
Oracle® Fusion Middleware
Using Oracle GoldenGate for Oracle
Database

19c (19.1.0.0)
E98068-08
September 2023

Oracle Fusion Middleware Using Oracle GoldenGate for Oracle Database, 19c (19.1.0.0)

E98068-08

Copyright © 1995, 2023, Oracle and/or its affiliates.

Primary Author: Oracle Corp.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiii

Documentation Accessibility xiii

Related Information xiii

Conventions xiii

1 Understanding What’s Supported

Details of Support for Oracle Data Types and Objects 1-1

Non-Supported Oracle Data Types 1-5

Details of Support for Objects and Operations in Oracle DML 1-6

Multitenant Container Database 1-6

Tables, Views, and Materialized Views 1-6

Limitations of Support for Regular Tables 1-7

Limitations of Support for Views 1-9

Limitations of Support for Materialized Views 1-9

Limitations of Support for Clustered Tables 1-9

Sequences and Identity Columns 1-9

Limitations of Support for Sequences 1-9

Non-supported Objects and Operations in Oracle DML 1-10

Details of Support for Objects and Operations in Oracle DDL 1-10

Supported Objects and Operations in Oracle DDL 1-10

Non-supported Objects and Operations in Oracle DDL 1-12

Excluded Objects 1-12

Other Non-supported DDL 1-14

Integrating Oracle GoldenGate into a Cluster 1-14

General Requirements in a Cluster 1-15

Adding Oracle GoldenGate as a Windows Cluster Resource 1-15

2 Preparing the Database for Oracle GoldenGate

Configuring Connections for Integrated Processes 2-1

Configuring Logging Properties 2-2

iii

Enabling Minimum Database-level Supplemental Logging 2-4

Enabling Schema-level Supplemental Logging 2-5

Enabling Table-level Supplemental Logging 2-7

Enabling Oracle GoldenGate in the Database 2-8

Setting Flashback Query 2-8

Managing Server Resources 2-10

Ensuring Row Uniqueness in Source and Target Tables 2-10

3 Establishing Oracle GoldenGate Credentials

Assigning Credentials to Oracle GoldenGate 3-1

Oracle GoldenGate Users (Database) 3-1

Granting the Appropriate User Privileges 3-2

Securing the Oracle GoldenGate Credentials 3-5

4 Choosing Capture and Apply Modes

Overview of Oracle GoldenGate Capture and Apply Processes 4-1

Deciding Which Capture Method to Use 4-2

About Integrated Capture 4-2

Integrated Capture Deployment Options 4-4

About Classic Capture 4-4

Deciding Which Apply Method to Use 4-5

About Parallel Replicat 4-5

About Non-integrated Replicat 4-7

About the Integrated Replicat Mode 4-7

Benefits of Integrated Replicat 4-9

Integrated Replicat Requirements 4-10

Using Different Capture and Apply Modes Together 4-10

Switching to a Different Process Mode 4-11

5 Using Parallel Replicat

Parallel Replication Architecture 5-1

Basic Parameters for Parallel Replicat 5-2

Creating a Parallel Replicat 5-3

6 Configuring Capture in Integrated Mode

Prerequisites for Configuring Integrated Capture 6-1

What to Expect from these Instructions 6-2

Configuring the Primary Extract in Integrated Capture Mode 6-2

iv

Configuring the Data Pump Extract 6-5

Next Steps 6-7

7 Configuring Oracle GoldenGate Apply

Prerequisites for Configuring Replicat 7-1

What to Expect from these Instructions 7-2

Creating a Checkpoint Table 7-2

Adding the Checkpoint Table to the Target Database 7-3

Specifying the Checkpoint Table in the Oracle GoldenGate Configuration 7-3

Disabling Default Asynchronous COMMIT to Checkpoint Table 7-3

Configuring Replicat 7-4

Next Steps 7-6

8 Additional Oracle GoldenGate Configuration Considerations

Installing Support for Oracle Sequences 8-1

Handling Special Data Types 8-3

Multibyte Character Types 8-3

Oracle Spatial Objects 8-4

TIMESTAMP 8-5

Large Objects (LOB) 8-5

XML 8-5

User Defined Types 8-6

Handling Other Database Properties 8-6

Controlling the Checkpoint Frequency 8-7

Excluding Replicat Transactions 8-7

Advanced Configuration Options for Oracle GoldenGate 8-8

9 Additional Configuration Steps For Using Nonintegrated Replicat

Disabling Triggers and Referential Cascade Constraints on Target Tables 9-1

10

Configuring DDL Support

Prerequisites for Configuring DDL 10-2

Support for DDL Capture in Integrated Capture Mode 10-2

Support for DDL Capture in Classic Capture Mode 10-3

Overview of DDL Synchronization 10-3

Limitations of Oracle GoldenGate DDL Support 10-3

DDL Statement Length 10-4

Supported Topologies 10-4

v

Filtering, Mapping, and Transformation 10-4

Renames 10-5

Interactions Between Fetches from a Table and DDL 10-5

Comments in SQL 10-6

Compilation Errors 10-6

Interval Partitioning 10-6

DML or DDL Performed Inside a DDL Trigger 10-6

LogMiner Data Dictionary Maintenance 10-6

Configuration Guidelines for DDL Support 10-6

Database Privileges 10-7

Parallel Processing 10-7

Object Names 10-7

Data Definitions 10-7

Truncates 10-8

Initial Synchronization 10-8

Data Continuity After CREATE or RENAME 10-8

Understanding DDL Scopes 10-8

Mapped Scope 10-9

Unmapped Scope 10-10

Other Scope 10-11

Correctly Identifying Unqualified Object Names in DDL 10-11

Enabling DDL Support 10-12

Filtering DDL Replication 10-12

Filtering with PL/SQL Code 10-13

Filtering With Built-in Filter Rules 10-15

DDLAUX.addRule() Function Definition 10-15

Parameters for DDLAUX.addRule() 10-15

Valid DDL Components for DDLAUX.addRule() 10-16

Examples of Rule-based Trigger Filtering 10-17

Dropping Filter Rules 10-17

Filtering with the DDL Parameter 10-18

Special Filter Cases 10-19

DDL EXCLUDE ALL 10-19

Implicit DDL 10-19

How Oracle GoldenGate Handles Derived Object Names 10-20

MAP Exists for Base Object, But Not Derived Object 10-20

MAP Exists for Base and Derived Objects 10-21

MAP Exists for Derived Object, But Not Base Object 10-22

New Tables as Derived Objects 10-22

CREATE TABLE AS SELECT 10-22

RENAME and ALTER TABLE RENAME 10-23

vi

Disabling the Mapping of Derived Objects 10-23

Using DDL String Substitution 10-25

Controlling the Propagation of DDL to Support Different Topologies 10-25

Propagating DDL in Active-Active (Bidirectional) Configurations 10-26

Propagating DDL in a Cascading Configuration 10-28

Adding Supplemental Log Groups Automatically 10-28

Removing Comments from Replicated DDL 10-28

Replicating an IDENTIFIED BY Password 10-28

How DDL is Evaluated for Processing 10-29

Viewing DDL Report Information 10-31

Viewing DDL Reporting in Replicat 10-32

Viewing DDL Reporting in Extract 10-32

Statistics in the Process Reports 10-33

Tracing DDL Processing 10-34

Using Tools that Support Trigger-Based DDL Capture 10-34

Tracing the DDL Trigger 10-34

Viewing Metadata in the DDL History Table 10-34

Handling DDL Trigger Errors 10-34

Using Edition-Based Redefinition 10-35

11

Creating Process Groups

Prerequisites 11-1

Registering Extract with the Mining Database 11-2

Add the Primary Extract 11-3

Add the Local Trail 11-5

Add the Data Pump Extract Group 11-5

Add the Remote Trail 11-5

Add the Replicat Group 11-6

12

Instantiating Oracle GoldenGate Replication

Overview of the Instantiation Process 12-1

Prerequisites for Instantiation 12-2

Configuring and Adding Change Synchronization Groups 12-2

Disabling DDL Processing 12-2

Adding Collision Handling 12-2

Preparing the Target Tables 12-3

Configuring the Initial Load 12-3

Configuring a Load with an Oracle Data Pump 12-3

Configuring a Direct Bulk Load to SQL*Loader 12-4

vii

Configuring a Load from an Input File to SQL*Loader 12-6

Performing the Target Instantiation 12-9

Performing Instantiation with Oracle Data Pump 12-9

Performing Instantiation with Direct Bulk Load to SQL*Loader 12-10

Performing Instantiation From an Input File to SQL*Loader 12-11

Monitoring and Controlling Processing After the Instantiation 12-12

Verifying Synchronization 12-13

Backing up the Oracle GoldenGate Environment 12-13

13

Managing the DDL Replication Environment

Disabling DDL Processing Temporarily 13-2

Enabling and Disabling the DDL Trigger 13-2

Maintaining the DDL Marker Table 13-2

Deleting the DDL Marker Table 13-3

Maintaining the DDL History Table 13-3

Deleting the DDL History Table 13-3

Purging the DDL Trace File 13-4

Applying Database Patches and Upgrades when DDL Support is Enabled 13-4

Apply Oracle GoldenGate Patches and Upgrades when DDL support is Enabled 13-5

Restoring an Existing DDL Environment to a Clean State 13-6

Removing the DDL Objects from the System 13-8

14

Automatic Conflict Detection and Resolution

About Automatic Conflict Detection and Resolution 14-1

Automatic Conflict Detection and Resolution 14-2

Requirements for Automatic Conflict Detection and Resolution 14-3

Latest Timestamp Conflict Detection and Resolution 14-3

Delta Conflict Detection and Resolution 14-4

Column Groups 14-6

Configuring Automatic Conflict Detection and Resolution 14-8

Configuring Latest Timestamp Conflict Detection and Resolution 14-8

Configuring Delta Conflict Detection and Resolution 14-10

Managing Automatic Conflict Detection and Resolution 14-10

Altering Conflict Detection and Resolution for a Table 14-11

Altering a Column Group 14-11

Purging Tombstone Rows 14-12

Removing Conflict Detection and Resolution From a Table 14-12

Removing a Column Group 14-12

Removing Delta Conflict Detection and Resolution 14-13

viii

Monitoring Automatic Conflict Detection and Resolution 14-13

Displaying Information About the Tables Configured for Conflicts 14-14

Displaying Information About Conflict Resolution Columns 14-14

Displaying Information About Column Groups 14-16

15

Using Procedural Replication

About Procedural Replication 15-1

Procedural Replication Process Overview 15-2

Enabling Procedural Replication 15-3

Determining Whether Procedural Replication Is On 15-3

Enabling and Disabling Supplemental Logging 15-4

Filtering Features for Procedural Replication 15-4

Handling Procedural Replication Errors 15-6

Procedural Replication Pragma Options 15-6

Listing the Procedures Supported for Oracle GoldenGate Procedural Replication 15-38

Monitoring Oracle GoldenGate Procedural Replication 15-39

16

Configuring Oracle GoldenGate in a Multitenant Container Database

Capturing from Pluggable Databases 16-1

Applying to Pluggable Databases 16-1

Excluding Objects from the Configuration 16-2

Other Requirements for Multitenant Container Databases 16-2

17

Using Oracle GoldenGate with Autonomous Database

About Capturing and Replicating Data Using Autonomous Databases 17-1

Details of Support When Using Oracle GoldenGate with Autonomous Databases 17-2

Configuring Replicat to Apply to an Autonomous Database 17-3

Prerequisites for Configuring Oracle GoldenGate Replicat to an Autonomous Database 17-3

Configure Oracle GoldenGate Replicat for an Autonomous Database 17-3

Obtain the Autonomous Database Client Credentials 17-4

Configure Replicat to Apply to an Autonomous Database 17-5

Configuring Extract to Capture from an Autonomous Database 17-7

Establishing Oracle GoldenGate Credentials 17-8

Prerequisites for Configuring Oracle GoldenGate Extract to Capture from Autonomous
Databases 17-8

Configure Extract to Capture from an Autonomous Database 17-9

ix

A Optional Parameters for Integrated Modes

Additional Parameter Options for Integrated Capture A-1

Additional Parameter Options for Integrated Replicat A-2

B Configuring a Downstream Mining Database

Evaluating Capture Options for a Downstream Deployment B-1

Preparing the Source Database for Downstream Deployment B-1

Creating the Source User Account B-2

Configuring Redo Transport from Source to Downstream Mining Database B-2

Preparing the Downstream Mining Database B-4

Creating the Downstream Mining User Account B-4

Configuring the Mining Database to Archive Local Redo Log Files B-4

Preparing a Downstream Mining Database for Real-time Capture B-5

Create the Standby Redo Log Files B-5

Configure the Database to Archive Standby Redo Log Files Locally B-7

C Example Downstream Mining Configuration

Example 1: Capturing from One Source Database in Real-time Mode C-1

Prepare the Mining Database to Archive its Local Redo C-2

Prepare the Mining Database to Archive Redo Received in Standby Redo Logs from
the Source Database C-2

Prepare the Source Database to Send Redo to the Mining Database C-2

Set up Integrated Capture (ext1) on DBMSCAP C-3

Example 2: Capturing from Multiple Sources in Archive-log-only Mode C-4

Prepare the Mining Database to Archive its Local Redo C-4

Prepare the Mining Database to Archive Redo from the Source Database C-5

Prepare the First Source Database to Send Redo to the Mining Database C-5

Prepare the Second Source Database to Send Redo to the Mining Database C-5

Set up Extracts at Downstream Mining Database C-6

Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only
Mode C-6

Prepare the Mining Database to Archive its Local Redo C-7

Prepare the Mining Database to Accept Redo from the Source Databases C-7

Prepare the First Source Database to Send Redo to the Mining Database C-7

Prepare the Second Source Database to Send Redo to the Mining Database C-8

Prepare the Third Source Database to Send Redo to the Mining Database C-8

Set up Extracts at Downstream Mining Database C-9

Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1 C-9

Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2 C-10

x

Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs
Sent by DBMS3 C-10

D Installing Trigger-Based DDL Capture

When to Use Trigger-based DDL Capture D-1

Overview of the Objects that Support Trigger-based DDL Capture D-2

Installing the DDL Objects D-3

E Supporting Changes to XML Schemas

Supporting RegisterSchema E-1

Supporting DeleteSchema E-1

Supporting CopyEvolve E-1

F Preparing DBFS for an Active-Active Configuration

Supported Operations and Prerequisites F-1

Applying the Required Patch F-2

Examples Used in these Procedures F-2

Partitioning the DBFS Sequence Numbers F-2

Configuring the DBFS file system F-3

Mapping Local and Remote Peers Correctly F-5

G Support for Classic Extract

Details of Support for Objects and Operations in Oracle DML G-3

Limitations of Support for Index-Organized Tables G-3

Limitations of Support for Clustered Tables G-3

Non-supported Objects and Operations in Oracle DML (Classic) G-3

Details of Support for Objects and Operations in Oracle DDL (Classic) G-4

H Configuring Capture in Classic Mode

Prerequisites for Configuring Classic Capture H-1

What to Expect from these Instructions H-2

Configuring the Primary Extract in Classic Capture Mode H-2

Configuring the Data Pump Extract H-3

Next Steps H-5

xi

I Additional Configuration Steps for Using Classic Capture

Configuring Oracle TDE Data in Classic Capture Mode I-1

Overview of TDE Support in Classic Capture Mode I-2

Requirements for Capturing TDE in Classic Capture Mode I-2

Required Database Patches for TDE Support I-3

Configuring Classic Capture for TDE Support I-3

Agree on a Shared Secret that Meets Oracle Standards I-3

Oracle DBA Tasks I-3

Oracle Security Officer Tasks I-4

Oracle GoldenGate Administrator Tasks I-5

Recommendations for Maintaining Data Security after Decryption I-6

Performing DDL while TDE Capture is Active I-6

Rekeying after a Database Upgrade I-6

Updating the Oracle Shared Secret in the Parameter File I-6

Using Classic Capture in an Oracle RAC Environment I-7

Mining ASM-stored Logs in Classic Capture Mode I-8

Accessing the Transaction Logs in ASM I-9

Reading Transaction Logs Through the RDBMS I-9

ASM Direct Connection I-9

Ensuring ASM Connectivity I-10

Ensuring Data Availability for Classic Capture I-10

Log Retention Requirements per Extract Recovery Mode I-11

Log Retention Options I-11

All Other Oracle Versions I-12

Determining How Much Data to Retain I-12

Purging Log Archives I-12

Specifying the Archive Location I-12

Mounting Logs that are Stored on Other Platforms I-13

Configuring Classic Capture in Archived Log Only Mode I-13

Limitations and Requirements for Using ALO Mode I-13

Configuring Extract for ALO mode I-14

Configuring Classic Capture in Oracle Active Data Guard Only Mode I-15

Limitations and Requirements for Using ADG Mode I-15

Configuring Classic Extract for ADG Mode I-17

Migrating Classic Extract To and From an ADG Database I-17

Handling Role Changes In an ADG Configuration I-18

Avoiding Log-read Bottlenecks in Classic Capture I-20

xii

Preface

This guide helps you get started with using Oracle GoldenGate on Oracle Database.

Topics:

• Audience

• Documentation Accessibility

• Related Information

• Conventions

Audience
Using Oracle GoldenGate for Oracle Databases is intended for DBA and system
administrators who are responsible for implementing Oracle GoldenGate and managing the
Oracle database.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Information
The Oracle GoldenGate Product Documentation Libraries are found at

https://docs.oracle.com/en/middleware/goldengate/index.html

Additional Oracle GoldenGate information, including best practices, articles, and solutions, is
found at:

Oracle GoldenGate A-Team Chronicles

Conventions
The following text conventions are used in this document:

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/goldengate/index.html
http://www.ateam-oracle.com/category/data-integration/di-ogg/

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, such as "From the File menu, select Save." Boldface
also is used for terms defined in text or in the glossary.

italic

italic
Italic type indicates placeholder variables for which you supply
particular values, such as in the parameter statement: TABLE
table_name. Italic type also is used for book titles and emphasis.

monospace
MONOSPACE

Monospace type indicates code components such as user exits and
scripts; the names of files and database objects; URL paths; and input
and output text that appears on the screen. Uppercase monospace type
is generally used to represent the names of Oracle GoldenGate
parameters, commands, and user-configurable functions, as well as
SQL commands and keywords.

UPPERCASE Uppercase in the regular text font indicates the name of a utility unless
the name is intended to be a specific case.

{ } Braces within syntax enclose a set of options that are separated by pipe
symbols, one of which must be selected, for example: {option1 |
option2 | option3}.

[] Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLICAT group_name
[, SAVE count]. Multiple options within an optional element are
separated by a pipe symbol, for example: [option1 | option2].

Preface

xiv

1
Understanding What’s Supported

This chapter contains support information for Oracle GoldenGate on Oracle Database.

Topics:

• Details of Support for Oracle Data Types and Objects
This topic describes data types, objects and operations that are supported by Oracle
GoldenGate.

• Details of Support for Objects and Operations in Oracle DML
This section outlines the Oracle objects and operations that Oracle GoldenGatesupports
for the capture and replication of DML operations.

• Details of Support for Objects and Operations in Oracle DDL
This topic outlines the Oracle objects and operation types that Oracle GoldenGate
supports for the capture and replication of DDL operations.

• Integrating Oracle GoldenGate into a Cluster
If you installed Oracle GoldenGate in a cluster, take the following steps to integrate
Oracle GoldenGate within the cluster solution.

Details of Support for Oracle Data Types and Objects
This topic describes data types, objects and operations that are supported by Oracle
GoldenGate.

Within the database, you can use the Dictionary view DBA_GOLDENGATE_SUPPORT_MODE to get
information about supported objects. There are different types for replication support:

• Support by Capturing from Redo

• Procedural Replication Support

Most data types are supported (SUPPORT_MODE=FULL), which implies that Oracle GoldenGate
captures the changes out of the redo. In some unique cases, the information cannot be
captured, but the information can be fetched with a connection to the database
(SUPPORT_MODE=ID KEY). Tables supported with ID KEY require a connection to the source
database or an ADG Standby database for fetching to support those tables. If using
downstream Integrated Extract, with NOUSERID a customer must specify a FETCHUSERID or
FETCHUSERIDALIAS connection.

Other changes can be replicated with Procedural Replication (SUPPORT_MODE=PLSQL) that
requires additional parameter setting of Extract. See About Procedural Replication for details.
In the unlikely case that there is no native support, no support by fetching and no procedural
replication support, there is no Oracle GoldenGate support.

To know more information about capture modes, see Deciding Which Capture Method to
Use..

Detailed support information for Oracle data types, objects, and operations starts with Details
of Support for Objects and Operations in Oracle DML.

1-1

There might be a few cases where replication support exists, but there are limitations
of processing such as in case of using SQLEXEC. The following table lists these
limitations:

Support Datatypes No Support

NUMBER, BINARY FLOAT, BINARY DOUBLE
UROWID

Special cases of:
• XML types
• UDTs
• Object tables
• Collections or nested tables

DATE and TIMESTAMP Tables with restricted uniqueness

(N)CHAR, (N) VARCHAR2 LONG, RAW, LONG
RAW (N)CLOB, CLOB, BLOB, SECUREFILE,
BASICFILE and BFILE

X

XML columns, XMLType X

UDTs X

ANYDATA X

Hierarchy-enabled tables X

RET Types X

DICOM X

SDO_TOPO_GEOMETRY, SDO_GEORASTER X

Identity columns X

SDO_RDF_TRIPLE_S X

Note:

SECUREFILE LOBs updated using DBMS_LOG.FRAGMENT or SECUREFILE LOBs
that are set to NOLOGGING are fetched instead of read from the redo.

Supported Capture from Redo:

• NUMBER, BINARY FLOAT, BINARY DOUBLE, and (logical) UROWID
• DATE and TIMESTAMP
• CHAR, VARCHAR2, LONG, NCHAR, and NVARCHAR2
• RAW, LONG RAW, CLOB, NCLOB, BLOB, SECUREFILE, BASICFILE, and BFILE (LOB size

limited to 4GB)

• XML columns stored as CLOB, Binary and Object-Relational (OR)

• XMLType columns and XMLType tables stored as XML CLOB, XML Object Relational,
and XML Binary

• UDTs (user-defined or abstract data types) on BYTE semantics with source
database compatibility 12.0.0.0.0 or higher

• ANYDATA data type with source database compatibility 12.0.0.0.0 or higher

Chapter 1
Details of Support for Oracle Data Types and Objects

1-2

• Hierarchy-enabled tables are managed by the Oracle XML database repository with
source database compatibility 12.2.0.0.0 or higher and enabled procedural replication

• REF types with source database compatibility 12.2.0.0.0 or higher

• DICOM with source database compatibility 12.0.0.0.0 or higher

• SDO _TOPO_GEOMETRY or SDO_GEORASTER with source database compatibility 12.2.0.0.0 or
higher and enabled procedural replication

• Identity columns with source database compatibility 18.1.0.0.0 or higher

• SDO_RDF_TRIPLE_S with source database compatibility 19.1.0.0.0 or higher

Supported (Fetch from database)

SECUREFILE LOBs

• Modified with DBMS_LOB.FRAGMENT_* procedures

• NOLOGGING LOBs

• Deduplicated LOBs with a source database release less than 12gR2

UDTs that contain following data types:

• TIMESTAMP WITH TIMEZONE, TIMESTAMP WITH LOCAL TIMEZONE, TIMESTAMP WITH
TIMEZONE with region ID

• INTERVAL YEAR TO MONTH, INTERVAL DAY TO SECOND
• BINARY FLOAT, BINARY DOUBLE
• BFILE
Object tables contains the following attributes:

• Nested table

• SDO_TOP_GEOMETRY
• SDO_GEORASTER

Additional Considerations

• NUMBER can be up to the maximum size permitted by Oracle. The support of the range
and precision for floating-point numbers depends on the host machine. In general, the
precision is accurate to 16 significant digits, but you should review the database
documentation to determine the expected approximations. Oracle GoldenGate rounds or
truncates values that exceed the supported precision.

• Non-logical UROWID columns will be identified by Extract. A warning message is generated
in the report file. The column information is not part of the trail record. All other supported
datatypes of the record are part of the trail record and are replicated.

• TIMESTAMP WITH TIME ZONE as TZR (region ID) for initial loads, SQLEXEC or operations
where the column can only be fetched from the database. In those cases, the region ID is
converted to a time offset by the source database when the column is selected. Replicat
applies the timestamp as date and time data into the target database with a time offset
value.

• VARCHAR expansion from 4K to 32K (extended or long VARCHAR)

– 32K long columns cannot be used as row identifiers:

Chapter 1
Details of Support for Oracle Data Types and Objects

1-3

* Columns as part of a key or unique index

* Columns in a KEYCOLS clause of the TABLE or MAP parameter.

– 32K long columns as resolution columns in a CDR (conflict resolution and
detection)

– If an extended VARCHAR column is part of unique index or constraint, then direct
path inserts to this table may cause Replicat to abend with a warning. Verify
that the extended VARCHAR caused the abend by checking ALL_INDEXES or
ALL_IND_COLUMNS for a unique index or ALL_CONS_COLUMNS or
ALL_CONSTRAINTS for a unique constraint. Once you determine that an
extended VARCHAR, you can temporarily drop the index or disable the
constraint:

* Unique Index: DROP INDEX index_name;

* Unique Constraint: ALTER TABLE table_name MODIFY CONSTRAINT
constraint_name DISABLE;

• Oracle GoldenGate does not support the filtering, column mapping, or
manipulation of objects larger than 4K.

• BFILE column are replicating the locator. The file on the server file system outside
of the database and is not replicated.

• Multi-byte character data: The source and target databases must be logically
identical in terms of schema definition for the tables and sequences being
replicated. Transformation, filtering, and other manipulation cannot be used.

• The character sets between the two databases must be one of the following:

– Identical on the source and on the target

– Equivalent, which is not the same character set but containing the same set of
characters

– Target is a superset of the source

Multi-byte data can be used in any semantics: bytes or characters.

• The structure of the UDTs and Abstract Data Types (ADTs) itself must be the same
on both the source and target. UDTs can have different source and target schemas.
UDTs, including values inside object columns or rows, cannot be used within
filtering criteria in TABLE or MAP statements, or as input or output for the Oracle
GoldenGate column-conversion functions, SQLEXEC, or other built-in data
manipulation tools. Support is only provided for like-to-like Oracle source and
targets.

To fully support object tables created using the CREATE TABLE as SELECT (CTAS)
statement, Integrated Extract must be configured to capture DML from the CTAS
statement. Oracle object table can be mapped to a non-Oracle object table in a
supported target database.

• XML column type cannot be used for filtering and manipulation. You can map the
XML representation of an object to a character column by means of a COLMAP
clause in a TABLE or MAP statement.

Oracle recommends the AL32UTF8 character set as the database character set
when working with XML data. This ensures the correct conversion by Oracle
GoldenGate from source to target. With DDL replication enabled, Oracle
GoldenGate replicates the CTAS statement and allows it to select the data from

Chapter 1
Details of Support for Oracle Data Types and Objects

1-4

the underlying target tables. OIDs are preserved if TRANSLOGOPTIONS GETCTASDML
parameter is set. For XMLType tables, the row object IDs must match between source and
target.

• Non-Supported Oracle Data Types

Non-Supported Oracle Data Types
Oracle GoldenGate does not support the following data types.

• Time offset values outside the range of +12:00 and -12:00..Oracle GoldenGate supports
time offset values between +12:00 and -12:00.

• Tables that only contain a single column and that column one of the following:

– UDT

– LOB (CLOB, NCLOB, BLOB, BFILE)

– XMLType column. Oracle GoldenGate treats XMLType data as an LOB.

– VARCHAR2 (MAX) where the data is greater than 32KB

• Tables with LOB, UDT, XML, or XMLType column without one of the following:

– Primary Key

– Scalar columns with a unique constraint or unique index

Table where the combination of all scalar columns do not guarantee uniqueness are
unsupported.

• Tables with the following XML characteristics:

– Tables with a primary key constraint made up of XML attributes

– XMLType tables with a primary key based on an object identifier (PKOID).

– XMLType tables, where the row object identifiers (OID) do not match between source
and target

– XMLType tables created by an empty CTAS statement.

– XML schema-based XMLType tables and columns where changes are made to the
XML schema (XML schemas must be registered on source and target databases with
the dbms_xml package).

– The maximum length for the entire SET value of an update to an XMLType larger than
32K, including the new content plus other operators and XQuery bind values.

– SQL*Loader direct-path insert for XML-Binary and XML-OR.

• Tables with following UDT characteristics:

– UDTs that contain CFILE or OPAQUE (except of XMLType)

– UDTs with CHAR and VARCHAR attributes that contain binary or unprintable
characters

– UDTs using the RMTTASK parameter

• UDTs and nested tables with following condition:

– Nested table UDTs with CHAR, NVARCHAR2 or NCLOB attributes.

– Nested tables with CLOB, BLOB, extended (32k) VARCHAR2 or RAW attributes in
UDTs.

Chapter 1
Details of Support for Oracle Data Types and Objects

1-5

– Nested table columns/attributes that are part of any other UDT.

• When data in a nested table is updated, the row that contains the nested table
must be updated at the same time. Otherwise there is no support.

• When VARRAYS and nested tables are fetched, the entire contents of the column
are fetched each time, not just the changes. Otherwise there is no support.

• Object table contains the following attributes:

– Nested table

– SDO_TOPO_GEOMETRY

– SDO_GEORASTER

See additional exclusions in Details of Support for Oracle Data Types and Objects.

Details of Support for Objects and Operations in Oracle
DML

This section outlines the Oracle objects and operations that Oracle
GoldenGatesupports for the capture and replication of DML operations.

Supported Objects and Operations in Oracle DML

Topics:

• Multitenant Container Database

• Tables, Views, and Materialized Views

• Sequences and Identity Columns

• Non-supported Objects and Operations in Oracle DML

Multitenant Container Database
Oracle GoldenGate captures from, and delivers to, a multitenant container
database, see Configuring Oracle GoldenGate in a Multitenant Container Database .

Tables, Views, and Materialized Views
Oracle GoldenGate supports the following DML operations made to regular tables,
index-organized tables, clustered tables, and materialized views.

• INSERT
• UPDATE
• DELETE
• Associated transaction control operations

Chapter 1
Details of Support for Objects and Operations in Oracle DML

1-6

Tip:

You can use the DBA_GOLDENGATE_SUPPORT_MODE data dictionary view to display
information about the level of Oracle GoldenGate capture process support for the
tables in your database. The PLSQL value of DBA_GOLDENGATE_SUPPORT_MODE
indicates that the table is supported natively, but requires procedural supplemental
logging. For more information, see the DBA_GOLDENGATE_SUPPORT_MODE. If you need
to display all tables that have no primary and no non-null unique indexes, you can
use the DBA_GOLDENGATE_NOT_UNIQUE. For more information, see
DBA_GOLDENGATE_NOT_UNIQUE.

• Limitations of Support for Regular Tables

• Limitations of Support for Views

• Limitations of Support for Materialized Views

• Limitations of Support for Clustered Tables

Limitations of Support for Regular Tables
These limitations apply to Extract.

• Oracle GoldenGate supports tables that contain any number of rows.

• A row can be up to 4 MB in length. If Oracle GoldenGate is configured to include both the
before and after image of a column in its processing scope, the 4 MB maximum length
applies to the total length of the full before image plus the length of the after image. For
example, if there are UPDATE operations on columns that are being used as a row
identifier, the before and after images are processed and cannot exceed 4 MB in total.
Before and after images are also required for columns that are not row identifiers but are
used as comparison columns in conflict detection and resolution (CDR). Character
columns that allow for more than 4 KB of data, such as a CLOB, only have the first 4 KB of
data stored in-row and contribute to the 4MB maximum row length. Binary columns that
allow for more than 4kb of data, such as a BLOB the first 8 KB of data is stored in-row and
contributes to the 4MB maximum row length.

• Oracle GoldenGate supports the maximum number of columns per table that is
supported by the database.

• Oracle GoldenGate supports the maximum column size that is supported by the
database.

• Oracle GoldenGate supports tables that contain only one column, except when the
column contains one of the following data types:

– LOB
– LONG
– LONG VARCHAR
– Nested table
– User Defined Type (UDT)

– VARRAY
– XMLType

Chapter 1
Details of Support for Objects and Operations in Oracle DML

1-7

• Set DBOPTIONS ALLOWUNUSEDCOLUMN before you replicate from and to tables with
unused columns.

• Oracle GoldenGate supports tables with these partitioning attributes:

– Range partitioning

– Hash Partitioning Interval Partitioning

– Composite Partitioning

– Virtual Column-Based Partitioning

– Reference Partitioning

– List Partitioning

• Oracle GoldenGate supports tables with virtual columns, but does not capture
change data for these columns or apply change data to them: The database does
not write virtual columns to the transaction log, and the Oracle Database does not
permit DML on virtual columns. For the same reason, initial load data cannot be
applied to a virtual column. You can map the data from virtual columns to non-
virtual target columns.

• Oracle GoldenGate will not consider unique/index with virtual columns.

• Oracle GoldenGate supports replication to and from Oracle Exadata. To support
Exadata Hybrid Columnar Compression, Extract must operate in integrated
capture mode. To support Exadata Hybrid Columnar Compression, the source
database compatibility must be set to 11.2.0.0.0 or higher.

• Oracle GoldenGate supports Transparent Data Encryption (TDE).

– Extract supports TDE column encryption and TDE table space encryption
without setup requirements in integrated capture mode.

• Oracle GoldenGate supports TRUNCATE statements as part of its DDL replication
support, or as standalone functionality that is independent of the DDL support.

• Oracle GoldenGate supports the capture of direct-load INSERT, with the exception
of SQL*Loader direct-path insert for XML Binary and XML Object Relational.
Supplemental logging must be enabled, and the database must be in archive log
mode. The following direct-load methods are supported.

– /*+ APPEND */ hint

– /*+ PARALLEL */ hint (Not supported for RAC in classic capture mode)

– SQLLDR with DIRECT=TRUE
• Oracle GoldenGate fully supports capture from compressed objects when Extract

is in integrated capture mode. Extract in classic capture mode does not support
compressed objects.

• Oracle GoldenGate supports XA and PDML distributed transactions in integrated
capture mode. Extract in classic capture mode does not support PDML or XA on
RAC.

• Oracle GoldenGate supports DML operations on tables with FLASHBACK ARCHIVE
enabled. However, Oracle GoldenGate does not support DDL that creates tables
with the FLASHBACK ARCHIVE clause or DDL that creates, alters, or deletes the
flashback data archive itself.

Chapter 1
Details of Support for Objects and Operations in Oracle DML

1-8

Limitations of Support for Views
These limitations apply to Extract.

• Oracle GoldenGate supports capture from a view when Extract is in initial-load mode
(capturing directly from the source view, not the redo log).

• Oracle GoldenGate does not capture change data from a view, but it supports capture
from the underlying tables of a view.

Limitations of Support for Materialized Views
Materialized views are supported by Extract with the following limitations.

• Materialized views created WITH ROWID are not supported.

• The materialized view log can be created WITH ROWID.

• The source table must have a primary key.

• Truncates of materialized views are not supported. You can use a DELETE FROM
statement.

