COUNT n]
[DURATION duration unit] [TABULAR]
[FILE file_name] |

• Options for SKIPTRANS and FORCETRANS:

SKIPTRANS transaction_ID [FORCE]
FORCETRANS transaction_ID [FORCE]

• Limitations on Automatic Heartbeat Table support are as follows:

– The ADD HEARTBEATTABLE command creates a new file called ogghbfreq in the Oracle
GoldenGate installation directory. Do not delete this file because the pase heartbeat
program reads the frequency values from it.

– There is an extra executable in the Oracle GoldenGate build folder named ogghb.

– An extra process named ogghb starts running on the IBM i system when the ADD
HEARTBEATTABLE command runs until you disable the heartbeat with the DELETE
HEARTBEATTABLE command. This process automatically restarts even if it is killed. To
remove this process from the system, use the DELETE HEARTBEATTABLE command.

– When using the ALTER HEARTBEATTABLE command to change the heartbeat frequency
with the PURGE_FREQUENCY or RETENTION_TIME options, it takes approximately 60 +
older 'frequency') seconds to be implemented.

– There is an initial delay of 30 seconds between ADD HEARTBEATTABLE and the first
record is updated in the heartbeat seed table.

– [THREAD n] and [DETAIL] is not supported.

Non-Supported Objects and Operations for DB2 for i
Oracle GoldenGate does not support the following objects or operations for DB2 for i.

• DDL operations

• Schema, table or column names that have trailing spaces

• Multiple instances of a database

Oracle GoldenGate Parameters Not Supported for DB2 for i
This section lists some of the Oracle GoldenGate configuration parameters that are not
supported for the DB2 for i platform. For full descriptions of Oracle GoldenGate parameters
and the databases they support, see Oracle GoldenGate Parameters.

BATCHSQL
BR
ASCIITOEBCDIC and EBCDICTOASCII
BINARYCHARS
LOBMEMORY
TRAILCHARSETEBCDIC

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-37

Supported Object Naming Conventions
Oracle GoldenGate supports SQL naming conventions and also supports native file system
names in the format of library/file(member).

For native (system) names, Oracle GoldenGate supports the normal DB2 for i naming rules for
wildcarding, which allows *ALL or a partial name with a trailing asterisk (*) wildcard. For
example:

• library/*all(*all)
• library/a*(a*)
• library/abcde*
The member name is optional and may be left off. In that case, data for all of the members will
be extracted, but only the library and file names will be captured and included in the records
that are written to the trail. The result is that the data will appear to have come from only one
member on the source, and you should be aware that this could cause integrity conflicts on the
target if there are duplicate keys across members. To include the member name in the trail
records, include the member explicitly or though a wildcarded member specification.

For SQL names, only the first member in the underlying native file is extracted in accordance
with the normal operation of SQL on an DB2 for i system. For SQL names, Oracle GoldenGate
supports the wildcarding of both table names and schema names. For instructions on
wildcarding SQL names, see Specifying Object Names in Oracle GoldenGate Input in
Administering Oracle GoldenGate.

System Schemas for DB2 for i
The following schemas or objects are not automatically replicated by Oracle GoldenGate
unless they are explicitly specified without a wildcard..

• "Q*"
• "SYSIBM"
• "SYSIBMADM"
• "SYSPROC"
• "SYSTOOLS"
• "#LIBRARY"
• "#RPGLIB"

Supported Character Sets
The default behavior of a DB2 for i Extract is to convert all character data to Unicode. The
overhead of the performance of the conversion to UTF-8 for the text data has been
substantially reduced. However, if you want to send data in its native character set you can use
the parameter DBOPTIONS USEDATABASEENCODING to override the default behavior.

Db2 z/OS
With Oracle GoldenGate for Db2 z/OS, you can perform initial loads and capture transactional
data from supported Db2 z/OS versions and replicate the data to a Db2 z/OS database or
other supported Oracle GoldenGate targets, such as an Oracle Database.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-38

Oracle GoldenGate for Db2 z/OS is installed and runs remotely on Linux, zLinux, or AIX.

Oracle GoldenGate for DB2 z/OS supports data filtering, mapping, and transformations unless
noted otherwise in this documentation.

System Services
Activate UNIX System Services (USS) only if required to install the executables for the Extract
support modules.

Oracle GoldenGate supports Sysplex data sharing.

Database User for Oracle GoldenGate Processes
Oracle GoldenGate requires a database user account. Create this account and assign
privileges according to the following guidelines.

Assign the DB2 privileges listed in the following table to the user. These are in addition to any
permissions that DB2 ODBC requires. All Extract privileges apply to initial-load and log-based
Extract processes, except where noted.

The following authorities can be provided by granting either SYSCTRL or DBADM plus SQLADM
authority to the user running the Oracle GoldenGate processes.

Table 3-2 Privileges Needed by Oracle GoldenGate for Db2 z/OS

User privilege Extract Replicat

MONITOR2
(does not apply to initial-load Extract)

X

SELECT ON the following SYSIBM tables:

SYSTABLES
SYSCOLUMNS
SYSTABLEPART
SYSKEYS
SYSINDEXES
SYSCOLAUTH
SYSDATABASE
SYSFOREIGNKEYS
SYSPARMS
SYSRELS
SYSROUTINES
SYSSYNONYMS
SYSTABAUTH
SYSAUXRELS

X X

SELECT on source tables1 X

INSERT, UPDATE, DELETE on target tables X

CREATE TABLE2 X

EXECUTE on ODBC plan (default is DSNACLI) X

Privileges required by SQLEXEC procedures or queries that you will
be using.3

X X

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-39

1 SELECT on source tables required only if tables contain LOB columns, or for an initial-load Extract, if used.
2 Required if using ADD CHECKPOINTTABLE in GGSCI to use the database checkpoint feature.
3 SQLEXEC enables stored procedures and queries to be executed by an Oracle GoldenGate process.

Ensuring ODBC Connection Compatibility
To ensure that you configure the DB2 ODBC initialization file correctly, follow the guidelines in
the DB2 UDB for z/OS ODBC Guide and Reference manual. One important consideration is
the coding of the open and close square brackets (the [character and the] character). The
square bracket characters are "variant" characters that are encoded differently in different
coded character set identifiers (CCSID), but must be of the IBM-1047 CCSID in the ODBC
initialization file. DB2 ODBC does not recognize brackets of any other CCSID. Note the
following:

• The first (or open) bracket must use the hexadecimal characters X'AD' (0xAD).

• The second (or close) bracket must use the hexadecimal characters X'BD' (0xBD).

To set the correct code for square brackets, use any of the following methods.

• Use the hex command in OEDIT and change the hex code for each character
appropriately.

• Use the iconv utility to convert the ODBC initialization file. For example, to convert from
CCSID IBM-037 to IBM-1047, use the following command:

iconv -f IBM-037 -t IBM-1047 ODBC.ini > ODBC-1047.ini

mv ODBC-1047.ini ODBC.ini
• Change your terminal emulator or terminal configuration to use CCSID IBM-1047 when

you create or alter the file.

Database Configuration
Learn how to configure the DB2 z/OS environment to support Oracle GoldenGate Classic
Architecture.

Monitoring Processes
These sections provide information about monitoring Oracle GoldenGate with z/OS system
facilities.

Interpreting Statistics for Update Operations

The actual number of DML operations that are executed on the DB2 database might not match
the number of extracted DML operations that are reported by Oracle GoldenGate. DB2 does
not log update statements if they do not physically change a row, so Oracle GoldenGate
cannot detect them or include them in statistics.

Supporting Globalization Functions
Oracle GoldenGate provides globalization support and you should take into consideration
when using this support.

Replicating From a Source that Contains Both ASCII and EBCDIC

When replicating to or from a DB2 source system to a target that has a different character set,
some consideration must be given to the encoding of the character data on the DB2 source if it

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-40

contains a mix of ASCII and EBCDIC data. Character set conversion by any given Replicat
requires source data to be in a single character set.

The source character set is specified in the trail header. Thus, the Oracle GoldenGate trail can
contain either ASCII or EBCDIC data, but not both. Unicode tables are processed without any
special configuration and are exempt from the one-character set requirement.

With respect to a source that contains both character encoding types, you have the following
options:

• You can use one Extract for all of your tables, and have it write the character data to the
trail as either ASCII or as EBCDIC.

• You can use different Extracts: one Extract to write the ASCII character data to a trail, and
another Extract to write the EBCDIC character data to a different trail. You then associate
each trail with its own data pump process and Replicat process, so that the two data
streams are processed separately.

To output the correct character set in either of those scenarios, use the TRAILCHARSETASCII
and TRAILCHARSETEBCDIC parameters. The default is TRAILCHARSETEBCDIC. Without these
parameters, ASCII and EBCDIC data are written to the trail as-is. When using these
parameters, note the following:

• If used on a single-byte DB2 subsystem, these parameters cause Extract to convert all of
the character data to either the ASCII or EBCDIC single-byte CCSID of the subsystem to
which Extract is connected, depending on which parameter is used (except for Unicode,
which is processed as-is).

• If used on a multi-byte DB2 subsystem, these parameters cause Extract to capture only
ASCII or EBCDIC tables (and Unicode). Character data is written in either the ASCII or
EBCDIC mixed CCSID (depending on the parameter used) of the DB2 z/OS subsystem to
which Extract is connected.

Specifying Multi-Byte Characters in Object Names

If the name of a schema, table, column, or stored procedure in a parameter file contains a
multi-byte character, the name must be double-quoted. For more information about specifying
object names, see Administering Oracle GoldenGate.

Installing Extract Components on Db2 z/OS
The Oracle GoldenGate Db2 z/OS Extract uses SQL objects to access and read the Db2 log.
These Oracle GoldenGate Db2 z/OS objects require a minimum hardware platform of z10, a
minimum operating system release of 1.13, and a minimum Db2 release of 11. The
components consist of executable load modules, SQL stored procedures and functions, and
external programs called via the stored procedures. these components are:

1. External programs (authorized) includes the following programs:

a. oggib001 – Initialization and utility program

b. oggrb001 – Log read program functionality

c. oggmt001 – Stand-alone program that monitors ECSA and 64-bit memory

d. oggjt001 – Setup program for the oggmt001 startup JCL run from oggib001 program

e. oggfr001 – Utility for use by a DBA under guidance from Oracle Support

2. SQL stored procedure and function includes demo_db2_setupb_os390.sql with the
OGGINITB and OGGREADB SQL.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-41

3. JCL procedure, oggtask.jcl

Note:

These external names, SQL and JCL names are the default names, which you can
edit and update. This process is discussed in the subsequent sections.

The Replication Process for Db2 z/OS Extract figure illustrates the replication process for the
Db2 z/OS Extract and its mainframe components.

Figure 3-1 Replication Process for Db2 z/OS Extract

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-42

The process starts and runs as shown using the numbers 1 through 9 in the figure, which is
given below:

1. Extract reads the parameters, including the JCL parameters, from the parameter file
created during installation.

2. Extract reports the startup information and prepares to write the trail files.

3. ODBC is used to gather information from the Db2 database and start replication.

4. The OGGINITB SQL stored procedure starts to prepare shared memory and to gather other
data needed for replication.

5. The OGGIB001 external program called by the SQL stored procedure starts the memory
monitor task using the OGGJT001 job setup program.

6. The OGGMT001 memory monitor task starts monitoring the ECSA and 64-bit shared memory.

7. The OGGREADB SQL Function calls the external program OGGRB001.

8. The OGGRB001 external program repeatedly calls the Db2 log read program to create a
result set that returns 1 to many log record buffers to the Extract.

9. When a log record result set is complete, OGGRB001 ends after sending the result set to the
Extract.

Extract repeats steps 7 to 9 until shut down or abnormal termination. If the memory task fails to
start, OGGI001 program returns a flag indicating there was a JCL error or setup issue and
Extract manages its own memory. If the memory task starts properly, the memory task tests
constantly changing fields in the 48-byte ECSA shared memory. These fields stop changing if
the Extract terminates for any reason. At that point, the memory manager waits in case the
Extract or network is slow and releases the memory before shutting down after a configured
time limit.

To install the components needed for Oracle GoldenGate for Db2 z/OS for Extract:

1. Ensure that a library (PDSE) exists on the Db2 z/OS system and an entry for it is made in
the authorized library list. This library is the location where the Oracle GoldenGate external
program objects will reside.

2. Ensure that an APF-authorized WLM environment exists that references the PDSE from
the preceding step. Oracle recommends that NUMTCB value for the WLM environment be
10-40 for stored procedures. The NUMTCB value depends on the maximum number of
Extracts that are running concurrently against the database and on how much throughput
each Extract requires. If you want flexibility in setting NUMTCB, you specify it in the startup
JCL for the WLM, but not in the creation panel.

3. You can set up security for the WLM application environments and for creating stored
procedures by completing the following:

a. (Optional) Specify which WLM-established address spaces can run stored procedures.
If you do not complete this step, then any WLM-established address space can run
stored procedures.

b. Grant access to users to create procedures in specific WLM address spaces.

c. Grant access to users to create procedures in specific schemas. Use the GRANT
statement with the CREATIN option for the appropriate schema.

d. Grant access to users to create packages for procedures in specific collections. Use
the GRANT statement with the CREATE option for the appropriate collection.

e. Grant access to refresh the WLM environments to the appropriate people.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-43

f. Add additional RACF authority to the appropriate people, allowing the WLM
procedures to start the memory manager job.

4. Ensure the ID used to run the WLM startup JCL procedure has permission to use RRSAF.
Each time one of the Db2 WLM address spaces is started, it uses RRSAF to attach to Db2.
See the Db2 11 for z/OS Installation and Migration Guide

5. In the Linux or UNIX installation of Oracle GoldenGate for Db2 z/OS, there is a ZIP file
called zOSPrograms.zip. Unzip zOSPrograms.zip to zOSPrograms.tar and copy
zOSPrograms.tar in binary mode to your Db2 z/OS system into an HFS directory.

6. On your Db2 z/OS system in USS or OMVS, change directories to the directory containing
zOSPrograms.tar.

7. Restore the objects with the command: tar -xovf zOSPrograms.tar.

Note:

In this command, the copy target is double-quote forward-slash single-quote
authorized PDSE name single-quote double quote. The -X is an uppercase
capital X not a lowercase x.

8. Copy the objects to the authorized PDSE. Use the cp –X ogg[irmj][abt][0-9]*
“//’authorized_PDSE_name’” where authorized_PDSE_name is the name of the APF
authorized PDSE, which is intended for the Oracle GoldenGate objects. Using this
command installs the objects with the default names.

9. Installing the scripts with different names allows you to conform with system protocols, or it
allows you to run multiple versions of Oracle GoldenGate. To install the scripts with
different names, it is recommended to create a shell script that renames the programs
before copying them to the PDSE. An example of the shell script is given in the following
code snippet.

#!/bin/bash
Copy new programs renaming them to version 21.12 names.
cp oggib001 oggi2112
cp oggrb001 oggr2112
cp oggmt001 oggm2112
cp oggjt001 oggj2112
cp -X oggi2112 “//’SYS4.WLMDSNA.AUTHLOAD’”
cp -X oggr2112 “//’SYS4.WLMDSNA.AUTHLOAD’”
cp -X oggm2112 “//’SYS4.WLMDSNA.AUTHLOAD’”
cp -X oggj2112 “//’SYS4.WLMDSNA.AUTHLOAD’”

You can run the script using chmod +x command. You can copy and reuse this script for
new versions.

10. You must create the SQL procedures using your SQL tool of choice so that Oracle
GoldenGate can call the Extract objects. The Oracle GoldenGate stored procedures
should have permission granted to only those users that use them for replication.

An example SQL script in the Oracle GoldenGate install directory contains the SQL
statements to set up the stored procedures on the Db2 z/OS instance. The
demo_db2_setupb_os390.sql script is for Db2 v11.1 and higher and can run from any SQL
tool on any platform that can connect to your Db2 z/OS instance. This script must run on
the Db2 instance that you use with your Extract. The script provided in the remote
installation directory is in ASCII format. The same script is restored through

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-44

https://www.ibm.com/docs/en/SSEPEK_11.0.0/pdf/db2z_11_instbook.pdf

zOSPrograms.tar on the Db2 z/OS system in EBCDIC and is suitable for use through
native Db2 z/OS tools such as SPUFI.

Edit the following line before running the scripts:

• Modify the WLM ENVIRONMENT line to use the correct name for the WLM environment
that you will use for Oracle GoldenGate.

Note:

The oggifi0001 schema name is configurable using the TRANLOGOPTIONS
REMOTESCHEMA schemaname parameter. The procedure names are not configurable.
Each of the external names in the script and the PDSE can be renamed as long as
the script names and the PDSE object names match. Changing these names is part
of the procedure that allows migration to new versions or if specific naming
procedures must be adhered to on Db2 z/OS. The following table contains a check
list of components that you may wish to edit and/or update:

Table 3-3 List of Editable Components

Component From Rename Where

oggib001 tar file authorized PDSE

oggrb001 tar file authorized PDSE

oggmt001 tar file authorized PDSE & proc
library

oggjt001 tar file authorized PDSE & Extract
parm

oggpr001 tar file procedure library & Extract
parm

proclib MVS add Extract parm if needed

step libraries MVS WLM and oggpr001
procedure library

remoteschema demo_db2_setupb_os390.s
ql and Extract parm

WLM name MVS demo_db2_setupb_os390.s
ql

external program demo_db2_setupb_os390.s
ql

Note:

Remember to perform all these steps after every new patch installation.

Configure a Database Connection
This section contains instructions for setting up the Extract and Replicat connections to a DB2
z/OS database.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-45

Database Configuration for DB2 z/OS
No special DB2 z/OS database settings are required for Oracle GoldenGate.

Setting Initialization Parameters
The following DB2 for z/OS initialization parameters apply to Oracle GoldenGate and must be
set correctly before starting Oracle GoldenGate processes.

• MVSDEFAULTSSID: set to the DB2 subsystem.

• LOCATION: set to the DB2 location name as stored in the DB2 Boot Strap Dataset.

• MVSATTACHTYPE: set to RRSAF (Recoverable Resource Manager Services Attachment
Facility) or CAF (Call Attachment Facility). IBM recommends using RRSAF.

• MULTICONTEXT: set to 1 if using RRSAF.

• PLANNAME: set to the DB2 plan. The default plan name is DSNACLI.

Do not use the CURRENTAPPENSCH initialization parameter (keyword).

Note:

When using the CAF attachment type, you must use the Oracle GoldenGate
DBOPTIONS parameter with the NOCATALOGCONNECT option in the parameter file of any
Extract or Replicat process that connects to DB2. This parameter disables the usual
attempt by Oracle GoldenGate to obtain a second thread for the DB2 catalog.
Otherwise, you will receive error messages, such as: ODBC operation failed:
Couldn't connect to data source for catalog queries.

Specifying the Path to the Initialization File
Specify the ODBC initialization file by setting the DSNAOINI environment variable in the z/OS
UNIX profile, as in the following example:

export DSNAOINI="/etc/odbc810.ini"

Specifying the Number of Connection Threads
Every Oracle GoldenGate process makes a database connection. Depending on the number of
processes that you will be using and the number of other DB2 connections that you expect,
you might need to adjust the following DB2 system parameters on the DSNTIPE DB2 Thread
Management Panel:

• MAX USERS (macro DSN6SYSP CTHREAD)

• MAX TSO CONNECT (macro DSN6SYSP IDFORE)

• MAX BATCH CONNECT (macro DSN6SYSP IDBACK)

If using RRSAF, allow:

• Two DB2 threads per process for each of the following:

– Extract

– Replicat

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-46

– The GGSCI command DBLOGIN (logs into the database)

– DEFGEN utility (generates data definitions for column mapping)

• One extra DB2 thread for Extract for IFI calls.

• One extra DB2 thread for each SQLEXEC parameter statement that will be issued by each
Extract and Replicat process. For more information about SQLEXEC, see the Reference for
Oracle GoldenGate.

If using CAF, there can be only one thread per Oracle GoldenGate process.

Preparing Tables for Processing
You must perform the following tasks to prepare your tables for use in an Oracle GoldenGate
environment.

Disabling Triggers and Cascade Constraints
Disable triggers, cascade delete constraints, and cascade update constraints on the target
tables, or alter them to ignore changes made by the Oracle GoldenGate database user. Oracle
GoldenGate replicates DML that results from a trigger or cascade constraint. If the same
trigger or constraint gets activated on the target table, it becomes redundant because of the
replicated version, and the database returns an error. Consider the following example, where
the source tables are emp_src and salary_src and the target tables are emp_targ and
salary_targ.
• A delete is issued for emp_src.

• It cascades a delete to salary_src.

• Oracle GoldenGate sends both deletes to the target.

• The parent delete arrives first and is applied to emp_targ.

• The parent delete cascades a delete to salary_targ.

• The cascaded delete from salary_src is applied to salary_targ.

• The row cannot be located because it was already deleted in step 5.

Ensuring Row Uniqueness for Tables
Oracle GoldenGate requires some form of unique row identifier on the source and target tables
to locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-47

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use
a larger, less efficient WHERE clause.

4. If a table does not have an appropriate key, or if you prefer that the existing key(s) are not
used, you can define a substitute key, if the table has columns that always contain unique
values. You define this substitute key by including a KEYCOLS clause within the Extract
TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds. See TABLE | MAP in
Reference for Oracle GoldenGate.

How Oracle GoldenGate Determines the Kind of Row Identifier to Use

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use a
larger, less efficient WHERE clause.

Using KEYCOLS to Specify a Custom Key

If a table does not have one of the preceding types of row identifiers, or if you prefer those
identifiers not to be used, you can define a substitute key if the table has columns that always
contain unique values. You define this substitute key by including a KEYCOLS clause within the
Extract TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds. For more information, see
Reference for Oracle GoldenGate.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-48

Handling ROWID Columns
Any attempt to insert into a target table that includes a column with a data type of ROWID
GENERATED ALWAYS (the default) will fail with the following ODBC error:

ODBC error: SQLSTATE 428C9 native database error -798. {DB2 FOR OS/390}{ODBC
DRIVER}{DSN08015} DSNT408I SQLCODE = -798, ERROR: YOU CANNOT INSERT A VALUE
INTO A COLUMN THAT IS DEFINED WITH THE OPTION GENERATED ALWAYS. COLUMN NAME
ROWIDCOL.

You can do one of the following to prepare tables with ROWID columns to be processed by
Oracle GoldenGate:

• Ensure that any ROWID columns in target tables are defined as GENERATED BY DEFAULT.

• If it is not possible to change the table definition, you can work around it with the following
procedure.

To Work Around ROWID GENERATE ALWAYS:

1. For the source table, create an Extract TABLE statement, and use a COLSEXCEPT clause in
that statement that excludes the ROWID column. For example:

TABLE tab1, COLSEXCEPT (rowidcol);

The COLSEXCEPT clause excludes the ROWID column from being captured and replicated to
the target table.

2. For the target table, ensure that Replicat does not attempt to use the ROWID column as the
key. This can be done in one of the following ways:

• Specify a primary key in the target table definition.

• If a key cannot be created, create a Replicat MAP parameter for the table, and use a
KEYCOLS clause in that statement that contains any unique columns except for the
ROWID column. Replicat will use those columns as a key. For example:

MAP tab1, TARGET tab1, KEYCOLS (num, ckey);

Preparing the DB2 for z/OS Transaction Logs for Oracle GoldenGate
Learn how to configure the DB2 transaction logging to support data capture by Oracle
GoldenGate Extract.

Preparing the DB2 z/OS Transaction Logs for Oracle GoldenGate
Learn to configure the DB2 transaction logging to support data capture by Oracle GoldenGate
Extract.

Oracle GoldenGate can extract DB2 transaction data from the active and archived logs. Follow
these guidelines to configure the logs so that Extract can capture data.

Enabling Change Capture

Follow these steps to configure DB2 to log data changes in the expanded format that is
supplied by the DATA CAPTURE CHANGES feature of the CREATE TABLE and ALTER TABLE

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-49

commands. This format provides Oracle GoldenGate with the entire before and after images of
rows that are changed with update statements.

1. From the Oracle GoldenGate directory, run GGSCI.

2. Log on to DB2 from GGSCI as a user that has ALTER TABLE privileges.

DBLOGIN SOURCEDB DSN, USERID user[, PASSWORD password][, encryption_options]
3. Issue the following command. where table is the fully qualified name of the table. You can

use a wildcard to specify multiple table names but not owner names.

ADD TRANDATA table

By default, ADD TRANDATA issues the following command:

ALTER TABLE name DATA CAPTURE CHANGES;

Enabling Access to Log Records

Activate DB2 Monitor Trace Class 1 ("TRACE(MONITOR) CLASS(1) ") so that DB2 allows Extract
to read the active log. The default destination of OPX is sufficient, because Oracle GoldenGate
does not use a destination.

To Start the Trace Manually

1. Log on to DB2 as a DB2 user who has the TRACE privilege or at least SYSOPR authority.

2. Issue the following command:

start trace(monitor) class(1) scope(group)

To Start the Trace Automatically When DB2 is Started

Do either of the following:

• Set MONITOR TRACE to "YES" on the DSNTIPN installation tracing panel.

• Set 'DSN6SYSP MON=YES ' in the DSNTIJUZ installation job, as described in the DB2 UDB
Installation Guide.

Note:

The primary authorization ID, or one of the secondary authorization IDs, of the ODBC
plan executor also must have the MONITOR2 privilege.

Sizing and Retaining the Logs

When tables are defined with DATA CAPTURE CHANGES, more data is logged than when they are
defined with DATA CAPTURE NONE . If any of the following is true, you might need to increase the
number and size of the active and archived logs.

• Your applications generate large amounts of DB2 data.

• Your applications have infrequent commits.

• You expect to stop Extract for long periods of time.

• Your network is unreliable or slow.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-50

To control log retention, use the DSN6LOGP MAXARCH system parameter in the DSNTIJUZ
installation job.

Retain enough log data so that Extract can start again from its checkpoints after you stop it or
after an unplanned outage. Extract must have access to the log that contains the start of the
oldest uncommitted unit of work, and all logs thereafter.

If data that Extract needs during processing was not retained, either in online or archived logs,
one of the following corrective actions might be required:

• Alter Extract to capture from a later point in time for which log data is available (and accept
possible data loss on the target).

• Resynchronize the source and target tables, and then start the Oracle GoldenGate
environment over again.

Note:

The IBM documentation makes recommendations for improving the performance of
log reads. In particular, you can use large log output buffers, large active logs, and
make archives to disk.

Using Archive Logs on Tape

Oracle GoldenGate can read DB2 archive logs on tape, but it will degrade performance. For
example, DB2 reserves taped archives for a single recovery task. Therefore, Extract would not
be able to read an archive tape that is being used to recover a table until the recovery is
finished. You could use DFHSM or an equivalent tools to move the archive logs in a seamless
manner between online DASD storage and tape, but Extract will have to wait until the transfer
is finished. Delays in Extract processing increase the latency between source and target data.

Controlling Log Flushes

When reading the transaction log, Extract does not process a transaction until it captures the
commit record. If the commit record is on a data block that is not full, it cannot be captured until
more log activity is generated to complete the block. The API that is used by Extract to read
the logs only retrieves full physical data blocks.

A delay in receiving blocks that contain commits can cause latency between the source and
target data. If the applications are not generating enough log records to fill a block, Extract
generates its own log records by issuing SAVEPOINT and COMMIT statements, until the block fills
up one way or the other and is released.

In a data sharing group, each API call causes DB2 to flush the data blocks of all active
members, eliminating the need for Extract to perform flushes.

To prevent Extract from performing flushes, use the Extract parameter TRANLOGOPTIONS with
the NOFLUSH option.

Understanding What's Supported for DB2 for z/OS
This chapter contains information on database and table features supported byOracle
GoldenGate for DB2 z/OS.

Topics:

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-51

Supported DB2 for z/OS Data Types
This section lists the DB2 for z/OS data types that Oracle GoldenGate supports and any
limitations of this support.

• Oracle GoldenGate does not perform character set conversion for columns that could
contain multi-byte data. This includes GRAPHIC, VARGRAPHIC and DBCLOB data types, as well
as CHAR, VARCHAR, and CLOB for tables defined with ENCODING_SCHEME of 'M' (multiple CCSID
set or multiple encoding schemes) or 'U' (Unicode). Such data is only supported if the
source and target systems are the same CCSID.

• Oracle GoldenGate supports ASCII, EBCDIC, and Unicode data format. Oracle
GoldenGate converts between ASCII and EBCDIC data automatically. Unicode is not
converted.

• Oracle GoldenGate supports most DB2 data types except those listed in Non-Supported
DB2 for z/OS Data Types.

Limitations of Support

• The support of range and precision for floating-point numbers depends on the host
machine. In general, the precision is accurate to 16 significant digits, but you should review
the database documentation to determine the expected approximations. Oracle
GoldenGate rounds or truncates values that exceed the supported precision.

• Oracle GoldenGate does not support the filtering, column mapping, or manipulation of
large objects greater than 4K in size. You can use the full Oracle GoldenGate functionality
for objects that are 4K or smaller.

• Oracle GoldenGate supports the default TIMESTAMP and the TIMESTAMP with TIMEZONE to up
to 9 digit fractional value, but no further.

Non-Supported DB2 for z/OS Data Types
This section lists DB2 for z/OS data types that Oracle GoldenGate does not support. Data that
is not supported may affect the integrity of the target data in relation to the source data.

• XML
• User-defined types

• Negative dates

Supported Objects and Operations for DB2 z/OS
This section lists the database objects and types of operations that Oracle GoldenGate
supports.

• Extraction and replication of DML operations on DB2 for z/OS tables that contain rows of
up to 512KB in length. This size exceeds the maximum row size of DB2.

• INSERT operations from the IBM LOAD utility are supported for change capture if the utility is
run with LOG YES and SHRLEVEL CHANGE, and the source tables that are being loaded have
DATA CAPTURE CHANGES enabled (required by Oracle GoldenGate) and are specified in the
Oracle GoldenGate Extract configuration. Oracle GoldenGate also supports initial loads
with the LOAD utility to instantiate target tables during initial synchronization.

• Oracle GoldenGate supports the maximum number of columns per table, which is
supported by the database.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-52

• Oracle GoldenGate supports the maximum column size that is supported by the database.

• Extraction and replication of data that is stored using DB2 data compression (CREATE
TABLESPACE COMPRESS YES).

• Capture from temporal history tables is supported.

• TRUNCATE TABLE is supported, but because this command issues row deletes to perform
the truncate, they are shown in Oracle GoldenGate statistics as such, and not as a
truncate operation. To replicate a TRUNCATE , the Replicat process uses a DELETE operation
without a WHERE clause.

• TRUNCATES are always captured from a DB2 for z/OS source, but can be ignored by
Replicat if the IGNORETRUNCATES parameter is used in the Replicat parameter file.

• UNICODE columns in EBCDIC tables are supported.

• Supported options with SHOWTRANS

SHOWTRANS [transaction_ID] [COUNT n]
[DURATION duration unit]
[FILE file_name] |

transaction_ID and count cannot be specified together.

transaction_ID and duration cannot be specified together.

• Options supported with SKIPTRANS and FORCETRANS:

SKIPTRANS transaction_ID
[FORCE] FORCETRANS transaction_ID [FORCE]

Non-Supported Objects and Operations for DB2 for z/OS
The following objects and operations are not supported by Oracle GoldenGate on DB2 for
z/OS:

• Extraction or replication of DDL operations

• Clone tables

• Data manipulation, including compression, that is performed within user-supplied DB2 exit
routines, such as:

– Date and time routines

– Edit routines (CREATE TABLE EDITPROC)

– Validation routines (CREATE TABLE VALIDPROC)

• Replicating with BATCHSQL is not fully functional for DB2 for z/OS. Non-insert operations are
not supported so any update or delete operations will cause Replicat to drop temporarily
out of BATCHSQL mode. The transactions will stop and errors will occur.

MySQL
With Oracle GoldenGate for MySQL, you can perform initial loads and capture transactional
data and table changes from supported MySQL versions and replicate the data and table
changes to a MySQL database or replicate the data to other supported Oracle GoldenGate
targets, such as an Oracle Database.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-53

Oracle GoldenGate for MySQL supports data filtering, mapping, and transformations unless
noted otherwise in this documentation.

This part describes tasks for configuring and running Oracle GoldenGate for MySQL and
supported variants, such as MariaDB, Amazon RDS for MySQL, and Amazon Aurora MySQL.

Supported Databases
Oracle GoldenGate for MySQL supports capture and delivery for MySQL, Oracle MySQL
Database Service, Amazon Aurora MySQL, Amazon RDS for MariaDB, Amazon RDS for
MySQL, Azure Database for MySQL, and MariaDB.

For supported database versions, review the Certification Matrix.

Limitations of Support
Following are the limitations of support for Oracle GoldenGate for MySQL:

• MySQL databases enabled with binary log transaction compression are not supported with
Oracle GoldenGate Extract.

• MySQL databases enabled with binary log encryption are not supported with Oracle
GoldenGate Extract.

Database Storage Engine
Requirements for the database storage engine are as follows:

• Oracle GoldenGate supports the InnoDB storage engine for a source MySQL database.

• All the components of Oracle GoldenGate for MySQL, including Extract, Replicat, and
GGSCI connect to the database using the MySQL native API.

• Oracle GoldenGate supports capture and apply from and to the InnoDB engine. Apply to
MyISAM engine works, but there might be data integrity issues as MyISAM engine in non-
transactional.

Database User for Oracle GoldenGate Processes for MySQL
Requirements for the database user for Oracle GoldenGate processes are as follows:

• Create a database user that is dedicated to Oracle GoldenGate. It can be the same user
for all the Oracle GoldenGate processes that must connect to a database.

• To support DDL replication, the MySQL user must have privileges to install the database
plug-ins. The required permissions for the plug-in is only required with MySQL 5.7. The
INSERT privilege is required on the mysql.plugin system table.

• To preserve the security of your data, and to monitor Oracle GoldenGate processing
accurately, do not permit other users, applications, or processes to log on as, or operate
as, the Oracle GoldenGate database user.

• Keep a record of the database users. They must be specified in the Oracle GoldenGate
parameter files with the USERID parameter.

• The Oracle GoldenGate user requires read access to the INFORMATION_SCHEMA database.

• The Oracle GoldenGate user requires the following user privileges.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-54

https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Privilege Source Extract Target Replicat Purpose

SELECT Yes Yes Connect to
the database
and select
object
definitions

REPLICATION SLAVE Yes NA Connect and
receive
updates from
the
replication
master’s
binary log.

CREATE
CREATE VIEW
EVENT
INSERT
UPDATE
DELETE

Yes Yes Source and
target
database
heartbeat
and
checkpoint
table
creation, and
data record
generation
and purging

DROP Yes Yes Dropping a
Replicat
checkpoint
table or
deleting a
heartbeat
table
implementati
on

EXECUTE Yes Yes To execute
stored
procedures.

INSERT, UPDATE, DELETE on
target tables

NA Yes Apply
replicated
DML to target
objects

DDL privileges on target objects
(if using DDL support)

NA Yes Issue
replicated
DDL on
target objects

• To capture binary log events, an Administrator must provide the following privileges to the
Extract user:

– Read and Execute permissions for the directory where the MySQL configuration file
(my.cnf) is located

– Read permission for the MySQL configuration file (my.cnf).

– Read and Execute permissions for the directory where the binary logs are located.

– Read and Execute permission for the tmp directory. The tmp directory is /tmp. The
MySQL database connection requires access to the /tmp/mysql.sock file for versions
prior to MySQL 8.0.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-55

Database Configuration
Learn about supported MySQL databases, required settings for configuring MySQL for Oracle
GoldenGate.

Ensuring Data Availability
Retain enough binary log data so that if you stop Extract or there is an unplanned outage,
Extract can start again from its checkpoints. Extract must have access to the binary log that
contains the start of the oldest uncommitted unit of work, and all binary logs thereafter. The
recommended retention period is at least 24 hours worth of transaction data, including both
active and archived information. You might need to do some testing to determine the best
retention time given your data volume and business requirements.

If data that Extract needs during processing was not retained, either in active or backup logs,
one of the following corrective actions might be required:

• Alter Extract to capture from a later point in time for which binary log data is available (and
accept possible data loss on the target).

• Resynchronize the source and target tables, and then start the Oracle GoldenGate
environment over again.

To determine where the Extract checkpoints are, use the INFO EXTRACT command. For more
information, see INFO EXTRACT in Command Line Interface Reference for Oracle
GoldenGate.

Setting Logging Parameters
To capture from the MySQL transaction logs, the Oracle GoldenGate Extract process must be
able to find the index file, which contains the paths of all binary log files.

Extract expects that all of the table columns are in the binary log. As a result, only
binlog_row_image set as full is supported and this is the default. Other values of
binlog_row_image are not supported.

Note:

Oracle recommends that the binary log is retained for at least 24 hours.

In MySQL 5.7, the server_id option must be specified along with log-bin, otherwise the
server will not start. For MySQL 8.0, the server_id is enabled by default.

Extract checks the following parameter settings to get this index file path:

1. Extract TRANLOGOPTIONS parameter with the ALTLOGDEST option. If this parameter specifies
a location for the log index file, Extract accepts this location over any default that is
specified in the MySQL Server configuration file. When ALTLOGDEST is used, the binary log
index file must also be stored in the specified directory. This parameter should be used if
the MySQL configuration file does not specify the full index file path name, specifies an
incorrect location, or if there are multiple installations of MySQL on the same machine.
From Oracle GoldenGate 21c onward, ALTLOGDEST parameter is optional for local Extract,
however, for remote Extract this parameter is mandatory. When ALTLOGDEST is not
specified, the binary log index and binary log filepaths will be fetched from the database

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-56

directly.Please note: The paths thus fetched are also subject to same accessibilitychecks
as in the existing process.

To specify the index file path using TRANLOGOPTIONS with ALTLOGDEST use a command
similar to the following:

TRANLOGOPTIONS ALTLOGDEST "/mnt/rdbms/mysql/data/logs/binlog.index"

To capture from a remote server or in case of remote capture, you only need to specify the
REMOTE option instead of the index file path on the remote server. For remote capture
specify the following in the Extract parameter file:

TRANLOGOPTIONS ALTLOGDEST REMOTE
2. The MySQL Server configuration file: The configuration file stores default startup options

for the MySQL server and clients. On Windows, the name of the configuration file is
my.ini. On other platforms, it is my.cnf. In the absence of TRANLOGOPTIONS with
ALTLOGDEST, Extract gets information about the location of the log files from the
configuration file. However, even with ALTLOGDEST, these Extract parameters must be set
correctly:

• binlog-ignore-db=oggddl: This prevents DDL logging history table entries in the
binlog and is set in the my.cnf or my.ini file.

• log-bin: This parameter is used to enable binary logging. This parameter also
specifies the location of the binary log index file and is a required parameter for Oracle
GoldenGate, even if ALTLOGDEST is used. If log-bin is not specified, binary logging will
be disabled and Extract returns an error.

• log-bin-index: This parameter specifies the location of the binary log index. If it is not
used, Extract assumes that the index file is in the same location as the log files. If this
parameter is used and specifies a different directory from the one that contains the
binary logs, the binary logs must not be moved once Extract is started.

• max_binlog_size: This parameter specifies the size, in bytes, of the binary log file.

Note:

The server creates a new binary log file automatically when the size of the
current log reaches the max_binlog_size value, unless it must finish
recording a transaction before rolling over to a new file.

• binlog_format: This parameter sets the format of the logs. It must be set to the value
of ROW, which directs the database to log DML statements in binary format. Extract
silently ignores the binlog events that are not written in the ROW format instead of
abending when it detects a binlog_format other than ROW.

Note:

MySQL binary logging does not allow logging to be enabled or disabled for
specific tables. It applies globally to all tables in the database.

• mysql.rds_set_configuration: When capturing from MySQL Amazon RDS instance,
you need to call the mysql.rds_set_configuraton stored procedure on MySQL

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-57

command line, to retain the binary logs for a specific duration. By default, the default
value of binlog_retention_hours for MySQL Amazon RDS is set to NULL, which
implies that the binary logs are not retained.

The following example shows the command to preserve the binary log for 24 hours:

mysql > call mysql.rds_set_configuration('binlog retention hours', 24);

To locate the configuration file, Extract checks the MYSQL_HOME environment variable: If
MYSQL_HOME is set, Extract uses the configuration file in the specified directory. If
MYSQL_HOME is not set, Extract queries the information_schema.global_variables table to
determine the MySQL installation directory. If a configuration file exists in that directory,
Extract uses it.

3. For MariaDB version 10.2 and later, Oracle GoldenGate works in the same way as for
MySQL but a new variable needs to be configured in the my.cnf or my.ini file. The
variable that needs to be added is "binlog-annotate-row-events=OFF". Restart MariaDB
after configuring this variable and then start the Extract process.

Database Connection
Oracle GoldenGate gets the name of the database it is supposed to connect to from the
SOURCEDB parameter. To configure the connection for the SOURCEDB parameter, use the following
format:

SOURCEDB dbname@hostname:port, USERID mysqluser, PASSWORD welcome
The dbname is the name of the MySQL instance, hostname is the name or IP address of the
MySQL database server, port is the port number of the MySQL instance. If using an
unqualified host name, that name must be properly configured in the DNS database.
Otherwise, use the fully qualified host name, for example myhost.company.com.

Setting the Session Character Set
The GGSCI, Extract and Replicat processes use a session character set when connecting to the
database. For MySQL, the session character set is taken from the SESSIONCHARSET option of
SOURCEDB and TARGETDB. Make certain you specify a session character set in one of these ways
when you configure Oracle GoldenGate.

Changing the Log-Bin Location
Modifying the binary log location by using the log-bin variable in the MySQL configuration file
might result in two different path entries inside the index file, which could result in errors. To
avoid any potential errors, change the log-bin location by doing the following:

1. Stop any new DML operations.

2. Let the extract finish processing all of the existing binary logs. You can verify this by noting
when the checkpoint position reaches the offset of the last log.

3. After Extract finishes processing the data, stop the Extract group and, if necessary, back
up the binary logs.

4. Stop the MySQL database.

5. Modify the log-bin path for the new location.

6. Start the MySQL database.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-58

7. To clean the old log name entries from index file, use flush master or reset master
(based on your MySQL version).

8. Start Extract.

Configuring MySQL for Remote Capture
Oracle GoldenGate remote capture for MySQL, Amazon RDS for MySQL, Amazon Aurora
MySQL, Azure Database for MySQL are used to capture transaction log data from a database
located remotely to the Oracle GoldenGate installation.

Database Server Configuration

For remote capture to work, configure the MySQL server as follows:

1. Grant access permissions to the Oracle GoldenGate remote capture user.

Run the following statements against the remote database to create the user and grant the
permissions needed for remote capture.

mysql > CREATE USER 'username'@'host' IDENTIFIED BY 'Password';
mysql > GRANT ALL PRIVILEGES ON *.* TO 'username'@'host’ WITH GRANT
OPTION;
mysql > FLUSH PRIVILEGES;

2. The server_id value of the remote MySQL server should be greater than 0. This value
can be verified by issuing the following statement on the MySQL remote server:

mysql > show variables like ‘server_id’;

If the server_id value is 0, modify the my.cnf configuration file to set to a value greater
than 0.

Oracle GoldenGate Configuration

Oracle GoldenGate configuration has the following steps:

1. Provide the remote database's connection information in the Extract's parameter file.

SOURCEDB remotedb@mysqlserver.company.com:port, USERID username, PASSWORD
password

2. Add the following parameter to the Extract's parameter file, after the connection
information.

TRANLOGOPTIONS ALTLOGDEST REMOTE

Limitations of Oracle GoldenGate Remote Capture for MySQL

Co-existence of Oracle GoldenGate for MySQL remote capture with the MySQL’s native
replication slave is supported with following conditions and limitations:

• The native replication slave should be assigned a different server_id than the currently
running slaves. The slave server_id values can be seen using the following MySQL
command on the master server.

mysql> show slave hosts;

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-59

– If the Oracle GoldenGate capture abends with error "A slave with the same
server_uuid or server_id as this slave has connected to the master", then
change the capture's name and restart the capture.

– If the native replication slave dies with the error "A slave with the same
server_uuid or server_id as this slave has connected to the master", then
change the native replication slave’s server_id and restart it.

• Remote capture is supported for Oracle GoldenGate on running on Linux and can support
databases running on Linux or Windows.

Capturing using a MySQL Replication Slave
You can configure a MySQL replication slave to capture the master's binary log events from
the slave.

Typically, the transactions applied by the slave are logged into the relay logs and not into the
slave's binlog. For the slave to write transactions in its binlog, that it receives from the
master , you must start the replication slave with the log-slave-updates option as 1 in
my.cnf in conjunction with the other binary logging parameters for Oracle GoldenGate. After
the master's transactions are in the slave's binlog , you can set up a regular Oracle
GoldenGate capture on the slave to capture and process the slave's binlog.

Database Character Set
MySQL provides a facility that allows users to specify different character sets at different levels.

Level Example

Database create database test charset utf8;

Table create table test(id int, name char(100)) charset utf8;

Column create table test (id int, name1 char(100) charset gbk, name2 char(100)
charset utf8));

Limitations of Support

• When you specify the character set of your database as utf8mb4/utf8, the default collation
is utf8mb4_unicode_ci/utf8_general_ci. If you specify collation_server=utf8mb4_bin,
the database interprets the data as binary. For example, specifying the CHAR column length
as four means that the byte length returned is 16 (for utf8mb4) though when you try to
insert data more than four bytes the target database warns that the data is too long. This is
the limitation of database so Oracle GoldenGate does not support binary collation. To
overcome this issue, specify collation_server=utf8mb4_bin when the character set is
utf8mb4 and collation_server=utf8_bin for UTF-8.

• The following character sets are not supported:

armscii8
keybcs2
utf16le
geostd8

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-60

Prepare Database Connection
Learn about preparing MySQL database connections from Oracle GoldenGate Classic
Architecture.

Configuring a Two-way SSL Connection in MySQL Capture and Delivery
To use the two way SSL in Oracle GoldenGate for MySQL capture and delivery, you need to
supply the full paths of the certificate authority (ca.pem), the client certificate (client-
cert.pem) and the client key (client-key.pem) files to the capture and delivery.

To know more about generating the certificate files, see:

https://dev.mysql.com/doc/refman/5.7/en/creating-ssl-rsa-files-using-mysql.html

You need to provide these paths in the Extract and Replicat parameter files using the SETENV
parameter.

Following are the SETENV environment parameters to set the two-way SSL connection:

• OGG_MYSQL_OPT_SSL_CA: Sets the full path of the certification authority.

• OGG_MYSQL_OPT_SSL_CERT: Sets the full path of the client certificate.

• OGG_MYSQL_OPT_SSL_KEY: Sets the full path of the client key.

In the following example, the MySQL SSL certificate authority, client certificate, and client key
paths are set to the Oracle GoldenGate MySQL Extract and Replicat parameter:

SETENV (OGG_MYSQL_OPT_SSL_CA='/var/lib/mysql.pem')
SETENV (OGG_MYSQL_OPT_SSL_CERT='/var/lib/mysql/client-cert.pem')
SETENV (OGG_MYSQL_OPT_SSL_KEY='/var/lib/mysql/client-key.pem')

For a MySQL user configured with X509 encryption scheme, the MySQL database requires the
ssl-key and ssl-cert options at the time of logging in. So, when an Oracle GoldenGate
credential store entry is created for this user, the SSL options in the credential store alias must
mandatorily include sslKey and sslCert regardless of sslMode used.

Preparing Tables for Processing
This section describes how to prepare the tables for processing. Table preparation requires
these tasks:

Ensuring Row Uniqueness for Tables
Oracle GoldenGate requires some form of unique row identifier on the source and target tables
to locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-61

https://dev.mysql.com/doc/refman/5.7/en/creating-ssl-rsa-files-using-mysql.html

database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use
a larger, less efficient WHERE clause.

4. If a table does not have an appropriate key, or if you prefer that the existing key(s) are not
used, you can define a substitute key, if the table has columns that always contain unique
values. You define this substitute key by including a KEYCOLS clause within the Extract
TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds. See TABLE | MAP in
Reference for Oracle GoldenGate.

How Oracle GoldenGate Determines the Kind of Row Identifier to Use

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use
a larger, less efficient WHERE clause.

Tables with a Primary Key Derived from a Unique Index

In the absence of a primary key on a table, MySQL will promote a unique index to primary key
if the indexed column is NOT NULL. If there are more than one of these not-null indexes, the first
one that was created becomes the primary key. To avoid Replicat errors, create these indexes
in the same order on the source and target tables.

For example, assume that source and target tables named ggvam.emp each have columns
named first, middle, and last, and all are defined as NOT NULL. If you create unique indexes in
the following order, Oracle GoldenGate will abend on the target because the table definitions
do not match.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-62

Source:

mysql> create unique index uq1 on ggvam.emp(first);
mysql> create unique index uq2 on ggvam.emp(middle);
mysql> create unique index uq3 on ggvam.emp(last);

Target:

mysql> create unique index uq1 on ggvam.emp(last);
mysql> create unique index uq2 on ggvam.emp(first);
mysql> create unique index uq3 on ggvam.emp(middle);

The result of this sequence is that MySQL promotes the index on the source "first" column to
primary key, and it promotes the index on the target "last" column to primary key. Oracle
GoldenGate will select the primary keys as identifiers when it builds its metadata record, and
the metadata will not match. To avoid this error, decide which column you want to promote to
primary key, and create that index first on the source and target.

How to Specify Your Own Key for Oracle GoldenGate to Use

If a table does not have one of the preceding types of row identifiers, or if you prefer those
identifiers not to be used, you can define a substitute key if the table has columns that always
contain unique values. You define this substitute key by including a KEYCOLS clause within the
Extract TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds.

Limiting Row Changes in Tables That Do Not Have a Key
If a target table does not have a primary key or a unique key, duplicate rows can exist. In this
case, Oracle GoldenGate could update or delete too many target rows, causing the source and
target data to go out of synchronization without error messages to alert you. To limit the
number of rows that are updated, use the DBOPTIONS parameter with the LIMITROWS option in
the Replicat parameter file. LIMITROWS can increase the performance of Oracle GoldenGate on
the target system because only one row is processed.

Triggers and Cascade Constraints Considerations

Triggers

Disable triggers on the target tables, or alter them to ignore changes made by the Oracle
GoldenGate database user. Oracle GoldenGate replicates DML that results from a trigger. If
the same trigger gets activated on the target table, then it becomes redundant because of the
replicated version, and the database returns an error.

Cascade Constraints Considerations

Cascading updates and deletes captured by Oracle GoldenGate are not logged in binary log,
so they are not captured. This is valid for both MySQL and MariaDB. For example, when you
run the delete statement in the parent table with a parent child relationship between tables, the
cascading deletes (if there are any) happens for child table, but they are not logged in binary
log. Only the delete or update record for the parent table is logged in the binary log and
captured by Oracle GoldenGate.

See https://mariadb.com/kb/en/replication-and-foreign-keys/ and https://dev.mysql.com/doc/
refman/8.0/en/innodb-and-mysql-replication.html for details.

To properly handle replication of cascading operations, it is recommended to disable cascade
deletes and updates on the source and code your application to explicitly delete or update the

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-63

https://mariadb.com/kb/en/replication-and-foreign-keys/
https://dev.mysql.com/doc/refman/8.0/en/innodb-and-mysql-replication.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-and-mysql-replication.html

child records prior to modifying the parent record. Alternatively, you must ensure that the target
parent table has the same cascade constraints configured as the source parent table, but this
could lead to an out-of-sync condition between source and target, especially in cases of bi-
directional replication.

Understanding What's Supported for MySQL
This chapter contains information on database and table features supported by Oracle
GoldenGate.

Database Character Set
MySQL provides a facility that allows users to specify different character sets at different levels.

Level Example

Database create database test charset utf8;

Table create table test(id int, name char(100)) charset utf8;

Column create table test (id int, name1 char(100) charset gbk, name2 char(100)
charset utf8));

Limitations of Support

• When you specify the character set of your database as utf8mb4/utf8, the default collation
is utf8mb4_unicode_ci/utf8_general_ci. If you specify collation_server=utf8mb4_bin,
the database interprets the data as binary. For example, specifying the CHAR column length
as four means that the byte length returned is 16 (for utf8mb4) though when you try to
insert data more than four bytes the target database warns that the data is too long. This is
the limitation of database so Oracle GoldenGate does not support binary collation. To
overcome this issue, specify collation_server=utf8mb4_bin when the character set is
utf8mb4 and collation_server=utf8_bin for UTF-8.

• The following character sets are not supported:

armscii8
keybcs2
utf16le
geostd8

Oracle GoldenGate for MySQL Supported Data Types
Oracle GoldenGate for MySQL supports the following data types:

• BLOB
• BIGINT
• BINARY
• BIT(M)
• CHAR
• DATE

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-64

• DATETIME
• DECIMAL
• DOUBLE
• ENUM
• FLOAT
• INT
• JSON
• LONGBLOB
• LONGTEXT
• MEDIUMBLOB
• MEDIUMINT
• MEDIUMTEXT
• SMALLINT
• TEXT
• TIME
• TIMESTAMP
• TINYBLOB
• TINYINT
• TINYTEXT
• VARBINARY
• VARCHAR
• YEAR

Limitations and Clarifications

When running Oracle GoldenGate for MySQL, be aware of the following:

• Functional indexes are not supported for Capture or Delivery.

• Oracle GoldenGate does not support BLOB or TEXT types when used as a primary key.

• Oracle GoldenGate supports a TIME type range from 00:00:00 to 23:59:59.

• Oracle GoldenGate supports timestamp data from 0001/01/03:00:00:00 to
9999/12/31:23:59:59. If a timestamp is converted from GMT to local time, these limits
also apply to the resulting timestamp. Depending on the time zone, conversion may add or
subtract hours, which can cause the timestamp to exceed the lower or upper supported
limit.

• Oracle GoldenGate does not support negative dates.

• The support of range and precision for floating-point numbers depends on the host
machine. In general, the precision is accurate to 16 significant digits, but you should review
the database documentation to determine the expected approximations. Oracle
GoldenGate rounds or truncates values that exceed the supported precision.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-65

• When you use ENUM type in non-strict sql_mode, the non-strict sql_mode does not prevent
you from entering an invalid ENUM value and an error will be returned. To avoid this
situation, do one of the following:

– Use sql_mode as STRICT and restart Extract. This prevents users from entering invalid
values for any of the data types. An IE user can only enter valid values for those data
types.

– Continue using non-strict sql_mode, but do not use ENUM data types.

– Continue using non-strict sql_mode and use ENUM data types with valid values in the
database. If you specify invalid values, the database will silently accept them and
Extract will abend.

• Table with single column is not supported for JSON datatype. Extract will abend in case it
is configured for a table which has a single column of JSON datatype.

• JSON datatype does not support CDR. The following message gets logged in the report file
if GETBEFORECOLS is configured and the table has columns of JSON datatypes:

INFO OGG-06556 The following columns will not be considered for CDR

The limtations for CDR applies to cases where the GETBEFORECOLS and COMPARECOLS are
used.

Non-Supported MySQL Data Types
Oracle GoldenGate for MySQL does not support the following data types:

All spatial types (Geometry and so on), JSON, SET, XML

Note:

Extract abends if it is configured to capture from tables that contain any of the
unsupported data types, so ensure that Extract is not configured to capture from
tables containing columns of unsupported data types.

Supported Objects and Operations for MySQL
Oracle GoldenGate for MySQL supports the following objects and operations:

• Oracle GoldenGate supports the following DML operations on source and target database
transactional tables:

– Insert operation

– Update operation (compressed included)

– Delete operation (compressed included)

– Truncate operation

• Oracle GoldenGate supports the extraction and replication of DDL (data definition
language) operations.

• Oracle GoldenGate supports transactional tables up to the full row size and maximum
number of columns that are supported by MySQL and the database storage engine that is
being used. InnoDB supports up to 1017 columns.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-66

• Generated columns are supported and captured.

• Oracle GoldenGate supports the AUTO_INCREMENT column attribute. The increment value is
captured from the binary log by Extract and applied to the target table in a Replicat insert
operation.

• Oracle GoldenGate can operate concurrently with MySQL native replication.

• Oracle GoldenGate supports the DYNSQL feature for MySQL.

Note:

XA transactions are not supported for capture and any XA transactions logged in
binlog cause Extract to abend. So, you must not use XA transactions against a
database that Extract is configured to capture.
If XA transactions are being used for databases that are not configured for
Oracle GoldenGate capture, then exclude those databases from logging into
MySQL binary logs by using the parameter binlog-ignore-db in the MySQL
server configuration file.

Limitations on Automatic Heartbeat Table support are as follows:

– Ensure that the database in which the heartbeat table is to be created already exists to
avoid errors when adding the heartbeat table.

– In the heartbeat history lag view, the information in fields like heartbeat_received_ts,
incoming_heartbeat_age, and outgoing_heartbeat_age are shown with respect to
the system time. You should ensure that the operating system time is setup with the
correct and current time zone information.

• Position by End of File (EOF) is supported in MySQL. Oracle GoldenGate Extract for
MySQL finds the position corresponding to the end of the file and starts reading
transactions from there. The EOF position is not exact, if data is continuously written to the
binary log.

The Extract is added and altered using:

ADD EXTRACT group_name, TRANLOG, EOF

ALTER EXTRACT group_name, EOF

Non-Supported Objects and Operations
Oracle GoldenGate for MySQL does not support the following objects and operations:

• Invisible columns

• The Oracle GoldenGate BATCHSQL feature.

• Array fetching during initial load.

• The following character sets are not supported:

ULIB_CS_ARMSCII8, /* American National 166-9 */
ULIB_CS_GEOSTD8, /* Geogian Standard */
ULIB_CS_KEYBCS2, /* Kemennicky MS-DOS

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-67

• Capturing NLS LOB data using the FETCHMOCOLS and FETCHMODCOLEXCEPT TABLE options is
not supported when DDL is enabled.

• Renaming tables.

• DDL statements inside stored procedures is not supported.

• When the time zone of the Oracle GoldenGate installation server does not match the time
zone of the source database server, then the TIMESTAMP data sent to the target database
will differ from the source database. For Oracle GoldenGate Microservices installations,
regardless of the time zones being the same, Extract will resolve the time zone to UTC.
Determine the source database time zone by running the following query:

select @@system_time_zone;

This will return a time zone value, such as PDT.

Create a session variable for Oracle GoldenGate, called TZ, and set it equal to the time
zone value of the database.

• Extraction and replication from and to views is not supported.

• Transactions applied by the slave are logged into the relay logs and not into the slave's
binlog. If you want a slave to write transactions the binlog that it receives from the
master , you need to start the replication slave with the log slave-updates option as 1 in
my.cnf. This is in addition to the other binary logging parameters. After the master's
transactions are in the slave's binlog, you can then setup a regular capture on the slave to
capture and process the slave's binlog.

System Schemas
The following schemas or objects are not automatically replicated by Oracle GoldenGate
unless they are explicitly specified without a wildcard.

• 'information_schema'
• 'performance_schema'
• 'mysql'
• 'sys'

Oracle
Prepare your database for Oracle GoldenGate, including configuring connections and logging,
enabling Oracle GoldenGate in your database, setting up the flashback query, and managing
server resources.

Preparing the Database for Oracle GoldenGate
Learn how to prepare your database for Oracle GoldenGate, including how to configure
connections and logging, how to enable Oracle GoldenGate in your database, how to set the
flashback query, and how to manage server resources.

Topics:

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-68

Database Requirements
Learn about the Oracle GoldenGate requirements for Oracle Database. These apply to both
the capture modes unless explicitly noted.

• Classic Extract captures all the columns by default. These behaviors do not affect like to
like replications. However, with a replication to data warehouse, all the columns might have
to be updated. If you are using the DBMS_LOB.LOADFROMFILE procedure to update a LOB
column only and your supplemental log is on all the columns, Integrated Extract captures
the key columns and LOB improving performance.

If you are converting from Classic Extract to Integrated Extract, you must use one of the
following parameters to ensure that the Extract operates correctly:

– Use KEYCOLS to add all columns (except LOB).

– Use LOGALLSUPCOLS to control the writing of supplementally logged columns.

• Ensure that your database has minimal supplemental logging enabled.

• Database user privileges and configuration requirements are explained in Oracle Database
Privileges.

• If the database is configured to use a bequeath connection, the sqlnet.ora file must
contain the bequeath_detach=true setting.

• Oracle Databases must be in ARCHIVELOG mode so that Extract can process the log files.

• Oracle Databases must be in FORCE LOGGING mode to ensure that all transactional data is
written to Redo.

• Disk space is also required for the Oracle GoldenGate Bounded Recovery feature.
Bounded Recovery is a component of the general Extract checkpointing facility. It caches
long-running open transactions to disk at specific intervals to enable fast recovery upon a
restart of Extract. At each bounded recovery interval (controlled by the BRINTERVAL option
of the BR parameter) the disk required is as follows: for each transaction with cached data,
the disk space required is usually 64k plus the size of the cached data rounded up to 64k.
Not every long-running transaction is persisted to disk. For complete information about
Bounded Recovery, see the BR parameter in Reference for Oracle GoldenGate.

Configuring Connections for Extract and Replicat Processes
Extract and Replicat require a dedicated server connection in the tnsnames.ora file.

Before you begin, make sure that there is a dedicated user on the Oracle database side, with
the required privileges. See Grant User Privileges for Oracle Database for Oracle GoldenGate
Classic Architecture.

On the Oracle GoldenGate side, you direct the Extract and Replicat processes to use these
connections by specifying the values for USERID or USERIDALIAS parameter in the Extract and
Replicat parameter files.

The following are the security options for specifying the connection string in the Extract or
Replicat parameter file.

Credential store method:

USERIDALIAS ggeast

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-69

In the case of USERIDALIAS, the alias ggeast is stored in the Oracle GoldenGate credential
store with the actual connection string. The following example uses the INFO CREDENTIALSTORE
command to display the details of the credentials configured in Oracle GoldenGate:

INFO CREDENTIALSTORE DOMAIN OracleGoldenGate

Output:

Domain: OracleGoldenGate
 Alias: ggeast
 Userid: ggadmin@dc1.example.com:1521/DBEAST.example.com

Setting up a Bequeath connection

Oracle GoldenGate can connect to a database instance without using the network listener if a
Bequeath connect descriptor is added in the tnsnames.ora.

The following example shows the configuration for connecting to a database using Bequeath
connect descriptor:

dbbeq = (DESCRIPTION=
 (ADDRESS=(PROTOCOL=beq)
 (ENVS='ORACLE_SID=sales,ORACLE_HOME=/app/db_home/
oracle,LD_LIBRARY_PATH=/app/db_home/oracle/lib')
 (PROGRAM=/app/db_home/oracle/bin/oracle)
 (ARGV0=oraclesales)
 (ARGS='(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))'))
 (CONNECT_DATA=(SID=sales)))

In this example:

/app/db_home is the target Oracle database installation directory

sales is the database service name

The ORACLE_SID, ORACLE_HOME, and LD_LIBRARY_PATH in the ENVS parameter refers to the
target.

Note:

Make sure that there is no white space between these environment variable settings.

Configuring Oracle GoldenGate in a Multitenant Container Database
This chapter contains additional configuration instructions when configuring Oracle
GoldenGate using the per-PDB capture mode or the CDB root capture mode.

Using the Root Container Extract from PDB

To capture from a multitenant database, you must use an Extract that is configured at the root
level using a c## account. To apply data into a multitenant database, a separate Replicat is
needed for each PDB, because a Replicat connects at the PDB-level and doesn't have access
to objects outside of that PDB

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-70

One Extract group can capture from multiple pluggable databases to a single trail. In the
parameter file, source objects must be specified in TABLE and SEQUENCE statements with their
fully qualified three-part names in the format of container.schema.object.

As an alternative to specifying three-part names, you can specify a default pluggable database
with the SOURCECATALOG parameter, and then specify only the schema.object in subsequent
TABLE or SEQUENCE parameters. You can use multiple instances of this configuration to handle
multiple source pluggable databases. For example:

SOURCECATALOG pdb1
TABLE phoenix.tab;
SEQUENCE phoenix.seq;
SOURCECATALOG pdb2
TABLE dallas.tab;
SEQUENCE dallas.seq;

Applying to Pluggable Databases

Replicat can only connect and apply to one pluggable database. To specify the correct one,
use a SQL*Net connect string for the database user that you specify with the USERID or
USERIDALIAS parameter. For example: GGADMIN@FINANCE. In the parameter file, specify only the
schema.object in the TARGET portion of the MAP statements. In the MAP portion, identify source
objects captured from more than one pluggable database with their three-part names or use
the SOURCECATALOG parameter with two-part names. The following is an example of this
configuration.

SOURCECATALOG pdb1
MAP schema_1.tab, TARGET 1;
MAP schema_1.seq, TARGET 1;
SOURCECATALOG pdb2
MAP schema_2.tab, TARGET 2;
MAP schema_2.seq, TARGET 2;

The following is an example without the use of SOURCECATALOG to identify the source pluggable
database. In this case, the source objects are specified with their three-part names.

MAP pdb1.schema_1.tab, TARGET 1;
MAP pdb1.schema_1.seq, TARGET 1;

To configure replication from multiple source pluggable databases to multiple target pluggable
databases, you can configure parallel Extract and Replicat streams, each handling data for one
pluggable database. Alternatively, you can configure one Extract capturing from multiple
source pluggable databases, which writes to one trail that is read by multiple Replicat groups,
each applying to a different target pluggable database. Yet another alternative is to use one
Extract writing to multiple trails, each trail read by a Replicat assigned to a specific target
pluggable database :

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-71

Excluding Objects from the Configuration

To exclude pluggable databases, schemas, and objects from the configuration, you can use
the CATALOGEXCLUDE, SCHEMAEXCLUDE, TABLEEXCLUDE, MAPEXCLUDE, and
EXCLUDEWILDCARDOBJECTSONLY parameters.

Requirements for Configuring Container Databases for Oracle GoldenGate

This topic describes the special requirements that apply to replication to and from multitenant
container databases.

The requirements are:

• The different pluggable databases in the multitenant container database can have different
character sets. Oracle GoldenGate captures data from any multitenant database with
different character sets into one trail file and replicates the data without corruption due to
using different character sets.

• Extract must operate in integrated capture mode. See Deciding Which Extract Method to
Use for more information about Extract capture modes. Replicat can operate in any of its
modes.

• Extract must connect to the root container (cdb$root) as a common user in order to
interact with the logmining server. To specify the root container, use the appropriate
SQL*Net connect string for the database user that you specify with the USERID or
USERIDALIAS parameter. For example: C##GGADMIN@FINANCE. See Establishing Oracle
GoldenGate Credentials for how to create a user for the Oracle GoldenGate processes
and grant the correct privileges.

• To support source CDB 12.2, Extract must specify the trail format as release 12.3. Due to
changes in the redo logs, to capture from a multitenant database that is Oracle 12.2 or
higher, the trail format release must be 12.3 or higher.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-72

• The dbms_goldengate_auth.grant_admin_privilege package grants the appropriate
privileges for capture and apply within a multitenant container database. This includes the
container parameter, which must be set to ALL, as shown in the following example:

exec dbms_goldengate_auth.grant_admin_privilege('C##GGADMIN',container=>'all')
• DDL replication works as a normal replication for multitenant databases. However, DDL on

the root container should not be replicated because Replicats must not connect to the root
container, only to PDBs.

Configuring Logging Properties
Oracle GoldenGate relies on the redo logs to capture the data that it needs to replicate source
transactions, and these redo logs on the source system must be configured properly before
you start Oracle GoldenGate processing.

This section addresses the following logging levels that apply to Oracle GoldenGate. The
logging level that you use depends on Oracle GoldenGate features that you are using.

Note:

Redo volume is increased as the result of this required logging. You can wait until
you are ready to start Oracle GoldenGate processing to enable the logging.

This table shows the Oracle GoldenGate use cases for the different logging properties.

Logging option Command What it does Use case

Forced logging mode ALTER DATABASE
FORCE LOGGING;

Forces the logging of all
transactions and loads.

Strongly recommended
for all Oracle
GoldenGate use cases.
FORCE LOGGING
overrides any table-level
NOLOGGING settings.

Minimum database-level
supplemental logging

ALTER DATABASE ADD
SUPPLEMENTAL LOG
DATA

Enables minimal
supplemental logging to
add row-chaining
information to the redo
log.

Required for all Oracle
GoldenGate use cases

Schema-level
supplemental logging,
default setting

See Enabling Schema-
level Supplemental
Logging.

ADD SCHEMATRANDATA Enables unconditional
supplemental logging of
the primary key and
conditional supplemental
logging of unique key(s)
and foreign key(s) of all
tables in a schema. All of
these keys together are
known as the scheduling
columns.

Enables the logging for
all current and future
tables in the schema. If
the primary key, unique
key, and foreign key
columns are not identical
at both source and
target, use ALLCOLS.
Required when using
DDL support.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-73

Logging option Command What it does Use case

Schema-level
supplemental logging
with unconditional
logging for all supported
columns. (See Enabling
Schema-level
Supplemental Logging
for non-supported
column types.)

ADD SCHEMATRANDATA
with ALLCOLS option

Enables unconditional
supplemental logging of
all of the columns in a
table, for all of the tables
in a schema.

Used for bidirectional
and active-active
configurations where all
column values are
checked, not just the
changed columns, when
attempting to perform an
update or delete. This
takes more resources
though allows for the
highest level of real-time
data validation and thus
conflict detection.

This method should also
be used if they are going
to be using the
HANDLECOLLISIONS
parameter for initial
loads.

Schema-level
supplemental logging,
minimal setting

ADD SCHEMATRANDATA
with
NOSCHEDULINGCOLS
option

Enables unconditional
supplemental logging of
the primary key and all
valid unique indexes of
all tables in a schema.

Use only for
nonintegrated Replicat.
This is the minimum
required schema-level
logging.

Table-level supplemental
logging with built-in
support for integrated
Replicat

See Enabling Table-level
Supplemental Logging

ADD TRANDATA Enables unconditional
supplemental logging of
the primary key and
conditional supplemental
logging of unique key(s)
and foreign key(s) of a
table. All of these keys
together are known as
the scheduling columns.

Required for all Oracle
GoldenGate use cases
unless schema-level
supplemental logging is
used. If the primary key,
unique key, and foreign
key columns are not
identical at both source
and target, use
ALLCOLS.

Table-level supplemental
logging with
unconditional logging for
all supported columns.
(See Enabling Table-
level Supplemental
Logging for non-
supported column
types.)

ADD TRANDATA with
ALLCOLS option

Enables unconditional
supplemental logging of
all of the columns of the
table.

Used for bidirectional
and active-active
configurations where all
column values are
checked, not just the
changed columns, when
attempting to perform an
update or delete. This
takes more resources
though allows for the
highest level of real-time
data validation and thus
conflict detection.

It can also be used when
the source and target
primary, unique, and
foreign keys are not the
same or are constantly
changing between
source and target.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-74

Logging option Command What it does Use case

Table-level supplemental
logging, minimal setting

ADD TRANDATA with
NOSCHEDULINGCOLS
option

Enables unconditional
supplemental logging of
the primary key and all
valid unique indexes of a
table.

Use for nonintegrated
Replicat and non-parallel
Replicat. This is the
minimum required table-
level logging.

Note:

Oracle Databases must be in ARCHIVELOG mode so that Extract can process the log
files.

Enabling Subset Database Replication Logging

Oracle strongly recommends putting the Oracle source database into forced logging mode.
Forced logging mode forces the logging of all transactions and loads, overriding any user or
storage settings to the contrary. This ensures that no source data in the Extract configuration
gets missed.

There is a fine-granular database supplemental logging mode called Subset Database
Replication available in LogMiner, which is the basic recommended mode for all Oracle
GoldenGate and XStream clients. It replaces the previously used Minimum Supplemental
Logging mode.

To know more, see ALTER DATABASE in the Oracle Database SQL Language Reference.

The subset database replication logging is enabled at CDB$ROOT (and all user-PDBs inherit it)
currently.

Note:

Database-level primary key (PK) and unique index (UI) logging is only discouraged if
you are replicating a subset of tables. You can use it with Live Standby, or if Oracle
GoldenGate is going to replicate all tables, like to reduce the downtime for a
migration or upgrade.

Perform the following steps to verify and enable, if necessary, subset database replication
logging and forced logging.

1. Log in to SQL*Plus as a user with ALTER SYSTEM privilege.

2. Issue the following command to determine whether the database is in supplemental
logging mode and in forced logging mode. If the result is YES for both queries, the database
meets the Oracle GoldenGate requirement.

SELECT SUPPLEMENTAL_LOG_DATA_MIN, FORCE_LOGGING FROM V$DATABASE;

3. If the result is NO for either or both properties, continue with these steps to enable them as
needed:

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-75

https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/ALTER-DATABASE.html#GUID-8069872F-E680-4511-ADD8-A4E30AF67986

ALTER PLUGGABLE DATABASE pdbname ADD SUPPLEMENTAL LOG DATA SUBSET DATABASE
REPLICATION;;
ALTER DATABASE FORCE LOGGING;

4. Issue the following command to verify that these properties are now enabled.

SELECT SUPPLEMENTAL_LOG_DATA_MIN, FORCE_LOGGING FROM V$DATABASE;

The output of the query must be YES for both properties.

5. Switch the log files.

ALTER SYSTEM SWITCH LOGFILE;

To perform dictionary validation, run the following command:

SELECT con_id, MINIMAL, SUBSET_REP, PRIMARY_KEY, UNIQUE_INDEX, FOREIGN_KEY,
ALL_COLUMN FROM CDB_SUPPLEMENTAL_LOGGING;

The output of this query should be YES.

SUBSET_REP = YES

For the following query:

SELECT NAME, LOG_MODE, FORCE_LOGGING, SUPPLEMENTAL_LOG_DATA_MIN,
SUPPLEMENTAL_LOG_DATA_PK PK, SUPPLEMENTAL_LOG_DATA_UI UI,
SUPPLEMENTAL_LOG_DATA_FK FK,
SUPPLEMENTAL_LOG_DATA_ALL,
SUPPLEMENTAL_LOG_DATA_SR FROM V$DATABASE;

For the query for SUPPLEMENTAL_LOG_DATA_SR the output should be YES and for
SUPPLEMENTAL_LOG_DATA_MIN the output should be IMPLICIT.

To switch from earlier minimum supplemental logging to the new subset supplemental logging:

1. Drop the earlier higher levels on CDB$ROOT.

ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA;

2. Add only subset database replication mode:

ALTER PLUGGABLE DATABASE pdbname ADD SUPPLEMENTAL LOG DATA SUBSET DATABASE
REPLICATION;

3. Ensure that all PDBs inherit this subset database replication mode.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-76

Enabling Schema-level Supplemental Logging

Oracle GoldenGate supports schema-level supplemental logging. Schema-level logging is
required for an Oracle source database when using the Oracle GoldenGate DDL replication
feature. In all other use cases, it is optional, but then you must use table-level logging instead.

By default, schema-level logging automatically enables unconditional supplemental logging of
the primary key and conditional supplemental logging of unique key(s) and foreign key(s) of all
tables in a schema. Options enable you to alter the logging as needed.

Note:

Oracle strongly recommends using schema-level logging rather than table-level
logging, because it ensures that any new tables added to a schema are captured if
they satisfy wildcard specifications. This method is also recommended because any
changes to key columns are automatically reflected in the supplemental log data too.
For example, if a key changes, there is no need to issue ADD TRANDATA.

Perform the following steps on the source system to enable schema-level supplemental
logging.

1. Start the command line on the source system.

2. Issue the DBLOGIN command with the alias of a user in the credential store who has
privilege to enable schema-level supplemental logging.

DBLOGIN USERIDALIAS alias

See USERIDALIAS in Reference for Oracle GoldenGate for more information about
USERIDALIAS and additional options.

3. When using ADD SCHEMATRANDATA or ADD TRANDATA on a multitenant database, you can
either log directly into the PDB and perform the command. Alternately, if you are logging in
at the root level (using a C## user), then you must include the PDB. Issue the ADD
SCHEMATRANDATA command for each schema for which you want to capture data changes
with Oracle GoldenGate.

ADD SCHEMATRANDATA pdb.schema [ALLCOLS | NOSCHEDULINGCOLS]

Where:

• Without options, ADD SCHEMATRANDATA schema enables the unconditional supplemental
logging on the source system of the primary key and the conditional supplemental
logging of all unique key(s) and foreign key(s) of all current and future tables in the
given schema. Unconditional logging forces the primary key values to the log whether
or not the key was changed in the current operation. Conditional logging logs all of the
column values of a foreign or unique key if at least one of them was changed in the
current operation. The default is optional to support nonintegrated Replicat but is
required to support integrated Replicat because primary key, unique keys, and foreign
keys must all be available to the inbound server to compute dependencies. For more
information about integrated Replicat, see Deciding Which Replicat Method to Use.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-77

• ALLCOLS can be used to enable the unconditional supplemental logging of all of the
columns of a table and applies to all current and future tables in the given schema.
Use to support integrated Replicat when the source and target tables have different
scheduling columns. (Scheduling columns are the primary key, the unique key, and the
foreign key.)

• NOSCHEDULINGCOLS logs only the values of the primary key and all valid unique indexes
for existing tables in the schema and new tables added later. This is the minimal
required level of schema-level logging and is valid only for Replicat in nonintegrated
mode.

In the following example, the command enables default supplemental logging for the hr
schema.

ADD SCHEMATRANDATA pdbeast.hr ALLCOLS

In the following example, the command enables the supplemental logging only for the
primary key and valid unique indexes for the HR schema.

ADD SCHEMATRANDATA pdbeast.hr NOSCHEDULINGCOLS

Enabling Table-level Supplemental Logging

Enable table-level supplemental logging on the source system in the following cases:

• To enable the required level of logging when not using schema-level logging (see Enabling
Schema-level Supplemental Logging). Either schema-level or table-level logging must be
used. By default, table-level logging automatically enables unconditional supplemental
logging of the primary key and conditional supplemental logging of unique key(s) and
foreign key(s) of a table. Options enable you to alter the logging as needed.

• To prevent the logging of the primary key for any given table.

• To log non-key column values at the table level to support specific Oracle GoldenGate
features, such as filtering and conflict detection and resolution logic.

• If the key columns change on a table that only has table-level supplemental logging, you
must perform ADD TRANDATA on the table prior to allowing any DML activity on the table.

Perform the following steps on the source system to enable table-level supplemental logging or
use the optional features of the command.

1. Run the command line on the source system.

2. Issue the DBLOGIN command using the alias of a user in the credential store who has
privilege to enable table-level supplemental logging.

DBLOGIN USERIDALIAS alias

See USERIDALIAS in Reference for Oracle GoldenGatefor more information about DBLOGIN
and additional options.

3. Issue the ADD TRANDATA command.

ADD TRANDATA [PDB.]schema.table [, COLS (columns)] [, NOKEY] [, ALLCOLS |
NOSCHEDULINGCOLS]

Where:

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-78

• PDB is the name of the root container or pluggable database if the table is in a
multitenant container database.

• schema is the source schema that contains the table.

• table is the name of the table. See Specifying Object Names in Oracle GoldenGate
Input for instructions for specifying object names.

• ADD TRANDATA without other options automatically enables unconditional supplemental
logging of the primary key and conditional supplemental logging of unique key(s) and
foreign key(s) of the table. Unconditional logging forces the primary key values to the
log whether or not the key was changed in the current operation. Conditional logging
logs all of the column values of a foreign or unique key if at least one of them was
changed in the current operation. The default is optional to support nonintegrated
Replicat (see also NOSCHEDULINGCOLS) but is required to support integrated Replicat
because primary key, unique keys, and foreign keys must all be available to the
inbound server to compute dependencies. For more information about integrated
Replicat, see Deciding Which Replicat Method to Use.

• ALLCOLS enables the unconditional supplemental logging of all of the columns of the
table. Use to support integrated Replicat when the source and target tables have
different scheduling columns. (Scheduling columns are the primary key, the unique
key, and the foreign key.)

• NOSCHEDULINGCOLS is valid for Replicat in nonintegrated mode only. It issues an ALTER
TABLE command with an ADD SUPPLEMENTAL LOG DATA ALWAYS clause that is
appropriate for the type of unique constraint that is defined for the table, or all columns
in the absence of a unique constraint. This command satisfies the basic table-level
logging requirements of Oracle GoldenGate when schema-level logging will not be
used. See Ensuring Row Uniqueness in Source and Target Tables for how Oracle
GoldenGate selects a key or index.

• COLS columns logs non-key columns that are required for a KEYCOLS clause or for
filtering and manipulation. The parentheses are required. These columns will be
logged in addition to the primary key unless the NOKEY option is also present.

• NOKEY prevents the logging of the primary key or unique key. Requires a KEYCOLS
clause in the TABLE and MAP parameters and a COLS clause in the ADD TRANDATA
command to log the alternate KEYCOLS columns.

4. If using ADD TRANDATA with the COLS option, create a unique index for those columns on the
target to optimize row retrieval. If you are logging those columns as a substitute key for a
KEYCOLS clause, make a note to add the KEYCOLS clause to the TABLE and MAP statements
when you configure the Oracle GoldenGate processes.

Enabling Oracle GoldenGate in the Database
The database services required to support Oracle GoldenGate capture and apply must be
enabled explicitly for all Oracle database versions. This is required for Extract and all Replicat
modes.

To enable Oracle GoldenGate, set the following database initialization parameter. All instances
in Oracle RAC must have the same setting.

ENABLE_GOLDENGATE_REPLICATION=true

This parameter alters the DBA_FEATURE_USAGE_STATISTICS view. For more information about
this parameter, see Initialization Parameters.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-79

Setting Flashback Query
To process certain update records, Extract fetches additional row data from the source
database.

Oracle GoldenGate fetches data for the following:

• User-defined types

• Nested tables

• XMLType objects

By default, Oracle GoldenGate uses Flashback Query to fetch the values from the undo
(rollback) tablespaces. That way, Oracle GoldenGate can reconstruct a read-consistent row
image as of a specific time or SCN to match the redo record.

For best fetch results, configure the source database as follows:

1. Set a sufficient amount of redo retention by setting the Oracle initialization parameters
UNDO_MANAGEMENT and UNDO_RETENTION as follows (in seconds).

UNDO_MANAGEMENT=AUTO

UNDO_RETENTION=86400

UNDO_RETENTION can be adjusted upward in high-volume environments.
2. Calculate the space that is required in the undo tablespace by using the following formula.

undo_space = UNDO_RETENTION * UPS + overhead

Where:

• undo_space is the number of undo blocks.

• UNDO_RETENTION is the value of the UNDO_RETENTION parameter (in seconds).

• UPS is the number of undo blocks for each second.

• overhead is the minimal overhead for metadata (transaction tables, etc.).

Use the system view V$UNDOSTAT to estimate UPS and overhead.

3. For tables that contain LOBs, do one of the following:

• Set the LOB storage clause to RETENTION. This is the default for tables that are created
when UNDO_MANAGEMENT is set to AUTO.

• If using PCTVERSION instead of RETENTION, set PCTVERSION to an initial value of 25. You
can adjust it based on the fetch statistics that are reported with the STATS EXTRACT
command. If the value of the STAT_OPER_ROWFETCH CURRENTBYROWID or
STAT_OPER_ROWFETCH_CURRENTBYKEY field in these statistics is high, increase
PCTVERSION in increments of 10 until the statistics show low values.

4. Grant either of the following privileges to the Oracle GoldenGate Extract user:

GRANT FLASHBACK ANY TABLE TO db_user

GRANT FLASHBACK ON schema.table TO db_user
Oracle GoldenGate provides the following parameters to manage fetching.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-80

Parameter or Command Description

STATS EXTRACT command
with REPORTFETCH option

Shows Extract fetch statistics on demand.

STATOPTIONS parameter
with REPORTFETCH option

Sets the STATS EXTRACT command so that it always shows fetch
statistics.

MAXFETCHSTATEMENTS
parameter

Controls the number of open cursors for prepared queries that Extract
maintains in the source database, and also for SQLEXEC operations.

MAXFETCHSTATEMENTS
parameter

Controls the default fetch behavior of Extract: whether Extract performs a
flashback query or fetches the current image from the table.

FETCHOPTIONS parameter
with the
USELATESTVERSION or
NOUSELATESTVERSION
option

Handles the failure of an Extract flashback query, such as if the undo
retention expired or the structure of a table changed. Extract can fetch the
current image from the table or ignore the failure.

REPFETCHEDCOLOPTIONS
parameter

Controls the response by Replicat when it processes trail records that
include fetched data or column-missing conditions.

Managing Server Resources
Extract interacts with an underlying logmining server in the source database and Replicat
interacts with an inbound server in the target database. This section provides guidelines for
managing the shared memory consumed by the these servers.

The shared memory that is used by the servers comes from the Streams pool portion of the
System Global Area (SGA) in the database. Therefore, you must set the database initialization
parameter STREAMS_POOL_SIZE high enough to keep enough memory available for the number
of Extract and Replicat processes that you expect to run in integrated mode. Note that Streams
pool is also used by other components of the database (like Oracle Streams, Advanced
Queuing, and Datapump export/import), so make certain to take them into account while sizing
the Streams pool for Oracle GoldenGate.

By default, one Extract requests the logmining server to run with MAX_SGA_SIZE of 1GB. Thus, if
you are running three Extracts in the same database instance, you need at least 3 GB of
memory allocated to the Streams pool. As a best practice, keep 25 percent of the Streams pool
available. For example, if there are 3 Extracts, set STREAMS_POOL_SIZE for the database to the
following value:

3 GB * 1.25 = 3.75 GB

Ensuring Row Uniqueness in Source and Target Tables
Oracle GoldenGate requires a unique row identifier on the source and target tables to locate
the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority, depending on the number and type of
constraints that were logged (see Configuring Logging Properties).

1. Primary key if it does not contain any extended (32K) VARCHAR2/NVARCHAR2 columns.
Primary key without invisible columns.

2. Unique key: Unique key without invisible columns.

In the case of a non-integrated Replicat, the selection of the unique key is as follows:

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-81

• First unique key alphanumerically with no virtual columns, no UDTs, no function-based
columns, no nullable columns, and no extended (32K) VARCHAR2/NVARCHAR2 columns.
To support a key that contains columns that are part of an invisible index, you must
use the ALLOWINVISIBLEINDEXKEYS parameter in the Oracle GoldenGate GLOBALS file.

• First unique key alphanumerically with no virtual columns, no UDTs, no extended (32K)
VARCHAR2/NVARCHAR2 columns, or no function-based columns, but can include nullable
columns. To support a key that contains columns that are part of an invisible index, you
must use the ALLOWINVISIBLEINDEXKEYS parameter in the Oracle GoldenGate GLOBALS
file.

3. Not Nullable Unique keys: At least one column from one of the unique keys must be not
nullable. This is because NOALLOWNULLABLEKEYS is the default.

Note:

ALLOWNULLABLEKEYS is not valid for integrated Replicat.

4. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding virtual columns, UDTs, function-
based columns, extended (32K) VARCHAR2/NVARCHAR2 columns, and any columns that are
explicitly excluded from the Oracle GoldenGate configuration by an Oracle GoldenGate
user.

Unless otherwise excluded due to the preceding restrictions, invisible columns are allowed
in the pseudo key.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use a
larger, less efficient WHERE clause.

If a table does not have an appropriate key, or if you prefer the existing key(s) not to be used,
you can define a substitute key if the table has columns that always contain unique values. You
define this substitute key by including a KEYCOLS clause within the Extract TABLE parameter and
the Replicat MAP parameter. The specified key will override any existing primary or unique key
that Oracle GoldenGate finds. For more information, see Reference for Oracle GoldenGate.

Establishing Oracle GoldenGate Credentials
Learn how to create database users for the processes that interacts with the database, assign
the correct privileges, and secure the credentials from unauthorized use.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-82

Assigning Credentials to Oracle GoldenGate
The Oracle GoldenGate processes require one or more database credentials with the correct
database privileges for the database version, database configuration, and Oracle GoldenGate
features that you are using.

Create users for the source and target database instances, each one dedicated to Oracle
GoldenGate. The assigned user can be the same user for all the Oracle GoldenGate
processes that must connect to a source or target Oracle Database.

See ALTER CREDENTIALSTORE command usage to manage credentials in a credential store for
Oracle GoldenGate users.

Oracle GoldenGate Users (Database)
A user is required in the source database for the Manager process if you are using Oracle
GoldenGate DDL support. This user performs maintenance on the Oracle GoldenGate
database objects that support DDL capture.

A user is required in either the source or target database for the DEFGEN utility. The location
depends on where the data definition file is being generated. This user performs local
metadata queries to build a data-definitions file that supplies the metadata to remote Oracle
GoldenGate instances.

Additional users or privileges may be required to use the following features, if Extract will run in
classic capture mode:

• RMAN log retention, see Log Retention Options.

• TDE support, see Configuring Oracle TDE Data in Classic Capture Mode.

• ASM, see Mining ASM-stored Logs in Classic Capture Mode.

Grant User Privileges for Oracle Database for Oracle GoldenGate Classic Architecture

The user privileges that are required for connecting to Oracle database from Oracle
GoldenGate depend on the type of user.

The user privileges that are required for connecting to Oracle database from Oracle
GoldenGate depend on the type of user.

Privileges should be granted depending on the actions that the user needs to perform as the
GoldenGate Administrator User on the source and target databases. For example, to grant
DML operation privileges to insert, update, and delete transactions to a user, use the GRANT
ANY INSERT/UPDATE/DELETE privileges and to further allow users to work with tables and
indexes as part of DML operations, use the GRANT CREATE/DROP/ALTER ANY TABLE/INDEX
privileges.

If the GoldenGate Administrator user has the DBA role, additional object privileges are not
needed. However, there might be security constraints granting the DBA role to the GoldenGate
Administration user. The DBA role is not necessarily required for Oracle GoldenGate.

If there are many objects being replicated, you might consider using the ANY privilege for DML
and DDL operations. This simplifies the provision of privileges to the GoldenGate Administrator
users, as you only need to grant a few privileges depending on the database operations.

The following table describes some of the essential privileges for GoldenGate Administrator
user for Oracle database. For explanation purposes, the table uses c##ggadmin as an example

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-83

of a common user for a multitenant container database and ggadmin as the pluggable
database (PDB) user. PDBEAST and PDBWEST are used as examples of PDB names.

The following table describes the essential privileges for GoldenGate Administrator user for
using Oracle GoldenGate with on source and target Oracle databases:

Privilege Extract Replicat All
Modes

Purpose

RESOURCE Yes Yes Required to create objects

In Oracle Database 12cR1 and
later, instead of RESOURCE, grant
the following privilege:

ALTER USER user QUOTA
{size | UNLIMITED} ON
tablespace;

CONNECT Yes Yes Common user SYSTEM connects to
the root container. This privilege is
essential when the DBA role is not
assigned to the user.

CREATE SESSION Yes Yes Required to connect to the
database.

CREATE VIEW Yes Yes Required to add the heartbeat table
view.

If you want to be specific to each
object, you can also provide the
privileges for each object
individually. You may consider
creating a specific database role to
maintain such privileges.

ALTER SYSTEM Yes Yes Perform administrative changes,
such as enabling logging.

ALTER USER Yes Yes Required for multitenant
architecture and GGADMIN should
be a valid Oracle GoldenGate
administrator schema.

EXEC
DBMS_GOLDENGATE_AUTH.GRANT_
ADMIN_PRIVILEGE ('REPUSER',
CONTAINER=>'PDBEAST');

Yes Yes • Required for Oracle
Autonomous Database Extract
and Replicat. Extracts in the
root container (CDB$ROOT))
might require a value of ALL or
a specific PDB (example:
pdbeast).

• Grant privileges for Extract and
Replicat users.

• Grant privilges to capture from
Virtual Private Database

• Grants privilges to capture
redacted data

INSERT, UPDATE, DELETE on target
tables

NA Yes Apply replicated DML to target
objects. See Details of Support for
Objects and Operations in Oracle
DML

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-84

Privilege Extract Replicat All
Modes

Purpose

GRANT INSERT ANY TO...

GRANT UPDATE ANY TO...

GRANT DELETE ANY TO...

NA Yes Grant these privileges to the
Replicat user, instead of granting
INSERT, UPDATE, DELETE to every
table, if replicating every table.

DDL privileges on target objects (if
using DDL support)

NA Yes Issue replicated DDL on target
objects. See Details of Support for
Objects and Operations in Oracle
DDL.

GRANT [CREATE|ALTER|DROP]
ANY [TABLE|INDEX|VIEW|
PROCEDURE] to GGADMIN;

Yes Yes Grants privileges for DDL
Replication for tables.

CREATE ANY TABLE Yes Yes Grants privileges for creating table
in any schema. To allow creating
tables only in a specific schema,
use the CREATE TABLE privilege.

CREATE ANY VIEW Yes Yes Grants privilges to create view in
any database schema. To allow
creating views in a specific
schema, use the CREATE VIEW
privilege.

SELECT ANY DICTIONARY
Yes Yes Allow all privileges to work properly

on dictionary tables.

Example: Permissions granted for the Oracle database common user

Privilges granted for the Oracle database common user, which is c##ggadmin in the following
example:

CREATE USER c##ggadmin IDENTIFIED BY passw0rd CONTAINER=all DEFAULT
TABLESPACE GG_DATA TEMPORARY TABLESPACE temp;
GRANT RESOURCE to c##ggadmin;
GRANT CREATE SESSION to c##ggadmin;
GRANT CREATE VIEW to c##ggadmin;
GRANT CREATE TABLE to c##ggadmin;
GRANT CONNECT to c##ggadmin CONTAINER=all;
GRANT DV_GOLDENGATE_ADMIN; –-- for data vault user
GRANT DV_GOLDENGATE_REDO_ACCESS; –-- for data vault user
GRANT ALTER SYSTEM to c##ggadmin;
GRANT ALTER USER to c##ggadmin;
ALTER USER c##ggadmin SET CONTAINER_DATA=all CONTAINER=current;
ALTER USER c##ggadmin QUOTA unlimited ON GG_DATA;
GRANT SELECT ANY DICTIONARY to c##ggadmin;
GRANT SELECT ANY TRANSACTION to c##ggadmin;
EXEC DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE('c##ggadmin');

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-85

In this example, DBA privilege is not provided but the user will be able to access the
DBA_SYS_PRIVS package, if required.

Privileges granted for PDB user ggadmin are provided in the following example:

Example: Grant privileges using the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE package

This procedure grants the privileges needed by a user to be an Oracle GoldenGate
administrator The following example grants explicit privileges for Extract on Oracle multitenant
database:

BEGIN
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE
(GRANTEE => 'c##ggadmin', PRIVILEGE_TYPE => 'CAPTURE',
 GRANT_SELECT_PRIVILEGES => TRUE, DO_GRANTS => TRUE, CONTAINER => 'ALL');
END;

See DBMS_GOLDENGATE_AUTH in Oracle Database PL/SQL Packages and Types Reference for
more information.

Oracle Database Privileges
The following privileges apply to Oracle database.

Privilege Extract Replicat All
Modes

Purpose

CREATE SESSION No No Connect to the database

CREATE VIEW No No Required to add the heartbeat table
view.

RESOURCE No No Create objects.

In Oracle Database 12cR1 and
later, instead of RESOURCE, grant
the following privilege:

ALTER USER user QUOTA {size
| UNLIMITED} ON tablespace;

ALTER SYSTEM No No Perform administrative changes,
such as enabling logging.

ALTER USER No No Required for multitenant
architecture and GGADMIN should
be a valid Oracle GoldenGate
administrator schema.

EXEC
DBMS_GOLDENGATE_AUTH.GRANT_
ADMIN_PRIVILEGE ('REPUSER',
CONTAINER=>'PDB1');

Yes Yes This is required for Autonomous
Databases (ATP and ADW) Extract
and Replicat. Extracts in the Root
container (CDB$ROOT)) might
require a value of ALL or a specific
PDB.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-86

Privilege Extract Replicat All
Modes

Purpose

Privileges granted through
DBMS_GOLDENGATE_AUTH.GRANT_
ADMIN_PRIVILEGE

No No (Extract) Grants privileges for
Extract, including the logmining
server.

(Replicat) Grants privileges for both
non-integrated and integrated
Replicat, including the database
inbound server.

Any or all of optional privileges of
DBMS_GOLDENGATE_AUTH.GRANT_
ADMIN_PRIVILEGE

No No • Capture from Virtual Private
Database

• Capture redacted data

Grant the following privileges
connected as SYS user to Extract
and Replicat users:

EXEC
DBMS_GOLDENGATE_AUTH.GRANT_
ADMIN_PRIVILEGE('ggadmin
user','*',GRANT_OPTIONAL_PR
IVILEGES=>'*');
GRANT DV_GOLDENGATE_ADMIN,
DV_GOLDENGATE_REDO_ACCESS
to 'ggadmin user';

No No Capture from Data Vault

Grant Replicat the privileges in
DBMS_MACADM.ADD_AUTH_TO_REA
LM if applying to a realm.

Connect as Database Vault
owner and execute the
following sctipts,
BEGIN
DVSYS.DBMS_MACADM.ADD_AUTH_
TO_REALM(REALM_NAME =>
'Oracle Default Component
Protection Realm',GRANTEE
=> 'GGADMIN
USER',AUTH_OPTIONS => 1) ;
END ;
/
EXECUTE
DBMS_MACADM.AUTHORIZE_DDL('
SYS', 'SYSTEM');

No No Capture from Data Vault

If DDL replication is performed,
grant the following as Database
Vault owner:

EXECUTE
DBMS_MACADM.AUTHORIZE_DDL
(‘GGADMIN USER', ‘SCHEMA
FOR DDL’);

No No Capture from Data Vault

INSERT, UPDATE, DELETE on target
tables

NA No Apply replicated DML to target
objects

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-87

Privilege Extract Replicat All
Modes

Purpose

GRANT INSERT ANY TO...,
GRANT UPDATE ANY TO... and
GRANT DELETE ANY TO...

NA No Use these privileges for the
Replicat user, instead of granting
INSERT, UPDATE, DELETE to every
table, if replicating every table.

DDL privileges on target objects (if
using DDL support)

NA No Issue replicated DDL on target
objects

LOCK ANY TABLE NA No Lock target tables. Only required
for initial load using direct bulk load
to SQL*Loader.

SELECT ANY DICTIONARY No No Allow all privileges to work properly
on dictionary tables.

SELECT ANY TRANSACTION No NA Use a newer Oracle ASM API.

Here's an example of the list of permissions granted for the Oracle database root container:

DROP USER c##ggadmin CASCADE;
CREATE USER c##ggadmin IDENTIFIED BY passw0rd CONTAINER=all DEFAULT
TABLESPACE GG_DATA TEMPORARY TABLESPACE temp;
ALTER USER c##ggadmin SET CONTAINER_DATA=all CONTAINER=current;
GRANT CREATE SESSION to c##ggadmin;
GRANT CREATE VIEW to c##ggadmin;
GRANT CONNECT to c##ggadmin CONTAINER=all;
GRANT RESOURCE to c##ggadmin;
GRANT ALTER SYSTEM to c##ggadmin ;
GRANT SELECT ANY DICTIONARY to c##ggadmin ;
EXEC DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE('c##ggadmin');
ALTER USER c##ggadmin QUOTA unlimited ON GG_DATA;

SELECT * FROM DBA_SYS_PRIVS WHERE GRANTEE='c##ggadmin' ORDER BY 2;

In this example, DBA privilege is not provided but the user will be able to access the
DBA_SYS_PRIVS package.

About the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE Package
Most of the privileges that are needed for Extract and Replicat to operate are granted through
the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE package.

The first example is the default, which grants to both Extract and Replicat. The second shows
how to explicitly grant to either Extract or Replicat (in this case, Extract).

GRANT_ADMIN_PRIVILEGE ('ggadmin')
GRANT_ADMIN_PRIVILEGE ('ggadmin','exte');

The following example shows Extract on Oracle 12c multitenant database:

BEGIN
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE
(GRANTEE => 'c##ggadmin', PRIVILEGE_TYPE => 'CAPTURE',

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-88

 GRANT_SELECT_PRIVILEGES => TRUE, DO_GRANTS => TRUE, CONTAINER => 'ALL');
END;

Optional Grants for dbms_goldengate_auth.grant_admin_privilege

This procedure grants the privileges needed by a user to be a Oracle GoldenGate
administrator. See DBMS_GOLDENGATE_AUTH in Oracle Database PL/SQL Packages and Types
Reference for more information.

Securing the Oracle GoldenGate Credentials
To preserve the security of your data, and to monitor Oracle GoldenGate processing
accurately, do not permit other users, applications, or processes to log on as, or operate as, an
Oracle GoldenGate database user.

Oracle GoldenGate provides different options for securing the log-in credentials assigned to
Oracle GoldenGate processes. The recommended option is to use a credential store. You can
create one credential store and store it in a shared location where all installations of Oracle
GoldenGate can access it, or you can create a separate one on each system where Oracle
GoldenGate is installed.

The credential store stores the user name and password for each of the assigned Oracle
GoldenGate users. A user ID is associated with one or more aliases, and it is the alias that is
supplied in commands and parameter files, not the actual user name or password. The
credential file can be partitioned into domains, allowing a standard set of aliases to be used for
the processes, while allowing the administrator on each system to manage credentials locally.

See Creating and Populating the Credential Store in Oracle GoldenGate Security Guide for
more information about creating a credential store and adding user credentials.

Additional Oracle GoldenGate Configuration for Your Database
This chapter contains additional configuration considerations that may apply to your database
environment.

Installing Support for Oracle Sequences
To support Oracle sequences, you must install some database procedures.

To Install Oracle Sequence Objects

1. In SQL*Plus, connect to the source and target Oracle systems as SYSDBA.

2. If you already assigned a database user to support the Oracle GoldenGate DDL replication
feature, you can skip this step. Otherwise, in SQL*Plus on both systems create a database
user that can also be the DDL user.

CREATE USER DDLuser IDENTIFIED BY password;
GRANT CONNECT, RESOURCE, DBA TO DDLuser;

3. From the Oracle GoldenGate installation directory on each system, run GGSCI.

4. In GGSCI, issue the following command on each system.

EDIT PARAMS ./GLOBALS

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-89

5. In each GLOBALS file, enter the GGSCHEMA parameter and specify the schema of the DDL
user that you created earlier in this procedure.

GGSCHEMA schema

6. Save and close the files.

7. In SQL*Plus on the source system, issue the following statement in SQL*Plus.

ALTER TABLE sys.seq$ ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

To capture the sequence from a multitenant database

1. Create an Oracle GoldenGate user in each PDB that you need to capture sequences from.

2. Add the user to the GLOBALS parameter file. It is easier if you use the same user for each
PDB, if you don't then you need to change the GLOBALS file each time you do step 3.

3. Log into Admin Client or GGSCI.

4. Connect to the root container on the source using DBLOGIN.

5. Issue the FLUSH SEQUENCE command for each PDB.

If you don't want to keep these database accounts, you can drop the user or deactivate the
account.

Here is an example of the entire process:

Environment information
 OGG 19.1 Oracle 12c to Oracle 12c Replication, Integrated
 Extract, Parallel Replicat
 Source: CDB GOLD, PDB CERTMISSN
 Target: CDB PLAT, PDB CERTDSQ
 Source Oracle GoldenGate Configuration
 Container User: C##GGADMIN
 PDB User for Sequences: GGATE

When prompted, enter GGATE

GLOBALS
 GGSCHEMA GGATE
 Flush Sequence
 GGSCI> DBLOGIN USERIDALIAS GGADMIN DOMAIN GOLD_QC_CDB$ROOT
 GGSCI> FLUSH SEQUENCE CERTMISSN.SRCSCHEMA1.
Target OGG Configuration
 PDB User: GGATE
 Run @sequence
 sqlplus / as sysdba
 SQL> alter session set container=CERTDSQ;
 SQL> @sequence

When prompted enter GGATE.

Replicating sequences is required for High Availability (HA) and DR scenarios:

• For migrations, you need rebuild the sequences on the target during the switchover, or
increase them to a higher value just prior to the switchover.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-90

• Make sure you place the sequences into their own Replicat.

Handling Special Data Types
It addresses special configuration requirements for different Oracle data types for Extract.

Multibyte Character Types

Multi-byte characters are supported as part of a supported character set. If the semantics
setting of an Oracle source database is BYTE and the setting of an Oracle target is CHAR, use
the Replicat parameter SOURCEDEFS in your configuration, and place a definitions file that is
generated by the DEFGEN utility on the target. These steps are required to support the difference
in semantics, whether or not the source and target data definitions are identical. Replicat refers
to the definitions file to determine the upper size limit for fixed-size character columns.

Oracle Spatial Objects

To replicate tables that contain one or more columns of SDO_GEORASTER object type from an
Oracle source to an Oracle target, follow these instructions to configure Oracle GoldenGate to
process them correctly.

1. Create a TABLE statement and a MAP statement for the georaster tables and also for the
related raster data tables.

2. If the METADATA attribute of the SDO_GEORASTER data type in any of the values exceeds 1
MB, use the DBOPTIONS parameter with the XMLBUFSIZE option to increase the size of the
memory buffer that stores the embedded SYS.XMLTYPE attribute of the SDO_GEORASTER data
type. If the buffer is too small, Extract abends. See XMLBUFSIZE in Reference for Oracle
GoldenGate.

3. To ensure the integrity of the target georaster tables and the spatial data, keep the trigger
enabled on both source and target. Use the REPERROR option of the MAP parameter to
handle the "ORA-01403 No data found" error that occurs as a result of keeping the trigger
enabled on the target. It occurs when a row in the source georaster table is deleted, and
the trigger cascades the delete to the raster data table. Both deletes are replicated. The
replicated parent delete triggers the cascaded (child) delete on the target. When the
replicated child delete arrives, it is redundant and generates the error. To use REPERROR, do
the following:

• Use a REPERROR statement in each MAP statement that contains a raster data table.

• Use Oracle error 1403 as the SQL error.

• Use any of the response options as the error handling.

A sufficient way to handle the errors on raster tables caused by active triggers on target
georaster tables is to use REPERROR with DISCARD to discard the cascaded delete that triggers
them. The trigger on the target georaster table performs the delete to the raster data table, so
the replicated one is not needed.

MAP geo.st_rdt, TARGET geo.st_rdt, REPERROR (-1403, DISCARD) ;

If you need to keep an audit trail of the error handling, use REPERROR with EXCEPTION to invoke
exceptions handling. For this, you create an exceptions table and map the source raster data
table twice:

• once to the actual target raster data table (with REPERROR handling the 1403 errors).

• again to the exceptions table, which captures the 1403 error and other relevant information
by means of a COLMAP clause.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-91

For more information about using an exceptions table, see Administering Oracle GoldenGate
for Windows and UNIX.

For more information about REPERROR options, see Reference for Oracle GoldenGate.

TIMESTAMP

To replicate timestamp data, Oracle Database normalizes TIMESTAMP WITH LOCAL TIME ZONE
data to the local time zone of the database that receives it, the target database in case of
Oracle GoldenGate. To preserve the original time stamp of the data that it applies, Replicat
sets its session to the time zone of the source database. You can override this default and
supply a different time zone by using the SOURCETIMEZONE parameter in the Replicat parameter
file. To force Replicat to set its session to the target time zone, use the
PRESERVETARGETTIMEZONE parameter.

To prevent Oracle GoldenGate from abending on TIMESTAMP WITH TIME ZONE as TZR, use the
Extract parameter TRANLOGOPTIONS with INCLUDEREGIONIDWITHOFFSET to replicate TIMESTAMP
WITH TIMEZONE as TZR from an Oracle source that is at least version 10g to an earlier Oracle
target, or from an Oracle source to a non-Oracle target. This option allows replicating to Oracle
versions that do not support TIMESTAMP WITH TIME ZONE as TZR and to database systems that
only support time zone as a UTC offset.

You can also use the SOURCETIMEZONE parameter to specify the source time zone for data that
is captured by an Extract that is earlier than version 12.1.2. Those versions do not write the
source time zone to the trail.

Large Objects (LOB)

The following are some configuration guidelines for Extract LOBs.

1. Store large objects out of row if possible.

2. Extract captures LOBs from the redo log. For UPDATE operations on a LOB document, only
the changed portion of the LOB is logged. To force whole LOB documents to be written to
the trail when only the changed portion is logged, use the TRANLOGOPTIONS parameter with
the FETCHPARTIALLOB option in the Extract parameter file. When Extract receives partial
LOB content from the logmining server, it fetches the full LOB image instead of processing
the partial LOB. Use this option when replicating to a non-Oracle target or in other
conditions where the full LOB image is required.

XML

The following are tools for working with XML within Oracle GoldenGate constraints.

• Although Extract does not support the capture of changes made to an XML schema, you
may be able to evolve the schemas and then resume replication of them without the need
for a resynchronization, see Supporting Changes to XML Schemas.

• Extract captures XML from the redo log. For UPDATE operations on an XML document, only
the changed portion of the XML is logged if it is stored as OBJECT RELATIONAL or BINARY.
To force whole XML documents to be written to the trail when only the changed portion is
logged, use the TRANLOGOPTIONS parameter with the FETCHPARTIALXML option in the Extract
parameter file. When Extract receives partial XML content from the logmining server, it
fetches the full XML document instead of processing the partial XML. Use this option when
replicating to a non-Oracle target or in other conditions where the full XML image is
required.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-92

User Defined Types

If Oracle Database is compatible with releases greater than or equal to 12.0.0.0.0, then Extract
captures data from redo (no fetch), see Setting Flashback Query.

If replicating source data that contains user-defined types with the NCHAR, NVARCHAR2, or NCLOB
attribute to an Oracle target, use the HAVEUDTWITHNCHAR parameter in the Replicat parameter
file. When this type of data is encountered in the trail, HAVEUDTWITHNCHAR causes Replicat to
connect to the Oracle target in AL32UTF8, which is required when a user-defined data type
contains one of those attributes. HAVEUDTWITHNCHAR is required even if NLS_LANG is set to
AL32UTF8 on the target. By default Replicat ignores NLS_LANG and connects to an Oracle
Database in the native character set of the database. Replicat uses the OCIString object of the
Oracle Call Interface, which does not support NCHAR, NVARCHAR2, or NCLOB attributes, so
Replicat must bind them as CHAR. Connecting to the target in AL32UTF8 prevents data loss in
this situation. HAVEUDTWITHNCHAR must appear before the USERID or USERIDALIAS parameter in
the parameter file.

Handling Other Database Properties
This topic describes the database properties that may affect Oracle GoldenGate and the
parameters that you can use to resolve or work around the condition.

The following table lists the database properties and the associated concern/resolution.

Database Property Concern/Resolution

Table with interval
partitioning

To support tables with interval partitioning, make certain that the WILDCARDRESOLVE
parameter remains at its default of DYNAMIC.

Table with virtual columns Virtual columns are not logged, and Oracle does not permit DML on virtual columns. You
can, however, capture this data and map it to a target column that is not a virtual column by
doing the following:

Include the table in the Extract TABLE statement and use the FETCHCOLS option of TABLE to
fetch the value from the virtual column in the database.

In the Replicat MAP statement, map the source virtual column to the non-virtual target
column.

Table with inherently
updateable view

To replicate to an inherently updateable view, define a key on the unique columns in the
updateable view by using a KEYCOLS clause in the same MAP statement in which the
associated source and target tables are mapped.

Redo logs or archives in
different locations

The TRANLOGOPTIONS parameter contains options to handle environments where the redo
logs or archives are stored in a different location than the database default or on a different
platform from that on which Extract is running. For more information, see Reference for
Oracle GoldenGate.

TRUNCATE operations To replicate TRUNCATE operations, choose one of two options:

• Standalone TRUNCATE support by means of the GETTRUNCATES parameter replicates
TRUNCATE TABLE, but no other TRUNCATE options. Use only if not using Oracle
GoldenGate DDL support.

• The full DDL support replicates TRUNCATE TABLE, ALTER TABLE TRUNCATE
PARTITION, and other DDL.

Sequences To replicate DDL for sequences (CREATE, ALTER, DROP, RENAME), use Oracle GoldenGate
DDL support.

To replicate just sequence values, use the SEQUENCE parameter in the Extract parameter file.
This does not require the Oracle GoldenGate DDL support environment. For more
information, see Reference for Oracle GoldenGate.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-93

Controlling the Checkpoint Retention

The CHECKPOINTRETENTIONTIME option of the TRANLOGOPTIONS parameter controls the number
of days that Extract retains checkpoints before purging them automatically.

Partial days can be specified using decimal values. For example, 8.25 specifies 8 days and 6
hours. The default is seven days.

Excluding Replicat Transactions

In a bidirectional configuration, Replicat must be configured to mark its transactions, and
Extract must be configured to exclude Replicat transactions so that they do not propagate back
to their source. There are two methods to accomplish this as follows:

Method 1

Valid only for Oracle to Oracle implementations.

Replicat can be in either integrated or nonintegrated mode. Use the following parameters:

• Use DBOPTIONS with the SETTAG option in the Replicat parameter file. The inbound server
tags the transactions of that Replicat with the specified value, which identifies those
transactions in the redo stream. The default value for SETTAG is 00.

• Use the TRANLOGOPTIONS parameter with the EXCLUDETAG option in an Extract parameter
file. The logmining server associated with that Extract excludes redo that is tagged with the
SETTAG value. Multiple EXCLUDETAG statements can be used to exclude different tag values,
if desired.

For Oracle to Oracle, this is the recommended method.

Method 2

Valid for any implementation; Oracle or non-Oracle database configurations.

Alternatively, you could use the Extract TRANLOGOPTIONS parameter with the EXCLUDEUSER or
EXCLUDEUSERID option to ignore the Replicat DDL and DML transactions based on its user
name or ID. Multiple EXCLUDEUSER statements can be used. The specified user is subject to the
rules of the GETREPLICATES or IGNOREREPLICATES parameter.

For more information, see Reference for Oracle GoldenGate.

Advanced Configuration Options for Oracle GoldenGate
You may need to configure Oracle GoldenGate with advanced options to suit your business
needs.

See the following:

• For additional configuration guidelines to achieve specific replication topologies, see
Administering Oracle GoldenGate. This guide includes instructions for the following
configurations:

– Using Oracle GoldenGate for live reporting

– Using Oracle GoldenGate for real-time data distribution

– Configuring Oracle GoldenGate for real-time data warehousing

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-94

– Using Oracle GoldenGate to maintain a live standby database

– Using Oracle GoldenGate for active-active high availability

That guide also contains information about:

– Oracle GoldenGate architecture

– Oracle GoldenGate commands

– Oracle GoldenGate initial load methods

– Configuring security

– Using customization features

– Configuring data filtering and manipulation

• If either the source or target database is non-Oracle, follow the installation and
configuration instructions in the Oracle GoldenGate installation and setup guide for that
database, and then refer to the Oracle GoldenGate administration and reference
documentation for further information.

Supported Oracle Data Types, Objects, and Operations for DDL and DML
This chapter contains support information for Oracle GoldenGate on Oracle Database.

Details of Support for Oracle Data Types and Objects
This topic describes data types, objects and operations that are supported by Oracle
GoldenGate.

Within the database, you can use the Dictionary view DBA_GOLDENGATE_SUPPORT_MODE to get
information about supported objects. There are different types for replication support:

• Support by Capturing from Redo

• Procedural Replication Support

Most data types are supported (SUPPORT_MODE=FULL), which implies that Oracle GoldenGate
captures the changes out of the redo. In some unique cases, the information cannot be
captured, but the information can be fetched with a connection to the database
(SUPPORT_MODE=ID KEY). Tables supported with ID KEY require a connection to the source
database or an ADG Standby database for fetching to support those tables. If using
downstream Integrated Extract, with NOUSERID a customer must specify a FETCHUSERID or
FETCHUSERIDALIAS connection.

Other changes can be replicated with Procedural Replication (SUPPORT_MODE=PLSQL) that
requires additional parameter setting of Extract. See About Procedural Replication for details.
In the unlikely case that there is no native support, no support by fetching and no procedural
replication support, there is no Oracle GoldenGate support.

To know more information about capture modes, see Deciding Which Capture Method to Use.

Besides the DBA_GOLDENGATE_SUPPORT_MODE at the source database you should
check the DBA_GOLDENGATE_NOT_UNIQUE dictionary view at the target side. If there are
tables without any uniqueness and unbounded data_types (BAD_COLUMN='Y'), the table
records cannot be uniquely identified and cannot be used for logical replication.

Detailed support information for Oracle data types, objects, and operations starts with Details
of Support for Objects and Operations in Oracle DML.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-95

There might be a few cases where replication support exists, but there are limitations of
processing such as in case of using SQLEXEC. The following table lists these limitations:

Support Datatypes No Support

NUMBER, BINARY FLOAT, BINARY DOUBLE
UROWID

Special cases of:
• XML types
• UDTs
• Object tables
• Collections or nested tables

DATE and TIMESTAMP Tables with restricted uniqueness

(N)CHAR, (N) VARCHAR2 LONG, RAW, LONG RAW
(N)CLOB, CLOB, BLOB, SECUREFILE, BASICFILE
and BFILE

X

XML columns, XMLType X

UDTs X

ANYDATA X

Hierarchy-enabled tables X

RET Types X

DICOM X

SDO_TOPO_GEOMETRY, SDO_GEORASTER X

Identity columns X

SDO_RDF_TRIPLE_S X

Note:

SECUREFILE LOBs updated using DBMS_LOG.FRAGMENT or SECUREFILE LOBs that are
set to NOLOGGING are fetched instead of read from the redo.

Supported Capture from Redo:

• NUMBER, BINARY FLOAT, BINARY DOUBLE, and (logical) UROWID
• DATE and TIMESTAMP
• CHAR, VARCHAR2, LONG, NCHAR, and NVARCHAR2
• RAW, LONG RAW, CLOB, NCLOB, BLOB, SECUREFILE, BASICFILE, and BFILE (LOB size limited to

4GB)

• XML columns stored as CLOB, Binary and Object-Relational (OR)

• XMLType columns and XMLType tables stored as XML CLOB, XML Object Relational, and XML
Binary

• UDTs (user-defined or abstract data types) on BYTE semantics with source database
compatibility 12.0.0.0.0 or higher

• ANYDATA data type with source database compatibility 12.0.0.0.0 or higher

• Hierarchy-enabled tables are managed by the Oracle XML database repository with source
database compatibility 12.2.0.0.0 or higher and enabled procedural replication

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-96

• REF types with source database compatibility 12.2.0.0.0 or higher

• DICOM with source database compatibility 12.0.0.0.0 or higher

• SDO _TOPO_GEOMETRY or SDO_GEORASTER with source database compatibility 12.2.0.0.0 or
higher and enabled procedural replication

• Identity columns with source database compatibility 18.1.0.0.0 or higher

• SDO_RDF_TRIPLE_S with source database compatibility 19.1.0.0.0 or higher

Supported (Fetch from database)

SECUREFILE LOBs

• Modified with DBMS_LOB.FRAGMENT_* procedures

• NOLOGGING LOBs

• Deduplicated LOBs with a source database release less than 12gR2

UDTs that contain following data types:

• TIMESTAMP WITH TIMEZONE, TIMESTAMP WITH LOCAL TIMEZONE, TIMESTAMP WITH TIMEZONE
with region ID

• INTERVAL YEAR TO MONTH, INTERVAL DAY TO SECOND
• BINARY FLOAT, BINARY DOUBLE
• BFILE
Object tables contains the following attributes:

• Nested table

• SDO_TOP_GEOMETRY
• SDO_GEORASTER

Additional Considerations

• NUMBER can be up to the maximum size permitted by Oracle. The support of the range and
precision for floating-point numbers depends on the host machine. In general, the precision
is accurate to 16 significant digits, but you should review the database documentation to
determine the expected approximations. Oracle GoldenGate rounds or truncates values
that exceed the supported precision.

• Non-logical UROWID columns will be identified by Extract. A warning message is generated
in the report file. The column information is not part of the trail record. All other supported
datatypes of the record are part of the trail record and are replicated.

• TIMESTAMP WITH TIME ZONE as TZR (region ID) for initial loads, SQLEXEC or operations
where the column can only be fetched from the database. In those cases, the region ID is
converted to a time offset by the source database when the column is selected. Replicat
applies the timestamp as date and time data into the target database with a time offset
value.

• VARCHAR expansion from 4K to 32K (extended or long VARCHAR)

– 32K long columns cannot be used as row identifiers:

* Columns as part of a key or unique index

* Columns in a KEYCOLS clause of the TABLE or MAP parameter.

– 32K long columns as resolution columns in a CDR (conflict resolution and detection)

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-97

– If an extended VARCHAR column is part of unique index or constraint, then direct path
inserts to this table may cause Replicat to abend with a warning. Verify that the
extended VARCHAR caused the abend by checking ALL_INDEXES or ALL_IND_COLUMNS for
a unique index or ALL_CONS_COLUMNS or ALL_CONSTRAINTS for a unique constraint.
Once you determine that an extended VARCHAR, you can temporarily drop the index or
disable the constraint:

* Unique Index: DROP INDEX index_name;

* Unique Constraint: ALTER TABLE table_name MODIFY CONSTRAINT
constraint_name DISABLE;

• Oracle GoldenGate does not support the filtering, column mapping, or manipulation of
objects larger than 4K.

• BFILE column are replicating the locator. The file on the server file system outside of the
database and is not replicated.

• Multi-byte character data: The source and target databases must be logically identical in
terms of schema definition for the tables and sequences being replicated. Transformation,
filtering, and other manipulation cannot be used.

• The character sets between the two databases must be one of the following:

– Identical on the source and on the target

– Equivalent, which is not the same character set but containing the same set of
characters

– Target is a superset of the source

Multi-byte data can be used in any semantics: bytes or characters.

• The structure of the UDTs and Abstract Data Types (ADTs) itself must be the same on both
the source and target. UDTs can have different source and target schemas. UDTs, including
values inside object columns or rows, cannot be used within filtering criteria in TABLE or MAP
statements, or as input or output for the Oracle GoldenGate column-conversion functions,
SQLEXEC, or other built-in data manipulation tools. Support is only provided for like-to-like
Oracle source and targets.

To fully support object tables created using the CREATE TABLE as SELECT (CTAS)
statement, Integrated Extract must be configured to capture DML from the CTAS
statement. Oracle object table can be mapped to a non-Oracle object table in a supported
target database.

• XML column type cannot be used for filtering and manipulation. You can map the XML
representation of an object to a character column by means of a COLMAP clause in a TABLE
or MAP statement.

Oracle recommends the AL32UTF8 character set as the database character set when
working with XML data. This ensures the correct conversion by Oracle GoldenGate from
source to target. With DDL replication enabled, Oracle GoldenGate replicates the CTAS
statement and allows it to select the data from the underlying target tables. OIDs are
preserved if TRANSLOGOPTIONS GETCTASDML parameter is set. For XMLType tables, the row
object IDs must match between source and target.

Non-Supported Oracle Data Types

Oracle GoldenGate does not support the following data types.

• Time offset values outside the range of +12:00 and -12:00..Oracle GoldenGate supports
time offset values between +12:00 and -12:00.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-98

• Tables that only contain a single column and that column one of the following:

– UDT

– LOB (CLOB, NCLOB, BLOB, BFILE)

– XMLType column

– VARCHAR2 (MAX) where the data is greater than 32KB

• Tables with LOB, UDT, XML, or XMLType column without one of the following:

– Primary Key

– Scalar columns with a unique constraint or unique index

Table where the combination of all scalar columns do not guarantee uniqueness are
unsupported.

• Tables with the following XML characteristics:

– Tables with a primary key constraint made up of XML attributes

– XMLType tables with a primary key based on an object identifier (PKOID).

– XMLType tables, where the row object identifiers (OID) do not match between source
and target

– XMLType tables created by an empty CTAS statement.

– XML schema-based XMLType tables and columns where changes are made to the
XML schema (XML schemas must be registered on source and target databases with
the dbms_xml package).

– The maximum length for the entire SET value of an update to an XMLType larger than
32K, including the new content plus other operators and XQuery bind values.

– SQL*Loader direct-path insert for XML-Binary and XML-OR.

• Tables with following UDT characteristics:

– UDTs that contain CFILE or OPAQUE (except of XMLType)

– UDTs with CHAR and VARCHAR attributes that contain binary or unprintable
characters

– UDTs using the RMTTASK parameter

• UDTs and nested tables with following condition:

– Nested table UDTs with CHAR, NVARCHAR2 or NCLOB attributes.

– Nested tables with CLOB, BLOB, extended (32k) VARCHAR2 or RAW attributes in
UDTs.

– Nested table columns/attributes that are part of any other UDT.

• When data in a nested table is updated, the row that contains the nested table must be
updated at the same time. Otherwise there is no support.

• When VARRAYS and nested tables are fetched, the entire contents of the column are
fetched each time, not just the changes. Otherwise there is no support.

• Object table contains the following attributes:

– Nested table

– SDO_TOPO_GEOMETRY

– SDO_GEORASTER

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-99

Details of Support for Objects and Operations in Oracle DML
This section outlines the Oracle objects and operations that Oracle GoldenGate supports for
the capture and replication of DML operations.

Multitenant Container Database

Oracle GoldenGate captures from, and delivers to, a multitenant container database. See
Configuring Oracle GoldenGate in a Multitenant Container Database .

Application Container are not supported.

Tables, Views, and Materialized Views

Oracle GoldenGate supports the following DML operations made to regular tables, index-
organized tables, clustered tables, and materialized views.

• INSERT
• UPDATE
• DELETE
• Associated transaction control operations

Tip:

You can use the DBA_GOLDENGATE_SUPPORT_MODE data dictionary view to display
information about the level of Oracle GoldenGate capture process support for the
tables in your database. The PLSQL value of DBA_GOLDENGATE_SUPPORT_MODE indicates
that the table is supported natively, but requires procedural supplemental logging.

Besides the DBA_GOLDENGATE_SUPPORT_MODE at the source database, you should
check the DBA_GOLDENGATE_NOT_UNIQUE dictionary view at the target side. If there are
tables without any uniqueness and unbounded data types (BAD_COLUMN='Y'), the
table records cannot be uniquely identified and cannot be used for logical replication.

For more information, see the DBA_GOLDENGATE_SUPPORT_MODE. If you need to display
all tables that have no primary and no non-null unique indexes, you can use the
DBA_GOLDENGATE_NOT_UNIQUE. For more information, see
DBA_GOLDENGATE_NOT_UNIQUE.

Limitations of Support for Regular Tables
These limitations apply to Extract.

• Oracle GoldenGate supports tables that contain any number of rows.

• A row can be up to 4 MB in length. If Oracle GoldenGate is configured to include both the
before and after image of a column in its processing scope, the 4 MB maximum length
applies to the total length of the full before image plus the length of the after image. For
example, if there are UPDATE operations on columns that are being used as a row identifier,
the before and after images are processed and cannot exceed 4 MB in total. Before and
after images are also required for columns that are not row identifiers but are used as
comparison columns in conflict detection and resolution (CDR). Character columns that
allow for more than 4 KB of data, such as a CLOB, only have the first 4 KB of data stored in-

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-100

row and contribute to the 4MB maximum row length. Binary columns that allow for more
than 4kb of data, such as a BLOB the first 8 KB of data is stored in-row and contributes to
the 4MB maximum row length.

• Oracle GoldenGate supports the maximum number of columns per table that is supported
by the database.

• Oracle GoldenGate supports the maximum column size that is supported by the database.

• Oracle GoldenGate supports tables that contain only one column, except when the column
contains one of the following data types:

– LOB
– LONG
– LONG VARCHAR
– Nested table
– User Defined Type (UDT)

– VARRAY
– XMLType

• Set DBOPTIONS ALLOWUNUSEDCOLUMN before you replicate from and to tables with unused
columns.

• Oracle GoldenGate supports tables with these partitioning attributes:

– Range partitioning

– Hash Partitioning Interval Partitioning

– Composite Partitioning

– Virtual Column-Based Partitioning

– Reference Partitioning

– List Partitioning

• Oracle GoldenGate supports tables with virtual columns, but does not capture change data
for these columns or apply change data to them: The database does not write virtual
columns to the transaction log, and the Oracle Database does not permit DML on virtual
columns. For the same reason, initial load data cannot be applied to a virtual column. You
can map the data from virtual columns to non-virtual target columns.

• Oracle GoldenGate will not consider unique/index with virtual columns.

• Oracle GoldenGate supports replication to and from Oracle Exadata. To support Exadata
Hybrid Columnar Compression, the source database compatibility must be set to
11.2.0.0.0 or higher.

• Oracle GoldenGate supports Transparent Data Encryption (TDE).

• Oracle GoldenGate supports TRUNCATE statements as part of its DDL replication support, or
as standalone functionality that is independent of the DDL support.

• Oracle GoldenGate supports the capture of direct-load INSERT, with the exception of
SQL*Loader direct-path insert for XML Binary and XML Object Relational. Supplemental
logging must be enabled, and the database must be in archive log mode. The following
direct-load methods are supported.

– /*+ APPEND */ hint

– /*+ PARALLEL */ hint

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-101

– SQLLDR with DIRECT=TRUE
• Oracle GoldenGate fully supports capture from compressed objects for Extract.

• Oracle GoldenGate supports XA and PDML distributed transactions.

• Oracle GoldenGate supports DML operations on tables with FLASHBACK ARCHIVE enabled.
However, Oracle GoldenGate does not support DDL that creates tables with the FLASHBACK
ARCHIVE clause or DDL that creates, alters, or deletes the flashback data archive itself.

Limitations of Support for Views
These limitations apply to Extract.

• Oracle GoldenGate supports capture from a view when Extract is in initial-load mode
(capturing directly from the source view, not the redo log).

• Oracle GoldenGate does not capture change data from a view, but it supports capture from
the underlying tables of a view.

Limitations of Support for Materialized Views
Materialized views are supported by Extract with the following limitations.

• Materialized views created WITH ROWID are not supported.

• The materialized view log can be created WITH ROWID.

• The source table must have a primary key.

• Truncates of materialized views are not supported. You can use a DELETE FROM statement.

• DML (but not DDL) from a full refresh of a materialized view is supported. If DDL support
for this feature is required, open an Oracle GoldenGate support case.

• For Replicat the Create MV command must include the FOR UPDATE clause

• Either materialized views can be replicated or the underlying base table(s), but not both.

Limitations of Support for Clustered Tables
Indexed clusters are supported by Extract while hash clusters are not supported.

Sequences and Identity Columns

• Identity columns are supported from Oracle database 18c onward and requires Extract,
Parallel Replicat in Integrated mode, or Integrated Replicat.

• Oracle GoldenGate supports the replication of sequence values and identity columns in a
unidirectional and active-passive high-availability configuration.

• Oracle GoldenGate ensures that the target sequence values will always be higher than
those of the source (or equal to them, if the cache is zero).

Limitations of Support for Sequences
These limitations apply to Extract.

• Oracle GoldenGate does not support the replication of sequence values in an active-active
bi-directional configuration.

• The cache size and the increment interval of the source and target sequences must be
identical. The cache can be any size, including 0 (NOCACHE).

• The sequence can be set to cycle or not cycle, but the source and target databases must
be set the same way.

• Tables with default sequence columns are excluded from replication for Extract.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-102

Non-supported Objects and Operations in Oracle DML

The following are additional Oracle objects or operations that are not supported by Extract:

• REF are supported natively for compatibility with Oracle Database 12.2 and higher, but not
primary-key based REFs (PKREFs)

• Sequence values in an active-active bi-directional configuration

• Database Replay

• Tables created as EXTERNAL

Details of Support for Objects and Operations in Oracle DDL
This topic outlines the Oracle objects and operation types that Oracle GoldenGate supports for
the capture and replication of DDL operations.

Supported Objects and Operations in Oracle DDL

DDL capture support is integrated into the database logmining server. You must set the
database parameter compatibility to 11.2.0.4.0 or higher. Extract supports DDL that includes
password-based column encryption, such as:

• CREATE TABLE t1 (a number, b varchar2(32) ENCRYPT IDENTIFIED BY my_password);
• ALTER TABLE t1 ADD COLUMN c varchar2(64) ENCRYPT IDENTIFIED BY my_password;
The following additional statements apply to Extract with respect to DDL support.

• All Oracle GoldenGate topology configurations are supported for Oracle DDL replication.

• Active-active (bi-directional) replication of Oracle DDL is supported between two (and only
two) databases that contain identical metadata.

• Oracle GoldenGate supports DDL on the following objects:

– clusters

– directories

– functions

– indexes

– packages

– procedure

– tables

– tablespaces

– roles

– sequences

– synonyms

– triggers

– types

– views

– materialized views

– users

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-103

– invisible columns

• Oracle Edition-Based Redefinition (EBR) database replication of Oracle DDL is supported
for Extract for the following Oracle Database objects:

– functions

– library

– packages (specification and body)

– procedure

– synonyms

– types (specification and body)

– views

• From Oracle GoldenGate 21c onward, DDLs that are greater than 4 MB in size will be
provided replication support.

• From Oracle GoldenGate 23c onwards, SQL domains are supported.

• Oracle GoldenGate is capable of managing tables with 4000 columns if the row size is less
than 4MB.

• Oracle GoldenGate supports Global Temporary Tables (GTT) DDL operations to be visible
to Extract so that they can be replicated. You must set the DDLOPTIONS parameter to enable
this operation because it is not set by default.

• Oracle GoldenGate supports dictionary for use with NOUSERID and TRANLOGOPTIONS
GETCTASDML. This means that Extract receives object metadata from the LogMiner
dictionary without querying the dictionary objects. Oracle GoldenGate uses the dictionary
automatically when the source database compatibility parameter is greater than or equal to
11.2.0.4.

When using dictionary and trail format in the Oracle GoldenGate release 12.2.x, Extract
requires the Logminer patch to be applied on the mining database if the Oracle Database
release is earlier than 12.1.0.2.

• Oracle GoldenGate supports replication of invisible columns in Extract. Trail format release
12.2 is required. Replicat must specify the MAPINVISIBLECOLUMNS parameter or explicitly
map to invisible columns in the COLMAP clause of the MAP parameter.

If SOURCEDEFS or TARGETDEFS is used, the metadata format of a definition file for Oracle
tables must be compatible with the trail format. Metadata format 12.2 is compatible with
trail format 12.2, and metadata format earlier than 12.2 is compatible with trail format
earlier than 12.2. To specify the metadata format of a definition file, use the FORMAT
RELEASE option of the DEFSFILE parameter when the definition file is generated in DEFGEN.

• DDL statements to create a namespace context (CREATE CONTEXT) are captured by Extract
and applied by Replicat.

• Extract in pump mode supports the following DDL options:

– DDL INCLUDE ALL
– DDL EXCLUDE ALL
– DDL EXCLUDE OBJNAME
The SOURCECATALOG and ALLCATALOG option of DDL EXCLUDE is also supported.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-104

If no DDL parameter is specified, then all DDLs are written to trail. If DDL EXCLUDE OBJNAME
is specified and the object owner is does not match an exclusion rule, then it is written to
the trail.

• Starting with Oracle database 21c, the following DDL is available to support blocking of
DML/DDL changes that are not replicated by Oracle GoldenGate:

ALTER DATABASE [ENABLE | DISABLE] goldengate blocking mode;

When Oracle GoldenGate blocking mode is enabled, DMLs that use support_mode NONE in
tables and execute unsupported Oracle PL/SQL statements will fail with the following error:

ORA-26981: "operation was unsupported during Oracle GoldenGate blocking
mode"

For Oracle database 21c, the following features cause a table to have support_mode NONE
in Oracle GoldenGate:

– BFILE as an attribute of ADT column, or typed table

– Table with no scalars

– OLAP AW$ table

– Sharded queue table

– Sorted Hash Cluster Table

– Primary key constraint on ADT attribute in relational table

– Primary key/unique key constraint on long raw/varchar (over 4000 bytes)

– V$DATABASE column, Goldengate_Blocking_Mode can be queried to determine the
current blocking mode status.

• For DDL auto capture mode:

– It is relevant only for DDL INCLUDE MAPPED because Extract captures DDLs based on
TABLE and TABLEEXCLUDE parameter.

– Only table-related DDLs can be auto-captured.

– DDLs to enable auto capture at table level:

CREATE/ALTER TABLE … ENABLE LOGICAL REPLICATION ALLKEYS;

or

CREATE/ALTER TABLE … ENABLE LOGICAL REPLICATION ALLOW NOVALIDATE KEYS;

• The following operations are supported for partition related DDLs and partition
maintenance operations

– Drop partition:

If a partition is recreated with the same name, then it will get a new object number. The
internal caches are cleared to minimize space consumption when a drop partition DDL
is processed.

– Truncate partition:

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-105

Partition name and object number stays the same. Base table object version stays the
same.

– Rename partition:

The partition object number stays the same but gets a new name. The base table's
object version gets bumped. In memory name cache will get invalidated upon seeing
this DDL and repopulated upon the next DML. The cache, which stores if a given
partition object number is interesting or not will also need to be reevaluated as a the
new partition name may switch from filtered to not filtered or vice versa.

– Exchange partition:

Exchanges data in a partition with that in a table or vice versa. The obj# of the partition
being exchanged does not change. Dataobj# does change but is not used by Extract.
The partition itself still belongs to the same table.

– Merge partition:

Merges one or more partitions into a new partition. The DDL creates the new partition
and drops the partitions from which it was merged. In memory caches should be
cleared to save space and the user should ensure proper filter rules for the newly
created partition.

– Split partition:

The partition being split keeps its original name and object number and new partition is
created for the split data. The user must ensure partition filter rules are correct for the
newly created partition.

– Coalesce partition:

Reduces the number of partitions in a hash partitioned table. The specific partition that
is coalesced is selected by the database, and is dropped after its contents have been
redistributed. The remaining partitions keep their same name and object number. The
internal caches should be cleared to minimize space consumption.

– Modify partition:

Modifies default and real attributes of partitions, apart from adding or dropping of
values for list partitions. All modifications leave the partitions name and object number
intact.

– Move partition:

Partition data is moved to a new tablespace. Partition name and number remain the
same.

– Redef table:

dbms_redefinition can be used to partition a table through the use of an interim table.
The partitions are created on the interim table and after the finish_redef operation,
the tables swap names. The partitions created on the interim table keep their names
and object numbers when the tables are swapped. The Extract filter cache, needs to
be reevaluated upon finish_redef as the partitions now belong to the base table. The
user must ensure proper filter rules.

– Redef partition:

When redefining a table, the partitions follow from the original table to the interim table.
For example, consider the case where the original table has partitions, which live in the
USER tablespace, and the interim table is created with no partitions and the table lives
in the NEW tablespace. In this case, after the finish_redef operation, when the tables
are swapped the partition still lives in the USER tablespace. Redef partition allows a

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-106

partition to be moved to the interim table's NEW tablespace. The partition retains its
name and object number.

– System generated partition names:

When partitions are created automatically for hash partitions and operations such as
split partition, the partition name is in the form of SYS_P sequence value. Similarly,
subpartitions are of the form SYS_SUBP sequence value. It is recommended that the
partition is renamed before excepting DML to conform to filter rules.

Non-supported Objects and Operations in Oracle DDL

Here's a list of non-supported objects and operations in Oracle DDL.

Excluded Objects
The following names or name prefixes are considered Oracle-reserved and must be excluded
from the Oracle GoldenGate DDL configuration. Oracle GoldenGate will ignore objects that
contain these names.

Excluded schemas:

 "ANONYMOUS", // HTTP access to XDB
 "APPQOSSYS", // QOS system user
 "AUDSYS", // audit super user
 "BI", // Business Intelligence
 "CTXSYS", // Text
 "DBSNMP", // SNMP agent for OEM
 "DIP", // Directory Integration Platform
 "DMSYS", // Data Mining
 "DVF", // Database Vault
 "DVSYS", // Database Vault
 "EXDSYS", // External ODCI System User
 "EXFSYS", // Expression Filter
 "GSMADMIN_INTERNAL", // Global Service Manager
 "GSMCATUSER", // Global Service Manager
 "GSMUSER", // Global Service Manager
 "LBACSYS", // Label Security
 "MDSYS", // Spatial
 "MGMT_VIEW", // OEM Database Control
 "MDDATA",
 "MTSSYS", // MS Transaction Server
 "ODM", // Data Mining
 "ODM_MTR", // Data Mining Repository
 "OJVMSYS", // Java Policy SRO Schema
 "OLAPSYS", // OLAP catalogs
 "ORACLE_OCM", // Oracle Configuration Manager User
 "ORDDATA", // Intermedia
 "ORDPLUGINS", // Intermedia
 "ORDSYS", // Intermedia
 "OUTLN", // Outlines (Plan Stability)
 "SI_INFORMTN_SCHEMA", // SQL/MM Still Image
 "SPATIAL_CSW_ADMIN", // Spatial Catalog Services for Web
 "SPATIAL_CSW_ADMIN_USR",
 "SPATIAL_WFS_ADMIN", // Spatial Web Feature Service
 "SPATIAL_WFS_ADMIN_USR",
 "SYS",
 "SYSBACKUP",
 "SYSDG",
 "SYSKM",
 "SYSMAN", // Adminstrator OEM
 "SYSTEM",
 "TSMSYS", // Transparent Session Migration

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-107

 "WKPROXY", // Ultrasearch
 "WKSYS", // Ultrasearch
 "WK_TEST",
 "WMSYS", // Workspace Manager
 "XDB", // XML DB
 "XS$NULL",
 "XTISYS", // Time Index

Special schemas:

 "AURORAJISUTILITY$", // JSERV
 "AURORAORBUNAUTHENTICATED", // JSERV
 "DSSYS", // Dynamic Services Secured Web Service
 "OSE$HTTP$ADMIN", // JSERV
 "PERFSTAT", // STATSPACK
 "REPADMIN",
 "TRACESVR" // Trace server for OEM

Excluded tables (the * wildcard indicates any schema or any character):

 "*.AQ$*", // advanced queues
 "*.DR$*$*", // oracle text
 "*.M*_*$$", // Spatial index
 "*.MLOG$*", // materialized views
 "*.OGGQT$*",
 "*.OGG$*", // AQ OGG queue table
 "*.ET$*", // Data Pump external tables
 "*.RUPD$*", // materialized views
 "*.SYS_C*", // constraints
 "*.MDR*_*$", // Spatial Sequence and Table
 "*.SYS_IMPORT_TABLE*",
 "*.CMP*$*", // space management, rdbms >= 12.1
 "*.DBMS_TABCOMP_TEMP_*", // space management, rdbms < 12.1
 "*.MDXT_*$*" // Spatial extended statistics tables

Other Non-supported DDL
Oracle GoldenGate does not support the following:

• DDL on nested tables.

• DDL on identity columns.

• ALTER DATABASE and ALTER SYSTEM (these are not considered to be DDL) Using dictionary,
you can replicate ALTER DATABASE DEFAULT EDITION and ALTER PLUGGABLE DATABASE
DEFAULT EDITION. All other ALTER [PLUGABLE] DATABASE commands are ignored.

• DDL on a standby database.

• Database link DDL.

• DDL that creates tables with the FLASHBACK ARCHIVE clause and DDL that creates, alters,
or deletes the flashback data archive itself. DML on tables with FLASHBACK ARCHIVE is
supported.

• Some DDL will generate system generated object names. The names of system generated
objects may not always be the same between two different databases. So, DDL operations
on objects with system generated names should only be done if the name is exactly the
same on the target.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-108

Integrating Oracle GoldenGate Microservices Architecture into a Cluster
If you installed Oracle GoldenGate in a cluster, take the following steps to integrate Oracle
GoldenGate within the cluster solution.

Oracle GoldenGate Microservices Architecture provides REST-enabled services with features
including remote configuration, administration, and monitoring through HTML5 web pages,
command line interfaces, and APIs.

General Requirements in a Cluster

1. Configure the Oracle Grid Infrastructure Bundled Agent (XAG) to automatically manage the
GoldenGate processes on the cluster nodes. See Configuring Oracle GoldenGate with
Oracle Grid Infrastructure Bundled Agents (XAG) to know more.

Using the XAG makes sure that the required cluster file system is mounted before the
Oracle GoldenGate processes are started. If an application virtual IP (VIP) is used in the
cluster the bundled agent will also ensure the VIP is started on the correct node.

2. Configure the Oracle GoldenGate Manager process with the AUTOSTART and AUTORESTART
parameters so that Manager starts the replication processes automatically.

3. Mount the shared drive on one node only. This prevents processes from being started on
another node. Use the same mount point on all nodes. If you are using the Oracle Grid
Infrastructure Bundled Agent, the mounting of the required file systems are automatically
carried out.

4. Ensure that all database instances in the cluster have the same COMPATIBLE parameter
setting.

5. Configure Oracle GoldenGate as directed in this documentation.

Adding Oracle GoldenGate as a Windows Cluster Resource

When installing Oracle GoldenGate in a Windows cluster, follow these instructions to establish
Oracle GoldenGate as a cluster resource and configure the Manager service correctly on all
nodes.

• In the cluster administrator, add the Manager process to the group that contains the
database instance to which Oracle GoldenGate will connect.

• Make sure all nodes on which Oracle GoldenGate will run are selected as possible owners
of the resource.

• Make certain the Manager Windows service has the following dependencies (can be
configured from the Services control panel):

– The database resource

– The disk resource that contains the Oracle GoldenGate directory

– The disk resource that contains the database transaction log files

– The disk resource that contains the database transaction log backup files

PostgreSQL
Oracle GoldenGate for PostgreSQL supports capture and delivery of initial load and
transactional data for supported PostgreSQL database versions.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-109

https://www.oracle.com/technetwork/products/clusterware/overview/ogg-xag-bp-1915977.pdf
https://www.oracle.com/technetwork/products/clusterware/overview/ogg-xag-bp-1915977.pdf

Oracle GoldenGate for PostgreSQL supports the mapping, filtering, and transformation of
source data, unless noted otherwise in this document, as well as replicating data derived from
other source databases supported by Oracle GoldenGate, into PostgreSQL databases.

Preparing the Database for Oracle GoldenGate
This chapter describes how to prepare your PostgreSQL database and environment for Oracle
GoldenGate.

Note:

PgBouncer is not supported for Oracle GoldenGate connections.

Note:

Oracle GoldenGate does not support connections to PostgreSQL that use pgpool.

Database Configuration
To support Oracle GoldenGate, the following parameters in the PostgreSQL database
configuration file, $PGDATA/postgresql.conf, needs to be configured.

• For remote connectivity of an Extract or Replicat, set the PostgreSQL listen_addresses
to allow for remote database connectivity. For example:

listen_addresses=remotehost_ip_address

Note:

Ensure that client authentication is set to allow connections from an Oracle
GoldenGate host by configuring the pg_hba.conf file. For more information, refer
to this document: The pg_hba.conf File

• To support Oracle GoldenGate capture, write-ahead logging must be set to logical,
which adds information necessary to support transactional record decoding.

The number of maximum replication slots must be set to accommodate one open slot
per Extract, and in general, no more than one Extract is needed per database. If for
example PostgreSQL Native Replication is already in use and is using all of the currently
configured replication slots, increase the value to allow for the registration of an Extract.

Maximum write-ahead senders should be set to match the maximum replication slots
value.

Optionally, commit timestamps can be enabled in the write-ahead log, which when set at
the same time logical write-ahead logging is enabled, will track the first DML commit record
from that point on, with the correct timestamp value. Otherwise, the first record
encountered by Oracle GoldenGate capture will have an incorrect commit timestamp.

wal_level = logical # set to logical for Capture

max_replication_slots = 1 # max number of replication slots,
 # one slot per Extract/client

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-110

https://www.postgresql.org/docs/13/auth-pg-hba-conf.html

max_wal_senders = 1 # one sender per max repl slot

track_commit_timestamp = on # optional, correlates tx commit time
 # with begin tx log record (useful for
 # timestamp-based positioning)

• After making any of the preceding changes, restart the database.

Database Settings for PostgreSQL Cloud Databases

Use these instructions to manage the database settings for Azure Database for PostgreSQL,
Amazon Aurora PostgreSQL, Amazon RDS for PostgreSQL, and Google Cloud SQL for
PostgreSQL.

Azure Database for PostgreSQL

When configuring Oracle GoldenGate for PostgreSQL Capture against an Azure Database for
PostgreSQL, logical decoding must be enabled and set to LOGICAL.

Read the Microsoft Documentation for instructions.

Other database settings for Azure Database for PostgreSQL can be managed through the
Server parameters section of the database instance.

For connections to an Azure Database for PostgreSQL instance, the default Azure Connection
Security settings require SSL connections. To adhere to this requirement, further steps are
required to support SSL connections with Oracle GoldenGate. Follow the content listed under
Configuring SSL Support for PostgreSQL for more information.

Amazon Aurora PostgreSQL and Amazon RDS for PostgreSQL

For Amazon Aurora PostgreSQL and Amazon RDS for PostgreSQL, database settings are
modified within parameter groups. Review the Amazon AWS documentation for information on
how to edit database settings within a new parameter group and assign it to a database
instance.

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
USER_WorkingWithParamGroups.html

• Ensure that the database configuration settings listed previously are correct, by verifying
them in the parameter group assigned to the instance.

• The wal_level setting for Amazon database services is configured with a parameter called
rds.logical_replication, whose default is 0 and should be set to 1 if the database is to
be used as source database for Oracle GoldenGate Capture.

Limitation:

On Amazon Aurora PostgreSQL version 12.17, if upper case SHOW command is executed, it
reports the following error:

"ERROR: must be superuser or replication role to run this operation."
You must use lower case SHOW command to avoid this error.

Google Cloud SQL for PostgreSQL

When configuring an Oracle GoldenGate for PostgreSQL Extract for a Google Cloud SQL for
PostgreSQL database, logical decoding must be set and is done by setting the
cloudsql.logical_decoding variable to ON. Follow the instructions provided by Google on how

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-111

https://learn.microsoft.com/en-us/azure/postgresql/single-server/concepts-logical
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups

to enable this database flag. For more information, see https://cloud.google.com/sql/docs/
postgres/flags#postgres-l.

Establishing Oracle GoldenGate Credentials
Learn how to create database users for the processes that interact with the database, assign
the correct privileges, and secure the credentials from any unauthorized use.

Assigning Credentials to Oracle GoldenGate

Oracle GoldenGate processes require a database user to capture and deliver data to a
PostgreSQL database and it is recommended to create a dedicated PostgreSQL database
user for Extract and Replicat.

The following database user privileges are required for Oracle GoldenGate to capture from and
apply to a PostgreSQL database.

Privilege Extract Replicat Purpose

Database Replication Privileges

CONNECT Yes Yes Required for database
connectivity.

GRANT CONNECT ON
DATABASE dbname TO
gguser;

WITH REPLICATION Yes NA Required for the user to
register Extract with a
replication slot.

ALTER USER gguser
WITH REPLICATION;

WITH SUPERUSER Yes NA Required to enable table
level supplemental
logging (ADD TRANDATA)
but can be revoked after
TRANDATA is enabled for
the table(s).

ALTER USER gguser
WITH SUPERUSER;
For Azure Database for
PostgreSQL, only the
Admin user has
SUPERUSER authority
and is the only user that
can enable TRANDATA.

USAGE ON SCHEMA Yes Yes For metadata access to
tables in the schema to
be replicated.

GRANT USAGE ON
SCHEMA tableschema
TO gguser;

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-112

https://cloud.google.com/sql/docs/postgres/flags#postgres-l
https://cloud.google.com/sql/docs/postgres/flags#postgres-l

Privilege Extract Replicat Purpose

SELECT ON TABLES Yes Yes Grant select access on
tables to be replicated.

GRANT SELECT ON ALL
TABLES IN SCHEMA
tableschema TO
gguser;

INSERT, UPDATE,
DELETE,TRUNCATE on
target tables.
Alternatively, if
replicating every table,
then you can use the
GRANT INSERT,
UPDATE, DELETE,
TRUNCATE ON ALL
TABLES IN SCHEMA
TO... to the Replicat
user, instead of granting
INSERT, UPDATE,
DELETE to every table.

NA Yes Apply replicated DML to
target objects.

GRANT INSERT,
UPDATE, DELETE,
TRUNCATE ON TABLE
tablename TO
gguser;

Heartbeat and Checkpoint Table Privileges

CREATE ON DATABASE Yes Yes Required by the Extract
and Replicat user to add
an Oracle GoldenGate
schema for heartbeat
and checkpoint table
creation.

GRANT CREATE ON
DATABASE dbname TO
gguser;
Alternatively, if
GGSCHEMA is the same
as the user, then the
objects can be created
under the user by
issuing CREATE SCHEMA
AUTHORIZATION
ggsuser;

CREATE, USAGE ON
SCHEMA

Yes Yes For heartbeat and
checkpoint table
creation/deletion if the
Extract or Replicat user
does not own the
objects.

GRANT CREATE, USAGE
ON SCHEMA ggschema
TO gguser;

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-113

Privilege Extract Replicat Purpose

EXECUTE ON ALL
FUNCTIONS

Yes Yes For heartbeat update
and purge function
execution if the user
calling the functions
does not own the
objects.

GRANT EXECUTE ON
ALL FUNCTIONS IN
SCHEMA ggschema TO
gguser;

SELECT, INSERT,
UPDATE, DELETE

Yes Yes For heartbeat and
checkpoint table inserts,
updates and deletes if
the user does not own
the objects.

GRANT SELECT,
INSERT, UPDATE,
DELETE, ON ALL
TABLES IN SCHEMA
ggschema TO gguser;

Securing the Oracle GoldenGate Credentials

To preserve the security of your data, and to monitor Oracle GoldenGate processing
accurately, do not permit other users, applications, or processes to log on as, or operate as, an
Oracle GoldenGate database user.

Oracle GoldenGate provides different options for securing the log-in credentials assigned to
Oracle GoldenGate processes. The recommended option is to use a credential store. You can
create one credential store and store it in a shared location where all installations of Oracle
GoldenGate can access it, or you can create a separate one on each system where Oracle
GoldenGate is installed.

The credential store stores the user name and password for each of the assigned Oracle
GoldenGate users. A user ID is associated with one or more aliases, and it is the alias that is
supplied in commands and parameter files, not the actual user name or password. The
credential file can be partitioned into domains, allowing a standard set of aliases to be used for
the processes, while allowing the administrator on each system to manage credentials locally.

Prepare a Database Connection
Oracle GoldenGate connects to a PostgreSQL database through an ODBC (Open Database
Connectivity) driver and requires a system Data Source Name (DSN) be created with the
correct database connection details for each source and target PostgreSQL database.

Ensure that you have installed and configured the driver prior to creating a DSN, by following
the instruction in Configure a Database Connection in Linux .

Note:

Do not use PgBouncer setup for Extract connections to the PostgreSQL database
because PgBouncer does not understand the replication protocol, because of which
the Extract connection is not identified as replication connection.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-114

Note:

Oracle GoldenGate does not support connections to PostgreSQL that use Pgpool.

This section contains instructions for setting up the DSN connections that Extract and Replicat
will use.

Configure a Database Connection in Linux

To create a database connection in Linux, set up a data source name (DSN) inside the /etc/
odbc.ini file.

1. Create a DSN for each source or target database in the /etc/odbc.ini file.

sudo vi /etc/odbc.ini

#Sample DSN entries
[ODBC Data Sources]
PG_src=Oracle GoldenGate PostgreSQL Wire Protocol
PG_tgt=Oracle GoldenGate PostgreSQL Wire Protocol

[ODBC]
IANAAppCodePage=4
InstallDir=/u01/app/ogg

[PG_src]
Driver=/u01/app/ogg/lib/ggpsql25.so
Description=Oracle GoldenGate PostgreSQL Wire Protocol
Database=sourcedb
HostName=remotehost
PortNumber=5432

[PG_tgt]
Driver=/u01/app/ogg/lib/ggpsql25.so
Description=Oracle GoldenGate PostgreSQL Wire Protocol
Database=targetdb
HostName=remotehost
PortNumber=5432

In the preceding examples:

PG_src and PG_tgt are user defined names of a source and target database DSN that will
be referenced by Oracle GoldenGate processes, such as Extract or Replicat. DSN names
are allowed up to 32 alpha-numeric characters in length, excluding special keyboard
characters except for the underscore and dash.

IANAAppCodePage=4 is the default setting but can be modified according to the following
guidance, when the database character set is not Unicode.

https://docs.progress.com/bundle/datadirect-connect-odbc-71/page/
IANAAppCodePage_9.html#IANAAppCodePage_9

InstallDir is the location of the Oracle GoldenGate installation folder.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-115

https://docs.progress.com/bundle/datadirect-connect-odbc-71/page/IANAAppCodePage_9.html#IANAAppCodePage_9
https://docs.progress.com/bundle/datadirect-connect-odbc-71/page/IANAAppCodePage_9.html#IANAAppCodePage_9

Driver is the location of the Oracle GoldenGate installation home, $OGG_HOME/lib/
ggpsql25.so file.

Database is the name of the source or target database.

HostName is the database host IP address or host name.

PortNumber is the listening port of the database.

You can also provide a LogonID and Password for the Extract or Replicat user, but these
will be stored in clear text and it is recommended instead to leave these fields out of the
DSN and instead store them in the Oracle GoldenGate wallet as a credential alias, and
reference them with the USERIDALIAS parameter in Extract and Replicat.

2. Save and close the odbc.ini file.

Configuring SSL Support for PostgreSQL

SSL can be enabled by configuring the PostgreSQL configuration file ($PGDATA/
postgresql.conf). For details, see Configuring SSL Support (PostgreSQL) in the Securing the
Oracle GoldenGate Environment.

Note:

Azure Database for PostgreSQL defaults to enforce SSL connections. To adhere to
this requirement, perform the requirements listed here, or optionally, you can disable
enforcing SSL connections from the Connection security settings of the database
instance using the Microsoft Azure Portal.

Preparing Tables for Processing
The following table attributes must be addressed in an Oracle GoldenGate environment for
PostgreSQL.

Topics:

Disabling Triggers and Cascade Constraints on the Target

If Oracle GoldenGate is configured to capture DML operations from source tables that occur
due to trigger operations or cascade constraints, then disable the triggers and cascade delete
and cascade update constraints on the target tables.

If not disabled, the same trigger or constraint gets activated on the target table and becomes
redundant because of the replicated data. Consider the following example, where the source
tables are emp_src and salary_src and the target tables are emp_targ and salary_targ
1. A delete is issued for emp_src.

2. It cascades a delete to salary_src.

3. Oracle GoldenGate sends both deletes to the target.

4. The parent delete arrives first and is applied to emp_targ.

5. The parent delete cascades a delete to salary_targ.

6. The cascaded delete from salary_src is applied to salary_targ.

7. The row cannot be located because it was already deleted in step 5.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-116

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/19.1/gghdb&id=OGGSE-GUID-F919C8CB-FC0A-4611-8EDD-AF806A7F3BCB

In the Replicat MAP statements, map the source tables to appropriate targets, and map the child
tables that the source tables reference with triggers or foreign-key cascade constraints.
Triggered and cascaded child operations must be mapped to appropriate targets to preserve
data integrity. Include the same parent and child source tables in the Extract TABLE parameters.

Ensuring Row Uniqueness for Tables

Oracle GoldenGate requires some form of unique row identifier on the source and target tables
to locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration. For PostgreSQL LOB types such as text, xml, bytea, char, varchar, Oracle
GoldenGate supports these columns as a primary key in source or target tables up to a
length of 8191 bytes.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use
a larger, less efficient WHERE clause.
For tables that have no uniqueness and have repeat rows with the same values,
Replicat will Abend on update and delete operations for these rows.

4. If a table does not have an appropriate key, or if you prefer that the existing key(s) are not
used, you can define a substitute key, if the table has columns that always contain unique
values. You define this substitute key by including a KEYCOLS clause within the Extract
TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds. See TABLE | MAP in
Reference for Oracle GoldenGate.