• DML (but not DDL) from a full refresh of a materialized view is supported. If DDL support
for this feature is required, open an Oracle GoldenGate support case.

• For Replicat the Create MV command must include the FOR UPDATE clause

• Either materialized views can be replicated or the underlying base table(s), but not both.

Limitations of Support for Clustered Tables
Indexed clusters are supported by Extract while hash clusters are not supported.

Sequences and Identity Columns
• Identity columns are supported in Oracle database 18c or higher and requires Integrated

Extract, Parallel Replicat in Integrated mode, or Integrated Replicat.

• Oracle GoldenGate supports the replication of sequence values and identity columns in a
uni-directional and active-passive high-availability configuration.

• Oracle GoldenGate ensures that the target sequence values will always be higher than
those of the source (or equal to them, if the cache is zero).

• Limitations of Support for Sequences

Limitations of Support for Sequences
These limitations apply to integrated and classic capture modes.

• Oracle GoldenGate does not support the replication of sequence values in an active-
active bi-directional configuration.

• The cache size and the increment interval of the source and target sequences must be
identical. The cache can be any size, including 0 (NOCACHE).

• The sequence can be set to cycle or not cycle, but the source and target databases must
be set the same way.

Chapter 1
Details of Support for Objects and Operations in Oracle DML

1-9

• Tables with default sequence columns are excluded from replication for
Coordinated Extract.

Non-supported Objects and Operations in Oracle DML
The following are additional Oracle objects or operations that are not supported by
Extract:

• REF are supported natively for compatibility with Oracle Database 12.2, but not
primary-key based REFs (PKREFs)

• Sequence values in an active-active bi-directional configuration

• Database Replay

• Tables created as EXTERNAL

Details of Support for Objects and Operations in Oracle DDL
This topic outlines the Oracle objects and operation types that Oracle GoldenGate
supports for the capture and replication of DDL operations.

Trigger-based capture is required for Oracle releases that are earlier than version
11.2.0.4. If Extract will run in integrated mode against a version 11.2.0.4 or later of
Oracle Database, then the DDL trigger and supporting objects are not required.

• Supported Objects and Operations in Oracle DDL

• Non-supported Objects and Operations in Oracle DDL

Supported Objects and Operations in Oracle DDL
When the source database is Oracle 11.2.0.4 or later and Extract operates in
integrated mode, DDL capture support is integrated into the database logmining server
and does not require the use of a DDL trigger. You must set the database parameter
compatibility to 11.2.0.4.0. Extract supports DDL that includes password-based column
encryption, such as:

• CREATE TABLE t1 (a number, b varchar2(32) ENCRYPT IDENTIFIED BY
my_password);

• ALTER TABLE t1 ADD COLUMN c varchar2(64) ENCRYPT IDENTIFIED BY
my_password;

Note:

Password-based column encryption in DDL is not supported in classic
capture mode.

The following additional statements apply to Extract with respect to DDL support.

• All Oracle GoldenGate topology configurations are supported for Oracle DDL
replication.

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

1-10

• Active-active (bi-directional) replication of Oracle DDL is supported between two (and
only two) databases that contain identical metadata.

• Oracle GoldenGate supports DDL on the following objects:

– clusters

– directories

– functions

– indexes

– packages

– procedure

– tables

– tablespaces

– roles

– sequences

– synonyms

– triggers

– types

– views

– materialized views

– users

– invisible columns

• Oracle Edition-Based Redefinition (EBR) database replication of Oracle DDL is supported
for integrated Extract for the following Oracle Database objects:

– functions

– library

– packages (specification and body)

– procedure

– synonyms

– types (specification and body)

– views

EBR does not support use of DDL triggers.

• Oracle GoldenGate supports DDL operations of up to 4 MB in size. Oracle GoldenGate
measures the size of DDL statement in bytes, not in characters. This size limitation
includes packages, procedures, and functions. The actual size limit of the DDL support is
approximate, because the size not only includes the statement text, but also Oracle
GoldenGate maintenance overhead that depends on the length of the object name, the
DDL type, and other characteristics of keeping a DDL record internally.

• Oracle GoldenGate supports Global Temporary Tables (GTT) DDL operations to be
visible to Extract so that they can be replicated. You must set the DDLOPTIONS parameter
to enable this operation because it is not set by default.

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

1-11

• Oracle GoldenGate supports Integrated Dictionary for use with NOUSERID and
TRANLOGOPTIONS GETCTASDML. This means that Extract will be obtaining object
metadata from the LogMiner dictionary instead of the DDL trigger and without
querying the dictionary objects. Oracle GoldenGate uses Integrated Dictionary
automatically when the source database compatibility parameter is greater than or
equal to 11.2.0.4 and Integrated Extract is used.

The Integrated Dictionary feature is not supported with classic Extract.

When using Integrated Dictionary and trail format in the Oracle GoldenGate
release 12.2.x, Integrated Capture requires the Logminer patch to be applied on
the mining database if the Oracle Database release is earlier than 12.1.0.2.

• Oracle GoldenGate supports replication of invisible columns in Integrated Capture
mode. Trail format release 12.2 is required. Replicat must specify the
MAPINVISIBLECOLUMNS parameter or explicitly map to invisible columns in the
COLMAP clause of the MAP parameter.

If SOURCEDEFS or TARGETDEFS is used, the metadata format of a definition file for
Oracle tables must be compatible with the trail format. Metadata format 12.2 is
compatible with trail format 12.2, and metadata format earlier than 12.2 is
compatible with trail format earlier than 12.2. To specify the metadata format of a
definition file, use the FORMAT RELEASE option of the DEFSFILE parameter when the
definition file is generated in DEFGEN.

• DDL statements to create a namespace context (CREATE CONTEXT) are captured by
Extract and applied by Replicat.

• Extract in pump mode supports the following DDL options:

– DDL INCLUDE ALL
– DDL EXCLUDE ALL
– DDL EXCLUDE OBJNAME
The SOURCECATALOG and ALLCATALOG option of DDL EXCLUDE is also supported.

If no DDL parameter is specified, then all DDLs are written to trail. If DDL EXCLUDE
OBJNAME is specified and the object owner is does not match an exclusion rule,
then it is written to the trail.

Non-supported Objects and Operations in Oracle DDL
These statements apply to integrated and classic capture modes.

• Excluded Objects

• Other Non-supported DDL

Excluded Objects
The following names or name prefixes are considered Oracle-reserved and must be
excluded from the Oracle GoldenGate DDL configuration. Oracle GoldenGate will
ignore objects that contain these names.

Excluded schemas:

 "ANONYMOUS", // HTTP access to XDB
 "APPQOSSYS", // QOS system user
 "AUDSYS", // audit super user

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

1-12

 "BI", // Business Intelligence
 "CTXSYS", // Text
 "DBSNMP", // SNMP agent for OEM
 "DIP", // Directory Integration Platform
 "DMSYS", // Data Mining
 "DVF", // Database Vault
 "DVSYS", // Database Vault
 "EXDSYS", // External ODCI System User
 "EXFSYS", // Expression Filter
 "GSMADMIN_INTERNAL", // Global Service Manager
 "GSMCATUSER", // Global Service Manager
 "GSMUSER", // Global Service Manager
 "LBACSYS", // Label Security
 "MDSYS", // Spatial
 "MGMT_VIEW", // OEM Database Control
 "MDDATA",
 "MTSSYS", // MS Transaction Server
 "ODM", // Data Mining
 "ODM_MTR", // Data Mining Repository
 "OJVMSYS", // Java Policy SRO Schema
 "OLAPSYS", // OLAP catalogs
 "ORACLE_OCM", // Oracle Configuration Manager User
 "ORDDATA", // Intermedia
 "ORDPLUGINS", // Intermedia
 "ORDSYS", // Intermedia
 "OUTLN", // Outlines (Plan Stability)
 "SI_INFORMTN_SCHEMA", // SQL/MM Still Image
 "SPATIAL_CSW_ADMIN", // Spatial Catalog Services for Web
 "SPATIAL_CSW_ADMIN_USR",
 "SPATIAL_WFS_ADMIN", // Spatial Web Feature Service
 "SPATIAL_WFS_ADMIN_USR",
 "SYS",
 "SYSBACKUP",
 "SYSDG",
 "SYSKM",
 "SYSMAN", // Adminstrator OEM
 "SYSTEM",
 "TSMSYS", // Transparent Session Migration
 "WKPROXY", // Ultrasearch
 "WKSYS", // Ultrasearch
 "WK_TEST",
 "WMSYS", // Workspace Manager
 "XDB", // XML DB
 "XS$NULL",
 "XTISYS", // Time Index

Special schemas:

 "AURORAJISUTILITY$", // JSERV
 "AURORAORBUNAUTHENTICATED", // JSERV
 "DSSYS", // Dynamic Services Secured Web Service
 "OSE$HTTP$ADMIN", // JSERV
 "PERFSTAT", // STATSPACK
 "REPADMIN",
 "TRACESVR" // Trace server for OEM

Excluded tables (the * wildcard indicates any schema or any character):

 "*.AQ$*", // advanced queues
 "*.DR$*$*", // oracle text
 "*.M*_*$$", // Spatial index

Chapter 1
Details of Support for Objects and Operations in Oracle DDL

1-13

 "*.MLOG$*", // materialized views
 "*.OGGQT$*",
 "*.OGG$*", // AQ OGG queue table
 "*.ET$*", // Data Pump external tables
 "*.RUPD$*", // materialized views
 "*.SYS_C*", // constraints
 "*.MDR*_*$", // Spatial Sequence and Table
 "*.SYS_IMPORT_TABLE*",
 "*.CMP*$*", // space management, rdbms >= 12.1
 "*.DBMS_TABCOMP_TEMP_*", // space management, rdbms < 12.1
 "*.MDXT_*$*" // Spatial extended statistics tables

Other Non-supported DDL
Oracle GoldenGate does not support the following:

• DDL on nested tables.

• DDL on identity columns.

• ALTER DATABASE and ALTER SYSTEM (these are not considered to be DDL) Using
dictionary, you can replicate ALTER DATABASE DEFAULT EDITION and ALTER
PLUGGABLE DATABASE DEFAULT EDITION. All other ALTER [PLUGABLE] DATABASE
commands are ignored.

• DDL on a standby database.

• Database link DDL.

• DDL that creates tables with the FLASHBACK ARCHIVE clause and DDL that creates,
alters, or deletes the flashback data archive itself. DML on tables with FLASHBACK
ARCHIVE is supported.

• Some DDL will generate system generated object names. The names of system
generated objects may not always be the same between two different databases.
So, DDL operations on objects with system generated names should only be done
if the name is exactly the same on the target.

Integrating Oracle GoldenGate into a Cluster
If you installed Oracle GoldenGate in a cluster, take the following steps to integrate
Oracle GoldenGate within the cluster solution.

For more information about installing and using Oracle GoldenGate in a cluster, see
the following white papers for Classic and Microservices architectures:

1. Oracle GoldenGate Classic Architecture with Oracle Real Application Clusters
Configuration Best Practices

2. Oracle GoldenGate Microservices Architecture with Oracle Real Application
Clusters Configuration Best Practices

• General Requirements in a Cluster

• Adding Oracle GoldenGate as a Windows Cluster Resource

Chapter 1
Integrating Oracle GoldenGate into a Cluster

1-14

https://www.oracle.com/a/tech/docs/maa-goldengate-classic-rac.pdf
https://www.oracle.com/a/tech/docs/maa-goldengate-classic-rac.pdf
https://www.oracle.com/a/tech/docs/maa-ggmicroservices-on-rac.pdf
https://www.oracle.com/a/tech/docs/maa-ggmicroservices-on-rac.pdf

General Requirements in a Cluster
1. Configure the Oracle Grid Infrastructure Bundled Agent (XAG) to automatically manage

the GoldenGate processes on the cluster nodes. See Configuring Oracle GoldenGate
with Oracle Grid Infrastructure Bundled Agents (XAG) to know more.

Using the XAG makes sure that the required cluster file system is mounted before the
Oracle GoldenGate processes are started. If an application virtual IP (VIP) is used in the
cluster the bundled agent will also ensure the VIP is started on the correct node.

2. Configure the Oracle GoldenGate Manager process with the AUTOSTART and AUTORESTART
parameters so that Manager starts the replication processes automatically.

3. Mount the shared drive on one node only. This prevents processes from being started on
another node. Use the same mount point on all nodes. If you are using the Oracle Grid
Infrastructure Bundled Agent, the mounting of the required file systems are automatically
carried out.

4. Ensure that all database instances in the cluster have the same COMPATIBLE parameter
setting.

5. Configure Oracle GoldenGate as directed in this documentation.

Adding Oracle GoldenGate as a Windows Cluster Resource
When installing Oracle GoldenGate in a Windows cluster, follow these instructions to
establish Oracle GoldenGate as a cluster resource and configure the Manager service
correctly on all nodes.

• In the cluster administrator, add the Manager process to the group that contains the
database instance to which Oracle GoldenGate will connect.

• Make sure all nodes on which Oracle GoldenGate will run are selected as possible
owners of the resource.

• Make certain the Manager Windows service has the following dependencies (can be
configured from the Services control panel):

– The database resource

– The disk resource that contains the Oracle GoldenGate directory

– The disk resource that contains the database transaction log files

– The disk resource that contains the database transaction log backup files

Chapter 1
Integrating Oracle GoldenGate into a Cluster

1-15

https://www.oracle.com/technetwork/products/clusterware/overview/ogg-xag-bp-1915977.pdf
https://www.oracle.com/technetwork/products/clusterware/overview/ogg-xag-bp-1915977.pdf

2
Preparing the Database for Oracle
GoldenGate

Learn how to prepare your database for Oracle GoldenGate, including how to configure
connections and logging, how to enable Oracle GoldenGate in your database, how to set the
flashback query, and how to manage server resources.

Topics:

• Configuring Connections for Integrated Processes
If you will be using integrated capture and integrated Replicat, each requires a dedicated
server connection in the tnsnames.ora file.

• Configuring Logging Properties
Oracle GoldenGate relies on the redo logs to capture the data that it needs to replicate
source transactions. The Oracle redo logs on the source system must be configured
properly before you start Oracle GoldenGate processing.

• Enabling Oracle GoldenGate in the Database
The database services required to support Oracle GoldenGate capture and apply must
be enabled explicitly for all Oracle database versions. This is required for all Extract and
Replicat modes.

• Setting Flashback Query
To process certain update records, Extract fetches additional row data from the source
database.

• Managing Server Resources
In integrated mode, Extract interacts with an underlying logmining server in the source
database and Replicat interacts with an inbound server in the target database. This
section provides guidelines for managing the shared memory consumed by the these
servers.

• Ensuring Row Uniqueness in Source and Target Tables
Oracle GoldenGate requires a unique row identifier on the source and target tables to
locate the correct target rows for replicated updates and deletes.

Configuring Connections for Integrated Processes
If you will be using integrated capture and integrated Replicat, each requires a dedicated
server connection in the tnsnames.ora file.

You direct the processes to use these connections with the USERID or USERIDALIAS parameter
in the Extract and Replicat parameter files when you configure those processes.

The following is an example of the dedicated connection required for integrated capture
(Extract) and integrated Replicat.

TEST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = test2)(PORT = 1521))

2-1

)
(CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = test)
)
)

The following are the security options for specifying the connection string in the Extract
or Replicat parameter file.

Password encryption method:

USERID intext@test, PASSWORD mypassword

Credential store method:

USERIDALIAS ext

In the case of USERIDALIAS, the alias ext is stored in the Oracle GoldenGate credential
store with the actual connection string, as in the following example:

AdminClient INFO CREDENTIALSTORE DOMAIN support
Domain: Support
 Alias: ext
 Userid: intext@test

Configuring Logging Properties
Oracle GoldenGate relies on the redo logs to capture the data that it needs to replicate
source transactions. The Oracle redo logs on the source system must be configured
properly before you start Oracle GoldenGate processing.

This section addresses the following logging levels that apply to Oracle GoldenGate.
Which logging level that you use is dependent on the Oracle GoldenGate feature or
features that you are using.

Note:

Redo volume is increased as the result of this required logging. You can wait
until you are ready to start Oracle GoldenGate processing to enable the
logging.

This table shows the Oracle GoldenGate use cases for the different logging properties.

Logging option GGSCI command What it does Use case

Forced logging mode ALTER DATABASE
FORCE LOGGING;

Forces the logging of
all transactions and
loads.

Strongly
recommended for all
Oracle GoldenGate
use cases. FORCE
LOGGING overrides
any table-level
NOLOGGING settings.

Chapter 2
Configuring Logging Properties

2-2

Logging option GGSCI command What it does Use case

Minimum database-
level supplemental
logging

ALTER DATABASE
ADD SUPPLEMENTAL
LOG DATA

Enables minimal
supplemental logging
to add row-chaining
information to the redo
log.

Required for all Oracle
GoldenGate use
cases

Schema-level
supplemental logging,
default setting

See Enabling
Schema-level
Supplemental
Logging.

ADD
SCHEMATRANDATA

Enables unconditional
supplemental logging
of the primary key and
conditional
supplemental logging
of unique key(s) and
foreign key(s) of all
tables in a schema. All
of these keys together
are known as the
scheduling columns.

Enables the logging
for all current and
future tables in the
schema. If the primary
key, unique key, and
foreign key columns
are not identical at
both source and
target, use ALLCOLS.
Required when using
DDL support.

Schema-level
supplemental logging
with unconditional
logging for all
supported columns.
(See Enabling
Schema-level
Supplemental Logging
for non-supported
column types.)

ADD
SCHEMATRANDATA with
ALLCOLS option

Enables unconditional
supplemental logging
of all of the columns in
a table, for all of the
tables in a schema.

Used for bidirectional
and active-active
configurations where
all column values are
checked, not just the
changed columns,
when attempting to
perform an update or
delete. This takes
more resources
though allows for the
highest level of real-
time data validation
and thus conflict
detection.

This method should
also be used if they
are going to be using
the
HANDLECOLLISIONS
parameter for initial
loads.

Schema-level
supplemental logging,
minimal setting

ADD
SCHEMATRANDATA with
NOSCHEDULINGCOLS
option

Enables unconditional
supplemental logging
of the primary key and
all valid unique
indexes of all tables in
a schema.

Use only for
nonintegrated
Replicat. This is the
minimum required
schema-level logging.

Table-level
supplemental logging
with built-in support for
integrated Replicat

See Enabling Table-
level Supplemental
Logging

ADD TRANDATA Enables unconditional
supplemental logging
of the primary key and
conditional
supplemental logging
of unique key(s) and
foreign key(s) of a
table. All of these keys
together are known as
the scheduling
columns.

Required for all Oracle
GoldenGate use
cases unless schema-
level supplemental
logging is used. If the
primary key, unique
key, and foreign key
columns are not
identical at both
source and target, use
ALLCOLS.

Chapter 2
Configuring Logging Properties

2-3

Logging option GGSCI command What it does Use case

Table-level
supplemental logging
with unconditional
logging for all
supported columns.
(See Enabling Table-
level Supplemental
Logging for non-
supported column
types.)

ADD TRANDATA with
ALLCOLS option

Enables unconditional
supplemental logging
of all of the columns of
the table.

Used for bidirectional
and active-active
configurations where
all column values are
checked, not just the
changed columns,
when attempting to
perform an update or
delete. This takes
more resources
though allows for the
highest level of real-
time data validation
and thus conflict
detection.

It can also be used
when the source and
target primary, unique,
and foreign keys are
not the same or are
constantly changing
between source and
target.

Table-level
supplemental logging,
minimal setting

ADD TRANDATA with
NOSCHEDULINGCOLS
option

Enables unconditional
supplemental logging
of the primary key and
all valid unique
indexes of a table.

Use for nonintegrated
Replicat and non-
parallel Replicat. This
is the minimum
required table-level
logging.

Note:

Oracle Databases must be in ARCHIVELOG mode so that Extract can process
the log files.

• Enabling Minimum Database-level Supplemental Logging

• Enabling Schema-level Supplemental Logging

• Enabling Table-level Supplemental Logging

Enabling Minimum Database-level Supplemental Logging
Oracle strongly recommends putting the Oracle source database into forced logging
mode. Forced logging mode forces the logging of all transactions and loads, overriding
any user or storage settings to the contrary. This ensures that no source data in the
Extract configuration gets missed.

In addition, minimal supplemental logging, a database-level option, is required for an
Oracle source database when using Oracle GoldenGate. This adds row chaining
information, if any exists, to the redo log for update operations.

Chapter 2
Configuring Logging Properties

2-4

Note:

Database-level primary key (PK) and unique index (UI) logging is only discouraged
if you are replicating a subset of tables. You can use it with Live Standby, or if
Oracle GoldenGate is going to replicate all tables, like to reduce the downtime for a
migration or upgrade.

Perform the following steps to verify and enable, if necessary, minimal supplemental logging
and forced logging.

1. Log in to SQL*Plus as a user with ALTER SYSTEM privilege.

2. Issue the following command to determine whether the database is in supplemental
logging mode and in forced logging mode. If the result is YES for both queries, the
database meets the Oracle GoldenGate requirement.

SELECT supplemental_log_data_min, force_logging FROM v$database;
3. If the result is NO for either or both properties, continue with these steps to enable them

as needed:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
SQL> ALTER DATABASE FORCE LOGGING;

4. Issue the following command to verify that these properties are now enabled.

SELECT supplemental_log_data_min, force_logging FROM v$database;

The output of the query must be YES for both properties.

5. Switch the log files.

SQL> ALTER SYSTEM SWITCH LOGFILE;

Enabling Schema-level Supplemental Logging
Oracle GoldenGate supports schema-level supplemental logging. Schema-level logging is
required for an Oracle source database when using the Oracle GoldenGate DDL replication
feature. In all other use cases, it is optional, but then you must use table-level logging instead
(see Enabling Table-level Supplemental Logging).

By default, schema-level logging automatically enables unconditional supplemental logging of
the primary key and conditional supplemental logging of unique key(s) and foreign key(s) of
all tables in a schema. Options enable you to alter the logging as needed.

Note:

Oracle strongly recommends using schema-level logging rather than table-level
logging, because it ensures that any new tables added to a schema are captured if
they satisfy wildcard specifications. This method is also recommended because any
changes to key columns are automatically reflected in the supplemental log data
too. For example, if a key changes, there is no need to issue ADD TRANDATA.

Chapter 2
Configuring Logging Properties

2-5

Perform the following steps on the source system to enable schema-level
supplemental logging.

1. Run GGSCI on the source system.

2. Issue the DBLOGIN command with the alias of a user in the credential store who
has privilege to enable schema-level supplemental logging.

DBLOGIN USERIDALIAS alias

See USERIDALIAS in Reference for Oracle GoldenGate for more information
about USERIDALIAS and additional options.

3. When using ADD SCHEMATRANDATA or ADD TRANDATA on a multitenant database, you
can either log directly into the PDB and perform the command. Alternately, if you
are logging in at the root level (using a C## user), then you must include the PDB.
Issue the ADD SCHEMATRANDATA command for each schema for which you want to
capture data changes with Oracle GoldenGate.

DD SCHEMATRANDATA pdb.schema [ALLCOLS | NOSCHEDULINGCOLS]

Where:

• Without options, ADD SCHEMATRANDATA schema enables the unconditional
supplemental logging on the source system of the primary key and the
conditional supplemental logging of all unique key(s) and foreign key(s) of all
current and future tables in the given schema. Unconditional logging forces the
primary key values to the log whether or not the key was changed in the
current operation. Conditional logging logs all of the column values of a foreign
or unique key if at least one of them was changed in the current operation.
The default is optional to support nonintegrated Replicat but is required to
support integrated Replicat because primary key, unique keys, and foreign
keys must all be available to the inbound server to compute dependencies.
For more information about integrated Replicat, see Deciding Which Apply
Method to Use.

• ALLCOLS can be used to enable the unconditional supplemental logging of all
of the columns of a table and applies to all current and future tables in the
given schema. Use to support integrated Replicat when the source and target
tables have different scheduling columns. (Scheduling columns are the
primary key, the unique key, and the foreign key.)

• NOSCHEDULINGCOLS logs only the values of the primary key and all valid unique
indexes for existing tables in the schema and new tables added later. This is
the minimal required level of schema-level logging and is valid only for
Replicat in nonintegrated mode.

In the following example, the command enables default supplemental logging for
the finance schema.

ADD SCHEMATRANDATA MY_PDB.FINANCE ALLCOLS

In the following example, the command enables the supplemental logging only for
the primary key and valid unique indexes for the HR schema.

ADD SCHEMATRANDATA MY_PDB.HR NOSCHEDULINGCOLS

Chapter 2
Configuring Logging Properties

2-6

Enabling Table-level Supplemental Logging
Enable table-level supplemental logging on the source system in the following cases:

• To enable the required level of logging when not using schema-level logging (see
Enabling Schema-level Supplemental Logging). Either schema-level or table-level
logging must be used. By default, table-level logging automatically enables unconditional
supplemental logging of the primary key and conditional supplemental logging of unique
key(s) and foreign key(s) of a table. Options enable you to alter the logging as needed.

• To prevent the logging of the primary key for any given table.

• To log non-key column values at the table level to support specific Oracle GoldenGate
features, such as filtering and conflict detection and resolution logic.

• If the key columns change on a table that only has table-level supplemental logging, you
must perform ADD TRANDATA on the table prior to allowing any DML activity on the table.

Perform the following steps on the source system to enable table-level supplemental logging
or use the optional features of the command.

1. Run GGSCI on the source system.

2. Issue the DBLOGIN command using the alias of a user in the credential store who has
privilege to enable table-level supplemental logging.

DBLOGIN USERIDALIAS alias

See USERIDALIAS in Reference for Oracle GoldenGatefor more information about
DBLOGIN and additional options.

3. Issue the ADD TRANDATA command.

ADD TRANDATA [PDB.]schema.table [, COLS (columns)] [, NOKEY] [, ALLCOLS |
NOSCHEDULINGCOLS]

Where:

• PDB is the name of the root container or pluggable database if the table is in a
multitenant container database.

• schema is the source schema that contains the table.

• table is the name of the table. See Specifying Object Names in Oracle GoldenGate
Input in Administering Oracle GoldenGate for instructions for specifying object
names.

• ADD TRANDATA without other options automatically enables unconditional
supplemental logging of the primary key and conditional supplemental logging of
unique key(s) and foreign key(s) of the table. Unconditional logging forces the
primary key values to the log whether or not the key was changed in the current
operation. Conditional logging logs all of the column values of a foreign or unique key
if at least one of them was changed in the current operation. The default is optional to
support nonintegrated Replicat (see also NOSCHEDULINGCOLS) but is required to
support integrated Replicat because primary key, unique keys, and foreign keys must
all be available to the inbound server to compute dependencies. For more
information about integrated Replicat, see Deciding Which Apply Method to Use.

• ALLCOLS enables the unconditional supplemental logging of all of the columns of the
table. Use to support integrated Replicat when the source and target tables have

Chapter 2
Configuring Logging Properties

2-7

different scheduling columns. (Scheduling columns are the primary key, the
unique key, and the foreign key.)

• NOSCHEDULINGCOLS is valid for Replicat in nonintegrated mode only. It issues
an ALTER TABLE command with an ADD SUPPLEMENTAL LOG DATA ALWAYS
clause that is appropriate for the type of unique constraint that is defined for
the table, or all columns in the absence of a unique constraint. This command
satisfies the basic table-level logging requirements of Oracle GoldenGate
when schema-level logging will not be used. See Ensuring Row Uniqueness in
Source and Target Tables for how Oracle GoldenGate selects a key or index.

• COLS columns logs non-key columns that are required for a KEYCOLS clause or
for filtering and manipulation. The parentheses are required. These columns
will be logged in addition to the primary key unless the NOKEY option is also
present.

• NOKEY prevents the logging of the primary key or unique key. Requires a
KEYCOLS clause in the TABLE and MAP parameters and a COLS clause in the ADD
TRANDATA command to log the alternate KEYCOLS columns.

4. If using ADD TRANDATA with the COLS option, create a unique index for those
columns on the target to optimize row retrieval. If you are logging those columns
as a substitute key for a KEYCOLS clause, make a note to add the KEYCOLS clause to
the TABLE and MAP statements when you configure the Oracle GoldenGate
processes.

Enabling Oracle GoldenGate in the Database
The database services required to support Oracle GoldenGate capture and apply must
be enabled explicitly for all Oracle database versions. This is required for all Extract
and Replicat modes.

To enable Oracle GoldenGate, set the following database initialization parameter. All
instances in Oracle RAC must have the same setting.

ENABLE_GOLDENGATE_REPLICATION=true

This parameter alters the DBA_FEATURE_USAGE_STATISTICS view. For more information
about this parameter, see Initialization Parameters.

Setting Flashback Query
To process certain update records, Extract fetches additional row data from the source
database.

Oracle GoldenGate fetches data for the following:

• User-defined types

• Nested tables

• XMLType objects

By default, Oracle GoldenGate uses Flashback Query to fetch the values from the
undo (rollback) tablespaces. That way, Oracle GoldenGate can reconstruct a read-
consistent row image as of a specific time or SCN to match the redo record.

For best fetch results, configure the source database as follows:

Chapter 2
Enabling Oracle GoldenGate in the Database

2-8

1. Set a sufficient amount of redo retention by setting the Oracle initialization parameters
UNDO_MANAGEMENT and UNDO_RETENTION as follows (in seconds).

UNDO_MANAGEMENT=AUTO

UNDO_RETENTION=86400

UNDO_RETENTION can be adjusted upward in high-volume environments.
2. Calculate the space that is required in the undo tablespace by using the following

formula.

undo_space = UNDO_RETENTION * UPS + overhead

Where:

• undo_space is the number of undo blocks.

• UNDO_RETENTION is the value of the UNDO_RETENTION parameter (in seconds).

• UPS is the number of undo blocks for each second.

• overhead is the minimal overhead for metadata (transaction tables, etc.).

Use the system view V$UNDOSTAT to estimate UPS and overhead.

3. For tables that contain LOBs, do one of the following:

• Set the LOB storage clause to RETENTION. This is the default for tables that are
created when UNDO_MANAGEMENT is set to AUTO.

• If using PCTVERSION instead of RETENTION, set PCTVERSION to an initial value of 25.
You can adjust it based on the fetch statistics that are reported with the STATS
EXTRACT command. If the value of the STAT_OPER_ROWFETCH CURRENTBYROWID or
STAT_OPER_ROWFETCH_CURRENTBYKEY field in these statistics is high, increase
PCTVERSION in increments of 10 until the statistics show low values.

4. Grant either of the following privileges to the Oracle GoldenGate Extract user:

GRANT FLASHBACK ANY TABLE TO db_user

GRANT FLASHBACK ON schema.table TO db_user
Oracle GoldenGate provides the following parameters to manage fetching.

Parameter or Command Description

STATS EXTRACT command
with REPORTFETCH option

Shows Extract fetch statistics on demand.

STATOPTIONS parameter
with REPORTFETCH option

Sets the STATS EXTRACT command so that it always shows fetch
statistics.

MAXFETCHSTATEMENTS
parameter

Controls the number of open cursors for prepared queries that Extract
maintains in the source database, and also for SQLEXEC operations.

MAXFETCHSTATEMENTS
parameter

Controls the default fetch behavior of Extract: whether Extract performs a
flashback query or fetches the current image from the table.

FETCHOPTIONS parameter
with the
USELATESTVERSION or
NOUSELATESTVERSION
option

Handles the failure of an Extract flashback query, such as if the undo
retention expired or the structure of a table changed. Extract can fetch
the current image from the table or ignore the failure.

Chapter 2
Setting Flashback Query

2-9

Parameter or Command Description

REPFETCHEDCOLOPTIONS
parameter

Controls the response by Replicat when it processes trail records that
include fetched data or column-missing conditions.

Managing Server Resources
In integrated mode, Extract interacts with an underlying logmining server in the source
database and Replicat interacts with an inbound server in the target database. This
section provides guidelines for managing the shared memory consumed by the these
servers.

The shared memory that is used by the servers comes from the Streams pool portion
of the System Global Area (SGA) in the database. Therefore, you must set the
database initialization parameter STREAMS_POOL_SIZE high enough to keep enough
memory available for the number of Extract and Replicat processes that you expect to
run in integrated mode. Note that Streams pool is also used by other components of
the database (like Oracle Streams, Advanced Queuing, and Datapump export/import),
so make certain to take them into account while sizing the Streams pool for Oracle
GoldenGate.

By default, one integrated capture Extract requests the logmining server to run with
MAX_SGA_SIZE of 1GB. Thus, if you are running three Extracts in integrated capture
mode in the same database instance, you need at least 3 GB of memory allocated to
the Streams pool. As a best practice, keep 25 percent of the Streams pool available.
For example, if there are 3 Extracts in integrated capture mode, set
STREAMS_POOL_SIZE for the database to the following value:

3 GB * 1.25 = 3.75 GB

Ensuring Row Uniqueness in Source and Target Tables
Oracle GoldenGate requires a unique row identifier on the source and target tables to
locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate
selects a row identifier to use in the following order of priority, depending on the
number and type of constraints that were logged (see Configuring Logging Properties).

1. Primary key if it does not contain any extended (32K) VARCHAR2/NVARCHAR2
columns. Primary key without invisible columns.

2. Unique key: Unique key without invisible columns.

In the case of a non-integrated Replicat, the selection of the unique key is as
follows:

• First unique key alphanumerically with no virtual columns, no UDTs, no
function-based columns, no nullable columns, and no extended (32K)
VARCHAR2/NVARCHAR2 columns. To support a key that contains columns that
are part of an invisible index, you must use the ALLOWINVISIBLEINDEXKEYS
parameter in the Oracle GoldenGate GLOBALS file.

• First unique key alphanumerically with no virtual columns, no UDTs, no
extended (32K) VARCHAR2/NVARCHAR2 columns, or no function-based columns,
but can include nullable columns. To support a key that contains columns that

Chapter 2
Managing Server Resources

2-10

are part of an invisible index, you must use the ALLOWINVISIBLEINDEXKEYS parameter
in the Oracle GoldenGate GLOBALS file.

3. Not Nullable Unique keys: At least one column from one of the unique keys must be not
nullable. This is because NOALLOWNULLABLEKEYS is the default.

Note:

ALLOWNULLABLEKEYS is not valid for integrated Replicat.

4. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding virtual columns, UDTs, function-
based columns, extended (32K) VARCHAR2/NVARCHAR2 columns, and any columns that are
explicitly excluded from the Oracle GoldenGate configuration by an Oracle GoldenGate
user.

Unless otherwise excluded due to the preceding restrictions, invisible columns are
allowed in the pseudo key.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use a
larger, less efficient WHERE clause.

If a table does not have an appropriate key, or if you prefer the existing key(s) not to be used,
you can define a substitute key if the table has columns that always contain unique values.
You define this substitute key by including a KEYCOLS clause within the Extract TABLE
parameter and the Replicat MAP parameter. The specified key will override any existing
primary or unique key that Oracle GoldenGate finds. For more information, see Reference for
Oracle GoldenGate.

Chapter 2
Ensuring Row Uniqueness in Source and Target Tables

2-11

3
Establishing Oracle GoldenGate Credentials

Learn how to create database users for the processes that interacts with the database,
assign the correct privileges, and secure the credentials from unauthorized use.