Enabling Table-Level Supplemental Logging

Enabling Supplemental logging is a process in which Oracle GoldenGate sets source database
table level logging to support change data capture of source DML operations, and depending
on the level of logging, to include additional, unchanged columns which would be needed in
cases such as bi-directional replication with conflict detection and resolution configured.

There are four levels of table level logging in PostgreSQL, which equate to the REPLICA
IDENTITY setting of a table, and those include NOTHING, USING INDEX, DEFAULT, and FULL.

Oracle GoldenGate requires FULL logging for use cases that require uncompressed trail
records and Conflict Detection and Resolution, but in cases where tables have a Primary Key
or Unique Index whose changes are being replicated in a simple uni-directional configuration

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-117

or where full before-images or uncompressed records are not needed, then the DEFAULT level
is acceptable. NOTHING and USING INDEX logging levels are not supported by Oracle
GoldenGate and cannot be set with ADD TRANDATA.

The following is the syntax for issuing ADD TRANDATA from GGSCI.

GGSCI> DBLOGIN SOURCEDB dsn_name USERIDALIAS alias_name
GGSCI> ADD TRANDATA schema.tablename ALLCOLS

Note:

For tables that have a primary key or unique index, the ALLCOLS option is required in
order to set FULL logging for the table, otherwise DEFAULT logging is set.

FULL logging is always set for tables without a primary key or unique index, regardless of
whether ALLCOLS is specified or not.

To check the level of supplemental logging:

GGSCI> INFO TRANDATA schema.tablename

Configuring Replicat
This chapter contains instructions for configuring the Replicat apply process to deliver data to a
target PostgreSQL database.

About Replicat
The Oracle GoldenGate Replicat for PostgreSQL reads data from Oracle GoldenGate source
trail files and delivers the data to a target PostgreSQL database. The source trail data can be
from any database that Oracle GoldenGate capture supports.

Available Replicats for PostgreSQL are Classic and Coordinated.

For more information on the differences between types of Replicats, review the Creating an
Online Replicat Group content in the Administering Oracle GoldenGate guide.

Replicat Deployment Options

• Local deployment: For a local deployment, the target database and Oracle GoldenGate
are installed on the same server. No extra consideration is needed for local deployments.

• Remote deployment: For a remote deployment, the target database and Oracle
GoldenGate are installed on separate servers. Remote deployments are the only option
available for supporting cloud databases, such as Azure for PostgreSQL or Amazon
Aurora PostgreSQL.

For remote deployments, operating system endianness between the database server and
Oracle GoldenGate server needs to be the same.

With remote deployments, low network latency is important, and it is recommended that
the network latency between the Oracle GoldenGate server and the target database server
be less than 1 millisecond.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-118

Prerequisites for Creating a Replicat
Review the Installing the DataDirect driver for PostgreSQL in Installing Oracle GoldenGate and
ensure that the DataDirect drivers are installed correctly, which varies depending on the
operating system.

Ensure that the PostgreSQL Client Authentication Configuration file, $PGDATA/pg_hba.conf, on
the database server is configured to allow connections from the Oracle GoldenGate server, if
installed remotely. See https://www.postgresql.org/docs/13/auth-pg-hba-conf.html for more
information.

Creating a Checkpoint Table

A checkpoint table is used by a Replicat in the target database for recovery positioning when
restarting a Replicat. A checkpoint table is optional (but recommended) for a Classic Replicat
and required for a Coordinated Replicat.

The checkpoint table needs to be created under an existing schema in the database and by
default will attempt to create the table in the schema listed in the GLOBALS file, GGSCHEMA
parameter. Ensure that the schema listed in GLOBALS exists in the database and that the
Replicat user has permissions to use the schema and create tables in it.

These steps demonstrate creating a checkpoint table for a Classic and Coordinated Replicat.

1. Using GGSCI, connect to the DSN for the target database.

GGSCI> DBLOGIN SOURCEDB dsn USERIDALIAS alias

2. Add the checkpoint table using the GGSCI command.

GGSCI> ADD CHECKPOINTTABLE ggadmin.oggcheck

Creating a Replicat
These steps create a Replicat to deliver transactional data to a target PostgreSQL database.

1. In GGSCI, create the Replicat parameter file.

EDIT PARAMS repnm

In this sample, repnm is a name of the Replicat. For Classic Replicat, the name can be no
more than 8 alpha-numeric characters in length. For Coordinated Replicat, the name must
be five or less alpha-numeric characters in length.

2. Enter the Replicat parameters in the order shown, starting a new line for each parameter
statement.

Sample basic parameters for Classic Replicat:

REPLICAT repnm
TARGETDB dsn_name USERIDALIAS alias
BATCHSQL
GETTRUNCATES
MAP schema.object, TARGET schema.object;

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-119

https://www.postgresql.org/docs/13/auth-pg-hba-conf.html

Sample basic parameters for Coordinated Replicat:

REPLICAT repnm
TARGETDB dsn_name USERIDALIAS alias
BATCHSQL
GETTRUNCATES
MAP schema.object1, TARGET schema.object1, THREAD (1);
MAP schema.object2, TARGET schema.object2, THREAD (2);
MAP schema.object3, TARGET schema.object3, THREAD (3);

Parameter Description

REPLICAT repnm repnm is the name of the Replicat and cannot be
more than 8 alpha-numeric characters in length
for Classic Replicat and 5 or less for Coordinated
Replicat. For more information, see REPLICAT in
Reference for Oracle GoldenGate.

TARGETDB dsn_name Specifies the name of the database connection
DSN.

USERIDALIAS alias Specifies the alias of the database login
credential of the user that is assigned to
Replicat. This credential must exist in the Oracle
GoldenGate credential store. For more
information, see Establishing Oracle GoldenGate
Credentials.

BATCHSQL
GETTRUNCATES

Optional parameters for Replicat that supports
transaction batching and replication of truncate
operations.

MAP schema.object, TARGET
schema.object;
or

MAP schema.*, TARGET schema.*;

Specifies the relationship between a source table
and the corresponding target object or objects.
• MAP specifies the source table or a

wildcarded set of tables.
• TARGET specifies the target table or a

wildcarded set of tables.
• schema is the schema name or a wildcarded

set of schemas.
• object is the name of a table or a

wildcarded set of tables.
• THREAD assigns table operations to a

specific coordinated Replicat thread.

Terminate the parameter statement with a
semi-colon.

To exclude objects from a wildcard
specification, use the MAPEXCLUDE
parameter.

For more information and for additional
options that control data filtering, mapping,
and manipulation, see MAP in Reference for
Oracle GoldenGate.

3. Enter any optional Replicat parameters that are recommended for your configuration. You
can edit this file at any point before starting processing by using the EDIT PARAMS
command.

4. Save and close the file.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-120

5. Add the Replicat, which in this example, will be a Coordinated Replicat.

GGSCI> ADD REPLICAT repnm, COORDINATED, EXTTRAIL ./dirdat/ep,
CHECKPOINTTABLE ggadmin.oggcheck

6. Start the Replicat.

Additional Considerations
This chapter contains additional configuration considerations that may apply to your database
environment.

Adding a Heartbeat Table
Oracle GoldenGate for PostgreSQL supports a heartbeat table configuration, with some
limitations regarding the update and purge tasks, which will be pointed out later. Adding a
heartbeat table to both the source and target systems is optional but is useful in determining
latency issues and to which process in the replication stream such issues may be occurring.

To add a heartbeat table for a database, review the required privileges in the Database
Privileges for PostgreSQL and ensure that the correct database privileges are assigned to the
Extract or Replicat user.

A schema in the database needs to be created and this should match the name of the schema
used for the GGSCHEMA parameter of the GLOBALS file. The schema can be a unique schema that
is not the same as the Extract or Replicat user, or can be the same as that user, but should
always be reserved for Oracle GoldenGate objects only and should not be part of the user
table schemas being replicated.

1. Using GGSCI, connect to the DSN for the source and target databases.

GGSCI> DBLOGIN SOURCEDB dsn USERIDALIAS alias

2. Add the heartbeat table using the GGSCI command.

GGSCI> ADD HEARTBEATTABLE

Optionally, for a target only database, one that is used for unidirectional replication only,
you can include the TARGETONLY option, which will not create a heartbeat record update
function.

GGSCI> ADD HEARTBEATTABLE TARGETONLY

To learn about heartbeat update and purge functions, see:

Running the Heartbeat Update and Purge Function

The heartbeat table and associated functions are created from the ADD HEARTBEATTABLE
command, however for PostgreSQL, there is no automatic scheduler to call the functions.

One main function controls both the heartbeat record update and the heartbeat history table
purge functions. The default settings for both of these features are 60 seconds for the update
frequency and 1 day for the history record purge, which deletes all records older than 30 days
by default.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-121

To call the main heartbeat record function, users should create an operating system level job
that executes “select ggschema.gg_hb_job_run();”. When this function is called, it will take
into account the update frequency settings and history record purge settings and use those
values regardless of the scheduler settings for the function call.

For example, users can create a Cron Job with the following syntax, and have it run every
minute.

*****PGPASSWORD="gguserpasswd" psql -U gguser -d dbname -h remotehost -p 5432
-c "select ggschema.gg_hb_job_run();" >/dev/null
 2>&1

pgAdmin, or pg_cron are other programs that could be used to schedule the function call.

Enabling Bi-Directional Loop Detection
Loop detection is a requirement for bi-directional and multi-directional implementations of
Oracle GoldenGate, so that an Extract for one source database does not recapture
transactions sent by a Replicat from another source database.

With the CDC Extract capture method, by default, any transaction committed by a Replicat into
a database where an Extract is configured, will recapture that transaction from the Replicat as
long as supplemental logging is enabled for those tables that the Replicat is delivering to.

In order to ignore recapturing transactions that are applied by a Replicat, you must use the
TRANLOGOPTIONS FILTERTABLE parameter for the CDC Extract. The table used as the filtering
table will be the Oracle GoldenGate checkpoint table that you must create for the Replicat.

To create a Filter Table and enable Supplemental Logging:

1. On each source database, ensure that a checkpoint table for use by Replicats has been
created. For example:

ADD CHECKPOINTTABLE ggadmin.oggcheck

It is recommended that you use the same schema name as used in the GGSCHEMA
parameter of the GLOBALS file.

2. Enable supplemental logging for the checkpoint table. For example:

ADD TRANDATA ggadmin.oggcheck ALLCOLS

3. Ensure that the Replicat is created with the checkpoint table information.

ADD REPLICAT reptgt1, EXTTRAIL ./dirdat/e2, CHECKPOINTTABLE
ggadmin.oggcheck

4. Configure each Extract with the IGNOREREPLICATES (on by default) and FILTERTABLE
parameters, using the Replicat’s checkpoint table for the filtering table.

TRANLOGOPTIONS IGNOREREPLICATES
TRANLOGOPTIONS FILTERTABLE ggadmin.oggcheck

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-122

Note:

Oracle GoldenGate for PostgreSQL supports only one FILTERTABLE statement
per Extract, so for multi-directional implementations, ensure each Replicat uses
the same checkpoint table in the database that they deliver to.

Deleting an Extract
When removing an individual Extract from use against a source PostgreSQL database, or
uninstalling Oracle GoldenGate, the Extract that was registered with a replication slot in the
database must be unregistered in order to remove the replication slot entry, otherwise an ever-
increasing database log size can occur.

Perform the following steps to remove and unregister the Extract when no longer needed.

1. Using GGSCI, connect to the DSN for the source and target databases.

GGSCI> DBLOGIN SOURCEDB dsn USERIDALIAS alias

2. Delete the Extract first.

GGSCI> DELETE EXTRACT extname

3. Unregister the Extract.

GGSCI> UNREGISTER EXTRACT extname

Removing Table-level Supplemental Logging
If a table is no longer required to be captured by Oracle GoldenGate and the TABLE parameter
for the table has been removed from the Extract parameter file, or TABLEEXCLUDE is used to
exclude the table from a wildcard statement, then supplemental logging can be removed from
the table.

Note:

If the Extract resolves a table that does not have supplemental logging enabled, it will
Abend depending on the type of DML operation.

Using DELETE TRANDATA to remove supplemental logging sets the Replicat Identity level of the
table to NOTHING. Supplemental logging can be disabled using the DELETE TRANDATA command
within GGSCI.

The following is the syntax for issuing DELETE TRANDATA from GGSCI.

GGSCI> DBLOGIN SOURCEDB dsn_name USERIDALIAS alias_name
 GGSCI> DELETE TRANDATA schema.tablename

To check the level of supplemental logging:

GGSCI> INFO TRANDATA schema.tablename

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-123

Understanding What's Supported for PostgreSQL
This chapter contains information on supported features for Oracle GoldenGate for
PostgreSQL:

Supported Databases
The following are supported databases and limitations for Oracle GoldenGate for PostgreSQL:

• Only user databases are supported for capture and delivery.

• Oracle GoldenGate does not support capture from archived logs.

• Capture and delivery are not supported against replica, standby databases.

• High Availability:

– Oracle GoldenGate Extract does not support seamless role transitioning from a
primary to a secondary Extract with PostgreSQL high availability configurations.
However, manual procedural operations could be followed to provide continuity from
the new primary Extract.

– For more information, see the details available in the my Oracle Support note, Oracle
GoldenGate Procedures for PostgreSQL HA Failover (Doc ID 2818379.1).

Details of Supported PostgreSQL Data Types
This topic describes data types that are supported by Oracle GoldenGate, as well as those that
are not supported.

Supported PostgreSQL Data Types

Here's a list of PostgreSQL data types that Oracle GoldenGate supports along with the
limitations of this support.

• bigint
• bigserial
• bit(n)
• bit varying(n)
• boolean
• bytea
• char (n)
• cidr
• citext
• date
• decimal
• double precision
• Enumerated Types
• inet
• integer

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-124

• interval
• json
• jsonb
• macaddr
• macaddr8
• money
• numeric
• real
• serial
• smallint
• smallserial
• text
• time with/without timezone

• timestamp with/without timezone

• uuid
• varchar(n)
• varbit
• xml

Limitations of Support

• If columns of char, varchar, text, or bytea data types are part of a primary or unique key,
then the maximum individual lengths for these columns must not exceed 8191 bytes.

• Columns of data type CITEXT that are part of the Primary Key are supported up to 8000
bytes in size. CITEXT columns that are greater than 8000 bytes and are part of the Primary
Key are not supported.

• real, double, numeric, decimal: NaN input values are not supported.

• The following limitations apply to bit/varbit data types:

– They are supported up to 4k in length. For lengths greater than 4k the data is
truncated and only the lower 4k bits are captured.

– The source bit(n) column can be applied only onto a character type column on a non-
PostgreSQL target and can be applied onto a char type or a bit/varbit column on
PostgreSQL target.

• The following limitations are applicable to both timestamp with time zone and timestamp
without time zone:

– The timestamp data with BC or AD tags in the data is not supported.

– The timestamp data older than 1883-11-18 12:00:00 is not supported.

– The timestamp data with more than 4 digits in the YEAR component is not supported.

– Infinity/-Infinity input strings for timestamp columns are not supported.

• The following are the limitations when using interval:

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-125

– The capture of mixed sign interval data from interval type columns is not
supported. You can use DBOPTIONS ALLOWNONSTANDARDINTERVALDATA in the Extract
parameter file to capture the mixed sign interval data (or any other format of
interval data, which is not supported by Oracle GoldenGate) as a string (not as
standard interval data).

The following are a few examples of data that gets written to the trail file, on using the
DBOPTIONS ALLOWNONSTANDARDINTERVALDATA in the Extract param file:

– +1026-9 +0 +0:0:22.000000 is interpreted as 1026 years, 9 months, 0 days, 0 hours,
0 minutes, 22 seconds.

– -0-0 -0 -8 is interpreted as 0 years, 0 months, 0 days, -8 hours.

– +1-3 +0 +3:20 is interpreted as 1 year, 3 months, 0 days, 3 hours, 20 minutes.

• Replicat: If the source interval data was captured using DBOPTIONS
ALLOWNONSTANDARDINTERVALDATA and written as a string to the trail, the corresponding
source column is allowed to be mapped to either a char or a binary type column on the
target.

• date limitations are:

– The date data with BC or AD tags in the data is not supported.

– Infinity/-Infinity input strings for date columns are not supported.

• Columns of text, json, xml, bytea, char (>8191), varchar (>8191) are treated as LOB
columns and have the following limitations:

– When using GETUPDATEBEFORES, the before image of LOB columns is never logged.

– When using NOCOMPRESSUPDATES, LOB columns are logged in the after image only if
they were modified.

• The support of range and precision for floating-point numbers depends on the host
machine. In general, the precision is accurate to 16 significant digits, but you should review
the database documentation to determine the expected approximations. Oracle
GoldenGate rounds or truncates values that exceed the supported precision.

Non-Supported PostgreSQL Data Types

Oracle GoldenGate for PostgreSQL does not support the following data types:

• Arrays
• box
• bpchar
• circle
• Composite Types
• Domain Types
• line
• lseq
• Object Identifiers Types
• path
• pg_lsn

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-126

• pg_snapshot
• point
• polygon
• Pseudo-Types
• Range Types
• tsquery
• tsvector
• User-defined Types (UDTs)
• Extensions and Additional Supplied Modules listed at: https://www.postgresql.org/docs/

current/contrib.html are not supported by Oracle GoldenGate unless explicitly listed under
Supported PostgreSQL Data Types.

Note:

If the Extract parameter file contains a table with unsupported data types, the Extract
will stop with an error message. To resume replication, remove the table from the
Extract file or remove the column from the table with an unsupported data type.

Note:

If an Extension or Additional Supplied Module is supported, it will be explicitly added
to the Supported PostgreSQL data types list.

Supported Objects and Operations for ProtgreSQL
This topic describes objects and operations that are supported by Oracle GoldenGate.

• Oracle GoldenGate for PostgreSQL only supports DML operations (Insert/Update/Deletes).
DDL replication is not supported.

• Oracle GoldenGate for PostgreSQL supports replication of truncate operations beginning
with PostgreSQL 11 and above, and requires the GETTRUNCATES parameter in Extract and
Replicat.

• Case Sensitive/Insensitive names usage includes:

– Unquoted names are case-insensitive and are implicitly lowercase. For example,
CREATE TABLE MixedCaseTable and SELECT * FROM mixedcasetable are equivalent.

– Quoted table and column names are case-sensitive and need to be listed correctly in
Extracts and Replicats and with Oracle GoldenGate commands. For example, TABLE
appschema.”MixedCaseTable” and ADD TRANDATA appschema.”MixedCaseTable”
would be required to support a case-sensitive table name.

Tables and Views

Tables to be included for capture and delivery must meet the following requirements and must
only include data types listed under Supported PostgreSQL Data Types.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-127

https://www.postgresql.org/docs/current/contrib.html
https://www.postgresql.org/docs/current/contrib.html

• Oracle GoldenGate for PostgreSQL supports capture of transactional DML from user
tables, and delivery to user tables.

• Oracle GoldenGate for PostgreSQL supports delivery to partitioned tables.

• Globalization is supported for object names (table /schema/database/column names) and
column data.

Limitations:

• Oracle GoldenGate for PostgreSQL does not support capture and delivery for views.

• Oracle GoldenGate for PostgreSQL does not support capture from partitioned tables.

Sequences and Identity Columns

• Sequences are supported on source and target tables for unidirectional, bidirectional, and
multi- directional implementations.

• Identity columns created using the GENERATED BY DEFAULT AS IDENTITY clause are
supported on source and target tables, for unidirectional, bidirectional, and multi-
directional implementations.

• Identity columns created using the GENERATED ALWAYS AS IDENTITY clause are not
supported in target database tables and the Identity property should be removed from
target tables or changed to GENERATED BY DEFAULT AS IDENTITY.

• For bidirectional and multi-directional implementations, define the Identity columns and
sequences with an INCREMENT BY value equal to the number of servers in the
configuration, with a different MINVALUE for each one.

For example, MINVALUE /INCREMENT BY values for a bidirectional, two-database
configuration would be as follows:

Database1, set the MINVALUE at 1 with an INCREMENT BY of 2.

Database2, set the MINVALUE at 2 with an INCREMENT BY of 2.

For example, MINVALUE /INCREMENT BY values for a multi-directional, three-database
configuration would be as follows:

Database1, set the MINVALUE at 1 with an INCREMENT BY of 3.

Database2, set the MINVALUE at 2 with an INCREMENT BY of 3.

Database3, set the MINVALUE at 3 with an INCREMENT BY of 3.

SQL Server
With Oracle GoldenGate for SQL Server, you can perform initial loads and capture
transactional data from supported SQL Server versions and replicate the data to a SQL Server
database or other supported Oracle GoldenGate targets, such as an Oracle Database.

Oracle GoldenGate for SQL Server supports data filtering, mapping, and transformations
unless noted otherwise in this documentation.

SQL Server Supported Versions
Certified versions of SQL Server can be found on the published certification matrix available for
each release of Oracle GoldenGate, which is available at the following link:

https://www.oracle.com/middleware/technologies/fusion-certification.html

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-128

https://www.oracle.com/middleware/technologies/fusion-certification.html

Oracle GoldenGate Extract supports Enterprise Edition and some versions of SQL Server
Standard Edition. Review the Exceptions and Additonal Information column of the certification
matrix to see the details of which Standard Edition versions of SQL Server are supported for
Extract.

Oracle GoldenGate Delivery supports both SQL Server Enterprise and Standard editions.

Oracle GoldenGate supports remote capture and delivery for Azure SQL Database Managed
Instance and remote delivery for Azure SQL Database.

Oracle GoldenGate supports remote capture and delivery for Amazon RDS for SQL Server.

Globalization Support
Oracle GoldenGate provides globalization support that lets it process data in its native
language encoding. The Oracle GoldenGate apply process (Replicat) can convert data from
one character set to another when the data is contained in character column types.

Requirements for Installing Oracle GoldenGate for SQL Server
To operate with SQL Server databases, Oracle GoldenGate supports the following instance,
database, and other configurations.

Instance Requirements
• The SQL Server server name (@@SERVERNAME) must not be NULL.

• (Extract) For Oracle GoldenGate to capture transactional data, the SQL Server Agent must
be running on the source SQL Server instance and the SQL Server Change Data Capture
job must be running against the database. If SQL Server Transactional Replication is also
enabled for the database, then the SQL Server Log Reader Agent must be running.

• If your data for TEXT, NTEXT, IMAGE, or VARCHAR(MAX), NVARCHAR(MAX) and
VARBINARY(MAX) columns will exceed the SQL Server default size set for the max text
repl size option, then extend the size. Use sp_configure to view or adjust the current
value of max text repl size.

Note:

For Amazon RDS for SQL Server, to adjust instance settings, you need to use
Parameter Groups instead of sp_configure.

• It is recommended to install the most recent Service Pack or Cummulative Update for your
SQL Server instance to ensure proper functionality. For SQL Server 2012, 2014, 2016, and
2017, Microsoft has identified and fixed several important issues that directly affect the
SQL Server Change Data Capture feature. This situation impacts the ability for Oracle
GoldenGate to correctly capture data. The current known issues that require Microsoft
patches include KB3030352, KB3166120, and KB4073684.

Database Requirements
Observe the following requirements and limitations for supporting Oracle GoldenGate:

• Only user databases are supported for capture and delivery.

• Ensure that Auto Create Statistics and Auto Update Statistics are enabled for the
database.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-129

• The database must be set to the compatibility level of the SQL Server instance version.

• Oracle GoldenGate supports SQL Server databases configured with Transparent Data
Encryption (TDE).

• (Extract) The source database can be set to any recovery model that supports the change
data capture feature in Microsoft SQL Server.

• If the source database was created by restoring a backup from a different instance you
must synchronize the database owner SID with the SID on the new instance. Alternatively,
you can use sp_changedbowner to set the restored database to a current login.

• (AlwaysOn) Extract supports capturing from the primary database, or a read-only,
synchronous-commit mode. Asynchronous-commit mode are not supported for capture.

• Replicat performance consideration: Beginning with SQL Server 2016, Microsoft changed
the default setting for the database option TARGET_RECOVERY_TIME from 0 to 60 seconds. It
has been demonstrated in internal testing that this can reduce the Replicat's throughput. If
you experience Replicat throughput degradation, consider adjusting the
TARGET_RECOVERY_TIME setting to 0.

Limitations:

• Oracle GoldenGate does not support capture or delivery of system databases.

• Oracle GoldenGate does not support capture from contained databases.

• Source database names cannot exceed 121 characters. This limitation is due to the SQL
Server stored procedures that are used to enable supplemental logging.

• If you are configuring the Oracle GoldenGate heartbeat functionality, the SQL Server
database name must not exceed 107 characters.

• Capture from SQL Server databases enabled with In-Memory OLTP (in-memory
optimization) is not supported. When you add a Memory Optimized Data file group to your
database, Oracle GoldenGate is not allowed to enable supplemental logging for any table
in the database. Conversely, if supplemental logging has been enabled for any table in the
database prior to the creation of a Memory Optimized Data file group, SQL Server does
not allow a Memory Optimized Data file group to be created.

• (AlwaysOn) Capture from databases configured in asynchronous-commit mode of an
AlwaysOn Availability group are not supported.

Table Requirements
Tables to be included for capture and delivery must include only the data types that are listed in
Supported SQL Server Data Types.

• Oracle GoldenGate supports capture of transactional DML from user tables, and delivery
to user tables and writeable views.

• DDL operations are not supported.

• Oracle GoldenGate supports the maximum permitted table names and column lengths for
tables that are tracked by SQL Server Change Data Capture.

• The sum of all column lengths for a table to be captured from must not exceed the length
that SQL Server allows for enabling Change Data Capture for the table. If the sum of all
column lengths exceeds what is allowed by SQL Server procedure
sys.sp.cdc_enable_table, then ADD TRANDATA cannot be enabled for that table. The
maximum allowable record length decreases as more columns are present, so there is an
inverse relationship between maximum record length and the number of columns in the
table.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-130

Prepare Database Users and Privileges
Learn about required database users, privileges, and permissions for Oracle GoldenGate for
SQL Server, including supported SQL Server cloud databases.

Oracle GoldenGate for SQL Server
Oracle GoldenGate processes require a database user in order to capture from and apply data
to a SQL Server database and it is recommended to create a dedicated database user to be
used exclusively by Oracle GoldenGate processes.

Oracle GoldenGate for SQL Server supports SQL Server authentication for all of its certified
platforms and Windows authentication for Classic Architecture only when Oracle GoldenGate
is installed on a Windows server.

• To use Windows authentication for Oracle GoldenGate Classic Architecture, the Extract
and Replicat processes inherit the login credentials of the Manager process. By default,
the Manager process runs interactively as the user logged on to the Windows server or
optionally can be added as a Windows Service with a default service name of GGSMGR.
Whichever method that the Manager process is using, the user that it is running as needs
to have the required SQL Server privileges listed above.

• To use SQL Server authentication, create a dedicated SQL Server login for Extract and
Replicat and assign the privileges listed below.

SQL Server and Azure SQL Managed Instance

The following user requirements and minimum database privileges and permissions are
required for Oracle GoldenGate to capture from and apply to a SQL Server or Azure SQL
Managed Instance database.

1. Create a dedicated login for Oracle GoldenGate for SQL Server or Azure SQL Managed
Instance.

2. Add the login as a user to the msdb database and to the source or target database.

3. Create a schema in the source or target database, to be used for objects required for
Oracle GoldenGate. This schema should map to the GGSCHEMA value used in the GLOBALS
parameter file.

4. Enable the following privileges and permissions for the Oracle GoldenGate user based on
whether the user is for an Extract, or for a Replicat.

Table 3-4 Privileges and Permissions for Oracle GoldenGate User

Privilege Extract Replicat Syntax

msdb Database Roles and Privileges

SQLAgentReaderRole Yes No ALTER ROLE SQLAgentReaderRole ADD
MEMBER gguser;

SQLAgentUserRole Inherited Yes ALTER ROLE SQLAgentUserRole ADD
MEMBER gguser;

SELECT ON
sysjobactivity

Yes No GRANT SELECT ON
msdb.dbo.sysjobactivity TO gguser;

SELECT ON sysjobs Yes No GRANT SELECT ON msdb.dbo.sysjobs TO
gguser;

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-131

Table 3-4 (Cont.) Privileges and Permissions for Oracle GoldenGate User

Privilege Extract Replicat Syntax

User Database Roles and Privileges

SYSADMIN Yes No Required for a one time change to enable
database level Change Data Capture (CDC) if
not already enabled and can be revoked once
TRANDATA has been enabled.

ALTER SERVER ROLE sysadmin ADD
MEMBER gguser;
Database Administrators with sysadmin
credentials can manually enable the database
for CDC using the following, which would
negate the need for the Extract user to have
this privilege:

EXEC msdb.sys.sp_cdc_enable_db
‘source_database’

DBOWNER Yes Yes ALTER ROLE db_owner ADD MEMBER
gguser;

Amazon RDS User Permissions and Requirements
The following user requirements and minimum database privileges and permissions are
required for Oracle GoldenGate to capture from and apply to an Amazon RDS for SQL Server
database:

1. Create a dedicated login for Oracle GoldenGate for Amazon RDS for SQL Server.

2. Add the login as a user to the msdb database and to the source or target database.

3. Create a schema in the source or target database, to be used for objects required for
Oracle GoldenGate. This schema should map to the GGSCHEMA value used in the GLOBALS
parameter file.

4. Enable the following privileges and permissions for the Oracle GoldenGate user based on
whether the user is for an Extract, or for a Replicat.

Table 3-5 Privileges and Permissions for Oracle GoldenGate User

Privilege Extract Replicat Syntax

msdb Database Roles and Privileges

EXECUTE ON
rds_cdc_enable_db

Yes No GRANT EXECUTE ON
msdb.dbo.rds_cdc_enable_db TO gguser;
Database administrators with master credentials
can manually enable the database for Change
Data Capture using the following command, which
would negate the need for the Extract user to
have this permission:

EXEC msdb.dbo.rds_cdc_enable_db
‘source_database’

SQLAgentOperatorR
ole

Yes No ALTER ROLE SQLAgentOperatorRole ADD
MEMBER gguser;

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-132

Table 3-5 (Cont.) Privileges and Permissions for Oracle GoldenGate User

Privilege Extract Replicat Syntax

SQLAgentUserRole Inherited Yes ALTER ROLE SQLAgentUserRole ADD MEMBER
gguser;

SELECT ON
sysjobactivity

Yes No GRANT SELECT ON
msdb.dbo.sysjobactivity TO gguser;

SELECT ON sysjobs Yes No GRANT SELECT ON msdb.dbo.sysjobs TO
gguser;

User Database Roles and Privileges

DBOWNER Yes Yes ALTER ROLE db_owner ADD MEMBER gguser;

Azure SQL Database
The following user requirements and minimum database privileges and permissions are
required for Oracle GoldenGate to apply to an Azure SQL Database:

1. Create a dedicated login for Oracle GoldenGate for Azure SQL Database.

2. Add the login as a user to the target database.

3. Create a schema in the target database, to be used for objects required for Oracle
GoldenGate. This schema should map to the GGSCHEMA value used in the GLOBALS
parameter file.

4. Enable the following privileges and permissions for the Oracle GoldenGate user.

Table 3-6 Privileges and Permissions for Oracle GoldenGate User

Privilege Extract Replicat Syntax

User Database Roles and Privileges

DBOWNER NA Yes ALTER ROLE db_owner ADD MEMBER
gguser;

Database Connectivity
Oracle GoldenGate uses ODBC and OLE DB to connect to a database:

• ODBC: The Extract process uses ODBC to connect to a source SQL Server database to
obtain metadata and perform other process queries. The Replicat process uses ODBC to
connect to a target SQL Server database to obtain metadata, but can optionally use it for
its delivery of transactions as well. ODBC must be properly configured.

• OLE DB: By default, the Replicat process attempts to use OLE DB to connect to a target
SQL Server database to perform DML operations. If the driver used only supports ODBC,
then the Replicat will apply DML via ODBC. To use OLE DB in an ODBC-only driver, install
the Microsoft OLE DB Driver 18 for SQL Server. Using OLE DB allows the use of the
DBOPTIONS USEREPLICATIONUSER parameter, which supports the Not for Replication flag
of certain table properties.

• Using the Microsoft SQL Server Native Client 11 OLE DB driver to connect to a SQL
Server 2014 instance in OLEDB mode may lead to a memory leak issue (Microsoft article

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-133

2881661). Microsoft has provided a fix in SQL Server 2014 CU1 (Microsoft article
2931693). To avoid a possible memory leak, you may choose one of the following options:

– For SQL Server 2014, upgrade the SQL Server instance to at least Cumulative Update
1.

– Use a Microsoft supported ODBC driver.

• For Azure SQL Database, use a Microsoft supported ODBC driver.

• Always On availability group listeners are supported and are required to support read-only
routing for capture against a synchronous mode secondary replica.

Configuring an Extract Database Connection
Extract connects to a source SQL Server database through an ODBC (Open Database
Connectivity) connection. To create this connection, set up a data source name (DSN) using
the following steps.

See Creating a Database Connection on Windows and Creating a Database Connection on
Linux for instructions.

Configuring a Replicat Database Connection
Replicat can connect to the target database to perform DML operations in the following ways:

• Through ODBC.

• Through OLE DB if the SQL Server driver supports it.

• Through OLE DB as the SQL Server replication user. NOT FOR REPLICATION must be set
on IDENTITY columns, foreign key constraints, and triggers.

Before you select a method to use, review the following guidelines and procedures to evaluate
the advantages and disadvantages of each.

Connecting with ODBC or Default OLE DB

If Replicat connects through the default ODBC connection or through the OLE DB connection,
the following limitations apply:

• To keep IDENTITY columns identical on source and target when using ODBC or default
OLE DB, Replicat creates special operations in its transaction to ensure that the seeds are
incremented on the target. These steps may reduce delivery performance.

• You must adjust or disable triggers and constraints on the target tables to eliminate the
potential for redundant operations.

To use Replicat with either ODBC or OLE DB, follow these steps:

1. ODBC is used by default, unless the Microsoft OLE DB Driver for SQL Server is installed,
in which case OLE DB is used. To force ODBC connectivity, add DBOPTIONS USEODBC to the
Replicat.

2. Disable triggers and constraints on the target tables. See Disabling Triggers and Cascade
Constraints on the Target.

3. To use IDENTITY columns in a bidirectional SQL Server configuration, define the IDENTITY
columns to have an increment value equal to the number of servers in the configuration,
with a different seed value for each one. For example, a two-server installation would be as
follows:

• Sys1 sets the seed value at 1 with an increment of 2.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-134

• Sys2 sets the seed value at 2 with an increment of 2.

A three-server installation would be as follows:

• Sys1 sets the seed value at 1 with an increment of 3.

• Sys2 sets the seed value at 2 with an increment of 3.

• Sys3 sets the seed value at 3 with an increment of 3.

Connectiong with the OLE DB USEREPLICATIONUSER Option

If Replicat connects as the SQL Server replication user through OLE DB with the
USEREPLICATIONUSER option, and NOT FOR REPLICATION is enabled for IDENTITY columns,
triggers with foreign key constraints, the following benefits and limitations apply.

• IDENTITY seeds are not incremented when Replicat performs an insert. For SQL Server
bidirectional configurations, stagger the seed and increment values like the example in
Step 3 of the previous section.

• Triggers are disabled for the Replicat user automatically on the target to prevent redundant
operations. However triggers fire on the target for other users.

• Foreign key constraints are not enforced on the target for Replicat transactions. CASCADE
updates and deletes are not performed. These, too, prevent redundant operations.

• CHECK constraints are not enforced on the target for Replicat transactions. Even though
these constraints are enforced on the source before data is captured, consider whether
their absence on the target could cause data integrity issues.

Note:

Normal IDENTITY, trigger, and constraint functionality remains in effect for any
users other than the Replicat replication user.

To use Replicat with USEREPLICATIONUSER, follow these steps:

Note:

This feature is only supported for Oracle GoldenGate on Windows.

Note:

Install the Microsoft OLE DB Driver for SQL Server software on the Oracle
GoldenGate server.
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-
server?view=sql-server-ver15

1. In SQL Server Management Studio (or other interface) set the NOT FOR REPLICATION flag
on the following objects. For active-passive configurations, set it only on the passive
database. For active-active configurations, set it on both databases.

• Foreign key constraints

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-135

https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15

• Check constraints

• IDENTITY columns

• Triggers (requires textual changes to the definition; see the SQL Server documentation
for more information.)

2. Partition IDENTITY values for bidirectional configurations.

3. In the Replicat MAP statements, map the source tables to appropriate targets, and map the
child tables that the source tables reference with triggers or foreign-key cascade
constraints. Triggered and cascaded child operations are replicated by Oracle
GoldenGate, so the referenced tables must be mapped to appropriate targets to preserve
data integrity. Include the same parent and child source tables in the Extract TABLE
parameters.

Note:

If referenced tables are omitted from the MAP statements, no errors alert you to
integrity violations, such as if a row gets inserted into a table that contains a
foreign key to a non-replicated table.

4. In the Replicat parameter file, include the DBOPTIONS parameter with the
USEREPLICATIONUSER option.

Creating a Database Connection on Linux
Before creating a database connection for Oracle GoldenGate processes running on Linux,
install the latest version of Microsoft ODBC driver for SQL Server (Linux).

Select the following link for download and installation steps:

https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-
driver-for-sql-server?view=sql-server-ver15

For the installation, choose the steps listed under Red Hat Enterprise Linux and Oracle.

After the ODBC software is installed, follow the example below to create an ODBC DSN for
Linux:

1. Create a template file for your data source(s):

vi odbc_template_file.ini

2. Describe the data source in the template file. Multiple unique DSN entries can be listed in
the template file, if needed.

In the following example, mydsn_2019_source is the DSN name, which will be used with
DBLOGIN and SOURCEDB or TARGETDB to connect to the Extract or Replicat to the database.

[mydsn_2019_source]
Driver = ODBC Driver 18 for SQL Server
Server = myserver,1433
Database = source_database
TrustServerCertificate=YES

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-136

https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-ver15

3. Install the data source using the following command.

odbcinst -i -s -f odbc_template_file.ini

This command adds the DSN to the system odbc.ini file. For more information, select the
following link:

https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/connection-string-keywords-
and-data-source-names-dsns?view=sql-server-2017

Creating a Database Connection on Windows
Before creating a database connection for Oracle GoldenGate processes running on Windows,
install the latest version of Microsoft ODBC Driver for SQL Server.

Follow these steps to create a system DSN on the Windows server where Oracle GoldenGate
is installed.

To create a SQL Server DSN

1. Open the ODBC Data Sources (64-bit) application.

2. In the ODBC Data Source Administrator dialog box, select the System DSN tab, and then
click Add.

3. Under Create New Data Source, select the ODBC Driver {version} for SQL Server and
then click Finish. The Create a New Data Source to SQL Server wizard appears.

4. Enter the following details, and click Next:

• Name: Can be of your choosing. In a Windows cluster, use one name across all nodes
in the cluster.

• Description: (Optional) Type a description of this data source.

• Server: Type the SQL Server connection string or server\instance name. For Always
On connections, use the listener\instance name of the Always On Availability Group.

5. For login authentication, select one of the following options, and then click Next:

a. With Integrated Windows Authentication

b. With SQL Server authentication using a login ID and password entered by the user

6. Select Change the default database to, and then select the source or target database
from the list. Enable the Use ANSI settings. Click Next.

7. Leave the next page set to the defaults. Click Finish.

8. Click Test Data Source to test the connection.

9. If the test is successful, close the confirmation box and the Create a New Data Source
box.

10. Repeat this procedure for each SQL Server source and target database.

Preparing Tables for Processing
The table attributes in the following sections must be addressed in your Oracle GoldenGate
environment.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-137

https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/connection-string-keywords-and-data-source-names-dsns?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/connection-string-keywords-and-data-source-names-dsns?view=sql-server-2017

Disabling Triggers and Cascade Constraints on the Target
In an environment where SQL Server is the target, consider triggers and cascade constraints
that may repeat an operation that occurred on the source. For example, if the source has an
insert trigger on TableA that inserts a record into TableB, and Oracle GoldenGate is configured
to capture and deliver both TableA and TableB, the insert trigger on the target table, TableA,
must be disabled. Otherwise, Replicat inserts into TableA, and the trigger fires and insert into
TableB. Replicat will then try to insert into TableB, and then terminate abnormally.

When a trigger or cascade constraint repeats an operation that occurred on the source, you do
not have to disable the trigger or constraint when the following conditions are both true:

• You use the DBOPTIONS USEREPLICATIONUSER parameter in Replicat.

• You use OLE DB connection for Replicat. The use of the OLE DB connection is the default
configuration. Note that the trigger, constraint, or IDENTITY property must have NOT FOR
REPLICATION enabled.

In the following scenario, disable the triggers and constraints on the target:

• Uni-directional replication where all tables on the source are replicated.

In the following scenarios, enable the triggers and constraints on the target:

• Uni-directional replication where tables affected by a trigger or cascade operation are not
replicated, and the only application that loads these tables is using a trigger or cascade
operation.

• Uni-directional or -bi-directional replication where all tables on the source are replicated. In
this scenario, set the target table cascade constraints and triggers to enable NOT FOR
REPLICATION, and use the DBOPTIONS USEREPLICATIONUSER parameter in Replicat.

Ensuring Row Uniqueness in Source and Target Table
Oracle GoldenGate requires some form of unique row identifier on the source and target tables
to locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use
a larger, less efficient WHERE clause.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-138

4. If a table does not have an appropriate key, or if you prefer that the existing key(s) are not
used, you can define a substitute key, if the table has columns that always contain unique
values. You define this substitute key by including a KEYCOLS clause within the Extract
TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds. See TABLE | MAP in
Reference for Oracle GoldenGate.

How Oracle GoldenGate Determines the Kind of Row Identifier to Use

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

2. If neither of these key types exist , Oracle GoldenGate constructs a pseudokey of all
columns that the database allows to be used in a unique key, excluding those that are not
supported by Oracle GoldenGate in a key or those that are excluded from the Oracle
GoldenGate configuration. For SQL Server, Oracle GoldenGate requires the row data in
target tables that do not have a primary key to be less than 8000 bytes.

Note:

If there are types of keys on a table or if there are no keys at all on a table,
Oracle GoldenGate logs a message to the report file. Constructing a key from all
of the columns impedes the performance of Oracle GoldenGate on the source
system. On the target, this key causes Replicat to use a larger, less efficient
WHERE clause.

Using KEYCOLS to Specify a Custom Key

If a table does not have an applicable row identifier, or if you prefer that identifiers are not
used, you can define a substitute key, providing that the table has columns that always contain
unique values. You define this substitute key by including a KEYCOLS clause within the Extract
TABLE parameter and the Replicat MAP parameter. The specified key overrides any existing
primary or unique key that Oracle GoldenGate finds.

Improving IDENTITY Replication with Array Processing
Because only one table per session can have IDENTITY_INSERT set to ON, Replicat must
continuously toggle IDENTITY_INSERT when it applies IDENTITY data to multiple tables in a
session. To improve the performance of Replicat in this situation, use the BATCHSQL parameter.
BATCHSQL causes Replicat to use array processing instead of applying SQL statements one at
a time.

Preparing the Database for Oracle GoldenGate — CDC Capture
Learn how to enable supplemental logging in the source database tables that are to be used
for capture by the Extract for SQL Server and how to purge older CDC staging data.

You can learn more about CDC Capture with this Oracle By Example:

Using the Oracle GoldenGate for SQL Server CDC Capture Replication http://www.oracle.com/
webfolder/technetwork/tutorials/obe/fmw/goldengate/12c/sql_cdcrep/sql_cdcrep.html.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-139

http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/goldengate/12c/sql_cdcrep/sql_cdcrep.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/goldengate/12c/sql_cdcrep/sql_cdcrep.html

Enabling CDC Supplemental Logging
With the CDC Extract, the method of capturing change data is via SQL Server Change Data
Capture tables, so it is imperative that you follow the procedures and requirements below, so
that change data is correctly logged, maintained, and captured by Extract.

You will enable supplemental logging with the ADD TRANDATA command so that Extract can
capture the information that is required to reconstruct transactions.

ADD TRANDATA must be issued for all tables that are to be captured by Oracle GoldenGate, and
to do so requires that a valid schema be used in order to create the necessary Oracle
GoldenGate tables and stored procedures.

Enabling supplemental logging for a CDC Extract does the following:

• Enables SQL Server Change Data Capture at the database level, if it’s not already
enabled.

– EXECUTE sys.sp_cdc_enable_db
• Creates a Change Data Capture staging table for each base table enabled with

supplemental logging by running EXECUTE sys.sp_cdc_enable_table, and creates a
trigger for each CDC table. The CDC table exists as part of the system tables within the
database and has a naming convention like, cdc.OracleGG_basetableobjectid_CT.

• Creates a tracking table of naming convention schema.OracleGGTranTables. This table is
used to store transaction indicators for the CDC tables, and is populated when the trigger
for a CDC table is fired. The table will be owned by the schema listed in the GLOBALS file’s,
GGSCHEMA parameter.

• Creates a unique fetch stored procedure for each CDC table, as well as several other
stored procedures that are required for Extract to function. These stored procedures will be
owned by the schema listed in the GLOBALS file’s, GGSCHEMA parameter.

• Also, as part of enabling CDC for tables, SQL Server creates two jobs per database:

cdc.dbname_capture
cdc.dbname_cleanup

• The CDC Capture job is the job that reads the SQL Server transaction log and populates
the data into the CDC tables, and it is from those CDC tables that the Extract will capture
the transactions. So it is of extreme importance that the CDC capture job be running at all
times. This too requires that SQL Server Agent be set to run at all times and enabled to run
automatically when SQL Server starts.

• Important tuning information of the CDC Capture job can be found in CDC Capture Method
Operational Considerations.

• The CDC Cleanup job that is created by Microsoft does not have any dependencies on
whether the Oracle GoldenGate Extract has captured data in the CDC tables or not.
Therefore, extra steps need to be followed in order to disable or delete the CDC cleanup
job immediately after TRANDATA is enabled, and to enable Oracle GoldenGate's own CDC
cleanup job. See Retaining the CDC Table History Data for more information.

The following steps require a database user who is a member of the SQL Server System
Administrators (sysadmin) role.

1. In the source Oracle GoldenGate installation, ensure that a GLOBALS (all CAPS and no
extension) file has been created with the parameter GGSCHEMA schemaname. Ensure that the
schema name used has been created (CREATE SCHEMA schemaname) in the source

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-140

database. This schema will be used by all subsequent Oracle GoldenGate components
created in the database, therefore it is recommended to create a unique schema that is
solely used by Oracle GoldenGate, such as ‘ogg’. It is recommended not to use the SQL
Server schema cdc and to create a new schema specific to Oracle GoldenGate.

2. On the source system, run GGSCI
3. Issue the following command to log into the database:

DBLOGIN SOURCEDB DSN [,{USERID user, PASSWORD password | USERIDALIAS alias}]
Where:

• SOURCEDB DSN is the name of the SQL Server data source.

• USERID user is the database login and PASSWORD password is the password that is
required if the data source connects via SQL Server authentication.
Alternatively, USERIDALIAS alias is the alias for the credentials if they are stored in a
credentials store. If using DBLOGIN with a DSN that is using Integrated Windows
authentication, the connection to the database for the GGSCI session will be that of
the user running GGSCI. In order to issue ADD TRANDATA or DELETE TRANDATA, this user
must be a member of the SQL Server sysadmin server role.

4. In GGSCI, issue the following command for each table that is, or will be, in the Extract
configuration. You can use a wildcard to specify multiple table names.

ADD TRANDATA owner.table
ADD TRANDATA owner.*
Optionally, you can designate the filegroup in which the SQL Server Change Data Capture
staging tables will be placed, by using the FILEGROUP option with an existing filegroup
name.

ADD TRANDATA owner.table FILEGROUP cdctables
See ADD TRANDATA

Purging CDC Staging Data
When enabling supplemental logging, data that is required by Extract to reconstruct
transactions are stored in a series of SQL Server CDC system tables, as well Oracle
GoldenGate objects that are used to track operations within a transaction. And as part of
enabling supplemental logging, SQL Server will create its own Change Data Capture Cleanup
job that runs nightly by default, and purges data older than 72 hours. The SQL Server CDC
Cleanup job is unaware that an Extract may still require data from these CDC system tables
and can remove that data before the Extract has a chance to capture it.

If data that Extract needs during processing has been deleted from the CDC system tables,
then one of the following corrective actions might be required:

• Alter Extract to capture from a later point in time for which CDC data is available (and
accept possible data loss on the target).

• Resynchronize the source and target tables, and then start the Oracle GoldenGate
environment over again.

To remedy this situation, Oracle GoldenGate for SQL Server includes Oracle GoldenGate for
SQL Server includes the ogg_cdc_cleanup_setup.bat program that is used to create an
Oracle GoldenGate Cleanup job associated stored procedures and tables.

The Extract, upon startup, will expect, by default, that those Oracle GoldenGate Cleanup task
objects exist and will stop if they do not. Extract will issue a warning if the SQL Server CDC
Cleanup job exists alongside the Oracle GoldenGate Cleanup job.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-141

The default checks by Extract for the Oracle GoldenGate CDC Cleanup task objects can be
overwritten by using the TRANLOGOPTIONS NOMANAGECDCCLEANUP in the Extract, but this would
only be recommended for development and testing purposes.

Use the following steps immediately after enabling supplemental logging and prior to starting
the Extract, to create the Oracle GoldenGate CDC Cleanup job and associated objects. You
can re-run these steps to re-enable this feature should any of the objects get manually deleted.

To create the Oracle GoldenGate CDC Cleanup job and objects:

The ogg_cdc_cleanup_setup file is located in the the home directory for Classic Architecture.

The script uses the Microsoft sqlcmd utility, so ensure that sqlcmd is installed on the system
where Oracle GoldenGate is installed.

This requires an SQL Server authenticated database user who is a member of the SQL Server
System Administrators (sysadmin) role. Windows authentication is not supported for the .bat
script.

1. Stop and disable the database’s SQL Server cdc.dbname_cleanup job from SQL Server
Agent. Alternatively, you can drop it from the source database with the following command.

EXECUTE sys.sp_cdc_drop_job 'cleanup'

2. Run the ogg_cdc_cleanup_setup.bat file, providing the following variable values.

For Windows:

ogg_cdc_cleanup_setup.bat createJob userid password databasename
servername\instancename schema

For Linux:

./ogg_cdc_cleanup_setup.sh createJob userid password databasename
"servername,port" schema

In the preceding examples, USER ID and password should be a valid SQL Server login
and password for a user, which has sysadmin rights. The databasename,
servername\instancename, or servername, port, are the source database name, server,
and instance, or server and TCP/IP port where SQL Server is running. If only the server
name is listed, then the default instance will be connected to. The schema is the schema
name listed in the GLOBALS file, with the GGSCHEMA parameter. This schema should be the
same for all Oracle GoldenGate objects, including supplemental logging, checkpoint
tables, heartbeat tables, and the Oracle GoldenGate CDC Cleanup job.

For example:

ogg_cdc_cleanup_setup.bat createJob ggsuser ggspword db1 server1\inst1 ogg

When using server,port in the connection string, enclose the string in double quotes, for
example:

ogg_cdc_cleanup_setup.bat createJob login password source database
"sql2016.samplestring.us-west-1.rds.amazonaws.com,1433" OGG schema name

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-142

The Oracle GoldenGate CDC Cleanup job when created, is scheduled to run every ten
minutes, with a default retention period of seventy two hours. The job will not purge data for an
Extract’s recovery checkpoint however, regardless of the retention period.

Additional information of the Oracle GoldenGate CDC Cleanup job can be found in CDC
Capture Method Operational Considerations.

Enabling Bi-Directional Loop Detection

Loop detection is a requirement for bi-directional implementations of Oracle GoldenGate, so
that an Extract for one source database does not recapture transactions sent by a Replicat
from another source database.

With the CDC Extract capture method, by default, any transaction committed by a Replicat into
a database where an Extract is configured, will recapture that transaction from the Replicat as
long as supplemental logging is enabled for those tables that the Replicat is delivering to.

In order to ignore recapturing transactions that are applied by a Replicat, you must use the
TRANLOGOPTIONS FILTERTABLE parameter for the CDC Extract. The table used as the filtering
table will be the Oracle GoldenGate checkpoint table that you must create for the Replicat.

To create a Filter Table and enable Supplemental Logging:

The steps below require a database user who is a member of the SQL Server System
Administrators (sysadmin) role.

1. On the source system, run GGSCI
2. Issue the following command to log into the database.

DBLOGIN SOURCEDB DSN [,{USERID user, PASSWORD password | USERIDALIAS alias}]
In the preceding example, the SOURCEDB DSN is the name of the SQL Server data source.
The USERID user is the database login and PASSWORD password is the password that is
required if the data source connects through SQL Server authentication.
Alternatively, USERIDALIAS alias is the alias for the credentials if they are stored in a
credentials store. If using DBLOGIN with a DSN that is using Integrated Windows
authentication, the connection to the database for the GGSCI session is that of the user
running GGSCI. In order to issue ADD TRANDATA or DELETE TRANDATA, this user must be a
member of the SQL Server sysadmin server role.

3. Create the Oracle GoldenGate checkpoint table that is used by the Replicat to deliver data
to the source database.

Example: ADD CHECKPOINTTABLE ogg.ggchkpt
It is recommended that you use the same schema name as used in the GGSCHEMA
parameter of the GLOBALS file.

4. Enable supplemental logging for the newly created checkpoint table.

Example: ADD TRANDATA ogg.ggchkpt
5. Add the Replicat with the checkpoint table information.

Example: ADD REPLICAT reptgt1, EXTTRAIL ./dirdat/e2,checkpointtable
ogg.ggchkpt

6. Configure the Extract with the IGNOREREPLICATES (on by default) and FILTERTABLE
parameters, using the Replicat’s checkpoint table for the filtering table.

TRANLOGOPTIONS IGNOREREPLICATES

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-143

TRANLOGOPTIONS FILTERTABLE ogg.ggchkpt

Requirements Summary for Capture and Delivery of Databases in an Always On
Availability Group

Oracle GoldenGate for SQL Server supports capture from a primary replica or a read-only,
synchronous mode secondary replica of an Always On Availability Group, and delivery to the
primary replica.

When capturing from either a primary or a secondary replica in an Always On Availability
Group, it is important to understand that the capture process must only read hardened
transactions from the log, and that there be no potential for data loss between any replica
database that Oracle GoldenGate is or will capture from.

Database Connection

For both Extract and Replicat, it is recommended to create a System DSN that uses the
Always On Availability Group Listener for the connection.

• For the Replicat, connecting to the Listener allows the Replicat to reconnect if the primary
replica performs a failover to a new instance, without having to manually edit the DSN
settings to point to the new primary.

• For the Extract connecting to the Listener not only allows reconnecting to the primary
without editing the DSN to point to the new instance, but also provides the optional ability
to run the Extract’s data extraction stored procedures, against a read-only secondary.

• For both Extract and Replicat connected to an Always On environment, use the
AUTORESTART parameter for the Manager, to restart the processes after a failover.

• To route the Extract’s data extraction queries to a read-only secondary, ensure that the
DSN connection uses the Listener, that you have one or more read-only secondary
replicas that are configured to handle read-only routing, and that the Extract runs with the
TRANLOGOPTIONS ALWAYSONREADONLYROUTING parameter.

– Ensure that the Application Intent field of the DSN configuration is set to READWRITE
and not READONLY

– Refer to the following Microsoft documentation on how to configure read-only routing:
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/
configure-read-only-routing-for-an-availability-group-sql-server?view=sql-server-2017

Supplemental Logging
Supplemental logging must be enabled by normal means (ADD TRANDATA)
using GGSCI connected to the primary replica and not against a secondary replica.

• Create a DSN to the primary replica, or to the Always On Availability Group Listener, to
connect using DBLOGIN to run ADD TRANDATA from GGSCI.

• The login used to enable supplemental logging must have sysadmin membership of the
primary replica instance.

• When enabling supplemental logging against the primary replica database, the SQL Server
Change Data Capture job does not automatically get created on any secondary replicas.
Upon failover from a primary to a secondary, you must manually create the SQL Server
Change Data Capture job and the Oracle CDC Cleanup job if in use, on the new primary
replica.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-144

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/configure-read-only-routing-for-an-availability-group-sql-server?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/configure-read-only-routing-for-an-availability-group-sql-server?view=sql-server-2017

EXECUTE sys.sp_cdc_add_job N'capture
– When creating the SQL Server CDC Capture job on the new primary, the default

configuration settings are put in place. So if you have previously modified the default
values on the former primary replica, you need to run sys.sp_cdc_change_job on the
new primary and set the values accordingly.

Note:

Consult the Microsoft documentation on how to enable the CDC Capture job for
AlwaysOn Secondary Replicas for more information.

Operational Requirements and Considerations

• When an instance is no longer the primary instance but has the SQL Server CDC Capture
job installed, the job ceases to run after some time and does not attempt to restart. Upon
failover back to that instance, the job does not automatically start, so it must be manually
started.

• If secondary replica databases are not in sync with the primary replica database, the CDC
capture job will not advance in the log, and therefore no records will be captured by an
Extract, until such time that the primary and secondary replicas are synchronized. See this
article from Microsoft for more details:

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/
replicate-track-change-data-capture-always-on-availability?view=sql-server-2017

Note:

When capturing from either a primary or a secondary replica in an Always On
Availability Group, it is important to understand that the capture process must
only read hardened transactions from the log, and that there be no potential for
data loss between any replica database that Oracle GoldenGate is or will capture
from.

• When running an Extract from a middle tier Windows or Linux server, set the middle tier
server's date, time, and time zone to the same as that of the primary replica.

• Upon failover from a primary to a secondary replica, reinstall the Oracle GoldenGate CDC
Cleanup job on the new primary by re-running the ogg_cdc_cleanup_setup.bat file with
the createJob option.

• If Extract is configured to capture from a readable secondary replica, but not configured
with read-only routing, the SQL Server CDC Capture job must be created against the
secondary replica prior to starting the Extract, as the Extract will check if the job exists. To
create the SQL Server CDC Capture job, any potential secondary that will have an Extract
connected to it, must at some point be set to a writable Primary database and then follow
the steps above, under supplemental logging, to manually add the SQL Server CDC
Capture job.

• If uninstalling Oracle GoldenGate and disabling Change Data Capture on a database that
is part of an Always On availability group, follow the extra steps provided in Disabling
Change Data Capture.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-145

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/replicate-track-change-data-capture-always-on-availability
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/replicate-track-change-data-capture-always-on-availability?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/replicate-track-change-data-capture-always-on-availability?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/replicate-track-change-data-capture-always-on-availability?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/replicate-track-change-data-capture-always-on-availability?view=sql-server-ver15

CDC Capture Method Operational Considerations
This section provides information about the SQL Server CDC Capture options, features, and
recommended settings.

Tuning SQL Server Change Data Capture

The following information is useful in improving the capture performance of the Extract.

• Ensure that Auto Create Statistics and Auto Update Statistics are enabled for the
database. Maintaining statistics on the cdc.OracleGG_#####_CT , cdc.lsn_time_mapping,
and OracleGGTranTables table is crucial to the performance and latency of the Extract.

• The SQL Server Change Data Capture job collects data from the SQL Server transaction
log and loads it into the Change Data Capture staging tables within the database.

As part of the job that is created, there are several available tuning parameters that can be
used, and information on how to best tune the job can be found in the following article:
https://technet.microsoft.com/en-us/library/dd266396(v=sql.100).aspx

As a general recommendation, you should change the SQL Server Change Data Capture
Job polling interval from the default of 5 seconds to 1 second.

To change the default polling interval of the CDC Capture job, execute the following
queries against the database:

EXEC [sys].[sp_cdc_change_job]
@job_type = N'capture’,
@pollinginterval = 1,
GO,
--stops cdc job
EXEC [sys].[sp_cdc_stop_job],
@job_type = N'capture’,
GO,
--restarts cdc job for new polling interval to take affect
EXEC [sys].[sp_cdc_start_job],
@job_type = N'capture’,

Oracle GoldenGate CDC Object Versioning

Oracle GoldenGate provides a version tracking subsystem to track the CDC objects that are
created by Oracle GoldenGate when enabling supplemental logging. These objects are:

• Oracle GoldenGate change tracking tables in the format OracleGG_object id_CT.
• Stored procedures in the format fetch_database name_object id
• Stored procedures OracleCDCExtract, OracleGGCreateProcs, and

OracleGGCreateNextBatch.

• After successfully completing the ADD TRANDATA command, GGSCI creates a table called
OracleGGVersion under the GGSCHEMA specified in the GLOBALS file, if it does not already
exist.

Next, GGSCI inserts a record into the table that tracks the start and end time of the
TRANDATA session. When Extract starts up, it checks for consistency between itself and the
Oracle GoldenGate CDC objects by comparing its internal version number with the version

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-146

https://technet.microsoft.com/en-us/library/dd266396(v=sql.100).aspx

numbers found in the OracleGGVersion table. If it finds that the version numbers do not
match, it abends with a message similar to the following:

ERROR OGG-05337 The Oracle GoldenGate CDC object versions on database, source,
are not consistent with the expected version, 2. The following versions(s)
were found: 1. Rerun ADD TRANDATA for all tables previously enabled, including
heartbeat, heartbeat seed, and filter tables.

Valid and Invalid Extract Parameters for SQL Server Change Data Capture

This section describes parameters used for the CDC Capture method. For more information
about supported and unsupported parameters for the CDC Capture method, review Reference
for Oracle GoldenGate.

TRANLOGOPTIONS LOB_CHUNK_SIZE
The Extract parameter LOB_CHUNK_SIZE is added for the CDC Capture method to support large
objects. If you have huge LOB data sizes, then you can adjust the LOB_CHUNK_SIZE from the
default of 4000 bytes, to a higher value up to 65535 bytes, so that the fetch size is increased,
reducing the trips needed to fetch the entire LOB.

Example: TRANLOGOPTIONS LOB_CHUNK_SIZE 8000

TRANLOGOPTIONS MANAGECDCCLEANUP/NOMANAGECDCCLEANUP
The Extract parameter MANAGECDCCLEANUP/NOMANAGECDCCLEANUP is used by the CDC Capture
method to instruct the Extract on whether or not to maintain recovery checkpoint data in the
Oracle GoldenGate CDC Cleanup job. The default value is MANAGECDCCLEANUP and it doesn’t
have to be explicitly listed in the Extract. However, it does require creating the Oracle
GoldenGate CDC Cleanup job prior to starting the Extract. MANAGECDCCLEANUP should be used
for all production environments, where NOMANAGECDCCLEANUP may be used for temporary and
testing implementations as needed.

Example: TRANLOGOPTIONS MANAGECDCCLEANUP

TRANLOGOPTIONS EXCLUDEUSER/EXCLUDETRANS
The SQL Server CDC Capture job does not capture user information or transaction names
associated with a transaction, and as this information is not logged in the CDC staging tables,
Extract has no method of excluding DML from a specific user or DML of a specific transaction
name. The EXCLUDEUSER and EXCLUDETRANS parameters are therefore not valid for the CDC
Capture process.

TRANLOGOPTIONS MANAGESECONDARYTRUNCATIONPOINT/NOMANAGESECONDARYTRUNCATIONPOINT/
ACTIVESECONDARYTRUNCATIONPOINT
The SQL Server Change Data Capture job is the only process that captures data from the
transaction log when using the Oracle GoldenGate CDC Capture method. The secondary
truncation point management is not handled by the Extract, and for the Change Data Capture
Extract, these parameters are not valid.

TRANLOGOPTIONS ALWAYSONREADONLYROUTING
The ALWAYSONREADONLYROUTING parameter allows Extract for SQL Server to route its read-only
processing to an available read-intent Secondary when connected to an Always On availability
group listener.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-147

TRANLOGOPTIONS QUERYTIMEOUT
Specifies how long queries to SQL Server will wait for results before reporting a timeout error
message. This option takes an integer value to represent the number of seconds. The default
query timeout value is 300 seconds (5 minutes). The minimum value is 0 seconds (infinite
timeout). The maximum is 2147483645 seconds.

TRANLOGOPTIONS TRANCOUNT
Allows adjustment of the number of transactions processed per each call by Extract to pull data
from the SQL Server change data capture staging tables. Based on your transaction workload,
adjusting this value may improve capture rate throughput, although not all workloads will be
positively impacted. The minimum value is 1, maximum is 100, and the default is 10.

Details of the Oracle GoldenGate CDC Cleanup Process

The Oracle GoldenGate CDC Cleanup job is required for a CDC Extract by default, since
Extract defaults to TRANLOGOPTIONS MANAGECDCCLEANUP. It is installed from a Windows batch
file (ogg_cdc_cleanup_setup.bat), which uses sqlcmd to connect to the source SQL Server
database and create the necessary objects and job.

There should be one job for each database enabled for CDC Capture, and you must create the
job and objects following the steps mentioned in the Preparing the Database for Oracle
GoldenGate — CDC Capture section of this document.

Additional options for the utility are discussed in the following sections.

The steps below require a SQL Server authenticated database user who is a member of the
SQL Server System Administrators (sysadmin) role. Windows authentication is not supported
for the .bat batch file.

Removing an Extract from the Database

When the Oracle GoldenGate CDC Cleanup object tables exist, each CDC Extract that is
started against that database will create an entry in the OracleGGExtractCheckpoint table.
This entry tracks a particular Extract’s point in time recovery checkpoint, which is used as the
cutoff LSN for the Oracle GoldenGate CDC cleanup tasks. If there are multiple Extracts
running, each logging more recent recovery checkpoints in the table, but one Extract has been
removed from the system without removing its entry into the OracleGGExtractCheckpoint
table, then no data will be purged newer than that deleted Extract’s old recovery checkpoint for
all of the CDC staging tables. So when deleting an Extract from the database, follow the steps
below to remove the Extract from the OracleGGExtractCheckpoint table if more than one
Extract is running against the database.

1. Log in to the Database with DBLOGIN from GGSCI:

DBLOGIN SOURCEDB dsn_name USERIDALIAS alias_name
2. Stop the Extract:

STOP EXTRACT extract_name
3. Delete the Extract:

DELETE EXTRACT extract_name
By logging in to the database, the DELETE EXTRACT command removes the entry from the
OracleGGExtractCheckpoint table, for that specific Extract.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-148

Modifying the Oracle GoldenGate CDC Cleanup Job

The default schedule, retention period and operation batch size for the Oracle GoldenGate
CDC Cleanup job of a database is to run every 10 minutes, with a data retention policy of 72
hours (listed as 4320 minutes), purging in batches of 500 records per transaction until the
retention policy is meet, not to exceed the recovery checkpoint data of the Extract.

For variations in customer environments, or change data table data retention requirements, it
may be necessary to adjust these properties to increase the purge batch size or to adjust
retention policies and the job run-time schedule.

To adjust the job execution frequency, manually modify the schedule for the
OracleGGCleanup_dbname_Job job within SQL Server Agent. If you need to adjust the retention
period or purge batch size, you must manually edit the job step for the
OracleGGCleanup_dbname_Job job within SQL Server Agent. The job step passes two
parameters to the cleanup stored procedure, and you can modify the value for
@retention_minutes to adjust the data retention policy as needed, or modify the @threshold
value to increase or decrease the purge batch size. In high transactional environments, it may
be necessary to increase the @threshold value to a number such as 10000. Monitoring the
amount of time that it takes for the job to run within each cycle can be used to determine
effective @threshold values.

Deleting the Oracle GoldenGate CDC Cleanup Job

If you no longer require the Oracle GoldenGate CDC Cleanup job and associated objects and
need to remove them, perform the following steps:

1. Open a command prompt and change to the Oracle GoldenGate installation folder.

2. Run the ogg_cdc_cleanup_setup.bat file, providing the following variable values:

ogg_cdc_cleanup_setup.bat dropJob userid password databasename
servername\instancename schema
Example: ogg_cdc_cleanup_setup.bat dropJob ggsuser ggspword db1 server1\inst1 ogg

Changing from Classic Extract to a CDC Extract
If you plan to change from using a Classic Extract from Oracle GoldenGate 12c (12.3.0.1) or
earlier, to an Oracle GoldenGate 19c CDC Extract, then you must remove the supplemental
logging that was implemented using the Classic Extract installation method, and re-enable
supplemental logging using the CDC Extract installation binaries, as the calls to enable
TRANDATA are different between the two versions, and the implementation of TRANDATA for
Classic Extract is not supported by the CDC Extract.

Follow these general guidelines to remove and re-enable supplemental logging. Special
consideration and planning should be involved if migrating from Classic to CDC Extract in a
production system. The information provided here does not cover all requirements and is only
offered as general requirements regarding supplemental logging:

1. Ensure that the Classic Extract has processed all remaining data in the logs and can be
gracefully stopped.

2. Do one of the following, depending on how Extract was running in relation to other
replication or CDC components:

• If Extract was not running concurrently with SQL Server transactional replication or a
non-Oracle CDC configuration on the same database, open a query session in
Management Studio and issue the following statement against the source database to

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-149

disable and delete any CDC or replication components, and to clear the secondary
truncation point.

EXEC sys.sp_cdc_disable_db
• If Extract was running concurrently with SQL Server transactional replication or a non-

Oracle CDC configuration on the same database, run GGSCI from the Classic
Extract’s installation folder, login to the source database with the DBLOGIN, and then
issue the following command for each table that is in the Extract configuration. You can
use a wildcard to specify multiple table names

DELETE TRANDATA owner.table
DELETE TRANDATA owner.*

3. Delete any heartbeat table entries if one was installed.

DELETE HEARTBEATTABLE
4. Using the Oracle GoldenGate CDC Extract installation binaries, follow the steps listed in

Preparing the Database for Oracle GoldenGate — CDC Capture to re-enable
supplemental logging and other necessary components, and re-add the heartbeat table.

Restoring a Source Database Keeping CDC Data

When restoring a SQL Server database that has been enabled with CDC and you want to keep
the existing CDC staging data that has already accumulated in the database, as well as the
CDC settings, you must specify the KEEP_CDC option with the RESTORE statement.

This requirement is only if restoring the database to a new instance, or to the same instance
but with a different database name. If you are restoring the original database on the instance,
then the option is not required.

For further requirements and understanding, review the following document link from Microsoft:

https://docs.microsoft.com/en-us/sql/t-sql/statements/restore-statements-arguments-transact-
sql?view=sql-server-ver15

Additionally, you must manually recreate the CDC Capture job and the Oracle GoldenGate
CDC Cleanup job.

Understanding What's Supported for SQL Server
This chapter contains information on database and table features supported by Oracle
GoldenGate for SQL Server.

Supported Objects and Operations for SQL Server
The following objects and operations are supported:

• Parallel Replicat is supported with Oracle GoldenGate for SQL Server.

• Oracle GoldenGate supports capture of transactional DML from user tables and delivery to
user tables and writeable views.

• TEXT, NTEXT, IMAGE, VARBINARY, VARBINARY (MAX) VARCHAR (MAX), and NVARCHAR
(MAX) columns are supported in their full size for operations that are logged by SQL
Server Chang Data Capture. For example, columns of IMAGE, NTEXT, and TEXT data types
are logged as a NULL value for delete operations. For more information, review the Large
Object Data Types content at the following Microsoft document:

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-150

https://docs.microsoft.com/en-us/sql/t-sql/statements/restore-statements-arguments-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/restore-statements-arguments-transact-sql?view=sql-server-ver15

https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-
instance-ct-transact-sql?view=sql-server-ver15

• Oracle GoldenGate supports the maximum row sizes that are permitted for tables that are
enabled for SQL Server Change Data Capture.

• Oracle GoldenGate supports capture from tables enabled with PAGE and ROW compression.
For partitioned tables that use compression, all partitions must be enabled with the same
compression type.

• Oracle GoldenGate supports capture for partitioned tables if the table has the same
physical layout across all partitions.

• The sum of all column lengths for a table to be captured from must not exceed the length
that SQL Server allows for enabling Change Data Capture for the table. If the sum of all
column lengths exceeds what is allowed by the SQL Server procedure
sys.sp.cdc_enable_table, then ADD TRANDATA cannot be added for that table. The
maximum allowable record length decreases as more columns are present, so there is an
inverse relationship between maximum record length and the number of columns in the
table.

Non-Supported Objects and Operations for SQL Server
The following objects and operations are not supported:

• For source databases, operations that are not supported by SQL Server Change Data
Capture, such as TRUNCATE statements. Refer to Microsoft SQL Server Documentation for
a complete list of the operations that are limited by enabling SQL Server Change Data
Capture.

• Oracle GoldenGate for SQL Server does not support the capture or delivery of DDL
changes for SQL Server and extra steps are required for Oracle GoldenGate processes on
the source and target to handle any table level DDL changes, including table index rebuild
operations.

• Views are not supported.

• Operations by the TextCopy utility and WRITETEXT and UPDATETEXT statements. These
features perform operations that either are not logged by the database or are only partially
logged, so they cannot be supported by the Extract process.

• Partitioned tables that have more than one physical layout across partitions.

• Partition switches against a source table. SQL Server Change Data Capture treats partition
switches as DDL operations, and the data moved from one partition to another is not
logged in the CDC tables, so you must follow the procedures in Requirements for Table
Level DDL Changes to manually implement a partition switch when the table is enabled for
supplemental logging.

• Due to a limitation with SQL Server's Change Data Capture, column level collations that
are different from the database collation, may cause incorrect data to be written to the
CDC tables for character data and Extract will capture them as they are written to the CDC
tables. It is recommended that you use NVARCHAR, NCHAR or NTEXT data type for columns
containing non-ASCII data or use the same collation for table columns as the database.
For more information see, About Change Data Capture (SQL Server).

• Due to a limitation with SQL Server's Change Data Capture, NOOPUPDATES are not captured
by the SQL Server Change Data Capture agent so there are no records for Extract to
capture for no-op update operations.

• Temporal tables are not supported for enabling Change Data Capture, therefore cannot be
configured for Extract for source implementations.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-151

https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-instance-ct-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-instance-ct-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-data-capture-sql-server?view=sql-server-2017

Requirements for Table Level DDL Changes

Oracle GoldenGate for SQL Server does not support the capture or delivery of DDL changes.
However, beginning with Oracle GoldenGate 21c, changes made to tables enabled with
TRANDATA will not cause Extract to abend. Extract will continue to process change data for the
table as it existed when TRANDATA was enabled.

Operations considered to be table-level DDL changes include, but are not limited to: ALTER
TABLE, TRUNCATE TABLE, index rebuilds, and partition switches.

To avoid data inconsistencies due to table level DDL changes, the following steps are required.

1. Source: Pause or Stop application data to the table or tables to be modified.

2. Source: Ensure that there are no open transactions against the table to be modified.

3. Source: Ensure that the SQL Server CDC Capture job processes all remaining
transactions for the table that is to be modified.

4. Source: Ensure that the Extract processes all the transactions for the table that is to be
modified, prior to making any DDL changes.

5. Target: Ensure that the Replicat processes all the transactions for the table that is to be
modified, prior to making any DDL changes.

6. Optionally, implementing an Event Marker table can be used to determine when all of the
remaining transactions have been processed for the table that is to be modified, and
handle the coordination of when to correctly stop the Extract and Replicat.

7. Source: Stop the Extract process.

8. Target: Stop the Replicat process.

9. Source: Disable supplemental logging for the table to be modified by running DELETE
TRANDATA.

10. Source: Make table DDL changes to the source table.

11. Target: Make table DDL changes to the target table.

12. Source: Re-enable supplemental logging by running ADD TRANDATA to the table(s) after the
modifications have been performed.

13. Source: Start the Extract.

14. Target: Start the Replicat.

15. Source: Resume application data to the table or tables that were modified.

Supported SQL Server Data Types
The following data types are supported for capture and delivery, unless specifically noted in the
limitations that follow:

• Binary Data Types

– (binary, varbinary, varbinary (max))
– (varbinary (max)with FILESTREAM)

• Character Data Types

– (char, nchar, nvarchar, nvarchar (max), varchar, varchar (max))
• Date and Time Data Types

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-152

– (date, datetime2, datetime, datetimeoffset, smalldatetime, time)
• Numeric Data Types

– (bigint, bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, tinyint)

• LOBs

– (image, ntext, text)
• Other Data Types

– (timestamp, uniqueidentifier, hierarchyid, geography, geometry,
sql_variant (Delivery only), XML)

• Oracle GoldenGate for SQL Server can replicate column data that contains SPARSE
settings..

Limitations:

• Oracle GoldenGate does not support filtering, column mapping, or manipulating large
objects larger than 4KB. Full Oracle GoldenGate functionality can be used for objects of up
to 4KB.

• Oracle GoldenGate treats XML data as a large object (LOB), as does SQL Server when
the XML does not fit into a row. SQL Server extended XML enhancements (such as lax
validation, DATETIME , union functionality) are not supported.

• A system-assigned TIMESTAMP column or a non-materialized computed column cannot be
part of a key. A table containing a TIMESTAMP column must have a key, which can be a
primary key or unique constraint, or a substitute key specified with a KEYCOLS clause in the
TABLE or MAP statements. For more information see Assigning Row Identifiers.

• Oracle GoldenGate supports multibyte character data types and multi byte data stored in
character columns. Multibyte data is supported only in a like-to-like, SQL Server
configuration. Transformation, filtering, and other types of manipulation are not supported
for multibyte character data.

• If capture of data for TEXT, NTEXT, IMAGE, VARCHAR (MAX), NVARCHAR(MAX) and VARBINARY
(MAX) columns will exceed the SQL Server default size set for the max text repl size
option, extend the size. Use sp_configure to view the current value of max text repl
size and adjust the option as needed.

Note:

Amazon RDS for SQL Server does not allow max text repl size to be greater
than 64MB.

• Columns of IMAGE, NTEXT, and TEXT data types are logged as a NULL value for delete and
before image update operations. Columns of VARBINARY(MAX), VARCHAR(MAX), and
NVARCHAR(MAX) are logged as a NULL value for before image update operations unless the
column was updated.

For more information, review the Large Object Data Types content in the following
Microsoft document:

https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-
instance-ct-transact-sql?view=sql-server-ver15

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-153

https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-instance-ct-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-instance-ct-transact-sql?view=sql-server-ver15

• Oracle GoldenGate supports UDT and UDA data of up to 2 GB in size. All UDTs except
SQL_Variant are supported.

• Common Language Runtime (CLR), including SQL Server built-in CLR data types (such
as, geometry, geography, and hierarchy ID), are supported. CLR data types are supported
only in a like-to-like SQL Server configuration. Transformation, filtering, and other types of
manipulation are not supported for CLR data.

• VARBINARY (MAX) columns with the FILESTREAM attribute are supported up to a size of 4
GB. Extract uses standard Win32 file functions to read the FILESTREAM file.

• The range and precision of floating-point numbers depends on the host machine. In
general, precision is accurate to 16 significant digits, but you should review the database
documentation to determine the expected approximations. Oracle GoldenGate rounds or
truncates values that exceed the supported precision.

• Oracle GoldenGate supports time stamp data from 0001/01/03:00:00:00 to
9999/12/31:23:59:59. If a time stamp is converted from GMT to local time, these limits also
apply to the resulting time stamp. Depending on the time zone, conversion may add or
subtract hours, which can cause the time stamp to exceed the lower or upper supported
limit.

Limitations on Computed Columns:

• Computed columns, either persisted or non-persisted, are not supported by Microsoft’s
Change Data Capture. Therefore, no data is written to the trail for columns that contain
computed columns. To replicate data for non-persisted computed columns, use the
FETCHCOLS or FETCHMODCOLS option of the TABLE parameter to fetch the column data from
the table. Keep in mind that there can be discrepancies caused by differences in data
values between the time that the column was changed in the data base and the time that
Extract fetches the data for the transaction record that is being processed.

• Replicat does not apply DML to any computed column, even if the data for that column is
in the trail, because the database does not permit DML on that type of column. Data from a
source persisted computed column, or from a fetched non- persisted column, can be
applied to a target column that is not a computed column.

• In an initial load, all of the data is selected directly from the source tables, not the
transaction log. Therefore, in an initial load, data values for all columns, including non-
persisted computed columns, is written to the trail or sent to the target, depending on the
method that is used. As when applying change data, however, Replicat does not apply
initial load data to computed columns, because the database does not permit DML on that
type of column.

• Oracle GoldenGate does not permit a non-persisted computed column to be used in a
KEYCOLS clause in a TABLE or MAP statement.

• If a unique key includes a non-persisted computed column and Oracle GoldenGate must
use the key, the non-persisted computed column is ignored. This may affect data integrity if
the remaining columns do not enforce uniqueness.

• If a unique index is defined on any non-persisted computed columns, it is not used.

• If a unique key or index contains a non-persisted computed column and is the only unique
identifier in a table, Oracle GoldenGate must use all of the columns as an identifier to find
target rows. Because a non-persisted computed column cannot be used in this identifier,
Replicat may apply operations containing this identifier to the wrong target rows.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-154

System Schemas for SQL Server
The following schemas or objects are not be automatically replicated by Oracle GoldenGate
unless they are explicitly specified without a wildcard.

• "sys"
• "cdc"
• "INFORMATION_SCHEMA"
• "guest"

Non-Supported SQL Server Data Types and Features
• SQL_Variant data type is not supported for capture.

• Tables that contain unsupported data types may cause Extract to Abend. As a workaround,
you must remove TRANDATA from those tables and remove them from the Extract’s TABLE
statement, or use the Extract’s TABLEEXCLUDE parameter for the table.

Sybase
With Oracle GoldenGate for Sybase database, you can replicate data to and from supported
Sybase versions or between a Sybase database and a database of another type. Oracle
GoldenGate for Sybase supports data filtering, mapping, and transformation.

Preparing the System for Oracle GoldenGate
This chapter contains the requirements for the system and database resources that support
Oracle GoldenGate.
This chapter contains the following sections:

Console Character Set
The operating system and the command console must have the same character sets.
Mismatches occur on Microsoft Windows systems, where the operating system is set to one
character set, but the DOS command prompt uses a different, older DOS character set. Oracle
GoldenGate uses the character set of the operating system to send information to GGSCI
command output; therefore a non-matching console character set causes characters not to
display correctly. You can set the character set of the console before opening a GGSCI session
by using the following DOS command:

chcp OS_character_set

If the characters do not display correctly after setting the code page, try changing the console
font to Lucida Console, which has an extended character set.

Database Configuration
The Extract process makes calls directly to the Sybase Replication API on a source Sybase
server. The source database on this server must be configured as follows to support data
capture by Oracle GoldenGate.

• Because Extract uses the Sybase LTM to read the Sybase transaction log, it cannot run
against a database configured with Sybase Replication Server. Only one process at a time
can reserve a context that allows it to read the transaction log on the same database.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-155

• Sybase Multisite availability leverages the Sybase Replication Server to replicate
transactions to a Warm Standby and a target subscription database. Oracle GoldenGate
for Sybase cannot capture from the primary Warm Standby but can capture from the
Multisite availability target subscription database because SAP Sybase Rep Server is not
in control of the Transaction Log for that database.

• Set the DSQUERY variable to the server that contains the database that Oracle GoldenGate
will be using.

• The Extract process must be permitted to manage the secondary log truncation point. For
more information, see Initializing the Secondary Truncation Point.

• Configure the database page size to 4k, 8k,16k, 32k, or larger. To use the
UPGRADECHECKPOINT table_name command to updated the checkpoint the target Sybase
database, it must be configured to have a row size of more than 2K pages to be
programmatically created; it will fail to upgrade the checkpoint if the target database is
configured to be a 2K page size. This is valid only for Replicat.

Database User for Oracle GoldenGate Processes
Oracle GoldenGate requires a database user account. Create this account and assign
privileges according to the following guidelines.

• To preserve the security of your data, and to monitor Oracle GoldenGate processing
accurately, do not permit other users, applications, or processes to log on, or operate as,
the Oracle GoldenGate database user.

• Create a database user that is dedicated to Oracle GoldenGate. It can be the same user
for all of the Oracle GoldenGate processes that must connect to a database:

– Extract (source database)

– Replicat (target database)

– DEFGEN utility (source or target database)

• The Extract process requires permission to access the source database. Do one of the
following:

– Grant System Administrator privileges.

– Assign a user name with replication_role . The command to grant replication role is
either:

sp_role 'grant', replication_role, Extract_user

Or

use dbname grant role replication_role to Extract_user

Note:

Specific DDL or DML operations may require the use of both sa_role and
replication_role.

• The Replicat process requires connect and DML privileges on the target database.

Preparing Tables for Processing
The following table attributes must be addressed in an Oracle GoldenGate environment.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-156

Disabling Triggers and Cascade Constraints

Disable triggers, cascade delete constraints, and cascade update constraints on target Sybase
tables, or alter them to ignore changes made by the Oracle GoldenGate database user. Oracle
GoldenGate replicates DML that results from a trigger or cascade constraint. If the same
trigger or constraint gets activated on the target table, it becomes redundant because of the
replicated version, and the database returns an error. Consider the following example, where
the source tables are emp_src and salary_src and the target tables are emp_targ and
salary_targ.

1. A delete is issued for emp_src.

2. It cascades a delete to salary_src.

3. Oracle GoldenGate sends both deletes to the target.

4. The parent delete arrives first and is applied to emp_targ.

5. The parent delete cascades a delete to salary_targ.

6. The cascaded delete from salary_src is applied to salary_targ.

7. The row cannot be located because it was already deleted in step 5.

To configure Replicat to disable target triggers at the start of its database session, take the
following steps:

1. Assign the Replicat user the replication role.

2. Add the following parameter statement to the root level of the Replicat parameter file.

SQLEXEC "set triggers off"

Assigning Row Identifiers

Oracle GoldenGate requires some form of unique row identifier on source and target tables to
locate the correct target rows for replicated updates and deletes.

Limiting Row Changes in Tables that do not Have a Key

If a target table has no primary key or unique key, duplicate rows can exist. It is possible for
Oracle GoldenGate to update or delete too many rows in the target table, causing the source
and target data to go out of synchronization without error messages to alert you. To limit the
number of rows that are updated, use the DBOPTIONS parameter with the LIMITROWS option in
the Replicat parameter file. LIMITROWS can increase the performance of Oracle GoldenGate on
the target system because only one row is processed.

Replicating Encrypted Data

Oracle GoldenGate supports columns that are encrypted with a system-encrypted password,
but not columns that are encrypted with a user-defined password. Check the tables from which
you want to capture data against the following Oracle GoldenGate limitations:

• The table that contains the encrypted columns must have a primary or unique key.

• Columns that use encryption cannot be part of the primary key.

Encrypted columns are encrypted in the data files and in the log, so Extract must be configured
to fetch the clear-text values from the database. To trigger this fetch, use the FETCHCOLS and
FETCHMODCOLS[EXCEPT] options of the Extract TABLE parameter. FETCHCOLS forces a fetch of
values that are not in the log, and FETCHMODCOLS or FETCHMODCOLS[EXCEPT] forces a fetch of

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-157

values that are in the logs. Used together, these parameters ensure that the encrypted
columns are always fetched from the database.

The following is an example of how to configure Extract to support the encryption. In this
example, the encrypted column is cardnum.

TABLE ab.payments, FETCHCOLS (cardnum), FETCHMODCOLS (cardnum);

Preparing the Transaction Logs
To capture DML operations, Oracle GoldenGate reads the online logs. To ensure the continuity
and integrity of Oracle GoldenGate processing, the logs must be configured as directed in the
following sections:

Initializing the Secondary Truncation Point

Establish a secondary log truncation point on the source system prior to running the Oracle
GoldenGate Extract process. Extract uses the secondary truncation point to identify data that
remains to be processed.

To initialize the secondary truncation point, log on to the database as a user with sa_role
privileges and then issue the following command:

dbcc settrunc('ltm', valid)

By default, Extract will manage the secondary truncation point once it is established. Do not
permit Extract to be stopped any longer than necessary; otherwise the log could eventually fill
up and the database will halt. The only way to resolve this problem is to disable the secondary
truncation point and manage it outside of Oracle GoldenGate, and then purge the transaction
log. Data not yet processed by Extract will be lost, and you will have to resynchronize the
source and target data.

To control how the secondary truncation point is managed, use the TRANLOGOPTIONS parameter.
For more information, see Reference for Oracle GoldenGate for Windows and UNIX.

Sizing and Retaining the Logs

Retain enough log data on the source system so that Extract can start again from its
checkpoints after you stop it or there is an unplanned outage. Extract must have access to the
log that contains the start of the oldest uncommitted unit of work, and all logs thereafter. To
determine where the Extract checkpoints are, use the INFO EXTRACT command. For more
information about INFO EXTRACT, see Reference for Oracle GoldenGate for Windows and
UNIX .

If data that Extract needs during processing is not retained, either in online or backup logs, one
of the following corrective actions might be required:

• You might need to alter Extract to capture from a later point in time for which log data is
available (and accept possible data loss on the target).

• You might need to resynchronize the source and target tables, and then start the Oracle
GoldenGate environment over again.

Make certain not to use backup or archive options that cause old archive files to be overwritten
by new backups on the source system. New backups should be separate files with different
names from older ones. This ensures that if Extract looks for a particular log, it will still exist,
and it also ensures that the data is available in case it is needed for a support case.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-158

Enabling Transaction Logging

Use the ADD TRANDATA command to mark each source table for replication. This command
uses the Sybase sp_setreptable and sp_setrepcol system procedures. ADD TRANDATA is the
recommended way to mark the tables, instead of using those procedures through the database
interface, but the owner or the system administrator can use them if needed. For more
information, see the Sybase documentation.

To mark tables for replication with ADD TRANDATA:

1. On the source system, run GGSCI from the Oracle GoldenGate directory.

2. Log into the database from GGSCI.

DBLOGIN SOURCEDB database USERID user PASSWORD xxx

Where:

• database is the name of the database.

• user is the database owner or the system administrator. You will be prompted for the
password. This command has encryption options for the password. For more
information, see Reference for Oracle GoldenGate for Windows and UNIX.

• xxx is the password for the associated user.

3. Issue the ADD TRANDATA command for each table to be marked.

ADD TRANDATA SCHEMA.TABLE LOBSNEVER | LOBSALWAYS | LOBSALWAYSNOINDEX | LOBSIFCHANGED

Where:

• LOBSNEVER | LOBSALWAYS | LOBSALWAYSNOINDEX | LOBSIFCHANGED control whether
LOB data is never propagated, only propagated if changed (the default), or always
propagated. The ADD TRANDATA command will overwrite the LOB replication setting that
is currently set for the table.

Note:

Some ADD TRANDATA options enable the ALWAYS_REPLICATE option of sp_setrepcol. If
a LOB column contains a NULL value, and then another column in the table gets
updated (but not the LOB), that LOB will not be captured even though
ALWAYS_REPLICATE is enabled.

Understanding What's Supported for Sybase
This chapter contains information on database and table features supported by Oracle
GoldenGate for Sybase.

Supported Sybase Data Types
This section lists the Sybase data types that Oracle GoldenGate supports and any limitations
of this support.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-159

Integers

• BIGINT
• BIT
• DECIMAL
• INT (signed and unsigned)

• TINYINT (signed and unsigned)

• NUMERIC
• SMALLINT (signed and unsigned)

Limitations of Support

• NUMERIC and DECIMAL (fixed-point) are supported with no integrity loss when moving data to
a target column of the same data type without involving calculations or transformation.
When calculations or transformation must be performed, Oracle GoldenGate supports a
maximum value of a signed long integer (32-bits).

• BIT is supported for automatic mapping between Sybase databases. To move BIT data
between Sybase and another database type, Oracle GoldenGate treats BIT data as binary.
In this case, the following are required:

– The BIT column must be mapped to the corresponding source or target column with a
COLMAP clause in a TABLE or MAP statement.

• For the Sybase 157 GA release, these data types cannot be replicated:

– BIGINT (as a key column)

– BIGDATETIME
– BIGTIME

• When replicating TINYINT and Extract is not in the same version of Replicat, you will need
to create a sourcedef and/or targetdef file even if you are replicating between identical
Sybase versions.

• See also Non-Supported Sybase Data Types.

Floating-Point Numbers

• DOUBLE
• FLOAT
• REAL

Limitations of Support

The support of range and precision for floating-point numbers depends on the host machine. In
general, the precision is accurate to 16 significant digits, but you should review the database
documentation to determine the expected approximations. Oracle GoldenGate rounds or
truncates values that exceed the supported precision.

Character Data

• CHAR

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-160

• NCHAR
• NVARCHAR
• VARCHAR
• UNICHAR
• UNIVARCHAR

Limitations of Support

• These data types are supported to the maximum length supported by the database, this
being the maximum page size.

• Fetching NVARCHAR replication results using the Sybase char_length or datalength
functions when a Sybase database is the target and the source is a Non-Oracle database
and you replicate from the source to the target may result in a data integrity issue. This
occurs when you use a Sybase release earlier than Adaptive Server Enterprise 15.5 for
Windows x64 platform EBF 21262: 15.5 ESD #5.3.

Dates and Timestamps

• BIGDATETIME
• BIGTIME
• DATE
• DATETIME
• SMALLDATETIME
• TIME

Limitations of Support

• Oracle GoldenGate supports timestamp data from 0001/01/03:00:00:00 to
9999/12/31:23:59:59. If a timestamp is converted from GMT to local time, these limits also
apply to the resulting timestamp. Depending on the time zone, conversion may add or
subtract hours, which can cause the timestamp to exceed the lower or upper supported
limit.

• Oracle GoldenGate does not support negative dates.

Large Objects

• BINARY
• IMAGE
• TEXT
• UNITEXT
• VARBINARY

Limitations of Support

• TEXT, UNITEXT and IMAGE are supported up to 2 GB in length.

• Large objects that are replicated from other databases (such as Oracle BLOB and CLOB) can
be mapped to Sybase CHAR, VARCHAR, BINARY, and VARBINARY columns. To prevent Replicat
from abending if the replicated large object is bigger than the size of the target column, use

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-161

the DBOPTIONS parameter with the ALLOWLOBDATATRUNCATE option in the Replicat parameter
file. For more information, see Reference for Oracle GoldenGate for Windows and UNIX.

• To move data to a Sybase target from a source database that permits empty LOB columns,
use the DBOPTIONS parameter with the EMPTYLOBSTRING option in the Replicat parameter
file. This parameter accepts a string value and prevents Replicat from setting the target
column to NULL, which is not permitted by Sybase. For more information, see Reference for
Oracle GoldenGate for Windows and UNIX.

• When a source table contains multiple identical rows, it can cause LOB inconsistencies in
the target table. This occurs when the source table lacks a primary key or other unique row
identifier. The rows are inserted by Replicat on the target, but if the LOB data is updated in
a subsequent source operation, it will only be replicated to the first row that was inserted
on the target.

• Do not use NOT NULL constraints on the in-row LOB column. If you want to use NOT NULL
constraints, use them on the off-row LOB column.

• If you need to fetch the in-row LOB data directly from the table you must use FETCHCOLS/
FETCHMODCOLS.

• Oracle GoldenGate for Sybase 15.7 does not support the in-row LOB column replication
(however, it can still push the data into the in-row LOB column at in the Replicat database).
This means tables included in the replication cannot have any in-row LOB columns. Oracle
GoldenGate will abend if any replication table includes an in-row LOB column. If you need
in-row LOB support, contact Oracle Support for further information.

Money Types

• MONEY
• SMALLMONEY

Limitations of Support

Money data types are supported with no integrity loss when moving data to a target column of
the same data type without involving calculations or transformation. When calculations or
transformation must be performed, Oracle GoldenGate supports a maximum value of a signed
long integer (32-bits).

IDENTITY Type

The IDENTITY data type is supported for replication in one direction only, but not for a bi-
directional configuration.

text, image, and unitext Data Types

With the Sybase 15.7 version, the LOB text, image, and unitext data types are now supported
in BATCHSQL mode. The data length of the LOB is confined to 4K. If the records that contain
LOB columns and the size exceeds more than 4K, then those records are excluded from the
batches and are executed one at a time. The LOB columns in are now bound, while in previous
Sybase version (15.5 or 15.0) the LOBs were not bound. You can use thee older behavior by
using the DBPOTIONS LEGACYLOBREPLICATION parameter. This support is only applicable to
Replicat running on Sybase version 15.7 and later.

User-Defined Data Types

User-defined data types are fully supported.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-162

Non-Supported Sybase Data Types
This section lists the Sybase data types that Oracle GoldenGate does not support.

• The TIMESTAMP data is not supported. Timestamp columns data is captured though the
data cannot be applied to the Sybase timestamp column due to a database limitation. The
database populates this column automatically once that corresponding row is inserted or
updated. To exclude timestamp columns from being captured by Oracle GoldenGate, use
the COLSEXCEPT option of the TABLE parameter. Because the system generates the
timestamps, the source and target values will be different.

• The Java rowobject data type is not supported.

Supported Operations and Objects for Sybase
This section lists the data operations and database objects that Oracle GoldenGate supports.

• The extraction and replication of insert, update, and delete operations on Sybase tables
that contain rows of up to 512 KB in length.

• The maximum number of columns and the maximum column size per table that is
supported by the database.

• Deferred inserts, deferred indirect inserts, deferred updates, and deferred deletes. It is
possible that the use of deferred updates could cause primary key constraint violations for
the affected SQL on the target. If these errors occur, use the Replicat parameter
HANDLECOLLISIONS .

• TRUNCATE TABLE if the names of the affected tables are unique across all schemas. If the
table names are not unique across all schemas, use the IGNORETRUNCATES parameter for
those tables to prevent Replicat from abending.

• GETTRUNCATES and IGNORETRUNCATES by Extract and Replicat.

• Data that is encrypted with a system-encrypted password.

• Array fetching during initial loads, as controlled by the FETCHBATCHSIZE parameter.

• The BATCHSQL Replicat feature on ASE 15.7 SP110 and later on the following platforms:

– AIX

– Linux x64

– Sun Solaris SPARC

– Sun Solaris x64

– Windows x64

In certain scenarios, the CS_NUMERIC and CS_DECIMAL data types are not supported by
BatchSQL because of a bug in the Sybase specific CT Library. LOB replication is supported
in BatchSql mode for Sybase database version 157 SP110 onward. This will improve the
LOB replication performance. It is restricted to 16384 bytes of LOB data that means if LOB
data is more than 16384 bytes, the data would not be processed through BATCHSQL mode
instead the mode switched to Normal.

• Limitations on Computed Columns support are as follows:

– Fully supports persisted computed columns. The change values are present in the
transaction log and can be captured to the trail.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-163

– You cannot use NOT NULL constraints on in-row LOB columns. If you need to use NOT
NULL constraints, do so only with off-row LOB columns.

– Tables with non-persisted computed columns, but does not capture change data for
these columns because the database does not write it to the transaction log. To
replicate data for non-persisted computed columns, use the FETCHCOLS or
FETCHMODCOLS option of the TABLE parameter to fetch the column data from the table.
Keep in mind that there can be discrepancies caused by differences in data values
between when the column was changed in the database and when Extract fetches the
data for the transaction record that is being processed.

– Replicat does not apply DML to any computed column, even if the data for that column
is in the trail, because the database does not permit DML on that type of column. Data
from a source persisted computed column, or from a fetched non-persisted column,
can be applied to a target column that is not a computed column.

– In an initial load, all of the data is selected directly from the source tables, not the
transaction log. Therefore, in an initial load, data values for all columns, including non-
persisted computed columns, gets written to the trail or sent to the target, depending
on the method that is being used. As when applying change data, however, Replicat
does not apply initial load data to computed columns, because the database does not
permit DML on that type of column.

– Persisted computed column that is defined as a key column, an index column, or that
is part of a KEYCOLS clause in a TABLE or MAP statement are not used. If a unique key or
index includes a computed column and Oracle GoldenGate must use that key, the
computed column will be ignored. Additionally, if a unique key or index contains a
computed column and is the only unique identifier on the table, all of the columns are
used except the computed column as an identifier to find the target row. Thus, the
presence of a computed column in a key or index affects data integrity if the remaining
columns do not enforce uniqueness. Sybase does not support non-persisted computed
columns as part of a key so neither does Oracle GoldenGate.

– To support TRUNCATE TABLE, all table names should be unique across all schemas
within a database. This rule applies to Extract and Replicat.

• Limitations on Automatic Heartbeat Table support are as follows:

– Heartbeat frequency should an integer that is divisible by 60. Oracle GoldenGate
heartbeat parameter frequency is accepted in minutes, although you can use in
seconds. The Sybase job scheduler uses the minutes in integer not in decimal so it is
converted internally to set the frequency in minutes to the nearest possible value. For
example, setting this value to 65 seconds results in the frequency being set to 1
minute; 140 seconds results in the value set to 2 minutes.

– Data truncation occurs with a Replicat abend when it exceeds more than 1500
characters for the incoming_routing_path and outgoing_routing_path of the
GG_HEARTBEAT_SEED, GG_HEARTBEAT, and GG_HEARTBEAT_HISTORY tables. The
incoming_routing_path and outgoing_routing_path size of these table is set to
1500 characters in ASCII and is a 500 max bytes in multibyte characters. Ensure that
the incoming and outgoing routing path strings are within the specified limit.

– Sybase job scheduler must be configured on the ASE server prior to running Oracle
GoldenGate heartbeat functionality.

– For heartbeat table functionality to operate correctly, the login user must have the
replication_role, js_admin_role, js_user_role roles.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-164

Non-Supported Operations and Objects for Sybase
This section lists the data operations and database objects that Oracle GoldenGate does not
support.

• Data that is encrypted with a user-defined password.

• Extraction or replication of DDL (data definition language) operations.

• Multi-Extract configuration. Only one Extract can reserve a context to read the Sybase
transaction logs.

• Because SHOWSYNTAX is supported in the DYNSQL mode, NODYNSQL is deprecated.

• Table names that contain data with an underscore followed by some characters then a
space (for example, 'zzz_j') is not supported. Oracle GoldenGate cannot process records
containing this type of character string with GGSCI, DEFGEN, EXTRACT, or REPLICAT.
Additionally, this type of data cannot be used with Oracle GoldenGate wildcard (*). If you
do have this type of data in your table name, you must drop this kind of table name from
your database, and then they restart the application to process and respect Oracle
GoldenGate wildcard.

Teradata
With Oracle GoldenGate for Teradata, you can deliver initial load and transactional data from
other supported Oracle GoldenGate sources, such as an Oracle database.

Oracle GoldenGate for Teradata supports data filtering, mapping, and transformations unless
noted otherwise in this documentation.

Supported Platforms for a Replication Server
In a Teradata environment, you install Oracle GoldenGate on a server that is separate from the
one where the Teradata target databases are installed. This machine will be the replication
server and must be a platform that is supported by Oracle GoldenGate for the Teradata
database.

Preparing the System for Oracle GoldenGate
This chapter contains guidelines for preparing the database and the system to support Oracle
GoldenGate. This chapter contains the following sections:

Preparing Tables for Processing
The following table attributes must be addressed in an Oracle GoldenGate environment.

Disabling Triggers and Cascade Constraints

Disable triggers, cascade delete constraints, and cascade update constraints on target
Teradata tables. Oracle GoldenGate replicates DML that results from a trigger or cascade
constraint. If the same trigger or constraint gets activated on the target table, it becomes
redundant because of the replicated version, and the database returns an error. Consider the
following example, where the source tables are emp_src and salary_src and the target tables
are emp_targ and salary_targ.

1. A delete is issued for emp_src.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-165

2. It cascades a delete to salary_src.

3. Oracle GoldenGate sends both deletes to the target.

4. The parent delete arrives first and is applied to emp_targ.

5. The parent delete cascades a delete to salary_targ.

6. The cascaded delete from salary_src is applied to salary_targ.

7. The row cannot be located because it was already deleted in step 5.

Ensuring Row Uniqueness for Tables

Oracle GoldenGate requires some form of unique row identifier on the source and target tables
to locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use
a larger, less efficient WHERE clause.

4. If a table does not have an appropriate key, or if you prefer that the existing key(s) are not
used, you can define a substitute key, if the table has columns that always contain unique
values. You define this substitute key by including a KEYCOLS clause within the Extract
TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds. See TABLE | MAP in
Reference for Oracle GoldenGate.

How Oracle GoldenGate Determines the Kind of Row Identifier to Use
Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key (required for tables of a Standard Edition instance).

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If neither of these key types exist , Oracle GoldenGate constructs a pseudokey of all
columns that the database allows to be used in a unique key, excluding those that are not
supported by Oracle GoldenGate in a key or those that are excluded from the Oracle
GoldenGate configuration.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-166

Note:

If there are types of keys on a table or if there are no keys at all on a table,
Oracle GoldenGate logs a message to the report file. Constructing a key from all
of the columns impedes the performance of Oracle GoldenGate on the source
system. On the target, this key causes Replicat to use a larger, less efficient
WHERE clause.

Using KEYCOLS to Specify a Custom Key
If a table does not have an applicable row identifier, or if you prefer that identifiers are not
used, you can define a substitute key, providing that the table has columns that always contain
unique values. You define this substitute key by including a KEYCOLS clause within the Extract
TABLE parameter and the Replicat MAP parameter. The specified key overrides any existing
primary or unique key that Oracle GoldenGate finds.

ODBC Configuration for Teradata
Configure ODBC on each target system including the creation of a data source name (DSN). A
DSN stores information about how to connect to the database. See the ODBC Driver for
Teradata User Guide for complete information and setup steps:

https://docs.teradata.com/search/books?
filters=prodname~%2522ODBC+Driver+for+Teradata%2522&content-lang=en-US

Database User for Oracle GoldenGate Processes for Teradata
Follow these requirements for the database user for Oracle GoldenGate processes:

• Create a database user that is dedicated to Oracle GoldenGate. It can be the same user
for all of the Oracle GoldenGate processes that must connect to a database:

– Replicat (target database)

– The DEFGEN utility (target database)

• To preserve the security of your data, and to monitor Oracle GoldenGate processing
accurately, do not permit other users, applications, or processes to log on as, or operate
as, the Oracle GoldenGate database user.

• For Oracle GoldenGate to replicate to a target Teradata database, grant SELECT, INSERT,
UPDATE, and DELETE on all of the target tables to the Replicat database user.

Configuring Oracle GoldenGate
Learn about the prerequisites and tasks for configuring Oracle GoldenGate Replicat for
Teradata database.

Creating a Checkpoint Table
Replicat maintains its checkpoints in a checkpoint table in the Teradata target database (the
database where you use DBLOGIN). Each checkpoint is written to the checkpoint table within the
Replicat transaction. Because a checkpoint either succeeds or fails with the transaction,
Replicat ensures that a transaction is only applied once, even if there is a failure of the process
or the database.

Use the following GGSCI command on the target system, to create the Replicat checkpoint
table.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-167

https://docs.teradata.com/search/books?filters=prodname~%2522ODBC+Driver+for+Teradata%2522&content-lang=en-US
https://docs.teradata.com/search/books?filters=prodname~%2522ODBC+Driver+for+Teradata%2522&content-lang=en-US

ggsci> ADD CHECKPOINTTABLE schema.chkptabl Successfully created checkpoint table
schema.chkptabl
For more information about creating a checkpoint table, see Administering Oracle GoldenGate.

Configuring Oracle GoldenGate Replicat
This section highlights the basic Replicat parameters that are required for most target
database types. Additional parameters may be required, see the Oracle GoldenGate
installation and configuration documentation for your target database and the Reference for
Oracle GoldenGate.

Perform these steps on the target replication server or target database system.

1. Configure the Manager process according to the instructions in Administering Oracle
GoldenGate.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the purging
of files from the local trail.

3. Create a Replicat checkpoint table. There are multiple options for this purpose, see
Administering Oracle GoldenGate.

4. Create a Replicat group. For documentation purposes, this group is called rep.

ADD REPLICAT rep, EXTTRAIL remote_trail, CHECKPOINTTABLE owner.table

Use the EXTTRAIL argument to link the Replicat group to the remote trail that you specified
for the data pump on the source server.

5. Use the EDIT PARAMS command to create a parameter file for the Replicat group. Include
the parameters shown in #unique_455/unique_455_Connect_42_BABHIJAI plus any
others that apply to your database environment.

Example 3-2 Parameters for the Replicat Group

-- Identify the Replicat group:
REPLICAT rep
-- Specify database login information as needed for the database:
[TARGETDB target_dsn_name,] [USERID user id[, PASSWORD pw]]
-- Specify tables for delivery:
MAP owner.source_table, TARGET owner.target_table;

Additional Oracle GoldenGate Configuration Guidelines
The following are additional considerations to make once you have installed and configured
your Oracle GoldenGate environment.

Handling Massive Update and Delete Operations

Operations that update or delete a large number of rows will generate discrete updates and
deletes for each row on the subscriber database. This could cause a lock manager overflow on
the Teradata subscriber system, and thus terminate the Replicat process.

To avoid these errors, temporarily suspend replication for these operations and then perform
them manually on the source and target systems. To suspend replication, use the following
command, which suspends replication for that session only. The operations of other sessions
on that table are replicated normally.

set session override replication on;

commit;

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-168

Preventing Multiple Connections

By default, the Replicat processes create a new connection for catalog queries. You can
prevent this extra connection by using the DBOPTIONS parameter with the NOCATALOGCONNECT
option.

Performing Initial Synchronization

Perform an initial synchronization of the source and target data before using Oracle
GoldenGate to transmit transactional changes for the first time to configure an initial load, see
Administering Oracle GoldenGate.

Common Maintenance Tasks
This chapter contains instructions for performing some common maintenance tasks when
using the Oracle GoldenGate replication solution.

Modifying Columns of a Table
To modify columns of a table:

1. Suspend activity on the source database for all tables that are linked to Oracle
GoldenGate.

2. Start GGSCI.

3. In GGSCI, issue this command for the Replicat group:

INFO REPLICAT group
4. On the Checkpoint Lag line, verify whether there is any Replicat lag. If needed, continue to

issue INFO REPLICAT until lag is zero, which indicates that all of the data in the trail has
been processed.

5. Stop the Replicat group.

STOP REPLICAT group
6. Perform the table modifications on the target databases.

7. Start the Replicat process.

START REPLICAT group
8. Allow user activity to resume on all of the source tables that are linked to Oracle

GoldenGate.

Understanding What's Supported for Teradata
This chapter contains information on database and table features supported by Oracle
GoldenGate.

Supported Teradata Data Types
The following table shows the Teradata data types that Oracle GoldenGate supports. Any
limitations or conditions that apply follow this table.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-169

Data type v15.x v16.x

BLOB Yes Yes

BYTEINT Yes Yes

VARBYTE Yes Yes

BIGINT Yes Yes

BYTEINT Yes Yes

DATE Yes Yes

DECIMAL - 18 and under Yes Yes

DECIMAL - 19 to 38 Yes Yes

DOUBLE PRECISION Yes Yes

FLOAT Yes Yes

INTEGER Yes Yes

NUMERIC - 18 and under Yes Yes

NUMERIC - 19 to 38 Yes Yes

REAL Yes Yes

SMALLIINT Yes Yes

TIME Yes Yes

TIMESTAMP Yes Yes

INTERVAL Yes Yes

INTERVAL DAY Yes Yes

INTERVAL DAY TO HOUR Yes Yes

INTERVAL DAY TO MINUTE Yes Yes

INTERVAL DAY TO SECOND Yes Yes

INTERVAL HOUR Yes Yes

INTERVAL HOUR TO MINUTE Yes Yes

INTERVAL HOUR TO SECOND Yes Yes

INTERVAL MINUTE Yes Yes

INTERVAL MINUTE TO SECOND Yes Yes

INTERVAL MONTH Yes Yes

INTERVAL SECOND Yes Yes

INTERVAL YEAR Yes Yes

INTERVAL YEAR TO MONTH Yes Yes

CHAR Yes Yes

CLOB Yes Yes

CHAR VARYING Yes Yes

LONG VARCHAR Yes Yes

VARCHAR Yes Yes

GRAPHIC Yes Yes

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-170

Data type v15.x v16.x

LONG VARGRAPHIC Yes Yes

VARGRAPHIC Yes Yes

PERIOD (DATE) Yes Yes

PERIOD (TIME) Yes Yes

PERIOD (TIMESTAMP) Yes Yes

UDT Yes Yes

Limitations of Support for Numeric Data Types

When replicating these data types from a different type of database to Teradata, truncation can
occur if the source database supports a higher precision that Teradata does.

The support of range and precision for floating-point numbers depends on the host machine. In
general, the precision is accurate to 16 significant digits, but you should review the database
documentation to determine the expected approximations. Oracle GoldenGate rounds or
truncates values that exceed the supported precision.

Limitations of Support for Single-byte Character Data Types

Single-byte character types are fully supported within a single-byte Latin character set between
other databases and Teradata. A VARCHAR or CHAR column cannot have more than 32k-1 bytes.
If using UTF-16, this is 16k-2 characters.

Conditions and Limitations of Support for Multi-byte Character Data

Conditions and limitations of support for multi-byte character data are as follows:

• Install Oracle GoldenGate on a Windows or Linux replication server.

• Use the Teradata ODBC driver version 12.0.0.x or later.

• Do not use filtering, mapping, and transformation for multi-byte data types.

• A CHAR or VARCHAR column cannot contain more than 32k-1 bytes. If using UTF-16, these
columns cannot contain more than 16k-2 characters.

• Set the ODBC driver to the UTF-16 character set in the initialization file.

• When creating Replicat groups, use the NODBCHECKPOINT option with the ADD REPLICAT
command. The Replicat database checkpointing feature does not support an ODBC driver
that is set to the UTF-16 character set. Checkpoints will be maintained in the checkpoint
file on disk.

Limitations of Support for Binary Data Types

No limitations. These data types are supported between other source databases and Teradata
targets.

Limitations of Support for Large Object Data Types

The following are limitations of support for large object data types.

• To replicate large objects from other databases to Teradata, use Teradata ODBC driver
version 12.0 or higher on the target system. The target must support large objects that are
delivered by ODBC.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-171

• Enable the UseNativeLOBSupport flag in the ODBC configuration file. See the Teradata
ODBC documentation.

Limitations of Support for Date Data Types

The following are limitations of support for date data types:

• DATE, TIME, and TIMESTAMP are fully supported when replicated from a different type of
source database to Teradata.

• TIME with TIMESZONE, TIMESTAMP with TIMEZONE, and INTERVAL are not supported from a
different type of source database to Teradata.

• Oracle GoldenGate supports timestamp data from 0001/01/03:00:00:00 to
9999/12/31:23:59:59. If a timestamp is converted from GMT to local time, these limits also
apply to the resulting timestamp. Depending on the timezone, conversion may add or
subtract hours, which can cause the timestamp to exceed the lower or upper supported
limit.

• Oracle GoldenGate does not support negative dates.

Limitations of Support for IDENTITY Data Types

IDENTITY must be configured as GENERATED BY DEFAULT AS IDENTITY on the target to enable
the correct value to be inserted by Replicat.

Supported Objects and Operations for Teradata
This section lists the data operations and database objects that Oracle GoldenGate supports.

• Oracle GoldenGate supports the maximum number of columns per table that is supported
by the database.

• Truncating operations are supported with the use of the GETTRUNCATES parameter with
Oracle GoldenGate 12.2.x and greater.

• Limitations on Automatic Heartbeat Table support are as follows:

– The ALTER HEARTBEATTABLE command is not supported and if used is ignored.

– The ADD HEARTBEATTABLE command with the FREQUENCY, PURGE_FREQUENCY, or
RETENTION_TIME option is not supported. When any of these options are specified with
the ADD HEARTBEATTABLE command, a warning is displayed that the option is ignored.

– Since Teradata does not have any internal event/job schedulers, automatic purging of
heartbeat history data does not occur. You need to explicitly delete or truncate records
periodically from the heartbeat history table.

Non-Supported Operations for Teradata
This section lists the data operations that Oracle GoldenGate does not support.

• Extract (capture)

• DDL

TimesTen
With Oracle GoldenGate for Oracle TimesTen, you can deliver initial load and transactional
data from other supported Oracle GoldenGate sources, such as an Oracle database.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-172

Oracle GoldenGate for Oracle TimesTen supports data filtering, mapping, and transformations
unless noted otherwise in this documentation.

Database Requirements
This section describes the database requirements for using Oracle GoldenGate for Oracle
TimesTen.

Database User for Oracle GoldenGate Processes for Teradata
Follow these requirements for the database user for Oracle GoldenGate processes:

• Create a database user that is dedicated to Oracle GoldenGate. It can be the same user
for all of the Oracle GoldenGate processes that must connect to a database:

– Replicat (target database)

– The DEFGEN utility (target database)

• To preserve the security of your data, and to monitor Oracle GoldenGate processing
accurately, do not permit other users, applications, or processes to log on as, or operate
as, the Oracle GoldenGate database user.

• For Oracle GoldenGate to replicate to a target Teradata database, grant SELECT, INSERT,
UPDATE, and DELETE on all of the target tables to the Replicat database user.

Preparing the System for Oracle GoldenGate
This chapter contains guidelines for preparing the system to support Oracle GoldenGate:

Setting the Environment Variables
Ensure that the required system environment variables are sourced before proceeding. The
correct environment settings are needed for all sessions or processes that will interact with
Oracle TimesTen. Every Oracle TimesTen instance (Server and Client) contains a script for
setting the required environment variables. This script is located in instance_home_dir/bin
and is named ttenv.[c]sh. It should always be dotted or sourced and never executed directly.

Example of setting the bash shell environment for a TimesTen instance homed in /
instancepath/tt181:

source /instancepath/tt181/bin/ttenv.sh

Although it's possible to set the required environment variables manually, it is not
recommended. Using the script:

• Ensures that all the necessary environment variables (there are several) are correctly set.

• Insulates you from the introduction of new variables in future Oracle TimesTen releases.

Configuring the TimesTen ODBC Connectivity
Oracle GoldenGate for TimesTen connects to TimesTen using the ODBC API (TimesTen's
native API). ODBC connectivity defines the concept of a Data Source Name (DSN). A DSN is a
logical name which applications use to specify the parameters to be used for connecting to a
target database.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-173

When using Oracle GoldenGate for TimesTen, you will specify the DSN of the target TimesTen
database in various Oracle GoldenGate configuration settings, such as the SOURCEDB clause of
the DBLOGIN command. For example:

DBLOGIN SOURCEDB database, USERIDALIAS useralias

Here, the value given for database will be the DSN of the target TimesTen database.

When using the Direct mode connectivity, connections must reference a server DSN defined in
the sys.odbc.ini file of the Oracle TimesTen instance that hosts the database (the server
instance).

When using the Client-Server mode, connections must reference a client DSN defined in the
sys.odbc.ini file of either the Oracle TimesTen instance that manages the database (the
server instance) or, more commonly, in the sys.odbc.ini of an Oracle TimesTen client
instance, such as an Oracle GoldenGate hub server.

For information on defining Oracle TimesTen server and client DSNs, refer to TimesTen In-
Memory Database Operations Guide.

Here is an example of the sys.odbc.ini entries to define a client DSN (myttdbcs) that
connects to a database identified by the server DSN myttdb located on the host
tthost1.mydomain.com. The TimesTen server's default listener port on that host is 6625.

[ODBC Data Sources]
myttdbcs=TimesTen 18.1 Client Driver
[myttdbcs]
TTC_SERVER=tthost1.mydomain.com/6625
TTC_SERVER_DSN=myttdb
ConnectionCharacterSet=AL32UTF8

Configuring ODBC on Linux

The following steps provide minimum settings required to connect Oracle GoldenGate
processes. For more detailed information on the Oracle TimesTen Client and Server
configuration and information, review the following Oracle TimesTen documentation:

https://docs.oracle.com/database/timesten-18.1/TTOPR/client_server.htm#TTOPR177

1. Edit the $TIMESTEN_HOME/conf/sys.odbc.ini file.

vi $TIMESTEN_HOME/conf/sys.odbc.ini
2. Describe the data source in the template file. In the following example, TTCS_181 is used as

the client name for which DBLOGIN and SOURCEDB and TARGETDB are used to connect to the
database.

[ODBC Data Sources]
 TTCS_181=TimesTen 18.1 Client Driver

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-174

https://docs.oracle.com/database/timesten-18.1/TTOPR/connect.htm#TTOPR889
https://docs.oracle.com/database/timesten-18.1/TTOPR/connect.htm#TTOPR889
https://docs.oracle.com/database/timesten-18.1/TTOPR/client_server.htm#TTOPR177

3. Set a logical server name for TTC_SERVER and use the server DSN value for the
TTC_SERVER_DSN entry. The value of the TTC_SERVER_DSN must match the database specific
server DSN that exists in the database server’s sys.odbc.ini file.

[TTCS_181]
TTC_SERVER=ttRemoteDBServer_TT_181
TTC_SERVER_DSN=ttDatabaseDSN

4. Edit the $TIMESTEN_HOME/conf/sys.ttconnect.ini file with the settings described in these
steps.

vi $TIMESTEN_HOME/conf/sys.ttconnect.ini
5. Create an entry of the same logical server name that was used as the value of TTC_SERVER

within the sys.odbc.ini file. In this example, ttRemoteDBServer_TT_181 is the entry name.
Include an optional description value, and the required Network_Address and TCP_PORT
values that point to the Oracle TimesTen database server and port.

[ttRemoteDBServer_TT_181]
Description=TimesTen
ServerNetwork_Address=server.company.com
TCP_PORT=6625

6. From the Oracle GoldenGate directory on the target, verify the connection settings by
running GGSCI and issuing the DBLOGIN command to log into the target database.

DBLOGIN SOURCEDB database, USERID db_user [, PASSWORD pw [encryption
options]]

In this example:

• SOURCEDB database specifies the new Data Source Name.

• USERID db_user, PASSWORD pw are the Replicat database user profile and password.

• encryption options is optional password encryption

Preparing Tables for Processing
This section describes the table attributes you must address in an Oracle GoldenGate
environment with TimesTen.

Disabling Triggers and Cascade Constraints

Disable triggers, cascade delete constraints, and cascade update constraints on the target
tables, or alter them to ignore changes made by the Oracle GoldenGate database user. Oracle
GoldenGate replicates DML that results from a trigger or cascade constraint. If the same
trigger or constraint gets activated on the target table, it becomes redundant because of the
replicated version, and the database returns an error. Consider the following example, where
the source tables are emp_src and salary_src and the target tables are emp_targ and
salary_targ.

1. A delete is issued for emp_src.
2. It cascades a delete to salary_src.

3. Oracle GoldenGate sends both deletes to the target.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-175

4. The parent delete arrives first and is applied to emp_targ.

5. The parent delete cascades a delete to salary_targ.

6. The cascaded delete from salary_src is applied to salary_targ.
7. The row cannot be located because it was already deleted in step 5.

Ensuring Row Uniqueness for Tables

Oracle GoldenGate requires some form of unique row identifier on the source and target tables
to locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use
a larger, less efficient WHERE clause.

4. If a table does not have an appropriate key, or if you prefer that the existing key(s) are not
used, you can define a substitute key, if the table has columns that always contain unique
values. You define this substitute key by including a KEYCOLS clause within the Extract
TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds. See TABLE | MAP in
Reference for Oracle GoldenGate.

Configuring Oracle GoldenGate
Learn about the prerequisites and tasks for configuring Oracle GoldenGate Replicat for
Teradata database.

Configuring Oracle GoldenGate Replicat

This section describes the Replicat parameters that are required for most target database
types. For additional parameters that may be required, see the Oracle GoldenGate installation
and configuration documentation for your target database and the Reference for Oracle
GoldenGate.

Perform these steps on the target replication server or target database.

1. Configure the Manager process according to the instructions in Administering Oracle
GoldenGate.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-176

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the purging
of files from the local trail.

3. Create a Replicat checkpoint table. There are multiple options for this purpose, see
Administering Oracle GoldenGate.

DBLOGIN SOURCEDB myttdbcs USERIDLIAS useralias
ADD CHECKPOINTTABLE owner.oggcheckpointtable

4. Create a Replicat. For documentation purposes, this Replicat is called reptt.

ADD REPLICAT reptt, EXTTRAIL ./dirdat/remote_trail, CHECKPOINTTABLE
owner.oggcheckpointtable

Use the EXTTRAIL argument to link the Replicat to the remote trail that you specified with
the Data Pump Extract on the source Oracle GoldenGate installation.

5. Use the EDIT PARAMS command to create a parameter file for the Replicat group. Include
the parameters shown below plus any others that apply to your database environment.

Example 3-3 Parameters for the Replicat Group

REPLICAT reptt
-- Specify database login information as needed for the database:
TARGETDB myttdbcs, USERIDALIAS useralias
-- Specify tables for delivery:
MAP owner.sourcetable, TARGET owner.targettable;

Additional Oracle GoldenGate Configuration Guidelines

The following are additional considerations to make once you have installed and configured
your Oracle GoldenGate environment.

Performing Initial Synchronization

Perform an initial synchronization of the source and target data before using Oracle
GoldenGate to transmit transactional changes for the first time to configure an initial load. See
Initial Synchronization in Administering Oracle GoldenGate.

Understanding What's Supported for Oracle TimesTen
This chapter contains information on database and table features supported by Oracle
GoldenGate.

Supported Objects and Operations for TimesTen
The following objects and operations are supported:

• Oracle GoldenGate for Oracle TimesTen supports delivery of transactional DML to user
tables.

• INSERT, UPDATE, DELETE, and TRUNCATE operations are supported.

Non-Supported TimesTen Data Types and Features
The INTERVAL and ROWID data types are not supported.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-177

Supported TimesTen Data Types
The following data types are supported for delivery, unless specifically noted in the limitations
that follow:

• Binary Data Types

(binary, varbinary)

• Character Data Types

(char, nchar, nvarchar2, varchar2)

• Date and Time Data Types

(date, time, timestamp, tt_date, tt_time, tt_timestamp)

• Numeric Data Types

(binary_float, binary_double, double, float, tt_bigint, tt_integer,
number, real, tt_smallint, tt_tinyint)

• LOB

(blob, clob, nclob)

Limitations and Non-supported Items for Oracle TimesTen
The limitations and non-supported items for Oracle TimesTen are:

• Capture (extraction) of DML operations is not supported.

• Capture and replication of DDL (data definition language) operations is not supported.

• The support of range and precision for floating-point numbers depends on the host
machine. In general, the precision is accurate to 16 significant digits, but you should review
the database documentation to determine the expected approximations. Oracle
GoldenGate rounds or truncates values that exceed the supported precision.

• Oracle GoldenGate supports timestamp data from 0001/01/03:00:00:00 to
9999/12/31:23:59:59. If a timestamp is converted from GMT to local time, these limits also
apply to the resulting timestamp. Depending on the time zone, conversion may add or
subtract hours, which can cause the timestamp to exceed the lower or upper supported
limit.

• Modifying the Primary Key Column value is not supported.

• Limitations on Automatic Heartbeat Table support are as follows:

– Oracle GoldenGate supports only Delivery on TimesTen so no mechanism is required
to populate/update the heartbeat tables using any event/job schedulers.

– The ALTER HEARTBEATTABLE command is not supported and if used is ignored.

– The ADD HEARTBEATTABLE command with the FREQUENCY, PURGE_FREQUENCY, or
RETENTION_TIME option is not supported. When any of these options are specified with
the ADD HEARTBEATTABLE command, a warning is displayed that the option is ignored.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-178

– Since TimesTen does not have any internal event/job schedulers, automatic purging of
heartbeat history tables cannot occur. As such, you should explicitly drop or truncate
the corresponding heartbeat objects to suit your environment.

System Requirements and Preinstallation Instructions
This chapter contains the requirements for the system and database resources that support
Oracle GoldenGate.

Supported Database Architectures
Oracle GoldenGate for Oracle TimesTen supports the Classic and Scaleout architectures of the
TimesTen database.

Supported Platforms and Database Versions
Oracle TimesTen supports installing Oracle GoldenGate on Linux.

For supported platform and database version information, review the certification matrix:

https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-
certification-100350.html.

Oracle TimesTen Software Installation
The Oracle TimesTen Client needs to be installed on the server where Oracle GoldenGate is
going to be installed. If Oracle GoldenGate is installed on the Oracle TimesTen database
server, then the required components are already available. However, if you are installing
Oracle GoldenGate on a hub server, then you must separately install the Oracle TimesTen
Client.

In both cases you will need to configure the ODBC connection information.

For Linux platforms there is only one TimesTen software distribution that provides both server
and client components. To download the Oracle TimesTen Software, visit:

https://www.oracle.com/database/technologies/timesten-downloads.html

Before beginning to install Oracle GoldenGate with Oracle TimesTen, you must also set the
LD_LIBRARY_PATH variable:

1. Download the TimesTen Scaleout and TimesTen Classic/Cache 18.x for Linux x86 (64-bit)
build.

2. Extract the Oracle TimesTen installation files to the designated location, based on the
instructions provided in Oracle TimesTen In-Memory Database Installation Guide.

3. Set the LD_LIBARY_PATH system variable to include the TimesTen installation’s lib
directory. This system variable must be set to install and run Oracle GoldenGate. Example:

export LD_LIBRARY_PATH=/installpath/tt18.1.2.2.0/lib:$LD_LIBRARY_PATH

Client-only Instance Creation
For non-database server environments where you plan to install Oracle GoldenGate, after
installing the Oracle TimesTen client libraries, follow the TimesTen document instructions to
create a client-only instance of TimesTen.

Chapter 3
Prepare Your Database for Oracle GoldenGate Classic Architecture

3-179

https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/database/technologies/timesten-downloads.html

1. Perform the following:

[oracle@tt_installation_dir]$./tt18.1.2.1.0/bin/ttInstanceCreate -
clientonly

2. Follow the instance installation prompts, taking note of where the TimesTen instance is
installed. This information will be required when setting up a Replicat’s ODBC connection
to TimesTen.

3. Set the TIMESTEN_HOME system variable to the TimesTen instance path.

Example:

export TIMESTEN_HOME=/instancepath/tt181

Operating System Privileges
The operating system privileges for using Oracle GoldenGate for Oracle TimesTen are:

• You need read and write privileges on the Oracle GoldenGate installation directory.

• Oracle GoldenGate Replicat and Manager processes must operate as an operating system
user that has privileges to read, write, and delete files and subdirectories in the Oracle
GoldenGate directory. In addition, the Manager process requires privileges to control all
other Oracle GoldenGate processes.

• Dedicate the Replicat and Manager operating system users to Oracle GoldenGate to avoid
access to sensitive information to other users who run Oracle GoldenGate processes.

Prepare Oracle GoldenGate Classic Architecture for Data
Replication

Learn about the tasks for preparing Oracle GoldenGate Classic Architecture before setting up
Oracle GoldenGate processes.

Oracle GoldenGate Security Privileges
This section outlines the security privileges that Oracle GoldenGate requires on a source DB2
for i system and on a Windows or Linux target system.

Oracle GoldenGate Security Privileges
This section outlines the security privileges that Oracle GoldenGate requires on a source DB2
for i system and on a Windows or Linux target system.

The person who installs Oracle GoldenGate must have read and write privileges on the Oracle
GoldenGate installation directory, because steps will be performed to create some sub-folders
and run some programs. On a Windows systen, the person who installs Oracle GoldenGate
must log in as Administrator.

Manager, Replicat, and Collector (program name is server) are active. Manager controls the
other processes and interacts with Collector to receive incoming data, while Replicat applies
data to the target DB2 for i database through ODBC.

Oracle GoldenGate processes must be assigned a user account that is dedicated to Oracle
GoldenGate and cannot be used by any other program. One user account can be used by all

Chapter 3
Prepare Oracle GoldenGate Classic Architecture for Data Replication

3-180

of the Oracle GoldenGate processes. This account must have privileges to read, write, and
delete files and directories within the Oracle GoldenGate installation directory.

If the Extract user profile does not have the required authority, Extract will log the following
errors and stop.

[SC=-1224:SQL1224N A database agent could not be started to service a
request, or was terminated as a result of a database system shutdown or a
force command.SQL STATE 55032: The CONNECT statement is invalid, because the
database manager was stopped after this application was started]

The user profile must be specified with the USERID parameter when you configure the
parameter files and in the DBLOGIN command prior to issuing any GGSCI commands that
interact with the database.

For more information on user profiles and security privileges, see User Profiles and Security
Privileges.

Oracle GoldenGate Security Privileges on a DB2 for i System
The Oracle GoldenGate processes must be assigned a user profile account that is dedicated
to Oracle GoldenGate and cannot be used by any other program. One user profile can be used
by all of the Oracle GoldenGate processes. This profile need only be granted permission to the
objects that Oracle GoldenGate will be operating upon. If specific change data is not to be
seen by Oracle GoldenGate, do not include it in any of the journals that the Oracle GoldenGate
user profile is allowed to access.

The Manager process must have privileges to control all other Oracle GoldenGate processes
(DB2 for i *JOBCTL authority).

Assign *USE authority to all objects on the system that the Extract user profile must have
access to. Assign *CHANGE authority to all objects on the system that the Replicat user profile
must have access to. This can be accomplished by either granting *ALLOBJ authority to the
user, or by setting the individual authority to the objects (FILE, LIBRARY and JOURNAL objects)
that the user must access. This includes the objects in the QSYS2 library where the SQL catalog
resides. These authorities must be granted through the native DB2 for i interface through a
5250 terminal session or through the DB2 for i Operations Navigator product available from
IBM.

The Extract and Replicat database user profiles must be specified with the USERID parameter
when you configure the parameter files and in the DBLOGIN command prior to issuing any
GGSCI commands that interact with the database.

The Oracle GoldenGate user profile that runs the Extract process needs to have the *USE
authority on the QSYS/QPMLPMGT service program.

Initializing the Transaction Logs
When you initialize a transaction log, you must ensure that all of the data is processed by
Oracle GoldenGate first, and then you must delete and re-add the Extract group and its
associated trail.

1. Stop the application from accessing the database. This stops more transaction data from
being logged.

2. Connect the Admin Client command line using the CONNECT command.

Chapter 3
Prepare Oracle GoldenGate Classic Architecture for Data Replication

3-181

3. Issue the SEND EXTRACT command with the LOGEND option for the primary Extract group.
This command queries Extract to determine whether or not Extract is finished processing
the records that remain in the transaction log.

SEND EXTRACT group LOGEND

4. Continue issuing the command until it returns a YES status, indicating that there are no
more records to process.

5. On the target system, issue the SEND REPLICAT command with the STATUS option. This
command queries Replicat to determine whether or not it is finished processing the data
that remains in the trail.

SEND REPLICAT group STATUS

6. Continue issuing the command until it shows 0 records in the current transaction, for
example:

Sending STATUS request to REPLICAT REPSTAB...
Current status:
 Seqno 0, Rba 9035
 0 records in current transaction.

7. Stop the primary Extract group, and the Replicat group.

STOP EXTRACT group
STOP REPLICAT group

8. Delete the Extract and Replicat groups.

DELETE EXTRACT group
DELETE REPLICAT group

9. Using standard operating system commands, delete the trail files.

10. Stop the database.

11. Initialize and restart the database.

12. Recreate the primary Extract group.

ADD EXTRACT group TRANLOG, BEGIN NOW

13. Recreate the local trail (if used).

ADD EXTTRAIL trail, EXTRACT group

14. Recreate the remote trail.

ADD RMTTRAIL trail, EXTRACT group

15. Recreate the Replicat group.

ADD REPLICAT group, EXTTRAIL trail

Chapter 3
Prepare Oracle GoldenGate Classic Architecture for Data Replication

3-182

16. Start Extract and Replicat.

START EXTRACT group
START REPLICAT group

Details of Support for Data Types, Objects and Operations for Classic
Extract

This topic describes data types, objects and operations that are supported by Oracle
GoldenGate Classic Extract.

Data type Classic capture

Scalar columns including DATE and
DATETIME columns

Captured from redo.

LONG VARCHAR Not supported.

BASICFILE LOB columns LOB modifications done using DML (INSERT/UPDATE/DELETE) are captured from
redo.

LOB modifications done using DBMS_LOB package are captured from the source
table by fetching values from the base table.

SECUREFILE LOB columns Captured from redo, except for the following cases where SECUREFILE LOBs are
fetched from the source table:

• LOB is encrypted
• LOB is compressed
• LOB is deduplicated
• LOB is stored in-line
• LOB is modified using DBMS_LOB package

• NOLOGGING LOBs

Index Organized Tables (IOT) Captured from redo with the following restrictions:

• IOT with mapping table not supported.
• Direct load inserts to IOT tables cannot have the SORTED clause.

• IOT with prefix compression as specified with COMPRESS clause is not
supported.

XML columns stored as CLOB Captured from redo.

XML columns stored as Binary Fetched from source table.

XML columns stored as Object-
Relational

Not supported.

XML Type Table Not supported.

User Defined Type (UDT) columns Fetched from source table.

Invisible Columns Not supported.

Chapter 3
Prepare Oracle GoldenGate Classic Architecture for Data Replication

3-183

Data type Classic capture

ANYDATA columns Fetched from source table with the following data types only:

BINARY_DOUBLE
BINARY_FLOAT
CHAR
DATE
INTERVAL DAY TO SECOND
INTERVAL YEAR TO MONTH
NCHAR
NUMBER
NVARCHAR2
RAW
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIMEZONE
UDTs

VARCHAR/VARCHAR2
Requires source database compatibility to be set to 11.2.0.0.0 or higher.

Spatial Types columns Fetched from source table.

Collections columns (VARRAYs) Fetched from source table.

Collections columns (Nested Tables) Fetched from source table with limitations.

See Details of Support for Objects and Operations in Oracle DML.

Object Table Fetched from source table.

Transparent Data Encryption (Column
Encryption & Tablespace Encryption)

Captured from redo.

Basic Compression Not supported.

OLTP-Compression Not supported.

Exadata Hybrid Columnar Compression Not supported.

XA on non-RAC database Captured from redo.

XA on RAC database Not supported.

To get support, must make sure all branches of XA goes to the same instance.

PDML on non-RAC database Captured from redo.

PDML on RAC database Not supported.

To get support, you must make sure child transactions spawned from a PDML
transaction do not span multiple instances.

Details of Support for Objects and Operations in Oracle DDL
This topic outlines the Oracle objects and operation types that Oracle GoldenGate supports for
the capture and replication of DDL operations.

Limitations of Support for Index-Organized Tables
These limitations apply to classic capture mode.

Chapter 3
Prepare Oracle GoldenGate Classic Architecture for Data Replication

3-184

• IOT with key compression enabled (indicated by the COMPRESS keyword in the
key_compression clause) is not supported in classic capture mode, but is supported in
integrated capture mode.

Limitations of Support for Clustered Tables
Indexed clusters are supported by Extract while hash clusters are not supported. In classic
capture mode the following limitations apply:

• Encrypted and compressed clustered tables are not supported in classic capture.

• Extract in classic capture mode captures DML changes made to index clustered tables if
the cluster size remains the same. Any DDL that causes the cluster size to increase or
decrease may cause Extract to capture subsequent DML on that table incorrectly.

Non-supported Objects and Operations in Oracle DDL
Here's a list of non-supported objects and operations in Oracle DDL.

Excluded Objects

The following names or name prefixes are considered Oracle-reserved and must be excluded
from the Oracle GoldenGate DDL configuration. Oracle GoldenGate will ignore objects that
contain these names.

Excluded schemas:

 "ANONYMOUS", // HTTP access to XDB
 "APPQOSSYS", // QOS system user
 "AUDSYS", // audit super user
 "BI", // Business Intelligence
 "CTXSYS", // Text
 "DBSNMP", // SNMP agent for OEM
 "DIP", // Directory Integration Platform
 "DMSYS", // Data Mining
 "DVF", // Database Vault
 "DVSYS", // Database Vault
 "EXDSYS", // External ODCI System User
 "EXFSYS", // Expression Filter
 "GSMADMIN_INTERNAL", // Global Service Manager
 "GSMCATUSER", // Global Service Manager
 "GSMUSER", // Global Service Manager
 "LBACSYS", // Label Security
 "MDSYS", // Spatial
 "MGMT_VIEW", // OEM Database Control
 "MDDATA",
 "MTSSYS", // MS Transaction Server
 "ODM", // Data Mining
 "ODM_MTR", // Data Mining Repository
 "OJVMSYS", // Java Policy SRO Schema
 "OLAPSYS", // OLAP catalogs
 "ORACLE_OCM", // Oracle Configuration Manager User
 "ORDDATA", // Intermedia
 "ORDPLUGINS", // Intermedia
 "ORDSYS", // Intermedia
 "OUTLN", // Outlines (Plan Stability)
 "SI_INFORMTN_SCHEMA", // SQL/MM Still Image
 "SPATIAL_CSW_ADMIN", // Spatial Catalog Services for Web
 "SPATIAL_CSW_ADMIN_USR",
 "SPATIAL_WFS_ADMIN", // Spatial Web Feature Service
 "SPATIAL_WFS_ADMIN_USR",

Chapter 3
Prepare Oracle GoldenGate Classic Architecture for Data Replication

3-185

 "SYS",
 "SYSBACKUP",
 "SYSDG",
 "SYSKM",
 "SYSMAN", // Adminstrator OEM
 "SYSTEM",
 "TSMSYS", // Transparent Session Migration
 "WKPROXY", // Ultrasearch
 "WKSYS", // Ultrasearch
 "WK_TEST",
 "WMSYS", // Workspace Manager
 "XDB", // XML DB
 "XS$NULL",
 "XTISYS", // Time Index

Special schemas:

 "AURORAJISUTILITY$", // JSERV
 "AURORAORBUNAUTHENTICATED", // JSERV
 "DSSYS", // Dynamic Services Secured Web Service
 "OSE$HTTP$ADMIN", // JSERV
 "PERFSTAT", // STATSPACK
 "REPADMIN",
 "TRACESVR" // Trace server for OEM

Excluded tables (the * wildcard indicates any schema or any character):

 "*.AQ$*", // advanced queues
 "*.DR$*$*", // oracle text
 "*.M*_*$$", // Spatial index
 "*.MLOG$*", // materialized views
 "*.OGGQT$*",
 "*.OGG$*", // AQ OGG queue table
 "*.ET$*", // Data Pump external tables
 "*.RUPD$*", // materialized views
 "*.SYS_C*", // constraints
 "*.MDR*_*$", // Spatial Sequence and Table
 "*.SYS_IMPORT_TABLE*",
 "*.CMP*$*", // space management, rdbms >= 12.1
 "*.DBMS_TABCOMP_TEMP_*", // space management, rdbms < 12.1
 "*.MDXT_*$*" // Spatial extended statistics tables

Other Non-supported DDL

Oracle GoldenGate does not support the following:

• DDL on nested tables.

• DDL on identity columns.

• ALTER DATABASE and ALTER SYSTEM (these are not considered to be DDL) Using dictionary,
you can replicate ALTER DATABASE DEFAULT EDITION and ALTER PLUGGABLE DATABASE
DEFAULT EDITION. All other ALTER [PLUGABLE] DATABASE commands are ignored.

• DDL on a standby database.

• Database link DDL.

• DDL that creates tables with the FLASHBACK ARCHIVE clause and DDL that creates, alters,
or deletes the flashback data archive itself. DML on tables with FLASHBACK ARCHIVE is
supported.

• Some DDL will generate system generated object names. The names of system generated
objects may not always be the same between two different databases. So, DDL operations

Chapter 3
Prepare Oracle GoldenGate Classic Architecture for Data Replication

3-186

on objects with system generated names should only be done if the name is exactly the
same on the target.

Details of Support for Objects and Operations in Oracle DML
This section outlines the Oracle objects and operations that Oracle GoldenGatesupports for
the capture and replication of DML operations.

Supported Objects and Operations in Oracle DML

Identity Columns are supported.

Non-supported Objects and Operations in Oracle DML (Classic)
The following are not supported in classic capture:

• Exadata Hybrid Columnar Compression

• Capture from tables with OLTP table compression

• Capture from tablespaces and tables created or altered with COMPRESS
• Capture from encrypted and compressed clustered tables

• Invisible column

• Distributed transactions. In Oracle versions 11.1.0.6 and higher, you can capture these
transactions if you make them non-distributed by using the following command, which
requires the database to be restarted.

alter system set _CLUSTERWIDE_GLOBAL_TRANSACTIONS=FALSE;
• RAC distributed XA and PDML distributed transactions

• Version enabled-tables

Creating a Checkpoint Table
Replicat maintains checkpoints that provide a known position in the trail from which to start
after an expected or unexpected shutdown. To store a record of its checkpoints, Replicat uses
a checkpoint table in the target database. This enables the Replicat checkpoint to be included
within the Replicat transaction itself, to ensure that a transaction will only be applied once,
even if there is a failure of the Replicat process or the database process. The checkpoint table
remains small because rows are deleted when no longer needed, and it does not affect
database performance. See About Checkpoints for more information about the checkpoint
table.

Options for Creating the Checkpoint Table
The checkpoint table can reside in a schema of your choice. Use one that is dedicated to
Oracle GoldenGate if possible.

More than one instance of Oracle GoldenGate (multiple installations) can use the same
checkpoint table. Oracle GoldenGate keeps track of the checkpoints, even if Replicat group
names are the same in different instances.

More than one checkpoint table can be used as needed. For example, you can use different
ones for different Replicat groups.

You can install your checkpoint tables in these ways:

Chapter 3
Prepare Oracle GoldenGate Classic Architecture for Data Replication

3-187

• You can specify a default checkpoint table in the GLOBALS file. New Replicat groups created
with the ADD REPLICAT command will use this table automatically, without requiring any
special instructions.

• You can provide specific checkpoint table instructions when you create any given Replicat
group with the ADD REPLICAT command:

– To use a specific checkpoint table for a group, use the CHECKPOINTTABLE argument of
ADD REPLICAT. This checkpoint table overrides any default specification in the GLOBALS
file. If using only one Replicat group, you can use this command and skip creating the
GLOBALS file altogether.

– To omit using a checkpoint table for a group, use the NODBCHECKPOINT argument of ADD
REPLICAT. Without a checkpoint table, Replicat still maintains checkpoints in a
checkpoint file on disk, but you introduce the risk of data inconsistency.

However you implement the checkpoint table, you must create it in the target database prior to
using the ADD REPLICAT command.

To Add a Checkpoint Table to the Target Database

The following steps, which create the checkpoint table through GGSCI, can be bypassed by
running the chkpt_db_create.sql script instead, where db is an abbreviation of the database
type. By using the script, you can specify custom storage or other attributes. Do not change the
names or attributes of the columns in this table.

1. From the Oracle GoldenGate directory, run GGSCI and issue the DBLOGIN command to log
into the database. The user issuing this command must have CREATE TABLE permissions.
See Reference for Oracle GoldenGate for the correct syntax to use for your database.

2. In GGSCI, issue the following command to add the checkpoint table to the database.

ADD CHECKPOINTTABLE container owner.table

Where:

owner.table is the owner and name of the table, container is the name of a PDB if
installing into an Oracle multitenant container database. The owner and name can be
omitted if you are using this table as the default checkpoint table and this table is specified
with CHECKPOINTTABLE in the GLOBALS file. The name of this table must not exceed the
maximum length permitted by the database for object names. The checkpoint table name
cannot contain any special characters, such as quotes, backslash, pound sign, and so
forth.

To Specify a Default Checkpoint Table in the GLOBALS File

This procedure specifies a global name for all checkpoint tables in the Oracle GoldenGate
instance. You can override this name for any given Replicat group by specifying a different
checkpoint table when you create the Replicat group.

1. Create a GLOBALS file (or edit the existing one, if applicable). The file name must be all
capital letters on UNIX or Linux systems, without a file extension, and must reside in the
root Oracle GoldenGate directory. You can use an ASCII text editor to create the file,
making certain to observe the preceding naming conventions, or you can use GGSCI to
create and save it with the correct name and location automatically. When using GGSCI,
use the following command, typing GLOBALS in upper case.

EDIT PARAMS ./GLOBALS
2. Enter the following parameter:

Chapter 3
Prepare Oracle GoldenGate Classic Architecture for Data Replication

3-188

CHECKPOINTTABLE container.owner.table

Where:

catalog.owner.table is the fully qualified name of the default checkpoint table, including
the name of the container if the database is an Oracle multitenant container database
(CDB).

3. Note the name of the table, then save and close the GLOBALS file. Make certain the file was
created in the root Oracle GoldenGate directory. If there is a file extension, remove it.

Adjusting for Coordinated Replicat in Oracle RAC
If the Replicat for which you are creating a checkpoint table will run in an Oracle RAC
configuration, it is recommended that you increase the PCTFREE attribute of the Replicat
checkpoint table to as high a value as possible, as high as 90 if possible. This accommodates
the more frequent checkpointing that is inherent in coordinated processing. This change must
be made before starting the Replicat group for the first time. See Creating an Online Replicat
Group for more information about coordinated Replicat.

Specifying the DB2 LUW Database in Parameter Files
For an Oracle GoldenGate process to connect to the correct DB2 LUW database, you must
specify the name (not an alias) of the DB2 LUW database with the following parameters:

• Specify the DB2 source database with the Extract parameter SOURCEDB.

• Specify the DB2 target database name with the Replicat parameter TARGETDB.

For more information about these parameters, see the Reference for Oracle GoldenGate for
Windows and UNIX.

Chapter 3
Prepare Oracle GoldenGate Classic Architecture for Data Replication

3-189

4
Manage

Learn about configuring the Manager process and specify ports for local and remote network
communications.

Overview of the Manager Process
To configure and run Oracle GoldenGate, a Manager process must be running on all Oracle
GoldenGate source and target systems, and any intermediary systems if used in your
configuration. Manager is the controller process that instantiates the Oracle GoldenGate
processes, allocates port numbers, and performs file maintenance. Together, the Manager
process and its child processes, and their related programs and files comprise an Oracle
GoldenGate instance. The Manager process performs the following functions:

• Starts Oracle GoldenGate processes

• Starts dynamic processes

• Starts the Collector process

• Manages the port numbers for processes. (All Oracle GoldenGate ports are configurable.)

• Performs trail management

• Creates event, error, and threshold reports

There is one Manager per Oracle GoldenGate installation. One Manager can support multiple
Oracle GoldenGate extraction and replication processes.

Configure Network Communications
Configuring the Manager process and ports for local and remote network communications.

Assigning Manager a Port for Local Communication
The Manager process in each Oracle GoldenGate installation requires a dedicated port for
communication between itself and other local Oracle GoldenGate processes. To specify this
port, use the PORT parameter in the Manager parameter file. Follow these guidelines:

• The default port number for Manager is 7809. You must specify either the default port
number (recommended, if available) or a different one of your choice.

• The port must be unreserved and unrestricted.

• If more than one instance of Oracle GoldenGate exists on the system, then each Manager
must use a different port number.

See PORT in Reference for Oracle GoldenGatefor more information.

4-1

Maintaining Ports for Remote Connections through Firewalls
If a firewall is being used at an Oracle GoldenGate target location, additional ports are required
on the target system to receive dynamic TCP/IP communications from remote Oracle
GoldenGate processes. These ports are:

• One port for each Collector process that is started by the local Manager to receive
propagated transaction data from remote online Extract processes. When an Extract
process sends data to a target, the Manager on the target starts a dedicated Collector
process.

• One port for each Replicat process that is started by the local Manager as part of a remote
task. A remote task is used for initial loads and is specified with the RMTTASK parameter.
This port is used to receive incoming requests from the remote Extract process. See
RMTTASK in Reference for Oracle GoldenGatefor more information.

• Some extra ports in case they are needed for expansion of the local Oracle GoldenGate
configuration.

• Ports for the other Oracle GoldenGate products if they interact with the local Oracle
GoldenGate instance, as stated in the documentation of those products.

To specify these ports, use the DYNAMICPORTLIST parameter in the Manager parameter file.
Follow these guidelines:

• You can specify up to 5000 ports in any combination of the following formats:

7830, 7833, 7835
7830-7835
7830-7835, 7839

• The ports must be unreserved and unrestricted.

• If more than one instance of Oracle GoldenGate exists on the system, then each Manager
must use a different port number.

Although not a required parameter, DYNAMICPORTLIST is strongly recommended for best
performance. The Collector process is responsible for finding and binding to an available port,
and having a known list of qualified ports speeds this process. In the absence of
DYNAMICPORTLIST (or if not enough ports are specified with it), Collector can use a port range
between 7819 and 12818. If Collector runs out of ports in the DYNAMICPORTLIST list, the
following occurs:

• Manager reports an error in its process report and in the Oracle GoldenGate ggserr log.

• Collector retries based on the rules in the Oracle GoldenGate tcperrs file. For more
information about the tcperrs file, see Handling TCP/IP Errors.

See DYNAMICPORTLIST in Reference for Oracle GoldenGate for more information.

Choosing an Internet Protocol
By default, Oracle GoldenGate selects a socket in the following order of priority to ensure the
best chance of connection success:

• IPv6 dual-stack

• IPv4 if IPv6 dual-stack is not available

• IPv6

Chapter 4
Configure Network Communications

4-2

If your network has IPv6 network devices that do not support dual-stack mode, you can use the
USEIPV6 parameter to force Oracle GoldenGate to use IPv6 for all connections. This is a
GLOBALS parameter that applies to all processes of an Oracle GoldenGate instance. When
USEIPV6 is used, the entire network must be IPv6 compatible to avoid connection failures. See
USEIPV6 in Reference for Oracle GoldenGatefor more information.

Creating the Manager Parameter File
To configure Manager with required port information and optional parameters, create a
parameter file by following these steps. See Using Oracle GoldenGate Parameter Files for
more information about Oracle GoldenGate parameter files.

Note:

If Oracle GoldenGate resides in a cluster, configure the Manager process within the
cluster application as directed by the vendor's documentation, so that Oracle
GoldenGate fails over properly with other applications. For more information about
installing Oracle GoldenGate in a cluster, see the Oracle GoldenGate documentation
for your database.

1. From the Oracle GoldenGate directory, run the GGSCI program to open the Oracle
GoldenGate Software Command Interface (GGSCI).

2. In GGSCI, issue the following command to edit the Manager parameter file.

EDIT PARAMS MGR
3. Add the parameters that you want to use for the Manager process, each on one line.

4. Save, then close the file.

Example 4-1 Sample manager file on a UNIX system

PORT 7809
DYNAMICPORTLIST 7810-7820, 7830
AUTOSTART ER t*
AUTORESTART ER t*, RETRIES 4, WAITMINUTES 4
STARTUPVALIDATIONDELAY 5
USERIDALIAS mgr1
PURGEOLDEXTRACTS /ogg/dirdat/tt*, USECHECKPOINTS, MINKEEPHOURS 2

The following is a sample Manager parameter file on a UNIX system using required and
recommended parameters.

Using the Recommended Manager Parameters
The following parameters are optional, but recommended, for the Manager process.

• AUTOSTART: Starts Extract and Replicat processes when Manager starts. This parameter is
required in a cluster configuration, and is useful when Oracle GoldenGate activities must
begin immediately at system startup. (Requires Manager to be part of the startup routine.)
You can use multiple AUTOSTART statements in the same parameter file. See AUTOSTARTin
Reference for Oracle GoldenGatefor more information.

• AUTORESTART: Starts Extract and Replicat processes again after abnormal termination. This
parameter is required in a cluster configuration, but is also useful in any configuration to

Chapter 4
Creating the Manager Parameter File

4-3

ensure continued processing. See AUTORESTARTin Reference for Oracle GoldenGatefor
more information.

• PURGEOLDEXTRACTS: Purges trail files when Oracle GoldenGate is finished processing them.
Without PURGEOLDEXTRACTS, no purging is performed and trail files can consume significant
disk space. For best results, use PURGEOLDEXTRACTS as a Manager parameter, not as an
Extract or Replicat parameter. See PURGEOLDEXTRACTSin Reference for Oracle
GoldenGatefor more information.

• STARTUPVALIDATIONDELAY | STARTUPVALIDATIONDELAYCSECS: Sets a delay time after which
Manager validates the run status of a process. Startup validation makes Oracle
GoldenGate users aware of processes that fail before they can generate an error message
or process report. See STARTUPVALIDATIONDELAYCSECSin Reference for Oracle
GoldenGatefor more information.

Controlling Manager
Learn about the steps to start and stop the Manager process.

Starting Manager
Manager must be running before you start other Oracle GoldenGate processes. You can start
Manager from:

• The command line of the operating system.

• The GGSCI command interface.

• The Services applet on a Windows system if Manager is installed as a service. See the
Windows documentation or your system administrator.

• The Cluster Administrator tool if the system is part of a Windows cluster. This is the
recommended way to bring the Manager resource online. See the cluster documentation
or your system administrator.

• The cluster software of a UNIX or Linux cluster. Refer to the documentation provided by
the cluster vendor to determine whether to start Manager from the cluster or by using
GGSCI or the command line of the operating system.

Note:

When starting Manager from the command line or GGSCI with User Account Control
enabled, you will receive a UAC prompt requesting you to allow or deny the program
to run.

Starting Manager from the Command Shell of the Operating System
To start Manager from the command shell of the operating system, issue the following
command.

mgr paramfile parameter_file [reportfile report_file]

The reportfile argument is optional and can be used to store the Manager process report in
a location other than the default of the dirrpt directory in the Oracle GoldenGate installation
location.

Chapter 4
Controlling Manager

4-4

Starting Manager from GGSCI
To start Manager from GGSCI, run GGSCI from the Oracle GoldenGate directory, and then
issue the following command.

START MANAGER

Note:

When starting Manager from the command line or GGSCI with User Account Control
enabled, you will receive a UAC prompt requesting you to allow or deny the program
to run.

Stopping Manager
Manager runs indefinitely or until stopped by a user. In general, Manager should remain
running when there are synchronization activities being performed. Manager performs
important monitoring and maintenance functions, and processes cannot be started unless
Manager is running.

Stopping Manager on UNIX and Linux
On UNIX and Linux (including USS on z/OS), Manager must be stopped by using the STOP
MANAGER command in GGSCI.

STOP MANAGER [!]

Where:

! stops Manager without user confirmation.

In a UNIX or Linux cluster, refer to the documentation provided by the cluster vendor to
determine whether Manager should be stopped from the cluster or by using GGSCI.

Stopping Manager on Windows
On Windows, you can stop Manager from the Services applet (if Manager is installed as a
service). See the Windows documentation or your system administrator.

If Manager is not installed as a service, you can stop it with the STOP MANAGER command in
GGSCI.

STOP MANAGER [!]

In a Windows cluster, you must take the Manager resource offline from the Cluster
Administrator. If you attempt to stop Manager from the GGSCI interface, the cluster monitor
interprets it as a resource failure and attempts to bring the resource online again. Multiple start
requests through GGSCI eventually will exceed the start threshold of the Manager cluster
resource, and the cluster monitor will mark the Manager resource as failed.

Chapter 4
Controlling Manager

4-5

5
Extract

Learn about different types of Extract and how to add and manage Extracts.

About Extract
The Extract process is configured to run against the source database, capturing data
generated in the true source database located somewhere else. This process is the extraction
or the data capture mechanism of Oracle GoldenGate.

You can configure an Extract for the following use cases:

• Initial Loads: When you set up Oracle GoldenGate for initial loads, the Extract process
captures the current, static set of data directly from the source objects. This configuration
of Extract process uses source tables as the source to capture data.

• Online Extract (Change Synchronization): When you set up Oracle GoldenGate to keep
the source data synchronized with another set of data, the Extract process captures the
DML and DDL operations performed on the configured objects after the initial
synchronization has taken place. Extracts can run locally (upstream) on the same server
as the database or on another server using the downstream integrated Extract (in case of
Oracle database) for reduced overhead. It stores these operations until it receives commit
records or rollbacks for the transactions that contain them. If it receives a rollback, it
discards the operations for that transaction. If it receives a commit, it persists the
transaction to disk in a series of files called a trail, where it is queued for propagation to the
target system. All the operations in each transaction are written to the trail as a
sequentially organized transaction unit and are in the order in which they were committed
to the database (commit sequence order). This design ensures both speed and data
integrity. This configuration of the Extract process uses database recovery logs or
transaction logs as the data source. While capturing from the logs, the actual method
varies depending on the database type. An example of this source type is the Oracle
database redo logs, which are used for supplemental logging.

Note:

Extract ignores operations on objects that are not in the Extract configuration, even
though a transaction may also include operations on objects that are in the Extract
configuration.

For a remote deployment, the source database and Oracle GoldenGate are installed on
separate servers. Remote deployments are the only option available for supporting cloud
databases, such as Azure for PostgreSQL or Amazon Aurora PostgreSQL.

For remote deployments, operating system endianness between the database server and
Oracle GoldenGate server need to be the same.

Server time and time zones of the Oracle GoldenGate server should be synchronized with that
of the database server. If this is not possible, then positioning of an Extract when creating or
altering one will need to be done by LSN.

5-1

In remote capture use cases, using SQLEXEC may introduce additional latency, as the SQLEXEC
operation must be done serially for each record that the Extract processes. If special filtering
that would require a SQLEXEC is done by a remote hub Extract and the performance impact is
too severe, it may become necessary to move the Extract process closer to the source
database.

With remote deployments, low network latency is important, and it is recommended that the
network latency between the Oracle GoldenGate server and the source database server be
less than 1 millisecond.

About Integrated Extract
The Oracle GoldenGate Integrated Extract process interacts directly with a database logmining
server to receive data changes in the form of logical change records (LCRs).

The following diagram illustrates the configuration of Extract.

Some of the additional features of Oracle GoldenGate Extract are:

• Extract is fully integrated with the database, allowing seamless interoperability between
features such as Oracle RAC, ASM, and TDE.

• Extract uses the database logmining server to access the Oracle redo stream, with the
benefit of being able to automatically switch between different copies of archive logs or
different mirrored versions of the online logs. Thus, capture can transparently handle the
absence of a log file caused by disk corruption, hardware failure, or operator error,
assuming that additional copies of the archived and online logs are available

• Extract enables faster filtering of tables.

• Extract handles point-in-time recovery and RAC integration more efficiently.

• Extract features integrated log management. The Oracle Recovery Manager (RMAN)
automatically retains the archive logs that are needed by Extract.

• Extract supports capture from a multitenant container database and from per-PDB capture
mode.

Chapter 5
About Extract

5-2

• Extract and Replicat (integrated) are both database objects, so the naming of the objects
follow the same rules as other Oracle database objects. See Specifying Object Names in
Oracle GoldenGate Input in Oracle GoldenGate Microservices Documentation.

• When Extract is running from a remote system, Oracle GoldenGate automatically enables
cross endian interoperability. This implies that if the endian value where Extract is running
is different from the endian value where the Oracle database is running, then the cross
endian support is automatically enabled. For cross endian Extract to work, the compatibility
parameter of the source database must be 11.2.0.4 or higher.

• Each Extract group must process objects that are suited to the processing mode, based on
table data types and attributes. No objects in one Extract can have DML or DDL
dependencies on objects in the other Extract.

About Classic Extract
In classic extract mode, the Oracle GoldenGate Extract process extracts data changes from
the Oracle redo or archive log files on the source system or from shipped archive logs on a
standby system. The following diagram illustrates the configuration of an Extract in classic
capture mode.

Note:

Classic Extract has been deprecated for Oracle GoldenGate 19c for Oracle
Database, however, it will continue to be supported for non-Oracle Databases.

Classic extract supports most Oracle data types fully, with restricted support for the complex
data types. Classic extract is the original Oracle GoldenGate extract method. You can use
classic extract for any source Oracle RDBMS that is supported by Oracle GoldenGate, with the
exception of the multitenant container database.

For more information, see Details of Support for Oracle Data Types and Objects.

Deciding Which Extract Method to Use
The placement of Extract depends on where the mining database is located. The mining
database is the one where the logmining server is deployed.

Chapter 5
Deciding Which Extract Method to Use

5-3

• Local Extract: For a local deployment, the source database and the mining database are
the same. The source database is the database for which you want to mine the redo
stream to capture changes, and also where you deploy the logmining server. Because
integrated capture is fully integrated with the database, this mode does not require any
special database setup.

• Downstream Extract: In a downstream deployment, the source and mining databases are
different databases. You create the logmining server at the downstream database. You
configure redo transport at the source database to ship the redo logs to the downstream
mining database for capture at that location. Using a downstream mining server for capture
may be desirable to offload the capture overhead and any other overhead from
transformation or other processing from the production server, but requires log shipping
and other configuration.

When using a downstream mining configuration, the source database and mining database
must be of the same platform. For example, if the source database is running on Windows
64-bit, the downstream database must also be on a Windows 64-bit platform. See
Configuring a Downstream Mining Database .

• Downstream sourceless Extract: In the Extract parameter file, replace the USERID
parameter with NOUSERID. You must use TRANLOGOPTIONS MININGUSER. Extract obtains all
required information from the downstream mining database. Extract is not dependent on
any connection to the source database. The source database can be shutdown and
restarted without affecting Extract.

Extract will abend if it encounters redo changes that require data to be fetched from the
source database.

To capture any tables that are listed as ID KEY in the dba_goldengate_support_mode view,
you need to have a FETCHUSERID or FETCHUSERIDALIAS connection to support the tables.
Tables that are listed as FULL do not require this. We also need to state that if a customer
wants to perform SQLEXEC operations that perform a query or execute a stored procedure
they cannot use this method as it is incompatible with NOUSERID because SQLEXEC works
with USERID or USERIDALIAS.

For an Oracle source database, you can run Extract in either integrated extract or classic
extract mode.

Although you can use the classic extract mode, it is recommended that you use the integrated
extract mode because classic extract has been deprecated and is not being enhanced for any
future releases. It will be desupported in future releases and any classic extract configuration
will need to be migrated to integrated extract.

The method that you use determines how you configure the Oracle GoldenGate processes and
depends on such factors as:

• the data types involved

• the database configuration

• the version of the Oracle Database

Switching to a Different Process Mode
You can switch between process modes. For example, you can switch from classic capture to
integrated capture, or from integrated capture to classic capture.

For instructions, see Performing Administrative Operations.

Chapter 5
Switching to a Different Process Mode

5-4

Configuring Extract
This section contains instructions for configuring the Oracle GoldenGate Extract process to
extract transaction data.

When Extract is running from a remote system, Oracle GoldenGate automatically enables
cross endian interoperability. This implies that if the endian value where Extract is running is
different from the endian value where the Oracle database is running, then the cross endian
support is automatically enabled. For cross endian Extract to work, the compatibility parameter
of the source database must be 11.2.0.4 or higher.

Add the Primary Extract
The primary Extract writes to a trail. These steps add the primary Extract that captures change
data.

1. If using downstream capture, set the RMAN archive log deletion policy to the following
value in the source database:

CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON ALL STANDBY

This must be done before you add the primary Extract.

2. Run GGSCI.

3. If using integrated capture, issue the DBLOGIN command.

DBLOGIN USERIDALIAS alias

Where: alias specifies the alias of the database login credential that is assigned to
Extract. This credential must exist in the Oracle GoldenGate credential store.

4. Issue the ADD EXTRACT command to add the primary Extract group.

ADD EXTRACT group name
{, TRANLOG | , INTEGRATED TRANLOG}
{, BEGIN {NOW | yyyy-mm-dd[hh:mi:[ss[.cccccc]]]} | SCN value}
[, THREADS n]

Where:

• group name is the name of the Extract group.

• TRANLOG specifies the transaction log as the data source; for classic capture only. See
Example 5-1.

• INTEGRATED TRANLOG specifies that Extract receives logical change records through a
database logmining server; for integrated capture only. See Example 5-2. Before
issuing ADD EXTRACT with this option, make certain you logged in to the database with
the DBLOGIN command and that you registered this Extract with the database. See
Registering Extract with the Mining Database for more information.

• BEGIN specifies to begin capturing data as of a specific time:

– NOW starts at the first record that is time stamped at the same time that ADD
EXTRACT is issued.

– yyyy-mm-dd[hh:mi:[ss[.cccccc]]] starts at an explicit timestamp. Logs from
this timestamp must be available. For Extract in integrated mode, the timestamp

Chapter 5
Configuring Extract

5-5

value must be greater than the timestamp at which the Extract was registered with
the database.

– SCN value starts Extract at the transaction in the redo log that has the specified
Oracle system change number (SCN). For Extract in integrated mode, the SCN
value must be greater than the SCN at which the Extract was registered with the
database. See Registering Extract with the Mining Database for more information.

• THREADS n is required in classic capture mode for Oracle Real Application Cluster
(RAC), to specify the number of redo log threads being used by the cluster. Extract
reads and coordinates each thread to maintain transactional consistency. Not required
for integrated capture.

Note:

Additional options are available. See Reference for Oracle GoldenGate.

Example 5-1 Classic capture with timestamp start point

ADD EXTRACT finance, TRANLOG, BEGIN 2011-01-01 12:00:00.000000

Example 5-2 Integrated capture with timestamp start point

DBLOGIN USERIDALIAS myalias
ADD EXTRACT finance, INTEGRATED TRANLOG, BEGIN NOW

Add the Data Pump Extract Group
These steps add the data pump that reads the local trail and sends the data to the target.

In GGSCI on the source system, issue the ADD EXTRACT command.

ADD EXTRACT group name, EXTTRAILSOURCE trail name

Where:

• group name is the name of the Extract group.

• EXTTRAILSOURCE trail name is the relative or fully qualified name of the local trail.

Example 5-3

ADD EXTRACT financep, EXTTRAILSOURCE c:\ggs\dirdat\lt

Registering Extract with the Mining Database
You need to create a database logmining server to capture redo data when using a
downstream database.

The creation of the logmining server captures a snapshot of the source database in the redo
stream of the source database. In a source multitenant container database, you register
Extract with each of the pluggable databases that you want to include for Extract.

Chapter 5
Configuring Extract

5-6

WARNING:

Make certain that you know the earliest SCN of the log stream at which you want
Extract to begin processing. Extract cannot have a starting SCN value that is lower
than the first SCN that is specified when the underlying database capture process is
created with the REGISTER EXTRACT command. You can use the SCN option

1. Log into the mining database then use the commands appropriate to your environment.
The use of DBLOGIN always refers to the source database.

Command for source database deployment:

DBLOGIN USERIDALIAS ggeast

Command for downstream mining database deployment:

DBLOGIN USERIDALIAS ggwest
MININGDBLOGIN USERIDALIAS dbnorth

Where: alias specifies the alias of the database login credential that is assigned to
Extract. This credential must exist in the Oracle GoldenGate credential store. For more
information, see Establishing Oracle GoldenGate Credentials. For more information about
DBLOGIN and MININGDBLOGIN, see Reference for Oracle GoldenGate.

2. Register the Extract process with the mining database.

REGISTER EXTRACT group DATABASE [CONTAINER (container[, ...])] [SCN
system_change_number]

Where:

• group is the name of the Extract group.

• CONTAINER (container[, ...]) specifies a pluggable database (PDB) within a
multitenant container database, or a list of PDBs separated with commas. The
specified PDBs must exist before the REGISTER command is executed. Extract will
capture only from the PDBs that are listed in this command. For example, the following
command registers PDBs mypdb1 and mypdb4. Changes from any other PDBs in the
multitenant container database are ignored by Oracle GoldenGate.

REGISTER EXTRACT exte DATABASE CONTAINER (pdbeast, pdbwest, dbnorth)

You can add or drop pluggable databases at a later date by stopping Extract, issuing a
DBLOGIN command, and then issuing REGISTER EXTRACT with the {ADD | DROP}
CONTAINER option of DATABASE.

Note:

Adding CONTAINERs at particular SCN on an existing Extract is not supported.

• Registers Extract to begin capture at a specific SCN in the past. Without this option,
capture begins from the time that REGISTER EXTRACT is issued. The specified SCN
must correspond to the begin SCN of a dictionary build operation in a log file. You can
issue the following query to find all valid SCN values:

Chapter 5
Configuring Extract

5-7

SELECT first_change#
 FROM v$archived_log
 WHERE dictionary_begin = 'YES' AND
 STANDBY_DEST = 'NO' AND
 NAME IS NOT NULL AND
 STATUS = 'A';

3. To register additional Extracts with a downstream database for the same source database,
issue this REGISTER command.

If you want to have more than one extract per source database, you can do that using the
SHARE with REGISTER EXTRACT for better performance and metadata management. The
specified SCN must correspond to the SCN where mining should begin in the archive logs.

REGISTER EXTRACT group DATABASE [CONTAINER (container[, ...])]
[SCN system_change_number] SHARE

Note:

The register process may take a few to several minutes to complete, even though the
REGISTER command returns immediately.

Creating an Online Extract Group
To create an online Extract group, run GGSCI on the source system and issue the ADD
EXTRACT command. Separate all command arguments with a comma. There are two syntax
forms:

• Syntax to Create a Regular, Passive, or Data Pump Extract Group

• Syntax to Create an Alias Extract Group

Syntax to Create a Regular, Passive, or Data Pump Extract Group

ADD EXTRACT group
{, datasource}
{, BEGIN start_point} | {position_point}
[, PASSIVE]
[, THREADS n]
[, PARAMS pathname]
[, REPORT pathname]
[, DESC 'description']

Where:

• group is the name of the Extract group. A group name is required.

• datasource is required to specify the source of the data to be extracted. Use one of the
following:

– TRANLOG specifies the transaction log as the data source. When using this option for
Oracle Enterprise Edition, you must issue the DBLOGIN command as the Extract
database user (or a user with the same privileges) before using ADD EXTRACT (and also
before issuing DELETE EXTRACT to remove an Extract group).

Chapter 5
Configuring Extract

5-8

Use the bsds option for DB2 running on z/OS to specify the Bootstrap Data Set file
name of the transaction log.

– INTEGRATED TRANLOG specifies that this Extract will operate in integrated capture mode
to receive logical change records (LCR) from an Oracle Database logmining server.
This parameter applies only to Oracle Databases..

– EXTTRAILSOURCE trail name to specify the relative or fully qualified name of a local
trail. Use to create a data pump. A data pump can be used with any Oracle
GoldenGate extraction method.

• BEGIN start_point defines an online Extract group by establishing an initial checkpoint
and start point for processing. Transactions started before this point are discarded. Use
one of the following:

– NOW to begin extracting changes that are timestamped at the point when the ADD
EXTRACT command is executed to create the group or, for an Oracle Extract in
integrated mode, from the time the group is registered with the REGISTER EXTRACT
command. Do not use NOW for a data pump Extract unless you want to bypass any data
that was captured to the Oracle GoldenGate trail prior to the ADD EXTRACT statement.

YYYY-MM-DD HH:MM[:SS[.CCCCCC]] as the format for specifying an exact timestamp as
the begin point. Use a begin point that is later than the time at which replication or
logging was enabled.

• position_point specifies a specific position within a specific transaction log file at which to
start processing. For the specific syntax to use for your database, see ADD EXTRACT in
Reference for Oracle GoldenGate.

• PASSIVE indicates that the group is a passive Extract. When using PASSIVE, you must also
use an alias Extract. This option can appear in any order among other ADD EXTRACT
options.

• THREADS n is required only if Extract is operating in classic capture mode in an Oracle Real
Application Cluster (RAC). It specifies the number of redo log threads being used by the
cluster.

• PARAMS pathname is required if the parameter file for this group will be stored in a location
other than the dirprm sub-directory of the Oracle GoldenGate directory. Specify the fully
qualified name. The default location is recommended.

• REPORT pathname is required if the process report for this group will be stored in a location
other than the dirrpt sub-directory of the Oracle GoldenGate directory. Specify the fully
qualified name. The default location is recommended.

• DESC 'description' specifies a description of the group.

Syntax to Create an Alias Extract Group

ADD EXTRACT group
, RMTHOST {host | IP address}
, {MGRPORT port} | {PORT port}
[, RMTNAME name]
[, DESC 'description']

Where:

• RMTHOST identifies this group as an alias Extract and specifies either the DNS name of the
remote host or its IP address.

• MGRPORT specifies the port on the remote system where Manager is running. Use this
option when using a dynamic Collector.

Chapter 5
Configuring Extract

5-9

• PORT specifies a static Collector port. Use instead of MGRPORT only if running a static
Collector.

• RMTNAME specifies the passive Extract name, if different from that of the alias Extract.

• DESC 'description' specifies a description of the group.

Example 5-4 Adding an Extract Group for Log-based Capture

This example creates an Extract group named finance. Extraction starts with records
generated at the time when the group was created.

ADD EXTRACT finance, TRANLOG, BEGIN NOW

Example 5-5 Adding a Data-pump Extract Group

This example creates a data-pump Extract group named finance. It reads from the Oracle
GoldenGate trail c:\ggs\dirdat\lt.

ADD EXTRACT finance, EXTTRAILSOURCE c:\ggs\dirdat\lt

Example 5-6 Adding a Passive Extract Group

This example creates a passive Extract group named finance. Extraction starts with records
generated at the time when the group was created. Because this group is marked as passive,
an alias Extract on the target will initiate connections to this Extract.

ADD EXTRACT finance, TRANLOG, BEGIN NOW, PASSIVE

Example 5-7 Adding a Passive Data-pump Extract Group

This example creates a data-pump Extract group named finance. This is a passive data pump
Extract that reads from the Oracle GoldenGate trail c:\ggs\dirdat\lt. Because this data
pump is marked as passive, an alias Extract on the target will initiate connections to it.

ADD EXTRACT finance, EXTTRAILSOURCE c:\ggs\dirdat\lt, PASSIVE

Example 5-8 Adding an Alias Extract Group

This example creates an alias Extract group named alias.
ADD EXTRACT alias, RMTHOST sysA, MGRPORT 7800, RMTNAME finance

Example 5-9 Adding a Primary Extract in Integrated Mode for Oracle

This example creates an Extract in integrated capture mode for an Oracle source database
and sets the start point to the time when the Extract group is registered with the Oracle
database by means of the REGISTER EXTRACT command. Integrated capture is available only
for an Oracle database.

ADD EXTRACT finance INTEGRATED TRANLOG, BEGIN NOW

Configuring the Data Pump Extract
These steps configure the data pump that reads the local trail and sends the data across the
network to a remote trail on the target. The data pump is optional, but recommended.

1. In GGSCI on the source system, create the data-pump parameter file.

EDIT PARAMS name

Where name is the name of the data-pump Extract.

Chapter 5
Configuring the Data Pump Extract

5-10

2. Enter the data-pump Extract parameters in the order shown, starting a new line for each
parameter statement. Your input variables will be different.

Basic parameters for the data-pump Extract group:

EXTRACT extpump
SOURCEDB mypump, USERIDALIAS myalias
RMTHOST fin1, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey2
RMTTRAIL /ggs/dirdat/rt
TABLE hr.*;

Parameter Description

EXTRACT group group is the name of the data pump Extract.

SOURCEDB database,
USERIDALIAS alias

Specifies the real name of the source DB2 LUW database (not an alias), plus the alias of the
database login credential of the user that is assigned to Extract. This credential must exist in
the Oracle GoldenGate credential store.

RMTHOST hostname,
MGRPORT portnumber,
[, ENCRYPT algorithm
KEYNAME keyname]

• RMTHOST specifies the name or IP address of the target system.

• MGRPORT specifies the port number where Manager is running on the target.

• ENCRYPT specifies optional encryption of data across TCP/IP.

RMTTRAIL pathname Specifies the path name of the remote trail.

TABLE schema.object; Specifies a table or sequence, or multiple objects specified with a wildcard. In most cases,
this listing will be the same as that in the primary Extract parameter file.

• TABLE is a required keyword.

• schema is the schema name or a wildcarded set of schemas.

• object is the name of a table or a wildcarded set of tables.

Only the asterisk (*) wildcard is supported for DB2 LUW. The question mark (?) wildcard is
not supported for this database.

Terminate the parameter statement with a semi-colon.

To exclude tables from a wildcard specification, use the TABLEEXCLUDE parameter.

For more information and for additional TABLE options that control data filtering, mapping,
and manipulation, see TABLE | MAP in Reference for Oracle GoldenGate.

3. Enter any optional Extract parameters that are recommended for your configuration. You
can edit this file at any point before starting processing by using the EDIT PARAMS
command in GGSCI.

4. Save and close the file.

Configuring a Downstream Mining Database
Learn the details for preparing a downstream Oracle mining database to support Extract.
For examples of the downstream mining configuration, see the following:

Example 1: Capturing from One Source Database in Real-time Mode.

Example 2: Capturing from Multiple Sources in Archive-log-only Mode

Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

Chapter 5
Configuring a Downstream Mining Database

5-11

Evaluating Capture Options for a Downstream Deployment
Downstream deployment allows you to offload the source database.

A downstream mining database can accept both archived logs and online redo logs from a
source database.

Multiple source databases can send their redo data to a single downstream database; however
the downstream mining database can accept online redo logs from only one of those source
databases. The rest of the source databases must ship archived logs.

When online logs are shipped to the downstream database, real-time capture by Extract is
possible. Changes are captured as though Extract is reading from the source logs. In order to
accept online redo logs from a source database, the downstream mining database must have
standby redo logs configured.

When using a downstream mining configuration, the source database and mining database
must be the same endian and same bitsize, which is 64 bits. For example, if the source
database was on Linux 64-bit, you can have the mining database run on Windows 64-bit,
because they have the same endian and bitsize.

Preparing the Source Database for Downstream Deployment
The source database ships its redo logs to a downstream database, and Extract uses the
logmining server at the downstream database to mine the redo logs.

This section guides you in the process of:

Creating the Source User Account
There must be an Extract user on the source database. Extract uses the credentials of this
user to do metadata queries and to fetch column values as needed from the source database.

The source user is specified by the USERIDALIAS parameter.

To assign the required privileges, follow the procedure in Establishing Oracle GoldenGate
Credentials

Configuring Redo Transport from Source to Downstream Mining Database
To set up the transfer of redo log files from a source database to the downstream mining
database, and to prepare the downstream mining database to accept these redo log files,
perform the steps given in this topic.

The following summarizes the rules for supporting multiple sources sending redo to a single
downstream mining database:

• Only one source database can be configured to send online redo to the standby redo logs
at the downstream mining database. The log_archive_dest_n setting for this source
database should not have a TEMPLATE clause.

• Source databases that are not sending online redo to the standby redo logs of the
downstream mining database must have a TEMPLATE clause specified in the
log_archive_dest_n parameter.

Chapter 5
Configuring a Downstream Mining Database

5-12

• Each of the source databases that sends redo to the downstream mining database must
have a unique DBID. You can select the DBID column from the v$database view of these
source databases to ensure that the DBIDs are unique.

• The FAL_SERVER value must be set to the downstream mining database. FAL_SERVER
specifies the FAL (fetch archive log) server for a standby database. The value is a list of
Oracle Net service names, which are assumed to be configured properly on the standby
database system to point to the desired FAL servers. The list contains the net service
name of any database that can potentially ship redo to the downstream database.

• When using redo transport, there could be a delay in processing redo due to network
latency. For Extract, this latency is monitored by measuring the delay between LCRs
received from source database and reporting it. If the latency exceeds a threshold, a
warning message appears in the report file and a subsequent information message
appears when the lag drops to normal values. The default value for the threshold is 10
seconds.

Note:

The archived logs shipped from the source databases are called foreign archived
logs. From Oracle Database 12.2.0.1 onward, the archived logs sent to downstream
are purged automatically in downstream database as long as it is stored on Flash
Recovery Area (FRA).

These instructions take into account the requirements to ship redo from multiple sources, if
required. You must configure an Extract process for each of those sources.

To Configure Redo Transport

1. Configure Oracle Net so that each source database can communicate with the mining
database. For instructions, see Oracle Database Net Services Administrator's Guide.

2. Configure authentication at each source database and at the downstream mining database
to support the transfer of redo data. Redo transport sessions are authenticated using either
the Secure Sockets Layer (SSL) protocol or a remote login password file. If a source
database has a remote login password file, copy it to the appropriate directory of the
mining database system. The password file must be the same at all source databases, and
at the mining database. For more information about authentication requirements for redo
transport, see Preparing the Primary Database for Standby Database Creation in Oracle
Data Guard Concepts and Administration.

3. At each source database, configure one LOG_ARCHIVE_DEST_n initialization parameter to
transmit redo data to the downstream mining database. Set the attributes of this parameter
as shown in one of the following examples, depending on whether real-time or archived-
log-only capture mode is to be used.

• Example for real-time capture at the downstream logmining server, where the source
database sends its online redo logs to the downstream database:

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap'

• Example for archived-log-only capture at the downstream logmining server:

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_2='SERVICE=DMBSCAP.EXAMPLE.COM ASYNC NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)

Chapter 5
Configuring a Downstream Mining Database

5-13

TEMPLATE=/usr/oracle/log_for_dbms1/dbms1_arch_%t_%s_%r.log
DB_UNIQUE_NAME=dbmscap'

Note:

When using an archived-log-only downstream mining database, you must specify
a value for the TEMPLATE attribute. Oracle also recommends that you use the
TEMPLATE clause in the source databases so that the log files from all remote
source databases are kept separated from the local database log files, and from
each other.

4. At the source database, set a value of ENABLE for the LOG_ARCHIVE_DEST_STATE_n
initialization parameter that corresponds with the LOG_ARCHIVE_DEST_n parameter that
corresponds to the destination for the downstream mining database, as shown in the
following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE
5. At the source database, and at the downstream mining database, set the DG_CONFIG

attribute of the LOG_ARCHIVE_CONFIG initialization parameter to include the DB_UNIQUE_NAME
of the source database and the downstream database, as shown in the following example.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)'

Preparing the Downstream Mining Database
A downstream mining database can accept both archived logs and online redo logs from a
source database.

The following sections explain how to prepare the downstream mining database:

Creating the Downstream Mining User Account
When using a downstream mining configuration, there must be an Extract mining user on the
downstream database. The mining Extract process uses the credentials of this user to interact
with the downstream logmining server. The downstream mining user is specified by the
TRANLOGOPTIONS parameter with the MININGUSERALIAS option. See Establishing Oracle
GoldenGate Credentials to assign the correct credentials for the version of your database.

Configuring the Mining Database to Archive Local Redo Log Files
This procedure configures the downstream mining database to archive redo data in its online
redo logs. These are redo logs that are generated at the downstream mining database.

Archiving must be enabled at the downstream mining database if you want to run Extract in
real-time integrated capture mode, but it is also recommended for archive-log-only capture.
Extract in integrated capture mode writes state information in the database. Archiving and
regular backups will enable you to recover this state information in case there are disk failures
or corruption at the downstream mining database.

Chapter 5
Configuring a Downstream Mining Database

5-14

To Archive Local Redo Log Files

1. Alter the downstream mining database to be in archive log mode. You can do this by
issuing the following DDL.

STARTUP MOUNT;
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

2. At the downstream mining database, set the first archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example:

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE,PRIMARY_ROLE)'

Alternatively, you can use a command like this example:

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION='USE_DB_RECOVERY_FILE_DEST'
valid_for=(ONLINE_LOGFILE,PRIMARY_ROLE)'

Note:

The online redo logs generated by the downstream mining database can be
archived to a recovery area. However, you must not use the recovery area of the
downstream mining database to stage foreign archived logs or to archive standby
redo logs. For information about configuring a fast recovery area, see the Oracle
Database Backup and Recovery User’s Guide.

3. Enable the local archive destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

For more information about these initialization parameters, see Set Primary Database
Initialization Parameters in the Oracle Data Guard Concepts and Administration guide.

Preparing a Downstream Mining Database for Real-time Capture
This procedure is only required if you want to use real-time capture at a downstream mining
database. It is not required to use archived-log-only capture mode. To use real-time capture, it
is assumed that the downstream database has already been configured to archive its local
redo data as shown in Configuring the Mining Database to Archive Local Redo Log Files .

Create the Standby Redo Log Files
The following steps outline the procedure for adding standby redo log files to the downstream
mining database. The following summarizes the rules for creating the standby redo logs:

• Each standby redo log file must be at least as large as the largest redo log file of the redo
source database. For administrative ease, Oracle recommends that all redo log files at

Chapter 5
Configuring a Downstream Mining Database

5-15

source database and the standby redo log files at the downstream mining database be of
the same size.

• The standby redo log must have at least one more redo log group than the redo log at the
source database, for each redo thread at the source database.

The specific steps and SQL statements that are required to add standby redo log files depend
on your environment. See Creating a Physical Standby Database for detailed instructions
about adding standby redo log files to a database.

Note:

If there will be multiple source databases sending redo to a single downstream
mining database, only one of those sources can send redo to the standby redo logs
of the mining database. An Extract process that mines the redo from this source
database can run in real-time mode. All other source databases must send only their
archived logs to the downstream mining database, and the Extracts that read this
data must be configured to run in archived-log-only mode.

To Create the Standby Redo Log Files

1. In SQL*Plus, connect to the source database as an administrative user.

2. Determine the size of the source log file. Make note of the results.

SELECT BYTES FROM V$LOG;

3. Determine the number of online log file groups that are configured on the source database.
Make note of the results.

SELECT COUNT(GROUP#) FROM V$LOG;

4. Connect to the downstream mining database as an administrative user.

5. Add the standby log file groups to the mining database. The standby log file size must be
at least the size of the source log file size. The number of standby log file groups must be
at least one more than the number of source online log file groups. This applies to each
instance (thread) in a RAC installation. So if you have n threads at the source database,
each having m redo log groups, you should configure n*(m+1) redo log groups at the
downstream mining database.

The following example shows three standby log groups.

ALTER DATABASE ADD STANDBY LOGFILE GROUP 3
('/oracle/dbs/slog3a.rdo', '/oracle/dbs/slog3b.rdo') SIZE 500M;
ALTER DATABASE ADD STANDBY LOGFILE GROUP 4
('/oracle/dbs/slog4.rdo', '/oracle/dbs/slog4b.rdo') SIZE 500M;
ALTER DATABASE ADD STANDBY LOGFILE GROUP 5
('/oracle/dbs/slog5.rdo', '/oracle/dbs/slog5b.rdo') SIZE 500M;

6. Confirm that the standby log file groups were added successfully.

SELECT GROUP#, THREAD#, SEQUENCE#, ARCHIVED, STATUS
FROM V$STANDBY_LOG;

Chapter 5
Configuring a Downstream Mining Database

5-16

https://docs.oracle.com/en/database/oracle/oracle-database/23/sbydb/creating-oracle-data-guard-physical-standby.html?source=%3Ase%3Alw%3Aie%3Apt%3A%3A%3ASEO400229851+%3Aow%3Aevp%3Acpo%3A%3A%3A%3ARC_WWMK220222P00068%3AOER400222946Enterprisebyrelease

The output should be similar to the following:

GROUP# THREAD# SEQUENCE# ARC STATUS
---------- ---------- ---------- --- ----------
 3 0 0 YES UNASSIGNED
 4 0 0 YES UNASSIGNED
 5 0 0 YES UNASSIGNED

7. Ensure that log files from the source database are appearing in the location that is
specified in the LOCATION attribute of the local LOG_ARCHIVE_DEST_n that you set. You might
need to switch the log file at the source database to see files in the directory.

Configure the Database to Archive Standby Redo Log Files Locally
This procedure configures the downstream mining database to archive the standby redo logs
that receive redo data from the online redo logs of the source database. Keep in mind that
foreign archived logs should not be archived in the recovery area of the downstream mining
database.

To Archive Standby Redo Logs Locally

1. At the downstream mining database, set the second archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbms1
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

Oracle recommends that foreign archived logs (logs from remote source databases) be
kept separate from local mining database log files, and from each other. You must not use
the recovery area of the downstream mining database to stage foreign archived logs..

2. Enable the LOG_ARCHIVE_DEST_2 parameter you set in the previous step as shown in the
following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE

Example Downstream Mining Configuration
This section contains examples for preparing a downstream Oracle mining database to support
Extract.

Example 1: Capturing from One Source Database in Real-time Mode
This example captures changes from source database DBMS1 by deploying an Extract at a
downstream mining database DBMSCAP.

Note:

The example assumes that you created the necessary standby redo log files as
shown in Preparing the Downstream Mining Database.

This assumes that the following users exist:

Chapter 5
Configuring a Downstream Mining Database

5-17

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and metadata
from DBMS1. This user has the alias of ggadm1 in the Oracle GoldenGate credential store
and logs in as ggadm1@dbms1. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the source database.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve logical
change records from the logmining server at the downstream mining database DBMSCAP.
This user has the alias of ggadmcap in the Oracle GoldenGate credential store and logs in
as ggadmcap@dbmscap. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the mining database.

Prepare the Mining Database to Archive its Local Redo
To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this by issuing
the following DDL.

 STARTUP MOUNT;
 ALTER DATABASE ARCHIVELOG;
 ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local redo.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Prepare the Mining Database to Archive Redo Received in Standby Redo Logs from the Source
Database

To prepare the mining database to archive the redo received in standby redo logs from the
source database:

1. At the downstream mining database, set log_archive_dest_2 as shown in the following
example.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbms1
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

2. Enable log_archive_dest_2 as shown in the following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE
3. Set DG_CONFIG at the downstream mining database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)'

Prepare the Source Database to Send Redo to the Mining Database
To prepare the source database to send redo to the mining database:

1. Make sure that the source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

Chapter 5
Configuring a Downstream Mining Database

5-18

NAME VALUE
--------- ---------------------
compatible 11.1.0.7.0

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at the source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)';
3. Set up redo transport at the source database.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Set up Extract (ext1) on DBMSCAP
To set up Extract (ext1) on DBMSCAP:

1. Register Extract with the downstream mining database. In the credential store, the alias
name of ggadm1 is linked to a user connect string of ggadm1@dbms1. The alias name of
ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

GGSCI> DBLOGIN USERIDALIAS ggadm1
GGSCI> MININGDBLOGIN USERIDALIAS ggadmcap
GGSCI> REGISTER EXTRACT ext1 DATABASE

2. Create Extract at the downstream mining database.

GGSCI> ADD EXTRACT ext1 INTEGRATED TRANLOG BEGIN NOW
3. Edit Extract parameter file ext1.prm. The following lines must be present to take

advantage of real-time capture. In the credential store, the alias name of ggadm1 is linked
to a user connect string of ggadm1@dbms1. The alias name of ggadmcap is linked to a user
connect string of ggadmcap@dbmscap.

USERIDALIAS ggadm1
TRANLOGOPTIONS MININGUSERALIAS ggadmcap
TRANLOGOPTIONS INTEGRATEDPARAMS (downstream_real_time_mine Y)

4. Start Extract.

GGSCI> START EXTRACT ext1

Note:

You can create multiple Extracts running in real-time Extract mode in the downstream
mining database, as long as they all are capturing data from the same source
database, such as capturing changes for database DBMS1 in the preceding
example.

Chapter 5
Configuring a Downstream Mining Database

5-19

Example 2: Capturing from Multiple Sources in Archive-log-only Mode
The following example captures changes from database DBMS1 and DBMS2 by deploying an
Extract at a downstream mining database DBMSCAP.

It assumes the following users:

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and metadata
from DBMS1. It is assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE()
procedure was called to grant appropriate privileges to this user at DBMS1.

• User GGADM2 in DBMS2 whose credentials Extract will use to fetch data and metadata
from DBMS2. It is assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE()
procedure was called to grant appropriate privileges to this user at DBMS2.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve logical
change records from the logmining server at the downstream mining database. It is
assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was
called to grant appropriate privileges to this user at the downstream mining database
DBMSCAP.

This procedure also assumes that the downstream mining database is configured in archive
log mode.

Prepare the Mining Database to Archive its Local Redo
To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this by issuing
the following DDL.

 STARTUP MOUNT;
 ALTER DATABASE ARCHIVELOG;
 ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local redo.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Prepare the Mining Database to Archive Redo from the Source Database
Set DG_CONFIG at the downstream mining database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbms2, dbmscap)'

Prepare the First Source Database to Send Redo to the Mining Database
To prepare the first source database to send redo to the mining database:

1. Make certain that DBMS1 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

NAME VALUE

Chapter 5
Configuring a Downstream Mining Database

5-20

--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS1 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbmscap)';
3. Set up redo transport at DBMS1 source database. The TEMPLATE clause is mandatory if

you want to send redo data directly to foreign archived logs at the downstream mining
database.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
TEMPLATE='/usr/orcl/arc_dest/dbms1/dbms1_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Prepare the Second Source Database to Send Redo to the Mining Database
To prepare the second source database to send redo to the mining database:

1. Make sure that DBMS2 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

NAME VALUE
--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS2 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms2, dbmscap)';
3. Set up redo transport at DBMS2 source database. The TEMPLATE clause is mandatory if

you want to send redo data directly to foreign archived logs at the downstream mining
database.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
TEMPLATE='/usr/orcl/arc_dest/dbms2/dbms2_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Set up Extracts at Downstream Mining Database
These steps set up Extract at the downstream database to capture from the archived logs sent
by DBMS1 and DBMS2.

Chapter 5
Configuring a Downstream Mining Database

5-21

Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-
only Mode

The following example captures changes from database DBMS1, DBMS2 and DBMS3 by
deploying an Extract at a downstream mining database DBMSCAP.

Note:

This example assumes that you created the necessary standby redo log files as
shown in Preparing the Downstream Mining Database.

It assumes the following users:

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and metadata
from DBMS1. It is assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE()
procedure was called to grant appropriate privileges to this user at DBMS1.

• User GGADM2 in DBMS2 whose credentials Extract will use to fetch data and metadata
from DBMS2. It is assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE()
procedure was called to grant appropriate privileges to this user at DBMS2.

• User GGADM3 in DBMS3 whose credentials Extract will use to fetch data and metadata
from DBMS3. It is assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE()
procedure was called to grant appropriate privileges to this user at DBMS3.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve logical
change records from the logmining server at the downstream mining database. It is
assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was
called to grant appropriate privileges to this user at the downstream mining database
DBMSCAP.

This procedure also assumes that the downstream mining database is configured in archive
log mode.

In this example, the redo sent by DBMS3 will be mined in real time mode, whereas the redo
data sent from DBMS1 and DBMS2 will be mined in archive-log-only mode.

Prepare the Mining Database to Archive its Local Redo
To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this by issuing
the following DDL.

STARTUP MOUNT;
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local redo.

ALTER SYSTEM SETLOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/
localVALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Chapter 5
Configuring a Downstream Mining Database

5-22

Prepare the Mining Database to Accept Redo from the Source Databases
Because redo data is being accepted in the standby redo logs of the downstream mining
database, the appropriate number of correctly sized standby redo logs must exist. If you did
not configure the standby logs, see Configuring a Downstream Mining Database .

1. At the downstream mining database, set the second archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example. This is
needed to handle archive standby redo logs.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbms3
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

2. Enable the LOG_ARCHIVE_DEST_STATE_2 initialization parameter that corresponds with the
LOG_ARCHIVE_DEST_2 parameter as shown in the following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE
3. Set DG_CONFIG at the downstream mining database to accept redo data from all of the

source databases.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbms2, dbms3, dbmscap)'

Prepare the First Source Database to Send Redo to the Mining Database
To prepare the first source database to send redo to the mining database:

1. Make certain that DBMS1 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

NAME VALUE
--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS1 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbmscap)';
3. Set up redo transport at DBMS1 source database. The TEMPLATE clause is mandatory if

you want to send redo data directly to foreign archived logs at the downstream mining
database.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
TEMPLATE='/usr/orcl/arc_dest/dbms1/dbms1_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Prepare the Second Source Database to Send Redo to the Mining Database
To prepare the second source database to send redo to the mining database:

1. Make sure that DBMS2 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

Chapter 5
Configuring a Downstream Mining Database

5-23

NAME VALUE
--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS2 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms2, dbmscap)';
3. Set up redo transport at DBMS2 source database. The TEMPLATE clause is mandatory if

you want to send redo data directly to foreign archived logs at the downstream mining
database.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
TEMPLATE='/usr/orcl/arc_dest/dbms2/dbms2_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Prepare the Third Source Database to Send Redo to the Mining Database
To prepare the third source database to send redo to the mining database:

1. Make sure that DBMS3 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

NAME VALUE
--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS3 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms3, dbmscap)';
3. Set up redo transport at DBMS3 source database. Because DBMS3 is the source that will

send its online redo logs to the standby redo logs at the downstream mining database, do
not specify a TEMPLATE clause.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Set up Extracts at Downstream Mining Database
These steps set up Extract at the downstream database to capture from the archived logs sent
by DBMS1 and DBMS2.

Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1

Perform the following steps on the DBMSCAP downstream mining database.

Chapter 5
Configuring a Downstream Mining Database

5-24

1. Register Extract with DBMSCAP for the DBMS1 source database. In the credential store,
the alias name of ggadm1 is linked to a user connect string of ggadm1@dbms1.The alias name
of ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

GGSCI> DBLOGIN USERIDALIAS ggadm1
GGSCI> MININGDBLOGIN USERIDALIAS ggadmcap
GGSCI> REGISTER EXTRACT ext1 DATABASE

2. Add Extract at the mining database DBMSCAP.

GGSCI> ADD EXTRACT ext1 INTEGRATED TRANLOG BEGIN NOW
3. Edit the Extract parameter file ext1.prm. In the credential store, the alias name of ggadm1

is linked to a user connect string of ggadm1@dbms1. The alias name of ggadmcap is linked to
a user connect string of ggadmcap@dbmscap.

USERIDALIAS ggadm1
TRANLOGOPTIONS MININGUSERALIAS ggadmcap
TRANLOGOPTIONS INTEGRATEDPARAMS (downstream_real_time_mine N)

4. Start Extract.

GGSCI> START EXTRACT ext1

Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2

Perform the following steps on the DBMSCAP downstream mining database.

1. Register Extract with the mining database for source database DBMS2. In the credential
store, the alias name of ggadm2 is linked to a user connect string of ggadm2@dbms2.The alias
name of ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

GGSCI> DBLOGIN USERIDALIAS ggadm2
GGSCI> MININGDBLOGIN USERIDALIAS ggadmcap
GGSCI> REGISTER EXTRACT ext2 DATABASE

2. Create Extract at the mining database.

GGSCI> ADD EXTRACT ext2 INTEGRATED TRANLOG, BEGIN NOW
3. Edit the Extract parameter file ext2.prm. In the credential store, the alias name of ggadm2

is linked to a user connect string of ggadm2@dbms2.The alias name of ggadmcap is linked to
a user connect string of ggadmcap@dbmscap.

USERIDALIAS ggadm2
TRANLOGOPTIONS MININGUSERALIAS ggadmcap
TRANLOGOPTIONS INTEGRATEDPARAMS (downstream_real_time_mine N)

4. Start Extract.

GGSCI> START EXTRACT ext2

Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs
Sent by DBMS3

Perform the following steps on the DBMSCAP downstream mining database.

Chapter 5
Configuring a Downstream Mining Database

5-25

1. Register Extract with the mining database for source database DBMS3. In the credential
store, the alias name of ggadm3 is linked to a user connect string of ggadm3@dbms3.The alias
name of ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

GGSCI> DBLOGIN USERID ggadm3
GGSCI> MININGDBLOGIN USERID ggadmcap
GGSCI> REGISTER EXTRACT ext3 DATABASE

2. Create Extract at the mining database.

GGSCI> ADD EXTRACT ext3 INTEGRATED TRANLOG, BEGIN NOW

3. Edit the Extract parameter file ext3.prm. To enable real-time mining, you must specify
downstream_real_time_mine. In the credential store, the alias name of ggadm3 is linked to
a user connect string of ggadm3@dbms3.The alias name of ggadmcap is linked to a user
connect string of ggadmcap@dbmscap.

USERIDALIAS ggadm3
TRANLOGOPTIONS MININGUSERALIAS ggadmcap
TRANLOGOPTIONS INTEGRATEDPARAMS (downstream_real_time_mine Y)

4. Start Extract.

GGSCI> START EXTRACT ext3

Note:

You can create multiple Extracts running in real-time integrated capture mode in the
downstream mining database, as long as they all are capturing data from the same
source database, such as all capturing for database DBMS3 in the preceding
example.

Positioning Extract to a Specific Start Point for MySQL
You can position the Extract to a specific start point in the transaction logs using the ADD/ALTER
EXTRACT commands:

{ADD | ALTER EXTRACT} group, LOGNUM log_num, LOGPOS log_pos
• group is the name of the Oracle GoldenGate Extract group for which the start position is

required.

• LOGNUM is the log file number. For example, if the required log file name is test.000034, the
LOGNUM value is 34. Extract will search for this log file.

• LOGPOS is an event offset value within the log file that identifies a specific transaction
record. Event offset values are stored in the header section of a log record. To position at
the beginning of a binlog file, set the LOGPOS as 0.

In MySQL logs, an event offset value can be unique only within a given binary file. The
combination of the position value and a log number will uniquely identify a transaction record.
Maximum Log number length is 8 bytes unsigned integer and Maximum Log offset length is 8
bytes unsigned integer. Log number and Log offset are separated by a pipe (‘|’) delimiter.

Chapter 5
Positioning Extract to a Specific Start Point for MySQL

5-26

Transactional records available after this position within the specified log will be captured by
Extract. In addition, you can position an Extract using a timestamp.

Additional Parameter Options for Extract
This section contains additional parameters that may be required for your Extract configuration.

Extract uses a database logmining server in the mining database to mine the redo stream of
the source database. You can set parameters that are specific to the logmining server by using
the TRANLOGOPTIONS parameter with the INTEGRATEDPARAMS option in the Extract parameter file.

Note:

For detailed information and usage guidance for these parameters, see the
"DBMS_CAPTURE_ADM" section in PL/SQL Packages and Types Reference.

The following parameters can be set with INTEGRATEDPARAMS:

• CAPTURE_IDKEY_OBJECTS: Controls the capture of objects that can be supported by FETCH.
The default for Oracle GoldenGate is Y (capture ID key logical change records).

• DOWNSTREAM_REAL_TIME_MINE: Controls whether the logmining server operates as a real-
time downstream capture process or as an archived-log downstream capture process. The
default is N (archived-log mode). Specify this parameter to use real-time capture in a
downstream logmining server configuration. For more information on establishing a
downstream mining configuration, see Configuring a Downstream Mining Database .

• INLINE_LOB_OPTIMIZATION: Controls whether LOBs that can be processed inline (such as
small LOBs) are included in the LCR directly, rather than sending LOB chunk LCRs. The
default for Oracle GoldenGate is Y (Yes).

• MAX_SGA_SIZE: Controls the amount of shared memory used by the logmining server. The
shared memory is obtained from the streams pool of the SGA. The default is 1 GB.

• PARALLELISM: Controls the number of processes used by the logmining server. The default
is 2. For Oracle Standard Edition, this must be set to 1.

• TRACE_LEVEL: Controls the level of tracing for the Extract logmining server. For use only
with guidance from Oracle Support. The default for Oracle GoldenGate is 0 (no tracing).

• WRITE_ALERT_LOG: Controls whether the Extract logmining server writes messages to the
Oracle alert log. The default for Oracle GoldenGate is Y (Yes).

See Managing Server Resources.

Additional Configuration Steps for Using Classic Capture
This chapter contains additional configuration and preparation requirements that are specific
only to Extract when operating in classic capture mode.

Chapter 5
Additional Parameter Options for Extract

5-27

https://docs.oracle.com/en/database/oracle/oracle-database/19/arpls/index.html

Configuring Oracle TDE Data in Classic Capture Mode
This section does not apply to Extract in integrated capture mode.

The following special configuration steps are required to support TDE when Extract is in classic
capture mode.

Note:

When in integrated mode, Extract leverages the database logging server and
supports TDE column encryption and TDE tablespace encryption without special
setup requirements or parameter settings. For more information about integrated
capture, see Using Different Replicat Modes.

Overview of TDE Support in Classic Capture Mode
TDE support when Extract is in classic capture mode requires the exchange of two kinds of
keys:

• The encrypted key can be a table key (column-level encryption), an encrypted redo log key
(tablespace-level encryption), or both. This key is shared between the Oracle Database
and Extract.

• The decryption key is named ORACLEGG and its password is known as the shared secret.
This key is stored securely in the Oracle and Oracle GoldenGate domains. Only a party
that has possession of the shared secret can decrypt the table and redo log keys.

The encrypted keys are delivered to the Extract process by means of built-in PL/SQL code.
Extract uses the shared secret to decrypt the data. Extract never handles the wallet master key
itself, nor is it aware of the master key password. Those remain within the Oracle Database
security framework.

Extract never writes the decrypted data to any file other than a trail file, not even a discard file
(specified with the DISCARDFILE parameter). The word "ENCRYPTED" will be written to any
discard file that is in use.

The impact of this feature on Oracle GoldenGate performance should mirror that of the impact
of decryption on database performance. Other than a slight increase in Extract startup time,
there should be a minimal affect on performance from replicating TDE data.

Requirements for Capturing TDE in Classic Capture Mode
The following are requirements for Extract to support TDE capture:

• To maintain high security standards, the Oracle GoldenGate Extract process should run as
part of the oracle user (the user that runs the Oracle Database). That way, the keys are
protected in memory by the same privileges as the oracle user.

• The Extract process must run on the same machine as the database installation.

• Even if using TDE with a Hardware Security Module, you must use a software wallet.
Instructions are provided in Oracle Security Officer Tasks in the configuration steps for
moving from an HSM-only to an HSM-plus-wallet configuration and configuring the
sqlnet.ora file correctly.

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-28

• Whenever the source database is upgraded, you must rekey the master key.

Configuring Classic Capture for TDE Support
The following outlines the steps that the Oracle Security Officer and the Oracle GoldenGate
Administrator take to establish communication between the Oracle server and the Extract
process.

Agree on a Shared Secret that Meets Oracle Standards
Agree on a shared secret password that meets or exceeds Oracle password standards. This
password must not be known by anyone else. For guidelines on creating secure passwords,
see Oracle Database Security Guide.

Oracle DBA Tasks
1. Log in to SQL*Plus as a user with the SYSDBA system privilege. For example:

sqlplus sys/as sysdba
Connected.
Enter password: password

2. Run the prvtclkm.plb file that is installed in the Oracle admin directory. The prvtclkm.plb
file creates the DBMS_INTERNAL_CLKM PL/SQL package, which enables Oracle GoldenGate
to extract encrypted data from an Oracle Database.

@?/app/oracle/product/orcl111/rdbms/admin/prvtclkm.plb
3. Grant EXEC privilege on DBMS_INTERNAL_CLKM PL/SQL package to the Extract database

user.

GRANT EXECUTE ON DBMS_INTERNAL_CLKM TO psmith;
4. Exit SQL*Plus.

Oracle Security Officer Tasks
1. Oracle GoldenGate requires the use of a software wallet even with HSM. If you are

currently using HSM-only mode, move to HSM-plus-wallet mode by taking the following
steps:

a. Change the sqlnet.ora file configuration as shown in the following example, where
the wallet directory can be any location on disk that is accessible (rwx) by the owner of
the Oracle Database. This example shows a best-practice location, where my_db is
the $ORACLE_SID.

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=(METHOD=HSM)(METHOD_DATA=
 (DIRECTORY=/etc/oracle/wallets/my_db)))

b. Log in to orapki (or Wallet Manager) as the owner of the Oracle Database, and create
an auto-login wallet in the location that you specified in the sqlnet.ora file. When
prompted for the wallet password, specify the same password as the HSM password
(or HSM Connect String). These two passwords must be identical.

cd /etc/oracle/wallets/my_db
orapki wallet create -wallet . -auto_login[_local]

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-29

Note:

The Oracle Database owner must have full operating system privileges on
the wallet.

c. Add the following entry to the empty wallet to enable an 'auto-open' HSM:

mkstore -wrl . -createEntry ORACLE.TDE.HSM.AUTOLOGIN non-empty-string
2. Create an entry named ORACLEGG in the wallet. ORACLEGG must be the name of this key.

The password for this key must be the agreed-upon shared secret, but do not enter this
password on the command line. Instead, wait to be prompted.

mkstore -wrl ./ -createEntry ORACLE.SECURITY.CL.ENCRYPTION.ORACLEGG
Oracle Secret Store Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
Your secret/Password is missing in the command line
Enter your secret/Password: sharedsecret
Re-enter your secret/Password: sharedsecret
Enter wallet password: hsm/wallet_password

3. Verify the ORACLEGG entry.

mkstore -wrl . -list
Oracle Secret Store Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
Enter wallet password: hsm/wallet_password
Oracle Secret Store entries:
ORACLE.SECURITY.CL.ENCRYPTION.ORACLEGG

4. Log in to SQL*Plus as a user with the SYSDBA system privilege.

5. Close and then re-open the wallet.

SQL> alter system set encryption wallet close identified by "hsm/wallet_password";
System altered.
SQL> alter system set encryption wallet open identified by "hsm/wallet_password";
System altered.

This inserts the password into the auto-open wallet, so that no password is required to
access encrypted data with the TDE master encryption key stored in HSM.

6. Switch log files.

alter system switch logfile;
System altered.

7. If this is an Oracle RAC environment and you are using copies of the wallet on each node,
make the copies now and then reopen each wallet.

Note:

Oracle recommends using one wallet in a shared location, with synchronized access
among all Oracle RAC nodes.

Oracle GoldenGate Administrator Tasks
1. Run GGSCI.

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-30

2. Issue the ENCRYPT PASSWORD command to encrypt the shared secret so that it is obfuscated
within the Extract parameter file. This is a security requirement.

ENCRYPT PASSWORD sharedsecret {AES128 | AES192 | AES256} ENCRYPTKEY keyname

Where:

• sharedsecret is the clear-text shared secret. This value is case-sensitive.

• {AES128 | AES192 | AES256} specifies Advanced Encryption Standard (AES)
encryption. Specify one of the values, which represents the desired key length.

• keyname is the logical name of the encryption key in the ENCKEYS lookup file. Oracle
GoldenGate uses this key to look up the actual key in the ENCKEYS file. To create a key
and ENCKEYS file, see Administering Oracle GoldenGate.

Example:

ENCRYPT PASSWORD sharedsecret AES256 ENCRYPTKEY mykey1
3. In the Extract parameter file, use the DBOPTIONS parameter with the DECRYPTPASSWORD

option. As input, supply the encrypted shared secret and the decryption key.

DBOPTIONS DECRYPTPASSWORD sharedsecret {AES128 | AES192 | AES256} ENCRYPTKEY
keyname

Where:

• sharedsecret is the encrypted shared secret.

• {AES128 | AES192 | AES256} must be same value that was used for ENCRYPT
PASSWORD.

• keyname is the logical name of the encryption key in the ENCKEYS lookup file.

Example:

DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAAIALCKDZIRHOJBHOJUH AES256 ENCRYPTKEY
mykey1

4. Log in to SQL*Plus as a user with the SYSDBA system privilege.

5. Close and then re-open the wallet.

SQL> alter system set encryption wallet close identified by "hsm/wallet_password";
System altered.
SQL> alter system set encryption wallet open identified by "hsm/wallet_password";
System altered.

Recommendations for Maintaining Data Security after Decryption
Extract decrypts the TDE data and writes it to the trail as clear text. To maintain data security
throughout the path to the target database, it is recommended that you also deploy Oracle
GoldenGate security features to:

• encrypt the data in the trails

• encrypt the data in transit across TCP/IP

See ENCRYPTTRAIL | NOENCRYPTTRAIL commands in Reference for Oracle GoldenGate.

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-31

Performing DDL while TDE Capture is Active
If DDL will ever be performed on a table that has column-level encryption, or if table keys will
ever be re-keyed, you must either quiesce the table while the DDL is performed or enable
Oracle GoldenGate DDL support. It is more practical to have the DDL environment active so
that it is ready, because a re-key usually is a response to a security violation and must be
performed immediately. To install the Oracle GoldenGate DDL environment, see Installing
Trigger-Based DDL Capture. To configure Oracle GoldenGate DDL support, see Configuring
DDL Support . For tablespace-level encryption, the Oracle GoldenGate DDL support is not
required.

Rekeying after a Database Upgrade
Whenever the source database is upgraded and Oracle GoldenGate is capturing TDE data,
you must rekey the master key, and then restart the database and Extract. The commands to
rekey the master key are:

alter system set encryption key identified by "mykey";

Updating the Oracle Shared Secret in the Parameter File
Use this procedure to update and encrypt the TDE shared secret within the Extract parameter
file.

1. Run GGSCI.

2. Stop the Extract process.

STOP EXTRACT group
3. Modify the ORACLEGG entry in the Oracle wallet. ORACLEGG must remain the name of the key.

For instructions, see Oracle Database Advanced Security Guide.

4. Issue the ENCRYPT PASSWORD command to encrypt the new shared secret.

ENCRYPT PASSWORD sharedsecret {AES128 | AES192 | AES256} ENCRYPTKEY keyname

Where:

• sharedsecret is the clear-text shared secret. This value is case-sensitive.

• {AES128 | AES192 | AES256} specifies Advanced Encryption Standard (AES)
encryption. Specify one of the values, which represents the desired key length.

• keyname is the logical name of the encryption key in the ENCKEYS lookup file.

Example:

ENCRYPT PASSWORD sharedsecret AES256 ENCRYPTKEY mykey1
5. In the Extract parameter file, use the DBOPTIONS parameter with the DECRYPTPASSWORD

option. As input, supply the encrypted shared secret and the Oracle GoldenGate-
generated or user-defined decryption key.

DBOPTIONS DECRYPTPASSWORD sharedsecret {AES128 | AES192 | AES256} ENCRYPTKEY
keyname

Where:

• sharedsecret is the encrypted shared secret.

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-32

• {AES128 | AES192 | AES256} must be same value that was used for ENCRYPT
PASSWORD.

• keyname is the logical name of the encryption key in the ENCKEYS lookup file.

Example:

DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAAIALCKDZIRHOJBHOJUH AES256 ENCRYPTKEY
mykey1

6. Log in to SQL*Plus as a user with the SYSDBA system privilege.

7. Close and then re-open the wallet.

SQL> alter system set encryption wallet close identified by "hsm/wallet_password";
System altered.
SQL> alter system set encryption wallet open identified by "hsm/wallet_password";
System altered.

8. Start Extract.

START EXTRACT group

Using Classic Capture in an Oracle RAC Environment
The following general guidelines apply to Oracle RAC when Extract is operating in classic
capture mode.

• During operations, if the primary database instance against which Oracle GoldenGate is
running stops or fails for any reason, Extract abends. To resume processing, you can
restart the instance or mount the Oracle GoldenGate binaries to another node where the
database is running and then restart the Oracle GoldenGate processes. Stop the Manager
process on the original node before starting Oracle GoldenGate processes from another
node.

• Whenever the number of redo threads changes, the Extract group must be dropped and
re-created. For the recommended procedure, see Administering Oracle GoldenGate.

• Extract ensures that transactions are written to the trail file in commit order, regardless of
the RAC instance where the transaction originated. When Extract is capturing in archived-
log-only mode, where one or more RAC instances may be idle, you may need to perform
archive log switching on the idle nodes to ensure that operations from the active instances
are recorded in the trail file in a timely manner. You can instruct the Oracle RDBMS to do
this log archiving automatically at a preset interval by setting the archive_lag_target
parameter. For example, to ensure that logs are archived every fifteen minutes, regardless
of activity, you can issue the following command in all instances of the RAC system:

SQL> alter system set archive_lag_target 900
• To process the last transaction in a RAC cluster before shutting down Extract, insert a

dummy record into a source table that Oracle GoldenGate is replicating, and then switch
log files on all nodes. This updates the Extract checkpoint and confirms that all available
archive logs can be read. It also confirms that all transactions in those archive logs are
captured and written to the trail in the correct order.

The following table shows some Oracle GoldenGate parameters that are of specific benefit in
Oracle RAC.

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-33

Parameter Description

THREADOPTIONS parameter with the
INQUEUESIZE and OUTQUEUESIZE
options

Sets the amount of data that Extract queues in memory before sending it to the
target system. Tuning these parameters might increase Extract performance on
Oracle RAC.

TRANLOGOPTIONS parameter with the
PURGEORPHANEDTRANSACTIONS |
NOPURGEORPHANEDTRANSACTIONS and
TRANSCLEANUPFREQUENCY options

Controls how Extract handles orphaned transactions, which can occur when a
node fails during a transaction and Extract cannot capture the rollback. Although
the database performs the rollback on the failover node, the transaction would
otherwise remain in the Extract transaction list indefinitely and prevent further
checkpointing for the Extract thread that was processing the transaction. By
default, Oracle GoldenGate purges these transactions from its list after they are
confirmed as orphaned. This functionality can also be controlled on demand with
the SEND EXTRACT command in GGSCI.

Mining ASM-stored Logs in Classic Capture Mode
This topic covers additional configuration requirements that apply when Oracle GoldenGate
mines transaction logs that are stored in Oracle Automatic Storage Management (ASM).

Accessing the Transaction Logs in ASM
Extract must be configured to read logs that are stored in ASM. Depending on the database
version, the following options are available:

Reading Transaction Logs Through the RDBMS
Use the TRANLOGOPTIONS parameter with the DBLOGREADER option in the Extract parameter file if
the RDBMS is Oracle 11.1.0.7 or Oracle 11.2.0.2 or later 11g R2 versions.

An API is available in those releases (but not in Oracle 11g R1 versions) that uses the
database server to access the redo and archive logs. When used, this API enables Extract to
use a read buffer size of up to 4 MB in size. A larger buffer may improve the performance of
Extract when redo rate is high. You can use the DBLOGREADERBUFSIZE option of
TRANLOGOPTIONS to specify a buffer size.

Note:

DBLOGREADER also can be used when the redo and archive logs are on regular disk or
on a raw device.

When using DBLOGREADER and using Oracle Data Vault, grant the DV_GOLDENGATE_REDO_ACCESS
Role to the Extract database user in addition to the privileges that are listed in Establishing
Oracle GoldenGate Credentials.

ASM Direct Connection
If the RDBMS version is not one of those listed in Reading Transaction Logs Through the
RDBMS, do the following:

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-34

1. Create a user for the Extract process to access the ASM instance directly. Assign this user
SYS or SYSDBA privileges in the ASM instance. Oracle GoldenGate does not support using
operating-system authentication for the ASM user.

ASM password configuration1 Permitted user

ASM instance and the database share a
password file

You can use the Oracle GoldenGate source
database user if you grant that user SYSDBA, or
you can use any other database user that has
SYSDBA privileges.

ASM instance and the source database have
separate password files

You can overwrite the ASM password file with the
source database password file, understanding
that this procedure changes the SYS password in
the ASM instance to the value that is contained
in the database password file, and it also grants
ASM access to the other users in the database
password file. Save a copy of the ASM file before
overwriting it.

1 To view how the current ASM password file is configured, log on to the ASM instance and issue the following
command in SQL*Plus: SQL> SELECT name, value FROM v$parameter WHERE name =
'remote_login_passwordfile';

2. Add the ASM user credentials to the Oracle GoldenGate credential store by issuing the
ALTER CREDENTIALSTORE command. See Reference for Oracle GoldenGate for usage
instructions and syntax.

3. Specify the ASM login alias in the Extract parameter file by including the TRANLOGOPTIONS
parameter with the ASMUSERALIAS option. For more information about TRANLOGOPTIONS, see
Reference for Oracle GoldenGate.

Ensuring ASM Connectivity
To ensure that the Oracle GoldenGate Extract process can connect to an ASM instance, list
the ASM instance in the tnsnames.ora file. The recommended method for connecting to an
ASM instance when Oracle GoldenGate is running on the database host machine is to use a
bequeath (BEQ) protocol. The BEQ protocol does not require a listener. If you prefer to use the
TCP/IP protocol, verify that the Oracle listener is listening for new connections to the ASM
instance. The listener.ora file must contain an entry similar to the following.

SID_LIST_LISTENER_ASM =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = ASM)
 (ORACLE_HOME = /u01/app/grid)
 (SID_NAME = +ASM1)
)
)

Note:

A BEQ connection does not work when using a remote Extract configuration. Use
TNSNAMES with the TCP/IP protocol.

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-35

Ensuring Data Availability for Classic Capture
To ensure the continuity and integrity of capture processing when Extract operates in classic
capture mode, enable archive logging.

The archive logs provide a secondary data source should the online logs recycle before Extract
is finished with them. The archive logs for open transactions must be retained on the system in
case Extract needs to recapture data from them to perform a recovery.

WARNING:

If you cannot enable archive logging, there is a high risk that you will need to
completely resynchronize the source and target objects and reinstantiate replication
should there be a failure that causes an Extract outage while transactions are still
active. If you must operate this way, configure the online logs according to the
following guidelines to retain enough data for Extract to capture what it needs before
the online logs recycle. Allow for Extract backlogs caused by network outages and
other external factors, as well as long-running transactions.

In a RAC configuration, Extract must have access to the online and archived logs for all nodes
in the cluster, including the one where Oracle GoldenGate is installed.

Log Retention Requirements per Extract Recovery Mode
The following summarizes the different recovery modes that Extract might use and their log-
retention requirements:

• By default, the Bounded Recovery mode is in effect, and Extract requires access to the
logs only as far back as twice the Bounded Recovery interval that is set with the BR
parameter. This interval is an integral multiple of the standard Extract checkpoint interval,
as controlled by the CHECKPOINTSECS parameter. These two parameters control the Oracle
GoldenGate Bounded Recovery feature, which ensures that Extract can recover in-
memory captured data after a failure, no matter how old the oldest open transaction was at
the time of failure. For more information about Bounded Recovery, see Reference for
Oracle GoldenGate.

• In the unlikely event that the Bounded Recovery mechanism fails when Extract attempts a
recovery, Extract reverts to normal recovery mode and must have access to the archived
log that contains the beginning of the oldest open transaction in memory at the time of
failure and all logs thereafter.

Log Retention Options
Depending on the version of Oracle, there are different options for ensuring that the required
logs are retained on the system.

All Other Oracle Versions
For versions of Oracle other than Enterprise Edition, you must manage the log retention
process with your preferred administrative tools. Follow the directions in Determining How
Much Data to Retain.

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-36

Determining How Much Data to Retain
When managing log retention, try to ensure rapid access to the logs that Extract would require
to perform a normal recovery (not a Bounded Recovery). See Log Retention Requirements per
Extract Recovery Mode. If you must move the archives off the database system, the
TRANLOGOPTIONS parameter provides a way to specify an alternate location. See Specifying the
Archive Location.

The recommended retention period is at least 24 hours worth of transaction data, including
both online and archived logs. To determine the oldest log that Extract might need at any given
point, issue the SEND EXTRACT command with the SHOWTRANS option. You might need to do
some testing to determine the best retention time given your data volume and business
requirements.

If data that Extract needs during processing was not retained, either in online or archived logs,
one of the following corrective actions might be required:

• Alter Extract to capture from a later point in time for which log data is available (and accept
possible data loss on the target).

• Resynchronize the source and target data, and then start the Oracle GoldenGate
environment over again.

Purging Log Archives
Make certain not to use backup or archive options that cause old archive files to be overwritten
by new backups. Ideally, new backups should be separate files with different names from older
ones. This ensures that if Extract looks for a particular log, it will still exist, and it also ensures
that the data is available in case it is needed for a support case.

Specifying the Archive Location
If the archived logs reside somewhere other than the Oracle default directory, specify that
directory with the ALTARCHIVELOGDEST option of the TRANLOGOPTIONS parameter in the Extract
parameter file.

You might also need to use the ALTARCHIVEDLOGFORMAT option of TRANLOGOPTIONS if the format
that is specified with the Oracle parameter LOG_ARCHIVE_FORMAT contains sub-directories.
ALTARCHIVEDLOGFORMAT specifies an alternate format that removes the sub-directory from the
path. For example, %T/log_%t_%s_%r.arc would be changed to log_%t_%s_%r.arc. As an
alternative to using ALTARCHIVEDLOGFORMAT, you can create the sub-directory manually, and
then move the log files to it.

Mounting Logs that are Stored on Other Platforms
If the online and archived redo logs are stored on a different platform from the one that Extract
is built for, do the following:

• NFS-mount the archive files.

• Map the file structure to the structure of the source system by using the LOGSOURCE and
PATHMAP options of the Extract parameter TRANLOGOPTIONS.

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-37

Configuring Classic Capture in Archived Log Only Mode
You can configure Extract to read exclusively from the archived logs. This is known as
Archived Log Only (ALO) mode.

In this mode, Extract reads exclusively from archived logs that are stored in a specified
location. ALO mode enables Extract to use production logs that are shipped to a secondary
database (such as a standby) as the data source. The online logs are not used at all. Oracle
GoldenGate connects to the secondary database to get metadata and other required data as
needed. As an alternative, ALO mode is supported on the production system.

Note:

ALO mode is not compatible with Extract operating in integrated capture mode.

Limitations and Requirements for Using ALO Mode
Observe the following limitations and requirements when using Extract in ALO mode.

• Log resets (RESETLOG) cannot be done on the source database after the standby database
is created.

• ALO cannot be used on a standby database if the production system is Oracle RAC and
the standby database is non-RAC. In addition to both systems being Oracle RAC, the
number of nodes on each system must be identical.

• ALO on Oracle RAC requires a dedicated connection to the source server. If that
connection is lost, Oracle GoldenGate processing will stop.

• It is a best practice to use separate archive log directories when using Oracle GoldenGate
for Oracle RAC in ALO mode. This will avoid any possibility of the same file name showing
up twice, which could result in Extract returning an "out of order scn" error.

• The LOGRETENTION parameter defaults to DISABLED when Extract is in ALO mode. You can
override this with a specific LOGRETENTION setting, if needed.

Configuring Extract for ALO mode
To configure Extract for ALO mode, follow these steps as part of the overall process for
configuring Oracle GoldenGate.

1. Enable supplemental logging at the table level and the database level for the tables in the
source database. (See Configuring Logging Properties .)

2. When Oracle GoldenGate is running on a different server from the source database, make
certain that SQL*Net is configured properly to connect to a remote server, such as
providing the correct entries in a TNSNAMES file. Extract must have permission to maintain a
SQL*Net connection to the source database.

3. Use a SQL*Net connect string for the name of the user in the credential store that is
assigned to the process. Specify the alias of this user in the following:

• The USERIDALIAS parameter in the parameter file of every Oracle GoldenGate process
that connects to that database.

• The USERIDALIAS portion of the DBLOGIN command in GGSCI.

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-38

Note:

If you have a standby server that is local to the server that Oracle GoldenGate is
running on, you do not need to use a connect string for the user specified in
USERIDALIAS. You can just supply the user login name.

See Creating and Populating the Credential Store in Oracle GoldenGate Security Guide for
more information about using a credential store.

4. Use the Extract parameter TRANLOGOPTIONS with the ARCHIVEDLOGONLY option. This option
forces Extract to operate in ALO mode against a primary or logical standby database, as
determined by a value of PRIMARY or LOGICAL STANDBY in the db_role column of the
v$database view. The default is to read the online logs. TRANLOGOPTIONS with
ARCHIVEDLOGONLY is not needed if using ALO mode against a physical standby database,
as determined by a value of PHYSICAL STANDBY in the db_role column of v$database.
Extract automatically operates in ALO mode if it detects that the database is a physical
standby.

5. Other TRANLOGOPTIONS options might be required for your environment. For example,
depending on the copy program that you use, you might need to use the
COMPLETEARCHIVEDLOGONLY option to prevent Extract errors.

6. Use the MAP parameter for Extract to map the table names to the source object IDs..

7. Add the Extract group by issuing the ADD EXTRACT command with a timestamp as the
BEGIN option, or by using ADD EXTRACT with the SEQNO and RBA options. It is best to give
Extract a known start point at which to begin extracting data, rather than by using the NOW
argument. The start time of NOW corresponds to the time of the current online redo log, but
an ALO Extract cannot read the online logs, so it must wait for that log to be archived when
Oracle switches logs. The timing of the switch depends on the size of the redo logs and the
volume of database activity, so there might be a lag between when you start Extract and
when data starts being captured. This can happen in both regular and RAC database
configurations.

Configuring Classic Capture in Oracle Active Data Guard Only Mode
You can configure Classic Extract to access both redo data and metadata in real-time to
successfully replicate source database activities using Oracle Active Data Guard. This is
known as Active Data Guard (ADG) mode.

ADG mode enables Extract to use production logs that are shipped to a standby database as
the data source. The online logs are not used at all. Oracle GoldenGate connects to the
standby database to get metadata and other required data as needed.

This mode is useful in load sensitive environments where ADG is already in place or can be
implemented. It can also be used as cost effective method to implement high availability using
the ADG Broker role planned (switchover) and failover (unplanned) changes. In an ADG
configuration, switchover and failover are considered roles. When either of the operations
occur, it is considered a role change. For more information, see Oracle Data Guard Concepts
and Administration and Oracle Data Guard Broker.

You can configure Integrated Extract to fetch table data and metadata required for the fetch
from an ADG instead of the source database. This is possible because an ADG is a physical
replica of the source database. Fetching from an ADG using the FETCHUSER parameter is
supported by Extract in all configurations except when running as Classic Extract. Classic

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-39

Extract already has the ability to connect directly to an ADG and mine its redo logs and fetch
from it using standard connection information supplied using the USERID parameter. The impact
to the source database is minimized because Extract gathers information from the source
database at startup, including compatibility level, database type, and source database
validation checks, when fetching from an ADG.

All previous fetch functionality and parameters are supported.

Note:

Integrated Extract cannot capture from a standby database because it requires READ
and WRITE access to the database, and an ADG standby only provides READ ONLY
access.

Limitations and Requirements for Using ADG Mode
Observe the following limitations and requirements when using Extract in ADG mode.

• Extract in ADG mode will only apply redo data that has been applied to the standby
database by the apply process. If Extract runs ahead of the standby database, it will wait
for the standby database to catch up.

• You must explicitly specify ADG mode in your classic Extract parameter file to run extract
on the standby database.

• You must specify the database user and password to connect to the ADG system because
fetch and other metadata resolution occurs in the database.

• The number of redo threads in the standby logs in the standby database must match the
number of nodes from the primary database.

• No new RAC instance can be added to the primary database after classic Extract has been
created on the standby database. If you do add new instances, the redo data from the new
thread will not be captured by classic Extract.

• Archived logs and standby redo logs accessed from the standby database will be an exact
duplicate of the primary database. The size and the contents will match, including redo
data, transactional data, and supplemental data. This is guaranteed by a properly
configured ADG deployment.

• ADG role changes are infrequent and require user intervention in both cases.

• With a switchover, there will be an indicator in the redo log file header (end of the redo log
or EOR marker) to indicate end of log stream so that classic Extract on the standby can
complete the RAC coordination successfully and ship all of the committed transactions to
the trail file.

• With a failover, a new incarnation is created on both the primary and the standby
databases with a new incarnation ID, RESETLOG sequence number, and SCN value.

• You must connect to the primary database from GGSCI to add TRANDATA or
SCHEMATRANDATA because this is done on the primary database.

• DDL triggers cannot be used on the standby database, in order to support DDL replication
(except ADDTRANDATA). You must install the Oracle GoldenGate DDL package on the
primary database.

• DDL ADDTRANDATA is not supported in ADG mode; you must use ADDSCHEMATRANDATA for
DDL replication.

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-40

• When adding extract on the standby database, you must specify the starting position using
a specific SCN value, timestamp, or log position. Relative timestamp values, such as NOW,
become ambiguous and may lead to data inconsistency.

• When adding extract on the standby database, you must specify the number of threads
that will include all of the relevant threads from the primary database.

• During or after failover or switchover, no thread can be added or dropped from either
primary or standby databases.

• Classic Extract will only use one intervening RESETLOG operation.

• If you do not want to relocate your Oracle GoldenGate installation, then you must position
it in a shared space where the Oracle GoldenGate installation directory can be accessed
from both the primary and standby databases.

• If you are moving capture off of an ADG standby database to a primary database, then you
must point your net alias to the primary database and you must remove the TRANLOG
options.

• Only Oracle Database releases that are running with compatibility setting of 10.2 or higher
(10g Release 2) are supported.

• Classic Extract does not support the DBLOGREADER option. Use ASMUSER (there is
approximately a 20gb/hr read limit) or move the online and archive logs outside of the
Application Security Manager (ASM) on both the primary and the standby databases.

Note:

The combination of MINEFROMACTIVEDG and DBLOGREADER options is not supported
with Classic Extract. However, the Extract process will start without any warning
or error even though this combination is used. Ensure that you do not use this
combination while using classic Extract with ADG.

Configuring Classic Extract for ADG Mode
To configure Classic Extract for ADG mode, follow these steps as part of the overall process
for configuring Oracle GoldenGate, as documented in Additional Configuration Steps for Using
Classic Capture.

1. Enable supplemental logging at the table level and the database level for the tables in the
primary database using the ADD SCHEMATRANDATA parameter. If necessary, create a DDL
capture.)

2. When Oracle GoldenGate is running on a different server from the source database, make
certain that SQL*Net is configured properly to connect to a remote server, such as
providing the correct entries in a TNSNAMES file. Extract must have permission to maintain a
SQL*Net connection to the source database.

3. On the standby database, use the Extract parameter TRANLOGOPTIONS with the
MINEFROMACTIVEDG option. This option forces Extract to operate in ADG mode against a
standby database, as determined by a value of PRIMARY or LOGICAL STANDBY in the db_role
column of the v$database view.

Other TRANLOGOPTIONS options might be required for your environment. For example,
depending on the copy program that you use, you might need to use the
COMPLETEARCHIVEDLOGONLY option to prevent Extract errors.

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-41

4. On the standby database, add the Extract group by issuing the ADD EXTRACT command
specifying the number of threads active on the primary database at the given SCN. The
timing of the switch depends on the size of the redo logs and the volume of database
activity, so there might be a limited lag between when you start Extract and when data
starts being captured. This can happen in both regular and RAC database configurations.

Migrating Classic Extract To and From an ADG Database
You must have your parameter files, checkpoint files, bounded recovery files, and trail files
stored in shared storage or copied to the ADG database before attempting to migrate a classic
Extract to or from an ADG database. Additionally, you must ensure that there has not been any
intervening role change or Extract will mine the same branch of redo.

Use the following steps to move to an ADG database:

1. Edit the parameter file ext1.prm to add the following parameters:

DBLOGIN USERID userid@ADG PASSWORD password
TRANLOGOPTIONS MINEFROMACTIVEDG

2. Start Extract by issuing the START EXTRACT ext1 command.

Use the following steps to move from an ADG database:

1. Edit the parameter file ext1.prm to remove the following parameters:

DBLOGIN USERID userid@ADG PASSWORD password
TRANLOGOPTIONS MINEFROMACTIVEDG

2. Start Extract by issuing the START EXTRACT ext1 command.

Handling Role Changes In an ADG Configuration
In a role change involving a standby database, all sessions in the primary and the standby
database are first disconnected including the connections used by Extract. Then both
databases are shut down, then the original primary is mounted as a standby database, and the
original standby is opened as the primary database.

The procedure for a role change is determined by the initial deployment of Classic Extract and
the deployment relation that you want, database or role. The following table outlines the four
possible role changes and is predicated on an ADG configuration comprised of two databases,
prisys and stansys. The prisys system contains the primary database and the stansys
system contains the standby database; prisys has two redo threads active, whereas stansys
has four redo threads active.

Initial Deployment Primary (prisys) Initial Deployment ADG (stansys)

Original Deployment:

ext1.prm
DBLOGIN USERID userid@prisys, PASSWORD
password

ext1.prm
DBLOGIN USERID userid@stansys, PASSWORD
password
TRANLOGOPTIONS MINEFROMACTIVEDG

Database Related:

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-42

Initial Deployment Primary (prisys) Initial Deployment ADG (stansys)

After Role Transition: Classic Extract to ADG

1. Edit the ext1.prm file to add:

TRANLOGOPTIONS MINEFROMACTIVEDG
DBLOGREADER option cannot be used in ADG
mode. If DBLOGREADER option exists, remove
it. If using ASM, add the ASMUSER parameter
to connect to the ASM instance.

2. If a failover, add TRANLOGOPTIONS
USEPREVRESETLOGSID.

3. Start Extract:

START EXTRACT ext1
Extract will abend once it reaches the role
transition point, then it does an internal
BR_RESET and moves both the I/O checkpoint
and current checkpoint to SCN s.

4. If failover, edit the parameter file again and
remove:

TRANLOGOPTIONS USEPREVRESETLOGSID
5. Execute ALTER EXTRACT ext1 SCN #, where

is the SCN value from role switch message.

6. Based on the thread counts, do one of the
following:

If the thread counts are same between the
databases, then execute the START EXTRACT
ext1; command.

or

If thread counts are different between the
databases, then execute the following
commands:

DROP EXTRACT ext1
ADD EXTRACT ext1 THREADS t BEGIN
SCN s
START EXTRACT ext1

After Role Transition: ADG to classic Extract

1. Edit ext1.prm and remove:

TRANLOGOPTIONS MINEFROMACTIVEDG
2. If a failover, add TRANLOGOPTIONS

USEPREVRESETLOGSID.

3. Start Extract:

START EXTRACT ext1
Extract will abend once it reaches the role
transition point, then it does an internal
BR_RESET and moves both the I/O checkpoint
and current checkpoint to SCN s.

4. If failover, edit the parameter file again and
remove:

TRANLOGOPTIONS USEPREVRESETLOGSID
5. Execute ALTER EXTRACT ext1 SCN #, where

is the SCN value from role switch message.

6. Based on the thread counts, do one of the
following:

If the thread counts are same between the
databases, then execute the START EXTRACT
ext1; command.

or

If thread counts are different between the
databases, then execute the following
commands:

DROP EXTRACT ext1
ADD EXTRACT ext1 THREADS t BEGIN SCN
s
START EXTRACT ext1

Role Related:

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-43

Initial Deployment Primary (prisys) Initial Deployment ADG (stansys)

After Role Transition: Classic Extract to classic
Extract

1. Edit ext1.prm to change the database
system to the standby system:

DBLOGIN USERID userid@stansys,
PASSWORD password

2. If a failover, add TRANLOGOPTIONS
USEPREVRESETLOGSID.

3. Start Extract:

START EXTRACT ext1
Extract will abend once it reaches the role
transition point, then it does an internal
BR_RESET and moves both the I/O checkpoint
and current checkpoint to SCN s.

4. If failover, edit the parameter file again and
remove:

TRANLOGOPTIONS USEPREVRESETLOGSID
5. Execute ALTER EXTRACT ext1 SCN #,

where# is the SCN value from role switch
message.

6. Based on the thread counts, do one of the
following:

If the thread counts are same between the
databases, then execute the START EXTRACT
ext1; command.

or

If thread counts are different between the
databases, then execute the following
commands:

DROP EXTRACT ext1
ADD EXTRACT ext1 THREADS t BEGIN
SCN s
START EXTRACT ext1

After Role Transition: ADG to ADG

1. Edit ext1.prm to change the database system
to the primary system:

DBLOGIN USERID userid@prisys,
PASSWORD password

2. If a failover, add TRANLOGOPTIONS
USEPREVRESETLOGSID.

3. Start Extract:

START EXTRACT ext1
Extract will abend once it reaches the role
transition point, then it does an internal
BR_RESET and moves both the I/O checkpoint
and current checkpoint to SCN s.

4. If failover, edit the parameter file again and
remove:

TRANLOGOPTIONS USEPREVRESETLOGSID
5. Execute ALTER EXTRACT ext1 SCN #,

where# is the SCN value from role switch
message.

6. Based on the thread counts, do one of the
following:

If the thread counts are same between the
databases, then execute the START EXTRACT
ext1; command.

or

If thread counts are different between the
databases, then execute the following
commands:

DROP EXTRACT ext1
ADD EXTRACT ext1 THREADS t BEGIN SCN
s
START EXTRACT ext1

Avoiding Log-read Bottlenecks in Classic Capture
When Oracle GoldenGate captures data from the redo logs, I/O bottlenecks can occur
because Extract is reading the same files that are being written by the database logging
mechanism.

Performance degradation increases with the number of Extract processes that read the same
logs. You can:

• Try using faster drives and a faster controller. Both Extract and the database logging
mechanism will be faster on a faster I/O system.

• Store the logs on RAID 0+1. Avoid RAID 5, which performs checksums on every block
written and is not a good choice for high levels of continuous I/O.

Chapter 5
Additional Configuration Steps for Using Classic Capture

5-44

6
Replicat

Learn about the Replicat process, its types, and steps to add a replicat, and other tasks
associated with Replicat.

About Replicat
Replicat is a process that delivers data to a target system. It reads the trail file on the target
database, reconstructs the DML or DDL operations, and applies them to the target database.

The Replicat process uses SQL to compile a SQL statement once and then executes it many
times with different bind variables. You can configure the Replicat process so that it waits a
specific amount of time before applying the replicated operations to the target database. For
example, a delay may be desirable to prevent the propagation of errant SQL, to control data
arrival across different time zones, or to allow time for other planned events to occur.

For the following two common uses cases of Oracle GoldenGate, the function of the Replicat
process is as follows:

• Initial Loads: When you set up Oracle GoldenGate for initial loads, the Replicat process
applies a static data copy to target objects or routes the data to a high-speed bulk-load
utility.

• Change Synchronization: When you set up Oracle GoldenGate to keep the target
database synchronized with the source database, the Replicat process applies the source
operations to the target objects using a native database interface or ODBC, depending on
the database type.

You can configure multiple Replicat processes with one or more Extract processes to increase
the throughput. To preserve data integrity, each set of processes handles a different set of
objects. To differentiate among Replicat processes, you assign each one a group name.

Deciding Which Replicat Method to Use
The Replicat process applies replicated data to an Oracle target database.

For an Oracle target database, you can run Replicat in parallel, non-integrated or integrated
mode. Oracle recommends that you use the parallel Replicat unless a specific feature requires
a different type of Replicat.

The following table lists the features supported by the respective Replicats.

Feature Parallel
Replicat

Integrated
Replicat

Coordinated Replicat Classic Replicat

Batch
Processing

Yes Yes Yes Yes

Barrier
Transactions

Yes Yes Yes No

6-1

Feature Parallel
Replicat

Integrated
Replicat

Coordinated Replicat Classic Replicat

Dependency
Computation

Yes Yes No No

Chapter 6
Deciding Which Replicat Method to Use

6-2

Feature Parallel
Replicat

Integrated
Replicat

Coordinated Replicat Classic Replicat

Auto-parallelism

N

o

t

e

:

A
u
t
o
-
p
a
r
a
l
l
e
l
i
s
m
i
s
d
i
s
a
b
l
e
d
,
b
y
d
e
f
a
u
l
t
.
O
n
l
y
f
o
u

Yes Yes No No

Chapter 6
Deciding Which Replicat Method to Use

6-3

Feature Parallel
Replicat

Integrated
Replicat

Coordinated Replicat Classic Replicat

r
t
h
r
e
a
d
s
a
r
e
u
s
e
d
i
n
t
h
e
d
e
f
a
u
l
t
s
e
t
t
i
n
g
s
.
I
f
y
o
u
w
a
n
t
t
o
c
h
a
n
g
e
R
e

Chapter 6
Deciding Which Replicat Method to Use

6-4

Feature Parallel
Replicat

Integrated
Replicat

Coordinated Replicat Classic Replicat

p
l
i
c
a
t
t
o
u
s
e
M
I
N
_
P
A
R
A
L
L
E
L
I
S
M
a
n
d
M
A
X
_
P
A
R
A
L
L
E
L
I
S
M
t
h
e
n
a
u
t
o
-

Chapter 6
Deciding Which Replicat Method to Use

6-5

Feature Parallel
Replicat

Integrated
Replicat

Coordinated Replicat Classic Replicat

p
a
r
a
l
l
e
l
i
s
m
i
s
u
s
e
d
.

DML Handler Yes, Integrated
mode

Yes No No

Procedural
Replication

Yes, used for
integrated
Parallel Replicat
(iPR)

Yes No No

Auto CDR Yes, used by iPR
only

Yes No No

Dependency-
aware
Transaction Split

Yes No No No

Cross-RAC-
node
Processing

Yes No Yes No

ALLOWDUPTARG
ETMAP
See
ALLOWDUPTARG
ETMAP |
NOALLOWDUPTA
RGETMAP

No. Oracle
Database with
iPR

No, Oracle
Database

Yes Yes

About Parallel Replicat

Parallel Replicat is another variant of Replicat that applies transactions in parallel to improve
performance.

It takes into account dependencies between transactions, similar to Integrated Replicat. The
dependency computation, parallelism of the mapping and apply is performed outside the
database so can be off-loaded to another server. The transaction integrity is maintained in this

Chapter 6
Deciding Which Replicat Method to Use

6-6

process. In addition, parallel Replicat supports the parallel apply of large transactions by
splitting a large transaction into chunks and applying them in parallel.

Note:

For best performance for an OLTP workload, parallel Replicat in non-integrated mode
is recommended.

Only Oracle database supports parallel Replicat and integrated parallel Replicat. However,
parallel Replicat supports all databases when using the non-integrated option.

To use parallel Replicat, you need to ensure that you have the following values, which are also
the default values:

• Metadata in the trail (which means you can't use parallel Replicat if your trails are
formatted below 12.1.

• Scheduling columns in the trail file.

• UPDATERCORDFORMAT COMPACT parameter.

With integrated parallel Replicat, the Replicat sends the LCRs to the inbound server, which
applies the data to the target database, and in regular parallel Replicat, Oracle GoldenGate
applies the LCR as a SQL statement directly to the database, similar to how the other non-
integrated Replicats work.

The components of parallel Replicat are:

• Mappers operate in parallel to read the trail, map trail records, convert the mapped records
to the Integrated Replicat LCR format, and send the LCRs to the Merger for further
processing. While one Mapper maps one set of transactions, the next Mapper maps the
next set of transactions. The the trail information is split and the trail file is untouched
because it orders trail information in order.

• Master processes have two threads, Collater and Scheduler. The Collater receives
mapped transactions from the Mappers and puts them back into trail order for dependency
calculation. The Scheduler calculates dependencies between transactions, groups
transactions into independent batches, and sends the batches to the Appliers to be applied
to the target database.

• Appliers reorder records within a batch for array execution. It applies the batch to the target
database and performs error handling. It also tracks applied transactions in checkpoint
tables.

Note:

Parallel Replicat requires that any foreign key columns are indexed.

Parallel Replication Architecture
Parallel replication processes leverage the apply processing functionality that is available
within the Oracle Database in integrated mode.

Within a single Replicat configuration, multiple inbound server child processes, known as apply
servers, apply transactions in parallel while preserving the original transaction atomicity.

Chapter 6
Deciding Which Replicat Method to Use

6-7

The following architecture diagram depicts the flow of change records through the various
processes of a parallel replication from the trail files to the target database, for a non-integrated
parallel Replicat.

The Mappers read the trail file and map records, forward the mapped records to the Master.
The batches are sent to the Appliers where they are applied to the target database.

The Master process consists of two separate threads, Collater and Scheduler. The Collater is
responsible for managing and communicating with the Mappers, along with receiving the
mapped transactions and reordering them into a single in-order stream. The Scheduler is
responsible for managing and communicating with the Appliers, along with reading
transactions from the Collater, batching them, and scheduling them to Appliers.

The Scheduler controller communicates with the Scheduler to gather any necessary
information (such as, the current low watermark position). The Scheduler controller is required
for CDB mode for Oracle Database because it is responsible for aggregating information
pertaining to the different target PDBs and reporting a unified picture. The Scheduler controller
is created for simplicity and uniformity of implementation, even when not in CDB mode. Every
process reads the parameter file and shares a single checkpoint file.

Basic Parameters for Parallel Replicat
The following table lists the basic parallel Replicat parameters and their description.

Parameter Description

MAP_PARALLELISM Configures number of mappers. This controls the
number of threads used to read the trail file. The
minimum value is 1, maximum value is 100 and the
default value is 2.

APPLY_PARALLELISM Configures number of appliers. This controls the
number of connections in the target database used
to apply the changes. The default value is four.

MIN_APPLY_PARALLELISM
MAX_APPLY_PARALLELISM

The Apply parallelism is auto-tuned. You can set a
minimum and maximum value to define the ranges
in which the Replicat automatically adjusts its
parallelism. There are no defaults. Do not use with
APPLY_PARALLELISM at same time.

SPLIT_TRANS_REC Specifies that large transactions should be broken
into pieces of specified size and applied in parallel.
Dependencies between pieces are still honored.
Disabled by default.

Chapter 6
Deciding Which Replicat Method to Use

6-8

Parameter Description

COMMIT_SERIALIZATION Enables commit FULL serialization mode, which
forces transactions to be committed in trail order.

Advanced Parameters

LOOK_AHEAD_TRANSACTIONS Controls how far ahead the Scheduler looks when
batching transactions. The default value is 10000.

CHUNK_SIZE Controls how large a transaction must be for
parallel Replicat to consider it as large. When
parallel Replicat encounters a transaction larger
than this size, it will serialize it, resulting in
decreased performance. However, increasing this
value will also increase the amount of memory
consumed by parallel Replicat.

Example Parameter File

Replicat repe
USERID ggadmin, PASSWORD ***
MAP_PARALLELISM 3
MIN_APPLY_PARALLELISM 2
MAX_APPLY_PARALLELISM 10
SPLIT_TRANS_RECS 60000
MAP *.*, TARGET *.*;

About Non-integrated Replicat

In non-integrated mode, the Replicat process uses standard SQL to apply data directly to the
target tables. In this mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs SQL statements that represent source database DML or DDL transactions (in
committed order).

• Applies the SQL to the target through Oracle Call Interface (OCI).

The following diagram illustrates the configuration of Replicat in non-integrated mode.

Chapter 6
Deciding Which Replicat Method to Use

6-9

Use non-integrated Replicat when you want to make heavy use of features that are not
supported in integrated Replicat mode.

You can apply transactions in parallel with a non-integrated Replicat by using a coordinated
Replicat configuration.

About Integrated Replicat
In integrated mode, the Replicat process leverages the apply processing functionality that is
available within the Oracle Database. In this mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs logical change records (LCR) that represent source database DML transactions
(in committed order). DDL is applied directly by Replicat.

• Attaches to a background process in the target database known as a database inbound
server by means of a lightweight streaming interface.

• Transmits the LCRs to the inbound server, which applies the data to the target database.

The following figure illustrates the configuration of Replicat in integrated mode.

Within a single Replicat configuration, multiple inbound server child processes known as apply
servers apply transactions in parallel while preserving the original transaction atomicity. You
can increase this parallelism as much as your target system will support when you configure
the Replicat process or dynamically as needed. The following diagram illustrates integrated
Replicat configured with two parallel apply servers.

Chapter 6
Deciding Which Replicat Method to Use

6-10

Integrated Replicat applies transactions asynchronously. Transactions that do not have
interdependencies can be safely executed and committed out of order to achieve fast
throughput. Transactions with dependencies are guaranteed to be applied in the same order as
on the source.

A reader process in the inbound server computes the dependencies among the transactions in
the workload based on the constraints defined at the target database (primary key, unique,
foreign key). Barrier transactions and DDL operations are managed automatically, as well. A
coordinator process coordinates multiple transactions and maintains order among the apply
servers.

If the inbound server does not support a configured feature or column type, Replicat
disengages from the inbound server, waits for the inbound server to complete transactions in
its queue, and then applies the transaction to the database in direct apply mode through OCI.
Replicat resumes processing in integrated mode after applying the direct transaction.

The following features are applied in direct mode by Replicat:

• DDL operations

• Sequence operations

• SQLEXEC parameter within a TABLE or MAP parameter

• EVENTACTIONS processing

• UDT

Note:

By default, UDT's are applied with the inbound server. Only if
NOUSENATIVEOBJSUPPORT is in place, then Extract handling is done by Replicat
directly.

Because transactions are applied serially in direct apply mode, heavy use of such operations
may reduce the performance of the integrated Replicat mode. Integrated Replicat performs
best when most of the apply processing can be performed in integrated mode, see Monitoring

Chapter 6
Deciding Which Replicat Method to Use

6-11

and Controlling Processing After the Instantiation in Using Oracle GoldenGate for Oracle
Database.

Note:

User exits are executed in integrated mode. However, user exit may produce
unexpected results, if the exit code depends on data in the replication stream.

Note:

Integrated Replicat requires that any foreign key columns are indexed.

Benefits of Integrated Replicat
The following are the benefits of using integrated Replicat versus nonintegrated Replicat.

• Integrated Replicat enables heavy workloads to be partitioned automatically among
parallel apply processes that apply multiple transactions concurrently, while preserving the
integrity and atomicity of the source transaction. Both a minimum and maximum number of
apply processes can be configured with the PARALLELISM and MAX_PARALLELISM
parameters. Replicat automatically adds additional servers when the workload increases,
and then adjusts downward again when the workload lightens.

• Integrated Replicat requires minimal work to configure. All work is configured within one
Replicat parameter file, without configuring range partitions.

• High-performance apply streaming is enabled for integrated Replicat by means of a
lightweight application programming interface (API) between Replicat and the inbound
server.

• Barrier transactions are coordinated by integrated Replicat among multiple server apply
processes.

• DDL operations are processed as direct transactions that force a barrier by waiting for
server processing to complete before the DDL execution.

• Transient duplicate primary key updates are handled by integrated Replicat in a seamless
manner.

Integrated Replicat Requirements
To use integrated Replicat, the following must be true.

• Supplemental logging must be enabled on the source database to support the computation
of dependencies among tables and scheduling of concurrent transactions on the target.
Instructions for enabling the required logging are in Configuring Logging Properties. This
logging can be enabled at any time up to, but before, you start the Oracle GoldenGate
processes.

• Integrated Parallel Replicat is supported on Oracle Database 12.2.0.1 and greater.

Chapter 6
Deciding Which Replicat Method to Use

6-12

About Classic Replicat Mode
In classic mode, Replicat is a single-threaded process that uses standard SQL to apply data to
the target tables. In this mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs SQL statements that represent source database DML or DDL transactions (in
committed order).

• Applies the SQL to the target through the SQL interface that is supported for the given
target database, such as ODBC or the native database interface.

Figure 6-1 Classic Replicat

As shown in Figure 6-1, you can apply transactions in parallel with a classic Replicat, but only
by partitioning the workload across multiple Replicat processes. A parameter file must be
created for each Replicat.

To determine whether to use classic mode for any objects, you must determine whether the
objects in one Replicat group will ever have dependencies on objects in any other Replicat
group, transactional or otherwise. Not all workloads can be partitioned across multiple Replicat
groups and still preserve the original transaction atomicity. For example, tables for which the
workload routinely updates the primary key cannot easily be partitioned in this manner. DDL
replication (if supported for the database) is not viable in this mode, nor is the use of some
SQLEXEC or EVENTACTIONS features that base their actions on a specific record.

If your tables do not have any foreign- key dependencies or updates to primary keys, classic
mode may be suitable. Classic mode requires less overhead than coordinated mode.

For more information about using parallel Replicat groups, see About Parallel Replicat.

About Coordinated Replicat Mode
In coordinated mode, Replicat operates as follows:

Chapter 6
Deciding Which Replicat Method to Use

6-13

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Processes operations sent to each thread in a committed order.

• Applies the SQL to the target through the SQL interface that is supported for the given
target database, such as ODBC or the native database interface.

The difference between classic mode and coordinated mode is that Replicat is multi-threaded
in coordinated mode. Within a single Replicat instance, multiple threads read the trail
independently and apply transactions in parallel. Each thread handles the filtering, mapping,
conversion, SQL construction, and error handling for its assigned workload. A coordinator
thread coordinates the transactions across threads to account for dependencies among the
threads.

The source transactions could be split across CR processes such that the integrity of the total
source transaction is not maintained. The portion of the transaction processed by a CR
process is done in committed order but the whole transaction across all CR processes is not.

Coordinated Replicat allows for user-defined partitioning of the workload so as to apply high
volume transactions concurrently. In addition, it automatically coordinates the execution of
transactions that require coordination, such as DDL, and primary key updates with
THREADRANGE partitioning. Such a transaction is executed as one transaction in the target with
full synchronization: it waits until all prior transactions are applied first, and all transactions after
this barrier transaction have to wait until this barrier transaction is applied.

Only one parameter file is required for a coordinated Replicat, regardless of the number of
threads. You use the THREAD or THREADRANGE option in the MAP statement to specify which
threads process the transactions for those objects, and you specify the maximum number of
threads when you create the Replicat group.

Chapter 6
Deciding Which Replicat Method to Use

6-14

Figure 6-2 Coordinated Replicat

About Barrier Transactions
Barrier transactions are managed automatically in a coordinated Replicat configuration. Barrier
transactions are transactions that require coordination across threads. Examples include DDL
statements, transactions that include updates to primary keys, and
certain EVENTACTIONS actions.

Optionally, you can force other transactions to be treated like a barrier transaction through the
use of the COORDINATED keyword in a MAP statement. One use case for this would be force
a SQLEXEC to be executed in a manner similar to a serial execution. This could be beneficial if
the results can become ambiguous unless the state of the target is consistent across all
transactions.

Note:

Coordinated Replicat doesn't do dependency calculations for non-barrier transactions
when a mapped table is partitioned based on THNREADRANGE. It relies on specified
THREADRANGE columns to compute a hash value. It partitions the incoming data based
on the hash value and sends all the records that match this hash value to same
thread.

Chapter 6
Deciding Which Replicat Method to Use

6-15

How Barrier Transactions are Processed
All threads converge and wait at the start of a barrier transaction. The barrier transaction is
suspended until the other threads reach its start position. If any threads were already
processing part of the barrier transaction, those threads perform a rollback. Grouped
transactions, such as those controlled by the BATCHSQL or GROUPTRANSOPS parameters, are also
rolled back and then reapplied until they reach the start of the barrier transaction.

All of the threads converge and wait at the start of the next transaction after the barrier
transaction as well. The two synchronization points, before and after the barrier transaction,
ensure that metadata operations and EVENTACTIONS actions all occur in the proper order
relevant to the data operations.

Once the threads are synchronized at the start of the barrier transaction, the barrier transaction
is processed serially by the thread that has the lowest thread ID among all of the threads
specified in the MAP statements, and then parallel processing across threads is resumed. You
can force barrier transactions to be processed through a specific thread, which is always
thread 0, by specifying the USEDEDICATEDCOORDINATIONTHREAD parameter in the Replicat
parameter file.

Using Different Replicat Modes
The recommended Oracle GoldenGate configuration, when supported by the Oracle version, is
to use one Extract on an Oracle source and one parallel Replicat per source database on an
Oracle target.

One integrated Replicat configuration supports all Oracle data types either through the inbound
server or by switching to direct apply when necessary, and it preserves source transaction
integrity. You can adjust the parallelism settings to the desired apply performance level as
needed.

Each Replicat group must process objects that are suited to the processing mode, based on
table data types and attributes. No objects in one Replicat can have DML or DDL
dependencies on objects in the other Replicat.

If the target database is an Oracle version that does not support integrated Replicat, or if it is a
non-Oracle database, you can use a coordinated or parallel Replicat configuration.

Add the Replicat Group
These steps add the Replicat group that reads the remote trail and applies the data changes to
the target Oracle Database.

1. Connect to the deployment from the Admin Client using the CONNECT command.

2. If using integrated Replicat, issue the DBLOGIN command to log into the database.

DBLOGIN USERIDALIAS alias

Where: alias specifies the alias of the database login credential that is assigned to
Replicat. This credential must exist in the Oracle GoldenGate credential store. For more
information, see Establishing Oracle GoldenGate Credentials.

Chapter 6
Using Different Replicat Modes

6-16

3. Issue the ADD REPLICAT command with the following syntax.

ADD REPLICAT group name, [INTEGRATED,] EXTTRAIL pathname

Where:

• group name is the name of the Replicat group.

• INTEGRATED creates an integrated Replicat group.

• EXTTRAIL pathname is the relative or fully qualified name of the remote trail, including
the two-character name.

For more information, see Reference for Oracle GoldenGate.

Example 6-1 Adds a Nonintegrated Replicat

ADD REPLICAT repe, EXTTRAIL east/ea

Example 6-2 Adds an Integrated Replicat

ADD REPLICAT repn, INTEGRATED, EXTTRAIL north/em

Creating a Parallel Replicat
You can create a parallel replication using the graphical user interface or the command line
interfaces GGSCI and the Admin Client.

A parallel Replicat requires a checkpoint table so both the Administration Service UI and
Admin Client issue an error when the parallel Replicat does not include a checkpoint table.

Note:

Parallel replication does not support COMMIT_SERIALIZATION in Integrated Mode. To
use this apply process, use Integrated Replicat.

Creating a Non-Integrated Parallel Replicat with the Administration Service

1. Open a browser and connect to the Service Manager that you created with the
Configuration Assistant:

https://server_name:service_manger_port/

For Example, https://localhost:9000/. In an non secured environment, use http instead of
https.

The Oracle GoldenGate Service Manager is displayed.

2. Enter the username and password you created and click Sign In.

In the Service Manager, you can see servers that are running.

3. In the Services section, click Administration Service, and then log in.

Chapter 6
Creating a Parallel Replicat

6-17

4. Click the Application Navigation icon to the left of the page title to expand the navigation
panel.

5. Create the checkpoint table by clicking Configuration in the right navigation panel.

6. Ensure that you have a valid credential and log in to the database by clicking the ‘log in
database’ icon under Action.

7. Click the + sign to add a checkpoint table.

8. Enter the schema.name of the checkpoint table that you would like to create, and then
click Submit.

9. Validate that the table was created correctly by logging out of the Credential Alias using the
log out database icon, and then log back in.

Once the log in is complete, your new checkpoint table is listed.

10. Click Overview to return to the main Administration Service page.

11. Click the + sign next to Replicats.

12. Select Parallel Replicat and then select either Integrated or Nonintegrated
Replicat then click Next. In this document, Nonintegrated option is selected.

13. Enter the required information making sure that you complete the Credential Domain and
Credential Alias fields before completing the Checkpoint Table field, and then select your
newly created Checkpoint Table from the list.

14. Click Next, and then click Create and Run to complete the Replicat creation.

Creating a Non-Integrated Parallel Replicat with the Admin Client

1. Go the bin directory of your Oracle GoldenGate installation directory.

cd $OGG_HOME/bin
2. Start the Admin Client.

./adminclient

The Admin Client command prompt is displayed.

OGG (not connected) 12>
3. Connect to the Service Manager deployment source:

connect http://localhost:9500 deployment Target1 as oggadmin password welcome1

You must use http or https in the connection string; this example is a non-SSL connection.

4. Add the Parallel Replicat, which may take a few minutes to complete:

add replicat R1, parallel, exttrail bb checkpointtable ggadmin.ggcheckpoint

You could use just the two character trail name as part of the ADD REPLICAT or you can use
the full path, such as /u01/oggdeployments/target1/var/lib/data/bb.

5. Verify that the Replicat is running:

info replicat R1

Messages similar to the following are displayed:

REPLICAT R1 Initialized 2016-12-20 13:56 Status RUNNING
Parallel

Chapter 6
Creating a Parallel Replicat

6-18

Checkpoint Lag 00:00:00 (updated 00:00:22 ago)
Process ID 30007
Log Read
Checkpoint File ./ra000000000First Record RBA 0

Configuring Oracle GoldenGate Replicat
This chapter contains instructions for configuring the Replicat apply process in either
nonintegrated or integrated mode.

Prerequisites for Configuring Replicat
This topic provides the best practices for configuring Replicat.

The guidelines to follow before configuring Replicat are:

1. Preparing the Database for Oracle GoldenGate.

2. Establishing Oracle GoldenGate Credentials.

3. Using Different Replicat Modes.

4. Create the Oracle GoldenGate instance on the target system by configuring the Manager
process.

Also see, Quickstart Bidirectional Replication to learn about using the active-active replication
process in case of bidirectional replication.

What to Expect from these Instructions
These instructions show you how to configure a basic Replicat parameter (configuration) file.

Your business requirements probably will require a more complex topology, but this procedure
forms a basis for the rest of your configuration steps.

By performing these steps, you can:

• get the basic configuration file established.

• build upon it later by adding more parameters as you make decisions about features or
requirements that apply to your environment.

• use copies of it to make the creation of additional Replicat parameter files faster than
starting from scratch.

Note:

These instructions do not configure Replicat to apply DDL to the target. To support
DDL, create the basic Replicat parameter file and then see Configuring DDL Support
for configuration instructions.

About Checkpoint Table
The checkpoint table is a required component of Replicat.

A Replicat maintains its recovery checkpoints in the checkpoint table, which is stored in the
target database. Checkpoints are written to the checkpoint table within the Replicat

Chapter 6
Configuring Oracle GoldenGate Replicat

6-19

transaction. Because a checkpoint either succeeds or fails with the transaction, Replicat
ensures that a transaction is only applied once, even if there is a failure of the process or the
database. See Before You Add a Replicat in the Oracle GoldenGate Microservices
Documentation to learn to create checkpoint tables from the Microservices web interface.

Note:

Oracle recommends using checkpoint tables. Multiple classic or coordinated
Replicats can share the same checkpoint table, but that may not result in the best
performance. With high volume environments, you must ensure that the checkpoint
tables do not reside on different drives to become a point of conflict.

See #unique_625 for more information.

Adding the Checkpoint Table to the Target Database
1. From the Oracle GoldenGate directory on the target, run GGSCI and issue the DBLOGIN

command to log into the target database.

DBLOGIN USERIDALIAS alias

Where:

• alias specifies the alias of the database login credential of a user that can create
tables in a schema that is accessible to Replicat. This credential must exist in the
Oracle GoldenGate credential store. For more information, see Establishing Oracle
GoldenGate Credentials.

2. In GGSCI or Admin Client, create the checkpoint table in a schema of your choice (ideally
dedicated to Oracle GoldenGate).

ADD CHECKPOINTTABLE [container.]schema.table

Where:

• container is the name of the container if schema.table is in a multitenant container
database. This container can be the root container or a pluggable database that
contains the table.

• schema.table are the schema and name of the table. See Administering Oracle
GoldenGate for instructions for specifying object names.

Include the Checkpoint Table in the GLOBALS File
To specify the checkpoint table in the Oracle GoldenGate configuration:

1. Create a GLOBALS file (or edit the existing one).

EDIT PARAMS ./GLOBALS

Chapter 6
Configuring Oracle GoldenGate Replicat

6-20

Note:

EDIT PARAMS creates a simple text file. When you save the file after EDIT PARAMS,
it is saved with the name GLOBALS in upper case, without a file extension. It must
remain as such, and the file must remain in the root Oracle GoldenGate directory.

2. In the GLOBALS file, enter the CHECKPOINTTABLE parameter.

CHECKPOINTTABLE [container.]schema.table
3. Save and close the GLOBALS file.

Disabling Default Asynchronous COMMIT to Checkpoint Table
When a nonintegrated Replicat uses a checkpoint table, it uses an asynchronous COMMIT with
the NOWAIT option to improve performance. Replicat can continue processing immediately after
applying this COMMIT, while the database logs the transaction in the background. You can
disable the asynchronous COMMIT with NOWAIT by using the DBOPTIONS parameter with the
DISABLECOMMITNOWAIT option in the Replicat parameter file.

Note:

When the configuration of a nonintegrated Replicat group does not include a
checkpoint table, the checkpoints are maintained in a file on disk. In this case,
Replicat uses COMMIT with WAIT to prevent inconsistencies in the event of a database
failure that causes the state of the transaction, as in the checkpoint file, to be different
than its state after the recovery.

Configuring Replicat
Configure a Replicat process to configure Replicat for a pluggable database (PDB). Replicat
can operate in any of the available modes within an Oracle multitenant container database.

To add a Replicat from the command line interface, see the ADD REPLICAT from GGSCI.

Use the following steps to configure the parameters for different Replicat modes.

1. On the target system, create the Replicat parameter file using GGSCI command line
interface.

EDIT PARAMS name

Where: name is the name of the Replicat group.

2. Enter the Replicat parameters in the order shown, starting a new line for each parameter
statement.

Basic parameters for the Replicat group in nonintegrated mode:

REPLICAT repe
USERIDALIAS ggeast

Chapter 6
Configuring Oracle GoldenGate Replicat

6-21

ASSUMETARGETDEFS
MAP hr.*, TARGET hr2.*;

Basic parameters for the Replicat group in integrated Replicat mode:

REPLICAT repw
DBOPTIONS INTEGRATEDPARAMS(parallelism 6)
USERIDALIAS ggwest
ASSUMETARGETDEFS
MAP hr.*, TARGET hr2.*;

Parameter Description

REPLICAT group group is the name of the Replicat group.

DBOPTIONS DEFERREFCONST Applies to Replicat in nonintegrated mode. DEFERREFCONST sets constraints to
DEFERRABLE to delay the enforcement of cascade constraints by the target
database until the Replicat transaction is committed. See DBOPTIONS for
additional important information.

DBOPTIONS INTEGRATEDPARAMS
(parameter[, ...])

This parameter specification applies to Replicat in integrated mode. It specifies
optional parameters for the inbound server.

See Additional Parameter Options for Integrated Replicatfor additional important
information about these DBOPTIONS options.

USERIDALIAS alias Specifies the alias of the database login credential of the user that is assigned to
Replicat. This credential must exist in the Oracle GoldenGate credential store.
For more information, see Establishing Oracle GoldenGate Credentials

MAP
[container.]schema.object,
TARGET schema.object;

Specifies the relationship between a source table or sequence, or multiple
objects, and the corresponding target object or objects.

• MAP specifies the source table or sequence, or a wildcarded set of objects.

• TARGET specifies the target table or sequence or a wildcarded set of objects.

• container is the name of a container, if the source database is a
multitenant container database.

• schema is the schema name or a wildcarded set of schemas.

• object is the name of a table or sequence, or a wildcarded set of objects.

Terminate this parameter statement with a semi-colon.

To exclude objects from a wildcard specification, use the MAPEXCLUDE
parameter.

For more information and for additional options that control data filtering,
mapping, and manipulation, see MAP in Reference for Oracle GoldenGate.

Basic parameters for the Replicat group in parallel Replicat mode:

REPLICAT repe
USERID ggadmin, PASSWORD ***
MAP_PARALLELISM 3
MIN_APPLY_PARALLELISM 2
MAX_APPLY_PARALLELISM 10

Chapter 6
Configuring Oracle GoldenGate Replicat

6-22

SPLIT_TRANS_RECS 60000
MAP *.*, TARGET *.*;

Parameter Description

MAP_PARALLELISM Configures number of mappers. This controls the
number of threads used to read the trail file. The
minimum value is 1, maximum value is 100 and
the default value is 2.

APPLY_PARALLELISM Configures number of appliers. This controls the
number of connections in the target database
used to apply the changes. The default value is
four.

MIN_APPLY_PARALLELISM
MAX_APPLY_PARALLELISM

The Apply parallelism is auto-tuned. You can set
a minimum and maximum value to define the
ranges in which the Replicat automatically
adjusts its parallelism. There are no defaults. Do
not use with APPLY_PARALLELISM at same time.

SPLIT_TRANS_REC Specifies that large transactions should be
broken into pieces of specified size and applied
in parallel. Dependencies between pieces are
still honored. Disabled by default.

COMMIT_SERIALIZATION Enables commit FULL serialization mode, which
forces transactions to be committed in trail order.

Advanced Parameters

LOOK_AHEAD_TRANSACTIONS Controls how far ahead the Scheduler looks
when batching transactions. The default value is
10000.

CHUNK_SIZE Controls how large a transaction must be for
parallel Replicat to consider it as large. When
parallel Replicat encounters a transaction larger
than this size, it will serialize it, resulting in
decreased performance. However, increasing
this value will also increase the amount of
memory consumed by parallel Replicat.

3. If using integrated Replicat or parallel Replicat in integrated mode, add the following
parameters to the Extract parameter file:

• LOGALLSUPCOLS: This parameter ensures the capture of the supplementally logged
columns in the before image. It's the default parameter and shouldn't be turned off or
disabled. It is valid for any source database that is supported by Oracle GoldenGate.
For Extract versions older than 12c, you can use GETUPDATEBEFORES and
NOCOMPRESSDELETES parameters to satisfy the same requirement. The database must
be configured to log the before and after values of the primary key, unique indexes,
and foreign keys.

• The UPDATERECORDFORMAT parameter set to COMPACT: This setting causes Extract to
combine the before and after images of an UPDATE operation into a single record in the
trail. This is the default option and it is recommended that you don't change the default
setting.

4. Enter any optional Replicat parameters that are recommended for your configuration. You
can edit this file at any point before starting processing by using the EDIT PARAMS
command. See Additional Parameter Options for Integrated Replicat for additional
configuration considerations.

Chapter 6
Configuring Oracle GoldenGate Replicat

6-23

5. Save and close the file.

Additional Parameter Options for Integrated Replicat
You can set these parameters by using the DBOPTIONS parameter with the INTEGRATEDPARAMS
option or dynamically by issuing the SEND REPLICAT command with the INTEGRATEDPARAMS
option.

The default Replicat configuration as directed in Configuring Oracle GoldenGate Replicat
should be sufficient. However, if needed, you can set the following inbound server parameters
to support specific requirements.

Note:

See Reference for Oracle GoldenGate for more information about the DBOPTIONS
parameter.

• COMMIT_SERIALIZATION: Controls the order in which applied transactions are committed
and has 2 modes, DEPENDENT_TRANSACTIONS and FULL. The default mode for Oracle
GoldenGate is DEPENDENT_TRANSACTIONS where dependent transactions are applied in the
correct order though may not necessarily be applied in source commit order. In FULL mode,
the source commit order is enforced when applying transactions.

• BATCHSQL_MODE: Controls the batch execution scheduling mode including pending
dependencies. A pending dependency is a dependency on another transaction that has
already been scheduled, but not completely executed. The default is DEPENDENT. You can
use following three modes:

DEPENDENT
Dependency aware scheduling without an early start. Batched transactions are scheduled
when there are no pending dependencies.

DEPENDENT_EAGER
Dependency aware batching with early start. Batched transactions are scheduled
irrespective of pending dependencies.

SEQUENTIAL
Sequential batching. Transactions are batched by grouping the transactions sequentially
based on the original commit order.

• DISABLE_ON_ERROR: Determines whether the apply server is disabled or continues on an
unresolved error. The default for Oracle GoldenGate is N (continue on errors), however,
you can set the option to Y if you need to disable the apply server when an error occurs.

• EAGER_SIZE: Sets a threshold for the size of a transaction (in number of LCRs) after which
Oracle GoldenGate starts applying data before the commit record is received. The default
for Oracle GoldenGate is 15100.

• ENABLE_XSTREAM_TABLE_STATS: Controls whether statistics on applied transactions are
recorded in the V$GOLDENGATE_TABLE_STATS view or not collected at all. The default for
Oracle GoldenGate is Y (collect statistics).

• MAX_PARALLELISM: Limits the number of apply servers that can be used when the load is
heavy. This number is reduced again when the workload subsides. The automatic tuning of
the number of apply servers is effective only if PARALLELISM is greater than 1 and

Chapter 6
Configuring Oracle GoldenGate Replicat

6-24

MAX_PARALLELISM is greater than PARALLELISM. If PARALLELISM is equal to
MAX_PARALLELISM, the number of apply servers remains constant during the workload. The
default for Oracle GoldenGate is 50.

• MAX_SGA_SIZE: Controls the amount of shared memory used by the inbound server. The
shared memory is obtained from the streams pool of the SGA. The default for Oracle
GoldenGate is INFINITE.

• MESSAGE_TRACKING_FREQUENCY: Controls how often LCRs are marked for high-level LCR
tracing through the apply processing. The default value is 2000000, meaning that every 2
millionth LCR is traced. A value of zero (0) disables LCR tracing.

• PARALLELISM: Sets a minimum number of apply servers that can be used under normal
conditions. Setting PARALLELISM to 1 disables apply parallelism, and transactions are
applied with a single apply server process. The default for Oracle GoldenGate is 4. For
Oracle Standard Edition, this must be set to 1.

• PARALLELISM_INTERVAL: Sets the interval in seconds at which the current workload activity
is computed. Replicat calculates the mean throughput every 5 X PARALLELISM_INTERVAL
seconds. After each calculation, the apply component can increase or decrease the
number of apply servers to try to improve throughput. If throughput is improved, the apply
component keeps the new number of apply servers. The parallelism interval is used only if
PARALLELISM is set to a value greater than one and the MAX_PARALLELISM value is greater
than the PARALLELISM value. The default is 5 seconds.

• PRESERVE_ENCRYPTION: Controls whether to preserve encryption for columns encrypted
using Transparent Data Encryption. The default for Oracle GoldenGate is N (do not apply
the data in encrypted form).

• TRACE_LEVEL: Controls the level of tracing for the Replicat inbound server. For use only
with guidance from Oracle Support. The default for Oracle GoldenGate is 0 (no tracing).

• WRITE_ALERT_LOG: Controls whether the Replicat inbound server writes messages to the
Oracle alert log. The default for Oracle GoldenGate is Y (yes).

Next Steps After Configuring Replicat
After you have created a basic parameter file for Replicat, see the following for additional
configuration steps.

Configuring Extract if you have not configured Extract yet.

Creating a Parallel Replicat if you want to create integrated or nonintegrated parallel Replicats
for your deployment.
Additional Configuration Steps For Using Nonintegrated Replicat (if using nonintegrated
Replicat)

Additional Oracle GoldenGate Configuration for Your Database

Configuring DDL Support (to use Oracle GoldenGate DDL support)

#unique_625

Additional Configuration Steps For Using Nonintegrated Replicat
This chapter contains instructions that are specific only to Replicat when operating in
nonintegrated mode.
When Replicat operates in nonintegrated mode, triggers, cascade constraints, and unique
identifiers must be properly configured in an Oracle GoldenGate environment.

Chapter 6
Configuring Oracle GoldenGate Replicat

6-25

Disabling Triggers and Referential Cascade Constraints on Target Tables
Triggers and cascade constraints must be disabled on Oracle target tables when Replicat is in
nonintegrated mode.

Constraints must be disabled in nonintegrated Replicat mode because Oracle GoldenGate
replicates DML that results from the firing of a trigger or a cascade constraint. If the same
trigger or constraint gets activated on the target table, it becomes redundant because of the
replicated version, and the database returns an error. Consider the following example, where
the source tables are emp_src and salary_src and the target tables are emp_targ and
salary_targ.

1. A delete is issued for emp_src.

2. It cascades a delete to salary_src.

3. Oracle GoldenGate sends both deletes to the target.

4. The parent delete arrives first and is applied to emp_targ.

5. The parent delete cascades a delete to salary_targ.

6. The cascaded delete from salary_src is applied to salary_targ.

7. The row cannot be located because it was already deleted in step 5.

Understanding Replicat Processing in Relation to Parameter
Changes

Changes to the object specifications in the Replicat configuration cannot be made to affect
transactions that are already applied, but only for those not yet applied. This is an important
consideration when using coordinated or integrated Replicat.

For a Replicat in classic mode, the boundary between applied and non-applied transactions is
a clean one, because transactions are applied serially. For a coordinated or integrated
Replicat, however, there is no single point in the trail that marks applied and unapplied
transactions, because transactions are being applied asynchronously in parallel.

In coordinated or integrated modes, there are a low watermark, below which all transactions
were applied, and a high watermark above which no transactions were applied. In between
those boundaries there may be transactions that may or may not have been applied,
depending on the progress of individual threads. As a result, if Replicat is forced changes to
object specifications in the Replicat configuration may be reflected unevenly in the target after
Replicat is restarted. Examples of parameter changes for which this applies are changes to
MAP mappings, FILTER clauses, and EXCLUDE parameters.

Changes to the Replicat configuration should not be made after Replicat abends or is forcibly
terminated. Replicat should be allowed to recover to its last checkpoint after startup. For
coordinated Replicat, you can follow the administrative procedures in Administering a
Coordinated Replicat Configuration. Once the recovery is complete, Replicat can be shut down
gracefully with the STOP REPLICAT command, and then you can make the changes to the
object specifications.

Controlling Extract and Replicat
Here are basic directions for controlling Extract and Replicat processes.

Chapter 6
Understanding Replicat Processing in Relation to Parameter Changes

6-26

To Start Extract or Replicat

START {EXTRACT | REPLICAT} group_name

Where:

group_name is the name of the Extract or Replicat group or a wildcard set of groups (for
example, * or fin*).

To Stop Extract or Replicat Gracefully

STOP {EXTRACT | REPLICAT} group_name

Where:

group_name is the name of the Extract or Replicat group or a wildcard set of groups (for
example, * or fin*).

To Stop Replicat Forcefully

STOP REPLICAT group_name !
The current transaction is aborted and the process stops immediately. You cannot stop Extract
forcefully.

To End a Process that STOP Cannot Stop

KILL {EXTRACT | REPLICAT} group_name

Ending a process does not shut it down gracefully, and checkpoint information can be lost.

To Control Multiple Processes at Once

command ER wildcard specification

Where:

• command is: KILL, START, or STOP

• wildcard specification is a wildcard specification for the names of the process groups
that you want to affect with the command. The command affects every Extract and Replicat
group that satisfies the wildcard. Oracle GoldenGate supports up to 100,000 wildcard
entries.

Deleting Extract and Replicat
This section contains basic directions for deleting Extract and Replicat processes. See
Reference for Oracle GoldenGate for additional command options.

To Delete an Extract Group

1. Run GGSCI.

Chapter 6
Deleting Extract and Replicat

6-27

2. Issue the DBLOGIN command as the Extract database user (or a user with the same
privileges). You can use either of the following commands, depending on whether a local
credential store exists.

DBLOGIN [SOURCEDB dsn] {USERID user, PASSWORD password [encryption_options] |
USERIDALIAS alias [DOMAIN domain]}

3. Stop the Extract process.

STOP EXTRACT group_name
4. Issue the following command.

DELETE EXTRACT group_name
5. (Oracle) Unregister the Extract group from the database.

UNREGISTER EXTRACT group_name,database_name

To Delete a Replicat Group

1. Stop the Replicat process.

STOP REPLICAT group_name
2. Issue one of the following commands from GGSCI to log into the database.

DBLOGIN [SOURCEDB dsn] {USERID user, PASSWORD password [encryption_options] |
USERIDALIAS alias [DOMAIN domain]}

Where:

• SOURCEDB dsn supplies the data source name, if required as part of the connection
information.

• USERID user, PASSWORD password specifies an explicit database login credential.

• USERIDALIAS alias [DOMAIN domain] specifies an alias and optional domain of a
credential that is stored in a local credential store.

• encryption_options is one of the options that encrypt the password.

3. Issue the following command to delete the group.

DELETE REPLICAT group_name
Deleting a Replicat group preserves the checkpoints in the checkpoint table (if being used).
Deleting a process group also preserves the parameter file. You can create the same group
again, using the same parameter file, or you can delete the parameter file to remove the
group's configuration permanently.

About the Global Watermark
A clean shutdown of a Replicat ensures that all threads stop at the same transaction boundary
in the trail, known as the global watermark. This is defined as the synchronized point where all
records before this position were either committed or ignored by all of their respective threads.
If a clean shutdown is not possible, you can use the SYNCHRONIZE REPLICAT command to
return all of the threads to the position of the thread that made the most recent checkpoint.
This command is valid for coordinated, integrated, and parallel Replicats. See Synchronizing
Threads After an Unclean Stop for more information about recovering a coordinated Replicat
group.

Chapter 6
About the Global Watermark

6-28

Note:

Coordinated Replicat is an online process only. Do not use it to perform initial loads.

Chapter 6
About the Global Watermark

6-29

7
Instantiate

Learn about instantiation prerequisites and steps for Oracle GoldenGate.

Instantiating Oracle GoldenGate Using Initial Load
You can use Oracle GoldenGate to:

• Perform a standalone batch load to populate database tables for migration or other
purposes.

• Load data into database tables as part of an initial synchronization run in preparation for
change synchronization with Oracle GoldenGate.

If you are working with an Oracle to Oracle replication, there are optimized methods because
the instantiation has the highest precision based on the SCN value. In this case, the
HANDLECOLLISIONS parameter isn't required.

See HANDLECOLLISIONS | NOHANDLECOLLISIONS.

For non-Oracle environments, traditional methods are used for the initial load.

Prerequisites for Initial Load
Verify that you meet the prerequisites for executing an initial load that are described in the
following sections.

Disable DDL Processing
Before executing an initial load, disable DDL extraction and replication. DDL processing is
controlled by the DDL parameter in the Extract and Replicat parameter files.

Prepare the Target Tables
The following are suggestions that can make the load go faster and help you to avoid errors.

• Data: Make certain that the target tables are empty. Otherwise, there may be duplicate-row
errors or conflicts between existing rows and rows that are being loaded.

• Constraints: Disable foreign-key constraints and check constraints. Foreign-key
constraints can cause errors, and check constraints can slow down the loading process.
Constraints can be reactivated after the load concludes successfully.

• Indexes: Remove indexes from the target tables. Indexes are not necessary for inserts.
They will slow down the loading process significantly. For each row that is inserted into a
table, the database will update every index on that table. You can add back the indexes
after the load is finished.

7-1

Note:

A primary index is required for all applications that access DB2 for z/OS target
tables. You can delete all other indexes from the target tables, except for the
primary index.

• Keys: For Oracle GoldenGate to reconcile the replicated incremental data changes with
the results of the load, each target table must have a primary or unique key. If you cannot
create a key through your application, use the KEYCOLS option of the TABLE and MAP
parameters to specify columns as a substitute key for Oracle GoldenGate's purposes. A
key helps identify which row to process. If you cannot create keys, the source database
must be quiesced for the load.

Configure the Manager Process
On the source and target systems, configure and start a Manager process. One Manager can
be used for the initial-load processes and the change-synchronization processes. For
enhanced security, the target manager parameter file should have the following parameter for
RMTTASK to access Replicat on target:

ACCESSRULE, PROG *, IPADDR *, ALLOW
RMTTASK is only allowed to be used once in the Extract parameter file.

Create a Data-definitions File
A data-definitions file is required if the source and target databases have dissimilar definitions.
Oracle GoldenGate uses this file to convert the data to the format required by the target
database.

Create Change-synchronization Groups
To prepare for the capture and replication of transactional changes during the initial load,
create online Extract and Replicat groups. You will start these groups during the load
procedure. See Configuring Online Change Synchronization for more information.

Note:

If the load is performed from a quiet source database and will not be followed by
continuous change synchronization, you can omit these groups.

Do not start the Extract or Replicat groups until instructed to do so in the initial-load
instructions. Change synchronization keeps track of transactional changes while the load is
being applied, and then the target tables are reconciled with those changes.

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-2

Note:

The first time that Extract starts in a new Oracle GoldenGate configuration, any open
transactions will be skipped. Only transactions that begin after Extract starts are
captured.

Sharing Parameters between Process Groups
Some of the parameters that you use in a change-synchronization parameter file also are
required in an initial-load Extract and initial-load Replicat parameter file. You can copy those
parameters from one parameter file to another, or you can store them in a central file and use
the OBEY parameter in each parameter file to retrieve them. Alternatively, you can create an
Oracle GoldenGate macro for the shared parameters and then call the macro from each
parameter file with the MACRO parameter.

See Getting Started with the Oracle GoldenGate Process Interfaces for more information about
using OBEY and using macros.

Instantiation Requirements for DB2 LUW
During the initialization of the Oracle GoldenGate environment, you will be doing an initial data
synchronization and starting the Oracle GoldenGate processes for the first time. In conjunction
with those procedures, you will be creating process groups. To create an Extract group, an
initial start position must be established in the transaction log. This initial read position is on a
transaction boundary that is based on one of the following:

• End of the transaction file

• A specific LRI value

The start point is specified with the BEGIN option of the ADD EXTRACT command.

When the Extract process starts for the first time, it captures all the transaction data that it
encounters after the specified start point, but none of the data that occurred before that point.
This can cause partial transactions to be captured if open transactions span the start point.

To ensure initial transactional consistency:

To avoid the capture of partial transactions, initialize the Extract process at a point in time when
the database is in a paused state. DB2 LUW provides a QUIESCE command for such a purpose.
This is the only way to ensure transactional consistency.

Note:

After the Extract is past the initialization, subsequent restarts of the Extract do not
extract partial transactions, because the process uses recovery checkpoints to mark
its last read position.

To view open transactions:

IBM provides a utility called db2pd for monitoring DB2 databases and instances. You can use it
to view information about open transactions and to determine if any of them span the start
point. However, because DB2 LUW log records lack timestamps, it might not be possible to

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-3

make an accurate assessment. If possible, quiesce the database prior to initialization of Oracle
GoldenGate.

Improving the Performance of an Initial Load
For all initial load methods except those performed with a database utility, you can load large
databases more quickly by using parallel Oracle GoldenGate processes. To use parallel
processing, take the following steps.

1. Follow the directions in this chapter for creating an initial-load Extract and an initial-load
Replicat for each set of parallel processes that you want to use.

2. With the TABLE and MAP parameters, specify a different set of tables for each pair of
Extract-Replicat processes, or you can use the SQLPREDICATE option of TABLE to partition
the rows of large tables among the different Extract processes.

For all initial load methods, testing has shown that using the TCPBUFSIZE option in the RMTHOST
parameter produced three times faster throughput than loads performed without it. Do not use
this parameter if the target system is NonStop.

Loading Data with Oracle Data Pump
This method uses the Oracle Data Pump utility to establish the target data. After you apply the
copy to the target, you record the SCN at which the copy stopped. Transactions that were
included in the copy are skipped to avoid collisions from integrity violations. With the data
pump method, Replicat has the information about the consistent SCN from the export of each
table. Replicat will ignore changes that belongs to transactions up to this SCN. Transactions
after this SCN will be applied. No initial-load Oracle GoldenGate processes are required for
these methods.

Using Automatic Per Table Instantiation
You can automatically instantiate per table CSN filtering for Oracle Database with Oracle data
pump, which avoids having all of your tables at the same SCN.

On the Source Database

1. Use ADD TRANDATA and ADD SCHEMATRANDATA. ADD TRANDATA/SCHEMATRANDATA.PREPARECSN
automatically prepares the tables at the source so the Oracle data pump export dump file
includes instantiation CSNs. Replicat uses the per table instantiation CSN set by the
Oracle data pump (on import) to filter out trail records.

Use INFO TRANDATA to make sure that your table is prepared for instantiation and at what
point it was done. Here's a sample of the report file:

2016-09-29 15:30:00 INFO OGG-10154 Schema level PREPARECSN set to mode
NOWAIT on schema
 SCOTT

2. Stop Replicat on the target database.

3. Start Extract with the correct TABLE statement.

The EXPORT datapump option FLASHBACK_SCN is not needed as the tables have been prepared
earlier.

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-4

On the Target Database

1. Import your exported tables using Oracle data pump, which populates system tables and
views with instantiation SCNs, as well as the specified table data.

2. Start Replicat using one of the following:

Set the DBOPTIONS ENABLE_INSTANTIATION_FILTERING parameter in the Replicat
parameter file to enable table-level instantiation filtering.

You can remove this parameter when replicat has processed all transactions beyond the
instantiation SCN.

For all other Replicats, set the DBOPTIONS source_dbase_name global_name parameter in
the Replicat parameter file where global_name is the global name of the Oracle source
database that the trail is coming from.

Note:

When the source has no DOMAIN, do not specify a DOMAIN for the downstream
database.

Replicat queries the instantiation SCN on any new mapping and filter records accordingly.
For example, see the following report file output:

2015-06-29 17:12:39 INFO OGG-10155 Oracle GoldenGate Delivery for Oracle,
r1.prm:
Instantiation CSN filtering is enabled on table SCOTT.EMP at CSN 1,851,797.

You can use other methods for instantiation instead of using the data pump to export and
import tables also. One such method is using the create table as a select command or
RMAN. It's steps are:

1. Use create table with an at SCN of parameter, using the following command:

SET_INSTANTIATION_CSN SCN for object from global_name
For example:

SET_INSTANTIATION_CSN 1 FOR u1.t1 FROM DBS1.REGRESS.RDBMS.DEV.US.ORACLE.COM

2. If you want to remove the manual setting of the instantiation CSN later, you can use the
following command:

CLEAR_INSTANTIATION_CSN for object from global_name

Using Oracle Data Pump Table Instantiation
To perform instantiation with Oracle Data Pump, see My Oracle Support document 1276058.1.
To obtain this document, do the following:

1. Go to http://support.oracle.com.

2. Under Sign In, select your language and then log in with your Oracle Single Sign-On
(SSO).

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-5

3. On the Dashboard, expand the Knowledge Base heading.

4. Under Enter Search Terms, paste or type the document ID of 1276058.1 and then click
Search.

5. In the search results, select Oracle GoldenGate Best Practices: Instantiation from an
Oracle Source Database [Article ID 1276058.1].

6. Click the link under Attachments to open the article.

Loading Data from File to Replicat
To use Replicat to establish the target data, you use an initial-load Extract to extract source
records from the source tables and write them to an extract file in canonical format. From the
file, an initial-load Replicat loads the data using the database interface. During the load, the
change-synchronization groups extract and replicate incremental changes, which are then
reconciled with the results of the load.

During the load, the records are applied to the target database one record at a time, so this
method is considerably slower than any of the other initial load methods. This method permits
data transformation to be done on either the source or target system.

You can also use the Microservices Architecture to load data from file to Replicat. See
Instantiating Oracle GoldenGate Using Initial Load.

To Load Data From File to Replicat

1. Make certain that you have addressed the requirements in Prerequisites for Initial Load.

2. On the source and target systems, run GGSCI and start Manager.

START MANAGER

Note:

In a Windows cluster, start the Manager resource from the Cluster Administrator.

3. On the source system, issue the following command to create an initial-load Extract
parameter file.

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-6

EDIT PARAMS initial-load_Extract
4. Enter the parameters in the same order as shown in the following example, starting a new

line for each parameter statement. The following is a sample initial-load Extract parameter
file for loading data from file to Replicat.

SOURCEISTABLE
SOURCEDB mydb, USERIDALIAS ogg
RMTHOSTOPTIONS ny4387, MGRPORT 7888, ENCRYPT AES 192 KEYNAME mykey
ENCRYPTTRAIL AES192
RMTFILE /ggs/dirdat/initld, MEGABYTES 2, PURGE
TABLE hr.*;
TABLE sales.*;

Parameter Description

SOURCEISTABLE Designates Extract as an initial load process extracting
records directly from the source tables.

SOURCEDB dsn [, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

SOURCEDB specifies the source data source name (DSN).

USERID and USERIDALIAS specify database credentials if
required.

RMTHOSTOPTIONS hostname,
MGRPORT portnumber
[, ENCRYPT algorithm KEYNAME keyname]

Specifies the target system, the port where Manager is
running, and optional encryption of data across TCP/IP.

ENCRYPTTRAIL algorithm Encrypts the data in the remote file.

RMTFILE path,
[MEGABYTES n]

• path is the relative or fully qualified name of the file.

• MEGABYTES designates the size of each file.

Specifies the extract file to which the load data will be
written. Oracle GoldenGate creates this file during the
load. Checkpoints are not maintained with RMTFILE.

Note that the size of an extract file cannot exceed 2GB.

TABLE container.owner.object; Specifies the fully qualified name of an object or a fully
qualified wildcarded specification for multiple objects. If the
database is an Oracle multitenant container database, the
object name must include the name of the container or
catalog unless SOURCECATALOG is used.

See Specifying Object Names in Oracle GoldenGate Input
for guidelines for specifying object names in parameter
files.

CATALOGEXCLUDE
SCHEMAEXCLUDE
TABLEEXCLUDE
EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific objects from a wildcard
specification in the associated TABLE statement.

5. Enter any appropriate optional Extract parameters listed in the Reference for Oracle
GoldenGate.

6. Save and close the parameter file.

7. On the target system, issue the following command to create an initial-load Replicat
parameter file.

EDIT PARAMS initial-load_Replicat

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-7

8. Enter the parameters listed in Table 7-1 in the order shown, starting a new line for each
parameter statement. The following is a sample initial-load Replicat parameter file for
loading data from file to Replicat.

SPECIALRUN
END RUNTIME
TARGETDB mydb, USERIDALIAS ogg
EXTFILE /ggs/dirdat/initld
SOURCEDEFS /ggs/dirdef/source_defs
MAP hr.*, TARGET hr.*;
MAP sales.*, TARGET hr.*;

Table 7-1 Initial-load Replicat parameters

Parameter Description

SPECIALRUN Implements the initial-load Replicat as a one-time run that
does not use checkpoints.

END RUNTIME Directs the initial-load Replicat to terminate when the load is
finished.

TARGETDB dsn
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target data source name (DSN).

USERID and USERIDALIAS specify database credentials if
required.

EXTFILE path

• path is the relative or fully qualified name of the file.

Specifies the input extract file specified with the Extract
parameter RMTFILE.

{SOURCEDEFS file} |
ASSUMETARGETDEFS

• Use SOURCEDEFS if the source and target tables have
different definitions. Specify the relative or fully qualified
name of the source-definitions file generated by
DEFGEN.

• Use ASSUMETARGETDEFS if the source and target tables
have the same definitions.

Specifies how to interpret data definitions.

SOURCECATALOG Specifies a default source Oracle container. Enables the use
of two-part names (schema.object) where three-part
names otherwise would be required for those databases.
You can use multiple instances of this parameter to specify
different default containers or catalogs for different sets of
MAP parameters.

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-8

Table 7-1 (Cont.) Initial-load Replicat parameters

Parameter Description

MAP container.owner.object,
TARGET owner.object[, DEF template]
;

Specifies a relationship between a source object or objects
and a target object or objects. MAP specifies the source
object, and TARGET specifies the target object.

For the source object, specify the fully qualified name of the
object or a fully qualified wildcarded specification for multiple
objects. For an Oracle multitenant container database, the
source object name must include the name of the container
or catalog unless SOURCECATALOG is used.

For the target object, specify only the owner.object
components of the name, regardless of the database.
Replicat can only connect to one Oracle container. Use a
separate Replicat process for each container or catalog to
which you want to load data.

See Specifying Object Names in Oracle GoldenGate Input
for guidelines for specifying object names in parameter files.

The DEF option specifies a definitions template.

CATALOGEXCLUDE
SCHEMAEXCLUDE
MAPEXCLUDE
EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific source objects from a wildcard
specification in the associated MAP statement..

9. Enter any appropriate optional Replicat parameters listed in the Reference for Oracle
GoldenGate.

10. Save and close the file.

11. View the Replicat parameter file to make certain that the HANDLECOLLISIONS parameter is
listed. If not, add the parameter to the file.

12. On the source system, start change extraction.

START EXTRACT group
13. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who has

EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password [encryption_options]
14. (Oracle, if replicating sequences) Issue the following command to update each source

sequence and generate redo. From the redo, Replicat performs initial synchronization of
the sequences on the target. You can use an asterisk wildcard for any or all characters in
the name of a sequence (but not the owner).

FLUSH SEQUENCE owner.sequence
15. From the directory where Oracle GoldenGate is installed on the source system, start the

initial-load Extract.

UNIX and Linux:

$ /GGS directory/extract paramfile dirprm/initial-load_Extract.prm reportfile
path

Windows:

C:\> GGS directory\extract paramfile dirprm\initial-load_Extract.prm reportfile
path

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-9

Where:

initial-load_Extract is the name of the initial-load Extract that you used when creating
the parameter file, and path is the relative or fully qualified name of the Extract report file.

16. Verify the progress and results of the initial extraction by viewing the Extract report file
using the operating system's standard method for viewing files.

17. Wait until the initial extraction is finished.

18. On the target system, start the initial-load Replicat.

UNIX and Linux:

$ /GGS directory/replicat paramfile dirprm/initial-load_Replicat.prm reportfile
path

Windows:

C:\> GGS directory\replicat paramfile dirprm\initial-load_Replicat.prm reportfile
path

Where:

initial-load_Replicat is the name of the initial-load Replicat that you used when
creating the parameter file, and path is the relative or fully qualified name of the Replicat
report file.

19. When the initial-load Replicat is finished running, verify the results by viewing the Replicat
report file using the operating system's standard method for viewing files.

20. On the target system, start change replication.

START REPLICAT group
21. On the target system, issue the following command to verify the status of change

replication.

INFO REPLICAT group
22. Continue to issue the INFO REPLICAT command until you have verified that Replicat posted

all of the change data that was generated during the initial load. For example, if the initial-
load Extract stopped at 12:05, make sure Replicat posted data up to that point.

23. On the target system, issue the following command to turn off the HANDLECOLLISIONS
parameter and disable the initial-load error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS
24. On the target system, edit the Replicat parameter file to remove the HANDLECOLLISIONS

parameter. This prevents HANDLECOLLISIONS from being enabled again the next time
Replicat starts.

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an existing
parameter file that is in a character set other than that of the local operating
system (such as one where the CHARSET option was used to specify a different
character set). View the parameter file from outside GGSCI if this is the case;
otherwise, the contents may become corrupted.

25. Save and close the parameter file.

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-10

From this point forward, Oracle GoldenGate continues to synchronize data changes.

Loading Data with an Oracle GoldenGate Direct Load
To use an Oracle GoldenGate direct load, you run an Oracle GoldenGate initial-load Extract to
extract the source records and send them directly to an initial-load Replicat task. A task is
started dynamically by the Manager process and does not require the use of a Collector
process or file. The initial-load Replicat task delivers the load in large blocks to the target
database. Transformation and mapping can be done by Extract, Replicat, or both. During the
load, the change-synchronization groups extract and replicate incremental changes, which are
then reconciled with the results of the load.

To control which port is used by Replicat, and to speed up the search and bind process, use
the DYNAMICPORTLIST parameter in the Manager parameter file. Manager passes the list of port
numbers that are specified with this parameter to the Replicat task process. Replicat first
searches for a port from this list, and only if no ports are available from the list does Replicat
begin scanning in ascending order from the default Manager port number until it finds an
available port.

This method supports standard character, numeric, and datetime data types, as well as CLOB,
NCLOB, BLOB, LONG, XML, and user-defined datatypes (UDT) embedded with the following
attributes: CHAR, NCHAR, VARCHAR, NVARCHAR, RAW, NUMBER, DATE, FLOAT, TIMESTAMP, CLOB, BLOB,
XML, and UDT. Character sets are converted between source and target where applicable.

This method supports Oracle internal tables, but does not convert between the source and
target character sets during the load.

To Load Data with an Oracle GoldenGate Direct Load

1. Make certain to satisfy "Prerequisites for Initial Load".

2. On the source and target systems, run GGSCI and start Manager.

START MANAGER

Note:

In a Windows cluster, start the Manager resource from the Cluster Administrator.

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-11

3. On the source, issue the following command to create the initial-load Extract.

ADD EXTRACT initial-load_Extract, SOURCEISTABLE

Where:

• initial-load_Extract is the name of the initial-load Extract, up to eight characters.

• SOURCEISTABLE designates Extract as an initial-load process that reads complete
records directly from the source tables. Do not use any of the other ADD EXTRACT
service options or datasource arguments.

4. On the source system, issue the following command to create an initial-load Extract
parameter file.

EDIT PARAMS initial-load_Extract
5. Enter the parameters listed in Table 7-2 in the order shown, starting a new line for each

parameter statement. The following is a sample initial-load Extract parameter file for an
Oracle GoldenGate direct load.

EXTRACT initext
SOURCEDB mydb, USERIDALIAS ogg
RMTHOSTOPTIONS ny4387, MGRPORT 7888, ENCRYPT AES 192 KEYNAME mykey
RMTTASK REPLICAT, GROUP initrep
TABLE hr.*;
TABLE sales.*;

Table 7-2 Initial-load Extract Parameters for Oracle GoldenGate Direct Load

Parameter Description

EXTRACT initial-load_Extract Specifies the initial-load Extract.

SOURCEDB dsn
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

SOURCEDB specifies the source datasource name (DSN). See
Reference for Oracle GoldenGate for more information.

USERID and USERIDALIAS specify database credentials if
required.

RMTHOSTOPTIONS hostname,
MGRPORT portnumber
[, ENCRYPT algorithm KEYNAME keyname]

Specifies the target system, the port where Manager is running,
and optional encryption of data across TCP/IP.

RMTTASK replicat,
GROUP initial-load_Replicat

• initial-load_Replicat is the name of the initial-
load Replicat group

Directs Manager on the target system to dynamically start the
initial-load Replicat as a one-time task.

TABLE container.owner.object; Specifies the fully qualified name of an object or a fully qualified
wildcarded specification for multiple objects. If the database is
an Oracle multitenant database, the object name must include
the name of the container or catalog unless SOURCECATALOG is
used.

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-12

Table 7-2 (Cont.) Initial-load Extract Parameters for Oracle GoldenGate Direct Load

Parameter Description

CATALOGEXCLUDE
SCHEMAEXCLUDE
TABLEEXCLUDE
EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one another to
exclude specific objects from a wildcard specification in the
associated TABLE statement. See Reference for Oracle
GoldenGate for details.

6. Enter any appropriate optional Extract parameters listed in Reference for Oracle
GoldenGate.

7. Save and close the file.

8. On the target system, issue the following command to create the initial-load Replicat task.

ADD REPLICAT initial-load_Replicat, SPECIALRUN

Where:

• initial-load_Replicat is the name of the initial-load Replicat task.

• SPECIALRUN identifies the initial-load Replicat as a one-time run, not a continuous
process.

9. On the target system, issue the following command to create an initial-load Replicat
parameter file.

EDIT PARAMS initial-load_Replicat
10. Enter the parameters listed in Table 7-3 in the order shown, starting a new line for each

parameter statement. The following is a sample initial-load Replicat parameter file for an
Oracle GoldenGate direct load.

REPLICAT initrep
TARGETDB mydb, USERIDALIAS ogg
SOURCEDEFS /ggs/dirdef/source_defs
MAP hr.*, TARGET hr.*;
MAP sales.*, TARGET hr.*;

Table 7-3 Initial-load Replicat parameters for Oracle GoldenGate Direct Load

Parameter Description

REPLICAT initial-load_Replicat Specifies the initial-load Replicat task to be started by
Manager. Use the name that you specified when you created
the initial-load Replicat.

[TARGETDB dsn | container]
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target datasource name (DSN) or
Oracle container. See Reference for Oracle GoldenGate for
more information.

USERID and USERIDALIAS specify database credentials if
required.

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-13

Table 7-3 (Cont.) Initial-load Replicat parameters for Oracle GoldenGate Direct Load

Parameter Description

{SOURCEDEFS full_pathname} |
ASSUMETARGETDEFS

• Use SOURCEDEFS if the source and target tables have
different definitions. Specify the source-definitions file
generated by DEFGEN.

• Use ASSUMETARGETDEFS if the source and target tables
have the same definitions.

Specifies how to interpret data definitions.

SOURCECATALOG Specifies a default source Oracle container . Enables the use
of two-part names (schema.object) where three-part
names otherwise would be required for those databases. You
can use multiple instances of this parameter to specify
different default containers or catalogs for different sets of
MAP parameters.

MAP container.owner.object,
TARGET owner.object[, DEF template]
;

Specifies a relationship between a source object or objects
and a target object or objects. MAP specifies the source
object, and TARGET specifies the target object.

For the source object, specify the fully qualified name of the
object or a fully qualified wildcarded specification for multiple
objects. For an Oracle multitenant container database, the
source object name must include the name of the container
or catalog unless SOURCECATALOG is used.

For the target object, specify only the owner.object
components of the name, regardless of the database.
Replicat can only connect to one Oracle container. Use a
separate Replicat process for each container or catalog to
which you want to load data.

See Specifying Object Names in Oracle GoldenGate Input
for guidelines for specifying object names in parameter files.

The DEF option specifies a definitions template.

CATALOGEXCLUDE
SCHEMAEXCLUDE
MAPEXCLUDE
EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one another
to exclude specific source objects from a wildcard
specification in the associated MAP statement. See
Reference for Oracle GoldenGate for details.

11. Enter any appropriate optional Replicat parameters listed in the Reference for Oracle
GoldenGate.

12. Save and close the parameter file.

13. On the source system, start change extraction.

START EXTRACT group
14. View the Replicat parameter file to make certain that the HANDLECOLLISIONS parameter is

listed. If not, add the parameter to the file.

15. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who has
EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password [encryption_options]
16. (Oracle, if replicating sequences) Issue the following command to update each source

sequence and generate redo. From the redo, Replicat performs initial synchronization of

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-14

the sequences on the target. You can use an asterisk wildcard for any or all characters in
the name of a sequence (but not the owner).

FLUSH SEQUENCE owner.sequence
17. On the source system, start the initial-load Extract.

START EXTRACT initial-load_Extract

Note:

Do not start the initial-load Replicat. The Manager process starts it automatically
and terminates it when the load is finished.

18. On the target system, issue the following command to find out if the load is finished. Wait
until the load is finished before going to the next step.

VIEW REPORT initial-load_Replicat
19. On the target system, start change replication.

START REPLICAT group
20. On the target system, issue the following command to verify the status of change

replication.

INFO REPLICAT group
21. Continue to issue the INFO REPLICAT command until you have verified that Replicat posted

all of the change data that was generated during the initial load. For example, if the initial-
load Extract stopped at 12:05, make sure Replicat posted data up to that point.

22. On the target system, issue the following command to turn off the HANDLECOLLISIONS
parameter and disable the initial-load error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS
23. On the target system, edit the Replicat parameter file to remove the HANDLECOLLISIONS

parameter. This prevents HANDLECOLLISIONS from being enabled again the next time
Replicat starts.

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an existing
parameter file that is in a character set other than that of the local operating
system (such as one where the CHARSET option was used to specify a different
character set). View the parameter file from outside GGSCI if this is the case;
otherwise, the contents may become corrupted.

24. Save and close the parameter file. From this point forward, Oracle GoldenGate continues
to synchronize data changes.

Loading Data with a Direct Bulk Load to SQL*Loader
To use Oracle's SQL*Loader utility to establish the target data, you run an Oracle GoldenGate
initial-load Extract to extract the source records and send them directly to an initial-load
Replicat task. A task is a process that is started dynamically by the Manager process and does

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-15

not require the use of a Collector process or file. The initial-load Replicat task interfaces with
the API of SQL*Loader to load data as a direct-path bulk load. Data mapping and
transformation can be done by either the initial-load Extract or initial-load Replicat, or both.
During the load, the change-synchronization groups extract and replicate incremental changes,
which are then reconciled with the results of the load.

To control which port is used by Replicat, and to speed up the search and bind process, use
the DYNAMICPORTLIST parameter in the Manager parameter file. Manager passes the list of port
numbers that are specified with this parameter to the Replicat task process. Replicat first
searches for a port from this list, and only if no ports are available from the list does Replicat
begin scanning in ascending order from the default Manager port number until it finds an
available port.

This method supports standard character, numeric, and datetime data types, as well as CLOB,
NCLOB, BLOB, LONG, XML, and user-defined datatypes (UDT) embedded with the following
attributes: CHAR, NCHAR, VARCHAR, NVARCHAR, RAW, NUMBER, DATE, FLOAT, TIMESTAMP, CLOB, BLOB,
XML, and UDT. VARRAYS are not supported. Character sets are converted between source and
target where applicable.

This method supports Oracle internal tables, but does not convert between the source and
target character sets during the load.

To Load Data With a Direct Bulk Load to SQL*Loader

1. Make certain that you have addressed the requirements in "Prerequisites for Initial Load".

2. Grant LOCK ANY TABLE to the Replicat database user on the target Oracle database.

3. On the source and target systems, run GGSCI and start Manager.

START MANAGER
4. On the source system, issue the following command to create the initial-load Extract.

ADD EXTRACT initial-load_Extract, SOURCEISTABLE

Where:

• initial-load_Extract is the name of the initial-load Extract, up to eight characters.

• SOURCEISTABLE designates Extract as an initial-load process that reads complete
records directly from the source tables. Do not use any of the other ADD EXTRACT
service options or datasource arguments.

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-16

5. On the source system, issue the following command to create an initial-load Extract
parameter file.

EDIT PARAMS initial-load_Extract
6. Enter the parameters listed in Table 7-4 in the order shown, starting a new line for each

parameter statement. The following is a sample initial-load Extract parameter file for a
direct bulk load to SQL*Loader.

EXTRACT initext
SOURCEDB mydb, USERIDALIAS ogg
RMTHOSTOPTIONS ny4387, MGRPORT 7888, ENCRYPT AES 192 KEYNAME mykey
RMTTASK REPLICAT, GROUP initrep
TABLE hr.*;
TABLE sales.*;

Table 7-4 Initial-load Extract Parameters for a Direct Bulk Load to SQL*Loader

Parameter Description

EXTRACT initial-load_Extract Specifies the initial-load Extract.

[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

USERID and USERIDALIAS specify database credentials if
required.

RMTHOSTOPTIONS hostname,
MGRPORT portnumber
[, ENCRYPT algorithm KEYNAME keyname]

Specifies the target system, the port where Manager is
running, and optional encryption of data across TCP/IP.

RMTTASK replicat,
GROUP initial-load_Replicat

• initial-load_Replicat is the name of the initial-
load Replicat group.

Directs Manager on the target system to dynamically start the
initial-load Replicat as a one-time task.

TABLE [container.]owner.object; Specifies the fully qualified name of an object or a fully
qualified wildcarded specification for multiple objects. If the
database is an Oracle multitenant container database, the
object name must include the name of the container unless
SOURCECATALOG is used. See Specifying Object Names in
Oracle GoldenGate Input for guidelines for specifying object
names in parameter files.

CATALOGEXCLUDE
SCHEMAEXCLUDE
TABLEEXCLUDE
EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one another
to exclude specific objects from a wildcard specification in the
associated TABLE statement. See Reference for Oracle
GoldenGate for details.

7. Enter any appropriate optional parameters.

8. Save and close the file.

9. On the target system, issue the following command to create the initial-load Replicat.

ADD REPLICAT initial-load_Replicat, SPECIALRUN

Where:

• initial-load_Replicat is the name of the initial-load Replicat task.

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-17

• SPECIALRUN identifies the initial-load Replicat as a one-time task, not a continuous
process.

10. On the target system, issue the following command to create an initial-load Replicat
parameter file.

EDIT PARAMS initial-load_Replicat
11. Enter the parameters listed in Table 7-5 in the order shown, starting a new line for each

parameter statement. The following is a sample initial-load Replicat parameter file for a
direct load to SQL*Loader.

REPLICAT initrep
USERIDALIAS ogg
BULKLOAD
SOURCEDEFS /ggs/dirdef/source_defs
MAP hr.*, TARGET hr.*;
MAP sales.*, TARGET hr.*;

Table 7-5 Initial-load Replicat Parameters for Direct Load to SQL*Loader

Parameter Description

REPLICAT initial-load_Replicat Specifies the initial-load Replicat task to be started by Manager. Use
the name that you specified when you created the initial-load
Replicat.

[TARGETDB container]
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target Oracle container. See Reference for
Oracle GoldenGate for more information.

USERID and USERIDALIAS specify database credentials if required.

BULKLOAD Directs Replicat to interface directly with the Oracle SQL*Loader
interface. See Reference for Oracle GoldenGate for more information.

{SOURCEDEFS full_pathname} |
ASSUMETARGETDEFS

• Use SOURCEDEFS if the source and target tables
have different definitions. Specify the source-
definitions file generated by DEFGEN.

• Use ASSUMETARGETDEFS if the source and
target tables have the same definitions.

Specifies how to interpret data definitions.

SOURCECATALOG Specifies a default source Oracle container for subsequent MAP
statements. Enables the use of two-part names (schema.object)
where three-part names otherwise would be required. You can use
multiple instances of this parameter to specify different default
containers for different sets of MAP parameters.

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-18

Table 7-5 (Cont.) Initial-load Replicat Parameters for Direct Load to SQL*Loader

Parameter Description

MAP [container.]owner.object,
TARGET owner.object[, DEF template]
;

Specifies a relationship between a source object or objects and a
target object or objects. MAP specifies the source object, and TARGET
specifies the target object.