Topics

• Assigning Credentials to Oracle GoldenGate
The Oracle GoldenGate processes require one or more database credentials with the
correct database privileges for the database version, database configuration, and Oracle
GoldenGate features that you are using.

• Securing the Oracle GoldenGate Credentials
To preserve the security of your data, and to monitor Oracle GoldenGate processing
accurately, do not permit other users, applications, or processes to log on as, or operate
as, an Oracle GoldenGate database user.

Assigning Credentials to Oracle GoldenGate
The Oracle GoldenGate processes require one or more database credentials with the correct
database privileges for the database version, database configuration, and Oracle
GoldenGate features that you are using.

Create users for the source and target database instances, each one dedicated to Oracle
GoldenGate. The assigned user can be the same user for all the Oracle GoldenGate
processes that must connect to a source or target Oracle Database.

See Creating and Populating the Credential Store to learn about creating and using the
credential store.

• Oracle GoldenGate Users (Database)

Oracle GoldenGate Users (Database)
A user is required in the source database for the Service Manager in MA or the Manager
process in CA if you are using Oracle GoldenGate DDL support. This user performs
maintenance on the Oracle GoldenGate database objects that support DDL capture.

A user is required in either the source or target database for the DEFGEN utility. The location
depends on where the data definition file is being generated. This user performs local
metadata queries to build a data-definitions file that supplies the metadata to remote Oracle
GoldenGate instances.

Additional users or privileges may be required to use the following features, if Extract will run
in classic capture mode:

• RMAN log retention, see Log Retention Options.

• TDE support, see Configuring Oracle TDE Data in Classic Capture Mode.

• ASM, see Mining ASM-stored Logs in Classic Capture Mode.

3-1

• Granting the Appropriate User Privileges

Granting the Appropriate User Privileges
The user privileges that are required for Oracle GoldenGate depend on the database
version and the Extract or Replicat process mode. For more information about process
modes, see Choosing Capture and Apply Modes.

• Oracle Database Privileges

• About the dbms_goldengate_auth.grant_admin_privilege Package

• Optional Grants for dbms_goldengate_auth.grant_admin_privilege

Oracle Database Privileges
The following privileges apply to Oracle database.

Privilege Extract Replicat All
Modes

Purpose

CREATE SESSION No No Connect to the database

CREATE VIEW No No Required to add the heartbeat
table view.

RESOURCE No No Create objects.

In Oracle Database 12cR1 and
later, instead of RESOURCE,
grant the following privilege:

ALTER USER user QUOTA
{size | UNLIMITED} ON
tablespace;

ALTER SYSTEM No No Perform administrative changes,
such as enabling logging.

ALTER USER No No Required for multitenant
architecture and GGADMIN
should be a valid Oracle
GoldenGate administrator
schema.

EXEC
DBMS_GOLDENGATE_AUTH.GRAN
T_ADMIN_PRIVILEGE
('REPUSER',
CONTAINER=>'PDB1');

Yes Yes This is required for Autonomous
Databases (ATP and ADW)
Extract and Replicat. Extracts in
the Root container (CDB$ROOT))
might require a value of ALL or
a specific PDB.

Privileges granted through
DBMS_GOLDENGATE_AUTH.GRAN
T_ADMIN_PRIVILEGE

No No (Extract) Grants privileges for
Extract, including the logmining
server.

(Replicat) Grants privileges for
both non-integrated and
integrated Replicat, including
the database inbound server.

Chapter 3
Assigning Credentials to Oracle GoldenGate

3-2

Privilege Extract Replicat All
Modes

Purpose

Any or all of optional privileges
of
DBMS_GOLDENGATE_AUTH.GRAN
T_ADMIN_PRIVILEGE

No No • Capture from Virtual Private
Database

• Capture redacted data
See About the
dbms_goldengate_auth.grant_a
dmin_privilege Package for
more information.

Grant the following privileges
connected as SYS user to
Extract and Replicat users:

EXEC
DBMS_GOLDENGATE_AUTH.GRAN
T_ADMIN_PRIVILEGE('ggadmi
n
user','*',GRANT_OPTIONAL_
PRIVILEGES=>'*');
GRANT
DV_GOLDENGATE_ADMIN,
DV_GOLDENGATE_REDO_ACCESS
to 'ggadmin user';

No No Capture from Data Vault

Grant Replicat the privileges in
DBMS_MACADM.ADD_AUTH_TO_R
EALM if applying to a realm.

Connect as Database Vault
owner and execute the
following sctipts,
BEGIN
DVSYS.DBMS_MACADM.ADD_AUT
H_TO_REALM(REALM_NAME =>
'Oracle Default Component
Protection Realm',GRANTEE
=> 'GGADMIN
USER',AUTH_OPTIONS =>
1) ;
END ;
/
EXECUTE
DBMS_MACADM.AUTHORIZE_DD
L('SYS', 'SYSTEM');

No No Capture from Data Vault

If DDL replication is performed,
grant the following as Database
Vault owner:

EXECUTE
DBMS_MACADM.AUTHORIZE_DDL
(‘GGADMIN USER', ‘SCHEMA
FOR DDL’);

No No Capture from Data Vault

INSERT, UPDATE, DELETE on
target tables

NA No Apply replicated DML to target
objects

Chapter 3
Assigning Credentials to Oracle GoldenGate

3-3

Privilege Extract Replicat All
Modes

Purpose

GRANT INSERT ANY TO...,
GRANT UPDATE ANY TO...
and GRANT DELETE ANY
TO...

NA No Use these privileges for the
Replicat user, instead of
granting INSERT, UPDATE,
DELETE to every table, if
replicating every table.

DDL privileges on target objects
(if using DDL support)

NA No Issue replicated DDL on target
objects

LOCK ANY TABLE NA No Lock target tables. Only
required for initial load using
direct bulk load to SQL*Loader.

SELECT ANY DICTIONARY No No Allow all privileges to work
properly on dictionary tables.

SELECT ANY TRANSACTION No NA Use a newer Oracle ASM API.

Here's an example of the list of permissions granted for the Oracle database root
container:

DROP USER c##ggadmin CASCADE;
CREATE USER c##ggadmin IDENTIFIED BY passw0rd CONTAINER=all DEFAULT
TABLESPACE GG_DATA TEMPORARY TABLESPACE temp;
ALTER USER c##ggadmin SET CONTAINER_DATA=all CONTAINER=current;
GRANT CREATE SESSION to c##ggadmin;
GRANT CREATE VIEW to c##ggadmin;
GRANT CONNECT to c##ggadmin CONTAINER=all;
GRANT RESOURCE to c##ggadmin;
GRANT ALTER SYSTEM to c##ggadmin ;
GRANT SELECT ANY DICTIONARY to c##ggadmin ;
EXEC DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE('c##ggadmin');
ALTER USER c##ggadmin QUOTA unlimited ON GG_DATA;

SELECT * FROM DBA_SYS_PRIVS WHERE GRANTEE='c##ggadmin' ORDER BY 2;

In this example, DBA privilege is not provided but the user will be able to access the
DBA_SYS_PRIVS package.

About the dbms_goldengate_auth.grant_admin_privilege Package
Most of the privileges that are needed for Extract and Replicat to operate in classic
and integrated mode are granted through the
dbms_goldengate_auth.grant_admin_privilege package.

The first example is the default, which grants to both Extract and Replicat. The second
shows how to explicitly grant to either Extract or Replicat (in this case, Extract).

grant_admin_privilege('ggadm')
grant_admin_privilege('ggadm','capture');

Chapter 3
Assigning Credentials to Oracle GoldenGate

3-4

The following example shows Extract on Oracle 12c Multitenant Database:

BEGIN
dbms_goldengate_auth.grant_admin_privilege
(grantee => 'C##GGADMIN', privilege_type => 'CAPTURE',
 grant_select_privileges => TRUE, do_grants => TRUE, container => 'ALL'
);
END;

Optional Grants for dbms_goldengate_auth.grant_admin_privilege
This procedure grants the privileges needed by a user to be a Oracle GoldenGate
administrator.

See DBMS_GOLDENGATE_AUTH in Oracle Database PL/SQL Packages and Types Reference

.

Securing the Oracle GoldenGate Credentials
To preserve the security of your data, and to monitor Oracle GoldenGate processing
accurately, do not permit other users, applications, or processes to log on as, or operate as,
an Oracle GoldenGate database user.

Oracle GoldenGate provides different options for securing the log-in credentials assigned to
Oracle GoldenGate processes. The recommended option is to use a credential store. You
can create one credential store and store it in a shared location where all installations of
Oracle GoldenGate can access it, or you can create a separate one on each system where
Oracle GoldenGate is installed.

The credential store stores the user name and password for each of the assigned Oracle
GoldenGate users. A user ID is associated with one or more aliases, and it is the alias that is
supplied in commands and parameter files, not the actual user name or password. The
credential file can be partitioned into domains, allowing a standard set of aliases to be used
for the processes, while allowing the administrator on each system to manage credentials
locally.

See Creating and Populating the Credential Store in Oracle GoldenGate Security Guide for
more information about creating a credential store and adding user credentials.

Chapter 3
Securing the Oracle GoldenGate Credentials

3-5

4
Choosing Capture and Apply Modes

This chapter contains information that helps you determine the appropriate capture and apply
modes for your database environment.
Topics:

• Overview of Oracle GoldenGate Capture and Apply Processes
The Oracle GoldenGate capture process is known as Extract. Each instance of an
Extract process is known as a group, which includes the process itself and the associated
files that support it.

• Deciding Which Capture Method to Use
For an Oracle source database, you can run Extract in either integrated capture or classic
capture mode.

• Deciding Which Apply Method to Use
The Replicat process is responsible for the application of replicated data to an Oracle
target database.

• Using Different Capture and Apply Modes Together
You can use integrated capture and classic capture concurrently within the same source
Oracle GoldenGate instance, and you can use integrated Replicat and nonintegrated
Replicat concurrently within the same target Oracle GoldenGate instance. This
configuration requires careful placement of your objects within the appropriate process
group, because there is no coordination of DDL or DML between classic and integrated
capture modes, nor between nonintegrated and integrated Replicat modes.

• Switching to a Different Process Mode
You can switch between process modes. For example, you can switch from classic
capture to integrated capture, or from integrated capture to classic capture.

Overview of Oracle GoldenGate Capture and Apply Processes
The Oracle GoldenGate capture process is known as Extract. Each instance of an Extract
process is known as a group, which includes the process itself and the associated files that
support it.

An additional Extract process, known as a data pump, is recommended to be used on the
source system, so that captured data can be persisted locally to a series of files known as a
trail. The data pump does not capture data but rather reads the local trail and propagates
the data across the network to the target.

The Oracle GoldenGate apply process is known as Replicat. Each instance of a Replicat
process is known as a group, which includes the process itself and the associated files that
support it. Replicat reads data that is sent to local storage, known as a trail, and applies it
to the target database.

The following diagram illustrates the basic Oracle GoldenGate process configuration.

4-1

Note:

Oracle Databases must be in ARCHIVELOG mode so that Extract can process
the log files.

Deciding Which Capture Method to Use
For an Oracle source database, you can run Extract in either integrated capture or
classic capture mode.

Although you can use the classic capture mode, it is recommended that you use the
integrated capture mode because classic capture has been deprecated and is not
being enhanced for any future releases. It will be desupported in future releases and
any classic Extract configuration will need to be migrated to integrated Extract.

The method that you use determines how you configure the Oracle GoldenGate
processes and depends on such factors as:

• the data types involved

• the database configuration

• the version of the Oracle Database

The following explains these modes and the database versions that each mode
supports.

• About Integrated Capture

• About Classic Capture

About Integrated Capture
In integrated capture mode, the Oracle GoldenGate Extract process interacts directly
with a database logmining server to receive data changes in the form of logical change
records (LCR). The following diagram illustrates the configuration of Extract in
integrated capture mode.

Chapter 4
Deciding Which Capture Method to Use

4-2

Integrated capture supports more data and storage types as compared to classic capture,
and the support is more transparent. For more information, see Summary of Supported
Oracle Data Type and Objects Per Capture Mode.

The following are some additional benefits of integrated capture:

• Because integrated capture is fully integrated with the database, no additional setup is
required to work with Oracle RAC, ASM, and TDE.

• Integrated capture uses the database logmining server to access the Oracle redo stream,
with the benefit of being able to automatically switch between different copies of archive
logs or different mirrored versions of the online logs. Thus integrated capture can
transparently handle the absence of a log file caused by disk corruption, hardware failure,
or operator error, assuming that additional copies of the archived and online logs are
available

• Integrated capture enables faster filtering of tables.

• Integrated capture handles point-in-time recovery and RAC integration more efficiently.

• Integrated capture features integrated log management. The Oracle Recovery Manager
(RMAN) automatically retains the archive logs that are needed by Extract.

• Integrated capture is the only mode that supports capture from a multitenant container
database. One Extract can mine multiple pluggable databases within a multitenant
container database.

• For a release 11.2.0.4 source database and later (with source compatibility set to 11.2.0.4
or higher), the capture of DDL is performed by the logmining server asynchronously and
requires no special triggers, tables, or other database objects to be installed. Oracle
GoldenGate upgrades can be performed without stopping user applications. The use of a
DDL trigger and supporting objects is required when Extract is in integrated mode with an
Oracle 11g source database that is earlier than version 11.2.0.4.

• Because integrated capture and integrated apply are both database objects, the naming
of the objects follow the same rules as other Oracle Database objects, see Specifying
Object Names in Oracle GoldenGate Input in Administering Oracle GoldenGate.

• Integrated Capture Deployment Options

Chapter 4
Deciding Which Capture Method to Use

4-3

Integrated Capture Deployment Options
The deployment options for integrated capture are described in this section and
depend on where the mining database is deployed. The mining database is the one
where the logmining server is deployed.

• Local deployment: For a local deployment, the source database and the mining
database are the same. The source database is the database for which you want
to mine the redo stream to capture changes, and also where you deploy the
logmining server. Because integrated capture is fully integrated with the database,
this mode does not require any special database setup.

• Downstream deployment: In a downstream deployment, the source and mining
databases are different databases. You create the logmining server at the
downstream database. You configure redo transport at the source database to
ship the redo logs to the downstream mining database for capture at that location.
Using a downstream mining server for capture may be desirable to offload the
capture overhead and any other overhead from transformation or other processing
from the production server, but requires log shipping and other configuration.

When using a downstream mining configuration, the source database and mining
database must be of the same platform. For example, if the source database is
running on Windows 64-bit, the downstream database must also be on a Windows
64-bit platform. See Configuring a Downstream Mining Database and Example
Downstream Mining Configuration to configure a downstream mining database.

• Downstream sourceless Extract deployment: In the Extract parameter file,
replace the USERID parameter with NOUSERID. You must use TRANLOGOPTIONS
MININGUSER. Extract obtains all required information from the downstream mining
database. Extract is not dependent on any connection to the source database. The
source database can be shutdown and restarted without affecting Extract.

Extract will abend if it encounters redo changes that require data to be fetched
from the source database.

To capture any tables that are listed as ID KEY in the
dba_goldengate_support_mode view, you need to have a FETCHUSERID or
FETCHUSERIDALIAS connection to the support the tables. Tables that are listed as
FULL do not require this. We also need to state that if a customer wants to perform
SQLEXEC operations that perform a query or execute a stored procedure they
cannot use this method as it is incompatible with NOUSERID because SQLEXEC
works with USERID or USERIDALIAS.

About Classic Capture
In classic capture mode, the Oracle GoldenGate Extract process captures data
changes from the Oracle redo or archive log files on the source system or from
shipped archive logs on a standby system. The following diagram illustrates the
configuration of an Extract in classic capture mode.

Note:

Classic capture has been deprecated from Oracle GoldenGate 18c (18.1.0)
and higher releases.

Chapter 4
Deciding Which Capture Method to Use

4-4

Classic capture supports most Oracle data types fully, with restricted support for the complex
data types. Classic capture is the original Oracle GoldenGate capture method. You can use
classic capture for any source Oracle RDBMS that is supported by Oracle GoldenGate, with
the exception of the multitenant container database.

For more information, see Details of Support for Oracle Data Types and Objects.

Deciding Which Apply Method to Use
The Replicat process is responsible for the application of replicated data to an Oracle target
database.

For an Oracle target database, you can run Replicat in parallel, non-integrated or integrated
mode. Oracle recommends that you use the parallel Replicat unless a specific feature
requires a different type of Replicat.

Topics:

• About Parallel Replicat

• About Non-integrated Replicat

• About the Integrated Replicat Mode

About Parallel Replicat

Parallel Replicat is a new variant of Replicat that applies transactions in parallel to improve
performance.

It takes into account dependencies between transactions, similar to Integrated Replicat. The
dependency computation, parallelism of the mapping and apply is performed outside the
database so can be off-loaded to another server. The transaction integrity is maintained in
this process. In addition, parallel Replicat supports the parallel apply of large transactions by
splitting a large transaction into chunks and applying them in parallel.

The following table lists the features supported by the respective Replicats.

Chapter 4
Deciding Which Apply Method to Use

4-5

Feature Parallel
Replicat

Integrated
Replicat

Coordinated Replicat Classic
Replicat

Batch
Processing

Yes Yes Yes Yes

Barrier
Transactions

Yes Yes Yes No

Dependency
Computation

Yes Yes No No

Auto-
parallelism

Yes Yes No No

DML Handler Yes, Integrated
mode

Yes No No

Procedural
Replication

Yes, used for
integrated
Parallel
Replicat (iPR)

Yes No No

Auto CDR Yes, used by
iPR only

Yes No No

Dependency-
aware
Transaction
Split

Yes No No No

Cross-RAC-
node
Processing

Yes No Yes No

ALLOWDUPTAR
GETMAP
See
ALLOWDUPT
ARGETMAP |
NOALLOWDU
PTARGETMA
P

No. Oracle
Database with
iPR

No, Oracle
Database

Yes Yes

Parallel Replicat supports all databases using the non-integrated option. Parallel
Replicat only supports replicating data from trails with full metadata, which requires the
classic trail format.

The components of parallel Replicat are:

• Mappers operate in parallel to read the trail, map trail records, convert the mapped
records to the Integrated Replicat LCR format, and send the LCRs to the Merger
for further processing. While one Mapper maps one set of transactions, the next
Mapper maps the next set of transactions. The the trail information is split and the
trail file is untouched because it orders trail information in order.

• Master processes have two threads, Collater and Scheduler. The Collater receives
mapped transactions from the Mappers and puts them back into trail order for
dependency calculation. The Scheduler calculates dependencies between
transactions, groups transactions into independent batches, and sends the
batches to the Appliers to be applied to the target database.

Chapter 4
Deciding Which Apply Method to Use

4-6

• Appliers reorder records within a batch for array execution. It applies the batch to the
target database and performs error handling. It also tracks applied transactions in
checkpoint tables.

About Non-integrated Replicat

In non-integrated mode, the Replicat process uses standard SQL to apply data directly to the
target tables. In this mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs SQL statements that represent source database DML or DDL transactions (in
committed order).

• Applies the SQL to the target through Oracle Call Interface (OCI).

The following diagram illustrates the configuration of Replicat in non-integrated mode.

Use non-integrated Replicat when you want to make heavy use of features that are not
supported in integrated Replicat mode, see About the Integrated Replicat Mode.

You can apply transactions in parallel with a non-integrated Replicat by using a coordinated
Replicat configuration.

About the Integrated Replicat Mode
In integrated mode, the Replicat process leverages the apply processing functionality that is
available within the Oracle Database. In this mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs logical change records (LCR) that represent source database DML
transactions (in committed order). DDL is applied directly by Replicat.

• Attaches to a background process in the target database known as a database inbound
server by means of a lightweight streaming interface.

Chapter 4
Deciding Which Apply Method to Use

4-7

• Transmits the LCRs to the inbound server, which applies the data to the target
database.

The following figure illustrates the configuration of Replicat in integrated mode.

Within a single Replicat configuration, multiple inbound server child processes known
as apply servers apply transactions in parallel while preserving the original transaction
atomicity. You can increase this parallelism as much as your target system will support
when you configure the Replicat process or dynamically as needed. The following
diagram illustrates integrated Replicat configured with two parallel apply servers.

Integrated Replicat applies transactions asynchronously. Transactions that do not have
interdependencies can be safely executed and committed out of order to achieve fast
throughput. Transactions with dependencies are guaranteed to be applied in the same
order as on the source.

A reader process in the inbound server computes the dependencies among the
transactions in the workload based on the constraints defined at the target database
(primary key, unique, foreign key). Barrier transactions and DDL operations are

Chapter 4
Deciding Which Apply Method to Use

4-8

managed automatically, as well. A coordinator process coordinates multiple transactions and
maintains order among the apply servers.

If the inbound server does not support a configured feature or column type, Replicat
disengages from the inbound server, waits for the inbound server to complete transactions in
its queue, and then applies the transaction to the database in direct apply mode through OCI.
Replicat resumes processing in integrated mode after applying the direct transaction.

The following features are applied in direct mode by Replicat:

• DDL operations

• Sequence operations

• SQLEXEC parameter within a TABLE or MAP parameter

• EVENTACTIONS processing

• UDT Note, if the extract uses USENATIVEOBJSUPPORT to capture the UDT, then integrated
Replicat will apply it with the inbound server, otherwise it will be handled by Replicat
directly.

Because transactions are applied serially in direct apply mode, heavy use of such operations
may reduce the performance of the integrated Replicat mode. Integrated Replicat performs
best when most of the apply processing can be performed in integrated mode, see Monitoring
and Controlling Processing After the Instantiation in Using Oracle GoldenGate for Oracle
Database.

Note:

User exits are executed in integrated mode. The user exit may produce unexpected
results, however, if the exit code depends on data in the replication stream.

• Benefits of Integrated Replicat

• Integrated Replicat Requirements

Benefits of Integrated Replicat
The following are the benefits of using integrated Replicat versus nonintegrated Replicat.

• Integrated Replicat enables heavy workloads to be partitioned automatically among
parallel apply processes that apply multiple transactions concurrently, while preserving
the integrity and atomicity of the source transaction. Both a minimum and maximum
number of apply processes can be configured with the PARALLELISM and
MAX_PARALLELISM parameters. Replicat automatically adds additional servers when the
workload increases, and then adjusts downward again when the workload lightens.

• Integrated Replicat requires minimal work to configure. All work is configured within one
Replicat parameter file, without configuring range partitions.

• High-performance apply streaming is enabled for integrated Replicat by means of a
lightweight application programming interface (API) between Replicat and the inbound
server.

• Barrier transactions are coordinated by integrated Replicat among multiple server apply
processes.

Chapter 4
Deciding Which Apply Method to Use

4-9

• DDL operations are processed as direct transactions that force a barrier by waiting
for server processing to complete before the DDL execution.

• Transient duplicate primary key updates are handled by integrated Replicat in a
seamless manner.

• Integrated Replicat works with single or pluggable databases.

Integrated Replicat Requirements
To use integrated Replicat, the following must be true.

• The target Oracle Database must be Oracle 11.2.0.4 or later.

• Supplemental logging must be enabled on the source database to support the
computation of dependencies among tables and scheduling of concurrent
transactions on the target. Instructions for enabling the required logging are in
Configuring Logging Properties. This logging can be enabled at any time up to, but
before, you start the Oracle GoldenGate processes.

• Integrated Parallel Replicat is supported on Oracle Database 12.2.0.1 and greater.

Using Different Capture and Apply Modes Together
You can use integrated capture and classic capture concurrently within the same
source Oracle GoldenGate instance, and you can use integrated Replicat and
nonintegrated Replicat concurrently within the same target Oracle GoldenGate
instance. This configuration requires careful placement of your objects within the
appropriate process group, because there is no coordination of DDL or DML between
classic and integrated capture modes, nor between nonintegrated and integrated
Replicat modes.

Each Extract group must process objects that are suited to the processing mode,
based on table data types and attributes. No objects in one Extract can have DML or
DDL dependencies on objects in the other Extract. The same type of segregation must
be applied to the Replicat configuration.

You can use the following capture and apply modes together:

• Classic capture (Oracle or non-Oracle source) and nonintegrated Replicat

• Classic capture (Oracle or non-Oracle source) and integrated Replicat

• Integrated capture and nonintegrated Replicat

• Integrated capture and integrated Replicat

The recommended Oracle GoldenGate configuration, when supported by the Oracle
version, is to use one integrated capture on an Oracle source and one integrated
Replicat per source database on an Oracle target. Integrated capture supports certain
data types more completely than classic capture. One integrated Replicat
configuration supports all Oracle data types either through the inbound server or by
switching to direct apply when necessary, and it preserves source transaction integrity.
You can adjust the parallelism settings to the desired apply performance level as
needed.

If the target database is an Oracle version that does not support integrated Replicat, or
if it is a non-Oracle Database, you can use a coordinated Replicat configuration. See
Administering Oracle GoldenGate for more information.

Chapter 4
Using Different Capture and Apply Modes Together

4-10

Switching to a Different Process Mode
You can switch between process modes. For example, you can switch from classic capture to
integrated capture, or from integrated capture to classic capture.

For instructions, see Performing Administrative Operations inAdministering Oracle
GoldenGate.

Chapter 4
Switching to a Different Process Mode

4-11

5
Using Parallel Replicat

You can create (or add) and configure parallel replication in your environment. New Parallel
Replicat processes then process the information in all the internal stages, from the beginning
to the end in parallel. Components, such as Mappers, Master, and Appliers are also
explained.

To know more about parallel Replicat and the parallel replication architecture, see About
Parallel Replicat.

Topics:

• Parallel Replication Architecture
Parallel replication processes leverage the apply processing functionality that is available
within the Oracle Database in integrated mode.

• Basic Parameters for Parallel Replicat
The following table lists the basic parallel Replicat parameters and their description.

• Creating a Parallel Replicat
You can create a parallel replication using the graphical user interface or the command
line interfaces GGSCI and the Admin Client.

Parallel Replication Architecture
Parallel replication processes leverage the apply processing functionality that is available
within the Oracle Database in integrated mode.

Within a single Replicat configuration, multiple inbound server child processes, known as
apply servers, apply transactions in parallel while preserving the original transaction atomicity.

The architecture diagram depicts the flow of change records through the various processes of
a parallel replication from the trail files to the target database.

The Mappers read the trail file and map records, forward the mapped records to the Master.
The batches are sent to the Appliers where they are applied to the target database.

The Master process consists of two separate threads, Collater and Scheduler. The Collater is
responsible for managing and communicating with the Mappers, along with receiving the

5-1

mapped transactions and reordering them into a single in-order stream. The Scheduler
is responsible for managing and communicating with the Appliers, along with reading
transactions from the Collater, batching them, and scheduling them to Appliers.

The Scheduler controller communicates with the Scheduler to gather any necessary
information (such as, the current low watermark position). The Scheduler controller is
required for CDB mode for Oracle Database because it is responsible for aggregating
information pertaining to the different target PDBs and reporting a unified picture. The
Scheduler controller is created for simplicity and uniformity of implementation, even
when not in CDB mode. Every process reads the parameter file and shares a single
checkpoint file.

Basic Parameters for Parallel Replicat
The following table lists the basic parallel Replicat parameters and their description.

Parameter Description

MAP_PARALLELISM Configures number of mappers. This controls
the number of threads used to read the trail
file. The minimum value is 1, maximum value
is 100 and the default value is 2.

APPLY_PARALLELISM Configures number of appliers. This controls
the number of connections in the target
database used to apply the changes. The
default value is four.

MIN_APPLY_PARALLELISM
MAX_APPLY_PARALLELISM

The Apply parallelism is auto-tuned. You can
set a minimum and maximum value to define
the ranges in which the Replicat automatically
adjusts its parallelism. There are no defaults.
Do not use with APPLY_PARALLELISM at same
time.

SPLIT_TRANS_REC Specifies that large transactions should be
broken into pieces of specified size and
applied in parallel. Dependencies between
pieces are still honored. Disabled by default.

COMMIT_SERIALIZATION Enables commit FULL serialization mode,
which forces transactions to be committed in
trail order.

Advanced Parameters

LOOK_AHEAD_TRANSACTIONS Controls how far ahead the Scheduler looks
when batching transactions. The default value
is 10000.

CHUNK_SIZE Controls how large a transaction must be for
parallel Replicat to consider it as large. When
parallel Replicat encounters a transaction
larger than this size, it will serialize it, resulting
in decreased performance. However,
increasing this value will also increase the
amount of memory consumed by parallel
Replicat.

Chapter 5
Basic Parameters for Parallel Replicat

5-2

Example Parameter File

replicat repA
userid ggadmin, password ***
MAP_PARALLELISM 3
MIN_APPLY_PARALLELISM 2
MAX_APPLY_PARALLELISM 10
SPLIT_TRANS_RECS 1000
map *.*, target *.*;

Creating a Parallel Replicat
You can create a parallel replication using the graphical user interface or the command line
interfaces GGSCI and the Admin Client.

A parallel Replicat requires a checkpoint table so both the Administration Server UI and
Admin Client issue an error when the parallel Replicat does not include a checkpoint table.

Note:

Parallel replication does not support COMMIT_SERIALIZATION in Integrated Mode. To
use this apply process, use Integrated Replicat.

Creating a Non-Integrated Parallel Replication with the Administration Server

1. Open a browser and connect to the Service Manager that you created with the
Configuration Assistant:

https://server_name:service_manger_port/

For Example, https://localhost:9000/. In an non secured environment, use http instead of
https.

The Oracle GoldenGate Service Manager is displayed.

2. Enter the username and password you created and click Sign In.

In the Service Manager, you can see servers that are running.

3. In the Services section, click Administration Server, and then log in.

4. Click the Application Navigation icon to the left of the page title to expand the navigation
panel.

5. Create the checkpoint table by clicking Configuration in the right navigation panel.

6. Ensure that you have a valid credential and log in to the database by clicking the ‘log in
database’ icon under Action.

7. Click the + sign to add a checkpoint table.

8. Enter the schema.name of the checkpoint table that you would like to create, and then
click Submit.

9. Validate that the table was created correctly by logging out of the Credential Alias using
the log out database icon, and then log back in.

Chapter 5
Creating a Parallel Replicat

5-3

Once the log in is complete, your new checkpoint table is listed.

10. Click Overview to return to the main Administration Server page.

11. Click the + sign next to Replicats.

12. Select Nonintegrated Replicat then click Next.

13. Enter the required information making sure that you complete the Credential
Domain and Credential Alias fields before completing the Checkpoint Table field,
and then select your newly created Checkpoint Table from the list.

14. Click Next, and then click Create and Run to complete the Replicat creation.

Creating a Non-Integrated Parallel Replicat with the Admin Client

1. Go the bin directory of your Oracle GoldenGate installation directory.

cd $OGG_HOME/bin
2. Start the Admin Client.

./adminclient

The Admin Client command prompt is displayed.

OGG (not connected) 12>
3. Connect to the Service Manager deployment source:

connect http://localhost:9500 deployment Target1 as oggadmin password
welcome1

You must use http or https in the connection string; this example is a non-SSL
connection.

4. Add the Parallel Replicat, which may take a few minutes to complete:

add replicat R1, parallel, exttrail bb checkpointtable ggadmin.ggcheckpoint

You could use just the two character trail name as part of the ADD REPLICAT or you
can use the full path, such as /u01/oggdeployments/target1/var/lib/data/bb.

5. Verify that the Replicat is running:

info replicat R1

Messages similar to the following are displayed:

REPLICAT R1 Initialized 2016-12-20 13:56 Status RUNNING
Parallel
Checkpoint Lag 00:00:00 (updated 00:00:22 ago)
Process ID 30007
Log Read
Checkpoint File ./ra000000000First Record RBA 0

Chapter 5
Creating a Parallel Replicat

5-4

6
Configuring Capture in Integrated Mode

This chapter contains instructions for configuring the Oracle GoldenGate capture process to
capture transaction data in integrated mode.

Note:

To switch an active Extract configuration from classic to integrated mode, perform
these configuration steps and then see Administering Oracle GoldenGate.

In case the Integrated Extract is running from a remote system, Oracle GoldenGate
automatically enables cross endian interoperability. This implies that if the endian value
where Integrated Extract is running is different from the endian value where the Oracle
database is running, then the cross endian support is automatically enabled.

Topics:

• Prerequisites for Configuring Integrated Capture
You must adhere to the guidelines provided in this topic before configuring an Extract in
integrated mode.

• What to Expect from these Instructions
These instructions show you how to configure a basic Extract parameter (configuration)
file for the primary Extract, which captures transaction data from the data source, and for
a data-pump Extract, which propagates captured data that is stored locally in a trail from
the source system to the target system.

• Configuring the Primary Extract in Integrated Capture Mode
The mining database from which the primary Extract captures log change records from
the logmining server, can be either local or downstream from the source database.

• Configuring the Data Pump Extract
A data pump can perform data filtering, mapping, and conversion, or it can be configured
in pass-through mode, where data is passively transferred as-is, without manipulation.

• Next Steps
A parameter file is a plain text file that is read by an associated Oracle GoldenGate
process. Oracle GoldenGate uses two types of parameter files: a GLOBALS file and
runtime parameter files.

Prerequisites for Configuring Integrated Capture
You must adhere to the guidelines provided in this topic before configuring an Extract in
integrated mode.

The guidelines for configuring an Extract in integrated mode are:

1. Preparing the Database for Oracle GoldenGate.

2. Establishing Oracle GoldenGate Credentials.

6-1

3. Choosing Capture and Apply Modes.

4. Create the Oracle GoldenGate instance on the source system by configuring the
Manager process. See Administering Oracle GoldenGate.

5. Additionally, review the guidelines in Administering Oracle GoldenGate.

What to Expect from these Instructions
These instructions show you how to configure a basic Extract parameter
(configuration) file for the primary Extract, which captures transaction data from the
data source, and for a data-pump Extract, which propagates captured data that is
stored locally in a trail from the source system to the target system.

Your business requirements probably will require a more complex topology, but this
procedure forms a basis for the rest of your configuration steps.

By performing these steps, you can:

• get the basic configuration files established.

• build upon them later by adding more parameters as you make decisions about
features or requirements that apply to your environment.

• use copies of them to make the creation of additional parameter files faster than
starting from scratch.

Configuring the Primary Extract in Integrated Capture Mode
The mining database from which the primary Extract captures log change records from
the logmining server, can be either local or downstream from the source database.

These steps configure the primary Extract to capture transaction data in integrated
mode from either location. See Configuring a Downstream Mining Database and
Example Downstream Mining Configuration for more information about capturing from
a downstream mining database.

Note:

One Extract group is generally sufficient to capture from a single database or
multiple pluggable databases within a multitenant container database. See
Configuring Oracle GoldenGate in a Multitenant Container Database .

1. In GGSCI on the source system, create the Extract parameter file.

EDIT PARAMS name

Where: name is the name of the primary Extract.

Note:

To learn about using Oracle GoldenGate microservices to perform this
task, see How to Add Extracts.

Chapter 6
What to Expect from these Instructions

6-2

2. Enter the Extract parameters in the order shown, starting a new line for each parameter
statement. Examples are shown for a regular database, a multitenant container
database, and downstream deployments for both non-CDB and multitenant databases.
The difference between the two is whether you must use two-part or three-part object
names in the TABLE and SEQUENCE specifications. See the Basic Parameters for primary
Extract (classic or integrated mode) for more information and parameter descriptions.