For the source object, specify the fully qualified name of the object or
a fully qualified wildcarded specification for multiple objects. For an
Oracle multitenant container database, the source object name must
include the name of the container unless SOURCECATALOG is used.

For the target object, specify only the owner.object components of
the name, regardless of the database. Replicat can only connect to
one Oracle container. Use a separate Replicat process for each
container to which you want to load data.

See Specifying Object Names in Oracle GoldenGate Input for
guidelines for specifying object names in parameter files.

The DEF option specifies a definitions template.

CATALOGEXCLUDE
SCHEMAEXCLUDE
MAPEXCLUDE
EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one another to
exclude specific source objects from a wildcard specification in the
associated MAP statement. See Reference for Oracle GoldenGate for
details.

12. Enter any appropriate optional Replicat parameters listed in Reference for Oracle
GoldenGate.

13. Save and close the parameter file.

14. On the source system, start change extraction.

START EXTRACT group
15. View the Replicat parameter file to make certain that the HANDLECOLLISIONS parameter is

listed. If not, add the parameter to the file.

16. (Oracle, if replicating sequences) Issue the DBLOGIN command as the user who has
EXECUTE privilege on update.Sequence.

GGSCI> DBLOGIN USERID DBLOGINuser, PASSWORD password [encryption_options]
17. (Oracle, if replicating sequences) Issue the following command to update each source

sequence and generate redo. From the redo, Replicat performs initial synchronization of
the sequences on the target. You can use an asterisk wildcard for any or all characters in
the name of a sequence (but not the owner).

FLUSH SEQUENCE owner.sequence
18. On the source system, start the initial-load Extract.

START EXTRACT initial-load_Extract

Caution:

Do not start the initial-load Replicat. The Manager process starts it automatically
and terminates it when the load is finished.

19. On the target system, issue the following command to determine when the load is finished.
Wait until the load is finished before proceeding to the next step.

Chapter 7
Instantiating Oracle GoldenGate Using Initial Load

7-19

VIEW REPORT initial-load_Extract
20. On the target system, start change replication.

START REPLICAT group
21. On the target system, issue the following command to verify the status of change

replication.

INFO REPLICAT group
22. Continue to issue the INFO REPLICAT command until you have verified that Replicat posted

all of the change data that was generated during the initial load. For example, if the initial-
load Extract stopped at 12:05, make sure Replicat posted data up to that point.

23. On the target system, issue the following command to turn off the HANDLECOLLISIONS
parameter and disable the initial-load error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS
24. On the target system, edit the Replicat parameter file to remove the HANDLECOLLISIONS

parameter. This prevents HANDLECOLLISIONS from being enabled again the next time
Replicat starts.

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an existing
parameter file that is in a character set other than that of the local operating
system (such as one where the CHARSET option was used to specify a different
character set). View the parameter file from outside GGSCI if this is the case;
otherwise, the contents may become corrupted..

25. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data changes.

Precise Instantiation for MySQL to MySQL Replication Using the
Dump Utility

For MySQL, the precise instantiation is only valid from MySQL to MySQL and not on non-
MySQL database sources and targets.

The precise instantiation in MySQL can be achieved using the dump utility of MySQL shell, and
not using the OGG initial load. MySQL shell provides utilities to dump an instance, schema or
tables. See the following link for details about the dump utility:

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html

Use MySQL Shell's instance dump utility util.dumpInstance() to dump or export the
source MySQL database.

Note:

The dump utility util.dumpInstance() is different from mysqldump.

Chapter 7
Precise Instantiation for MySQL to MySQL Replication Using the Dump Utility

7-20

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html

The dump utility creates multiple files. The position of the last committed record is found in the
@.json file. This file contains both lognumber/offset and the gtid set for the last committed
transaction.

An example position in the @.json file looks similar to the following:

"binlogFile": "binlog.000005",
 "binlogPosition": 1289,
 "gtidExecuted": "1174b383-3441-11e8-b90a-
c80aa9429920:1-9,\n1174b383-3441-11e8-b90a-c80aa9429921:1-9"

Precise Instantiation for Oracle GoldenGate Extract for MySQL
The following steps describe precise instantiation for Extract in Oracle GoldenGate Classic
Architecture:

1. To test the precise instantiation on non-gtid-based capture, make sure either the
gtid_mode is not enabled in the database server or _DISABLEGTIDRECOVERY true is
specified in the Extract parameter file.

2. After completing the initial load, use the instance dump.

3. Read the @.json file and get the values of binlogFile and binlogPosition from the
@.json file. Use these values as lognum and logpos.

4. Add Extract using lognum and logpos in Oracle GoldenGate GGSCI, as shown in the
following example:

ADD EXTRACT extpos tranlog lognum 5 logpos 1289

5. Perform the DML operations and verify that there are no duplicate or missing transactions
on the target side. Check the Extract report file for the initial position using lognum and
logpos.

Backing up the Oracle GoldenGate Environment
After you start Oracle GoldenGate processing, an effective backup routine is critical to
preserving the state of processing in the event of a failure. Unless the Oracle GoldenGate
working files can be restored, the entire replication environment must be re-instantiated,
complete with new initial loads.

As a best practice, include the entire Oracle GoldenGate home installation in your backup
routines. There are too many critical sub-directories, as well as files and programs at the root
of the directory, to keep track of separately. In any event, the most critical files are those that
consume the vast majority of backup space, and therefore it makes sense just to back up the
entire installation directory for fast, simple recovery.

Monitoring and Controlling Processing After the Instantiation
After the target is instantiated and replication is in effect, you can control processes and view
the overall health of the replication environment.

If you configured Replicat in integrated mode, you can use the STATS REPLICAT command to
view statistics on the number of transactions that are applied in integrated mode as compared
to those that are applied in direct apply mode.

Chapter 7
Backing up the Oracle GoldenGate Environment

7-21

STATS REPLICAT group

The output of this command shows the number of transactions applied, the number of
transactions that were redirected to direct apply, and the direct transaction ratio, among other
statistics. The statistics help you determine whether integrated Replicat is performing as
intended. If the environment is satisfactory and there is a high ratio of direct apply operations,
consider using nonintegrated Replicat. You can configure parallelism with nonintegrated
Replicat.

Note:

To ensure realistic statistics, view apply statistics only after you are certain that the
Oracle GoldenGate environment is well established, that configuration errors are
resolved, and that any anticipated processing errors are being handled properly.

You can also view runtime statistics for integrated Replicat in the V$views for each of the
inbound server components.

• The reader statistics are recorded in V$GG_APPLY_READER and include statistics on number
of messages read, memory used, and dependency counts.

• The apply coordinator statistics are recorded in V$GG_APPLY_COORDINATOR and record
statistics at the transaction level.

• The apply server statistics are recorded in V$GG_APPLY_SERVER. This view records
information for each of the apply server processes (controlled by parallelism and
max_parallelism parameters) as separate rows. The statistics for each apply server are
identified by the SERVER_ID column. If a SERVER_ID of 0 exists, this represents an
aggregate of any apply servers that exited because the workload was reduced.

• Statistics about the number of messages received by the database from Replicat are
recorded in the V$GG_APPLY_RECEIVER table.

To control processes, see Controlling Oracle GoldenGate Processes in Administering Oracle
GoldenGate.

To ensure that all processes are running properly and that errors are being handled according
to your error handling rules, see Handling Processing Errors in Administering Oracle
GoldenGate. Oracle GoldenGate provides commands and logs to view process status, lag,
warnings, and other information.

To know more about querying the following views, see Oracle Database Reference.

• V$GOLDENGATE_TABLE_STATS to see statistics for DML and collisions that occurred for each
replicated table that the inbound server processed.

• V$GOLDENGATE_TRANSACTION to see information about transactions that are being
processed by Oracle GoldenGate inbound servers.

Verifying Synchronization
To verify that the source and target data are synchronized, you can use the Oracle GoldenGate
Veridata product or use your own scripts to select and compare source and target data.

Chapter 7
Verifying Synchronization

7-22

8
Administer

Learn about installation prerequisites for Oracle GoldenGate, steps to install Oracle
GoldenGate for different databases, post-installation tasks, installing patches, and uninstalling
Oracle GoldenGate.

Data Management
Learn about various aspects of data management in Oracle GoldenGate, including DDL and
DML replication, requirements and steps for configuring procedural replication, using
SQLEXEC, Event Actions, and User Exits.

Details of Support for Data Types, Objects and Operations for Classic
Extract

This topic describes data types, objects and operations that are supported by Oracle
GoldenGate Classic Extract.

Data type Classic capture

Scalar columns including DATE and
DATETIME columns

Captured from redo.

LONG VARCHAR Not supported.

BASICFILE LOB columns LOB modifications done using DML (INSERT/UPDATE/DELETE) are captured from
redo.

LOB modifications done using DBMS_LOB package are captured from the source
table by fetching values from the base table.

SECUREFILE LOB columns Captured from redo, except for the following cases where SECUREFILE LOBs are
fetched from the source table:

• LOB is encrypted
• LOB is compressed
• LOB is deduplicated
• LOB is stored in-line
• LOB is modified using DBMS_LOB package

• NOLOGGING LOBs

Index Organized Tables (IOT) Captured from redo with the following restrictions:

• IOT with mapping table not supported.
• Direct load inserts to IOT tables cannot have the SORTED clause.

• IOT with prefix compression as specified with COMPRESS clause is not
supported.

XML columns stored as CLOB Captured from redo.

XML columns stored as Binary Fetched from source table.

XML columns stored as Object-
Relational

Not supported.

8-1

Data type Classic capture

XML Type Table Not supported.

User Defined Type (UDT) columns Fetched from source table.

Invisible Columns Not supported.

ANYDATA columns Fetched from source table with the following data types only:

BINARY_DOUBLE
BINARY_FLOAT
CHAR
DATE
INTERVAL DAY TO SECOND
INTERVAL YEAR TO MONTH
NCHAR
NUMBER
NVARCHAR2
RAW
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIMEZONE
UDTs

VARCHAR/VARCHAR2
Requires source database compatibility to be set to 11.2.0.0.0 or higher.

Spatial Types columns Fetched from source table.

Collections columns (VARRAYs) Fetched from source table.

Collections columns (Nested Tables) Fetched from source table with limitations.

See Details of Support for Objects and Operations in Oracle DML.

Object Table Fetched from source table.

Transparent Data Encryption (Column
Encryption & Tablespace Encryption)

Captured from redo.

Basic Compression Not supported.

OLTP-Compression Not supported.

Exadata Hybrid Columnar Compression Not supported.

XA on non-RAC database Captured from redo.

XA on RAC database Not supported.

To get support, must make sure all branches of XA goes to the same instance.

PDML on non-RAC database Captured from redo.

PDML on RAC database Not supported.

To get support, you must make sure child transactions spawned from a PDML
transaction do not span multiple instances.

Details of Support for Objects and Operations in Oracle DDL
This topic outlines the Oracle objects and operation types that Oracle GoldenGate supports for
the capture and replication of DDL operations.

Chapter 8
Data Management

8-2

Limitations of Support for Index-Organized Tables
These limitations apply to classic capture mode.

• IOT with key compression enabled (indicated by the COMPRESS keyword in the
key_compression clause) is not supported in classic capture mode, but is supported in
integrated capture mode.

Limitations of Support for Clustered Tables
Indexed clusters are supported by Extract while hash clusters are not supported. In classic
capture mode the following limitations apply:

• Encrypted and compressed clustered tables are not supported in classic capture.

• Extract in classic capture mode captures DML changes made to index clustered tables if
the cluster size remains the same. Any DDL that causes the cluster size to increase or
decrease may cause Extract to capture subsequent DML on that table incorrectly.

Non-supported Objects and Operations in Oracle DML (Classic)
The following are not supported in classic capture:

• Exadata Hybrid Columnar Compression

• Capture from tables with OLTP table compression

• Capture from tablespaces and tables created or altered with COMPRESS
• Capture from encrypted and compressed clustered tables

• Invisible column

• Distributed transactions. In Oracle versions 11.1.0.6 and higher, you can capture these
transactions if you make them non-distributed by using the following command, which
requires the database to be restarted.

alter system set _CLUSTERWIDE_GLOBAL_TRANSACTIONS=FALSE;
• RAC distributed XA and PDML distributed transactions

• Version enabled-tables

Details of Support for Objects and Operations in Oracle DML
This section outlines the Oracle objects and operations that Oracle GoldenGatesupports for
the capture and replication of DML operations.

Supported Objects and Operations in Oracle DML

Identity Columns are supported.

Creating a Data Definitions File
When replicating data from one table to another, an important consideration is whether the
column structures (metadata) of the source and target tables are identical. Oracle GoldenGate
looks up metadata for the following purposes:

Chapter 8
Data Management

8-3

Note:

This is only required when writing trails for Oracle GoldenGate 11.2 or earlier.

• On the source, to supply complete information about captured operations to the Replicat
process.

• On the target, to determine the structures of the target tables, so that the replicated data is
correctly mapped and converted (if needed) by Replicat.

When source and target table definitions are dissimilar, Oracle GoldenGate must perform a
conversion from one format to the other. To perform conversions, both sets of definitions must
be known to Oracle GoldenGate. Oracle GoldenGate can query the local database to get one
set of definitions, but it must rely on a data-definitions file to get definitions from the remote
database. The data-definitions file contains information about the metadata of the data that is
being replicated.

To create a definitions file, you configure and run the DEFGEN utility and then transfer the
definitions file to the target system. This file must be in place on the target system before you
start the Oracle GoldenGate processes for the first time.

Using DDL Replication
Learn how to install, use, configure, and remove DDL replication.
Data Definition Language (DDL) statements (operations) are used to define MySQL
database structures or schema. You can use these DDL statements for data replication
between MySQL source and target databases. MySQL DDL specifics are found in the MySQL
documentation at https://dev.mysql.com/doc/.

Oracle GoldenGate 21c for MySQL has introduced a transaction log based replication solution
for MySQL 8.0, which has improved performance and usability when compared to the plug-in
based DDL replication approach. However, plug-in based DDL replication approach is
supported in older releases.

Plug-in Based DDL Configuration Prerequisites and Considerations
This is an older approach to performing DDL Replication. The prerequisites for configuring
DDL replication are as follows:

• DDL replication is supported for MySQL 5.7.

• Remote capture for MySQL 5.7 doesn’t support DDL replication.

• Oracle GoldenGate DDL replication uses two plug-ins as a shared library, ddl_rewriter
and ddl_metadata, which must be installed on your MySQL server before Oracle
GoldenGate replication starts.

• The standalone application, Oracle GoldenGate metadata_server, must be running to
capture the DDL metadata.

• The history table under the new oggddl database (oggddl.history). This metadata
history table is used to store and retrieve the DDL metadata history. The history table
records must be ignored from being logged into the binary log so you must specify
binlog-ignore-db=oggddl in the my.cnf file.

• You should not manually drop the oggddl database or the history table because all DDL
statements that run after this event will be lost.

Chapter 8
Data Management

8-4

https://dev.mysql.com/doc/

• You should not stop the metadata_server during DDL capture as all the DDL statements
that run after this event will be lost.

• You should not manually remove the ddl_rewriter and the ddl_metadata plugins during
DDL capture because all DDL statements that run after this event will be lost.

• DDL executed within the stored procedure is not supported. For example , a DDL executed
as in the following is not supported.

CREATE PROCEDURE atssrc.generate_data()
BEGIN
DECLARE i INT DEFAULT 0;
WHILE i < 800 DO
SET i = i + 1;
IF (i = 100) then
alter table atssrc.`ddl6` add col2 DATE after id;
ELSEIF (i = 200) then
alter table atssrc.`ddl6` add col3 DATETIME after datetime;
ELSEIF (i = 300) then
alter table atssrc.`ddl6` add `col4` timestamp NULL DEFAULT NULL after
channel;
ELSEIF (i = 400) then
alter table atssrc.`ddl6` add col5 YEAR after value;
END IF;
END WHILE;
END$$
DELIMITER ;
call atssrc.generate_data();

• By design, the heartbeat table DDLs are ignored by the capture and you should create the
heartbeat tables manually at the target.

Installing DDL Replication
To install DDL replication, you run the installation script that is provided with Oracle
GoldenGate as the replication user. This user must have Create, Insert,Select, Delete, Drop,
and Truncate database privileges. Additionally, this user must have write permission to copy
the Oracle GoldenGate plugin in the MySQL plugin directory. For example, the MySQL plugin
are typically in /usr/lib64/mysql/plugin/.

The installation script options are install, uninstall, start, stop, and restart.

The command to install DDL replication uses the install option, user id, password, and port
number respectively:

bash-3.2$./ddl_install.sh install-option user-id password port-number

For example:

bash-3.2$./ddl_install.sh install root welcome 3306

The DDL replication installation script completes the following tasks:

1. Ensures that you have a supported MySQL server version installed. DDL replication is
supported for MySQL 5.7.10 and greater.

Chapter 8
Data Management

8-5

2. Locates the MySQL plugin directory.

3. Ensures that the ddl_rewriter, ddl_metadata plugins and the metadata_server files exist.
If these files are not found, then an error message appears and the installation exits.

4. Ensures that the plugins are already installed. If installed, the script exits with a message
requesting you to uninstall first and then reinstall.

5. Stops the metadata_server if it is running.

6. Deletes the oggddl.history table if it exists.

7. Starts the metadata_server as a daemon process.

8. Installs the ddl_rewriter and ddl_metadata plugins.

Using the Metadata Server
You can use the following options with the metadata server:

• You must have the Oracle GoldenGate metadata_server running to capture the DDL
metadata.

• Run the install script with start option to start the metadata server.

• Run the install script with stop option to stop the metadata server.

• Run the install script with restart option to stop the running metadata server and start
again.

• Oracle GoldenGate DDL replication uses two plugins as a shared library, ddl_rewriter
and ddl_metadata, both of which must be installed on your MySQL server before Oracle
GoldenGate replication starts.

• The oggddl.history metadata history table is used to store and retrieve the DDL
metadata history.

There is a single history table and metadata server for each MySQL server. If you want to
issue and capture DDLs from multiple instances of an Extract process on the same database
server at the same time, there is a possibility of conflict between accessing and populating the
metadata history table. Oracle recommends that you do not run and capture DDLs using
multiple Extract instances on the same MySQL server.

Using DDL Filtering for Replication
The following options are supported for MySQL DDL replication:

Option Description

DDL INCLUDE OPTYPE CREATE OBJTYPE
TABLE;

Include create table.

DDL INCLUDE OBJNAME ggvam.* Include tables under the ggvamdatabase.

Chapter 8
Data Management

8-6

Option Description

DDL INCLUDE OBJNAME atssrc.ggvam
EXCLUDE OBJNAME atssrc.emp

Exclude all the tables under the ggvam database
with the emp wildcard.

Note:

The EXCLUDE option
needs to be added
together with the
INCLUDE option in
this parameter.

DDL INCLUDE INSTR ‘XYZ’ Include DDL that contains this string.

DDL EXCLUDE INSTR ‘WHY’ Excludes DDL that contains this string.

DDL INCLUDE MAPPED MySQL DDL uses this option and should be used
as the default for Oracle GoldenGate MySQL DDL
replication. DDL INCLUDE ALL and DDL are not
supported.

DDL EXCLUDE ALL Default option.

For a full list of options, see DDL in Reference for Oracle GoldenGate.

Using DDL Statements and Options

• INCLUDE (default) means include all objects that fit the rest of the description. EXCLUDE
means to omit items that fit the description. Exclude rules take precedence over include
rules.

• OPTYPE specifies the types of operations to be included or excluded. You can use CREATE
and ALTER. Multiple OPTYPE can be specified using parentheses. For example, optype
(create, alter). The asterisk (*) wildcard can be specified to indicate all operation types,
and this is the default.

• OBJTYPE specifies the TABLE operations to include or exclude. The wildcard can be
specified to indicate all object types, and this is the default.

• OBJNAME specifies the actual object names to include or exclude. For example, eric.*.
Wildcards are specified as in other cases where multiple tables are specified. The default
is *.

• String indicates that the rule is true if any of the strings in stringspec are present (or
false if excludestring is specified and the stringspec is present). If multiple string
entries are made, at least one entry in each stringspec must be present to make the rule
evaluate true.

For example:

ddlops string (“a”, “b”), string (“c”) evaluates true if string “a” OR “b”
is present, AND string “c” is present

• local is specified if you want the rule to apply only to the current Extract trail (the Extract
trail to which the rule applies must precede this ddlops specification).

• The semicolon is required to terminate the parameter entry.

Chapter 8
Data Management

8-7

For example:

ddl optype (create, drop), objname (eric.*);
ddl exclude objname (eric.tab*);
exttrail a;
exttrail b;
ddl optype (create), objname (joe.*), string (“abc”, “xyz”) local;
ddl optype (alter), objtype (index);

In this preceding example, the exttrail a gets creates and drops for all objects that
belong to eric, except for objects that start with tab, exttrail a also gets all alter index
statements, unless the index name begins with tab (the rule is global even though it’s
included in exttrail b). exttrail b gets the same objects as a, and it also gets all
creates for objects that belong to joe when the string abcor xyz is present in the DDL text.
The ddlops.c module stores all DDL operation parameters and executes related rules.

Additionally, you can use the DDLOPTIONS parameter to configure aspects of DDL processing
other than filtering and string substitution. You can use multiple DDLOPTIONS statements and
Oracle recommends using one. If you are using multiple DDLOPTIONS statements, then make
each of them unique so that one does not override the other. Multiple DDLOPTIONS statements
are executed in the order listed in the parameter file.

See DDL and DDLOPTIONS.

Troubleshooting Plug-in Based DDL Replication
Plug-in based DDL replication relies on a metadata history table and the metadata plugin and
server. To troubleshoot when DDL replication is enabled, the history table contents and the
metadata plugin server logs are required.
You can use the mysqldump command to generate the history table dump using one of the
following examples:

mysqldump [options] database [tables]
mysqldump [options] --databases [options] DB1 [DB2 DB3...]
mysqldump [options] --all-databases [options]

For example, bash-3.2$ mysqldump -uroot -pwelcome oggddl history > outfile
The metadata plugins and server logs are located in the MySQL and Oracle GoldenGate
installation directories respectively.

If you find an error in the log files, you need to ensure that the metadata server is running.

Uninstalling Plug-In Based DDL Replication
If you no longer want to capture the DDL events, then you can use the same install script and
select the uninstall option to disable the DDL setup. Also, any Extract with DDL parameters
should be removed or disabled. If you want to capture the DDL again, you can run the install
script again. You should take care when multiple instances of the capture process is running on
the same instance of your MySQL server. The DDL setup should not be disturbed or
uninstalled when multiple capture processes are running and when at most one capture is
designed to capture the DDL statement.

Use the installation script with the uninstall option to uninstall DDL Replication. For example:

bash-3.2$./ddl_install.sh uninstall root welcome 3306

Chapter 8
Data Management

8-8

The script performs the following tasks:

1. Uninstalls the ddl_rewriter and ddl_metadata plugins.

2. Deletes the oggddl.history table if exists.

3. Removes the plugins from MySQL plugin directory.

4. Stops the metadata_server if it is running.

Oracle: DDL Replication
Learn about DDL replication in Oracle.

Extract supports the DDL capture method for Oracle 11.2.0.4 or later. An Extract can capture
DDL operations from a source Oracle database natively through the Oracle logmining server.

Managing the DDL Replication Environment
This chapter contains instructions for making changes to the database environment or the
Oracle GoldenGate environment when the Oracle GoldenGate DDL trigger is being used to
support DDL replication.
For instructions on configuring Oracle GoldenGate DDL support, see Configuring DDL
Support .

Note:

This chapter is only relevant for classic capture mode or integrated capture mode in
which trigger-based DDL capture is being used.

Disabling DDL Processing Temporarily
You must disable DDL activities before performing an instantiation or other tasks, if directed.

You can resume DDL processing after the task is finished.

1. Disable user DDL operations on the source database.

2. If there are previous DDL replication processes that are still active, make certain that the
last executed DDL operation was applied to the target before stopping those processes, so
that the load data is applied to objects that have the correct metadata.

3. Comment out the DDL parameter in the Extract and Replicat parameter files that you
configured for the new Oracle GoldenGate environment. Comment out any other
parameters that support DDL.

4. Disable the Oracle GoldenGate DDL trigger, if one is in use. See Enabling and Disabling
the DDL Trigger.

Enabling and Disabling the DDL Trigger
You can enable and disable the trigger that captures DDL operations without making any
configuration changes within Oracle GoldenGate.

The following scripts control the DDL trigger.

Chapter 8
Data Management

8-9

• ddl_disable: Disables the trigger. No further DDL operations are captured or replicated
after you disable the trigger.

• ddl_enable: Enables the trigger. When you enable the trigger, Oracle GoldenGate starts
capturing current DDL changes, but does not capture DDL that was generated while the
trigger was disabled.

Before running these scripts, disable all sessions that ever issued DDL, including those of the
Oracle GoldenGate processes, SQL*Plus, business applications, and any other software that
uses Oracle. Otherwise the database might generate an ORA-04021 error. Do not use these
scripts if you intend to maintain consistent DDL on the source and target systems.

Maintaining the DDL Marker Table
You can purge rows from the marker table at any time. It does not keep DDL history.

To purge the marker table, use the Manager parameter PURGEMARKERHISTORY. Manager gets
the name of the marker table from one of the following:

1. The name given with the MARKERTABLE parameter in the GLOBALS file, if specified.

2. The default name of GGS_MARKER.

PURGEMARKERHISTORY provides options to specify maximum and minimum lengths of time to
keep a row, based on the last modification date.

Deleting the DDL Marker Table
Do not delete the DDL marker table unless you want to discontinue synchronizing DDL.

The marker table and the DDL trigger are interdependent. An attempt to drop the marker table
fails if the DDL trigger is enabled. This is a safety measure to prevent the trigger from
becoming invalid and missing DDL operations. If you remove the marker table, the following
error is generated:

ORA-04098: trigger 'SYS.GGS_DDL_TRIGGER_BEFORE' is invalid and failed re-validation

The proper way to remove an Oracle GoldenGate DDL object depends on your plans for the
rest of the DDL environment. To choose the correct procedure, see one of the following:

• Restoring an Existing DDL Environment to a Clean State

• Removing the DDL Objects from the System

Maintaining the DDL History Table
You can purge the DDL history table to control its size, but do so carefully.

The DDL history table maintains the integrity of the DDL synchronization environment. Purges
to this table cannot be recovered through the Oracle GoldenGate interface.

1. To prevent any possibility of DDL history loss, make regular full backups of the history
table.

2. To ensure that purged DDL can be recovered, enable Oracle Flashback for the history
table. Set the flashback retention time well past the point where it could be needed. For
example, if your full backups are at most one week old, retain two weeks of flashback.
Oracle GoldenGate can be positioned backward into the flashback for reprocessing.

3. If possible, purge the DDL history table manually to ensure that essential rows are not
purged accidentally. If you require an automated purging mechanism, use the

Chapter 8
Data Management

8-10

PURGEDDLHISTORY parameter in the Manager parameter file. You can specify maximum and
minimum lengths of time to keep a row.

Note:

Temporary tables created by Oracle GoldenGate to increase performance might be
purged at the same time as the DDL history table, according to the same rules. The
names of these tables are derived from the name of the history table, and their
purging is reported in the Manager report file. This is normal behavior.

Deleting the DDL History Table
The history table and the DDL trigger are interdependent. An attempt to drop the history table
fails if the DDL trigger is enabled. This is a safety measure to prevent the trigger from
becoming invalid and missing DDL operations.

Do not delete the DDL history table unless you want to discontinue synchronizing DDL. The
history table contains a record of DDL operations that were issued. Once an Extract switches
from using the DDL trigger to not using the trigger, as when source database redo compatibility
is advanced to 11.2.0.4 or greater, these objects can be deleted though not immediately. It is
imperative that all mining of the redo generated before the compatibility change be complete
and that this redo not need to be mined again.

If you remove the history table, the following error is generated:

ORA-04098: trigger 'SYS.GGS_DDL_TRIGGER_BEFORE' is invalid and failed re-validation

The proper way to remove an Oracle GoldenGate DDL object depends on your plans for the
rest of the DDL environment. To choose the correct procedure, see one of the following:

• Restoring an Existing DDL Environment to a Clean State

• Removing the DDL Objects from the System

Purging the DDL Trace File
To prevent the DDL trace file from consuming excessive disk space, run the ddl_cleartrace
script on a regular basis.

This script deletes the trace file, but Oracle GoldenGate will create it again.

The default name of the DDL trace file is ggs_ddl_trace.log. It is in the USER_DUMP_DEST
directory of Oracle. The ddl_cleartrace script is in the Oracle GoldenGate directory.

Applying Database Patches and Upgrades when DDL Support is Enabled
Database patches and upgrades usually invalidate the Oracle GoldenGate DDL trigger and
other Oracle GoldenGate DDL objects.

Before applying a database patch, do the following.

1. Log in to SQL*Plus as a user that has SYSDBA privileges.

2. Disable the Oracle GoldenGate DDL trigger by running the ddl_disable script in
SQL*Plus.

3. Apply the patch.

Chapter 8
Data Management

8-11

4. Enable the DDL trigger by running the ddl_enable script in SQL*Plus.

Note:

Database upgrades and patches generally operate on Oracle objects. Because
Oracle GoldenGate filters out those objects automatically, DDL from those
procedures is not replicated when replication starts again.

To avoid recompile errors after the patch or upgrade, which are caused if the trigger is not
disabled before the procedure, consider adding calls to @ddl_disable and @ddl_enable at the
appropriate locations within your scripts.

Apply Oracle GoldenGate Patches and Upgrades when DDL support is Enabled
Use the following steps to apply a patch or upgrade to the DDL objects. This section explains
how to apply Oracle GoldenGate patches and upgrades when DDL support is enabled.

Note:

If the release notes or upgrade documentation for your Oracle GoldenGate release
contain instructions similar to those provided in this section, follow those instructions
instead the ones in this section. Do not use this procedure for an upgrade from an
Oracle GoldenGate version that does not support DDL statements that are larger
than 30K (pre-version 10.4). To upgrade in that case, follow the instructions in
Restoring an Existing DDL Environment to a Clean State.

This procedure may or may not preserve the current DDL synchronization configuration,
depending on whether the new build requires a clean installation.

1. Run GGSCI. Keep the session open for the duration of this procedure.

2. Stop Extract to stop DDL capture.

STOP EXTRACT group
3. Stop Replicat to stop DDL replication.

STOP REPLICAT group
4. Download or extract the patch or upgrade files according to the instructions provided by

Oracle GoldenGate.

5. Change directories to the Oracle GoldenGate installation directory.

6. Log in to SQL*Plus as a user that has SYSDBA privileges.

7. Disconnect all sessions that ever issued DDL, including those of Oracle GoldenGate
processes, SQL*Plus, business applications, and any other software that uses Oracle.
Otherwise the database might generate an ORA-04021 error.

8. Run the ddl_disable script to disable the DDL trigger.

9. Run the ddl_setup script. You are prompted for the name of the Oracle GoldenGate DDL
schema. If you changed the schema name, use the new one.

10. Run the ddl_enable.sql script to enable the DDL trigger.

Chapter 8
Data Management

8-12

11. In GGSCI, start Extract to resume DDL capture.

START EXTRACT group
12. Start Replicat to start DDL replication.

START REPLICAT group

Restoring an Existing DDL Environment to a Clean State
Follow these steps to completely remove, and then reinstall, the Oracle GoldenGate DDL
objects.

This procedure creates a new DDL environment and removes any current DDL history.

Note:

Due to object interdependencies, all objects must be removed and reinstalled in this
procedure.

1. If you are performing this procedure in conjunction with the installation of a new Oracle
GoldenGate version, download and install the Oracle GoldenGate files, and create or
update process groups and parameter files as necessary.

2. (Optional) To preserve the continuity of source and target structures, stop DDL activities
and then make certain that Replicat finished processing all of the DDL and DML data in the
trail. To determine when Replicat is finished, issue the following command until you see a
message that there is no more data to process.

INFO REPLICAT group

Note:

Instead of using INFO REPLICAT, you can use the EVENTACTIONS option of TABLE
and MAP to stop the Extract and Replicat processes after the DDL and DML has
been processed.

3. Run GGSCI.

4. Stop Extract to stop DDL capture.

STOP EXTRACT group
5. Stop Replicat to stop DDL replication.

STOP REPLICAT group
6. Change directories to the Oracle GoldenGate installation directory.

7. Log in to SQL*Plus as a user that has SYSDBA privileges.

8. Disconnect all sessions that ever issued DDL, including those of Oracle GoldenGate
processes, SQL*Plus, business applications, and any other software that uses Oracle.
Otherwise the database might generate an ORA-04021 error.

9. Run the ddl_disable script to disable the DDL trigger.

Chapter 8
Data Management

8-13

10. Run the ddl_remove script to remove the Oracle GoldenGate DDL trigger, the DDL history
and marker tables, and other associated objects. This script produces a
ddl_remove_spool.txt file that logs the script output and a ddl_remove_set.txt file that
logs environment settings in case they are needed for debugging.

11. Run the marker_remove script to remove the Oracle GoldenGate marker support system.
This script produces a marker_remove_spool.txt file that logs the script output and a
marker_remove_set.txt file that logs environment settings in case they are needed for
debugging.

12. If you are changing the DDL schema for this installation, grant the following permission to
the Oracle GoldenGate schema.

GRANT EXECUTE ON utl_file TO schema;
13. If you are changing the DDL schema for this installation, the schema's default tablespace

must be dedicated to that schema; do not allow any other schema to share it. AUTOEXTEND
must be set to ON for this tablespace, and the tablespace must be sized to accommodate
the growth of the GGS_DDL_HIST and GGS_MARKER tables. The GGS_DDL_HIST table, in
particular, will grow in proportion to overall DDL activity.

Note:

If the DDL tablespace fills up, Extract stops capturing DDL. To cause user DDL
activity to fail when that happens, edit the params.sql script and set the
ddl_fire_error_in_trigger parameter to TRUE. Stopping user DDL gives you
time to extend the tablespace size and prevent the loss of DDL capture.
Managing tablespace sizing this way, however, requires frequent monitoring of
the business applications and Extract to avoid business disruptions. Instead,
Oracle recommends that you size the tablespace appropriately and set
AUTOEXTEND to ON so that the tablespace does not fill up.

WARNING:

Do not edit any other parameters in params.sql except if you need to follow
documented instructions to change certain object names.

14. If you are changing the DDL schema for this installation, edit the GLOBALS file and specify
the new schema name with the following parameter.

GGSCHEMA schema_name
15. Run the marker_setup script to reinstall the Oracle GoldenGate marker support system.

You are prompted for the name of the Oracle GoldenGate schema.

16. Run the ddl_setup script. You are prompted for the name of the Oracle GoldenGate DDL
schema.

17. Run the role_setup script to recreate the Oracle GoldenGate DDL role.

18. Grant the role to all Oracle GoldenGate users under which the following Oracle
GoldenGate processes run: Extract, Replicat, GGSCI, and Manager. You might need to
make multiple grants if the processes have different user names.

19. Run the ddl_enable.sql script to enable the DDL trigger.

Chapter 8
Data Management

8-14

Removing the DDL Objects from the System
This procedure removes the DDL environment and removes the history that maintains
continuity between source and target DDL operations.

Note:

Due to object interdependencies, all objects must be removed.

1. Run GGSCI.

2. Stop Extract to stop DDL capture.

STOP EXTRACT group
3. Stop Replicat to stop DDL replication.

STOP REPLICAT group
4. Change directories to the Oracle GoldenGate installation directory.

5. Run SQL*Plus and log in as a user that has SYSDBA privileges.

6. Disconnect all sessions that ever issued DDL, including those of Oracle GoldenGate
processes, SQL*Plus, business applications, and any other software that uses Oracle.
Otherwise the database might generate an ORA-04021 error.

7. Run the ddl_disable script to disable the DDL trigger.

8. Run the ddl_remove script to remove the Oracle GoldenGate DDL trigger, the DDL history
and marker tables, and the associated objects. This script produces a
ddl_remove_spool.txt file that logs the script output and a ddl_remove_set.txt file that
logs current user environment settings in case they are needed for debugging.

9. Run the marker_remove script to remove the Oracle GoldenGate marker support system.
This script produces a marker_remove_spool.txt file that logs the script output and a
marker_remove_set.txt file that logs environment settings in case they are needed for
debugging.

Configuring DDL Support
This chapter contains information to help you understand and configure DDL support in Oracle
GoldenGate.

Prerequisites for Configuring DDL
Extract can capture DDL operations from a source Oracle database natively through the
Oracle logmining server.

Support for DDL Capture with Extract

Extract supports the DDL capture method for Oracle 11.2.0.4 or later.

Oracle databases that have the COMPATIBLE parameter set to 11.2.0.4 or higher support DDL
capture through the database logmining server. This method is known as native DDL capture.

Chapter 8
Data Management

8-15

Native DDL capture is the only supported method for capturing DDL from a multitenant
container database.

For downstream mining, the source database must also have database COMPATIBLE set to
11.2.0.4 or higher to support DDL capture through the database logmining server.

Support for DDL Capture in Classic Capture Mode

Classic capture mode requires the use of the Oracle GoldenGate DDL trigger to capture DDL
from an Oracle Database. Native DDL capture is not supported by classic capture mode.

DDL capture from a multitenant container database is not supported by classic capture mode.

When you are using Classic capture mode and replicating a CREATE USER using the DDL
trigger, the trigger owner and the Extract login user must match to avoid a privilege error when
attempting to replicate the CREATE USER command.

To use trigger-based DDL capture, you must install the DDL trigger and supporting database
objects before you configure Extract for DDL support, see Installing Trigger-Based DDL
Capture.

Configuration Guidelines for DDL Support
The following are guidelines to take into account when configuring Oracle GoldenGate
processes to support DDL replication.

Database Privileges

For database privileges that are required for Oracle GoldenGate to support DDL capture and
replication, see Establishing Oracle GoldenGate Credentials .

Parallel Processing

If using parallel Extract and/or Replicat processes, keep related DDL and DML together in the
same process stream to ensure data integrity. Configure the processes so that:

• all DDL and DML for any given object are processed by the same Extract group and by the
same Replicat group.

• all objects that are relational to one another are processed by the same process group.

For example, if ReplicatA processes DML for Table1, then it should also process the DDL for
Table1. If Table2 has a foreign key to Table1, then its DML and DDL operations also should be
processed by ReplicatA.

If an Extract group writes to multiple trails that are read by different Replicat groups, Extract
sends all of the DDL to all of the trails. Use each Replicat group to filter the DDL by using the
filter options of the DDL parameter in the Replicat parameter file.

Object Names

Oracle GoldenGate preserves the database-defined object name, case, and character set.
This support preserves single-byte and multibyte names, symbols, and accent characters at all
levels of the database hierarchy.

Object names must be fully qualified with their two-part or three-part names when supplied as
input to any parameters that support DDL synchronization. You can use the question mark (?)
and asterisk (*) wildcards to specify object names in configuration parameters that support
DDL synchronization, but the wildcard specification also must be fully qualified as a two-part or

Chapter 8
Data Management

8-16

three-part name. To process wildcards correctly, the WILDCARDRESOLVE parameter is set to
DYNAMIC by default. If WILDCARDRESOLVE is set to anything else, the Oracle GoldenGate process
that is processing DDL operations will abend and write the error to the process report.

Data Definitions

Because DDL support requires a like-to-like configuration, the ASSUMETARGETDEFS parameter
must be used in the Replicat parameter file. Replicat will abend if objects are configured for
DDL support and the SOURCEDEFS parameter is being used. For more information about
ASSUMETARGETDEFS, see Reference for Oracle GoldenGate.

For more information about using a definitions file, see Administering Oracle GoldenGate.

Truncates

TRUNCATE statements can be supported as follows:

• As part of the Oracle GoldenGate full DDL support, which supports TRUNCATE TABLE, ALTER
TABLE TRUNCATE PARTITION, and other DDL. This is controlled by the DDL parameter (see
Enabling DDL Support.)

• As standalone TRUNCATE support. This support enables you to replicate TRUNCATE TABLE,
but no other DDL. The GETTRUNCATES parameter controls the standalone TRUNCATE feature.
For more information, see Reference for Oracle GoldenGate.

To avoid errors from duplicate operations, only one of these features can be active at the same
time.

Initial Synchronization

To configure DDL replication, start with a target database that is synchronized with the source
database. DDL support is compatible with the Replicat initial load method.

Before executing an initial load, disable DDL extraction and replication. DDL processing is
controlled by the DDL parameter in the Extract and Replicat parameter files.

After initial synchronization of the source and target data, use all of the source sequence
values at least once with NEXTVAL before you run the source applications. You can use a script
that selects NEXTVAL from every sequence in the system. This must be done while Extract is
running.

Data Continuity After CREATE or RENAME

To replicate DML operations on new Oracle tables resulting from a CREATE or RENAME operation,
the names of the new tables must be specified in TABLE and MAP statements in the parameter
files. You can use wildcards to make certain that they are included.

To create a new user with CREATE USER and then move new or renamed tables into that
schema, the new user name must be specified in TABLE and MAP statements. To create a new
user fin2 and move new or renamed tables into that schema, the parameter statements could
look as follows, depending on whether you want the fin2 objects mapped to the same, or
different, schema on the target:

Extract:

TABLE fin2.*;

Replicat:

Chapter 8
Data Management

8-17

MAP fin2.*, TARGET different_schema.*;

Overview of DDL Synchronization
Oracle GoldenGate supports the synchronization of DDL operations from one database to
another.

DDL synchronization can be active when:

• business applications are actively accessing and updating the source and target objects.

• Oracle GoldenGate transactional data synchronization is active.

The components that support the replication of DDL and the replication of transactional data
changes (DML) are independent of each other. Therefore, you can synchronize:

• just DDL changes

• just DML changes

• both DDL and DML

For a list of supported objects and operations for DDL support for Oracle, see Supported
Objects and Operations in Oracle DDL.

Limitations of Oracle GoldenGate DDL Support
This topic contains some limitations of the DDL feature.

For any additional limitations that were found after this documentation was published, see the
Release Notes for Oracle GoldenGate.

DDL Statement Length

Oracle GoldenGate measures the length of a DDL statement in bytes, not in characters. The
supported length is approximately 4 MB, allowing for some internal overhead that can vary in
size depending on the name of the affected object and its DDL type, among other
characteristics. If the DDL is longer than the supported size, Extract will issue a warning and
ignore the DDL operation.

Supported Topologies

Oracle GoldenGate supports DDL synchronization only in a like-to-like configuration. The
source and target object definitions must be identical.

DDL replication is only supported for Oracle to Oracle replication. It is not supported between
different databases, like Oracle to Teradata, or SQL Server to Oracle.

Oracle GoldenGatedoes not support DDL on a standby database.

Oracle GoldenGate supports DDL replication in all supported unidirectional configurations, and
in bidirectional configurations between two, and only two, systems. For special considerations
in an Oracle active-active configuration, see Propagating DDL in Active-Active (Bidirectional)
Configurations.

Filtering, Mapping, and Transformation

DDL operations cannot be transformed by any Oracle GoldenGate process. However, source
DDL can be mapped and filtered to a different target object by a primary Extract or a Replicat
process. Mapping or filtering of DDL by a data-pump Extract is not permitted, and the DDL is
passed as it was received from the primary Extract.

Chapter 8
Data Management

8-18

For example, ALTER TABLE TableA is processed by a data pump as ALTER TABLE TableA. It
cannot be mapped by that process as ALTER TABLE TableB, regardless of any TABLE
statements that specify otherwise.

Renames

RENAME operations on tables are converted to the equivalent ALTER TABLE RENAME so that a
schema name can be included in the target DDL statement. For example RENAME tab1 TO
tab2 could be changed to ALTER TABLE schema.tab1 RENAME TO schema.tab2. The
conversion is reported in the Replicat process report file.

Interactions Between Fetches from a Table and DDL

Oracle GoldenGate supports some data types by identifying the modified row from the redo
stream and then querying the underlying table to fetch the changed columns. For instance,
partial updates on LOBs are supported by identifying the modified row and the LOB column
from the redo log, and then querying for the LOB column value for the row from the base table.
A similar technique is employed to support UDT.

Note:

Extract only requires fetch for UDT when not using native object support.

Such fetch-based support is implemented by issuing a flashback query to the database based
on the SCN (System Change Number) at which the transaction committed. The flashback
query feature has certain limitations. Certain DDL operations act as barriers such that
flashback queries to get data prior to these DDLs do not succeed. Examples of such DDL are
ALTER TABLE MODIFY COLUMN and ALTER TABLE DROP COLUMN.

Thus, in cases where there is Extract capture lag, an intervening DDL may cause fetch
requests for data prior to the DDL to fail. In such cases, Extract falls back and fetches the
current snapshot of the data for the modified column. There are several limitations to this
approach: First, the DDL could have modified the column that Extract needs to fetch (for
example, suppose the intervening DDL added a new attribute to the UDT that is being
captured). Second, the DDL could have modified one of the columns that Extract uses as a
logical row identifier. Third, the table could have been renamed before Extract had a chance to
fetch the data.

To prevent fetch-related inconsistencies such as these, take the following precautions while
modifying columns.

1. Pause all DML to the table.

2. Wait for Extract to finish capturing all remaining redo, and wait for Replicat to finish
processing the captured data from trail. To determine whether Replicat is finished, issue
the following command in GGSCI until you see a message that there is no more data to
process.

INFO REPLICAT group

3. Execute the DDL on the source.

4. Resume source DML operations.

Chapter 8
Data Management

8-19

Comments in SQL

If a source DDL statement contains a comment in the middle of an object name, that comment
will appear at the end of the object name in the target DDL statement. For example:

Source:

CREATE TABLE hr./*comment*/emp ...

Target:

CREATE TABLE hr.emp /*comment*/ ...

This does not affect the integrity of DDL synchronization. Comments in any other area of a
DDL statement remain in place when replicated.

Compilation Errors

If a CREATE operation on a trigger, procedure, function, or package results in compilation errors,
Oracle GoldenGate executes the DDL operation on the target anyway. Technically, the DDL
operations themselves completed successfully and should be propagated to allow
dependencies to be executed on the target, for example in recursive procedures.

Interval Partitioning

DDL replication is unaffected by interval partitioning, because the DDL is implicit. However, this
is system generated name so Replicat cannot convert this to the target.I believe this is
expected behavior. You must drop the partition on the source. For example:

alter table t2 drop partition for (20);

DML or DDL Performed Inside a DDL Trigger

DML or DDL operations performed from within a DDL trigger are not captured.

LogMiner Data Dictionary Maintenance

Oracle recommends that you gather dictionary statistics after the Extract is registered
(logminer session) and the logminer dictionary is loaded, or after any significant DDL activity
on the database.

Understanding DDL Scopes
Database objects are classified into scopes. A scope is a category that defines how DDL
operations on an object are handled by Oracle GoldenGate.

The scopes are:

• MAPPED
• UNMAPPED
• OTHER
The use of scopes enables granular control over the filtering of DDL operations, string
substitutions, and error handling.

Chapter 8
Data Management

8-20

Mapped Scope

Objects that are specified in TABLE and MAP statements are of MAPPED scope. Extraction and
replication instructions in those statements apply to both data (DML) and DDL on the specified
objects, unless override rules are applied.

For objects in TABLE and MAP statements, the DDL operations listed in the following table are
supported.

Operations On any of these Objects1

CREATE
ALTER
DROP
RENAME
COMMENT ON2

TABLE3

INDEX
TRIGGER
SEQUENCE
MATERIALIZED VIEW
VIEW
FUNCTION
PACKAGE
PROCEDURE
SYNONYM
PUBLIC SYNONYM4

GRANT
REVOKE

TABLE
SEQUENCE
MATERIALIZED VIEW

ANALYZE TABLE
INDEX
CLUSTER

1 TABLE and MAP do not support some special characters that could be used in an object name affected by these
operations. Objects with non-supported special characters are supported by the scopes of UNMAPPED and OTHER.

2 Applies to COMMENT ON TABLE, COMMENT ON COLUMN
3 Includes AS SELECT
4 Table name must be qualified with schema name.

For Extract, MAPPED scope marks an object for DDL capture according to the instructions in the
TABLE statement. For Replicat, MAPPED scope marks DDL for replication and maps it to the
object specified by the schema and name in the TARGET clause of the MAP statement. To
perform this mapping, Replicat issues ALTER SESSION to set the schema of the Replicat
session to the schema that is specified in the TARGET clause. If the DDL contains unqualified
objects, the schema that is assigned on the target depends on circumstances described in
Understanding DDL Scopes.

Assume the following TABLE and MAP statements:

Extract (source)

TABLE fin.expen;
TABLE hr.tab*;

Replicat (target)

Chapter 8
Data Management

8-21

MAP fin.expen, TARGET fin2.expen2;
MAP hr.tab*, TARGET hrBackup.bak_*;

Also assume a source DDL statement of:

ALTER TABLE fin.expen ADD notes varchar2(100);

In this example, because the source table fin.expen is in a MAP statement with a TARGET
clause that maps to a different schema and table name, the target DDL statement becomes:

ALTER TABLE fin2.expen2 ADD notes varchar2(100);

Likewise, the following source and target DDL statements are possible for the second set of
TABLE and MAP statements in the example:

Source:

CREATE TABLE hr.tabPayables ... ;

Target:

CREATE TABLE hrBackup.bak_tabPayables ...;

When objects are of MAPPED scope, you can omit their names from the DDL configuration
parameters, unless you want to refine their DDL support further. If you ever need to change the
object names in TABLE and MAP statements, the changes will apply automatically to the DDL on
those objects.

If you include an object in a TABLE statement, but not in a MAP statement, the DDL for that
object is MAPPED in scope on the source but UNMAPPED in scope on the target.

Unmapped Scope

If a DDL operation is supported for use in a TABLE or MAP statement, but its base object name is
not included in one of those parameters, it is of UNMAPPED scope.

An object name can be of UNMAPPED scope on the source (not in an Extract TABLE statement),
but of MAPPED scope on the target (in a Replicat MAP statement), or the other way around. When
Oracle DDL is of UNMAPPED scope in the Replicat configuration, Replicat will by default do the
following:

1. Set the current schema of the Replicat session to the schema of the source DDL object.

2. Execute the DDL as that schema.

3. Restore Replicat as the current schema of the Replicat session.

Other Scope

DDL operations that cannot be mapped are of OTHER scope. When DDL is of OTHER scope in
the Replicat configuration, it is applied to the target with the same schema and object name as
in the source DDL.

An example of OTHER scope is a DDL operation that makes a system-specific reference, such
as DDL that operates on data file names.

Some other examples of OTHER scope:

CREATE USER joe IDENTIFIED by joe;
CREATE ROLE ggs_gguser_role IDENTIFIED GLOBALLY;
ALTER TABLESPACE gg_user TABLESPACE GROUP gg_grp_user;

Chapter 8
Data Management

8-22

Correctly Identifying Unqualified Object Names in DDL
Extract captures the current schema (also called session schema) that is in effect when a DDL
operation is executed. The current container is also captured if the source is a multitenant
container database.

The container and schema are used to resolve unqualified object names in the DDL.

Consider the following example:

CONNECT SCOTT/TIGER
CREATE TABLE TAB1 (X NUMBER);
CREATE TABLE SRC1.TAB2(X NUMBER) AS SELECT * FROM TAB1;

In both of those DDL statements, the unqualified table TAB1 is resolved as SCOTT.TAB1 based
on the current schema SCOTT that is in effect during the DDL execution.

There is another way of setting the current schema, which is to set the current_schema for the
session, as in the following example:

CONNECT SCOTT/TIGER
ALTER SESSION SET CURRENT_SCHEMA=SRC;
CREATE TABLE TAB1 (X NUMBER);
CREATE TABLE SRC1.TAB2(X NUMBER) AS SELECT * FROM TAB1;

In both of those DDL statements, the unqualified table TAB1 is resolved as SRC.TAB1 based on
the current schema SRC that is in effect during the DDL execution.

In both classic and integrated capture modes, Extract captures the current schema that is in
effect during DDL execution, and it resolves the unqualified object names (if any) by using the
current schema. As a result, MAP statements specified for Replicat work correctly for DDL with
unqualified object names.

You can also map a source session schema to a different target session schema, if that is
required for the DDL to succeed on the target. This mapping is global and overrides any other
mappings that involve the same schema names. To map session schemas, use the
DDLOPTIONS parameter with the MAPSESSIONSCHEMA option.

If the default or mapped session schema mapping fails, you can handle the error with the
following DDLERROR parameter statement, where error 1435 means that the schema does not
exist.

DDLERROR 1435 IGNORE INCLUDE OPTYPE ALTER OBJTYPE SESSION

Enabling DDL Support
Data Definition Language (DDL) is useful in dynamic environments which change constantly.

By default, the status of DDL replication support is as follows:

• On the source, Oracle GoldenGate DDL support is disabled by default. You must configure
Extract to capture DDL by using the DDL parameter.

• On the target, DDL support is enabled by default, to maintain the integrity of transactional
data that is replicated. By default, Replicat will process all DDL operations that the trail
contains. If needed, you can use the DDL parameter to configure Replicat to ignore or filter
DDL operations.

Chapter 8
Data Management

8-23

Filtering DDL Replication
By default, all DDL is passed to Extract.

You can use the filtering with DDL parameter method to filter DDL operations so that specific
(or all) DDL is applied to the target database according to your requirements. Valid for native
DDL capture. This is the preferred method of filtering and is performed within Oracle
GoldenGate, and both Extract and Replicat can execute filter criteria. Extract can perform
filtering, or it can send the entire DDL to a trail, and then Replicat can perform the filtering.
Alternatively, you can filter in a combination of different locations. The DDL parameter gives you
control over where the filtering is performed, and it also offers more filtering options, including
the ability to filter collectively based on the DDL scope (for example, include all MAPPED scope).

Note:

If a DDL operation fails in the middle of a TRANSACTION, it forces a commit, which
means that the transaction spanning the DDL is split into two. The first half is
committed and the second half can be restarted. If a recovery occurs, the second half
of the transaction cannot be filtered since the information contained in the header of
the transaction is no longer there.

Filtering with PL/SQL Code

This method is only valid for trigger-based capture.

You can write PL/SQL code to pass information about the DDL to a function that computes
whether or not the DDL is passed to Extract. By sending fewer DDL operations to Extract, you
can improve capture performance.

1. Copy the ddl_filter.sql file that is in the Oracle GoldenGate installation directory to a
test machine where you can test the code that you will be writing.

2. Open the file for editing. It contains a PL/SQL function named filterDDL, which you can
modify to specify if/then filter criteria. The information that is passed to this function
includes:

• ora_owner: the schema of the DDL object

• ora_name: the defined name of the object

• ora_objtype: the type of object, such as TABLE or INDEX
• ora_optype: the operation type, such as CREATE or ALTER
• ora_login_user: The user that executed the DDL

• retVal: can be either INCLUDE to include the DDL, or EXCLUDE to exclude the DDL from
Extract processing.

In the location after the 'compute retVal here' comment, write filter code for each type
of DDL that you want to be filtered. The following is an example:

if ora_owner='SYS' then
retVal:='EXCLUDE';
end if;
if ora_objtype='USER' and ora_optype ='DROP' then
retVal:='EXCLUDE';
end if;

Chapter 8
Data Management

8-24

if ora_owner='JOE' and ora_name like 'TEMP%' then
retVal:='EXCLUDE';
end if;

In this example, the following DDL is excluded from being processed by the DDL trigger:

• DDL for objects owned by SYS
• any DROP USER
• any DDL on JOE.TEMP%

3. (Optional) To trace the filtering, you can add the following syntax to each if/then
statement in the PL/SQL:

if ora_owner='JOE' and ora_name like 'TEMP%' then
retVal:='EXCLUDE';
if "&gg_user" .DDLReplication.trace_level >= 1 then
"&gg_user" .trace_put_line ('DDLFILTER', 'excluded JOE.TEMP%');
end if;

Where:

• &gg_user is the schema of the Oracle GoldenGate DDL support objects.

• .DDLReplication.trace_level is the level of DDL tracing. To use trigger tracing, the
TRACE or TRACE2 parameter must be used with the DDL or DDLONLY option in the Extract
parameter file. The .DDLReplication.trace_level parameter must be set to >=1.

• trace_put_line is a user-defined text string that Extract writes to the trace file that
represents the type of DDL that was filtered.

4. Save the code.

5. Stop DDL activity on the test system.

6. In SQL*Plus, compile the ddl_filter.sql file as follows, where schema_name is the
schema where the Oracle GoldenGate DDL objects are installed.

@ddl_filter schema_name
7. Test in the test environment to make certain that the filtering works. It is important to

perform this testing, because any errors in the code could cause source and target DDL to
become out of synchronization.

8. After a successful test, copy the file to the Oracle GoldenGate installation directory on the
source production system.

9. Stop DDL activity on the source system.

10. Compile the ddl_filter.sql file as you did before.

@ddl_filter schema_name
11. Resume DDL activity on the source system.

Filtering With Built-in Filter Rules

This method is only valid for trigger-based capture.

You can add inclusion and exclusion rules to control the DDL operations that are sent to
Extract by the DDL trigger. By storing rules and sending fewer DDL operations to Extract, you
can improve capture performance.

Chapter 8
Data Management

8-25

1. Use the DDLAUX.addRule() function to define your rules according to the following
instructions. This function is installed in the Oracle GoldenGate DDL schema after the DDL
objects are installed with the ddl_setup.sql script.

2. To activate the rules, execute the function in SQL*Plus or enter a collection of rules in a
SQL file and execute that file in SQL*Plus.

DDLAUX.addRule() Function Definition

FUNCTION addRule(obj_name IN VARCHAR2 DEFAULT NULL,
base_obj_name IN VARCHAR2 DEFAULT NULL,
owner_name IN VARCHAR2 DEFAULT NULL,
base_owner_name IN VARCHAR2 DEFAULT NULL,
base_obj_property IN NUMBER DEFAULT NULL,
obj_type IN NUMBER DEFAULT NULL,
command IN VARCHAR2 DEFAULT NULL,
inclusion IN boolean DEFAULT NULL ,
sno IN NUMBER DEFAULT NULL)
RETURN NUMBER;

Parameters for DDLAUX.addRule()
The information passed to this function are the following parameters, which correlate to the
attributes of an object. All parameters are optional, and more than one parameter can be
specified.

• sno: Specifies a serial number that identifies the rule. The order of evaluation of rules is
from the lowest serial number to the highest serial number, until a match is found. The sno
can be used to place inclusion rules ahead of an exclusion rule, so as to make an
exception to the exclusion rule. Because this is a function and not a procedure, it returns
the serial number of the rule, which should be used for the drop rule specified with
DDLAUX.dropRule(). The serial number is generated automatically unless you specify one
with this statement at the beginning of your code: DECLARE sno NUMBER; BEGIN sno :=
For example:

DECLARE
 sno NUMBER;
BEGIN
 sno := tkggadmin..DDLAUX.ADDRULE(obj_name => 'GGS%' ,
 obj_type => TYPE_TABLE);
END;
/

• obj_name: Specifies the object name. If the name is case-sensitive, enclose it within double
quotes.

• owner_name: Specifies the name of the object schema

• base_obj_name: Specifies the base object name of the DDL object (such as the base table
if the object is an index). If the name is case-sensitive, enclose it within double quotes.

• base_owner_name: Specifies the base object schema name.

• base_obj_property: Specifies the base object property.

• obj_type: Specifies the object type.

• command: Specifies the command.

• inclusion = TRUE: Indicates that the specified objects are to be captured by the DDL
trigger. If this parameter is not specified, the rule becomes an exclusion rule, and the
specified objects are not captured. You can specify both an exclusion rule and an inclusion
rule. If a DDL does not match any of the rules, it is included (passed to Extract) by default.

Chapter 8
Data Management

8-26

Calling DDLAUX.addRule() without any parameters generates an empty rule that excludes
all DDL on all the objects.

Valid DDL Components for DDLAUX.addRule()
The following are the defined DDL object types, base object properties, and DDL commands
that can be specified in the function code.

Valid object types are:

TYPE_INDEX
TYPE_TABLE
TYPE_VIEW
TYPE_SYNONYM
TYPE_SEQUENCE
TYPE_PROCEDURE
TYPE_FUNCTION
TYPE_PACKAGE
TYPE_TRIGGER

Valid base object properties are:

TB_IOT
TB_CLUSTER
TB_NESTED
TB_TEMP
TB_EXTERNAL

Valid commands are:

CMD_CREATE
CMD_DROP
CMD_TRUNCATE
CMD_ALTER

Examples of Rule-based Trigger Filtering
The following example excludes all temporary tables, except tables with names that start with
IMPTEMP.

1. DDLAUX.ADDRULE(obj_name => 'IMPTEMP%', base_obj_property => TB_TEMP, obj_type =>
TYPE_TABLE, INCLUSION => TRUE);
2. DDLAUX.ADDRULE(base_obj_property => TB_TEMP, obj_type => TYPE_TABLE);

Note:

Since the IMPTEMP% tables must be included, that rule should come first.

The following example excludes all tables with name 'GGS%'

DECLARE sno NUMBER; BEGIN sno := DDLAUX.ADDRULE(obj_name => 'GGS%' , obj_type =>
TYPE_TABLE); END

The following example excludes all temporary tables.

DDLAUX.ADDRULE(base_obj_property => TB_TEMP, obj_type => TYPE_TABLE);

Chapter 8
Data Management

8-27

The following example excludes all indexes on TEMP tables.

DDLAUX.ADDRULE(base_obj_property => TB_TEMP, obj_type => TYPE_INDEX);

The following example excludes all objects in schema TKGGADMIN.

DDLAUX.ADDRULE(owner_name => 'TKGGADMIN');

The following example excludes all objects in TRUNCATE operations made to TEMP tables.

DDLAUX.ADDRULE(base_obj_property => TB_TEMP, obj_type => TYPE_TABLE, command =>
CMD_TRUNCATE)

Dropping Filter Rules
Use the DDLAUX.dropRule() function with the drop rule. This function is installed in the Oracle
GoldenGate DDL schema after the DDL objects are installed with the ddl_setup.sql script. As
input, specify the serial number of the rule that you want to drop.

FUNCTION dropRule(sno IN NUMBER) RETURN BOOLEAN;

Filtering with the DDL Parameter

The DDL parameter is the main Oracle GoldenGate parameter for filtering DDL within the
Extract and Replicat processes.

When used without options, the DDL parameter performs no filtering, and it causes all DDL
operations to be propagated as follows:

• As an Extract parameter, it captures all supported DDL operations that are generated on all
supported database objects and sends them to the trail.

• As a Replicat parameter, it replicates all DDL operations from the Oracle GoldenGate trail
and applies them to the target. This is the same as the default behavior without this
parameter.

When used with options, the DDL parameter acts as a filtering agent to include or exclude DDL
operations based on:

• scope

• object type

• operation type

• object name

• strings in the DDL command syntax or comments, or both

Only one DDL parameter can be used in a parameter file, but you can combine multiple
inclusion and exclusion options, along with other options, to filter the DDL to the required level.

• DDL filtering options are valid for a primary Extract that captures from the transaction
source, but not for a data-pump Extract.

• When combined, multiple filter option specifications are linked logically as AND statements.

• All filter criteria specified with multiple options must be satisfied for a DDL statement to be
replicated.

• When using complex DDL filtering criteria, it is recommended that you test your
configuration in a test environment before using it in production.

For DDL parameter syntax and additional usage guidelines, see Reference for Oracle
GoldenGate.

Chapter 8
Data Management

8-28

Note:

Before you configure DDL support, it might help to review How DDL is Evaluated for
Processing.

Special Filter Cases
This topic describes the special cases that you must consider before creating your DDL filters.

The following are the special cases for creating filter conditions.

DDL EXCLUDE ALL

DDL EXCLUDE ALL is a special processing option that is intended primarily for Extract. DDL
EXCLUDE ALL blocks the replication of DDL operations, but ensures that Oracle GoldenGate
continues to keep the object metadata current. When Extract receives DDL directly from the
logmining server (triggerless DDL capture mode), current metadata is always maintained.

You can use DDL EXCLUDE ALL when using a method other than Oracle GoldenGate to apply
DDL to the target and you want Oracle GoldenGate to replicate data changes to the target
objects. It provides the current metadata to Oracle GoldenGate as objects change, thus
preventing the need to stop and start the Oracle GoldenGate processes. The following special
conditions apply to DDL EXCLUDE ALL:

• DDL EXCLUDE ALL does not require the use of an INCLUDE clause.

• When using DDL EXCLUDE ALL, you can set the WILDCARDRESOLVE parameter to IMMEDIATE
to allow immediate DML resolution if required.

To prevent all DDL metadata and operations from being replicated, omit the DDL parameter
entirely.

Implicit DDL

User-generated DDL operations can generate implicit DDL operations. For example, the
following statement generates two distinct DDL operations.

CREATE TABLE customers (custID number, name varchar2(50), address varchar2(75), address2
varchar2(75), city varchar2(50), state (varchar2(2), zip number, contact varchar2(50),
areacode number(3), phone number(7), primary key (custID));

The first (explicit) DDL operation is the CREATE TABLE statement itself.

The second DDL operation is an implicit CREATE UNIQUE INDEX statement that creates the
index for the primary key. This operation is generated by the database engine, not a user
application.

Guidelines for Filtering Implicit DDL

How to filter implicit DDL depends on the mechanism that you are using to filter DDL. See
Filtering DDL Replication for more information.

• When the DDL parameter is used to filter DDL operations, Oracle GoldenGate filters out
any implicit DDL by default, because the explicit DDL will generate the implicit DDL on the
target. For example, the target database will create the appropriate index when the CREATE
TABLE statement in the preceding example is applied by Replicat.

Chapter 8
Data Management

8-29

• – If your filtering rules exclude the explicit DDL from being propagated, you must also
create a rule to exclude the implicit DDL. For example, if you exclude the CREATE
TABLE statement in the following example, but do not exclude the implicit CREATE
UNIQUE INDEX statement, the target database will try to create the index on a non-
existent table.

CREATE TABLE customers (custID number, name varchar2(50), address varchar2(75),
address2 varchar2(75), city varchar2(50), state (varchar2(2), zip number,
contact varchar2(50), areacode number(3), phone number(7), primary key (custID));

– If your filtering rules permit the propagation of the explicit DDL, you do not need to
exclude the implicit DDL. It will be handled correctly by Oracle GoldenGate and the
target database.

How Oracle GoldenGate Handles Derived Object Names
DDL operations can contain a base object name and also a derived object name.

A base object is an object that contains data. A derived object is an object that inherits some
attributes of the base object to perform a function related to that object. DDL statements that
have both base and derived objects are:

• RENAME and ALTER RENAME
• CREATE and DROP on an index, synonym, or trigger

Consider the following DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

In this case, the table is the base object. Its name (hr.tabPayroll) is the base name and is
subject to mapping with TABLE or MAP under the MAPPED scope. The derived object is the index,
and its name (hr.indexPayrollDate) is the derived name.

You can map a derived name in its own TABLE or MAP statement, separately from that of the
base object. Or, you can use one MAP statement to handle both. In the case of MAP, the
conversion of derived object names on the target works as follows.

MAP Exists for Base Object, But Not Derived Object

If there is a MAP statement for the base object, but not for the derived object, the result is a
schema based on the mapping that matches the derived object name. Derived objects are only
mapped if the MAPDERIVED option is enabled, which is also the default option.

For example, consider the following:

Extract (source)

Table hr.*;

Replicat (target)

MAP hr.*, TARGET hrBackup.*;

Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.Payroll (payDate);

The CREATE INDEX statement is executed by Replicat on the target as follows:

CREATE INDEX hrBackup.indexPayrollDate ON TABLE hrBackup.Payroll (payDate);

Chapter 8
Data Management

8-30

In this example, the mapping is such that it matches the derived object name because of which
the derived object schema is changed from hr to hrBackup.

Here’s another example, where there is no mapping that matches the derived object name so
the derived object name remains the same.

Extract (source)

Table hr.tab*;
Replicat (target)

MAP hr.tab*, TARGET hrBackup.*;
Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);
The CREATE INDEX statement is executed by Replicat on the target as follows:

CREATE INDEX hr.indexPayrollDate ON TABLE hrBackup.tabPayroll (payDate);

MAP Exists for Base and Derived Objects

If there is a MAP statement for the base object and also one for the derived object, the result is
an explicit mapping. Assuming the DDL statement includes MAPPED, Replicat converts the
schema and name of each object according to its own TARGET clause. For example, assume
the following:

Extract (source)

TABLE hr.tab*; TABLE hr.index*;

Replicat (target)

MAP hr.tab*, TARGET hrBackup.*;MAP hr.index*, TARGET hrIndex.*;

Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

The CREATE INDEX statement is executed by Replicat on the target as follows:

CREATE INDEX hrIndex.indexPayrollDate ON TABLE hrBackup.tabPayroll (payDate);

Use an explicit mapping when the index on the target must be owned by a different schema
from that of the base object, or when the name on the target must be different from that of the
source.

MAP Exists for Derived Object, But Not Base Object

If there is a MAP statement for the derived object, but not for the base object, Replicat does not
perform any name conversion for either object. The target DDL statement is the same as that
of the source. To map a derived object, the choices are:

• Use an explicit MAP statement for the base object.

• If names permit, map both base and derived objects in the same MAP statement by means
of a wildcard.

• Create a MAP statement for each object, depending on how you want the names converted.

Chapter 8
Data Management

8-31

New Tables as Derived Objects

The following explains how Oracle GoldenGate handles new tables that are created from:

• RENAME and ALTER RENAME
• CREATE TABLE AS SELECT

CREATE TABLE AS SELECT
The CREATE TABLE AS SELECT (CTAS) statements include SELECT statements and INSERT
statements that reference any number of underlying objects. By default, Oracle GoldenGate
obtains the data for the AS SELECT clause from the target database. You can force the CTAS
operation to preserve the original inserts using this parameter.

Note:

For this reason, Oracle XMLType tables created from a CTAS (CREATE TABLE AS
SELECT) statement cannot be supported. For XMLType tables, the row object IDs must
match between source and target, which cannot be maintained in this scenario.
XMLType tables created by an empty CTAS statement (that does not insert data in the
new table) can be maintained correctly.

In addition, you could use the GETCTASDML parameter that allows CTAS to replay the
inserts of the CTAS thus preserving OIDs during replication. This parameter is only
supported with Integrated Dictionary and any downstream Replicat must be 12.1.2.1
or greater to consume the trail otherwise, there may be divergence.

The objects in the AS SELECT clause must exist in the target database, and their names must
be identical to the ones on the source.

In a MAP statement, Oracle GoldenGate only maps the name of the new table (CREATE TABLE
name) to the TARGET specification, but does not map the names of the underlying objects from
the AS SELECT clause. There could be dependencies on those objects that could cause data
inconsistencies if the names were converted to the TARGET specification.

The following shows an example of a CREATE TABLE AS SELECT statement on the source and
how it would be replicated to the target by Oracle GoldenGate.

CREATE TABLE a.tab1 AS SELECT * FROM a.tab2;

The MAP statement for Replicat is as follows:

MAP a.tab*, TARGET a.x*;

The target DDL statement that is applied by Replicat is the following:

CREATE TABLE a.xtab1 AS SELECT * FROM a.tab2;

The name of the table in the AS SELECT * FROM clause remains as it was on the source: tab2
(rather than xtab2).

To keep the data in the underlying objects consistent on source and target, you can configure
them for data replication by Oracle GoldenGate. In the preceding example, you could use the
following statements to accommodate this requirement:

Source

Chapter 8
Data Management

8-32

TABLE a.tab*;

Target

MAPEXCLUDE a.tab2
MAP a.tab*, TARGET a.x*;
MAP a.tab2, TARGET a.tab2;

See Correctly Identifying Unqualified Object Names in DDL.

RENAME and ALTER TABLE RENAME
In RENAME and ALTER TABLE RENAME operations, the base object is always the new table name.
In the following example, the base object name is considered to be index_paydate.

ALTER TABLE hr.indexPayrollDate RENAME TO index_paydate;

or...

RENAME hr.indexPayrollDate TO index_paydate;

The derived object name is hr.indexPayrollDate.

Disabling the Mapping of Derived Objects

Use the DDLOPTIONS parameter with the NOMAPDERIVED option to prevent the conversion of the
name of a derived object according to a TARGET clause of a MAP statement that includes it.
NOMAPDERIVED overrides any explicit MAP statements that contain the name of the base or
derived object. Source DDL that contains derived objects is replicated to the target with the
same schema and object names as on the source.

The following table shows the results of MAPDERIVED compared to NOMAPDERIVED, based on
whether there is a MAP statement just for the base object, just for the derived object, or for both.

Base Object Derived Object MAP/NOMAP
DERIVED?

Derived object
converted per a
MAP?

Derived object
gets schema of
base object?

mapped1 mapped MAPDERIVED yes no

mapped not mapped MAPDERIVED no yes

not mapped mapped MAPDERIVED no no

not mapped not mapped MAPDERIVED no no

mapped mapped NOMAPDERIVED no no

mapped not mapped NOMAPDERIVED no no

not mapped mapped NOMAPDERIVED no no

not mapped not mapped NOMAPDERIVED no no

1 Mapped means included in a MAP statement.

The following examples illustrate the results of MAPDERIVED as compared to NOMAPDERIVED. In
the following table, both trigger and table are owned by rpt on the target because both base
and derived names are converted by means of MAPDERIVED.

Chapter 8
Data Management

8-33

MAP statement Source DDL statement captured by
Extract

Target DDL statement applied by
Replicat

MAP fin.*, TARGET rpt.*; CREATE TRIGGER fin.act_trig ON
fin.acct;

CREATE TRIGGER rpt.act_trig ON
rpt.acct;

In the following table, the trigger is owned by fin, because conversion is prevented by means
of NOMAPDERIVED.

MAP statement Source DDL statement captured by
Extract

Target DDL statement applied by
Replicat

MAP fin.*, TARGET rpt.*; CREATE TRIGGER fin.act_trig ON
fin.acct;

CREATE TRIGGER fin.act_trig ON
rpt.acct;

Note:

In the case of a RENAME statement, the new table name is considered to be the base
table name, and the old table name is considered to be the derived table name.

Using DDL String Substitution
You can substitute strings within a DDL operation while it is being processed by Oracle
GoldenGate.

This feature provides a convenience for changing and mapping directory names, comments,
and other things that are not directly related to data structures. For example, you could
substitute one tablespace name for another, or substitute a string within comments. String
substitution is controlled by the DDLSUBST parameter. For more information, see Reference for
Oracle GoldenGate.

Note:

Before you create a DDLSUBST parameter statement, it might help to review How DDL
is Evaluated for Processing in this chapter.

Controlling the Propagation of DDL to Support Different Topologies
To support bidirectional and cascading replication configurations, it is important for Extract to
be able to identify the DDL that is performed by Oracle GoldenGate and by other applications,
such as the local business applications.

Depending on the configuration that you want to deploy, it might be appropriate to capture one
or both of these sources of DDL on the local system.

Chapter 8
Data Management

8-34

Note:

Oracle GoldenGate DDL consists of ALTER TABLE statements performed by Extract to
create log groups and the DDL that is performed by Replicat to replicate source DDL
changes.

The following options of the DDLOPTIONS parameter control whether DDL on the local system is
captured by Extract and then sent to a remote system, assuming Oracle GoldenGate DDL
support is configured and enabled:

• The GETREPLICATES and IGNOREREPLICATES options control whether Extract captures or
ignores the DDL that is generated by Oracle GoldenGate. The default is
IGNOREREPLICATES, which does not propagate the DDL that is generated by Oracle
GoldenGate. To identify the DDL operations that are performed by Oracle GoldenGate, the
following comment is part of each Extract and Replicat DDL statement:

/* GOLDENGATE_DDL_REPLICATION */
• The GETAPPLOPS and IGNOREAPPLOPS options control whether Extract captures or ignores

the DDL that is generated by applications other than Oracle GoldenGate. The default is
GETAPPLOPS, which propagates the DDL from local applications (other than Oracle
GoldenGate).

The result of these default settings is that Extract ignores its own DDL and the DDL that is
applied to the local database by a local Replicat, so that the DDL is not sent back to its source,
and Extract captures all other DDL that is configured for replication. The following is the default
DDLOPTIONS configuration.

DDLOPTIONS GETAPPLOPS, IGNOREREPLICATES

Propagating DDL in Active-Active (Bidirectional) Configurations

Oracle GoldenGate supports active-active DDL replication between two systems. For an
active-active bidirectional replication, the following must be configured in the Oracle
GoldenGate processes:

1. DDL that is performed by a business application on one system must be replicated to the
other system to maintain synchronization. To satisfy this requirement, include the
GETAPPLOPS option in the DDLOPTIONS statement in the Extract parameter files on both
systems.

2. DDL that is applied by Replicat on one system must be captured by the local Extract and
sent back to the other system. To satisfy this requirement, use the GETREPLICATES option in
the DDLOPTIONS statement in the Extract parameter files on both systems.

Note:

An internal Oracle GoldenGate token will cause the actual Replicat DDL
statement itself to be ignored to prevent loopback. The purpose of propagating
Replicat DDL back to the original system is so that the Replicat on that system
can update its object metadata cache, in preparation to receive incoming DML,
which will have the new metadata.

Chapter 8
Data Management

8-35

3. Each Replicat must be configured to update its object metadata cache whenever the
remote Extract sends over a captured Replicat DDL statement. To satisfy this requirement,
use the UPDATEMETADATA option in the DDLOPTIONS statement in the Replicat parameter files
on both systems.

The resultant DDLOPTIONS statements should look as follows:

Extract (primary and secondary)

DDLOPTIONS GETREPLICATES, GETAPPLOPS

Replicat (primary and secondary)

DDLOPTIONS UPDATEMETADATA

WARNING:

Before you allow new DDL or DML to be issued for the same object(s) as the original
DDL, allow time for the original DDL to be replicated to the remote system and then
captured again by the Extract on that system. This will ensure that the operations
arrive in correct order to the Replicat on the original system, to prevent DML errors
caused by metadata inconsistencies. See the following diagram for more information.

The labels in the diagrams imply the following:

• 1: ALTER TABLE Customer ADD Birth_Date date

• 2; New metadata: First_Name varchar2(50), Last_Name varchar2(50), Address
varchar2(50), City varchar2(50), Country varchar2(25), Birth_Date date

Chapter 8
Data Management

8-36

• 3: ALTER TABLE
• 4: New metadata: First_Name varchar2(50), Last_Name varchar2(50), Address

varchar2(50), City varchar2(50), Country varchar2(25), Birth_Date date

• 5: ALTER TABLE
• 6: DDLOPTIONS UPDATEMETADATA New metadata: First_Name varchar2(50), Last_Name

varchar2(50), Address varchar2(50), City varchar2(50), Country varchar2(25), Birth_Date
date

For more information about DDLOPTIONS, see Reference for Oracle GoldenGate.

For more information about configuring a bidirectional configuration, see Quickstart
Bidirectional Replication.

Propagating DDL in a Cascading Configuration

In a cascading configuration, use the following setting for DDLOPTIONS in the Extract parameter
file on each intermediary system. This configuration forces Extract to capture the DDL from
Replicat on an intermediary system and cascade it to the next system downstream.

DDLOPTIONS GETREPLICATES, IGNOREAPPLOPS

For more information about DDLOPTIONS, see DDLOPTIONS in Reference for Oracle GoldenGate.

Adding Supplemental Log Groups Automatically
Use the DDLOPTIONS parameter with the ADDTRANDATA option for performing tasks described in
this topic. You can perform the following tasks using the DDLOPTIONS:

• Enable Oracle's supplemental logging automatically for new tables created with a CREATE
TABLE.

• Update Oracle's supplemental logging for tables affected by an ALTER TABLE to add or drop
columns.

• Update Oracle's supplemental logging for tables that are renamed.

• Update Oracle's supplemental logging for tables where unique or primary keys are added
or dropped.

To use DDLOPTIONS ADDSCHEMATRANDATA, the ADD SCHEMATRANDATA command must be issued in
GGSCI to enable schema-level supplemental logging.

By default, the ALTER TABLE that adds the supplemental logging is not replicated to the target
unless the GETREPLICATES parameter is in use.

DDLOPTIONS ADDTRANDATA is not supported for multitenant container databases, see
Configuring Logging Properties for more information.

Removing Comments from Replicated DDL
You can use the DDLOPTIONS parameter with the REMOVECOMMENTS BEFORE and REMOVECOMMENTS
AFTER options to prevent comments that were used in the source DDL from being included in
the target DDL.

By default, comments are not removed, so that they can be used for string substitution.

Chapter 8
Data Management

8-37

Replicating an IDENTIFIED BY Password
Use the DDLOPTIONS parameter with the DEFAULTUSERPASSWORDALIAS and REPLICATEPASSWORD
| NOREPLICATEPASSWORD options to control how the password of a replicated {CREATE |
ALTER} USER name IDENTIFIED BY password statement is handled. These options must be
used together.

See the USEPASSWORDVERIFIERLEVEL option of DDLOPTIONS for important information about
specifying the password verifier when Replicat operates against an Oracle 10g or 11g
database.

Note:

Replication of CREATE | ALTER PROFILE will fail as the profile/password verification
function must exist in the SYS schema. To replicate these DDLs successfully,
password verification function must be created manually on both source/target(s)
since DDL to SYS schema is excluded.

How DDL is Evaluated for Processing
This topic explains how Oracle GoldenGate processes DDL statements on the source and
target systems.

It shows the order in which different criteria in the Oracle GoldenGate parameters are
processed, and it explains the differences between how Extract and Replicat each process the
DDL.

Extract

1. Extract captures a DDL statement.

2. Extract separates comments, if any, from the main statement.

3. Extract searches for the DDL parameter. (This example assumes it exists.)

4. Extract searches for the IGNOREREPLICATES parameter. If it is present, and if Replicat
produced this DDL on this system, Extract ignores the DDL statement. (This example
assumes no Replicat operations on this system.)

5. Extract determines whether the DDL statement is a RENAME. If so, the rename is flagged
internally.

6. Extract gets the base object name and, if present, the derived object name.

7. If the statement is a RENAME, Extract changes it to ALTER TABLE RENAME.

8. Extract searches for the DDLOPTIONS REMOVECOMMENTS BEFORE parameter. If it is present,
Extract removes the comments from the DDL statement, but stores them in case there is a
DDL INCLUDE or DDL EXCLUDE clause that uses INSTR or INSTRCOMMENTS.

9. Extract determines the DDL scope: MAPPED, UNMAPPED or OTHER:

• It is MAPPED if the operation and object types are supported for mapping, and the base
object name and/or derived object name (if RENAME) is in a TABLE parameter.

• It is UNMAPPED if the operation and object types are not supported for mapping, and the
base object name and/or derived object name (if RENAME) is not in a TABLE parameter.

Chapter 8
Data Management

8-38

• Otherwise the operation is identified as OTHER.

10. Extract checks the DDL parameter for INCLUDE and EXCLUDE clauses, and it evaluates the
DDL parameter criteria in those clauses. All options must evaluate to TRUE in order for the
INCLUDE or EXCLUDE to evaluate to TRUE. The following occurs:

• If an EXCLUDE clause evaluates to TRUE, Extract discards the DDL statement and
evaluates another DDL statement. In this case, the processing steps start over.

• If an INCLUDE clause evaluates to TRUE, or if the DDL parameter does not have any
INCLUDE or EXCLUDE clauses, Extract includes the DDL statement, and the processing
logic continues.

11. Extract searches for a DDLSUBST parameter and evaluates the INCLUDE and EXCLUDE
clauses. If the criteria in those clauses add up to TRUE, Extract performs string substitution.
Extract evaluates the DDL statement against each DDLSUBST parameter in the parameter
file. For all true DDLSUBST specifications, Extract performs string substitution in the order
that the DDLSUBST parameters are listed in the file.

12. Now that DDLSUBT has been processed, Extract searches for the REMOVECOMMENTS AFTER
parameter. If it is present, Extract removes the comments from the DDL statement.

13. Extract searches for DDLOPTIONS ADDTRANDATA. If it is present, and if the operation is
CREATE TABLE, Extract issues the ALTER TABLE name ADD SUPPLEMENTAL LOG GROUP
command on the table.

14. Extract writes the DDL statement to the trail.

Replicat

1. Replicat reads the DDL statement from the trail.

2. Replicat separates comments, if any, from the main statement.

3. Replicat searches for DDLOPTIONS REMOVECOMMENTS BEFORE. If it is present, Replicat
removes the comments from the DDL statement.

4. Replicat evaluates the DDL synchronization scope to determine if the DDL qualifies for
name mapping. Anything else is of OTHER scope.

5. Replicat evaluates the MAP statements in the parameter file. If the source base object name
for this DDL (as read from the trail) appears in any of the MAP statements, the operation is
marked as MAPPED in scope. Otherwise it is marked as UNMAPPED in scope.

6. Replicat replaces the source base object name with the base object name that is specified
in the TARGET clause of the MAP statement.

7. If there is a derived object, Replicat searches for DDLOPTIONS MAPDERIVED. If it is present,
Replicat replaces the source derived name with the target derived name from the MAP
statement.

8. Replicat checks the DDL parameter for INCLUDE and EXCLUDE clauses, and it evaluates the
DDL parameter criteria contained in them. All options must evaluate to TRUE in order for the
INCLUDE or EXCLUDE to evaluate to TRUE. The following occurs:

• If any EXCLUDE clause evaluates to TRUE, Replicat discards the DDL statement and
starts evaluating another DDL statement. In this case, the processing steps start over.

• If any INCLUDE clause evaluates to TRUE, or if the DDL parameter does not have any
INCLUDE or EXCLUDE clauses, Replicat includes the DDL statement, and the processing
logic continues.

Chapter 8
Data Management

8-39

9. Replicat searches for the DDLSUBST parameter and evaluates the INCLUDE and EXCLUDE
clauses. If the options in those clauses add up to TRUE, Replicat performs string
substitution. Replicat evaluates the DDL statement against each DDLSUBST parameter in
the parameter file. For all true DDLSUBST specifications, Replicat performs string substitution
in the order that the DDLSUBST parameters are listed in the file.

10. Now that DDLSUBT has been processed, Replicat searches for the REMOVECOMMENTS AFTER
parameter. If it is present, Replicat removes the comments from the DDL statement.

11. Replicat executes the DDL statement on the target database.

12. If there are no errors, Replicat processes the next DDL statement. If there are errors,
Replicat performs the following steps.

13. Replicat analyzes the INCLUDE and EXCLUDE rules in the Replicat DDLERROR parameters in
the order that they appear in the parameter file. If Replicat finds a rule for the error code, it
applies the specified error handling; otherwise, it applies DEFAULT handling.

14. If the error handling does not enable the DDL statement to succeed, Replicat does one of
the following: abends, ignores the operation, or discards it as specified in the rules.

Note:

If there are multiple targets for the same source in a MAP statement, the processing
logic executes for each one.

Viewing DDL Report Information
By default, Oracle GoldenGate shows basic statistics about DDL at the end of the Extract and
Replicat reports.

To enable expanded DDL reporting, use the DDLOPTIONS parameter with the REPORT option.
Expanded reporting includes the following information about DDL processing:

• A step-by-step history of the DDL operations that were processed by Oracle GoldenGate.

• The DDL filtering and processing parameters that are being used.

Expanded DDL report information increases the size of the report file, but it might be useful in
certain situations, such as for troubleshooting or to determine when an ADD TRANDATA to add
supplemental logging was applied.

To view a report, use the VIEW REPORT command.

VIEW REPORT group

Viewing DDL Reporting in Replicat

The Replicat report lists:

• The entire syntax and source Oracle GoldenGate SCN of each DDL operation that
Replicat processed from the trail. You can use the source SCN for tracking purposes,
especially when there are restores from backup and Replicat is positioned backward in the
trail.

• A subsequent entry that shows the scope of the operation (MAPPED, UNMAPPED, OTHER) and
how object names were mapped in the target DDL statement, if applicable.

Chapter 8
Data Management

8-40

• Another entry that shows how processing criteria was applied.

• Additional entries that show whether the operation succeeded or failed, and whether or not
Replicat applied error handling rules.

The following excerpt from a Replicat report illustrates a sequence of steps, including error
handling:

2011-01-20 15:11:45 GGS INFO 2104 DDL found, operation [drop table myTableTemp],
Source SCN [1186713.0].
 2011-01-20 15:11:45 GGS INFO 2100 DDL is of mapped scope, after mapping new
operation [drop table "QATEST2"."MYTABLETEMP"].
 2011-01-20 15:11:45 GGS INFO 2100 DDL operation included [include objname
myTable*], optype [DROP], objtype [TABLE], objname [QATEST2.MYTABLETEMP].
 2011-01-20 15:11:45 GGS INFO 2100 Executing DDL operation.
 2011-01-20 15:11:48 GGS INFO 2105 DDL error ignored for next retry: error code
[942], filter [include objname myTableTemp], error text [ORA-00942: table or view does
not exist], retry [1].
 2011-01-20 15:11:48 GGS INFO 2100 Executing DDL operation , trying again due to
RETRYOP parameter.
 2011-01-20 15:11:51 GGS INFO 2105 DDL error ignored for next retry: error code
[942], filter [include objname myTableTemp], error text [ORA-00942: table or view does
not exist], retry [2].
 2011-01-20 15:11:51 GGS INFO 2100 Executing DDL operation, trying again due to
RETRYOP parameter.
 2011-01-20 15:11:54 GGS INFO 2105 DDL error ignored for next retry: error code
[942], filter [include objname myTableTemp], error text [ORA-00942: table or view does
not exist], retry [3].
 2011-01-20 15:11:54 GGS INFO 2100 Executing DDL operation, trying again due to
RETRYOP parameter.
 2011-01-20 15:11:54 GGS INFO 2105 DDL error ignored: error code [942], filter
[include objname myTableTemp], error text [ORA-00942: table or view does not exist].

Viewing DDL Reporting in Extract

The Extract report lists the following:

• The entire syntax of each captured DDL operation, the start and end SCN, the Oracle
instance, the DDL sequence number (from the SEQNO column of the history table), and the
size of the operation in bytes.

• A subsequent entry that shows how processing criteria was applied to the operation, for
example string substitution or INCLUDE and EXCLUDE filtering.

• Another entry showing whether the operation was written to the trail or excluded.

The following, taken from an Extract report, shows an included operation and an excluded
operation. There is a report message for the included operation, but not for the excluded one.

2011-01-20 15:11:41 GGS INFO 2100 DDL found, operation [create table myTable (
 myId number (10) not null,
 myNumber number,
 myString varchar2(100),
 myDate date,
 primary key (myId)
)], start SCN [1186754], commit SCN [1186772] instance [test11g (1)], DDL seqno [4134].

2011-01-20 15:11:41 GGS INFO 2100 DDL operation included [INCLUDE OBJNAME
myTable*], optype [CREATE], objtype [TABLE], objname [QATEST1.MYTABLE].

2011-01-20 15:11:41 GGS INFO 2100 DDL operation written to extract trail file.

2011-01-20 15:11:42 GGS INFO 2100 Successfully added TRAN DATA for table with the

Chapter 8
Data Management

8-41

key, table [QATEST1.MYTABLE], operation [ALTER TABLE "QATEST1"."MYTABLE" ADD
SUPPLEMENTAL LOG GROUP "GGS_MYTABLE_53475" (MYID) ALWAYS /* GOLDENGATE_DDL_REPLICATION
*/].

2011-01-20 15:11:43 GGS INFO 2100 DDL found, operation [create table myTableTemp (
 vid varchar2(100),
 someDate date,
 primary key (vid)
)], start SCN [1186777], commit SCN [1186795] instance [test11g (1)], DDL seqno [4137].

2011-01-20 15:11:43 GGS INFO 2100 DDL operation excluded [EXCLUDE OBJNAME
myTableTemp OPTYPE CREATE], optype [CREATE], objtype [TABLE], objname
[QATEST1.MYTABLETEMP].

Statistics in the Process Reports

You can send current statistics for DDL processing to the Extract and Replicat reports by using
the SEND command in GGSCI.

SEND {EXTRACT | REPLICAT} group REPORT

The statistics show totals for:

• All DDL operations

• Operations that are MAPPED in scope

• Operations that are UNMAPPED in scope

• Operations that are OTHER in scope

• Operations that were excluded (number of operations minus included ones)

• Errors (Replicat only)

• Retried errors (Replicat only)

• Discarded errors (Replicat only)

• Ignored operations (Replicat only)

Tracing DDL Processing
If you open a support case with Oracle GoldenGate Technical Support, you might be asked to
turn on tracing. TRACE and TRACE2 control DDL tracing.

Using Tools that Support Trigger-Based DDL Capture
This section documents the additional tools available to support trigger-based capture.

Tracing the DDL Trigger

To trace the activity of the Oracle GoldenGate DDL trigger, use the following tools.

• ggs_ddl_trace.log trace file: Oracle GoldenGate creates a trace file in the
USER_DUMP_DEST directory of Oracle. On RAC, each node has its own trace file that
captures DDL tracing for that node. You can query the trace file as follows:

select value from sys.v_$parameter where name = 'user_dump_dest';
• ddl_tracelevel script: Edit and run this script to set the trace level. A value of None

generates no DDL tracing, except for fatal errors and installation logging. The default value

Chapter 8
Data Management

8-42

of 0 generates minimal tracing information. A value of 1 or 2 generates a much larger
amount of information in the trace file. Do not use 1 or 2 unless requested to do so by a
Oracle GoldenGate Technical Support analyst as part of a support case.

• ddl_cleartrace script: Run this script on a regular schedule to prevent the trace file from
consuming excessive disk space as it expands. It deletes the file, but Oracle GoldenGate
will create another one. The DDL trigger stops writing to the trace file when the Oracle
directory gets low on space, and then resumes writing when space is available again. This
script is in the Oracle GoldenGate directory. Back up the trace file before running the
script.

Viewing Metadata in the DDL History Table

Use the DUMPDDL command in GGSCI to view the information that is contained in the DDL
history table. This information is stored in proprietary format, but you can export it in human-
readable form to the screen or to a series of SQL tables that you can query. The information in
the DDL history table is the same as that used by the Extract process.

Handling DDL Trigger Errors

Use the params.sql non-executable script to handle failures of the Oracle GoldenGate DDL
trigger in relation to whether the source DDL fails or succeeds. The params.sql script is in
the root Oracle GoldenGate directory. The parameters to use are the following:

• ddl_fire_error_in_trigger: If set to TRUE, failures of the Oracle GoldenGate DDL trigger
are raised with a Oracle GoldenGate error message and a database error message to the
source end-user application. The source operations fails.

If set to FALSE, no errors are raised, and a message is written to the trigger trace file in the
Oracle GoldenGate directory. The source operation succeeds, but no DDL is replicated.
The target application will eventually fail if subsequent data changes do not match the old
target object structure. The default is FALSE.

• ddl_cause_error: If set to TRUE, tests the error response of the trigger by deliberately
causing an error. To generate the error, Oracle GoldenGate attempts to SELECT zero rows
without exception handling. Revert this flag to the default of FALSE after testing is done.

Installing Trigger-Based DDL Capture
This appendix contains instructions for installing the objects that support the trigger-based
method of Oracle GoldenGate DDL support.
To configure Oracle GoldenGate to capture and replicate DDL, see Configuring DDL Support .

Note:

DDL support for sequences (CREATE, ALTER, DROP, RENAME) is compatible with, but not
required for, replicating the sequence values themselves. To replicate just sequence
values, you do not need to install the Oracle GoldenGate DDL support environment.
You can just use the SEQUENCE parameter in the Extract configuration.

Chapter 8
Data Management

8-43

When to Use Trigger-based DDL Capture
This topic describes the configuration where you must use trigger-based DDL Extract.

You must use trigger-based DDL capture when Extract will operate in the following
configurations:

Extract operates in classic capture mode against any version of Oracle Database.
If Extract will run in integrated mode against a version 11.2.0.4 or later Oracle Database, the
DDL trigger is not required. By default, DDL capture is handled transparently through the
database logmining server.

If Extract will capture from a multitenant container database, integrated capture mode must be
used with the native DDL capture method.

See About Extract for more information about capture modes.

See Configuring DDL Support for more information about configuring DDL support.

Overview of the Objects that Support Trigger-based DDL Capture
This topic lists the requirements for installing Oracle GoldenGate trigger-based DDL
environment.

To install the Oracle GoldenGate trigger-based DDL environment, you will be installing the
database objects listed in the following table.

Object Purpose Default name

DDL marker table Stores DDL information. This table
only receives inserts.

GGS_MARKER

Sequence on marker table Used for a column in the marker
table.

GGS_DDL_SEQ

DDL history table Stores object metadata history. This
table receives inserts, updates,
deletes.

GGS_DDL_HIST

Object ID history table Contains object IDs of configured
objects.

GGS_DDL_HIST_ALT

DDL trigger Fires on DDL operations. Writes
information about the operation to
the marker and history tables.
Installed with the trigger are some
packages.

GGS_DDL_TRIGGER_BEFORE

DDL schema Contains the DDL synchronization
objects.

None; must be specified during
installation and in the GLOBALS file.

User role Establishes the role needed to
execute DDL operations.

GGS_GGSUSER_ROLE

Internal setup table Database table for internal use only. GGS_SETUP
ddl_pin Pins DDL tracing, the DDL package,

and the DDL trigger for performance
improvements.

ddl_pin

ddl_cleartrace.sql Removes the DDL trace file. ddl_cleartrace.sql
ddl_status.sql Verifies that the Oracle GoldenGate

DDL objects are installed
ddl_status.sql

Chapter 8
Data Management

8-44

Object Purpose Default name

marker_status.sql Verifies that the marker table is
installed.

marker_status.sql

ddl_tracelevel.sql Sets the level for DDL tracing. ddl_tracelevel.sql

Installing the DDL Objects
To install DDL objects, you need scripts to perform various tasks during the installation.

These scripts are located in the installation directory of Oracle GoldenGate Microservices
Architecture. The specific location is: oggma_install_home/lib/sql/legacy.

Follow these steps to install the database objects that support Oracle GoldenGate DDL
capture.

Note:

When using Extract in classic mode to capture in an Active Data Guard environment,
the DDL objects must be installed on the source database, not the standby.

1. Choose a schema that can contain the Oracle GoldenGate DDL objects. This schema
cannot be case-sensitive.

2. Grant the following permission to the Oracle GoldenGate schema.

GRANT EXECUTE ON utl_file TO schema;
3. Create a default tablespace for the Oracle GoldenGate DDL schema. This tablespace

must be dedicated to the DDL schema; do not allow any other schema to share it.

4. Set AUTOEXTEND to ON for the DDL tablespace, and size it to accommodate the growth of
the GGS_DDL_HIST and GGS_MARKER tables. The GGS_DDL_HIST table, in particular, will grow
in proportion to overall DDL activity.

5. (Optional) To cause user DDL activity to fail when the DDL tablespace fills up, edit the
params.sql script and set the ddl_fire_error_in_trigger parameter to TRUE. Extract
cannot capture DDL if the tablespace fills up, so stopping the DDL gives you time to extend
the tablespace size and prevent the loss of DDL capture. Managing tablespace sizing this
way, however, requires frequent monitoring of the business applications and Extract to
avoid business disruptions. As a best practice, make certain to size the tablespace
appropriately in the first place, and set AUTOEXTEND to ON so that the tablespace does not fill
up.

WARNING:

Make a backup of the params.sql script before you edit it to preserve its original
state.

6. Create a GLOBALS file (or edit it, if one exists).

EDIT PARAMS ./GLOBALS

Chapter 8
Data Management

8-45

Note:

EDIT PARAMS creates a simple text file. When you save the file after EDIT PARAMS,
it is saved with the name GLOBALS in upper case, without a file extension, at the
root of the Oracle GoldenGate directory. Do not alter the file name or location.

7. In the GLOBALS file, specify the name of the DDL schema by adding the following parameter
to the GLOBALS file.

GGSCHEMA schema_name
8. (Optional) To change the names of other objects listed in DDL synchronization objects, the

changes must be made now, before proceeding with the rest of the installation. Otherwise,
you will need to stop Oracle GoldenGate DDL processing and reinstall the DDL objects. It
is recommended that you accept the default names of the database objects. To change
any database object name (except the schema), do one or both of the following:

• Record all name changes in the params.sql script. Edit this script and change the
appropriate parameters. Do not run this script.

• List the names shown in Table 8-1 in the GLOBALS file. The correct parameters to use
are listed in the Parameter column of the table.

Table 8-1 GLOBALS Parameters for Changing DDL Object Names

Object Parameter

Marker table MARKERTABLE new_table_name1

History table DDLTABLE new_table_name

1 Do not qualify the name of any of these tables. The schema name for these table must be either the one
that is specified with GGSCHEMA or the schema of the current user, if GGSCHEMA is not specified in
GLOBALS.

9. To enable trigger-based DDL replication to recognize Oracle invisible indexes as unique
identifiers, set the following parameter to TRUE in the params.sql script:

define allow_invisible_index_keys = 'TRUE'
10. Save and close the GLOBALS file and the params.sql file.

11. Change directories to the Oracle GoldenGate installation directory.

12. Exit all Oracle sessions, including those of SQL*Plus, those of business applications, those
of the Oracle GoldenGate processes, and those of any other software that uses Oracle.
Prevent the start of any new sessions.

13. Run SQL*Plus and log in as a user that has SYSDBA privilege. This privilege is required to
install the DDL trigger in the SYS schema, which is required by Oracle. All other DDL
objects are installed in the schema that you created.

14. Run the marker_setup.sql script. Supply the name of the Oracle GoldenGate schema
when prompted, and then press Enter to execute the script. The script installs support for
the Oracle GoldenGate DDL marker system.

@marker_setup.sql
15. Run the ddl_setup.sql script. You are prompted to specify the name of the DDL schema

that you configured. (Note: ddl_setup.sql will fail if the tablespace for this schema is

Chapter 8
Data Management

8-46

shared by any other users. It will not fail, however, if the default tablespace does not have
AUTOEXTEND set to ON, the recommended setting.)

@ddl_setup.sql
16. Run the role_setup.sql script. At the prompt, supply the DDL schema name. The script

drops and creates the role that is needed for DDL synchronization, and it grants DML
permissions on the Oracle GoldenGate DDL objects.

@role_setup.sql
17. Grant the role that was created (default name is GGS_GGSUSER_ROLE) to all Oracle

GoldenGate Extract users. You may need to make multiple grants if the processes have
different user names.

GRANT role TO user;
18. Run the ddl_enable.sql script to enable the DDL trigger.

@ddl_enable.sql
To Install and Use the Optional Performance Tool

To improve the performance of the DDL trigger, make the ddl_pin script part of the database
startup. It must be invoked with the Oracle GoldenGate DDL user name, as in:

@ddl_pin DDL_user

This script pins the PL/SQL package that is used by the trigger into memory. If executing this
script from SQL*Plus, connect as SYSDBA from the Oracle GoldenGate installation directory.
This script relies on the Oracle dmbs_shared_pool system package, so install that package
before using ddl_pin.

Configure DDL Modification for Oracle GoldenGate for Sybase
Use the following steps to modify DDL for Oracle GoldenGate Extract for Sybase:

1. Pause or stop capturing application data for tables where you want to modify the DDL.

2. Ensure Extract processes all the transactions prior to making any DDL changes. An Event
Marker table may help to ensure full completion. See Maintaining the DDL Marker Table for
reference.

3. Stop Extract.

4. At source, execute DELETE TRANDATA for the tables on which DDL has to be performed.

5. Execute the ALTER TABLE statement on the database side, to add or drop the column in or
from the tables.

6. Re-enable trandata using the ADD TRANDATA command for the same tables at source.

7. Start Extract.

Using Procedural Replication
Learn about procedural replication and how to configure it.

About Procedural Replication

Oracle GoldenGate procedural replication is used to replicate Oracle Database supplied
PL/SQL procedures avoiding the shipping and applying of high volume records usually

Chapter 8
Data Management

8-47

generated by these operations. Procedural replication implements dictionary changes that
control user and session behavior and the swapping of objects in dictionary.

Procedural replication is not related to the replication of the CREATE, ALTER, and DROP
statements (or DDL), rather it is the replication of a procedure call like:

CALL procedure_name(arg1, arg2, ...);

As opposed to:

exec procedure_name(arg1, arg2, ...)

After you enable procedural replication, calls to procedures in Oracle Database supplied
packages at one database are replicated to one or more other databases and then executed at
those databases. For example, a call to subprograms in the DBMS_REDEFINITION package can
perform an online redefinition of a table. If the table is replicated at several databases, and if
you want the same online redefinition to be performed on the table at each database, then you
can make the calls to the subprograms in the DBMS_REDEFINITION package at one database,
and Oracle GoldenGate can replicate those calls to the other databases.

To support procedural replication, your Oracle Database should be configured to identify
procedures that are enabled for this optimization.

To use procedural replication, the following prerequisites must be met:

• Oracle GoldenGate with Extract and Replicat.

• System supplied packages are only working in combination with DML and DDL.

Procedural Replication Process Overview
Procedural replication uses a trail record to ensure that sufficient information is encapsulated
with the record.

To use Oracle GoldenGate procedural replication, you need to enable it. Your Oracle Database
must have a built in mechanism to identify the procedures that are enabled for this
optimization.

PL/SQL pragmas are used to indicate which procedures can be replicated. When the pragma
is specified, a callback is made to Logminer on entry and exit from the routine. The callback
provides the name of the procedure call and arguments and indicates if the procedure exited
successfully or with an error. Logminer augments the redo stream with the information from the
callbacks. For supported procedures, the normal redo generated by the procedure is
suppressed, and only the procedure call is replicated.

A new trail record is generated to identify procedural replication. This trail record leverages
existing trail column data format for arguments passed to PL/SQL procedures. For LOBs, data
is passed in chunks similar to existing trail format for LOBs. This trail record has sufficient
information to replay the procedure as-is on the target.

When you enable procedural replication, it prevents writing of individual records impacted by
the procedure to the trail file.

If an error is encountered when applying a PL/SQL procedure, Replicat can replay the entire
PL/SQL procedure.

Chapter 8
Data Management

8-48

Enabling Procedural Replication
Procedural replication is disabled by default. You can enable it by setting the TRANLOGOPTIONS
option, ENABLE_PROCEDURAL_REPLICATION, to yes.

Once you enable the procedural option for one Extract, it remains on and can not be disabled.

If you want to use Oracle GoldenGate in an Oracle Database Vault environment with
procedural replication, then you must set the appropriate privileges.

To enable procedural replication:

1. Ensure that you are in triggerless mode, see Prerequisites for Configuring DDL.

2. Connect to the source database as an Oracle GoldenGate administrator with dblogin.

3. Set the TRANLOGOPTIONS parameter option to yes.

TRANLOGOPTIONS INTEGRATEDPARAMS (ENABLE_PROCEDURAL_REPLICATION Y)
Procedural replication is enabled for Extract.

Determining Whether Procedural Replication Is On
Use the GG_PROCEDURE_REPLICATION_ON function in the DBMS_GOLDENGATE_ADM package to
determine whether Oracle GoldenGate procedural replication is on or off.

If you want to use Oracle GoldenGate in an Oracle Database Vault environment with
procedural replication, then you must set the appropriate privileges. See Oracle Database
Vault Administrator’s Guide.

To enable procedural replication:

1. Connect to the database as sys (sqlplus, sqlcl, sqldeveloper) not as an Oracle
GoldenGate administrator.

2. Run the GG_PROCEDURE_REPLICATION_ON function.

Example 8-1 Running the GG_PROCEDURE_REPLICATION_ON Function

SET SERVEROUTPUT ON
DECLARE
 on_or_off NUMBER;
BEGIN
 on_or_off := DBMS_GOLDENGATE_ADM.GG_PROCEDURE_REPLICATION_ON;
 IF on_or_off=1 THEN
 DBMS_OUTPUT.PUT_LINE('Oracle GoldenGate procedural replication is ON.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Oracle GoldenGate procedural replication is OFF.');
 END IF;
END;
/

Enabling and Disabling Supplemental Logging
Oracle GoldenGate provides GGSCI commands to allow you to enable or disable procedural
supplemental logging.

To enable supplemental logging:

Chapter 8
Data Management

8-49

1. Connect to the source database as the Oracle GoldenGate administrator with dblogin.

CONNECT https://localhost:9000 DEPLOYMENT demo AS admin PASSWORD adminpw
DBLOGIN USERIDALIAS admin_dba DOMAIN OracleGoldenGate

2. Add supplemental logging for procedural replication.

ADD PROCEDURETRANDATA
INFO OGG-13005 PROCEDURETRANDATA supplemental logging has been enabled.

Supplemental logging is enabled for procedure replication.

To disable supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with dblogin.

CONNECT https://localhost:9000 DEPLOYMENT demo AS admin PASSWORD adminpw
DBLOGIN USERIDALIAS admin_dba DOMAIN OracleGoldenGate

2. Remove supplemental logging for procedure replication.

DELETE PROCEDURETRANDATA
Supplemental logging is disabled for procedure replication.

To view information about supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with dblogin.

CONNECT https://localhost:9000 DEPLOYMENT demo AS admin PASSWORD adminpw
DBLOGIN USERIDALIAS admin_dba DOMAIN OracleGoldenGate

2. Display supplemental logging information for procedure replication.

INFO PROCEDURETRANDATA
Supplemental logging information for procedure replication is displayed.

Filtering Features for Procedural Replication
You can specify which procedures and packages you want to include or exclude for procedure
replication.

You group supported packages and procedures using feature groups. You use the procedure
parameter with the INCLUDE or EXCLUDE keyword to filter features for procedure replication.

In the procedure parameter, INCLUDE or EXCLUDE specify the beginning of a filtering clause.
They specify the procedures to replicate (INCLUDE) or filter out (EXCLUDE). The filtering clause
must consist of the INCLUDE ALL_SUPPORTED or EXCLUDE ALL_SUPPORTED keyword followed by
any valid combination of the other filtering options of the procedure parameter. The EXCLUDE
filter takes precedence over any INCLUDE filters that contain the same criteria.

Chapter 8
Data Management

8-50

Note:

When replicating Oracle Streams Advanced Queuing (AQ) procedures, you must use
the RULE option in your parameter file as follows:

PROCEDURE INCLUDE FEATURE ALL_SUPPORTED
or

PROCEDURE INCLUDE FEATURE AQ, RULE
Do not use PROCEDURE INCLUDE FEATURE AQ without the RULE option.

Including all system supplied packages at Extract:

1. Connect to Extract in the source database.

EXTRACT edba
USERIDALIAS admin_dbA DOMAIN ORADEV

2. Create a new trail file.

EXTTRAIL ea
3. Enable procedure replication, if not already done.

TRANLOGOPTIONS INTEGRATEDPARAMS (ENABLE_PROCEDURAL_REPLICATION Y)
4. Include filter for procedure replication.

PROCEDURE INCLUDE FEATURE ALL_SUPPORTED
You have successfully included all system supplied packages for procedure replication.

Excluding specific packages at Replicat:

1. Connect to Replicat in the target database.

REPLICAT rdba
USERIDALIAS admin_dbBDOMAIN ORADEV

2. Include filter for procedure replication.

PROCEDURE EXCLUDE FEATURE RLS
You have successfully excluded specific packages for procedure replication.

Handling Procedural Replication Errors
Procedural replication uses REPERROR parameter to configure the behavior of Replicat when an
procedural error occurs.

By default, Replicat will abend when a procedural replication occurs so using the following
steps sets up error handling:

1. Connect to Replicat in the target database.

REPLICAT rdba
USERIDALIAS admin_dbBDOMAIN ORADEV

2. Include filter for procedure replication.

Chapter 8
Data Management

8-51

PROCEDURE EXCLUDE FEATURE RLS
3. Specify error handling parameter, see REPERROR in Reference for Oracle GoldenGate

for other options.

REPERROR (PROCEDURE, DISCARD)
You have successfully handled errors for procedural replication.

Procedural Replication Pragma Options
There are four pragma options for procedures: AUTO, MANUAL, UNSUPPORTED, and NONE.

PL/SQL enter and exit markers are logged for procedures with pragmas AUTO, MANUAL, and
UNSUPPORTED. The redo logs generated between the enter and exit markers are grouped and
discarded.

Following is a list of the packages and procedures that are pragma constructs for replication.
Any package or procedure not in this list is not considered a pragma construct for PL/SQL
replication and is equivalent to pragma NONE.

PL/SQL Procedures with Pragma are UNSUPPORTED

Procedures and packages with the pragma UNSUPPORTED stop apply at the point of procedure
invocation so that manual intervention can be taken. The following procedures are pragma and
UNSUPPORTED.

Schem
a

Package Procedure Pragma

SYS DBMS_REDEFINITION ABORT_UPDATE PRAGMA UNSUPPORTED
SYS DBMS_REDEFINITION EXECUTE_UPDATE PRAGMA UNSUPPORTED
XDB DBMS_XDBZ ADD_APPLICATION_PRI

NCIPAL
PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDBZ CHANGE_APPLICATION_
MEMBERSHIP

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDBZ DELETE_APPLICATION_
PRINCIPAL

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDBZ SET_APPLICATION_PRI
NCIPAL

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_ADMIN CREATENONCEKEY PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XDB_ADMIN INSTALLDEFAULTWALLE

T
PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_ADMIN MOVEXDB_TABLESPACE PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XDB_ADMIN REBUILDHIERARCHICAL

INDEX
PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ADDAUTHENTICATIONMA
PPING

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ADDAUTHENTICATIONME
THOD

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ADDTRUSTMAPPING PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XDB_CONFIG ADDTRUSTSCHEME PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XDB_CONFIG CLEARHTTPDIGESTS PRAGMA UNSUPPORTED with COMMIT

Chapter 8
Data Management

8-52

Schem
a

Package Procedure Pragma

XDB DBMS_XDB_CONFIG DELETEAUTHENTICATIO
NMAPPING

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG DELETEAUTHENTICATIO
NMETHOD

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG DELETETRUSTMAPPING PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XDB_CONFIG DELETETRUSTSCHEME PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XDB_CONFIG ENABLECUSTOMAUTHENT

ICATION
PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ENABLECUSTOMTRUST PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XDB_CONFIG ENABLEDIGESTAUTHENT

ICATION
PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ISGLOBALPORTENABLED PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XDB_CONFIG SETDYNAMICGROUPSTOR

E
PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG SETGLOBALPORTENABLE
D

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG SETHTTPCONFIGREALM PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XMLINDEX DROPPARAMETER PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XMLINDEX MODIFYPARAMETER PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XMLINDEX REGISTERPARAMETER PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XMLSCHEMA COPYEVOLVE PRAGMA UNSUPPORTED with COMMIT

PL/SQL Procedures with Pragma AUTO
For the procedures and packages with the pragma AUTO, the top-level PL/SQL API is called
during apply.

Schem
a

Package Procedure Pragma

DVSYS DBMS_MACADM ADD_AUTH_TO_REALM PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ADD_CMD_RULE_TO_POL

ICY
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_FACTOR_LINK PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ADD_INDEX_FUNCTION PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ADD_NLS_DATA PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ADD_OBJECT_TO_REALM PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ADD_OWNER_TO_POLICY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ADD_POLICY_FACTOR PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ADD_REALM_TO_POLICY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ADD_RULE_TO_RULE_SE

T
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_DATAPUMP_
USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_DDL PRAGMA AUTO with COMMIT

Chapter 8
Data Management

8-53

Schem
a

Package Procedure Pragma

DVSYS DBMS_MACADM AUTHORIZE_DIAGNOSTI
C_ADMIN

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_MAINTENAN
CE_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_PREPROCES
SOR

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_PROXY_USE
R

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_SCHEDULER
_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_TTS_USER PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CHANGE_IDENTITY_FAC

TOR
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CHANGE_IDENTITY_VAL
UE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_COMMAND_RULE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_CONNECT_COMM

AND_RULE
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_DOMAIN_IDENT
ITY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_FACTOR PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_FACTOR_TYPE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_IDENTITY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_IDENTITY_MAP PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_MAC_POLICY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_POLICY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_POLICY_LABEL PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_REALM PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_ROLE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_RULE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_RULE_SET PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_SESSION_EVEN

T_CMD_RULE
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_SESSION_EVEN
T_CMD_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_AUTH_FROM_RE
ALM

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_CMD_RULE_FRO
M_POLICY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_COMMAND_RULE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_CONNECT_COMM

AND_RULE
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_FACTOR PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_FACTOR_LINK PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_FACTOR_TYPE PRAGMA AUTO with COMMIT

Chapter 8
Data Management

8-54

Schem
a

Package Procedure Pragma

DVSYS DBMS_MACADM DELETE_IDENTITY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_IDENTITY_MAP PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_INDEX_FUNCTI

ON
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_MAC_POLICY_C
ASCADE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_OBJECT_FROM_
REALM

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_OWNER_FROM_P
OLICY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_POLICY_FACTO
R

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_POLICY_LABEL PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_REALM PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_REALM_CASCAD

E
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_REALM_FROM_P
OLICY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_ROLE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_RULE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_RULE_FROM_RU

LE_SET
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_RULE_SET PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_SESSION_EVEN

T_CMD_RULE
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_SYSTEM_EVENT
_CMD_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DISABLE_DV PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DISABLE_DV_DICTIONA

RY_ACCTS
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DISABLE_DV_PATCH_AD
MIN_AUDIT

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DISABLE_ORADEBUG PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DROP_DOMAIN_IDENTIT

Y
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DROP_POLICY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ENABLE_DV PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ENABLE_DV_DICTIONAR

Y_ACCTS
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ENABLE_DV_PATCH_ADM
IN_AUDIT

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ENABLE_ORADEBUG PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM RENAME_FACTOR PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM RENAME_FACTOR_TYPE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM RENAME_POLICY PRAGMA AUTO with COMMIT

Chapter 8
Data Management

8-55

Schem
a

Package Procedure Pragma

DVSYS DBMS_MACADM RENAME_REALM PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM RENAME_ROLE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM RENAME_RULE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM RENAME_RULE_SET PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UNAUTHORIZE_DATAPUM

P_USER
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_DDL PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UNAUTHORIZE_DIAGNOS

TIC_ADMIN
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_MAINTEN
ANCE_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_PREPROC
ESSOR

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_PROXY_U
SER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_SCHEDUL
ER_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_TTS_USE
R

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_COMMAND_RULE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_CONNECT_COMM

AND_RULE
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_FACTOR PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_FACTOR_TYPE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_IDENTITY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_MAC_POLICY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_POLICY_DESCR

IPTION
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_POLICY_STATE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_REALM PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_REALM_AUTH PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_ROLE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_RULE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_RULE_SET PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_SESSION_EVEN

T_CMD_RULE
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_SYSTEM_EVENT
_CMD_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_ADMIN_AUDIT PRAGMA AUTO
DVSYS DBMS_MACADM CREATE_MACOLS_CONTE

XTS
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DROP_MACOLS_CONTEXT
S

PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_EVENTS AFTER_CREATE PRAGMA AUTO with COMMIT

Chapter 8
Data Management

8-56

Schem
a

Package Procedure Pragma

LBACSY
S

LBAC_EVENTS AFTER_DROP PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_EVENTS BEFORE_ALTER PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_LGSTNDBY_UTI
L

ADD_COMPARTMENTS PRAGMA AUTO

LBACSY
S

LBAC_LGSTNDBY_UTI
L

ADD_GROUPS PRAGMA AUTO

LBACSY
S

LBAC_LGSTNDBY_UTI
L

ALTER_COMPARTMENTS PRAGMA AUTO

LBACSY
S

LBAC_LGSTNDBY_UTI
L

ALTER_GROUPS PRAGMA AUTO

LBACSY
S

LBAC_LGSTNDBY_UTI
L

CONFIGURE_OLS PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_LGSTNDBY_UTI
L

CREATE_POLICY PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_LGSTNDBY_UTI
L

DISABLE_OLS PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_LGSTNDBY_UTI
L

DROP_ALL_COMPARTMEN
TS

PRAGMA AUTO

LBACSY
S

LBAC_LGSTNDBY_UTI
L

DROP_ALL_GROUPS PRAGMA AUTO

LBACSY
S

LBAC_LGSTNDBY_UTI
L

DROP_COMPARTMENTS PRAGMA AUTO

LBACSY
S

LBAC_LGSTNDBY_UTI
L

DROP_GROUPS PRAGMA AUTO

LBACSY
S

LBAC_LGSTNDBY_UTI
L

ENABLE_OLS PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_LGSTNDBY_UTI
L

INSERT_LABEL PRAGMA AUTO

LBACSY
S

LBAC_LGSTNDBY_UTI
L

SAVE_DEFAULT_LABELS PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_LGSTNDBY_UTI
L

SET_COMPARTMENTS PRAGMA AUTO

LBACSY
S

LBAC_LGSTNDBY_UTI
L

SET_DEFAULT_LABEL PRAGMA AUTO

LBACSY
S

LBAC_LGSTNDBY_UTI
L

SET_GROUPS PRAGMA AUTO

LBACSY
S

LBAC_LGSTNDBY_UTI
L

SET_LEVELS PRAGMA AUTO

LBACSY
S

LBAC_LGSTNDBY_UTI
L

SET_ROW_LABEL PRAGMA AUTO

LBACSY
S

LBAC_LGSTNDBY_UTI
L

SET_USER_LABELS PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_LGSTNDBY_UTI
L

STORE_LABEL_LIST PRAGMA AUTO

Chapter 8
Data Management

8-57

Schem
a

Package Procedure Pragma

LBACSY
S

LBAC_POLICY_ADMIN ALTER_SCHEMA_POLICY PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_POLICY_ADMIN APPLY_SCHEMA_POLICY PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_POLICY_ADMIN APPLY_TABLE_POLICY PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_POLICY_ADMIN DISABLE_SCHEMA_POLI
CY

PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_POLICY_ADMIN DISABLE_TABLE_POLIC
Y

PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_POLICY_ADMIN ENABLE_SCHEMA_POLIC
Y

PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_POLICY_ADMIN ENABLE_TABLE_POLICY PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_POLICY_ADMIN POLICY_SUBSCRIBE PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_POLICY_ADMIN POLICY_UNSUBSCRIBE PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_POLICY_ADMIN REMOVE_SCHEMA_POLIC
Y

PRAGMA AUTO with COMMIT

LBACSY
S

LBAC_POLICY_ADMIN REMOVE_TABLE_POLICY PRAGMA AUTO with COMMIT

LBACSY
S

SA_AUDIT_ADMIN AUDIT PRAGMA AUTO with COMMIT

LBACSY
S

SA_AUDIT_ADMIN AUDIT_LABEL PRAGMA AUTO with COMMIT

LBACSY
S

SA_AUDIT_ADMIN AUDIT_LABEL_ENABLED PRAGMA AUTO with COMMIT

LBACSY
S

SA_AUDIT_ADMIN AUDIT_LABEL_ENABLED
_SQL

PRAGMA AUTO with COMMIT

LBACSY
S

SA_AUDIT_ADMIN CREATE_VIEW PRAGMA AUTO with COMMIT

LBACSY
S

SA_AUDIT_ADMIN DROP_VIEW PRAGMA AUTO with COMMIT

LBACSY
S

SA_AUDIT_ADMIN NOAUDIT PRAGMA AUTO with COMMIT

LBACSY
S

SA_AUDIT_ADMIN NOAUDIT_LABEL PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS ALTER_COMPARTMENT PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS ALTER_COMPARTMENT PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS ALTER_GROUP PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS ALTER_GROUP PRAGMA AUTO with COMMIT

Chapter 8
Data Management

8-58

Schem
a

Package Procedure Pragma

LBACSY
S

SA_COMPONENTS ALTER_GROUP_PARENT PRAGMA AUTO

LBACSY
S

SA_COMPONENTS ALTER_GROUP_PARENT PRAGMA AUTO

LBACSY
S

SA_COMPONENTS ALTER_GROUP_PARENT PRAGMA AUTO

LBACSY
S

SA_COMPONENTS ALTER_LEVEL PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS ALTER_LEVEL PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS CREATE_COMPARTMENT PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS CREATE_GROUP PRAGMA AUTO

LBACSY
S

SA_COMPONENTS CREATE_LEVEL PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS DROP_COMPARTMENT PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS DROP_COMPARTMENT PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS DROP_GROUP PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS DROP_GROUP PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS DROP_LEVEL PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS DROP_LEVEL PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS ALTER_LABEL PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS ALTER_LABEL PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS CREATE_LABEL PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS DROP_LABEL PRAGMA AUTO with COMMIT

LBACSY
S

SA_COMPONENTS DROP_LABEL PRAGMA AUTO with COMMIT

LBACSY
S

SA_SYSDBA ALTER_POLICY PRAGMA AUTO with COMMIT

LBACSY
S

SA_SYSDBA DISABLE_POLICY PRAGMA AUTO with COMMIT

LBACSY
S

SA_SYSDBA DROP_POLICY PRAGMA AUTO with COMMIT

LBACSY
S

SA_SYSDBA ENABLE_POLICY PRAGMA AUTO with COMMIT

Chapter 8
Data Management

8-59

Schem
a

Package Procedure Pragma

LBACSY
S

SA_USER_ADMIN DROP_USER_ACCESS PRAGMA AUTO with COMMIT

LBACSY
S

SA_USER_ADMIN SET_PROG_PRIVS PRAGMA AUTO with COMMIT

LBACSY
S

SA_USER_ADMIN SET_USER_PRIVS PRAGMA AUTO with COMMIT

SYS DBMS_AQ AQ$_BACKGROUND_OPER PRAGMA AUTO
SYS DBMS_AQ AQ$_DELETE_DIOT_TAB PRAGMA AUTO
SYS DBMS_AQ AQ$_DELETE_HIST_TAB PRAGMA AUTO
SYS DBMS_AQ AQ$_DELETE_TIOT_TAB PRAGMA AUTO
SYS DBMS_AQ AQ$_INSERT_DIOT_TAB PRAGMA AUTO
SYS DBMS_AQ AQ$_INSERT_HIST_TAB PRAGMA AUTO
SYS DBMS_AQ AQ$_INSERT_TIOT_TAB PRAGMA AUTO
SYS DBMS_AQ AQ$_UPDATE_HIST_TAB PRAGMA AUTO
SYS DBMS_AQ AQ$_UPDATE_HIST_TAB

_EX
PRAGMA AUTO

SYS DBMS_AQ DEQUEUE_INTERNAL PRAGMA AUTO
SYS DBMS_AQ ENQUEUE_INT_SHARD PRAGMA AUTO
SYS DBMS_AQ ENQUEUE_INT_SHARD PRAGMA AUTO
SYS DBMS_AQ ENQUEUE_INT_SHARD PRAGMA AUTO
SYS DBMS_AQ ENQUEUE_INT_SHARD_J

MS
PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_UNSHARD
ED

PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_UNSHARD
ED

PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_UNSHARD
ED

PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_UNSHARD
ED

PRAGMA AUTO

SYS DBMS_AQ REGISTRATION_REPLIC
ATION

PRAGMA AUTO

SYS DBMS_AQADM ALTER_AQ_AGENT PRAGMA AUTO
SYS DBMS_AQADM CREATE_AQ_AGENT PRAGMA AUTO
SYS DBMS_AQADM DISABLE_DB_ACCESS PRAGMA AUTO
SYS DBMS_AQADM DROP_AQ_AGENT PRAGMA AUTO
SYS DBMS_AQADM ENABLE_DB_ACCESS PRAGMA AUTO
SYS DBMS_AQADM GRANT_SYSTEM_PRIVIL

EGE
PRAGMA AUTO

SYS DBMS_AQADM GRANT_TYPE_ACCESS PRAGMA AUTO
SYS DBMS_AQADM REVOKE_SYSTEM_PRIVI

LEGE
PRAGMA AUTO

SYS DBMS_AQADM_SYS ALTER_QUEUE PRAGMA AUTO
SYS DBMS_AQADM_SYS ALTER_QUEUE_TABLE PRAGMA AUTO

Chapter 8
Data Management

8-60

Schem
a

Package Procedure Pragma

SYS DBMS_AQADM_SYS ALTER_SHARDED_QUEUE PRAGMA AUTO
SYS DBMS_AQADM_SYS ALTER_SUBSCRIBER_11

G
PRAGMA AUTO

SYS DBMS_AQADM_SYS CREATE_EVICTION_TAB
LE

PRAGMA AUTO

SYS DBMS_AQADM_SYS CREATE_EXCEPTION_QU
EUE

PRAGMA AUTO

SYS DBMS_AQADM_SYS CREATE_NP_QUEUE_INT PRAGMA AUTO
SYS DBMS_AQADM_SYS CREATE_QUEUE PRAGMA AUTO
SYS DBMS_AQADM_SYS CREATE_QUEUE_TABLE PRAGMA AUTO
SYS DBMS_AQADM_SYS CREATE_SHARDED_QUEU

E
PRAGMA AUTO

SYS DBMS_AQADM_SYS DROP_EVICTION_TABLE PRAGMA AUTO
SYS DBMS_AQADM_SYS DROP_QUEUE PRAGMA AUTO
SYS DBMS_AQADM_SYS DROP_QUEUE_TABLE PRAGMA AUTO
SYS DBMS_AQADM_SYS DROP_SHARDED_QUEUE_

INT
PRAGMA AUTO

SYS DBMS_AQADM_SYS ENABLE_JMS_TYPES_IN
T

PRAGMA AUTO

SYS DBMS_AQADM_SYS GRANT_QUEUE_PRIVILE
GE

PRAGMA AUTO

SYS DBMS_AQADM_SYS MIGRATE_QUEUE_TABLE PRAGMA AUTO
SYS DBMS_AQADM_SYS PATCH_QUEUE_TABLE PRAGMA AUTO
SYS DBMS_AQADM_SYS PATCH_QUEUE_TABLE PRAGMA AUTO
SYS DBMS_AQADM_SYS PSTUPD_CREATE_EVICT

ION_TABLE
PRAGMA AUTO

SYS DBMS_AQADM_SYS PURGE_QUEUE_TABLE_I
NT

PRAGMA AUTO

SYS DBMS_AQADM_SYS REMOVE_ORPHMSGS_INT PRAGMA AUTO
SYS DBMS_AQADM_SYS REMOVE_SUBSCRIBER_1

1G_INT
PRAGMA AUTO

SYS DBMS_AQADM_SYS REVOKE_QUEUE_PRIVIL
EGE

PRAGMA AUTO

SYS DBMS_AQADM_SYS START_QUEUE PRAGMA AUTO
SYS DBMS_AQADM_SYS STOP_QUEUE PRAGMA AUTO
SYS DBMS_AQELM SET_MAILHOST PRAGMA AUTO
SYS DBMS_AQELM SET_MAILPORT PRAGMA AUTO
SYS DBMS_AQELM SET_PROXY PRAGMA AUTO
SYS DBMS_AQELM SET_SENDFROM PRAGMA AUTO
SYS DBMS_AQ_SYS_IMP_I

NTERNAL
BUMP_TID_SEQUENCE PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

CLEANUP_SCHEMA_IMPO
RT

PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

IMPORT_CMT_TIME_TAB
LE

PRAGMA AUTO with COMMIT

Chapter 8
Data Management

8-61

Schem
a

Package Procedure Pragma

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

IMPORT_DEQUEUELOG_T
ABLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

IMPORT_EXP_ENTRY PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

IMPORT_HISTORY_TABL
E

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

IMPORT_INDEX_TABLE PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

IMPORT_QTAB_EXPDEP PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

IMPORT_QUEUE PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

IMPORT_QUEUE_META PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

IMPORT_QUEUE_SEQ PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

IMPORT_QUEUE_TABLE PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

IMPORT_SIGNATURE_TA
BLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

IMPORT_SUBSCRIBER_T
ABLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

IMPORT_TIMEMGR_TABL
E

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

POST_TTS_REBUILD_ID
X

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

POST_TTS_SHARDED_Q PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

POST_TTS_WORK PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP_I
NTERNAL

POST_TTS_WORK_REMAI
NING

PRAGMA AUTO

SYS DBMS_DBFS_CONTENT
_ADMIN

EXIM_MOUNT PRAGMA AUTO

SYS DBMS_DBFS_CONTENT
_ADMIN

EXIM_MOUNTP PRAGMA AUTO

SYS DBMS_DBFS_CONTENT
_ADMIN

EXIM_STORE PRAGMA AUTO

SYS DBMS_DBFS_CONTENT
_ADMIN

MOUNTSTORE_LOG PRAGMA AUTO

SYS DBMS_DBFS_CONTENT
_ADMIN

REGISTERSTORE_LOG PRAGMA AUTO

SYS DBMS_DBFS_CONTENT
_ADMIN

UNMOUNTSTORE_LOG PRAGMA AUTO

SYS DBMS_DBFS_CONTENT
_ADMIN

UNREGISTERSTORE_LOG PRAGMA AUTO

SYS DBMS_DBFS_SFS NORMALIZEFS PRAGMA AUTO with COMMIT

Chapter 8
Data Management

8-62

Schem
a

Package Procedure Pragma

SYS DBMS_DBFS_CONTENT
_ADMIN

REORGANIZEFS PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_CONTENT
_ADMIN

SHRINKFS PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_ADM
IN

CREATEFILESYSTEM_LO
G

PRAGMA AUTO

SYS DBMS_DBFS_SFS_ADM
IN

DELETE_ORPHANS_LOG PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_ADM
IN

DROPFILESYSTEM_LOG PRAGMA AUTO

SYS DBMS_DBFS_SFS_ADM
IN

EXIM_ATTRV PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_ADM
IN

EXIM_FS PRAGMA AUTO

SYS DBMS_DBFS_SFS_ADM
IN

EXIM_GRANTS PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_ADM
IN

EXIM_SEQ PRAGMA AUTO

SYS DBMS_DBFS_SFS_ADM
IN

EXIM_SNAP PRAGMA AUTO

SYS DBMS_DBFS_SFS_ADM
IN

EXIM_TABP PRAGMA AUTO

SYS DBMS_DBFS_SFS_ADM
IN

EXIM_TAB_LOG PRAGMA AUTO

SYS DBMS_DBFS_SFS_ADM
IN

EXIM_VOL PRAGMA AUTO

SYS DBMS_DBFS_SFS_ADM
IN

INITFILESYSTEM_LOG PRAGMA AUTO

SYS DBMS_DBFS_SFS_ADM
IN

PARTITION_SEQUENCE_
LOG

PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_ADM
IN

RECACHE_SEQUENCE_LO
G

PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_ADM
IN

REGISTERFILESYSTEM_
LOG

PRAGMA AUTO

SYS DBMS_DBFS_SFS_ADM
IN

SETFSPROPERTIES_LOG PRAGMA AUTO

SYS DBMS_DBFS_SFS_ADM
IN

UNREGISTERFILESYSTE
M_LOG

PRAGMA AUTO

SYS DBMS_DDL SET_TRIGGER_FIRING_
PROPERTY

PRAGMA AUTO with COMMIT

SYS DBMS_DDL SET_TRIGGER_FIRING_
PROPERTY

PRAGMA AUTO with COMMIT

SYS DBMS_FGA ADD_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_FGA DISABLE_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_FGA DROP_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_FGA ENABLE_POLICY PRAGMA AUTO with COMMIT

Chapter 8
Data Management

8-63

Schem
a

Package Procedure Pragma

SYS DBMS_GOLDENGATE_A
DM_INT_I

ADD_AUTO_CDR_COLGRO
UP_INT

PRAGMA AUTO with COMMIT

SYS DBMS_FGA ADD_AUTO_CDR_DELTA_
RES_INT

PRAGMA AUTO with COMMIT

SYS DBMS_FGA ADD_AUTO_CDR_INT PRAGMA AUTO with COMMIT
SYS DBMS_FGA ALTER_AUTO_CDR_COLG

ROUP_INT
PRAGMA AUTO with COMMIT

SYS DBMS_FGA ALTER_AUTO_CDR_INT PRAGMA AUTO with COMMIT
SYS DBMS_FGA REMOVE_AUTO_CDR_COL

GROUP_INT
PRAGMA AUTO with COMMIT

SYS DBMS_FGA REMOVE_AUTO_CDR_DEL
TA_RES_INT

PRAGMA AUTO with COMMIT

SYS DBMS_FGA REMOVE_AUTO_CDR_INT PRAGMA AUTO with COMMIT
SYS DBMS_GOLDENGATE_I

MP
ACDR_COLUMN PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE_I
MP

ACDR_COLUMN_GROUP PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE_I
MP

ACDR_END PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE_I
MP

ACDR_START PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE_I
MP

ACDR_TABLE PRAGMA AUTO with COMMIT

SYS DBMS_INTERNAL_LOG
STDBY

EDS_EVOLVE_DISABLE PRAGMA AUTO with COMMIT

SYS DBMS_INTERNAL_LOG
STDBY

EDS_EVOLVE_ENABLE PRAGMA AUTO with COMMIT

SYS DBMS_INTERNAL_ROL
LING

DESTROY_META PRAGMA AUTO

SYS DBMS_INTERNAL_ROL
LING

INSERT_DGLRDDIR PRAGMA AUTO

SYS DBMS_INTERNAL_ROL
LING

INSERT_DGLRDEVT PRAGMA AUTO

SYS DBMS_INTERNAL_ROL
LING

SET_UPGRADE_FLAGS PRAGMA AUTO

SYS DBMS_INTERNAL_ROL
LING

UPDATE_DGLRDINS_PRO
GRESS

PRAGMA AUTO

SYS DBMS_INTERNAL_ROL
LING

UPSERT_DGLRDCON PRAGMA AUTO

SYS DBMS_INTERNAL_ROL
LING

UPSERT_DGLRDDAT PRAGMA AUTO

SYS DBMS_INTERNAL_ROL
LING

UPSERT_DGLRDINS PRAGMA AUTO

SYS DBMS_INTERNAL_ROL
LING

UPSERT_DGLRDPAR PRAGMA AUTO

Chapter 8
Data Management

8-64

Schem
a

Package Procedure Pragma

SYS DBMS_INTERNAL_ROL
LING

UPSERT_DGLRDSTA PRAGMA AUTO

SYS DBMS_INTERNAL_ROL
LING

UPSERT_DGLRDSTS PRAGMA AUTO

SYS DBMS_ISCHED CREATE_CREDENTIAL PRAGMA AUTO with COMMIT
SYS DBMS_ISCHED EXEC_JOB_RUN_LSA PRAGMA AUTO
SYS DBMS_ISCHED SET_AGENT_REGISTRAT

ION_PASS
PRAGMA AUTO with COMMIT

SYS DBMS_PRVTAQIS SUBID_REPLICATE PRAGMA AUTO with COMMIT
SYS DBMS_PRVTAQIS ADD_DURABLE_SUB PRAGMA AUTO with COMMIT
SYS DBMS_PRVTAQIS ALTER_SUBSCRIBER_12

G
PRAGMA AUTO

SYS DBMS_PRVTAQIS REMOVE_SUBSCRIBER_1
2G

PRAGMA AUTO

SYS DBMS_REDACT ADD_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_REDACT ALTER_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_REDACT APPLY_POLICY_EXPR_T

O_COL
PRAGMA AUTO with COMMIT

SYS DBMS_REDACT CREATE_POLICY_EXPRE
SSION

PRAGMA AUTO with COMMIT

SYS DBMS_REDACT DISABLE_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_REDACT DROP_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_REDACT DROP_POLICY_EXPRESS

ION
PRAGMA AUTO with COMMIT

SYS DBMS_REDACT ENABLE_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_REDACT FPM_MASK PRAGMA AUTO with COMMIT
SYS DBMS_REDACT FPM_UNMASK PRAGMA AUTO with COMMIT
SYS DBMS_REDACT UPDATE_FULL_REDACTI

ON_VALUES
PRAGMA AUTO with COMMIT

SYS DBMS_REDACT UPDATE_POLICY_EXPRE
SSION

PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITION ABORT_REDEF_TABLE PRAGMA AUTO with COMMIT
SYS DBMS_REDEFINITION ABORT_ROLLBACK PRAGMA AUTO with COMMIT
SYS DBMS_REDEFINITION COPY_TABLE_DEPENDEN

TS
PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITION FINISH_REDEF_TABLE PRAGMA AUTO with COMMIT
SYS DBMS_REDEFINITION REGISTER_DEPENDENT_

OBJECT
PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITION ROLLBACK PRAGMA AUTO with COMMIT
SYS DBMS_REDEFINITION SET_PARAM PRAGMA AUTO with COMMIT
SYS DBMS_REDEFINITION START_REDEF_TABLE PRAGMA AUTO with COMMIT
SYS DBMS_REDEFINITION SYNC_INTERIM_TABLE PRAGMA AUTO with COMMIT
SYS DBMS_REDEFINITION UNREGISTER_DEPENDEN

T_OBJECT
PRAGMA AUTO with COMMIT

Chapter 8
Data Management

8-65

Schem
a

Package Procedure Pragma

SYS DBMS_RLS_INT ADD_GROUPED_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_RLS_INT ADD_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_RLS_INT ADD_POLICY_CONTEXT PRAGMA AUTO with COMMIT
SYS DBMS_RLS_INT ALTER_GROUPED_POLIC

Y
PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ALTER_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_RLS_INT CREATE_POLICY_GROUP PRAGMA AUTO with COMMIT
SYS DBMS_RLS_INT DELETE_POLICY_GROUP PRAGMA AUTO with COMMIT
SYS DBMS_RLS_INT DISABLE_GROUPED_POL

ICY
PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT DROP_GROUPED_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_RLS_INT DROP_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_RLS_INT DROP_POLICY_CONTEXT PRAGMA AUTO with COMMIT
SYS DBMS_RLS_INT ENABLE_GROUPED_POLI

CY
PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ENABLE_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_RLS_INT REFRESH_GROUPED_POL

ICY
PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT REFRESH_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_RULEADM_INTE

RNAL
ADD_RULE PRAGMA AUTO

SYS DBMS_RULEADM_INTE
RNAL

ALTER_EVALUATION_CO
NTEXT

PRAGMA AUTO

SYS DBMS_RULEADM_INTE
RNAL

ALTER_RULE PRAGMA AUTO

SYS DBMS_RULEADM_INTE
RNAL

CREATE_EVALUATION_C
ONTEXT

PRAGMA AUTO

SYS DBMS_RULEADM_INTE
RNAL

CREATE_RULE PRAGMA AUTO

SYS DBMS_RULEADM_INTE
RNAL

CREATE_RULE_SET PRAGMA AUTO

SYS DBMS_RULEADM_INTE
RNAL

DROP_EVALUATION_CON
TEXT

PRAGMA AUTO

SYS DBMS_RULEADM_INTE
RNAL

DROP_RULE PRAGMA AUTO

SYS DBMS_RULEADM_INTE
RNAL

DROP_RULE_SET PRAGMA AUTO

SYS DBMS_RULEADM_INTE
RNAL

REMOVE_RULE PRAGMA AUTO

SYS DBMS_RULE_ADM GRANT_OBJECT_PRIVIL
EGE

PRAGMA AUTO

SYS DBMS_RULE_ADM GRANT_SYSTEM_PRIVIL
EGE

PRAGMA AUTO

SYS DBMS_RULE_ADM REVOKE_OBJECT_PRIVI
LEGE

PRAGMA AUTO

Chapter 8
Data Management

8-66

Schem
a

Package Procedure Pragma

SYS DBMS_RULE_ADM REVOKE_SYSTEM_PRIVI
LEGE

PRAGMA AUTO

SYS DBMS_SCHEDULER ADD_EVENT_QUEUE_SUB
SCRIBER

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ADD_GROUP_MEMBER PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER ADD_JOB_EMAIL_NOTIF

ICATION
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ADD_TO_INCOMPATIBIL
ITY

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ADD_WINDOW_GROUP_ME
MBER

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ALTER_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER ALTER_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER ALTER_RUNNING_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER ALTER_RUNNING_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER ANALYZE_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER AUTO_PURGE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CHECK_CREDENTIAL PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER COPY_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_DATABASE_DES

TINATION
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_EVENT_SCHEDU
LE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_FILE_WATCHER PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_GROUP PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_INCOMPATIBIL

ITY
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOBS PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOBS PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOB_CLASS PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_PROGRAM PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_RESOURCE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_SCHEDULE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_WINDOW PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_WINDOW PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_WINDOW_GROUP PRAGMA AUTO with COMMIT

Chapter 8
Data Management

8-67

Schem
a

Package Procedure Pragma

SYS DBMS_SCHEDULER DEFINE_ANYDATA_ARGU
MENT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_CHAIN_EVENT_
STEP

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_CHAIN_EVENT_
STEP

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_CHAIN_RULE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DEFINE_CHAIN_STEP PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DEFINE_METADATA_ARG

UMENT
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_PROGRAM_ARGU
MENT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_PROGRAM_ARGU
MENT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DELETE_FILE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DISABLE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DISABLE1_CALENDAR_C

HECK
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_AGENT_DESTINAT
ION

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_CHAIN_RULE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_CHAIN_STEP PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_CREDENTIAL PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_DATABASE_DESTI

NATION
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_FILE_WATCHER PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_GROUP PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_INCOMPATIBILIT

Y
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_JOB_CLASS PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_PROGRAM PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_PROGRAM_ARGUME

NT
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_PROGRAM_ARGUME
NT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_RESOURCE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_SCHEDULE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_WINDOW PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_WINDOW_GROUP PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER ENABLE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER END_DETACHED_JOB_RU

N
PRAGMA AUTO with COMMIT

Chapter 8
Data Management

8-68

Schem
a

Package Procedure Pragma

SYS DBMS_SCHEDULER EVALUATE_RUNNING_CH
AIN

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_AGENT_INFO PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_FILE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_FILE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_FILE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_SCHEDULER_ATTRI

BUTE
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER PURGE_LOG PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER PUT_FILE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER PUT_FILE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER PUT_FILE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER REMOVE_EVENT_QUEUE_

SUBSCRIBER
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER REMOVE_FROM_INCOMPA
TIBILITY

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER REMOVE_GROUP_MEMBER PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER REMOVE_JOB_EMAIL_NO

TIFICATION
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER REMOVE_WINDOW_GROUP
_MEMBER

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER RESET_JOB_ARGUMENT_
VALUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER RESET_JOB_ARGUMENT_
VALUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER RUN_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER RUN_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT

Chapter 8
Data Management

8-69

Schem
a

Package Procedure Pragma

SYS DBMS_SCHEDULER SET_ATTRIBUTE_NULL PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_JOB_ANYDATA_VAL

UE
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_JOB_ANYDATA_VAL
UE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_JOB_ARGUMENT_VA
LUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_JOB_ARGUMENT_VA
LUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_JOB_ATTRIBUTES PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_RESOURCE_CONSTR

AINT
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_SCHEDULER_ATTRI
BUTE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SHOW_ERRORS PRAGMA AUTO with COMMIT
SYS DBMS_SQL_TRANSLAT

OR
CLEAR_SQL_TRANSLATI
ON_ERROR

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSLAT
OR

CREATE_PROFILE PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSLAT
OR

DEREGISTER_ERROR_TR
ANSLATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSLAT
OR

DEREGISTER_SQL_TRAN
SLATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSLAT
OR

DROP_PROFILE PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSLAT
OR

ENABLE_ERROR_TRANSL
ATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSLAT
OR

ENABLE_SQL_TRANSLAT
ION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSLAT
OR

REGISTER_ERROR_TRAN
SLATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSLAT
OR

REGISTER_SQL_TRANSL
ATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSLAT
OR

SET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSLAT
OR

SET_ERROR_TRANSLATI
ON_COMMENT

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSLAT
OR

SET_SQL_TRANSLATION
_COMMENT

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSLAT
OR

SET_SQL_TRANSLATION
_MODULE

PRAGMA AUTO with COMMIT

SYS DBMS_XDS ALTER_STATIC_ACL_RE
FRESH

PRAGMA AUTO

SYS DBMS_XDS DISABLE_OLAP_POLICY PRAGMA AUTO
SYS DBMS_XDS DISABLE_XDS PRAGMA AUTO
SYS DBMS_XDS DROP_OLAP_POLICY PRAGMA AUTO

Chapter 8
Data Management

8-70

Schem
a

Package Procedure Pragma

SYS DBMS_XDS DROP_XDS PRAGMA AUTO
SYS DBMS_XDS ENABLE_OLAP_POLICY PRAGMA AUTO
SYS DBMS_XDS ENABLE_XDS PRAGMA AUTO
SYS DBMS_XDS PURGE_ACL_REFRESH_H

ISTORY
PRAGMA AUTO

SYS DBMS_XDS SCHEDULE_STATIC_ACL
_REFRESH

PRAGMA AUTO

SYS DBMS_XDS SET_TRACE_LEVEL PRAGMA AUTO
SYS DBMS_XDS XDS$REFRESH_STATIC_

ACL
PRAGMA AUTO

SYS LOGSTDBY_INTERNAL EDS_EVOLVE_TABLE_I PRAGMA AUTO with COMMIT
SYS LOGSTDBY_INTERNAL EDS_REMOVE_TABLE_I PRAGMA AUTO with COMMIT
SYS XS_ACL ADD_ACL_PARAMETER PRAGMA AUTO
SYS XS_ACL ADD_ACL_PARAMETER PRAGMA AUTO
SYS XS_ACL APPEND_ACES PRAGMA AUTO
SYS XS_ACL APPEND_ACES PRAGMA AUTO
SYS XS_ACL CREATE_ACL PRAGMA AUTO
SYS XS_ACL DELETE_ACL PRAGMA AUTO
SYS XS_ACL REMOVE_ACES PRAGMA AUTO
SYS XS_ACL REMOVE_ACL_PARAMETE

RS
PRAGMA AUTO

SYS XS_ACL REMOVE_ACL_PARAMETE
RS

PRAGMA AUTO

SYS XS_ACL REMOVE_ACL_PARAMETE
RS

PRAGMA AUTO

SYS XS_ACL SET_DESCRIPTION PRAGMA AUTO
SYS XS_ACL SET_PARENT_ACL PRAGMA AUTO
SYS XS_ACL SET_SECURITY_CLASS PRAGMA AUTO
SYS XS_ADMIN_UTIL GRANT_SYSTEM_PRIVIL

EGE
PRAGMA AUTO

SYS XS_ADMIN_UTIL REVOKE_SYSTEM_PRIVI
LEGE

PRAGMA AUTO

SYS XS_DATA_SECURITY ADD_COLUMN_CONSTRAI
NTS

PRAGMA AUTO

SYS XS_DATA_SECURITY ADD_COLUMN_CONSTRAI
NTS

PRAGMA AUTO

SYS XS_DATA_SECURITY APPEND_REALM_CONSTR
AINTS

PRAGMA AUTO

SYS XS_DATA_SECURITY APPEND_REALM_CONSTR
AINTS

PRAGMA AUTO

SYS XS_DATA_SECURITY APPLY_OBJECT_POLICY PRAGMA AUTO
SYS XS_DATA_SECURITY CREATE_ACL_PARAMETE

R
PRAGMA AUTO

SYS XS_DATA_SECURITY CREATE_POLICY PRAGMA AUTO

Chapter 8
Data Management

8-71

Schem
a

Package Procedure Pragma

SYS XS_DATA_SECURITY DELETE_ACL_PARAMETE
R

PRAGMA AUTO

SYS XS_DATA_SECURITY DELETE_POLICY PRAGMA AUTO
SYS XS_DATA_SECURITY DISABLE_OBJECT_POLI

CY
PRAGMA AUTO

SYS XS_DATA_SECURITY ENABLE_OBJECT_POLIC
Y

PRAGMA AUTO

SYS XS_DATA_SECURITY REMOVE_COLUMN_CONST
RAINTS

PRAGMA AUTO

SYS XS_DATA_SECURITY REMOVE_OBJECT_POLIC
Y

PRAGMA AUTO

SYS XS_DATA_SECURITY REMOVE_REALM_CONSTR
AINTS

PRAGMA AUTO

SYS XS_DATA_SECURITY SET_DESCRIPTION PRAGMA AUTO
SYS XS_NAMESPACE ADD_ATTRIBUTES PRAGMA AUTO
SYS XS_DATA_SECURITY ADD_ATTRIBUTES PRAGMA AUTO
SYS XS_DATA_SECURITY CREATE_TEMPLATE PRAGMA AUTO
SYS XS_DATA_SECURITY DELETE_TEMPLATE PRAGMA AUTO
SYS XS_DATA_SECURITY REMOVE_ATTRIBUTES PRAGMA AUTO
SYS XS_DATA_SECURITY REMOVE_ATTRIBUTES PRAGMA AUTO
SYS XS_DATA_SECURITY REMOVE_ATTRIBUTES PRAGMA AUTO
SYS XS_DATA_SECURITY SET_DESCRIPTION PRAGMA AUTO
SYS XS_DATA_SECURITY SET_HANDLER PRAGMA AUTO
SYS XS_PRINCIPAL ADD_PROXY_TO_DBUSER PRAGMA AUTO
SYS XS_PRINCIPAL ADD_PROXY_USER PRAGMA AUTO
SYS XS_PRINCIPAL ADD_PROXY_USER PRAGMA AUTO
SYS XS_PRINCIPAL CREATE_DYNAMIC_ROLE PRAGMA AUTO
SYS XS_PRINCIPAL CREATE_ROLE PRAGMA AUTO
SYS XS_PRINCIPAL CREATE_USER PRAGMA AUTO
SYS XS_PRINCIPAL DELETE_PRINCIPAL PRAGMA AUTO
SYS XS_PRINCIPAL ENABLE_BY_DEFAULT PRAGMA AUTO
SYS XS_PRINCIPAL ENABLE_ROLES_BY_DEF

AULT
PRAGMA AUTO

SYS XS_PRINCIPAL GRANT_ROLES PRAGMA AUTO
SYS XS_PRINCIPAL GRANT_ROLES PRAGMA AUTO
SYS XS_PRINCIPAL REMOVE_PROXY_FROM_D

BUSER
PRAGMA AUTO

SYS XS_PRINCIPAL REMOVE_PROXY_USERS PRAGMA AUTO
SYS XS_PRINCIPAL REMOVE_PROXY_USERS PRAGMA AUTO
SYS XS_PRINCIPAL REVOKE_ROLES PRAGMA AUTO
SYS XS_PRINCIPAL REVOKE_ROLES PRAGMA AUTO
SYS XS_PRINCIPAL REVOKE_ROLES PRAGMA AUTO
SYS XS_PRINCIPAL SET_ACL PRAGMA AUTO

Chapter 8
Data Management

8-72

Schem
a

Package Procedure Pragma

SYS XS_PRINCIPAL SET_DESCRIPTION PRAGMA AUTO
SYS XS_PRINCIPAL SET_DYNAMIC_ROLE_DU

RATION
PRAGMA AUTO

SYS XS_PRINCIPAL SET_DYNAMIC_ROLE_SC
OPE

PRAGMA AUTO

SYS XS_PRINCIPAL SET_EFFECTIVE_DATES PRAGMA AUTO
SYS XS_PRINCIPAL SET_GUID PRAGMA AUTO
SYS XS_PRINCIPAL SET_PROFILE PRAGMA AUTO
SYS XS_PRINCIPAL SET_USER_SCHEMA PRAGMA AUTO
SYS XS_PRINCIPAL SET_USER_STATUS PRAGMA AUTO
SYS XS_PRINCIPAL_INT SET_VERIFIER_HELPER PRAGMA AUTO
SYS XS_ROLESET ADD_ROLES PRAGMA AUTO
SYS XS_ROLESET ADD_ROLES PRAGMA AUTO
SYS XS_ROLESET CREATE_ROLESET PRAGMA AUTO
SYS XS_ROLESET DELETE_ROLESET PRAGMA AUTO
SYS XS_ROLESET REMOVE_ROLES PRAGMA AUTO
SYS XS_ROLESET REMOVE_ROLES PRAGMA AUTO
SYS XS_ROLESET REMOVE_ROLES PRAGMA AUTO
SYS XS_ROLESET SET_DESCRIPTION PRAGMA AUTO
SYS XS_SECURITY_CLASS ADD_IMPLIED_PRIVILE

GES
PRAGMA AUTO

SYS XS_SECURITY_CLASS ADD_IMPLIED_PRIVILE
GES

PRAGMA AUTO

SYS XS_SECURITY_CLASS ADD_PARENTS PRAGMA AUTO
SYS XS_SECURITY_CLASS ADD_PARENTS PRAGMA AUTO
SYS XS_SECURITY_CLASS ADD_PRIVILEGES PRAGMA AUTO
SYS XS_SECURITY_CLASS ADD_PRIVILEGES PRAGMA AUTO
SYS XS_SECURITY_CLASS CREATE_SECURITY_CLA

SS
PRAGMA AUTO

SYS XS_SECURITY_CLASS DELETE_SECURITY_CLA
SS

PRAGMA AUTO

SYS XS_SECURITY_CLASS REMOVE_IMPLIED_PRIV
ILEGES

PRAGMA AUTO

SYS XS_SECURITY_CLASS REMOVE_IMPLIED_PRIV
ILEGES

PRAGMA AUTO

SYS XS_SECURITY_CLASS REMOVE_IMPLIED_PRIV
ILEGES

PRAGMA AUTO

SYS XS_SECURITY_CLASS REMOVE_PARENTS PRAGMA AUTO
SYS XS_SECURITY_CLASS REMOVE_PARENTS PRAGMA AUTO
SYS XS_SECURITY_CLASS REMOVE_PARENTS PRAGMA AUTO
SYS XS_SECURITY_CLASS REMOVE_PRIVILEGES PRAGMA AUTO
SYS XS_SECURITY_CLASS REMOVE_PRIVILEGES PRAGMA AUTO
SYS XS_SECURITY_CLASS REMOVE_PRIVILEGES PRAGMA AUTO

Chapter 8
Data Management

8-73

Schem
a

Package Procedure Pragma

SYS XS_SECURITY_CLASS SET_DESCRIPTION PRAGMA AUTO
SYS DBMS_RESCONFIG ADDREPOSITORYRESCON

FIG
PRAGMA AUTO with COMMIT

SYS DBMS_RESCONFIG ADDRESCONFIG PRAGMA AUTO
SYS DBMS_RESCONFIG APPENDRESCONFIG PRAGMA AUTO
SYS DBMS_RESCONFIG DELETEREPOSITORYRES

CONFIG
PRAGMA AUTO with COMMIT

SYS DBMS_RESCONFIG DELETERESCONFIG PRAGMA AUTO
SYS DBMS_RESCONFIG DELETERESCONFIG PRAGMA AUTO
SYS DBMS_XDBZ DISABLE_HIERARCHY PRAGMA AUTO with COMMIT
SYS DBMS_XDBZ ENABLE_HIERARCHY PRAGMA AUTO with COMMIT
SYS DBMS_XDB_VERSION CHECKIN_INT PRAGMA AUTO
SYS DBMS_XDB_VERSION CHECKOUT PRAGMA AUTO
SYS DBMS_XDB_VERSION MAKEVERSIONED_INT PRAGMA AUTO
SYS DBMS_XDB_VERSION UNCHECKOUT_INT PRAGMA AUTO
SYS DBMS_XLSB DELETERESOURCE PRAGMA AUTO
SYS DBMS_XLSB DELNAMELOCKS PRAGMA AUTO
SYS DBMS_XLSB INSERTRESOURCE PRAGMA AUTO
SYS DBMS_XLSB INSERTRESOURCENXOB PRAGMA AUTO
SYS DBMS_XLSB INSERTRESOURCENXOBC

LOB
PRAGMA AUTO

SYS DBMS_XLSB INSERTRESOURCEREF PRAGMA AUTO
SYS DBMS_XLSB INSERTTOHTABLE PRAGMA AUTO
SYS DBMS_XLSB INSERTTOUSERHTAB PRAGMA AUTO
SYS DBMS_XLSB LINKRESOURCE PRAGMA AUTO
SYS DBMS_XLSB SAVEACL PRAGMA AUTO
SYS DBMS_XLSB SETREFCOUNT PRAGMA AUTO
SYS DBMS_XLSB TOUCHOID PRAGMA AUTO

PL/SQL Procedures with Pragma MANUAL
For the procedures and packages pragma-ed MANUAL, the top-level PL/SQL API is not called.

Note:

From Oracle GoldenGate 23c onward, you do not need to invoke
DBMS_GOLDENGATE_AUTH package.

Schem
a

Package Procedure Pragma

SYS DBMS_AQ AQ$_BACKGROUND_OPER
_PAS

PRAGMA MANUAL

Chapter 8
Data Management

8-74

Schem
a

Package Procedure Pragma

SYS DBMS_AQ DEQUEUE_INTERNAL_PA
S

PRAGMA MANUAL

SYS DBMS_AQ ENQUEUE_INT_UNSHARD
ED_PAS

PRAGMA MANUAL

SYS DBMS_AQADM_SYS ALTER_PROPAGATION_S
CHEDULE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS ALTER_QUEUE_INT PRAGMA MANUAL
SYS DBMS_AQADM_SYS ALTER_QUEUE_TABLE_I

NT
PRAGMA MANUAL

SYS DBMS_AQADM_SYS ALTER_SUBSCRIBER_11
G_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS CREATE_QUEUE_INT PRAGMA MANUAL
SYS DBMS_AQADM_SYS CREATE_QUEUE_TABLE_

INT
PRAGMA MANUAL

SYS DBMS_AQADM_SYS DISABLE_PROP_SCHEDU
LE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS DROP_QUEUE_INT PRAGMA MANUAL
SYS DBMS_AQADM_SYS DROP_QUEUE_TABLE_IN

T
PRAGMA MANUAL

SYS DBMS_AQADM_SYS ENABLE_PROP_SCHEDUL
E_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS GRANT_QUEUE_PRIVILE
GE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS MIGRATE_QUEUE_TABLE
_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS PURGE_QUEUE_TABLE PRAGMA MANUAL
SYS DBMS_AQADM_SYS RECOVER_PROPAGATION

_INT
PRAGMA MANUAL

SYS DBMS_AQADM_SYS REMOVE_ORPHMSGS_NR PRAGMA MANUAL
SYS DBMS_AQADM_SYS REMOVE_SUBSCRIBER_

11G
PRAGMA MANUAL

SYS DBMS_AQADM_SYS REVOKE_QUEUE_PRIVIL
EGE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS SCHEDULE_PROPAGATIO
N_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS START_QUEUE_INT PRAGMA MANUAL
SYS DBMS_AQADM_SYS STOP_QUEUE_INT PRAGMA MANUAL
SYS DBMS_AQADM_SYS UNSCHEDULE_PROPAGAT

ION_INT
PRAGMA MANUAL

SYS DBMS_INTERNAL_LOG
STDBY

EDS_EVOLVE_TABLE_ST
ART

PRAGMA MANUAL with COMMIT

SYS DBMS_PRVTAQIS SUBID_REPLICATE_INT PRAGMA MANUAL
SYS LOGSTDBY_INTERNAL EDS_ADD_TABLE_I PRAGMA MANUAL with COMMIT
SYS XS_ADMIN_UTIL DROP_SCHEMA_OBJECTS PRAGMA MANUAL

Chapter 8
Data Management

8-75

Schem
a

Package Procedure Pragma

XDB DBMS_XDBZ0 DISABLE_HIERARCHY_I
NTERNAL

PRAGMA MANUAL

XDB DBMS_XDBZ0 ENABLE_HIERARCHY_IN
TERNAL

PRAGMA MANUAL

PL/SQL Procedures with Pragma NONE
For the procedures and packages pragma-ed NONE, PL/SQL markers are not generated and no
grouping is performed. Redo logs generated by these procedures are applied or skipped based
on table level replication semantics.

Schem
a

Package Procedure Pragma

DVSYS DBMS_MACADM DISABLE_EVENT PRAGMA NONE
DVSYS DBMS_MACADM DV_SANITY_CHECK PRAGMA NONE
DVSYS DBMS_MACADM ENABLE_EVENT PRAGMA NONE
DVSYS DBMS_MACADM SET_PRESERVE_CASE PRAGMA NONE
DVSYS DBMS_MACADM INIT_SESSION PRAGMA NONE
DVSYS DBMS_MACADM UPDATE_POLICY_LABEL

_CONTEXT
PRAGMA NONE

DVSYS DBMS_MACOLS_SESSI
ON

LABEL_AUDIT_RAISE PRAGMA NONE

DVSYS DBMS_MACOLS_SESSI
ON

RESTORE_DEFAULT_LAB
ELS

PRAGMA NONE

DVSYS DBMS_MACOLS_SESSI
ON

SET_POLICY_LABEL_CO
NTEXT

PRAGMA NONE

DVSYS DBMS_MACOUT DISABLE PRAGMA NONE
DVSYS DBMS_MACOUT ENABLE PRAGMA NONE
DVSYS DBMS_MACOUT PL PRAGMA NONE
DVSYS DBMS_MACOUT PUT_LINE PRAGMA NONE
DVSYS DBMS_MACOUT SET_FACTOR PRAGMA NONE
DVSYS DBMS_MACSEC_ROLES SET_ROLE PRAGMA NONE
DVSYS DBMS_MACSEC_ROLES EVALUATE PRAGMA NONE
DVSYS DBMS_MACSEC_ROLES EVALUATE_TR PRAGMA NONE
DVSYS DBMS_MACSEC_ROLES EVALUATE_WR PRAGMA NONE
DVSYS DBMS_MACUTL CHECK_DVSYS_DML_ALL

OWED
PRAGMA NONE

DVSYS DBMS_MACUTL RAISE_ERROR PRAGMA NONE
DVSYS DBMS_MACUTL RAISE_UNAUTHORIZED_

OPERATION
PRAGMA NONE

DVSYS EVENT SET PRAGMA NONE
DVSYS EVENT SETDEFAULT PRAGMA NONE
DVSYS EVENT SET_C PRAGMA NONE
SYS DBMS_AQ AQ$_DEQUEUE PRAGMA NONE
SYS DBMS_AQ AQ$_DEQUEUE PRAGMA NONE

Chapter 8
Data Management

8-76

Schem
a

Package Procedure Pragma

SYS DBMS_AQ AQ$_DEQUEUE PRAGMA NONE
SYS DBMS_AQ AQ$_DEQUEUE PRAGMA NONE
SYS DBMS_AQ BIND_AGENT PRAGMA NONE
SYS DBMS_AQ DEQUEUE PRAGMA NONE
SYS DBMS_AQ DEQUEUE PRAGMA NONE
SYS DBMS_AQ DEQUEUE PRAGMA NONE
SYS DBMS_AQ ENQUEUE PRAGMA NONE
SYS DBMS_AQ ENQUEUE PRAGMA NONE
SYS DBMS_AQ ENQUEUE PRAGMA NONE
SYS DBMS_AQ LISTEN PRAGMA NONE
SYS DBMS_AQ LISTEN PRAGMA NONE
SYS DBMS_AQ POST PRAGMA NONE
SYS DBMS_AQ REGISTER PRAGMA NONE
SYS DBMS_AQ UNBIND_AGENT PRAGMA NONE
SYS DBMS_AQ UNREGISTER PRAGMA NONE
SYS DBMS_AQADM ADD_ALIAS_TO_LDAP PRAGMA NONE
SYS DBMS_AQADM ADD_CONNECTION_TO_L

DAP
PRAGMA NONE

SYS DBMS_AQADM ADD_CONNECTION_TO_L
DAP

PRAGMA NONE

SYS DBMS_AQADM ADD_SUBSCRIBER PRAGMA NONE
SYS DBMS_AQADM ALTER_PROPAGATION_S

CHEDULE
PRAGMA NONE

SYS DBMS_AQADM ALTER_QUEUE PRAGMA NONE
SYS DBMS_AQADM ALTER_QUEUE_TABLE PRAGMA NONE
SYS DBMS_AQADM ALTER_SHARDED_QUEUE PRAGMA NONE
SYS DBMS_AQADM ALTER_SUBSCRIBER PRAGMA NONE
SYS DBMS_AQADM ALTER_SUBSCRIBER PRAGMA NONE
SYS DBMS_AQADM CREATE_EXCEPTION_QU

EUE
PRAGMA NONE

SYS DBMS_AQADM CREATE_NP_QUEUE PRAGMA NONE
SYS DBMS_AQADM CREATE_QUEUE PRAGMA NONE
SYS DBMS_AQADM CREATE_QUEUE_TABLE PRAGMA NONE
SYS DBMS_AQADM CREATE_SHARDED_QUEU

E
PRAGMA NONE

SYS DBMS_AQADM DEL_ALIAS_FROM_LDAP PRAGMA NONE
SYS DBMS_AQADM DEL_CONNECTION_FROM

_LDAP
PRAGMA NONE

SYS DBMS_AQADM DISABLE_PROPAGATION
_SCHEDULE

PRAGMA NONE

SYS DBMS_AQADM DROP_QUEUE PRAGMA NONE
SYS DBMS_AQADM DROP_QUEUE_TABLE PRAGMA NONE
SYS DBMS_AQADM DROP_SHARDED_QUEUE PRAGMA NONE

Chapter 8
Data Management

8-77

Schem
a

Package Procedure Pragma

SYS DBMS_AQADM ENABLE_JMS_TYPES PRAGMA NONE
SYS DBMS_AQADM ENABLE_PROPAGATION_

SCHEDULE
PRAGMA NONE

SYS DBMS_AQADM GET_PROP_SEQNO PRAGMA NONE
SYS DBMS_AQADM GET_REPLAY_INFO PRAGMA NONE
SYS DBMS_AQADM GET_TYPE_INFO PRAGMA NONE
SYS DBMS_AQADM GET_TYPE_INFO PRAGMA NONE
SYS DBMS_AQADM GET_WATERMARK PRAGMA NONE
SYS DBMS_AQADM GRANT_QUEUE_PRIVILE

GE
PRAGMA NONE

SYS DBMS_AQADM MIGRATE_QUEUE_TABLE PRAGMA NONE
SYS DBMS_AQADM NONREPUDIATE_RECEIV

ER
PRAGMA NONE

SYS DBMS_AQADM NONREPUDIATE_RECEIV
ER

PRAGMA NONE

SYS DBMS_AQADM NONREPUDIATE_SENDER PRAGMA NONE
SYS DBMS_AQADM NONREPUDIATE_SENDER PRAGMA NONE
SYS DBMS_AQADM PURGE_QUEUE_TABLE PRAGMA NONE
SYS DBMS_AQADM RECOVER_PROPAGATION PRAGMA NONE
SYS DBMS_AQADM REMOVE_SUBSCRIBER PRAGMA NONE
SYS DBMS_AQADM RESET_REPLAY_INFO PRAGMA NONE
SYS DBMS_AQADM REVOKE_QUEUE_PRIVIL

EGE
PRAGMA NONE

SYS DBMS_AQADM SCHEDULE_PROPAGATIO
N

PRAGMA NONE

SYS DBMS_AQADM SET_WATERMARK PRAGMA NONE
SYS DBMS_AQADM START_QUEUE PRAGMA NONE
SYS DBMS_AQADM START_TIME_MANAGER PRAGMA NONE
SYS DBMS_AQADM STOP_QUEUE PRAGMA NONE
SYS DBMS_AQADM STOP_TIME_MANAGER PRAGMA NONE
SYS DBMS_AQADM UNSCHEDULE_PROPAGAT

ION
PRAGMA NONE

SYS DBMS_AQADM VERIFY_QUEUE_TYPES PRAGMA NONE
SYS DBMS_AQADM VERIFY_QUEUE_TYPES_

GET_NRP
PRAGMA NONE

SYS DBMS_AQADM VERIFY_QUEUE_TYPES_
NO_QUEUE

PRAGMA NONE

SYS DBMS_AQELM GET_MAILHOST PRAGMA NONE
SYS DBMS_AQELM GET_MAILPORT PRAGMA NONE
SYS DBMS_AQELM GET_PROXY PRAGMA NONE
SYS DBMS_AQELM GET_SENDFROM PRAGMA NONE
SYS DBMS_AQELM GET_TXTIMEOUT PRAGMA NONE
SYS DBMS_AQELM HTTP_SEND PRAGMA NONE

Chapter 8
Data Management

8-78

Schem
a

Package Procedure Pragma

SYS DBMS_AQELM SEND_EMAIL PRAGMA NONE
SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE
SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE
SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE
SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE
SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE
SYS DBMS_AQIN AQ$_DEQUEUE_RAW PRAGMA NONE
SYS DBMS_AQIN AQ$_DEQUEUE_RAW PRAGMA NONE
SYS DBMS_AQIN AQ$_ENQUEUE_OBJ PRAGMA NONE
SYS DBMS_AQIN AQ$_ENQUEUE_OBJ PRAGMA NONE
SYS DBMS_AQIN AQ$_ENQUEUE_OBJ_NO_

RECPL
PRAGMA NONE

SYS DBMS_AQIN AQ$_ENQUEUE_OBJ_NO_
RECPL

PRAGMA NONE

SYS DBMS_AQIN AQ$_ENQUEUE_RAW PRAGMA NONE
SYS DBMS_AQIN AQ$_JMS_ENQUEUE_BYT

ES_MESSAGE
PRAGMA NONE

SYS DBMS_AQIN AQ$_JMS_ENQUEUE_MAP
_MESSAGE

PRAGMA NONE

SYS DBMS_AQIN AQ$_JMS_ENQUEUE_OBJ
ECT_MESSAGE

PRAGMA NONE

SYS DBMS_AQIN AQ$_JMS_ENQUEUE_STR
EAM_MESSAGE

PRAGMA NONE

SYS DBMS_AQIN AQ$_JMS_ENQUEUE_TEX
T_MESSAGE

PRAGMA NONE

SYS DBMS_AQIN AQ$_LISTEN PRAGMA NONE
SYS DBMS_AQIN AQ$_QUEUE_SUBSCRIBE

RS
PRAGMA NONE

SYS DBMS_AQIN SET_DEQ_SORT PRAGMA NONE
SYS DBMS_AQIN SET_MULTI_RETRY PRAGMA NONE
SYS DBMS_AQJMS AQ$_GET_PROP_STAT PRAGMA NONE
SYS DBMS_AQJMS AQ$_GET_TRANS_TYPE PRAGMA NONE
SYS DBMS_AQJMS AQ$_REGISTER PRAGMA NONE
SYS DBMS_AQJMS AQ$_UNREGISTER PRAGMA NONE
SYS DBMS_AQJMS AQ$_UPDATE_PROP_STA

T_QNAME
PRAGMA NONE

SYS DBMS_AQJMS CLEAR_DBSESSION_GUI
D

PRAGMA NONE

SYS DBMS_AQJMS CLEAR_GLOBAL_AQCLNT
DB_CTX_CLNT

PRAGMA NONE

SYS DBMS_AQJMS CLEAR_GLOBAL_AQCLNT
DB_CTX_DB

PRAGMA NONE

SYS DBMS_AQJMS GET_DB_USERNAME_FOR
_AGENT

PRAGMA NONE

Chapter 8
Data Management

8-79

Schem
a

Package Procedure Pragma

SYS DBMS_AQJMS SET_DBSESSION_GUID PRAGMA NONE
SYS DBMS_AQJMS SET_GLOBAL_AQCLNTDB

_CTX
PRAGMA NONE

SYS DBMS_AQJMS SUBSCRIBER_EXISTS PRAGMA NONE
SYS DBMS_AQJMS SUBSCRIBER_EXISTS PRAGMA NONE
SYS DBMS_ISCHED GET_AGENT_PASS_VERI

FIER
PRAGMA NONE

SYS DBMS_ISCHED OBFUSCATE_CREDENTIA
L_PASSWORD

PRAGMA NONE

SYS DBMS_REDEFINITION CAN_REDEF_TABLE PRAGMA NONE
SYS DBMS_REDEFINITION REDEF_TABLE PRAGMA NONE
SYS DBMS_SCHEDULER CHECK_SYS_PRIVS PRAGMA NONE
SYS DBMS_SCHEDULER CLOSE_WINDOW PRAGMA NONE
SYS DBMS_SCHEDULER CREATE_CALENDAR_STR

ING
PRAGMA NONE

SYS DBMS_SCHEDULER CREATE_CREDENTIAL PRAGMA NONE
SYS DBMS_SCHEDULER EVALUATE_CALENDAR_S

TRING
PRAGMA NONE

SYS DBMS_SCHEDULER FILE_WATCH_FILTER PRAGMA NONE
SYS DBMS_SCHEDULER GENERATE_EVENT_LIST PRAGMA NONE
SYS DBMS_SCHEDULER GENERATE_JOB_NAME PRAGMA NONE
SYS DBMS_SCHEDULER GET_AGENT_VERSION PRAGMA NONE
SYS DBMS_SCHEDULER GET_CHAIN_RULE_ACTI

ON
PRAGMA NONE

SYS DBMS_SCHEDULER GET_CHAIN_RULE_COND
ITION

PRAGMA NONE

SYS DBMS_SCHEDULER GET_DEFAULT_VALUE PRAGMA NONE
SYS DBMS_SCHEDULER GET_JOB_STEP_CF PRAGMA NONE
SYS DBMS_SCHEDULER GET_SYS_TIME_ZONE_N

AME
PRAGMA NONE

SYS DBMS_SCHEDULER GET_VARCHAR2_VALUE PRAGMA NONE
SYS DBMS_SCHEDULER GET_VARCHAR2_VALUE PRAGMA NONE
SYS DBMS_SCHEDULER IS_SCHEDULER_CREATE

D_AGENT
PRAGMA NONE

SYS DBMS_SCHEDULER OPEN_WINDOW PRAGMA NONE
SYS DBMS_SCHEDULER RESOLVE_CALENDAR_ST

RING
PRAGMA NONE

SYS DBMS_SCHEDULER RESOLVE_CALENDAR_ST
RING

PRAGMA NONE

SYS DBMS_SCHEDULER RESOLVE_NAME PRAGMA NONE
SYS DBMS_SCHEDULER RUN_JOB PRAGMA NONE
SYS DBMS_SCHEDULER SET_AGENT_REGISTRAT

ION_PASS
PRAGMA NONE

SYS DBMS_SCHEDULER STIME PRAGMA NONE

Chapter 8
Data Management

8-80

Schem
a

Package Procedure Pragma

SYS DBMS_SCHEDULER STOP_JOB PRAGMA NONE
SYS DBMS_SCHEDULER SUBMIT_REMOTE_EXTER

NAL_JOB
PRAGMA NONE

SYS XS_PRINCIPAL SET_PASSWORD PRAGMA NONE
SYS XS_PRINCIPAL SET_VERIFIER PRAGMA NONE

Listing the Procedures Supported for Oracle GoldenGate Procedural Replication
The DBA_GG_SUPPORTED_PROCEDURES view displays information about the supported packages
for Oracle GoldenGate procedural replication.

When a procedure is supported and Oracle GoldenGate procedural replication is on, calls to
the procedure are replicated, unless the procedure is excluded specifically.

1. Connect to the database as sys (sqlplus, sqlcl, sqldeveloper) not as an Oracle
GoldenGate administrator.

2. Query the DBA_GG_SUPPORTED_PROCEDURES view.

Example 8-2 Displaying Information About the Packages Supported for Oracle
GoldenGate Procedural Replication

This query displays the following information about the packages:

• The owner of each package

• The name of each package

• The name of each procedure

• The minimum database release from which the procedure is supported

• Whether there is an exclusion rule that prevents the procedure from being replicated for
some database objects

COLUMN OWNER FORMAT A10
COLUMN PACKAGE_NAME FORMAT A15
COLUMN PROCEDURE_NAME FORMAT A15
COLUMN MIN_DB_VERSION FORMAT A14
COLUMN EXCLUSION_RULE_EXISTS FORMAT A14

SELECT OWNER,
 PACKAGE_NAME,
 PROCEDURE_NAME,
 MIN_DB_VERSION,
 EXCLUSION_RULE_EXISTS
 FROM DBA_GG_SUPPORTED_PROCEDURES;

Your output looks similar to the following:

OWNER PACKAGE_NAME PROCEDURE_NAME MIN_DB_VERSION EXCLUSION_RULE
---------- --------------- --------------- -------------- --------------
XDB DBMS_XDB_CONFIG ADDTRUSTMAPPING 12.2 NO
CTXSYS CTX_DDL ALTER_INDEX 12.2 NO
SYS DBMS_FGA DROP_POLICY 12.2 NO

Chapter 8
Data Management

8-81

SYS XS_ACL DELETE_ACL 12.2 NO
.
.
.

Monitoring Oracle GoldenGate Procedural Replication
A set of data dictionary views enable you to monitor Oracle GoldenGate procedural replication.

You can use the following views to monitor Oracle GoldenGate procedural replication:

View Description

DBA_GG_SUPPORTED_PACKAGES Provides details about supported packages for
Oracle GoldenGate procedural replication.

When a package is supported and Oracle
GoldenGate procedural replication is on, calls to
subprograms in the package are replicated.

DBA_GG_SUPPORTED_PROCEDURES Provides details about the procedures that are
supported for Oracle GoldenGate procedural
replication.

DBA_GG_PROC_OBJECT_EXCLUSION Provides details about all database objects that are
on the exclusion list for Oracle GoldenGate
procedural replication.

A database object is added to the exclusion list
using the INSERT_PROCREP_EXCLUSION_OBJ
procedure in the DBMS_GOLDENGATE_ADM package.
When a database object is on the exclusion list,
execution of a subprogram n the package is not
replicated if the subprogram operates on the
excluded object.

1. Connect to the database as sys (sqlplus, sqlcl, or sqldeveloper) not as an Oracle
GoldenGate administrator.

2. Query the views related to Oracle GoldenGate procedural replication.

Mapping and Manipulating Data
This chapter describes how you can integrate data between source and target tables.

Guidelines for Using Self-describing Trails
Self-describing trail files are the default if the trail file format is 12.2 or higher, if you are not
using SOURCEDEFS OVERRIDE or TARGETDEFS OVERRIDE. Oracle recommends that you use self-
describing trail files. You should only use SOURCEDEFS OVERRIDE and TARGETDEFS OVERRIDE for
backward compatibility requirements.

The following are the guidelines for using self-describing trails:

• If using the self-describing trails, then the column names on the source are mapped to the
column names in the target table. Order of columns doesn't matter and if column names
are different, then they need to be explicitly mapped using COLMAP.

Chapter 8
Data Management

8-82

• If the source Oracle GoldenGate release is 12.1 or earlier, then you need to use
SOURCEDEFS OVERRIDE or TARGETDEFS OVERRIDE. See SOURCEDEFS OVERRIDE and
TARGETDEFS OVERRIDE in the Reference for Oracle GoldenGate.

Parameters that Control Mapping and Data Integration
All data selection, mapping, and manipulation that Oracle GoldenGate performs is
accomplished by using one or more options of the TABLE and MAP parameters.

• Use TABLE in the Extract parameter file.

• Use MAP in the Replicat parameter file.

TABLE and MAP specify the database objects that are affected by the other parameters in the
parameter file. See Specifying Object Names in Oracle GoldenGate Input for instructions for
specifying object names in these parameters.

Mapping between Dissimilar Databases
Mapping and conversion between tables that have different data structures requires either a
source-definitions file, a target-definitions file, or in some cases both. Mapping between
dissimilar databases is controlled by the self-describing trails, and mapping is done by column
name, regardless of the data type for the source or target column.

If you don't want automatic mapping based on the self-describing trails or want backward
compatibility then you can use SOURCEDEFS or TARGETDEFS.

Deciding Where Data Mapping and Conversion Will Take Place
If the configuration you are planning involves a large amount of column mapping or data
conversion, observe the following guidelines to determine which process or processes will
perform these functions.

Mapping and Conversion on Windows and UNIX Systems
When Oracle GoldenGate is operating only on Windows-based and UNIX-based systems,
column mapping and conversion can be performed in the Extract process, or in the Replicat
process. To prevent the added overhead of this processing on the Extract process, you can
configure the mapping and conversion to be performed on the Replicat process or on an
intermediary system.

In the case where there are multiple sources and one target, it might be more efficient to
perform the mapping and conversion on the source.

Mapping and Conversion on NonStop Systems
If you are mapping or converting data from a Windows or UNIX system to a NonStop Enscribe
target, the mapping or conversion must be performed on the Windows or UNIX source system.
Replicat for NonStop cannot convert three-part or two-part SQL table names and data types to
the three-part file names that are used for the Enscribe platform. Extract can format the trail
data with Enscribe names and target data types.

Globalization Considerations when Mapping Data
When planning to map and convert data between databases and platforms, take into
consideration what is supported or not supported by Oracle GoldenGate in terms of
globalization.

Chapter 8
Data Management

8-83

Conversion between Character Sets
Oracle GoldenGate converts between source and target character sets if they are different, so
that object names and column data are compared, mapped, and manipulated properly from
one database to another. See Supported Character Sets, for a list of supported character sets.

To ensure accurate character representation from one database to another, the following must
be true:

• The character set of the target database must be a superset or equivalent of the character
set of the source database. Equivalent means not equal, but having the same set of
characters. For example, Shift-JIS and EUC-JP technically are not completely equal, but
have the same characters in most cases.

• If your client applications use different character sets, the database character set must also
be a superset or equivalent of the character sets of the client applications.

• In many databases, including Oracle, it is possible to force a character into a database that
is not part of the Character Set. Oracle GoldenGate considers this as an invalid value, and
may not map this character correctly when replicating data. For these types of situations
you can use the REPLACEBADCHAR parameter as described in the Reference for Oracle
GoldenGate.

In this configuration, every character is represented when converting from a client or source
character set to the local database character set.

A Replicat process can support conversion from one source character set to one target
character set.

Database Object Names

Oracle GoldenGate processes catalog, schema, table and column names in their native
language as determined by the character set encoding of the source and target databases.
This support preserves single-byte and multibyte names, symbols, accent characters, and
case-sensitivity with locale taken into account where available, at all levels of the database
hierarchy.

Column Data

Oracle GoldenGate supports the conversion of column data between character sets when the
data is contained in the following column types:

• Character-type columns: CHAR/VARCHAR/CLOB to CHAR/VARCHAR/CLOB of another character
set; and CHAR/VARCHAR/CLOB to and from NCHAR/NVARCHAR/NCLOB.

• Columns that contain string-based numbers and date-time data. Conversions of these
columns is performed between z/OS EBCDIC and non-z/OS ASCII data. Conversion is not
performed between ASCII and ASCII versions of this data, nor between EBCDIC and
EBCDIC versions, because the data are compatible in these cases.

Chapter 8
Data Management

8-84

Note:

Oracle GoldenGate supports timestamp data from 0001-01-03 00:00:00 to
9999-12-31 23:59:59. If a timestamp is converted from GMT to local time, these
limits also apply to the resulting timestamp. A value of zero month, zero day field,
or an all zero date value isn't supported. For example, values such as
0000-00-00 00:00:00, or any date value that includes a zero month or zero day
field isn't supported.

Character-set conversion for column data is limited to a direct mapping of a source column and
a target column in the COLMAP or USEDEFAULTS clauses of the Replicat MAP parameter. A direct
mapping is a name-to-name mapping without the use of a stored procedure or column-
conversion function. Replicat performs the character-set conversion. No conversion is
performed by Extract or a data pump.

Preservation of Locale
Oracle GoldenGate takes the locale of the database into account when comparing case-
insensitive object names. See Supported Locales for a list of supported locales.

Support for Escape Sequences
Oracle GoldenGate supports the use of an escape sequence to represent a string column,
literal text, or object name in the parameter file. You can use an escape sequence if the
operating system does not support the required character, such as a control character, or for
any other purpose that requires a character that cannot be used in a parameter file.

An escape sequence can be used anywhere in the parameter file, but is particularly useful in
the following elements within a TABLE or MAP statement:

• An object name

• WHERE clause

• COLMAP clause to assign a Unicode character to a Unicode column, or to assign a native-
encoded character to a column.

• Oracle GoldenGate column conversion functions within a COLMAP clause.

Oracle GoldenGate supports the following types of escape sequence:

• \uFFFF Unicode escape sequence. Any UNICODE code point can be used except surrogate
pairs.

• \377 Octal escape sequence

• \xFF Hexadecimal escape sequence

The following rules apply:

• If used for mapping of an object name in TABLE or MAP, no restriction apply. For example,
the following TABLE specification is valid:

TABLE schema."\u3000ABC";
• If used with a column-mapping function, any code point can be used, but only for an

NCHAR/NVARCHAR column. For an CHAR/VARCHAR column, the code point is limited to the
equivalent of 7-bit ASCII.

• The source and target data types must be identical (for example, NCHAR to NCHAR).

Chapter 8
Data Management

8-85

• Begin each escape sequence with a reverse solidus (code point U+005C), followed by the
character code point. (A solidus is more commonly known as the backslash symbol.) Use
the escape sequence, instead of the actual character, within your input string in the
parameter statement or column-conversion function.

Note:

To specify an actual backslash in the parameter file, specify a double backslash. For
example, the following finds a backslash in COL1: @STRFIND (COL1, '\\').

To Use the \uFFFF Unicode Escape Sequence

• The \uFFFF Unicode escape sequence must begin with a lowercase u, followed by exactly
four hexadecimal digits.

• Supported ranges are as follows:

– 0 to 9 (U+0030 to U+0039)

– A to F (U+0041 to U+0046)

– a to f (U+0061 to U+0066)

\u20ac is the Unicode escape sequence for the Euro currency sign.

Note:

For reliable cross-platform support, use the Unicode escape sequence. Octal and
hexadecimal escape sequences are not standardized on different operating systems.

To Use the \377 Octal Escape Sequence

• Must contain exactly three octal digits.

• Supported ranges:

– Range for first digit is 0 to 3 (U+0030 to U+0033)

– Range for second and third digits is 0 to 7 (U+0030 to U+0037)

\200 is the octal escape sequence for the Euro currency sign on Microsoft Windows

To Use the \xFF Hexadecimal Escape Eequence

• Must begin with a lowercase x followed by exactly two hexadecimal digits.

• Supported ranges:

– 0 to 9 (U+0030 to U+0039)

– A to F (U+0041 to U+0046)

– a to f (U+0061 to U+0066)

\x80 is the hexadecimal escape sequence for the Euro currency sign on Microsoft Windows
1252 Latin1 code page.

Chapter 8
Data Management

8-86

Mapping Columns Using TABLE and MAP
Oracle GoldenGate provides for column mapping at the table level and at the global level.
Default column mapping is also provided in the absence of explicit column mapping rules.

This section contains the following guidelines for mapping columns:

Supporting Case and Special Characters in Column Names
By default, Oracle GoldenGate follows SQL-92 rules for specifying column names and literals.
In Oracle GoldenGate parameter files, conversion functions, user exits, and commands, case-
sensitive column names must be enclosed within double quotes if double quotes are required
by the database to enforce case-sensitivity. For other case-sensitive databases that do not
require quotes, case-sensitive column names must be specified as they are stored in the
database. Literals must be enclosed within single quotes. See Differentiating Case-Sensitive
Column Names from Literals for more information.

Configuring Table-level Column Mapping with COLMAP
If you are using self-describing trails then any column on the source object is mapped to the
same column name on the target object. You only need to manage column names that are
different between source and target or if you need to transform a column.

However, if not using self-describing trails then the default mapping is done by column order
and not the column name. So column 1 on the source will be mapped to column 1 on the
target, column 2 to column 2 and so on.

Use the COLMAP option of the MAP and TABLE parameters to:

• map individual source columns to target columns that have different names.

• specify default column mapping when an explicit column mapping is not needed.

• Provide instructions for selecting, mapping, translating, and moving data from a source
column into a target column.

Using USEDEFAULTS to Enable Default Column Mapping

You can use the USEDEFAULTS option of COLMAP to specify automatic default column mapping for
any corresponding source and target columns that have identical names. USEDEFAULTS can
save you time by eliminating the need to map every target column explicitly.

Default mapping causes Oracle GoldenGate to map those columns and, if required, translate
the data types based on the data-definitions file. Do not specify default mapping for columns
that are mapped already with an explicit mapping statement.

The following example of a column mapping illustrates the use of both default and explicit
column mapping for a source table ACCTBL and a target table ACCTTAB. Most columns are the
same in both tables, except for the following differences:

• The source table has a CUST_NAME column, whereas the target table has a NAME column.

• A ten-digit PHONE_NO column in the source table corresponds to separate AREA_CODE,
PHONE_PREFIX, and PHONE_NUMBER columns in the target table.

• Separate YY, MM, and DD columns in the source table correspond to a single
TRANSACTION_DATE column in the target table.

Chapter 8
Data Management

8-87

To address those differences, USEDEFAULTS is used to map the similar columns automatically,
while explicit mapping and conversion functions are used for dissimilar columns.

The following sample shows the column mapping using the COLMAP option of the MAP and TABLE
parameters. It describes the mapping of the source table ACCTBL to the target table ACCTTAB.

MAP SALES.ACCTBL, TARGET SALES.ACCTTAB,
 COLMAP (USEDEFAULTS,
 NAME = CUST_NAME,
 TRANSACTION_DATE = @DATE ('YYYY-MM-DD', 'YY',YEAR,
'MM', MONTH, 'DD', DAY),
 AREA_CODE = @STREXT (PHONE_NO, 1, 3),
 PHONE_PREFIX = @STREXT (PHONE_NO, 4, 6),
 PHONE_NUMBER = @STREXT (PHONE_NO, 7, 10)
)
;

Table 8-2 Sample Column Mapping

Parameter statement Description

COLMAP
Begins the COLMAP statement.

USEDEFAULTS,
Maps source columns as-is when the target column names are
identical.

NAME = CUST_NAME,
Maps the source column CUST_NAME to the target column NAME.

TRANSACTION_DATE =
@DATE ('YYYY-MM-DD', 'YY',
YEAR, 'MM', MONTH, 'DD',
DAY),

Converts the transaction date from the source date columns to
the target column TRANSACTION_DATE by using the @DATE
column conversion function.

AREA_CODE =
@STREXT (PHONE_NO, 1, 3),
PHONE_PREFIX =
@STREXT (PHONE_NO, 4, 6),
PHONE_NUMBER =
@STREXT (PHONE_NO, 7, 10))
;

Converts the source column PHONE_NO into the separate target
columns of AREA_CODE, PHONE_PREFIX, and PHONE_NUMBER by
using the @STREXT column conversion function.

See Understanding Default Column Mapping for more information about the rules followed by
Oracle GoldenGate for default column mapping.

Specifying the Columns to be Mapped in the COLMAP Clause

The COLMAP syntax is the following:

Chapter 8
Data Management

8-88

COLMAP ([USEDEFAULTS,] target_column = source_expression)

In this syntax, target_column is the name of the target column and source_expression. Some
examples of source_expressions are:

• The name of a source column, such as ORD_DATE.

• Numeric constant, such as 123.

• String constant enclosed within single quotes, such as 'ABCD'.

• An expression using an Oracle GoldenGate column-conversion function. Within a COLMAP
statement, you can use any of the Oracle GoldenGate column-conversion functions to
transform data for the mapped columns, for example:

@STREXT (COL1, 1, 3)

• Here's an example of using BEFORE column_name: BEFORE ORD_DATE
• Here's an example of using AFTER column_name : AFTER ORD_DATE. This is the default

option if a column name is listed.

If the column mapping involves case-sensitive columns from different database types, specify
each column as it is stored in the database.

• If the database requires double quotes to enforce case-sensitivity, specify the case-
sensitive column name within double quotes.

• If the database is case-sensitive without requiring double quotes, specify the column name
as it is stored in the database.

The following shows a mapping between a target column in an Oracle database and a source
column in a case-sensitive SQL Server database.

COLMAP ("ColA" = ColA)

See Specifying Object Names in Oracle GoldenGate Input for more information about
specifying names to Oracle GoldenGate.

See Globalization Considerations when Mapping Data for globalization considerations when
mapping source and target columns in databases that have different character sets and
locales.

Avoid using COLMAP to map a value to a key column (which causes the operation to become a
primary key update), The WHERE clause that Oracle GoldenGate uses to locate the target row
will not use the correct before image of the key column. Instead, it will use the after image. This
will cause errors if you are using any functions based on that key column, such as a SQLEXEC
statement.

Column Mapping Limitations

Here are the column mapping limitations:

• LOB columns cannot be used in FILTER, WHERE columns, or as a source_expression in a
COLMAP statement. LOB columns are BLOB, CLOB, NCLOB, XMLType, User-Defined Data Types,
Nested Tables, VARRAYs and other special data types.

• If the source column contains more than 4000 bytes, it cannot be used in transformation
routines, as the value is stored in the trail as an LOB record. For example a VARCHAR2(4000
CHAR) in Oracle and the Japanese character set is stored as 3 bytes for each character.
This implies that the column could be 12000 bytes long and Oracle GoldenGate would
store this value as an LOB field.

Chapter 8
Data Management

8-89

• The full SQL statement that Oracle GoldenGate would execute would exceed 4MB in size.
For example, if you have a table with thousands of VARCHAR2(4000) columns and you want
to put 4000 bytes in each one, this could cause the total SQL statement that Oracle
GoldenGate is going to execute to exceed the maximum size of 4MB.

Configuring Global Column Mapping with COLMATCH
Use the COLMATCH parameter to create global rules for column mapping. With COLMATCH, you
can map between similarly structured tables that have different column names for the same
sets of data. COLMATCH provides a more convenient way to map columns of this type than does
using table-level mapping with a COLMAP clause in individual TABLE or MAP statements.

Case-sensitivity is supported as follows:

• For MySQL, SQL Server, and Teradata, if the database is case-sensitive, COLMATCH looks
for an exact case and name match regardless of whether or not a name is specified in
quotes.

• For Oracle Database and DB2 databases, where names can be either case-sensitive or
case-insensitive in the same database and double quotes are required to show case-
sensitivity, COLMATCH requires an exact case and name match when a name is in quotes in
the database.

Syntax

COLMATCH
{NAMES target_column = source_column |
PREFIX prefix |
SUFFIX suffix |
RESET}

Argument Description

NAMES target_column = source_column Maps based on column names.

Put double quotes around the column name if it is
case-sensitive and the database requires quotes to
enforce case-sensitivity. For these database types,
an unquoted column name is treated as case-
insensitive by Oracle GoldenGate.

For databases that support case-sensitivity without
requiring quotes, specify the column name as it is
stored in the database.

If the COLMATCH is between columns in different
database types, make certain the names reflect the
appropriate case representation for each one. For
example, the following specifies a case-sensitive
target column name "aBc" in an Oracle Database
and a case-sensitive source column name aBc in a
case-sensitive SQL Server database.

COLMATCH NAMES "aBc" = aBc

Chapter 8
Data Management

8-90

Argument Description

PREFIX prefix | SUFFIX suffix Ignores the specified name prefix or suffix.

Put double quotes around the prefix or suffix if the
database requires quotes to enforce case-
sensitivity, for example "P_". For those database
types, an unquoted prefix or suffix is treated as
case-insensitive.

For databases that support case-sensitivity without
requiring quotes, specify the prefix or suffix as it is
stored in the database. For example, P_ specifies a
capital P prefix.

The following example specifies a case-insensitive
prefix to ignore. The target column name P_ABC is
mapped to source column name ABC, and target
column name P_abc is mapped to source column
name abc.

COLMATCH PREFIX p_

The following example specifies a case-sensitive
suffix to ignore. The target column name ABC_k
is mapped to the source column name ABC, and
the target column name "abc_k" is mapped to the
source column name "abc".

SUFFIX "_k"

RESET Turns off previously defined COLMATCH rules for
subsequent TABLE or MAP statements.

The following example illustrates when to use COLMATCH. The source and target tables are
identical except for slightly different table and column names.The database is case-insensitive.

ACCT Table ORD Table

CUST_CODE
CUST_NAME
CUST_ADDR
PHONE
S_REP
S_REPCODE

CUST_CODE
CUST_NAME
ORDER_ID
ORDER_AMT
S_REP
S_REPCODE

ACCOUNT Table ORDER Table

CUSTOMER_CODE
CUSTOMER_NAME
CUSTOMER_ADDRESS
PHONE
REP
REPCODE

CUSTOMER_CODE
CUSTOMER_NAME
ORDER_ID
ORDER_AMT
REP
REPCODE

To map the source columns to the target columns in this example, as well as to handle
subsequent maps for other tables, the syntax is:

Chapter 8
Data Management

8-91

COLMATCH NAMES CUSTOMER_CODE = CUST_CODE
COLMATCH NAMES CUSTOMER_NAME = CUST_NAME
COLMATCH NAMES CUSTOMER_ADDRESS = CUST_ADDR
COLMATCH PREFIX S_
MAP SALES.ACCT, TARGET SALES.ACCOUNT, COLMAP (USEDEFAULTS);
MAP SALE.ORD, TARGET SALES.ORDER, COLMAP (USEDEFAULTS);
COLMATCH RESET
MAP SALES.REG, TARGET SALE.REG;
MAP SALES.PRICE, TARGET SALES.PRICE;

Based on the rules in the example, the following occurs:

• Data is mapped from the CUST_CODE columns in the source ACCT and ORD tables to the
CUSTOMER_CODE columns in the target ACCOUNT and ORDER tables.

• The S_ prefix will be ignored.

• Columns with the same names, such as the PHONE and ORDER_AMT columns, are
automatically mapped by means of USEDEFAULTS without requiring explicit rules.

• The previous global column mapping is turned off for the tables REG and PRICE. Source and
target columns in those tables are automatically mapped because all of the names are
identical.

Understanding Default Column Mapping
For self-describing trails, if an explicit column mapping does not exist, either by using COLMATCH
or COLMAP, Oracle GoldenGate maps source and target columns by default according to the
following rules.

This doesn't apply if you are using SOURCEDEFS or TARGETDEFS.

• If a source column is found whose name and case exactly match those of the target
column, the two are mapped.

• If no case match is found, fallback name mapping is used. Fallback mapping performs a
case-insensitive target table mapping to find a name match. Inexact column name
matching is applied using upper cased names. This behavior is controlled by the GLOBALS
parameter NAMEMATCHIGNORECASE. You can disable fallback name matching with the
NAMEMATCHEXACT parameter, or you can keep it enabled but with a warning message by
using the NAMEMATCHNOWARNING parameter.

• Target columns that do not correspond to any source column take default values
determined by the database.

If the default mapping cannot be performed, the target column defaults to one of the values
shown in the following table.

Column Type Value

Numeric Zero (0)

Character or VARCHAR Spaces

Date or Datetime Current date and time

Columns that can take a NULL value Null

Data Type Conversions
The following explains how Oracle GoldenGate maps data types.

Chapter 8
Data Management

8-92

Numeric Columns

Numeric columns are converted to match the type and scale of the target column. If the scale
of the target column is smaller than that of the source, the number is truncated on the right. If
the scale of the target column is larger than that of the source, the number is padded with
zeros on the right.

You can specify a substitution value for invalid numeric data encountered when mapping
number columns by using the REPLACEBADNUM parameter. See Reference for Oracle
GoldenGate for more information.

Character-type Columns

Character-type columns can accept character-based data types such as VARCHAR, numeric in
string form, date and time in string form, and string literals. If the scale of the target column is
smaller than that of the source, the column is truncated on the right. If the scale of the target
column is larger than that of the source, the column is padded with spaces on the right.

Literals must be enclosed within single quotes.

You can control the response of the Oracle GoldenGate process when a valid code point does
not exist for either the source or target character set when mapping character columns by
using the REPLACEBADCHAR parameter. See Reference for Oracle GoldenGate for more
information.

Datetime Columns

Datetime (DATE, TIME, and TIMESTAMP) columns can accept datetime and character columns,
as well as string literals. Literals must be enclosed within single quotes. To map a character
column to a datetime column, make certain it conforms to the Oracle GoldenGate external SQL
format of YYYY-MM-DD HH:MI:SS.FFFFFF.
Oracle GoldenGate supports timestamp data from 0001-01-03 00:00:00 to 9999-12-31
23:59:59. If a timestamp is converted from GMT to local time, these limits also apply to the
resulting timestamp. Depending on the timezone, conversion may add or subtract hours, which
can cause the timestamp to exceed the lower or upper supported limit.

Required precision varies according to the data type and target platform. If the scale of the
target column is smaller than that of the source, data is truncated on the right. If the scale of
the target column is larger than that of the source, the column is extended on the right with the
values for the current date and time.

Selecting and Converting SQL Operations
By default, Oracle GoldenGate captures and applies INSERT, UPDATE, and DELETE operations.
You can use the following parameters in the Extract or Replicat parameter file to control which
kind of operations are processed, such as only inserts or only inserts and updates.

GETINSERTS | IGNOREINSERTS
GETUPDATES | IGNOREUPDATES
GETDELETES | IGNOREDELETES
You can convert one type of SQL operation to another by using the following parameters in the
Replicat parameter file:

Chapter 8
Data Management

8-93

• Use INSERTUPDATES to convert source update operations to inserts into the target table.
This is useful for maintaining a transaction history on that table. The transaction log record
must contain all of the column values of the table, not just changed values. Some
databases do not log full row values to their transaction log, but only values that changed.

• Use INSERTDELETES to convert all source delete operations to inserts into the target table.
This is useful for retaining a history of all records that were ever in the source database.

• Use UPDATEDELETES to convert source deletes to updates on the target.

Selecting and Filtering Rows
Filtering can only be performed on columns that are available to Oracle GoldenGate. In the
TRANLOG Extract Oracle GoldenGate has access to all columns that are present in the redo logs
and in the database. If the columns are not in the redo logs, they must be explicitly fetched
(using FETCHCOLS) to be able to filter them. In the Extract pump and in the Replicat, the
columns must be available in the trail file. Because of this, any column that you want to use in
a FILTER or WHERE clause must be explicitly logged using ADD TRANDATA COLS, and you have to
retain the default of LOGALLSUPCOLS.

To filter out or select rows for extraction or replication, use the FILTER and WHERE clauses of the
TABLE and MAP parameters.

The FILTER clause offers you more functionality than the WHERE clause because you can
employ any of the Oracle GoldenGate column conversion functions, whereas the WHERE clause
accepts basic WHERE operators.

Selecting Rows with a FILTER Clause
Use a FILTER clause to select rows based on a numeric value by using basic operators or one
or more Oracle GoldenGate column-conversion functions.

Note:

To filter a column based on a string, use one of the Oracle GoldenGate string
functions or use a WHERE clause.

The syntax for FILTER in a TABLE statement is as follows:

TABLE source_table,
, FILTER (
[, ON INSERT | ON UPDATE| ON DELETE]
[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]
, filter_clause);

The syntax for FILTER in a MAP statement is as follows and includes an error-handling option.

MAP source_table, TARGET target_table,
, FILTER (
[, ON INSERT | ON UPDATE| ON DELETE]
[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]
[, RAISEERROR error_number]
, filter_clause);

Valid FILTER clause elements are the following:

Chapter 8
Data Management

8-94

• An Oracle GoldenGate column-conversion function. These functions are built into Oracle
GoldenGate so that you can perform tests, manipulate data, retrieve values, and so forth.
See Testing and Transforming Data for more information about Oracle GoldenGate
conversion functions.

• Numbers

• Columns that contain numbers

• Functions that return numbers

• Arithmetic operators:

– + (plus)

– - (minus)

– * (multiply)

– / (divide)

– \ (remainder)

• Comparison operators:

– > (greater than)

– >= (greater than or equal)

– < (less than)

– <= (less than or equal)

– = (equal)

– <> (not equal)

– Results derived from comparisons can be zero (indicating FALSE) or non-zero
(indicating TRUE).

• Parentheses (for grouping results in the expression)

• Conjunction operators: AND, OR
Use the following FILTER options to specify which SQL operations a filter clause affects. Any of
these options can be combined.

ON INSERT | ON UPDATE | ON DELETE IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE
Use the RAISEERROR option of FILTER in the MAP parameter to generate a user-defined error
when the filter fails. This option is useful when you need to trigger an event in response to the
failure.

Use the @RANGE function within a FILTER clause to distribute the processing workload among
multiple MAP or TABLE statements.

Here's a sample:

REPERROR (9999, EXCEPTION)
MAP OWNER.SRCTAB, TARGET OWNER.TARGTAB,
 SQLEXEC (ID CHECK, ON UPDATE, QUERY ' SELECT COUNT FROM
TARGTAB WHERE PKCOL = :P1 ', PARAMS (P1 = PKCOL)),
 FILTER (BALANCE > 15000),
 FILTER (ON UPDATE, @BEFORE (COUNT) = CHECK.COUNT)
;
MAP OWNER.SRCTAB, TARGET OWNER.TARGEXC,

Chapter 8
Data Management

8-95

EXCEPTIONSONLY,
COLMAP (USEDEFAULTS,
ERRTYPE = 'UPDATE FILTER FAILED'
)
;

Table 8-3 Using Multiple FILTER Statements

Parameter file Description

REPERROR (9999, EXCEPTION) Raises an exception for the specified error.

MAP OWNER.SRCTAB,
TARGET OWNER.TARGTAB,

Starts the MAP statement.

SQLEXEC (ID CHECK, ON UPDATE,
QUERY ' SELECT COUNT FROM TARGTAB '
'WHERE PKCOL = :P1 ',
PARAMS (P1 = PKCOL)),

Performs a query to retrieve the present
value of the COUNT column whenever an
update is encountered. There is a
BEFOREFILTER option also that allows the
query or stored procedure to be executed
prior to processing the FILTER clause. This
allows values from the SQLEXEC portion to
be used inside the FILTER at runtime.

FILTER (BALANCE > 15000), Uses a FILTER clause to select rows
where the balance is greater than 15000.

FILTER (ON UPDATE, @BEFORE (COUNT) = CHECK.COUNT) Uses another FILTER clause to ensure that
the value of the source COUNT column
before an update matches the value in the
target column before applying the target
update.

; The semicolon concludes the MAP
statement.

MAP OWNER.SRCTAB,
TARGET OWNER.TARGEXC,
EXCEPTIONSONLY,
COLMAP (USEDEFAULTS,
ERRTYPE = 'UPDATE FILTER FAILED');

Designates an exceptions MAP statement.
The REPERROR clause for error 9999
ensures that the exceptions map to
TARGEXC will be executed.

Example 8-3 Calling the @COMPUTE Function

The following example calls the @COMPUTE function to extract records in which the price
multiplied by the amount exceeds 10,000.

MAP SALES.TCUSTORD, TARGET SALES.TORD,
FILTER (@COMPUTE (PRODUCT_PRICE * PRODUCT_AMOUNT) > 10000);

Example 8-4 Calling the @STREQ Function

The following uses the @STREQ function to extract records where the value of a character
column is 'JOE'.
TABLE ACCT.TCUSTORD, FILTER (@STREQ ("Name", 'joe') > 0);

Chapter 8
Data Management

8-96

Example 8-5 Selecting Records

The following selects records in which the AMOUNT column is greater than 50 and executes the
filter on UPDATE and DELETE operations.

TABLE ACT.TCUSTORD, FILTER (ON UPDATE, ON DELETE, AMOUNT > 50);

Example 8-6 Using the @RANGE Function

(Replicat group 1 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (1, 2, ID));

(Replicat group 2 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (2, 2, ID));

You can combine several FILTER clauses in one MAP or TABLE statement, as shown in
#unique_797/unique_797_Connect_42_G1110854, which shows part of a Replicat parameter
file. Oracle GoldenGate executes the filters in the order listed, until one fails or until all are
passed. If one filter fails, they all fail.

Selecting Rows with a WHERE Clause
Use any of the elements described in the table below in a WHERE clause to select or exclude
rows (or both) based on a conditional statement. Each WHERE clause must be enclosed within
parentheses. Literals must be enclosed within single quotes.

Table 8-4 Permissible WHERE Operators

Element Examples

Column names PRODUCT_AMT

Numeric values -123, 5500.123

Literal strings 'AUTO', 'Ca'

Built-in column tests @NULL, @PRESENT, @ABSENT (column is null, present or absent in the row).
These tests are built into Oracle GoldenGate. See Considerations for
Selecting Rows with FILTER and WHERE.

Comparison operators =, <>, >, <, >=, <=
Conjunctive operators AND, OR

Grouping parentheses Use open and close parentheses () for logical grouping of multiple elements.

Oracle GoldenGate does not support FILTER for columns that have a multi-byte character set
or a character set that is incompatible with the character set of the local operating system.

Arithmetic operators and floating-point data types are not supported by WHERE. To use more
complex selection conditions, use a FILTER clause or a user exit routine. See Using User Exits
to Extend Oracle GoldenGate Capabilities for more information.

The syntax for WHERE is identical in the TABLE and MAP statements:

TABLE table, WHERE (clause);

Chapter 8
Data Management

8-97

MAP source_table, TARGET target_table, WHERE (clause);

Considerations for Selecting Rows with FILTER and WHERE
The following suggestions can help you create a successful selection clause.

Note:

The examples in this section assume a case-insensitive database.

Ensuring Data Availability for Filters

If the database only logs values for changed columns to the transaction log, there can be
errors if any of the unchanged columns are referenced by selection criteria. Oracle
GoldenGate ignores such row operations, outputs them to the discard file, and issues a
warning.

To avoid missing-column errors, create your selection conditions as follows:

• Use only primary-key columns as selection criteria, if possible.

• Make required column values available by enabling supplemental logging for those
columns. Alternatively, you can use the FETCHCOLS or FETCHCOLSEXCEPT option of the TABLE
parameter. These options are valid for all supported databases. They query the database
to fetch the values if they are not present in the log. To retrieve the values before the
FILTER or WHERE clause is executed, include the FETCHBEFOREFILTER option in the TABLE
statement before the FILTER or WHERE clause. For example:

TABLE DEMO.PEOPLE, FETCHBEFOREFILTER, FETCHCOLS (age), FILTER (age > 50);
• Test for a column's presence first, then for the column's value. To test for a column's

presence, use the following syntax.

column_name {= | <>} {@PRESENT | @ABSENT}

The following example returns all records when the amount column is over 10,000 and
does not cause a record to be discarded when amount is absent.

WHERE (amount = @PRESENT AND amount > 10000)

Comparing Column Values

To ensure that elements used in a comparison match, compare appropriate column types:

• Character columns to literal strings.

• Numeric columns to numeric values, which can include a sign and decimal point.

• Date and time columns to literal strings, using the format in which the column is retrieved
by the application.

Testing for NULL Values

To evaluate columns for NULL values, use the following syntax.

column {= | <>} @NULL

Chapter 8
Data Management

8-98

The following returns TRUE if the column value is NULL, and thereby replicates the row. It returns
FALSE for all other cases (including a column missing from the record).

WHERE (amount = @NULL)

The following returns TRUE only if the column is present in the record and is not NULL.

WHERE (amount = @PRESENT AND amount <> @NULL)

Note:

If a value in the trail contains more than 4000 bytes then the @NULL function will return
TRUE.

Retrieving Before and After Values
For update and delete operations, it can be useful to retrieve the BEFORE values of the source
columns (the values before the update occurred). For inserts, all column values are considered
AFTER images.

These values are stored in the trail and can be used in filters and column mappings. For
example, you can:

• Retrieve the before image of a row as part of a column-mapping specification in an
exceptions MAP statement, and map those values to an exceptions table for use in testing
or troubleshooting conflict resolution routines.

• Perform delta calculations. For example, if a table has a Balance column, you can
calculate the net result of a particular transaction by subtracting the original balance from
the new balance, as in the following example:

MAP "owner"."src", TARGET "owner"."targ",
COLMAP (PK1 = PK1, delta = balance – @BEFORE (balance));

Note:

The previous example indicates a case-sensitive database such as Oracle. The
table names are in quote marks to reflect case-sensitivity.

To Reference the Before Value

1. Use the @BEFORE column conversion function with the name of the column for which you
want a before value, as follows:

@BEFORE (column_name)
2. Use the GETUPDATEBEFORES parameter in the Extract parameter file to capture before

images from the transaction record, or use it in the Replicat parameter file to use the
before image in a column mapping or filter. If using the Conflict Resolution and Detection
(CDR) feature, you can use the GETBEFORECOLS option of TABLE. To use these parameters,
all columns must be present in the transaction log. If the database only logs the values of
columns that changed, using the @BEFORE function may result in a "column missing"
condition and the column map is executed as if the column were not in the record. See
Ensuring Data Availability for Filters to ensure that column values are available.

Chapter 8
Data Management

8-99

Oracle GoldenGate also provides the @AFTER function to retrieve after values when needed
for filtering, for use in conversion functions, or other purposes. For more information about
@BEFORE and @AFTER, see Reference for Oracle GoldenGate.

Selecting Columns
To control which columns of a source table are extracted by Oracle GoldenGate, use the COLS
and COLSEXCEPT options of the TABLE parameter. Use COLS to select columns for extraction,
and use COLSEXCEPT to select all columns except those designated by COLSEXCEPT.

Restricting the columns that are extracted can be useful when a target table does not contain
the same columns as the source table, or when the columns contain sensitive information,
such as a personal identification number or other proprietary business information.

Using Transaction History
Oracle GoldenGate enables you to retain a history of changes made to a target record and to
map information about the operation that caused each change. This history can be useful for
creating a transaction-based reporting system that contains a separate record for every
operation performed on a table, as opposed to containing only the most recent version of each
record.

For example, the following series of operations made to a target table named CUSTOMER would
leave no trace of the ID of Dave. The last operation deletes the record, so there is no way to
find out Dave's account history or his ending balance.

Table 8-5 Operation History for Table CUSTOMER

Sequence Operation ID BALANCE

1 Insert Dave 1000
2 Update Dave 900
3 Update Dave 1250
4 Delete Dave 1250

Retaining this history as a series of records can be useful in many ways. For example, you can
generate the net effect of transactions.

To Implement Transaction Reporting

1. To prepare Extract to capture before values, use the GETUPDATEBEFORES parameter in the
Extract parameter file. A before value (or before image) is the existing value of a column
before an update is performed. Before images enable Oracle GoldenGate to create the
transaction record.

2. To prepare Replicat to post all operations as inserts, use the INSERTALLRECORDS parameter
in the Replicat parameter file. Each operation on a table becomes a new record in that
table.

3. To map the transaction history, use the return values of the GGHEADER option of the @GETENV
column conversion function. Include the conversion function as the source expression in a
COLMAP statement in the TABLE or MAP parameter.

Using the sample series of transactions shown in #unique_807/
unique_807_Connect_42_G1111011 the following parameter configurations can be created to

Chapter 8
Data Management

8-100

generate a more transaction-oriented view of customers, rather than the latest state of the
database.

Process Parameter statements

Extract GETUPDATEBEFORES
TABLE ACCOUNT.CUSTOMER;

Replicat INSERTALLRECORDS
MAP SALES.CUSTOMER, TARGET SALES.CUSTHIST,
COLMAP (TS = @GETENV ('GGHEADER', 'COMMITTIMESTAMP'),
BEFORE_AFTER = @GETENV ('GGHEADER', 'BEFOREAFTERINDICATOR'),
OP_TYPE = @GETENV ('GGHEADER', 'OPTYPE'),
ID = ID,
BALANCE = BALANCE);

Note:

This is not representative of a complete parameter file for an Oracle GoldenGate
process. Also note that these examples represent a case-insensitive database.

This configuration makes possible queries such as the following, which returns the net sum of
each transaction along with the time of the transaction and the customer ID.

SELECT AFTER.ID, AFTER.TS, AFTER.BALANCE - BEFORE.BALANCE
FROM CUSTHIST AFTER, CUSTHIST BEFORE
WHERE AFTER.ID = BEFORE.ID AND AFTER.TS = BEFORE.TS AND
AFTER.BEFORE_AFTER = 'A' AND BEFORE.BEFORE_AFTER = 'B';

Testing and Transforming Data
Data testing and transformation can be performed by either Extract or Replicat and is
implemented by using the Oracle GoldenGate built-in column-conversion functions within a
COLMAP clause of a TABLE or MAP statement. With these conversion functions, you can:

• Transform dates.

• Test for the presence of column values.

• Perform arithmetic operations.

• Manipulate numbers and character strings.

• Handle null, invalid, and missing data.

• Perform tests.

This chapter provides an overview of some of the Oracle GoldenGate functions related to data
manipulation. For the complete reference, see Reference for Oracle GoldenGate for Windows
and UNIX.

If you need to use logic beyond that which is supplied by the Oracle GoldenGate functions, you
can call your own functions by implementing Oracle GoldenGate user exits. See Using User
Exits to Extend Oracle GoldenGate Capabilities for more information about user exits.

Oracle GoldenGate conversion functions take the following general syntax:

Chapter 8
Data Management

8-101

Syntax

@function (argument)

Table 8-6 Conversion Function Syntax

Syntax element Description

@function
The Oracle GoldenGate function name. Function
names have the prefix @, as in @COMPUTE or @DATE.
A space between the function name and the open-
parenthesis before the input argument is optional.

argument A function argument.

Table 8-7 Function Arguments

Argument element Example

A numeric constant 123

A string literal enclosed within single quote marks 'ABCD'

The name of a source column PHONE_NO or phone_no, or "Phone_No" or
Phone_no

Depends on whether the database is case-
insensitive, is case-sensitive and requires quote
marks to enforce the case, or is case-sensitive and
does not require quotes.

An arithmetic expression COL2 * 100

A comparison expression ((COL3 > 100) AND (COL4 > 0))

Other Oracle GoldenGate functions AMOUNT = @IF (@COLTEST (AMT, MISSING,
INVALID), 0, AMT)

Handling Column Names and Literals in Functions
By default, literal strings must be enclosed in single quotes in a column-conversion function.
Case-sensitive column names must be enclosed within double quotes if required by the
database, or otherwise entered in the case in which they are stored in the database.

Using the Appropriate Function
Use the appropriate function for the type of column that is being manipulated or evaluated. For
example, numeric functions can be used only to compare numeric values. To compare
character values, use one of the Oracle GoldenGate character-comparison functions. LOB
columns cannot be used in conversion functions.

Chapter 8
Data Management

8-102

This statement would fail because it uses @IF, which is a numerical function, to compare string
values.

@IF (SR_AREA = 'Help Desk', 'TRUE', 'FALSE')

The following statement would succeed because it compares a numeric value.

@IF (SR_AREA = 20, 'TRUE', 'FALSE')

See Manipulating Numbers and Character Strings for more information.

Note:

Errors in argument parsing sometimes are not detected until records are processed.
Verify syntax before starting processes.

Transforming Dates
Use the @DATE, @DATEDIF, and @DATENOW functions to retrieve dates and times, perform
computations on them, and convert them.

This example computes the time that an order is filled

Example 8-7 Computing Time

ORDER_FILLED = @DATE (
 'YYYY-MM-DD HH:MI:SS',
 'JTS',
 @DATE ('JTS',
 'YYMMDDHHMISS',
 ORDER_TAKEN_TIME) +
 ORDER_MINUTES * 60 * 1000000)

Performing Arithmetic Operations
To return the result of an arithmetic expression, use the @COMPUTE function. The value returned
from the function is in the form of a string. Arithmetic expressions can be combinations of the
following elements.

• Numbers

• The names of columns that contain numbers

• Functions that return numbers

• Arithmetic operators:

– + (plus)

– - (minus)

– * (multiply)

– / (divide)

– \ (remainder)

• Comparison operators:

– > (greater than)

Chapter 8
Data Management

8-103

– >= (greater than or equal)

– < (less than)

– <= (less than or equal)

– = (equal)

– <> (not equal)

Results that are derived from comparisons can be zero (indicating FALSE) or non-zero
(indicating TRUE).

• Parentheses (for grouping results in the expression)

• The conjunction operators AND, OR. Oracle GoldenGate only evaluates the necessary part
of a conjunction expression. Once a statement is FALSE, the rest of the expression is
ignored. This can be valuable when evaluating fields that may be missing or null. For
example, if the value of COL1 is 25 and the value of COL2 is 10, then the following are
possible:

@COMPUTE ((COL1 > 0) AND (COL2 < 3)) returns 0.
@COMPUTE ((COL1 < 0) AND (COL2 < 3)) returns 0. COL2 < 3 is never evaluated.
@COMPUTE ((COL1 + COL2)/5) returns 7.

Omitting @COMPUTE

The @COMPUTE keyword is not required when an expression is passed as a function argument.

@STRNUM ((AMOUNT1 + AMOUNT2), LEFT)

The following expression returns the same result as the previous one:

@STRNUM ((@COMPUTE (AMOUNT1 + AMOUNT2), LEFT)

Manipulating Numbers and Character Strings
To convert numbers and character strings, Oracle GoldenGate supplies the following functions:

Table 8-8 Conversion Functions for Numbers and Characters

Purpose Conversion Function

Convert a binary or character string to a number. @NUMBIN
@NUMSTR

Convert a number to a string. @STRNUM
Compare strings. @STRCMP

@STRNCMP
Concatenate strings. @STRCAT

@STRNCAT
Extract from a string. @STREXT

@STRFIND
Return the length of a string. @STRLEN
Substitute one string for another. @STRSUB
Convert a string to upper case. @STRUP

Chapter 8
Data Management

8-104

Table 8-8 (Cont.) Conversion Functions for Numbers and Characters

Purpose Conversion Function

Trim leading or trailing spaces, or both. @STRLTRIM
@STRRTRIM
@STRTRIM

Handling Null, Invalid, and Missing Data
When column data is missing, invalid, or null, an Oracle GoldenGate conversion function
returns a corresponding value.

If BALANCE is 1000, but AMOUNT is NULL, the following expression returns NULL:

NEW_BALANCE = @COMPUTE (BALANCE + AMOUNT)

These exception conditions render the entire calculation invalid. To ensure a successful
conversion, use the @COLSTAT, @COLTEST and @IF functions to test for, and override, the
exception condition.

Using @COLSTAT

Use the @COLSTAT function to return an indicator to Extract or Replicat that a column is missing,
null, or invalid. The indicator can be used as part of a larger manipulation formula that uses
additional conversion functions.

The following example returns a NULL into target column ITEM.

ITEM = @COLSTAT (NULL)

The following @IF calculation uses @COLSTAT to return NULL to the target column if PRICE and
QUANTITY are less than zero.

ORDER_TOTAL = PRICE * QUANTITY, @IF ((PRICE < 0) AND (QUANTITY < 0), @COLSTAT (NULL))

Using @COLTEST

Use the @COLTEST function to check for the following conditions:

• PRESENT tests whether a column is present and not null.

• NULL tests whether a column is present and null.

• MISSING tests whether a column is not present.

• INVALID tests whether a column is present but contains invalid data.

The following example checks whether the AMOUNT column is present and NULL and whether it
is present but invalid.

@COLTEST (AMOUNT, NULL, INVALID)

Using @IF

Use the @IF function to return one of two values based on a condition. Use it with the @COLSTAT
and @COLTEST functions to begin a conditional argument that tests for one or more exception
conditions and then directs processing based on the results of the test.

Chapter 8
Data Management

8-105

NEW_BALANCE = @IF (@COLTEST (BALANCE, NULL, INVALID) OR
@COLTEST (AMOUNT, NULL, INVALID), @COLSTAT (NULL), BALANCE + AMOUNT)

This conversion returns one of the following:

• NULL when BALANCE or AMOUNT is NULL or INVALID
• MISSING when either column is missing

• The sum of the columns.

Performing Tests
The @CASE, @VALONEOF, and @EVAL functions provide additional methods for performing tests
on data before manipulating or mapping it.

Using @CASE

Use @CASE to select a value depending on a series of value tests.

@CASE (PRODUCT_CODE, 'CAR', 'A car', 'TRUCK', 'A truck')

This example returns the following:

• A car if PRODUCT_CODE is CAR
• A truck if PRODUCT_CODE is TRUCK
• A FIELD_MISSING indication if PRODUCT_CODE fits neither of the other conditions

Using @VALONEOF

Use @VALONEOF to compare a column or string to a list of values.

@IF (@VALONEOF (STATE, 'CA', 'NY'), 'COAST', 'MIDDLE')

In this example, if STATE is CA or NY, the expression returns COAST, which is the response
returned by @IF when the value is non-zero (meaning TRUE).

Using @EVAL

Use @EVAL to select a value based on a series of independent conditional tests.

@EVAL (AMOUNT > 10000, 'high amount', AMOUNT > 5000, 'somewhat high')

This example returns the following:

• high amount if AMOUNT is greater than 10000
• somewhat high if AMOUNT is greater than 5000, and less than or equal to 10000, (unless the

prior condition was satisfied)

• A FIELD_MISSING indication if neither condition is satisfied.

Using Tokens
You can capture and store data within the user token area of a trail record header. Token data
can be retrieved and used in many ways to customize the way that Oracle GoldenGate
delivers information. For example, you can use token data in:

• Column maps

Chapter 8
Data Management

8-106

• Stored procedures called by a SQLEXEC statement

• User exits

• Macros

Defining Tokens
To use tokens, you define the token name and associate it with data. The data can be any valid
character data or values retrieved from Oracle GoldenGate column-conversion functions.

The token area in the record header permits up to 16,000 bytes of data. Token names, the
length of the data, and the data itself must fit into that space.

To define a token, use the TOKENS option of the TABLE parameter in the Extract parameter file.

Syntax

TABLE table_spec, TOKENS (token_name = token_data [, ...]);

Where:

• table_spec is the name of the source table. A container or catalog name, if applicable, and
an owner name must precede the table name.

• token_name is a name of your choice for the token. It can be any number of alphanumeric
characters and is not case-sensitive.

• token_data is a character string of up to 2000 bytes. The data can be either a string that is
enclosed within single quotes or the result of an Oracle GoldenGate column-conversion
function. The character set of token data is not converted. The token must be in the
character set of the source database for Extract and in the character set of the target
database for Replicat. In the trail file, user tokens are stored in UTF-8.

TABLE ora.oratest, TOKENS (
TK-OSUSER = @GETENV ('GGENVIRONMENT' , 'OSUSERNAME'),
TK-GROUP = @GETENV ('GGENVIRONMENT' , 'GROUPNAME')
TK-HOST = @GETENV('GGENVIRONMENT' , 'HOSTNAME'));

As shown in this example, the Oracle GoldenGate @GETENV function is an effective way to
populate token data. This function provides several options for capturing environment
information that can be mapped to tokens and then used on the target system for column
mapping.

Using Token Data in Target Tables
To map token data to a target table, use the @TOKEN column-conversion function in the source
expression of a COLMAP clause in a Replicat MAP statement. The @TOKEN function provides the
name of the token to map. The COLMAP syntax with @TOKEN is:

Syntax

COLMAP (target_column = @TOKEN ('token_name'))

The following MAP statement maps target columns host, gg_group, and so forth to tokens tk-
host, tk-group, and so forth. Note that the arguments must be enclosed within single quotes.

Chapter 8
Data Management

8-107

User tokens Values

tk-host :sysA

tk-group :extora

tk-osuser :jad

tk-domain :admin

tk-ba_ind :B

tk-commit_ts :2011-01-24 17:08:59.000000

tk-pos :3604496

tk-rba :4058

tk-table :oratest

tk-optype :insert

Example 8-8 MAP Statement

MAP ora.oratest, TARGET ora.rpt,
COLMAP (USEDEFAULTS,
host = @token ('tk-host'),
gg_group = @token ('tk-group'),
osuser= @token ('tk-osuser'),
domain = @token ('tk-domain'),
ba_ind= @token ('tk-ba_ind'),
commit_ts = @token ('tk-commit_ts'),
pos = @token ('tk-pos'),
rba = @token ('tk-rba'),
tablename = @token ('tk-table'),
optype = @token ('tk-optype'));

The tokens in this example will look similar to the following within the record header in the trail:

Error Management
Learn about configuring the Oracle GoldenGate processes to handle errors.

Oracle GoldenGate reports processing errors in several ways by means of its monitoring and
reporting tools.

Automatic Conflict Detection and Resolution
You can configure Oracle GoldenGate to automatically detect and resolve conflicts that occur
when same data is updated concurrently at different sites.

Chapter 8
Error Management

8-108

Conflict detection and resolution is required in active-active configurations, where Oracle
GoldenGate must maintain data synchronization among multiple databases that contain the
same data sets.

About Automatic Conflict Detection and Resolution

When Oracle GoldenGate replicates changes between Oracle databases, you can configure
and manage Oracle GoldenGate conflict detection and resolution automatically in these
databases.

This feature is intended for use with active-active configurations, where Oracle GoldenGate
must maintain data synchronization among multiple databases that contain the same data
sets.

Note:

Automatic conflict detection and resolution (ACDR) feature that is available only
when using Oracle GoldenGate with Oracle Database. For non-Oracle databases,
there is a manual conflict detection and resolution (CDR) feature available with
Oracle GoldenGate. Oracle GoldenGate CDR is configured in the Replicat parameter
file.

Automatic Conflict Detection and Resolution

You can configure automatic conflict detection and resolution in an Oracle GoldenGate
configuration that replicates tables between Oracle databases. To configure automatic conflict
detection and resolution for a table, you need to call the ADD_AUTO_CDR procedure in the
DBMS_GOLDENGATE_ADM package. A prerequisite for setting up automatic conflict detection and
resolution, the Oracle GoldenGate user must have the appropriate privileges. See Grant User
Privileges for Oracle Database for Oracle GoldenGate Classic Architecture learn about user
privileges.

The administrator user must be logged in to the appropriate PDB when calling the
ADD_AUTO_CDR. The following constants, which represent bit flags are now added:

• EARLIEST_TIMESTAMP_RESOLUTION sets TOMBSTONE KEY VERSIONING automatically

• DELETE_ALWAYS_WINS sets TOMBSTONE KEY VERSIONING automatically.

• IGNORE_SITE_PRIORITY
The following example uses an ALTER command for the HR.EMPLOYEES table:

BEGIN
 dbms_goldengate_adm.alter_auto_cdr
 (schema_name => 'HR'
 ,table_name => 'EMPLOYEES'
 ,additional_options =>
DBMS_GOLDENGATE_ADM.ADDITIONAL_OPTIONS_ADD_KEY_VERSION);
END;
/

Chapter 8
Error Management

8-109

See the description for additional_options in ADD_AUTO_CDR Procedure of Oracle Database
PL/SQL Packages and Types Reference.

When Oracle GoldenGate captures changes that originated at an Oracle Database, each
change is encapsulated in a row logical change record (LCR). A row LCR is a structured
representation of a DML row change. Each row LCR includes the operation type, old column
values, and new column values. Multiple row LCRs can be part of a single database
transaction.

When more than one replica of a table allows changes to the table, a conflict can occur when a
change is made to the same row in two different databases at nearly the same time. Oracle
GoldenGate replicates changes using the row LCRs. It detects a conflict by comparing the old
values in the row LCR for the initial change from the origin database with the current values of
the corresponding table row at the destination database identified by the key columns. If any
column value does not match, then there is a conflict.

After a conflict is detected, Oracle GoldenGate can resolve the conflict by overwriting values in
the row with some values from the row LCR, ignoring the values in the row LCR, or computing
a delta to update the row values.

Automatic conflict detection and resolution does not require application changes for the
following reasons:

• Oracle Database automatically creates and maintains invisible timestamp columns.

• Inserts, updates, and deletes use the delete tombstone log table to determine if a row was
deleted.

• LOB column conflicts can be detected.

• Oracle Database automatically configures supplemental logging on required columns.

Requirements for Automatic Conflict Detection and Resolution

Supplemental logging is required to ensure that each row LCR has the information required to
detect and resolve a conflict. Supplemental logging places additional information in the redo
log for the columns of a table when a DML operation is performed on the table. When you
configure a table for Oracle GoldenGate conflict detection and resolution, supplemental logging
is configured automatically for all of the columns in the table. The additional information in the
redo log is placed in an LCR when a table change is replicated.

Extract must be used for capturing. Integrated Replicat or parallel Replicat in integrated mode
must be used on the apply side. LOGALLSUPCOLS should remain the default.

There is a hidden field KEYVER$$ of type timestamp that is optionally added to the DELETE
TOMBSTONE table. This field is required for EARLIEST TIMESTAMP, DELETE ALWAYS WINS, and SITE
PRIORITY resolution and it also exists in the base table. The existence of the field in the base
table needs to be provided in the trail file metadata as a flag or token.

Primary Key updates is also supported in the DELETE TOMBSTONE table. An entry is inserted into
the DELETE TOMBSTONE table for the row of the original key value (before image). The logic in
the Extract which matches inserts in the DELETE TOMBSTONE table to deletes also needs to be
matched to PK updates, or unique key (UK) with at least one non-nullable field, if there is no
PK.

Site priority needs support from the Replicat, both the parameters are implemented and the
setting is passed to the apply.

Chapter 8
Error Management

8-110

Latest Timestamp Conflict Detection and Resolution

When you run the ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package to configure
a table for automatic Oracle GoldenGate conflict detection and resolution, a hidden timestamp
column is added to the table. This hidden timestamp column records the time of a row change,
and this information is used to detect and resolve conflicts.

When a row LCR is applied, a conflict can occur for an INSERT, UPDATE, or DELETE operation.
The following table describes each type of conflict and how it is resolved.

Operation Conflict Detection Conflict Resolution

INSERT A conflict is detected when the
table has the same value for a
key column as the new value in
the row LCR.

If the timestamp of the row LCR
is later than the timestamp in the
table row, then the values in the
row LCR replace the values in the
table.

If the timestamp of the row LCR
is earlier than the timestamp in
the table row, then the row LCR is
discarded, and the table values
are retained.

UPDATE A conflict is detected in each of
the following cases:

• There is a mismatch
between the timestamp value
in the row LCR and the
timestamp value of the
corresponding row in the
table.

• There is a mismatch
between an old value in a
column group in the row LCR
does not match the column
value in the corresponding
table row. A column group is
a logical grouping of one or
more columns in a replicated
table.

• The table row does not exist.
If the row is in the tombstone
table, then this is referred to
as an update-delete conflict.

If there is a value mismatch and
the timestamp of the row LCR is
later than the timestamp in the
table row, then the values in the
row LCR replace the values in the
table.

If there is a value mismatch and
the timestamp of the row LCR is
earlier than the timestamp in the
table row, then the row LCR is
discarded, and the table values
are retained.

If the table row does not exist and
the timestamp of the row LCR is
later than the timestamp in the
tombstone table row, then the row
LCR is converted from an
UPDATE operation to an INSERT
operation and inserted into the
table.

If the table row does not exist and
the timestamp of the row LCR is
earlier than the timestamp in the
tombstone table row, then the row
LCR is discarded.

If the table row does not exist and
there is no corresponding row in
the tombstone table, then the row
LCR is converted from an
UPDATE operation to an INSERT
operation and inserted into the
table.

Chapter 8
Error Management

8-111

Operation Conflict Detection Conflict Resolution

DELETE A conflict is detected in each of
the following cases:

• There is a mismatch
between the timestamp value
in the row LCR and the
timestamp value of the
corresponding row in the
table.

• The table row does not exist.

If the timestamp of the row LCR
is later than the timestamp in the
table, then delete the row from
the table.

If the timestamp of the row LCR
is earlier than the timestamp in
the table, then the row LCR is
discarded, and the table values
are retained.

If the delete is successful, then
log the row LCR by inserting it
into the tombstone table.

If the table row does not exist,
then log the row LCR by inserting
it into the tombstone table.

Delta Conflict Detection and Resolution
With delta conflict detection, a conflict occurs when a value in the old column list of the row
LCR differs from the value for the corresponding row in the table.

To configure delta conflict detection and resolution for a table, run the
ADD_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package. The delta
resolution method does not depend on a timestamp or an extra resolution column. With delta
conflict resolution, the conflict is resolved by adding the difference between the new and old
values in the row LCR to the value in the table. This resolution method is generally used for
financial data such as an account balance. For example, if a bank balance is updated at two
sites concurrently, then the converged value accounts for all debits and credits.

This example shows a row being replicated at database A and database B. The Balance
column is designated as the column on which delta conflict resolution is performed, and the
TS1 column is the invisible timestamp column to track the time of each change to the Balance
column. A change is made to the Balance value in the row in both databases at nearly the
same time (@T20 in database A and @T22 in database B). These changes result in a conflict,
and delta conflict resolution is used to resolve the conflict in the following way:

• At database A, the value of Balance was changed from 100 to 110. Therefore, the value
was increased by 10.

Chapter 8
Error Management

8-112

• At database B, the value of Balance was changed from 100 to 120. Therefore, the value
was increased by 20.

• To resolve the conflict at database A, the value of the difference between the new and old
values in the row LCR to the value in the table. The difference between the new and old
values in the LCR is 20 (120–100=20). Therefore, the current value in the table (110) is
increased by 20 so that the value after conflict resolution is 130.

• To resolve the conflict at database B, the value of the difference between the new and old
values in the row LCR to the value in the table. The difference between the new and old
values in the LCR is 10 (110–100=10). Therefore, the current value in the table (120) is
increased by 10 so that the value after conflict resolution is 130.

After delta conflict resolution, the value of the Balance column is the same for the row at
database A and database B.

Column Groups
A column group is a logical grouping of one or more columns in a replicated table. When you
add a column group, conflict detection and resolution is performed on the columns in the
column group separately from the other columns in the table.

When you configure a table for Oracle GoldenGate conflict detection and resolution with the
ADD_AUTO_CDR procedure, all of the scalar columns in the table are added to a default column
group. To define other column groups for the table, run the ADD_AUTO_CDR_COLUMN_GROUP
procedure. Any columns in the table that are not part of a user-defined column group remain in
the default column group for the table.

Column groups enable different databases to update different columns in the same row at
nearly the same time without causing a conflict. When column groups are configured for a
table, conflicts can be avoided even if different databases update the same row in the table. A
conflict is not detected if the updates change the values of columns in different column groups.

This example shows a row being replicated at database A and database B. The following two
column groups are configured for the replicated table at each database:

• One column group includes the Office column. The invisible timestamp column for this
column group is TS1.

• Another column group includes the Title and Salary columns. The invisible timestamp
column for this column group is TS2.

These column groups enable database A and database B to update the same row at nearly the
same time without causing a conflict. Specifically, the following changes are made:

Chapter 8
Error Management

8-113

• At database A, the value of Office was changed from 1080 to 1030.

• At database B, the value of Title was changed from MTS1 to MTS2.

Because the Office column and the Title column are in different column groups, the changes
are replicated without a conflict being detected. The result is that values in the row are same at
both databases after each change has been replicated.

Piecewise LOB Updates

A set of lob operations composed of LOB WRITE, LOB ERASE, and LOB TRIM is a piecewise LOB
update. When a table that contains LOB columns is configured for conflict detection and
resolution, each LOB column is placed in its own column group, and the column group has its
own hidden timestamp column. The timestamp column is updated on the first piecewise LOB
operation.

For a LOB column, a conflict is detected and resolved in the following ways:

• If the timestamp for the LOB’s column group is later than the corresponding LOB column
group in the row, then the piecewise LOB update is applied.

• If the timestamp for the LOB’s column group is earlier than the corresponding LOB column
group in the row, then the LOB in the table row is retained.

• If the row does not exist in the table, then an error occurs

Configuring Automatic Conflict Detection and Resolution
You can configure Oracle GoldenGate automatic conflict detection and resolution in Oracle
Database with the DBMS_GOLDENGATE_ADM package.

For the Replicat parameter file you need to add a MAP statement that includes the table to be
replicated and the MAPINVISIBLECOLUMNS parameter.

Configuring Latest Timestamp Conflict Detection and Resolution

The ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package configures latest
timestamp conflict detection and resolution. The ADD_AUTO_CDR_COLUMN_GROUP procedure adds
optional column groups.

For Oracle Database 23c and higher, the ADD_AUTO_CDR procedure also provides the option to
remove hidden columns. The ADD_AUTO_CDR procedure includes the flag
REMOVE_HIDDEN_COLUMNS to drop tables or columns that are unused. To know more, see
ADD_AUTO_CDR Procedure in the Oracle Database PL/SQL Packages and Types Reference

With latest timestamp conflict detection and resolution, a conflict is detected when the
timestamp column of the row LCR does not match the timestamp of the corresponding table
row. The row LCR is applied if its timestamp is later. Otherwise, the row LCR is discarded, and
the table row is not changed. When you run the ADD_AUTO_CDR procedure, it adds an invisible
timestamp column for each row in the specified table and configures timestamp conflict
detection and resolution. When you use the ADD_AUTO_CDR_COLUMN_GROUP procedure to add
one or more column groups, it adds a timestamp for the column group and configures
timestamp conflict detection and resolution for the column group.

You can configure an Oracle GoldenGate administrator using the GRANT_ADMIN_PRIVILEGE
procedure in the DBMS_GOLDENGATE_ADM package.

1. Connect to the inbound server database as a Oracle GoldenGate administrator.

Chapter 8
Error Management

8-114

2. Run the ADD_AUTO_CDR procedure and specify the table to configure for latest timestamp
conflict detection and resolution.

3. Run the ADD_AUTO_CDR_COLUMN_GROUP procedure and specify one or more column groups
in the table.

4. Repeat the previous steps in each Oracle Database that replicates the table.

Example 8-9 Configuring the Latest Timestamp Conflict Detection and Resolution for a
Table

This example configures latest timestamp conflict detection and resolution for the
hr.employees table.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES');
END;
/

Example 8-10 Configuring Column Groups

This example configures the following column groups for timestamp conflict resolution on the
HR.EMPLOYEES table:

• The JOB_IDENTIFIER_CG column group includes the JOB_ID, DEPARTMENT_ID, and
MANAGER_ID columns.

• The COMPENSATION_CG column group includes the SALARY and COMMISSION_PCT columns.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_COLUMN_GROUP(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES',
 COLUMN_LIST => 'JOB_ID, DEPARTMENT_ID, MANAGER_ID',
 COLUMN_GROUP_NAME => 'JOB_IDENTIFIER_CG');
END;
/

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_COLUMN_GROUP(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES',
 COLUMN_LIST => 'SALARY, COMMISSION_PCT',
 COLUMN_GROUP_NAME => 'COMPENSATION_CG');
END;
/

Configuring Delta Conflict Detection and Resolution
The ADD_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package configures
delta conflict detection and resolution.

With delta conflict resolution, you specify one column for which conflicts are detected and
resolved. The conflict is detected if the value of the column in the row LCR does not match the

Chapter 8
Error Management

8-115

corresponding value in the table. The conflict is resolved by adding the difference between the
new and old values in the row LCR to the value in the table.

You can configure an Oracle GoldenGate administrator using the GRANT_ADMIN_PRIVILEGE
procedure in the DBMS_GOLDENGATE_ADM package.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the ADD_AUTO_CDR procedure and specify the table to configure for latest timestamp
conflict detection and resolution.

3. Run the ADD_AUTO_CDR_DELTA_RES procedure and specify the column on which delta
conflict detection and resolution is performed.

4. Repeat the previous steps in each Oracle Database that replicates the table.

Example 8-11 Configuring Delta Conflict Detection and Resolution for a Table

This example configures delta conflict detection and resolution for the order_total column in
the oe.orders table.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR(
 SCHEMA_NAME => 'OE',
 TABLE_NAME => 'ORDERS');
END;
/

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_DELTA_RES(
 SCHEMA_NAME => 'OE',
 TABLE_NAME => 'ORDERS',
 COLUMN_NAME => 'ORDER_TOTAL');
END;
/

Managing Automatic Conflict Detection and Resolution
You can manage Oracle GoldenGate automatic conflict detection and resolution in Oracle
Database with the DBMS_GOLDENGATE_ADM package.

Altering Conflict Detection and Resolution for a Table

The ALTER_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package alters conflict detection
and resolution for a table.

Oracle GoldenGate automatic conflict detection and resolution must be configured for the
table:

1. Connect to the inbound server database as the Oracle GoldenGate administrator.

2. Run the ALTER_AUTO_CDR procedure and specify the table to configure for latest timestamp
conflict detection and resolution.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Chapter 8
Error Management

8-116

Example 8-12 Altering Conflict Detection and Resolution for a Table

This example alters conflict detection and resolution for the HR.EMPLOYEES table to specify that
delete conflicts are tracked in a tombstone table.

BEGIN
 DBMS_GOLDENGATE_ADM.ALTER_AUTO_CDR(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES',
 TOMBSTONE_DELETES => TRUE);
END;
/

Altering a Column Group
The ALTER_AUTO_CDR_COLUMN_GROUP procedure alters a column group.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the ALTER_AUTO_CDR_COLUMN_GROUP procedure and specify one or more column
groups in the table.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 8-13 Altering a Column Group

This example removes the MANAGER_ID column from the JOB_IDENTIFIER_CG column group for
the HR.EMPLOYEES table.

BEGIN
 DBMS_GOLDENGATE_ADM.ALTER_AUTO_CDR_COLUMN_GROUP(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES',
 COLUMN_GROUP_NAME => 'JOB_IDENTIFIER_CG',
 REMOVE_COLUMN_LIST => 'MANAGER_ID');
END;
/

Note:

If there is more than one column, then use a comma-separated list.

Purging Tombstone Rows

The PURGE_TOMBSTONES procedure removes tombstone rows that were recorded before a
specified date and time. This procedure removes the tombstone rows for all tables configured
for conflict resolution in the database.

It might be necessary to purge tombstone rows periodically to keep the tombstone log from
growing too large over time.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the PURGE_TOMBSTONES procedure and specify the date and time.

Chapter 8
Error Management

8-117

Example 8-14 Purging Tombstone Rows

This example purges all tombstone rows recorded before 3:00 p.m. on December, 1, 2015
Eastern Standard Time. The timestamp must be entered in TIMESTAMP WITH TIME ZONE format.

EXEC DBMS_GOLDENGATE_ADM.PURGE_TOMBSTONES('2015-12-01 15:00:00.000000 EST');

Removing Conflict Detection and Resolution From a Table
With Oracle Database 23c and higher, removing Automatic Conflict Detection and Resolution
(ACDR) entirely from the table has lesser impact on the table because the ACDR related
columns are marked as UNUSED.

Use the REMOVE_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package to tag a table as
UNUSED, which minimizes blocking. You can choose to drop a column or retain it at a later
stage.

See Removing a Column Group for examples.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR procedure and specify the table.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 8-15 Removing Conflict Detection and Resolution for a Table

This example removes conflict detection and resolution for the HR.EMPLOYEES table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES');
END;
/

You can choose to drop columns by using the ADD_AUTO_CDR.REMOVE_HIDDEN_COLUMNS
procedure to view and remove hidden columns.

Here is an example that you can use to view hidden columns in a table.

The following query uses the DBA_UNUSED_COL_TABS package to determine if there unused
columns in the EMPLOYEES table.

SELECT OWNER, TABLE_NAME, COUNT
 FROM DBA_UNUSED_COL_TABS
 WHERE OWNER = 'HR'
 AND TABLE_NAME = 'EMPLOYEES'
 ORDER BY OWNER, TABLE_NAME;

The output displays as follows:

OWNER TABLE_NAME COUNT
-------- ------------ ----------
HR EMPLOYEES 1

Chapter 8
Error Management

8-118

The following query lists out the hidden columns that were tagged by the system when ACDR
was removed for the column group in the EMPLOYEES table.

SELECT OWNER, TABLE_NAME, COLUMN_ID, COLUMN_NAME, DATA_TYPE, HIDDEN_COLUMN
 FROM DBA_TAB_COLS
 WHERE OWNER = 'HR'
 AND TABLE_NAME = 'EMPLOYEES'
 AND HIDDEN_COLUMN = 'YES' AND USER_GENERATED= 'NO'
 ORDER BY OWNER, TABLE_NAME, COLUMN_ID;

The output displays as follows:

OWNER TABLE_NAME COLUMN_ID COLUMN_NAME DATA_TYPE
HIDDEN_COLUMN
------------ ------------ ---------- ------------- ------------

HR EMPLOYEES SYS_C00014_22092220:30:52$ TIMESTAMP(6) YES

Removing a Column Group
With Oracle Database 23c and higher, removing Automatic Conflict Detection and Resolution
(ACDR) from column groups has lesser impact on the table because the ACDR related
columns are marked as UNUSED. You can choose to drop a column or retain it at a later stage.

Use the REMOVE_AUTO_CDR_COLUMN_GROUP procedure in the DBMS_GOLDENGATE_ADM package to
tag a table, which minimizes blocking. See the example in Removing Conflict Detection and
Resolution From a Table.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR_COLUMN_GROUP procedure and specify the name of the column
group.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 8-16 Removing a Column Group

This example removes the COMPENSATION_CG column group from the HR.EMPLOYEES table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR_COLUMN_GROUP(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES',
 COLUMN_GROUP_NAME => 'COMPENSATION_CG');
END;
/

Removing Delta Conflict Detection and Resolution

The REMOVE_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package removes
delta conflict detection and resolution for a column.

Delta conflict detection and resolution must be configured for the specified column.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR_DELTA_RES procedure and specify the column.

Chapter 8
Error Management

8-119

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 8-17 Removing Delta Conflict Detection and Resolution for a Table

This example removes delta conflict detection and resolution for the ORDER_TOTAL column in
the OE.ORDERS table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR_DELTA_RES(
 SCHEMA_NAME => 'OE',
 TABLE_NAME => 'ORDERS',
 COLUMN_NAME => 'ORDER_TOTAL');
END;
/

Monitoring Automatic Conflict Detection and Resolution
You can monitor Oracle GoldenGate automatic conflict detection and resolution in an Oracle
Database by querying data dictionary views.

Displaying Information About the Tables Configured for Conflicts
The ALL_GG_AUTO_CDR_TABLES view displays information about the tables configured for Oracle
GoldenGate automatic conflict detection and resolution.

1. Connect to the database.

2. Query the ALL_GG_AUTO_CDR_TABLES view.

Example 8-18 Displaying Information About the Tables Configured for Conflict
Detection and Resolution

This query displays the following information about the tables that are configured for conflict
detection and resolution:

• The table owner for each table.

• The table name for each table.

• The tombstone table used to store rows deleted for update-delete conflicts, if a tombstone
table is configured for the table.

• The hidden timestamp column used for conflict resolution for each table.

COLUMN TABLE_OWNER FORMAT A15
COLUMN TABLE_NAME FORMAT A15
COLUMN TOMBSTONE_TABLE FORMAT A15
COLUMN ROW_RESOLUTION_COLUMN FORMAT A25

SELECT TABLE_OWNER,
 TABLE_NAME,
 TOMBSTONE_TABLE,
 ROW_RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_TABLES
 ORDER BY TABLE_OWNER, TABLE_NAME;

Chapter 8
Error Management

8-120

Your output looks similar to the following:

TABLE_OWNER TABLE_NAME TOMBSTONE_TABLE ROW_RESOLUTION_COLUMN
--------------- --------------- --------------- -------------------------
HR EMPLOYEES DT$_EMPLOYEES CDRTS$ROW
OE ORDERS DT$_ORDERS CDRTS$ROW

Displaying Information About Conflict Resolution Columns
The ALL_GG_AUTO_CDR_COLUMNS view displays information about the columns configured for
Oracle GoldenGate automatic conflict detection and resolution.

The columns can be configured for row or column automatic conflict detection and resolution.
The columns can be configured for latest timestamp conflict resolution in a column group. In
addition, a column can be configured for delta conflict resolution.

1. Connect to the database as an Oracle GoldenGate administrator.

2. Query the ALL_GG_AUTO_CDR_COLUMNS view.

Example 8-19 Displaying Information About Column Groups

This query displays the following information about the tables that are configured for conflict
detection and resolution:

• The table owner for each table.

• The table name for each table.

• If the column is in a column group, then the name of the column group.

• The column name.

• If the column is configured for latest timestamp conflict resolution, then the name of the
hidden timestamp column for the column.

COLUMN TABLE_OWNER FORMAT A10
COLUMN TABLE_NAME FORMAT A10
COLUMN COLUMN_GROUP_NAME FORMAT A17
COLUMN COLUMN_NAME FORMAT A15
COLUMN RESOLUTION_COLUMN FORMAT A23

SELECT TABLE_OWNER,
 TABLE_NAME,
 COLUMN_GROUP_NAME,
 COLUMN_NAME,
 RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_COLUMNS
 ORDER BY TABLE_OWNER, TABLE_NAME;

Your output looks similar to the following:

TABLE_OWNE TABLE_NAME COLUMN_GROUP_NAME COLUMN_NAME RESOLUTION_COLUMN
---------- ---------- ----------------- ---------------

HR EMPLOYEES COMPENSATION_CG COMMISSION_PCT CDRTS$COMPENSATION_CG
HR EMPLOYEES COMPENSATION_CG SALARY CDRTS$COMPENSATION_CG
HR EMPLOYEES JOB_IDENTIFIER_CG MANAGER_ID
CDRTS$JOB_IDENTIFIER_CG

Chapter 8
Error Management

8-121

HR EMPLOYEES JOB_IDENTIFIER_CG JOB_ID
CDRTS$JOB_IDENTIFIER_CG
HR EMPLOYEES JOB_IDENTIFIER_CG DEPARTMENT_ID
CDRTS$JOB_IDENTIFIER_CG
HR EMPLOYEES IMPLICIT_COLUMNS$ PHONE_NUMBER CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ LAST_NAME CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ HIRE_DATE CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ FIRST_NAME CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ EMAIL CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ EMPLOYEE_ID CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_MODE CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_ID CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_DATE CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ CUSTOMER_ID CDRTS$ROW
OE ORDERS DELTA$ ORDER_TOTAL
OE ORDERS IMPLICIT_COLUMNS$ PROMOTION_ID CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_STATUS CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ SALES_REP_ID CDRTS$ROW

In this example, the columns with IMPLICIT_COLUMNS$ for the column group name are
configured for row conflict detection and resolution, but they are not part of a column group.
The columns with DELTA$ for the column group name are configured for delta conflict detection
and resolution, and these columns do not have a resolution column.

Displaying Information About Column Groups

The ALL_GG_AUTO_CDR_COLUMN_GROUPS view displays information about the column groups
configured for Oracle GoldenGate automatic conflict detection and resolution.

You can configure Oracle GoldenGate automatic conflict detection and resolution using the
ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package. You can configure column
groups using the ADD_AUTO_CDR_COLUMN_GROUP procedure in the DBMS_GOLDENGATE_ADM
package.

1. Connect to the database as an Oracle GoldenGate administrator.

2. Query the ALL_GG_AUTO_CDR_COLUMN_GROUPS view.

Example 8-20 Displaying Information About Column Groups

This query displays the following information about the tables that are configured for conflict
detection and resolution:

• The table owner.

• The table name.

• The name of the column group.

• The hidden timestamp column used for conflict resolution for each column group.

COLUMN TABLE_OWNER FORMAT A15
COLUMN TABLE_NAME FORMAT A15
COLUMN COLUMN_GROUP_NAME FORMAT A20
COLUMN RESOLUTION_COLUMN FORMAT A25

SELECT TABLE_OWNER,
 TABLE_NAME,

Chapter 8
Error Management

8-122

 COLUMN_GROUP_NAME,
 RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_COLUMN_GROUPS
 ORDER BY TABLE_OWNER, TABLE_NAME;

The output looks similar to the following:

TABLE_OWNER TABLE_NAME COLUMN_GROUP_NAME RESOLUTION_COLUMN
--------------- --------------- -------------------- -------------------------
HR EMPLOYEES COMPENSATION_CG CDRTS$COMPENSATION_CG
HR EMPLOYEES JOB_IDENTIFIER_CG CDRTS$JOB_IDENTIFIER_CG

Handling Processing Errors
This chapter describes how to configure the Oracle GoldenGate processes to handle errors.
Oracle GoldenGate reports processing errors in several ways by means of its monitoring and
reporting tools. For more information about these tools, see Monitoring Oracle GoldenGate
Processing.

Overview of Oracle GoldenGate Error Handling
Oracle GoldenGate provides error-handling options for:

• Extract

• Replicat

• TCP/IP

Handling Extract Errors
There is no specific parameter to handle Extract errors when DML operations are being
extracted, but Extract does provide a number of parameters that can be used to prevent
anticipated problems. These parameters handle anomalies that can occur during the
processing of DML operations, such as what to do when a row to be fetched cannot be
located, or what to do when the transaction log is not available. The following is a partial list of
these parameters.

• FETCHOPTIONS
• WARNLONGTRANS
• DBOPTIONS
• TRANLOGOPTIONS
To handle extraction errors that relate to DDL operations, use the DDLERROR parameter.

For a complete parameter list, see Reference for Oracle GoldenGate.

Handling Replicat Errors during DML Operations
To control the way that Replicat responds to an error during one of its DML statements, use the
REPERROR parameter in the Replicat parameter file. You can use REPERROR as a global
parameter or as part of a MAP statement. You can handle most errors in a default fashion (for
example, to cease processing) with DEFAULT and DEFAULT2 options, and also handle other
errors in a specific manner.

Chapter 8
Error Management

8-123

The following comprise the range of REPERROR responses:

• ABEND: roll back the transaction and stop processing.

• DISCARD: log the error to the discard file and continue processing.

• EXCEPTION: send the error for exceptions processing. See Handling Errors as Exceptions
for more information.

• IGNORE: ignore the error and continue processing.

• RETRYOP [MAXRETRIES n]: retry the operation, optionally up to a specific number of times.

• TRANSABORT [, MAXRETRIES n] [, DELAY[C]SECS n]: abort the transaction and reposition
to the beginning, optionally up to a specific number of times at specific intervals.

• RESET: remove all previous REPERROR rules and restore the default of ABEND.

• TRANSDISCARD: discard the entire replicated source transaction if any operation within that
transaction, including the commit, causes a Replicat error that is listed in the error
specification. This option is useful when integrity constraint checking is disabled on the
target.

• TRANSEXCEPTION: perform exceptions mapping for every record in the replicated source
transaction, according to its exceptions-mapping statement, if any operation within that
transaction (including the commit) causes a Replicat error that is listed in the error
specification.

Most options operate on the individual record that generated an error, and Replicat processes
the other, successful operations in the transaction. The exceptions are TRANSDISCARD and
TRANSEXCEPTION: These options affect all records in a transaction if any record in that
transaction generates an error. (The ABEND option also applies to the entire transaction, but
does not apply error handling.)

See Reference for Oracle GoldenGate for REPERROR syntax and usage.

Handling Errors as Exceptions
When the action of REPERROR is EXCEPTION or TRANSEXCEPTION, you can map the values of
operations that generate errors to an exceptions table and, optionally, map other information
about the error that can be used to resolve the error. See About the Exceptions Table.

To map the exceptions to the exceptions table, use either of the following options of the MAP
parameter:

• MAP with EXCEPTIONSONLY
• MAP with MAPEXCEPTION

Using EXCEPTIONSONLY

EXCEPTIONSONLY is valid for one pair of source and target tables that are explicitly named and
mapped one-to-one in a MAP statement; that is, there cannot be wildcards. To use
EXCEPTIONSONLY, create two MAP statements for each source table that you want to use
EXCEPTIONSONLY for on the target:

• The first, a standard MAP statement, maps the source table to the actual target table.

• The second, an exceptions MAP statement, maps the source table to the exceptions table
(instead of to the target table). An exceptions MAP statement executes immediately after an
error on the source table to send the row values to the exceptions table.

Chapter 8
Error Management

8-124

To identify a MAP statement as an exceptions MAP statement, use the INSERTALLRECORDS
and EXCEPTIONSONLY options. The exceptions MAP statement must immediately follow the
regular MAP statement that contains the same source table. Use a COLMAP clause in the
exceptions MAP statement if the source and exceptions-table columns are not identical, or if
you want to map additional information to extra columns in the exceptions table, such as
information that is captured by means of column-conversion functions or SQLEXEC.

For more information about these parameters, see Reference for Oracle GoldenGate.

• A regular MAP statement that maps the source table ggs.equip_account to its target table
equip_account2.

• An exceptions MAP statement that maps the same source table to the exceptions table
ggs.equip_account_exception.

In this case, four extra columns were created, in addition to the same columns that the table
itself contains:

DML_DATE
OPTYPE
DBERRNUM
DBERRMSG

To populate the DML_DATE column, the @DATENOW column-conversion function is used to get the
date and time of the failed operation, and the result is mapped to the column. To populate the
other extra columns, the @GETENV function is used to return the operation type, database error
number, and database error message.

The EXCEPTIONSONLY option of the exceptions MAP statement causes the statement to execute
only after a failed operation on the source table. It prevents every operation from being logged
to the exceptions table.

The INSERTALLRECORDS parameter causes all failed operations for the specified source table,
no matter what the operation type, to be logged to the exceptions table as inserts.

Note:

There can be no primary key or unique index restrictions on the exception table.
Uniqueness violations are possible in this scenario and would generate errors.

Example 8-21 EXCEPTIONSONLY
This example shows how to use REPERROR with EXCEPTIONSONLY and an exceptions MAP
statement. This example only shows the parameters that relate to REPERROR; other parameters
not related to error handling are also required for Replicat.

REPERROR (DEFAULT, EXCEPTION)
MAP ggs.equip_account, TARGET ggs.equip_account2,
COLMAP (USEDEFAULTS);
MAP ggs.equip_account, TARGET ggs.equip_account_exception,
EXCEPTIONSONLY,
INSERTALLRECORDS
COLMAP (USEDEFAULTS,
DML_DATE = @DATENOW (),
OPTYPE = @GETENV ('LASTERR', 'OPTYPE'),
DBERRNUM = @GETENV ('LASTERR', 'DBERRNUM'),
DBERRMSG = @GETENV ('LASTERR', 'DBERRMSG'));

Chapter 8
Error Management

8-125

In this example, the REPERROR parameter is set for DEFAULT error handling, and the EXCEPTION
option causes the Replicat process to treat failed operations as exceptions and continue
processing.

Using MAPEXCEPTION

MAPEXCEPTION is valid when the names of the source and target tables in the MAP statement are
wildcarded. Place the MAPEXCEPTION clause in the regular MAP statement, the same one where
you map the source tables to the target tables. Replicat maps all operations that generate
errors from all of the wildcarded tables to the same exceptions table; therefore, the exceptions
table should contain a superset of all of the columns in all of the wildcarded tables.

Because you cannot individually map columns in a wildcard configuration, use the COLMAP
clause with the USEDEFAULTS option to handle the column mapping for the wildcarded tables (or
use the COLMATCH parameter if appropriate), and use explicit column mappings to map any
additional information, such as that captured with column-conversion functions or SQLEXEC.

When using MAPEXCEPTION, include the INSERTALLRECORDS parameter in the MAPEXCEPTION
clause. INSERTALLRECORDS causes all operation types to be applied to the exceptions table as
INSERT operations. This is required to keep an accurate record of the exceptions and to
prevent integrity errors on the exceptions table.

For more information about these parameters, see Reference for Oracle GoldenGate.

Example 8-22 MAPEXCEPTION

This is an example of how to use MAPEXCEPTION for exceptions mapping. The MAP and TARGET
clauses contain wildcarded source and target table names. Exceptions that occur when
processing any table with a name beginning with TRX are captured to the fin.trxexceptions
table using the designated mapping.

MAP src.trx*, TARGET trg.*,
MAPEXCEPTION (TARGET fin.trxexceptions,
INSERTALLRECORDS,
COLMAP (USEDEFAULTS,
ACCT_NO = ACCT_NO,
OPTYPE = @GETENV ('LASTERR', 'OPTYPE'),
DBERR = @GETENV ('LASTERR', 'DBERRNUM'),
DBERRMSG = @GETENV ('LASTERR', 'DBERRMSG')
)
);

About the Exceptions Table

Use an exceptions table to capture information about an error that can be used for such
purposes as troubleshooting your applications or configuring them to handle the error. At
minimum, an exceptions table should contain enough columns to receive the entire row image
from the failed operation. You can define extra columns to contain other information that is
captured by means of column-conversion functions, SQLEXEC, or other external means.

To ensure that the trail record contains values for all of the columns that you map to the
exceptions table, you can use either the LOGALLSUPCOLS parameter or the following parameters
in the Extract parameter file:

• Use the NOCOMPRESSDELETES parameter so that all columns of a row are written to the trail
for DELETE operations.

• Use the GETUPDATEBEFORES parameter so that Extract captures the before image of a row
and writes them to the trail.

Chapter 8
Error Management

8-126

Handling Replicat errors during DDL Operations
To control the way that Replicat responds to an error that occurs for a DDL operation on the
target, use the DDLERROR parameter in the Replicat parameter file. For more information, see
Reference for Oracle GoldenGate.

Handling TCP/IP Errors
To provide instructions for responding to TCP/IP errors, use the TCPERRS file. This file is in the
Oracle GoldenGate directory

Table 8-9 TCPERRS Columns

Column Description

Error
Specifies a TCP/IP error for which you are defining a response.

Response
Controls whether or not Oracle GoldenGate tries to connect again after the defined
error. Valid values are either RETRY or ABEND.

Delay
Controls how long Oracle GoldenGate waits before attempting to connect again.

Max Retries
Controls the number of times that Oracle GoldenGate attempts to connect again before
aborting.

If a response is not explicitly defined in the TCPERRS file, Oracle GoldenGate responds to
TCP/IP errors by abending.

Example 8-23 TCPERRS File

TCP/IP error handling parameters
Default error response is abend
#
Error Response Delay(csecs) Max Retries

ECONNABORTED RETRY 1000 10
ECONNREFUSED RETRY 1000 12
ECONNRESET RETRY 500 10
ENETDOWN RETRY 3000 50
ENETRESET RETRY 1000 10
ENOBUFS RETRY 100 60
ENOTCONN RETRY 100 10
EPIPE RETRY 500 10
ESHUTDOWN RETRY 1000 10
ETIMEDOUT RETRY 1000 10
NODYNPORTS RETRY 100 10

The TCPERRS file contains default responses to basic errors. To alter the instructions or add
instructions for new errors, open the file in a text editor and change any of the values in the
columns shown in #unique_857/unique_857_Connect_42_G1028649:

Maintaining Updated Error Messages
The error, information, and warning messages that Oracle GoldenGate processes generate are
stored in a data file named ggmessage.dat in the Oracle GoldenGate installation directory. The

Chapter 8
Error Management

8-127

version of this file is checked upon process startup and must be identical to that of the process
in order for the process to operate.

Resolving Oracle GoldenGate Errors
To get help with specific troubleshooting issues, go to My Oracle Support at https://
support.oracle.com and search the Knowledge Base.

Trail File Management
The Extract process captures the changes from the transaction logs of the source system
(database) into trail files that are consumed by other Oracle GoldenGate processes.

Extract can write into one or multiple sets of trail files. A trail is a sequence of files that are
created and aged as needed. Processes that read a trail are:

• Replicat: Replicat reads the trail file received on the target deployment.

• Distribution Service: Extracts data from a local trail for further processing, if needed, and
transfers it to the target system.

• Receiver Service: Receives the trail and transfers to Replicat, which reads the trail and
applies change data to the target database.

You can create more than one trail to separate the data of different tables or applications, or to
satisfy the requirements of a specific replication topology, such as a cascading topology. You
link tables specified with a TABLE statement to a trail specified with an EXTTRAIL parameter
statement in the Extract parameter file.

• Assign Storage for Oracle GoldenGate Trails

• Estimate Space for the Trail

• Add a Trail

Add the Local Trail
These steps add the local trail to which the primary Extract writes captured data.

On the source system, issue the ADD EXTTRAIL command on the command line:

ADD EXTTRAIL pathname, EXTRACT group name

Where:

• EXTTRAIL specifies that the trail is to be created on the local system.

• pathname is the relative or fully qualified name of the trail, including the two-character
name.

• EXTRACT group name is the name of the primary Extract group.

Note:

Oracle GoldenGate creates this trail automatically during processing.

Chapter 8
Trail File Management

8-128

http://support.oracle.com
http://support.oracle.com

Example 8-24

ADD EXTTRAIL /north/ea, EXTRACT exte

Add the Remote Trail
Although it is read by Replicat, this trail must be associated with the Extract, so it must be
added on the source system, not the target.

These steps add the remote trail:

On the source system, issue the following command:

ADD RMTTRAIL pathname, EXTRACT group name

Where:

• RMTTRAIL specifies that the trail is to be created on the target system.

• pathname is the relative or fully qualified name of the trail, including the two-character
name.

• EXTRACT group name is the name of the data-pump Extract group.

Note:

Oracle GoldenGate creates this trail automatically during processing.

Example 8-25

ADD RMTTRAIL /south/re, EXTRACT exts

Encrypting the Extract and Replicat Passwords
It is strongly recommended that you encrypt the passwords of the user profiles that will be
used for the primary and data pump Extracts, and for the Replicat process. The standard
Oracle GoldenGate encryption method of AES (Advanced Encryption Standard) is supported
by the IBM i platform. To encrypt the password, see Working with Runtime Parameters. It also
contains information about how to encrypt data within disk storage and across TCP/IP.

Note:

The Oracle GoldenGate credential store is not supported by the iSeries platform.

Using Command Line Interfaces
To start either the Admin Client or GGSCI, you need to change the current working directory to
the Oracle GoldenGate home directory (OGG_HOME).

Chapter 8
Encrypting the Extract and Replicat Passwords

8-129

Note:

The environment variable OGG_HOME and OGG_VAR_HOME must be set before starting
the Admin Client or GGSCI.

Using Wildcards in Command Arguments
You can use wildcards with certain Oracle GoldenGate commands to control multiple Extract
and Replicat groups as a unit. The wildcard symbol that is supported by Oracle GoldenGate is
the asterisk (*). An asterisk represents any number of characters. For example, to start all
Extract groups whose names contain the letter X, issue the following command.

START EXTRACT *X*

Globalization Support for the Command Interface
All command input and related console output are rendered in the default character set of the
local operating system. To specify characters that are not compatible with the character set of
the local operating system, use Unicode notation. For example, the following Unicode notation
is equivalent to the name of a table that has the Euro symbol as its name:

ADD TRANDATA \u20AC1

For more information, see Support for Escape Sequences for more information about using
Unicode notation.

Note:

Oracle GoldenGate group names are case-insensitive.

Using Command History
The execution of multiple commands is made easier with the following tools:

• Use the HISTORY command to display a list of previously executed commands.

• Use the ! command to execute a previous command again without editing it.

• Use the FC command to edit a previous command and then execute it again.

Storing and Calling Frequently Used Command Sequences
You can automate a frequently-used series of commands by using an OBEY file and the OBEY
command. The OBEY file takes the character set of the local operating system. To specify a
character that is not compatible with that character set, use the Unicode notation.

See Support for Escape Sequences for more information about using Unicode notation.

Chapter 8
Using Command Line Interfaces

8-130

To use OBEY

1. Create and save a text file that contains the commands, one command per line. This is
your OBEY file. The name can be anything supported by the operating system. You can nest
other OBEY files within an OBEY file.

2. Run the Admin Client or GGSCI.

3. (Optional) If using an OBEY file that contains nested OBEY files, issue the following
command. This command enables the use of nested OBEY files for the current session and
is required whenever using nested OBEY files. See Reference for Oracle GoldenGate for
more information.

ALLOWNESTED
4. Call the OBEY file by using the OBEY command from the command line interface (Admin

Client or GGSCI).

OBEY file_name

Where:

file_name is the relative or fully qualified name of the OBEY file.

Example 8-26 OBEY command file

ADD EXTRACT myext, TRANLOG, BEGIN now
START EXTRACT myext

ADD REPLICAT myrep, EXTTRAIL /ggs/dirdat/aa
START REPLICAT myrep

INFO EXTRACT myext, DETAIL
INFO REPLICAT myrep, DETAIL

The following example illustrates an OBEY command file for use with the OBEY command. It
creates and starts Extract and Replicat groups and retrieves processing information.

See Reference for Oracle GoldenGate for more information about the OBEY command.

Getting Started with the Oracle GoldenGate Process Interfaces
This chapter describes how to use the Oracle GoldenGate GGSCI command line interface
(CLI), batch, and shell scripts, and parameter files. Oracle GoldenGate Classic Architecture
provides the GGSCI interface to work with Oracle GoldenGate processes.

Automating Commands
Oracle GoldenGate supports the issuing of commands through scripts or jobs. This section
describes these options for UNIX- or Linux-based platforms and the IBMi platform.

On a UNIX or Linux system, or within a runtime environment that supports UNIX or Linux
applications, you can issue Oracle GoldenGate commands from a script such as a startup
script, shutdown script, or failover script by running GGSCI and calling an input file. The script
file must be encoded in the operating system character set. Unicode notation can be used for
characters that are not supported by the operating system character set. Before creating a
script, see Globalization Support for the Command Interface.

Chapter 8
Getting Started with the Oracle GoldenGate Process Interfaces

8-131

To Input a Script

Use the following syntax from the command line of the operating system.

ggsci < input_file

Where:

• The angle bracket (<) character pipes the file into the GGSCI program.

• input_file is a text file, known as an OBEY file, containing the commands that you want to
issue, in the order they are to be issued.

Note:

To stop the Manager process from a batch file, make certain to add the ! argument to
the end of the STOP MANAGER command. Otherwise, GGSCI issues a prompt that
requires a response and causes the process to enter into a loop.

Issuing Commands Through the IBM i CLI
Oracle GoldenGate for IBM DB2 for i includes a set of native IBM i commands that enables the
operation of the most common Oracle GoldenGate programs from the IBM i command-line
interface (CLI). Because these commands are native, they do not need to be run from a PASE
environment. With this support, it is possible to issue commands interactively or by using the
typical job submission tools such as SBMJOB to operate Oracle GoldenGate non-interactively.

The commands are as follows and correspond to the Oracle GoldenGate programs of the
same name. They reside in the Oracle GoldenGate installation library.

DEFGEN
EXTRACT
KEYGEN
LOGDUMP
MGR
REPLICAT

Specifying Object Names in Oracle GoldenGate Input
The following rules apply when specifying object names in parameter files (such as in TABLE
and MAP statements), column-conversion functions, commands, and in other input.

Specifying Filesystem Path Names in Parameter Files on Windows Systems
On Windows systems, if the name of any directory in a filesystem path name begins with a
number, the path must be specified with forward slashes, not backward slashes, when listing
that path in Oracle GoldenGate input, such as parameter files or commands. This requirement
prevents Oracle GoldenGate from interpreting the name as an octal escape sequence. For

Chapter 8
Getting Started with the Oracle GoldenGate Process Interfaces

8-132

example, the following paths contain a directory named \2014 that will be interpreted as the
octal sequence \201:

C:\ogg\2014\install\dirdat\aa
C:\ogg\install\2014\dirdat\aa

The preceding path can be used with forward slashes as follows:

C:/ogg/2014/install/dirdat/aa
C:/ogg/install/2014/dirdat/aa

For more information, see Support for Escape Sequences.

Supported Database Object Names
Object names in parameter files, command, and other input can be any length and in any
supported character set. For supported character sets, see Supported Character Sets.

Oracle GoldenGate supports most characters in object and column names. Specify object
names in double quote marks if they contain special characters such as white spaces or
symbols.

The following lists of supported and non-supported characters covers all databases supported
by Oracle GoldenGate; a given database platform may or may not support all listed characters.

Supported Special Characters
Oracle GoldenGate supports all characters that are supported by the database, including the
following special characters. Object names that contain these special characters must be
enclosed within double quotes in parameter files.

Character Description

/ Forward slash (See Specifying Names that Contain Slashes)

* Asterisk (Must be escaped by a backward slash when used in parameter file, as
in: *)

? Question mark (Must be escaped by a backward slash when used in parameter
file, as in: \?)

@ At symbol (Supported, but is often used as a resource locator by databases. May
cause problems in object names)

Pound symbol

$ Dollar symbol

% Percent symbol (Must be %% when used in parameter file)

^ Caret symbol

() Open and close parentheses

_ Underscore

- Dash

<space> Space

Non-supported Special Characters
The following characters are not supported in object names and non-key column names.

Chapter 8
Getting Started with the Oracle GoldenGate Process Interfaces

8-133

Character Description

\ Backward slash (Must be \\ when used in parameter file)

{ } Begin and end curly brackets (braces)

[] Begin and end brackets

= Equal symbol

+ Plus sign

! Exclamation point

~ Tilde

| Pipe

& Ampersand

: Colon

; Semi-colon

, Comma

' ' Single quotes

" " Double quotes

' Accent mark (Diacritical mark)

. Period

< Less-than symbol (or beginning angle bracket)

> Greater-than symbol (or ending angle bracket)

Specifying Names that Contain Slashes
If a table name contains a forward-slash character (/) in any part of its name, that name
component must be enclosed within double quotes unless the object name is from an IBM i
platform . The following are some examples:

"c/d"
"/a".b
a."b/"

If the name contains a forward slash that is not enclosed within double quotes, Oracle
GoldenGate treats it as a name that originated on the IBM i platform (from a DB2 for i
database). The forward slash in the name is interpreted as a separator character.

Qualifying Database Object Names
Object names must be fully qualified in the parameter file. This means that every name
specification must be qualified, not only those supplied as input to Oracle GoldenGate
parameter syntax, but also names in a SQL procedure or query that is supplied as SQLEXEC
input, names in user exit input, and all other input supplied in the parameter file.

Oracle GoldenGate supports two-part and three-part object names, as appropriate for the
database.

Two-part Names
Most databases require only two-part names to be specified, in the following format:

owner.object

Chapter 8
Getting Started with the Oracle GoldenGate Process Interfaces

8-134

For example: HR.EMP
Where:

owner is a schema or database, depending on how the database defines a logical namespace
that contains database objects. object is a table or other supported database object.

The databases for which Oracle GoldenGate supports two-part names are as follows, shown
with their appropriate two-part naming convention:

• Db2 for i: schema.object and library/file(member)

• Db2 LUW: schema.object

• Db2 on z/OS: schema.object

• MySQL: database.object

• Oracle Database (non-CDB databases): schema.object

• SQL Server: schema.object

• Teradata: database.object

Three-part Names
Oracle GoldenGate supports three-part names for the following databases:

• Oracle container databases (CDB)

Three-part names are required to capture from a source Oracle container database because
one Extract group can capture from more than one container. Thus, the name of the container,
as well as the schema, must be specified for each object or objects in an Extract TABLE
statement.

Specify a three-part Oracle CDB name as follows:

container.schema.object

For example: PDBEAST.HR.EMP

Applying Data from Multiple Containers or Catalogs
To apply data captured from multiple source containers or catalogs to a target Oracle container
database, both three- and two-part names are required. In the MAP portion of the MAP
statement, each source object must be associated with a container or catalog, just as it was in
the TABLE statement. This enables you (and Replicat) to properly map data from multiple
source containers or catalogs to the appropriate target objects. In the TARGET portion of the MAP
statement, however, only two-part names are required. This is because Replicat can connect
to only one target container or catalog at a time, and schema.owner is a sufficient qualifier.
Multiple Replicat groups are required to support multiple target containers or catalogs. Specify
the target container or catalog with the TARGETDB parameter.

Specifying a Default Container or Catalog
You can use the SOURCECATALOG parameter to specify a default catalog for any subsequent
TABLE, MAP, (or Oracle SEQUENCE) specifications in the parameter file.

The following example shows the use of SOURCECATALOG to specify the default Oracle PDB
named pdbeast for region and jobs objects, and the default PDB named pdbwest for

Chapter 8
Getting Started with the Oracle GoldenGate Process Interfaces

8-135

appraisal objects. The objects in pdbeast are specified with a fully qualified three-part name,
which does not require a default catalog to be specified.

TABLE pdbeast.hr.emp*;
SOURCECATALOG pdbeast
TABLE region.country*;
TABLE jobs.desg*;
SOURCECATALOG pdbwest
TABLE appraisal.sal*;

Specifying Case-Sensitive Database Object Names
Oracle GoldenGate supports case-sensitive names. Follow these rules when specifying case-
sensitive objects.

• Specify object names from a case-sensitive database in the same case that is used to
store them in the host database. Keep in mind that, in some database types, different
levels of the database can have different case-sensitivity, such as case-sensitive schema
but case-insensitive table. If the database requires quotes to enforce case-sensitivity, put
quotes around each object that is case-sensitive in the qualified name.

Correct: TABLE "Sales"."ACCOUNT"
Incorrect: TABLE "Sales.ACCOUNT"

• Oracle GoldenGate converts case-insensitive names to the case in which they are stored
when required for mapping purposes.

Table 8-10 provides an overview of the support for case-sensitivity in object names, per
supported database. Refer to the database documentation for details on this type of support.

Table 8-10 Case Sensitivity of Object Names Per Database

Database Requires quotes to
enforce case-
sensitivity?

Unquoted object name Quoted object name

DB2 Yes. Differentiates
between case-sensitive
and case-insensitive by
use of quotes.

Case-insensitive, stores
in upper case

Case-sensitive, stores in
mixed case

MySQL

(Case-sensitive
database)

No

• Always case-
sensitive, stores in
mixed case

• The names of
columns, triggers,
and procedures are
case-insensitive

No effect No effect

Oracle Database Yes. Differentiates
between case-sensitive
and case-insensitive by
use of quotes.

Case-insensitive, stores
in upper case

Case-sensitive, stores in
mixed case

SQL Server

(Database created as
case-sensitive)

No

Always case-sensitive,
stores in mixed case

No effect No effect

Chapter 8
Getting Started with the Oracle GoldenGate Process Interfaces

8-136

Table 8-10 (Cont.) Case Sensitivity of Object Names Per Database

Database Requires quotes to
enforce case-
sensitivity?

Unquoted object name Quoted object name

SQL Server

(Database created as
case-insensitive)

No

Always case-insensitive,
stores in mixed case

No effect No effect

Teradata No

Always case-insensitive,
stores in mixed case

No effect No effect

Note:

For all supported databases, passwords are always treated as case-sensitive
regardless of whether the associated object name is quoted or unquoted.

Using Wildcards in Database Object Names
You can use wildcards for any part of a fully qualified object name, if supported for the specific
database. These name parts can be the following: the container, database, or catalog name,
the owner (schema or database name), and table or sequence name. For specifics on how
object names and wildcards are supported, see the Oracle GoldenGate installation and
configuration guide for that database.

Where appropriate, Oracle GoldenGate parameters permit the use of two wildcard types to
specify multiple objects in one statement:

• A question mark (?) replaces one character. For example in a schema that contains tables
named TABn, where n is from 0 to 9, a wildcard specification of HQ.TAB? returns HQ.TAB0,
HQ.TAB1, HQ.TAB2, and so on, up to HQ.TAB9, but no others. This wildcard is not supported
for the DB2 LUW database nor for DEFGEN. This wildcard can only be used to specify
source objects in a TABLE or MAP parameter. It cannot be used to specify target objects in
the TARGET clause of TABLE or MAP.

• An asterisk (*) represents any number of characters (including zero sequence). For
example, the specification of HQ.T* could return such objects as HQ.TOTAL, HQ.T123, and
HQ.T. This wildcard is valid for all database types throughout all Oracle GoldenGate
commands and parameters where a wildcard is allowed.

• In TABLE and MAP statements, you can combine the asterisk and question-mark wildcard
characters in source object names only.

Rules for Using Wildcards for Source Objects
For source objects, you can use the asterisk alone or with a partial name. For example, the
following source specifications are valid:

• TABLE HQ.*;
• TABLE PDB*.HQ.*;
• MAP HQ.T_*;

Chapter 8
Getting Started with the Oracle GoldenGate Process Interfaces

8-137

• MAP HQ.T_*, TARGET HQ.*;
The TABLE, MAP and SEQUENCE parameters take the case-sensitivity and locale of the database
into account for wildcard resolution. For databases that are created as case-sensitive or case-
insensitive, the wildcard matches the exact name and case. For example, if the database is
case-sensitive, SCHEMA.TABLE is matched to SCHEMA.TABLE, Schema.Table is matched to
Schema.Table, and so forth. If the database is case-insensitive, the matching is not case-
sensitive.

For databases that can have both case-sensitive and case-insensitive object names in the
same database instance, with the use of quote marks to enforce case-sensitivity, the
wildcarding works differently. When used alone for a source name in a TABLE statement, an
asterisk wildcard matches any character, whether or not the asterisk is within quotes. The
following statements produce the same results:

TABLE hr.*;
TABLE hr."*";

Similarly, a question mark wildcard used alone matches any single character, whether or not it
is within quotes. The following produce the same results:

TABLE hr.?;
TABLE hr."?";

If a question mark or asterisk wildcard is used with other characters, case-sensitivity is applied
to the non-wildcard characters, but the wildcard matches both case-sensitive and case-
insensitive names.

• The following TABLE statements capture any table name that begins with lower-case abc.
The quoted name case is preserved and a case-sensitive match is applied. It captures
table names that include "abcA" and "abca" because the wildcard matches both case-
sensitive and case-insensitive characters.

TABLE hr."abc*";
TABLE hr."abc?";

• The following TABLE statements capture any table name that begins with upper-case ABC,
because the partial name is case-insensitive (no quotes) and is stored in upper case by
this database. However, because the wildcard matches both case-sensitive and case-
insensitive characters, this example captures table names that include ABCA and "ABCa".

TABLE hr.abc*;
TABLE hr.abc?;

Rules for Using Wildcards for Target Objects
When using wildcards in the TARGET clause of a MAP statement, the target objects must exist in
the target database. (The exception is when DDL replication is being used, which allows new
schemas and their objects to be replicated as they are created.)

For target objects, only an asterisk can be used. If an asterisk wildcard is used with a partial
name, Replicat replaces the wildcard with the entire name of the corresponding source object.
Therefore, specifications such as the following are incorrect:

TABLE HQ.T_*, TARGET RPT.T_*;
MAP HQ.T_*, TARGET RPT.T_*;

The preceding mappings produce incorrect results, because the wildcard in the target
specification is replaced with T_TEST (the name of a source object), making the whole target
name T_T_TESTn. The following illustrates the incorrect results:

Chapter 8
Getting Started with the Oracle GoldenGate Process Interfaces

8-138

• HQ.T_TEST1 maps to RPT.T_T_TEST1
• HQ.T_TEST2 maps to RPT.T_T_TEST2
• (The same pattern applies to all other HQ.T_TESTn mappings.)

The following examples show the correct use of asterisk wildcards.

MAP HQ.T_*, TARGET RPT.*;

The preceding example produces the following correct results:

• HQ.T_TEST1 maps to RPT.T_TEST1
• HQ.T_TEST2 maps to RPT.T_TEST2
• (The same pattern applies to all other HQ.T_TESTn mappings.)

Fallback Name Mapping
Oracle GoldenGate has a fallback mapping mechanism in the event that a source name
cannot be mapped to a target name. If an exact match cannot be found on the target for a
case-sensitive source object, Replicat tries to map the source name to the same name in
upper or lower case (depending on the database type) on the target. Fallback name mapping
is controlled by the NAMEMATCH parameters. For more information, see Reference for Oracle
GoldenGate.

Wildcard Mapping from Pre-11.2.1 Trail Version
If Replicat is configured to read from a trail file that is a version prior to Oracle GoldenGate
11.2.1, the target mapping is made in the following manner to provide backward compatibility.

• Quoted object names are case-sensitive.

• Unquoted object names are case-insensitive.

The following maps a case-sensitive table name "abc" to target "abc". This only happens with
a trail that was written by pre-11.2.1 Extract for SQL Server databases with a case-sensitive
configuration. In this example, if the target database is Oracle Database or DB2 fallback name
mapping is performed if the target database does not contain case-sensitive "abc" but does
have table ABC.

MAP hq."abc", TARGET hq.*;

The following example maps a case-insensitive table name abc to target table name ABC.
Previous releases of Oracle GoldenGate stored case-insensitive object names to the trail in
upper case; thus the target table name is always upper cased. For case-insensitive name
conversion, the comparison is in uppercase, A to Z characters only, in US-ASCII without taking
locale into consideration.

MAP hq.abc, TARGET hq.*;

Asterisks or Question Marks as Literals in Object Names
If the name of an object itself includes an asterisk or a question mark, the entire name must be
escaped and placed within double quotes, as in the following example:

TABLE HT."\?ABC";

Chapter 8
Getting Started with the Oracle GoldenGate Process Interfaces

8-139

How Wildcards are Resolved
By default, when an object name is wildcarded, the resolution for that object occurs when the
first row from the source object is processed. (By contrast, when the name of an object is
stated explicitly, its resolution occurs at process startup.) To change the rules for resolving
wildcards, use the WILDCARDRESOLVE parameter. The default is DYNAMIC.

Excluding Objects from a Wildcard Specification
You can combine the use of wildcard object selection with explicit object exclusion by using the
EXCLUDEWILDCARDOBJECTSONLY, CATALOGEXCLUDE, SCHEMAEXCLUDE, MAPEXCLUDE, and
TABLEEXCLUDE parameters.

Differentiating Case-Sensitive Column Names from Literals
By default, Oracle GoldenGate follows SQL-92 rules for specifying column names and literals.
In Oracle GoldenGate parameter files, conversion functions, user exits, and commands, case-
sensitive column names must be enclosed within double quotes if the database requires
quotes around a name to support case-sensitivity. For example:

"columnA"

Case-sensitive column names in databases that do not require quotes to enforce case-
sensitivity must be specified as they are stored in the database. For example:

ColumnA

Literals must be enclosed within single quotes. In the following example, Product_Code is a
case-sensitive column name in an Oracle database, and the other strings are literals.

@CASE ("Product_Code", 'CAR', 'A car', 'TRUCK', 'A truck')

Performing Administrative Operations
This chapter contains instructions for making changes to applications, systems, and Oracle
GoldenGate while the replication environment is active and processing data changes.

Shutting Down the System
When shutting down a system for maintenance and other procedures that affect Oracle
GoldenGate, follow these steps to make certain that Extract has processed all of the
transaction log records. Otherwise, you might lose synchronization data.

1. Stop all application and database activity that generates transactions that are processed
by Oracle GoldenGate.

2. Run Admin Client and connect to the deployment using the CONNECT command.

3. Issue the SEND EXTRACT command with the LOGEND option. This command queries the
Extract process to determine whether or not it is finished processing the records in the data
source.

SEND EXTRACT group LOGEND

Chapter 8
Performing Administrative Operations

8-140

4. Continue issuing the command until it returns a YES status. At that point, all transaction log
data has been processed, and you can safely shut down Oracle GoldenGate and the
system.

Changing Database Attributes
This section addresses administrative operations that are performed on database tables and
structures.

Changing Database Metadata
This procedure is required to prevent Replicat errors when changing the following metadata of
the source database:

• Database character set

• National character set

• Locale

• Timezone

• Object name case-sensitivity

If these changes are made without performing this procedure, the following error occurs:

2013-05-26 20:10:09 ERROR OGG-05500 Detected database metadata mismatch
between current trail file ./dirdat/_p/v1000000003 and the previous sequence.
*DBTIMEZONE: [GMT]/[UTC].

This procedure stops Extract, and then creates a new trail file. The new database metadata is
included in this new file with the transactions that started after the change.

1. Stop transaction activity on the source database. Do not make the metadata change to the
database yet.

2. On the source system, issue the SEND EXTRACT command with the LOGEND option until it
shows there is no more redo data to capture.

SEND EXTRACT group LOGEND

3. Stop Extract.

STOP EXTRACT group

4. On each target system, issue the SEND REPLICAT command with the STATUS option until it
shows a status of "At EOF" to indicate that it finished processing all of the data in the trail.
This must be done on all target systems until all Replicat processes return "At EOF."

SEND REPLICAT group STATUS

5. Stop the data pumps and Replicat.

STOP EXTRACT group
STOP REPLICAT group

6. Change the database metadata.

Chapter 8
Performing Administrative Operations

8-141

7. On the source system, issue the ALTER EXTRACT command with the ETROLLOVER option for
the primary Extract to roll over the local trail to the start of a new file.

ALTER EXTRACT group, ETROLLOVER

8. Start Extract.

START EXTRACT group

9. Reposition the Replicat processes to start at the new trail sequence number.

ALTER REPLICAT group, EXTSEQNO seqno, EXTRBA RBA

10. Start the data pumps.

START EXTRACT group

11. Start the Replicat processes.

START REPLICAT group

Adding Tables to the Oracle GoldenGate Configuration
This procedure assumes that the Oracle GoldenGate DDL support feature is not in use, or is
not supported for, your database.

Note:

For Oracle and MySQL databases, you can enable the DDL support feature of Oracle
GoldenGate to automatically capture and apply the DDL that adds new tables,
instead of using this procedure. See the appropriate instructions for your database in
this documentation.

Review these steps before starting. The process varies slightly, depending on whether or not
the new tables satisfy wildcards in the TABLE parameter, and whether or not names or data
definitions must be mapped on the target.

Prerequisites for Adding Tables to the Oracle GoldenGate Configuration

• This procedure assumes that the source and target tables are either empty or contain
identical (already synchronized) data.

• You may be using the DBLOGIN and ADD TRANDATA commands. Before starting this
procedure, see Reference for Oracle GoldenGate for the proper usage of these commands
for your database.

To Add a Table to the Oracle GoldenGate Configuration

1. Stop user access to the new tables.

2. (If new tables do not satisfy a wildcard) If you are adding numerous tables that do not
satisfy a wildcard, make a copy of the Extract and Replicat parameter files, and then add
the new tables with TABLE and MAP statements. If you do not want to work with a copy, then
edit the original parameter files after you are prompted to stop each process.

Chapter 8
Performing Administrative Operations

8-142

3. (If new tables satisfy wildcards) In the Extract and Replicat parameter files, make certain
the WILDCARDRESOLVEparameter is not being used, unless it is set to the default of DYNAMIC.

4. (If new tables do not satisfy a wildcard) If the new tables do not satisfy a wildcard
definition, stop Extract.

STOP EXTRACT group

5. Add the new tables to the source and target databases.

6. If required for the source database, issue the ADD TRANDATA command in GGSCI for the
new tables. Before using ADD TRANDATA, issue the DBLOGIN command.

7. Depending on whether the source and target definitins are identical or different, use either
ASSUMETARGETDEFS or SOURCEDEFS in the Replicat parameter file. If SOURCEDEFS is needed,
you can specify the template with the DEF option of the MAP parameter.

8. To register the new source definitions or new MAP statements, stop and then start Replicat.

STOP REPLICAT group
START REPLICAT group

9. Start Extract, if applicable.

START EXTRACT group

10. Permit user access to the new tables.

Coordinating Table Attributes between Source and Target
Follow this procedure if you are changing an attribute of a source table that is in the Oracle
GoldenGate configuration, such as adding or changing columns or partitions, or changing
supplemental logging details (Oracle). It directs you how to make the same change to the
target table without incurring replication latency.

Note:

See also Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables.

Note:

This procedure assumes that the Oracle GoldenGate DDL support feature is not in
use, or is not supported for your database. For Oracle and MySQL databases, you
can enable the DDL support feature of Oracle GoldenGate to propagate the DDL
changes to the target, instead of using this procedure.

1. On the source and target systems, create a table, to be known as the marker table, that
can be used for the purpose of generating a marker that denotes a stopping point in the
transaction log. Just create two simple columns: one as a primary key and the other as a
regular column. For example:

Chapter 8
Performing Administrative Operations

8-143

CREATE TABLE marker
(
id int NOT NULL,
column varchar(25) NOT NULL,
PRIMARY KEY (id)
);

2. Insert a row into the marker table on both the source and target systems.

INSERT INTO marker VALUES (1, 1);
COMMIT;

3. On the source system, run GGSCI.

4. Open the Extract parameter file for editing.

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an existing
parameter file that is in a character set other than that of the local operating
system (such as one where the CHARSET option was used to specify a different
character set). View the parameter file from outside GGSCI if this is the case;
otherwise, the contents may become corrupted..

5. Add the marker table to the Extract parameter file in a TABLE statement.

TABLE marker;
6. Save and close the parameter file.

7. Add the marker table to the TABLE statement of the data pump, if one is being used.

8. Stop the Extract and data pump processes, and then restart them immediately to prevent
capture lag.

STOP EXTRACT group
START EXTRACT group
STOP EXTRACT pump_group
START EXTRACT pump_group

9. On the target system, run GGSCI.

10. Open the Replicat parameter file for editing.

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an existing
parameter file that is in a character set other than that of the local operating
system (such as one where the CHARSET option was used to specify a different
character set). View the parameter file from outside GGSCI if this is the case;
otherwise, the contents may become corrupted.

11. Add the marker table to the Replicat parameter file in a MAP statement, and use the
EVENTACTIONS parameter as shown to stop Replicat and ignore operations on the marker
table.

MAP marker, TARGET marker, EVENTACTIONS (STOP, IGNORE);
12. Save and close the parameter file.

Chapter 8
Performing Administrative Operations

8-144

13. Stop, and then immediately restart, the Replicat process.

STOP REPLICAT group
START REPLICAT group

14. When you are ready to change the table attributes for both source and target tables, stop
all user activity on them.

15. On the source system, perform an UPDATE operation to the marker table as the only
operation in the transaction.

UPDATE marker
SET column=2,
WHERE id=1;
COMMIT;

16. On the target system, issue the following command until it shows that Replicat is stopped
as a result of the EVENTACTIONS rule.

STATUS REPLICAT group
17. Perform the DDL on the source and target tables, but do not yet allow user activity.

18. Start Replicat.

START REPLICAT group
19. Allow user activity on the source and target tables.

Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables
To add a fixed length column to a table that is in reordered row format and contains one or
more variable length columns, one of the following will be required, depending on whether the
table can be quiesced or not.

If the Table can be Quiesced

1. Allow Extract to finish capturing transactions that happened prior to the quiesce.

2. Alter the table to add the column.

3. Reorganize the tablespace.

4. Restart Extract.

5. Allow table activity to resume.

If the Table cannot be Quiesced

1. Stop Extract.

2. Remove the table from the TABLE statement in the parameter file.

3. Restart Extract.

4. Alter the table to add the column.

5. Reorganize the tablespace.

6. Stop Extract.

7. Add the table back to the TABLE statement.

8. Resynchronize the source and target tables.

9. Start Extract.

10. Allow table activity to resume.

Chapter 8
Performing Administrative Operations

8-145

Dropping and Recreating a Source Table
Dropping and recreating a source table requires caution when performed while Oracle
GoldenGate is running.

1. Stop access to the table.

2. Allow Extract to process any remaining changes to that table from the transaction logs. To
determine when Extract is finished, use the INFO EXTRACT command in GGSCI.

INFO EXTRACT group
3. Stop Extract.

STOP EXTRACT group
4. Drop and recreate the table.

5. If supported for this database, run the ADD TRANDATA command in GGSCI for the table.

6. If the recreate action changed the source table's definitions so that they are different from
those of the target, run the DEFGEN utility for the source table to generate source
definitions, and then replace the old definitions with the new definitions in the existing
source definitions file on the target system.

7. Permit user access to the table.

Changing the Number of Oracle RAC Threads when Using Classic Capture
Valid for Extract in classic capture mode for Oracle. When Extract operates in classic capture
mode, the Extract group must be dropped and re-added any time the number of redo threads
in an Oracle RAC cluster changes. To drop and add an Extract group, perform the following
steps:

1. On the source and target systems, run GGSCI.

2. Stop Extract and Replicat.

STOP EXTRACT group
STOP REPLICAT group

3. On the source system, issue the following command to delete the primary Extract group
and the data pump.

DELETE EXTRACT group
DELETE EXTRACT pump_group

4. On the target system, issue the following command to delete the Replicat groups.

DELETE REPLICAT group
5. Using standard operating system commands, remove the local and remote trail files.

6. Add the primary Extract group again with the same name as before, specifying the new
number of RAC threads.

ADD EXTRACT group TRANLOG, THREADS n, BEGIN NOW
7. Add the local trail again with the same name as before.

ADD EXTTRAIL trail, EXTRACT group
8. Add the data pump Extract again, with the same name as before.

ADD EXTRACT group EXTTRAILSOURCE trail, BEGIN NOW

Chapter 8
Performing Administrative Operations

8-146

9. Add the remote trail again with the same name as before.

ADD RMTTRAIL trail, EXTRACT group
10. Add the Replicat group with the same name as before. Leave off any BEGIN options so that

processing begins at the start of the trail.

ADD REPLICAT group EXTTRAIL trail
11. Start all processes, using wildcards as appropriate. If the re-created processes are the only

ones in the source and target Oracle GoldenGate instances, you can use START ER *
instead of the following commands.

START EXTRACT group
START REPLICAT group

Changing the ORACLE_SID
You can change the ORACLE_SID and ORACLE_HOME without having to change environment
variables at the operating-system level. Depending on whether the change is for the source or
target database, set the following parameters in the Extract or Replicat parameter files. Then,
stop and restart Extract or Replicat for the parameters to take effect.

SETENV (ORACLE_HOME=location)
SETENV (ORACLE_SID='SID')

Purging Archive Logs
An Oracle archive log can be purged safely once Extract's read and write checkpoints are past
the end of that log. Extract does not write a transaction to a trail until it has been committed, so
Extract must keep track of all open transactions. To do so, Extract requires access to the
archive log where each open transaction started and all archive logs thereafter.

Extract reads the current archive log (the read checkpoint) for new transactions and also has a
checkpoint (the recovery checkpoint) in the oldest archive log for which there is an
uncommitted transaction.

Use the following command in GGSCI to determine Extract's checkpoint positions.

INFO EXTRACT group, SHOWCH

• The Input Checkpoint field shows where Extract began processing when it was started.

• The Recovery Checkpoint field shows the location of the oldest uncommitted transaction.

• The Next Checkpoint field shows the position in the redo log that Extract is reading.

• The Output Checkpoint field shows the position where Extract is writing.

You can write a shell script that purges all archive logs no longer needed by Extract by
capturing the sequence number listed under the Recovery Checkpoint field. All archive logs
prior to that one can be safely deleted.

Reorganizing a DB2 Table (z/OS Platform)
When using IBM's REORG utility to reorganize a DB2 table that has compressed tablespaces,
specify the KEEPDICTIONARY option if the table is being processed by Oracle GoldenGate. This
prevents the REORG utility from recreating the compression dictionary, which would cause log
data that was written prior to the change not to be decompressed and cause Extract to
terminate abnormally. As an alternative, ensure that all of the changes for the table have been
extracted by Oracle GoldenGate before doing the reorganization, or else truncate the table.

Chapter 8
Performing Administrative Operations

8-147

Adding Process Groups to an Active Configuration
This section describes how to add process groups.

Before You Start
These instructions are for adding process groups to a configuration that is already active. The
procedures should be performed by someone who has experience with Oracle GoldenGate.
They involve stopping processes for a short period of time and reconfiguring parameter files.
The person performing them must:

• Know the basic components of an Oracle GoldenGate configuration

• Understand Oracle GoldenGate parameters and commands

• Have access to GGSCI to create groups and parameter files

• Know which parameters to use in specific situations

Adding Another Extract Group to an Active Configuration
This procedure splits the workload of an existing Extract group into multiple Extract groups. It
also provides instructions for including a data pump group (if applicable) and a Replicat group
to propagate data that is captured by the new Extract group.

Steps are performed on the source and target systems.

1. Make certain the archived transaction logs are available in case the online logs recycle
before you complete this procedure.

2. Choose a name for the new Extract group.

3. Decide whether or not to use a data pump.

4. On the source system, run GGSCI.

5. Create a parameter file for the new Extract group.

EDIT PARAMS group

Note:

You can copy the original parameter file to use for this group, but make certain to
change the Extract group name and any other relevant parameters that apply to
this new group.

6. In the parameter file, include:

• EXTRACT parameter that specifies the new group.

• Appropriate database login parameters.

• Other appropriate Extract parameters for your configuration.

• EXTTRAIL parameter that points to a local trail (if you will be adding a data pump) or a
RMTTRAIL parameter (if you are not adding a data pump).

• RMTHOST parameter if this Extract will write directly to a remote trail.

Chapter 8
Performing Administrative Operations

8-148

• TABLE statement(s) (and TABLEEXCLUDE, if appropriate) for the tables that are to be
processed by the new group.

7. Save and close the file.

8. Edit the original Extract parameter file(s) to remove the TABLE statements for the tables
that are being moved to the new group or, if using wildcards, add the TABLEEXCLUDE
parameter to exclude them from the wildcard specification.

9. (Oracle) If you are using Extract in integrated mode, register the new Extract group with
the source database.

REGISTER EXTRACT group DATABASE [CONTAINER (container[, ...])]
10. Lock the tables that were moved to the new group, and record the timestamp for the point

when the locks were applied. For Oracle tables, you can run the following script, which
also releases the lock after it is finished.

-- temp_lock.sql
-- use this script to temporary lock a table in order to
-- get a timestamp

lock table &schema . &table_name in EXCLUSIVE mode;
SELECT TO_CHAR(sysdate,'MM/DD/YYYY HH24:MI:SS') "Date" FROM dual;
commit;

11. Unlock the table(s) if you did not use the script in the previous step.

12. Stop the old Extract group(s) and any existing data pumps.

STOP EXTRACT group
13. Add the new Extract group and configure it to start at the timestamp that you recorded.

ADD EXTRACT group, TRANLOG, BEGIN YYYY/MM/DD HH:MI:SS:CCCCCC
14. Add a trail for the new Extract group.

ADD {EXTTRAIL | RMTTRAIL} trail, EXTRACT group

Where:

• EXTTRAIL creates a local trail. Use this option if you will be creating a data pump for
use with the new Extract group. Specify the trail that is specified with EXTTRAIL in the
parameter file. After creating the trail, go To Link a Local Data Pump to the New
Extract Group .

• RMTTRAIL creates a remote trail. Use this option if a data pump will not be used.
Specify the trail that is specified with RMTTRAIL in the parameter file. After creating the
trail, go To Link a Remote Replicat to the New Data Pump

You can specify a relative or full path name. Examples:

ADD RMTTRAIL dirdat/rt, EXTRACT primary
ADD EXTTRAIL c:\ogg\dirdat\lt, EXTRACT primary

To Link a Local Data Pump to the New Extract Group

1. On the source system, add the data-pump Extract group using the EXTTRAIL trail as the
data source.

ADD EXTRACT pump, EXTTRAILSOURCE trail

For example:

ADD EXTRACT pump2, EXTTRAILSOURCE dirdat\lt

Chapter 8
Performing Administrative Operations

8-149

2. Create a parameter file for the data pump.

EDIT PARAMS pump
3. In the parameter file, include the appropriate Extract parameters for your configuration,

plus:

• RMTHOST parameter to point to the target system.

• RMTTRAIL parameter to point to a new remote trail (to be specified later).

• TABLE parameter(s) for the tables that are to be processed by this data pump.

4. In GGSCI on the source system, add a remote trail for the data-pump. Use the trail name
that you specified with RMTTRAIL in the parameter file.

ADD RMTTRAIL trail, EXTRACT pump

For example:

ADD RMTTRAIL dirdat/rt, EXTRACT pump2
5. Follow the steps given below.

To Link a Remote Replicat to the New Data Pump

1. In GGSCI on the target system, add a Replicat group to read the remote trail. For
EXTTRAIL, specify the same trail as in the RMTTRAIL Extract parameter and the ADD
RMTTRAIL command.

ADD REPLICAT group, EXTTRAIL trail

For example:

ADD REPLICAT rep2, EXTTRAIL /home/ggs/dirdat/rt
2. Create a parameter file for this Replicat group. Use MAP statement(s) to specify the same

tables that you specified for the new primary Extract and the data pump (if used).

3. On the source system, start the Extract groups and data pumps.

START EXTRACT group
START EXTRACT pump

4. On the target system, start the new Replicat group.

START REPLICAT group

Adding Another Data Pump to an Active Configuration
This procedure adds a data-pump Extract group to an active primary Extract group on the
source system. It makes these changes:

• The primary Extract will write to a local trail.

• The data pump will write to a new remote trail after the data in the old trail is applied to the
target.

• The old Replicat group will be replaced by a new one.

Steps are performed on the source and target systems.

1. On the source system, run GGSCI.

2. Add a local trail, using the name of the primary Extract group for group.

ADD EXTTRAIL trail, EXTRACT group

Chapter 8
Performing Administrative Operations

8-150

For example:

ADD EXTTRAIL dirdat\lt, EXTRACT primary
3. Open the parameter file of the primary Extract group, and replace the RMTTRAIL parameter

with an EXTTRAIL parameter that points to the local trail that you created.

Caution:

Do not use the VIEW PARAMS or EDIT PARAMS command to view or edit an existing
parameter file that is in a character set other than that of the local operating
system (such as one where the CHARSET option was used to specify a different
character set). View the parameter file from outside GGSCI if this is the case;
otherwise, the contents may become corrupted..

Example EXTTRAIL parameter:

EXTTRAIL dirdat\lt
4. Remove the RMTHOST parameter.

5. Save and close the file.

6. Add a new data-pump Extract group, using the trail that you specified in step 2 as the data
source.

ADD EXTRACT group, EXTTRAILSOURCE trail

For example:

ADD EXTRACT pump, EXTTRAILSOURCE dirdat\lt
7. Create a parameter file for the new data pump.

EDIT PARAMS group
8. In the parameter file, include the appropriate Extract parameters for your configuration,

plus:

• TABLE parameter(s) for the tables that are to be processed by this data pump.

• RMTHOST parameter to point to the target system.

• RMTTRAIL parameter to point to a new remote trail (to be created later).

9. In GGSCI on the source system, add a remote trail for the data-pump. Use the trail name
that is specified with RMTTRAIL in the data pump's parameter file, and specify the group
name of the data pump for EXTRACT.

ADD RMTTRAIL trail, EXTRACT group

For example:

ADD RMTTRAIL dirdat/rt, EXTRACT pump

Note:

This command binds a trail name to an Extract group but does not actually create
the trail. A trail file is created when processing starts.

Chapter 8
Performing Administrative Operations

8-151

10. On the target system, run GGSCI.

11. Add a new Replicat group and link it with the remote trail.

ADD REPLICAT group, EXTTRAIL trail

For example:

ADD REPLICAT rep, EXTTRAIL dirdat/rt
12. Create a parameter file for this Replicat group. You can copy the parameter file from the

original Replicat group, but make certain to change the REPLICAT parameter to the new
group name.

13. On the source system, stop the primary Extract group, then start it again so that the
parameter changes you made take effect.

STOP EXTRACT group
START EXTRACT group

14. On the source system, start the data pump.

START EXTRACT group
15. On the target system, issue the LAG REPLICAT command for the old Replicat, and continue

issuing it until it reports At EOF, no more records to process.
LAG REPLICAT group

16. Stop the old Replicat group.

STOP REPLICAT group
17. If using a checkpoint table for the old Replicat group, log into the database from GGSCI.

DBLOGIN [SOURCEDB datasource] [{, USERIDALIAS alias | USERID user [,options]]
18. Delete the old Replicat group.

DELETE REPLICAT group
19. Start the new Replicat group.

START REPLICAT group

Note:

Do not delete the old remote trail, just in case it is needed later on for a support
case or some other reason. You can move it to another location, if desired.

Adding Another Replicat Group to an Active Configuration
This procedure adds a new Replicat group to an existing Replicat group. The new Replicat
reads from the same trail as the original Replicat.

Multiple Replicat groups may be required when Replicat is configured in classic mode, for the
purpose of isolating transactions on certain tables or improving performance. Multiple Replicat
groups usually are not required if using coordinated Replicat, because you can divide the
workload among multiple processing threads within the same Replicat group. See Creating an
Online Replicat Group for more information about Replicat modes.

Steps are performed on the source and target systems.

Chapter 8
Performing Administrative Operations

8-152

1. Choose a name for the new group.

2. On the target system, run GGSCI.

3. Create a parameter file for the new Replicat group.

EDIT PARAMS group

Note:

You can copy the original parameter file to use for this group, but make certain to
change the Replicat group name and any other relevant parameters that apply to
this new group.

4. Add MAP statements (or edit copied ones) to specify the tables that you are adding or
moving to this group. If this group will be a coordinated Replicat group, include the
appropriate thread specifications.

5. Save and close the parameter file.

6. On the source system, run GGSCI.

7. Stop the Extract group.

STOP EXTRACT group
8. Issue the INFO REPLICAT command for the old Replicat group, and continue issuing it until

it reports At EOF, no more records to process.
INFO REPLICAT group

9. On the target system, edit the old Replicat parameter file to remove MAP statements that
specified the tables that you moved to the new Replicat group. Keep only the MAP
statements that this Replicat will continue to process.

10. Save and close the file.

11. Issue the INFO REPLICAT command for the old Replicat group, and continue issuing it until
it reports At EOF, no more records to process.
INFO REPLICAT group

12. Obtain the current Replicat checkpoint.

INFO REPLICAT group

13. Stop the old Replicat group. If you are stopping a coordinated Replicat, make certain the
stop is clean so that all threads stop at the same trail record.

STOP REPLICAT group
14. Alter the new Replicat to position at the same trail sequence number and RBA as the old

replicat group

ALTER REPLICAT group, EXTSEQNO seqno, EXTRBA rba

The seqno is the trail sequence number from the old group checkpoint and the rba is the
trail record RBA number from the old group checkpoint.

15. Add the new Replicat group. For EXTTRAIL, specify the trail that this Replicat group is to
read.

ADD REPLICAT group, EXTTRAIL trail

Chapter 8
Performing Administrative Operations

8-153

For example:

ADD REPLICAT rep, EXTTRAIL dirdat/rt
16. Issue the INFORM COMMAND to alter the Replicat to the trail file sequence number and RBA

displayed.

INFORM COMMAND
17. On the source system, start the Extract group.

START EXTRACT group
18. On the target system, start the old Replicat group.

START REPLICAT group
19. Start the new Replicat group.

START REPLICAT group

Changing the Size of Trail Files
You can change the size of trail files with the MEGABYTES option of either the ALTER EXTTRAIL or
ALTER RMTTRAIL command, depending on whether the trail is local or remote. To change the
file size, follow this procedure.

1. Issue one of the following commands, depending on the location of the trail, to view the
path name of the trail you want to alter and the name of the associated Extract group. Use
a wildcard to view all trails.

(Remote trail)

INFO RMTTRAIL *

(Local trail)

INFO EXTTRAIL *
2. Issue one of the following commands, depending on the location of the trail, to change the

file size.

(Remote trail)

ALTER RMTTRAIL trail, EXTRACT group, MEGABYTES n

(Local trail)

ALTER EXTTRAIL trail, EXTRACT group, MEGABYTES n
3. Issue the following command to cause Extract to switch to the next file in the trail.

SEND EXTRACT group, ROLLOVER

Switching from Classic Extract
Valid for Oracle only.

This procedure switches an existing Extract group from classic mode to Extract in
Microservices. For more information about Extract modes for an Oracle database, see
Choosing Capture and Apply Modes in Using Oracle GoldenGate for Oracle Database.

To support the transition to integrated mode, the transaction log that contains the start of the
oldest open transaction must be available on the source or downstream mining system,
depending on where Extract will be running.

Chapter 8
Performing Administrative Operations

8-154

To determine the oldest open transaction, issue the SEND EXTRACT command with the
SHOWTRANS option. You can use the FORCETRANS or SKIPTRANS options of this command to
manage specific open transactions, with the understanding that skipping a transaction may
cause data loss and forcing a transaction to commit to the trail may add unwanted data if the
transaction is rolled back by the user applications. Review these options in SEND EXTRACT
Reference for Oracle GoldenGatebefore using them.

GGSCI> SEND EXTRACT group, SHOWTRANS�
GGSCI> SEND EXTRACT group, { SKIPTRANS ID [THREAD n] [FORCE] |�
FORCETRANS ID [THREAD n] [FORCE] }�

To Switch Extract Modes

1. Back up the current Oracle GoldenGate working directories.

2. While the Oracle GoldenGate processes continue to run in their current configuration, so
that they keep up with current change activity, copy the Extract parameter file to a new
name.

3. Grant the appropriate privileges to the Extract user and perform the required configuration
steps to support your business applications in integrated capture mode. See Assigning
Credentials to Oracle GoldenGate in Using Oracle GoldenGate for Oracle Databasefor
information about configuring and running Extract in integrated mode.