Basic parameters for Extract mining a non-mulitenant database

EXTRACT financep
USERIDALIAS c##_alias
DDL INCLUDE MAPPED
EXTTRAIL /ggs/dirdat/lt
SEQUENCE hr.employees_seq;
TABLE hr.*;

Basic parameters for Integrated Extract capturing from a multitenant database

EXTRACT financep
USERIDALIAS c##_alias
DDL INCLUDE MAPPED
EXTTRAIL /ggs/dirdat/lt
TABLE test.ogg.tab1;
SEQUENCE hr.employees_seq;
TABLE hr.*;
TABLE sales.*;
TABLE acct.*;

Basic parameters for Extract where the mining database is a downstream database
and is a non-CDB database

EXTRACT financep
USERIDALIAS c##_alias
TRANLOGOPTIONS MININGUSERALIAS c##_alias
TRANLOGOPTIONS INTEGRATEDPARAMS (DOWNSTREAM_REAL_TIME_MINE Y)
LOGALLSUPCOLS
UPDATERECORDFORMAT COMPACT
DDL INCLUDE MAPPED
ENCRYPTTRAIL AES192
EXTTRAIL /ggs/dirdat/lt
SEQUENCE hr.employees_seq;
TABLE hr.*;

Basic parameters for the primary Extract where the mining database is a
downstream database and is a multitenant container database

EXTRACT financep
USERIDALIAS tiger1
TRANLOGOPTIONS MININGUSERALIAS tiger2
TRANLOGOPTIONS INTEGRATEDPARAMS (MAX_SGA_SIZE 164, &
 DOWNSTREAM_REAL_TIME_MINE y)
LOGALLSUPCOLS
UPDATERECORDFORMAT COMPACT
DDL INCLUDE MAPPED SOURCECATALOG pdb1 INCLUDE MAPPED SOURCECATALOG pdb2
ENCRYPTTRAIL AES192EXTTRAIL /ggs/dirdat/lt
TABLE test.ogg.tab1;
SOURCECATALOG pdb1
SEQUENCE hr.employees_seq;
TABLE hr.*;
SOURCECATALOG pdb2

Chapter 6
Configuring the Primary Extract in Integrated Capture Mode

6-3

TABLE sales.*;
TABLE acct.*;

Parameter Description

EXTRACT group group is the name of the Extract group. For more information, see Reference
for Oracle GoldenGate.

USERIDALIAS alias Specifies the alias of the database login credential of the user that is
assigned to Extract. This credential must exist in the Oracle GoldenGate
credential store.

LOGALLSUPCOLS Writes all supplementally logged columns to the trail, including those
required for conflict detection and resolution and the scheduling columns
required to support integrated Replicat. (Scheduling columns are primary
key, unique index, and foreign key columns.) You configure the database to
log these columns with GGSCI commands. See Establishing Oracle
GoldenGate Credentials.

UPDATERECORDFORMAT COMPACT Combines the before and after images of an UPDATE operation into a single
record in the trail. This parameter is valid for Oracle Databases version 12c
and later to support Replicat in integrated mode. Although not a required
parameter, UPDATERECORDFORMAT COMPACT is a best practice and
significantly improves Replicat performance.

TRANLOGOPTIONS
MININGUSERALIAS alias

Specifies connection information for the logmining server at the downstream
mining database, if being used.

MININGUSERALIAS specifies the alias of the Extract user for the downstream
mining database. This is the user that you created in Configuring a
Downstream Mining Database . The credential for this user must be stored in
the Oracle GoldenGate credential store.

Use MININGUSERALIAS only if the database logmining server is in a different
database from the source database; otherwise just use USERIDALIAS. When
using MININGUSERALIAS, use it in addition to USERIDALIAS, because
credentials are required for both databases.

TRANLOGOPTIONS
[INTEGRATEDPARAMS
(parameter[, ...])]

Optional, passes parameters to the Oracle Database that contains the
database logmining server. Use only to change logmining server parameters
from their default settings. See Additional Parameter Options for Integrated
Capture.

TRANLOGOPTIONS
CHECKPOINTRETENTIONTIME days

Optional, controls the number of days that Extract retains checkpoints before
purging them automatically. Partial days can be specified using decimal
values. For example, 8.25 specifies 8 days and 6 hours. For more
information, see Reference for Oracle GoldenGate.

DDL include_clause Required if replicating DDL operations. See Configuring DDL Support for
more information.

ENCRYPTTRAIL algorithm Encrypts the local trail.

EXTTRAIL pathname Specifies the path name of the local trail to which the primary Extract writes
captured data.

Chapter 6
Configuring the Primary Extract in Integrated Capture Mode

6-4

Parameter Description

SOURCECATALOG container Use this parameter when the source database is a multitenant container
database. Specifies the name of a pluggable database that is to be used as
the default container for all subsequent TABLE and SEQUENCE parameters
that contain two-part names. This parameter enables you to use two-part
object names (schema.object) rather than three-part names
(container.schema.object). It remains in effect until another
SOURCECATALOG parameter is encountered or a full three-part TABLE or
SEQUENCE specification is encountered.

{TABLE | SEQUENCE}
[container.]schema.object;

Specifies the database object for which to capture data.

• TABLE specifies a table or a wildcarded set of tables.

• SEQUENCE specifies a sequence or a wildcarded set of sequences.

• container is the name of the pluggable database (PDB) that contains
the object, if this database is a multitenant container database. The
container part of the name is not required if this Extract group will only
process data from one PDB and the default PDB is specified with the
SOURCECATALOG parameter.

• schema is the schema name or a wildcarded set of schemas.

• object is the table or sequence name, or a wildcarded set of those
objects.

Terminate the parameter statement with a semi-colon.

To exclude a name from a wildcard specification, use the CATALOGEXCLUDE,
SCHEMAEXCLUDE, TABLEEXCLUDE, and EXCLUDEWILDCARDOBJECTSONLY
parameters as appropriate.

MAPINVISIBLECOLUMNS Controls whether or not Replicat includes invisible columns in Oracle target
tables for default column mapping. Configure the invisible columns in your
column mapping using SQL to explicitly specify column names. For example:

CREATE TABLE tab1 (id NUMBER, data CLOB INVISIBLE);
 INSERT INTO tab1 VALUES (1, 'a');ERROR: ORA-913
 INSERT INTO tab1 (id, data) VALUES (1, 'a'); OK

You can change the column visibility using ALTER TABLE. The invisible
column can be part of an index, including primary key and unique index.

3. Enter any optional Extract parameters that are recommended for your configuration. You
can edit this file at any point before starting processing by using the EDIT PARAMS
command in GGSCI.

4. Save and close the file.

Configuring the Data Pump Extract
A data pump can perform data filtering, mapping, and conversion, or it can be configured in
pass-through mode, where data is passively transferred as-is, without manipulation.

These steps configure the data pump that reads the local trail and sends the data across the
network to a remote trail. The data pump is optional, but recommended.

Note:

If you want to perform this task using microservices, see How to Add a Path in
Using the Oracle GoldenGate Microservices Architecture.

Chapter 6
Configuring the Data Pump Extract

6-5

1. In GGSCI on the source system, create the data-pump parameter file.

EDIT PARAMS name

Where: name is the name of the data pump Extract.

2. Enter the data pump parameters in the order shown, starting a new line for each
parameter statement. Your input variables will be different.

Basic parameters for the data pump Extract group using two-part object
names from a non-CDB database:

EXTRACT extpump
USERIDALIAS tiger1
RMTHOST fin1, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey2
RMTTRAIL /ggs/dirdat/rt
SEQUENCE hr.employees_seq;
TABLE hr.*;

Basic parameters for the data pump Extract group using three-part object
names from a trail that contains multitenant database data (including a
pluggable database):

EXTRACT extpump
USERIDALIAS tiger1
RMTHOST fin1, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey2
RMTTRAIL /ggs/dirdat/rt
TABLE test.ogg.tab1;
SOURCECATALOG pdb1
SEQUENCE hr.employees_seq;
TABLE hr.*;
SOURCECATALOG pdb2
TABLE sales.*;
TABLE acct.*;

Parameter Description

EXTRACT group group is the name of the data pump Extract. For more information, see Reference for
Oracle GoldenGate.

USERIDALIAS alias Specifies the alias of the database login credential of the user that is assigned to
Extract. This credential must exist in the Oracle GoldenGate credential store.

RMTHOST hostname,
MGRPORT portnumber,
[, ENCRYPT algorithm
KEYNAME keyname]

• RMTHOST specifies the name or IP address of the target system.

• MGRPORT specifies the port number where Manager is running on the target.

• ENCRYPT specifies optional encryption of data across TCP/IP.

RMTTRAIL pathname Specifies the path name of the remote trail.

SOURCECATALOG
container

Use this parameter when the source database is a multitenant container database.
Specifies the name of a pluggable database that is to be used as the default container
for all subsequent TABLE and SEQUENCE parameters that contain two-part names.
This parameter enables you to use two-part object names (schema.object) rather
than three-part names (container.schema.object). It remains in effect until
another SOURCECATALOG parameter is encountered or a full three-part TABLE or
SEQUENCE specification is encountered. Use this parameter when the source
database is a multitenant container database.

Chapter 6
Configuring the Data Pump Extract

6-6

Parameter Description

{TABLE | SEQUENCE}
[container.]schema.ob
ject;

Specifies a table or sequence, or multiple objects specified with a wildcard. In most
cases, this listing will be the same as that in the primary Extract parameter file.

• TABLE specifies a table or a wildcarded set of tables.

• SEQUENCE specifies a sequence or a wildcarded set of sequences.

• container is the name of the root container or pluggable database that contains
the table or sequence, if this source database is a multitenant container
database. See the SOURCECATALOG description in this table.

• schema is the schema name or a wildcarded set of schemas.

• object is the name of a table or sequence, or a wildcarded set of those objects.

Terminate this parameter statement with a semi-colon.

To exclude tables or sequences from a wildcard specification, use the TABLEEXCLUDE
or SEQUENCEEXCLUDE parameter after the TABLE statement.

3. Enter any optional Extract parameters that are recommended for your configuration. You
can edit this file at any point before starting processing by using the EDIT PARAMS
command in GGSCI.

4. Save and close the file.

Next Steps
A parameter file is a plain text file that is read by an associated Oracle GoldenGate process.
Oracle GoldenGate uses two types of parameter files: a GLOBALS file and runtime
parameter files.

Once you have created a basic parameter file for classic capture, see the following for related
configuration steps.

Configuring Oracle GoldenGate Apply

Configuring Oracle GoldenGate in a Multitenant Container Database

Additional Oracle GoldenGate Configuration Considerations

Configuring DDL Support (to use Oracle GoldenGate DDL support)

Creating Process Groups (to use Oracle GoldenGate DDL support)

Instantiating Oracle GoldenGate Replication

Optional Parameters for Integrated Modes

Configuring a Downstream Mining Database

Example Downstream Mining Configuration

Supporting Changes to XML Schemas

Chapter 6
Next Steps

6-7

7
Configuring Oracle GoldenGate Apply

This chapter contains instructions for configuring the Replicat apply process in either
nonintegrated or integrated mode.
Topics:

• Prerequisites for Configuring Replicat
This topic provides the best practices for configuring Replicat.

• What to Expect from these Instructions
These instructions show you how to configure a basic Replicat parameter (configuration)
file.

• Creating a Checkpoint Table
The checkpoint table is a required component of Replicat.

• Configuring Replicat
Configure a Replicat process to configure Replicat against a pluggable database.
Replicat can operate in any mode within a pluggable database.

• Next Steps
Once you have created a basic parameter file for Replicat, see the following for additional
configuration steps.

Prerequisites for Configuring Replicat
This topic provides the best practices for configuring Replicat.

The guidelines to follow before configuring Replicat are:

1. Preparing the Database for Oracle GoldenGate.

2. Establishing Oracle GoldenGate Credentials.

3. Choosing Capture and Apply Modes.

4. Create the Oracle GoldenGate instance on the target system by configuring the Manager
process.

See How to Add a Replicat in Using the Oracle GoldenGate Microservices Architecture.

Note:

To switch an active Replicat configuration from one mode to the other, perform
these configuration steps and then see Administering Oracle GoldenGate.

7-1

What to Expect from these Instructions
These instructions show you how to configure a basic Replicat parameter
(configuration) file.

Your business requirements probably will require a more complex topology, but this
procedure forms a basis for the rest of your configuration steps.

By performing these steps, you can:

• get the basic configuration file established.

• build upon it later by adding more parameters as you make decisions about
features or requirements that apply to your environment.

• use copies of it to make the creation of additional Replicat parameter files faster
than starting from scratch.

Note:

These instructions do not configure Replicat to apply DDL to the target. To
support DDL, create the basic Replicat parameter file and then see
Configuring DDL Support for configuration instructions.

Creating a Checkpoint Table
The checkpoint table is a required component of Replicat.

A Replicat maintains its recovery checkpoints in the checkpoint table, which is stored
in the target database. Checkpoints are written to the checkpoint table within the
Replicat transaction. Because a checkpoint either succeeds or fails with the
transaction, Replicat ensures that a transaction is only applied once, even if there is a
failure of the process or the database. See Before Creating Replicat in the Using the
Oracle GoldenGate Microservices Architecture to learn to create checkpoint tables
from the Microservices web UI.

Note:

This procedure installs a default checkpoint table, which is sufficient in most
cases. More than one checkpoint table can be used, such as to use a
different one for each Replicat group. To use a non-default checkpoint table,
which overrides the default table, use the CHECKPOINTTABLE option of ADD
REPLICAT when you create Replicat processes in the steps in Instantiating
Oracle GoldenGate Replication. .

• Adding the Checkpoint Table to the Target Database

• Specifying the Checkpoint Table in the Oracle GoldenGate Configuration

• Disabling Default Asynchronous COMMIT to Checkpoint Table

Chapter 7
What to Expect from these Instructions

7-2

Adding the Checkpoint Table to the Target Database
1. From the Oracle GoldenGate directory on the target, run GGSCI and issue the DBLOGIN

command to log into the target database.

DBLOGIN USERIDALIAS alias

Where:

• alias specifies the alias of the database login credential of a user that can create
tables in a schema that is accessible to Replicat. This credential must exist in the
Oracle GoldenGate credential store. For more information, see Establishing Oracle
GoldenGate Credentials.

2. In GGSCI, create the checkpoint table in a schema of your choice (ideally dedicated to
Oracle GoldenGate).

ADD CHECKPOINTTABLE [container.]schema.table

Where:

• container is the name of the container if schema.table is in a multitenant container
database. This container can be the root container or a pluggable database that
contains the table.

• schema.table are the schema and name of the table. See Administering Oracle
GoldenGate for instructions for specifying object names.

Specifying the Checkpoint Table in the Oracle GoldenGate Configuration
To specify the checkpoint table in the Oracle GoldenGate configuration:

1. Create a GLOBALS file (or edit the existing one).

EDIT PARAMS ./GLOBALS

Note:

EDIT PARAMS creates a simple text file. When you save the file after EDIT
PARAMS, it is saved with the name GLOBALS in upper case, without a file
extension. It must remain as such, and the file must remain in the root Oracle
GoldenGate directory.

2. In the GLOBALS file, enter the CHECKPOINTTABLE parameter.

CHECKPOINTTABLE [container.]schema.table
3. Save and close the GLOBALS file.

Disabling Default Asynchronous COMMIT to Checkpoint Table
When a nonintegrated Replicat uses a checkpoint table, it uses an asynchronous COMMIT with
the NOWAIT option to improve performance. Replicat can continue processing immediately
after applying this COMMIT, while the database logs the transaction in the background. You

Chapter 7
Creating a Checkpoint Table

7-3

can disable the asynchronous COMMIT with NOWAIT by using the DBOPTIONS parameter
with the DISABLECOMMITNOWAIT option in the Replicat parameter file.

Note:

When the configuration of a nonintegrated Replicat group does not include a
checkpoint table, the checkpoints are maintained in a file on disk. In this
case, Replicat uses COMMIT with WAIT to prevent inconsistencies in the event
of a database failure that causes the state of the transaction, as in the
checkpoint file, to be different than its state after the recovery.

Configuring Replicat
Configure a Replicat process to configure Replicat against a pluggable database.
Replicat can operate in any mode within a pluggable database.

These steps configure the Replicat process.

1. In GGSCI on the target system, create the Replicat parameter file.

EDIT PARAMS name

Where: name is the name of the Replicat group.

2. Enter the Replicat parameters in the order shown, starting a new line for each
parameter statement. See Basic Parameters for Replicat for descriptions.

Basic parameters for the Replicat group in nonintegrated mode:

REPLICAT financer
USERIDALIAS tiger2
ASSUMETARGETDEFS
MAP hr.*, TARGET hr2.*;

Basic parameters for the Replicat group in integrated Replicat mode:

REPLICAT financer
DBOPTIONS INTEGRATEDPARAMS(parallelism 6)
USERIDALIAS tiger2
ASSUMETARGETDEFS
MAP hr.*, TARGET hr2.*;

Parameter Description

REPLICAT group group is the name of the Replicat group.

DBOPTIONS DEFERREFCONST Applies to Replicat in nonintegrated mode. DEFERREFCONST sets constraints
to DEFERRABLE to delay the enforcement of cascade constraints by the target
database until the Replicat transaction is committed. See Reference for Oracle
GoldenGate for additional important information.

DBOPTIONS INTEGRATEDPARAMS
(parameter[, ...])

This parameter specification applies to Replicat in integrated mode. It specifies
optional parameters for the inbound server.

See Optional Parameters for Integrated Modesfor additional important
information about these DBOPTIONS options.

Chapter 7
Configuring Replicat

7-4

Parameter Description

USERIDALIAS alias Specifies the alias of the database login credential of the user that is assigned
to Replicat. This credential must exist in the Oracle GoldenGate credential
store. For more information, see Establishing Oracle GoldenGate Credentials

MAP
[container.]schema.object,
TARGET schema.object;

Specifies the relationship between a source table or sequence, or multiple
objects, and the corresponding target object or objects.

• MAP specifies the source table or sequence, or a wildcarded set of
objects.

• TARGET specifies the target table or sequence or a wildcarded set of
objects.

• container is the name of a container, if the source database is a
multitenant container database.

• schema is the schema name or a wildcarded set of schemas.

• object is the name of a table or sequence, or a wildcarded set of
objects.

Terminate this parameter statement with a semi-colon.

To exclude objects from a wildcard specification, use the MAPEXCLUDE
parameter.

For more information and for additional options that control data filtering,
mapping, and manipulation, see MAP in Reference for Oracle GoldenGate.

3. If using integrated Replicat or parallel Replicat in integrated mode, add the following
parameters to the Extract parameter file:

• LOGALLSUPCOLS: This parameter ensures the capture of the supplementally logged
columns in the before image. It's the default parameter and shouldn't be turned off or
disabled. It is valid for any source database that is supported by Oracle GoldenGate.
For Extract versions older than 12c, you can use GETUPDATEBEFORES and
NOCOMPRESSDELETES parameters to satisfy the same requirement. The database must
be configured to log the before and after values of the primary key, unique indexes,
and foreign keys.

• The UPDATERECORDFORMAT parameter set to COMPACT: This setting causes Extract to
combine the before and after images of an UPDATE operation into a single record in
the trail. This is the default option and it is recommended that you don't change the
default setting.

4. Enter any optional Replicat parameters that are recommended for your configuration. You
can edit this file at any point before starting processing by using the EDIT PARAMS
command in GGSCI. For more information, see the Reference for Oracle GoldenGate
and Optional Parameters for Integrated Modes for additional configuration
considerations..

5. Save and close the file.

Note:

See Administering Oracle GoldenGate for important information about making
configuration changes to Replicat once processing is started, if using integrated
Replicat.

Chapter 7
Configuring Replicat

7-5

Next Steps
Once you have created a basic parameter file for Replicat, see the following for
additional configuration steps.

Configuring Capture in Classic Mode or Configuring Capture in Integrated Mode if you
have not configured capture yet.

Additional Configuration Steps For Using Nonintegrated Replicat (if using
nonintegrated Replicat)

Additional Oracle GoldenGate Configuration Considerations

Configuring DDL Support (to use Oracle GoldenGate DDL support)

Creating Process Groups

Instantiating Oracle GoldenGate Replication

Chapter 7
Next Steps

7-6

8
Additional Oracle GoldenGate Configuration
Considerations

This chapter contains additional configuration considerations that may apply to your database
environment.
Topics:

• Installing Support for Oracle Sequences
To support Oracle sequences, you must install some database procedures.

• Handling Special Data Types
It addresses special configuration requirements for different Oracle data types

• Handling Other Database Properties
This topic describes the database properties that may affect Oracle GoldenGate and the
parameters that you can use to resolve or work around the condition.

• Controlling the Checkpoint Frequency
The CHECKPOINTRETENTIONTIME option of the TRANLOGOPTIONS parameter controls the
number of days that Extract in integrated mode retains checkpoints before purging them
automatically.

• Excluding Replicat Transactions
In a bidirectional configuration, Replicat must be configured to mark its transactions, and
Extract must be configured to exclude Replicat transactions so that they do not propagate
back to their source.

• Advanced Configuration Options for Oracle GoldenGate
You may need to configure Oracle GoldenGate with advanced options to suit your
business needs.

Installing Support for Oracle Sequences
To support Oracle sequences, you must install some database procedures.

To Install Oracle Sequence Objects

1. In SQL*Plus, connect to the source and target Oracle systems as SYSDBA.

2. If you already assigned a database user to support the Oracle GoldenGate DDL
replication feature, you can skip this step. Otherwise, in SQL*Plus on both systems
create a database user that can also be the DDL user.

CREATE USER DDLuser IDENTIFIED BY password;
GRANT CONNECT, RESOURCE, DBA TO DDLuser;

3. From the Oracle GoldenGate installation directory on each system, run GGSCI.

4. In GGSCI, issue the following command on each system.

EDIT PARAMS ./GLOBALS
5. In each GLOBALS file, enter the GGSCHEMA parameter and specify the schema of the DDL

user that you created earlier in this procedure.

8-1

GGSCHEMA schema
6. Save and close the files.

7. In SQL*Plus on both systems, run the sequence.sql script from the root of the
Oracle GoldenGate installation directory. This script creates some procedures for
use by Oracle GoldenGate processes. (Do not run them yourself.) You are
prompted for the user information that you created in the first step.

@sequence.sql
8. In SQL*Plus on the source system, grant EXECUTE privilege on the updateSequence

procedure to a database user that can be used to issue the DBLOGIN command.
Remember or record this user. You use DBLOGIN to log into the database prior to
issuing the FLUSH SEQUENCE command, which calls the procedure.

GRANT EXECUTE on DDLuser.updateSequence TO DBLOGINuser;
9. In SQL*Plus on the target system, grant EXECUTE privilege on the

replicateSequence procedure to the Replicat database user.

GRANT EXECUTE on DDLuser.replicateSequence TO Replicatuser;
10. In SQL*Plus on the source system, issue the following statement in SQL*Plus.

ALTER TABLE sys.seq$ ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

To capture the sequence from a multitenant database

1. Create an Oracle GoldenGate user in each PDB that you need to capture
sequences from.

2. Add the user to the GLOBALS parameter file. It is easier if you use the same user
for each PDB, if you don't then you need to change the GLOBALS file each time
you do step 3.

3. Run the sequence.sql script on each PDB using the user created in step 1.

4. Log into Admin Client or GGSCI.

5. Connect to the root container on the source using DBLOGIN.

6. Issue the FLUSH SEQUENCE command for each PDB.

If replicating sequences into a multitenant database:

1. On the target, create a user as created in step 1 in the previous section, for each
PDB you are replicating sequences into.

2. Connect to the PDB using that user and run the sequence.sql script.

If you don't want to keep these database accounts, you can drop the user or
deactivate the account.

Here is an example of the entire process:

Environment information
 OGG 19.1 Oracle 12c to Oracle 12c Replication, Integrated
 Extract, Parallel Replicat
 Source: CDB GOLD, PDB CERTMISSN
 Target: CDB PLAT, PDB CERTDSQ
 Source Oracle GoldenGate Configuration

Chapter 8
Installing Support for Oracle Sequences

8-2

 Container User: C##GGADMIN
 PDB User for Sequences: GGATE

sqlplus / as sysdba
 SQL> alter session set container=CERTMISSN;
 SQL> create user ggate identified by password default tablespace
users temporary tablespace temp quota unlimited on users container=current;
Run @sequence
 sqlplus / as sysdba
 SQL> alter session set container=CERTMISSN;
 SQL> @sequence

When prompted enter GGATE

GLOBALS
 GGSCHEMA GGATE
 Flush Sequence
 GGSCI> DBLOGIN USERIDALIAS GGADMIN DOMAIN GOLD_QC_CDB$ROOT
 GGSCI> FLUSH SEQUENCE CERTMISSN.SRCSCHEMA1.
Target OGG Configuration
 PDB User: GGATE
 Run @sequence
 sqlplus / as sysdba
 SQL> alter session set container=CERTDSQ;
 SQL> @sequence

When prompted enter GGATE.

Handling Special Data Types
It addresses special configuration requirements for different Oracle data types

This section applies whether Extract operates in classic or integrated capture mode, unless
otherwise noted.

• Multibyte Character Types

• Oracle Spatial Objects

• TIMESTAMP

• Large Objects (LOB)

• XML

• User Defined Types

Multibyte Character Types
Multi-byte characters are supported as part of a supported character set. If the semantics
setting of an Oracle source database is BYTE and the setting of an Oracle target is CHAR, use
the Replicat parameter SOURCEDEFS in your configuration, and place a definitions file that is
generated by the DEFGEN utility on the target. These steps are required to support the
difference in semantics, whether or not the source and target data definitions are identical.

Chapter 8
Handling Special Data Types

8-3

Replicat refers to the definitions file to determine the upper size limit for fixed-size
character columns.

Oracle Spatial Objects
To replicate tables that contain one or more columns of SDO_GEORASTER object type
from an Oracle source to an Oracle target, follow these instructions to configure Oracle
GoldenGate to process them correctly.

1. Create a TABLE statement and a MAP statement for the georaster tables and also
for the related raster data tables.

2. If the METADATA attribute of the SDO_GEORASTER data type in any of the values
exceeds 1 MB, use the DBOPTIONS parameter with the XMLBUFSIZE option to
increase the size of the memory buffer that stores the embedded SYS.XMLTYPE
attribute of the SDO_GEORASTER data type. If the buffer is too small, Extract abends.
See XMLBUFSIZE in Reference for Oracle GoldenGate.

3. To ensure the integrity of the target georaster tables and the spatial data, keep the
trigger enabled on both source and target. Use the REPERROR option of the MAP
parameter to handle the "ORA-01403 No data found" error that occurs as a result
of keeping the trigger enabled on the target. It occurs when a row in the source
georaster table is deleted, and the trigger cascades the delete to the raster data
table. Both deletes are replicated. The replicated parent delete triggers the
cascaded (child) delete on the target. When the replicated child delete arrives, it is
redundant and generates the error. To use REPERROR, do the following:

• Use a REPERROR statement in each MAP statement that contains a raster data
table.

• Use Oracle error 1403 as the SQL error.

• Use any of the response options as the error handling.

A sufficient way to handle the errors on raster tables caused by active triggers on
target georaster tables is to use REPERROR with DISCARD to discard the cascaded delete
that triggers them. The trigger on the target georaster table performs the delete to the
raster data table, so the replicated one is not needed.

MAP geo.st_rdt, TARGET geo.st_rdt, REPERROR (-1403, DISCARD) ;

If you need to keep an audit trail of the error handling, use REPERROR with EXCEPTION to
invoke exceptions handling. For this, you create an exceptions table and map the
source raster data table twice:

• once to the actual target raster data table (with REPERROR handling the 1403
errors).

• again to the exceptions table, which captures the 1403 error and other relevant
information by means of a COLMAP clause.

For more information about using an exceptions table, see Administering Oracle
GoldenGate for Windows and UNIX.

For more information about REPERROR options, see Reference for Oracle GoldenGate.

Chapter 8
Handling Special Data Types

8-4

TIMESTAMP
To replicate timestamp data, Oracle Database normalizes TIMESTAMP WITH LOCAL TIME ZONE
data to the local time zone of the database that receives it, the target database in case of
Oracle GoldenGate. To preserve the original time stamp of the data that it applies, Replicat
sets its session to the time zone of the source database. You can override this default and
supply a different time zone by using the SOURCETIMEZONE parameter in the Replicat
parameter file. To force Replicat to set its session to the target time zone, use the
PRESERVETARGETTIMEZONE parameter.

To prevent Oracle GoldenGate from abending on TIMESTAMP WITH TIME ZONE as TZR, use the
Extract parameter TRANLOGOPTIONS with INCLUDEREGIONIDWITHOFFSET to replicate TIMESTAMP
WITH TIMEZONE as TZR from an Oracle source that is at least version 10g to an earlier Oracle
target, or from an Oracle source to a non-Oracle target. This option allows replicating to
Oracle versions that do not support TIMESTAMP WITH TIME ZONE as TZR and to database
systems that only support time zone as a UTC offset.

You can also use the SOURCETIMEZONE parameter to specify the source time zone for data that
is captured by an Extract that is earlier than version 12.1.2. Those versions do not write the
source time zone to the trail.

Large Objects (LOB)
The following are some configuration guidelines for LOBs in both classic capture and
integrated capture mode.

1. Store large objects out of row if possible.

2. (Applies only to integrated capture) Integrated capture captures LOBs from the redo log.
For UPDATE operations on a LOB document, only the changed portion of the LOB is
logged. To force whole LOB documents to be written to the trail when only the changed
portion is logged, use the TRANLOGOPTIONS parameter with the FETCHPARTIALLOB option in
the Extract parameter file. When Extract receives partial LOB content from the logmining
server, it fetches the full LOB image instead of processing the partial LOB. Use this
option when replicating to a non-Oracle target or in other conditions where the full LOB
image is required.

XML
The following are tools for working with XML within Oracle GoldenGate constraints.

• Although both classic and integrated capture modes do not support the capture of
changes made to an XML schema, you may be able to evolve the schemas and then
resume replication of them without the need for a resynchronization, see Supporting
Changes to XML Schemas.

• (Applies only to integrated capture) Integrated capture captures XML from the redo log.
For UPDATE operations on an XML document, only the changed portion of the XML is
logged if it is stored as OBJECT RELATIONAL or BINARY. To force whole XML documents to
be written to the trail when only the changed portion is logged, use the TRANLOGOPTIONS
parameter with the FETCHPARTIALXML option in the Extract parameter file. When Extract
receives partial XML content from the logmining server, it fetches the full XML document
instead of processing the partial XML. Use this option when replicating to a non-Oracle
target or in other conditions where the full XML image is required.

Chapter 8
Handling Special Data Types

8-5

User Defined Types
If Oracle Database is compatible with releases greater than or equal to 12.0.0.0.0,
then integrated Extract captures data from redo (no fetch), see Setting Flashback
Query.

If replicating source data that contains user-defined types with the NCHAR, NVARCHAR2,
or NCLOB attribute to an Oracle target, use the HAVEUDTWITHNCHAR parameter in the
Replicat parameter file. When this type of data is encountered in the trail,
HAVEUDTWITHNCHAR causes Replicat to connect to the Oracle target in AL32UTF8, which
is required when a user-defined data type contains one of those attributes.
HAVEUDTWITHNCHAR is required even if NLS_LANG is set to AL32UTF8 on the target. By
default Replicat ignores NLS_LANG and connects to an Oracle Database in the native
character set of the database. Replicat uses the OCIString object of the Oracle Call
Interface, which does not support NCHAR, NVARCHAR2, or NCLOB attributes, so Replicat
must bind them as CHAR. Connecting to the target in AL32UTF8 prevents data loss in
this situation. HAVEUDTWITHNCHAR must appear before the USERID or USERIDALIAS
parameter in the parameter file.

Handling Other Database Properties
This topic describes the database properties that may affect Oracle GoldenGate and
the parameters that you can use to resolve or work around the condition.

The following table lists the database properties and the associated concern/
resolution.

Database Property Concern/Resolution

Table with interval
partitioning

To support tables with interval partitioning, make certain that the WILDCARDRESOLVE
parameter remains at its default of DYNAMIC.

Table with virtual columns Virtual columns are not logged, and Oracle does not permit DML on virtual columns.
You can, however, capture this data and map it to a target column that is not a virtual
column by doing the following:

Include the table in the Extract TABLE statement and use the FETCHCOLS option of
TABLE to fetch the value from the virtual column in the database.

In the Replicat MAP statement, map the source virtual column to the non-virtual target
column.

Table with inherently
updateable view

To replicate to an inherently updateable view, define a key on the unique columns in
the updateable view by using a KEYCOLS clause in the same MAP statement in which
the associated source and target tables are mapped.

Redo logs or archives in
different locations

The TRANLOGOPTIONS parameter contains options to handle environments where the
redo logs or archives are stored in a different location than the database default or on
a different platform from that on which Extract is running. These options may be
required when Extract operates in classic capture mode. For more information, see
Reference for Oracle GoldenGate.

Chapter 8
Handling Other Database Properties

8-6

Database Property Concern/Resolution

TRUNCATE operations To replicate TRUNCATE operations, choose one of two options:

• Standalone TRUNCATE support by means of the GETTRUNCATES parameter
replicates TRUNCATE TABLE, but no other TRUNCATE options. Use only if not
using Oracle GoldenGate DDL support.

• The full DDL support replicates TRUNCATE TABLE, ALTER TABLE TRUNCATE
PARTITION, and other DDL. To install this support, see Installing Trigger-Based
DDL Capture..

Sequences To replicate DDL for sequences (CREATE, ALTER, DROP, RENAME), use Oracle
GoldenGate DDL support.

To replicate just sequence values, use the SEQUENCE parameter in the Extract
parameter file. This does not require the Oracle GoldenGate DDL support
environment. For more information, see Reference for Oracle GoldenGate.

Controlling the Checkpoint Frequency
The CHECKPOINTRETENTIONTIME option of the TRANLOGOPTIONS parameter controls the number
of days that Extract in integrated mode retains checkpoints before purging them
automatically.

Partial days can be specified using decimal values. For example, 8.25 specifies 8 days and 6
hours. The default is seven days. For more information about this parameter, see Reference
for Oracle GoldenGate.

Excluding Replicat Transactions
In a bidirectional configuration, Replicat must be configured to mark its transactions, and
Extract must be configured to exclude Replicat transactions so that they do not propagate
back to their source.

There are two methods to accomplish this as follows:

Method 1

Valid only for Oracle to Oracle implementations.

When Extract is in classic or integrated mode (Replicat can be in either integrated or
nonintegrated mode), use the following parameters:

• Use DBOPTIONS with the SETTAG option in the Replicat parameter file. The inbound server
tags the transactions of that Replicat with the specified value, which identifies those
transactions in the redo stream. The default value for SETTAG is 00.

• Use the TRANLOGOPTIONS parameter with the EXCLUDETAG option in a classic or integrated
Extract parameter file. The logmining server associated with that Extract excludes redo
that is tagged with the SETTAG value. Multiple EXCLUDETAG statements can be used to
exclude different tag values, if desired.