4. Log into the mining database with one of the following commands, depending on where the
mining database is located.

DBLOGIN USERIDALIAS alias

MININGDBLOGIN USERIDALIAS alias

Where: alias specifies the alias of a user in the credential store who has the privileges
granted through the Oracle dbms_goldengate_auth.grant_admin_privilege procedure.

5. Register the Extract group with the mining database. Among other things, this creates the
logmining server.

REGISTER EXTRACT group DATABASE

6. Issue the following command to determine whether the upgrade command can be issued.
Transactions that started before the registration command must be written to the trail
before you can proceed with the upgrade. You may have to issue this command more than
once until it returns a message stating that Extract can be upgraded.

INFO EXTRACT group UPGRADE

7. Stop the Extract group.

STOP EXTRACT group

8. Switch the Extract group to integrated mode. See Oracle RAC options for this command in
STOP EXTRACTin Reference for Oracle GoldenGate, if applicable.

ALTER EXTRACT group UPGRADE INTEGRATED TRANLOG

9. Replace the old parameter file with the new one, keeping the same name.

Chapter 8
Performing Administrative Operations

8-155

10. Start the Extract group.

START EXTRACT group

Switching Extract from Integrated Mode to Classic Mode
Valid for Oracle only.

This procedure switches an existing Extract group from integrated mode to classic mode. For
more information about Extract modes for an Oracle database, see Choosing Capture and
Apply Modesin Using Oracle GoldenGate for Oracle Database.

To support the transition to classic mode, the transaction log that contains the start of the
oldest open transaction must be available on the source or downstream mining system. To
determine the oldest open transaction, issue the SEND EXTRACT command with the SHOWTRANS
option. You can use the FORCETRANS or SKIPTRANS options of this command to manage specific
open transactions, with the understanding that skipping a transaction may cause data loss and
forcing a transaction to commit to the trail may add unwanted data if the transaction is rolled
back by the user applications. Review these options in Oracle GoldenGate Parametersin
Reference for Oracle GoldenGatebefore using them.

GGSCI> SEND EXTRACT group, SHOWTRANS�
GGSCI> SEND EXTRACT group, { SKIPTRANS ID [THREAD n] [FORCE] |�
FORCETRANS ID [THREAD n] [FORCE] }�

To Switch Extract Modes

1. Back up the current Oracle GoldenGate working directories.

2. While the Oracle GoldenGate processes continue to run in their current configuration, so
that they keep up with current change activity, copy the Extract parameter file to a new
name.

3. Grant the appropriate privileges to the Extract user and perform the required configuration
steps to support your business applications in classic capture mode. See Assigning
Credentials to Oracle GoldenGatein Using Oracle GoldenGate for Oracle Databasefor
information about configuring and running Extract in classic mode.

4. Issue the following command to determine whether the downgrade command can be
issued. Transactions that started before the downgrade command is issued must be
written to the trail before you can proceed. You may have to issue this command more
than once until it returns a message stating that Extract can be downgraded.

INFO EXTRACT group DOWNGRADE
5. Stop the Extract group.

STOP EXTRACT group
6. Log into the mining database with one of the following commands, depending on where the

mining database is located.

DBLOGIN USERIDALIAS alias

MININGDBLOGIN USERIDALIAS alias

Where: alias is the alias of a user in the credential store who has the privileges granted
through the Oracle dbms_goldengate_auth.grant_admin_privilege procedure.

7. Switch the Extract group to classic mode.

Chapter 8
Performing Administrative Operations

8-156

ALTER EXTRACT group DOWNGRADE INTEGRATED TRANLOG

If on a RAC system, then the THREADS option has to be used with the downgrade command
to specify the number of RAC threads.

8. Unregister the Extract group from the mining database. Among other things, this removes
the logmining server.

UNREGISTER EXTRACT group DATABASE
9. Replace the old parameter file with the new one, keeping the same name.

10. Start the Extract group.

START EXTRACT group

Switching Replicat from Non-Integrated Mode to Integrated Mode
Valid for Oracle only. For more information about Replicat modes for an Oracle database, see
Choosing Capture and Apply Modes in Using Oracle GoldenGate for Oracle Database.

This procedure switches an existing Replicat group from non-integrated to integrated mode.

Note:

Do not configure the switch between Replicat modes to occur immediately after
Extract recovers from a failure or is repositioned to a different location in the
transaction log.

1. Back up the Oracle GoldenGate working directories.

2. While the Oracle GoldenGate processes continue to run in their current configuration, so
that they keep up with current change activity, copy the Replicat parameter file to a new
name.

3. Grant the appropriate privileges to the Replicat user and perform the required configuration
steps to support your business applications in integrated Replicat mode. See Assigning
Credentials to Oracle GoldenGate in Using Oracle GoldenGate for Oracle Databasefor
information about configuring and running Replicat in integrated mode.

4. Run the command line (Admin Client).

5. Stop Replicat.

STOP REPLICAT group

6. Log into the target database from GGSCI.

DBLOGIN USERIDALIAS alias

Where: alias is the alias of a user in the credential store who has the privileges granted
through the Oracle dbms_goldengate_auth.grant_admin_privilege procedure.

7. Alter Replicat to integrated mode.

ALTER REPLICAT group, INTEGRATED

Chapter 8
Performing Administrative Operations

8-157

8. Replace the old parameter file with the new one, keeping the same name.

9. Start Replicat.

START REPLICAT group

10. Verify that Replicat is in integrated mode.

INFO REPLICAT group

When you start Replicat in integrated mode for the first time, the START command registers the
Replicat group with the database and starts an inbound server to which Replicat attaches.
When you convert a Replicat group to integrated mode, the use of the Oracle GoldenGate
checkpoint table is discontinued and recovery information is maintained internally by the
inbound server and by the checkpoint file going forward. You can retain the checkpoint table in
the event that you decide to switch back to non-integrated mode.

Switching Replicat from Integrated Mode to Non-Integrated Mode
Valid for Oracle only. For more information about Replicat modes for an Oracle database, see
About Integrated Replicat in Using Oracle GoldenGate for Oracle Database.

You can, at any time, switch Replicat from integrated mode to non-integrated mode. This
switch automatically unregisters the Replicat group from the target database, which removes
the inbound server.

Note:

Do not configure the switch between Replicat modes to occur immediately after
Extract recovers from a failure or is repositioned to a different location in the
transaction log.

1. Back up the Oracle GoldenGate working directories.

2. While the Oracle GoldenGate processes continue to run in their current configuration, so
that they keep up with current change activity, copy the Replicat parameter file to a new
name.

3. Grant the appropriate privileges to the Replicat user and perform the required configuration
steps to support your business applications in non-integrated Replicat mode. See
Assigning Credentials to Oracle GoldenGatein Using Oracle GoldenGate for Oracle
Databasefor information about configuring and running Replicat in integrated mode.

4. Connect to the Oracle GoldenGate deployment as a system user.

5. Log into the target database from the command line.

DBLOGIN USERIDALIAS alias

Where: alias is the alias of a user in the credential store who has the privileges granted
through the Oracle dbms_goldengate_auth.grant_admin_privilege procedure.

6. Create a checkpoint table in the target database for the non-integrated Replicat to use to
store its recovery checkpoints. If a checkpoint table was previously associated with this

Chapter 8
Performing Administrative Operations

8-158

Replicat group and still exists, you can omit this step. See About Checkpoint Table for
more information about options for using a checkpoint table.

ADD CHECKPOINTTABLE [container.]table

7. Stop Replicat.

STOP REPLICAT group

8. Alter Replicat to non-integrated mode. For the CHECKPOINTTABLE argument, specify the
checkpoint table that you created for this Replicat group.

ALTER REPLICAT group, NONINTEGRATED, CHECKPOINTTABLE [container.]table

9. Replace the old parameter file with the new one, keeping the same name.

10. Start Replicat.

START REPLICAT group

After issuing this command, wait until there is some activity on the source database so that
the switchover can be completed. (Replicat waits until its internal high-water mark is
exceeded before removing the status of "switching from integrated mode.")

11. Verify that Replicat switched to non-integrated mode.

INFO REPLICAT group

Switching Replicat to Coordinated Mode
Valid for all database types supported by Oracle GoldenGate.

This procedure upgrades a regular Replicat configuration (non-coordinated) to a coordinated
configuration. This procedure assumes you are replacing a configuration that partitions data
across multiple Extract and Replicat processes with a configuration that uses one Extract and
one coordinated Replicat. The coordinated Replicat replaces the need for using multiple
Replicat processes. A coordinated Replicat requires only one trail, so there is no need for
multiple Extract processes or data pumps.

See Configuring Online Change Synchronization for more information about coordinated
Replicat.

Procedure Overview
This procedure makes use of the EVENTACTIONS parameter with a STOP action, which enables
all of the Replicat processes to stop at the same point in the trail. The EVENTACTIONS action is
triggered by a transaction that contains an INSERT to a dummy table. The INSERT causes each
process to finish processing everything up to, and including, the event transaction and then
stop cleanly. An additional event action of IGNORE is specified for Replicat to prevent the
multiple Replicat processes from attempting to insert the same record to the target. The result
of this procedure is that all processes stop at the same point in the data stream: after
completing the INSERT transaction to the dummy table.

After the processes stop, you move all of the TABLE statements to one primary Extract group.
You move the same TABLE statements to the data pump that reads the trail of the Extract group

Chapter 8
Performing Administrative Operations

8-159

that you retained. You move all of the MAP statements to a new coordinated Replicat group that
reads the remote trail that is associated with the retained data pump. Once all of the MAP
statements are in one parameter file, you edit them to add the thread specifications to support
a coordinated Replicat. (This can be done ahead of time.) Then you drop the Replicat group
and add it back in coordinated mode with the same name.

Performing the Switch to Coordinated Replicat

Note:

Do not create the Replicat group until prompted by these instructions.

1. Back up the current parameter files of all of the Extract groups, data pumps, and Replicat
groups. You will be editing them.

2. Create a working directory outside the Oracle GoldenGate directory. You will use this
directory to create and stage new versions of the parameter files. If needed, you can
create a working directory on the source and target systems.

3. In the working directory, create a parameter file for a coordinated Replicat. Copy the MAP
parameters from the active parameter files of all of the Replicat groups to this parameter
file, and then add the thread specifications and any other parameters that support your
required coordinated Replicat configuration

4. If using multiple primary Extract groups, select one to keep, and then save a copy of its
current parameter file to the working directory.

5. Copy all of the TABLE statements from the other Extract groups to the new parameter file of
the primary Extract that you are keeping.

6. In the working directory, save a copy of the parameter file of the data pump that is linked to
the primary Extract that you are keeping.

7. Copy all of the TABLE statements from the other data pumps to the copied parameter file of
the kept data pump.

8. In the source database, create a simple dummy table on which a simple INSERT statement
can be performed. For this procedure, the name schema.event is used.

9. Create the same table on the target system, to avoid the need for additional configuration
parameters.

10. Edit the active parameter files (not the copies) of all primary and data-pump Extract groups
to add the following EVENTACTIONS parameter to each one.

TABLE schema.event, EVENTACTIONS(STOP);
11. Edit the active parameter files (not the copies) of all of the Replicat groups to add the

following EVENTACTIONS parameter to each one.

MAP schema.event, TARGET schema.event, EVENTACTIONS(IGNORE, STOP);
12. Stop the Oracle GoldenGate processes gracefully in the following order:

• Stop all Replicat processes.

• Stop all data pumps.

• Stop all Extract processes.

Chapter 8
Performing Administrative Operations

8-160

13. Restart the Oracle GoldenGate processes in the following order so that the EVENTACTIONS
parameters take effect:

• Start all Extract processes.

• Start all data pumps.

• Start all Replicat processes.

14. On the source system, issue a transaction on the schema.event table that contains one
INSERT statement. Make certain to commit the transaction.

15. In GGSCI, issue the STATUS command for all of the primary Extract and data pump
processes on the source system, and issue the same command for all of the Replicat
processes on the target system, until the commands show that all of the processes are
STOPPED.

STATUS EXTRACT *
STATUS REPLICAT *

16. Replace the active parameter files of the primary Extract and data pump that you kept with
the new parameter files from the working directory.

17. Delete the unneeded Extract and data pump groups and their parameter files.

18. Log into the target database by using the DBLOGIN command.

19. Delete all of the Replicat groups and their active parameter files.

20. Copy or move the new coordinated Replicat parameter file from the working directory to
the Oracle GoldenGate directory.

21. In GGSCI, issue the INFO EXTRACT command for the data pump and make note of its write
checkpoint position in the output (remote) trail.

INFO EXTRACT pump, DETAIL
22. Add a new coordinated Replicat group with the following parameters.

ADD REPLICAT group, EXTTRAIL trail, EXTSEQNO sequence_number, EXTRBA rba,
COORDINATED MAXTHREADS number

Where:

• group is the name of the coordinated Replicat group. The name must match that of the
new parameter file created for this group.

• EXTTRAIL trail is the name of the trail that the data pump writes to.

• EXTSEQNO sequence_number is the sequence number of the trail as shown in the write
checkpoint returned by the INFO EXTRACT that you issued for the data pump.

• EXTRBA rba is the relative byte address in the trail as shown in the write checkpoint
returned by INFO EXTRACT. Together, these position Replicat to resume processing at
the correct point in the trial.

• MAXTHREADS number specifies the maximum number of threads allowed for this group.
This value should be appropriate for the number of threads that are specified in the
parameter file.

23. Start the primary Extract group.

24. Start the data pump group.

25. Start the coordinated Replicat group.

Chapter 8
Performing Administrative Operations

8-161

Administering a Coordinated Replicat Configuration
This section contains instructions for coordinating threads and re-partitioning the workload
among new or different threads. A coordinated Replicat should be stopped cleanly with the
STOP REPLICAT command before making modifications to the partition specifications in THREAD
or THREADRANGE clauses of the MAP statements. A clean stop ensures that all of the threads,
which may be at different locations in the trail at any given point, all finish their work and arrive
at a common trail location.

At startup, Replicat issues an error and abends if it detects that the last shutdown was not
clean and the partitioning in the MAP statements was changed to contain a different number of
threads (threads were added or removed). However, if the same threads are kept in the
parameter file but simply rearranged among different MAP statements, Replicat issues a
warning but does not abend. This can result in missing or duplicate records, because there is
no way to ensure continuity of the thread-to-workload allocations from the previous run.

The following is an example of this condition.

Following is the original partitioning scheme:

MAP source, target, THREADRANGE(1-5);
MAP source1, target1, THREADRANGE(6-10);

The following re-partitioning of the original scheme produces only a warning:

MAP source, target, THREADRANGE(1-4);
MAP source1, target1, THREADRANGE(5-10);

This section provides instructions for cleanly shutting down Replicat before performing a re-
partitioning, as well as instructions for attempting to recover Replicat continuity when a re-
partitioning is performed after an unclean shutdown.

The following tasks can be performed for a Replicat group in coordinated mode.

Performing a Planned Re-partitioning of the Workload
A planned re-partitioning is when Replicat is allowed to shut down cleanly before it is started
again with a new parameter file that contains updated thread partitioning. A clean shutdown
enables all of the threads to arrive at a common checkpoint position in the trail. At that point,
the new partitioning scheme can be applied in the next run. If Replicat does not shut down
cleanly in this procedure, for example if there is an apply error, use the procedure in
Synchronizing Threads After an Unclean Stop to re-synchronize the threads before you re-
partition them.

1. Run GGSCI.

2. Stop Replicat.

STOP REPLICAT group
3. Open the parameter file for editing.

EDIT PARAMS group
4. Make the required changes to the THREAD or THREADRANGE specifications in the MAP

statements.

5. Save and close the parameter file.

6. Start Replicat.

Chapter 8
Performing Administrative Operations

8-162

START REPLICAT group

Recovering Replicat After an Unplanned Re-partitioning
An unplanned re-partitioning is when Replicat is not allowed to shut down cleanly before it is
started again with a new parameter file that contains updated thread partitioning. In this
scenario, some or all of the old threads were not able to finish their work and arrive at a
common checkpoint. Upon restart, the coordinator thread attempts to apply the old partitioning
scheme, and Replicat abends with an error. You can recover the coordinated Replicat group
from this condition in one of the following ways:

• Use the auto-saved copy of the parameter file

• Reprocess from the low watermark with HANDLECOLLISIONS

Reprocessing From the Low Watermark with HANDLECOLLISIONS
In this procedure, you reposition all of the threads to the low watermark position. This is the
earliest checkpoint position performed among all of the threads. To state it another way, the low
watermark position is the last record processed by the slowest thread before the unclean stop.
When you start Replicat, the threads reprocess the operations that they were processing
before Replicat stopped, and the HANDLECOLLISIONS parameter handles any duplicate-record
and missing-record errors that occur as the faster threads reprocess operations that they
applied before the unclean stop.

1. Add the HANDLECOLLISIONS parameter to the Replicat parameter file. It is not necessary to
use any THREADS options.

2. Issue the INFO REPLICAT command for the Replicat group as a whole (the coordinator
thread). Make a record of the RBA of the checkpoint. This is the low watermark value. This
output also shows you the active thread IDs under the Group Name column. Make a record
of these, as well.

INFO REPLICAT group

GGSCI (slc03jgo) 3> info ra detailREPLICAT RA Last Started 2013-05-01
14:15 Status ABENDEDCOORDINATED Coordinator
MAXTHREADS 15Checkpoint Lag 00:00:00 (updated 00:00:07 ago)Process
ID 11445Log Read Checkpoint File ./dirdat/withMaxTransOp/
bg000000001 2013-05-02 07:49:45.975662 RBA 44704Lowest Log BSN
value: (requires database login)Active Threads: ID Group Name PID Status Lag at
Chkpt Time Since Chkpt1 RA001 11454 ABENDED 00:00:00 00:00:01 2
RA002 11455 ABENDED 00:00:00 00:00:04 3 RA003 11456 ABENDED
00:00:00 00:00:01 5 RA005 11457 ABENDED 00:00:00 00:00:02 6
RA006 11458 ABENDED 00:00:00 00:00:04 7 RA007 11459 ABENDED
00:00:00 00:00:04

3. Issue the INFO REPLICAT command for each processing thread ID and record the RBA
position of each thread. Make a note of the highest RBA. This is the high watermark of the
Replicat group.

INFO REPLICAT threadID

 info ra002
REPLICAT RA002 Last Started 2013-05-01 14:15 Status
ABENDEDCOORDINATED Replicat Thread Thread 2Checkpoint
Lag 00:00:00 (updated 00:00:06 ago)Process ID 11455
Log Read Checkpoint File ./dirdat/withMaxTransOp/bg000000001
2013-05-02 07:49:15.837271 RBA 45603

Chapter 8
Performing Administrative Operations

8-163

4. Issue the ALTER REPLICAT command for the coordinator thread (Replicat as a whole,
without any thread ID) and position to the low watermark RBA that you recorded.

ALTER REPLICAT group EXTRBA low_watermark_rba
5. Start Replicat.

START REPLICAT group
6. Issue the basic INFO REPLICAT command until it shows an RBA that is higher than the high

watermark that you recorded. HANDLECOLLISIONS handles any collisions that occur due to
previously applied transactions.

INFO REPLICAT group
7. Stop Replicat.

STOP REPLICAT group
8. Remove or comment out the HANDLECOLLISIONS parameter.

9. Start Replicat.

START REPLICAT group

Using the Auto-Saved Parameter File
A copy of the original parameter file is saved whenever the parameter file is edited before
shutting down Replicat cleanly. You can revert to this parameter file and then resynchronize the
threads so that they all catch up to the thread that had the most recent checkpoint position.
Once the threads are synchronized, you can switch to the new parameter file and then start
Replicat.

1. Save the new parameter file to a different name, and then rename the saved original
parameter file to the correct name (same as the group name). The saved parameter file
has a .backup suffix and is stored in the dirprm subdirectory of the Oracle GoldenGate
installation directory.

2. Issue the following command to synchronize the Replicat threads to the maximum
checkpoint position. This command automatically starts Replicat and executes the threads
until they reach the maximum checkpoint position.

SYNCHRONIZE REPLICAT group
3. Issue the STATUS REPLICAT command until it shows that Replicat stopped cleanly.

STATUS REPLICAT group
4. Save the original parameter file to a different name, and then rename the new parameter

file to the group name.

5. Start Replicat.

START REPLICAT group

Synchronizing Threads After an Unclean Stop
When a Replicat group stops in an unclean manner, not all of the threads will reach a common
checkpoint position in the trail. Unclean stops can be caused by issuing STOP REPLICAT with
the ! option, issuing the KILL REPLICAT command, or by transient errors related to Replicat,
the database, or other local processes. You can restore the threads to the same position in the
trail after an unclean stop and then start Replicat again from the correct checkpoint position.

Chapter 8
Performing Administrative Operations

8-164

In this procedure, the restore position is the high watermark. This is the most recent checkpoint
position performed among all of the threads (the last record processed by the fastest thread
before the unclean stop). Before starting Replicat, you can make changes to the parameter file,
such as to repartition the workload among different or new threads. The repartitioning takes
effect in a seamless manner after you start Replicat, because the threads can start from a
synchronized state.

1. Run GGSCI.

2. Synchronize the Replicat threads to the maximum checkpoint position. Replicat performs
the synchronization and then stops.

SYNCHRONIZE REPLICAT group
3. (Optional) To re-partition the workload among different or new threads, open the parameter

file for editing and then make the required changes to the THREAD or THREADRANGE
specifications in the MAP statements.

EDIT PARAMS group
4. Save and close the parameter file.

5. Start Replicat.

START REPLICAT group

Restarting a Primary Extract after System Failure or Corruption
This procedure enables Oracle GoldenGate to recover from certain conditions, such as a file
system corruption or a system failure, that corrupt the Extract checkpoint file, trail, or both, and
which prevent Extract from being able to start. It enables you to establish a safe starting point
in the transaction log for the primary Extract after the system has been restored. It also shows
you how to reposition downstream data pumps and Replicat to read from the correct Extract
write position in the trails, and to filter out any transactions that Replicat already applied to the
target.

Details of This Procedure
Extract passes a log begin sequence number, or LOGBSN, to the trail files. The BSN is the
native database sequence number that identifies the oldest uncommitted transaction that is
held in Extract memory. For example, the BSN in an Oracle installation would be the Oracle
system change number (SCN). Each trail file contains the lowest LOGBSN value for all of the
transactions in that trail file. Once you know the LOGBSN value, you can reposition Extract at the
correct read position to ensure that the appropriate transactions are re-generated to the trail
and propagated to Replicat.

Note:

In an Oracle RAC environment, the lowest SCN of all of the threads is transmitted to
Replicat. Transactions that may already have been committed by Replicat are
handled as duplicates at startup. However, any thread that has been idle past a
certain threshold will not be considered for the BSN value, to avoid Extract having to
read too far back in the log stream when restarted.

Chapter 8
Performing Administrative Operations

8-165

The bounded recovery checkpoint is not taken into account when calculating the LOGBSN. The
failure that affected the Extract checkpoint file may also involve a loss of the persisted bounded
recovery data files and bounded recovery checkpoint information.

Performing the Recovery
Follow these steps in the order shown to recover the Oracle GoldenGate processes.

1. In GGSCI on the target system, issue the DBLOGIN command.

DBLOGIN {USERID Replicat_user | USERIDALIAS alias_of_Replicat_user}
2. On the target, obtain the LOGBSN value by issuing the INFO REPLICAT command with the

DETAIL option.

INFO REPLICAT group, DETAIL

The BSN is included in the output as a line similar to the following:

Current Log BSN value: 1151679
3. (Classic capture mode only. Skip if using integrated capture mode.) Query the source

database to find the sequence number of the transaction log file that contains the value of
the LOGBSN that you identified in the previous step. This example assumes 1855798 is the
LOGBSN value and shows that the sequence number of the transaction log that contains that
LOGBSN value is 163.

SQL> select name, thread#, sequence# from v$archived_log
where 1855798 between first_change# and next_change#;

NAME THREAD# SEQUENCE#
------------------------------------- ---------- ----------/oracle/dbs/
arch1_163_800262442.dbf 1 163

4. Issue the following commands in GGSCI to reposition the primary Extract to the LOGBSN
start position.

• (Classic capture mode)

ALTER EXTRACT group EXTSEQNO 163
ALTER EXTRACT group EXTRBA 0
ALTER EXTRACT group ETROLLOVER

• (Integrated capture mode)

ALTER EXTRACT group SCN 1151679
ALTER EXTRACT group ETROLLOVER

Note:

There is a limit on how far back Extract can go in the transaction stream, when in
integrated mode. If the required SCN is no longer available, the ALTER EXTRACT
command fails.

5. Issue the following command in GGSCI to the primary Extract to view the new sequence
number of the Extract Write Checkpoint. This command shows the trail and RBA where
Extract will begin to write new data. Because a rollover was issued, the start point is at the
beginning (RBA 0) of the new trail file, in this example file number 7.

Chapter 8
Performing Administrative Operations

8-166

INFO EXTRACT group SHOWCH
Sequence #: 7
RBA: 0

6. Issue the following command in GGSCI to reposition the downstream data pump and start
a new output trail file.

ALTER EXTRACT pump EXTSEQNO 7
ALTER EXTRACT pump EXTRBA 0
ALTER EXTRACT pump ETROLLOVER

7. Issue the following command in GGSCI to the data pump Extract to view the new
sequence number of the data pump Write Checkpoint, in this example trail number 9.

INFO EXTRACT pump SHOWCH
Sequence #: 9
RBA: 0

8. Reposition Replicat to start reading the trail at the new Write Checkpoint of the data pump.

ALTER REPLICAT group EXTSEQNO 9
ALTER REPLICAT group EXTRBA 0

9. Start the primary Extract and the data pump.

START EXTRACT group
START REPLICAT group

10. Issue the following command in GGSCI to start Replicat. If Replicat is operating in
integrated mode (Oracle targets only), you do not need the FILTERDUPTRANSACTIONS
option. Integrated Replicat handles duplicate transactions transparently.

START REPLICAT group[, FILTERDUPTRANSACTIONS]

Note:

The LOGBSN gives you the information needed to set Extract back in time to reprocess
transactions. Some filtering by Replicat is necessary because Extract will likely re-
generate a small amount of data that was already applied by Replicat.
FILTERDUPTRANSACTIONS directs Replicat to find and filter duplicates at the beginning
of the run.

Using Automatic Trail File Recovery
The trail recovery process has the ability to, in some cases, automatically rebuild trail files that
are corrupt or missing by Oracle GoldenGate. When an Extract pump restarts, if the last trail
that the pump was writing to is missing, then the Extract pump attempts to rebuild the missing
trail file on the target system. This is done automatically using the checkpoint information for
the process and the last valid trail file. The Replicat process automatically skips over any
duplicate data in the trail files that have been rebuilt by the new trail recovery feature. This
recovery will occur as long as there is at least 1 target trail from this sequence and that the trail
files still exist on the source where the Extract pump is reading them.

This process can also be used to rebuild corrupt or invalid trail files on the target. Simply delete
the corrupt trail file, and any trail files after that, and then restart the Extract pump. With this
new behavior, Oracle recommends that PURGEOLDEXTRACTS MINKEEP rules are properly
configured to ensure that there are trail files from the source that can be used to rebuild the
target environment. This feature requires that Oracle GoldenGate release 12.1.2.1.8 or greater

Chapter 8
Performing Administrative Operations

8-167

is used on both the source and target servers. Do not attempt to start the Replicat with
NOFILTERDUPTRANSACTIONS because it will override Replicat's default behavior and may cause
transactions that have already been applied to the target database to be applied again.

Customizing Oracle GoldenGate Processing
This chapter describes how to customize Oracle GoldenGate processing.

Executing Commands, Stored Procedures, and Queries with SQLEXEC
The SQLEXEC parameter of Oracle GoldenGate enables Extract and Replicat to communicate
with the database to do the following:

• Execute a database command, stored procedure, or SQL query to perform a database
function, return results (SELECT statements) or perform DML (INSERT, UPDATE, DELETE)
operations.

• Retrieve output parameters from a procedure for input to a FILTER or COLMAP clause.

Note:

SQLEXEC provides minimal globalization support. To use SQLEXEC in the capture
parameter file of the source capture, make sure that the client character set in the
source .prm file is either the same or a superset of the source database character
set.

Performing Processing with SQLEXEC
SQLEXEC extends the functionality of both Oracle GoldenGate and the database by allowing
Oracle GoldenGate to use the native SQL of the database to execute custom processing
instructions.

• Stored procedures and queries can be used to select or insert data into the database, to
aggregate data, to denormalize or normalize data, or to perform any other function that
requires database operations as input. Oracle GoldenGate supports stored procedures
that accept input and those that produce output.

• Database commands can be issued to perform database functions required to facilitate
Oracle GoldenGate processing, such as disabling triggers on target tables and then
enabling them again.

Using SQLEXEC
The SQLEXEC parameter can be used as follows:

• as a clause of a TABLE or MAP statement

• as a standalone parameter at the root level of the Extract or Replicat parameter file.

Executing SQLEXEC within a TABLE or MAP Statement
When used within a TABLE or MAP statement, SQLEXEC can pass and accept parameters. It can
be used for procedures and queries, but not for database commands.

Chapter 8
Customizing Oracle GoldenGate Processing

8-168

Syntax

This syntax executes a procedure within a TABLE or MAP statement.

SQLEXEC (SPNAME sp_name,
[ID logical_name,]
{PARAMS param_spec | NOPARAMS})

Argument Description

SPNAME Required keyword that begins a clause to execute a stored procedure.

sp_name Specifies the name of the stored procedure to execute.

ID logical_name Defines a logical name for the procedure. Use this option to execute
the procedure multiple times within a TABLE or MAP statement. Not
required when executing a procedure only once.

PARAMS param_spec |
NOPARAMS

Specifies whether or not the procedure accepts parameters. One of
these options must be used (see Using Input and Output Parameters).

Syntax

This syntax executes a query within a TABLE or MAP statement.

SQLEXEC (ID logical_name, QUERY ' query ',
{PARAMS param_spec | NOPARAMS})

Argument Description

ID logical_name Defines a logical name for the query. A logical name is required in
order to extract values from the query results. ID logical_name
references the column values returned by the query.

QUERY ' sql_query ' Specifies the SQL query syntax to execute against the database. It can
either return results with a SELECT statement or change the database
with an INSERT, UPDATE, or DELETE statement. The query must be
within single quotes and must be contained all on one line. Specify
case-sensitive object names the way they are stored in the database,
such as within quotes for Oracle case-sensitive names.

SQLEXEC 'SELECT "col1" from "schema"."table"'

PARAMS param_spec |
NOPARAMS

Defines whether or not the query accepts parameters. One of these
options must be used (see Using Input and Output Parameters).

If you want to execute a query on a table residing on a different database than the current
database, then the different database name has to be specified with the table. The delimiter
between the database name and the tablename should be a colon (:). The following are some
example use cases:

select col1 from db1:tab1
select col2 from db2:schema2.tab2
select col3 from tab3
select col3 from schema4.tab4

Chapter 8
Customizing Oracle GoldenGate Processing

8-169

Executing SQLEXEC as a Standalone Statement
When used as a standalone parameter statement in the Extract or Replicat parameter file,
SQLEXEC can execute a stored procedure, query, or database command. As such, it need not
be tied to any specific table and can be used to perform general SQL operations. For example,
if the Oracle GoldenGate database user account is configured to time-out when idle, you could
use SQLEXEC to execute a query at a defined interval, so that Oracle GoldenGate does not
appear idle. As another example, you could use SQLEXEC to issue an essential database
command, such as to disable target triggers. A standalone SQLEXEC statement cannot accept
input parameters or return output parameters.

Parameter syntax Purpose

SQLEXEC 'call procedure_name()' Execute a stored procedure

SQLEXEC 'sql_query' Execute a query

SQLEXEC 'database_command' Execute a database command

Argument Description

'call
procedure_name ()'

Specifies the name of a stored procedure to execute. The statement must
be enclosed within single quotes.

Example:

SQLEXEC 'call prc_job_count ()'

'sql_query' Specifies the name of a query to execute. The query must be contained all
on one line and enclosed within single quotes.

Specify case-sensitive object names the way they are stored in the
database, such as within double quotes for Oracle object names that are
case-sensitive.

SQLEXEC 'SELECT "col1" from "schema"."table"'

'database_command' Specifies a database command to execute. Must be a valid command for
the database.

SQLEXEC provides options to control processing behavior, memory usage, and error handling.
For more information, see Reference for Oracle GoldenGate.

Using Input and Output Parameters
Oracle GoldenGate provides options for passing input and output values to and from a
procedure or query that is executed with SQLEXEC within a TABLE or MAP statement.

Passing Values to Input Parameters
To pass data values to input parameters within a stored procedure or query, use the PARAMS
option of SQLEXEC.

Chapter 8
Customizing Oracle GoldenGate Processing

8-170

Syntax

PARAMS ([OPTIONAL | REQUIRED] param = {source_column | function}
[, ...])

Where:

• OPTIONAL indicates that a parameter value is not required for the SQL to execute. If a
required source column is missing from the database operation, or if a column-conversion
function cannot complete successfully because a source column is missing, the SQL
executes anyway.

• REQUIRED indicates that a parameter value must be present. If the parameter value is not
present, the SQL will not be executed.

• param is one of the following:

– For a stored procedure, it is the name of any parameter in the procedure that can
accept input, such as a column in a lookup table.

– For an Oracle query, it is the name of any input parameter in the query excluding the
leading colon. For example, :param1 would be specified as param1 in the PARAMS
clause.

– For a non-Oracle query, it is pn, where n is the number of the parameter within the
statement, starting from 1. For example, in a query with two parameters, the param
entries are p1 and p2.

• {source_column | function} is the column or Oracle GoldenGate conversion function that
provides input to the procedure.

Passing Values to Output Parameters
To pass values from a stored procedure or query as input to a FILTER or COLMAP clause, use
the following syntax:

Syntax

{procedure_name | logical_name}.parameter

Where:

• procedure_name is the actual name of the stored procedure. Use this argument only if
executing a procedure one time during the life of the current Oracle GoldenGate process.

• logical_name is the logical name specified with the ID option of SQLEXEC. Use this
argument if executing a query or a stored procedure that will be executed multiple times.

• parameter is either the name of the parameter or RETURN_VALUE, if extracting returned
values.

SQLEXEC Examples Using Parameters
These examples use stored procedures and queries with input and output parameters.

Chapter 8
Customizing Oracle GoldenGate Processing

8-171

Note:

Additional SQLEXEC options are available for use when a procedure or query includes
parametes. See the full SQLEXEC documentation in Reference for Oracle GoldenGate.

Example 8-27 SQLEXEC with a Stored Procedure

This example uses SQLEXEC to run a stored procedure named LOOKUP that performs a query to
return a description based on a code. It then maps the results to a target column named
NEWACCT_VAL.

CREATE OR REPLACE PROCEDURE LOOKUP
(CODE_PARAM IN VARCHAR2, DESC_PARAM OUT VARCHAR2)
BEGIN
 SELECT DESC_COL
 INTO DESC_PARAM
 FROM LOOKUP_TABLE
 WHERE CODE_COL = CODE_PARAM
END;

Contents of MAP statement:

MAP sales.account, TARGET sales.newacct, &
 SQLEXEC (SPNAME lookup, PARAMS (code_param = account_code)), &
 COLMAP (newacct_id = account_id, newacct_val = lookup.desc_param);

SQLEXEC executes the LOOKUP stored procedure. Within the SQLEXEC clause, the PARAMS
(code_param = account_code) statement identifies code_param as the procedure parameter to
accept input from the account_code column in the account table.

Replicat executes the LOOKUP stored procedure prior to executing the column map, so that the
COLMAP clause can extract and map the results to the newacct_val column.

Example 8-28 SQLEXEC with a Query

This example implements the same logic as used in the previous example, but it executes a
SQL query instead of a stored procedure and uses the @GETVAL function in the column map.

A query must be on one line. To split an Oracle GoldenGate parameter statement into multiple
lines, an ampersand (&) line terminator is required.

Query for an Oracle database:

MAP sales.account, TARGET sales.newacct, &
SQLEXEC (ID lookup, &
QUERY 'select desc_col desc_param from lookup_table where code_col = :code_param', &
PARAMS (code_param = account_code)), &
COLMAP (newacct_id = account_id, newacct_val = &
@getval (lookup.desc_param));

Query for a non-Oracle database:

MAP sales.account, TARGET sales.newacct, &
SQLEXEC (ID lookup, &
QUERY 'select desc_col desc_param from lookup_table where code_col = ?', &
PARAMS (p1 = account_code)), &
COLMAP (newacct_id = account_id, newacct_val = &
@getval (lookup.desc_param));

Chapter 8
Customizing Oracle GoldenGate Processing

8-172

Handling SQLEXEC Errors
There are two types of error conditions to consider when implementing SQLEXEC:

• The column map requires a column that is missing from the source database operation.
This can occur for an update operation if the database only logs the values of columns that
changed, rather than all of the column values. By default, when a required column is
missing, or when an Oracle GoldenGate column-conversion function results in a "column
missing" condition, the stored procedure does not execute. Subsequent attempts to extract
an output parameter from the stored procedure results in a "column missing condition" in
the COLMAP or FILTER clause.

• The database generates an error.

Handling Missing Column Values
Use the @COLTEST function to test the results of the parameter that was passed, and then map
an alternative value for the column to compensate for missing values, if desired. Otherwise, to
ensure that column values are available, you can use the FETCHCOLS or FETCHCOLSEXCEPT
option of the TABLE parameter to fetch the values from the database if they are not present in
the log. As an alternative to fetching columns, you can enable supplemental logging for those
columns.

Handling Database Errors
Use the ERROR option in the SQLEXEC clause to direct Oracle GoldenGate to respond in one of
the following ways:

Table 8-11 ERROR Options

Action Description

IGNORE Causes Oracle GoldenGate to ignore all errors associated with the stored procedure or
query and continue processing. Any resulting parameter extraction results in a "column
missing" condition. This is the default.

REPORT Ensures that all errors associated with the stored procedure or query are reported to
the discard file. The report is useful for tracing the cause of the error. It includes both
an error description and the value of the parameters passed to and from the procedure
or query. Oracle GoldenGate continues processing after reporting the error.

RAISE Handles errors according to rules set by a REPERROR parameter specified in the
Replicat parameter file. Oracle GoldenGate continues processing other stored
procedures or queries associated with the current TABLE or MAP statement before
processing the error.

FINAL Performs in a similar way to RAISE except that when an error associated with a
procedure or query is encountered, any remaining stored procedures and queries are
bypassed. Error processing is called immediately after the error.

FATAL Causes Oracle GoldenGate to abend immediately upon encountering an error
associated with a procedure or query.

Additional SQLEXEC Guidelines
Observe the following SQLEXEC guidelines:

Chapter 8
Customizing Oracle GoldenGate Processing

8-173

• Up to 20 stored procedures or queries can be executed per TABLE or MAP entry. They
execute in the order listed in the parameter statement.

• A database login by the Oracle GoldenGate user must precede the SQLEXEC clause. Use
the SOURCEDB and/or USERID or USERIDALIAS parameter in the Extract parameter file or the
TARGETDB and/or USERID or USERIDALIAS parameter in the Replicat parameter file, as
needed for the database type and configured authentication method.

• The SQL is executed by the Oracle GoldenGate user. This user must have the privilege to
execute stored procedures and call RDBM-supplied procedures.

• Database operations within a stored procedure or query are committed in same context as
the original transaction.

• Do not use SQLEXEC to update the value of a primary key column. If SQLEXEC is used to
update the value of a key column, then the Replicat process will not be able to perform a
subsequent update or delete operation, because the original key value will be unavailable.
If a key value must be changed, you can map the original key value to another column and
then specify that column with the KEYCOLS option of the TABLE or MAP parameter.

• For DB2, Oracle GoldenGate uses the ODBC SQLExecDirect function to execute a SQL
statement dynamically. This means that the connected database server must be able to
prepare the statement dynamically. ODBC prepares the SQL statement every time it is
executed (at the requested interval). Typically, this does not present a problem to Oracle
GoldenGate users. See the IBM DB2 documentation for more information.

• Do not use SQLEXEC for objects being processing by a data-pump Extract in pass-through
mode.

• All object names in a SQLEXEC statement must be fully qualified with their two-part or three-
part names, as appropriate for the database.

• All objects that are affected by a SQLEXEC stored procedure or query must exist with the
correct structures prior to the execution of the SQL. Consequently, DDL on these objects
that affects structure (such as CREATE or ALTER) must happen before the SQLEXEC executes.

• All objects affected by a standalone SQLEXEC statement must exist before the Oracle
GoldenGate processes start. Because of this, DDL support must be disabled for those
objects; otherwise, DDL operations could change the structure or delete the object before
the SQLEXEC procedure or query executes on it.

Using Oracle GoldenGate Macros to Simplify and Automate Work
You can use Oracle GoldenGate macros in parameter files to configure and reuse parameters,
commands, and conversion functions. reducing the amount of text you must enter to do
common tasks. A macro is a built-in automation tool that enables you to call a stored set of
processing steps from within the Oracle GoldenGate parameter file. A macro can consist of a
simple set of frequently used parameter statements to a complex series of parameter
substitutions, calculations, or conversions. You can call other macros from a macro. You can
store commonly used macros in a library, and then call the library rather than call the macros
individually.

Oracle GoldenGate macros work with the following parameter files:

• DEFGEN

• Extract

• Replicat

Chapter 8
Customizing Oracle GoldenGate Processing

8-174

Do not use macros to manipulate data for tables that are being processed by a data-pump
Extract in pass-through mode.

There are two steps to using macros:

Defining a Macro

Calling a Macro

Defining a Macro
To define an Oracle GoldenGate macro, use the MACRO parameter in the parameter file. MACRO
defines any input parameters that are needed and it defines the work that the macro performs.

Syntax

MACRO #macro_name
PARAMS (#p1, #p2 [, ...])
BEGIN
macro_body
END;

Table 8-12 Macro Definition Arguments

Argument Description

MACRO Required. Indicates the start of an Oracle GoldenGate macro definition.

#macro_name The name of the macro. Macro and parameter names must begin with
a macro character. The default macro character is the pound (#)
character, as in #macro1 and #param1.

A macro or parameter name can be one word consisting of letters and
numbers, or both. Special characters, such as the underscore
character (_) or hyphen (-), can be used. Some examples of macro
names are: #mymacro, #macro1, #macro_1, #macro-1, #macro$.
Some examples of parameter names are #sourcecol, #s, #col1, and
#col_1.

To avoid parsing errors, the macro character cannot be used as the first
character of a macro name. For example, ##macro is invalid. If
needed, you can change the macro character by using the MACROCHAR
parameter. See Reference for Oracle GoldenGate for Windows and
UNIX.

Macro and parameter names are not case-sensitive. Macro or
parameter names within quotation marks are ignored.

PARAMS (#p1, #p2) Optional definition of input parameters. Specify a comma-separated list
of parameter names and enclose it within parentheses. Each
parameter must be referenced in the macro body where you want input
values to be substituted. You can list each parameter on a separate line
to improve readability (making certain to use the open and close
parentheses to enclose the parameter list). See Calling a Macro that
Contains Parameters for more information.

BEGIN Begins the macro body. Must be specified before the macro body.

Chapter 8
Customizing Oracle GoldenGate Processing

8-175

Table 8-12 (Cont.) Macro Definition Arguments

Argument Description

macro_body The macro body. The body is a syntax statement that defines the
function that is to be performed by the macro. A macro body can
include any of the following types of statements.

• Simple parameter statements, as in:

COL1 = COL2
• Complex parameter statements with parameter substitution as in:

MAP #o.#t, TARGET #o.#t, KEYCOLS (#k), COLMAP
(USEDEFAULTS);

• Invocations of other macros, as in:

#colmap (COL1, #sourcecol)

END; Ends the macro definition. The semicolon is required to complete the
definition.

The following is an example of a macro definition that includes parameters. In this case, the
macro simplifies the task of object and column mapping by supplying the base syntax of the
MAP statement with input parameters that resolve to the names of the owners, the tables, and
the KEYCOLS columns.

MACRO #macro1
PARAMS (#o, #t, #k)
BEGIN
MAP #o.#t, TARGET #o.#t, KEYCOLS (#k), COLMAP (USEDEFAULTS);
END;

The following is an example of a macro that does not define parameters. It executes a
frequently used set of parameters.

MACRO #option_defaults
BEGIN
GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
END;

Calling a Macro
This section shows you how to call a macro. (To define a macro, see Defining a Macro).

To call a macro, use the following syntax where you want the macro to run within the
parameter file.

Syntax

[target =] macro_name (val[, ...])

[target =] macro_name (val | {val, val, ...}[, ...])

Chapter 8
Customizing Oracle GoldenGate Processing

8-176

Table 8-13 Syntax Elements for Calling a Macro

Argument Description

target = Optional. Specifies the target to which the results of the macro are
assigned or mapped. For example, target can be used to specify a
target column in a COLMAP statement. In the following call to the
#make_date macro, the column DATECOL1 is the target and will be
mapped to the macro results.

DATECOL1 = #make_date (YR1, MO1, DAY1)

Without a target, the syntax to call #make_date is:

#make_date (YR1, MO1, DAY1)

macro_name The name of the macro that is being called, for example: #make_date.

(val[, ...]) The parameter input values. This component is required whether or not
the macro defines parameters. If the macro defines parameters,
specify a comma-separated list of input values, in the order that
corresponds to the parameter definitions in the MACRO parameter, and
enclose the list within parentheses. If the macro does not define
parameters, specify the open and close parentheses with nothing
between them (). For more information about this syntax, see the
following:

Calling a Macro that Contains Parameters.

Calling a Macro without Input Parameters.

(val | {val,
val, ...})[, ...]

The parameter input values. This component is required whether or not
the macro defines parameters. If the macro defines parameters,
specify a comma-separated list of input values, in the order that
corresponds to the parameter definitions in the MACRO parameter, and
enclose the list within parentheses. To pass multiple values to one
parameter, separate them with commas and enclose the list within
curly brackets. If the macro does not define parameters, specify the
open and close parentheses with nothing between them (). For more
information about this syntax, see the following:

Calling a Macro that Contains Parameters.

Calling a Macro without Input Parameters.

Calling a Macro that Contains Parameters
To call a macro that contains parameters, the call statement must supply the input values that
are to be substituted for those parameters when the macro runs. See the syntax in Table 8-13.

Valid input for a macro parameter is any of the following, preceded by the macro character
(default is #):

• A single value in plain or quoted text, such as: #macro (#name, #address, #phone) or
#macro (#"name", #"address", #"phone").

• A comma-separated list of values enclosed within curly brackets, such as: #macro1
(SCOTT, DEPT, {DEPTNO1, DEPTNO2, DEPTNO3}). The ability to substitute a block of values
for any given parameter add flexibility to the macro definition and its usability in the Oracle
GoldenGate configuration.

• Calls to other macros, such as: #macro (#mycalc (col2, 100), #total). In this example,
the #mycalc macro is called with the input values of col2 and 100.

Chapter 8
Customizing Oracle GoldenGate Processing

8-177

Oracle GoldenGate substitutes parameter values within the macro body according to the
following rules.

1. The macro processor reads through the macro body looking for instances of parameter
names specified in the PARAMS statement.

2. For each occurrence of the parameter name, the corresponding parameter value specified
during the call is substituted.

3. If a parameter name does not appear in the PARAMS statement, the macro processor
evaluates whether or not the item is, instead, a call to another macro. (See Calling Other
Macros from a Macro.) If the call succeeds, the nested macro is executed. If it fails, the
whole macro fails.

Example 8-29 Using Parameters to Populate a MAP Statement

The following macro definition specifies three parameter that must be resolved. The
parameters substitute for the names of the table owner (parameter #o), the table (parameter
#t), and the KEYCOLS columns (parameter #k) in a MAP statement.

MACRO #macro1 PARAMS (#o, #t, #k) BEGIN MAP #o.#t, TARGET #o.#t, KEYCOLS (#k),
COLMAP (USEDEFAULTS); END;

Assuming a table in the MAP statement requires only one KEYCOLS column, the following syntax
can be used to call #macro1. In this syntax, the #k parameter can be resolved with only one
value.

#macro1 (SCOTT, DEPT, DEPTNO1)

To call the macro for a table that requires two KEYCOLS columns, the curly brackets are used as
follows to enclose both of the required values for the column names:

#macro1 (SCOTT, DEPT, {DEPTNO1, DEPTNO2})

The DEPTNO1 and DEPTNO2 values are passed as one argument to resolve the #t parameter.
Tables with three or more KEYCOLS can also be handled in this manner, using additional values
inside the curly brackets.

Example 8-30 Using a Macro to Perform Conversion

In this example, a macro defines the parameters #year, #month, and #day to convert a
proprietary date format.

MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year, 'MM', #month, 'DD',
#day)
END;

The macro is called in the COLMAP clause:

MAP sales.acct_tab, TARGET sales.account,
COLMAP
(
targcol1 = sourcecol1,
datecol1 = #make_date(YR1, MO1, DAY1),
datecol2 = #make_date(YR2, MO2, DAY2)
);

The macro expands as follows:

Chapter 8
Customizing Oracle GoldenGate Processing

8-178

MAP sales.acct_tab, TARGET sales.account,
COLMAP
(
targcol1 = sourcecol1,
datecol1 = @DATE ('YYYY-MM-DD', 'CC', @IF (YR1 < 50, 20, 19),'YY', YR1, 'MM', MO1, 'DD',
DAY1),
datecol2 = @DATE ('YYYY-MM-DD', 'CC', @IF (YR2 < 50, 20, 19),'YY', YR2, 'MM', MO2, 'DD',
DAY2)
);

Calling a Macro without Input Parameters
To call a macro without input parameters, the call statement must supply the open and close
parentheses, but without any input values: #macro ().

The following macro is defined without input parameters. The body contains frequently used
parameters.

MACRO #option_defaults
BEGIN
GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
END;

This macro is called as follows:

#option_defaults ()
IGNOREUPDATES
MAP owner.srctab, TARGET owner.targtab;

#option_defaults ()
MAP owner.srctab2, TARGET owner.targtab2;

The macro expands as follows:

GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
IGNOREUPDATES
MAP owner.srctab, TARGET owner.targtab;

GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
MAP owner.srctab2, TARGET owner.targtab2;

Calling Other Macros from a Macro
To call other macros from a macro, create a macro definition similar to the following. In this
example, the #make_date macro is nested within the #assign_date macro, and it is called
when #assign_date runs.

The nested macro must define all, or a subset of, the same parameters that are defined in the
base macro. In other words, the input values when the base macro is called must resolve to
the parameters in both macros.

The following defines #assign_date:

Chapter 8
Customizing Oracle GoldenGate Processing

8-179

MACRO #assign_date
PARAMS (#target_col, #year, #month, #day)
BEGIN
#target_col = #make_date (#year, #month, #day)
END;

The following defines #make_date. This macro creates a date format that includes a four-digit
year, after first determining whether the two-digit input date should be prefixed with a century
value of 19 or 20. Notice that the PARAMS statement of #make_date contains a subset of the
parameters in the #assign_date macro.

MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year, 'MM', #month, 'DD',
#day)
END;

The following syntax calls #assign_date:

#assign_date (COL1, YEAR, MONTH, DAY)

The macro expands to the following given the preceding input values and the embedded
#make_date macro:

COL1 = @DATE ('YYYY-MM-DD', 'CC', @IF (YEAR < 50, 20, 19),'YY', YEAR, 'MM', MONTH, 'DD',
DAY)

Creating Macro Libraries
You can create a macro library that contains one or more macros. By using a macro library,
you can define a macro once and then use it within many parameter files.

To Create a Macro Library

1. Open a new file in a text editor.

2. Use commented lines to describe the library, if needed.

3. Using the syntax described in Defining a Macro, enter the syntax for each macro.

4. Save the file in the dirprm sub-directory of the Oracle GoldenGate directory as:

filename.mac

Where:

filename is the name of the file. The .mac extension defines the file as a macro library.

The following sample library named datelib contains two macros, #make_date and
#assign_date.

-- datelib macro library
--
MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year, 'MM', #month, 'DD',
#day)
END;

MACRO #assign_date
PARAMS (#target_col, #year, #month, #day)

Chapter 8
Customizing Oracle GoldenGate Processing

8-180

BEGIN
#target_col = #make_date (#year, #month, #day)
END;

To use a macro library, use the INCLUDE parameter at the beginning of a parameter file, as
shown in the following sample Replicat parameter file.

INCLUDE /ggs/dirprm/datelib.mac
REPLICAT rep
ASSUMETARGETDEFS
USERIDALIAS ogg
MAP fin.acct_tab, TARGET fin.account;

When including a long macro library in a parameter file, you can use the NOLIST parameter to
suppress the listing of each macro in the Extract or Replicat report file. Listing can be turned on
and off by placing the LIST and NOLIST parameters anywhere within the parameter file or within
the macro library file. In the following example, NOLIST suppresses the listing of each macro in
the hugelib macro library. Specifying LIST after the INCLUDE statement restores normal listing
to the report file.

NOLIST
INCLUDE /ggs/dirprm/hugelib.mac
LIST
INCLUDE /ggs/dirprm/mdatelib.mac
REPLICAT REP

Tracing Macro Expansion
You can trace macro expansion with the CMDTRACE parameter. With CMDTRACE enabled, macro
expansion steps are shown in the Extract or Replicat report file.

Syntax

CMDTRACE [ON | OFF | DETAIL]

Where:

• ON enables tracing.

• OFF disables tracing.

• DETAIL produces a verbose display of macro expansion.

In the following example, tracing is enabled before #testmac is called, then disabled after the
macro's execution.

REPLICAT REP
MACRO #testmac
BEGIN
COL1 = COL2,
COL3 = COL4,
END;
...
CMDTRACE ON
MAP test.table1, TARGET test.table2,
COLMAP (#testmac);
CMDTRACE OFF

Chapter 8
Customizing Oracle GoldenGate Processing

8-181

Using User Exits to Extend Oracle GoldenGate Capabilities
User exits are custom routines that you write in C programming code and call during Extract or
Replicat processing. User exits extend and customize the functionality of the Extract and
Replicat processes with minimal complexity and risk. With user exits, you can respond to
database events when they occur, without altering production programs.

When to Implement User Exits
You can employ user exits as an alternative to, or in conjunction with, the column-conversion
functions that are available within Oracle GoldenGate. User exits can be a better alternative to
the built-in functions because a user exit processes data only once (when the data is
extracted) rather than twice (once when the data is extracted and once to perform the
transformation).

The following are some ways in which you can implement user exits:

• Perform arithmetic operations, date conversions, or table lookups while mapping from one
table to another.

• Implement record archival functions offline.

• Respond to unusual database events in custom ways, for example by sending an e-mail
message or a page based on an output value.

• Accumulate totals and gather statistics.

• Manipulate a record.

• Repair invalid data.

• Calculate the net difference in a record before and after an update.

• Accept or reject records for extraction or replication based on complex criteria.

• Normalize a database during conversion.

Making Oracle GoldenGate Record Information Available to the Routine
The basis for most user exit processing is the EXIT_CALL_PROCESS_RECORD function. For
Extract, this function is called just before a record buffer is output to the trail. For Replicat, it is
called just before a record is applied to the target. If source-target mapping is specified in the
parameter file, the EXIT_CALL_PROCESS_RECORD event takes place after the mapping is
performed.

When EXIT_CALL_PROCESS_RECORD is called, the record buffer and other record information are
available to it through callback routines. The user exit can map, transform, clean, or perform
any other operation with the data record. When it is finished, the user exit can return a status
indicating whether the record should be processed or ignored by Extract or Replicat.

Creating User Exits
The following instructions help you to create user exits on Windows and UNIX systems. For
more information about the parameters and functions that are described in these instructions,
see Reference for Oracle GoldenGate for Windows and UNIX.

Chapter 8
Customizing Oracle GoldenGate Processing

8-182

Note:

User exits are case-sensitive for database object names. Names are returned exactly
as they are defined in the hosting database. Object names must be fully qualified.

To Create User Exits

1. In C code, create either a shared object (UNIX systems) or a DLL (Windows) and create or
export a routine to be called from Extract or Replicat. This routine is the communication
point between Oracle GoldenGate and your routines. Name the routine whatever you want.
The routine must accept the following Oracle GoldenGate user exit parameters:

• EXIT_CALL_TYPE: Indicates when, during processing, the routine is called.

• EXIT_CALL_RESULT: Provides a response to the routine.

• EXIT_PARAMS: Supplies information to the routine. This function enables you to use the
EXITPARAM option of the TABLE or MAP statement to pass a parameter that is a literal
string to the user exit. This is only valid during the exit call to process a specific record.
This function also enables you to pass parameters specified with the PARAMS option of
the CUSEREXIT parameter at the exit call startup.

2. In the source code, include the usrdecs.h file. The usrdecs.h file is the include file for the
user exit API. It contains type definitions, return status values, callback function codes, and
a number of other definitions. The usrdecs.h file is installed within the Oracle GoldenGate
directory. Do not modify this file.

3. Include Oracle GoldenGate callback routines in the user exit when applicable. Callback
routines retrieve record and application context information, and they modify the contents
of data records. To implement a callback routine, use the ERCALLBACK function in the
shared object. The user callback routine behaves differently based on the function code
that is passed to the callback routine.

ERCALLBACK (function_code, buffer, result_code);

Where:

• function_code is the function to be executed by the callback routine.

• buffer is a void pointer to a buffer containing a predefined structure associated with
the specified function code.

• result_code is the status of the function that is executed by the callback routine. The
result code that is returned by the callback routine indicates whether or not the
callback function was successful.

• On Windows systems, Extract and Replicat export the ERCALLBACK function that is to
be called from the user exit routine. The user exit must explicitly load the callback
function at run-time using the appropriate Windows API calls.

4. Include the CUSEREXIT parameter in your Extract or Replicat parameter file. This parameter
accepts the name of the shared object or DLL and the name of the exported routine that is
to be called from Extract or Replicat. You can specify the full path of the shared object or
DLL or let the operating system's standard search strategy locate the shared object.

CUSEREXIT {DLL | shared_object} routine
[, INCLUDEUPDATEBEFORES]
[, PARAMS 'startup_string']

Chapter 8
Customizing Oracle GoldenGate Processing

8-183

Where:

• DLL is a Windows DLL and shared_object is a UNIX shared object that contains the
user exit function.

• INCLUDEUPDATEBEFORES gets before images for UPDATE operations.

• PARAMS 'startup_string' supplies a startup string, such as a startup parameter.

Example 8-31 Example of Base Syntax, UNIX

CUSEREXIT eruserexit.so MyUserExit

Example 8-32 Example Base Syntax, Windows

CUSEREXIT eruserexit.dll MyUserExit

Supporting Character-set Conversion in User Exits
To maintain data integrity, a user exit needs to understand the character set of the character-
type data that it exchanges with an Oracle GoldenGate process. Oracle GoldenGate user exit
logic provides globalization support for:

• character-based database metadata, such as the names of catalogs, schemas, tables, and
columns

• the values of character-type columns, such as CHAR, VARCHAR2, CLOB, NCHAR, NVARCHAR2,
and NCLOB, as well as string-based numbers, date-time, and intervals.

Properly converting between character sets allows column data to be compared, manipulated,
converted, and mapped properly from one type of database and character set to another. Most
of this processing is performed when the EXIT_CALL_PROCESS_RECORD call type is called and
the record buffer and other record information is made available through callback routines.

The user exit has its own session character set. This is defined by the GET_SESSION_CHARSET
and SET_SESSION_CHARSET callback functions. The caller process provides conversion between
character sets if the character set of the user exit is different from the hosting context of the
process.

To enable this support in user exits, there is the GET_DATABASE_METADATA callback function
code. This function enables the user exit to get database metadata, such as the locale and the
character set of the character-type data that it exchanges with the process that calls it (Extract,
data pump, Replicat). It also returns how the database treats the case-sensitivity of object
names, how it treats quoted and unquoted names, and how it stores object names.

For more information about these components, see Reference for Oracle GoldenGate for
Windows and UNIX.

Using Macros to Check Name Metadata
The object name that is passed by the user exit API is the exact name that is encoded in the
user-exit session character set, and exactly the same name that is retrieved from the
database. If the user exit compares the object name with a literal string, the user exit must
retrieve the database locale and then normalize the string so that it is compared with the object
name in the same encoding.

Oracle GoldenGate provides the following macros that can be called by the user exit to check
the metadata of database object names. For example, a macro can be used to check whether
a quoted table name is case-sensitive and whether it is stored as mixed-case in the database
server. These macros are defined in the usrdecs.h file.

Chapter 8
Customizing Oracle GoldenGate Processing

8-184

Table 8-14 Macros for metadata checking

Macro What it verifies

supportsMixedCaseIdentifiers(nameMeta,
DbObjType)

Whether the database treats a mixed-case
unquoted name of a specified data type as case-
sensitive and stores the name in mixed case.

supportsMixedCaseQuotedIdentifiers(nam
eMeta, DBObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
sensitive and stores the name in mixed case.

storesLowerCaseIdentifiers(nameMeta,
DbObjType)

Whether the database treats the mixed-case
unquoted name of a specified data type as case-
insensitive and stores the name in lower case.

storesLowerCaseQuotedIdentifiers(nameM
eta, DbObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
insensitive and stores the name in lower case.

storesMixedCaseIdentifiers(nameMeta,
DbObjType)

Whether the database treats the mixed-case
unquoted name of a specified data type as case-
insensitive and stores the name in mixed case.

storesMixedCaseQuotedIdentifiers(nameM
eta, DbObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
insensitive and stores the name in mixed case.

storesUpperCaseIdentifiers(nameMeta,
DbObjType)

Whether the database treats the mixed-case
unquoted name of a specified data type as case-
insensitive and stores the name in upper case.

storesUpperCaseQuotedIdentifiers(nameM
eta, DbObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
insensitive and stores the name in upper case.

Describing the Character Format
The input parameter column_value_mode describes the character format of the data that is
being processed and is used in several of the function codes. The following table describes the
meaning of the EXIT_FN_RAW_FORMAT, EXIT_FN_CHAR_FORMAT, and
EXIT_FN_CNVTED_SESS_FORMAT format codes, per data type.

Table 8-15 column_value_mode_matrix Meanings

Data Type EXIT_FN_RAW_FORMAT EXIT_FN_CHAR_FORMAT EXIT_FN_CNVTED_SESS_FO
RMAT

CHAR
"abc"

2-byte null indicator +

2-byte length info

+ column value

0000 0004 61 62 63 20

"abc" encoded in ASCII or
EBCDIC.

NULL terminated.

Tailing spaces are trimmed.

"abc" encoded in user exit
session character set.

NOT NULL terminated.

Tailing spaces are trimmed by
default unless the GLOBALS
parameter NOTRIMSPACES is
specified.

Chapter 8
Customizing Oracle GoldenGate Processing

8-185

Table 8-15 (Cont.) column_value_mode_matrix Meanings

Data Type EXIT_FN_RAW_FORMAT EXIT_FN_CHAR_FORMAT EXIT_FN_CNVTED_SESS_FO
RMAT

NCHAR
0061 0062 0063 0020

2-byte null indicator +

2-byte length info +

column value.

0000 0008 00 61 0062 0063
0020

"abc" (encoded in UTF8) or
truncated at the first byte,
depending on whether NCHAR is
treated as UTF-8.

NULL terminated.

Trailing spaces are trimmed.

"abc" encoded in user exit
session character set.

NOT NULL terminated.

Tailing spaces are trimmed by
default unless the GLOBALS
parameter NOTRIMSPACES is
specified.

VARCHAR2
"abc"

2-byte null indicator +

2-byte length info +

column value

"abc" encoded in ASCII or
EBCDIC.

NULL terminated.

No trimming.

"abc" encoded in user exit
session character set.

NOT NULL terminated.

No trimming.

NVARCHAR2
0061 0062 0063 0020

2-byte null indicator +

2-byte length info +

column value

"abc" (encoded in UTF8) or
truncated at the first byte,
depending on whether
NVARCHAR2 is treated as
UTF-8.

NULL terminated.

No trimming.

"abc"encoded in user exit
session character set.

NOT NULL terminated.

No trimming.

CLOB 2-byte null indicator +

2-byte length info +

column value

Similar to VARCHAR2, but only
output up to 4K bytes.

NULL Terminated.

No trimming.

Similar to VARCHAR2, but only
output data requested in user
exit session character set.

NOT NULL terminated.

No trimming.

NCLOB 2-byte null indicator +

2-byte length info +

column value

Similar to NVARCHAR2, but only
output up to 4K bytes.

NULL terminated.

No trimming.

Similar to NVARCHAR2, but only
output data requested in user
exit session character set.

NOT NULL terminated.

No trimming.

NUMBER
123.89

2-byte null indicator +

2-byte length info +

column value

"123.89" encoded in ASCII or
EBCDIC.

NULL terminated.

"123.89" encoded in user exit
session character set.

NOT NULL terminated.

DATE
31-May-11

2-byte null indicator +

2-byte length info +

column value

"2011-05-31" encoded in
ASCII or EBCDIC.

NULL terminated.

"2011-05-31" encoded in user
exit session character set.

NOT NULL terminated.

TIMESTAMP
31-May-11 12.00.00
AM

2-byte null indicator +

2-byte length info +

column value

"2011-05-31 12.00.00 AM"
encoded in ASCII or EBCDIC.

NULL terminated.

"2011-05-31 12.00.00 AM"
encoded in user exit session
character set.

NOT NULL terminated.

Interval Year to
Month or Interval
Day to Second

2-byte null indicator +

2-byte length info +

column value

NA NA

RAW 2-byte null indicator +

2-byte length info +

column value

2-byte null indicator +

2-byte length info +

column value

2-byte null indicator +

2-byte length info +

column value

Chapter 8
Customizing Oracle GoldenGate Processing

8-186

Upgrading User Exits
The usrdecs.h file is versioned to allow backward compatibility with existing user exits when
enhancements or upgrades, such as new functions or structural changes, are added to a new
Oracle GoldenGate release. The version of the usrdecs.h file is printed in the report file at the
startup of Replicat or Extract.

To use new user exit functionality, you must recompile your routines to include the new
usrdecs file. Routines that do not use new features do not need to be recompiled.

Viewing Examples of How to Use the User Exit Functions
Oracle GoldenGate installs the following sample user exit files into the UserExitExamples
directory of the Oracle GoldenGate installation directory:

• exitdemo.c shows how to initialize the user exit, issue callbacks at given exit points, and
modify data. It also demonstrates how to retrieve the fully qualified table name or a specific
metadata part, such as the name of the catalog or container, or the schema, or just the
unqualified table name. In addition, this demo shows how to process DDL data. The demo
is not specific to any database type.

• exitdemo_utf16.c shows how to use UTF16-encoded data (both metadata and column
data) in the callback structures for information exchanged between the user exit and the
caller process.

• exitdemo_more_recs.c shows an example of how to use the same input record multiple
times to generate several target records.

• exitdemo_lob.c shows an example of how to get read access to LOB data.

• exitdemo_pk_befores.c shows how to access the before and after image portions of a
primary key update record, as well as the before images of regular updates (non-key
updates). It also shows how to get target row values with SQLEXEC in the Replicat
parameter file as a means for conflict detection. The resulting fetched values from the
target are mapped as the target record when it enters the user exit.

Each directory contains the *.c files as well as makefiles and a readme.txt file.

Using the Oracle GoldenGate Event Marker System to Raise Database
Events

Oracle GoldenGate provides an event marker system, also known as the event marker
infrastructure (EMI), which enables the Oracle GoldenGate processes to take a defined action
based on an event record in the transaction log or in the trail (depending on the data source of
the process). The event record is a record that satisfies a specific filter criterion for which you
want an action to occur. You can use this system to customize Oracle GoldenGate processing
based on database events.

For example, you can use the event marker system to start, suspend, or stop a process, to
perform a transformation, or to report statistics. The event marker system can be put to use for
purposes such as:

• To establish a synchronization point at which SQLEXEC or user exit functions can be
performed

• To execute a shell command that executes a data validation script or sends an email

Chapter 8
Customizing Oracle GoldenGate Processing

8-187

• To activate tracing when a specific account number is detected

• To capture lag history

• To stop or suspend a process to run reports or batch processes at the end of the day

The event marker feature is supported for the replication of data changes, but not for initial
loads.

The system requires the following input components:

1. The event record that triggers the action can be specified with FILTER, WHERE, or SQLEXEC in
a TABLE or MAP statement. Alternatively, a special TABLE statement in a Replicat parameter
file enables you to perform EVENTACTIONS actions without mapping a source table to a
target table.

2. In the TABLE or MAP statement where you specify the event record, include the
EVENTACTIONS parameter with the appropriate option to specify the action that is to be
taken by the process.

You can combine EVENTACTIONS options, as shown in the following examples.

The following causes the process to issue a checkpoint, log an informational message, and
ignore the entire transaction (without processing any of it), plus generate a report.

EVENTACTIONS (CP BEFORE, REPORT, LOG, IGNORE TRANSACTION)

The following writes the event record to the discard file and ignores the entire transaction.

EVENTACTIONS (DISCARD, IGNORE TRANS)

The following logs an informational message and gracefully stop the process.

EVENTACTIONS (LOG INFO, STOP)

The following rolls over the trail file and does not write the event record to the new file.

EVENTACTIONS (ROLLOVER, IGNORE)

For syntax details and additional usage instructions, see Reference for Oracle GoldenGate.

Case Studies in the Usage of the Event Marker System
These examples highlight some use cases for the event marker system.

Trigger End-of-day Processing
This example specifies the capture of operations that are performed on a special table named
event_table in the source database. This table exists solely for the purpose of receiving
inserts at a predetermined time, for example at 5:00 P.M. every day. When Replicat receives
the transaction record for this operation, it stops gracefully to allow operators to start end-of-
day processing jobs. By using the insert on the event_table table every day, the operators
know that Replicat has applied all committed transactions up to 5:00. IGNORE causes Replicat
to ignore the event record itself, because it has no purpose in the target database. LOG INFO
causes Replicat to log an informational message about the operation.

TABLE source.event_table, EVENTACTIONS (IGNORE, LOG INFO, STOP);

Chapter 8
Customizing Oracle GoldenGate Processing

8-188

Simplify Transition from Initial Load to Change Synchronization
Event actions and event tables can be used to help with the transition from an initial load to
ongoing change replication. For example, suppose an existing, populated source table must be
added to the Oracle GoldenGate configuration. This table must be created on the target, and
then the two must be synchronized by using an export/import. This example assumes that an
event table named source.event_table exists in the source database and is specified in a
Replicat TABLE statement.

TABLE source.event_table, EVENTACTIONS (IGNORE, LOG INFO, STOP);

To allow users to continue working with the new source table, it is added to the Extract
parameter file, but not to the Replicat parameter file. Extract begins capturing data from this
table to the trail, where it is stored.

At the point where the source and target are read-consistent after the export, an event record
is inserted into the event table on the source, which propagates to the target. When Replicat
receives the event record (marking the read-consistent point), the process stops as directed by
EVENTACTIONS STOP. This allows the new table to be added to the Replicat MAP statement.
Replicat can be positioned to start replication from the timestamp of the event record,
eliminating the need to use the HANDLECOLLISIONS parameter. Operations in the trail from
before the event record can be ignored because it is known that they were applied in the
export.

The event record itself is ignored by Replicat, but an informational message is logged.

Stop Processing When Data Anomalies are Encountered
This example uses ABORT to stop Replicat immediately with a fatal error if an anomaly is
detected in a bank record, where the customer withdraws more money than the account
contains. In this case, the source table is mapped to a target table in a Replicat MAP statement
for actual replication to the target. A TABLE statement is also used for the source table, so that
the ABORT action stops Replicat before it applies the anomaly to the target database. ABORT
takes precedence over processing the record.

MAP source.account, TARGET target.account;
TABLE source.account, FILTER (withdrawal > balance), EVENTACTIONS (ABORT);

Trace a Specific Order Number
The following example enables Replicat tracing only for an order transaction that contains an
insert operation for a specific order number (order_no = 1). The trace information is written to
the order_1.trc trace file. The MAP parameter specifies the mapping of the source table to the
target table.

MAP sales.order, TARGET rpt.order;
TABLE source.order,
FILTER (@GETENV ('GGHEADER', 'OPTYPE') = 'INSERT' AND order_no = 1), &
EVENTACTIONS (TRACE order_1.trc TRANSACTION);

Execute a Batch Process
In this example, a batch process executes once a month to clear the source database of
accumulated data. At the beginning of the transaction, typically a batch transaction, a record is
written to a special job table to indicate that the batch job is starting. TRANSACTION is used with
IGNORE to specify that the entire transaction must be ignored by Extract, because the target

Chapter 8
Customizing Oracle GoldenGate Processing

8-189

system does not need to reflect the deleted records. By ignoring the work on the Extract side,
unnecessary trail and network overhead is eliminated.

TABLE source.job, FILTER (@streq (job_type = 'HOUSEKEEPING')=1), &
EVENTACTIONS (IGNORE TRANSACTION);

Note:

If a logical batch delete were to be composed of multiple smaller batches, each
smaller batch would require an insert into the job table as the first record in the
transaction.

Propagate Only a SQL Statement without the Resultant Operations
This example shows how different EVENTACTIONS clauses can be used in combination on the
source and target to replicate just a SQL statement rather than the operations that result from
that statement. In this case, it is an INSERT INTO...SELECT transaction. Such a transaction
could generate millions of rows that would need to be propagated, but with this method, all that
is propagated is the initial SQL statement to reduce trail and network overhead. The SELECTs
are all performed on the target. This configuration requires perfectly synchronized source and
target tables in order to maintain data integrity.

Extract:

TABLE source.statement, EVENTACTIONS (IGNORE TRANS INCLUDEEVENT);

Replicat:

TABLE source.statement, SQLEXEC (execute SQL statement), &
EVENTACTIONS (INFO, IGNORE);

To use this configuration, a statement table is populated with the first operation in the
transaction, that being the INSERT INTO...SELECT, which becomes the event record.

Note:

For large SQL statements, the statement can be written to multiple columns in the
table. For example, eight VARCHAR (4000) columns could be used to store SQL
statements up to 32 KB in length.

Because of the IGNORE TRANS INCLUDEEVENT, Extract ignores all of the subsequent inserts that
are associated with the SELECT portion of the statement, but writes the event record that
contains the SQL text to the trail. Using a TABLE statement, Replicat passes the event record to
a SQLEXEC statement that concatenates the SQL text columns, if necessary, and executes the
INSERT INTO...SELECT statement using the target tables as the input for the SELECT sub-query.

Committing Other Transactions Before Starting a Long-running Transaction
This use of EVENTACTIONS ensures that all open transactions that are being processed by
Replicat get committed to the target before the start of a long running transaction. It forces
Replicat to write a checkpoint before beginning work on the large transaction. Forcing a
checkpoint constrains any potential recovery to just the long running transaction. Because a

Chapter 8
Customizing Oracle GoldenGate Processing

8-190

Replicat checkpoint implies a commit to the database, it frees any outstanding locks and
makes the pending changes visible to other sessions.

TABLE source.batch_table, EVENTACTIONS (CHECKPOINT BEFORE);

Execute a Shell Script to Validate Data
This example executes a shell script that runs another script that validates data after Replicat
applies the last transaction in a test run. On the source, an event record is written to an event
table named source.event. The record inserts the value COMPARE into the event_type column
of the event table, and this record gets replicated at the end of the other test data. In the TABLE
statement in the Replicat parameter file, the FILTER clause qualifies the record and then
triggers the shell script compare_db.sh to run as specified by SHELL in the EVENTACTIONS
clause. After that, Replicat stops immediately as specified by FORCESTOP.

Extract:

TABLE src.*;
TABLE test.event;

Replicat:

MAP src.*, TARGET targ.*;
MAP test.event, TARGET test.event, FILTER (@streq (event_type, 'COMPARE')=1), &
EVENTACTIONS (SHELL 'compare_db.sh', FORCESTOP);

Oracle GoldenGate Globalization Support
This chapter describes Oracle GoldenGate globalization support, which enables the
processing of data in its native language encoding.

Preserving the Character Set
In order to process the data in its native language encoding, Oracle GoldenGate takes into
consideration the character set of the database and the operating system locale, if applicable.

Character Set of Database Structural Metadata
Oracle GoldenGate processes catalog, schema, table and column names in their native
language as determined by the character set encoding of the source and target databases.
This processing is extended to the parameter files and command interpreter, where they are
processed according to the operating system locale. These objects appear in their localized
format throughout the client interface, on the console, and in files.

Character Set of Character-type Data
The Oracle GoldenGate apply process (Replicat) supports the conversion of data from one
character set to another when the data is contained in character column types. Character-set
conversion support is limited to column-to-column mapping as performed with the COLMAP or
USEDEFAULTS clauses of a TABLE or MAP statement. It is not supported by the column-conversion
functions, by SQLEXEC, or by the TOKENS feature.

See Mapping and Manipulating Data for more information about character sets, conversion
between them, and data mapping.

Chapter 8
Oracle GoldenGate Globalization Support

8-191

Character Set of Database Connection
The Extract and Replicat processes use a session character set when connecting to the
database. For Oracle Databases, the session character set is set to the same as the database
character set by both Extract and Replicat. For MySQL, the session character set is taken from
the SESSIONCHARSET option of SOURCEDB and TARGETDB, or from the SESSIONCHARSET parameter
set globally in the GLOBALS file. For other database types, it is obtained programmatically. In
addition, Oracle GoldenGate processes use a session character set for communication and
data transfer between Oracle GoldenGate and the database, such as for SQL queries, fetches,
and applying data.

Character Set of Text Input and Output
Oracle GoldenGate supports text input and output in the default character set of the host
operating system for the following:

• Console

• Command-line input and output

• FORMATASCII, FORMATSQL, FORMATXML parameters, text files such as parameter files, data-
definitions files, error log, process reports, discard files, and other human-readable files
that are used by Oracle GoldenGate users to configure, run, and monitor the Oracle
GoldenGate environment.

In the event that the platform does not support a required character set as the default in the
operating system, you can use the following parameters to specify a character set:

• CHARSET parameter to specify a character set to be used by processes to read their
parameter files.

• CHARSET option of the DEFSFILE parameter to generate a data-definitions file in a specific
character set.

The GGSCI command console always operates in the character set of the local operating
system for both keyboard and OBEY file input and console output.

Using Unicode and Native Characters
Oracle GoldenGate supports the use of an escape sequence to represent characters in
Unicode or in the native character encoding of the Windows, UNIX, and Linux operating
systems. You can use an escape sequence if the operating system does not support the
required character, or for any other purpose when needed. For more information about this
support, see Support for Escape Sequences.

Using Oracle GoldenGate Parameter Files
Most Oracle GoldenGate functionality is controlled by means of parameters specified in
parameter files. A parameter file is a plain text file that is read by an associated Oracle
GoldenGate process. Oracle GoldenGate uses two types of parameter files: a GLOBALS file and
runtime parameter files.

Globalization Support for Parameter Files
Oracle GoldenGate creates parameter files in the default character set of the local operating
system. In the event that the local platform does not support a required character set as the

Chapter 8
Using Oracle GoldenGate Parameter Files

8-192

default in the operating system, you can use the CHARSET parameter either globally or per-
process to specify a character set for parameter files.

To avoid issues caused by character-set incompatibilities, create or edit a parameter file on the
server where the associated process will be running. Avoid creating it on one system (such as
your Windows laptop) and then transferring the file to the UNIX server where Oracle
GoldenGate is installed and where the operating system character set is different. Oracle
GoldenGate provides some tools to help with character set incompatibilities if you must create
the parameter file on a different system:

• You can use the CHARSET parameter to specify a compatible character set for the
parameter file. This parameter must be placed on the first line of the parameter file and
allows you to write the file in the specified character set. After the file is transferred to the
other system, do not edit the file on that system.

• You can use Unicode notation to substitute for characters that are not compatible with the
character set of the operating system where the file will be used. See Support for Escape
Sequences for more information about Unicode notation.

See Reference for Oracle GoldenGate for more information about the CHARSET parameter.

Working with the GLOBALS File
The GLOBALS file stores parameters that relate to the Oracle GoldenGate instance as a whole.
This is in contrast to runtime parameters, which are coupled with a specific process such as
Extract. The parameters in the GLOBALS file apply to all processes in the Oracle GoldenGate
instance, but can be overridden by specific process parameters. A GLOBALS parameter file may
or may not be required for your Oracle GoldenGate environment.

Note:

The GLOBALS file is specific to Classic Architecture.

When used, a GLOBALS file must exist before starting any Oracle GoldenGate processes,
including GGSCI. The GGSCI program reads the GLOBALS file and passes the parameters to
processes that need them.

To Create a GLOBALS File

1. From the Oracle GoldenGate installation location, run GGSCI and enter the following
command, or open a file in a text editor.

EDIT PARAMS ./GLOBALS

Note:

The ./ portion of this command must be used, because the GLOBALS file must
reside at the root of the Oracle GoldenGate installation file.

2. In the file, enter the GLOBALS parameters, one per line.

3. Save the file. If you used a text editor, save the file as GLOBALS (uppercase, without a file
extension) at the root of the Oracle GoldenGate installation directory. If you created the file
correctly in GGSCI, the file is saved that way automatically. Do not move this file.

Chapter 8
Using Oracle GoldenGate Parameter Files

8-193

4. Exit GGSCI. You must start from a new GGSCI session before issuing commands or
starting processes that reference the GLOBALS file.

Working with Runtime Parameters
Runtime parameters give you control over the various aspects of Oracle GoldenGate
synchronization, such as:

• Data selection, mapping, transformation, and replication

• DDL and sequence selection, mapping, and replication (where supported)

• Error resolution

• Logging

• Status and error reporting

• System resource usage

• Startup and runtime behavior

There can only be one manager process for each Oracle GoldenGate installation. It is
configured using the mgr.prm parameter file. Although you can have multiple Extracts and
Replicats running in a single installation, each one can only be associated by a single
parameter file. For Extracts and Replicats, they are identified by their case-insensitive name.
For example, an Extract called EXT_DEMO, would have 1 associated parameter file called
EXT_DEMO.prm. See Simplifying the Creation of Parameter Files for more information about
simplifying the use of parameter files.

There are two types of parameters: global (not to be confused with GLOBALS parameters) and
object-specific:

• Global parameters apply to all database objects that are specified in a parameter file.
Some global parameters affect process behavior, while others affect such things as
memory utilization and so forth. USERIDALIAS in Example 8-33 and Example 8-35 is an
example of a global parameter. In most cases, a global parameter can appear anywhere in
the file before the parameters that specify database objects, such as the TABLE and MAP
statements. A global parameter should be listed only once in the file. When listed more
than once, only the last instance is active, and all other instances are ignored.

• Object-specific parameters enable you to apply different processing rules for different sets
of database objects. GETINSERTS and IGNOREINSERTS in Example 8-35 are examples of
object-specific parameters. Each precedes a MAP statement that specifies the objects to be
affected. Object-specific parameters take effect in the order that each one is listed in the
file.

Example 8-33and Example 8-35 are examples of basic parameter files for Extract and
Replicat. Comments are preceded by double hyphens.

The preceding example reflects a case-insensitive Oracle database, where the object names
are specified in the TABLE statements in capitals. For a case-insensitive Oracle database, it
makes no difference how the names are entered in the parameter file (upper, lower, mixed
case). For other databases, the case of the object names may matter. See Specifying Object
Names in Oracle GoldenGate Input for more information about specifying object names.

Note the use of single and double quote marks in the Replicat example. For databases that
require quote marks to enforce case-sensitive object names, such as Oracle, you must enclose
case-sensitive object names within double quotes in the parameter file as well. For other case-
sensitive databases, specify the names as they are stored in the database. For more

Chapter 8
Using Oracle GoldenGate Parameter Files

8-194

information about specifying names and literals, see Specifying Object Names in Oracle
GoldenGate Input.

Example 8-33 Sample Extract Parameter File

-- Extract group name
EXTRACT capt
-- Extract database user login, with alias to credentials in the credential store.
USERIDALIAS ogg1
-- Remote host to where captured data is sent in encrypted format:
RMTHOSTOPTIONS sysb, MGRPORT 7809, ENCRYPT AES192 KEYNAME mykey
-- Encryption specification for trail data
ENCRYPTTRAIL AES192
-- Remote trail on the remote host
RMTTRAIL /ggs/dirdat/aa

With these lines:
-- Encryption specification for trail data
ENCRYPTTRAIL AES192
-- Local trail on the remote host
EXTTRAIL ./dirdat/aa

Example 8-34 Sample Extract Pump Parameter File

-- Extract Pump group name
EXTRACT pmp
-- Remote host to where captured data is sent in encrypted format:
RMTHOSTOPTIONS sysb, MGRPORT 7809, ENCRYPT AES192 KEYNAME mykey
-- Encryption specification for trail data
ENCRYPTTRAIL AES192
-- Remote trail on the remote host
RMTTRAIL /ggs/dirdat/bb
-- TABLE statements that identify data to capture.
TABLE FIN.*;
TABLE SALES.*;

Example 8-35 Sample Replicat Parameter File

-- Replicat group name
REPLICAT deliv
-- Replicat database user login, with alias to credentials in the credential store
USERIDALIAS ogg2
-- Error handling rules
REPERROR DEFAULT, ABEND
-- Ignore INSERT operations
IGNOREINSERTS
-- MAP statement to map source objects to target objects and
-- specify column mapping
MAP "fin"."accTAB", TARGET "fin"."accTAB",
COLMAP ("Account" = "Acct",
"Balance" = "Bal",
"Branch" = "Branch");
-- Get INSERT operations
GETINSERTS
-- MAP statement to map source objects to target objects and
-- filter to apply only the 'NY' branch data.
MAP "fin"."teller", TARGET "fin"."tellTAB",
WHERE ("Branch" = 'NY');

Chapter 8
Using Oracle GoldenGate Parameter Files

8-195

Creating a Parameter File
Oracle recommends using GGSCI when writing the parameter file in the character set of the
operating system, but if using the CHARSET parameter and writing the file in a different character
set, use a text editor instead of GGSCI.

Topics:

Creating a Parameter File in GGSCI and Admin Client
To create a parameter file, use the EDIT PARAMS command within the command line interface
through GGSCI or Admin Client user interface or use a text editor directly. When you use the
command line interface, you are using a standard text editor, but your parameter file is saved
automatically with the correct file name and in the correct directory.

When you create a parameter file with EDIT PARAMS, it is saved to the dirprm sub-directory of
the Oracle GoldenGate directory. You can create a parameter file in a directory other than
dirprm, but you also must specify the full path name with the PARAMS option of the ADD EXTRACT
or ADD REPLICAT command when you create your process groups. Once paired with an Extract
or Replicat group, a parameter file must remain in its original location for Oracle GoldenGate to
operate properly once processing has started.

The EDIT PARAMS command launches the following text editors within the GGSCI or Admin
Client interface:

• Notepad on Microsoft Windows systems

• The vi editor on UNIX and Linux systems. DB2 for i only supports vi when connected with
SSH or xterm. For more information, see Creating a Parameter File with a Text Editor.

Note:

You can change the default editor through the GGSCI or Admin Client interface
by using the SET EDITOR command.

1. From the directory where Oracle GoldenGate is installed, run GGSCI or Admin Client.

2. In GGSCI or Admin Client, issue the following command to open the default text editor.

EDIT PARAMS group_name

Where:

group_name is either mgr (for the Manager process) or the name of the Extract or Replicat
group for which the file is being created. The name of an Extract or Replicat parameter file
must match that of the process group.

The following creates or edits the parameter file for an Extract group named extora.

EDIT PARAMS extora

The following creates or edits the parameter file for the Manager process.

EDIT PARAMS MGR
3. Using the editing functions of the text editor, enter as many comment lines as you want to

describe this file, making certain that each comment line is preceded with two hyphens (--).

Chapter 8
Using Oracle GoldenGate Parameter Files

8-196

4. On non-commented lines, enter the Oracle GoldenGate parameters, starting a new line for
each parameter statement.

Oracle GoldenGate parameters have the following syntax:

PARAMETER_NAME argument [, option] [&]

Where:

• PARAMETER_NAME is the name of the parameter.

• argument is a required argument for the parameter. Some parameters take arguments,
but others do not. Commas between arguments are optional.

EXTRACT myext
USERIDALIAS ogg1
ENCRYPT AES192 KEYNAME mykey
ENCRYPTTRAIL AES 192
EXTTRAIL ./dirdat/c1, PURGE
CUSEREXIT userexit.dll MyUserExit, INCLUDEUPDATEBEFORES, &
 PARAMS "init.properties"
TABLE myschema.mytable;

• [, option] is an optional argument.

• [&] is required at the end of each line in a multi-line parameter statement, as in the
CUSEREXIT parameter statement in the previous example. The exceptions are the
following, which can accept, but do not require, the ampersand because they terminate
with a semicolon:

– MAP
– TABLE
– SEQUENCE
– FILE
– QUERY

Note:

The RMTHOST and RMTHOSTOPTIONS parameters can be specified together; the
RMTHOST parameter is not required for RMTHOSTOPTIONS if the dynamic IP
assignment is properly configured. When RMTHOSTOPTIONS is used, the MGRPORT
option is ignored.

5. Save and close the file.

Creating a Parameter File with a Text Editor
You can create a parameter file outside GGSCI or Admin Client by using a text editor, but
make certain to:

• Save the parameter file with the name of the Extract or Replicat group that owns it, or save
it with the name mgr if the Manager process owns it. Use the .prm file extension. For
example: extfin.prm and mgr.prm.

• Save the parameter file in the dirprm directory of the Oracle GoldenGate installation
directory.

Chapter 8
Using Oracle GoldenGate Parameter Files

8-197

• For DB2 for i systems, you can edit parameter files from a 5250 terminal using SEU or
EDTF. If you use SEU, you must copy the file using the CPYTOSTMF command, specify an
encoding of CCSID 1208, and line endings of *LF. If editing with EDTF from F15 (services)
ensure that you change the CCSID of the file to 1208 and the EOL option to *LF.

Alternatively, you can use the Rfile command from the IBM Portable Application Solutions
Environment for i.

Validating a Parameter File
The checkprm validation native command is run from the command line and gives an
assessment of the specified parameter file, with a configurable application and running
environment. It can provide either a simple PASS/FAIL or with optional details about how the
values of each parameter are stored and interpreted.

The CHECKPRM executable file can be found in the Oracle GoldenGate installation directory for
Classic Architecture and in the /bin directory of Microservices Architecture. The input to
checkprm is case insensitive. If a value string contains spaces, it does not need to be quoted
because checkprm can recognize meaningful values. If no mode is specified to checkprm, then
all parameters applicable to any mode of the component will be accepted.

The output of checkprm is assembled with four possible sections:

• help messages

• pre-validation error

• validation result

• parameter details

A pre-validation error is typically an error that prevents a normal parameter validation from
executing, such as missing options or an inaccessible parameter file. If an option value is
specified incorrectly, a list of possible inputs for that option is provided. If the result is FAIL,
each error is in the final result message. If the result is PASS, a message that some of the
parameters are subject to further runtime validation. The parameter detailed output contains
the validation context, the values read from GLOBALS (if it is present), and the specified
parameters. The parameter and options are printed with proper indentation to illustrate these
relationships.

Table 8-16 describes all of the arguments that you can use with the checkprm commands.
When you use checkprm and do not use any of these arguments, then checkprm attempts to
automatically detect Extract or Replicat and the platform and database of the Oracle
GoldenGate installation.

Table 8-16 checkprm Arguments

Argument Purpose & Behavior

None Displays usage information

-v Displays banner. Cannot be combined with other options.

? | help Displays detailed usage information, include all possible values of each option.
Cannot be combine with other options.

parameter_file Specifies the name of the parameter file, has to be the first argument if a
validation is requested. You must specify the absolute path to the parameter
file. For example, CHECKPRM ./dirprm/myext.prm.

Chapter 8
Using Oracle GoldenGate Parameter Files

8-198

Table 8-16 (Cont.) checkprm Arguments

Argument Purpose & Behavior

-COMPONENT | -C Specifies the running component (application) that this parameter file is
validated for. This option can be omitted for Extract or Replicat because
automatic detection is attempted. Valid values include:

CACHEFILEDUMP COBGEN CONVCHK CONVPRM DDLCOB DEFGEN EMSCLNT
EXTRACT GGCMD GGSCI KEYGEN LOGDUMP
MGR OGGERR REPLICAT RETRACE
REVERSE SERVER GLOBALS
There is no default for this option.

-MODE | -M Specifies the mode of the running application if applicable. This option is
optional, only applicable to Extract or Replicat. If no mode is specified, the
validation is performed for all Extract or Replicat modes.

Valid input of this option includes:

• Integrated Extract
• Initial Load Extract
• Remote Task Extract
• Data Pump Extract
• Passive Extract
• Classic Replicat
• Coordinated Replicat
• Integrated Replicat
• Parallel Integrated Replicat
• Parallel Nonintegrated Replicat
• Special Run Replicat
• Remote Task
When key in the value for this option, the application name is optional, as long
as it matches the va lue of component. For example, "Data Pump Extract"
is equivalent to "Data Pump" if the component is Extract. However, it is invalid
if the component is Replicat.

-PLATFORM | -P Specifies the platform the application is supposed to run on. The default value
is the platform that this checkprm executable is running on.

The possible values are:

AIX HP-OSS HPUX-IT HPUX-PA
Linux OS400 ZOS Solaris SPARC
Solaris x86 Windows x64 All

Chapter 8
Using Oracle GoldenGate Parameter Files

8-199

Table 8-16 (Cont.) checkprm Arguments

Argument Purpose & Behavior

-DATABASE | -D Specifies the database the application is built against. The default value is the
database for your Oracle GoldenGate installation.

The database options are (case insensitive):

Generic
Oracle 8
Oracle 9i
Oracle 10g
Oracle 11g
Oracle 12c
Oracle 18c
Oracle 19c
Oracle 21c
Sybase
DB2LUW 9.5
DB2LUW 9.7
DB2LUW 10.5
DB2LUW 10.1
DB2LUW 11.1
DB2
Remote Teradata
Timesten
Timesten 7
Timesten 11.2.1
MySQL
Ctree8
Ctree9
DB2 for i
Remote MSSQL
MSSQL CDC
Informix
Informix1150
Informix1170
Informix1210
Ingres SQL/MX
DB2 z/OS
PostgreSQL

-VERBOSE | -V Directs checkprm to print out detailed parameter information, to demonstrate
how the values are read and interpreted.

It must be the last option specified in a validation.

Following are some use examples:

checkprm ?
checkprm ./dirprm/ext1.prm -C extract -m data pump -p Linux -v
checkprm ./dirprm/ext1.prm -m integrated
checkprm ./dirprm/rep1.prm -m integrated
checkprm ./dirprm/mgr.prm -C mgr -v
checkprm GLOBALS -c GLOBALS

Chapter 8
Using Oracle GoldenGate Parameter Files

8-200

Verifying Using CHECKPARAMS Parameter

An alternative to using the recommended checkprm utility, is to check the syntax of parameters
in an Extract or Replicat parameter file for accuracy using the CHECKPARAMS parameter. This
process can be used with Extract or Replicat.

To Verify Parameter Syntax

1. Include the CHECKPARAMS parameter in the parameter file.

2. Start the associated process by issuing the START EXTRACT or START REPLICAT command.

START {EXTRACT | REPLICAT} group_name

The process audits the syntax, writes the results to the report file or the screen, and then
stops.

3. Do either of the following:

• If the syntax is correct, remove the CHECKPARAMS parameter before starting the process
to process data.

• If the syntax is wrong, correct it based on the findings in the report. You can run
another test to verify the changes, if desired. Remove CHECKPARAMS before starting the
process to process data.

For more information about CHECKPARAMS, see Reference for Oracle GoldenGate.

Viewing a Parameter File
You can view a parameter file directly from the command shell of the operating system, or you
can view it from the GGSCI or Admin Client command line interface, using the VIEW PARAMS
command.

VIEW PARAMS group_name

Where:

group_name is either mgr (for Manager) or the name of the Extract or Replicat group that is
associated with the parameter file.

Caution:

Do not use VIEW PARAMS to view an existing parameter file that is in a character set
other than that of the local operating system (such as one where the CHARSET option
was used to specify a different character set). The contents may become corrupted.
View the parameter file from outside the command line interface.

If the parameter file was created in a location other than the dirprm sub-directory of the Oracle
GoldenGate directory, specify the full path name as shown in the following example.

VIEW PARAMS c:\lpparms\replp.prm

Chapter 8
Using Oracle GoldenGate Parameter Files

8-201

Changing a Parameter File
An Oracle GoldenGate process must be stopped before changing its parameter file, and then
started again after saving the parameter file. Changing parameter settings while a process is
running can have unexpected results, especially if you are adding tables or changing mapping
or filtering rules.

Caution:

Do not use the EDIT PARAMS command to view or edit an existing parameter file that
is in a character set other than that of the local operating system (such as one where
the CHARSET option was used to specify a different character set). The contents may
become corrupted. View the parameter file from outside Admin Client or GGSCI.

To Change Parameters:

1. Stop the process by issuing the following command in Admin Client or GGSCI. To stop
Manager in a Windows cluster, use the Cluster Administrator.

STOP {EXTRACT | REPLICAT | MANAGER} group_name

2. Open the parameter file by using a text editor or the EDIT PARAMS command in Admin
Client GGSCI.

EDIT PARAMS mgr

3. Make the edits, and then save the file.

4. Start the process by issuing the following command in Admin Client GGSCI. Use the
Cluster Administrator if starting Manager in a Windows cluster.

START {EXTRACT | REPLICAT | MANAGER} group_name

When an Extract process or Replicat process is restarted, it picks up right where it left off. You
do not need to queisce database activity prior to bouncing the Oracle GoldenGate process to
replace a parameter file.

Simplifying the Creation of Parameter Files
You can reduce the number of times that a parameter must be specified by using the following
time-saving tools.

Using Macros
You can use macros to automate multiple uses of a parameter statement. See Using Oracle
GoldenGate Macros to Simplify and Automate Work.

Chapter 8
Using Oracle GoldenGate Parameter Files

8-202

Using OBEY
You can create a library of text files that contain frequently used parameter settings, and then
you can call any of those files from the active parameter file by means of the OBEY parameter.
The syntax for OBEY is:

OBEY file_name

Where:

file_name is the relative or full path name of the file.

Upon encountering an OBEY parameter in the active parameter file, Oracle GoldenGate
processes the parameters from the referenced file and then returns to the active file to process
any remaining parameters. OBEY is not supported for the GLOBALS parameter file.

If using the CHARSET parameter in a parameter file that includes an OBEY parameter, the
referenced parameter file does not inherit the CHARSET character set. The CHARSET character
set is used to read wildcarded object names in the referenced file, but you must use an escape
sequence (\uX) for all other multibyte specifications in the referenced file.

See Reference for Oracle GoldenGate for more information about OBEY.

See Reference for Oracle GoldenGate for more information about CHARSET.

Using Parameter Substitution
You can use parameter substitution to assign values to Oracle GoldenGate parameters
automatically at run time, instead of assigning static values when you create the parameter file.
That way, if values change from run to run, you can avoid having to edit the parameter file or
maintain multiple files with different settings. You can simply export the required value at
runtime. Parameter substitution can be used for any Oracle GoldenGate process.

To Use Parameter Substitution

1. For each parameter for which substitution is to occur, declare a runtime parameter instead
of a value, and precede the runtime parameter name with a question mark (?) as shown in
the following example.

SOURCEISFILE
EXTFILE ?EXTFILE
MAP scott?TABNAME, TARGET tiger ACCOUNT_TARG;

2. Before starting the Oracle GoldenGate process, use the shell of the operating system to
pass the runtime values by means of an environment variable, as shown in #unique_980/
unique_980_Connect_42_I1047805 and #unique_980/
unique_980_Connect_42_I1047809.

Example 8-36 Parameter substitution on Windows

C:\GGS> set EXTFILE=C:\ggs\extfile
C:\GGS> set TABNAME=PROD.ACCOUNTS
C:\GGS> replicat paramfile c:\ggs\dirprm\parmfl

Example 8-37 Parameter substitution on UNIX (Korn shell)

$ EXTFILE=/ggs/extfile
$ export EXTFILE
$ TABNAME=PROD.ACCOUNTS

Chapter 8
Using Oracle GoldenGate Parameter Files

8-203

$ export TABNAME
$ replicat paramfile ggs/dirprm/parmfl

UNIX is case-sensitive, so the parameter declaration in the parameter file must be the same
case as the shell variable assignments.

Using Wildcards
For parameters that accept object names, you can use asterisk (*) and question mark (?)
wildcards. The use of wildcards reduces the work of specifying numerous object names or all
objects within a given schema. For more information about using wildcards, see Using
Wildcards in Database Object Names.

Getting Information about Oracle GoldenGate Parameters
You can use the INFO PARAM command to view a parameter's definition information from
GGSCI. The name provided in the command line can be a parameter, or an option, but it must
be a full name that is part of the names concatenated together using a period (.) as the
delimiter. For example:

INFO PARAM RMTHOST
RMTHOST.STREAMING
INFO PARAM RMTHOST.STREAMING

Using the GETPARAMINFO, you can query the runtime parameter values of a running instance,
including Extract, Replicat, and Manager. This command is similar to using checkprm -v, see
Validating a Parameter File. The default behavior is to display all that has ever been queried by
the application, parameters and their current values. If a particular parameter name is
specified, then the output is filtered by that name. Optionally, the output can be redirect to a file
specified by the -FILE option. For example:

SEND ext1pmp GETPARAMINFO

Configure Bi-Directional Replication
In a bidirectional configuration, there are Extract and Replicat processes on both the source
and target systems to support the replication of transactional changes on each system to the
other system. To support this configuration, each Extract must be able to filter the transactions
applied by the local Replicat, so that they are not recaptured and sent back to their source in a
continuous loop. Additionally, tables whose key columns are AUTO_INCREMENT columns must be
set so that there is no conflict between the values on each system.

1. Configure Oracle GoldenGate for high availability or active-active replication.

2. To filter out Replicat operations in a bi-directional configuration so that the applied
operations are not captured and looped back to the source again, take the following steps
on each MySQL database:

• Configure each Replicat process to use a checkpoint table. Replicat writes a
checkpoint to this table at the end of each transaction. You can use one global
checkpoint table or one per Replicat process.

• Specify the name of the checkpoint table with the FILTERTABLE option of the
TRANLOGOPTIONS parameter in the Extract parameter file. The Extract process will
ignore transactions that end with an operation to the specified table, which should only
be those of Replicat.

Chapter 8
Configure Bi-Directional Replication

8-204

Note:

Although optional for other supported databases as a means of enhancing
recovery, the use of a checkpoint table is required for MySQL when using
bidirectional replication (and likewise, will enhance recovery).

If using a parallel Replicat in a bidirectional replication, then multiple filter tables are
supported using the TRANLOGOPTIONS FILTERTABLE option. Multiple filter tables allow
the TRANLOGOPTIONS FILTERTABLE to be specified multiple times with different table
names or wildcards.

You can include single or multiple TRANLOGOPTIONS FILTERTABLE entries in the Extract
parameter file. In the following example, multiple TRANLOGOPTIONS FILTERTABLEentries
are included in the Extract parameter file with explicit object names and wildcards.

TRANLOGOPTIONS FILTERTABLE ggs.chkpt2
TRANLOGOPTIONS FILTERTABLE ggs.chkpt_RABC_*

3. If replicating data for tables that have AUTO_INCREMENT columns, edit the MySQL server
and auto_increment_offset parameters to avoid discrepancies that could be caused by
the bi-directional operations. The following illustrates these parameters, assuming two
servers: ServerA and ServerB.

ServerA:

auto-increment-increment = 2
auto-increment-offset = 1

ServerB:

auto-increment-increment = 2
auto-increment-offset = 2

Other Oracle GoldenGate Parameters for MySQL
The following parameters may be of use in MySQL installations, and might be required if non-
default settings are used for the MySQL database. Other Oracle GoldenGate parameters will
be required in addition to these, depending on your intended business use and configuration.

Parameter Description

DBOPTIONS with
CONNECTIONPORT
port_number

Required to specify to the VAM the TCP/IP connection port number of
the MySQL instance to which an Oracle GoldenGate process must
connect if MySQL is not running on the default of 3306.

DBOPTIONS CONNECTIONPORT 3307

DBOPTIONS with HOST
host_id

Specifies the DNS name or IP address of the system hosting MySQL to
which Replicat must connect.

DBOPTIONS with
ALLOWLOBDATATRUNCATE

Prevents Replicat from abending when replicated LOB data is too large
for a target MySQL CHAR, VARCHAR, BINARY or VARBINARY column.

Chapter 8
Other Oracle GoldenGate Parameters for MySQL

8-205

Parameter Description

SOURCEDB with USERID and
PASSWORD

Specifies database connection information consisting of the database,
user name and password to use by an Oracle GoldenGate process that
connects to a MySQL database. If MySQL is not running on the default
port of 3306, you must specify a complete connection string that
includes the port number: SOURCEDB dbname@hostname:port,
USERID user, PASSWORD password.Example:

SOURCEDB mydb@mymachine:3307, USERID myuser, PASSWORD
mypassword
If you are not running the MySQL database on port 3306, you must
also specify the connection port of the MySQL database in the
DBLOGIN command when issuing commands that affect the database
through GGSCI:

DBLOGIN SOURCEDB dbname@hostname:port, USERID user,
PASSWORD password

For example:

GGSCI> DBLOGIN SOURCEDB mydb@mymachine:3307, USERID myuser,
PASSWORD mypassword

SQLEXEC To enable Replicat to bypass the MySQL connection timeout, configure
the following command in a SQLEXEC statement in the Replicat
parameter file.

SQLEXEC "select CURRENT_TIME();" EVERY n MINUTES
Where: n is the maximum interval after which you want Replicat to
reconnect. The recommended connection timeout 31536000 seconds
(365 days).

Chapter 8
Other Oracle GoldenGate Parameters for MySQL

8-206

Parameter Description

Global variable sql_mode For heartbeattable to work in MySQL 5.7 , MySQL global variable
sql_mode should not have NO_ZERO_IN_DATE, NO_ZERO_DATE. In the
following example sql_mode includes
NO_ZERO_IN_DATE,NO_ZERO_DATE values:

mysql> show variables like
'%sql_mode%';+---------------+-
+
| Variable_name |
Value

|
+---------------
+--
+
| sql_mode |
ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ZERO_IN_DA
TE,NO_ZERO_DATE,ERROR_FOR_
DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBST
ITUTION |
+---------------
+--
--

+
1 row in set (0.00 sec)

These values must be removed by issuing the following command:

mysql> Set global
sql_mode='ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,ERR
OR_FOR_DIVISION_BY_ZERO,NO
_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION';
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> show variables like '%sql_mode%';
+---------------
+--------------------------------------
---+
| Variable_name |
Value

 |
+---------------
+--------------------------------------
---+
| sql_mode |
ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,ERROR_FOR_DIV
ISION_BY_ZERO,NO_AUTO_CREA

Chapter 8
Other Oracle GoldenGate Parameters for MySQL

8-207

Parameter Description

TE_USER,NO_ENGINE_SUBSTITUTION |
+---------------+-----------------------------------
---+
1 row in set (0.01 sec)

Chapter 8
Other Oracle GoldenGate Parameters for MySQL

8-208

9
Performance

Learn about monitoring and tuning of Oracle GoldenGate Classic Architecture processes.

Monitoring Oracle GoldenGate Processing
See Monitor in the Oracle GoldenGate Microservices guide.

Using the Information Commands
You can view information about Oracle GoldenGate processes from the Oracle GoldenGate
MA web interface or use the command line interface to monitor various processes.

See Monitoring Performance, Monitoring Trails, , Monitoring Distribution Path Information
Statistics in the Step by Step Data Replication Using Oracle GoldenGate Microservices guide.

To learn about command syntax, usage, and examples, see the Command Line Interface
Reference for Oracle GoldenGate .

Table 9-1 Commands to View Process Information

Command What it shows

INFO {EXTRACT | REPLICAT} group [DETAIL] Run status, checkpoints, approximate lag, and
environmental information.

INFO MANAGER Run status and port number

INFO ALL INFO output for all Oracle GoldenGate processes
on the system

STATS {EXTRACT | REPLICAT} group Statistics on processing volume, such as number of
operations performed.

STATUS {EXTRACT | REPLICAT} group Run status (starting, running, stopped, abended)

STATUS MANAGER Run status

LAG {EXTRACT | REPLICAT} group Latency between last record processed and
timestamp in the data source

INFO {EXTTRAIL | RMTTRAIL} trail Name of associated process, position of last data
processed, maximum file size

SEND MANAGER Run status, information about child processes, port
information, trail purge settings

SEND {EXTRACT | REPLICAT} group Depending on the process and selected options,
returns information about memory pool, lag, TCP
statistics, long-running transactions, process
status, recovery progress, and more.

VIEW REPORT group Contents of the discard file or process report

VIEW GGSEVT Contents of the Oracle GoldenGate error log

9-1

Table 9-1 (Cont.) Commands to View Process Information

Command What it shows

COMMAND ER wildcard Information dependent on the COMMAND type:

INFO
LAG
SEND
STATS
STATUS
wildcard is a wildcard specification for the
process groups to be affected, for example:

INFO ER ext*
STATS ER *

INFO PARAM Queries for and displays static information.

GETPARAMINFO Displays currently-running parameter values.

INFO DISTPATH Returns information about distribution paths.
Before you run this command, ensure that the
Distribution Service is running for that deployment.

INFO EXTTRAIL Retrieves configuration information for a local trail.
It shows the name of the trail, the Extract that
writes to it, the position of the last data processed,
and the assigned maximum file size.

INFO RMTTRAIL Retrieves configuration information for a remote
trail. It shows the name of the trail, the Extract that
writes to it, the position of the last data processed,
and the assigned maximum file size.

INFO ER Retrieves information on multiple Extract and
Replicat groups as a unit.

INFO CHECKPOINTTABLE Confirms the existence of a checkpoint table and
view the date and time that it was created.

INFO CREDENTIALS Retrieves a list of credentials.

INFO ENCRYPTIONPROFILE Returns information about the encryption profiles
available with the Service Manager.

INFO HEARTBEATTABLE Displays information about the heartbeat tables
configured in the database.

INFO AUTHORIZATIONPROFILE Lists all the authorization profiles in a deployment
or information on a specific authorization profile for
a specific deployment.

INFO MASTERKEY Displays the contents of a currently open master-
key wallet. If a wallet store does not exist, a new
wallet store file is created. This wallet store file is
then used to host different encrypted keys as they
are created.

INFO PROFILE Returns information about managed process
profiles.

Chapter 9
Monitoring Oracle GoldenGate Processing

9-2

Table 9-1 (Cont.) Commands to View Process Information

Command What it shows

INFO RECVPATH Returns information about a target-initiated
distribution path in the Receiver Service. Before
you run this command, ensure that the Receiver
Service is running.

INFO SCHEMATRANDATA Valid for Oracle database only. Determine whether
Oracle schema-level supplemental logging is
enabled for the specified schema or if any
instantiation information is available. Use the
DBLOGIN command to establish a database
connection before using this command.

INFO TRACETABLE Verifies the existence of the specified trace table in
the local instance of the database

INFO TRANDATA Displays different outputs depending on the
database.

STATS DISTPATH | RECVPATH Get the statistics for the distribution path
(DISTPATH) or receiver path (RECVPATH).

STATS ER Retrieve statistics on multiple Extract and Replicat
groups as a unit. Use it with wildcards to affect
every Extract and Replicat group that satisfies the
wildcard.

STATUS ER Checks the status of multiple Extract and Replicat
groups as a unit

STATUS DEPLOYMENT View the status of the specified deployment.

STATUS PMSRVR
STATUS SERVICE Displays the status of specified Oracle GoldenGate

services.

Monitoring an Extract Recovery
If Extract abends when a long-running transaction is open, it can seem to take a long time to
recover when it is started again. To recover its processing state, Extract must search back
through the online and archived logs (if necessary) to find the first log record for that long-
running transaction. The farther back in time that the transaction started, the longer the
recovery takes, in general, and Extract can appear to be stalled.

To confirm that Extract is recovering properly, use the SEND EXTRACT command with the STATUS
option. One of the following status notations appears, and you can follow the progress as
Extract changes its log read position over the course of the recovery.

• In recovery[1] – Extract is recovering to its checkpoint in the transaction log. Meaning
that it is reading from either:

a) reading from BR checkpoint files and then archived/online logs,

or

b) reading from Recovery Checkpoint in archived/online log.

• In recovery[2] – Extract is recovering from its checkpoint to the end of the trail. Meaning
that a recovery marker is appended to the output trail when the last transaction was not
completely written then rewriting the transaction.

Chapter 9
Monitoring Oracle GoldenGate Processing

9-3

• Recovery complete – The recovery is finished, and normal processing will resume.

Monitoring Lag
Lag statistics show you how well the Oracle GoldenGate processes are keeping pace with the
amount of data that is being generated by the business applications. With this information, you
can diagnose suspected problems and tune the performance of the Oracle GoldenGate
processes to minimize the latency between the source and target databases. See Tuning the
Performance of Oracle GoldenGate for help with tuning Oracle GoldenGate to minimize lag.

About Lag
For Extract, lag is the difference, in seconds, between the time that a record was processed by
Extract (based on the system clock) and the timestamp of that record in the data source.

For Replicat, lag is the difference, in seconds, between the time that the last record was
processed by Replicat (based on the system clock) and the timestamp of the record in the trail.

To view lag statistics, use either the LAG or SEND command in GGSCI. For more information,
see Reference for Oracle GoldenGate.

Note:

The INFO command also returns a lag statistic, but this statistic is taken from the last
record that was checkpointed, not the current record that is being processed. It is
less accurate than LAG or INFO.

Controlling How Lag is Reported
Use the LAGREPORTMINUTES or LAGREPORTHOURS parameter to specify the interval at which
Manager checks for Extract and Replicat lag. See Reference for Oracle GoldenGate.

Use the LAGCRITICALSECONDS, LAGCRITICALMINUTES, or LAGCRITICALHOURS parameter to
specify a lag threshold that is considered critical, and to force a warning message to the error
log when the threshold is reached. This parameter affects Extract and Replicat processes on
the local system. See Reference for Oracle GoldenGate.

Use the LAGINFOSECONDS, LAGINFOMINUTES, or LAGINFOHOURS parameter to specify a lag
threshold; if lag exceeds the specified value, Oracle GoldenGate reports lag information to the
error log. If the lag exceeds the value specified with the LAGCRITICAL parameter, Manager
reports the lag as critical; otherwise, it reports the lag as an informational message. A value of
zero (0) forces a message at the frequency specified with the LAGREPORTMINUTES or
LAGREPORTHOURS parameter. See Reference for Oracle GoldenGate.

Using Automatic Heartbeat Tables to Monitor
You can use the default automatic heartbeat table functionality to monitor end-to-end
replication lag. Automatic heartbeats are sent from each source database into the replication
streams, by updating the records in a heartbeat seed table and a heartbeat table, and
constructing a heartbeat history table. Each of the replication processes in the replication
path process these heartbeat records and update the information in them. These heartbeat
records are inserted or updated into the heartbeat table at the target databases.

Chapter 9
Monitoring Oracle GoldenGate Processing

9-4

The heartbeat tables contain the following information:

• Source database

• Destination database

• Information about the outgoing replication streams:

– Names of the Extract, pump/Distribution Service, and or Replicat processes in the path

– Timestamps when heartbeat records were processed by the replication processes.

• Information about the incoming replication streams:

– Names of the Extract, pump/Distribution Service, and or replicat processes in the path

– Timestamps when heartbeat records were processed by the replication processes.

Using the information in the heartbeat table and the heartbeat history table, the current and
historical lags in each of the replication can be computed.

Replicat can track the current restart position of Extract with automatic heartbeat tables
(LOGBSN). This allows regenerating the trail files from the source database, if required and
minimizes the redo log retention period of the source database. In addition, by tracking the
most recent Extract restart position, the tombstone tables for automatic Conflict Detection and
Resolution (ACDR) tables can be purged more frequently.

In a bidirectional configuration, the heartbeat table has as many entries as the number of
replication paths to neighbors that the database has and in a unidirectional setup, the table at
the source is empty. The outgoing columns have the timestamps and the outgoing path, the
local Extract and the downstream processes. The incoming columns have the timestamps and
path of the upstream processes and local Replicat.

In a unidirectional configuration, the target database will populate only the incoming columns in
the heartbeat table.

Note:

The Automatic Heartbeat functionality is not supported on MySQL version 5.5.

Understanding Heartbeat Table End-To-End Replication Flow
The end-to-end replication process for heartbeat tables relies on using the Oracle GoldenGate
trail format. The process is as follows:

Add a heartbeat table to each of your databases with the ADD HEARTBEATTABLE command. Add
the heartbeat table to all source and target instances and then restart existing Oracle
GoldenGate processes to enable heartbeat functionality. Depending on the database, you
may or may not be required to create or enable a job to populate the heartbeat table data.
See the following sample:

GGSCI>DBLOGIN {[SOURCEDB data_source] |[, database@host:port] |USERID {/ |
userid}[, PASSWORD password]
[algorithm ENCRYPTKEY {keyname | DEFAULT}] |USERIDALIAS alias [DOMAIN domain]|
[SYSDBA | SQLID sqlid][SESSIONCHARSET character_set]}
GGSCI>ADD HEARTBEATTABLE

Chapter 9
Monitoring Oracle GoldenGate Processing

9-5

(Optional) For Oracle Databases, you must ensure that the Oracle DBMS_SCHEDULER is
operating correctly as the heartbeat update relies on it. You can query the DBMS_SCHEDULER by
issuing:

select START_DATE, LAST_START_DATE, NEXT_RUN_DATE
from dba_scheduler_jobs

Where job_name ='GG_UPDATE_HEARTBEATS';
Then look for valid entries for NEXT_RUN_DATE, which is the next time the scheduler will run. If
this is a timestamp in the past, then no job will run and you must correct it.
A common reason for the scheduler not working is when the parameter job_queue_processes
is set too low (typically zero). Increase the number of job_queue_processes configured in the
database with the ALTER SYSTEM SET JOB_QUEUE_PROCESSES = ##; command where ## is the
number of job queue processes.

Run an Extract, which on receiving the logical change records (LCR) checks the value in the
OUTGOING_EXTRACT column.

• If the Extract name matches this value, the OUTGOING_EXTRACT_TS column is updated and
the record is entered in the trail.

• If the Extract name does not match then the LCR is discarded.

• If the OUTGOING_EXTRACT value is NULL, it is populated along with OUTGOING_EXTRACT_TS
and the record is entered in the trail.

The Pump or Distribution server on reading the record, checks the value in the
OUTGOING_ROUTING_PATH column. This column has a list of distribution paths.
If the value is NULL, the column is updated with the current group name (and path if this is a
Distribution server),"*", update the OUTGOING_ROUTING_TS column, and the record is written
into its target trail file.
If the value has a "*" in the list, then replace it with group name[:pathname],"*"', update the
OUTGOING_ROUTING_TS column, and the record is written into its target trail file. When the value
does not have a asterisk (*) in the list and the pump name is in the list, then the record is sent
to the path specified in the relevant group name[:pathname],"*"' pair in the list. If the pump
name is not in the list, the record is discarded.
Run a Replicat, which on receiving the record checks the value in the OUTGOING_REPLICAT
column.

• If the Replicat name matches the value, the row in the heartbeat table is updated and the
record is inserted into the history table.

• If the Replicat name does not match, the record is discarded.

• If the value is NULL, the row in the heartbeat and heartbeat history tables are updated with
an implicit invocation of the Replicat column mapping.

Automatic Replicat Column Mapping:

REMOTE_DATABASE = LOCAL_DATABASE
INCOMING_EXTRACT = OUTGOING_EXTRACT
INCOMING_ROUTING_PATH = OUTGOING_ROUTING_PATH with "*" removed
INCOMING_REPLICAT = @GETENV ("GGENVIRONMENT", "GROUPNAME")

Chapter 9
Monitoring Oracle GoldenGate Processing

9-6

INCOMING_HEARTBEAT_TS = HEARTBEAT_TIMESTAMP
INCOMING_EXTRACT_TS = OUTGOING_EXTRACT_TS
INCOMING_ROUTING_TS = OUTGOING_ROUTING_TS
INCOMING_REPLICAT_TS = @DATE ('UYYYY-MM-DD
HH:MI:SS.FFFFFF','JTSLCT',@GETENV ('JULIANTIMESTAMP'))
LOCAL_DATABASE = REMOTE_DATABASE
OUTGOING_EXTRACT = INCOMING_EXTRACT
OUTGOING_ROUTING_PATH = INCOMING_ROUTING_PATH
OUTGOING_HEARTBEAT_TS = INCOMING_HEARTBEAT_TS
OUTGOING_REPLICAT = INCOMING_REPLICAT
OUTGOING_HEARTBEAT_TS = INCOMING_HEARTBEAT_TS

There is just one column for OUTGOING_ROUTING_TS. If a record passes through multiple pump
before being applied by a Replicat, each pump will overwrite the OUTGOING_ROUTING_TS
column so that the pumps lag that is calculated is not specific to a single pump and refers to
the lag across all the pumps specified in PUMP_PATH.

Additional Considerations:

Computing lags as the heartbeat flows through the system relies on the clocks of the source
and target systems to be set up correctly. It is possible that the lag can be negative if the target
system is ahead of the source system. The lag is shown as a negative number so that you are
aware of their clock discrepancy and can take actions to fix it.

The timestamp that flows through the system is in UTC. There is no time zone associated with
the timestamp so when viewing the heartbeat tables, the lag can be viewed quickly even if
different components are in different time zones. You can write any view you want on top of the
underlying tables; UTC is recommended.

All the heartbeat entries are written to the trail in UTF-8.

The outgoing and incoming paths together uniquely determine a row. Meaning that if you have
two rows with same outgoing path and a different incoming path, then it is considered two
unique entries.

Heartbeat Table Details

The GG_HEARTBEAT table displays timestamp information of the end-to-end replication time and
the timing information at the different components primary and secondary Extract and Replicat.

In a unidirectional environment, only the target database contains information about the
replication lag. That is the time when a record is generated at the source database and
becomes visible to clients at the target database.

Note:

The automatic heartbeat tables don’t populate the OUTGOING_% columns with data,
when both the source and remote databases have the same name. To change the
database name, use the utility DBNEWID. For details, see the DBNEWID Utility.

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
replication time from the remote
database is measured.

CURRENT_LOCAL_TS 00:00:00 DATETIME

Chapter 9
Monitoring Oracle GoldenGate Processing

9-7

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/sutil/oracle-dbnewid-utility.html#GUID-D138A757-6A2A-41A2-B722-A98708C5F5AD

Column Data Type Description

HEARTBEAT_TIMESTAMP TIMESTAMP(6) The point in time when a
timestamp is generated at the
remote database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated

INCOMING_EXTRACT VARCHAR2 Name of the primary Extract
(capture) at the remote database

INCOMING_ROUTING_PATH VARCHAR2 Name of the secondary Extract
(pump) at the remote database

INCOMING_REPLICAT VARCHAR2 Name of the Replicat on the local
database.

INCOMING_HEARTBEAT_TS TIMESTAMP(6) Final timestamp when the
information is inserted into the
GG_HEARTBEAT table at the local
database.

INCOMING_EXTRACT_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by the
primary Extract at the remote
database.

INCOMING_ROUTING_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by the
secondary Extract at the remote
database.

INCOMING_REPLICAT_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by
Replicat at the local database.

OUTGOING_EXTRACT VARCHAR2 Bidirectional/N-way replication:
Name of the primary Extract on
the local database.

OUTGOING_ROUTING_PATH VARCHAR2 Bidirectional/N-way replication:
Name of the secondary Extract
on the local database.

OUTGOING_REPLICAT VARCHAR2 Bidirectional/N-way replication:
Name of the Replicat on the
remote database.

OUTGOING_HEARTBEAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Final timestamp when the
information is inserted into the
table at the remote database.

OUTGOING_EXTRACT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp of the generated
timestamp is processed by the
primary Extract on the local
database.

OUTGOING_ROUTING_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp of the generated
timestamp is processed by the
secondary Extract on the local
database.

Chapter 9
Monitoring Oracle GoldenGate Processing

9-8

Column Data Type Description

OUTGOING_REPLICAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp of the generated
timestamp is processed by
Replicat on the remote database.

INCOMING_REPLICAT_LW_CSN VARCHAR2
INCOMING_EXTRACT_HEARTBEAT
_CSN

VARCHAR2

INCOMING_EXTRACT_RESTART_C
SN

VARCHAR2

INCOMING_EXTRACT_RESTART_T
S

TIMESTAMP(6)

The GG_HEARTBEAT_HISTORY table displays historical timestamp information of the end-to-end
replication time and the timing information at the different components primary and secondary
Extract and Replicat.

In a unidirectional environment, only the destination database contains information about the
replication lag.

Timestamps are managed in UTC time zone. That is the time when a record is generated at
the source database and becomes visible to clients at the target database.

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the end-to-
end lag is measured.

HEARTBEAT_RECEIVED_TS TIMESTAMP(6) Point in time when a timestamp
from the remote database
receives at the local database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

INCOMING_EXTRACT VARCHAR2 Name of the primary Extract on
the remote database.

INCOMING_ROUTING_PATH VARCHAR2 Name of the secondary Extract of
the remote database.

INCOMING_REPLICAT VARCHAR2 Name of the Replicat on the local
database.

INCOMING_HEARTBEAT_TS TIMESTAMP(6) Final timestamp when the
information is inserted into the
GG_HEARTBEAT_HISTORY table
on the local database.

INCOMING_EXTRACT_TS TIMESTAMP(6) Timestamp when the generated
timestamp is processed by the
primary Extract on the remote
database.

INCOMING_ROUTING_TS TIMESTAMP(6) Timestamp when the generated
timestamp is processed by the
secondary Extract on the remote
database.

Chapter 9
Monitoring Oracle GoldenGate Processing

9-9

Column Data Type Description

INCOMING_REPLICAT_TS TIMESTAMP(6) Timestamp when the generated
timestamp is processed by
Replicat on the local database.

OUTGOING_EXTRACT VARCHAR2 Bidirectional/N-way replication:
Name of the primary Extract from
the local database.

OUTGOING_ROUTING_PATH VARCHAR2 Bidirectional/N-way replication:
Name of the secondary Extract
from the local database.

OUTGOING_REPLICAT VARCHAR2 Bidirectional/N-way replication:
Name of the Replicat on the
remote database.

OUTGOING_HEARTBEAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Final timestamp when the
information is persistently
inserted into the table of the
remote database.

OUTGOING_EXTRACT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp when the generated
timestamp is processed by the
primary Extract on the local
database.

OUTGOING_ROUTING_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp when the generated
timestamp is processed by the
secondary Extract on the local
database.

OUTGOING_REPLICAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp when the generated
timestamp is processed by
Replicat on the remote database.

REPLICAT_LOW_WATERMARK_CSN String This column is populated by
Replicat when it processes this
heartbeat record. It populates this
column with its current low
watermark (LWM) when it
processes this record. This allows
us to choose a LOGBSN from a
heartbeat record which is as of
the Replicat LWM.

SOURCE_EXTRACT_HEARTBEAT_C
SN

String This column is populated by
Extract and contains the source
commit SCN for the heartbeat
transaction in the source
database. The heartbeat job on
the source database cannot
populate this value as it will not
know the commit SCN apriori.

Chapter 9
Monitoring Oracle GoldenGate Processing

9-10

Column Data Type Description

SOURCE_EXTRACT_RESTART_CSN String This column will be populated by
Extract and will contain the
current LOGBSN when Extract
processes this particular
heartbeat record. The heartbeat
job on the source database will
not populate this value.

SOURCE_EXTRACT_RESTART_CSN
_TS

TIMESTAMP This column will be populated by
Extract and will contain the redo
timestamp in UTC that
corresponds to the current
LOGBSN when Extract
processes this particular
heartbeat record. The heartbeat
job on the source database will
not populate this value.

The GG_LAG view displays information about the replication lag between the local and remote
databases.

In a unidirectional environment, only the destination database contains information about the
replication lag. The lag is measured in seconds.

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the end-to-
end replication lag from the
remote database is measured.

CURRENT_LOCAL_TS TIMESTAMP(6) Current timestamp of the local
database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

INCOMING_HEARTBEAT_AGE NUMBER The age of the most recent
heartbeat received from the
remote database.

INCOMING_PATH VARCHAR2 Replication path from the remote
database to the local database
with Extract and Replicat
components.

INCOMING_LAG NUMBER Replication lag from the remote
database to the local database.
This is the time where the
heartbeat where generated at the
remote database minus the time
where the information was
persistently inserted into the table
at the local database.

OUTGOING_HEARTBEAT_AGE NUMBER The age of the most recent
heartbeat from the local database
to the remote database.

OUTGOING_PATH VARCHAR2 Replication Path from Local
database to the remote database
with Extract and Replicat
components

Chapter 9
Monitoring Oracle GoldenGate Processing

9-11

Column Data Type Description

OUTGOING_LAG NUMBER Replication Lag from the local
database to the remote database.
This is the time where the
heartbeat where generated at the
local database minus the time
where the information was
persistently inserted into the table
at the remote database.

REMOTE_EXTRACT_RESTART_CSN String Source Extract restart position.

REMOTE_DATABASE
DB_UNIQUE_NAME

String Remote database unique name is
displayed. If no unique name
exists, then the DB_NAME value
is displayed.

REMOTE_EXTRACT_RESTART_CSN
_TIME

Timestamp Timestamp associated with
source Extract redo position.

REMOTE_DB_OLDEST_OPEN_TXN_
AGE

Timestamp Age of the oldest open
transaction at the source
database that Extract is currently
processing. This column can be
calculated as SYSTIMESTAMP -
REMOTE_EXTRACT_RESTART_TIM
E.

LOCAL_REPLICAT_LWM_CSN String Low watermark CSN of the local
Replicat when it processed the
heartbeat.

The GG_LAG_HISTORY view displays the history information about the replication lag history
between the local and remote databases.

In a unidirectional environment, only the destination database contains information about the
replication lag.

The unit of the lag units is in seconds.

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the end-to-
end replication lag from the
remote database is measured.

HEARTBEAT_RECEIVED_TS TIMESTAMP(6) Point in time when a timestamp
from the remote database
receives on the local database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

DB_NAME String Remote database name.

Chapter 9
Monitoring Oracle GoldenGate Processing

9-12

Column Data Type Description

DB_UNIQUE_NAME String Remote database unique name.
If the database unique name
doesn't exist, then the DB_NAME
and DB_UNIQUE_NAME will be
same.
In a switchover to standby
scenario, the db_unique_name
will change but the db_name and
replication path remain the same

INCOMING_HEARTBEAT_AGE NUMBER The age of the heartbeat table.

INCOMING_PATH VARCHAR2 Replication path from the remote
database to local database with
Extract and Replicat components.

INCOMING_LAG NUMBER Replication lag from the remote
database to the local database.
This is the time where the
heartbeat was generated at the
remote database minus the time
where the information was
persistently inserted into the table
on the local database.

OUTGOING_HEARTBEAT_AGE NUMBER
OUTGOING_PATH VARCHAR2 Replication path from local

database to the remote database
with Extract and Replicat
components.

OUTGOING_LAG NUMBER Replication lag from the local
database to the remote database.
This is the time where the
heartbeat was generated at the
local database minus the time
where the information was
persistently inserted into the table
on the remote database.

REMOTE_EXTRACT_RESTART_CSN String Source Extract restart position.

REMOTE_EXTRACT_RESTART_CSN
_TIME

TIMESTAMP Timestamp associated with
source Extract redo position.

REMOTE_DB_OLDEST_OPEN_TXN_
AGE

TIMESTAMP Age of the oldest open
transaction at the source
database that Extract is currently
processing. This column can be
calculated as: SYSTIMESTAMP -
REMOTE_EXTRACT_RESTART_TIM
E

LOCAL_REPLICAT_LWM_CSN String Low watermark CSN of the local
Replicat when it processed the
heartbeat.

INCOMING_EXTRACT_LAG
INCOMING_ROUTINE_LAG
INCOMING_REPLICAT_READ_LAG

Chapter 9
Monitoring Oracle GoldenGate Processing

9-13

Column Data Type Description

INCOMING_REPICAT_LAG
OUTGOING_EXTRACT_LAG
OUTGOING_ROUTINE_LAG
OUTGOING_REPLICAT_READ_LAG
OUTGOING_REPLICAT_LAG

Updating Heartbeat Tables
The HEARTBEAT_TIMESTAMP column in the heartbeat seed table must be updated periodically by
a database job. The default heartbeat interval is 1 minute and this interval can be specified or
overridden using from the command line or the Administration Service web interface.

For Oracle Database, the database job is created automatically. For all other supported
databases, you must create background jobs to update the heartbeat timestamp using the
database specific scheduler functionality.

See ADD HEARTBEATTABLE, ALTER HEARTBEATTABLE for details on updating the heartbeat table.

Purging the Heartbeat History Tables
The heartbeat history table is purged periodically using a job. The default interval is 30 days
and this interval can be specified or overridden using a command line inteface such as Admin
Client or GGSCI or the Administration Service web interface.

For Oracle Database, the database job is created automatically. For all other supported
databases, you must create background jobs to purge the heartbeat history table using the
database specific scheduler functionality.

Best Practice
Oracle recommends that you:

• Use the same heartbeat frequency on all the databases to makes diagnosis easier.

• Adjust the retention period if space is an issue.

• Retain the default heartbeat table frequency; the frequency set to be 30 to 60 seconds
gives the best results for most workloads.

• Use lag history statistics to collect lag and age information.

Using the Automatic Heartbeat Commands
You can use the heartbeat table commands to control the Oracle GoldenGate automatic
heartbeat functionality as follows.

Command Description

ADD HEARTBEATTABLE Creates the heartbeat tables required for automatic heartbeat
functionality including the LOGBSN columns.

ALTER HEARTBEATTABLE Alters existing heartbeat objects.

Chapter 9
Monitoring Oracle GoldenGate Processing

9-14

Command Description

ALTER HEARTBEATTABLE
UPGRADE

Alters the heartbeat tables to add the LOGBSN columns to the heartbeat
tables. This is optional.

DELETE HEARTBEATTABLE Deletes existing heartbeat objects.

DELETE HEARTBEATENTRY Deletes entries in the heartbeat table.

INFO HEARTBEATTABLE Displays heartbeat table information.

For more information, see the Reference for Oracle GoldenGate for Windows and UNIX.

Monitoring Processing Volume
The STATS commands show you the amount of data that is being processed by an Oracle
GoldenGate process, and how fast it is being moved through the Oracle GoldenGate system.
With this information, you can diagnose suspected problems and tune the performance of the
Oracle GoldenGate processes. These commands provide a variety of options to select and
filter the output.

The STATS commands are: STATS EXTRACT, STATS REPLICAT, or STATS ER command.

You can send interim statistics to the report file at any time with the SEND EXTRACT or SEND
REPLICAT command with the REPORT option.

Using the Error Log
Use the Oracle GoldenGate error log to view:

• a history of GGSCI commands

• Oracle GoldenGate processes that started and stopped

• processing that was performed

• errors that occurred

• informational and warning messages

Because the error log shows events as they occurred in sequence, it is a good tool for
detecting the cause (or causes) of an error. For example, you might discover that:

• someone stopped a process

• a process failed to make a TCP/IP or database connection

• a process could not open a file

To view the error log, use any of the following:

• Standard shell command to view the ggserr.log file within the root Oracle GoldenGate
directory

• Oracle GoldenGate Director or Oracle GoldenGate Monitor

• VIEW GGSEVT command in GGSCI.

You can control the ggserr.log file behavior to:

• Roll over the file when it reaches a maximum size, which is the default to avoid disk space
issues.

Chapter 9
Monitoring Oracle GoldenGate Processing

9-15

• All messages are appended to the file by all processes without regard to disk space.

• Disable the file.

• Route messages to another destination, such as the system log.

This behavior is controlled and described in the ogg-ggserr.xml file in one of the following
locations:

Microservices Architecture
$OGG_HOME/etc/conf/logging/

Classic Architecture
diretc/logging/

Using the Process Report
Use the process report to view (depending on the process):

• parameters in use

• table and column mapping

• database information

• runtime messages and errors

• runtime statistics for the number of operations processed

Every Extract, Replicat, and Manager process generates a report file. The report can help you
diagnose problems that occurred during the run, such as invalid mapping syntax, SQL errors,
and connection errors.

To view a process report, use any of the following:

• standard shell command for viewing a text file

• Oracle GoldenGate Monitor

• VIEW REPORT command in GGSCI.

• To view information if a process abends without generating a report, use the following
command to run the process from the command shell of the operating system (not GGSCI)
to send the information to the terminal.

process paramfile path.prm

Where:

– The value for process is either extract or replicat.

– The value for path.prm is the fully qualified name of the parameter file, for example:

replicat paramfile /ogg/dirdat/repora.prm
By default, reports have a file extension of .rpt, for example EXTORA.rpt. The default location
is the dirrpt sub-directory of the Oracle GoldenGate directory. However, these properties can
be changed when the group is created. Once created, a report file must remain in its original
location for Oracle GoldenGate to operate properly after processing has started.

To determine the name and location of a process report, use the INFO EXTRACT, INFO
REPLICAT, or INFO MANAGER command in GGSCI.

Chapter 9
Monitoring Oracle GoldenGate Processing

9-16

Scheduling Runtime Statistics in the Process Report
By default, runtime statistics are written to the report once, at the end of each run. For long or
continuous runs, you can use optional parameters to view these statistics on a regular basis,
without waiting for the end of the run.

To set a schedule for reporting runtime statistics, use the REPORT parameter in the Extract or
Replicat parameter file to specify a day and time to generate runtime statistics in the report.
See REPORT.

To send runtime statistics to the report on demand, use the SEND EXTRACT or SEND REPLICAT
command with the REPORT option to view current runtime statistics when needed.

Viewing Record Counts in the Process Report
Use the REPORTCOUNT parameter to report a count of transaction records that Extract or
Replicat processed since startup. Each transaction record represents a logical database
operation that was performed within a transaction that was captured by Oracle GoldenGate.
The record count is printed to the report file and to the screen. For more information, see
Reference for Oracle GoldenGate.

Preventing SQL Errors from Filling the Replicat Report File
Use the WARNRATE parameter to set a threshold for the number of SQL errors that can be
tolerated on any target table before being reported to the process report and to the error log.
The errors are reported as a warning. If your environment can tolerate a large number of these
errors, increasing WARNRATE helps to minimize the size of those files. For more information, see
Reference for Oracle GoldenGate.

Using the Discard File
By default, a discard file is generated whenever a process is started with the START command
through GGSCI. The discard file captures information about Oracle GoldenGate operations
that failed. This information can help you resolve data errors, such as those that involve invalid
column mapping.

The discard file reports such information as:

• The database error message

• The sequence number of the data source or trail file

• The relative byte address of the record in the data source or trail file

• The details of the discarded operation, such as column values of a DML statement or the
text of a DDL statement.

To view the discard file, use a text editor or use the VIEW REPORT command in GGSCI. See
Reference for Oracle GoldenGate.

The default discard file has the following properties:

• The file is named after the process that creates it, with a default extension of .dsc.
Example: finance.dsc.

• The file is created in the dirrpt sub-directory of the Oracle GoldenGate installation
directory.

Chapter 9
Monitoring Oracle GoldenGate Processing

9-17

• The maximum file size is 50 megabytes.

• At startup, if a discard file exists, it is purged before new data is written.

You can change these properties by using the DISCARDFILE parameter. You can disable the
use of a discard file by using the NODISCARDFILE parameter. See Reference for Oracle
GoldenGate.

If a proces is started from the command line of the operating system, it does not generate a
discard file by default. You can use the DISCARDFILE parameter to specify the use of a discard
file and its properties.

Once created, a discard file must remain in its original location for Oracle GoldenGate to
operate properly after processing has started.

Maintaining the Discard and Report Files
By default, discard files and report files are aged the same way. A new discard or report file is
created at the start of a new process run. Old files are aged by appending a sequence number
from 0 (the most recent) to 9 (the oldest) to their names.

If the active report or discard file reaches its maximum file size before the end of a run (or over
a continuous run), the process abends unless there is an aging schedule in effect. Use the
DISCARDROLLOVER and REPORTROLLOVER parameters to set aging schedules for the discard and
report files respectively. These parameters set instructions for rolling over the files at regular
intervals, in addition to when the process starts. Not only does this control the size of the files
and prevent process outages, but it also provides a predictable set of archives that can be
included in your archiving routine. For more information, see the following documentation:

• DISCARDROLLOVER
• REPORTROLLOVER
No process ever has more than ten aged reports or discard files and one active report or
discard file. After the tenth aged file, the oldest is deleted when a new report is created. It is
recommended that you establish an archiving schedule for aged reports and discard files in
case they are needed to resolve a service request.

Table 9-2 Current Extract and Manager Reports Plus Aged Reports

Permissions X Date Report

-rw-rw-rw- 1 ggs ggs 1193 Oct 11 14:59 MGR.rpt

-rw-rw-rw- 1 ggs ggs 3996 Oct 5 14:02 MGR0.rpt

-rw-rw-rw- 1 ggs ggs 4384 Oct 5 14:02 TCUST.rpt

-rw-rw-rw- 1 ggs ggs 1011 Sep 27 14:10 TCUST0.rpt

-rw-rw-rw- 1 ggs ggs 3184 Sep 27 14:10 TCUST1.rpt

-rw-rw-rw- 1 ggs ggs 2655 Sep 27 14:06 TCUST2.rpt

-rw-rw-rw- 1 ggs ggs 2655 Sep 27 14:04 TCUST3.rpt

Chapter 9
Monitoring Oracle GoldenGate Processing

9-18

Table 9-2 (Cont.) Current Extract and Manager Reports Plus Aged Reports

Permissions X Date Report

-rw-rw-rw- 1 ggs ggs 2744 Sep 27 13:56 TCUST4.rpt

-rw-rw-rw- 1 ggs ggs 3571 Aug 29 14:27 TCUST5.rpt

Reconciling Time Differences
To account for time differences between source and target systems, use the TCPSOURCETIMER
parameter in the Extract parameter file. This parameter adjusts the timestamps of replicated
records for reporting purposes, making it easier to interpret synchronization lag. For more
information, see Reference for Oracle GoldenGate.

Getting Help with Performance Tuning
See Tuning the Performance of Oracle GoldenGate for help with tuning the performance of
Oracle GoldenGate.

Tuning the Performance of Oracle GoldenGate
This chapter contains suggestions for improving the performance of Oracle GoldenGate
components.

Using Multiple Process Groups
Typically, only one Extract group is required to efficiently capture from a database. However,
depending on the redo (transactional) values, or the data and operation types, you may find
that you are required to add one or more Extract group to the configuration.

Similarly, only one Replicat group is typically needed to apply data to a target database if using
Replicat in coordinated mode. (See About Coordinated Replicat Mode for more information.)
However, even in some cases when using Replicat in coordinated mode, you may be required
to use multiple Replicat groups. If you are using Replicat in classic mode and your applications
generate a high transaction volume, you probably will need to use parallel Replicat groups.

Because each Oracle GoldenGate component — Extract, data pump, trail, Replicat — is an
independent module, you can combine them in ways that suit your needs. You can use multiple
trails and parallel Extract and Replicat processes (with or without data pumps) to handle large
transaction volume, improve performance, eliminate bottlenecks, reduce latency, or isolate the
processing of specific data.

The diagram below shows some of the ways that you can configure Oracle GoldenGate to
improve throughput speed and overcome network bandwidth issues.

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-19

Figure 9-1 Load-balancing configurations that improve performance

The image labels imply the following:

• A: Parallel Extracts divide the load. For example, by schema or to isolate tables that
generate fetches.

• B: A data pump with local trail can be used for filtering, conversion, and network false
tolerance.

• C: Multiple data pumps work around network per-process bandwidth limitations to enable
TCP/IP throughput. Divide the TABLE parameter statements among them.

• D: Parallel Replicats increase throughput to the database. Any trail can be read by one or
more Replicats. Divide MAP statements among them.

Considerations for Using Multiple Process Groups
Before configuring multiple processing groups, review the following considerations to ensure
that your configuration produces the desired results and maintains data integrity.

Maintaining Data Integrity
Not all workloads can be partitioned across multiple groups and still preserve the original
transaction atomicity. You must determine whether the objects in one group will ever have
dependencies on objects in any other group, transactional or otherwise. For example, tables
for which the workload routinely updates the primary key cannot easily be partitioned in this
manner. DDL replication (if supported for the database) is not viable in this mode, nor is the
use of some SQLEXEC or EVENTACTIONS features that base their actions on a specific record.

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-20

If your tables do not have any foreign- key dependencies or updates to primary keys, you may
be able to use multiple processes. Keep related DML together in the same process stream to
ensure data integrity.

Number of Groups
The number of concurrent Extract and Replicat process groups that can run on a system
depends on how much system memory is available. Each Extract and classic Replicat process
needs approximately 25-55 MB of memory or more, depending on the size of the transactions
and the number of concurrent transactions. The Oracle GoldenGate command interface fully
supports up to 5,000 concurrent Extract and Replicat groups (combined) per instance of Oracle
GoldenGate. At the supported level, all groups can be controlled and viewed in full with
commands such as the INFO and STATUS commands.

Beyond the supported level, group information is not displayed and errors may occur. Oracle
GoldenGate recommends keeping the number of Extract and Replicat groups (combined) at a
more manageable level, such as 100 or below, in order to manage the environment effectively.
The maximum number of groups is controlled by the MAXGROUPS parameter, which has a default
value of 1000.

For Windows Server environments, the number of process groups that can be run are tightly
coupled to the ‘non-interactive’ Windows desktop heap memory settings. The default settings
for Windows desktop heap may be enough to run very small numbers of process groups, but
as you approach larger amounts of process groups, more than 60 or so, you will either need to
adjust the ‘non-interactive’ value of the SharedSection field in the registry, based on this
information from Microsoft (Windows desktop heap memory), or increase the number of Oracle
GoldenGate homes and spread the total number of desired process groups across these
homes.

Note:

For more information on modifying the Windows Desktop Heap memory, review the
following Oracle Knowledge Base document (Doc ID 2056225.1).

Memory
The system must have sufficient swap space for each Oracle GoldenGate Extract and Replicat
process that will be running. To determine the required swap space:

1. Start up one Extract or Replicat.

2. Run GGSCI.

3. View the report file and find the line PROCESS VM AVAIL FROM OS (min).

4. Round up the value to the next full gigabyte if needed. For example, round up 1.76GB to 2
GB.

5. Multiply that value by the number of Extract and Replicat processes that will be running.
The result is the maximum amount of swap space that could be required

See the CACHEMGR parameter in Reference for Oracle GoldenGate for more information about
how memory is managed.

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-21

Isolating Processing-Intensive Tables
You can use multiple process groups to support certain kinds of tables that tend to interfere
with normal processing and cause latency to build on the target. For example:

• Extract may need to perform a fetch from the database because of the data type of the
column, because of parameter specifications, or to perform SQL procedures. When data
must be fetched from the database, it affects the performance of Extract. You can get fetch
statistics from the STATS EXTRACT command if you include the STATOPTIONS REPORTFETCH
parameter in the Extract parameter file. You can then isolate those tables into their own
Extract groups, assuming that transactional integrity can be maintained.

• In its classic mode, Replicat process can be a source of performance bottlenecks because
it is a single-threaded process that applies operations one at a time by using regular SQL.
Even with BATCHSQL enabled (see Reference for Oracle GoldenGate) Replicat may take
longer to process tables that have large or long-running transactions, heavy volume, a very
large number of columns that change, and LOB data. You can then isolate those tables
into their own Replicat groups, assuming that transactional integrity can be maintained.

Using Parallel Replicat Groups on a Target System
This section contains instructions for creating a configuration that pairs one Extract group with
multiple Replicat groups. Although it is possible for multiple Replicat processes to read a single
trail (no more than three of them to avoid disk contention) it is recommended that you pair each
Replicat with its own trail and corresponding Extract process.

For detailed instructions on configuring change synchronization, see Configuring Online
Change Synchronization.

To Create the Extract Group

Note:

This configuration includes Extract data-pumps.

1. On the source, use the ADD EXTRACT command to create a primary Extract group.

2. On the source, use the ADD EXTTRAIL command to specify as many local trails as the
number of Replicat groups that you will be creating. All trails must be associated with the
primary Extract group.

3. On the source create a data-pump Extract group.

4. On the source, use the ADD RMTTRAIL command to specify as many remote trails as the
number of Replicat groups that you will be creating. All trails must be associated with the
data-pump Extract group.

5. On the source, use the EDIT PARAMS command to create Extract parameter files, one for
the primary Extract and one for the data pump, that contain the parameters required for
your database environment. When configuring Extract, do the following:

• Divide the source tables among different TABLE parameters.

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-22

• Link each TABLE statement to a different trail. This is done by placing the TABLE
statements after the EXTTRAIL or RMTTRAIL parameter that specifies the trail you want
those statements to be associated with.

To Create the Replicat Groups
1. On the target, create a Replicat checkpoint table. For instructions, see About Checkpoint

Table. All Replicat groups can use the same checkpoint table.

2. On the target, use the ADD REPLICAT command to create a Replicat group for each trail
that you created. Use the EXTTRAIL argument of ADD REPLICAT to link the Replicat group
to the appropriate trail.

3. On the target, use the EDIT PARAMS command to create a Replicat parameter file for each
Replicat group that contains the parameters required for your database environment. All
MAP statements for a given Replicat group must specify the same objects that are
contained in the trail that is linked to that group.

4. In the Manager parameter file on the target system, use the PURGEOLDEXTRACTS parameter
to control the purging of files from the trails.

Using Multiple Extract Groups with Multiple Replicat Groups
Multiple Extract groups write to their own trails. Each trail is read by a dedicated Replicat
group.

For detailed instructions on configuring change synchronization, see Configuring Online
Change Synchronization.

To Create the Extract Groups

Note:

This configuration includes data pumps.

1. On the source, use the ADD EXTRACT command to create the primary Extract groups.

2. On the source, use the ADD EXTTRAIL command to specify a local trail for each of the
Extract groups that you created.

3. On the source create a data-pump Extract group to read each local trail that you created.

4. On the source, use the ADD RMTTRAIL command to specify a remote trail for each of the
data-pumps that you created.

5. On the source, use the EDIT PARAMS command to create an Extract parameter file for each
primary Extract group and each data-pump Extract group.

To Create the Replicat Groups
1. On the target, create a Replicat checkpoint table. For instructions, see Creating a

Checkpoint Table. All Replicat groups can use the same checkpoint table.

2. On the target, use the ADD REPLICAT command to create a Replicat group for each trail.
Use the EXTTRAIL argument of ADD REPLICAT to link the group to the trail.

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-23

3. On the target, use the EDIT PARAMS command to create a Replicat parameter file for each
Replicat group. All MAP statements for a given Replicat group must specify the same
objects that are contained in the trail that is linked to the group.

4. In the Manager parameter files on the source system and the target system, use the
PURGEOLDEXTRACTS parameter to control the purging of files from the trails.

Splitting Large Tables Into Row Ranges Across Process Groups
You can use the @RANGE function to divide the rows of any table across two or more Oracle
GoldenGate processes. It can be used to increase the throughput of large and heavily
accessed tables and also can be used to divide data into sets for distribution to different
destinations. Specify each range in a FILTER clause in a TABLE or MAP statement.

@RANGE is safe and scalable. It preserves data integrity by guaranteeing that the same row will
always be processed by the same process group.

It might be more efficient to use the primary Extract or a data pump to calculate the ranges
than to use Replicat. To calculate ranges, Replicat must filter through the entire trail to find data
that meets the range specification. However, your business case should determine where this
filtering is performed.

Figure 9-2 Dividing rows of a table between two Extract groups

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-24

Figure 9-3 Dividing rows of a table between two Replicat groups

Configuring Oracle GoldenGate to Use the Network Efficiently
Inefficiencies in the transfer of data across the network can cause lag in the Extract process
and latency on the target. If not corrected, it can eventually cause process failures.

When you first start a new Oracle GoldenGate configuration:

1. Establish benchmarks for what you consider to be acceptable lag and throughput volume
for Extract and for Replicat. Keep in mind that Extract will normally be faster than Replicat
because of the kind of tasks that each one performs. Over time you will know whether the
difference is normal or one that requires tuning or troubleshooting.

2. Set a regular schedule to monitor those processes for lag and volume, as compared to the
benchmarks. Look for lag that remains constant or is growing, as opposed to occasional
spikes. Continuous, excess lag indicates a bottleneck somewhere in the Oracle
GoldenGate configuration. It is a critical first indicator that Oracle GoldenGate needs tuning
or that there is an error condition.

To view volume statistics, use the STATS EXTRACT or STATS REPLICAT command. To view lag
statistics, use the LAG EXTRACT or LAG REPLICAT command.

Detecting a Network Bottleneck that is Affecting Oracle GoldenGate
To detect a network bottleneck that is affecting the throughput of Oracle GoldenGate, follow
these steps.

1. Issue the following command to view the ten most recent Extract checkpoints. If you are
using a data-pump Extract on the source system, issue the command for the primary
Extract and also for the data pump.

INFO EXTRACT group, SHOWCH 10
2. Look for the Write Checkpoint statistic. This is the place where Extract is writing to the

trail.

Write Checkpoint #1

GGS Log Trail
Current Checkpoint (current write position):

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-25

 Sequence #: 2
 RBA: 2142224
 Timestamp: 2011-01-09 14:16:50.567638
 Extract Trail: ./dirdat/eh

3. For both the primary Extract and data pump:

• Determine whether there are more than one or two checkpoints. There can be up to
ten.

• Find the Write Checkpoint n heading that has the highest increment number (for
example, Write Checkpoint #8) and make a note of the Sequence, RBA, and
Timestamp values. This is the most recent checkpoint.

4. Refer to the information that you noted, and make the following validation:

• Is the primary Extract generating a series of checkpoints, or just the initial checkpoint?

• If a data pump is in use, is it generating a series of checkpoints, or just one?

5. Issue INFO EXTRACT for the primary and data pump Extract processes again.

• Has the most recent write checkpoint increased? Look at the most recent Sequence,
RBA, and Timestamp values to see if their values were incremented forward since the
previous INFO EXTRACT command.

6. Issue the following command to view the status of the Replicat process.

SEND REPLICAT group, STATUS

• The status indicates whether Replicat is delaying (waiting for data to process),
processing data, or at the end of the trail (EOF).

There is a network bottleneck if the status of Replicat is either in delay mode or at the end of
the trail file and either of the following is true:

• You are only using a primary Extract and its write checkpoint is not increasing or is
increasing too slowly. Because this Extract process is responsible for sending data across
the network, it will eventually run out of memory to contain the backlog of extracted data
and abend.

• You are using a data pump, and its write checkpoint is not increasing, but the write
checkpoint of the primary Extract is increasing. In this case, the primary Extract can write
to its local trail, but the data pump cannot write to the remote trail. The data pump will
abend when it runs out of memory to contain the backlog of extracted data. The primary
Extract will run until it reaches the last file in the trail sequence and will abend because it
cannot make a checkpoint.

Note:

Even when there is a network outage, Replicat will process in a normal manner until
it applies all of the remaining data from the trail to the target. Eventually, it will report
that it reached the end of the trail file.

Working Around Bandwidth Limitations by Using Data Pumps
Using parallel data pumps may enable you to work around bandwidth limitations that are
imposed on a per-process basis in the network configuration. You can use parallel data pumps

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-26

to send data to the same target system or to different target systems. Data pumps also remove
TCP/IP responsibilities from the primary Extract, and their local trails provide fault tolerance.

Increasing the TCP/IP Packet Size
Use the TCPBUFSIZE option of the RMTHOST parameter to control the size of the TCP socket
buffer that Extract maintains. By increasing the size of the buffer, you can send larger packets
to the target system. See Reference for Oracle GoldenGate for more information.

Use the following steps as a guideline to determine the optimum buffer size for your network.

1. Use the ping command from the command shell obtain the average round trip time (RTT),
shown in the following example:

C:\home\ggs>ping ggsoftware.com
Pinging ggsoftware.com [192.168.116.171] with 32 bytes of data:
Reply from 192.168.116.171: bytes=32 time=31ms TTL=56
Reply from 192.168.116.171: bytes=32 time=61ms TTL=56
Reply from 192.168.116.171: bytes=32 time=32ms TTL=56
Reply from 192.168.116.171: bytes=32 time=34ms TTL=56
Ping statistics for 192.168.116.171:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 31ms, Maximum = 61ms, Average = 39ms

2. Multiply that value by the network bandwidth. For example, if average RTT is .08 seconds,
and the bandwidth is 100 megabits per second, then the optimum buffer size is:

0.08 second * 100 megabits per second = 8 megabits
3. Divide the result by 8 to determine the number of bytes (8 bits to a byte). For example:

8 megabits / 8 = 1 megabyte per second

The required unit for TCPBUFSIZE is bytes, so you would set it to a value of 1000000.

The maximum socket buffer size for non-Windows systems is usually limited by default. Ask
your system administrator to increase the default value on the source and target systems so
that Oracle GoldenGate can increase the buffer size configured with TCPBUFSIZE.

Eliminating Disk I/O Bottlenecks
I/O activity can cause bottlenecks for both Extract and Replicat.

• A regular Extract generates disk writes to a trail and disk reads from a data source.

• A data pump and Replicat generate disk reads from a local trail.

• Each process writes a recovery checkpoint to its checkpoint file on a regular schedule.

Improving I/O performance Within the System Configuration
If there are I/O waits on the disk subsystems that contain the trail files, put the trails on the
fastest disk controller possible.

Check the RAID configuration. Because Oracle GoldenGate writes data sequentially, RAID 0+1
(striping and mirroring) is a better choice than RAID 5, which uses checksums that slow down
I/O and are not necessary for these types of files.

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-27

Improving I/O Performance Within the Oracle GoldenGate Configuration
You can improve I/O performance by making configurations changes within Oracle
GoldenGate. Try increasing the values of the following parameters.

• Use the CHECKPOINTSECS parameter to control how often Extract and Replicat make their
routine checkpoints.

Note:

CHECKPOINTSECS is not valid for an integrated Replicat on an Oracle database
system.

• Use the GROUPTRANSOPS parameter to control the number of SQL operations that are
contained in a Replicat transaction when operating in its normal mode. Increasing the
number of operations in a Replicat transaction improves the performance of Oracle
GoldenGate by reducing the number of transactions executed by Replicat, and by reducing
I/O activity to the checkpoint file and the checkpoint table, if used. Replicat issues a
checkpoint whenever it applies a transaction to the target, in addition to its scheduled
checkpoints.

Note:

GROUPTRANSOPS is not valid for an integrated Replicat on an Oracle database
system, unless the inbound server parameter parallelism is set to 1.

• Use the EOFDELAY or EOFDELAYCSECS parameter to control how often Extract, a data pump,
or Replicat checks for new data after it has reached the end of the current data in its data
source. You can reduce the system I/O overhead of these reads by increasing the value of
this parameter.

Note:

Increasing the values of these parameters improves performance, but it also
increases the amount of data that must be reprocessed if the process fails. This has
an effect on overall latency between source and target. Some testing will help you
determine the optimal balance between recovery and performance.

Managing Virtual Memory and Paging
Because Oracle GoldenGate replicates only committed transactions, it stores the operations of
each transaction in a managed virtual-memory pool known as a cache until it receives either a
commit or a rollback for that transaction. One global cache operates as a shared resource of
an Extract or Replicat process. The Oracle GoldenGate cache manager takes advantage of
the memory management functions of the operating system to ensure that Oracle GoldenGate
processes work in a sustained and efficient manner. The CACHEMGR parameter controls the
amount of virtual memory and temporary disk space that is available for caching uncommitted
transaction data that is being processed by Oracle GoldenGate.

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-28

When a process starts, the cache manager checks the availability of resources for virtual
memory, as shown in the following example:

CACHEMGR virtual memory values (may have been adjusted)CACHESIZE: 32GCACHEPAGEOUTSIZE
(normal): 8M PROCESS VM AVAIL FROM OS (min): 63.97GCACHESIZEMAX (strict force to disk):
48G

If the current resources are not sufficient, a message like the following may be returned:

2013-11-11 14:16:22 WARNING OGG-01842 CACHESIZE PER DYNAMIC DETERMINATION (32G) LESS
THAN RECOMMENDED: 64G (64bit system)vm found: 63.97GCheck swap space. Recommended swap/
extract: 128G (64bit system).

If the system exhibits excessive paging and the performance of critical processes is affected,
you can reduce the CACHESIZE option of the CACHEMGR. parameter. You can also control the
maximum amount of disk space that can be allocated to the swap directory with the
CACHEDIRECTORY option. For more information about CACHEMGR, see Reference for Oracle
GoldenGate.

Optimizing Data Filtering and Conversion
Heavy amounts of data filtering or data conversion add processing overhead. The following are
suggestions for minimizing the impact of this overhead on the other processes on the system.

• Avoid using the primary Extract to filter and convert data. Keep it dedicated to data
capture. It will perform better and is less vulnerable to any process failures that result from
those activities. The objective is to make certain the primary Extract process is running and
keeping pace with the transaction volume.

• Use Replicat or a data-pump to perform filtering and conversion. Consider any of the
following configurations:

– Use a data pump on the source if the system can tolerate the overhead. This
configuration works well when there is a high volume of data to be filtered, because it
uses less network bandwidth. Only filtered data gets sent to the target, which also can
help with security considerations.

– Use a data pump on an intermediate system. This configuration keeps the source and
target systems free of the overhead, but uses more network bandwidth because
unfiltered data is sent from the source to the intermediate system.

– Use a data pump or Replicat on the target if the system can tolerate the overhead, and
if there is adequate network bandwidth for sending large amounts of unfiltered data.

• If you have limited system resources, a least-best option is to divide the filtering and
conversion work between Extract and Replicat.

Tuning Replicat Transactions
Replicat uses regular SQL, so its performance depends on the performance of the target
database and the type of SQL that is being applied (inserts, versus updates or deletes).
However, you can take certain steps to maximize Replicat efficiency.

Tuning Coordination Performance Against Barrier Transactions
In a coordinated Replicat configuration, barrier transactions such as updates to the primary key
cause an increased number of commits to the database, and they interrupt the benefit of the
GROUPTRANSOPS feature of Replicat. When there is a high number of barrier transactions in the

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-29

overall workload of the coordinated Replicat, using a high number of threads can actually
degrade Replicat performance.

To maintain high performance when large numbers of barrier transactions are expected, you
can do the following:

• Reduce the number of active threads in the group. This reduces the overall number of
commits that Replicat performs.

• Move the tables that account for the majority of the barrier transactions, and any tables
with which they have dependencies, to a separate coordinated Replicat group that has a
small number of threads. Keep the tables that have minimal barrier transactions in the
original Replicat group with the higher number of threads, so that parallel performance is
maintained without interruption by barrier transactions.

• (Oracle RAC) In a new Replicat configuration, you can increase the PCTFREE attribute of
the Replicat checkpoint table. However, this must be done before Replicat is started for the
first time. The recommended value of PCTFREE is 90.

Applying Similar SQL Statements in Arrays
Use the BATCHSQL parameter to increase the performance of Replicat. BATCHSQL causes
Replicat to organize similar SQL statements into arrays and apply them at an accelerated rate.
In its normal mode, Replicat applies one SQL statement at a time.

When Replicat is in BATCHSQL mode, smaller row changes will show a higher gain in
performance than larger row changes. At 100 bytes of data per row change, BATCHSQL has
been known to improve the performance of Replicat by up to 300 percent, but actual
performance benefits will vary, depending on the mix of operations. At around 5,000 bytes of
data per row change, the benefits of using BATCHSQL diminish.

The gathering of SQL statements into batches improves efficiency but also consumes memory.
To maintain optimum performance, use the following BATCHSQL options:

BATCHESPERQUEUE
BYTESPERQUEUE
OPSPERBATCH
OPSPERQUEUE

As a benchmark for setting values, assume that a batch of 1,000 SQL statements at 500 bytes
each would require less than 10 megabytes of memory.

You can use BATCHSQL with the BATCHTRANSOPS option to tune array sizing. BATCHTRANSOPS
controls the maximum number of batch operations that can be grouped into a transaction
before requiring a commit. The default for non-integrated Replicat is 1000. The default for
integrated Replicat is 50. If there are many wait dependencies when using integrated Replicat,
try reducing the value of BATCHTRANSOPS. To determine the number of wait dependencies, view
the TOTAL_WAIT_DEPS column of the V$GG_APPLY_COORDINATOR database view in the Oracle
database.

See Reference for Oracle GoldenGate for additional usage considerations and syntax.

Preventing Full Table Scans in the Absence of Keys
If a target table does not have a primary key, a unique key, or a unique index, Replicat uses all
of the columns to build its WHERE clause. This is, essentially, a full table scan.

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-30

To make row selection more efficient, use a KEYCOLS clause in the TABLE and MAP statements to
identify one or more columns as unique. Replicat will use the specified columns as a key. The
following example shows a KEYCOLS clause in a TABLE statement:

TABLE hr.emp, KEYCOLS (FIRST_NAME, LAST_NAME, DOB, ID_NO);

For usage guidelines and syntax, see the TABLE and MAP parameters in Reference for Oracle
GoldenGate.

Splitting Large Transactions
If the target database cannot handle large transactions from the source database, you can split
them into a series of smaller ones by using the Replicat parameter MAXTRANSOPS. See
Reference for Oracle GoldenGate for more information.

Note:

MAXTRANSOPS is not valid for an integrated Replicat on an Oracle database system.

Adjusting Open Cursors
The Replicat process maintains cursors for cached SQL statements and for SQLEXEC
operations. Without enough cursors, Replicat must age more statements. By default, Replicat
maintains as many cursors as allowed by the MAXSQLSTATEMENTS parameter. You might find
that the value of this parameter needs to be increased. If so, you might also need to adjust the
maximum number of open cursors that are permitted by the database. See Reference for
Oracle GoldenGate for more information.

Improving Update Speed
Excessive block fragmentation causes Replicat to apply SQL statements at a slower than
normal speed. Reorganize heavily fragmented tables, and then stop and start Replicat to
register the new object ID.

Set a Replicat Transaction Timeout
Use the TRANSACTIONTIMEOUT parameter to prevent an uncommitted Replicat target transaction
from holding locks on the target database and consuming its resources unnecessarily. You can
change the value of this parameter so that Replicat can work within existing application
timeouts and other database requirements on the target.

TRANSACTIONTIMEOUT limits the amount of time that Replicat can hold a target transaction open
if it has not received the end-of-transaction record for the last source transaction in that
transaction. By default, Replicat groups multiple source transactions into one target transaction
to improve performance, but it will not commit a partial source transaction and will wait
indefinitely for that last record. The Replicat parameter GROUPTRANSOPS controls the minimum
size of a grouped target transaction.

The following events could last long enough to trigger TRANSACTIONTIMEOUT:

• Network problems prevent trail data from being delivered to the target system.

• Running out of disk space on any system, preventing trail data from being written.

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-31

• Collector abends (a rare event).

• Extract abends or is terminated in the middle of writing records for a transaction.

• An Extract data pump abends or is terminated.

• There is a source system failure, such as a power outage or system crash.

See Reference for Oracle GoldenGate for more information.

Using Healthcheck Scripts to Monitor and Troubleshoot
Oracle GoldenGate Healthcheck script provides database site information for Oracle
Databases to allow monitoring and troubleshooting.

The Healtcheck script gathers all replication related configuration and performance information
from a database in one single run. Within the scripts, there are many queries regarding the
database instance and the database specific information from Extract and Replicat. You can
run the script periodically to obtain the latest database side performance information regarding
replication.

The output is one of the key information that is needed for support for a qualitative analysis of
the replication environment.

Installing, Running, and Uninstalling Healthcheck Scripts
The Healthcheck script is available for Oracle GoldenGate Classic and Microservices.

The Healtcheck directory contains three files to install, run and deinstall the Healthcheck script.
Once the PL/SQL package is installed with ogghc_install.sql, you can frequently run the
ohgghc_run.sql script to generate an output file. You can deinstall the Healthcheck script with
the ogghc_deinstall.sql script.

The Healthcheck script is located in:

• $OGG_HOME/lib/sql/healthcheck for MA

• $OGG_HOME/healthcheck for CA

To gather information, Oracle recommends you to install and run the Healthcheck as a SYS
user. However, you can also install and run the script as an Oracle GoldenGate Administration
User. In this case, some system information is not available. The Healthcheck output displays
the information that requires SYS privileges.

How to Deal with Healthcheck Information?

The output file of the Healthcheck script contains the instance name and a timestamp. By
default, information about Integrated Extract and Replicat is gathered. However, you can
retrieve information from the legacy Oracle GoldenGate schema or database profile. For this
reason, you have to take out the argument of the EXCLUDE_TAG parameter.

Depending of the amount of information being queried, the run time of the script varies (in
minutes).

You can eliminate a query that takes too long to process using the Healthcheck script and run
another query in a parallel session to get the output.

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-32

Components of Healthcheck Information
The Healthcheck script generates an HTML file with JSON objects and HTML code, which you
can view using a web browser.

The output of the Healthcheck script contains the following sections:

• Overview

• Extract

• Replicat

• Table Statistics and Errors

• Tools

• Report Map (Legacy)

Each of these sections contain menus and sub-menus depending on the type of data available.

The following table describes the sections and the data available in those sections based on
the query used to generate the Healthcheck output.

Menu Description

Overview The Overview section contains information
about the following:
• General Findings
• Database, Extract and Replicat Summary
• Capture Parameters
• Apply Parameters

Database Main Menu (The Main menu
already contains the query
information)

Database Objects This sub-menu option displays
information about the following:
• Tables Not Supported By

Oracle GoldenGate
Integrated Capture

• Instantiation SCNs for Apply
Schema and Database
(DDL)

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-33

Menu Description

Database Details This sub-menu has a detailed
database related various
connections and services along
with key Oracle GoldenGate
parameters and the manual or
modified database parameters.
The second part shows the basic
information about the
components, software and patch
level of the database. The
information is distributed amongst
the following sections.
• Connection Information
• Key init.ora parameters
• Database dictionary and

fixed table statistics
• Software edition
• Registry information

including History
• Replication bundled patch

information
• NLS Database parameters
• Registered log files for

capture
• Current Database

incarnation
• Standby redo longs
• GoldenGate Administrator

User

Replication SQL Analysis This section provides a complete
log of Oracle GoldenGate related
information from the session at
run time of the script and active
session history. This contains
complete details about Waits,
Events, IO, Contention and SQL.

Objects Instantiation This sub-menu provides details
about the schemas and table-
level supplemental logging for
Oracle GoldenGate:
• Schemas prepared for

capture
• Table-level supplemental log

groups enabled for capture

Extract Main Menu

Extract Details The Extract details covered in this
sub-menu are:
• Capture Runtime Information
• Capture Transaction

Processing
• Capture Processing

Information
• Logminer Session Statistics
• Capture Rules & Rulesets

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-34

Menu Description

Extract Performance This sub-menu displays
information about the Extract
performance depending on the
type of Extract being used. It
displays the progress of the
Extract which includes the
following details:

• Capture Name - Name of the
Extract

• Client Name - Name of the
client where the Extract is
running

• Client Status - Status of the
client where the Extract is
running

• Processed Low SCN -
Processed SCN value of the
Extract

• Oldest SCN - Oldest SCN
value of the Extract

Extract Logminer This sub-menu contains
information mainly used for
debugging issues.

Replicat Main Menu

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-35

Menu Description

Replicat Performance The Replicat performance
provides the following
information:
• Apply Progress
• GoldenGate Inbound

Progress Table
• Information about Apply

Progress table
• Apply Network Receiver

(ANR)
• Apply Reader
• Apply Reader - Dequeue

Information
• Apply Coordinator
• Apply Coordinator

Watermarks
• Open GoldenGate Apply

Transactions
• Open GoldenGate Apply

Transactions -Details
• Apply Server Transactions

ordered by Server_id
• Apply Server Statstics -

Summary
• Apply Server Statistics -

Details
• Apply Server Statistics - Auto

Tuning
• Apply Server Wait Events
• Apply Server Session Events
• Apply Reader Processes
• Apply Coordinator Processes
• Apply Server Processes

CDR This sub-menu provides a
detailed log of the Replicat error
handlers.

Apply Handler This sub-menu contains
information about the Replicat
name, DDL handler, and
precommit handler.

Error Management Main Menu

Error Management Details This sub-menu has details about
the Oracle GoldenGate table
statistics sorted by table. It
includes information such as
server name, source table owner,
source table name, destination
table owner, destination table
name, total operations, inserts,
updates, deletes, insert/update/
delete collisions, REPERROR
discards, REPERROR ignores,
WAIT dependencies, and CDR
related updates.

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-36

Menu Description

Tools Main Menu

History This sub-menu is dependent on
the type of query you have run
and displays subscriber history,
Extract, and Replicat history.

Report Map Main Menu (Legacy).

It provides information on all the
queries, which includes details
such as:

• Run time of the query
• Number of Returned Rows
• Information if the query has

succeeded or failed
• Information if this is internal

information that is only
visible if the script is run as
SYS

• Disabled Queries
The hyperlinks directs you to the
appropriate query.

Hints/Description This sub-menu is a map of all the
activities logged in the
Healthcheck report.

Alerts This sub-menu provides a log of
the alerts from the general
findings about the database,
Extract, and Replicat along with
general system information.

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-37

Menu Description

Truncates This sub-menu displays the
Oracle GoldenGate related
information from the
V$ACTIVE_SESSSION_HISTORY
and V$SQLAREA database views.

No

te:

You
can
vie
w
only
part
ial
resu
lts
for
V$A
CTI
VE_
SES
SSI
ON_
HIS
TOR
Y ,
as
the
origi
nal
size
of
the
que
ry
exc
eed
s
the
max
imu
m
limit
.

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-38

Menu Description

Config This sub-menu allows you to add
rules to the following sections that
are available on this page:
• Column Rules: There can be

any number of rules on a
single table and they will be
applied one after the other in
the order they appear in the
rules table. It can be an
expression using the values
of the columns in a row.

• Menu Items Exclusions: This
option is used to exclude any
menu item from the
Healthcheck output. Click
Add to set the rule.

• Group By: This section is
used to group by keys and
aggregates. You can go to
any statistic and click G to
add a group by sorting.

JS Errors Main Menu. This page displays
debugging information for this
framework.

No

te:

It is
visi
ble
only
in
cas
e of
erro
rs.

Chapter 9
Tuning the Performance of Oracle GoldenGate

9-39

10
Oracle GoldenGate Business Solutions

Configuring Online Change Synchronization
This chapter describes how to configure online change synchronization.

Overview of Online Change Synchronization
Online change synchronization extracts and replicates data changes continuously to maintain
a near real-time target database. The number of Extract and Replicat processes and trails that
you will need depends on the replication topology that you want to deploy and the process
mode that you will be using.

For detailed information about deploying specific replication topologies, see:

• Using Oracle GoldenGate for Live Reporting

• Using Oracle GoldenGate for Real-time Data Distribution

• Configuring Oracle GoldenGate to Maintain a Live Standby Database

• Configuring Oracle GoldenGate for Active-Active Configuration

You may need to configure multiple Replicat processes if you are replicating between Oracle
multitenant container databases.

You may need to configure multiple process groups to achieve a certain performance level. For
example, you may want to keep lag below a certain threshold. Lag is the difference between
when changes are made within your source applications and when those changes are applied
to the target database.

Oracle GoldenGate supports up to 5,000 concurrent Extract and Replicat groups per instance
of Oracle GoldenGate Manager. At the supported level, all groups can be controlled and
viewed in full with GGSCI commands such as the INFO and STATUS commands. Oracle
GoldenGate recommends keeping the number of Extract and Replicat groups (combined) at
the default level of 300 or below in order to manage your environment effectively.

See Tuning the Performance of Oracle GoldenGate for more information about configuring
Oracle GoldenGate for best performance.

Initial Synchronization
After you configure your change-synchronization groups and trails following the directions in
this chapter, see Instantiating Oracle GoldenGate Using Initial Load to prepare the target
tables for synchronization.

An initial load takes a copy of entire source tables, transforms the data if necessary, and
applies it to the target tables so that the movement of transaction data begins from a
synchronized state. The first time that you start change synchronization should be during the
initial synchronization process. Change synchronization keeps track of ongoing transactional
changes while the load is being applied.

10-1

Choosing Names for Processes and Files
It is helpful to develop consistent naming conventions for the Oracle GoldenGate processes
and files before you start configuration steps. Choosing meaningful names helps you
differentiate among multiple processes and files in displays, error logs, and external monitoring
programs. In addition, it accommodates the naming of additional processes and files later, as
your environment changes or expands.

This section contains instructions for:

Naming Conventions for Processes
When specifying a process or group name, follow these rules.

• For the following types of processes, you can use up to eight characters, including non-
alphanumeric characters such as the underscore (_):

– Online Extract group

– Initial-load Extract

– Online Replicat group created in classic (non-coordinated) mode

– Online Replicat group created in integrated mode (Oracle only)

• For coordinated and parallel Replicat process group, you can use up to five characters,
including non-alphanumeric characters such as the underscore (_). Internally, a three-
character thread ID is appended to the base name for each thread that is created based on
the MAXTHREADS option of the ADD REPLICAT command. The resulting names cannot be
duplicated for any other Replicat group. For example, if a coordinated Replicat group
named fin is created with a MAXTHREADS of 50 threads, the resulting thread names could
span from fin000 through fin050, assuming those are the IDs specified in the MAP
statements. Thus, no other Replicat group can be named fin000 through fin0050. See the
following rule for more information.

• You can include a number in a group name, but it is not recommended that a name end in
any numerals. Understand that using a numeric value at the end of a group name (such as
fin1) can cause duplicate report file names and errors, because the writing process
appends a number to the end of the group name when generating a report. In addition,
ending a group name with numeric values is not recommended when running Replicat in
coordinated mode. Because numeric thread IDs are appended to a group name internally,
if the base group name also ends in a number it can make the output of informational
commands more complicated to analyze. Thread names could be confused with the
names of other Replicat groups if the numeric appendages satisfy wildcards. Duplicate
report file names also can occur. It may be more practical to put a numeric value at the
beginning of a group name, such as 1_fin, 1fin, and so forth.

• Any character can be used in the name of a process, so long as the character set of the
local operating system supports it, and the operating system allows that character to be in
a file name. This is because a group is identified by its associated checkpoint file and
parameter file.

• The following characters are not allowed in the name of a process:

\ / : * ? " < > |
• On HP UX, Linux, and Solaris, it is possible to create a file name with a colon (:) or an

asterisk (*), although it is not recommended.

Chapter 10
Configuring Online Change Synchronization

10-2

• In general, process names and parameter file names are not case-sensitive within Oracle
GoldenGate. For example, finance, Finance, and FINANCE are all considered to be the
same. However, on Linux, the process name (and its parameter file name if explicitly
defined in the ADD command) must be all uppercase or all lowercase. Mixed-case names
specified for processes and parameter files will result in errors when starting the process.

• Use only one word for a name.

• The word port can be the full name for a process or parameter file. However, the string
port can be part of a name.

Choosing File Names
Captured data must be processed into a series of files called a trail, where it is stored for
processing by the next Oracle GoldenGate process downstream. The basic configuration is:

• A local trail on the source system

• A remote trail on the target system

The actual trail name contains only two characters, such as ./dirdat/tr. Oracle GoldenGate
appends this name with a nine-digit sequence number whenever a new file is created, such
as ./dirdat/aa000000002. It is recommended that you establish naming conventions for trails,
because they are linked to Oracle GoldenGate processes and may need to be identified for the
purposes of troubleshooting.

On Windows systems, if the name of any directory in the trail path name begins with a number,
the path must be specified with forward slashes, not backward slashes, when listing the trail in
a parameter file. For more information, see Specifying Filesystem Path Names in Parameter
Files on Windows Systems.

See What is a Trail? for more information about Oracle GoldenGate trails.

Creating a Parameter File for Online Extraction
Follow these instructions to create a parameter file for an online Extract group. A parameter file
is not required for an alias Extract group.

1. In GGSCI on the source system, issue the following command.

EDIT PARAMS name

Where:

name is either the name of the Extract group that you created with the ADD EXTRACT
command or the fully qualified name of the parameter file if you defined an alternate
location when you created the group.

2. Enter the parameters in the order shown in the following table, starting a new line for each
parameter statement. Some parameters apply only for certain configurations.

Parameter Description

EXTRACT group

• group is the name of the Extract group
that you created with the ADD EXTRACT
command.

Configures Extract as an online process with checkpoints.

Chapter 10
Configuring Online Change Synchronization

10-3

Parameter Description

[SOURCEDB dsn | container | catalog]
[, USERIDALIAS alias options |
, USERID user, options]

Specifies database connection information.

SOURCEDB specifies the source data source name (DSN). See for more
information.

USERID and USERIDALIAS specify database credentials if required.

The database connection can be omitted if the group is a data pump on an
intermediary system that does not have a database. In this case, there can
be no column mapping or conversion performed.

RMTHOSTOPTIONS host,
MGRPORT port,
[, ENCRYPT algorithm KEYNAME
key_name]

Specifies the target system, the port where Manager is running, and optional
encryption of data across TCP/IP. Only required when sending data over IP
to a remote system (if ADD RMTTRAIL was used to create the trail). Not
required if the trail is on the local system (if ADD EXTTRAIL was used).

Not valid for a passive Extract group.

ENCRYPTTRAIL algorithm Encrypts all trails that are specified after this entry.

DECRYPTTRAIL (For a data pump) Decrypts the data in the input trail. Use only if the data
pump must process the data before writing it to the output trail.

RMTTRAIL pathname |
EXTTRAIL pathname

• Use RMTTRAIL to specify the relative or
fully qualified name of a remote trail
created with the ADD RMTTRAIL
command.

• Use EXTTRAIL to specify the relative or
fully qualified name of a local trail
created with the ADD EXTTRAIL
command (to be read by a data pump or
VAM-sort Extract).

Specifies a trail. If specifying multiple trails, follow each designation with the
appropriate TABLE statements.

EXTTRAIL is not valid for a passive Extract group.

If trails or files will be of different versions, use the FORMAT option of
RMTTRAIL or EXTTRAIL. See EXTTRAILin Reference for Oracle GoldenGate

LOGALLSUPCOLS Use when using integrated Replicat for an Oracle target, or when using
Conflict Detection and Resolution (CDR) support. Writes the before images
of scheduling columns to the trail. (Scheduling columns are primary key,
unique index, and foreign key columns.) See LOGALLSUPCOLS in Reference
for Oracle GoldenGate.

SOURCECATALOG Specifies a default container in an Oracle multitenant container database or
SEQUENCE statements. Enables the use of two-part names (schema.object)
where three-part names otherwise would be required for those databases.
You can use multiple instances of this parameter to specify different default
containers or catalogs for different sets of TABLE or SEQUENCE parameters.

SEQUENCE [container.]owner.sequence; Specifies the fully qualified name of an Oracle sequence to capture. Include
the container name if the database is a multitenant container database
(CDB).

TABLE [container. |
catalog.]owner.object;

Specifies the fully qualified name of an object or a fully qualified wildcarded
specification for multiple objects. If the database is an Oracle multitenant
container database, the object name must include the name of the container
or catalog unless SOURCECATALOG is used. See Specifying Object Names in
Oracle GoldenGate Input for guidelines for specifying object names in
parameter files.

Chapter 10
Configuring Online Change Synchronization

10-4

Parameter Description

CATALOGEXCLUDE
SCHEMAEXCLUDE
TABLEEXCLUDE
EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one another to exclude
specific objects from a wildcard specification in the associated TABLE
statement.

3. Enter any appropriate optional Extract parameters listed in the Oracle GoldenGate
Parameters in Reference for Oracle GoldenGate.

4. Save and close the parameter file.

Parameter Description

VAM library,
PARAMS ('param'
[, 'param'] [, ...])

Supplies the name of the library and parameters that must be
passed to the Oracle GoldenGate API, such as the name of
the TAM initialization file and the program that interacts with
the library as the callback library.

Example:

VAM vam.dll, PARAMS ('inifile', 'vamerge1.ini',
'callbacklib', 'extract.exe')

NA

Creating an Online Replicat Group
Before creating a Replicat group, you should evaluate which of the Replicat modes is
appropriate for your environment: classic mode (also known as nonintegrated mode in Oracle
environments), coordinated mode, and integrated mode.

About the Global Watermark
A clean shutdown of a Replicat ensures that all threads stop at the same transaction boundary
in the trail, known as the global watermark. This is defined as the synchronized point where all
records before this position were either committed or ignored by all of their respective threads.
If a clean shutdown is not possible, you can use the SYNCHRONIZE REPLICAT command to
return all of the threads to the position of the thread that made the most recent checkpoint.
This command is valid for coordinated, integrated, and parallel Replicats. See Synchronizing
Threads After an Unclean Stop for more information about recovering a coordinated Replicat
group.

Note:

Coordinated Replicat is an online process only. Do not use it to perform initial loads.

Creating the Replicat Group
To create an online Replicat group, run GGSCI on the target system and issue the ADD
REPLICAT command. Separate all command arguments with a comma.

ADD REPLICAT group, EXTTRAIL path
[, {INTEGRATED | COORDINATED [MAXTHREADS number]}]

Chapter 10
Configuring Online Change Synchronization

10-5

[, BEGIN start_point | , EXTSEQNO seqno, EXTRBA rba]
[, CHECKPOINTTABLE owner.table]
[, NODBCHECKPOINT]
[, PARAMS path]
[, REPORT path]

Where:

• group is the name of the Replicat group. A group name is required. See Naming
Conventions for Processes for Oracle GoldenGate naming conventions.

• EXTTRAIL path is the relative or fully qualified name of the trail that you defined with the ADD
RMTTRAIL command.

• INTEGRATED specified that this Replicat group will operate in integrated mode. This mode is
available for Oracle databases..

• COORDINATED specifies that this Replicat group will operate in coordinated mode.
MAXTHREADS specifies the maximum number of threads allowed for this group. Valid values
are from 1 through 500. MAXTHREADS is optional. The default number of threads without
MAXTHREADS is 25.

Note:

Each Replicat thread is considered a Replicat group in the context of the
MAXGROUPS parameter. MAXGROUPS controls the maximum number of process
groups allowed in the Oracle GoldenGate instance. MAXTHREADS plus the number
of other process groups in the Oracle GoldenGate instance must not exceed the
value set with MAXGROUPS (default is 1000).

• BEGIN start_point defines an online Replicat group by establishing an initial checkpoint
and start point for processing. Use one of the following:

– NOW to begin replicating changes timestamped at the point when the ADD REPLICAT
command is executed to create the group.

– YYYY-MM-DD HH:MM[:SS[.CCCCCC]] as the format for specifying an exact timestamp as
the begin point.

• EXTSEQNO seqno, EXTRBA rba specifies the sequence number of the file in a trail in which
to begin reading data and the relative byte address within that file. By default, processing
begins at the beginning of a trail unless this option is used. For the sequence number,
specify the number, but not any zeroes used for padding. For example, if the trail file is
c:\ggs\dirdat\aa000000026, specify EXTSEQNO 26. Contact Oracle Support before using
this option.

• CHECKPOINTTABLE owner.table specifies the owner and name of a checkpoint table other
than the default specified in the GLOBALS file. To use this argument, you must add the
checkpoint table to the database with the ADD CHECKPOINTTABLE command (see About
Checkpoint Table).

• NODBCHECKPOINT specifies that this Replicat group will not use a checkpoint table.

• PARAMS path is required if the parameter file for this group will be stored in a location other
than the dirprm sub-directory of the Oracle GoldenGate directory. Specify the fully
qualified name. The default location is recommended.

Chapter 10
Configuring Online Change Synchronization

10-6

• REPORT path is required if the process report for this group will be stored in a location other
than the dirrpt sub-directory of the Oracle GoldenGate directory. Specify the fully
qualified name. The default location is recommended.

Example 10-1 Creating an Online Replicat Group

This example creates an online Replicat group named finance and specifies a trail of
c:\ggs\dirdat\rt. The parameter file is stored in the alternate location of \ggs\params, and
the report file is stored in its default location.

ADD REPLICAT finance, EXTTRAIL c:\ggs\dirdat\rt, PARAMS \ggs\params

Creating a Parameter File for Online Replication
Follow these instructions to create a parameter file for an online Replicat group.

1. In GGSCI on the target system, issue the following command.

EDIT PARAMS name

Where:

name is either the name of the Replicat group that you created with the ADD REPLICAT
command or the fully qualified name of the parameter file if you defined an alternate
location when you created the group.

2. Enter the parameters listed in the table below in the order shown, starting a new line for
each parameter statement.

Table 10-1 Online Change-Replication Parameters

Parameter Description

REPLICAT group

• group is the name of the Replicat group that you created
with the ADD REPLICAT command.

Configures Replicat as an online process with checkpoints.

{SOURCEDEFS path} |
ASSUMETARGETDEFS

• Use SOURCEDEFS if the source and target tables have
different definitions. Specify the source data-definitions
file generated by DEFGEN.

• Use ASSUMETARGETDEFS if the source and target tables
have the same definitions.

Specifies how to interpret data definitions.

For Oracle databases that use multi-byte character sets, you
must use SOURCEDEFS (with a DEFGEN-generated
definitions file) if the source semantics setting is in bytes and
the target is in characters. This is required even when the
source and target data definitions are identical.

[DEFERAPPLYINTERVAL n unit]

• n is a numeric value for the amount of time to delay
before applying transactions. Minimum is set by the
EOFDELAY parameter. Maximum is seven days.

• unit can be:

S | SEC | SECS | SECOND | SECONDS | MIN |
MINS | MINUTE | MINUTES | HOUR | HOURS | DAY
| DAYS

Optional. Specifies an amount of time for Replicat to wait
before applying its transactions to the target system.

Chapter 10
Configuring Online Change Synchronization

10-7

Table 10-1 (Cont.) Online Change-Replication Parameters

Parameter Description

[TARGETDB dsn | container | catalog]
[, USERIDALIAS alias options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target datasource name (DSN). See
TARGETDB in Reference for Oracle GoldenGatefor more
information .

USERID and USERIDALIAS specify database credentials if
required.

HANDLECOLLISIONS Specifies collision handling. Use only if you are performing
an initial load concurrently with starting online processing
and the source database will remain active during the load.
HANDLECOLLISIONS resolves the results of the copy with the
ongoing replicated transactional changes. It resolves insert
operations for which the row already exists and update and
delete operations for which the row does not exist. It can be
used globally for all MAP statements in a parameter file or
within a MAP statement, or both.

SOURCECATALOG Specifies a default container in a source Oracle multitenant
container database. Enables the use of two-part names
(schema.object) where three-part names otherwise would
be required for those databases. You can use multiple
instances of this parameter to specify different default
containers or catalogs for different sets of MAP parameters.

MAP [container. | catalog.]owner.object,
TARGET owner.object[, DEF template]
[THREAD (thread_ID)]
[THREADRANGE (thread_range[, column_list])]
[COORDINATED]
;

Specifies a relationship between a source object or objects
and a target object or objects. MAP specifies the source
object, and TARGET specifies the target object.

For the source object, specify the fully qualified name of the
object or a fully qualified wildcarded specification for multiple
objects. For an Oracle multitenant container database the
source object name must include the name of the container
or catalog unless SOURCECATALOG is used.

For the target object, specify only the owner.object
components of the name, regardless of the type of database.
Replicat can only connect to one Oracle container. Use a
separate Replicat process for each container or catalog to
which you want to apply data.

See Specifying Object Names in Oracle GoldenGate Input
for guidelines for specifying object names in parameter files.

The THREAD, THREADRANGE, and COORDINATED options are
valid for Replicat when in coordinated mode. They enable
you to partition the workload to one or more specific Replicat
threads. See in Reference for Oracle GoldenGatefor syntax
and usage.

The DEF option specifies a definitions template.

CATALOGEXCLUDE
SCHEMAEXCLUDE
MAPEXCLUDE
EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with one another
to exclude specific source objects from a wildcard
specification in the associated MAP statement.

1. Enter any appropriate optional Replicat parameters listed in the Reference for Oracle
GoldenGate.

Chapter 10
Configuring Online Change Synchronization

10-8

2. Save and close the file.

Note:

If using integrated Replicat for Oracle, see Understanding Replicat Processing in
Relation to Parameter Changes for important information about making configuration
changes to Replicat once processing is started.

Using Oracle GoldenGate for Live Reporting
This chapter describes the usage of Oracle GoldenGate for live reporting.

Overview of the Reporting Configuration
The most basic Oracle GoldenGate configuration is a one-to-one configuration that replicates
in one direction: from a source database to a target database that is used only for data retrieval
purposes such as reporting and analysis. Oracle GoldenGate supports transfer of data to
Oracle or Non-Oracle databases, with capabilities for filtering and conversion on either system
in the configuration (support varies by database platform).

Oracle GoldenGate is ideal for creating a reporting environment because the target can be
optimized for reporting, while allowing the source to be optimized for OLTP workloads. This
includes adding additional indexes or materialized views on the target database to allow faster
execution of queries. Oracle GoldenGate can also pull metadata from the source database to
help track how the records changed, when the record changed, who changed it, and even
track the history of how column values changed.

Oracle GoldenGate supports different reporting topologies that enable you to custom-configure
the processes based on your requirements for scalability, availability, and performance. This
section contains things to take into consideration when choosing a reporting configuration.

Filtering and Conversion
Data filtering and data conversion both add overhead, and these activities are sometimes
prone to configuration errors. If Oracle GoldenGate must perform a large amount of filtering
and conversion, consider using one or more data pumps to handle this work. You can use
Replicat for this purpose, but you would be sending more data across the network that way, as
it will be unfiltered. You can split filtering and conversion between the two systems by dividing it
between the data pump and Replicat.

To filter data, you can use:

• A FILTER or WHERE clause in a TABLE statement (Extract) or in a MAP statement (Replicat)

• A SQLEXEC can perform a query or execute a stored procedure on the database. The
values returned can then be used to evaluate a FILTER clause.

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-9

• User exits

To transform data, you can use:

• The Oracle GoldenGate conversion functions. See Column Conversion Functions in the
Reference for Oracle GoldenGate.

• Metadata from the source database or trail. See GETENV function.

• A user exit from the Extract or Replicat process that applies rules from an external
transformation solution, then returns the manipulated data to Oracle GoldenGate.

• Replicat to deliver data directly to an ETL solution or other transformation engine.

For more information about Oracle GoldenGate's filtering and conversion support, see:

• Mapping and Manipulating Data

• Customizing Oracle GoldenGate Processing

Read-only vs. High Availability
The Oracle GoldenGate live reporting configuration supports a read-only target. See
Configuring Bi-Directional Replication if the target in this configuration will also be used for
transactional activity in support of high availability.

Additional Information
The following documentation provides additional information of relevance to configuring Oracle
GoldenGate.

• For additional system requirements, process configuration, and database setup
requirements, see Install and Prepare.

• For detailed instructions on configuring Oracle GoldenGate change capture and delivery
groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance of
Oracle GoldenGate.

• For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

Creating a Standard Reporting Configuration
In the standard Oracle GoldenGate configuration, one Extract group sends captured data over
TCP/IP to a trail on the target system, where it is stored until processed by one Replicat group.

Refer to the following figure for a representation of the objects you will be creating in Classic
Architecture.

Figure 10-1 Configuration Elements for Creating a Standard Reporting Configuration

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-10

Refer to the following figure for a representation of the objects you will be creating in
Microservices Architecture.

Source System
Configure the Manager process and Extract group on the source system.

To Configure the Manager Process

On the source, configure the Manager process.

To Configure the Extract Group

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

2. On the source, use the ADD RMTTRAIL command to specify a remote trail to be created on
the target system.

 ADD EXTTRAIL local_trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the Extract group.

3. On the source, use the EDIT PARAMS command to create a parameter file for the Extract
group. Include the following parameters plus any others that apply to your database
environment.

For possible additional required parameters, see the Oracle GoldenGate installation and
setup guide for your database.

-- Identify the Extract group:
EXTRACT ext
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all of the supplementally logged columns if using integrated
Replicat
LOGALLSUPCOLS
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-11

To send the trail files to the target

1. For Classic Architecture, use the following command option:

ADD EXTRACT ext_pmp, EXTTRAILSOURCE remote_trail, BEGIN time [option[,...]]

For Microservices Architecture, use the following command:

ADD DISTPATH path-name
 SOURCE source-uri
 TARGET target-uri|
 [TARGETTYPE (MANAGER | COLLECTOR | RECVSRVR)]|

2. Run the following command to add the remote trail:

ADD RMTTRAIL remote_trail, EXTRACT ext_pmp

3. Use the EDIT PARAMS command to create a parameter file for the target.

Target System
Configure the Manager process and Replicat group on the target system.

To Configure the Manager Process

1. On the target, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the purging
of files from the local trail.

To Configure the Replicat Group

1. On the target, create a Replicat checkpoint table (unless using Oracle integrated Replicat).
See About Checkpoint Table for instructions. All Replicat groups can use the same
checkpoint table.

2. On the target, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLICAT rep
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail
, BEGIN time

Use the EXTTRAIL argument to link the Replicat group to the remote trail.

3. On the target, use the EDIT PARAMS command to create a parameter file for the Replicat
group. Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle GoldenGate
installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-12

-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the target
tables if they are not already journaled. Alternatively, you could use the STRJRNPF
command to assign the tables to the appropriate journal. If the target tables are
not required to be replicated by Oracle GoldenGate, the IMAGES(*AFTER) option
can be used with STRJRNPF. Since Oracle GoldenGate operates using
transactions, all tables must be journaled to support transactions and this is not
the default with DB2 for i.

Creating a Reporting Configuration with a Data Pump on the Source System
You can add a data pump on the source system to isolate the primary Extract from TCP/IP
functions, to add storage flexibility, and to offload the overhead of filtering and conversion
processing from the primary Extract.

In this configuration, the primary Extract writes to a local trail on the source system. A local
data pump reads that trail and moves the data to a remote trail on the target system, which is
read by Replicat.

You can, but are not required to, use a data pump to improve the performance and fault
tolerance of Oracle GoldenGate.

Here's a representation of the objects, you will be creating.

Figure 10-2 Configuration Elements for Replicating to One Target with a Data Pump

Source System
Configure the Manager process and Extract group on the source system.

To Configure the Manager Process

1. On the source, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the purging
of files from the local trail.

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-13

To Configure the Primary Extract Group

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and other ADD
EXTRACT options that may be required for your installation.

2. On the source, use the ADD EXTTRAIL command to create a local trail. The primary Extract
writes to this trail, and the data-pump Extract reads it.

ADD EXTTRAIL local_trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the primary Extract group. The primary
Extract group writes to this trail, and the data pump group reads it.

3. On the source, use the EDIT PARAMS command to create a parameter file for the primary
Extract group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][,USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to and
-- encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

To Configure the Data Pump Extract Group

1. On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump.

ADD EXTRACT pump, EXTTRAILSOURCE local_trail, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the local trail.

2. On the source, use the ADD RMTTRAIL command to specify a remote trail that will be
created on the target system.

ADD RMTTRAIL remote_trail, EXTRACT pump

Use the EXTRACT argument to link the remote trail to the data pump group. The linked data
pump writes to this trail.

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-14

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. On the source, use the EDIT PARAMS command to create a parameter file for the data
pump. Include the following parameters plus any others that apply to your database
environment.

-- Identify the data pump group:
EXTRACT pump
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the target system:
ENCRYPTTRAIL alogrithm
RMTTRAIL remote_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Target System
Configure the Manager process and Replicat group on the target system.

To Configure the Manager Process

1. On the target, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the purging
of files from the local trail.

To Configure the Replicat Group

1. On the target, create a Replicat checkpoint table (unless using Oracle integrated Replicat).
See About Checkpoint Table for instructions.

2. On the target, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLICAT rep
[, INTEGRATED | PARALLEL | COORDINATED [MAXTHREADS number] |]
, EXTTRAIL remote_trail
, BEGIN time
(SPECIALRUN |
 (EXTFILE file-name |
 EXTTRAIL trail-name)
 [BEGIN (NOW | begin-datetime) |
 EXTSEQNO trail-sequence-number [EXTRBA trail-offset-
number]]
 [CHECKPOINTTABLE table-name | NODBCHECKPOINT])
 [DESC description]
 [CRITICAL [YES | NO]]
 [PROFILE profile-name
 [AUTOSTART [YES | NO]
 [DELAY delay-number]]

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-15

 [AUTORESTART [YES | NO]
 [RETRIES retries-number]
 [WAITSECONDS wait-number]
 [RESETSECONDS reset-number]
 [DISABLEONFAILURE [YES | NO]]]]

Use the EXTTRAIL argument to link the Replicat group to the remote trail.

See Reference for Oracle GoldenGate for detailed information about these and other
options that may be required for your installation.

3. On the target, use the EDIT PARAMS command to create a parameter file for the Replicat
group. Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle GoldenGate
installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the target
tables if they are not already journaled. Alternatively, you could use the STRJRNPF
command to assign the tables to the appropriate journal. If the target tables are
not required to be replicated by Oracle GoldenGate, the IMAGES(*AFTER) option
can be used with STRJRNPF. Since Oracle GoldenGate operates using
transactions, all tables must be journaled to support transactions and this is not
the default with DB2 for i.

Creating a Reporting Configuration with a Data Pump on an Intermediary
System

You can use an intermediary system as a transfer point between the source and target
systems. In this configuration, a data pump on the source system sends captured data to a
remote trail on the intermediary system. A data pump on the intermediary system reads the
trail and sends the data to a remote trail on the target. A Replicat on the target reads the
remote trail and applies the data to the target database.

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-16

Figure 10-3 Configuration Elements for Replication through an Intermediary System

When considering this topology, take note of the following:

• This configuration is practical if the source and target systems are in different networks and
there is no direct connection between them. You can transfer the data through an
intermediary system that can connect to both systems.

• This configuration can be used to add storage flexibility to compensate for deficiences on
the source or target.

• This configuration can be used to perform data filtering and conversion if the character sets
on all systems are identical. If character sets differ, the data pump cannot perform
conversion between character sets, and you must configure Replicat to perform the
conversion and transformation on the target.

• This configuration is a form of cascaded replication. However, in this configuration, data is
not applied to a database on the intermediary system. See Creating a Cascading
Reporting Configuration to include a database on the intermediary system in the Oracle
GoldenGate configuration.

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-17

Source System
Here are the objects you will be creating.

To Configure the Manager Process

1. On the source, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the purging
of files from the trail.

To Configure the Primary Extract Group on the Source

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and other ADD
EXTRACT options that may be required for your installation.

2. On the source, use the ADD EXTTRAIL command to create a local trail. The primary Extract
writes to this trail, and the data-pump Extract reads it.

ADD EXTTRAIL local_trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the primary Extract group. The primary
Extract group writes to this trail, and the data pump group reads it.

3. On the source, use the EDIT PARAMS command to create a parameter file for the primary
Extract group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to and
-- encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

To Configure the Data Pump on the Source

1. On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump_1.

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail, BEGIN time

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-18

Use EXTTRAILSOURCE as the data source option, and specify the name of the local trail. For
a local Extract, you must use EXTTRAIL not RMTTRAIL.

2. On the source, use the ADD RMTTRAIL command to specify a remote trail that will be
created on the intermediary system.

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1

Use the EXTRACT argument to link the remote trail to the pump_1 data pump group. The
linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. On the source, use the EDIT PARAMS command to create a parameter file for the pump_1
data pump. Include the following parameters plus any others that apply to your database
environment.

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the intermediary system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_1, MGRPORT port_number, ENCRYPT encryption_options
-- Specify remote trail and encryption algorithm on intermediary system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Intermediary System
Configure the Manager process and data pump on the intermediary system.

To Configure the Manager Process on the Intermediary System

1. On the intermediary system, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the purging
of files from the trail.

To Configure the Data Pump on the Intermediary System

1. On the intermediary system, use the ADD EXTRACT command to create a data-pump group.
For documentation purposes, this group is called pump_2.

ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail_1, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the trail that you
created on this system

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-19

2. On the intermediary system, use the ADD RMTTRAIL command to specify a remote trail on
the target system.

ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

Use the EXTRACT argument to link the remote trail to the pump_2 data pump. The linked
data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. On the intermediary system, use the EDIT PARAMS command to create a parameter file for
the pump_2 data pump. Include the following parameters plus any others that apply to your
database environment.

-- Identify the data pump group:
EXTRACT pump_2
-- Note that no database login parameters are required in this case.
-- Specify the target definitions file if SOURCEDEFS was used:
TARGETDEFS full_pathname
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_2, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the target system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Target System
Configure the Manager process and Replicat group on the target system.

To Configure the Manager Process on the Target

1. On the target system, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the purging
of files from the trail.

To Configure the Replicat Group on the Target

1. On the target, create a Replicat checkpoint table (unless using Oracle integrated Replicat).
See About Checkpoint Table for instructions.

2. On the target, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLICAT rep
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_2,
, BEGIN time

Use the EXTTRAIL argument to link the Replicat group to the trail on this system.

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-20

See Reference for Oracle GoldenGate for detailed information about these and other
options that may be required for your installation.

3. On the target, use the EDIT PARAMS command to create a parameter file for the Replicat
group. Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle GoldenGate
installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the target
tables if they are not already journaled. Alternatively, you could use the STRJRNPF
command to assign the tables to the appropriate journal. If the target tables are
not required to be replicated by Oracle GoldenGate, the IMAGES(*AFTER) option
can be used with STRJRNPF. Since Oracle GoldenGate operates using
transactions, all tables must be journaled to support transactions and this is not
the default with DB2 for i.

Creating a Cascading Reporting Configuration
Oracle GoldenGate supports cascading synchronization, where Oracle GoldenGate
propagates data changes from the source database to a second database, and then on to a
third database. In this configuration:

• A primary Extract on the source writes captured data to a local trail, and a data pump
sends the data to a remote trail on the second system in the cascade.

• On the second system, Replicat applies the data to the local database.

• Another primary Extract on that same system captures the data from the local database
and writes it to a local trail.

• A data pump sends the data to a remote trail on the third system in the cascade, where it is
applied to the local database by another Replicat.

Note:

See Creating a Reporting Configuration with a Data Pump on an Intermediary
System if you do not need to apply the replicated changes to a database on the
secondary system.

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-21

Figure 10-4 Cascading Configuration

Use this configuration if:

• One or more of the target systems does not have a direct connection to the source, but the
second system can connect in both directions.

• You want to limit network activity from the source system.

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-22

• You are sending data to two or more servers that are very far apart geographically, such as
from Chicago to Los Angeles and then from Los Angeles to servers throughout China.

When considering this topology, take note of the following:

• This configuration can be used to perform data filtering and conversion if the character sets
on all systems are identical. If character sets differ, a data pump cannot perform
conversion between character sets, and you must configure Replicat to perform the
conversion and transformation on the target.

• On the second system, you must configure the Extract group to capture Replicat activity
and to ignore local business application activity. The Extract parameters that control this
behavior are IGNOREAPPLOPS and GETREPLICATES.

Source System
Refer to #unique_1071/unique_1071_Connect_42_BABBJAHA for a visual representation of
the objects you will be creating.

To Configure the Manager Process on the Source

1. On the source, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the purging
of files from the trail.

To Configure the Primary Extract Group on the Source

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_1.

ADD EXTRACT ext_1, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and other ADD
EXTRACT options that may be required for your installation.

2. On the source, use the ADD EXTTRAIL command to create a local trail.

ADD EXTTRAIL local_trail_1, EXTRACT ext_1

Use the EXTRACT argument to link this trail to the ext_1 Extract group.

3. On the source, use the EDIT PARAMS command to create a parameter file for the ext_1
Extract group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and encryption algorithm:
ENCRYPTTRAIL algorithm

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-23

EXTTRAIL local_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

To Configure the Data Pump on the Source

1. On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump_1.

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail_1, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the local trail.

2. On the source, use the ADD RMTTRAIL command to specify a remote trail that will be
created on the second system in the cascade.

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1

Use the EXTRACT argument to link the remote trail to the pump_1 data pump group. The
linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. On the source, use the EDIT PARAMS command to create a parameter file for the pump_1
data pump. Include the following parameters plus any others that apply to your database
environment.

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information if using NOPASSTHROUGH:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of second system in cascade
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_1, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the second system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Second System in the Cascade
Configure the Manager process, Replicat group, and data pump on the second system in the
cascade.

To Configure the Manager Process on the Second System

1. On the second system, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the purging
of files from the trail.

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-24

To Configure the Replicat Group on the Second System

1. Create a Replicat checkpoint table (unless using Oracle integrated Replicat). See About
Checkpoint Table for instructions.

2. On the second system, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep_1.

ADD REPLICAT rep_1
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1,
, BEGIN time

Use the EXTTRAIL option to link the rep_1 group to the remote trail remote_trail_1 that is on
the local system.

See Reference for Oracle GoldenGate for detailed information about these and other
options that may be required for your installation.

3. On the second system, use the EDIT PARAMS command to create a parameter file for the
Replicat group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep_1
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the target
tables if they are not already journaled. Alternatively, you could use the STRJRNPF
command to assign the tables to the appropriate journal. If the target tables are
not required to be replicated by Oracle GoldenGate, the IMAGES(*AFTER) option
can be used with STRJRNPF. Since Oracle GoldenGate operates using
transactions, all tables must be journaled to support transactions and this is not
the default with DB2 for i.

To Configure an Extract Group on the Second System

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_2.

ADD EXTRACT ext_2, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[option[, ...]]

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-25

See Reference for Oracle GoldenGate for detailed information about these and other ADD
EXTRACT options that may be required for your installation.

2. On the second system, use the ADD EXTTRAIL command to specify a local trail that will be
created on the third system.

ADD EXTTRAIL local_trail_2, EXTRACT ext_2

Use the EXTRACT argument to link this local trail to the ext_2 Extract group.

3. On the second system, use the EDIT PARAMS command to create a parameter file for the
ext_2 Extract group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_2
-- Ignore local DML, capture Replicat DML:
IGNOREAPPLOPS
GETREPLICATES
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Note:

If replicating DDL operations, IGNOREAPPLOPS, GETREPLICATES functionality is
controlled by the DDLOPTIONS parameter.

To Configure the Data Pump on the Second System

1. On the second system, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump_2.

ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail_2, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the local trail.

2. On the second system, use the ADD RMTTRAIL command to specify a remote trail that will
be created on the third system in the cascade.

ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-26

Use the EXTRACT argument to link the remote trail to the pump_2 data pump group. The
linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. On the second system, use the EDIT PARAMS command to create a parameter file for the
pump_2 data pump. Include the following parameters plus any others that apply to your
database environment.

-- Identify the data pump group:
EXTRACT pump_2
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of third system in cascade
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_2, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the third system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Third System in the Cascade
Configure the Manager process and Replicat group on the third system in the cascade.

To Configure the Manager Process

1. On the third system, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the purging
of files from the trail.

To Configure the Replicat Group

1. On the third system, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See About Checkpoint Table for instructions.

2. On the third system, use the ADD REPLICAT command to create a Replicat group. For
documentation purposes, this group is called rep_2.

ADD REPLICAT rep_2
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_2,
, BEGIN time

Use the EXTTRAIL option to link the rep_2 group to the remote_trail_2 trail.

See Reference for Oracle GoldenGate for detailed information about these and other
options that may be required for your installation.

3. On the third system, use the EDIT PARAMS command to create a parameter file for the
Replicat group. Include the following parameters plus any others that apply to your

Chapter 10
Using Oracle GoldenGate for Live Reporting

10-27

database environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Replicat group:
REPLICAT rep_2
-- Specify database login information as needed for the database:
[TARGETDB dsn_3][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the target
tables if they are not already journaled. Alternatively, you could use the STRJRNPF
command to assign the tables to the appropriate journal. If the target tables are
not required to be replicated by Oracle GoldenGate, the IMAGES(*AFTER) option
can be used with STRJRNPF. Since Oracle GoldenGate operates using
transactions, all tables must be journaled to support transactions and this is not
the default with DB2 for i.

Using Oracle GoldenGate for Real-time Data Distribution
This chapter describes the usage of Oracle GoldenGate for real-time data distribution.

Overview of the Data-distribution Configuration
A data distribution configuration is a one-to-many configuration. Oracle GoldenGate supports
synchronization of a source database to any number of target systems. Oracle GoldenGate
supports like-to-like or Non-Oracle transfer of data, with capabilities for filtering and conversion
on any system in the configuration (support varies by database platform).

Chapter 10
Using Oracle GoldenGate for Real-time Data Distribution

10-28

Considerations for a Data-distribution Configuration
These sections describe considerations for a data-distribution configuration.

Fault Tolerance
For a data distribution configuration, the use of data pumps on the source system ensures that
if network connectivity to any of the targets fails, the captured data still can be sent to the other
targets. Use a primary Extract group and one data-pump Extract group for each target.

Filtering and Conversion
You can use any process to perform filtering and conversion. However, using the data pumps
to perform filtering operations removes that processing overhead from the primary Extract
group, and it reduces the amount of data that is sent across the network. See Mapping and
Manipulating Data for filtering and conversion options.

Read-only vs. High Availability
The data distribution configuration supports read-only targets. See Configuring Oracle
GoldenGate for Active-Active Configuration if any target in this configuration will also be used
for transactional activity in support of high availability.

Additional Information
The following documentation provides additional information of relevance to configuring Oracle
GoldenGate.

• For additional system requirements, process configuration, and database setup
requirements, see Install and Prepare.

• For detailed instructions on configuring Oracle GoldenGate change capture and delivery
groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance of
Oracle GoldenGate.

• For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

Creating a Data Distribution Configuration
Refer to #unique_1081/unique_1081_Connect_42_BABCEHBA for a visual representation of
the objects you will be creating.

Chapter 10
Using Oracle GoldenGate for Real-time Data Distribution

10-29

Figure 10-5 Oracle GoldenGate Configuration Elements for Data Distribution

Source System
Configure the Manager process and primary Extract on the source system.

To Configure the Manager Process

1. On the source, configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the purging
of files from the local trail.

To Configure the Primary Extract

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and other ADD
EXTRACT options that may be required for your installation.

2. On the source, use the ADD EXTTRAIL command to create a local trail.

ADD EXTTRAIL local_trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the primary Extract group. The primary
Extract group writes to this trail, and the data pump groups read it

3. On the source, use the EDIT PARAMS command to create a parameter file for the primary
Extract group. Include the following parameters plus any others that apply to your

Chapter 10
Using Oracle GoldenGate for Real-time Data Distribution

10-30

database environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

-- Identify the Extract group:
EXTRACT ext
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Use EXTTRAIL to specify the local trail.

To Configure the Data Pump Extract Groups

1. On the source, use the ADD EXTRACT command to create a data pump for each target
system. For documentation purposes, these groups are called pump_1 and pump_2.

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail, BEGIN time
ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail, BEGIN time

Use EXTTRAILSOURCE as the data source option, and supply the name of the local trail.

2. On the source, use the ADD RMTTRAIL command to specify a remote trail that will be
created on each of the target systems.

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1
ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

Use the EXTRACT argument to link each remote trail to a different data pump group. The
linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. On the source, use the EDIT PARAMS command to create a parameter file for each of the
data pumps. Include the following parameters plus any others that apply to your database
environment.

Parameter file for pump_1:

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the first target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_1, MGRPORT port_number, ENCRYPT encryption_options
-- Specify remote trail and encryption algorithm on first target system:

Chapter 10
Using Oracle GoldenGate for Real-time Data Distribution

10-31

ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Parameter file for pump_2:

-- Identify the data pump group:
EXTRACT pump_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the second target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target_2, MGRPORT port_number, ENCRYPT encryption_options
-- Specify remote trail and encryption algorithm on second target system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Target Systems
Configure the Manager process and Replicat groups on the target systems.

To Configure the Manager Process

1. On each target, configure the Manager process.

2. In each Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Replicat Groups

1. On each target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See About Checkpoint Table for instructions.

2. On each target, use the ADD REPLICAT command to create a Replicat group for the remote
trail on that system. For documentation purposes, these groups are called rep_1 and
rep_2.

Command on target_1:

ADD REPLICAT rep_1
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, BEGIN time

Command on target_2:

ADD REPLICAT rep_2
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_2, BEGIN time

Chapter 10
Using Oracle GoldenGate for Real-time Data Distribution

10-32

Use the EXTTRAIL argument to link the Replicat group to the correct trail.

See Reference for Oracle GoldenGate for detailed information about these and other
options that may be required for your installation.

3. On each target, use the EDIT PARAMS command to create a parameter file for the Replicat
group. Use the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle GoldenGate
installation and setup guide for your database.

Parameter file for rep_1:

-- Identify the Replicat group:
REPLICAT rep_1
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Parameter file for rep_2:

-- Identify the Replicat group:
REPLICAT rep_2
-- Specify database login information as needed for the database:
[TARGETDB dsn_3][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

You can use any number of MAP statements for any given Replicat group. All MAP
statements for a given Replicat group must specify the same objects that are contained in
the trail that is linked to the group.

Configuring Oracle GoldenGate for Real-time Data Warehousing
This chapter describes how to configure Oracle GoldenGate for real-time data warehousing.

Overview of the Data Warehousing Configuration
A data warehousing configuration is a many-to-one configuration. Multiple source databases
send data to one target warehouse database. Oracle GoldenGate supports like-to-like or Non-
Oracle transfer of data, with capabilities for filtering and conversion on any system in the
configuration (support varies by database platform).

Chapter 10
Configuring Oracle GoldenGate for Real-time Data Warehousing

10-33

Considerations for a Data Warehousing Configuration
This section describes considerations for a data warehousing configuration.

Isolation of Data Records
This configuration assumes that each source database contributes different records to the
target system. If the same record exists in the same table on two or more source systems and
can be changed on any of those systems, conflict resolution routines are needed to resolve
conflicts when changes to that record are made on both sources at the same time and
replicated to the target table. See Managing Conflicts for more information about resolving
conflicts.

Data Storage
You can divide the data storage between the source systems and the target system to reduce
the need for massive amounts of disk space on the target system. This is accomplished by
using a data pump on each source, rather than sending data directly from each Extract across
the network to the target.

• A primary Extract writes to a local trail on each source.

• A data-pump Extract on each source reads the local trail and sends it across TCP/IP to a
dedicated Replicat group.

Filtering and Conversion
If not all of the data from a source system will be sent to the data warehouse, you can use the
data pump to perform the filtering. This removes that processing overhead from the primary
Extract group, and it reduces the amount of data that is sent across the network. See Mapping
and Manipulating Data for filtering and conversion options.

Additional Information
The following documentation provides additional information of relevance to configuring Oracle
GoldenGate.

Chapter 10
Configuring Oracle GoldenGate for Real-time Data Warehousing

10-34

• For additional system requirements, process configuration, and database setup
requirements, see Install and Prepare.

• For detailed instructions on configuring Oracle GoldenGate change capture and delivery
groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance of
Oracle GoldenGate.

• For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

Creating a Data Warehousing Configuration
Refer below for a visual representation of the objects you will be creating.

Figure 10-6 Configuration for Data Warehousing

Source Systems
Configure the Manager process and primary Extract groups for the source systems.

Chapter 10
Configuring Oracle GoldenGate for Real-time Data Warehousing

10-35

To Configure the Manager Process

1. On each source, configure the Manager process.

2. In each Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail on the local system.

To Configure the primary Extract Groups

1. On each source, use the ADD EXTRACT command to create a primary Extract group. For
documentation purposes, these groups are called ext_1 and ext_2.

Command on source_1:

ADD EXTRACT ext_1, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[option[, ...]]

Command on source_2:

ADD EXTRACT ext_2, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and other ADD
EXTRACT options that may be required for your installation.

2. On each source, use the ADD EXTTRAIL command to create a local trail.

Command on source_1:

ADD EXTTRAIL local_trail_1, EXTRACT ext_1

Command on source_2:

ADD EXTTRAIL local_trail_2, EXTRACT ext_2

Use the EXTRACT argument to link each Extract group to the local trail on the same system.
The primary Extract writes to this trail, and the data-pump reads it.

3. On each source, use the EDIT PARAMS command to create a parameter file for the primary
Extract. Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle GoldenGate
installation and setup guide for your database.

Parameter file for ext_1:

-- Identify the Extract group:
EXTRACT ext_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_1

Chapter 10
Configuring Oracle GoldenGate for Real-time Data Warehousing

10-36

-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Parameter file for ext_2:

-- Identify the Extract group:
EXTRACT ext_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat or CDR
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_2
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

To Configure the Data Pumps

1. On each source, use the ADD EXTRACT command to create a data pump Extract group. For
documentation purposes, these pumps are called pump_1 and pump_2.

Command on source_1:

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail_1, BEGIN time

Command on source_2:

ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail_2, BEGIN time

Use EXTTRAILSOURCE as the data source option, and specify the name of the trail on the
local system

2. On each source, use the ADD RMTTRAIL command to create a remote trail on the target.

Command on source_1:

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1

Command on source_2:

ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

Use the EXTRACT argument to link each remote trail to a different data pump. The data
pump writes to this trail over TCP/IP, and a Replicat reads from it.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. On each source, use the EDIT PARAMS command to create a parameter file for the data
pump group. Include the following parameters plus any others that apply to your database
environment.

Chapter 10
Configuring Oracle GoldenGate for Real-time Data Warehousing

10-37

Parameter file for pump_1:

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the target system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Parameter file for pump_2:

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the target system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS target, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the target system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify tables and sequences to be captured:
SEQUENCE [container.|catalog.]owner.sequence;
TABLE [container.|catalog.]owner.table;

Target System
Configure the Manager process and primary Replicat groups for the target system.

To Configure the Manager Process

1. Configure the Manager process.

2. In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the purging
of files from the trail.

To Configure the Replicat Groups

1. On the target, create a Replicat checkpoint table (unless using Oracle integrated Replicat).
See About Checkpoint Table for instructions.

2. On the target, use the ADD REPLICAT command to create a Replicat group for each remote
trail that you created. For documentation purposes, these groups are called rep_1 and
rep_2.

Chapter 10
Configuring Oracle GoldenGate for Real-time Data Warehousing

10-38

Command to add rep_1:

ADD REPLICAT rep_1
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, BEGIN time

Command to add rep_2:

ADD REPLICAT rep_2
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_2, BEGIN time

Use the EXTTRAIL argument to link the Replicat group to the trail.

See Reference for Oracle GoldenGate for detailed information about these and other
options that may be required for your installation.

3. On the target, use the EDIT PARAMS command to create a parameter file for each Replicat
group. Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle GoldenGate
installation and setup guide for your database.

Parameter file for rep_1:

-- Identify the Replicat group:
REPLICAT rep_1
-- Specify database login information as needed for the database:
[TARGETDB dsn_3][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Parameter file for rep_1:

-- Identify the Replicat group:
REPLICAT rep_2
-- Specify database login information as needed for the database:
[TARGETDB dsn_3][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

You can use any number of MAP statements for any given Replicat group. All MAP
statements for a given Replicat group must specify the same objects that are contained in
the trail that is linked to the group.

Chapter 10
Configuring Oracle GoldenGate for Real-time Data Warehousing

10-39

Configuring Oracle GoldenGate to Maintain a Live Standby
Database

This chapter describes how to configure Oracle GoldenGate to maintain a live standby
database.

Overview of a Live Standby Configuration
Oracle GoldenGate supports an active-passive bi-directional configuration, where Oracle
GoldenGate replicates data from an active primary database to a full replica database on a live
standby system that is ready for failover during planned and unplanned outages.

In this configuration, there is an inactive Oracle GoldenGate Extract group and an inactive data
pump on the live standby system. Both of those groups remain stopped until just before user
applications are switched to the live standby system in a switchover or failover. When user
activity moves to the standby, those groups begin capturing transactions to a local trail, where
the data is stored on disk until the primary database can be used again.

In the case of a failure of the primary system, the Oracle GoldenGate Manager and Replicat
processes work in conjunction with a database instantiation taken from the standby to restore
parity between the two systems after the primary system is recovered. At the appropriate time,
users are moved back to the primary system, and Oracle GoldenGate is configured in ready
mode again, in preparation for future failovers.

Considerations for a Live Standby Configuration
These sections describe considerations for a live standby configuration.

Trusted Source
The primary database is the trusted source. This is the database that is the active source
during normal operating mode, and it is the one from which the other database is derived in the

Chapter 10
Configuring Oracle GoldenGate to Maintain a Live Standby Database

10-40

initial synchronization phase and in any subsequent resynchronizations. Maintain frequent
backups of the trusted source data.

Duplicate Standby
In most implementations of a live standby, the source and target databases are identical in
content and structure. Data mapping, conversion, and filtering typically are not appropriate
practices in this kind of configuration, but Oracle GoldenGate does support such functionality if
required by your business model. To support these functions, use the options of the TABLE and
MAP parameters.

DML on the Standby System
If your applications permit, you can use the live standby system for reporting and queries, but
not DML. If there will be active transactional applications on the live standby system that affect
objects in the Oracle GoldenGate configuration, you should configure this as an active-active
configuration. See Configuring Oracle GoldenGate for Active-Active Configuration for more
information.

Oracle GoldenGate Processes
During normal operating mode, leave the primary Extract and the data pump on the live
standby system stopped, and leave the Replicat on the active source stopped. This prevents
any DML that occurs accidentally on the standby system from being propagated to the active
source. Only the Extract, data pump, and Replicat that move data from the active source to the
standby system can be active.

Backup Files
Make regular backups of the Oracle GoldenGate working directories on the primary and
standby systems. This backup must include all of the files that are installed at the root level of
the Oracle GoldenGate installation directory and all of the sub-directories within that directory.
Having a backup of the Oracle GoldenGate environment means that you will not have to
recreate your process groups and parameter files.

Failover Preparedness
Make certain that the primary and live standby systems are ready for immediate user access in
the event of a planned switchover or an unplanned source failure. The following components of
a high-availability plan should be made easily available for use on each system:

• Scripts that grant insert, update, and delete privileges.

• (Optional) Scripts that enable triggers and cascaded delete constraints on the live standby
system. (These may have been disabled during the setup procedures that were outlined in
the Oracle GoldenGate installation and configuration document for your database type.)

Note:

Scripts to enable triggers and cascaded delete constraints on the live standby
system are not required with Oracle. It's controlled by the DEFERREFCONST and
SUPRESSTRIGGERS parameter settings.

Chapter 10
Configuring Oracle GoldenGate to Maintain a Live Standby Database

10-41

• Scripts that switch over the application server, start applications, and copy essential files
that are not part of the replication environment.

• A failover procedure for moving users to the live standby if the source system fails.

Sequential Values that are Generated by the Database
If database-generated values, such as Oracle sequences, are used as part of a key, the range
of values must be different on each system, with no chance of overlap. If the application
permits, you can add a location identifier to the value to enforce uniqueness.

For Oracle databases, Oracle GoldenGate can be configured to replicate sequences in a
manner that ensures uniqueness on each database. To replicate sequences, use the SEQUENCE
and MAP parameters. .

Additional Information
The following documentation provides additional information of relevance to configuring Oracle
GoldenGate.

• For additional system requirements, process configuration, and database setup
requirements, see Install and Prepare.

• For detailed instructions on configuring Oracle GoldenGate change capture and delivery
groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance of
Oracle GoldenGate.

• For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

Creating a Live Standby Configuration
Refer to #unique_1104/unique_1104_Connect_42_I1041175 for a visual representation of the
objects you will be creating.

Chapter 10
Configuring Oracle GoldenGate to Maintain a Live Standby Database

10-42

Figure 10-7 Oracle GoldenGate configuration elements for live standby

Prerequisites on Both Systems
Perform the following prerequisites on both systems.

1. Create a Replicat checkpoint table (unless using Oracle integrated Replicat). For
instructions, see About Checkpoint Table.

2. Configure the Manager process.

Configuration from Active Source to Standby
These steps configure Oracle GoldenGate to capture data from the primary database and
replicate it to the standby database.

To Configure the Primary Extract Group

Perform these steps on the active source.

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_1.

ADD EXTRACT ext_1, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and other ADD
EXTRACT options that may be required for your installation.

2. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes, this trail
is called local_trail_1.

ADD EXTTRAIL local_trail_1, EXTRACT ext_1

For EXTRACT, specify the ext_1 group to write to this trail.

Chapter 10
Configuring Oracle GoldenGate to Maintain a Live Standby Database

10-43

3. Use the EDIT PARAMS command to create a parameter file for the ext_1 group. Include the
following parameters plus any others that apply to your database environment. For
possible additional required parameters, see the Oracle GoldenGate installation and setup
guide for your database.

-- Identify the Extract group:
EXTRACT ext_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_1
-- Specify sequences to be captured:
SEQUENCE [container.]owner.sequence;
-- Specify tables to be captured:
TABLE [container.]owner.*;

To Configure the Data Pump

Perform these steps on the active source.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_1.

ADD EXTRACT pump_1, EXTTRAILSOURCE local_trail_1, BEGIN time

For EXTTRAILSOURCE, specify local_trail_1 as the data source.

2. Use the ADD RMTTRAIL command to specify a remote trail that will be created on the
standby system.

ADD RMTTRAIL remote_trail_1, EXTRACT pump_1

For EXTRACT, specify the pump_1 data pump to write to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. Use the EDIT PARAMS command to create a parameter file for the pump_1 group. Include
the following parameters plus any others that apply to your database environment.

-- Identify the data pump group:
EXTRACT pump_1
-- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the standby system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS system_2, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the standby system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify sequences to be captured:
SEQUENCE [container.]owner.sequence;
-- Specify tables to be captured:
TABLE [container.]owner.*;

Chapter 10
Configuring Oracle GoldenGate to Maintain a Live Standby Database

10-44

To Configure the Replicat Group

Perform these steps on the live standby system.

1. Create a Replicat checkpoint table (unless using Oracle integrated Replicat). See Creating
a Checkpoint Table for instructions.

2. Use the ADD REPLICAT command to create a Replicat group. For documentation purposes,
this group is called rep_1.

ADD REPLICAT rep_1
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, BEGIN time

For EXTTRAIL, specify remote_trail_1 as the trail that this Replicat reads.

See Reference for Oracle GoldenGate for detailed information about these and other
options that may be required for your installation.

3. Use the EDIT PARAMS command to create a parameter file for the rep_1 group. Include the
following parameters plus any others that apply to your database environment. For
possible additional required parameters, see the Oracle GoldenGate installation and setup
guide for your database.

-- Identify the Replicat group:
REPLICAT rep_1
-- State that source and target definitions are identical:
ASSUMETARGETDEFS
-- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Configuration from Standby to Active Source
These steps configure Oracle GoldenGate in passive mode. In this mode, the Oracle
GoldenGate processes are ready, but not started, to capture data from the secondary
database and replicate it to the primary database after a switchover of transaction activity to
the secondary system.

Note:

This is a reverse image of the configuration that you just created.

To Configure the Primary Extract Group

Perform these steps on the live standby system.

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_2.

ADD EXTRACT ext_2, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time [option[, ...]]

Chapter 10
Configuring Oracle GoldenGate to Maintain a Live Standby Database

10-45

See Reference for Oracle GoldenGate for detailed information about these and other ADD
EXTRACT options that may be required for your installation.

2. Start the TRANLOG Extract ext_2. Also see Preventing Data Looping.

3. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes, this trail
is called local_trail_2.

ADD EXTTRAIL local_trail_2, EXTRACT ext_2

For EXTRACT, specify the ext_2 group to write to this trail.

4. Use the EDIT PARAMS command to create a parameter file for the ext_2 group. Include the
following parameters plus any others that apply to your database environment. For
possible additional required parameters, see the Oracle GoldenGate installation and setup
guide for your database.

-- Identify the Extract group:
EXTRACT ext_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Log all scheduling columns if using integrated Replicat
LOGALLSUPCOLS
-- Specify the local trail this Extract writes to and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL local_trail_2
-- Specify sequences to be captured:
SEQUENCE [container.]owner.sequence;
-- Specify tables to be captured:
TABLE [container.]owner.*;

To Configure the Data Pump

Perform these steps on the live standby system.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_2.

ADD EXTRACT pump_2, EXTTRAILSOURCE local_trail_2, BEGIN time

For EXTTRAILSOURCE, specify local_trail_2 as the data source.

2. Use the ADD RMTTRAIL command to add a remote trail remote_trail_2 that will be created
on the active source system.

ADD RMTTRAIL remote_trail_2, EXTRACT pump_2

For EXTRACT, specify the pump_2 data pump to write to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

3. Use the EDIT PARAMS command to create a parameter file for the pump_2 group. Include
the following parameters plus any others that apply to your database environment.

-- Identify the data pump group:
EXTRACT pump_2
-- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the active source system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS system_1, MGRPORT port_number, ENCRYPT encryption_options

Chapter 10
Configuring Oracle GoldenGate to Maintain a Live Standby Database

10-46

-- Specify remote trail and encryption algorithm on active source system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_2
-- Specify sequences to be captured:
SEQUENCE [container.]owner.sequence;
-- Specify tables to be captured:
TABLE [container.]owner.*;

To Configure the Replicat Group

Perform these steps on the active source.

1. Use the ADD REPLICAT command to create a Replicat group. For documentation purposes,
this group is called rep_2.

ADD REPLICAT rep_2
[, INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL remote_trail_1, BEGIN time

For EXTTRAIL, specify remote_trail_2 as the trail that this Replicat reads.

See Reference for Oracle GoldenGate for detailed information about these and other
options that may be required for your installation.

2. Use the EDIT PARAMS command to create a parameter file for the rep_2 group. Include the
following parameters plus any others that apply to your database environment. For
possible additional required parameters, see the Oracle GoldenGate installation and setup
guide for your database.

-- Identify the Replicat group:
REPLICAT rep_2
-- State that source and target definitions are identical:
ASSUMETARGETDEFS
-- Specify database login information as needed for the database:
[TARGETDB dsn_1][, USERIDALIAS alias]
-- Handle collisions between failback data copy and replication:
HANDLECOLLISIONS
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery and threads if using coordinated Replicat:
MAP [container.|catalog.]owner.table, TARGET owner.table[, DEF template]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, column_list])]
;

Moving User Activity in a Planned Switchover
This procedure moves user application activity from a primary database to a live standby
system in a planned, graceful manner so that system maintenance and other procedures that
do not affect the databases can be performed on the primary system.

Moving User Activity to the Live Standby
To move user activity to the live standby:

1. (Optional) If you need to perform system maintenance on the secondary system, you can
do so now or at the specified time later in these procedures, after moving users from the
secondary system back to the primary system. In either case, be aware of the following
risks if you must shut down the secondary system for any length of time:

Chapter 10
Configuring Oracle GoldenGate to Maintain a Live Standby Database

10-47

• The local trail on the primary system could run out of disk space as data accumulates
while the standby is offline. This will cause the primary Extract to abend.

• If the primary system fails while the standby is offline, the data changes will not be
available to be applied to the live standby when it is functional again, thereby breaking
the synchronized state and requiring a full re-instantiation of the live standby.

2. On the primary system, stop the user applications, but leave the primary Extract and the
data pump on that system running so that they capture any backlogged transaction data.

3. On the primary system, issue the following command for the primary Extract until it returns
"At EOF, no more records to process." This indicates that all transactions are now
captured.

LAG EXTRACT ext_1

Note:

Since capture continues to read REDO, the non-production workload continues to
work. In this case, there is possibility that At EOF is never returned even though
the production workload has already stopped8.5.1..

4. On the primary system, stop the primary Extract process

STOP EXTRACT ext_1
5. On the primary system, issue the following command for the data pump until it returns "At

EOF, no more records to process." This indicates that the pump sent all of the captured
data to the live standby.

LAG EXTRACT pump_1

6. On the live standby system, issue the STATUS REPLICAT command until it returns "At EOF
(end of file)." This confirms that Replicat applied all of the data from the trail to the
database.

STATUS REPLICAT rep_1
7. On the live standby system, stop Replicat.

STOP REPLICAT rep_1
8. On the live standby system, do the following:

• Run the script that grants insert, update, and delete permissions to the users of the
business applications.

• Run the script that enables triggers and cascade delete constraints.

• Run the scripts that switch over the application server, start applications, and copy
essential files that are not part of the replication environment.

9. Switch user activity to the live standby system.

10. On the primary system, perform the system maintenance.

Moving User Activity Back to the Primary System
To move user activity back to the primary system:

Chapter 10
Configuring Oracle GoldenGate to Maintain a Live Standby Database

10-48

1. On the live standby system, stop the user applications, but leave the primary Extract
running so that it captures any backlogged transaction data.

2. On the primary system, start Replicat in preparation to receive changes from the live
standby system.

START REPLICAT rep_2
3. On the live standby system, start the data pump to begin moving the data that is stored in

the local trail across TCP/IP to the primary system.

START EXTRACT pump_2
4. On the live standby system, issue the following command for the primary Extract until it

returns "At EOF, no more records to process." This indicates that all transactions are
now captured.

LAG EXTRACT ext_2
5. On the live standby system, stop the primary Extract.

STOP EXTRACT ext_2
6. On the live standby system, issue the following command for the data pump until it

returns "At EOF, no more records to process." This indicates that the pump sent all of
the captured data to the primary system.

LAG EXTRACT pump_2
7. On the live standby system, stop the data pump.

STOP EXTRACT pump_2
8. On the primary system, issue the STATUS REPLICAT command until it returns "At EOF

(end of file)." This confirms that Replicat applied all of the data from the trail to the
database.

STATUS REPLICAT rep_2
9. On the primary system, stop Replicat.

STOP REPLICAT rep_2
10. On the primary system, do the following:

• Run the script that grants insert, update, and delete permissions to the users of the
business applications.

• Run the script that enables triggers and cascade delete constraints.

• Run the scripts that switch over the application server, start applications, and copy
essential files that are not part of the replication environment.

11. On the primary system, alter the primary Extract to begin capturing data based on the
current timestamp. Otherwise, Extract will spend unnecessary time looking for operations
that were already captured and replicated while users were working on the standby
system.

ALTER EXTRACT ext_1, BEGIN NOW
12. On the primary system, start the primary Extract so that it is ready to capture transactional

changes.

START EXTRACT ext_1
13. Switch user activity to the primary system.

Chapter 10
Configuring Oracle GoldenGate to Maintain a Live Standby Database

10-49

14. (Optional) If system maintenance must be done on the live standby system, you can do it
now, before starting the data pump on the primary system. Note that captured data will be
accumulating on the primary system while the standby is offline.

15. On the primary system, start the data pump.

START EXTRACT pump_1
16. On the live standby system, start Replicat.

START REPLICAT rep_1

Moving User Activity in an Unplanned Failover
These sections describe how to move user activity in an unplanned failover.

Moving User Activity to the Live Standby
This procedure does the following:

• Prepares the live standby for user activity.

• Ensures that all transactions from the primary system are applied to the live standby.

• Activates Oracle GoldenGate to capture transactional changes on the live standby.

• Moves users to the live standby system.

Perform these steps on the live standby system

To move users to the live standby

1. Issue the STATUS REPLICAT command until it returns "At EOF (end of file)" to confirm
that Replicat applied all of the data from the trail to the database.

STATUS REPLICAT rep_1
2. Stop the Replicat process.

STOP REPLICAT rep_1
3. Run the script that grants insert, update, and delete permissions to the users of the

business applications.

4. Run the script that enables triggers and cascade delete constraints.

5. Run the scripts that fail over the application server, start applications, and copy essential
files that are not part of the replication environment.

6. Start the primary Extract process on the live standby.

START EXTRACT ext_2
7. Move the users to the standby system and let them start working.

Note:

Do not start the data pump group on the standby. The user transactions must
accumulate there until just before user activity is moved back to the primary
system.

Chapter 10
Configuring Oracle GoldenGate to Maintain a Live Standby Database

10-50

Moving User Activity Back to the Primary System
This procedure does the following:

• Recovers the Oracle GoldenGate environment.

• Makes a copy of the live standby data to the restored primary system.

• Propagates user transactions that occurred while the copy was being made.

• Reconciles the results of the copy with the propagated changes.

• Moves users from the standby system to the restored primary system.

• Prepares replication to maintain the live standby again.

Perform these steps after the recovery of the primary system is complete.

To Recover the Source Oracle GoldenGate Environment

1. On the primary system, recover the Oracle GoldenGate directory from your backups.

2. On the primary system, run GGSCI.

3. On the primary system, delete the primary Extract group.

DELETE EXTRACT ext_1
4. On the primary system, delete the local trail.

DELETE EXTTRAIL local_trail_1
5. On the primary system, add the primary Extract group again, using the same name so that

it matches the parameter file that you restored from backup. For documentation purposes,
this group is called ext_1. This step initializes the Extract checkpoint from its state before
the failure to a clean state.

ADD EXTRACT ext_1, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time
[, THREADS n]

• For TRANLOG and INTEGRATED TRANLOG, see Reference for Oracle GoldenGate.
INTEGRATED TRANLOG enables integrated capture for an Oracle database.

6. On the primary system, add the local trail again, using the same name as before. For
documentation purposes, this trail is called local_trail_1.

ADD EXTTRAIL local_trail_1, EXTRACT ext_1

• For EXTRACT, specify the ext_1 group to write to this trail.

7. On the primary system, start the Manager process.

START MANAGER

To Copy the Database from Standby to Primary System

1. On the primary system, run scripts to disable triggers and cascade delete constraints.

2. On the standby system, start making a hot copy of the database.

3. On the standby system, record the time at which the copy finishes.

4. On the standby system, stop user access to the applications. Allow all open transactions
to be completed.

Chapter 10
Configuring Oracle GoldenGate to Maintain a Live Standby Database

10-51

To Propagate Data Changes Made During the Copy

1. On the primary system, start Replicat.

START REPLICAT rep_2
2. On the live standby system, start the data pump. This begins transmission of the

accumulated user transactions from the standby to the trail on the primary system.

START EXTRACT pump_2
3. On the primary system, issue the INFO REPLICAT command until you see that it posted all

of the data changes that users generated on the standby system during the initial load.
Refer to the time that you recorded previously. For example, if the copy stopped at 12:05,
make sure that change replication has posted data up to that point.

INFO REPLICAT rep_2
4. On the primary system, issue the following command to turn off the HANDLECOLLISIONS

parameter and disable the initial-load error handling.

SEND REPLICAT rep_2, NOHANDLECOLLISIONS
5. On the primary system, issue the STATUS REPLICAT command until it returns "At EOF

(end of file)" to confirm that Replicat applied all of the data from the trail to the
database.

STATUS REPLICAT rep_2
6. On the live standby system, stop the data pump. This stops transmission of any user

transactions from the standby to the trail on the primary system.

STOP EXTRACT pump_2
7. On the primary system, stop the Replicat process.

STOP REPLICAT rep_2
At this point in time, the primary and standby databases should be in a state of synchronization
again.

(Optional) To Verify Synchronization

1. Use a compare tool, such as Oracle GoldenGate Veridata, to compare the source and
standby databases for parity.

2. Use a repair tool, such as Oracle GoldenGate Veridata, to repair any out-of-sync
conditions.

To Switch Users to the Primary System

1. On the primary system, run the script that grants insert, update, and delete permissions to
the users of the business applications.

2. On the primary system, run the script that enables triggers and cascade delete
constraints.

3. On the primary system, run the scripts that fail over the application server, start
applications, and copy essential files that are not part of the replication environment.

4. On the primary system, start the primary Extract process.

START EXTRACT ext_1
5. On the primary system, allow users to access the applications.

Chapter 10
Configuring Oracle GoldenGate to Maintain a Live Standby Database

10-52

Configuring Oracle GoldenGate for Active-Active Configuration
This chapter describes how to configure Oracle GoldenGate for active-active configuration.

Overview of an Active-Active Configuration
Oracle GoldenGate supports an active-active, bidirectional configuration, where there are two
systems with identical sets of data that can be changed by application users on either system.
Oracle GoldenGate replicates transactional data changes from each database to the other to
keep both sets of data current.

In a bidirectional configuration, there is a complete set of active Oracle GoldenGate processes
on each system. Data captured by an Extract process on one system is propagated to the
other system, where it is applied by a local Replicat process.

This configuration supports load sharing. It can be used for disaster tolerance if the business
applications are identical on any two peers.

Oracle GoldenGate supports active-active configurations for:

• DB2 on z/OS, LUW, and IBM i

• MySQL

• Oracle

• PostgreSQL

• SQL Server

Considerations for an Active-Active Configuration
The following considerations apply in an active-active configuration. In addition, review the
Oracle GoldenGate installation and configuration document for your type of database to see if
there are any other limitations or requirements to support a bi-directional configuration.

Application Design
When using Active-Active replication, the time zones must be the same on both systems so
that timestamp-based conflict resolution and detection can operate.

Active-active replication is not recommended for use with commercially available packaged
business applications, unless the application is designed to support it. Among the obstacles
that these applications present are:

• Packaged applications might contain objects and data types that are not supported by
Oracle GoldenGate.

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-53

• They might perform automatic DML operations that you cannot control, but which will be
replicated by Oracle GoldenGate and cause conflicts when applied by Replicat.

• You probably cannot control the data structures to make modifications that are required for
active-active replication.

Keys
For accurate detection of conflicts, all records must have a unique, not-null identifier. If
possible, create a primary key. If that is not possible, use a unique key or create a substitute
key with a KEYCOLS option of the MAP and TABLE parameters. In the absence of a unique
identifier, Oracle GoldenGate uses all of the columns that are valid in a WHERE clause, but this
will degrade performance if the table contains numerous columns.

To maintain data integrity and prevent errors, the following must be true of the key that you use
for any given table:

• contain the same columns in all of the databases where that table resides.

• contain the same values in each set of corresponding rows across the databases.

Database-Generated Values
Do not replicate database-generated sequential values, such as Oracle sequences, in a bi-
directional configuration. The range of values must be different on each system, with no
chance of overlap. For example, in a two-database environment, you can have one server
generate even values, and the other odd. For an n-server environment, start each key at a
different value and increment the values by the number of servers in the environment. This
method may not be available to all types of applications or databases. If the application
permits, you can add a location identifier to the value to enforce uniqueness.

Database Configuration
One of the databases must be designated as the trusted source. This is the primary database
and its host system from which the other database is derived in the initial synchronization
phase and in any subsequent resynchronizations that become necessary. Maintain frequent
backups of the trusted source data.

Preventing Data Looping
In a bidirectional configuration, SQL changes that are replicated from one system to another
must be prevented from being replicated back to the first system. Otherwise, it moves back
and forth in an endless loop, as in this example:

1. A user application updates a row on system A.

2. Extract extracts the row on system A and sends it to system B.

3. Replicat updates the row on system B.

4. Extract extracts the row on system B and sends it back to system A.

5. The row is applied on system A (for the second time).

6. This loop continues endlessly.

To prevent data loopback, you may need to provide instructions that:

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-54

• prevent the capture of SQL operations that are generated by Replicat, but enable the
capture of SQL operations that are generated by business applications if they contain
objects that are specified in the Extract parameter file.

• identify local Replicat transactions, in order for the Extract process to ignore them.

Identifying Replicat Transactions
To configure Extract to identify Replicat transactions, follow the instructions for the database
from which Extract will capture data.

DB2 z/OS, DB2 LUW, and DB2 for i
Identify the Replicat user name by using the following parameter statement in the Extract
parameter file.

TRANLOGOPTIONS EXCLUDEUSER user

This parameter statement marks all DDL and DML transactions that are generated by this user
as Replicat transactions. The user name is included in the transaction record that is read by
Extract.

MySQL
Identify the name of the Replicat checkpoint table by using the following parameter statement
in the Extract parameter file.

TRANLOGOPTIONS FILTERTABLE table_name

Replicat writes a checkpoint to the checkpoint table at the end of each of its transactions as
part of its checkpoint procedure. (This is the table that is created with the ADD
CHECKPOINTTABLE command.) Because every Replicat transaction includes a write to this table,
it can be used to identify Replicat transactions in a bidirectional configuration. FILTERTABLE
identifies the name of the checkpoint table, so that Extract ignores transactions that contain
any operations on it.

PostgreSQL and SQL Server
Identify the name of the Replicat checkpoint table by using the following parameter statement
in the Extract parameter file and ensure that the Replicat checkpoint table has been enabled
for supplemental logging with the ADD TRANDATA command.

TRANLOGOPTIONS FILTERTABLE table_name

Replicat writes a checkpoint to the checkpoint table at the end of each of its transactions as
part of its checkpoint procedure. (This is the table that is created with the ADD
CHECKPOINTTABLE command). Because every Replicat transaction includes a write to this table,
it can be used to identify Replicat transactions in a bi-directional configuration. FILTERTABLE
identifies the name of the checkpoint table, so that Extract ignores transactions that contain
any operations on it.

Oracle
There are multiple ways to identify Replicat transaction in an Oracle environment. When
Replicat is in classic or integrated mode, you use the following parameters:

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-55

• Replicats set a tag of 00 by default. Use DBOPTIONS with the SETTAG option in the Replicat
parameter file to change the tag that Replicat sets. Replicat tags the transactions being
applied with the specified value, which identifies those transactions in the redo stream.
Valid values are a single TAG value consisting of hexadecimal digits.

• Use the TRANLOGOPTIONS parameter with the EXCLUDETAG option in the Extract parameter
file. The logmining server associated with that Extract excludes redo that is tagged with the
SETTAG value.

The following shows how SETTAG can be set in the Replicat parameter file:

DBOPTIONS SETTAG 0935

The following shows how EXCLUDETAG can be set in the Extract parameter file:

TRANLOGOPTIONS EXCLUDETAG 0935

If you are excluding multiple tags, each must have a separate TRANLOGOPTIONS
EXCLUDETAG statement specified.

You can also use the transaction name or userid of the Replicat user to identify Replicat
transactions. You can choose which of these to ignore when you configure Extract. See
Preventing the Capture of Replicat Transactions (Oracle).

For more information, see Reference for Oracle GoldenGate.

Preventing the Capture of Replicat Operations
Depending on which database you are using, you may or may not need to provide explicit
instructions to prevent the capture of Replicat operations.

Preventing the Capture of Replicat Transactions (Oracle)
To prevent the capture of SQL that is applied by Replicat to an Oracle database, there are
different options depending on the Extract capture mode:

• When Extract is in classic or integrated capture mode, use the TRANLOGOPTIONS parameter
with the EXCLUDETAG tag option. This parameter directs the Extract process to ignore
transactions that are tagged with the specified redo tag. See Identifying Replicat
Transactions to set the tag value. This is the recommended approach for Oracle.

• When Extract is in classic capture mode, use the Extract TRANLOGOPTIONS parameter with
the EXCLUDEUSER or EXCLUDEUSERID option to exclude the user name or ID that is used by
Replicat to apply the DDL and DML transactions. Multiple EXCLUDEUSER statements can be
used. The specified user is subject to the rules of the GETREPLICATES or IGNOREREPLICATES
parameter. See Preventing Capture of Replicat Transactions (Other Databases) for more
information.

Preventing Capture of Replicat Transactions (Other Databases)
To prevent the capture of SQL that is applied by Replicat to other database types (including
Oracle, if Extract operates in classic capture mode), use the following parameters:

• GETAPPLOPS | IGNOREAPPLOPS: Controls whether or not data operations (DML) produced
by business applications except Replicat are included in the content that Extract writes to a
specific trail or file.

• GETREPLICATES | IGNOREREPLICATES: Controls whether or not DML operations produced
by Replicat are included in the content that Extract writes to a specific trail or file.

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-56

Replicating DDL in a Bidirectional Configuration
There are additional consideration when replicating DDL bidirectionally, supported in Oracle
and MySQL databases. For information on DDL support for Oracle, see Configuring DDL
Support . For information on DDL support in MySQL, see Using DDL Replication.

Managing Conflicts
Uniform conflict-resolution procedures must be in place on all systems in an active-active
configuration. Conflicts should be identified immediately and handled with as much automation
as possible; however, different business applications will present their own unique set of
requirements in this area.

Because Oracle GoldenGate is an asynchronous solution, conflicts can occur when
modifications are made to identical sets of data on separate systems at (or almost at) the same
time. Conflicts occur when the timing of simultaneous changes results in one of these out-of-
sync conditions:

• A uniqueness conflict occurs when Replicat applies an insert or update operation that
violates a uniqueness integrity constraint, such as a PRIMARY KEY or UNIQUE constraint. An
example of this conflict type is when two transactions originate from two different
databases, and each one inserts a row into a table with the same primary key value.

• An update conflict occurs when Replicat applies an update that conflicts with another
update to the same row. Update conflicts happen when two transactions that originate from
different databases update the same row at nearly the same time. Replicat detects an
update conflict when there is a difference between the old values (the before values) that
are stored in the trail record and the current values of the same row in the target database.

• A delete conflict occurs when two transactions originate at different databases, and one
deletes a row while the other updates or deletes the same row. In this case, the row does
not exist to be either updated or deleted. Replicat cannot find the row because the primary
key does not exist.

For example, UserA on DatabaseA updates a row, and UserB on DatabaseB updates the
same row. If UserB's transaction occurs before UserA's transaction is synchronized to
DatabaseB, there will be a conflict on the replicated transaction.

A more complicated example involves three databases and illustrates a more complex ordering
conflict. Assume three databases A, B, and C. Suppose a user inserts a row at database A,
which is then replicated to database B. Another user then modifies the row at database B, and
the row modification is replicated to database C. If the row modification from B arrives at
database C before the row insert from database A, C will detect a conflict.

Where possible, try to minimize or eliminate any chance of conflict. Some ways to do so are:

• Configure the applications to restrict which columns can be modified in each database. For
example, you could limit access based on geographical area, such as by allowing different
sales regions to modify only the records of their own customers. As another example, you
could allow a customer service application on one database to modify only the NAME and
ADDRESS columns of a customer table, while allowing a financial application on another
database to modify only the BALANCE column. In each of those cases, there cannot be a
conflict caused by concurrent updates to the same record.

• Keep synchronization latency low. If UserA on DatabaseA and UserB on DatabaseB both
update the same rows at about the same time, and UserA's transaction gets replicated to
the target row before UserB's transaction is completed, conflict is avoided. See Tuning the

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-57

Performance of Oracle GoldenGate for suggestions on improving the performance of the
Oracle GoldenGate processes.

To avoid conflicts, replication latency must be kept as low as possible. When conflicts are
unavoidable, they must be identified immediately and resolved with as much automation as
possible, either through the Oracle GoldenGate Conflict Detection and Resolution (CDR)
feature, or through methods developed on your own. Custom methods can be integrated into
Oracle GoldenGate processing through the SQLEXEC and user exit functionality. See Manual
Conflict Detection and Resolution for more information about using Oracle GoldenGate to
handle conflicts.

For Oracle database, the automatic Conflict Detection Resolution (CDR) feature exists. To
know more, see Automatic Conflict Detection and Resolution.

Additional Information
The following documentation provides additional information of relevance to configuring Oracle
GoldenGate.

• For additional database configuration requirements, see the Using Oracle GoldenGate for
Oracle Database and Configure Oracle GoldenGate for Non-Oracle Databases guides.

• For a bidirectional replication, see Configure Bi-Directional Replication.

• For detailed instructions on configuring Oracle GoldenGate change capture and delivery
groups, see Configuring Online Change Synchronization.

• For additional tuning options for Oracle GoldenGate, see Tuning the Performance of
Oracle GoldenGate.

Creating an Active-Active Configuration
See the Quickstart Bidirectional Replication for steps to configure an active-active bidirectional
replication.

Prerequisites on Both Systems
Perform the following prerequisites on both systems.

1. Create a Replicat checkpoint table (unless using Oracle integrated Replicat). For
instructions, see About Checkpoint Table.

2. Configure the Manager process.

Configuration from Primary System to Secondary System
These steps add the processes necessary to send data from the primary system to the
secondary database.

To Configure the Primary Extract Group

Perform these steps on the primary system.

1. Use the ADD EXTRACT command to create a primary Extract group. For documentation
purposes, this group is called ext_1.

ADD EXTRACT exte, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-58

2. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes, this trail
is called trail_east.

ADD EXTTRAIL trail_east, EXTRACT exte

For EXTRACT, specify the ext_1 group to write to this trail

3. Use the EDIT PARAMS command to create a parameter file for the ext_1 group. Include the
following parameters plus any others that apply to your database environment. For
possible additional required parameters, see the Oracle GoldenGate installation and setup
guide for your database.

-- Identify the Extract group:
EXTRACT exte
-- Specify database login information as needed for the database:
[SOURCEDB dsne][, USERIDALIAS alias]
-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL trail_east
-- Exclude Replicat transactions. Uncomment ONE of the following:
-- DB2 z/OS, DB2 LUW, DB2 IBM i, and Oracle:
-- TRANLOGOPTIONS EXCLUDEUSER Replicat_user
-- Oracle integrated capture:
-- EXCLUDETAG tag
-- SQL Server:
-- TRANLOGOPTIONS FILTERTABLE schema.checkpointtable"
-- -- Teradata:
-- SQLEXEC 'SET SESSION OVERRIDE REPLICATION ON;'
-- SQLEXEC 'COMMIT;'
-- Log all scheduling columns for CDR and if using integrated Replicat
LOGALLSUPCOLS
-- Specify tables to be captured and (optional) columns to fetch:
TABLE [container.|catalog.]owner.* [, FETCHCOLS cols | FETCHCOLSEXCEPT
cols];

To Configure the Data Pump

Perform these steps on the primary system.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pumpe.

ADD EXTRACT pumpe, EXTTRAILSOURCE ea, BEGIN time

For EXTTRAILSOURCE, specify ea as the data source.

2. Use the ADD RMTTRAIL command to add a remote trail that will be created on the
secondary system. For documentation purposes, this trail is called er.

ADD RMTTRAIL er, EXTRACT pumpr

For EXTRACT, specify the pump_1 data pump to write to this trail.

See Reference for Oracle GoldenGate for additional ADD RMTTRAIL options.

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-59

Use the EDIT PARAMS command to create a parameter file for the pumprgroup. Include the
following parameters plus any others that apply to your database environment.

-- Identify the data pump group:
EXTRACT pumpe
-- Specify database login information as needed for the database:
[SOURCEDB dsne][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the secondary system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS system_2, MGRPORT port_number, ENCRYPT encryption_options
-- Specify remote trail and encryption algorithm on secondary system:
ENCRYPTTRAIL algorithm
RMTTRAIL remote_trail_1
-- Specify tables to be captured:
TABLE [container.|catalog.]owner.*;

To Configure the Replicat Group

Perform these steps on the secondary system.

1. Create the Replicat checkpoint table after using the DBLOGIN command to connect to the
database. See ADD CHECKPOINTTABLE in Command Line Interface Reference for Oracle
GoldenGate.

2. Run the command:

ADD CHECKPOINTTABLE schema.checkpointtable
3. Use the ADD REPLICAT command to create a Replicat group. For documentation purposes,

this group is called repe.

ADD REPLICAT repe
[, PARALLEL | INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL er, CHECKPOINTTABLE schema.checkpointtable

For EXTTRAIL, specify remote_trail_1 as the trail that this Replicat reads.

4. Use the EDIT PARAMS command to create a parameter file for the rep_1 group. Include the
following parameters plus any others that apply to your database environment. For
possible additional required parameters, see the Oracle GoldenGate installation and setup
guide for your database.

-- Identify the Replicat group:
REPLICAT repe
-- Specify database login information as needed for the database:
[TARGETDB dsnw][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Set redo tag for Oracle only replicat via settag
-- Default is 00.
SETTAG tag_value
-- Valid for Oracle only. Specify tables for delivery, threads if
coordinated Replicat
-- and conflict-resolution:
MAP [container.|catalog.]owner.*, TARGET owner.*, COMPARECOLS (ON

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-60

operation {ALL | KEY | KEYINCLUDING (col_list) | ALLEXCLUDING
(col_list)}), RESOLVECONFLICT (conflict type (resolution_name,
resolution_type COLS (col[,...]))
[, THREAD (thread_ID)]
[, THREADRANGE (thread_range[, column_list])]
;
-- Specify mapping of exceptions to exceptions table:
MAP [container.|catalog.]owner.*, TARGET owner.exceptions, EXCEPTIONSONLY;

Configuration from Secondary System to Primary System
These steps add the processes necessary to send data from the secondary system to the
primary database.

To Configure the Primary Extract Group

Perform these steps on the secondary system.

Note:

This is a reverse image of the configuration that you just created.

1. Use the ADD EXTRACT command to create a primary Extract group. For documentation
purposes, this group is called extn.

ADD EXTRACT extn, {TRANLOG | INTEGRATED TRANLOG}, BEGIN time

2. Use the ADD EXTTRAIL command to add a local trail. For documentation purposes, this trail
is called en.

ADD EXTTRAIL en, EXTRACT extn

For Extract, specify the extn group to write to this trail.

3. Use the EDIT PARAMS command to create a parameter file for the extn group. Include the
following parameters plus any others that apply to your database environment. For
possible additional required parameters, see the Oracle GoldenGate installation and setup
guide for your database.

-- Identify the Extract group:
EXTRACT extn
-- Specify database login information as needed for the database:
[SOURCEDB dsnn][, USERIDALIAS alias]
-- Specify the local trail that this Extract writes to
-- and the encryption algorithm:
ENCRYPTTRAIL algorithm
EXTTRAIL en
-- Exclude Replicat transactions. Uncomment ONE of the following:
-- Db2 z/OS, Db2 LUW, Db2 IBM i, and Oracle:
-- TRANLOGOPTIONS EXCLUDEUSER Replicat_user
-- Oracle integrated capture:
-- EXCLUDETAG tag

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-61

-- SQL Server:
-- TRANLOGOPTIONS EXCLUDETRANS FILTERTABLE schema.checkpointtable
-- Oracle:
-- TRACETABLE trace_table_name
-- Log all scheduling columns for CDR and if using integrated Replicat
LOGALLSUPCOLS
-- Specify tables to be captured and (optional) columns to fetch:
TABLE [container.|catalog.]owner.* [, FETCHCOLS cols | FETCHCOLSEXCEPT
cols];

Note:

To replicate Oracle DBFS data, specify the internally generated local read-write
DBFS tables in the TABLE statement on each node. For more information on
identifying these tables and configuring DBFS for propagation by Oracle
GoldenGate, see Applying the Required Patch in Using Oracle GoldenGate for
Oracle Database.

To Configure the Data Pump

Perform these steps on the secondary system.

1. Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pumpn.

ADD EXTRACT pumpn, EXTTRAILSOURCE en, BEGIN time

For EXTTRAILSOURCE, specify en as the data source.

2. Use the ADD RMTTRAIL command to add a remote trail that will be created on the primary
system. For documentation purposes, this trail is called rt.

ADD RMTTRAIL rt, EXTRACT pumpn

For EXTRACT, specify the pumpn data pump to write to this trail.

3. Use the EDIT PARAMS command to create a parameter file for the pump_2 group. Include
the following parameters plus any others that apply to your database environment.

-- Identify the data pump group:
EXTRACT pumpn
-- Specify database login information as needed for the database:
[SOURCEDB dsnn][, USERIDALIAS alias]
-- Decrypt the data only if the data pump must process it.
-- DECRYPTTRAIL
-- Specify the name or IP address of the primary system
-- and optional encryption of data over TCP/IP:
RMTHOSTOPTIONS system_1, MGRPORT port_number, ENCRYPT encryption_options
-- Specify the remote trail and encryption algorithm on the primary system:
ENCRYPTTRAIL algorithm
RMTTRAIL rt

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-62

-- Specify tables to be captured:
TABLE [container.|catalog.]owner.*;

Note:

To replicate Oracle DBFS data, specify the internally generated local read-write
DBFS tables in the TABLE statement on each node. For more information on
identifying these tables and configuring DBFS for propagation by Oracle
GoldenGate, see Configuring the DBFS File System in Using Oracle GoldenGate
for Oracle Database.

To Configure the Replicat Group

Perform these steps on the primary system.

1. Create the Replicat checkpoint table after using the DBLOGIN command to connect to the
database. See ADD CHECKPOINTTABLE in Command Line Interface Reference for Oracle
GoldenGate.

2. Run the command:

ADD CHECKPOINTTABLE schema.checkpointtable
3. Use the ADD REPLICAT command to create a Replicat group. For documentation purposes,

this group is called reps.

ADD REPLICAT reps
[, PARALLEL | INTEGRATED | COORDINATED [MAXTHREADS number]]
, EXTTRAIL rt, CHECKPOINTTABLE schema.checkpointtable

For EXTTRAIL, specify remote_trail_1 as the trail that this Replicat reads.

4. Use the EDIT PARAMS command to create a parameter file for the rep_2 group. Include the
following parameters plus any others that apply to your database environment.

-- Identify the Replicat group:
REPLICAT reps
-- Specify database login information as needed for the database:
[TARGETDB dsns][, USERIDALIAS alias]
-- Specify error handling rules:
REPERROR (error, response)
-- Specify tables for delivery, threads if coordinated Replicat
-- and conflict-resolution:
MAP [container.|catalog.]owner.*, TARGET owner.*, COMPARECOLS (ON
operation {ALL | KEY | KEYINCLUDING (col_list) | ALLEXCLUDING
(col_list)}), RESOLVECONFLICT (conflict type (resolution_name,
resolution_type COLS (col[,...]))
[, THREAD (thread_ID)]
[, THREADRANGE (thread_range[, column_list])]
;
-- Specify mapping of exceptions to exceptions table:
MAP [container.|catalog.]owner.*, TARGET owner.exceptions, EXCEPTIONSONLY;

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-63

Note:

To replicate Oracle DBFS data, specify the internally generated local read-write
DBFS tables in the TABLE statement on each node.

Manual Conflict Detection and Resolution

This chapter contains instructions for manually configuring Conflict Detection and Resolution
(CDR) using specific parameters. Conflict detection and resolution is required in active-active
configurations, where Oracle GoldenGate must maintain data synchronization among multiple
databases that contain the same data sets.

Overview of the Oracle GoldenGate CDR Feature
Oracle GoldenGate Conflict Detection and Resolution (CDR) provides basic conflict resolution
routines that:

• Resolve a uniqueness conflict for an INSERT.

• Resolve a "no data found" conflict for an UPDATE when the row exists, but the before image
of one or more columns is different from the current value in the database.

• Resolve a "no data found" conflict for an UPDATE when the row does not exist.

• Resolve a "no data found" conflict for a DELETE when the row exists, but the before image
of one or more columns is different from the current value in the database.

• Resolve a "no data found" conflict for a DELETE when the row does not exist.

To use conflict detection and resolution (CDR), the target database must reside on a Windows,
Linux, or UNIX system. It is not supported for databases on the NonStop platform.

 CDR supports scalar data types such as:

• NUMERIC
• DATE
• TIMESTAMP
• CHAR/NCHAR
• VARCHAR/ NVARCHAR
This means that these column types can be used with the COMPARECOLS parameter and as the
resolution column in the USEMIN and USEMAX options of the RESOLVECONFLICT parameter. Only
NUMERIC columns can be used for the USEDELTA option of RESOLVECONFLICT. Do not use CDR
for columns that contain LOBs, abstract data types (ADT), or user-defined types (UDT).

Conflict resolution is not performed when Replicat operates in BATCHSQL mode. If a conflict
occurs in BATCHSQL mode, Replicat reverts to GROUPTRANSOPS mode, and then to single-
transaction mode. Conflict detection occurs in all three modes. For more information, see
Reference for Oracle GoldenGate.

Configuring the Oracle GoldenGate Parameter Files for Error Handling
CDR should be used in conjunction with error handling to capture errors that were resolved
and errors that CDR could not resolve.

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-64

1. Conflict resolution is performed before these other error-handling parameters:
HANDLECOLLSIONS, INSERTMISSINGUPDATES, and REPERROR. Use the REPERROR parameter to
assign rules for handling errors that cannot be resolved by CDR, or for errors that you do
not want to handle through CDR. It might be appropriate to have REPERROR handle some
errors, and CDR handle others; however, if REPERROR and CDR are configured to handle
the same conflict, CDR takes precedence. The INSERTMISSINGUPDATES and
HANDLECOLLISIONS parameters also can be used to handle some errors not handled by
CDR. See the Reference for Oracle GoldenGate for details about these parameters.

2. (Optional) Create an exceptions table. When an exceptions table is used with an
exceptions MAP statement, Replicat sends every operation that generates a conflict
(resolved or not) to the exceptions MAP statement to be mapped to the exceptions table.
Omit a primary key on this table if Replicat is to process UPDATE and DELETE conflicts;
otherwise there can be integrity constraint errors.

At minimum, an exceptions table should contain the same columns as the target table.
These rows will contain each row image that Replicat applied to the target (or tried to
apply).

In addition, you can define additional columns to capture other information that helps put
the data in transactional context. Oracle GoldenGate provides tools to capture this
information through the exceptions MAP statement. Such columns can be, but are not
limited to, the following:

• The before image of the trail record. This is a duplicate set of the target columns with
names such as col1_before, col2_before, and so forth.

• The current values of the target columns. This also is a duplicate set of the target
columns with names such as col1_current, col2_current, and so forth.

• The name of the target table

• The timestamp of the conflict

• The operation type

• The database error number

• (Optional) The database error message

• Whether the conflict was resolved or not

3. Create an exceptions MAP statement to map the exceptions data to the exceptions table.
An exceptions MAP statement contains:

• (Required) The INSERTALLRECORDS option. This parameter converts all mapped
operations to INSERTs so that all column values are mapped to the exceptions table.

• (Required) The EXCEPTIONSONLY option. This parameter causes Replicat to map
operations that generate an error, but not those that were successful.

• (Optional) A COLMAP clause. If the names and definitions of the columns in the
exceptions table are identical to those of the source table, and the exceptions table
only contains those columns, no COLMAP is needed. However, if any names or
definitions differ, or if there are extra columns in the exceptions table that you want to
populate with additional data, use a COLMAP clause to map all columns.

Tools for Mapping Extra Data to the Exceptions Table
The following are some tools that you can use in the COLMAP clause to populate extra columns:

• If the names and definitions of the source columns are identical to those of the target
columns in the exceptions table, you can use the USEDEFAULTS keyword instead of explicitly

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-65

https://docs.oracle.com/en/middleware/goldengate/core/19.1/reference/oracle-goldengate-parameters.html#GUID-2E0A4248-E8DA-4561-A77F-46206E6F1ECB

mapping names. Otherwise, you must map those columns in the COLMAP clause, for
example:

COLMAP (exceptions_col1 = col1, [...])
• To map the before image of the source row to columns in the exceptions table, use the

@BEFORE conversion function, which captures the before image of a column from the trail
record. This example shows the @BEFORE usage.

COLMAP (USEDEFAULTS, exceptions_col1 = @BEFORE (source_col1), &
exceptions_col2 = @BEFORE (source_col2), [...])

• To map the current image of the target row to columns in the exceptions table, use a
SQLEXEC query to capture the image, and then map the results of the query to the columns
in the exceptions table by using the 'queryID.column' syntax in the COLMAP clause, as in
the following example:

COLMAP (USEDEFAULTS, name_current = queryID.name, phone_current = queryID.phone,
[...])

• To map timestamps, database errors, and other environmental information, use the
appropriate Oracle GoldenGate column-conversion functions. For example, the following
maps the current timestamp at time of execution.

res_date = @DATENOW ()
See Sample Exceptions Mapping with Additional Columns in the Exceptions Table , for how to
combine these features in a COLMAP clause in the exceptions MAP statement to populate a
detailed exceptions table.

See Reference for Oracle GoldenGate for Windows and UNIX for the usage and syntax of the
parameters and column-conversion functions shown in these examples.

Sample Exceptions Mapping with Source and Target Columns Only
The following is a sample parameter file that shows error handling and simple exceptions
mapping for the source and target tables that are used in the CDR examples that begin. This
example maps source and target columns, but no extra columns. For the following reasons, a
COLMAP clause is not needed in the exceptions MAP statement in this example:

• The source and target exceptions columns are identical in name and definition.

• There are no other columns in the exceptions table.

Note:

This example intentionally leaves out other parameters that are required in a
Replicat parameter file, such as process name and login credentials, as well as
any optional parameters that may be required for a given database type. When
using line breaks to split a parameter statement into multiple lines, use an
ampersand (&) at the end of each line.

 -- REPERROR error handling: DEFAULT represents all error types. DISCARD
 -- writes operations that could not be processed to a discard file.
REPERROR (DEFAULT, DISCARD)
 -- Specifies a discard file.
DISCARDFILE /users/ogg/discards/discards.dsc, PURGE
 -- The regular MAP statement with the CDR parameters
MAP fin.src, TARGET fin.tgt, &

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-66

COMPARECOLS (ON UPDATE ALL, ON DELETE ALL), &
RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD)), &
);
 -- Starts the exceptions MAP statement by mapping the source table to the
 -- exceptions table.
MAP fin.src, TARGET fin.exception, &
 -- directs Replicat only to map operations that caused the error specified
 -- in REPERROR.
EXCEPTIONSONLY, &
 -- directs Replicat to convert all the exceptions to inserts into the
 -- exceptions table. This is why there cannot be a primary key constraint
 -- on the exceptions table.
INSERTALLRECORDS
;

Sample Exceptions Mapping with Additional Columns in the Exceptions Table
The following is a sample parameter file that shows error handling and complex exceptions
mapping for the source and target tables that are used in the CDR examples that begin. In this
example, the exceptions table has the same rows as the source table, but it also has additional
columns to capture context data.

Note:

This example intentionally leaves out other parameters that are required in a Replicat
parameter file, such as process name and login credentials, as well as any optional
parameters that may be required for a given database type. When using line breaks
to split a parameter statement into multiple lines, use an ampersand (&) at the end of
each line.

 -- REPERROR error handling: DEFAULT represents all error types. DISCARD
 -- writes operations that could not be processed to a discard file.
REPERROR (DEFAULT, DISCARD)
 -- Specifies the discard file.
DISCARDFILE /users/ogg/discards/discards.dsc, PURGE
 -- The regular MAP statement with the CDR parameters
MAP fin.src, TARGET fin.tgt, &
COMPARECOLS (ON UPDATE ALL, ON DELETE ALL), &
RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD))
);
 -- Starts the exceptions MAP statement by mapping the source table to the --
exceptions table.
MAP fin.src, TARGET fin.exception, &
 -- directs Replicat only to map operations that caused the error specified
 -- in REPERROR.
EXCEPTIONSONLY, &
 -- directs Replicat to convert all the exceptions to inserts into the
 -- exceptions table. This is why there cannot be a primary key constraint
 -- on the exceptions table.
INSERTALLRECORDS &

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-67

 -- SQLEXEC query to select the values from the target record before the
 -- Replicat statement is applied. These are mapped to the *_target
 -- columns later.
SQLEXEC (id qry, query 'select name, phone, address, salary, balance, & comment,
last_mod_time from fin.tgt where name = :p1', PARAMS(p1 = name)), &
 -- Start of the column mapping, specifies use default column definitions.
COLMAP (&
 -- USEDEFAULTS maps the source columns to the target exceptions columns
 -- that receive the after image that Replicat applied or tried to apply.
 -- In this case, USEDEFAULTS can be used because the names and definitions
 -- of the source and target exceptions columns are identical; otherwise
 -- the columns must be mapped explicitly in the COLMAP clause.
USEDEFAULTS, &
 -- captures the timestamp when the resolution was performed.
res_date = @DATENOW (), &
 -- captures and maps the DML operation type.
optype = @GETENV ('LASTERR', 'OPTYPE'), &
 -- captures and maps the database error number that was returned.
dberrnum = @GETENV ('LASTERR', 'DBERRNUM'), &
 -- captures and maps the database error that was returned.
dberrmsge = @GETENV ('LASTERR', 'DBERRMSG'), &
 -- captures and maps the name of the target table
tabname = @GETENV ('GGHEADER', 'TABLENAME'), &
 -- If the names and definitions of the source columns and the target
 -- exceptions columns were not identical, the columns would need to
 -- be mapped in the COLMAP clause instead of using USEDEFAULTS, as
 -- follows:
 -- name_after = name, &
 -- phone_after = phone, &
 -- address_after = address, &
 -- salary_after = salary, &
 -- balance_after = balance, &
 -- comment_after = comment, &
 -- last_mod_time_after = last_mod_time &
 -- maps the before image of each column from the trail to a column in the
 -- exceptions table.
name_before = @BEFORE (name), &
phone_before = @BEFORE (phone), &
address_before = @BEFORE (address), &
salary_before = @BEFORE (salary), &
balance_before = @BEFORE (balance), &
comment_before = @BEFORE (comment), &
last_mod_time_before = @BEFORE (last_mod_time), &
 -- maps the results of the SQLEXEC query to rows in the exceptions table
 -- to show the current image of the row in the target.
name_current = qry.name, &
phone_current = qry.phone, &
address_current = qry.address, &
salary_current = qry.salary, &
balance_current = qry.balance, &
comment_current = qry.comment, &
last_mod_time_current = qry.last_mod_time)
;

For more information about creating an exceptions table and using exceptions mapping, see
Handling Replicat Errors during DML Operations.

Once you are confident that your routines work as expected in all situations, you can reduce
the amount of data that is logged to the exceptions table to reduce the overhead of the
resolution routines.

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-68

Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution
The following parameters are required to support conflict detection and resolution.

1. Use the COMPARECOLS option of the MAP parameter in the Replicat parameter file to specify
columns that are to be used with before values in the Replicat WHERE clause. The before
values are compared with the current values in the target database to detect update and
delete conflicts. (By default, Replicat only uses the primary key in the WHERE clause; this
may not be enough for conflict detection).

2. Use the RESOLVECONFLICT option of the MAP parameter to specify conflict resolution routines
for different operations and conflict types. You can use RESOLVECONFLICT multiple times in
a MAP statement to specify different resolutions for different conflict types. However, you
cannot use RESOLVECONFLICT multiple times for the same type of conflict. Use identical
conflict-resolution procedures on all databases, so that the same conflict produces the
same end result. One conflict-resolution method might not work for every conflict that could
occur. You might need to create several routines that can be called in a logical order of
priority so that the risk of failure is minimized.

Note:

Additional consideration should be given when a table has a primary key and
additional unique indexes or unique keys. The automated routines provided with the
COMPARECOLS and RESOLVECONFLICT parameters require a consistent way to uniquely
identify each row. Failure to consistently identify a row will result in an error during
conflict resolution. In these situations the additional unique keys should be disabled
or you can use the SQLEXEC feature to handle the error thrown and resolve the
conflict.

For detailed information about these parameters, see Reference for Oracle GoldenGate. See
the examples starting on CDR Example 1: All Conflict Types with USEMAX, OVERWRITE,
DISCARD, for more information on these parameters.

Making the Required Column Values Available to Extract
To use CDR, the following column values must be logged so that Extract can write them to the
trail.

• The full before image of each record. Some databases do not provide a before image in
the log record, and must be configured to do so with supplemental logging. For most
supported databases, you can use the ADD TRANDATA command for this purpose.

• Use the LOGALLSUPCOLS parameter to ensure that the full before and after images of the
scheduling columns are written to the trail. Scheduling columns are primary key, unique
index, and foreign key columns. LOGALLSUPCOLS causes Extract to include in the trail record
the before image for UPDATE operations and the before image of all supplementally logged
columns for both UPDATE and DELETE operations.

For detailed information about these parameters and commands, see the Reference for Oracle
GoldenGate. See the examples starting on CDR Example 1: All Conflict Types with USEMAX,
OVERWRITE, DISCARD for more information on how these parameters work with CDR.

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-69

Configuring Oracle GoldenGate CDR
Here are the steps to configure the source database, target database, and Oracle GoldenGate
for conflict detection and resolution.

Viewing CDR Statistics
The CDR feature provides the following methods for viewing the results of conflict resolution.

Report File

Replicat writes CDR statistics to the report file:

Total CDR conflicts 7
 CDR resolutions succeeded 6
 CDR resolutions failed 1
 CDR INSERTROWEXISTS conflicts 1
 CDR UPDATEROWEXISTS conflicts 4
 CDR UPDATEROWMISSING conflicts
 CDR DELETEROWEXISTS conflicts 1
 CDR DELETEROWMISSING conflicts 1

GGSCI

You can view CDR statistics from GGSCI by using the STATS REPLICAT command with the
REPORTCDR option:

STATS REPLICAT group, REPORTCDR

Column-conversion Functions

The following CDR statistics can be retrieved and mapped to an exceptions table or used in
other Oracle GoldenGate parameters that accept input from column-conversion functions, as
appropriate.

• Number of conflicts that Replicat detected

• Number of resolutions that Replicat resolved

• Number of resolutions that Replicat could not resolve

To retrieve these statistics, use the @GETENV column-conversion function with the 'STATS' or
'DELTASTATS' information type. The results are based on the current Replicat session. If
Replicat stops and restarts, it resets the statistics.

You can return these statistics for a specific table or set of wildcarded tables:

@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_CONFLICTS')
@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_RESOLUTIONS_SUCCEEDED')
@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_RESOLUTIONS_FAILED')

You can return these statistics for all of the tables in all of the MAP statements in the Replicat
parameter file:

@GETENV ('STATS','CDR_CONFLICTS')
@GETENV ('STATS','CDR_RESOLUTIONS_SUCCEEDED')
@GETENV ('STATS','CDR_RESOLUTIONS_FAILED')

The 'STATS' information type in the preceding examples can be replaced by 'DELTASTATS' to
return the requested counts since the last execution of 'DELTASTATS'.

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-70

For more information about @GETENV, see Reference for Oracle GoldenGate.

CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD
This example resolves all conflict types by using the USEMAX, OVERWRITE, and DISCARD
resolutions.

Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),
 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

MAP Statement with Conflict Resolution Specifications
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS (ON UPDATE ALL, ON DELETE ALL),
 RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)),
 RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)),
 RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)),
 RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)),
 RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD)),
);

Description of MAP Statement
The following describes the MAP statement:

• Per COMPARECOLS, use the before image of all columns in the trail record in the Replicat
WHERE clause for updates and deletes.

• Per DEFAULT, use all columns as the column group for all conflict types; thus the resolution
applies to all columns.

• For an INSERTROWEXISTS conflict, use the USEMAX resolution: If the row exists during an
insert, use the last_mod_time column as the resolution column for deciding which is the
greater value: the value in the trail or the one in the database. If the value in the trail is
greater, apply the record but change the insert to an update. If the database value is
higher, ignore the record.

• For an UPDATEROWEXISTS conflict, use the USEMAX resolution: If the row exists during an
update, use the last_mod_time column as the resolution column: If the value in the trail is
greater, apply the update.

• If you use USEMIN or USEMAX, and the values are exactly the same, then RESOLVECONFLICT
isn't triggered and the incoming row is ignored. If you use USEMINEQ or USEMAXEQ, and the
values are exactly the same, then the resolution is triggered.

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-71

• For a DELETEROWEXISTS conflict, use the OVERWRITE resolution: If the row exists during a
delete operation, apply the delete.

• For an UPDATEROWMISSING conflict, use the OVERWRITE resolution: If the row does not exist
during an update, change the update to an insert and apply it.

• For a DELETROWMISSING conflict use the DISCARD resolution: If the row does not exist during
a delete operation, discard the trail record.

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to apply a >=
condition. For more information, see Reference for Oracle GoldenGate.

Error Handling
For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

INSERTROWEXISTS with the USEMAX Resolution
For this example, the USEMAX resolution is illustrated with the applicable before and after
images for the record in the trail and in the database. It shows how to resolve an insert where
the row exists in the source and target, but some or all row values are different.

Table 10-2 INSERTROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Before image in trail None (row was inserted on the
source).

N/A

After image in trail name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the after
image of the resolution column. Since there is an
after image, this will be used to determine the
resolution.

Target database image name='Mary'
phone='111111'
address='Ralston'
salary=200
balance=500
comment='aaa'
last_mod_time='9/1/10 1:00'

last_mod_time='9/1/10 1:00 is the current
image of the resolution column in the target
against which the resolution column value in the
trail is compared.

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-72

Table 10-2 (Cont.) INSERTROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Initial INSERT applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Mary'
2)'1234567890'
3)'Oracle Pkwy'
4)100
5)100
6)NULL
7)'9/1/10 3:00'

This SQL returns a uniqueness conflict on 'Mary'.

UPDATE applied by Replicat to
resolve the conflict

SQL bind variables:

1)'1234567890'
2)'Oracle Pkwy'
3)100
4)100
5)NULL
6)'9/1/10 3:00'
7)'Mary'
8)'9/1/10 3:00'

Because USEMAX is specified for
INSERTROWEXISTS, Replicat converts the insert
to an update, and it compares the value of
last_mod_time in the trail record with the value
in the database. The value in the record is
greater, so the after images for columns in the
trail file are applied to the target.

UPDATEROWEXISTS with the USEMAX Resolution
For this example, the USEMAX resolution is illustrated with the applicable before and after
images for the record in the trail and in the database. It shows how to resolve an update where
the row exists in the source and target, but some or all row values are different.

Table 10-3 UPDATEROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Before image in trail name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the
before image of the resolution column.

After image in trail phone='222222'
address='Holly'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the after
image of the resolution column. Since there
is an after image, this will be used to
determine the resolution.

Target database image name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=600
comment='com'
last_mod_time='9/1/10 6:00'

last_mod_time='9/1/10 6:00 is the
current image of the resolution column in the
target against which the resolution column
value in the trail is compared.

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-73

Table 10-3 (Cont.) UPDATEROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Initial UPDATE applied by
Replicat that detects the conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)'9/1/10 5:00'
4)'Mary'
5)'1234567890'
6)'Oracle Pkwy'
7)100
8)100
9)NULL
10)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the balance,
comment, and last_mod_time are different
in the target.

All columns are used in the WHERE clause
because the COMPARECOLS statement is set
to ALL.

UPDATE applied by Replicat to
resolve the conflict

SQL bind variables:

1)'Mary'
2)'222222'
3)'Holly'
4)100
5)100
6)NULL
7)'9/1/10 5:00'
8)'Mary'
9)'9/1/10 5:00'

Because the after value of last_mod_time
in the trail record is less than the current
value in the database, the database value is
retained. Replicat applies the operation with
a WHERE clause that contains the primary key
plus a last_mod_time value set to less than
9/1/10 5:00. No rows match this criteria,
so the statement fails with a "data not found"
error, but Replicat ignores the error because
a USEMAX resolution is expected to fail if the
condition is not satisfied.

UPDATEROWMISSING with OVERWRITE Resolution
For this example, the OVERWRITE resolution is illustrated with the applicable before and after
images for the record in the trail and in the database. It shows how to resolve the case where
the target row is missing. The logical resolution, and the one used, is to overwrite the row into
the target so that both databases are in sync again.

Table 10-4 UPDATEROWMISSING Conflict with OVERWRITE Resolution

Image SQL Comments

Before image in trail name='Jane'
phone='333'
address='Oracle Pkwy'
salary=200
balance=200
comment=NULL
last_mod_time='9/1/10 7:00'

N/A

After image in trail phone='4444'
address='Holly'
last_mod_time='9/1/10 8:00'

Target database image None (row for Jane is missing)

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-74

Table 10-4 (Cont.) UPDATEROWMISSING Conflict with OVERWRITE Resolution

Image SQL Comments

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'4444'
2)'Holly'
3)'9/1/10 8:00'
4)'Jane'
5)'333'
6)'Oracle Pkwy'
7)200
8)200
9)NULL
10)'9/1/10 7:00'

This SQL returns a no-data-found error. All
columns are used in the WHERE clause
because the COMPARECOLS statement is set
to ALL.

INSERT applied by Replicat to
resolve the conflict

SQL bind variables:

1)'Jane'
2)'4444'
3)'Holly'
4)200
5)200
6)NULL
7)'9/1/10 8:00'

The update is converted to an insert
because OVERWRITE is the resolution. The
after image of a column is used if available;
otherwise the before image is used.

DELETEROWMISSING with DISCARD Resolution
For this example, the DISCARD resolution is illustrated with the applicable before and after
images for the record in the trail and in the database. It shows how to resolve the case where
the target row is missing. In the case of a delete on the source, it is acceptable for the target
row not to exist (it would need to be deleted anyway), so the resolution is to discard the DELETE
operation that is in the trail.

Table 10-5 DELETEROWMSING Conflict with DISCARD Resolution

Image SQL Comments

Before image in trail name='Jane'
phone='4444'
address='Holly'
salary=200
balance=200
comment=NULL
last_mod_time='9/1/10 8:00'

N/A

After image in trail None N/A

Target database image None (row missing) N/A

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-75

Table 10-5 (Cont.) DELETEROWMSING Conflict with DISCARD Resolution

Image SQL Comments

Initial DELETE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Jane'
2)'4444'
3)'Holly'
4)200
5)200
6)NULL
7)'9/1/10 8:00'

This SQL returns a no-data-found error. All
columns are used in the WHERE clause
because the COMPARECOLS statement is set
to ALL.

SQL applied by Replicat to
resolve the conflict

None Because DISCARD is specified as the
resolution for DELETEROWMISSING, so the
delete from the trail goes to the discard file.

DELETEROWEXISTS with OVERWRITE Resolution
For this example, the OVERWRITE resolution is illustrated with the applicable before and after
images for the record in the trail and in the database. It shows how to resolve the case where
the source row was deleted but the target row exists. In this case, the OVERWRITE resolution
applies the delete to the target.

Table 10-6 DELETEROWEXISTS Conflict with OVERWRITE Resolution

Image SQL Comments

Before image in trail name='Mary'
phone='222222'
address='Holly'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 5:00'

N/A

After image in trail None N/A

Target database image name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=600
comment=com
last_mod_time='9/1/10 7:00'

The row exists on the target, but the phone,
address, balance, comment, and
last_mod_time columns are different from
the before image in the trail.

Initial DELETE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Mary'
2)'222222'
3)'Holly'
4)100
5)100d
6)NULL
7)'9/1/10 5:00'

All columns are used in the WHERE clause
because the COMPARECOLS statement is set
to ALL.

A no-data-found error occurs because of
the difference between the before and
current values.

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-76

Table 10-6 (Cont.) DELETEROWEXISTS Conflict with OVERWRITE Resolution

Image SQL Comments

DELETE applied by Replicat to
resolve the conflict

SQL bind variables:

1)'Mary'
Because OVERWRITE is the resolution. the
DELETE is applied using only the primary
key (to avoid an integrity error).

CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX
This example resolves the condition where a target row exists on UPDATE but non-key columns
are different, and it uses two different resolution types to handle this condition based on the
affected column.

Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),
 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

MAP Statement
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS
 (ON UPDATE KEYINCLUDING (address, phone, salary, last_mod_time),
 ON DELETE KEYINCLUDING (address, phone, salary, last_mod_time)),
 RESOLVECONFLICT (
 UPDATEROWEXISTS,
 (delta_res_method, USEDELTA, COLS (salary)),
 (DEFAULT, USEMAX (last_mod_time)));

Description of MAP Statement
For an UPDATEROWEXISTS conflict, where a target row exists on UPDATE but non-key columns are
different, use two different resolutions depending on the column:

• Per the delta_res_method resolution, use the USEDELTA resolution logic for the salary
column so that the change in value will be added to the current value of the column.

• Per DEFAULT, use the USEMAX resolution logic for all other columns in the table (the default
column group), using the last_mod_time column as the resolution column. This column is
updated with the current time whenever the row is modified; the value of this column in the
trail is compared to the value in the target. If the value of last_mod_time in the trail record
is greater than the current value of last_mod_time in the target database, the changes to
name, phone, address, balance, comment and last_mod_time are applied to the target.

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-77

Per COMPARECOLS, use the primary key (name column) plus the address, phone, salary, and
last_mod_time columns as the comparison columns for conflict detection for UPDATE and
DELETE operations. (The balance and comment columns are not compared.)

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to apply a >=
condition. For more information, see Reference for Oracle GoldenGate.

Error Handling
For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

Table 10-7 UPDATEROWEXISTS with USEDELTA and USEMAX

Image SQL Comments

Before image in trail name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the
before image of the resolution column for
the USEMAX resolution.

salary=100 is the before image for the
USEDELTA resolution.

After image in trail phone='222222'
address='Holly'
salary=200
comment='new'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the
after image of the resolution column for
USEMAX. Since there is an after image, this
will be used to determine the resolution.

Target database image name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=600
balance=600
comment='com'
last_mod_time='9/1/10 4:00'

last_mod_time='9/1/10 4:00 is the
current image of the resolution column in
the target against which the resolution
column value in the trail is compared.

salary=600 is the current image of the
target column for the USEDELTA resolution.

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)200
4)'new'
5)'9/1/10 5:00'
6)'Mary'
7)'1234567890'
8)'Oracle Pkwy'
9)100
10)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the salary and
last_mod_time are different. (The values
for comment and balance are also
different, but these columns are not
compared.)

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-78

Table 10-7 (Cont.) UPDATEROWEXISTS with USEDELTA and USEMAX

Image SQL Comments

UPDATE applied by Replicat to
resolve the conflict for salary,
using USEDELTA.

SQL bind variables:

1)200
2)100
3)'Mary'

Per USEDELTA, the difference between the
after image of salary (200) in the trail and
the before image of salary (100) in the trail
is added to the current value of salary in
the target (600). The result is 700.

600 + (200 - 100) = 700

UPDATE applied by Replicat to
resolve the conflict for the
default columns, using
USEMAX.

SQL bind variables:

1)'222222'
2)'Holly'
3)'new'
4)'9/1/10 5:00'
5)'Mary'
6)'9/1/10 5:00'

Per USEMAX, because the after value of
last_mod_time in the trail record is
greater than the current value in the
database, the row is updated with the after
values from the trail record.

Note that the salary column is not set
here, because it is resolved with the UPDATE
from the USEDELTA resolution.

CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE
This example resolves the conflict where a target row exists on UPDATE but non-key columns
are different, and it uses three different resolution types to handle this condition based on the
affected column.

Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),
 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

MAP Statement
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS
 (ON UPDATE ALLEXCLUDING (comment)),
 RESOLVECONFLICT (
 UPDATEROWEXISTS,
 (delta_res_method, USEDELTA, COLS (salary, balance)),
 (max_res_method, USEMAX (last_mod_time), COLS (address, last_mod_time)),
 (DEFAULT, IGNORE));

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-79

Description of MAP Statement
• For an UPDATEROWEXISTS conflict, where a target row exists on UPDATE but non-key columns

are different, use two different resolutions depending on the column:

– Per the delta_res_method resolution, use the USEDELTA resolution logic for the salary
and balance columns so that the change in each value will be added to the current
value of each column.

– Per the max_res_method resolution, use the USEMAX resolution logic for the address and
last_mod_time columns. The last_mod_time column is the resolution column. This
column is updated with the current time whenever the row is modified; the value of this
column in the trail is compared to the value in the target. If the value of last_mod_time
in the trail record is greater than the current value of last_mod_time in the target
database, the changes to address and last_mod_time are applied to the target;
otherwise, they are ignored in favor of the target values.

– Per DEFAULT, use the IGNORE resolution logic for the remaining columns (phone and
comment) in the table (the default column group). Changes to these columns will
always be ignored by Replicat.

• Per COMPARECOLS, use all columns except the comment column as the comparison columns
for conflict detection for UPDATE operations. Comment will not be used in the WHERE clause
for updates, but all other columns that have a before image in the trail record will be used.

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to apply a >=
condition. For more information, see Reference for Oracle GoldenGate.

Error Handling
For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

Table 10-8 UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

Image SQL Comments

Before image in trail name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00

last_mod_time='9/1/10 3:00 is the
before image of the resolution column for
the USEMAX resolution.

salary=100 and balance=100 are the
before images for the USEDELTA resolution.

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-80

Table 10-8 (Cont.) UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

Image SQL Comments

After image in trail phone='222222'
address='Holly'
salary=200
comment='new'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the
after image of the resolution column for
USEMAX. Since there is an after image, this
will be used to determine the resolution.

salary=200 is the only after image
available for the USEDELTA resolution. For
balance, the before image will be used in
the calculation.

Target database image name='Mary'
phone='1234567890'
address='Ralston'
salary=600
balance=600
comment='com'
last_mod_time='9/1/10 4:00'

last_mod_time='9/1/10 4:00 is the
current image of the resolution column in
the target against which the resolution
column value in the trail is compared for
USEMAX.

salary=600 and balance=600 are the
current images of the target columns for
USEDELTA.

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)200
4)'new'
5)'9/1/10 5:00'
6)'Mary'
7)'1234567890'
8)'Oracle Pkwy'
9)100
10)100
11)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the address,
salary, balance and last_mod_time
columns are different.

UPDATE applied by Replicat to
resolve the conflict for salary,
using USEDELTA.

SQL bind variables:

1)200
2)100
3)'Mary'

For salary, there is a difference of 100, but
there was no change in value for balance,
so it is not needed in the update SQL. Per
USEDELTA, the difference (delta) between
the after (200) image and the before image
(100) of salary in the trail is added to the
current value of salary in the target (600).
The result is 700.

UPDATE applied by Replicat to
resolve the conflict for USEMAX.

SQL bind variables:

1)'Holly'
2)'9/1/10 5:00'
3)'Mary'
4)'9/1/10 5:00'

Because the after value of last_mod_time
in the trail record is greater than the current
value in the database, that column plus the
address column are updated with the after
values from the trail record.

Note that the salary column is not set
here, because it is resolved with the UPDATE
from the USEDELTA resolution.

UPDATE applied by Replicat for
IGNORE.

SQL bind variables:

1)'222222'
2)'new'
3)'Mary'

IGNORE is specified for the DEFAULT column
group (phone and comment), so no
resolution SQL is applied.

Chapter 10
Configuring Oracle GoldenGate for Active-Active Configuration

10-81

11
Autonomous Database

This section provides details about configuring Oracle GoldenGate with Oracle Autonomous
Database, and using Extract and Replicat processes with Autonomous Database instances.

Using Oracle GoldenGate with Autonomous Database
You can replicate data to Oracle Autonomous Database using Oracle GoldenGate.

About Capturing and Replicating Data Using Autonomous Databases
Oracle GoldenGate can be used to replicate data into Oracle Autonomous Database from any
certified source platform and replicate data from Oracle Autonomous Database to any certified
target platform.

Use Case: When Using Oracle GoldenGate with Autonomous Databases

Oracle GoldenGate can be configured to support the following scenarios in the Oracle
Autonomous Database:

• Scalable Active-Active architecture: Synchronize changes made across two or more
databases to scale out workloads, provide increase resilience and near instantaneous
failover across multiple data centers or regions.

• Real-Time Data Warehouse: Provide continuous, real-time capture and delivery of
changed data between Oracle Autonomous Database systems.

• Big Data Integration: With Oracle GoldenGate for Big Data you can replicate data from
the Oracle Autonomous Database to provide real-time streaming integration to all
platforms supported by Big Data targets.

• Real-Time Streaming Analytics: Oracle GoldenGate integrates seamlessly with Oracle
Stream Analytics to enable users to identify events of interest by executing queries against
event streams in real time. It allows creating custom operational dashboards that provide
real-time monitoring, transform streaming data, or raise alerts based on stream analysis.

• Hybrid Replication: Oracle GoldenGate replicates data from the Oracle Autonomous
Database instance back to on-premise or to another cloud database or platform.

Note:

Oracle GoldenGate cannot be used to extract from the Always Free Autonomous
Database due to lack of a supplemental logging feature in the database.

11-1

Details of Support When Using Oracle GoldenGate with Autonomous
Databases

Review the supported data types and limitations before replicating data to or from an Oracle
Autonomous Database.

Oracle GoldenGate Replicat Limitations for Autonomous Databases
These are the limitations of Oracle GoldenGate when replicating to or from the Oracle
Autonomous Database.

Supported Replicats
To replicate data into an Oracle Autonomous Database you must use Parallel Replicat
(integrated or non-integrated mode) or Integrated Replicat.

Data Type Limitations for DDL and DML Replication
See the section .

Also see Non-Supported Oracle Data Types in the Autonomous Database on Dedicated
Exadata Infrastructure Documentation and Data Types in the Using Oracle Autonomous
Database Serverless guide.

DDL replication is supported depending on the restrictions in the Autonomous Databases.

Details of Support for Archived Log Retention
The two types of Autonomous Databases, Oracle Autonomous Database Serverless and
Oracle Autonomous Database on Dedicated Exadata Infrastructure have different log retention
behavior.

• Oracle Autonomous Database Serverless: Archived log files are kept in Fast Recovery
Area (FRA) for up to 48 hours. After that, it is purged and the archived log files are moved
to NFS mount storage, which is accessible by logminer. Three copies are created. The
logminer should be able to access any of the copies. This is transparent to Oracle
GoldenGate Extract. After it reaches 7 days, the NFS mounted copy is permanently
removed. The Extract abends with the archived log unavailable error if the required
archived log file is older than 7 days.

• Oracle Autonomous Database on Dedicated Exadata Infrastructure: When Oracle
Autonomous Data Guard or Oracle GoldenGate is enabled, archived log files are kept in
Fast Recovery Area (FRA) for up to 7 days. After that, the files are purged. There is no
NFS mount location available for logminer to access archived log files that are older than 7
days. The Extract abends with the archived log unavailable error if the required
archived log file is older than 7 days.

Note:

If the database instance is closed for more than 15 minutes, then the retention
time is set back to 3 days. This implies that retention of archived log files is
confirmed only for 3 days, regardless of whether the database instance is closed.
The files are retained for 7 days only if the database instance is not closed.

Chapter 11
Using Oracle GoldenGate with Autonomous Database

11-2

Note:

If Extract abends with the archived log unavailable error, you will not be able to
restart it, and the data that was not captured in those archive logs cannot be
read. You will need to drop and recreate the extract, and resynchronize the data
on any target systems.

Configuring Extract to Capture from an Autonomous Database
Oracle Autonomous Database has a tight integration with Oracle GoldenGate. There are a
number of differences when setting up Extract for an Autonomous database instance
compared to a traditional Oracle Database.

Oracle Autonomous Database security has been enhanced to ensure that Extract is only able
to capture changes from the specific tenant it is connected to. Therefore, Downstream
Integrated Extract is not supported.

Establishing Oracle GoldenGate Credentials

To capture from an Autonomous Database only the GGADMIN account is used. The GGADMIN
account is created inside the database when the Autonomous Database is provisioned and
already has all the necessary permissions for both Extract and Replicat processes. This
account is locked. It must be unlocked before it can be used with Oracle GoldenGate. This
account is the same account used for both Extracts and Replicats in the Autonomous
Database.

Run the ALTER USER command to unlock the ggadmin user and set the password for it. See
Creating Users with Autonomous Database with Client-Side Tools.

This ALTER USER command must be run by the admin account user for Autonomous
Databases.

ALTER USER ggadmin IDENTIFIED BY PASSWORD ACCOUNT UNLOCK;

Prerequisites for Configuring Oracle GoldenGate Extract to Capture from
Autonomous Databases

Prior to configuring and starting the Extract process to capture from the Autonomous
Database, make sure that the following requirements are met:

• Oracle Autonomous Database environment is provisioned and running.

• Autonomous Database-level supplemental logging should be enabled by the ADMIN or
GGADMIN.

Configuring Autonomous Database Supplemental Logging for Extract

To add minimal supplemental logging to your Autonomous Database instance, log into the
instance as GGADMIN or ADMIN account and execute the following commands:

ALTER PLUGGABLE DATABASE ADD SUPPLEMENTAL LOG DATA;

Chapter 11
Using Oracle GoldenGate with Autonomous Database

11-3

To DROP Autonomous Database-level supplemental logging incase you decide to stop capturing
from that database instance:

ALTER PLUGGABLE DATABASE DROP SUPPLEMENTAL
 LOG DATA;

You can verify that the Autonomous Database-level supplemental logging is configured
properly by issuing this SQL statement:

SELECT MINIMAL FROM dba_supplemental_logging;

The output for this statement is:

MINIMAL

YES

The MINIMAL column will be YES if supplemental logging has been correctly set for this
Autonomous Database instance.

Configure Extract to Capture from an Autonomous Database
Following are the steps to configure an Extract to capture from an Oracle Autonomous
Database :

1. Install Oracle GoldenGate for your Oracle Autonomous Database instance.

2. Obtain Autonomous Database Client Credentials.

To establish connection to your Oracle Autonomous Database instance, download the
client credentials file. To download client credentials, you can use the Oracle Cloud
Infrastructure Console or Database Actions Launchpad. See Downloading Client
Credentials (Wallets).

Note:

If you do not have administrator access to the Autonomous Database you should
ask your service administrator to download and provide the credentials files to
you.

The following steps use the Database Actions Launchpad to download the client
credentials.

a. Log in to your Oracle Autonomous Database account.

b. From the Database Instance page, click Database Actions. This launches the
Database Actions Launchpad. The Launchpad attempts to log you into the database
as ADMIN. If that is not successful, you will be prompted for your database ADMIN
username and password.

c. On the Database Actions Launchpad, under Administration, click Download Client
Credentials (Wallets).

d. Enter a password to secure your Client Credentials zip file and click Download.

Chapter 11
Using Oracle GoldenGate with Autonomous Database

11-4

Note:

The password you provide when you download the wallet protects the
downloaded Client Credentials wallet.

e. Save the credentials zip file to your local system.

The credentials zip file contains the following files:

• cwallet.sso
• ewallet.p12
• keystore.jks
• ojdbc.properties
• sqlnet.ora
• tnsnames.ora
• truststore.jks
• ewallet.pem
• README.txt
Refer and update (if required) the sqlnet.ora and tnsnames.ora files while configuring
Oracle GoldenGate to work with the Autonomous Database instance.

3. Configure the server where Oracle GoldenGate is running to connect to the Autonomous
Database instance.

a. Log in to the server where Oracle GoldenGate was installed.

b. Transfer the credentials zip file that you downloaded from Oracle Autonomous
database instance to the Oracle GoldenGate server.

c. In the Oracle GoldenGate server, unzip the credentials file into a new directory, for
example: /u02/data/adwc_credentials. This is your key directory.

d. To configure the connection details, open your tnsnames.ora file from the Oracle client
location in the Oracle GoldenGate instance.

e. Use the connection string with the LOW consumer group dbname_low, for example,
graphdb1_low, and move it to your local tnsnames.ora file.

See Local Naming Parameters in the tnsnames.ora File chapter in the Oracle
Database Net Services Reference guide.

Chapter 11
Using Oracle GoldenGate with Autonomous Database

11-5

Note:

The tnsnames.ora file provided with the credentials file contains three
database service names identifiable as:

ADWC_Database_Name_low
ADWC_Database_Name_medium
ADWC_Database_Name_high

Oracle recommends that you use ADWC_Database_Name_low with Oracle
GoldenGate. See Predefined Database Service Names for Autonomous
Database in the Using Oracle Autonomous Database Serverless guide or
Predefined Database Service Names for Autonomous Databases for Oracle
Autonomous Database on Dedicated Exadata Infrastructure.

f. Edit the tnsnames.ora file in the Oracle GoldenGate instance to include the connection
details available in the tnsnames.ora file in your key directory (the directory where you
unzipped the credentials zip file downloaded from the Autonomous Database).

Sample Connection String
adw1_low. = (description=
 (retry_count=20)(retry_delay=3)
 (address=(protocol=tcps)(port=1522)(host=adb-
preprod.us-phoenix-1.oraclecloud.com))

(connect_data=(service_name=okd2ybgcz4mjx94_graphdb1_low.adb.oraclecloud
.com))
 (security=(ssl_server_cert_dn="CN=adwc-preprod.uscom-
east-1.oraclecloud.com,OU=Oracle BMCS US,O=Oracle Corporation,L=Redwood
City,ST=California,C=US"))
)

If the database is within a firewall protected environment, you might not have direct
access to the database. With an existing HTTP Proxy, you can pass the firewall with
the following modifications to the sqlnet.ora and tnsnames.ora:

• sqlnet parameters

• address modification of tns_alias

If Extract becomes unresponsive due to a network timeout or connection loss, then
you can add the following into the connection profile in the tnsnames.ora file:

(DESCRIPTION = (RECV_TIMEOUT=30) (ADDRESS_LIST =
 (LOAD_BALANCE=off)(FAILOVER=on)(CONNECT_TIMEOUT=3)(RETRY_COUNT=3)
(ADDRESS = (PROTOCOL = TCP)(HOST = adb-preprod.us-
phoenix-1.oraclecloud.com)(PORT = 1522))

Chapter 11
Using Oracle GoldenGate with Autonomous Database

11-6

https://docs.oracle.com/en-us/iaas/autonomous-database/doc/predefined-database-service-names.html

g. To configure the wallet, create a sqlnet.ora file in the Oracle client location in the
Oracle GoldenGate instance.

cd /u02/data/oci/network/admin
ls
sqlnet.ora tnsnames.ora

See Autonomous Database Client Credentials in Using Oracle GoldenGate on Oracle
Cloud Marketplace.

h. Edit this sqlnet.ora file to include your key directory.

WALLET_LOCATION = (SOURCE = (METHOD = file) (METHOD_DATA =
(DIRECTORY="/u02/data/adwc_credentials")))
SSL_SERVER_DN_MATCH=yes

4. Start GGSCI.
./ggsci

5. Create credentials for the Extract database (or a user with same privileges). In this case,
GGADMIN is the user and will be used to connect to the Autonomous Database, and perform
commands that require a database connection. It will also be used in the USERIDALIAS
parameter for the Extract database connection.

ALTER CREDENTIALSTORE ADD USER
ggadmin@dbgraph1_low PASSWORD complex_password alias adb_alias

6. Connect to the database using DBLOGIN. The DBLOGIN user should be the adb_alias
account user.

DBLOGIN USERIDALIAS adb_alias

7. Configure supplemental logging on the tables, which you want to capture using ADD
TRANDATA or ADD SCHEMATRANDATA. Remember that you are connected directly to the
database instance, so there is no need to include the database name in these commands.
Here's an example:

ADD TRANDATA HR.EMP

or

ADD SCHEMATRANDATA HR

See Prerequisites for Configuring Oracle GoldenGate Extract to Capture from Autonomous
Databases.

8. Add heartbeat table.

ADD HEARTBEATTABLE

9. Add and configure an Extract to capture from the Oracle Autonomous Database instance.
See Add the Primary Extract for steps to create an Extract.

Chapter 11
Using Oracle GoldenGate with Autonomous Database

11-7

Oracle GoldenGate Extract is designed to work with the Oracle Autonomous Database
instance to ensure that it only captures from a specific database instance. This means that
the database instance name is not needed for any TABLE or MAP statements.

The following example creates an Extract (required for capturing from an Oracle
Autonomous Database) called exte, and instructs it to begin now.

ADD EXTRACT exte, INTEGRATED TRANLOG, BEGIN NOW

To capture specific tables, use the two part object names.. For example, to capture from
the table HR.EMP, in your Oracle Autonomous Database instance, use this entry in the
Extract parameter file.

TABLE HR.EMP;

If you want to replicate HR.EMP into COUNTRY.EMPLOYEE, then your map statement would
look like this:

MAP HR.EMP, TARGET COUNTRY.EMPLOYEE;

10. Register Extract with the Oracle Autonomous Database instance. For example, to register
an Extract named exte, use the following command:

REGISTER EXTRACT exte DATABASE

11. You can now start your Extract and perform data replication to the Oracle Autonomous
Database instance. Here's an example:

START EXTRACT exte

This completes the process of configuring an Extract for Oracle Autonomous Database
and you can use it like any other Extract process.

Configuring Replicat to Apply to an Autonomous Database
You can replicate into the Autonomous Database from any source database or platform that is
certified by Oracle GoldenGate.

Topics:

Prerequisites for Configuring Oracle GoldenGate Replicat to an Autonomous
Database

Learn about the prerequisites for configuring Oracle GoldenGate data replication to
Autonomous Databases.

You should have the following details available with you:

• Your source database with Oracle GoldenGate Extract processes configured and writing
trails to where the Replicat is running to apply data to the Autonomous Database target.

• Oracle Autonomous Database environment is provisioned and running.

To deliver data to the Autonomous Database instance using Oracle GoldenGate, perform the
following tasks:

Chapter 11
Using Oracle GoldenGate with Autonomous Database

11-8

Configure Oracle GoldenGate Replicat for an Autonomous Database
Learn the steps to configure Oracle GoldenGate Replicat for an Autonomous Databases.

Here are the steps to complete the configuration tasks:

Note:

Instructions are based on the assumption that the source environment is already
configured. Learn the steps required to configure replication into the Autonomous
Database environment.

1. For Oracle GoldenGate on-premises, make sure that Oracle GoldenGate is installed.

Oracle GoldenGate Classic Architecture support Autonomous Database capture using
Marketplace for Oracle Autonomous Database Serverless.

2. Start GGSCI.

./ggsci
3. The Autonomous Database instance has a pre-created user created for Oracle

GoldenGate on-premise called ggadmin. The ggadmin user has been granted the required
privileges for Replicat to work. This is the user where any objects used for Oracle
GoldenGate processing will be stored, like the checkpoint table and heartbeat objects. By
default, this user is locked. To unlock the ggadmin user, connect to the Oracle Autonomous
Database instance as the ADMIN user using any SQL client tool. See Create Users on
Autonomous Database with Database Actions.

4. Run the ALTER USER command to unlock the ggadmin user and set the password for it. This
will be used in GGSCI for any DBLOGIN operations on the Autonomous Database. It will be
used in Replicat to allow Oracle GoldenGate to connect to the Autonomous Database and
apply data. See Create Users on Autonomous Database with Database Actions.

ALTER USER ggadmin IDENTIFIED BY p0$$word ACCOUNT UNLOCK;

Obtain the Autonomous Database Client Credentials
Learn how to establish connection to your Autonomous Databases.

To establish a connection with an Oracle Autonomous Database instance, you need to
download the client credentials files. There are two ways to download the client credentials
files: the Oracle Cloud Infrastructure Console or Database Actions Launchpad. See
Downloading Client Credentials (Wallets).

Note:

If you do not have administrator access to the Oracle Autonomous Database, you
should ask your service administrator to download and provide the credentials files to
you.

The following steps use the Database Actions Launchpad to download the client credentials
files.

Chapter 11
Using Oracle GoldenGate with Autonomous Database

11-9

1. Log into your Autonomous Database account.

2. From the Database Instance page, click Database Actions. This launches the Database
Actions Launchpad. The Launchpad attempts to log you into the database as ADMIN. If
that is not successful, you will be prompted for your database ADMIN username and
password.

3. On the Database Actions Launchpad, under Administration, click Download Client
Credentials (Wallets).

4. Enter a password to secure your Client Credentials zip file and click Download.

Note:

The password you provide when you download the wallet protects the
downloaded Client Credentials wallet.

5. Save the credentials ZIP file to your local system. The credentials ZIP file contains the
following files:

• cwallet.sso
• ewallet.p12
• keystore.jks
• ojdbc.properties
• sqlnet.ora
• tnsnames.ora
• truststore.jks
• ewallet.pem
• README.txt
Refer and update (if required) the sqlnet.ora and tnsnames.ora files while configuring Oracle
GoldenGate to work with the Oracle Autonomous Database instance.

Configure Replicat to Apply to an Autonomous Database
This section assumes that the source environment is already configured and provides the
steps required to establish replication in the Oracle Autonomous Database environment.

In the Oracle GoldenGate instance, you need to complete the following:

1. Follow the steps given in Prerequisites for Configuring Oracle GoldenGate Replicat to an
Autonomous Database.

2. Follow the steps given in Configure Oracle GoldenGate Replicat for an Autonomous
Database.

3. Follow the steps given in Obtain the Autonomous Database Client Credentials.

4. Log into the server where Oracle GoldenGate was installed.

5. Transfer the credentials zip file that you downloaded from Oracle Autonomous Database
to your Oracle GoldenGate instance.

6. In the Oracle GoldenGate instance, unzip the credentials file into a new directory /u02/
data/adwc_credentials. This is your key directory.

Chapter 11
Using Oracle GoldenGate with Autonomous Database

11-10

7. To configure the connection details, open your tnsnames.ora file from the Oracle client
location in the Oracle GoldenGate instance.

cd /u02/data/adwc_credentials
ls
tnsnames.ora

8. Edit the tnsnames.ora file in the Oracle GoldenGate instance to include the connection
details available in the tnsnames.ora file in your key directory (the directory where you
unzipped the credentials zip file downloaded from Oracle Autonomous Database).

Sample Connection String
graphdb1_low = (description=
 (retry_count=20)(retry_delay=3)(address=(protocol=tcps)
(port=1522)(host=adb-preprod.us-phoenix-1.oraclecloud.com))

(connect_data=(service_name=okd2ybgcz4mjx94_graphdb1_low.adb.oraclecloud.co
m))
 (security=(ssl_server_cert_dn="CN=adwc-preprod.uscom-
east-1.oraclecloud.com,OU=Oracle BMCS US,O=Oracle Corporation,L=Redwood
City,ST=California,C=US")))

If Replicat becomes unresponsive due to a network timeout or lost connection, then you
can add the following into the connection profile in the tnsnames.ora file:

(DESCRIPTION = (RECV_TIMEOUT=120) (ADDRESS_LIST =
 (LOAD_BALANCE=off)(FAILOVER=on)(CONNECT_TIMEOUT=3)(RETRY_COUNT=3)
 (ADDRESS = (PROTOCOL = TCP)(HOST = adb-preprod.us-
phoenix-1.oraclecloud.com)(PORT = 1522))

Note:

The tnsnames.ora file provided with the credentials file contains three database
service names identifiable as:

ADWC_Database_Name_low
ADWC_Database_Name_medium
ADWC_Database_Name_high

For Oracle GoldenGate replication, use ADWC_Database_Name_low.

9. To configure the wallet, create a sqlnet.ora file in the Oracle client location in the Oracle
GoldenGate instance.

cd /u02/data/oci/network/admin
ls
sqlnet.ora tnsnames.ora

Chapter 11
Using Oracle GoldenGate with Autonomous Database

11-11

10. Edit this sqlnet.ora file to include your key directory.

WALLET_LOCATION = (SOURCE = (METHOD = file) (METHOD_DATA =
(DIRECTORY="/u02/data/adwc_credentials")))
SSL_SERVER_DN_MATCH=yes

11. Use GGSCI to log into the Oracle GoldenGate deployment.

12. Create a credential to store the GGADMIN user and password for the Replicat to use. For
example:

ADD CREDENTIALSTORE ALTER CREDENTIALSTORE ADD USER
ggadmin@databasename_low PASSWORD complex_password alias adb_alias

13. Add and configure a Replicat to deliver to Oracle Autonomous Database. For setting up
your Replicat and other processes, see Add a Replicat.

The following example creates a Replicat (required to replicat to an Oracle Autonomous
Database) called rauto, and instructs it to begin now.

ADD REPLICAT rauto, PARALLEL INTEGRATED, EXTTRAIL ./dirdat/et

If you want to replicate HR.EMP into COUNTRY.EMPLOYEE, then your map statement would
look like this:

MAP HR.EMP, TARGET COUNTRY.EMPLOYEE;

Note:

You can use classic Replicat, coordinated Replicat, and parallel Replicat in non-
integrated mode. Parallel Replicat in integrated mode is also supported for
Oracle Autonomous Database.