For Oracle to Oracle, this is the recommended method.

Method 2

Valid for any implementation; Oracle or heterogeneous database configurations.

Chapter 8
Controlling the Checkpoint Frequency

8-7

Alternatively, when Extract is in classic or integrated capture mode, you could also use
the Extract TRANLOGOPTIONS parameter with the EXCLUDEUSER or EXCLUDEUSERID option
to ignore Replicat the DDL and DML transactions based on its user name or ID.
Multiple EXCLUDEUSER statements can be used. The specified user is subject to the
rules of the GETREPLICATES or IGNOREREPLICATES parameter.

For more information, see Reference for Oracle GoldenGate.

Advanced Configuration Options for Oracle GoldenGate
You may need to configure Oracle GoldenGate with advanced options to suit your
business needs.

See the following:

• For additional configuration guidelines to achieve specific replication topologies,
see Administering Oracle GoldenGate. This guide includes instructions for the
following configurations:

– Using Oracle GoldenGate for live reporting

– Using Oracle GoldenGate for real-time data distribution

– Configuring Oracle GoldenGate for real-time data warehousing

– Using Oracle GoldenGate to maintain a live standby database

– Using Oracle GoldenGate for active-active high availability

That guide also contains information about:

– Oracle GoldenGate architecture

– Oracle GoldenGate commands

– Oracle GoldenGate initial load methods

– Configuring security

– Using customization features

– Configuring data filtering and manipulation

• If either the source or target database is non-Oracle, follow the installation and
configuration instructions in the Oracle GoldenGate installation and setup guide for
that database, and then refer to the Oracle GoldenGate administration and
reference documentation for further information.

Chapter 8
Advanced Configuration Options for Oracle GoldenGate

8-8

9
Additional Configuration Steps For Using
Nonintegrated Replicat

This chapter contains instructions that are specific only to Replicat when operating in
nonintegrated mode. When Replicat operates in nonintegrated mode, triggers, cascade
constraints, and unique identifiers must be properly configured in an Oracle GoldenGate
environment.
This chapter is a supplement to the basic configuration requirements that are documented in
Configuring Oracle GoldenGate Apply.

Topics:

• Disabling Triggers and Referential Cascade Constraints on Target Tables
Triggers and cascade constraints must be disabled on Oracle target tables when Replicat
is in nonintegrated mode.

Disabling Triggers and Referential Cascade Constraints on
Target Tables

Triggers and cascade constraints must be disabled on Oracle target tables when Replicat is
in nonintegrated mode.

Constraints must be disabled in nonintegrated Replicat mode because Oracle GoldenGate
replicates DML that results from the firing of a trigger or a cascade constraint. If the same
trigger or constraint gets activated on the target table, it becomes redundant because of the
replicated version, and the database returns an error. Consider the following example, where
the source tables are emp_src and salary_src and the target tables are emp_targ and
salary_targ.

1. A delete is issued for emp_src.

2. It cascades a delete to salary_src.

3. Oracle GoldenGate sends both deletes to the target.

4. The parent delete arrives first and is applied to emp_targ.

5. The parent delete cascades a delete to salary_targ.

6. The cascaded delete from salary_src is applied to salary_targ.

7. The row cannot be located because it was already deleted in step 5.

9-1

10
Configuring DDL Support

This chapter contains information to help you understand and configure DDL support in
Oracle GoldenGate.
Topics:

• Prerequisites for Configuring DDL
Extract can capture DDL operations from a source Oracle Database through the use of a
special DDL trigger or natively through the Oracle logmining server.

• Overview of DDL Synchronization
Oracle GoldenGate supports the synchronization of DDL operations from one database
to another.

• Limitations of Oracle GoldenGate DDL Support
This topic contains some limitations of the DDL feature.

• Configuration Guidelines for DDL Support
The following are guidelines to take into account when configuring Oracle GoldenGate
processes to support DDL replication.

• Understanding DDL Scopes
Database objects are classified into scopes. A scope is a category that defines how DDL
operations on an object are handled by Oracle GoldenGate.

• Correctly Identifying Unqualified Object Names in DDL
Extract captures the current schema (also called session schema) that is in effect when a
DDL operation is executed. The current container is also captured if the source is a
multitenant container database.

• Enabling DDL Support
Data Definition Language (DDL) is useful in dynamic environments which change
constantly.

• Filtering DDL Replication
By default, all DDL is passed to Extract.

• Special Filter Cases
This topic describes the special cases that you must consider before creating your DDL
filters.

• How Oracle GoldenGate Handles Derived Object Names
DDL operations can contain a base object name and also a derived object name.

• Using DDL String Substitution
You can substitute strings within a DDL operation while it is being processed by Oracle
GoldenGate.

• Controlling the Propagation of DDL to Support Different Topologies
To support bidirectional and cascading replication configurations, it is important for
Extract to be able to identify the DDL that is performed by Oracle GoldenGate and by
other applications, such as the local business applications.

• Adding Supplemental Log Groups Automatically
Use the DDLOPTIONS parameter with the ADDTRANDATA option for performing tasks
described in this topic.

10-1

• Removing Comments from Replicated DDL
You can use the DDLOPTIONS parameter with the REMOVECOMMENTS BEFORE and
REMOVECOMMENTS AFTER options to prevent comments that were used in the source
DDL from being included in the target DDL.

• Replicating an IDENTIFIED BY Password
Use the DDLOPTIONS parameter with the DEFAULTUSERPASSWORDALIAS and
REPLICATEPASSWORD | NOREPLICATEPASSWORD options to control how the password
of a replicated {CREATE | ALTER} USER name IDENTIFIED BY password statement
is handled. These options must be used together.

• How DDL is Evaluated for Processing
This topic explains how Oracle GoldenGate processes DDL statements on the
source and target systems.

• Viewing DDL Report Information
By default, Oracle GoldenGate shows basic statistics about DDL at the end of the
Extract and Replicat reports.

• Tracing DDL Processing
If you open a support case with Oracle GoldenGate Technical Support, you might
be asked to turn on tracing. TRACE and TRACE2 control DDL tracing.

• Using Tools that Support Trigger-Based DDL Capture
This section documents the additional tools available to support trigger-based
capture.

• Using Edition-Based Redefinition
Oracle GoldenGate supports the use of Edition-based Redefinition (EBR) with
Oracle Databases enabling you to upgrade the database component of an
application while it is in use, thereby minimizing or eliminating down time.

Prerequisites for Configuring DDL
Extract can capture DDL operations from a source Oracle Database through the use of
a special DDL trigger or natively through the Oracle logmining server.

Which of these methods you can use depends on the Extract capture mode and the
version of the source Oracle Database. This section describes the available support in
each capture mode, see Choosing Capture and Apply Modes.

• Support for DDL Capture in Integrated Capture Mode

• Support for DDL Capture in Classic Capture Mode

Support for DDL Capture in Integrated Capture Mode
The integrated capture mode of Extract supports two DDL capture methods:

• Oracle 11.2.0.4 or later: Oracle Databases that have the database COMPATIBLE
parameter set to 11.2.0.4 or higher support DDL capture through the database
logmining server. This method is known as native DDL capture (also known as
triggerless DDL capture). No trigger or installed supportive objects are required.
Native DDL capture is the only supported method for capturing DDL from a
multitenant container database. For downstream mining, the source database
must also have database COMPATIBLE set to 11.2.0.4 or higher to support DDL
capture through the database logmining server.

Chapter 10
Prerequisites for Configuring DDL

10-2

• Versions earlier than 11.2.0.4: Oracle Databases that have the COMPATIBLE parameter
set to anything earlier than 11.2.0.4 require the use of the Oracle GoldenGate DDL
trigger. To use trigger-based DDL capture, you must install the DDL trigger and
supporting database objects before you configure Extract for DDL support.

Support for DDL Capture in Classic Capture Mode
Classic capture mode requires the use of the Oracle GoldenGate DDL trigger to capture DDL
from an Oracle Database. Native DDL capture is not supported by classic capture mode.

DDL capture from a multitenant container database is not supported by classic capture mode.

When you are using Classic capture mode and replicating a CREATE USER using the DDL
trigger, the trigger owner and the Extract login user must match to avoid a privilege error
when attempting to replicate the CREATE USER command.

To use trigger-based DDL capture, you must install the DDL trigger and supporting database
objects before you configure Extract for DDL support, see Installing Trigger-Based DDL
Capture.

Overview of DDL Synchronization
Oracle GoldenGate supports the synchronization of DDL operations from one database to
another.

DDL synchronization can be active when:

• business applications are actively accessing and updating the source and target objects.

• Oracle GoldenGate transactional data synchronization is active.

The components that support the replication of DDL and the replication of transactional data
changes (DML) are independent of each other. Therefore, you can synchronize:

• just DDL changes

• just DML changes

• both DDL and DML

Limitations of Oracle GoldenGate DDL Support
This topic contains some limitations of the DDL feature.

For any additional limitations that were found after this documentation was published, see the
Release Notes for Oracle GoldenGate.

• DDL Statement Length

• Supported Topologies

• Filtering, Mapping, and Transformation

• Renames

• Interactions Between Fetches from a Table and DDL

• Comments in SQL

• Compilation Errors

Chapter 10
Overview of DDL Synchronization

10-3

• Interval Partitioning

• DML or DDL Performed Inside a DDL Trigger

• LogMiner Data Dictionary Maintenance

DDL Statement Length
Oracle GoldenGate measures the length of a DDL statement in bytes, not in
characters. The supported length is approximately 4 MB, allowing for some internal
overhead that can vary in size depending on the name of the affected object and its
DDL type, among other characteristics. If the DDL is longer than the supported size,
Extract will issue a warning and ignore the DDL operation.

If Extract is capturing DDL by means of the DDL trigger, the ignored DDL is saved in
the marker table. You can capture Oracle DDL statements that are ignored, as well as
any other Oracle DDL statement, by using the ddl_ddl2file.sql script, which saves
the DDL operation to a text file in the USER_DUMP_DEST directory of Oracle. The script
prompts for the following input:

• The name of the schema that contains the Oracle GoldenGate DDL objects, which
is specified in the GLOBALS file.

• The Oracle GoldenGate marker sequence number, which is recorded in the
Extract report file when DDLOPTIONS with the REPORT option is used in the Extract
parameter file.

• A name for the output file.

Supported Topologies
Oracle GoldenGate supports DDL synchronization only in a like-to-like configuration.
The source and target object definitions must be identical.

DDL replication is only supported for Oracle to Oracle replication. It is not supported
between different databases, like Oracle to Teradata, or SQL Server to Oracle.

Oracle GoldenGatedoes not support DDL on a standby database.

Oracle GoldenGate supports DDL replication in all supported unidirectional
configurations, and in bidirectional configurations between two, and only two, systems.
For special considerations in an Oracle active-active configuration, see Propagating
DDL in Active-Active (Bidirectional) Configurations.

Filtering, Mapping, and Transformation
DDL operations cannot be transformed by any Oracle GoldenGate process. However,
source DDL can be mapped and filtered to a different target object by a primary
Extract or a Replicat process. Mapping or filtering of DDL by a data-pump Extract is
not permitted, and the DDL is passed as it was received from the primary Extract.

For example, ALTER TABLE TableA is processed by a data pump as ALTER TABLE
TableA. It cannot be mapped by that process as ALTER TABLE TableB, regardless of
any TABLE statements that specify otherwise.

Chapter 10
Limitations of Oracle GoldenGate DDL Support

10-4

Renames
RENAME operations on tables are converted to the equivalent ALTER TABLE RENAME so that a
schema name can be included in the target DDL statement. For example RENAME tab1 TO
tab2 could be changed to ALTER TABLE schema.tab1 RENAME TO schema.tab2. The
conversion is reported in the Replicat process report file.

Interactions Between Fetches from a Table and DDL
Oracle GoldenGate supports some data types by identifying the modified row from the redo
stream and then querying the underlying table to fetch the changed columns. For instance, in
classic capture, partial updates on LOBs (modifications done via dbms_lob package) are
supported by identifying the modified row and the LOB column from the redo log, and then
querying for the LOB column value for the row from the base table. A similar technique is
employed to support UDT (both in classic and integrated capture).

Note:

Integrated capture only requires fetch for UDT when not using native object support.

Such fetch-based support is implemented by issuing a flashback query to the database
based on the SCN (System Change Number) at which the transaction committed. The
flashback query feature has certain limitations. Certain DDL operations act as barriers such
that flashback queries to get data prior to these DDLs do not succeed. Examples of such
DDL are ALTER TABLE MODIFY COLUMN and ALTER TABLE DROP COLUMN.

Thus, in cases where there is Extract capture lag, an intervening DDL may cause fetch
requests for data prior to the DDL to fail. In such cases, Extract falls back and fetches the
current snapshot of the data for the modified column. There are several limitations to this
approach: First, the DDL could have modified the column that Extract needs to fetch (for
example, suppose the intervening DDL added a new attribute to the UDT that is being
captured). Second, the DDL could have modified one of the columns that Extract uses as a
logical row identifier. Third, the table could have been renamed before Extract had a chance
to fetch the data.

To prevent fetch-related inconsistencies such as these, take the following precautions while
modifying columns.

1. Pause all DML to the table.

2. Wait for Extract to finish capturing all remaining redo, and wait for Replicat to finish
processing the captured data from trail. To determine whether Replicat is finished, issue
the following command in GGSCI until you see a message that there is no more data to
process.

INFO REPLICAT group
3. Execute the DDL on the source.

4. Resume source DML operations.

Chapter 10
Limitations of Oracle GoldenGate DDL Support

10-5

Comments in SQL
If a source DDL statement contains a comment in the middle of an object name, that
comment will appear at the end of the object name in the target DDL statement. For
example:

Source:

CREATE TABLE hr./*comment*/emp ...

Target:

CREATE TABLE hr.emp /*comment*/ ...

This does not affect the integrity of DDL synchronization. Comments in any other area
of a DDL statement remain in place when replicated.

Compilation Errors
If a CREATE operation on a trigger, procedure, function, or package results in
compilation errors, Oracle GoldenGate executes the DDL operation on the target
anyway. Technically, the DDL operations themselves completed successfully and
should be propagated to allow dependencies to be executed on the target, for example
in recursive procedures.

Interval Partitioning
DDL replication is unaffected by interval partitioning, because the DDL is implicit.
However, this is system generated name so Replicat cannot convert this to the target.I
believe this is expected behavior. You must drop the partition on the source. For
example:

alter table t2 drop partition for (20);

DML or DDL Performed Inside a DDL Trigger
DML or DDL operations performed from within a DDL trigger are not captured.

LogMiner Data Dictionary Maintenance
Oracle recommends that you gather dictionary statistics after the Extract is registered
(logminer session) and the logminer dictionary is loaded, or after any significant DDL
activity on the database.

Configuration Guidelines for DDL Support
The following are guidelines to take into account when configuring Oracle GoldenGate
processes to support DDL replication.

• Database Privileges

• Parallel Processing

Chapter 10
Configuration Guidelines for DDL Support

10-6

• Object Names

• Data Definitions

• Truncates

• Initial Synchronization

• Data Continuity After CREATE or RENAME

Database Privileges
For database privileges that are required for Oracle GoldenGate to support DDL capture and
replication, see Establishing Oracle GoldenGate Credentials .

Parallel Processing
If using parallel Extract and/or Replicat processes, keep related DDL and DML together in the
same process stream to ensure data integrity. Configure the processes so that:

• all DDL and DML for any given object are processed by the same Extract group and by
the same Replicat group.

• all objects that are relational to one another are processed by the same process group.

For example, if ReplicatA processes DML for Table1, then it should also process the DDL for
Table1. If Table2 has a foreign key to Table1, then its DML and DDL operations also should
be processed by ReplicatA.

If an Extract group writes to multiple trails that are read by different Replicat groups, Extract
sends all of the DDL to all of the trails. Use each Replicat group to filter the DDL by using the
filter options of the DDL parameter in the Replicat parameter file.

Object Names
Oracle GoldenGate preserves the database-defined object name, case, and character set.
This support preserves single-byte and multibyte names, symbols, and accent characters at
all levels of the database hierarchy.

Object names must be fully qualified with their two-part or three-part names when supplied as
input to any parameters that support DDL synchronization. You can use the question mark (?)
and asterisk (*) wildcards to specify object names in configuration parameters that support
DDL synchronization, but the wildcard specification also must be fully qualified as a two-part
or three-part name. To process wildcards correctly, the WILDCARDRESOLVE parameter is set to
DYNAMIC by default. If WILDCARDRESOLVE is set to anything else, the Oracle GoldenGate
process that is processing DDL operations will abend and write the error to the process
report.

Data Definitions
Because DDL support requires a like-to-like configuration, the ASSUMETARGETDEFS parameter
must be used in the Replicat parameter file. Replicat will abend if objects are configured for
DDL support and the SOURCEDEFS parameter is being used. For more information about
ASSUMETARGETDEFS, see Reference for Oracle GoldenGate.

For more information about using a definitions file, see Administering Oracle GoldenGate.

Chapter 10
Configuration Guidelines for DDL Support

10-7

Truncates
TRUNCATE statements can be supported as follows:

• As part of the Oracle GoldenGate full DDL support, which supports TRUNCATE
TABLE, ALTER TABLE TRUNCATE PARTITION, and other DDL. This is controlled by
the DDL parameter (see Enabling DDL Support.)

• As standalone TRUNCATE support. This support enables you to replicate TRUNCATE
TABLE, but no other DDL. The GETTRUNCATES parameter controls the standalone
TRUNCATE feature. For more information, see Reference for Oracle GoldenGate.

To avoid errors from duplicate operations, only one of these features can be active at
the same time.

Initial Synchronization
To configure DDL replication, start with a target database that is synchronized with the
source database. DDL support is compatible with the Replicat initial load method.

Before executing an initial load, disable DDL extraction and replication. DDL
processing is controlled by the DDL parameter in the Extract and Replicat parameter
files.

After initial synchronization of the source and target data, use all of the source
sequence values at least once with NEXTVAL before you run the source applications.
You can use a script that selects NEXTVAL from every sequence in the system. This
must be done while Extract is running.

Data Continuity After CREATE or RENAME
To replicate DML operations on new Oracle tables resulting from a CREATE or RENAME
operation, the names of the new tables must be specified in TABLE and MAP statements
in the parameter files. You can use wildcards to make certain that they are included.

To create a new user with CREATE USER and then move new or renamed tables into
that schema, the new user name must be specified in TABLE and MAP statements. To
create a new user fin2 and move new or renamed tables into that schema, the
parameter statements could look as follows, depending on whether you want the fin2
objects mapped to the same, or different, schema on the target:

Extract:

TABLE fin2.*;

Replicat:

MAP fin2.*, TARGET different_schema.*;

Understanding DDL Scopes
Database objects are classified into scopes. A scope is a category that defines how
DDL operations on an object are handled by Oracle GoldenGate.

The scopes are:

Chapter 10
Understanding DDL Scopes

10-8

• MAPPED
• UNMAPPED
• OTHER
The use of scopes enables granular control over the filtering of DDL operations, string
substitutions, and error handling.

• Mapped Scope

• Unmapped Scope

• Other Scope

Mapped Scope
Objects that are specified in TABLE and MAP statements are of MAPPED scope. Extraction and
replication instructions in those statements apply to both data (DML) and DDL on the
specified objects, unless override rules are applied.

For objects in TABLE and MAP statements, the DDL operations listed in the following table are
supported.

Operations On any of these Objects1

CREATE
ALTER
DROP
RENAME
COMMENT ON2

TABLE3

INDEX
TRIGGER
SEQUENCE
MATERIALIZED VIEW
VIEW
FUNCTION
PACKAGE
PROCEDURE
SYNONYM
PUBLIC SYNONYM4

GRANT
REVOKE

TABLE
SEQUENCE
MATERIALIZED VIEW

ANALYZE TABLE
INDEX
CLUSTER

1 TABLE and MAP do not support some special characters that could be used in an object name affected by these
operations. Objects with non-supported special characters are supported by the scopes of UNMAPPED and
OTHER.

2 Applies to COMMENT ON TABLE, COMMENT ON COLUMN
3 Includes AS SELECT
4 Table name must be qualified with schema name.

For Extract, MAPPED scope marks an object for DDL capture according to the instructions in
the TABLE statement. For Replicat, MAPPED scope marks DDL for replication and maps it to the

Chapter 10
Understanding DDL Scopes

10-9

object specified by the schema and name in the TARGET clause of the MAP statement.
To perform this mapping, Replicat issues ALTER SESSION to set the schema of the
Replicat session to the schema that is specified in the TARGET clause. If the DDL
contains unqualified objects, the schema that is assigned on the target depends on
circumstances described in Understanding DDL Scopes.

Assume the following TABLE and MAP statements:

Extract (source)

TABLE fin.expen;
TABLE hr.tab*;

Replicat (target)

MAP fin.expen, TARGET fin2.expen2;
MAP hr.tab*, TARGET hrBackup.bak_*;

Also assume a source DDL statement of:

ALTER TABLE fin.expen ADD notes varchar2(100);

In this example, because the source table fin.expen is in a MAP statement with a
TARGET clause that maps to a different schema and table name, the target DDL
statement becomes:

ALTER TABLE fin2.expen2 ADD notes varchar2(100);

Likewise, the following source and target DDL statements are possible for the second
set of TABLE and MAP statements in the example:

Source:

CREATE TABLE hr.tabPayables ... ;

Target:

CREATE TABLE hrBackup.bak_tabPayables ...;

When objects are of MAPPED scope, you can omit their names from the DDL
configuration parameters, unless you want to refine their DDL support further. If you
ever need to change the object names in TABLE and MAP statements, the changes will
apply automatically to the DDL on those objects.

If you include an object in a TABLE statement, but not in a MAP statement, the DDL for
that object is MAPPED in scope on the source but UNMAPPED in scope on the target.

Unmapped Scope
If a DDL operation is supported for use in a TABLE or MAP statement, but its base object
name is not included in one of those parameters, it is of UNMAPPED scope.

An object name can be of UNMAPPED scope on the source (not in an Extract TABLE
statement), but of MAPPED scope on the target (in a Replicat MAP statement), or the
other way around. When Oracle DDL is of UNMAPPED scope in the Replicat
configuration, Replicat will by default do the following:

1. Set the current schema of the Replicat session to the schema of the source DDL
object.

Chapter 10
Understanding DDL Scopes

10-10

2. Execute the DDL as that schema.

3. Restore Replicat as the current schema of the Replicat session.

See Understanding DDL Scopes.

Other Scope
DDL operations that cannot be mapped are of OTHER scope. When DDL is of OTHER scope in
the Replicat configuration, it is applied to the target with the same schema and object name
as in the source DDL.

An example of OTHER scope is a DDL operation that makes a system-specific reference, such
as DDL that operates on data file names.

Some other examples of OTHER scope:

CREATE USER joe IDENTIFIED by joe;
CREATE ROLE ggs_gguser_role IDENTIFIED GLOBALLY;
ALTER TABLESPACE gg_user TABLESPACE GROUP gg_grp_user;

See Understanding DDL Scopes.

Correctly Identifying Unqualified Object Names in DDL
Extract captures the current schema (also called session schema) that is in effect when a
DDL operation is executed. The current container is also captured if the source is a
multitenant container database.

The container and schema are used to resolve unqualified object names in the DDL.

Consider the following example:

CONNECT SCOTT/TIGER
CREATE TABLE TAB1 (X NUMBER);
CREATE TABLE SRC1.TAB2(X NUMBER) AS SELECT * FROM TAB1;

In both of those DDL statements, the unqualified table TAB1 is resolved as SCOTT.TAB1 based
on the current schema SCOTT that is in effect during the DDL execution.

There is another way of setting the current schema, which is to set the current_schema for
the session, as in the following example:

CONNECT SCOTT/TIGER
ALTER SESSION SET CURRENT_SCHEMA=SRC;
CREATE TABLE TAB1 (X NUMBER);
CREATE TABLE SRC1.TAB2(X NUMBER) AS SELECT * FROM TAB1;

In both of those DDL statements, the unqualified table TAB1 is resolved as SRC.TAB1 based
on the current schema SRC that is in effect during the DDL execution.

In both classic and integrated capture modes, Extract captures the current schema that is in
effect during DDL execution, and it resolves the unqualified object names (if any) by using the
current schema. As a result, MAP statements specified for Replicat work correctly for DDL with
unqualified object names.

You can also map a source session schema to a different target session schema, if that is
required for the DDL to succeed on the target. This mapping is global and overrides any other

Chapter 10
Correctly Identifying Unqualified Object Names in DDL

10-11

mappings that involve the same schema names. To map session schemas, use the
DDLOPTIONS parameter with the MAPSESSIONSCHEMA option.

If the default or mapped session schema mapping fails, you can handle the error with
the following DDLERROR parameter statement, where error 1435 means that the schema
does not exist.

DDLERROR 1435 IGNORE INCLUDE OPTYPE ALTER OBJTYPE SESSION

Enabling DDL Support
Data Definition Language (DDL) is useful in dynamic environments which change
constantly.

By default, the status of DDL replication support is as follows:

• On the source, Oracle GoldenGate DDL support is disabled by default. You must
configure Extract to capture DDL by using the DDL parameter.

• On the target, DDL support is enabled by default, to maintain the integrity of
transactional data that is replicated. By default, Replicat will process all DDL
operations that the trail contains. If needed, you can use the DDL parameter to
configure Replicat to ignore or filter DDL operations.

Filtering DDL Replication
By default, all DDL is passed to Extract.

You can use the following methods to filter DDL operations so that specific (or all) DDL
is applied to the target database according to your requirements.

• Filtering with PL/SQL Code: Valid only for trigger-based DDL capture. This method
makes use of an Oracle function that is called by the DDL trigger when a DDL
operation occurs, to compute whether or not to send the DDL to Extract. Filtering
with PL/SQL code should only be used to improve the performance of the source
database when the DDL trigger is in use. It can be combined with built-in rules and
DDL parameter filtering (see the following). Any DDL that is passed to Extract after
it is filtered by the DDL trigger or filter rules can be filtered further with the DDL
parameter to meet specific needs.

• Filtering with Built-In Filter Rules: Valid only for trigger-based DDL capture. This
method makes use of some procedures that you run to build filter rules into the
Oracle GoldenGate trigger logic. This method allows discreet control over the
types of objects that are sent to Extract, and it allows the ordering of rule
evaluation. This method should only be used to improve the performance of the
source database when the DDL trigger is in use. You can combine built-in rules
with PL/SQL and DDL parameter filtering. Any DDL that is passed to Extract after
it is filtered by the DDL trigger or filter rules can be filtered further with the DDL
parameter to meet specific needs.

Chapter 10
Enabling DDL Support

10-12

Note:

Filtering with PL/SQL or built-in filter rules is unnecessary for an Extract that
operates in integrated-capture mode. If Extract must operate in classic mode
and you use these filtering methods, the same filtering must happen for any
transactional data (DML) that is associated with the filtered objects. For
example, if you filter out the DDL that creates a table named ACCOUNTS, make
certain the ACCOUNTS table is not specified in any TABLE or MAP statements, or
use the appropriate exclusion parameter to exclude it from wildcard resolution.
See Reference for Oracle GoldenGate for a list of wildcard exclusion
parameters.

• Filtering with DDL Parameter:Valid for both trigger-based and native DDL capture. This is
the preferred method of filtering and is performed within Oracle GoldenGate, and both
Extract and Replicat can execute filter criteria. Extract can perform filtering, or it can send
all of the DDL to a trail, and then Replicat can perform the filtering. Alternatively, you can
filter in a combination of different locations. The DDL parameter gives you control over
where the filtering is performed, and it also offers more filtering options than the trigger
method, including the ability to filter collectively based on the DDL scope (for example,
include all MAPPED scope).

Note:

If a DDL operation fails in the middle of a TRANSACTION, it forces a commit,
which means that the transaction spanning the DDL is split into two. The first
half is committed and the second half can be restarted. If a recovery occurs, the
second half of the transaction cannot be filtered since the information contained
in the header of the transaction is no longer there.

• Filtering with PL/SQL Code

• Filtering With Built-in Filter Rules

• Filtering with the DDL Parameter

Filtering with PL/SQL Code
This method is only valid for trigger-based capture.

You can write PL/SQL code to pass information about the DDL to a function that computes
whether or not the DDL is passed to Extract. By sending fewer DDL operations to Extract,
you can improve capture performance.

1. Copy the ddl_filter.sql file that is in the Oracle GoldenGate installation directory to a
test machine where you can test the code that you will be writing.

2. Open the file for editing. It contains a PL/SQL function named filterDDL, which you can
modify to specify if/then filter criteria. The information that is passed to this function
includes:

• ora_owner: the schema of the DDL object

• ora_name: the defined name of the object

Chapter 10
Filtering DDL Replication

10-13

• ora_objtype: the type of object, such as TABLE or INDEX
• ora_optype: the operation type, such as CREATE or ALTER
• ora_login_user: The user that executed the DDL

• retVal: can be either INCLUDE to include the DDL, or EXCLUDE to exclude the
DDL from Extract processing.

In the location after the 'compute retVal here' comment, write filter code for
each type of DDL that you want to be filtered. The following is an example:

if ora_owner='SYS' then
retVal:='EXCLUDE';
end if;
if ora_objtype='USER' and ora_optype ='DROP' then
retVal:='EXCLUDE';
end if;
if ora_owner='JOE' and ora_name like 'TEMP%' then
retVal:='EXCLUDE';
end if;

In this example, the following DDL is excluded from being processed by the DDL
trigger:

• DDL for objects owned by SYS
• any DROP USER
• any DDL on JOE.TEMP%

3. (Optional) To trace the filtering, you can add the following syntax to each if/then
statement in the PL/SQL:

if ora_owner='JOE' and ora_name like 'TEMP%' then
retVal:='EXCLUDE';
if "&gg_user" .DDLReplication.trace_level >= 1 then
"&gg_user" .trace_put_line ('DDLFILTER', 'excluded JOE.TEMP%');
end if;

Where:

• &gg_user is the schema of the Oracle GoldenGate DDL support objects.

• .DDLReplication.trace_level is the level of DDL tracing. To use trigger
tracing, the TRACE or TRACE2 parameter must be used with the DDL or DDLONLY
option in the Extract parameter file. The .DDLReplication.trace_level
parameter must be set to >=1.

• trace_put_line is a user-defined text string that Extract writes to the trace file
that represents the type of DDL that was filtered.

4. Save the code.

5. Stop DDL activity on the test system.

6. In SQL*Plus, compile the ddl_filter.sql file as follows, where schema_name is
the schema where the Oracle GoldenGate DDL objects are installed.

@ddl_filter schema_name

Chapter 10
Filtering DDL Replication

10-14

7. Test in the test environment to make certain that the filtering works. It is important to
perform this testing, because any errors in the code could cause source and target DDL
to become out of synchronization.

8. After a successful test, copy the file to the Oracle GoldenGate installation directory on the
source production system.

9. Stop DDL activity on the source system.

10. Compile the ddl_filter.sql file as you did before.

@ddl_filter schema_name
11. Resume DDL activity on the source system.

Filtering With Built-in Filter Rules
This method is only valid for trigger-based capture.

You can add inclusion and exclusion rules to control the DDL operations that are sent to
Extract by the DDL trigger. By storing rules and sending fewer DDL operations to Extract, you
can improve capture performance.

1. Use the DDLAUX.addRule() function to define your rules according to the following
instructions. This function is installed in the Oracle GoldenGate DDL schema after the
DDL objects are installed with the ddl_setup.sql script.

2. To activate the rules, execute the function in SQL*Plus or enter a collection of rules in a
SQL file and execute that file in SQL*Plus.

• DDLAUX.addRule() Function Definition

• Parameters for DDLAUX.addRule()

• Valid DDL Components for DDLAUX.addRule()

• Examples of Rule-based Trigger Filtering

• Dropping Filter Rules

DDLAUX.addRule() Function Definition
FUNCTION addRule(obj_name IN VARCHAR2 DEFAULT NULL,
base_obj_name IN VARCHAR2 DEFAULT NULL,
owner_name IN VARCHAR2 DEFAULT NULL,
base_owner_name IN VARCHAR2 DEFAULT NULL,
base_obj_property IN NUMBER DEFAULT NULL,
obj_type IN NUMBER DEFAULT NULL,
command IN VARCHAR2 DEFAULT NULL,
inclusion IN boolean DEFAULT NULL ,
sno IN NUMBER DEFAULT NULL)
RETURN NUMBER;

Parameters for DDLAUX.addRule()
The information passed to this function are the following parameters, which correlate to the
attributes of an object. All parameters are optional, and more than one parameter can be
specified.

• sno: Specifies a serial number that identifies the rule. The order of evaluation of rules is
from the lowest serial number to the highest serial number, until a match is found. The

Chapter 10
Filtering DDL Replication

10-15

sno can be used to place inclusion rules ahead of an exclusion rule, so as to make
an exception to the exclusion rule. Because this is a function and not a procedure,
it returns the serial number of the rule, which should be used for the drop rule
specified with DDLAUX.dropRule(). The serial number is generated automatically
unless you specify one with this statement at the beginning of your code: DECLARE
sno NUMBER; BEGIN sno :=
For example:

DECLARE
 sno NUMBER;
BEGIN
 sno := tkggadmin..DDLAUX.ADDRULE(obj_name => 'GGS%' ,
 obj_type => TYPE_TABLE);
END;
/

• obj_name: Specifies the object name. If the name is case-sensitive, enclose it
within double quotes.

• owner_name: Specifies the name of the object schema

• base_obj_name: Specifies the base object name of the DDL object (such as the
base table if the object is an index). If the name is case-sensitive, enclose it within
double quotes.

• base_owner_name: Specifies the base object schema name.

• base_obj_property: Specifies the base object property.

• obj_type: Specifies the object type.

• command: Specifies the command.

• inclusion = TRUE: Indicates that the specified objects are to be captured by the
DDL trigger. If this parameter is not specified, the rule becomes an exclusion rule,
and the specified objects are not captured. You can specify both an exclusion rule
and an inclusion rule. If a DDL does not match any of the rules, it is included
(passed to Extract) by default. Calling DDLAUX.addRule() without any parameters
generates an empty rule that excludes all DDL on all the objects.

Valid DDL Components for DDLAUX.addRule()
The following are the defined DDL object types, base object properties, and DDL
commands that can be specified in the function code.

Valid object types are:

TYPE_INDEX
TYPE_TABLE
TYPE_VIEW
TYPE_SYNONYM
TYPE_SEQUENCE
TYPE_PROCEDURE
TYPE_FUNCTION
TYPE_PACKAGE
TYPE_TRIGGER

Valid base object properties are:

Chapter 10
Filtering DDL Replication

10-16

TB_IOT
TB_CLUSTER
TB_NESTED
TB_TEMP
TB_EXTERNAL

Valid commands are:

CMD_CREATE
CMD_DROP
CMD_TRUNCATE
CMD_ALTER

Examples of Rule-based Trigger Filtering
The following example excludes all temporary tables, except tables with names that start with
IMPTEMP.