14. You can now start your Replicat and perform data replication to the Autonomous
Database. Here's an example:

START REPLICAT rauto

Note:

Oracle Autonomous Database times out and disconnects the Replicat when it is
idle for more than 60 minutes. When Replicat tries to apply changes (when it gets
new changes) after being idle, it encounters a database error and abends. Oracle
recommends that you configure Oracle GoldenGate with the AUTORESTART profile
to avoid having to manually restart a Replicat when it times out.

Chapter 11
Using Oracle GoldenGate with Autonomous Database

11-12

12
Upgrade

Learn about the tasks required for upgrading Oracle GoldenGate Classic Architecture.

Upgrading Oracle GoldenGate Classic Architecture
These instructions are for upgrading to Oracle GoldenGate Classic Architecture for Oracle
databases.

Overview of the Upgrade Procedure
Learn about the complete upgrade procedure for Oracle GoldenGate Classic.

Prerequisites
Before performing the upgrade procedure, read the Release Notes for Oracle GoldenGate to
determine whether the new release affects the following in your configuration:

• New default process behavior.

• Parameters that changed or were deprecated.

• Parameters that were added to support a desired new feature or database type.

• Parameter default values that have changed.

• New data type support that might require changes to TABLE or MAP statements.

• Interaction with native database components that might require database change.

As a best practice, perform a minimal upgrade first, so that you can troubleshoot more easily in
the event that any problems arise. When you verify that your environment is upgraded
successfully, you can implement the new functionality.

When upgrading your database and Oracle GoldenGate simultaneously, you must upgrade the
database first. However, ensure that the Oracle GoldenGate version is equal to or higher than
the database version.

For Oracle Database, if you are using symbolic links that point to the Oracle GoldenGate
directories, such as dirprm and dirdat, you need to use the parameter ALLOWOUTPUTDIR within
GLOBALS.

You can prevent startup delays that can cause lag by having any required parameter changes
made ahead of time, so that they are ready when you restart the processes. You should not
make parameter changes while a process is running, but you can:

1. Make a copy of the parameter file.

2. Make edits to the copy.

3. After you shut down the processes during the upgrade procedure, copy the old parameter
file to a new name (to save it as backup).

4. Copy the new parameter file to the old parameter file's name.

12-1

Take into account the following pre-upgrade requirements:

• Only if the trail file format is being changed, allow the Oracle GoldenGate processes to
finish processing all current DML and DDL data in the Oracle GoldenGate trails.

• When upgrading your database and Oracle GoldenGate simultaneously, you must upgrade
the database first.

Upgrade Considerations if Using Character-Set Conversion
Both the TRAILCHARSET and SOURCEDEF parameters are deprecated because Extract writes the
source database character set with the column level. By default, these parameters are ignored
but use the database character set and column character set from the table metadata.
SOURCECHARSET parameter is only required when you need to override the source database
character set and must use it with the OVERRIDE option.

Upgrade Considerations if Using Quoted Object Names
Oracle GoldenGate treats strings that are within single quotes as literals. Oracle GoldenGate
has supported double-quoted object names since release 11.2 but did not fully implement the
rule of single quotes for literals until release 12.1. Supporting double quotes for object names
and single quotes for literals brings Oracle GoldenGate into compliance with SQL-92 rules and
is now enabled by default. The USEANSISQLQUOTES parameter, which forced the SQL-92
standard in previous releases, is now deprecated.

The change to default SQL-92 rules affects object names in parameter files, input to SQLEXEC
clauses, OBEY files, conversion functions, user exits, and commands. You have the following
options as a result of this change:

• Retain non-SQL-92 quote rules: Oracle GoldenGate retains backward compatibility to
enable the retention of current parameter files that do not conform to SQL-92 rules. To
retain non-SQL-92 rules, add the NOUSEANSISQLQUOTES parameter to the GLOBALS file
before you perform the upgrade and retain that parameter going forward.
NOUSEANSISQLQUOTES affects Extract, Replicat, DEFGEN, and GGSCI.

• Upgrade your parameter files to use SQL-92 rules: Oracle GoldenGate provides the
convprm conversion tool which you can run to convert your parameter files to be in
conformance with SQL-92 rules. Run the convprm tool before you start the upgrade
process.

Overview of the convprm Tool
The following describes the convprm tool:

• It is a command line program which can be run either manually or scripted.

• It converts string literals from double-quoted character strings to single-quoted character
strings, but leaves double-quoted object names intact. It can distinguish between an object
name and a string literal even when both are represented as a sequence of characters
delimited with double quotes.

• It escapes quotation marks. Quotation marks must be escaped when the character that is
used to delimit the string appears in the literal string itself. For example, the sentence "This
character "" is a double quote" contains an escaped quote mark. The sentence 'This
character '' is a single quote' contains an escaped single quote mark. When converting
from double quotes to single quotes, convprm removes one of the repeated double quotes
from escaped double quotes and escapes the single quotes that are embedded in the
character sequence.

Chapter 12
Upgrading Oracle GoldenGate Classic Architecture

12-2

• It issues a warning message if NOUSEANSISQLQUOTES is specified in the GLOBALS file. The
message states that the converted parameter file is incompatible with
NOUSEANSISQLQUOTES, but the parameter file was updated anyway.

• It recursively converts the files that are included through an OBEY or INCLUDE parameter.

• It creates a backup of the initial parameter file in the same directory as the original file. The
backup has the name of the original file with the .bck suffix. The creation of a backup file
can be disabled when you run the convprm tool.

• It converts the character set. The character set for the new parameter file is taken from the
CHARSET parameter in the original parameter file. Absent that parameter, the character set
is taken from the CHARSET parameter in the GLOBALS file. Absent a GLOBALS parameter, the
new parameter file is written in the character set of the local operating system.

#unique_1191/unique_1191_Connect_42_CACFBJGF provides examples of the conversion
outcome.

Table 12-1 Comparison of Input Requirements for [NO]USEANSISQLQUOTES

Input variable String literal with old syntax String literal with new syntax

Double quotes are escaped in the old syntax
but not in the new syntax.

"abc""def" 'abc"def'

Single quotes are escaped in the new syntax
but not in the old syntax.

"abc'def" 'abc''def'

Running convprm
To use the convprm tool:

1. Run convprm with the following syntax:

convprm [options] input_files

where:

• {-h | --help} displays usage.

• {-v |--version} displays version information.

• {-i | --follow-include} recursively converts files included through an OBEY or
INCLUDE parameter.

• {-n |--no-backup} does not create a copy of the original file.

• {-s | --silent} does not display status messages.

• {-q | --quotes} performs quote conversion. This is the default.

• {-d | --dry-run} does not change the parameter file or create a backup file. It only
prints out what would happen as the result of the conversion.

• input_files is a list of the parameter files that are to be converted. Separate each file
name with a white space, for example:

convprm [options] extfin extacct exthr
2. Examine the parameter file to make certain the conversion completed successfully. Status

messages are displayed at the beginning, during, or at the end of the file conversion
process.

Chapter 12
Upgrading Oracle GoldenGate Classic Architecture

12-3

On errors, the process abends in the same way as other Oracle GoldenGate executables. All
error messages that cause the converter to fail are sent to the Oracle GoldenGate error log.

If you are currently using the USEANSISQLQUOTES parameter, you may remove it or leave it in the
parameter files. It is now the default.

Obtaining the Oracle GoldenGate Distribution
To obtain Oracle GoldenGate, follow these steps:

1. Go to edelivery: edelivery.oracle.com

Also see MOS note 1645495.1 and 2193391.1 for more information.

To access Oracle Technology Network, go to https://www.oracle.com/middleware/
technologies/goldengate.html

2. Find the Oracle GoldenGate 21c release and download the ZIP file onto your system.

For more information about locating and downloading Oracle Fusion Middleware products, see
the Oracle Fusion Middleware Download, Installation, and Configuration Readme Files on
Oracle Technology Network.

Upgrading Oracle GoldenGate Classic Architecture for Oracle Database
These instructions contain the procedure for performing the minimal upgrade.

Note:

Trigger-based DDL capture has been desupported from 21c onward, so you need to
upgrade to native DDL capture.

Note:

If you are using integrated capture and plan to upgrade from trigger-based DDL
capture to new native DDL capture, do not remove the DDL trigger until prompted.
Extract needs to mine DDL to the point where the redo COMPATIBLE level. For
example, if Extract is behind by a week when the database is upgraded, Extract does
not immediately switch to native DDL capture. It must be allowed to process the
previous redo first, then Extract upgrades to native DDL capture automatically.

1. Use the following command in GGSCI to determine the oldest archive log that you might
need to restore when Extract starts. The Recovery Checkpoint field shows the oldest log
needed for recovery.

GGSCI> INFO EXTRACT group, SHOWCH
It's best to perform upgrade activities outside of the peak hours. If there are large and long
running transactions, you may consider that on the source system, the new Extract might
need to start processing from the normal recovery checkpoint, rather than the bounded
recovery checkpoint, if the first record of the oldest open transaction at the time that you
stop Extract is in a log that is not on the system.

You have two options:

Chapter 12
Upgrading Oracle GoldenGate Classic Architecture

12-4

http://edelivery.oracle.com
https://www.oracle.com/middleware/technologies/goldengate.html
https://www.oracle.com/middleware/technologies/goldengate.html
https://docs.oracle.com/cd/E23104_01/download_readme.htm

• You can restore the archives back to, and including, the one shown in the recovery
checkpoint shown with INFO EXTRACT.

• You can clear out the long-running transactions that apply to the Extract that you are
upgrading. This can be done by skipping the transactions or by forcing them to the trail
as committed transactions. Skipping a transaction may cause data loss, and forcing a
transaction to the trail may add unwanted data to the trail if the transaction is rolled
back. To skip or force a transaction, follow these steps:

a. View open transactions with the following command in GGSCI. Record the
transaction ID of any transaction that you want to clean up.

GGSCI> SEND EXTRACT group, SHOWTRANS

b. Clean up old transactions with the SEND EXTRACT command, using either the
SKIPTRANS option to skip a transaction or the FORCETRANS option to force a
transaction in its current state to the trail as a committed transaction.

GGSCI> SEND EXTRACT group, {SKIPTRANS | FORCETRANS} transaction_ID
[THREAD n] [FORCE]

c. After you are finished cleaning up the long-running transactions, force a Bounded
Recovery checkpoint.

GGSCI> SEND EXTRACT group, BR BRCHECKPOINT IMMEDIATE

Note:

A forced checkpoint is necessary because the skipped or forced
transaction is not cleaned up from the Bounded Recovery checkpoint
and will be shown if SHOWTRANS is issued again. This is a known issue.
For more information about SEND EXTRACT, see Reference for Oracle
GoldenGate.

2. (Target systems) In GGSCI, stop all Replicat processes.

GGSCI> STOP REPLICAT group

3. (Source and target systems) In GGSCI, stop Manager on the source and target systems.

GGSCI> STOP MANAGER

4. When updating target systems only, or if updating the target side before the source side,
you must use STOP to stop all data pumps and any primary Extracts that write directly to
those targets on any source running on this target. Any static collectors that may have
been started that must be stopped, as well. To verify that there are no server processes
running, use process checking shell commands, such as ps and grep.

5. You need to use an out-of-place upgrade, which implies that you retain the existing
installation in parallel while you run the upgrade. See Install and Patch for details.

Chapter 12
Upgrading Oracle GoldenGate Classic Architecture

12-5

6. In GGSCI, start the Oracle GoldenGate processes on the source and target systems in the
following order.

GGSCI> START MANAGER
GGSCI> START EXTRACT group
GGSCI> START EXTRACT pump
GGSCI> START REPLICAT group

If you need to restore any log files, Extract abends with an error that indicates the log to
restore. Restore the logs back to, and including that log, and then restart Extract.

If you made copies of the parameter files to make parameter changes, move the new
parameter files into the Oracle GoldenGate directory where the old parameter files were stored
then rename them to the same names as the old parameter files. If you are using case-
sensitivity support, ensure that you either add NOUSEANSISQLQUOTES to your parameter files, or
that you ran the convprm utility to convert the quotes as required. See "Upgrade Considerations
if Using Character-Set Conversion" for more information.

Upgrade Considerations for Older Oracle GoldenGate Releases

• To accomodate the changes in the checkpoint table and heartbeat table, it is
recommended that you upgrade the heartbeat table (source and target) and the checkpoint
table (target only). If there is no change related to the objects, then the command returns
with an informational message only. This step updates the table definition to add columns
that support the Oracle GoldenGate 18c (18.1.0) release.

GGSCI> DBLOGIN USERIDALIAS [alias] |
GGSCI> UPGRADE CHECKPOINTTABLE [owner.table]

In case of SQL Server and MySQL, you need to specifyc the SOURCEDB data source with
DBLOGIN. See DBLOGIN command for details.

owner.table can be omitted if the checkpoint table was created with the name listed with
CHECKPOINTTABLE in the GLOBALS file. If the checkpoint table is already upgraded, then
this command doesn't perform any further updates.

Upgrading Oracle GoldenGate from OUI

You can use Oracle Universal Installer (OUI) on any of the Linux, UNIX, and Windows
platforms that OUI supports and which Oracle GoldenGate supports. OUI is supported for
Oracle versions 11g and later. An instance of Oracle GoldenGate can be installed for only one
Oracle version in any given Oracle home. You can install multiple instances of Oracle
GoldenGate for the same or different database versions on the same host.

The installer registers the Oracle GoldenGate home directory with the central inventory that is
associated with the selected database. The inventory stores information about all Oracle
software products installed on a host, provided the product was installed using OUI.

To perform the upgrade using OUI, perform the following steps:

1. Unzip and untar the installation file.

2. From the unzipped directory, run the runInstaller program on UNIX or Linux, or run
setup.exe on Windows.

Chapter 12
Upgrading Oracle GoldenGate Classic Architecture

12-6

3. On the Select Installation Option page, select the Oracle GoldenGate build to install, and
then click Next to continue.

4. On the Specify Installation Details page, specify the following:

• For Software Location, specify the Oracle GoldenGate installation directory. It can be
a new or existing directory. The default location is under installing user's home
directory, but Oracle recommends changing it to a local directory that is not mounted
and has no quotas. The specified directory cannot be a registered home in the Oracle
central inventory. If installing in a cluster, install Oracle GoldenGate on shared storage
that is accessible by all of the cluster nodes.

• (Optional) Select Start Manager to perform configuration functions, such as creating
the Oracle GoldenGate sub-directories in the installation folder, setting library paths,
and starting Manager on the specified port number. To proceed, a database must exist
on the system. When Start Manager is selected, the Database Location and
Manager Port fields are displayed.

– The database must have a registered home in the Oracle central inventory. The
installer registers the Oracle GoldenGate home directory with the central inventory.

– For Manager Port, accept the default port number or enter a different unreserved,
unrestricted port number for the Manager process to use for inter-process
communication. The default port is the first available one starting with 7809. If you
are installing multiple instances of Oracle GoldenGate on the same system, each
must use a different port number.

5. Click Next to continue. In case of upgrading existing Oracle GoldenGate Installation, OUI
prompts that the selected Software location has files or directories. Click on Yes.

6. The Create Inventory page is displayed if this is the first Oracle product to be installed
from OUI on a host that does not have a central inventory.

• For Inventory Directory, specify a directory for the central inventory. It can be a new
directory or an existing directory that is empty and has the amount of disk space
shown on the screen. The directory cannot be on a shared drive.

• Select an operating system group in which the members have write permission to the
inventory directory. This group is used to add inventory information to the Oracle
GoldenGate sub-folder.

7. On the Summary page, confirm that there is enough space for the installation and that the
installation selections are correct. Optionally, click Save Response File to save the
installation information to a response file. You can run the installer from the command line
with this file as input to duplicate the results of a successful installation on other systems.
You can edit this file or create a new one from a template.

8. Click Install to begin the installation or Back to go back and change any input
specifications. When Upgrading existing Oracle GoldenGate Installation, OUI will notify
that the software location has files or directories. Click Yes to continue. You are notified
when the installation is finished.

9. If you created a central inventory directory, you are prompted to run the
INVENTORY_LOCATION/orainstRoot.sh script. This script must be executed as the root
operating system user. This script establishes the inventory data and creates sub-
directories for each installed Oracle product (in this case, Oracle GoldenGate).

Upgrading Oracle GoldenGate using OUI – Silent
These instructions apply to new installations, as well as upgrades.

Chapter 12
Upgrading Oracle GoldenGate Classic Architecture

12-7

You can perform a silent installation from the command console if the system has no X-
Windows interface or to perform an automated installation. Silent installations can ensure that
multiple users in your organization use the same installation options when they install your
Oracle products.

You perform a silent installation by running a response file. You can create a response file by
selecting the Save Response File option during an interactive OUI session or by editing a
template.

1. To run a response file, use the following command:

runInstaller -silent -nowait -responseFile absolute_path_to_response_file

The response files and the template are stored in the response subdirectory of the Oracle
GoldenGate installation directory. The Oracle GoldenGate response file contains a
standard set of Oracle configuration parameters in addition to parameters that are specific
to Oracle GoldenGate. These parameters correspond to the fields in the interactive
session.

Note:

If you are upgrading an existing Oracle GoldenGate installation with the silent
option, then you might get the following warning:

WARNING:OUI-10030:You have specified a non-empty directory to install this
product. It is recommended to specify either an empty or a non-existent
directory.
You may, however, choose to ignore this message if the directory contains
Operating System generated files or subdirectories like lost+found. Do you
want to proceed with installation in this Oracle Home?

2. Press ENTER to continue.

Upgrading a Configuration That Includes DDL Support
This section contains considerations and steps you should take when DDL support is active in
the Oracle GoldenGate environment.

DDL support in Oracle GoldenGate offers two options:

• The Integrated mode supports two DDL capture methods:

– If the source database is Oracle 11.2.0.4 or later, DDL capture support is integrated
into the database logmining server and does not require the use of the Oracle
GoldenGate DDL trigger and supporting objects, as long as the database COMPATIBLE
parameter is set to 11.2.0.4 or higher.

– If the source database is earlier than Oracle 11.2.0.4, the Oracle GoldenGate trigger
and supporting DDL objects must be used when Extract is in integrated mode.

• Classic capture requires the use of the Oracle GoldenGate DDL trigger and supporting
objects regardless of the release number of the source Oracle database. (Source system)
If you plan to use trigger-based DDL support for Oracle Database, use the following sub-
steps to rebuild the Oracle GoldenGate DDL trigger environment to a clean state:

1. Run SQL*Plus and log in as a user that has sysdba privileges.

Chapter 12
Upgrading Oracle GoldenGate Classic Architecture

12-8

2. Run the marker_setup script to reinstall the Oracle GoldenGate marker support system
and provide the name of the Oracle GoldenGate schema.

3. Run the ddl_setup script and provide the name of the Oracle GoldenGate DDL
schema.

4. Run the role_setup script to recreate the Oracle GoldenGate DDL role.

5. Grant the role that you created to all Oracle GoldenGate users under which the
following Oracle GoldenGate processes run: Extract, Replicat, GGSCI, and Manager.
You may need to make multiple grants if the processes have different user names.

6. Run the ddl_enable.sql script to enable the Oracle GoldenGate DDL trigger.

Table 12-2 shows possible DDL upgrade paths and guidelines.

Table 12-2 Possible Upgrade Paths to Oracle GoldenGate and Requirements for DDL Support

Upgrade from: To: Classic capture using trigger
method

To: Integrated capture, no trigger1

Classic capture using trigger
method (all 11.2.1 database
versions)

Cannot be used for a container database.

Upgrade Oracle GoldenGate per these
upgrade instructions.

Can be used for a container database.

1. Source database must be 11.2.0.4 or
higher.

2. Source database COMPATIBLE setting
must be 11.2.0.4 or higher.

3. Upgrade Oracle GoldenGate per these
upgrade instructions.

Integrated capture using trigger
method (all 11.2.1 database
versions)

Cannot be used for a container database.

No DDL upgrade path.

Can be used for a container database.

1. Source database must be 11.2.0.4 or
higher.

2. Source database COMPATIBLE setting
must be 11.2.0.4 or higher.

3. Upgrade Oracle GoldenGate per these
upgrade instructions.

1 An upgrade of the database to 11.2.0.4 or 12.1 automatically takes a data dictionary snapshot in the redo stream as part of the patch set
upgrade.

Upgrading Configuration that includes Berkeley Database - Oracle
GoldenGate 12.2 or later

When you are upgrading Oracle GoldenGate from release 12.1.2.1 to 12.3.0.1 and have
enabled monitoring and the datastore is created by the Performance Metrics server, the best
practice is to purge the data store before performing the upgrade. After the upgrade, the
datastore is recreated. For more information about purging a datastore, see How to Purge the
Datastore. in the Using the Oracle GoldenGate Microservices Architecture.

From Oracle GoldenGate 12.3.0.1 onward, all operations related to the datastore have been
removed and are taken care of by the Performance Metrics server. To know more, see
Monitoring Performance.

Chapter 12
Upgrading Oracle GoldenGate Classic Architecture

12-9

Upgrading Oracle GoldenGate for Non-Oracle Databases
Learn how to upgrade Oracle GoldenGate for Non-Oracle databases.

Oracle GoldenGate Upgrade Considerations
Before you start the upgrade, review the information about upgrading Extract and Replicat.

Even though you may only be upgrading the source or target installations, rather than both, all
processes are involved in the upgrade. All processes must be stopped in the correct order for
the upgrade, regardless of which component you upgrade, and the trails must be processed
until empty.

Oracle recommends that you begin your upgrade with the target rather than the source to
avoid the necessity of adjusting the trail file format.

Installation Binaries and Deployments

With Microservice Architecture, there is a strong separation between where the software is
installed and the deployment directory structure for the Oracle GoldenGate instance, which
contains the parameter files, report files, and trail files. For both these areas, the software
binaries and deployment, are strictly separated. So, there is no interference between the old
and new software installations related to the deployments. During a software upgrade, the new
software will be installed independently. The deployment working with the old software will be
stopped. Then, the deployment environment will be adjusted to the new software and the
deployment will be restarted.

If you have a reverse proxy configuration on your host machine generated with
OGG_HOME/lib/utl/reverseproxy/ReverseProxySettings, then consider reconfiguring it to
leverage the enhanced ReverseProxySetting utility available with Oracle GoldenGate 21c
(21.3) and higher releases.

Considerations for Upgrading Service Manager and other Deployments

When upgrading Oracle GoldenGate, the Service Manager must be updated first. The software
version of the Service Manager must be higher or equal to the version of the deployments.
There are no issues having a Service Manager running on the highest version and having
deployments with lower versions.

After completing the upgrade, run the UPGRADE HEARTBEATTABLE command to add extra
columns for tables and lag views. These extra columns are used to track the Extract restart
position. See UPGRADE HEARTBEATTABLE to know more.

Extract Upgrade Considerations
Running Extract in classic mode (non-integrated Extract) with the Oracle database has been
desupported. Before upgrading Extracts running in classic mode (non-integrated Extract) with
the Oracle database, you need to upgrade the Extracts to run in integrated mode.

Upgrading Classic Extract to Integrated Extract for Oracle

As classic Extract is desupported, you must upgrade the classic Extract to an integrated
Extract. Stop the classic Extract, which were configured with DDL capture, and remove the
DDL triggers prior to upgrading to an integrated Extract.

Remove the DDL triggers:

Chapter 12
Upgrading Oracle GoldenGate for Non-Oracle Databases

12-10

• ddl_disable
• ddl_remove
• marker_remove
To upgrade to Extract, use the following command:

ALTER EXTRACT group_name to UPGRADE INTEGRATED TRANLOG

Also, see Switching Extract from Classic Mode to Integrated Mode in Administering Oracle
GoldenGate.

Replicat Upgrade Considerations
All Replicat installations should be upgraded at the same time. It is critical to ensure that all
trails leading to all Replicat groups on all target systems are processed until empty, according
to the upgrade instructions.

When upgrading from releases prior to 19c release of Oracle GoldenGate, ensure that you do
not use the SOURCEDEF parameter in Replicat, otherwise the Replicat will abend. However, if the
trail file format is pre-12.2, then SOURCEDEF is still required because no metadata exists in the
trail file.

Because the TIMEZONE datatype is managed differently with Oracle GoldenGate 21c, you may
need to run the ALTER REPLICAT extseqno command to synchronize with newer trail files after
consuming the old trail file written by the Extract.

Upgrading Oracle GoldenGate for Non-Oracle Databases
These instructions are for upgrading Oracle GoldenGate Classic Architecture in the supported
Non-Oracle database environments.

Overview of the Upgrade Procedure for Non-Oracle Databases

The upgrade performs a minimal feature upgrade to deploy only the core Oracle GoldenGate
functionality, without implementing any of the major new features. It ensures easy
troubleshooting of any upgrade related issues that may occur after the upgrade. After
upgrading the Oracle GoldenGate environment successfully, you can implement the new
functionality.

If you are upgrading multiple Extract processes that operate in a consolidated configuration
(many sources to one target), you must upgrade one Extract at a time. All Replicat installations
must be upgraded at the same time. It is critical to ensure that all trails leading to all Replicat
groups on all target systems are processed until empty.

Chapter 12
Upgrading Oracle GoldenGate for Non-Oracle Databases

12-11

Note:

The hash calculation used by the @RANGE function to partition data among Replicat
processes has been changed. This change is transparent, and no re-partitioning of
rows in the parameter files is required. To ensure data continuity, ensure that you
allow all Replicat processes on all systems to finish processing all the data in their
trails before stopping those processes. If the Replicat processes are not upgraded all
at the same time, or the trails are not cleaned out prior to the upgrade, rows may shift
partitions as a result of the new hash method, which may result in collision errors.

Obtaining the Oracle GoldenGate Distribution
To obtain Oracle GoldenGate, follow these steps:

1. Go to edelivery: edelivery.oracle.com

To access Oracle Technology Network, go to https://www.oracle.com/middleware/
technologies/goldengate.html

2. Find the Oracle GoldenGate 19c (19.1.0) release and download the ZIP file onto your
system.

For more information about locating and downloading Oracle Fusion Middleware products, see
the Oracle Fusion Middleware Download, Installation, and Configuration Readme Files on
Oracle Technology Network.

Upgrading Oracle GoldenGate Classic Architecture for Non-Oracle Databases
Even though you may only be upgrading Extract or Replicat, rather than both, all processes
are involved in the upgrade. All processes must be stopped in the correct order for the
upgrade, regardless of which component you upgrade, and the trails must be processed until
empty.

1. (Source and target systems) Back up the current Oracle GoldenGate installation directory
on the source and target systems, and any working directories that you have installed on a
shared drive in a cluster (if applicable).

2. (Source and target systems, as applicable) Expand the Oracle GoldenGate upgrade build
into a new directory on each system (not the current Oracle GoldenGate directory). Do not
create the sub-directories; just complete the steps to the point where the installation files
are expanded.

However, this step doesn't apply to PostgreSQL.

Oracle GoldenGate for PostgreSQL upgrade only works if you install the latest version
(version to be upgraded) in the same $OGG_HOME directory as the current Oracle
GoldenGate version.

For PostgreSQL, Oracle GoldenGate upgrade doesn't work if you install the latest version
(version to be upgraded) in a different $OGG_HOME directory (21.3) and repoint the
new $OGG_HOME to the latest version.

For PostgreSQL, use the same $OGG_HOME as current version directory for the latest Oracle
GoldenGate binary. Make sure to take backup of existing $OGG_HOME before beginning the
upgrade.

3. Stop all user activity that generates DML and DDL on objects in your Oracle GoldenGate
configuration and ensure that there are no outstanding open transactions against the
database.

Chapter 12
Upgrading Oracle GoldenGate for Non-Oracle Databases

12-12

http://edelivery.oracle.com
https://www.oracle.com/middleware/technologies/goldengate.html
https://www.oracle.com/middleware/technologies/goldengate.html
https://docs.oracle.com/cd/E23104_01/download_readme.htm

For SQL Server CDC Extract on a Source system, manually stop the CDC Capture job for
the database.

4. (Source system) In GGSCI on the source system, issue the SEND EXTRACT command with
the LOGEND option until it shows YES, indicating that there is no more data in the transaction
log to process.

For SQL Server CDC Extract on Source system, monitor that the current read position of
the Extract is no longer updating, by repeatedly running SEND EXTRACT group STATUS for a
few seconds, and observe that the LSN value for the current read position is no longer
updating.

GGSCI> SEND EXTRACT group LOGEND
5. (Source system) In GGSCI, stop Extract and data pumps.

GGSCI> STOP EXTRACT group
6. (Target systems) In GGSCI on each target system, issue the SEND REPLICAT command

with the STATUS option until it shows a status of "At EOF" to indicate that it finished
processing all of the data in the trail. This must be done on all target systems until all
Replicat processes return "At EOF."

GGSCI> SEND REPLICAT group STATUS
7. (Target systems) In GGSCI, stop all Replicat processes.

GGSCI> STOP REPLICAT group
8. (Source and target systems) In GGSCI, stop Manager on the source and target systems

and close GGSCI.

GGSCI> STOP MANAGER
9. If you want to upgrade the source or target database, or both, do so at this time according

to the upgrade instructions provided for that database. Ensure that you start the databases
after the upgrade, but do not permit transactions on the objects in the Oracle GoldenGate
configuration.

For MySQL, if you upgrade from Oracle GoldenGate 19c (19.1.0) and the database is
MySQL 5.7, then no change is required. However, if you upgrade from Oracle GoldenGate
19c (19.1.0) and the database is MySQL 8.0, then you need to perform the following steps:

a. Enable logging of full metadata because it's mandatory for MySQL 8.0 and higher,
regardless of DDL or DML replication. Logging of full metadata can be enabled by
setting the value of MySQL server variable binlog_row_metadata to FULL inside the
MySQL configuration file (my.cnf for Linux and my.ini for Windows). You need to
restart the database service after changing the configuration file for the settings to take
effect.

b. Run the DDL uninstall scripts to disable old DDL solutions if DDL replication was
enabled previously.

The script name:

For Windows: ddl_install.bat
For Linux: ddl_install.sh

c. To uninstall, run the following script:

bash$./ddl_install.sh uninstall mysql userid password port
10. (Source and target systems) Move the expanded Oracle GoldenGate files from the new

directory to your existing Oracle GoldenGate directory on the source and target systems
overwriting the existing files.

Chapter 12
Upgrading Oracle GoldenGate for Non-Oracle Databases

12-13

11. (DB2 for i) Run ggos400install without arguments. For an upgrade, no arguments are
necessary. However, if you change the library, the old library is left on the system until you
remove it.

12. (Source and target systems) Start GGSCI.

13. (Target systems, if upgrading Replicat from version 11.2.1.0.0 or earlier only) In GGSCI on
each target system, issue the following commands to upgrade the Replicat checkpoint
tables on those systems. This step updates the table definition.

GGSCI> DBLOGIN {
 [SOURCEDB data_source] |
 [, database@host:port] |USERID {/ | userid}
 [, PASSWORD password]
 [algorithm ENCRYPTKEY {keyname | DEFAULT}] |USERIDALIAS alias
[DOMAIN domain] |
 [SYSDBA | SQLID sqlid]
 [SESSIONCHARSET character_set]}

GGSCI> UPGRADE CHECKPOINTTABLE [owner.table]

Note:

owner.table can be omitted if the checkpoint table was created with the name
listed with CHECKPOINTTABLE in the GLOBALS file.

14. (SQL Server Oracle GoldenGate classic Extract 12c (12.3.0.1) or prior, on Source system)
Run the DELETE TRANDATA command against any tables enabled with it and delete the
heartbeat tables if they exist (DELETE HEARTBEATTABLE). Then run ADD TRANDATA again for
the tables and ADD HEARTBEATTABLE, if previously used.

GGSCI> DBLOGIN {[SOURCEDB data_source] | |USERID {/ | userid}[, PASSWORD
password] |USERIDALIAS alias [DOMAIN domain]
GGSCI> DELETE TRANDATA schema.tablename
GGSCI> DELETE HEARTBEATTABLE
GGSCI> ADD HEARTBEATTABLE
GGSCI> ADD TRANDATA schema.tablename

15. (SQL Server CDC Extract on Source system) Run ADD TRANDATA again on any tables
previously enabled with it, including any filter table and the gg_heartbeat and
gg_heartbeat_seed tables if using the Oracle GoldenGate heartbeat implementation.

GGSCI> DBLOGIN {[SOURCEDB data_source] | |USERID {/ | userid}[, PASSWORD
password] |USERIDALIAS alias [DOMAIN domain]
GGSCI> ADD TRANDATA schema.tablename

16. (Target system) If upgrading the target Oracle GoldenGate installation that is the recipient
of trails from a source system running Oracle GoldenGate prior to version 11.2.1, then add
the SOURCECHARSET parameter to the Replicat and specify the character set of the source
database.

17. (Source system) By default, after upgrading, the Extract will continue to write trail files in
the version of Oracle GoldenGate prior to the upgrade. To force the Extract to write in the
upgraded trail version, use the FORMAT RELEASE parameter in the Extract, specifying the

Chapter 12
Upgrading Oracle GoldenGate for Non-Oracle Databases

12-14

new version, or alternately, perform an ETROLLOVER of the Extract and manually reposition
the downstream processes to start reading at the new trail sequence.

{EXTTRAIL | RMTTRAIL} file_name FORMAT RELEASE major.minor

18. If you made copies of the parameter files to make parameter changes, move the new
parameter files into the Oracle GoldenGate directory where the old parameter files were
stored, and give them the same names as the old parameter files. If using case-sensitivity
support, make certain that you either added NOUSEANSISQLQUOTES to your parameter files,
or that you ran the convprm utility to convert the quotes as required.

19. Upgrade the heartbeat table configuration if it was previously implemented, before
restarting all the processes.

GGSCI> DBLOGIN {[SOURCEDB data_source] | |USERID {/ | userid}[, PASSWORD
password]
|USERIDALIAS alias [DOMAIN domain]
GGSCI> UPGRADE HEARTBEATTABLE

20. You also need to modify the BATCHSQL parameter to double the value of BATCHESPERQUEUE.
You must do this before starting Replicat.

Note:

If you are upgrading from Oracle GoldenGate version 12.1 to any later version
and using the INSERTALLRECORDS parameter, it is recommended that you should
double the value of BYTESPEERQUEUE option of the BATCHSQL parameter. For
example, if you are using the BYTESPEERQUEUE option with its default value, which
is 20 MB, then increase the value to 40 MB. However, if you are not using the
default value for the BYTESPEERQUEUE option, then double the value specified
during the Oracle GoldenGate version 12.1 installation.

For example:

BATCHSQL BATCHESPERQUEUE 40000000

21. For SQL Server CDC Extract on a Source system, manually restart the CDC Capture job
for the database.

22. In GGSCI, start the Oracle GoldenGate processes on the source and target systems in the
following order.

GGSCI> START MANAGER
GGSCI> START EXTRACT group
GGSCI> START EXTRACT pump
GGSCI> START REPLICAT group

Performing Application Patches
Application patches and application upgrades typically perform DDL such as adding new
objects or changing existing objects. To apply applications patches or upgrades in an Oracle
GoldenGate environment, you can do one of the following:

Chapter 12
Performing Application Patches

12-15

• If Oracle GoldenGate supports DDL replication for your database type, you can use it to
replicate the DDL without stopping replication processes. To use this method, the source
and target table structures must be identical.

• You can apply the patch or upgrade manually on both source and target after taking the
appropriate steps to ensure replication continuity.

To Use Oracle GoldenGate to Replicate Patch DDL

1. If you have not already done so, dedicate some time to learn, install, and configure the
Oracle GoldenGate DDL support. See the instructions for your database in this
documentation. Once the DDL environment is in place, future patches and upgrades will
be easier to apply.

2. If the application patch or upgrade adds new objects that you want to include in data
replication, make certain that you include them in the DDL parameter statement. To add
new objects to your TABLE and MAP statements, see the procedure on Adding Tables to the
Oracle GoldenGate Configuration.

3. If the application patch or upgrade installs triggers or cascade constraints, disable those
objects on the target to prevent collisions between DML that they execute on the target
and the same DDL that is replicated from the source trigger or cascaded operation.

To Apply a Patch Manually on the Source and Target

1. Stop access to the source database.

2. Allow Extract to finish capturing the transaction data that remains in the transaction log. To
determine when Extract is finished, issue the following command in GGSCI until it returns
At EOF.
SEND EXTRACT group GETLAG

3. Stop Extract.

STOP EXTRACT group
4. Start applying the patch on the source.

5. Wait until the data pump (if used) and Replicat are finished processing the data in their
respective trails. To determine when they are finished, use the following commands until
they return At EOF.

SEND EXTRACT group GETLAG
SEND REPLICAT group GETLAG

6. Stop the data pump and Replicat.

STOP EXTRACT group
STOP REPLICAT group

At this point, the data in the source and target should be identical, because all of the
replicated transactional changes from the source have been applied to the target.

7. Apply the patch on the target.

8. If the patches changed table definitions, run DEFGEN for the source tables to generate
updated source definitions, and then replace the old definitions with the new ones in the
existing source definitions file on the target system.

9. Start the Oracle GoldenGate processes whenever you are ready to begin capturing user
activity again.

Chapter 12
Performing Application Patches

12-16

13
Appendix

Learn about additional details required for supporting Oracle GoldenGate on different
databases.

Supported Character Sets
This appendix lists the character sets that Oracle GoldenGate supports when converting data
from source to target.
The identifiers that are shown should be used for Oracle GoldenGate parameters or
commands when a character set must be specified, instead of the actual character set name.
Currently Oracle GoldenGate does not provide a facility to specify the database-specific
character set.

Supported Character Sets - Oracle

Table 13-1 Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

al32utf8 Unicode 9.0 Universal Character Set (UCS), UTF-8 encoding scheme

ar8ados710t Arabic MS-DOS 710 8-bit Latin/Arabic

ar8ados710 Arabic MS-DOS 710 Server 8-bit Latin/Arabic

ar8ados720t Arabic MS-DOS 720 8-bit Latin/Arabic

ar8ados720 Arabic MS-DOS 720 Server 8-bit Latin/Arabic

ar8aptec715t APTEC 715 8-bit Latin/Arabic

ar8aptec715 APTEC 715 Server 8-bit Latin/Arabic

ar8arabicmacs Mac Server 8-bit Latin/Arabic

ar8arabicmact Mac 8-bit Latin/Arabic

ar8arabicmac Mac Client 8-bit Latin/Arabic

ar8asmo708plus ASMO 708 Plus 8-bit Latin/Arabic

ar8asmo8x ASMO Extended 708 8-bit Latin/Arabic

ar8ebcdic420s EBCDIC Code Page 420 Server 8-bit Latin/Arabic

ar8ebcdicx EBCDIC XBASIC Server 8-bit Latin/Arabic

ar8hparabic8t HP 8-bit Latin/Arabic

ar8iso8859p6 ISO 8859-6 Latin/Arabic

ar8mswin1256 MS Windows Code Page 1256 8-Bit Latin/Arabic

ar8mussad768t Mussa'd Alarabi/2 768 8-bit Latin/Arabic

13-1

Table 13-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

ar8mussad768 Mussa'd Alarabi/2 768 Server 8-bit Latin/Arabic

ar8nafitha711t Nafitha International 711 Server 8-bit Latin/Arabic

ar8nafitha711 Nafitha Enhanced 711 Server 8-bit Latin/Arabic

ar8nafitha721t Nafitha International 721 8-bit Latin/Arabic

ar8nafitha721 Nafitha International 721 Server 8-bit Latin/Arabic

ar8sakhr706 SAKHR 706 Server 8-bit Latin/Arabic

ar8sakhr707t SAKHR 707 8-bit Latin/Arabic

ar8sakhr707 SAKHR 707 Server 8-bit Latin/Arabic

ar8xbasic XBASIC 8-bit Latin/Arabic

az8iso8859p9e ISO 8859-9 Azerbaijani

bg8mswin MS Windows 8-bit Bulgarian Cyrillic

bg8pc437s IBM-PC Code Page 437 8-bit (Bulgarian Modification)

blt8cp921 Latvian Standard LVS8-92(1) Windows/Unix 8-bit Baltic

blt8ebcdic1112s EBCDIC Code Page 1112 8-bit Server Baltic Multilingual

blt8ebcdic1112 EBCDIC Code Page 1112 8-bit Baltic Multilingual

blt8iso8859p13 ISO 8859-13 Baltic

blt8mswin1257 MS Windows Code Page 1257 8-bit Baltic

blt8pc775 IBM-PC Code Page 775 8-bit Baltic

bn8bscii Bangladesh National Code 8-bit BSCII

cdn8pc863 IBM-PC Code Page 863 8-bit Canadian French

ce8bs2000 Siemens EBCDIC.DF.04-2 8-bit Central European

cel8iso8859p14 ISO 8859-13 Celtic

ch7dec DEC VT100 7-bit Swiss (German/French)

cl8bs2000 Siemens EBCDIC.EHC.LC 8-bit Latin/Cyrillic-1

cl8ebcdic1025c EBCDIC Code Page 1025 Client 8-bit Cyrillic

cl8ebcdic1025r EBCDIC Code Page 1025 Server 8-bit Cyrillic

cl8ebcdic1025s EBCDIC Code Page 1025 Server 8-bit Cyrillic

cl8ebcdic1025 EBCDIC Code Page 1025 8-bit Cyrillic

cl8ebcdic1025x EBCDIC Code Page 1025 (Modified) 8-bit Cyrillic

cl8ebcdic1158r EBCDIC Code Page 1158 Server 8-bit Cyrillic

cl8ebcdic1158 EBCDIC Code Page 1158 8-bit Cyrillic

cl8iso8859p5 ISO 8859-5 Latin/Cyrillic

cl8isoir111 SOIR111 Cyrillic

cl8koi8r RELCOM Internet Standard 8-bit Latin/Cyrillic

Chapter 13
Supported Character Sets

13-2

Table 13-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

cl8koi8u KOI8 Ukrainian Cyrillic

cl8maccyrillics Mac Server 8-bit Latin/Cyrillic

cl8maccyrillic Mac Client 8-bit Latin/Cyrillic

cl8mswin1251 MS Windows Code Page 1251 8-bit Latin/Cyrillic

d7dec DEC VT100 7-bit German

d7siemens9780x Siemens 97801/97808 7-bit German

d8bs2000 Siemens 9750-62 EBCDIC 8-bit German

d8ebcdic1141 EBCDIC Code Page 1141 8-bit Austrian German

d8ebcdic273 EBCDIC Code Page 273/1 8-bit Austrian German

dk7siemens9780x Siemens 97801/97808 7-bit Danish

dk8bs2000 Siemens 9750-62 EBCDIC 8-bit Danish

dk8ebcdic1142 EBCDIC Code Page 1142 8-bit Danish

dk8ebcdic277 EBCDIC Code Page 277/1 8-bit Danish

e7dec DEC VT100 7-bit Spanish

e7siemens9780x Siemens 97801/97808 7-bit Spanish

e8bs2000 Siemens 9750-62 EBCDIC 8-bit Spanish

ee8bs2000 Siemens EBCDIC.EHC.L2 8-bit East European

ee8ebcdic870c EBCDIC Code Page 870 Client 8-bit East European

ee8ebcdic870s EBCDIC Code Page 870 Server 8-bit East European

ee8ebcdic870 EBCDIC Code Page 870 8-bit East European

ee8iso8859p2 ISO 8859-2 East European

ee8macces Mac Server 8-bit Central European

ee8macce Mac Client 8-bit Central European

ee8maccroatians Mac Server 8-bit Croatian

ee8maccroatian Mac Client 8-bit Croatian

ee8mswin1250 MS Windows Code Page 1250 8-bit East European

ee8pc852 IBM-PC Code Page 852 8-bit East European

eec8euroasci EEC Targon 35 ASCI West European/Greek

eec8europa3 EEC EUROPA3 8-bit West European/Greek

el8dec DEC 8-bit Latin/Greek

el8ebcdic423r IBM EBCDIC Code Page 423 for RDBMS server-side

el8ebcdic875r EBCDIC Code Page 875 Server 8-bit Greek

el8ebcdic875s EBCDIC Code Page 875 Server 8-bit Greek

el8ebcdic875 EBCDIC Code Page 875 8-bit Greek

Chapter 13
Supported Character Sets

13-3

Table 13-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

el8gcos7 Bull EBCDIC GCOS7 8-bit Greek

el8iso8859p7 ISO 8859-7 Latin/Greek

el8macgreeks Mac Server 8-bit Greek

el8macgreek Mac Client 8-bit Greek

el8mswin1253 MS Windows Code Page 1253 8-bit Latin/Greek

el8pc437s IBM-PC Code Page 437 8-bit (Greek modification)

el8pc737 IBM-PC Code Page 737 8-bit Greek/Latin

el8pc851 IBM-PC Code Page 851 8-bit Greek/Latin

el8pc869 IBM-PC Code Page 869 8-bit Greek/Latin

et8mswin923 MS Windows Code Page 923 8-bit Estonian

f7dec DEC VT100 7-bit French

f7siemens9780x Siemens 97801/97808 7-bit French

f8bs2000 Siemens 9750-62 EBCDIC 8-bit French

f8ebcdic1147 EBCDIC Code Page 1147 8-bit French

f8ebcdic297 EBCDIC Code Page 297 8-bit French

hu8abmod Hungarian 8-bit Special AB Mod

hu8cwi2 Hungarian 8-bit CWI-2

i7dec DEC VT100 7-bit Italian

i7siemens9780x Siemens 97801/97808 7-bit Italian

i8ebcdic1144 EBCDIC Code Page 1144 8-bit Italian

i8ebcdic280 EBCDIC Code Page 280/1 8-bit Italian

in8iscii Multiple-Script Indian Standard 8-bit Latin/Indian

is8macicelandics Mac Server 8-bit Icelandic

is8macicelandic Mac Client 8-bit Icelandic

is8pc861 IBM-PC Code Page 861 8-bit Icelandic

iw7is960 Israeli Standard 960 7-bit Latin/Hebrew

iw8ebcdic1086 EBCDIC Code Page 1086 8-bit Hebrew

iw8ebcdic424s EBCDIC Code Page 424 Server 8-bit Latin/Hebrew

iw8ebcdic424 EBCDIC Code Page 424 8-bit Latin/Hebrew

iw8iso8859p8 ISO 8859-8 Latin/Hebrew

iw8machebrews Mac Server 8-bit Hebrew

iw8machebrew Mac Client 8-bit Hebrew

iw8mswin1255 MS Windows Code Page 1255 8-bit Latin/Hebrew

iw8pc1507 IBM-PC Code Page 1507/862 8-bit Latin/Hebrew

Chapter 13
Supported Character Sets

13-4

Table 13-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

ja16dbcs IBM EBCDIC 16-bit Japanese

ja16ebcdic930 IBM DBCS Code Page 290 16-bit Japanese

ja16euctilde Same as ja16euc except for the way that the wave dash and the tilde are
mapped to and from Unicode

ja16euc EUC 24-bit Japanese

ja16eucyen EUC 24-bit Japanese with '\' mapped to the Japanese yen character

ja16macsjis Mac client Shift-JIS 16-bit Japanese

ja16sjistilde Same as ja16sjis except for the way that the wave dash and the tilde are
mapped to and from Unicode.

ja16sjis Shift-JIS 16-bit Japanese

ja16sjisyen Shift-JIS 16-bit Japanese with '\' mapped to the Japanese yen character

ja16vms JVMS 16-bit Japanese

ko16dbcs IBM EBCDIC 16-bit Korean

ko16ksc5601 KSC5601 16-bit Korean

ko16ksccs KSCCS 16-bit Korean

ko16mswin949 MS Windows Code Page 949 Korean

la8iso6937 ISO 6937 8-bit Coded Character Set for Text Communication

la8passport German Government Printer 8-bit All-European Latin

lt8mswin921 MS Windows Code Page 921 8-bit Lithuanian

lt8pc772 IBM-PC Code Page 772 8-bit Lithuanian (Latin/Cyrillic)

lt8pc774 IBM-PC Code Page 774 8-bit Lithuanian (Latin)

lv8pc1117 IBM-PC Code Page 1117 8-bit Latvian

lv8pc8lr Latvian Version IBM-PC Code Page 866 8-bit Latin/Cyrillic

lv8rst104090 IBM-PC Alternative Code Page 8-bit Latvian (Latin/Cyrillic)

n7siemens9780x Siemens 97801/97808 7-bit Norwegian

n8pc865 IBM-PC Code Page 865 8-bit Norwegian

ndk7dec DEC VT100 7-bit Norwegian/Danish

ne8iso8859p10 ISO 8859-10 North European

nee8iso8859p4 ISO 8859-4 North and North-East European

nl7dec DEC VT100 7-bit Dutch

ru8besta BESTA 8-bit Latin/Cyrillic

ru8pc855 IBM-PC Code Page 855 8-bit Latin/Cyrillic

ru8pc866 IBM-PC Code Page 866 8-bit Latin/Cyrillic

s7dec DEC VT100 7-bit Swedish

s7siemens9780x Siemens 97801/97808 7-bit Swedish

Chapter 13
Supported Character Sets

13-5

Table 13-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

s8bs2000 Siemens 9750-62 EBCDIC 8-bit Swedish

s8ebcdic1143 EBCDIC Code Page 1143 8-bit Swedish

s8ebcdic278 EBCDIC Code Page 278/1 8-bit Swedish

se8iso8859p3 ISO 8859-3 South European

sf7ascii ASCII 7-bit Finnish

sf7dec DEC VT100 7-bit Finnish

th8macthais Mac Server 8-bit Latin/Thai

th8macthai Mac Client 8-bit Latin/Thai

th8tisascii Thai Industrial Standard 620-2533 - ASCII 8-bit

th8tisebcdics Thai Industrial Standard 620-2533 - EBCDIC Server 8-bit

th8tisebcdic Thai Industrial Standard 620-2533 - EBCDIC 8-bit

tr7dec DEC VT100 7-bit Turkish

tr8dec DEC 8-bit Turkish

tr8ebcdic1026s EBCDIC Code Page 1026 Server 8-bit Turkish

tr8ebcdic1026 EBCDIC Code Page 1026 8-bit Turkish

tr8macturkishs Mac Server 8-bit Turkish

tr8macturkish Mac Client 8-bit Turkish

tr8mswin1254 MS Windows Code Page 1254 8-bit Turkish

tr8pc857 IBM-PC Code Page 857 8-bit Turkish

us7ascii ASCII 7-bit American

us8bs2000 Siemens 9750-62 EBCDIC 8-bit American

us8icl ICL EBCDIC 8-bit American

us8pc437 IBM-PC Code Page 437 8-bit American

vn8mswin1258 MS Windows Code Page 1258 8-bit Vietnamese

vn8vn3 VN3 8-bit Vietnamese

we8bs2000e Siemens EBCDIC.DF.04-F 8-bit West European with Euro symbol

we8bs2000l5 Siemens EBCDIC.DF.04-9 8-bit WE & Turkish

we8bs2000 Siemens EBCDIC.DF.04-1 8-bit West European

we8dec DEC 8-bit West European

we8dg DG 8-bit West European

we8ebcdic1047e Latin 1/Open Systems 1047

we8ebcdic1047 EBCDIC Code Page 1047 8-bit West European

we8ebcdic1140c EBCDIC Code Page 1140 Client 8-bit West European

we8ebcdic1140 EBCDIC Code Page 1140 8-bit West European

Chapter 13
Supported Character Sets

13-6

Table 13-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

we8ebcdic1145 EBCDIC Code Page 1145 8-bit West European

we8ebcdic1146 EBCDIC Code Page 1146 8-bit West European

we8ebcdic1148c EBCDIC Code Page 1148 Client 8-bit West European

we8ebcdic1148 EBCDIC Code Page 1148 8-bit West European

we8ebcdic284 EBCDIC Code Page 284 8-bit Latin American/Spanish

we8ebcdic285 EBCDIC Code Page 285 8-bit West European

we8ebcdic37c EBCDIC Code Page 37 8-bit Oracle/c

we8ebcdic37 EBCDIC Code Page 37 8-bit West European

we8ebcdic500c EBCDIC Code Page 500 8-bit Oracle/c

we8ebcdic500 EBCDIC Code Page 500 8-bit West European

we8ebcdic871 EBCDIC Code Page 871 8-bit Icelandic

we8ebcdic924 Latin 9 EBCDIC 924

we8gcos7 Bull EBCDIC GCOS7 8-bit West European

we8hp HP LaserJet 8-bit West European

we8icl ICL EBCDIC 8-bit West European

we8iso8859p15 ISO 8859-15 West European

we8iso8859p1 ISO 8859-1 West European

we8iso8859p9 ISO 8859-9 West European & Turkish

we8isoicluk ICL special version ISO8859-1

we8macroman8s Mac Server 8-bit Extended Roman8 West European

we8macroman8 Mac Client 8-bit Extended Roman8 West European

we8mswin1252 MS Windows Code Page 1252 8-bit West European

we8ncr4970 NCR 4970 8-bit West European

we8nextstep NeXTSTEP PostScript 8-bit West European

we8pc850 IBM-PC Code Page 850 8-bit West European

we8pc858 IBM-PC Code Page 858 8-bit West European

we8pc860 IBM-PC Code Page 860 8-bit West European

we8roman8 HP Roman8 8-bit West European

yug7ascii ASCII 7-bit Yugoslavian

zhs16cgb231280 CGB2312-80 16-bit Simplified Chinese

zhs16dbcs IBM EBCDIC 16-bit Simplified Chinese

zhs16gbk GBK 16-bit Simplified Chinese

zhs16maccgb231280 Mac client CGB2312-80 16-bit Simplified Chinese

zht16big5 BIG5 16-bit Traditional Chinese

Chapter 13
Supported Character Sets

13-7

Table 13-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

zht16ccdc HP CCDC 16-bit Traditional Chinese

zht16dbcs IBM EBCDIC 16-bit Traditional Chinese

zht16dbt Taiwan Taxation 16-bit Traditional Chinese

zht16hkscs31 MS Windows Code Page 950 with Hong Kong Supplementary Character Set
HKSCS-2001 (character set conversion to and from Unicode is based on
Unicode 3.1)

zht16hkscs MS Windows Code Page 950 with Hong Kong Supplementary Character Set
HKSCS-2001 (character set conversion to and from Unicode is based on
Unicode 3.0)

zht16mswin950 MS Windows Code Page 950 Traditional Chinese

zht32euc EUC 32-bit Traditional Chinese

zht32sops SOPS 32-bit Traditional Chinese

zht32tris TRIS 32-bit Traditional Chinese

Supported Character Sets - Non-Oracle

Identifier to use in
parameter files and
commands

Character set

UTF-8 ISO-10646 UTF-8, surrogate pairs are 4 bytes per character

UTF-16 ISO-10646 UTF-16

UTF-16BE UTF-16 Big Endian

UTF-16LE UTF-16 Little Endian

UTF-32 ISO-10646 UTF-32

UTF-32BE UTF-32 Big Endian

UTF-32LE UTF-32 Little Endian

CESU-8 Similar to UTF-8, correspond to UCS-2 and surrogate pairs are 6 bytes per
character

US-ASCII US-ASCII, ANSI X34-1986

windows-1250 Windows Central Europe

Chapter 13
Supported Character Sets

13-8

Identifier to use in
parameter files and
commands

Character set

windows-1251 Windows Cyrillic

windows-1252 Windows Latin-1

windows-1253 Windows Greek

windows-1254 Windows Turkish

windows-1255 Windows Hebrew

windows-1256 Windows Arabic

windows-1257 Windows Baltic

windows-1258 Windows Vietnam

windows-874 Windows Thai

cp437 DOS Latin-1

ibm-720 DOS Arabic

cp737 DOS Greek

cp775 DOS Baltic

cp850 DOS multilingual

cp851 DOS Greek-1

cp852 DOS Latin-2

cp855 DOS Cyrillic

cp856 DOS Cyrillic / IBM

cp857 DOS Turkish

cp858 DOS Multilingual with Euro

cp860 DOS Portuguese

Chapter 13
Supported Character Sets

13-9

Identifier to use in
parameter files and
commands

Character set

cp861 DOS Icelandic

cp862 DOS Hebrew

cp863 DOS French

cp864 DOS Arabic

cp865 DOS Nordic

cp866 DOS Cyrillic / GOST 19768-87

ibm-867 DOS Hebrew / IBM

cp868 DOS Urdu

cp869 DOS Greek-2

ISO-8859-1 ISO-8859-1 Latin-1/Western Europe

ISO-8859-2 ISO-8859-2 Latin-2/Eastern Europe

ISO-8859-3 ISO-8859-3 Latin-3/South Europe

ISO-8859-4 ISO-8859-4 Latin-4/North Europe

ISO-8859-5 ISO-8859-5 Latin/Cyrillic

ISO-8859-6 ISO-8859-6 Latin/Arabic

ISO-8859-7 ISO-8859-7 Latin/Greek

ISO-8859-8 ISO-8859-8 Latin/Hebrew

ISO-8859-9 ISO-8859-9 Latin-5/Turkish

ISO-8859-10 ISO-8859-10 Latin-6/Nordic

ISO-8859-11 ISO-8859-11 Latin/Thai

ISO-8859-13 ISO-8859-13 Latin-7/Baltic Rim

Chapter 13
Supported Character Sets

13-10

Identifier to use in
parameter files and
commands

Character set

ISO-8859-14 ISO-8859-14 Latin-8/Celtic

ISO-8859-15 ISO-8859-15 Latin-9/Western Europe

IBM037 IBM 037-1/697-1 EBCDIC, Brazil, Canada, Netherlands, Portugal, US, and
037/1175 Traditional Chinese

IBM01140 IBM 1140-1/695-1 EBCDIC, Brazil, Canada, Netherlands, Portugal, US, and
1140/1175 Traditional Chinese

IBM273 IBM 273-1/697-1 EBCDIC, Austria, Germany

IBM01141 IBM 1141-1/695-1 EBCDIC, Austria, Germany

IBM277 IBM 277-1/697-1 EBCDIC, Denmark, Norway

IBM01142 IBM 1142-1/695-1 EBCIDC, Denmark, Norway

IBM278 IBM 278-1/697-1 EBCDIC, Finland, Sweden

IBM01143 IBM 1143-1/695-1 EBCDIC, Finland, Sweden

IBM280 IBM 280-1/697-1 EBCDIC, Italy

IBM01144 IBM 1144-1/695-1 EBCDIC, Italy

IBM284 IBM 284-1/697-1 EBCDIC, Latin America, Spain

IBM01145 IBM 1145-1/695-1 EBCDIC, Latin America, Spain

IBM285 IBM 285-1/697-1 EBCDIC, United Kingdom

IBM01146 IBM 1146-1/695-1 EBCDIC, United Kingdom

IBM290 IBM 290 EBCDIC, Japan (Katakana) Extended

IBM297 IBM 297-1/697-1 EBCDIC, France

IBM01147 IBM 1147-1/695-1 EBCDIC, France

IBM420 IBM 420 EBCDIC, Arabic Bilingual

IBM424 IBM 424/941 EBCDIC, Israel (Hebrew - Bulletin Code)

Chapter 13
Supported Character Sets

13-11

Identifier to use in
parameter files and
commands

Character set

IBM500 IBM 500-1/697-1 EBCDIC, International

IBM01148 IBM 1148-1/695-1 EBCDIC International

IBM870 IBM 870/959 EBCDIC, Latin-2 Multilingual

IBM871 IBM 871-1/697-1 EBCDIC Iceland

IBM918 IBM EBCDIC code page 918, Arabic 2

IBM1149 IBM 1149-1/695-1, EBCDIC Iceland

IBM1047 IBM 1047/103 EBCDIC, Latin-1 (Open Systems)

ibm-803 IBM 803 EBCDIC, Israel (Hebrew - Old Code)

IBM875 IBM 875 EBCDIC, Greece

ibm-924 IBM 924-1/1353-1 EBCDIC International

ibm-1153 IBM 1153/1375 EBCDIC, Latin-2 Multilingual

ibm-1122 IBM 1122/1037 EBCDIC, Estonia

ibm-1157 IBM 1157/1391 EBCDIC, Estonia

ibm-1112 IBM 1112/1035 EBCDIC, Latvia, Lithuania

ibm-1156 IBM 1156/1393 EBCDIC, Latvia, Lithuania

ibm-4899 IBM EBCDIC code page 4899, Hebrew with Euro

ibm-12712 IBM 12712 EBCDIC, Hebrew (max set including Euro)

ibm-1097 IBM 1097 EBCDIC, Farsi

ibm-1018 IBM 1018 EBCDIC, Finland Sweden (ISO-7)

ibm-1132 IBM 1132 EBCDIC, Laos

ibm-1137 IBM EBCDIC code page 1137, Devanagari

Chapter 13
Supported Character Sets

13-12

Identifier to use in
parameter files and
commands

Character set

ibm-1025 IBM 1025/1150 EBCDIC, Cyrillic

ibm-1154 IBM EBCDIC code page 1154, Cyrillic with Euro

IBM1026 IBM 1026/1152 EBCDIC, Latin-5 Turkey

ibm-1155 IBM EBCDIC code page 1155, Turkish with Euro

ibm-1123 IBM 1123 EBCDIC, Ukraine

ibm-1158 IBM EBCDIC code page 1158, Ukranian with Euro

IBM838 IBM 838/1173 EBCDIC, Thai

ibm-1160 IBM EBCDIC code page 1160, Thai with Euro

ibm-1130 IBM 1130 EBCDIC, Vietnam

ibm-1164 IBM EBCDIC code page 1164, Vietnamese with Euro

ibm-4517 IBM EBCDIC code page 4517, Arabic French

ibm-4971 IBM EBCDIC code page 4971, Greek

ibm-9067 IBM EBCDIC code page 9067, Greek 2005

ibm-16804 IBM EBCDIC code page 16804, Arabic

KOI8-R Russian and Cyrillic (KOI8-R)

KOI8-U Ukranian (KOI8-U)

eucTH EUC Thai

ibm-1162 Windows Thai with Euro

DEC-MCS DEC Multilingual

hp-roman8 HP Latin-1 Roman8

ibm-901 IBM Baltic ISO-8 CCSID 901

Chapter 13
Supported Character Sets

13-13

Identifier to use in
parameter files and
commands

Character set

ibm-902 IBM Estonia ISO-8 with Euro CCSID 902

ibm-916 IBM ISO8859-8 CCSID

ibm-922 IBM Estonia ISO-8 CCSID 922

ibm-1006 IBM Urdu ISO-8 CCSID 1006

ibm-1098 IBM Farsi PC CCSID 1098

ibm-1124 Ukranian ISO-8 CCSID 1124

ibm-1125 Ukranian without Euro CCSID 1125

ibm-1129 IBM Vietnamese without Euro CCSID 1129

ibm-1131 IBM Belarusi CCSID 1131

ibm-1133 IBM Lao CCSID 1133

ibm-4909 IBM Greek Latin ASCII CCSID 4909

JIS_X201 JIS X201 Japanese

windows-932 Windows Japanese

windows-936 Windows Simplified Chinese

ibm-942 IBM Windows Japanese

windows-949 Windows Korean

windows-950 Windows Traditional Chinese

eucjis EUC Japanese

EUC-JP IBM/MS EUC Japanese

EUC-CN EUC Simplified Chinese, GBK

EUC-KR EUC Korean

Chapter 13
Supported Character Sets

13-14

Identifier to use in
parameter files and
commands

Character set

EUC-TW EUC Traditional Chinese

ibm-930 IBM 930/5026 Japanese

ibm-933 IBM 933 Korean

ibm-935 IBM 935 Simplified Chinese

ibm-937 IBM 937 Traditional Chinese

ibm-939 IBM 939/5035 Japanese

ibm-1364 IBM 1364 Korean

ibm-1371 IBM 1371 Traditional Chinese

ibm-1388 IBM 1388 Simplified Chinese

ibm-1390 IBM 1390 Japanese

ibm-1399 IBM 1399 Japanese

ibm-5123 IBM CCSID 5123 Japanese

ibm-8482 IBM CCSID 8482 Japanese

ibm-13218 IBM CCSID 13218 Japanese

ibm-16684 IBM CCSID 16684 Japanese

shiftjis Japanese Shift JIS, Tilde 0x8160 mapped to U+301C

gb18030 GB-18030

GB2312 GB-2312-1980

GBK GBK

HZ HZ GB2312

Ibm-1381 IBM CCSID 1381 Simplified Chinese

Chapter 13
Supported Character Sets

13-15

Identifier to use in
parameter files and
commands

Character set

Big5 Big5, Traditional Chinese

Big5-HKSCS Big5, HongKong ext.

Big5-HKSCS2001 Big5, HongKong ext. HKSCS-2001

ibm-950 IBM Big5, CCSID 950

ibm-949 CCSID 949 Korean

ibm-949C IBM CCSID 949 Korean, has backslash

ibm-971 IBM CCSID 971 Korean EUC, KSC5601 1989

x-IBM1363 IBM CCSID 1363, Korean

Supported Locales
This appendix lists the locales that are supported by Oracle GoldenGate. The locale is used
when comparing case-insensitive object names.

af
af_NA
af_ZA
am
am_ET
ar
ar_AE
ar_BH
ar_DZ
ar_EG
ar_IQ
ar_JO
ar_KW
ar_LB
ar_LY
ar_MA
ar_OM
ar_QA
ar_SA
ar_SD
ar_SY
ar_TN
ar_YE

Chapter 13
Supported Locales

13-16

as
as_IN
az
az_Cyrl
az_Cyrl_AZ
az_Latn
az_Latn_AZ
be
be_BY
bg
bg_BG
bn
bn_BD
bn_IN
ca
ca_ES
cs
cs_CZ
cy
cy_GB
da
da_DK
de
de_AT
de_BE
de_CH
de_DE
de_LI
de_LU
el
el_CY
el_GR
en
en_AU
en_BE
en_BW
en_BZ
en_CA
en_GB
en_HK
en_IE
en_IN
en_JM
en_MH
en_MT
en_NA
en_NZ
en_PH
en_PK
en_SG

Chapter 13
Supported Locales

13-17

en_TT
en_US
en_US_POSIX
en_VI
en_ZA
en_ZW
eo
es
es_AR
es_BO
es_CL
es_CO
es_CR
es_DO
es_EC
es_ES
es_GT
es_HN
es_MX
es_NI
es_PA
es_PE
es_PR
es_PY
es_SV
es_US
es_UY
es_VE
et
et_EE
eu
eu_ES
fa
fa_AF
fa_IR
fi
fi_FI
fo
fo_FO
fr
fr_BE
fr_CA
fr_CH
fr_FR
fr_LU
fr_MC
ga
ga_IE
gl
gl_ES

Chapter 13
Supported Locales

13-18

gu
gu_IN
gv
gv_GB
haw
haw_US
he
he_IL
hi
hi_IN
hr
hr_HR
hu
hu_HU
hy
hy_AM
hy_AM_REVISED
id
id_ID
is
is_IS
it
it_CH
it_IT
ja
ja_JP
ka
ka_GE
kk
kk_KZ
kl
kl_GL
km
km_KH
kn
kn_IN
ko
ko_KR
kok
kok_IN
kw
kw_GB
lt
lt_LT
lv
lv_LV
mk
mk_MK
ml
ml_IN

Chapter 13
Supported Locales

13-19

mr
mr_IN
ms
ms_BN
ms_MY
mt
mt_MT
nb
nb_NO
nl
nl_BE
nl_NL
nn
nn_NO
om
om_ET
om_KE
or
or_IN
pa
pa_Guru
pa_Guru_IN
pl
pl_PL
ps
ps_AF
pt
pt_BR
pt_PT
ro
ro_RO
ru
ru_RU
ru_UA
sk
sk_SK
sl
sl_SI
so
so_DJ
so_ET
so_KE
so_SO
sq
sq_AL
sr
sr_Cyrl
sr_Cyrl_BA
sr_Cyrl_ME
sr_Cyrl_RS

Chapter 13
Supported Locales

13-20

sr_Latn
sr_Latn_BA
sr_Latn_ME
sr_Latn_RS
sv
sv_FI
sv_SE
sw
sw_KE
sw_TZ
ta
ta_IN
te
te_IN
th
th_TH
ti
ti_ER
ti_ET
tr
tr_TR
uk
uk_UA
ur
ur_IN
ur_PK
uz
uz_Arab
uz_Arab_AF
uz_Cyrl
uz_Cyrl_UZ
uz_Latn
uz_Latn_UZ
vi
vi_VN
zh
zh_Hans
zh_Hans_CN
zh_Hans_SG
zh_Hant
zh_Hant_HK
zh_Hant_MO
zh_Hant_TW

About the Oracle GoldenGate Trail
This appendix contains information about the Oracle GoldenGate trail that you may need to
know for troubleshooting, for a support case, or for other purposes. To view the Oracle
GoldenGate trail records, use the Logdump utility.

Chapter 13
About the Oracle GoldenGate Trail

13-21

Trail Recovery Mode
By default, Extract operates in append mode, where if there is a process failure, a recovery
marker is written to the trail and Extract appends recovery data to the file so that a history of all
prior data is retained for recovery purposes.

In append mode, the Extract initialization determines the identity of the last complete
transaction that was written to the trail at startup time. With that information, Extract ends
recovery when the commit record for that transaction is encountered in the data source; then it
begins new data capture with the next committed transaction that qualifies for extraction and
begins appending the new data to the trail. A data pump or Replicat starts reading again from
that recovery point.

Overwrite mode is another version of Extract recovery that was used in versions of Oracle
GoldenGate prior to version 10.0. In these versions, Extract overwrites the existing transaction
data in the trail after the last write-checkpoint position, instead of appending the new data. The
first transaction that is written is the first one that qualifies for extraction after the last read
checkpoint position in the data source.

If the version of Oracle GoldenGate on the target is older than version 10, Extract will
automatically revert to overwrite mode to support backward compatibility. This behavior can be
controlled manually with the RECOVERYOPTIONS parameter.

Trail File Header Record
Each file of a trail contains a file header record that is stored at the beginning of the file. The
file header contains information about the trail file itself. Previous versions of Oracle
GoldenGate do not contain this header.

The file header is stored as a record at the beginning of a trail file preceding the data records.
The information that is stored in the trail header provides enough information about the records
to enable an Oracle GoldenGate process to determine whether the records are in a format that
the current version of Oracle GoldenGate supports.

The trail header fields are stored as tokens, where the token format remains the same across
all versions of Oracle GoldenGate. If a version of Oracle GoldenGate does not support any
given token, that token is ignored. Depracated tokens are assigned a default value to preserve
compatibility with previous versions of Oracle GoldenGate.

To ensure forward and backward compatibility of files among different Oracle GoldenGate
process versions, the file header fields are written in a standardized token format. New tokens
that are created by new versions of a process can be ignored by older versions, so that
backward compatibility is maintained. Likewise, newer Oracle GoldenGate versions support
older tokens. Additionally, if a token is deprecated by a new process version, a default value is
assigned to the token so that older versions can still function properly. The token that specifies
the file version is COMPATIBILITY and can be viewed in the Logdump utility and also by
retrieving it with the GGFILEHEADER option of the @GETENV function.

A trail or Extract file must have a version that is equal to, or lower than, that of the process that
reads it. Otherwise the process will abend. Additionally, Oracle GoldenGate forces the output
trail or file of a data pump to be the same version as that of its input trail or file. Upon restart,
Extract rolls a trail to a new file to ensure that each file is of only one version (unless the file is
empty).

From Oracle GoldenGate 21c onward, for Oracle databases, you can specify a globally unique
name for the database using the DB_UNIQUE_NAME parameter. If this database parameter is not

Chapter 13
About the Oracle GoldenGate Trail

13-22

set, then the DB_UNIQUE_NAME is the same as DB_NAME. This feature allows unique identification
of the source of the trail data by viewing the trail file header.

See GETENV parameter to know about the use of the DbUniqueName token.

Note:

The DbUniqueName token will be written to trail files with 19.1 compatibility level,
however prior Oracle GoldenGate releases supporting that compatibility level will
ignore the new token. The token belongs to the Database Information group. The
field will be limited to 65536 bytes, to allow fitting all possible values of
DB_UNIQUE_NAME, limited to 30 characters.

Because the Oracle GoldenGate processes are decoupled and can be of different Oracle
GoldenGate versions, the file header of each trail file contains a version indicator. By default,
the version of a trail file is the current version of the process that created the file. If you need to
set the version of a trail, use the FORMAT option of the EXTTRAIL, EXTFILE, RMTTRAIL, or RMTFILE
parameter.

You can view the trail header with the FILEHEADER command in the Logdump utility. For more
information about the tokens in the file header, see Logdump Reference for Oracle
GoldenGate.

Trail Record Format
Each change record written by Oracle GoldenGate to a trail or extract file includes a header
area, a data area, and possibly a user token area. The record header contains information
about the transaction environment, and the data area contains the actual data values that were
extracted. The token area contains information that is specified by Oracle GoldenGate users
for use in column mapping and conversion.

Oracle GoldenGate trail files are unstructured. You can view Oracle GoldenGate records with
the Logdump utility provided with the Oracle GoldenGate software. For more information, see
Logdump Reference for Oracle GoldenGate.

Note:

As enhancements are made to the Oracle GoldenGate software, the trail record
format is subject to changes that may not be reflected in this documentation. To view
the current structure, use the Logdump utility.

Example of an Oracle GoldenGate Record
The following illustrates an Oracle GoldenGate record as viewed with Logdump. The first
portion (the list of fields) is the header and the second portion is the data area. The record
looks similar to this on all platforms supported by Oracle GoldenGate.

Chapter 13
About the Oracle GoldenGate Trail

13-23

Record Header Area
The Oracle GoldenGate record header provides metadata of the data that is contained in the
record and includes the following information.

• The operation type, such as an insert, update, or delete

• The before or after indicator for updates

• Transaction information, such as the transaction group and commit timestamp

Description of Header Fields
The following describes the fields of the Oracle GoldenGate record header. Some fields apply
only to certain platforms.

Table 13-2 Oracle GoldenGate record header fields

Field Description

Hdr-Ind Should always be a value of E, indicating that the record was created by the
Extract process. Any other value indicates invalid data.

UndoFlag (NonStop) Conditionally set if Oracle GoldenGate is extracting aborted
transactions from the TMF audit trail. Normally, UndoFlag is set to zero, but
if the record is the backout of a previously successful operation, then
UndoFlag will be set to 1. An undo that is performed by the disc process
because of a constraint violation is not marked as an undo.

RecLength The length, in bytes, of the record buffer.

IOType The type of operation represented by the record. See #unique_1217/
unique_1217_Connect_42_G997818 for a list of operation types.

TransInD The place of the record within the current transaction. Values are:

0 — first record in transaction

1 — neither first nor last record in transaction

2 — last record in the transaction

3 — only record in the transaction

SyskeyLen (NonStop) The length of the system key (4 or 8 bytes) if the source is a
NonStop file and has a system key. If a system key exists, the first
Syskeylen bytes of the record are the system key. Otherwise, SyskeyLen is
0.

Chapter 13
About the Oracle GoldenGate Trail

13-24

Table 13-2 (Cont.) Oracle GoldenGate record header fields

Field Description

AuditRBA Identifies the transaction log identifier, such as the Oracle redo log sequence
number.

Continued (Windows and UNIX) Identifies whether or not the record is a segment of a
larger piece of data that is too large to fit within one record. LOBs, CLOBS,
and some VARCHARs are stored in segments. Unified records that contain
both before and after images in a single record (due to the
UPDATERECORDFORMAT parameter) may exceed the maximum length of a
record and may also generate segments.

Y — the record is a segment; indicates to Oracle GoldenGate that this data
continues to another record.

N — there is no continuation of data to another segment; could be the last in
a series or a record that is not a segment of larger data.

Partition For Windows and UNIX records, this field will always be a value of 4
(FieldComp compressed record in internal format). For these platforms, the
term Partition does not indicate that the data represents any particular
logical or physical partition within the database structure.

For NonStop records, the value of this field depends on the record type:

• In the case of BulkIO operations, Partition indicates the number of
the source partition on which the bulk operation was performed. It tells
Oracle GoldenGate which source partition the data was originally written
to. Replicat uses the Partition field to determine the name of the
target partition. The file name in the record header will always be the
name of the primary partition. Valid values for BulkIO records are 0
through 15.

• For other non-bulk NonStop operations, the value can be either 0 or 4. A
value of 4 indicates that the data is in FieldComp record format.

BeforeAfter Identifies whether the record is a before (B) or after (A) image of an update
operation. Records that combine both before and after images as the result
of the UPDATERECORDFORMAT parameter are marked as after images. Inserts
are always after images, deletes are always before images.

IO Time The time when the operation occurred, in local time of the source system, in
GMT format. This time may be the same or different for every operation in a
transaction depending on when the operation occurred.

OrigNode (NonStop) The node number of the system where the data was extracted.
Each system in a NonStop cluster has a unique node number. Node
numbers can range from 0 through 255.

For records other than NonStop in origin, OrigNode is 0.

FormatType Identifies whether the data was read from the transaction log or fetched from
the database.

F — fetched from database

R — readable in transaction log

Incomplete This field is obsolete.

AuditPos Identifies the position in the transaction log of the data.

RecCount (Windows and UNIX) Used for LOB data when it must be split into chunks to
be written to the Oracle GoldenGate file. RecCount is used to reassemble
the chunks.

Chapter 13
About the Oracle GoldenGate Trail

13-25

Using Header Data
Some of the data available in the Oracle GoldenGate record header can be used for mapping
by using the GGHEADER option of the @GETENV function or by using any of the following
transaction elements as the source expression in a COLMAP statement in the TABLE or MAP
parameter.

• GGS_TRANS_TIMESTAMP
• GGS_TRANS_RBA
• GGS_OP_TYPE
• GGS_BEFORE_AFTER_IND

Record Data Area
The data area of the Oracle GoldenGate trail record contains the following:

• The time that the change was written to the Oracle GoldenGate file

• The type of database operation

• The length of the record

• The relative byte address within the trail file

• The table name

• The data changes in hex format

The following explains the differences in record image formats used by Oracle GoldenGate on
Windows, UNIX, Linux, and NonStop systems.

Full Record Image Format (NonStop Sources)
A full record image contains the values of all of the columns of a processed row. Full record
image format is generated in the trail when the source system is HP NonStop, and only when
the IOType specified in the record header is one of the following:

3 — Delete
5 — Insert
10 — Update

Each full record image has the same format as if retrieved from a program reading the original
file or table directly. For SQL tables, datetime fields, nulls, and other data is written exactly as a
program would select it into an application buffer. Although datetime fields are represented
internally as an eight-byte timestamp, their external form can be up to 26 bytes expressed as a
string. Enscribe records are retrieved as they exist in the original file.

When the operation type is Insert or Update, the image contains the contents of the record
after the operation (the after image). When the operation type is Delete, the image contains
the contents of the record before the operation (the before image).

For records generated from an Enscribe database, full record images are output unless the
original file has the AUDITCOMPRESS attribute set to ON. When AUDITCOMPRESS is ON, compressed
update records are generated whenever the original file receives an update operation. (A full
image can be retrieved by the Extract process by using the FETCHCOMPS parameter.)

Chapter 13
About the Oracle GoldenGate Trail

13-26

Compressed Record Image Format (Windows, UNIX, Linux Sources)
A compressed record image contains only the key (primary, unique, KEYCOLS) and the columns
that changed in the processed row. By default, trail records written by processes on Windows
and UNIX systems are always compressed. The format of a compressed record is as follows:

column_index column_length column_data[...]

Where:

• column_index is the ordinal index of the column within the source table (2 bytes).

• colum_length is the length of the data (2 bytes).

• column_data is the data, including NULL or VARCHAR length indicators.

Enscribe records written from the NonStop platform may be compressed. The format of a
compressed Enscribe record is as follows:

field_offset field_length field_value[...]

Where:

• field_offset is the offset within the original record of the changed value (2 bytes).

• field_length is the length of the data (2 bytes).

• field_value is the data, including NULL or VARCHAR length indicators.

The first field in a compressed Enscribe record is the primary or system key.

Tokens Area
The trail record also can contain two areas for tokens. One is for internal use and is not
documented here, and the other is the user tokens area. User tokens are environment values
that are captured and stored in the trail record for replication to target columns or other
purposes. If used, these tokens follow the data portion of the record and appear similar to the
following when viewed with Logdump:

Parameter Value

TKN-HOST
TKN-GROUP
TKN-BA_IND
TKN-COMMIT_TS
TKN-POS
TKN-RBA
TKN-TABLE
TKN-OPTYPE
TKN-LENGTH
TKN-TRAN_IND

: syshq
: EXTORA
: AFTER
: 2011-01-24 17:08:59.000000
: 3604496
: 4058
: SOURCE.CUSTOMER
: INSERT
: 57
: BEGIN

Oracle GoldenGate Operation Types
The following are some of the Oracle GoldenGate operation types. Types may be added as
new functionality is added to Oracle GoldenGate. For a more updated list, use the SHOW
RECTYPE command in the Logdump utility.

Chapter 13
About the Oracle GoldenGate Trail

13-27

Table 13-3 Oracle GoldenGate Operation Types

Type Description Platform

1-Abort A transaction aborted. NSK TMF

2-Commit A transaction committed. NSK TMF

3-Delete A record/row was deleted. A Delete record usually
contains a full record image. However, if the
COMPRESSDELETES parameter was used, then only key
columns will be present.

All

4-EndRollback A database rollback ended NSK TMF

5-Insert A record/row was inserted. An Insert record contains a
full record image.

All

6-Prepared A networked transaction has been prepared to commit. NSK TMF

7-TMF-Shutdown A TMF shutdown occurred. NSK TMF

8-TransBegin No longer used. NSK TMF

9-TransRelease No longer used. NSK TMF

10-Update A record/row was updated. An Update record contains a
full record image. Note: If the partition indicator in the
record header is 4, then the record is in FieldComp format
(see below) and the update is compressed.

All

11-UpdateComp A record/row in TMF AuditComp format was updated. In
this format, only the changed bytes are present. A 4-byte
descriptor in the format of 2-byte_offset2-byte_length
precedes each data fragment. The byte offset is the ordinal
index of the column within the source table. The length is
the length of the data.

NSK TMF

12-FileAlter An attribute of a database file was altered. NSK

13-FileCreate A database file was created. NSK

14-FilePurge A database file was deleted. NSK

15-FieldComp A row in a SQL table was updated. In this format, only the
changed bytes are present. Before images of unchanged
columns are not logged by the database. A 4-byte
descriptor in the format of 2-byte_offset2-byte_length
precedes each data fragment. The byte offset is the ordinal
index of the column within the source table. The length is
the length of the data. A partition indicator of 4 in the record
header indicates FieldComp format.

All

16-FileRename A file was renamed. NSK

17-AuxPointer Contains information about which AUX trails have new data
and the location at which to read.

NSK TMF

18-NetworkCommit A networked transaction committed. NSK TMF

19-NetworkAbort A networked transaction was aborted. NSK TMF

90-(GGS)SQLCol A column or columns in a SQL table were added, or an
attribute changed.

NSK

100-(GGS)Purgedata All data was removed from the file (PURGEDATA). NSK

101-(GGS)Purge(File) A file was purged. NSK non-TMF

Chapter 13
About the Oracle GoldenGate Trail

13-28

Table 13-3 (Cont.) Oracle GoldenGate Operation Types

Type Description Platform

102-(GGS)Create(File) A file was created. The Oracle GoldenGate record contains
the file attributes.

NSK non-TMF

103-(GGS)Alter(File) A file was altered. The Oracle GoldenGate record contains
the altered file attributes.

NSK non-TMF

104-
(GGS)Rename(File)

A file was renamed. The Oracle GoldenGate record
contains the original and new names.

NSK non-TMF

105-(GGS)Setmode A SETMODE operation was performed. The Oracle
GoldenGate record contains the SETMODE information.

NSK non-TMF

106-GGSChangeLabel A CHANGELABEL operation was performed. The Oracle
GoldenGate record contains the CHANGELABEL information.

NSK non-TMF

107-(GGS)Control A CONTROL operation was performed. The Oracle
GoldenGate record contains the CONTROL information.

NSK non-TMF

115 and 117

(GGS)KeyFieldComp(3
2)

A primary key was updated. The Oracle GoldenGate record
contains the before image of the key and the after image of
the key and the row. The data is in FieldComp format
(compressed), meaning that before images of unchanged
columns are not logged by the database.

Windows and
UNIX

116-LargeObject

116-LOB

Identifies a RAW, BLOB, CLOB, or LOB column. Data of this
type is stored across multiple records.

Windows and
UNIX

132-(GGS)
SequenceOp

Identifies an operation on a sequence. Windows and
UNIX

134-UNIFIED UPDATE

135-UNIFIED
PKUPDATE

Identifies a unified trail record that contains both before and
after values in the same record. The before image in a
UNIFIED UPDATE contains all of the columns that are
available in the transaction record for both the before and
after images. The before image in a UNIFIED PKUPDATE
contains all of the columns that are available in the
transaction record, but the after image is limited to the
primary key columns and the columns that were modified in
the UPDATE.

Windows and
UNIX

160 - DDL_Op Identifies a DDL operation Windows and
UNIX

161-

RecordFragment

Identifies part of a large row that must be stored across
multiple records (more than just the base record).

Windows and
UNIX

200-GGSUnstructured
Block

200-BulkIO

A BULKIO operation was performed. The Oracle
GoldenGate record contains the RAW DP2 block.

NSK non-TMF

201 through 204 These are different types of NonStop trace records. Trace
records are used by Oracle GoldenGate support analysts.
The following are descriptions.

• ARTYPE_FILECLOSE_GGS 201 — the source
application closed a file that was open for unstructured
I/O. Used by Replicat

• ARTYPE_LOGGERTS_GGS 202 — Logger heartbeat
record

• ARTYPE_EXTRACTERTS_GGS 203 — unused

• ARTYPE_COLLECTORTS_GGS 204 — unused

NSK non-TMF

Chapter 13
About the Oracle GoldenGate Trail

13-29

Table 13-3 (Cont.) Oracle GoldenGate Operation Types

Type Description Platform

205-GGSComment Indicates a comment record created by the Logdump utility.
Comment records are created by Logdump at the beginning
and end of data that is saved to a file with Logdump's SAVE
command.

All

249 through 254 These are different types of NonStop trace records. Trace
records are used by Oracle GoldenGate support analysts.
The following are descriptions.

• ARTYPE_LOGGER_ADDED_STATS 249 — a stats record
created by Logger when the source application closes
its open on Logger (if SENDERSTATS is enabled and
stats are written to the logtrail)

• ARTYPE_LIBRARY_OPEN 250 — written by BASELIB to
show that the application opened a file

• ARTYPE_LIBRARY_CLOSE 251 — written by BASELIB
to show that the application closed a file.

• ARTYPE_LOGGER_ADDED_OPEN 252 — unused

• ARTYPE_LOGGER_ADDED_CLOSE 253 — unused

• ARTYPE_LOGGER_ADDED_INFO 254 — written by
Logger and contains information about the source
application that performed the I/O in the subsequent
record (if SENDERSTATS is enabled and stats are
written to the logtrail). The file name in the trace record
is the object file of the application. The trace data has
the application process name and the name of the
library (if any) that it was running with.

NSK non-TMF

Oracle GoldenGate Trail Header Record
In addition to the transaction-related records that are in the Oracle GoldenGate trail, each trail
file contains a file header.

The file header is stored as a record at the beginning of a trail file preceding the data records.
The information that is stored in the trail header provides enough information about the records
to enable an Oracle GoldenGate process to determine whether the records are in a format that
the current version of Oracle GoldenGate supports.

The trail header fields are stored as tokens, where the token format remains the same across
all versions of Oracle GoldenGate. If a version of Oracle GoldenGate does not support any
given token, that token is ignored. Depracated tokens are assigned a default value to preserve
compatibility with previous versions of Oracle GoldenGate.

You can view the trail header with the FILEHEADER command in the Logdump utility. For more
information about the tokens in the file header, see Logdump Reference for Oracle
GoldenGate.

About Checkpoints
This appendix provides information about checkpoints. When working with Oracle GoldenGate,
you might need to refer to the checkpoints that are made by a process. Checkpoints save the
state of the process for recovery purposes. Extract and Replicat use checkpoints.

Chapter 13
About Checkpoints

13-30

About Extract Checkpoints
Extract checkpoint positions are composed of read checkpoints in the data source and write
checkpoints in the trail. The following is a sampling of checkpoint information displayed with
the INFO EXTRACT command with the SHOWCH option. In this case, the data source is an Oracle
RAC database cluster, so there is thread information included in the output. You can view past
checkpoints by specifying the number of them that you want to view after the SHOWCH argument.

Example 13-1 INFO EXTRACT with SHOWCH

EXTRACT JC108XT Last Started 2011-01-01 14:15 Status ABENDED
Checkpoint Lag 00:00:00 (updated 00:00:01 ago)
Log Read Checkpoint File /orarac/oradata/racq/redo01.log
 2011-01-01 14:16:45 Thread 1, Seqno 47, RBA 68748800
Log Read Checkpoint File /orarac/oradata/racq/redo04.log
 2011-01-01 14:16:19 Thread 2, Seqno 24, RBA 65657408

Current Checkpoint Detail:

Read Checkpoint #1

 Oracle RAC Redo Log
 Startup Checkpoint (starting position in data source):
 Thread #: 1
 Sequence #: 47
 RBA: 68548112
 Timestamp: 2011-01-01 13:37:51.000000
 SCN: 0.8439720
 Redo File: /orarac/oradata/racq/redo01.log

Recovery Checkpoint (position of oldest unprocessed transaction in data source):
 Thread #: 1
 Sequence #: 47
 RBA: 68748304
 Timestamp: 2011-01-01 14:16:45.000000
 SCN: 0.8440969
 Redo File: /orarac/oradata/racq/redo01.log

 Current Checkpoint (position of last record read in the data source):
 Thread #: 1
 Sequence #: 47
 RBA: 68748800
 Timestamp: 2011-01-01 14:16:45.000000
 SCN: 0.8440969
 Redo File: /orarac/oradata/racq/redo01.log

Read Checkpoint #2

 Oracle RAC Redo Log

 Startup Checkpoint(starting position in data source):
 Sequence #: 24
 RBA: 60607504
 Timestamp: 2011-01-01 13:37:50.000000
 SCN: 0.8439719
 Redo File: /orarac/oradata/racq/redo04.log

Recovery Checkpoint (position of oldest unprocessed transaction in data source):
 Thread #: 2
 Sequence #: 24

Chapter 13
About Checkpoints

13-31

 RBA: 65657408
 Timestamp: 2011-01-01 14:16:19.000000
 SCN: 0.8440613
 Redo File: /orarac/oradata/racq/redo04.log

 Current Checkpoint (position of last record read in the data source):
 Thread #: 2
 Sequence #: 24
 RBA: 65657408
 Timestamp: 2011-01-01 14:16:19.000000
 SCN: 0.8440613
 Redo File: /orarac/oradata/racq/redo04.log

Write Checkpoint #1

 GGS Log Trail

 Current Checkpoint (current write position):

 Sequence #: 2
 RBA: 2142224
 Timestamp: 2011-01-01 14:16:50.567638
 Extract Trail: ./dirdat/eh

 Header:
 Version = 2
 Record Source = A
 Type = 6
 # Input Checkpoints = 2
 # Output Checkpoints = 1

 File Information:
 Block Size = 2048
 Max Blocks = 100
 Record Length = 2048
 Current Offset = 0

 Configuration:
 Data Source = 3
 Transaction Integrity = 1
 Task Type = 0

 Status:
 Start Time = 2011-01-01 14:15:14
 Last Update Time = 2011-01-01 14:16:50
 Stop Status = A
 Last Result = 400

See Internal Checkpoint Information for information about the internal information that starts
with the Header entry in the SHOWCH output.

About Extract read checkpoints
Extract places read checkpoints in the data source.

Startup Checkpoint
The startup checkpoint is the first checkpoint that is made in the data source when the process
starts. This statistic is composed of the following:

Chapter 13
About Checkpoints

13-32

• Thread #: The number of the Extract thread that made the checkpoint, if Oracle
GoldenGate is running in an Oracle RAC environment. Otherwise, this statistic is not
displayed.

• Sequence #: The sequence number of the transaction log where the checkpoint was made.

• RBA: The relative byte address of the record at which the checkpoint was made.

• Timestamp: The timestamp of the record at which the checkpoint was made.

• SCN: The system change number of the record at which the checkpoint was made.

• Redo File: The path name of the transaction log containing the record where the
checkpoint was made.

Recovery Checkpoint
The recovery checkpoint is the position in the data source of the record containing the oldest
transaction not yet processed by Extract. The fields for this statistic are the same as those of
the other read checkpoint types.

Current Checkpoint
The current checkpoint is the position of the last record read by Extract in the data source. This
should match the Log Read Checkpoint statistic shown in the summary and in the basic INFO
EXTRACT command without options. The fields for this statistic are the same as those of the
other read checkpoint types.

About Extract Write Checkpoints
Extract places a write checkpoint, known as the current checkpoint, in the trail. The current
checkpoint is the position in the trail where Extract is currently writing. This statistic is
composed of the following:

• Sequence #: The sequence number of the trail file where the checkpoint was written.

• RBA: The relative byte address of the record in the trail file at which the checkpoint was
made.

• Timestamp: The timestamp of the record at which the checkpoint was made.

• Extract trail: The relative path name of the trail.

• Trail Type: Identifies the trail type. EXTTRAIL identifies the trail as a local trail, which
means that it is directly accessible by Oracle GoldenGate processes through the host
filesystem. RMTTRAIL identifies the trail as a remote trail, which means it is not directly
accessible by Oracle GoldenGate processes through the host filesystem. A trail stored on
a shared network device and accessible through NFS-like services are considered local
because they are accessible transparently through the host filesystem.

Replicat Checkpoints
Replicat makes checkpoints in the trail file to mark its last read position. To view process
checkpoints, use the INFO REPLICAT command with the SHOWCH option. The basic command
shows current checkpoints. To view a specific number of previous checkpoints, type the value
after the SHOWCH argument.

Chapter 13
About Checkpoints

13-33

Example 13-2 INFO REPLICAT, SHOWCH

REPLICAT JC108RP Last Started 2011-01-12 13:10 Status RUNNING
Checkpoint Lag 00:00:00 (updated 111:46:54 ago)
Log Read Checkpoint File ./dirdat/eh000000000
 First Record RBA 3702915
Current Checkpoint Detail:
 Read Checkpoint #1
 GGS Log Trail
 Startup Checkpoint(starting position in data source):
 Sequence #: 0
 RBA: 3702915
 Timestamp: Not Available
 Extract Trail: ./dirdat/eh
 Current Checkpoint (position of last record read in the data source):
 Sequence #: 0
 RBA: 3702915
 Timestamp: Not Available
 Extract Trail: ./dirdat/eh
 Header:
 Version = 2
 Record Source = A
 Type = 1
 # Input Checkpoints = 1
 # Output Checkpoints = 0
 File Information:
 Block Size = 2048
 Max Blocks = 100
 Record Length = 2048
 Current Offset = 0
 Configuration:
 Data Source = 0
 Transaction Integrity = -1
 Task Type = 0
 Status:
 Start Time = 2011-01-12 13:10:13
 Last Update Time = 2011-01-12 21:23:31
 Stop Status = A
 Last Result = 400

About Replicat Checkpoints
The following describes the detail of the Replicat checkpoints in the trail.

Startup Checkpoint
The startup checkpoint is the first checkpoint made in the trail when the process starts.
Comprising this statistic are:

• Sequence #: The sequence number of the trail file where the checkpoint was written.

• RBA: The relative byte address of the record at which the checkpoint was made.

• Timestamp: The timestamp of the record at which the checkpoint was made.

• Extract Trail: The relative path name of the trail.

Current Checkpoint
The current checkpoint is the position of the last record read by Replicat in the trail. This
should match the Log Read Checkpoint statistic shown in the summary and in the basic INFO

Chapter 13
About Checkpoints

13-34

REPLICAT command without options. The fields for this statistic are the same as those of the
Startup Checkpoint.

Internal Checkpoint Information
The INFO command with the SHOWCH option not only displays current checkpoint entries, but it
also displays metadata information about the record itself. This information is not documented
and is for use by the Oracle GoldenGate processes and by support personnel when resolving
a support case. The metadata is contained in the following entries in the SHOWCH output.

 Header:
 Version = 2
 Record Source = A
 Type = 1
 # Input Checkpoints = 1
 # Output Checkpoints = 0
 File Information:
 Block Size = 2048
 Max Blocks = 100
 Record Length = 2048
 Current Offset = 0
 Configuration:
 Data Source = 0
 Transaction Integrity = -1
 Task Type = 0
 Status:
 Start Time = 2011-01-12 13:10:13
 Last Update Time = 2011-01-12 21:23:31
 Stop Status = A
 Last Result = 400

Oracle GoldenGate Checkpoint Tables
When database checkpoints are being used, Oracle GoldenGate creates a checkpoint table
with a user-defined name in the database upon execution of the ADD CHECKPOINTTABLE
command, or a user can create the table by using the chkpt_db_create.sql script (where db is
an abbreviation of the type of database that the script supports).

There are two tables: the main checkpoint table and an auxiliary checkpoint table that is
created automatically. The auxiliary table, known as the transaction table, bears the name of
the primary checkpoint table appended with _lox. Each Replicat, or each thread of a
coordinated Replicat, uses one row in the checkpoint table to store its progress information.

At checkpoint time, there typically are some number of transactions (among the total n
transactions) that were applied, and the rest are still in process. For example, if Replicat is
processing a group of n transactions ranging from CSN1 to CSN3. CSN1 is the high watermark
and CSN3 is the low watermark. Any transaction with a CSN higher than the high watermark
has not been processed, and any transaction with a CSN lower than the low watermark has
already been processed. Completed transactions are stored in the LOG_CMPLT_XID column of
the checkpoint table. Any overflow of these transactions is stored in the transaction table
(auxiliary checkpoint table) in the LOG_CMPLT_XID column of that table.

Currently, Replicat (or each Replicat thread of a coordinated Replicat) applies transactions
serially (not in parallel); therefore, the high watermark (the LOG_CSN value in the table) is always
the same as the low watermark (the LOG_CMPLT_CSN value in the table), and there typically is
only one transaction ID in the LOG_CMPLT_XID column. The only exception is when there are
multiple transactions sharing the same CSN.

Chapter 13
About Checkpoints

13-35

Do not change the names or attributes of the columns in these tables. You can change table
storage attributes as needed.

Table 13-4 Checkpoint table definition

Column Description

GROUP_NAME (primary key) The name of a Replicat group using this table for checkpoints. There
can be multiple Replicat groups using the same table. This column is
part of the primary key.

GROUP_KEY (primary key) A unique identifier that, together with GROUPNAME, uniquely identifies a
checkpoint regardless of how many Replicat groups are writing to the
same table. This column is part of the primary key.

SEQNO The sequence number of the input trail that Replicat was reading at the
time of the checkpoint.

RBA The relative byte address that Replicat reached in the trail identified by
SEQNO. RBA + SEQNO provide an absolute position in the trail that
identifies the progress of Replicat at the time of checkpoint.

AUDIT_TS The timestamp of the commit of the source transaction.

CREATE_TS The date and time when the checkpoint table was created.

LAST_UPDATE_TS The date and time when the checkpoint table was last updated.

CURRENT_DIR The current Oracle GoldenGate home directory or folder.

LOG_BSN The

LOG_BSN

provides information needed to set Extract back in time to reprocess
transactions. Some filtering by Replicat is necessary because Extract
will likely re-generate a small amount of data that was already applied
by Replicat.

LOG_CSN Stores the high watermark, or the upper boundary, of the CSNs. Any
transaction with a CSN higher than this value has not been processed.

LOG_XID Not used. Retained for backward compatibility.

LOG_CMPLT_CSN Stores the low watermark, or the lower boundary, of the CSNs. Any
transaction with a lower CSN than this value has already been
processed.

LOG_CMPLT_XIDS Stores the transactions between the high and low watermarks that are
already applied.

VERSION The version of the checkpoint table format. Enables future
enhancements to be identified as version numbers of the table.

Table 13-5 Transaction table definition

Column Description

GROUP_NAME The name of a Replicat group using this table for checkpoints. There
can be multiple Replicat groups using the same table. This column is
part of the primary key of the transaction table.

GROUP_KEY A unique identifier that, together with GROUPNAME, uniquely identifies a
checkpoint regardless of how many Replicat groups are writing to the
same table. This column is part of the primary key of the transaction
table.

Chapter 13
About Checkpoints

13-36

Table 13-5 (Cont.) Transaction table definition

Column Description

LOG_CMPLT_CSN The foreign key that references the checkpoint table. This column is
part of the primary key of the transaction table.

LOG_CMPLT_XIDS_SEQ Creates unique rows in the event there are so many overflow
transactions that multiple rows are required to store them all. This
column is part of the primary key of the transaction table.

LOG_CMPLT_XIDS Stores the overflow of transactions between the high and low
watermarks that are already applied.

Supporting Changes to XML Schemas
Learn about supporting changes to an XML schema. Extract does not support the capture of
changes made to an XML schema.

Supporting RegisterSchema
RegisterSchema can be handled by registering the schema definition on both source and target
databases before any table is created that references the XML schema.

Supporting DeleteSchema
Issue DeleteSchema on the source database first.

Once Replicat is caught up with the changes made to the source database, issue the
DeleteSchema call on the target database.

Supporting CopyEvolve
The CopyEvolve procedure evolves, or changes, a schema and can modify tables by adding or
removing columns.

The CopyEvolve procedure can also be used to change whether or not XML documents are
valid. Handling CopyEvolve requires more coordination. Use the following procedure if you are
issuing CopyEvolve on the source database.

1. Quiesce changes to dependent tables on the source database.

2. Execute the CopyEvolve on the primary or source database.

3. Wait for Replicat to finish applying all of the data from those tables to the target database.

4. Stop Replicat.

5. Apply the CopyEvolve on the target database.

6. Restart Replicat.

Chapter 13
Supporting Changes to XML Schemas

13-37

Preparing DBFS for an Active-Active Configuration
This appendix contains steps to configure Oracle GoldenGate to function within an active-
active bidirectional or multi-directional environment where Oracle Database File System
(DBFS) is in use on both (or all) systems.

Supported Operations and Prerequisites
This topic lists what is supported by Oracle GoldenGate for DBFS.

Oracle GoldenGate for DBFS supports the following:

• Supported DDL (like TRUNCATE or ALTER) on DBFS objects except for CREATE statements on
the DBFS objects. CREATE on DBFS must be excluded from the configuration, as must any
schemas that will hold the created DBFS objects. The reason to exclude CREATES is that
the metadata for DBFS must be properly populated in the SYS dictionary tables (which
itself is excluded from Oracle GoldenGate capture by default).

• Capture and replication of DML on the tables that underlie the DBFS file system.

The procedures that follow assume that Oracle GoldenGate is configured properly to support
active-active configuration. This means that it must be:

• Installed according to the instructions in this guide.

• Configured according to the instructions in the Oracle GoldenGate Windows and UNIX
Administrator's Guide.

Applying the Required Patch
Apply the Oracle DBFS patch for bug-9651229 on both databases.

To determine if the patch is installed, run the following query:

connect / as sysdba
select procedure_name
from dba_procedures
where object_name = 'DBMS_DBFS_SFS_ADMIN'
and procedure_name = 'PARTITION_SEQUENCE';

The query should return a single row. Anything else indicates that the proper patched version
of DBFS is not available on your database.

Examples Used in these Procedures
The following procedures assume two systems and configure the environment so that DBFS
users on both systems see the same DBFS files, directories, and contents that are kept in
synchronization with Oracle GoldenGate.

It is possible to extend these concepts to support three or more peer systems.

Chapter 13
Preparing DBFS for an Active-Active Configuration

13-38

Partitioning the DBFS Sequence Numbers
DBFS uses an internal sequence-number generator to construct unique names and unique
IDs.

These steps partition the sequences into distinct ranges to ensure that there are no conflicts
across the databases. After this is done, further DBFS operations (both creation of new file
systems and subsequent file system operations) can be performed without conflicts of names,
primary keys, or IDs during DML propagation.

1. Connect to each database as sysdba.

Issue the following query on each database.

select last_number
from dba_sequences
where sequence_owner = 'SYS'
and sequence_name = 'DBFS_SFS_$FSSEQ'

2. From this query, choose the maximum value of LAST_NUMBER across both systems, or pick
a high value that is significantly larger than the current value of the sequence on either
system.

3. Substitute this value ("maxval" is used here as a placeholder) in both of the following
procedures. These procedures logically index each system as myid=0 and myid=1.

Node1

declare
begin
dbms_dbfs_sfs_admin.partition_sequence(nodes => 2, myid => 0, newstart => :maxval);
commit;
end;
/

Node 2

declare
begin
dbms_dbfs_sfs_admin.partition_sequence(nodes => 2, myid => 1, newstart => :maxval);
commit;
end;
/

Note:

Notice the difference in the value specified for the myid parameter. These are the
different index values.

For a multi-way configuration among three or more databases, you could make the
following alterations:

• Adjust the maximum value that is set for maxval upward appropriately, and use that
value on all nodes.

• Vary the value of myid in the procedure from 0 for the first node, 1 for the second node,
2 for the third one, and so on.

Chapter 13
Preparing DBFS for an Active-Active Configuration

13-39

4. (Recommended) After (and only after) the DBFS sequence generator is partitioned, create
a new DBFS file system on each system, and use only these file systems for DML
propagation with Oracle GoldenGate.

Note:

If you must retain old file systems, open a service request with Oracle Support.

Configuring the DBFS file system
To replicate DBFS file system operations, use a configuration that is similar to the standard bi-
directional configuration for DML.

Some guidelines to follow while configuring Oracle GoldenGate for DBFS are:

• Use matched pairs of identically structured tables.

• Allow each database to have write privileges to opposite tables in a set, and set the other
one in the set to read-only. For example:

– Node1 writes to local table t1 and these changes are replicated to t1 on Node2.

– Node2 writes to local table t2 and these changes are replicated to t2 on Node1.

– On Node1, t2 is read-only. On Node2, t1 is read-only.

DBFS file systems make this kind of table pairing simple because:

• The tables that underlie the DBFS file systems have the same structure.

• These tables are modified by simple, conventional DML during higher-level file system
operations.

• The DBFS ContentAPI provides a way of unifying the namespace of the individual DBFS
stores by means of mount points that can be qualified as read-write or read-only.

The following steps create two DBFS file systems (in this case named FS1 and FS2) and set
them to be read-write or read, as appropriate.

1. Run the following procedure to create the two file systems. (Substitute your store names
for FS1 and FS2.)

2. Run the following procedure to give each file system the appropriate access rights.
(Substitute your store names for FS1 and FS2.)

In this example, note that on Node 1, store FS1 is read-write and store FS2 is read-only,
while on Node 2 the converse is true: store FS1 is read-only and store FS2 is read-write.

Note also that the read-write store is mounted as local and the read-only store is mounted
as remote. This provides users on each system with an identical namespace and identical
semantics for read and write operations. Local path names can be modified, but remote
path names cannot.

Example 13-3

declare
dbms_dbfs_sfs.createfile system('FS1');
dbms_dbfs_sfs.createfile system('FS2');

dbms_dbfs_content.registerStore('FS1',
'posix', 'DBMS_DBFS_SFS');

Chapter 13
Preparing DBFS for an Active-Active Configuration

13-40

dbms_dbfs_content.registerStore('FS2',
'posix', 'DBMS_DBFS_SFS');
commit;
end;
/

Example 13-4 Node 1

declare
dbms_dbfs_content.mountStore('FS1', 'local');
dbms_dbfs_content.mountStore('FS2', 'remote',
read_only => true);
commit;
end;
/

Example 13-5 Node 2

declare
dbms_dbfs_content.mountStore('FS1', 'remote',
read_only => true);
dbms_dbfs_content.mountStore('FS2', 'local');
commit;
end;
/

Mapping Local and Remote Peers Correctly
The names of the tables that underlie the DBFS file systems are generated internally and
dynamically.

Continuing with the preceding example, there are:

• Two nodes (Node 1 and Node 2 in the example).

• Four stores: two on each node (FS1 and FS2 in the example).

• Eight underlying tables: two for each store (a table and a ptable). These tables must be
identified, specified in Extract TABLE statements, and mapped in Replicat MAP statements.

1. To identify the table names that back each file system, issue the following query.
(Substitute your store names for FS1 and FS2.)

The output looks like the following examples.

2. Identify the tables that are locally read-write to Extract by creating the following TABLE
statements in the Extract parameter files. (Substitute your pluggable database names,
schema names, and table names as applicable.)

3. Link changes on each remote file system to the corresponding local file system by creating
the following MAP statements in the Replicat parameter files. (Substitute your pluggable
database, schema and table names.)

This mapping captures and replicates local read-write source tables to remote read-only
peer tables:

• file system changes made to FS1 on Node 1 propagate to FS1 on Node 2.

• file system changes made to FS2 on Node 2 propagate to FS2 on Node1.

Changes to the file systems can be made through the DBFS ContentAPI (package
DBMS_DBFS_CONTENT) of the database or through dbfs_client mounts and conventional file
systems tools.

Chapter 13
Preparing DBFS for an Active-Active Configuration

13-41

All changes are propagated in both directions.

• A user at the virtual root of the DBFS namespace on each system sees identical
content.

• For mutable operations, users use the /local sub-directory on each system.

• For read operations, users can use either of the /local or /remote sub-directories,
depending on whether they want to see local or remote content.

Example 13-6

select fs.store_name, tb.table_name, tb.ptable_name
from table(dbms_dbfs_sfs.listTables) tb,
table(dbms_dbfs_sfs.listfile systems) fs
where fs.schema_name = tb.schema_name
and fs.table_name = tb.table_name
and fs.store_name in ('FS1', 'FS2')
;

Example 13-7 Example output: Node 1 (Your Table Names Will Be Different.)

STORE NAME TABLE_NAME PTABLE_NAME
------------- ------------- -------------
FS1 SFS$_FST_100 SFS$_FSTP_100
FS2 SFS$_FST_118 SFS$_FSTP_118

Example 13-8 Example output: Node 2 (Your Table Names Will Be Different.)

STORE NAME TABLE_NAME PTABLE_NAME
------------- ------------- -------------
FS1 SFS$_FST_101 SFS$_FSTP_101
FS2 SFS$_FST_119 SFS$_FSTP_119

Example 13-9 Node1

TABLE [container.]schema.SFS$_FST_100
TABLE [container.]schema.SFS$_FSTP_100;

Example 13-10 Node2

TABLE [container.]schema.SFS$_FST_119
TABLE [container.]schema.SFS$_FSTP_119;

Example 13-11 Node1

MAP [container.]schema.SFS$_FST_119, TARGET [container.]schema.SFS$_FST_118;
MAP [container.]schema.SFS$_FSTP_119, TARGET [container.]schema.SFS$_FSTP_118

Example 13-12 Node2

MAP [container.]schema.SFS$_FST_100, TARGET [container.]schema.SFS$_FST_101;MAP
[container.]schema.SFS$_FSTP_100, TARGET [container.]schema.SFS$_FSTP_101;

Chapter 13
Preparing DBFS for an Active-Active Configuration

13-42

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Information
	Conventions

	1 Concepts
	Oracle GoldenGate
	When Do You Use Oracle GoldenGate?

	Topologies for Oracle GoldenGate
	What is Oracle GoldenGate for Non-Oracle Databases?
	Oracle GoldenGate Product Family
	Getting Started with Oracle GoldenGate
	Oracle GoldenGate Supported Processing Methods and Databases
	Components of Oracle GoldenGate Classic Architecture
	What is a Manager?
	What is a Data Pump?
	What is a Collector?
	What is GGSCI?
	Oracle GoldenGate Classic Architecture Programs and Utilities
	Oracle GoldenGate Subdirectories
	Other Oracle GoldenGate Files

	Overview of Oracle GoldenGate Processes
	What is an Extract?
	What is a Trail?
	What is a Replicat?

	Oracle GoldenGate Processes and Key Terms
	Oracle GoldenGate Key Terms and Concepts
	About Process Types
	About Commit Sequence Number (CSN)
	Overview of Groups

	2 Install and Patch
	Obtaining the Oracle GoldenGate Distribution
	Verify Certification and System Requirements
	Operating System Requirements
	Memory Requirements
	Disk Requirements
	Network
	Operating System Privileges
	Other Operating System Requirements
	Security and Other Considerations
	Windows Console Character Sets

	Prerequisites for Installing Oracle GoldenGate for DB2 z/OS
	System Services
	Memory Requirements
	Disk Requirements for DB2 z/OS
	Operating System Privileges for DB2 z/OS
	Choosing an Installation Operating System

	Prerequisites for Installing Oracle GoldenGate for DB2 for i
	General Requirements
	Prerequisite Setup the DB2 for i System

	Prerequisites for Installing Oracle GoldenGate for DB2 LUW
	Choosing an Installation System for DB2 LUW
	Choosing and Configuring a System for Remote Capture or Delivery

	Prerequisites for Installing Oracle GoldenGate for MySQL
	Prerequisites for Installing Oracle GoldenGate for Oracle Database
	Specifying Oracle Variables on UNIX and Linux Systems
	Specifying Oracle Variables on Windows Systems

	Prerequisites for Installing Oracle GoldenGate for PostgreSQL
	Prerequisites for Installing Oracle GoldenGate for PostgreSQL

	Prerequisites for Installing Oracle GoldenGate for SQL Server
	Prerequisites for Installing Oracle GoldenGate for SQL Server

	Prerequisites for Installing Oracle GoldenGate for Sybase
	Setting Library Paths for Dynamic Builds on UNIX
	Operating System Privileges

	Prerequisites for Oracle GoldenGate for Teradata
	Operating System Privileges for Teradata

	Prerequisites for Installing Oracle GoldenGate for Oracle TimesTen
	Operating System Privileges
	System Requirements and Preinstallation Instructions
	Supported Database Architectures
	Supported Platforms and Database Versions
	Oracle TimesTen Software Installation
	Client-only Instance Creation

	Installing Oracle GoldenGate Classic Architecture
	Installing Oracle GoldenGate Classic for Oracle Database
	Performing an Interactive Installation with OUI
	Performing a Silent Installation with OUI

	Installing Oracle GoldenGate for Non-Oracle Databases
	Installing for all Platforms
	Specifying a Custom Manager Name for Windows
	Installing Manager as a Windows Service

	Patching for Classic Architecture
	Downloading Patches for Oracle GoldenGate
	Patching Oracle GoldenGate Classic Architechture for Oracle Database Using OPatch
	Patching Oracle GoldenGate Classic Architecture for Non-Oracle Databases
	Patching Oracle GoldenGate for SQL Server - Extract Requirements
	Patching Oracle GoldenGate MySQL 5.7 with DDL Replication Enabled

	Uninstalling the Patch for Oracle and Non-Oracle Databases Using OPatch

	Uninstalling Oracle GoldenGate Classic Architecture for Oracle Database
	Stopping Processes
	Removing the DDL Environment
	Removing Database Objects
	Uninstalling Oracle GoldenGate Using Oracle Universal Installer
	Uninstalling Oracle GoldenGate Manually
	Manually Removing Oracle GoldenGate Windows Components
	Manually Removing the Oracle GoldenGate Files

	Uninstalling Oracle GoldenGate Classic Architecture for Non-Oracle Databases
	Stopping Processes
	Removing Oracle GoldenGate Database Objects
	Uninstalling Oracle GoldenGate from a Source DB2 for i System
	Uninstalling Oracle GoldenGate from a Linux System
	Uninstalling Oracle GoldenGate from a Windows System
	Removing Oracle GoldenGate from a Windows Cluster
	Removing Oracle GoldenGate from a Remote Windows System

	Removing Oracle GoldenGate Windows Components

	3 Prepare
	Prepare Your Database for Oracle GoldenGate Classic Architecture
	Db2 LUW
	Database User for Oracle GoldenGate Processes for DB2 LUW
	Database Configuration for DB2 LUW
	Setting the Session Character Set
	Configuring the Transaction Logs for Oracle GoldenGate
	Retaining the Transaction Logs
	Specifying the Archive Path

	Preparing Tables for Processing
	Triggers and Cascade Constraints Considerations
	Ensuring Row Uniqueness for Tables
	How Oracle GoldenGate Determines the Kind of Row Identifier to Use
	Using KEYCOLS to Specify a Custom Key

	Preventing Key Changes
	Enabling Change Capture
	Maintaining Materialized Query Tables
	Creating a Temporal Table
	Support for Temporal Tables
	Replicating with Temporal Tables
	Converting
	Creating a Checkpoint Table
	Configuring the Replicat Parameter File

	Understanding What's Supported for DB2 LUW
	Supported DB2 LUW Data Types
	Non-Supported DB2 LUW Data Types
	Supported Objects and Operations for DB2 LUW
	Non-Supported Objects and Operations for DB2 LUW
	System Schemas
	Supported Object Names

	Db2 for i
	Preparing the System for Oracle GoldenGate
	Preparing the Journals for Data Capture by Extract
	Allocating Journals to an Extract Group
	Setting Journal Parameters
	Deleting Old Journal Receivers

	Specifying Object Names
	Adjusting the System Clock

	Configuring Database Connections
	Configuring ODBC on Linux
	Configuring ODBC on Windows

	Preparing Tables for Processing
	Ensuring Row Uniqueness for Tables
	How Oracle GoldenGate Determines the Kind of Row Identifier to Use
	Using KEYCOLS to Specify a Custom Key

	Preventing Key Changes
	Disabling Constraints on the Target
	Enabling Change Capture
	Specifying a Default Journal
	Removing a Default Journal Specification

	Maintaining Materialized Query Tables
	Specifying the Oracle GoldenGate Library

	Configuring Oracle GoldenGate for DB2 for i
	Creating a GLOBALS File
	Creating a Data Definitions File
	Encrypting the Extract and Replicat Passwords
	Configuring Extract for Change Capture from DB2 for i
	Configuring the Primary Extract
	Configuring the Data Pump

	Configuring Replicat for Change Delivery to DB2 for i
	Creating a Checkpoint Table
	Configuring Replicat

	Next Steps in the Deployment
	When to Start Replicating Transactional Changes
	Starting Extract During Instantiation
	Changing the Position of Extract to a Later Time

	Testing Your Configuration

	Using Remote Journal
	Preparing to Use Remote Journals
	Adding a Remote Journal
	What Happens During Add Remote Journal Processing?
	Guidelines For Adding a Remote Journal

	Understanding What's Supported for DB2 for i
	Supported DB2 for i Data Types
	Non-Supported DB2 for i Data Types
	Supported Objects and Operations for DB2 for i
	Non-Supported Objects and Operations for DB2 for i
	Oracle GoldenGate Parameters Not Supported for DB2 for i
	Supported Object Naming Conventions
	System Schemas for DB2 for i
	Supported Character Sets

	Db2 z/OS
	System Services
	Database User for Oracle GoldenGate Processes
	Ensuring ODBC Connection Compatibility

	Database Configuration
	Monitoring Processes
	Interpreting Statistics for Update Operations

	Supporting Globalization Functions
	Replicating From a Source that Contains Both ASCII and EBCDIC
	Specifying Multi-Byte Characters in Object Names

	Installing Extract Components on Db2 z/OS

	Configure a Database Connection
	Database Configuration for DB2 z/OS
	Setting Initialization Parameters
	Specifying the Path to the Initialization File
	Specifying the Number of Connection Threads

	Preparing Tables for Processing
	Disabling Triggers and Cascade Constraints
	Ensuring Row Uniqueness for Tables
	How Oracle GoldenGate Determines the Kind of Row Identifier to Use
	Using KEYCOLS to Specify a Custom Key

	Handling ROWID Columns

	Preparing the DB2 for z/OS Transaction Logs for Oracle GoldenGate
	Preparing the DB2 z/OS Transaction Logs for Oracle GoldenGate
	Enabling Change Capture
	Enabling Access to Log Records
	Sizing and Retaining the Logs
	Using Archive Logs on Tape
	Controlling Log Flushes

	Understanding What's Supported for DB2 for z/OS
	Supported DB2 for z/OS Data Types
	Non-Supported DB2 for z/OS Data Types
	Supported Objects and Operations for DB2 z/OS
	Non-Supported Objects and Operations for DB2 for z/OS

	MySQL
	Supported Databases
	Limitations of Support

	Database Storage Engine
	Database User for Oracle GoldenGate Processes for MySQL
	Database Configuration
	Ensuring Data Availability
	Setting Logging Parameters
	Database Connection
	Setting the Session Character Set
	Changing the Log-Bin Location
	Configuring MySQL for Remote Capture
	Capturing using a MySQL Replication Slave
	Database Character Set

	Prepare Database Connection
	Configuring a Two-way SSL Connection in MySQL Capture and Delivery

	Preparing Tables for Processing
	Ensuring Row Uniqueness for Tables
	How Oracle GoldenGate Determines the Kind of Row Identifier to Use
	Tables with a Primary Key Derived from a Unique Index
	How to Specify Your Own Key for Oracle GoldenGate to Use

	Limiting Row Changes in Tables That Do Not Have a Key
	Triggers and Cascade Constraints Considerations

	Understanding What's Supported for MySQL
	Database Character Set
	Oracle GoldenGate for MySQL Supported Data Types
	Limitations and Clarifications

	Non-Supported MySQL Data Types
	Supported Objects and Operations for MySQL
	Non-Supported Objects and Operations
	System Schemas

	Oracle
	Preparing the Database for Oracle GoldenGate
	Database Requirements
	Configuring Connections for Extract and Replicat Processes
	Configuring Oracle GoldenGate in a Multitenant Container Database
	Using the Root Container Extract from PDB
	Applying to Pluggable Databases
	Excluding Objects from the Configuration
	Requirements for Configuring Container Databases for Oracle GoldenGate

	Configuring Logging Properties
	Enabling Subset Database Replication Logging
	Enabling Schema-level Supplemental Logging
	Enabling Table-level Supplemental Logging

	Enabling Oracle GoldenGate in the Database
	Setting Flashback Query
	Managing Server Resources
	Ensuring Row Uniqueness in Source and Target Tables

	Establishing Oracle GoldenGate Credentials
	Assigning Credentials to Oracle GoldenGate
	Oracle GoldenGate Users (Database)
	Grant User Privileges for Oracle Database for Oracle GoldenGate Classic Architecture
	Oracle Database Privileges
	About the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE Package

	Securing the Oracle GoldenGate Credentials

	Additional Oracle GoldenGate Configuration for Your Database
	Installing Support for Oracle Sequences
	Handling Special Data Types
	Multibyte Character Types
	Oracle Spatial Objects
	TIMESTAMP
	Large Objects (LOB)
	XML
	User Defined Types

	Handling Other Database Properties
	Controlling the Checkpoint Retention
	Excluding Replicat Transactions
	Advanced Configuration Options for Oracle GoldenGate

	Supported Oracle Data Types, Objects, and Operations for DDL and DML
	Details of Support for Oracle Data Types and Objects
	Non-Supported Oracle Data Types

	Details of Support for Objects and Operations in Oracle DML
	Multitenant Container Database
	Tables, Views, and Materialized Views
	Limitations of Support for Regular Tables
	Limitations of Support for Views
	Limitations of Support for Materialized Views
	Limitations of Support for Clustered Tables

	Sequences and Identity Columns
	Limitations of Support for Sequences

	Non-supported Objects and Operations in Oracle DML

	Details of Support for Objects and Operations in Oracle DDL
	Supported Objects and Operations in Oracle DDL
	Non-supported Objects and Operations in Oracle DDL
	Excluded Objects
	Other Non-supported DDL

	Integrating Oracle GoldenGate Microservices Architecture into a Cluster
	General Requirements in a Cluster
	Adding Oracle GoldenGate as a Windows Cluster Resource

	PostgreSQL
	Preparing the Database for Oracle GoldenGate
	Database Configuration
	Database Settings for PostgreSQL Cloud Databases

	Establishing Oracle GoldenGate Credentials
	Assigning Credentials to Oracle GoldenGate
	Securing the Oracle GoldenGate Credentials

	Prepare a Database Connection
	Configure a Database Connection in Linux
	Configuring SSL Support for PostgreSQL

	Preparing Tables for Processing
	Disabling Triggers and Cascade Constraints on the Target
	Ensuring Row Uniqueness for Tables
	Enabling Table-Level Supplemental Logging

	Configuring Replicat
	About Replicat
	Replicat Deployment Options

	Prerequisites for Creating a Replicat
	Creating a Checkpoint Table

	Creating a Replicat

	Additional Considerations
	Adding a Heartbeat Table
	Running the Heartbeat Update and Purge Function

	Enabling Bi-Directional Loop Detection
	Deleting an Extract
	Removing Table-level Supplemental Logging

	Understanding What's Supported for PostgreSQL
	Supported Databases
	Details of Supported PostgreSQL Data Types
	Supported PostgreSQL Data Types
	Non-Supported PostgreSQL Data Types

	Supported Objects and Operations for ProtgreSQL
	Tables and Views
	Sequences and Identity Columns

	SQL Server
	SQL Server Supported Versions
	Globalization Support
	Requirements for Installing Oracle GoldenGate for SQL Server
	Instance Requirements
	Database Requirements
	Table Requirements

	Prepare Database Users and Privileges
	Oracle GoldenGate for SQL Server
	Amazon RDS User Permissions and Requirements
	Azure SQL Database

	Database Connectivity
	Configuring an Extract Database Connection
	Configuring a Replicat Database Connection
	Connecting with ODBC or Default OLE DB
	Connectiong with the OLE DB USEREPLICATIONUSER Option

	Creating a Database Connection on Linux
	Creating a Database Connection on Windows

	Preparing Tables for Processing
	Disabling Triggers and Cascade Constraints on the Target
	Ensuring Row Uniqueness in Source and Target Table
	How Oracle GoldenGate Determines the Kind of Row Identifier to Use
	Using KEYCOLS to Specify a Custom Key

	Improving IDENTITY Replication with Array Processing

	Preparing the Database for Oracle GoldenGate — CDC Capture
	Enabling CDC Supplemental Logging
	Purging CDC Staging Data
	Enabling Bi-Directional Loop Detection

	Requirements Summary for Capture and Delivery of Databases in an Always On Availability Group
	Database Connection
	Supplemental Logging
	Operational Requirements and Considerations

	CDC Capture Method Operational Considerations
	Tuning SQL Server Change Data Capture
	Oracle GoldenGate CDC Object Versioning
	Valid and Invalid Extract Parameters for SQL Server Change Data Capture
	Details of the Oracle GoldenGate CDC Cleanup Process
	Changing from Classic Extract to a CDC Extract
	Restoring a Source Database Keeping CDC Data

	Understanding What's Supported for SQL Server
	Supported Objects and Operations for SQL Server
	Non-Supported Objects and Operations for SQL Server
	Requirements for Table Level DDL Changes

	Supported SQL Server Data Types
	System Schemas for SQL Server
	Non-Supported SQL Server Data Types and Features

	Sybase
	Preparing the System for Oracle GoldenGate
	Console Character Set
	Database Configuration
	Database User for Oracle GoldenGate Processes
	Preparing Tables for Processing
	Disabling Triggers and Cascade Constraints
	Assigning Row Identifiers
	Limiting Row Changes in Tables that do not Have a Key
	Replicating Encrypted Data

	Preparing the Transaction Logs
	Initializing the Secondary Truncation Point
	Sizing and Retaining the Logs
	Enabling Transaction Logging

	Understanding What's Supported for Sybase
	Supported Sybase Data Types
	Integers
	Floating-Point Numbers
	Character Data
	Dates and Timestamps
	Large Objects
	Money Types
	IDENTITY Type
	text, image, and unitext Data Types
	User-Defined Data Types

	Non-Supported Sybase Data Types
	Supported Operations and Objects for Sybase
	Non-Supported Operations and Objects for Sybase

	Teradata
	Supported Platforms for a Replication Server
	Preparing the System for Oracle GoldenGate
	Preparing Tables for Processing
	Disabling Triggers and Cascade Constraints
	Ensuring Row Uniqueness for Tables
	How Oracle GoldenGate Determines the Kind of Row Identifier to Use
	Using KEYCOLS to Specify a Custom Key

	ODBC Configuration for Teradata
	Database User for Oracle GoldenGate Processes for Teradata

	Configuring Oracle GoldenGate
	Creating a Checkpoint Table
	Configuring Oracle GoldenGate Replicat
	Additional Oracle GoldenGate Configuration Guidelines
	Handling Massive Update and Delete Operations
	Preventing Multiple Connections
	Performing Initial Synchronization

	Common Maintenance Tasks
	Modifying Columns of a Table

	Understanding What's Supported for Teradata
	Supported Teradata Data Types
	Limitations of Support for Numeric Data Types
	Limitations of Support for Single-byte Character Data Types
	Conditions and Limitations of Support for Multi-byte Character Data
	Limitations of Support for Binary Data Types
	Limitations of Support for Large Object Data Types
	Limitations of Support for Date Data Types
	Limitations of Support for IDENTITY Data Types

	Supported Objects and Operations for Teradata
	Non-Supported Operations for Teradata

	TimesTen
	Database Requirements
	Database User for Oracle GoldenGate Processes for Teradata

	Preparing the System for Oracle GoldenGate
	Setting the Environment Variables
	Configuring the TimesTen ODBC Connectivity
	Configuring ODBC on Linux

	Preparing Tables for Processing
	Disabling Triggers and Cascade Constraints
	Ensuring Row Uniqueness for Tables

	Configuring Oracle GoldenGate
	Configuring Oracle GoldenGate Replicat
	Additional Oracle GoldenGate Configuration Guidelines

	Understanding What's Supported for Oracle TimesTen
	Supported Objects and Operations for TimesTen
	Non-Supported TimesTen Data Types and Features
	Supported TimesTen Data Types
	Limitations and Non-supported Items for Oracle TimesTen

	System Requirements and Preinstallation Instructions
	Supported Database Architectures
	Supported Platforms and Database Versions
	Oracle TimesTen Software Installation
	Client-only Instance Creation
	Operating System Privileges

	Prepare Oracle GoldenGate Classic Architecture for Data Replication
	Oracle GoldenGate Security Privileges
	Oracle GoldenGate Security Privileges
	Oracle GoldenGate Security Privileges on a DB2 for i System

	Initializing the Transaction Logs
	Details of Support for Data Types, Objects and Operations for Classic Extract
	Details of Support for Objects and Operations in Oracle DDL
	Limitations of Support for Index-Organized Tables
	Limitations of Support for Clustered Tables
	Non-supported Objects and Operations in Oracle DDL
	Excluded Objects
	Other Non-supported DDL

	Details of Support for Objects and Operations in Oracle DML
	Non-supported Objects and Operations in Oracle DML (Classic)

	Creating a Checkpoint Table
	Options for Creating the Checkpoint Table
	Adjusting for Coordinated Replicat in Oracle RAC

	Specifying the DB2 LUW Database in Parameter Files

	4 Manage
	Overview of the Manager Process
	Configure Network Communications
	Assigning Manager a Port for Local Communication
	Maintaining Ports for Remote Connections through Firewalls
	Choosing an Internet Protocol

	Creating the Manager Parameter File
	Using the Recommended Manager Parameters

	Controlling Manager
	Starting Manager
	Starting Manager from the Command Shell of the Operating System
	Starting Manager from GGSCI

	Stopping Manager
	Stopping Manager on UNIX and Linux
	Stopping Manager on Windows

	5 Extract
	About Extract
	About Integrated Extract
	About Classic Extract

	Deciding Which Extract Method to Use
	Switching to a Different Process Mode
	Configuring Extract
	Add the Primary Extract
	Add the Data Pump Extract Group
	Registering Extract with the Mining Database
	Creating an Online Extract Group

	Configuring the Data Pump Extract
	Configuring a Downstream Mining Database
	Evaluating Capture Options for a Downstream Deployment
	Preparing the Source Database for Downstream Deployment
	Creating the Source User Account
	Configuring Redo Transport from Source to Downstream Mining Database

	Preparing the Downstream Mining Database
	Creating the Downstream Mining User Account
	Configuring the Mining Database to Archive Local Redo Log Files
	Preparing a Downstream Mining Database for Real-time Capture
	Create the Standby Redo Log Files
	Configure the Database to Archive Standby Redo Log Files Locally

	Example Downstream Mining Configuration
	Example 1: Capturing from One Source Database in Real-time Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Archive Redo Received in Standby Redo Logs from the Source Database
	Prepare the Source Database to Send Redo to the Mining Database
	Set up Extract (ext1) on DBMSCAP

	Example 2: Capturing from Multiple Sources in Archive-log-only Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Archive Redo from the Source Database
	Prepare the First Source Database to Send Redo to the Mining Database
	Prepare the Second Source Database to Send Redo to the Mining Database
	Set up Extracts at Downstream Mining Database

	Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Accept Redo from the Source Databases
	Prepare the First Source Database to Send Redo to the Mining Database
	Prepare the Second Source Database to Send Redo to the Mining Database
	Prepare the Third Source Database to Send Redo to the Mining Database
	Set up Extracts at Downstream Mining Database
	Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1
	Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2
	Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs Sent by DBMS3

	Positioning Extract to a Specific Start Point for MySQL
	Additional Parameter Options for Extract
	Additional Configuration Steps for Using Classic Capture
	Configuring Oracle TDE Data in Classic Capture Mode
	Overview of TDE Support in Classic Capture Mode
	Requirements for Capturing TDE in Classic Capture Mode
	Configuring Classic Capture for TDE Support
	Agree on a Shared Secret that Meets Oracle Standards
	Oracle DBA Tasks
	Oracle Security Officer Tasks
	Oracle GoldenGate Administrator Tasks

	Recommendations for Maintaining Data Security after Decryption
	Performing DDL while TDE Capture is Active
	Rekeying after a Database Upgrade
	Updating the Oracle Shared Secret in the Parameter File

	Using Classic Capture in an Oracle RAC Environment
	Mining ASM-stored Logs in Classic Capture Mode
	Accessing the Transaction Logs in ASM
	Reading Transaction Logs Through the RDBMS
	ASM Direct Connection
	Ensuring ASM Connectivity

	Ensuring Data Availability for Classic Capture
	Log Retention Requirements per Extract Recovery Mode
	Log Retention Options
	All Other Oracle Versions

	Determining How Much Data to Retain
	Purging Log Archives
	Specifying the Archive Location
	Mounting Logs that are Stored on Other Platforms

	Configuring Classic Capture in Archived Log Only Mode
	Limitations and Requirements for Using ALO Mode
	Configuring Extract for ALO mode

	Configuring Classic Capture in Oracle Active Data Guard Only Mode
	Limitations and Requirements for Using ADG Mode
	Configuring Classic Extract for ADG Mode
	Migrating Classic Extract To and From an ADG Database
	Handling Role Changes In an ADG Configuration

	Avoiding Log-read Bottlenecks in Classic Capture

	6 Replicat
	About Replicat
	Deciding Which Replicat Method to Use
	About Parallel Replicat
	Parallel Replication Architecture
	Basic Parameters for Parallel Replicat

	About Non-integrated Replicat
	About Integrated Replicat
	Benefits of Integrated Replicat
	Integrated Replicat Requirements

	About Classic Replicat Mode
	About Coordinated Replicat Mode
	About Barrier Transactions
	How Barrier Transactions are Processed

	Using Different Replicat Modes
	Add the Replicat Group
	Creating a Parallel Replicat
	Configuring Oracle GoldenGate Replicat
	Prerequisites for Configuring Replicat
	What to Expect from these Instructions
	About Checkpoint Table
	Adding the Checkpoint Table to the Target Database
	Include the Checkpoint Table in the GLOBALS File
	Disabling Default Asynchronous COMMIT to Checkpoint Table

	Configuring Replicat
	Additional Parameter Options for Integrated Replicat
	Next Steps After Configuring Replicat
	Additional Configuration Steps For Using Nonintegrated Replicat
	Disabling Triggers and Referential Cascade Constraints on Target Tables

	Understanding Replicat Processing in Relation to Parameter Changes
	Controlling Extract and Replicat
	Deleting Extract and Replicat
	About the Global Watermark

	7 Instantiate
	Instantiating Oracle GoldenGate Using Initial Load
	Prerequisites for Initial Load
	Disable DDL Processing
	Prepare the Target Tables
	Configure the Manager Process
	Create a Data-definitions File
	Create Change-synchronization Groups
	Sharing Parameters between Process Groups
	Instantiation Requirements for DB2 LUW

	Improving the Performance of an Initial Load
	Loading Data with Oracle Data Pump
	Using Automatic Per Table Instantiation
	Using Oracle Data Pump Table Instantiation

	Loading Data from File to Replicat
	Loading Data with an Oracle GoldenGate Direct Load
	Loading Data with a Direct Bulk Load to SQL*Loader

	Precise Instantiation for MySQL to MySQL Replication Using the Dump Utility
	Precise Instantiation for Oracle GoldenGate Extract for MySQL

	Backing up the Oracle GoldenGate Environment
	Monitoring and Controlling Processing After the Instantiation
	Verifying Synchronization

	8 Administer
	Data Management
	Details of Support for Data Types, Objects and Operations for Classic Extract
	Details of Support for Objects and Operations in Oracle DDL
	Limitations of Support for Index-Organized Tables
	Limitations of Support for Clustered Tables
	Non-supported Objects and Operations in Oracle DML (Classic)

	Details of Support for Objects and Operations in Oracle DML

	Creating a Data Definitions File
	Using DDL Replication
	Plug-in Based DDL Configuration Prerequisites and Considerations
	Installing DDL Replication
	Using the Metadata Server
	Using DDL Filtering for Replication
	Troubleshooting Plug-in Based DDL Replication
	Uninstalling Plug-In Based DDL Replication

	Oracle: DDL Replication
	Managing the DDL Replication Environment
	Disabling DDL Processing Temporarily
	Enabling and Disabling the DDL Trigger
	Maintaining the DDL Marker Table
	Deleting the DDL Marker Table
	Maintaining the DDL History Table
	Deleting the DDL History Table
	Purging the DDL Trace File
	Applying Database Patches and Upgrades when DDL Support is Enabled
	Apply Oracle GoldenGate Patches and Upgrades when DDL support is Enabled
	Restoring an Existing DDL Environment to a Clean State
	Removing the DDL Objects from the System

	Configuring DDL Support
	Prerequisites for Configuring DDL
	Support for DDL Capture with Extract
	Support for DDL Capture in Classic Capture Mode

	Configuration Guidelines for DDL Support
	Database Privileges
	Parallel Processing
	Object Names
	Data Definitions
	Truncates
	Initial Synchronization
	Data Continuity After CREATE or RENAME

	Overview of DDL Synchronization
	Limitations of Oracle GoldenGate DDL Support
	DDL Statement Length
	Supported Topologies
	Filtering, Mapping, and Transformation
	Renames
	Interactions Between Fetches from a Table and DDL
	Comments in SQL
	Compilation Errors
	Interval Partitioning
	DML or DDL Performed Inside a DDL Trigger
	LogMiner Data Dictionary Maintenance

	Understanding DDL Scopes
	Mapped Scope
	Unmapped Scope
	Other Scope

	Correctly Identifying Unqualified Object Names in DDL
	Enabling DDL Support
	Filtering DDL Replication
	Filtering with PL/SQL Code
	Filtering With Built-in Filter Rules
	DDLAUX.addRule() Function Definition
	Parameters for DDLAUX.addRule()
	Valid DDL Components for DDLAUX.addRule()
	Examples of Rule-based Trigger Filtering
	Dropping Filter Rules

	Filtering with the DDL Parameter

	Special Filter Cases
	DDL EXCLUDE ALL
	Implicit DDL

	How Oracle GoldenGate Handles Derived Object Names
	MAP Exists for Base Object, But Not Derived Object
	MAP Exists for Base and Derived Objects
	MAP Exists for Derived Object, But Not Base Object
	New Tables as Derived Objects
	CREATE TABLE AS SELECT
	RENAME and ALTER TABLE RENAME

	Disabling the Mapping of Derived Objects

	Using DDL String Substitution
	Controlling the Propagation of DDL to Support Different Topologies
	Propagating DDL in Active-Active (Bidirectional) Configurations
	Propagating DDL in a Cascading Configuration

	Adding Supplemental Log Groups Automatically
	Removing Comments from Replicated DDL
	Replicating an IDENTIFIED BY Password
	How DDL is Evaluated for Processing
	Viewing DDL Report Information
	Viewing DDL Reporting in Replicat
	Viewing DDL Reporting in Extract
	Statistics in the Process Reports

	Tracing DDL Processing
	Using Tools that Support Trigger-Based DDL Capture
	Tracing the DDL Trigger
	Viewing Metadata in the DDL History Table
	Handling DDL Trigger Errors

	Installing Trigger-Based DDL Capture
	When to Use Trigger-based DDL Capture
	Overview of the Objects that Support Trigger-based DDL Capture
	Installing the DDL Objects

	Configure DDL Modification for Oracle GoldenGate for Sybase
	Using Procedural Replication
	About Procedural Replication
	Procedural Replication Process Overview
	Enabling Procedural Replication
	Determining Whether Procedural Replication Is On
	Enabling and Disabling Supplemental Logging
	Filtering Features for Procedural Replication
	Handling Procedural Replication Errors
	Procedural Replication Pragma Options
	Listing the Procedures Supported for Oracle GoldenGate Procedural Replication
	Monitoring Oracle GoldenGate Procedural Replication

	Mapping and Manipulating Data
	Guidelines for Using Self-describing Trails
	Parameters that Control Mapping and Data Integration
	Mapping between Dissimilar Databases
	Deciding Where Data Mapping and Conversion Will Take Place
	Mapping and Conversion on Windows and UNIX Systems
	Mapping and Conversion on NonStop Systems

	Globalization Considerations when Mapping Data
	Conversion between Character Sets
	Database Object Names
	Column Data

	Preservation of Locale
	Support for Escape Sequences

	Mapping Columns Using TABLE and MAP
	Supporting Case and Special Characters in Column Names
	Configuring Table-level Column Mapping with COLMAP
	Using USEDEFAULTS to Enable Default Column Mapping
	Specifying the Columns to be Mapped in the COLMAP Clause

	Configuring Global Column Mapping with COLMATCH
	Understanding Default Column Mapping
	Data Type Conversions
	Numeric Columns
	Character-type Columns
	Datetime Columns

	Selecting and Converting SQL Operations

	Selecting and Filtering Rows
	Selecting Rows with a FILTER Clause
	Selecting Rows with a WHERE Clause
	Considerations for Selecting Rows with FILTER and WHERE
	Ensuring Data Availability for Filters
	Comparing Column Values
	Testing for NULL Values

	Retrieving Before and After Values
	Selecting Columns
	Using Transaction History
	Testing and Transforming Data
	Handling Column Names and Literals in Functions
	Using the Appropriate Function
	Transforming Dates
	Performing Arithmetic Operations
	Omitting @COMPUTE

	Manipulating Numbers and Character Strings
	Handling Null, Invalid, and Missing Data
	Using @COLSTAT
	Using @COLTEST
	Using @IF

	Performing Tests
	Using @CASE
	Using @VALONEOF
	Using @EVAL

	Using Tokens
	Defining Tokens
	Using Token Data in Target Tables

	Error Management
	Automatic Conflict Detection and Resolution
	About Automatic Conflict Detection and Resolution
	Automatic Conflict Detection and Resolution
	Requirements for Automatic Conflict Detection and Resolution
	Latest Timestamp Conflict Detection and Resolution
	Delta Conflict Detection and Resolution
	Column Groups

	Configuring Automatic Conflict Detection and Resolution
	Configuring Latest Timestamp Conflict Detection and Resolution
	Configuring Delta Conflict Detection and Resolution

	Managing Automatic Conflict Detection and Resolution
	Altering Conflict Detection and Resolution for a Table
	Altering a Column Group
	Purging Tombstone Rows
	Removing Conflict Detection and Resolution From a Table
	Removing a Column Group
	Removing Delta Conflict Detection and Resolution

	Monitoring Automatic Conflict Detection and Resolution
	Displaying Information About the Tables Configured for Conflicts
	Displaying Information About Conflict Resolution Columns
	Displaying Information About Column Groups

	Handling Processing Errors
	Overview of Oracle GoldenGate Error Handling
	Handling Extract Errors
	Handling Replicat Errors during DML Operations
	Handling Errors as Exceptions
	Using EXCEPTIONSONLY
	Using MAPEXCEPTION
	About the Exceptions Table

	Handling Replicat errors during DDL Operations
	Handling TCP/IP Errors
	Maintaining Updated Error Messages
	Resolving Oracle GoldenGate Errors

	Trail File Management
	Add the Local Trail
	Add the Remote Trail

	Encrypting the Extract and Replicat Passwords
	Using Command Line Interfaces
	Using Wildcards in Command Arguments
	Globalization Support for the Command Interface
	Using Command History
	Storing and Calling Frequently Used Command Sequences

	Getting Started with the Oracle GoldenGate Process Interfaces
	Automating Commands
	Issuing Commands Through the IBM i CLI

	Specifying Object Names in Oracle GoldenGate Input
	Specifying Filesystem Path Names in Parameter Files on Windows Systems
	Supported Database Object Names
	Supported Special Characters
	Non-supported Special Characters

	Specifying Names that Contain Slashes
	Qualifying Database Object Names
	Two-part Names
	Three-part Names
	Applying Data from Multiple Containers or Catalogs
	Specifying a Default Container or Catalog

	Specifying Case-Sensitive Database Object Names
	Using Wildcards in Database Object Names
	Rules for Using Wildcards for Source Objects
	Rules for Using Wildcards for Target Objects
	Fallback Name Mapping
	Wildcard Mapping from Pre-11.2.1 Trail Version
	Asterisks or Question Marks as Literals in Object Names
	How Wildcards are Resolved
	Excluding Objects from a Wildcard Specification

	Differentiating Case-Sensitive Column Names from Literals

	Performing Administrative Operations
	Shutting Down the System
	Changing Database Attributes
	Changing Database Metadata
	Adding Tables to the Oracle GoldenGate Configuration
	Coordinating Table Attributes between Source and Target
	Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables
	Dropping and Recreating a Source Table
	Changing the Number of Oracle RAC Threads when Using Classic Capture
	Changing the ORACLE_SID
	Purging Archive Logs
	Reorganizing a DB2 Table (z/OS Platform)

	Adding Process Groups to an Active Configuration
	Before You Start
	Adding Another Extract Group to an Active Configuration
	Adding Another Data Pump to an Active Configuration
	Adding Another Replicat Group to an Active Configuration

	Changing the Size of Trail Files
	Switching from Classic Extract
	Switching Extract from Integrated Mode to Classic Mode
	Switching Replicat from Non-Integrated Mode to Integrated Mode
	Switching Replicat from Integrated Mode to Non-Integrated Mode
	Switching Replicat to Coordinated Mode
	Procedure Overview
	Performing the Switch to Coordinated Replicat

	Administering a Coordinated Replicat Configuration
	Performing a Planned Re-partitioning of the Workload
	Recovering Replicat After an Unplanned Re-partitioning
	Reprocessing From the Low Watermark with HANDLECOLLISIONS
	Using the Auto-Saved Parameter File

	Synchronizing Threads After an Unclean Stop
	Restarting a Primary Extract after System Failure or Corruption
	Details of This Procedure
	Performing the Recovery

	Using Automatic Trail File Recovery

	Customizing Oracle GoldenGate Processing
	Executing Commands, Stored Procedures, and Queries with SQLEXEC
	Performing Processing with SQLEXEC
	Using SQLEXEC
	Executing SQLEXEC within a TABLE or MAP Statement
	Executing SQLEXEC as a Standalone Statement
	Using Input and Output Parameters
	Passing Values to Input Parameters
	Passing Values to Output Parameters
	SQLEXEC Examples Using Parameters

	Handling SQLEXEC Errors
	Handling Missing Column Values
	Handling Database Errors

	Additional SQLEXEC Guidelines

	Using Oracle GoldenGate Macros to Simplify and Automate Work
	Defining a Macro
	Calling a Macro
	Calling a Macro that Contains Parameters
	Calling a Macro without Input Parameters

	Calling Other Macros from a Macro
	Creating Macro Libraries
	Tracing Macro Expansion

	Using User Exits to Extend Oracle GoldenGate Capabilities
	When to Implement User Exits
	Making Oracle GoldenGate Record Information Available to the Routine
	Creating User Exits
	Supporting Character-set Conversion in User Exits
	Using Macros to Check Name Metadata
	Describing the Character Format
	Upgrading User Exits
	Viewing Examples of How to Use the User Exit Functions

	Using the Oracle GoldenGate Event Marker System to Raise Database Events
	Case Studies in the Usage of the Event Marker System
	Trigger End-of-day Processing
	Simplify Transition from Initial Load to Change Synchronization
	Stop Processing When Data Anomalies are Encountered
	Trace a Specific Order Number
	Execute a Batch Process
	Propagate Only a SQL Statement without the Resultant Operations
	Committing Other Transactions Before Starting a Long-running Transaction
	Execute a Shell Script to Validate Data

	Oracle GoldenGate Globalization Support
	Preserving the Character Set
	Character Set of Database Structural Metadata
	Character Set of Character-type Data
	Character Set of Database Connection
	Character Set of Text Input and Output

	Using Unicode and Native Characters

	Using Oracle GoldenGate Parameter Files
	Globalization Support for Parameter Files
	Working with the GLOBALS File
	Working with Runtime Parameters
	Creating a Parameter File
	Creating a Parameter File in GGSCI and Admin Client
	Creating a Parameter File with a Text Editor

	Validating a Parameter File
	Viewing a Parameter File
	Changing a Parameter File
	Simplifying the Creation of Parameter Files
	Using Macros
	Using OBEY
	Using Parameter Substitution
	Using Wildcards

	Getting Information about Oracle GoldenGate Parameters

	Configure Bi-Directional Replication
	Other Oracle GoldenGate Parameters for MySQL

	9 Performance
	Monitoring Oracle GoldenGate Processing
	Using the Information Commands
	Monitoring an Extract Recovery
	Monitoring Lag
	About Lag
	Controlling How Lag is Reported

	Using Automatic Heartbeat Tables to Monitor
	Understanding Heartbeat Table End-To-End Replication Flow
	Updating Heartbeat Tables
	Purging the Heartbeat History Tables
	Best Practice
	Using the Automatic Heartbeat Commands

	Monitoring Processing Volume
	Using the Error Log
	Using the Process Report
	Scheduling Runtime Statistics in the Process Report
	Viewing Record Counts in the Process Report
	Preventing SQL Errors from Filling the Replicat Report File

	Using the Discard File
	Maintaining the Discard and Report Files
	Reconciling Time Differences
	Getting Help with Performance Tuning

	Tuning the Performance of Oracle GoldenGate
	Using Multiple Process Groups
	Considerations for Using Multiple Process Groups
	Maintaining Data Integrity
	Number of Groups
	Memory
	Isolating Processing-Intensive Tables

	Using Parallel Replicat Groups on a Target System
	To Create the Extract Group
	To Create the Replicat Groups

	Using Multiple Extract Groups with Multiple Replicat Groups
	To Create the Extract Groups
	To Create the Replicat Groups

	Splitting Large Tables Into Row Ranges Across Process Groups
	Configuring Oracle GoldenGate to Use the Network Efficiently
	Detecting a Network Bottleneck that is Affecting Oracle GoldenGate
	Working Around Bandwidth Limitations by Using Data Pumps
	Increasing the TCP/IP Packet Size

	Eliminating Disk I/O Bottlenecks
	Improving I/O performance Within the System Configuration
	Improving I/O Performance Within the Oracle GoldenGate Configuration

	Managing Virtual Memory and Paging
	Optimizing Data Filtering and Conversion
	Tuning Replicat Transactions
	Tuning Coordination Performance Against Barrier Transactions
	Applying Similar SQL Statements in Arrays
	Preventing Full Table Scans in the Absence of Keys
	Splitting Large Transactions
	Adjusting Open Cursors
	Improving Update Speed
	Set a Replicat Transaction Timeout

	Using Healthcheck Scripts to Monitor and Troubleshoot
	Installing, Running, and Uninstalling Healthcheck Scripts
	How to Deal with Healthcheck Information?
	Components of Healthcheck Information

	10 Oracle GoldenGate Business Solutions
	Configuring Online Change Synchronization
	Overview of Online Change Synchronization
	Initial Synchronization

	Choosing Names for Processes and Files
	Naming Conventions for Processes
	Choosing File Names

	Creating a Parameter File for Online Extraction
	Creating an Online Replicat Group
	About the Global Watermark
	Creating the Replicat Group

	Creating a Parameter File for Online Replication

	Using Oracle GoldenGate for Live Reporting
	Overview of the Reporting Configuration
	Filtering and Conversion
	Read-only vs. High Availability
	Additional Information

	Creating a Standard Reporting Configuration
	Source System
	Target System

	Creating a Reporting Configuration with a Data Pump on the Source System
	Source System
	Target System

	Creating a Reporting Configuration with a Data Pump on an Intermediary System
	Source System
	Intermediary System
	Target System

	Creating a Cascading Reporting Configuration
	Source System
	Second System in the Cascade
	Third System in the Cascade

	Using Oracle GoldenGate for Real-time Data Distribution
	Overview of the Data-distribution Configuration
	Considerations for a Data-distribution Configuration
	Fault Tolerance
	Filtering and Conversion
	Read-only vs. High Availability
	Additional Information

	Creating a Data Distribution Configuration
	Source System
	Target Systems

	Configuring Oracle GoldenGate for Real-time Data Warehousing
	Overview of the Data Warehousing Configuration
	Considerations for a Data Warehousing Configuration
	Isolation of Data Records
	Data Storage
	Filtering and Conversion
	Additional Information

	Creating a Data Warehousing Configuration
	Source Systems
	Target System

	Configuring Oracle GoldenGate to Maintain a Live Standby Database
	Overview of a Live Standby Configuration
	Considerations for a Live Standby Configuration
	Trusted Source
	Duplicate Standby
	DML on the Standby System
	Oracle GoldenGate Processes
	Backup Files
	Failover Preparedness
	Sequential Values that are Generated by the Database
	Additional Information

	Creating a Live Standby Configuration
	Prerequisites on Both Systems
	Configuration from Active Source to Standby

	Configuration from Standby to Active Source
	Moving User Activity in a Planned Switchover
	Moving User Activity to the Live Standby
	Moving User Activity Back to the Primary System

	Moving User Activity in an Unplanned Failover
	Moving User Activity to the Live Standby
	Moving User Activity Back to the Primary System

	Configuring Oracle GoldenGate for Active-Active Configuration
	Overview of an Active-Active Configuration
	Considerations for an Active-Active Configuration
	Application Design
	Keys
	Database-Generated Values
	Database Configuration

	Preventing Data Looping
	Identifying Replicat Transactions
	DB2 z/OS, DB2 LUW, and DB2 for i
	MySQL
	PostgreSQL and SQL Server
	Oracle

	Preventing the Capture of Replicat Operations
	Preventing the Capture of Replicat Transactions (Oracle)
	Preventing Capture of Replicat Transactions (Other Databases)

	Replicating DDL in a Bidirectional Configuration

	Managing Conflicts
	Additional Information
	Creating an Active-Active Configuration
	Prerequisites on Both Systems
	Configuration from Primary System to Secondary System
	Configuration from Secondary System to Primary System

	Manual Conflict Detection and Resolution
	Overview of the Oracle GoldenGate CDR Feature
	Configuring the Oracle GoldenGate Parameter Files for Error Handling
	Tools for Mapping Extra Data to the Exceptions Table
	Sample Exceptions Mapping with Source and Target Columns Only
	Sample Exceptions Mapping with Additional Columns in the Exceptions Table

	Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution
	Making the Required Column Values Available to Extract
	Configuring Oracle GoldenGate CDR
	Viewing CDR Statistics
	Report File
	GGSCI
	Column-conversion Functions

	CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD
	Table Used in this Example
	MAP Statement with Conflict Resolution Specifications
	Description of MAP Statement
	Error Handling
	INSERTROWEXISTS with the USEMAX Resolution
	UPDATEROWEXISTS with the USEMAX Resolution
	UPDATEROWMISSING with OVERWRITE Resolution
	DELETEROWMISSING with DISCARD Resolution
	DELETEROWEXISTS with OVERWRITE Resolution

	CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX
	Table Used in this Example
	MAP Statement
	Description of MAP Statement
	Error Handling

	CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE
	Table Used in this Example
	MAP Statement
	Description of MAP Statement
	Error Handling

	11 Autonomous Database
	Using Oracle GoldenGate with Autonomous Database
	About Capturing and Replicating Data Using Autonomous Databases
	Details of Support When Using Oracle GoldenGate with Autonomous Databases
	Oracle GoldenGate Replicat Limitations for Autonomous Databases
	Data Type Limitations for DDL and DML Replication
	Details of Support for Archived Log Retention

	Configuring Extract to Capture from an Autonomous Database
	Establishing Oracle GoldenGate Credentials
	Prerequisites for Configuring Oracle GoldenGate Extract to Capture from Autonomous Databases
	Configure Extract to Capture from an Autonomous Database

	Configuring Replicat to Apply to an Autonomous Database
	Prerequisites for Configuring Oracle GoldenGate Replicat to an Autonomous Database
	Configure Oracle GoldenGate Replicat for an Autonomous Database
	Obtain the Autonomous Database Client Credentials

	Configure Replicat to Apply to an Autonomous Database

	12 Upgrade
	Upgrading Oracle GoldenGate Classic Architecture
	Overview of the Upgrade Procedure
	Prerequisites
	Upgrade Considerations if Using Character-Set Conversion
	Upgrade Considerations if Using Quoted Object Names
	Overview of the convprm Tool
	Running convprm

	Obtaining the Oracle GoldenGate Distribution
	Upgrading Oracle GoldenGate Classic Architecture for Oracle Database
	Upgrading Oracle GoldenGate from OUI
	Upgrading Oracle GoldenGate using OUI – Silent
	Upgrading a Configuration That Includes DDL Support
	Upgrading Configuration that includes Berkeley Database - Oracle GoldenGate 12.2 or later

	Upgrading Oracle GoldenGate for Non-Oracle Databases
	Oracle GoldenGate Upgrade Considerations
	Extract Upgrade Considerations
	Replicat Upgrade Considerations

	Upgrading Oracle GoldenGate for Non-Oracle Databases
	Overview of the Upgrade Procedure for Non-Oracle Databases
	Obtaining the Oracle GoldenGate Distribution
	Upgrading Oracle GoldenGate Classic Architecture for Non-Oracle Databases

	Performing Application Patches

	13 Appendix
	Supported Character Sets
	Supported Character Sets - Oracle
	Supported Character Sets - Non-Oracle

	Supported Locales
	About the Oracle GoldenGate Trail
	Trail Recovery Mode
	Trail File Header Record
	Trail Record Format
	Example of an Oracle GoldenGate Record
	Record Header Area
	Description of Header Fields
	Using Header Data

	Record Data Area
	Full Record Image Format (NonStop Sources)
	Compressed Record Image Format (Windows, UNIX, Linux Sources)

	Tokens Area
	Oracle GoldenGate Operation Types
	Oracle GoldenGate Trail Header Record

	About Checkpoints
	About Extract Checkpoints
	About Extract read checkpoints
	Startup Checkpoint
	Recovery Checkpoint
	Current Checkpoint

	About Extract Write Checkpoints

	Replicat Checkpoints
	About Replicat Checkpoints
	Startup Checkpoint
	Current Checkpoint

	Internal Checkpoint Information
	Oracle GoldenGate Checkpoint Tables

	Supporting Changes to XML Schemas
	Supporting RegisterSchema
	Supporting DeleteSchema
	Supporting CopyEvolve

	Preparing DBFS for an Active-Active Configuration
	Supported Operations and Prerequisites
	Applying the Required Patch
	Examples Used in these Procedures
	Partitioning the DBFS Sequence Numbers
	Configuring the DBFS file system
	Mapping Local and Remote Peers Correctly