1. DDLAUX.ADDRULE(obj_name => 'IMPTEMP%', base_obj_property => TB_TEMP, obj_type =>
TYPE_TABLE, INCLUSION => TRUE);
2. DDLAUX.ADDRULE(base_obj_property => TB_TEMP, obj_type => TYPE_TABLE);

Note:

Since the IMPTEMP% tables must be included, that rule should come first.

The following example excludes all tables with name 'GGS%'

DECLARE sno NUMBER; BEGIN sno := DDLAUX.ADDRULE(obj_name => 'GGS%' , obj_type =>
TYPE_TABLE); END

The following example excludes all temporary tables.

DDLAUX.ADDRULE(base_obj_property => TB_TEMP, obj_type => TYPE_TABLE);

The following example excludes all indexes on TEMP tables.

DDLAUX.ADDRULE(base_obj_property => TB_TEMP, obj_type => TYPE_INDEX);

The following example excludes all objects in schema TKGGADMIN.

DDLAUX.ADDRULE(owner_name => 'TKGGADMIN');

The following example excludes all objects in TRUNCATE operations made to TEMP tables.

DDLAUX.ADDRULE(base_obj_property => TB_TEMP, obj_type => TYPE_TABLE, command =>
CMD_TRUNCATE)

Dropping Filter Rules
Use the DDLAUX.dropRule() function with the drop rule. This function is installed in the Oracle
GoldenGate DDL schema after the DDL objects are installed with the ddl_setup.sql script.
As input, specify the serial number of the rule that you want to drop.

Chapter 10
Filtering DDL Replication

10-17

FUNCTION dropRule(sno IN NUMBER) RETURN BOOLEAN;

Filtering with the DDL Parameter
This method is valid for trigger-based and integrated capture modes.

The DDL parameter is the main Oracle GoldenGate parameter for filtering DDL within
the Extract and Replicat processes.

When used without options, the DDL parameter performs no filtering, and it causes all
DDL operations to be propagated as follows:

• As an Extract parameter, it captures all supported DDL operations that are
generated on all supported database objects and sends them to the trail.

• As a Replicat parameter, it replicates all DDL operations from the Oracle
GoldenGate trail and applies them to the target. This is the same as the default
behavior without this parameter.

When used with options, the DDL parameter acts as a filtering agent to include or
exclude DDL operations based on:

• scope

• object type

• operation type

• object name

• strings in the DDL command syntax or comments, or both

Only one DDL parameter can be used in a parameter file, but you can combine multiple
inclusion and exclusion options, along with other options, to filter the DDL to the
required level.

• DDL filtering options are valid for a primary Extract that captures from the
transaction source, but not for a data-pump Extract.

• When combined, multiple filter option specifications are linked logically as AND
statements.

• All filter criteria specified with multiple options must be satisfied for a DDL
statement to be replicated.

• When using complex DDL filtering criteria, it is recommended that you test your
configuration in a test environment before using it in production.

For DDL parameter syntax and additional usage guidelines, see Reference for Oracle
GoldenGate.

Note:

Before you configure DDL support, it might help to review How DDL is
Evaluated for Processing.

Chapter 10
Filtering DDL Replication

10-18

Special Filter Cases
This topic describes the special cases that you must consider before creating your DDL
filters.

The following are the special cases for creating filter conditions.

• DDL EXCLUDE ALL

• Implicit DDL

DDL EXCLUDE ALL
DDL EXCLUDE ALL is a special processing option that is intended primarily for Extract when
using trigger-based DDL capture. DDL EXCLUDE ALL blocks the replication of DDL operations,
but ensures that Oracle GoldenGate continues to keep the object metadata current. When
Extract receives DDL directly from the logmining server (triggerless DDL capture mode),
current metadata is always maintained.

You can use DDL EXCLUDE ALL when using a method other than Oracle GoldenGate to apply
DDL to the target and you want Oracle GoldenGate to replicate data changes to the target
objects. It provides the current metadata to Oracle GoldenGate as objects change, thus
preventing the need to stop and start the Oracle GoldenGate processes. The following
special conditions apply to DDL EXCLUDE ALL:

• DDL EXCLUDE ALL does not require the use of an INCLUDE clause.

• When using DDL EXCLUDE ALL, you can set the WILDCARDRESOLVE parameter to IMMEDIATE
to allow immediate DML resolution if required.

To prevent all DDL metadata and operations from being replicated, omit the DDL parameter
entirely.

Implicit DDL
User-generated DDL operations can generate implicit DDL operations. For example, the
following statement generates two distinct DDL operations.

CREATE TABLE customers (custID number, name varchar2(50), address varchar2(75),
address2 varchar2(75), city varchar2(50), state (varchar2(2), zip number, contact
varchar2(50), areacode number(3), phone number(7), primary key (custID));

The first (explicit) DDL operation is the CREATE TABLE statement itself.

The second DDL operation is an implicit CREATE UNIQUE INDEX statement that creates the
index for the primary key. This operation is generated by the database engine, not a user
application.

Guidelines for Filtering Implicit DDL

How to filter implicit DDL depends on the mechanism that you are using to filter DDL. See
Filtering DDL Replication for more information.

• When the DDL parameter is used to filter DDL operations, Oracle GoldenGate filters out
any implicit DDL by default, because the explicit DDL will generate the implicit DDL on

Chapter 10
Special Filter Cases

10-19

the target. For example, the target database will create the appropriate index when
the CREATE TABLE statement in the preceding example is applied by Replicat.

• When the DDL trigger is being used to filter DDL operations, you must handle the
implicit DDL in your filter rules based on the following:

– If your filtering rules exclude the explicit DDL from being propagated, you must
also create a rule to exclude the implicit DDL. For example, if you exclude the
CREATE TABLE statement in the following example, but do not exclude the
implicit CREATE UNIQUE INDEX statement, the target database will try to create
the index on a non-existent table.

CREATE TABLE customers (custID number, name varchar2(50), address
varchar2(75), address2 varchar2(75), city varchar2(50), state
(varchar2(2), zip number, contact varchar2(50), areacode number(3),
phone number(7), primary key (custID));

– If your filtering rules permit the propagation of the explicit DDL, you do not
need to exclude the implicit DDL. It will be handled correctly by Oracle
GoldenGate and the target database.

How Oracle GoldenGate Handles Derived Object Names
DDL operations can contain a base object name and also a derived object name.

A base object is an object that contains data. A derived object is an object that inherits
some attributes of the base object to perform a function related to that object. DDL
statements that have both base and derived objects are:

• RENAME and ALTER RENAME
• CREATE and DROP on an index, synonym, or trigger

Consider the following DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

In this case, the table is the base object. Its name (hr.tabPayroll) is the base name
and is subject to mapping with TABLE or MAP under the MAPPED scope. The derived
object is the index, and its name (hr.indexPayrollDate) is the derived name.

You can map a derived name in its own TABLE or MAP statement, separately from that
of the base object. Or, you can use one MAP statement to handle both. In the case of
MAP, the conversion of derived object names on the target works as follows.

• MAP Exists for Base Object, But Not Derived Object

• MAP Exists for Base and Derived Objects

• MAP Exists for Derived Object, But Not Base Object

• New Tables as Derived Objects

• Disabling the Mapping of Derived Objects

MAP Exists for Base Object, But Not Derived Object
If there is a MAP statement for the base object, but not for the derived object, the result
is a schema based on the mapping that matches the derived object name. Derived

Chapter 10
How Oracle GoldenGate Handles Derived Object Names

10-20

objects are only mapped if the MAPDERIVED option is enabled, which is also the default option.

For example, consider the following:

Extract (source)

Table hr.*;

Replicat (target)

MAP hr.*, TARGET hrBackup.*;

Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.Payroll (payDate);

The CREATE INDEX statement is executed by Replicat on the target as follows:

CREATE INDEX hrBackup.indexPayrollDate ON TABLE hrBackup.Payroll (payDate);

In this example, the mapping is such that it matches the derived object name because of
which the derived object schema is changed from hr to hrBackup.

Here’s another example, where there is no mapping that matches the derived object name so
the derived object name remains the same.

Extract (source)

Table hr.tab*;
Replicat (target)

MAP hr.tab*, TARGET hrBackup.*;
Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);
The CREATE INDEX statement is executed by Replicat on the target as follows:

CREATE INDEX hr.indexPayrollDate ON TABLE hrBackup.tabPayroll (payDate);

MAP Exists for Base and Derived Objects
If there is a MAP statement for the base object and also one for the derived object, the result is
an explicit mapping. Assuming the DDL statement includes MAPPED, Replicat converts the
schema and name of each object according to its own TARGET clause. For example, assume
the following:

Extract (source)

TABLE hr.tab*; TABLE hr.index*;

Replicat (target)

MAP hr.tab*, TARGET hrBackup.*;MAP hr.index*, TARGET hrIndex.*;

Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

The CREATE INDEX statement is executed by Replicat on the target as follows:

Chapter 10
How Oracle GoldenGate Handles Derived Object Names

10-21

CREATE INDEX hrIndex.indexPayrollDate ON TABLE hrBackup.tabPayroll (payDate);

Use an explicit mapping when the index on the target must be owned by a different
schema from that of the base object, or when the name on the target must be different
from that of the source.

MAP Exists for Derived Object, But Not Base Object
If there is a MAP statement for the derived object, but not for the base object, Replicat
does not perform any name conversion for either object. The target DDL statement is
the same as that of the source. To map a derived object, the choices are:

• Use an explicit MAP statement for the base object.

• If names permit, map both base and derived objects in the same MAP statement by
means of a wildcard.

• Create a MAP statement for each object, depending on how you want the names
converted.

New Tables as Derived Objects
The following explains how Oracle GoldenGate handles new tables that are created
from:

• RENAME and ALTER RENAME
• CREATE TABLE AS SELECT
• CREATE TABLE AS SELECT

• RENAME and ALTER TABLE RENAME

CREATE TABLE AS SELECT
The CREATE TABLE AS SELECT (CTAS) statements include SELECT statements and
INSERT statements that reference any number of underlying objects. By default, Oracle
GoldenGate obtains the data for the AS SELECT clause from the target database. You
can force the CTAS operation to preserve the original inserts using this parameter.

Note:

For this reason, Oracle XMLType tables created from a CTAS (CREATE TABLE
AS SELECT) statement cannot be supported. For XMLType tables, the row
object IDs must match between source and target, which cannot be
maintained in this scenario. XMLType tables created by an empty CTAS
statement (that does not insert data in the new table) can be maintained
correctly.

In addition, you could use the GETCTASDML parameter that allows CTAS to
replay the inserts of the CTAS thus preserving OIDs during replication. This
parameter is only supported with Integrated Dictionary and any downstream
Replicat must be 12.1.2.1 or greater to consume the trail otherwise, there
may be divergence.

Chapter 10
How Oracle GoldenGate Handles Derived Object Names

10-22

The objects in the AS SELECT clause must exist in the target database, and their names must
be identical to the ones on the source.

In a MAP statement, Oracle GoldenGate only maps the name of the new table (CREATE TABLE
name) to the TARGET specification, but does not map the names of the underlying objects from
the AS SELECT clause. There could be dependencies on those objects that could cause data
inconsistencies if the names were converted to the TARGET specification.

The following shows an example of a CREATE TABLE AS SELECT statement on the source and
how it would be replicated to the target by Oracle GoldenGate.

CREATE TABLE a.tab1 AS SELECT * FROM a.tab2;

The MAP statement for Replicat is as follows:

MAP a.tab*, TARGET a.x*;

The target DDL statement that is applied by Replicat is the following:

CREATE TABLE a.xtab1 AS SELECT * FROM a.tab2;

The name of the table in the AS SELECT * FROM clause remains as it was on the source: tab2
(rather than xtab2).

To keep the data in the underlying objects consistent on source and target, you can configure
them for data replication by Oracle GoldenGate. In the preceding example, you could use the
following statements to accommodate this requirement:

Source

TABLE a.tab*;

Target

MAPEXCLUDE a.tab2
MAP a.tab*, TARGET a.x*;
MAP a.tab2, TARGET a.tab2;

See Correctly Identifying Unqualified Object Names in DDL.

RENAME and ALTER TABLE RENAME
In RENAME and ALTER TABLE RENAME operations, the base object is always the new table
name. In the following example, the base object name is considered to be index_paydate.

ALTER TABLE hr.indexPayrollDate RENAME TO index_paydate;

or...

RENAME hr.indexPayrollDate TO index_paydate;

The derived object name is hr.indexPayrollDate.

Disabling the Mapping of Derived Objects
Use the DDLOPTIONS parameter with the NOMAPDERIVED option to prevent the conversion of the
name of a derived object according to a TARGET clause of a MAP statement that includes it.
NOMAPDERIVED overrides any explicit MAP statements that contain the name of the base or

Chapter 10
How Oracle GoldenGate Handles Derived Object Names

10-23

derived object. Source DDL that contains derived objects is replicated to the target
with the same schema and object names as on the source.

The following table shows the results of MAPDERIVED compared to NOMAPDERIVED,
based on whether there is a MAP statement just for the base object, just for the derived
object, or for both.

Base Object Derived Object MAP/NOMAP
DERIVED?

Derived object
converted per a
MAP?

Derived object
gets schema of
base object?

mapped1 mapped MAPDERIVED yes no

mapped not mapped MAPDERIVED no yes

not mapped mapped MAPDERIVED no no

not mapped not mapped MAPDERIVED no no

mapped mapped NOMAPDERIVED no no

mapped not mapped NOMAPDERIVED no no

not mapped mapped NOMAPDERIVED no no

not mapped not mapped NOMAPDERIVED no no

1 Mapped means included in a MAP statement.

The following examples illustrate the results of MAPDERIVED as compared to
NOMAPDERIVED. In the following table, both trigger and table are owned by rpt on the
target because both base and derived names are converted by means of MAPDERIVED.

MAP statement Source DDL statement captured
by Extract

Target DDL statement applied by
Replicat

MAP fin.*, TARGET rpt.*; CREATE TRIGGER fin.act_trig
ON fin.acct;

CREATE TRIGGER rpt.act_trig
ON rpt.acct;

In the following table, the trigger is owned by fin, because conversion is prevented by
means of NOMAPDERIVED.

MAP statement Source DDL statement captured
by Extract

Target DDL statement applied by
Replicat

MAP fin.*, TARGET rpt.*; CREATE TRIGGER fin.act_trig
ON fin.acct;

CREATE TRIGGER fin.act_trig
ON rpt.acct;

Note:

In the case of a RENAME statement, the new table name is considered to be
the base table name, and the old table name is considered to be the derived
table name.

Chapter 10
How Oracle GoldenGate Handles Derived Object Names

10-24

Using DDL String Substitution
You can substitute strings within a DDL operation while it is being processed by Oracle
GoldenGate.

This feature provides a convenience for changing and mapping directory names, comments,
and other things that are not directly related to data structures. For example, you could
substitute one tablespace name for another, or substitute a string within comments. String
substitution is controlled by the DDLSUBST parameter. For more information, see Reference for
Oracle GoldenGate.

Note:

Before you create a DDLSUBST parameter statement, it might help to review How
DDL is Evaluated for Processing in this chapter.

Controlling the Propagation of DDL to Support Different
Topologies

To support bidirectional and cascading replication configurations, it is important for Extract to
be able to identify the DDL that is performed by Oracle GoldenGate and by other
applications, such as the local business applications.

Depending on the configuration that you want to deploy, it might be appropriate to capture
one or both of these sources of DDL on the local system.

Note:

Oracle GoldenGate DDL consists of ALTER TABLE statements performed by Extract
to create log groups and the DDL that is performed by Replicat to replicate source
DDL changes.

The following options of the DDLOPTIONS parameter control whether DDL on the local system
is captured by Extract and then sent to a remote system, assuming Oracle GoldenGate DDL
support is configured and enabled:

• The GETREPLICATES and IGNOREREPLICATES options control whether Extract captures or
ignores the DDL that is generated by Oracle GoldenGate. The default is
IGNOREREPLICATES, which does not propagate the DDL that is generated by Oracle
GoldenGate. To identify the DDL operations that are performed by Oracle GoldenGate,
the following comment is part of each Extract and Replicat DDL statement:

/* GOLDENGATE_DDL_REPLICATION */
• The GETAPPLOPS and IGNOREAPPLOPS options control whether Extract captures or ignores

the DDL that is generated by applications other than Oracle GoldenGate. The default is
GETAPPLOPS, which propagates the DDL from local applications (other than Oracle
GoldenGate).

Chapter 10
Using DDL String Substitution

10-25

The result of these default settings is that Extract ignores its own DDL and the DDL
that is applied to the local database by a local Replicat, so that the DDL is not sent
back to its source, and Extract captures all other DDL that is configured for replication.
The following is the default DDLOPTIONS configuration.

DDLOPTIONS GETAPPLOPS, IGNOREREPLICATES

This behavior can be modified. See the following topics:

• Propagating DDL in Active-Active (Bidirectional) Configurations

• Propagating DDL in a Cascading Configuration

Propagating DDL in Active-Active (Bidirectional) Configurations
Oracle GoldenGate supports active-active DDL replication between two systems. For
an active-active bidirectional replication, the following must be configured in the Oracle
GoldenGate processes:

1. DDL that is performed by a business application on one system must be replicated
to the other system to maintain synchronization. To satisfy this requirement,
include the GETAPPLOPS option in the DDLOPTIONS statement in the Extract
parameter files on both systems.

2. DDL that is applied by Replicat on one system must be captured by the local
Extract and sent back to the other system. To satisfy this requirement, use the
GETREPLICATES option in the DDLOPTIONS statement in the Extract parameter files
on both systems.

Note:

An internal Oracle GoldenGate token will cause the actual Replicat DDL
statement itself to be ignored to prevent loopback. The purpose of
propagating Replicat DDL back to the original system is so that the
Replicat on that system can update its object metadata cache, in
preparation to receive incoming DML, which will have the new metadata.

3. Each Replicat must be configured to update its object metadata cache whenever
the remote Extract sends over a captured Replicat DDL statement. To satisfy this
requirement, use the UPDATEMETADATA option in the DDLOPTIONS statement in the
Replicat parameter files on both systems.

The resultant DDLOPTIONS statements should look as follows:

Extract (primary and secondary)

DDLOPTIONS GETREPLICATES, GETAPPLOPS

Replicat (primary and secondary)

DDLOPTIONS UPDATEMETADATA

Chapter 10
Controlling the Propagation of DDL to Support Different Topologies

10-26

WARNING:

Before you allow new DDL or DML to be issued for the same object(s) as the
original DDL, allow time for the original DDL to be replicated to the remote system
and then captured again by the Extract on that system. This will ensure that the
operations arrive in correct order to the Replicat on the original system, to prevent
DML errors caused by metadata inconsistencies. See the following diagram for
more information.

The labels in the diagrams imply the following:

• 1: ALTER TABLE Customer ADD Birth_Date date

• 2; New metadata: First_Name varchar2(50), Last_Name varchar2(50), Address
varchar2(50), City varchar2(50), Country varchar2(25), Birth_Date date

• 3: ALTER TABLE

• 4: New metadata: First_Name varchar2(50), Last_Name varchar2(50), Address
varchar2(50), City varchar2(50), Country varchar2(25), Birth_Date date

• 5: ALTER TABLE

• 6: DDLOPTIONS UPDATEMETADATA New metadata: First_Name varchar2(50),
Last_Name varchar2(50), Address varchar2(50), City varchar2(50), Country
varchar2(25), Birth_Date date

For more information about DDLOPTIONS, see Reference for Oracle GoldenGate.

For more information about configuring a bidirectional configuration, see Administering
Oracle GoldenGate.

Chapter 10
Controlling the Propagation of DDL to Support Different Topologies

10-27

Propagating DDL in a Cascading Configuration
In a cascading configuration, use the following setting for DDLOPTIONS in the Extract
parameter file on each intermediary system. This configuration forces Extract to
capture the DDL from Replicat on an intermediary system and cascade it to the next
system downstream.

DDLOPTIONS GETREPLICATES, IGNOREAPPLOPS

For more information about DDLOPTIONS, see DDLOPTIONS in Reference for Oracle
GoldenGate.

Adding Supplemental Log Groups Automatically
Use the DDLOPTIONS parameter with the ADDTRANDATA option for performing tasks
described in this topic.

You can perform the following tasks using the DDLOPTIONS:

• Enable Oracle's supplemental logging automatically for new tables created with a
CREATE TABLE.

• Update Oracle's supplemental logging for tables affected by an ALTER TABLE to
add or drop columns.

• Update Oracle's supplemental logging for tables that are renamed.

• Update Oracle's supplemental logging for tables where unique or primary keys are
added or dropped.

To use DDLOPTIONS ADDSCHEMATRANDATA, the ADD SCHEMATRANDATA command must be
issued in GGSCI to enable schema-level supplemental logging.

By default, the ALTER TABLE that adds the supplemental logging is not replicated to the
target unless the GETREPLICATES parameter is in use.

DDLOPTIONS ADDTRANDATA is not supported for multitenant container databases, see
Configuring Logging Properties for more information.

Removing Comments from Replicated DDL
You can use the DDLOPTIONS parameter with the REMOVECOMMENTS BEFORE and
REMOVECOMMENTS AFTER options to prevent comments that were used in the source
DDL from being included in the target DDL.

By default, comments are not removed, so that they can be used for string
substitution.

Replicating an IDENTIFIED BY Password
Use the DDLOPTIONS parameter with the DEFAULTUSERPASSWORDALIAS and
REPLICATEPASSWORD | NOREPLICATEPASSWORD options to control how the password of a

Chapter 10
Adding Supplemental Log Groups Automatically

10-28

replicated {CREATE | ALTER} USER name IDENTIFIED BY password statement is handled.
These options must be used together.

See the USEPASSWORDVERIFIERLEVEL option of DDLOPTIONS for important information about
specifying the password verifier when Replicat operates against an Oracle 10g or 11g
database.

Note:

Replication of CREATE | ALTER PROFILE will fail as the profile/password verification
function must exist in the SYS schema. To replicate these DDLs successfully,
password verification function must be created manually on both source/target(s)
since DDL to SYS schema is excluded.

How DDL is Evaluated for Processing
This topic explains how Oracle GoldenGate processes DDL statements on the source and
target systems.

It shows the order in which different criteria in the Oracle GoldenGate parameters are
processed, and it explains the differences between how Extract and Replicat each process
the DDL.

Extract

1. Extract captures a DDL statement.

2. Extract separates comments, if any, from the main statement.

3. Extract searches for the DDL parameter. (This example assumes it exists.)

4. Extract searches for the IGNOREREPLICATES parameter. If it is present, and if Replicat
produced this DDL on this system, Extract ignores the DDL statement. (This example
assumes no Replicat operations on this system.)

5. Extract determines whether the DDL statement is a RENAME. If so, the rename is flagged
internally.

6. Extract gets the base object name and, if present, the derived object name.

7. If the statement is a RENAME, Extract changes it to ALTER TABLE RENAME.

8. Extract searches for the DDLOPTIONS REMOVECOMMENTS BEFORE parameter. If it is present,
Extract removes the comments from the DDL statement, but stores them in case there is
a DDL INCLUDE or DDL EXCLUDE clause that uses INSTR or INSTRCOMMENTS.

9. Extract determines the DDL scope: MAPPED, UNMAPPED or OTHER:

• It is MAPPED if the operation and object types are supported for mapping, and the base
object name and/or derived object name (if RENAME) is in a TABLE parameter.

• It is UNMAPPED if the operation and object types are not supported for mapping, and
the base object name and/or derived object name (if RENAME) is not in a TABLE
parameter.

• Otherwise the operation is identified as OTHER.

Chapter 10
How DDL is Evaluated for Processing

10-29

10. Extract checks the DDL parameter for INCLUDE and EXCLUDE clauses, and it
evaluates the DDL parameter criteria in those clauses. All options must evaluate to
TRUE in order for the INCLUDE or EXCLUDE to evaluate to TRUE. The following occurs:

• If an EXCLUDE clause evaluates to TRUE, Extract discards the DDL statement
and evaluates another DDL statement. In this case, the processing steps start
over.

• If an INCLUDE clause evaluates to TRUE, or if the DDL parameter does not have
any INCLUDE or EXCLUDE clauses, Extract includes the DDL statement, and the
processing logic continues.

11. Extract searches for a DDLSUBST parameter and evaluates the INCLUDE and
EXCLUDE clauses. If the criteria in those clauses add up to TRUE, Extract performs
string substitution. Extract evaluates the DDL statement against each DDLSUBST
parameter in the parameter file. For all true DDLSUBST specifications, Extract
performs string substitution in the order that the DDLSUBST parameters are listed in
the file.

12. Now that DDLSUBT has been processed, Extract searches for the REMOVECOMMENTS
AFTER parameter. If it is present, Extract removes the comments from the DDL
statement.

13. Extract searches for DDLOPTIONS ADDTRANDATA. If it is present, and if the operation
is CREATE TABLE, Extract issues the ALTER TABLE name ADD SUPPLEMENTAL LOG
GROUP command on the table.

14. Extract writes the DDL statement to the trail.

Replicat

1. Replicat reads the DDL statement from the trail.

2. Replicat separates comments, if any, from the main statement.

3. Replicat searches for DDLOPTIONS REMOVECOMMENTS BEFORE. If it is present,
Replicat removes the comments from the DDL statement.

4. Replicat evaluates the DDL synchronization scope to determine if the DDL
qualifies for name mapping. Anything else is of OTHER scope.

5. Replicat evaluates the MAP statements in the parameter file. If the source base
object name for this DDL (as read from the trail) appears in any of the MAP
statements, the operation is marked as MAPPED in scope. Otherwise it is marked as
UNMAPPED in scope.

6. Replicat replaces the source base object name with the base object name that is
specified in the TARGET clause of the MAP statement.

7. If there is a derived object, Replicat searches for DDLOPTIONS MAPDERIVED. If it is
present, Replicat replaces the source derived name with the target derived name
from the MAP statement.

8. Replicat checks the DDL parameter for INCLUDE and EXCLUDE clauses, and it
evaluates the DDL parameter criteria contained in them. All options must evaluate
to TRUE in order for the INCLUDE or EXCLUDE to evaluate to TRUE. The following
occurs:

• If any EXCLUDE clause evaluates to TRUE, Replicat discards the DDL statement
and starts evaluating another DDL statement. In this case, the processing
steps start over.

Chapter 10
How DDL is Evaluated for Processing

10-30

• If any INCLUDE clause evaluates to TRUE, or if the DDL parameter does not have any
INCLUDE or EXCLUDE clauses, Replicat includes the DDL statement, and the
processing logic continues.

9. Replicat searches for the DDLSUBST parameter and evaluates the INCLUDE and EXCLUDE
clauses. If the options in those clauses add up to TRUE, Replicat performs string
substitution. Replicat evaluates the DDL statement against each DDLSUBST parameter in
the parameter file. For all true DDLSUBST specifications, Replicat performs string
substitution in the order that the DDLSUBST parameters are listed in the file.

10. Now that DDLSUBT has been processed, Replicat searches for the REMOVECOMMENTS AFTER
parameter. If it is present, Replicat removes the comments from the DDL statement.

11. Replicat executes the DDL statement on the target database.

12. If there are no errors, Replicat processes the next DDL statement. If there are errors,
Replicat performs the following steps.

13. Replicat analyzes the INCLUDE and EXCLUDE rules in the Replicat DDLERROR parameters in
the order that they appear in the parameter file. If Replicat finds a rule for the error code,
it applies the specified error handling; otherwise, it applies DEFAULT handling.

14. If the error handling does not enable the DDL statement to succeed, Replicat does one of
the following: abends, ignores the operation, or discards it as specified in the rules.

Note:

If there are multiple targets for the same source in a MAP statement, the processing
logic executes for each one.

Viewing DDL Report Information
By default, Oracle GoldenGate shows basic statistics about DDL at the end of the Extract and
Replicat reports.

To enable expanded DDL reporting, use the DDLOPTIONS parameter with the REPORT option.
Expanded reporting includes the following information about DDL processing:

• A step-by-step history of the DDL operations that were processed by Oracle GoldenGate.

• The DDL filtering and processing parameters that are being used.

Expanded DDL report information increases the size of the report file, but it might be useful in
certain situations, such as for troubleshooting or to determine when an ADDTRANDATA to add
supplemental logging was applied.

To view a report, use the VIEW REPORT command in GGSCI.

VIEW REPORT group

• Viewing DDL Reporting in Replicat

• Viewing DDL Reporting in Extract

• Statistics in the Process Reports

Chapter 10
Viewing DDL Report Information

10-31

Viewing DDL Reporting in Replicat
The Replicat report lists:

• The entire syntax and source Oracle GoldenGate SCN of each DDL operation that
Replicat processed from the trail. You can use the source SCN for tracking
purposes, especially when there are restores from backup and Replicat is
positioned backward in the trail.

• A subsequent entry that shows the scope of the operation (MAPPED, UNMAPPED,
OTHER) and how object names were mapped in the target DDL statement, if
applicable.

• Another entry that shows how processing criteria was applied.

• Additional entries that show whether the operation succeeded or failed, and
whether or not Replicat applied error handling rules.

The following excerpt from a Replicat report illustrates a sequence of steps, including
error handling:

2011-01-20 15:11:45 GGS INFO 2104 DDL found, operation [drop table
myTableTemp], Source SCN [1186713.0].
 2011-01-20 15:11:45 GGS INFO 2100 DDL is of mapped scope, after mapping
new operation [drop table "QATEST2"."MYTABLETEMP"].
 2011-01-20 15:11:45 GGS INFO 2100 DDL operation included [include objname
myTable*], optype [DROP], objtype [TABLE], objname [QATEST2.MYTABLETEMP].
 2011-01-20 15:11:45 GGS INFO 2100 Executing DDL operation.
 2011-01-20 15:11:48 GGS INFO 2105 DDL error ignored for next retry: error
code [942], filter [include objname myTableTemp], error text [ORA-00942: table
or view does not exist], retry [1].
 2011-01-20 15:11:48 GGS INFO 2100 Executing DDL operation , trying again
due to RETRYOP parameter.
 2011-01-20 15:11:51 GGS INFO 2105 DDL error ignored for next retry: error
code [942], filter [include objname myTableTemp], error text [ORA-00942: table
or view does not exist], retry [2].
 2011-01-20 15:11:51 GGS INFO 2100 Executing DDL operation, trying again
due to RETRYOP parameter.
 2011-01-20 15:11:54 GGS INFO 2105 DDL error ignored for next retry: error
code [942], filter [include objname myTableTemp], error text [ORA-00942: table
or view does not exist], retry [3].
 2011-01-20 15:11:54 GGS INFO 2100 Executing DDL operation, trying again
due to RETRYOP parameter.
 2011-01-20 15:11:54 GGS INFO 2105 DDL error ignored: error code [942],
filter [include objname myTableTemp], error text [ORA-00942: table or view does
not exist].

Viewing DDL Reporting in Extract
The Extract report lists the following:

• The entire syntax of each captured DDL operation, the start and end SCN, the
Oracle instance, the DDL sequence number (from the SEQNO column of the history
table), and the size of the operation in bytes.

• A subsequent entry that shows how processing criteria was applied to the
operation, for example string substitution or INCLUDE and EXCLUDE filtering.

• Another entry showing whether the operation was written to the trail or excluded.

Chapter 10
Viewing DDL Report Information

10-32

The following, taken from an Extract report, shows an included operation and an excluded
operation. There is a report message for the included operation, but not for the excluded one.

2011-01-20 15:11:41 GGS INFO 2100 DDL found, operation [create table myTable (
 myId number (10) not null,
 myNumber number,
 myString varchar2(100),
 myDate date,
 primary key (myId)
)], start SCN [1186754], commit SCN [1186772] instance [test11g (1)], DDL seqno
[4134].

2011-01-20 15:11:41 GGS INFO 2100 DDL operation included [INCLUDE OBJNAME
myTable*], optype [CREATE], objtype [TABLE], objname [QATEST1.MYTABLE].

2011-01-20 15:11:41 GGS INFO 2100 DDL operation written to extract trail file.

2011-01-20 15:11:42 GGS INFO 2100 Successfully added TRAN DATA for table with
the key, table [QATEST1.MYTABLE], operation [ALTER TABLE "QATEST1"."MYTABLE" ADD
SUPPLEMENTAL LOG GROUP "GGS_MYTABLE_53475" (MYID) ALWAYS /*
GOLDENGATE_DDL_REPLICATION */].

2011-01-20 15:11:43 GGS INFO 2100 DDL found, operation [create table myTableTemp
(
 vid varchar2(100),
 someDate date,
 primary key (vid)
)], start SCN [1186777], commit SCN [1186795] instance [test11g (1)], DDL seqno
[4137].

2011-01-20 15:11:43 GGS INFO 2100 DDL operation excluded [EXCLUDE OBJNAME
myTableTemp OPTYPE CREATE], optype [CREATE], objtype [TABLE], objname
[QATEST1.MYTABLETEMP].

Statistics in the Process Reports
You can send current statistics for DDL processing to the Extract and Replicat reports by
using the SEND command in GGSCI.

SEND {EXTRACT | REPLICAT} group REPORT

The statistics show totals for:

• All DDL operations

• Operations that are MAPPED in scope

• Operations that are UNMAPPED in scope

• Operations that are OTHER in scope

• Operations that were excluded (number of operations minus included ones)

• Errors (Replicat only)

• Retried errors (Replicat only)

• Discarded errors (Replicat only)

• Ignored operations (Replicat only)

Chapter 10
Viewing DDL Report Information

10-33

Tracing DDL Processing
If you open a support case with Oracle GoldenGate Technical Support, you might be
asked to turn on tracing. TRACE and TRACE2 control DDL tracing.

Using Tools that Support Trigger-Based DDL Capture
This section documents the additional tools available to support trigger-based capture.

• Tracing the DDL Trigger

• Viewing Metadata in the DDL History Table

• Handling DDL Trigger Errors

Tracing the DDL Trigger
To trace the activity of the Oracle GoldenGate DDL trigger, use the following tools.

• ggs_ddl_trace.log trace file: Oracle GoldenGate creates a trace file in the
USER_DUMP_DEST directory of Oracle. On RAC, each node has its own trace file that
captures DDL tracing for that node. You can query the trace file as follows:

select value from sys.v_$parameter where name = 'user_dump_dest';
• ddl_tracelevel script: Edit and run this script to set the trace level. A value of

None generates no DDL tracing, except for fatal errors and installation logging. The
default value of 0 generates minimal tracing information. A value of 1 or 2
generates a much larger amount of information in the trace file. Do not use 1 or 2
unless requested to do so by a Oracle GoldenGate Technical Support analyst as
part of a support case.

• ddl_cleartrace script: Run this script on a regular schedule to prevent the trace
file from consuming excessive disk space as it expands. It deletes the file, but
Oracle GoldenGate will create another one. The DDL trigger stops writing to the
trace file when the Oracle directory gets low on space, and then resumes writing
when space is available again. This script is in the Oracle GoldenGate directory.
Back up the trace file before running the script.

Viewing Metadata in the DDL History Table
Use the DUMPDDL command in GGSCI to view the information that is contained in the
DDL history table. This information is stored in proprietary format, but you can export it
in human-readable form to the screen or to a series of SQL tables that you can query.
The information in the DDL history table is the same as that used by the Extract
process.

Handling DDL Trigger Errors
Use the params.sql non-executable script to handle failures of the Oracle GoldenGate
DDL trigger in relation to whether the source DDL fails or succeeds. The params.sql
script is in the root Oracle GoldenGate directory. The parameters to use are the
following:

Chapter 10
Tracing DDL Processing

10-34

• ddl_fire_error_in_trigger: If set to TRUE, failures of the Oracle GoldenGate DDL
trigger are raised with a Oracle GoldenGate error message and a database error
message to the source end-user application. The source operations fails.

If set to FALSE, no errors are raised, and a message is written to the trigger trace file in
the Oracle GoldenGate directory. The source operation succeeds, but no DDL is
replicated. The target application will eventually fail if subsequent data changes do not
match the old target object structure. The default is FALSE.

• ddl_cause_error: If set to TRUE, tests the error response of the trigger by deliberately
causing an error. To generate the error, Oracle GoldenGate attempts to SELECT zero rows
without exception handling. Revert this flag to the default of FALSE after testing is done.

Using Edition-Based Redefinition
Oracle GoldenGate supports the use of Edition-based Redefinition (EBR) with Oracle
Databases enabling you to upgrade the database component of an application while it is in
use, thereby minimizing or eliminating down time.

Editions are non-schema objects that Editioned objects belong to. Editions can be thought of
as owning editioned objects or as a namespace. Every database starts with one edition
named, ORA$BASE; this includes upgraded databases. More than one edition can exist in a
database and each can only have one child. For example, if you create three editions in
succession, edition1, edition2, edition3, then edition1 is the parent of edition2 which is the
parent of edition3. This is irrespective of the user or database session that creates them or
which edition was current when the new one is created. When you create an edition, it
inherits all the editioned objects of its parent. To use editions with Oracle GoldenGate, you
must create them.

An object is considered editioned if it is an editionable type, it is created with the EDITIONABLE
attribute, and the schema is enabled for editioning of that object type. When you create, alter,
or drop an editioned object, the redo log will contain the name of the edition in which it
belongs. In a container database, editions belong to the container and each container has its
own default edition.

The CREATE | DROP EDITION DDLs are captured for all Extract configurations. They fall into
the OTHER category and assigned an OBJTYPE option value of EDITION. The OBJTYPE option
can be used for filtering, for example:

DDL EXCLUDE OBJTYPE EDITION
DDL EXCLUDE OBJTYPE EDITION OPTYPE CREATE
DDL EXCLUDE OBJTYPE EDITION OPTYPE DROP
DDL EXCLUDE OBJTYPE EDITION OPTYPE DROP ALLOWEMPTYOWNER OBJNAME edition_name

You must use the following syntax to exclude an edition from Extract or Replicat:

EXCLUDE OBJTYPE EDITION, ALLOWEMPTYOWNER OBJNAME edition_name

Editions fall into the OTHER category so no mapping is performed on the edition name. When
applied, the USE permission is automatically granted to the Replicat user. Replicat will also
perform a grant use on edition name with grant option to the original creating user if
that user exists on the target database. Because editions are not mappable operations, they
do not have owners so the standard EXCLUDE statement does not work.

The DDLs used to create or alter editions does not actually enable the user for editions,
rather they enable the schema for editions. This is an important distinction because it means
that the Replicat user does not need to be enabled for editions to apply DDLs to editioned

Chapter 10
Using Edition-Based Redefinition

10-35

objects. When Replicat applies a CREATE EDITION DDL, it grants the original creating
user permission to USE it if the original user exists on the target database. For any
unreplicated CREATE EDITION statements, you must issue a USE WITH GRANT OPTION
grant to the Replicat user.

Whether or not an editionable objects becomes editioned is controlled by the schema
it is applied in. Replicat switches its current session Edition before applying a DDL if
the edition name attribute exists in the trail file and it is not empty.

Container database environments are supported for both Extract and Replicat. No
additional configuration is necessary. The Replicat user's schema can not be enabled
for editions if it is a common user. The Replicat user's schema does not need to be
enabled for editions when applying DDLs to editioned objects in other schemas.

Note:

EBR support is limited to Integrated Dictionary; it is not supported when
using a DDL trigger.

Chapter 10
Using Edition-Based Redefinition

10-36

11
Creating Process Groups

This chapter contains instructions for creating Oracle GoldenGate process groups,
collectively known as the "change-synchronization" processes. At minimum, you will create
one primary Extract, one data pump, and one Replicat process group.
Topics:

• Prerequisites
This chapter assumes you have installed Oracle GoldenGate, understand the different
processing options available to you, and have performed the following prerequisite
configuration steps before proceeding to configure Oracle GoldenGate process groups.

• Registering Extract with the Mining Database
If you are using Extract in integrated mode, you need to create a database logmining
server to capture redo data. You do this from the GGSCI interface by registering the
primary Extract process with the mining database.

• Add the Primary Extract
The primary Extract writes to a trail.

• Add the Local Trail
These steps add the local trail to which the primary Extract writes captured data.

• Add the Data Pump Extract Group
These steps add the data pump that reads the local trail and sends the data to the target.

• Add the Remote Trail
Although it is read by Replicat, this trail must be associated with the data pump, so it
must be added on the source system, not the target.

• Add the Replicat Group
These steps add the Replicat group that reads the remote trail and applies the data
changes to the target Oracle Database.

Prerequisites
This chapter assumes you have installed Oracle GoldenGate, understand the different
processing options available to you, and have performed the following prerequisite
configuration steps before proceeding to configure Oracle GoldenGate process groups.

• Establishing Oracle GoldenGate Credentials

• Preparing the Database for Oracle GoldenGate

• Configuring Capture in Integrated Mode

• Configuring Capture in Classic Mode

• Configuring Oracle GoldenGate Apply

• Configuring DDL Support (to use DDL support)

11-1

Registering Extract with the Mining Database
If you are using Extract in integrated mode, you need to create a database logmining
server to capture redo data. You do this from the GGSCI interface by registering the
primary Extract process with the mining database.

The creation of the logmining server extracts a snapshot of the source database in the
redo stream of the source database. In a source multitenant container database, you
register Extract with each of the pluggable databases that you want to include for
capture.

WARNING:

Make certain that you know the earliest SCN of the log stream at which you
want Extract to begin processing. Extract cannot have a starting SCN value
that is lower than the first SCN that is specified when the underlying
database capture process is created with the REGISTER EXTRACT command.
You can use the SCN option

1. Log into the mining database then use the commands appropriate to your
environment. The use of DBLOGIN always refers to the source database.

Command for source database deployment:

DBLOGIN USERIDALIAS alias

Command for downstream mining database deployment:

DBLOGIN USERIDALIAS alias
MININGDBLOGIN USERIDALIAS alias2

Where: alias specifies the alias of the database login credential that is assigned
to Extract. This credential must exist in the Oracle GoldenGate credential store.
For more information, see Establishing Oracle GoldenGate Credentials. For more
information about DBLOGIN and MININGDBLOGIN, see Reference for Oracle
GoldenGate.

2. Register the Extract process with the mining database.

REGISTER EXTRACT group DATABASE [CONTAINER (container[, ...])] [SCN
system_change_number]

Where:

• group is the name of the Extract group.

• CONTAINER (container[, ...]) specifies a pluggable database (PDB) within
a multitenant container database, or a list of PDBs separated with commas.
The specified PDBs must exist before the REGISTER command is executed.
Extract will capture only from the PDBs that are listed in this command. For
example, the following command registers PDBs mypdb1 and mypdb4. Changes
from any other PDBs in the multitenant container database are ignored by
Oracle GoldenGate.

Chapter 11
Registering Extract with the Mining Database

11-2

REGISTER EXTRACT myextract DATABASE CONTAINER (mypdb1, mypdb4, mydb5)

You can add or drop pluggable databases at a later date by stopping Extract, issuing
a DBLOGIN command, and then issuing REGISTER EXTRACT with the {ADD | DROP}
CONTAINER option of DATABASE.

Note:

Adding CONTAINERs at particular SCN on an existing Extract is not
supported.

• Registers Extract to begin capture at a specific SCN in the past. Without this option,
capture begins from the time that REGISTER EXTRACT is issued. The specified SCN
must correspond to the begin SCN of a dictionary build operation in a log file. You
can issue the following query to find all valid SCN values:

SELECT first_change#
 FROM v$archived_log
 WHERE dictionary_begin = 'YES' AND
 standby_dest = 'NO' AND
 name IS NOT NULL AND
 status = 'A';

3. To register additional Extracts with a downstream database for the same source
database, issue this REGISTER command.

If you want to have more than one extract per source database, you can do that using the
SHARE with REGISTER EXTRACT for better performance and metadata management. The
specified SCN must correspond to the SCN where mining should begin in the archive logs.

REGISTER EXTRACT group DATABASE [CONTAINER (container[, ...])]
[SCN system_change_number] SHARE

Note:

The register process may take a few to several minutes to complete, even though
the REGISTER command returns immediately.

Add the Primary Extract
The primary Extract writes to a trail.

These steps add the primary Extract that captures change data.

1. If using downstream capture, set the RMAN archive log deletion policy to the following
value in the source database:

CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON ALL STANDBY

This must be done before you add the primary Extract.

2. Run GGSCI.

3. If using integrated capture, issue the DBLOGIN command.

Chapter 11
Add the Primary Extract

11-3

DBLOGIN USERIDALIAS alias

Where: alias specifies the alias of the database login credential that is assigned
to Extract. This credential must exist in the Oracle GoldenGate credential store.

4. Issue the ADD EXTRACT command to add the primary Extract group.

ADD EXTRACT group name
{, TRANLOG | , INTEGRATED TRANLOG}
{, BEGIN {NOW | yyyy-mm-dd[hh:mi:[ss[.cccccc]]]} | SCN value}
[, THREADS n]

Where:

• group name is the name of the Extract group.

• TRANLOG specifies the transaction log as the data source; for classic capture
only. See Example 11-1.

• INTEGRATED TRANLOG specifies that Extract receives logical change records
through a database logmining server; for integrated capture only. See
Example 11-2. Before issuing ADD EXTRACT with this option, make certain you
logged in to the database with the DBLOGIN command and that you registered
this Extract with the database. See Registering Extract with the Mining
Database for more information.

• BEGIN specifies to begin capturing data as of a specific time:

– NOW starts at the first record that is time stamped at the same time that ADD
EXTRACT is issued.

– yyyy-mm-dd[hh:mi:[ss[.cccccc]]] starts at an explicit timestamp. Logs
from this timestamp must be available. For Extract in integrated mode, the
timestamp value must be greater than the timestamp at which the Extract
was registered with the database.

– SCN value starts Extract at the transaction in the redo log that has the
specified Oracle system change number (SCN). For Extract in integrated
mode, the SCN value must be greater than the SCN at which the Extract
was registered with the database. See Registering Extract with the Mining
Database for more information.

• THREADS n is required in classic capture mode for Oracle Real Application
Cluster (RAC), to specify the number of redo log threads being used by the
cluster. Extract reads and coordinates each thread to maintain transactional
consistency. Not required for integrated capture.

Note:

Additional options are available. See Reference for Oracle GoldenGate.

Example 11-1 Classic capture with timestamp start point

ADD EXTRACT finance, TRANLOG, BEGIN 2011-01-01 12:00:00.000000

Chapter 11
Add the Primary Extract

11-4

Example 11-2 Integrated capture with timestamp start point

DBLOGIN USERIDALIAS myalias
ADD EXTRACT finance, INTEGRATED TRANLOG, BEGIN NOW

Add the Local Trail
These steps add the local trail to which the primary Extract writes captured data.

In GGSCI on the source system, issue the ADD EXTTRAIL command:

ADD EXTTRAIL pathname, EXTRACT group name

Where:

• EXTTRAIL specifies that the trail is to be created on the local system.

• pathname is the relative or fully qualified name of the trail, including the two-character
name.

• EXTRACT group name is the name of the primary Extract group.

Note:

Oracle GoldenGate creates this trail automatically during processing.

Example 11-3

ADD EXTTRAIL /ggs/dirdat/lt, EXTRACT finance

Add the Data Pump Extract Group
These steps add the data pump that reads the local trail and sends the data to the target.

In GGSCI on the source system, issue the ADD EXTRACT command.

ADD EXTRACT group name, EXTTRAILSOURCE trail name

Where:

• group name is the name of the Extract group.

• EXTTRAILSOURCE trail name is the relative or fully qualified name of the local trail.

Example 11-4

ADD EXTRACT financep, EXTTRAILSOURCE c:\ggs\dirdat\lt

Add the Remote Trail
Although it is read by Replicat, this trail must be associated with the data pump, so it must be
added on the source system, not the target.

These steps add the remote trail:

In GGSCI on the source system, issue the following command:

Chapter 11
Add the Local Trail

11-5

ADD RMTTRAIL pathname, EXTRACT group name
Where:

• RMTTRAIL specifies that the trail is to be created on the target system.

• pathname is the relative or fully qualified name of the trail, including the two-
character name.

• EXTRACT group name is the name of the data-pump Extract group.

Note:

Oracle GoldenGate creates this trail automatically during processing.

Example 11-5

ADD RMTTRAIL /ggs/dirdat/rt, EXTRACT financep

Add the Replicat Group
These steps add the Replicat group that reads the remote trail and applies the data
changes to the target Oracle Database.

1. Run GGSCI on the target system.

2. If using integrated Replicat, issue the DBLOGIN command to log into the database
from GGSCI.

DBLOGIN USERIDALIAS alias

Where: alias specifies the alias of the database login credential that is assigned
to Replicat. This credential must exist in the Oracle GoldenGate credential store.
For more information, see Establishing Oracle GoldenGate Credentials

3. Issue the ADD REPLICAT command with the following syntax.

ADD REPLICAT group name, [INTEGRATED,] EXTTRAIL pathname

Where:

• group name is the name of the Replicat group.

• INTEGRATED creates an integrated Replicat group.

• EXTTRAIL pathname is the relative or fully qualified name of the remote trail,
including the two-character name.

For more information, see Reference for Oracle GoldenGate.

Example 11-6 Adds a Nonintegrated Replicat

ADD REPLICAT financer, EXTTRAIL c:\ggs\dirdat\rt

Example 11-7 Adds an Integrated Replicat

ADD REPLICAT financer, INTEGRATED, EXTTRAIL c:\ggs\dirdat\rt

Chapter 11
Add the Replicat Group

11-6

12
Instantiating Oracle GoldenGate Replication

This chapter contains instructions for configuring and performing an instantiation of the
replication environment to establish and maintain a synchronized state between two or more
databases. In a synchronized state, the source and target objects contain identical or
appropriately corresponding values, depending on whether any conversion or transformation
is performed on the data before applying it to the target objects.
Topics:

• Overview of the Instantiation Process
In the instantiation procedure, you make a copy of the source data and load the copy to
the target database.

• Prerequisites for Instantiation
The following steps must be taken before starting any Oracle GoldenGate processes or
native database load processes.

• Configuring the Initial Load
Oracle GoldenGate supports theses load methods in this section specifically for Oracle
Database.

• Performing the Target Instantiation
This procedure instantiates the target tables while Oracle GoldenGate captures ongoing
transactional changes on the source and stores them until they can be applied on the
target.

• Monitoring and Controlling Processing After the Instantiation
After the target is instantiated and replication is in effect, you can control processes and
view the overall health of the replication environment.

• Verifying Synchronization
To verify that the source and target data are synchronized, you can use the Oracle
GoldenGate Veridata product or use your own scripts to select and compare source and
target data.

• Backing up the Oracle GoldenGate Environment
After you start Oracle GoldenGate processing, an effective backup routine is critical to
preserving the state of processing in the event of a failure. Unless the Oracle GoldenGate
working files can be restored, the entire replication environment must be re-instantiated,
complete with new initial loads.

Overview of the Instantiation Process
In the instantiation procedure, you make a copy of the source data and load the copy to the
target database.

The initial load captures a point-in-time snapshot of the data, while Oracle GoldenGate
maintains that consistency by applying transactional changes that occur while the static data
is being loaded. After instantiation is complete, Oracle GoldenGate maintains the
synchronized state throughout ongoing transactional changes.

When you instantiate Oracle GoldenGate processing, it is recommended that you do so first
in a test environment before deploying live on your production machines. This is especially

12-1

important in an active-active or high availability configuration, where trusted source
data may be touched by the replication processes. Testing enables you to find and
resolve any configuration mistakes or data issues without the need to interrupt user
activity for re-loads on the target or other troubleshooting activities. Testing also
ensures that your instantiation process is configured properly. Parameter files can be
copied to the production equipment after successful testing, and then you can perform
a predictable instantiation with production data.

Prerequisites for Instantiation
The following steps must be taken before starting any Oracle GoldenGate processes
or native database load processes.

• Configuring and Adding Change Synchronization Groups

• Disabling DDL Processing

• Adding Collision Handling

• Preparing the Target Tables

Configuring and Adding Change Synchronization Groups
To perform an instantiation of the target database and the replication environment, the
online change capture and apply groups must exist and be properly configured. See:

• Configuring Capture in Integrated Mode

• Configuring Capture in Classic Mode

• Configuring Oracle GoldenGate Apply

• Creating Process Groups

Disabling DDL Processing
You must disable DDL activities before performing an instantiation. You can resume
DDL after the instantiation is finished. See Disabling DDL Processing Temporarily for
instructions.

Adding Collision Handling
This prerequisite applies to the following instantiation methods:

• Configuring a Direct Bulk Load to SQL*Loader

• Configuring a Load from an Input File to SQL*Loader

This prerequisite does not apply to the instantiation method described in Configuring a
Load with an Oracle Data Pump.

If the source database will remain active during one of those initial load methods,
collision-handling logic must be added to the Replicat parameter file. This logic
handles conflicts that occur because static data is being loaded to the target tables
while Oracle GoldenGate replicates transactional changes to those tables.

To handle collisions, add the HANDLECOLLISIONS parameter to the Replicat parameter
file to resolve these collisions:

Chapter 12
Prerequisites for Instantiation

12-2

• INSERT operations for which the row already exists

• UPDATE and DELETE operations for which the row does not exist

HANDLECOLLISIONS should be removed from the Replicat parameter file at the end of the
instantiation steps (as prompted in the instructions).

To use the HANDLECOLLISIONS function to reconcile incremental data changes with the load,
each target table must have a primary or unique key. If you cannot create a key through your
application, use the KEYCOLS option of the TABLE and MAP parameters to specify columns as a
substitute key for Oracle GoldenGate to use. If you cannot create keys, the affected source
table must be quiesced for the load.

Preparing the Target Tables
The following are suggestions that can make the load go faster and help you to avoid errors.

• Data: Make certain that the target tables are empty. Otherwise, there may be duplicate-
row errors or conflicts between existing rows and rows that are being loaded.

• Indexes: Remove indexes from the target tables. Indexes are not necessary for the
inserts performed by the initial load process and will slow it down. You can add back the
indexes after the load is finished.

Configuring the Initial Load
Oracle GoldenGate supports theses load methods in this section specifically for Oracle
Database.

Select a method and follow its configuration steps to create the load processes and
parameter files. To work with parameter files, see Using Oracle GoldenGate Parameter Files
in Administering Oracle GoldenGate.

• Configuring a Load with an Oracle Data Pump

• Configuring a Direct Bulk Load to SQL*Loader

• Configuring a Load from an Input File to SQL*Loader

Configuring a Load with an Oracle Data Pump
This method uses the Oracle Data Pump utility to establish the target data. You start Extract,
the data pumps, and Replicat at the SCN at which the copy stopped. Transactions that were
included in the copy are skipped to avoid collisions from integrity violations. From the process
start point, Oracle GoldenGate maintains data synchronization.

No initial-load Oracle GoldenGate processes are required for this method.

Chapter 12
Configuring the Initial Load

12-3

Configuring a Direct Bulk Load to SQL*Loader
With this method, you configure and run an Oracle GoldenGate initial-load Extract to
extract complete source records and send them directly to an initial-load Replicat task.
The initial-load Replicat task communicates with SQL*Loader to load data as a direct-
path bulk load. Data mapping and transformation can be done by either the initial-load
Extract or initial-load Replicat, or both. During the load, the change-synchronization
groups that you configured in Configuring Capture in Integrated Mode or Configuring
Capture in Classic Mode and Configuring Oracle GoldenGate Apply replicate
incremental changes, which are then reconciled with the results of the load.

The following diagram shows configuring a direct bulk load to SQL*Loader.

Limitations:

• This method does not support extraction of LOB or LONG data. As an alternative,
see Performing Instantiation From an Input File to SQL*Loader.

• This method does not support materialized views that contain LOBs, regardless of
their size. It also does not support data encryption.

Chapter 12
Configuring the Initial Load

12-4

To Configure a Direct Bulk Load to SQL*Loader

1. Grant LOCK ANY TABLE to the Replicat database user on the target Oracle Database.

2. On the source and target systems, run GGSCI.

3. Start Manager on both systems.

START MANAGER
4. On the source system, create the initial-load Extract.

ADD EXTRACT initial-load_Extract, SOURCEISTABLE

Where:

• initial-load_Extract is the name of the initial-load Extract, up to eight characters.

• SOURCEISTABLE directs Extract to read complete records directly from the source
tables.

5. On the source system, create the initial-load Extract parameter file.

EDIT PARAMS initial-load_Extract
6. Enter the initial-load Extract parameters in the order shown, starting a new line for each

parameter statement. This example shows a three-part table name associated with a
multitenant container database.

EXTRACT initext
USERIDALIAS tiger1
RMTHOST fin1, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey2
RMTTASK replicat, GROUP initrep
TABLE hq.hr.*;

Parameter Description

EXTRACT initial-
load_Extract

Specifies the name of the initial-load Extract, as stated with
ADD EXTRACT.

USERIDALIAS alias Specifies the alias of the database login credential that is
assigned to Extract. This credential must exist in the Oracle
GoldenGate credential store. For more information, see
Establishing Oracle GoldenGate Credentials

RMTHOST hostname, MGRPORT
portnumber[, ENCRYPT
algorithm KEYNAME keyname]

Specifies the target system, the port where Manager is
running, and optional encryption of data across TCP/IP.

RMTTASK REPLICAT, GROUP
initial-load_Replicat

Specifies the process type (must be REPLICAT) and the
name of the initial-load Replicat. Directs Manager on the
target system to dynamically start the initial-load Replicat as
a one-time task.

TABLE
[container.]schema.table;

Specifies the tables to capture.

• container is the name of the pluggable database, if
this is a multitenant container database. You can use
the SOURCECATALOG parameter to specify a default
pluggable database instead of using three-part names.

• schema is the schema name.

• table is the table name.

7. Save and close the file.

Chapter 12
Configuring the Initial Load

12-5

8. On the target system, create the initial-load Replicat.

ADD REPLICAT initial-load Replicat, SPECIALRUN

Where:

• initial-load Replicat is the name of the initial-load Replicat task.

• SPECIALRUN identifies the initial-load Replicat as a one-time task, not a
continuous process.

9. On the target system, create the initial-load Replicat parameter file.

EDIT PARAMS initial-load Replicat
10. Enter the initial-load Replicat parameters in the order shown, starting a new line

for each parameter statement. This example shows a three-part source table
name associated with a multitenant container database.

REPLICAT initrep
USERIDALIAS tiger2
BULKLOAD
ASSUMETARGETDEFS
MAP hq.hr.*, TARGET hr2.*;

Parameter Description

REPLICAT initial-load
Replicat

Specifies the name of the initial-load Replicat task, as stated
with ADD REPLICAT.

USERIDALIAS alias Specifies the alias of the database login credential that is
assigned to Replicat. This credential must exist in the Oracle
GoldenGate credential store.

BULKLOAD Directs Replicat to interface directly with the Oracle
SQL*Loader interface.

ASSUMETARGETDEFS Assumes the source and target tables are identical, including
semantics. If source and target definitions are different, you
must create and specify a source-definitions file that both the
change-synchronization and initial-load processes will use.

MAP
[container.]schema.ta
ble, TARGET
schema.table;

Specifies a relationship between a source and target table or
tables.

• If the source is a multitenant container database,
container is the name of the pluggable database that
contains the source objects specified with this MAP
statement. You can use the SOURCECATALOG parameter
to specify a default source pluggable database instead of
using three-part names.

• schema is the schema name.

• table is the table name.

Configuring a Load from an Input File to SQL*Loader
With this method, an initial-load Extract extracts source records from the source tables
and writes them to an extract file in external ASCII format. The files are read by
SQL*Loader. During the load, the change-synchronization groups that you configured
in Chapter 4 replicate incremental changes, which are then reconciled with the results
of the load. As part of the load procedure, Oracle GoldenGate uses the initial-load
Replicat to create run and control files required by the database utility. Any data

Chapter 12
Configuring the Initial Load

12-6

transformation must be performed by the initial-load Extract on the source system because
the control files are generated dynamically and cannot be pre-configured with transformation
rules.

To Configure a Load from File to SQL*Loader

1. On the source and target systems, run GGSCI.

2. Start Manager on both systems.

START MANAGER
3. On the source system, create the initial-load Extract parameter file.

EDIT PARAMS initial-load Extract
4. Enter the initial-load Extract parameters in the order shown, starting a new line for each

parameter statement. This example shows a three-part table name associated with a
multitenant container database.

SOURCEISTABLE
USERIDALIAS tiger1
RMTHOST fin1, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey2
ENCRYPTTRAIL AES192
FORMATASCII, SQLLOADER
RMTFILE /ggs/dirdat/ie
TABLE hq.hr.*;

Parameter Description

SOURCEISTABLE Designates Extract as an initial load process that extracts records
directly from the source tables.

USERIDALIAS alias Specifies the alias of the database login credential that is assigned
to Extract. This credential must exist in the Oracle GoldenGate
credential store, see Establishing Oracle GoldenGate Credentials

Chapter 12
Configuring the Initial Load

12-7

Parameter Description

RMTHOST hostname,
MGRPORT portnumber[,
ENCRYPT algorithm
KEYNAME keyname]

Specifies the target system, the port where Manager is running,
and optional encryption of data across TCP/IP.

ENCRYPTTRAIL algorithm Encrypts the data in the remote file. For more information.

FORMATASCII, SQLLOADER Produces a fixed-length, ASCII-formatted remote file that is
compatible with SQL*Loader. This parameter must be listed before
RMTFILE.

RMTFILE path Specifies the absolute or full path name of an extract file that
Extract creates and to which it writes the load data.

TABLE
[container.]schema.tabl
e;

Specifies the tables to capture.

• container is the name of the pluggable database, if this is a
multitenant container database. You can use the
SOURCECATALOG parameter to specify a default pluggable
database instead of using three-part names.

• schema is the schema name.

• table is the table name.

5. Save and close the parameter file.

6. On the target system, create the initial-load Replicat parameter file.

EDIT PARAMS initial-load Replicat
7. Enter the initial-load Replicat parameters in the order shown, starting a new line

for each parameter statement. This example shows a three-part source table
name associated with a multitenant container database.

GENLOADFILES sqlldr.tpl
USERIDALIAS tiger2
EXTFILE /ggs/dirdat/ie
ASSUMETARGETDEFS
MAP hq.hr.*, TARGET hr2.*;

Parameter Description

GENLOADFILES template Generates run and control files for the database utility.

USERIDALIAS alias Specifies the alias of the database login credential of the user
that is assigned to Replicat. This credential must exist in the
Oracle GoldenGate credential store, see Establishing Oracle
GoldenGate Credentials

EXTFILE path Specifies the extract file that you specified with the Extract
parameter RMTFILE.

ASSUMETARGETDEFS Assumes the source and target tables are identical, including
semantics. If source and target definitions are different, you
must create and specify a source-definitions file that both the
change-synchronization and initial-load processes will use.

Chapter 12
Configuring the Initial Load

12-8

Parameter Description

MAP
[container.]schema.ta
ble, TARGET
schema.table;

Specifies a relationship between a source and target table or
tables.

• If the source is a multitenant container database,
container is the name of the pluggable database that
contains the source objects specified with this MAP
statement. You can use the SOURCECATALOG parameter
to specify a default source pluggable database instead of
using three-part names.

• schema is the schema name.

• table is the table name.

8. Save and close the parameter file.

Performing the Target Instantiation
This procedure instantiates the target tables while Oracle GoldenGate captures ongoing
transactional changes on the source and stores them until they can be applied on the target.

By the time you perform the instantiation of the target tables, the entire Oracle GoldenGate
environment should be configured for change capture and delivery, as should the initial-load
processes if using Oracle GoldenGate as an initial-load utility.

Note:

The first time that Extract starts in a new Oracle GoldenGate configuration, any
open source transactions will be skipped. Only transactions that begin after Extract
starts are captured.

• Performing Instantiation with Oracle Data Pump

• Performing Instantiation with Direct Bulk Load to SQL*Loader

• Performing Instantiation From an Input File to SQL*Loader

Performing Instantiation with Oracle Data Pump
To perform instantiation with Oracle Data Pump, see My Oracle Support document
1276058.1. To obtain this document, do the following:

1. Go to http://support.oracle.com.

2. Under Sign In, select your language and then log in with your Oracle Single Sign-On
(SSO).

3. On the Dashboard, expand the Knowledge Base heading.

4. Under Enter Search Terms, paste or type the document ID of 1276058.1 and then click
Search.

5. In the search results, select Oracle GoldenGate Best Practices: Instantiation from an
Oracle Source Database [Article ID 1276058.1].

6. Click the link under Attachments to open the article.

Chapter 12
Performing the Target Instantiation

12-9

http://support.oracle.com

Performing Instantiation with Direct Bulk Load to SQL*Loader
1. On the source system, run GGSCI.

2. Start the primary change-capture Extract group.

START EXTRACT group
3. Start the data-pump Extract group.

START EXTRACT data_pump
4. If replicating sequence values:

• Issue the DBLOGIN command with the alias of a user in the credential store who
has EXECUTE privilege on update.Sequence.

DBLOGIN USERIDALIAS alias
• Issue the following command to update each source sequence and generate

redo. From the redo, Replicat performs initial synchronization of the
sequences on the target.

FLUSH SEQUENCE [container.]schema.sequence
5. Start the initial-load Extract.

START EXTRACT initial-load_Extract

WARNING:

Do not start the initial-load Replicat. The Manager process starts it
automatically and terminates it when the load is finished.

6. On the target system, run GGSCI.

7. Issue the VIEW REPORT command to determine when the initial load to SQL*Loader
is finished.

VIEW REPORT initial-load_Extract
8. When the load is finished, start the change-data Replicat group.

START REPLICAT group
9. Issue the INFO REPLICAT command, and continue to issue it until it shows that

Replicat posted all of the change data that was generated during the initial load.
For example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that time.

INFO REPLICAT group
10. Turn off HANDLECOLLISIONS for the change-delivery Replicat to disable initial-load

error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS
11. Edit the change-delivery Replicat parameter file to remove the HANDLECOLLISIONS

parameter.

EDIT PARAMS group

Chapter 12
Performing the Target Instantiation

12-10

12. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data changes.

Performing Instantiation From an Input File to SQL*Loader

Note:

The SQL*Loader method is not recommended if the data has multibyte characters,
especially when the character set of the operating system is different from the
database character set.

1. On the source system, run GGSCI.

2. Start the primary change-capture Extract group.

START EXTRACT group
3. Start the data-pump Extract group.

START EXTRACT data_pump
4. If replicating sequence values:

• Issue the DBLOGIN command with the alias of a user in the credential store who has
EXECUTE privilege on update.Sequence.

DBLOGIN USERIDALIAS alias
• Issue the following command to update each source sequence and generate redo.

From the redo, Replicat performs initial synchronization of the sequences on the
target.

FLUSH SEQUENCE [container.]schema.sequence
5. From the Oracle GoldenGate installation directory on the source system, start the initial-

load Extract from the command line of the operating system (not GGSCI).

UNIX and Linux:

$ /OGG_directory/extract paramfile dirprm/initial-load_Extract.prm reportfile
path

Windows:

C:\> OGG_directory\extract paramfile dirprm\initial-load_Extract.prm
reportfile path

Where: initial-load_Extract is the name of the initial-load Extract and path is the
relative or fully qualified path where you want the Extract report file to be created.

6. Wait until the initial extraction from the source is finished. Verify its progress and results
by viewing the Extract report file from the command line.

7. On the target system, start the initial-load Replicat.

UNIX and Linux:

$ /OGG directory/replicat paramfile dirprm/initial-load_Replicat name.prm
reportfile path

Chapter 12
Performing the Target Instantiation

12-11

Windows:

C:\> OGG directory\replicat paramfile dirprm\initial-load_Replicat.prm
reportfile path

Where: initial-load Extract is the name of the initial-load Replicat and path is
the relative or fully qualified path where you want the Replicat report file to be
created.

8. When the initial-load Replicat stops, verify its results by viewing the Replicat report
file from the command line.

9. Using the ASCII-formatted file and the run and control files that the initial-load
Replicat created, load the data with SQL*Loader.

10. When the load is finished, start the change-delivery Replicat group.

START REPLICAT group
11. Issue the INFO REPLICAT command, and continue to issue it until it shows that

Replicat posted all of the change data that was generated during the initial load.
For example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that time.

INFO REPLICAT group
12. Turn off HANDLECOLLISIONS for the change-delivery Replicat to disable initial-load

error handling.

SEND REPLICAT group, NOHANDLECOLLISIONS
13. Edit the change-delivery Replicat parameter file to remove the HANDLECOLLISIONS

parameter.

EDIT PARAMS group
14. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data changes.

Monitoring and Controlling Processing After the Instantiation
After the target is instantiated and replication is in effect, you can control processes
and view the overall health of the replication environment.

If you configured Replicat in integrated mode, you can use the STATS REPLICAT
command to view statistics on the number of transactions that are applied in integrated
mode as compared to those that are applied in direct apply mode.

STATS REPLICAT group

The output of this command shows the number of transactions applied, the number of
transactions that were redirected to direct apply, and the direct transaction ratio,
among other statistics. The statistics help you determine whether integrated Replicat is
performing as intended. If the environment is satisfactory and there is a high ratio of
direct apply operations, consider using nonintegrated Replicat. You can configure
parallelism with nonintegrated Replicat.

Chapter 12
Monitoring and Controlling Processing After the Instantiation

12-12

Note:

To ensure realistic statistics, view apply statistics only after you are certain that the
Oracle GoldenGate environment is well established, that configuration errors are
resolved, and that any anticipated processing errors are being handled properly.

You can also view runtime statistics for integrated Replicat in the V$views for each of the
inbound server components.

• The reader statistics are recorded in V$GG_APPLY_READER and include statistics on
number of messages read, memory used, and dependency counts.

• The apply coordinator statistics are recorded in V$GG_APPLY_COORDINATOR and record
statistics at the transaction level.

• The apply server statistics are recorded in V$GG_APPLY_SERVER. This view records
information for each of the apply server processes (controlled by parallelism and
max_parallelism parameters) as separate rows. The statistics for each apply server are
identified by the SERVER_ID column. If a SERVER_ID of 0 exists, this represents an
aggregate of any apply servers that exited because the workload was reduced.

• Statistics about the number of messages received by the database from Replicat are
recorded in the V$GG_APPLY_RECEIVER table.

To control processes, see Controlling Oracle GoldenGate Processes in Administering Oracle
GoldenGate.

To ensure that all processes are running properly and that errors are being handled according
to your error handling rules, see Handling Processing Errors in Administering Oracle
GoldenGate. Oracle GoldenGate provides commands and logs to view process status, lag,
warnings, and other information.

To know more about querying the following views, see Oracle Database Reference.

• V$GOLDENGATE_TABLE_STATS to see statistics for DML and collisions that occurred for
each replicated table that the inbound server processed.

• V$GOLDENGATE_TRANSACTION to see information about transactions that are being
processed by Oracle GoldenGate inbound servers.

Verifying Synchronization
To verify that the source and target data are synchronized, you can use the Oracle
GoldenGate Veridata product or use your own scripts to select and compare source and
target data.

Backing up the Oracle GoldenGate Environment
After you start Oracle GoldenGate processing, an effective backup routine is critical to
preserving the state of processing in the event of a failure. Unless the Oracle GoldenGate

Chapter 12
Verifying Synchronization

12-13

working files can be restored, the entire replication environment must be re-
instantiated, complete with new initial loads.

As a best practice, include the entire Oracle GoldenGate home installation in your
backup routines. There are too many critical sub-directories, as well as files and
programs at the root of the directory, to keep track of separately. In any event, the
most critical files are those that consume the vast majority of backup space, and
therefore it makes sense just to back up the entire installation directory for fast, simple
recovery.

Chapter 12
Backing up the Oracle GoldenGate Environment

12-14

13
Managing the DDL Replication Environment

This chapter contains instructions for making changes to the database environment or the
Oracle GoldenGate environment when the Oracle GoldenGate DDL trigger is being used to
support DDL replication. See Installing Trigger-Based DDL Capture for more information
about the DDL objects.
For instructions on configuring Oracle GoldenGate DDL support, see Configuring DDL
Support .

Note:

This chapter is only relevant for classic capture mode or integrated capture mode in
which trigger-based DDL capture is being used.

Topics:

• Disabling DDL Processing Temporarily
You must disable DDL activities before performing an instantiation or other tasks, if
directed.

• Enabling and Disabling the DDL Trigger
You can enable and disable the trigger that captures DDL operations without making any
configuration changes within Oracle GoldenGate.

• Maintaining the DDL Marker Table
You can purge rows from the marker table at any time. It does not keep DDL history.

• Deleting the DDL Marker Table
Do not delete the DDL marker table unless you want to discontinue synchronizing DDL.

• Maintaining the DDL History Table
You can purge the DDL history table to control its size, but do so carefully.

• Deleting the DDL History Table
The history table and the DDL trigger are interdependent. An attempt to drop the history
table fails if the DDL trigger is enabled. This is a safety measure to prevent the trigger
from becoming invalid and missing DDL operations.

• Purging the DDL Trace File
To prevent the DDL trace file from consuming excessive disk space, run the
ddl_cleartrace script on a regular basis.

• Applying Database Patches and Upgrades when DDL Support is Enabled
Database patches and upgrades usually invalidate the Oracle GoldenGate DDL trigger
and other Oracle GoldenGate DDL objects.

• Apply Oracle GoldenGate Patches and Upgrades when DDL support is Enabled
Use the following steps to apply a patch or upgrade to the DDL objects.

• Restoring an Existing DDL Environment to a Clean State
Follow these steps to completely remove, and then reinstall, the Oracle GoldenGate DDL
objects.

13-1

• Removing the DDL Objects from the System
This procedure removes the DDL environment and removes the history that
maintains continuity between source and target DDL operations.

Disabling DDL Processing Temporarily
You must disable DDL activities before performing an instantiation or other tasks, if
directed.

You can resume DDL processing after the task is finished.

1. Disable user DDL operations on the source database.

2. If there are previous DDL replication processes that are still active, make certain
that the last executed DDL operation was applied to the target before stopping
those processes, so that the load data is applied to objects that have the correct
metadata.

3. Comment out the DDL parameter in the Extract and Replicat parameter files that
you configured for the new Oracle GoldenGate environment. Comment out any
other parameters that support DDL.

4. Disable the Oracle GoldenGate DDL trigger, if one is in use. See Enabling and
Disabling the DDL Trigger.

Enabling and Disabling the DDL Trigger
You can enable and disable the trigger that captures DDL operations without making
any configuration changes within Oracle GoldenGate.

The following scripts control the DDL trigger.

• ddl_disable: Disables the trigger. No further DDL operations are captured or
replicated after you disable the trigger.

• ddl_enable: Enables the trigger. When you enable the trigger, Oracle GoldenGate
starts capturing current DDL changes, but does not capture DDL that was
generated while the trigger was disabled.

Before running these scripts, disable all sessions that ever issued DDL, including
those of the Oracle GoldenGate processes, SQL*Plus, business applications, and any
other software that uses Oracle. Otherwise the database might generate an
ORA-04021 error. Do not use these scripts if you intend to maintain consistent DDL on
the source and target systems.

Maintaining the DDL Marker Table
You can purge rows from the marker table at any time. It does not keep DDL history.

To purge the marker table, use the Manager parameter PURGEMARKERHISTORY. Manager
gets the name of the marker table from one of the following:

1. The name given with the MARKERTABLE parameter in the GLOBALS file, if specified.

2. The default name of GGS_MARKER.

PURGEMARKERHISTORY provides options to specify maximum and minimum lengths of
time to keep a row, based on the last modification date.

Chapter 13
Disabling DDL Processing Temporarily

13-2

Deleting the DDL Marker Table
Do not delete the DDL marker table unless you want to discontinue synchronizing DDL.

The marker table and the DDL trigger are interdependent. An attempt to drop the marker
table fails if the DDL trigger is enabled. This is a safety measure to prevent the trigger from
becoming invalid and missing DDL operations. If you remove the marker table, the following
error is generated:

ORA-04098: trigger 'SYS.GGS_DDL_TRIGGER_BEFORE' is invalid and failed re-validation

The proper way to remove an Oracle GoldenGate DDL object depends on your plans for the
rest of the DDL environment. To choose the correct procedure, see one of the following:

• Restoring an Existing DDL Environment to a Clean State

• Removing the DDL Objects from the System

Maintaining the DDL History Table
You can purge the DDL history table to control its size, but do so carefully.

The DDL history table maintains the integrity of the DDL synchronization environment.
Purges to this table cannot be recovered through the Oracle GoldenGate interface.

1. To prevent any possibility of DDL history loss, make regular full backups of the history
table.

2. To ensure that purged DDL can be recovered, enable Oracle Flashback for the history
table. Set the flashback retention time well past the point where it could be needed. For
example, if your full backups are at most one week old, retain two weeks of flashback.
Oracle GoldenGate can be positioned backward into the flashback for reprocessing.

3. If possible, purge the DDL history table manually to ensure that essential rows are not
purged accidentally. If you require an automated purging mechanism, use the
PURGEDDLHISTORY parameter in the Manager parameter file. You can specify maximum
and minimum lengths of time to keep a row.

Note:

Temporary tables created by Oracle GoldenGate to increase performance might be
purged at the same time as the DDL history table, according to the same rules. The
names of these tables are derived from the name of the history table, and their
purging is reported in the Manager report file. This is normal behavior.

Deleting the DDL History Table
The history table and the DDL trigger are interdependent. An attempt to drop the history table
fails if the DDL trigger is enabled. This is a safety measure to prevent the trigger from
becoming invalid and missing DDL operations.

Do not delete the DDL history table unless you want to discontinue synchronizing DDL. The
history table contains a record of DDL operations that were issued. Once an Extract switches

Chapter 13
Deleting the DDL Marker Table

13-3

from using the DDL trigger to not using the trigger, as when source database redo
compatibility is advanced to 11.2.0.4 or greater, these objects can be deleted though
not immediately. It is imperative that all mining of the redo generated before the
compatibility change be complete and that this redo not need to be mined again.

If you remove the history table, the following error is generated:

ORA-04098: trigger 'SYS.GGS_DDL_TRIGGER_BEFORE' is invalid and failed re-
validation

The proper way to remove an Oracle GoldenGate DDL object depends on your plans
for the rest of the DDL environment. To choose the correct procedure, see one of the
following:

• Restoring an Existing DDL Environment to a Clean State

• Removing the DDL Objects from the System

Purging the DDL Trace File
To prevent the DDL trace file from consuming excessive disk space, run the
ddl_cleartrace script on a regular basis.

This script deletes the trace file, but Oracle GoldenGate will create it again.

The default name of the DDL trace file is ggs_ddl_trace.log. It is in the
USER_DUMP_DEST directory of Oracle. The ddl_cleartrace script is in the Oracle
GoldenGate directory.

Applying Database Patches and Upgrades when DDL
Support is Enabled

Database patches and upgrades usually invalidate the Oracle GoldenGate DDL trigger
and other Oracle GoldenGate DDL objects.

Before applying a database patch, do the following.

1. Log in to SQL*Plus as a user that has SYSDBA privileges.

2. Disable the Oracle GoldenGate DDL trigger by running the ddl_disable script in
SQL*Plus.

3. Apply the patch.

4. Enable the DDL trigger by running the ddl_enable script in SQL*Plus.

Note:

Database upgrades and patches generally operate on Oracle objects.
Because Oracle GoldenGate filters out those objects automatically, DDL
from those procedures is not replicated when replication starts again.

Chapter 13
Purging the DDL Trace File

13-4

To avoid recompile errors after the patch or upgrade, which are caused if the trigger is not
disabled before the procedure, consider adding calls to @ddl_disable and @ddl_enable at
the appropriate locations within your scripts.

Apply Oracle GoldenGate Patches and Upgrades when DDL
support is Enabled

Use the following steps to apply a patch or upgrade to the DDL objects.

This section explains how to apply Oracle GoldenGate patches and upgrades when DDL
support is enabled.

Note:

If the release notes or upgrade documentation for your Oracle GoldenGate release
contain instructions similar to those provided in this section, follow those
instructions instead the ones in this section. Do not use this procedure for an
upgrade from an Oracle GoldenGate version that does not support DDL statements
that are larger than 30K (pre-version 10.4). To upgrade in that case, follow the
instructions in Restoring an Existing DDL Environment to a Clean State.

This procedure may or may not preserve the current DDL synchronization configuration,
depending on whether the new build requires a clean installation.

1. Run GGSCI. Keep the session open for the duration of this procedure.

2. Stop Extract to stop DDL capture.

STOP EXTRACT group
3. Stop Replicat to stop DDL replication.

STOP REPLICAT group
4. Download or extract the patch or upgrade files according to the instructions provided by

Oracle GoldenGate.

5. Change directories to the Oracle GoldenGate installation directory.

6. Log in to SQL*Plus as a user that has SYSDBA privileges.

7. Disconnect all sessions that ever issued DDL, including those of Oracle GoldenGate
processes, SQL*Plus, business applications, and any other software that uses Oracle.
Otherwise the database might generate an ORA-04021 error.

8. Run the ddl_disable script to disable the DDL trigger.

9. Run the ddl_setup script. You are prompted for the name of the Oracle GoldenGate DDL
schema. If you changed the schema name, use the new one.

10. Run the ddl_enable.sql script to enable the DDL trigger.

11. In GGSCI, start Extract to resume DDL capture.

START EXTRACT group
12. Start Replicat to start DDL replication.

Chapter 13
Apply Oracle GoldenGate Patches and Upgrades when DDL support is Enabled

13-5

START REPLICAT group

Restoring an Existing DDL Environment to a Clean State
Follow these steps to completely remove, and then reinstall, the Oracle GoldenGate
DDL objects.

This procedure creates a new DDL environment and removes any current DDL history.

Note:

Due to object interdependencies, all objects must be removed and reinstalled
in this procedure.

1. If you are performing this procedure in conjunction with the installation of a new
Oracle GoldenGate version, download and install the Oracle GoldenGate files, and
create or update process groups and parameter files as necessary.

2. (Optional) To preserve the continuity of source and target structures, stop DDL
activities and then make certain that Replicat finished processing all of the DDL
and DML data in the trail. To determine when Replicat is finished, issue the
following command until you see a message that there is no more data to process.

INFO REPLICAT group

Note:

Instead of using INFO REPLICAT, you can use the EVENTACTIONS option of
TABLE and MAP to stop the Extract and Replicat processes after the DDL
and DML has been processed.

3. Run GGSCI.

4. Stop Extract to stop DDL capture.

STOP EXTRACT group
5. Stop Replicat to stop DDL replication.

STOP REPLICAT group
6. Change directories to the Oracle GoldenGate installation directory.

7. Log in to SQL*Plus as a user that has SYSDBA privileges.

8. Disconnect all sessions that ever issued DDL, including those of Oracle
GoldenGate processes, SQL*Plus, business applications, and any other software
that uses Oracle. Otherwise the database might generate an ORA-04021 error.

9. Run the ddl_disable script to disable the DDL trigger.

10. Run the ddl_remove script to remove the Oracle GoldenGate DDL trigger, the DDL
history and marker tables, and other associated objects. This script produces a
ddl_remove_spool.txt file that logs the script output and a ddl_remove_set.txt
file that logs environment settings in case they are needed for debugging.

Chapter 13
Restoring an Existing DDL Environment to a Clean State

13-6

11. Run the marker_remove script to remove the Oracle GoldenGate marker support system.
This script produces a marker_remove_spool.txt file that logs the script output and a
marker_remove_set.txt file that logs environment settings in case they are needed for
debugging.

12. If you are changing the DDL schema for this installation, grant the following permission to
the Oracle GoldenGate schema.

GRANT EXECUTE ON utl_file TO schema;
13. If you are changing the DDL schema for this installation, the schema's default tablespace

must be dedicated to that schema; do not allow any other schema to share it. AUTOEXTEND
must be set to ON for this tablespace, and the tablespace must be sized to accommodate
the growth of the GGS_DDL_HIST and GGS_MARKER tables. The GGS_DDL_HIST table, in
particular, will grow in proportion to overall DDL activity.

Note:

If the DDL tablespace fills up, Extract stops capturing DDL. To cause user DDL
activity to fail when that happens, edit the params.sql script and set the
ddl_fire_error_in_trigger parameter to TRUE. Stopping user DDL gives you
time to extend the tablespace size and prevent the loss of DDL capture.
Managing tablespace sizing this way, however, requires frequent monitoring of
the business applications and Extract to avoid business disruptions. Instead,
Oracle recommends that you size the tablespace appropriately and set
AUTOEXTEND to ON so that the tablespace does not fill up.

WARNING:

Do not edit any other parameters in params.sql except if you need to follow
documented instructions to change certain object names.

14. If you are changing the DDL schema for this installation, edit the GLOBALS file and specify
the new schema name with the following parameter.

GGSCHEMA schema_name
15. Run the marker_setup script to reinstall the Oracle GoldenGate marker support system.

You are prompted for the name of the Oracle GoldenGate schema.

16. Run the ddl_setup script. You are prompted for the name of the Oracle GoldenGate DDL
schema.

17. Run the role_setup script to recreate the Oracle GoldenGate DDL role.

18. Grant the role to all Oracle GoldenGate users under which the following Oracle
GoldenGate processes run: Extract, Replicat, GGSCI, and Manager. You might need to
make multiple grants if the processes have different user names.

19. Run the ddl_enable.sql script to enable the DDL trigger.

Chapter 13
Restoring an Existing DDL Environment to a Clean State

13-7

Removing the DDL Objects from the System
This procedure removes the DDL environment and removes the history that maintains
continuity between source and target DDL operations.

Note:

Due to object interdependencies, all objects must be removed.

1. Run GGSCI.

2. Stop Extract to stop DDL capture.

STOP EXTRACT group
3. Stop Replicat to stop DDL replication.

STOP REPLICAT group
4. Change directories to the Oracle GoldenGate installation directory.

5. Run SQL*Plus and log in as a user that has SYSDBA privileges.

6. Disconnect all sessions that ever issued DDL, including those of Oracle
GoldenGate processes, SQL*Plus, business applications, and any other software
that uses Oracle. Otherwise the database might generate an ORA-04021 error.

7. Run the ddl_disable script to disable the DDL trigger.

8. Run the ddl_remove script to remove the Oracle GoldenGate DDL trigger, the DDL
history and marker tables, and the associated objects. This script produces a
ddl_remove_spool.txt file that logs the script output and a ddl_remove_set.txt
file that logs current user environment settings in case they are needed for
debugging.

9. Run the marker_remove script to remove the Oracle GoldenGate marker support
system. This script produces a marker_remove_spool.txt file that logs the script
output and a marker_remove_set.txt file that logs environment settings in case
they are needed for debugging.

Chapter 13
Removing the DDL Objects from the System

13-8

14
Automatic Conflict Detection and Resolution

You can configure Oracle GoldenGate to automatically detect and resolve conflicts that occur
when same data is updated concurrently at different sites.

Topics:

• About Automatic Conflict Detection and Resolution

• Configuring Automatic Conflict Detection and Resolution
You can configure Oracle GoldenGate automatic conflict detection and resolution in
Oracle Database with the DBMS_GOLDENGATE_ADM package.

• Managing Automatic Conflict Detection and Resolution
You can manage Oracle GoldenGate automatic conflict detection and resolution in Oracle
Database with the DBMS_GOLDENGATE_ADM package.

• Monitoring Automatic Conflict Detection and Resolution
You can monitor Oracle GoldenGate automatic conflict detection and resolution in an
Oracle Database by querying data dictionary views.

About Automatic Conflict Detection and Resolution
When Oracle GoldenGate replicates changes between Oracle Databases, you can configure
and manage Oracle GoldenGate automatic conflict detection and resolution in these
databases. To do this, you must ensure that PL/SQL call is done at the source and the target
databases. This feature is intended for use with bi-directional replication.

Note:

This chapter is for the automatic conflict detection and resolution feature that is
specific to Oracle GoldenGate 12c (12.3.0.1) and Oracle Database 12c Release 2
(12.2) and later, which is configured in an Oracle Database. There is also a general
Oracle GoldenGate feature for conflict detection and resolution, which is called
Oracle GoldenGate conflict detection and resolution (CDR). Oracle GoldenGate
CDR is configured in the Replicat parameter file.

You can configure only one of the following types of automatic conflict detection and
resolution for a single table:

• The automatic conflict detection and resolution feature that is specific to Oracle Database
12c Release 2 (12.2)

• Oracle GoldenGate CDR

• Automatic Conflict Detection and Resolution

• Requirements for Automatic Conflict Detection and Resolution
Learn the requirements for automatic conflict detection and resolution (ACDR).

14-1

• Latest Timestamp Conflict Detection and Resolution

• Delta Conflict Detection and Resolution

• Column Groups

Automatic Conflict Detection and Resolution

You can configure automatic conflict detection and resolution in an Oracle GoldenGate
configuration that replicates tables between Oracle Databases. To configure conflict
detection and resolution for a table, call the ADD_AUTO_CDR procedure in the
DBMS_GOLDENGATE_ADM package.

When Oracle GoldenGate captures changes that originated at an Oracle Database,
each change is encapsulated in a row logical change record (LCR). A row LCR is a
structured representation of a DML row change. Each row LCR includes the operation
type, old column values, and new column values. Multiple row LCRs can be part of a
single database transaction.

When more than one replica of a table allows changes to the table, a conflict can
occur when a change is made to the same row in two different databases at nearly the
same time. Oracle GoldenGate replicates changes using the row LCRs. It detects a
conflict by comparing the old values in the row LCR for the initial change from the
origin database with the current values of the corresponding table row at the
destination database identified by the key columns. If any column value does not
match, then there is a conflict.

After a conflict is detected, Oracle GoldenGate can resolve the conflict by overwriting
values in the row with some values from the row LCR, ignoring the values in the row
LCR, or computing a delta to update the row values.

Automatic conflict detection and resolution does not require application changes for
the following reasons:

• Oracle Database automatically creates and maintains invisible timestamp
columns.

• Inserts, updates, and deletes use the delete tombstone log table to determine if a
row was deleted.

• LOB column conflicts can be detected.

• Oracle Database automatically configures supplemental logging on required
columns.

Note:

If you use the classic Replicat on tables that have Automatic Change
Detection and Resolution enabled, the Extract might abend with the
OGG-10461 Failed to retrieve timestamp error. This is because the internal
trigger that inserts the records into tombstone tables, only fires on user
DMLs. A classic Replicat suppresses all the triggers from firing, which results
in missing inserts on tombstone tables.

Chapter 14
About Automatic Conflict Detection and Resolution

14-2

See Also:

• Oracle Database Utilities for information about supplemental logging

Requirements for Automatic Conflict Detection and Resolution
Learn the requirements for automatic conflict detection and resolution (ACDR).

Supplemental logging is required to ensure that each row LCR has the information required
to detect and resolve a conflict. Supplemental logging places additional information in the
redo log for the columns of a table when a DML operation is performed on the table. When
you configure a table for Oracle GoldenGate conflict detection and resolution, supplemental
logging is configured automatically for all of the columns in the table. The additional
information in the redo log is placed in an LCR when a table change is replicated.

In Oracle 12.2, the tables must have a primary key with a not null constraint on it. The table
cannot have any unique keys. In Oracle 18.1 and up, the table must have a primary key with
a not null constraint or a unique key with a not null constraint. The supplemental logging is
also a requirement.

Integrated Extract must be used for capturing

Integrated Replicat or parallel Replicat in integrated mode must be used on the apply side

LOGALLSUPCOLS should remain the default

Replicat needs to add the parameter MAPINVISIBLECOLUMNS

Latest Timestamp Conflict Detection and Resolution

When you run the ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package to
configure a table for automatic Oracle GoldenGate conflict detection and resolution, a hidden
timestamp column is added to the table. This hidden timestamp column records the time of a
row change, and this information is used to detect and resolve conflicts.

When a row LCR is applied, a conflict can occur for an INSERT, UPDATE, or DELETE operation.
The following table describes each type of conflict and how it is resolved.

Operation Conflict Detection Conflict Resolution

INSERT A conflict is detected when the
table has the same value for a
key column as the new value in
the row LCR.

If the timestamp of the row LCR
is later than the timestamp in the
table row, then the values in the
row LCR replace the values in
the table.

If the timestamp of the row LCR
is earlier than the timestamp in
the table row, then the row LCR
is discarded, and the table
values are retained.

Chapter 14
About Automatic Conflict Detection and Resolution

14-3

Operation Conflict Detection Conflict Resolution

UPDATE A conflict is detected in each of
the following cases:

• There is a mismatch
between the timestamp
value in the row LCR and
the timestamp value of the
corresponding row in the
table.

• There is a mismatch
between an old value in a
column group in the row
LCR does not match the
column value in the
corresponding table row. A
column group is a logical
grouping of one or more
columns in a replicated
table.

• The table row does not exist.
If the row is in the tombstone
table, then this is referred to
as an update-delete conflict.

If there is a value mismatch and
the timestamp of the row LCR is
later than the timestamp in the
table row, then the values in the
row LCR replace the values in
the table.

If there is a value mismatch and
the timestamp of the row LCR is
earlier than the timestamp in the
table row, then the row LCR is
discarded, and the table values
are retained.

If the table row does not exist
and the timestamp of the row
LCR is later than the timestamp
in the tombstone table row, then
the row LCR is converted from
an UPDATE operation to an
INSERT operation and inserted
into the table.

If the table row does not exist
and the timestamp of the row
LCR is earlier than the
timestamp in the tombstone table
row, then the row LCR is
discarded.

If the table row does not exist
and there is no corresponding
row in the tombstone table, then
the row LCR is converted from
an UPDATE operation to an
INSERT operation and inserted
into the table.

DELETE A conflict is detected in each of
the following cases:

• There is a mismatch
between the timestamp
value in the row LCR and
the timestamp value of the
corresponding row in the
table.

• The table row does not exist.

If the timestamp of the row LCR
is later than the timestamp in the
table, then delete the row from
the table.

If the timestamp of the row LCR
is earlier than the timestamp in
the table, then the row LCR is
discarded, and the table values
are retained.

If the delete is successful, then
log the row LCR by inserting it
into the tombstone table.

If the table row does not exist,
then log the row LCR by
inserting it into the tombstone
table.

Delta Conflict Detection and Resolution
With delta conflict detection, a conflict occurs when a value in the old column list of the
row LCR differs from the value for the corresponding row in the table.

Chapter 14
About Automatic Conflict Detection and Resolution

14-4

To configure delta conflict detection and resolution for a table, run the
ADD_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package. The delta
resolution method does not depend on a timestamp or an extra resolution column. With delta
conflict resolution, the conflict is resolved by adding the difference between the new and old
values in the row LCR to the value in the table. This resolution method is generally used for
financial data such as an account balance. For example, if a bank balance is updated at two
sites concurrently, then the converged value accounts for all debits and credits.

Chapter 14
About Automatic Conflict Detection and Resolution

14-5

This example shows a row being replicated at database A and database B. The
Balance column is designated as the column on which delta conflict resolution is
performed, and the TS1 column is the invisible timestamp column to track the time of
each change to the Balance column. A change is made to the Balance value in the
row in both databases at nearly the same time (@T20 in database A and @T22 in
database B). These changes result in a conflict, and delta conflict resolution is used to
resolve the conflict in the following way:

• At database A, the value of Balance was changed from 100 to 110. Therefore, the
value was increased by 10.

• At database B, the value of Balance was changed from 100 to 120. Therefore, the
value was increased by 20.

• To resolve the conflict at database A, the value of the difference between the new
and old values in the row LCR to the value in the table. The difference between
the new and old values in the LCR is 20 (120–100=20). Therefore, the current
value in the table (110) is increased by 20 so that the value after conflict resolution
is 130.

• To resolve the conflict at database B, the value of the difference between the new
and old values in the row LCR to the value in the table. The difference between
the new and old values in the LCR is 10 (110–100=10). Therefore, the current
value in the table (120) is increased by 10 so that the value after conflict resolution
is 130.

After delta conflict resolution, the value of the Balance column is the same for the row
at database A and database B.

Column Groups
A column group is a logical grouping of one or more columns in a replicated table.
When you add a column group, conflict detection and resolution is performed on the
columns in the column group separately from the other columns in the table.

When you configure a table for Oracle GoldenGate conflict detection and resolution
with the ADD_AUTO_CDR procedure, all of the scalar columns in the table are added to a
default column group. To define other column groups for the table, run the
ADD_AUTO_CDR_COLUMN_GROUP procedure. Any columns in the table that are not part of
a user-defined column group remain in the default column group for the table.

Column groups enable different databases to update different columns in the same
row at nearly the same time without causing a conflict. When column groups are
configured for a table, conflicts can be avoided even if different databases update the
same row in the table. A conflict is not detected if the updates change the values of
columns in different column groups.

Chapter 14
About Automatic Conflict Detection and Resolution

14-6

This example shows a row being replicated at database A and database B. The following two
column groups are configured for the replicated table at each database:

• One column group includes the Office column. The invisible timestamp column for this
column group is TS1.

• Another column group includes the Title and Salary columns. The invisible timestamp
column for this column group is TS2.

Chapter 14
About Automatic Conflict Detection and Resolution

14-7

These column groups enable database A and database B to update the same row at
nearly the same time without causing a conflict. Specifically, the following changes are
made:

• At database A, the value of Office was changed from 1080 to 1030.

• At database B, the value of Title was changed from MTS1 to MTS2.

Because the Office column and the Title column are in different column groups, the
changes are replicated without a conflict being detected. The result is that values in
the row are same at both databases after each change has been replicated.

Piecewise LOB Updates

A set of lob operations composed of LOB WRITE, LOB ERASE, and LOB TRIM is a
piecewise LOB update. When a table that contains LOB columns is configured for
conflict detection and resolution, each LOB column is placed in its own column group,
and the column group has its own hidden timestamp column. The timestamp column is
updated on the first piecewise LOB operation.

For a LOB column, a conflict is detected and resolved in the following ways:

• If the timestamp for the LOB’s column group is later than the corresponding LOB
column group in the row, then the piecewise LOB update is applied.

• If the timestamp for the LOB’s column group is earlier than the corresponding LOB
column group in the row, then the LOB in the table row is retained.

• If the row does not exist in the table, then an error occurs

Configuring Automatic Conflict Detection and Resolution
You can configure Oracle GoldenGate automatic conflict detection and resolution in
Oracle Database with the DBMS_GOLDENGATE_ADM package.

For the Replicat parameter file you need to add a MAP statement that includes the table
to be replicated and the MAPINVISIBLECOLUMNS parameter.

• Configuring Latest Timestamp Conflict Detection and Resolution
The ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package configures
latest timestamp conflict detection and resolution. The
ADD_AUTO_CDR_COLUMN_GROUP procedure adds optional column groups.

• Configuring Delta Conflict Detection and Resolution
The ADD_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package
configures delta conflict detection and resolution.

Configuring Latest Timestamp Conflict Detection and Resolution
The ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package configures latest
timestamp conflict detection and resolution. The ADD_AUTO_CDR_COLUMN_GROUP
procedure adds optional column groups.

With latest timestamp conflict detection and resolution, a conflict is detected when the
timestamp column of the row LCR does not match the timestamp of the corresponding
table row. The row LCR is applied if its timestamp is later. Otherwise, the row LCR is
discarded, and the table row is not changed. When you run the ADD_AUTO_CDR
procedure, it adds an invisible timestamp column for each row in the specified table

Chapter 14
Configuring Automatic Conflict Detection and Resolution

14-8

and configures timestamp conflict detection and resolution. When you use the
ADD_AUTO_CDR_COLUMN_GROUP procedure to add one or more column groups, it adds a
timestamp for the column group and configures timestamp conflict detection and resolution
for the column group.

You can configure an Oracle GoldenGate administrator using the GRANT_ADMIN_PRIVILEGE
procedure in the DBMS_GOLDENGATE_ADM package.

1. Connect to the inbound server database as a Oracle GoldenGate administrator.

2. Run the ADD_AUTO_CDR procedure and specify the table to configure for latest timestamp
conflict detection and resolution.

3. Optional: Run the ADD_AUTO_CDR_COLUMN_GROUP procedure and specify one or more
column groups in the table.

4. Repeat the previous steps in each Oracle Database that replicates the table.

Example 14-1 Configuring the Latest Timestamp Conflict Detection and Resolution
for a Table

This example configures latest timestamp conflict detection and resolution for the
hr.employees table.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR(
 schema_name => 'hr',
 table_name => 'employees');
END;
/

Example 14-2 Configuring Column Groups

This example configures the following column groups for timestamp conflict resolution on the
hr.employees table:

• The job_identifier_cg column group includes the job_id, department_id, and
manager_id columns.

• The compensation_cg column group includes the salary and commission_pct columns.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_COLUMN_GROUP(
 schema_name => 'hr',
 table_name => 'employees',
 column_list => 'job_id,department_id,manager_id',
 column_group_name => 'job_identifier_cg');
END;
/

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_COLUMN_GROUP(
 schema_name => 'hr',
 table_name => 'employees',
 column_list => 'salary,commission_pct',
 column_group_name => 'compensation_cg');
END;
/

Chapter 14
Configuring Automatic Conflict Detection and Resolution

14-9

Configuring Delta Conflict Detection and Resolution
The ADD_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package
configures delta conflict detection and resolution.

With delta conflict resolution, you specify one column for which conflicts are detected
and resolved. The conflict is detected if the value of the column in the row LCR does
not match the corresponding value in the table. The conflict is resolved by adding the
difference between the new and old values in the row LCR to the value in the table.

You can configure an Oracle GoldenGate administrator using the
GRANT_ADMIN_PRIVILEGE procedure in the DBMS_GOLDENGATE_ADM package.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the ADD_AUTO_CDR procedure and specify the table to configure for latest
timestamp conflict detection and resolution.

3. Run the ADD_AUTO_CDR_DELTA_RES procedure and specify the column on which
delta conflict detection and resolution is performed.

4. Repeat the previous steps in each Oracle Database that replicates the table.

Example 14-3 Configuring Delta Conflict Detection and Resolution for a Table

This example configures delta conflict detection and resolution for the order_total
column in the oe.orders table.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR(
 schema_name => 'oe',
 table_name => 'orders');
END;
/

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_DELTA_RES(
 schema_name => 'oe',
 table_name => 'orders',
 column_name => 'order_total');
END;
/

Managing Automatic Conflict Detection and Resolution
You can manage Oracle GoldenGate automatic conflict detection and resolution in
Oracle Database with the DBMS_GOLDENGATE_ADM package.

• Altering Conflict Detection and Resolution for a Table

• Altering a Column Group

• Purging Tombstone Rows

• Removing Conflict Detection and Resolution From a Table

• Removing a Column Group

Chapter 14
Managing Automatic Conflict Detection and Resolution

14-10

• Removing Delta Conflict Detection and Resolution

Altering Conflict Detection and Resolution for a Table

The ALTER_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package alters conflict detection
and resolution for a table.

Oracle GoldenGate automatic conflict detection and resolution must be configured for the
table:

1. Connect to the inbound server database as the Oracle GoldenGate administrator.

2. Run the ALTER_AUTO_CDR procedure and specify the table to configure for latest
timestamp conflict detection and resolution.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 14-4 Altering Conflict Detection and Resolution for a Table

This example alters conflict detection and resolution for the hr.employees table to specify
that delete conflicts are tracked in a tombstone table.

BEGIN
 DBMS_GOLDENGATE_ADM.ALTER_AUTO_CDR(
 schema_name => 'hr',
 table_name => 'employees',
 tombstone_deletes => TRUE);
END;
/

Altering a Column Group
The ALTER_AUTO_CDR_COLUMN_GROUP procedure alters a column group.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the ALTER_AUTO_CDR_COLUMN_GROUP procedure and specify one or more column
groups in the table.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 14-5 Altering a Column Group

This example removes the manager_id column from the job_identifier_cg column group
for the hr.employees table.

BEGIN
 DBMS_GOLDENGATE_ADM.ALTER_AUTO_CDR_COLUMN_GROUP(
 schema_name => 'hr',
 table_name => 'employees',
 column_group_name => 'job_identifier_cg',
 remove_column_list => 'manager_id');
END;
/

Chapter 14
Managing Automatic Conflict Detection and Resolution

14-11

Note:

If there is more than one column, then use a comma-separated list.

Purging Tombstone Rows

The PURGE_TOMBSTONES procedure removes tombstone rows that were recorded before
a specified date and time. This procedure removes the tombstone rows for all tables
configured for conflict resolution in the database.

It might be necessary to purge tombstone rows periodically to keep the tombstone log
from growing too large over time.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the PURGE_TOMBSTONES procedure and specify the date and time.

Example 14-6 Purging Tombstone Rows

This example purges all tombstone rows recorded before 3:00 p.m. on December, 1,
2015 Eastern Standard Time. The timestamp must be entered in TIMESTAMP WITH
TIME ZONE format.

EXEC DBMS_GOLDENGATE_ADM.PURGE_TOMBSTONES('2015-12-01 15:00:00.000000
EST');

Removing Conflict Detection and Resolution From a Table
The REMOVE_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package removes
automatic conflict detection and resolution from a table. This procedure also removes
any column groups and delta conflict detection and resolution configured for the table.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR procedure and specify the table.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 14-7 Removing Conflict Detection and Resolution for a Table

This example removes conflict detection and resolution for the hr.employees table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR(
 schema_name => 'hr',
 table_name => 'employees');
END;
/

Removing a Column Group
The REMOVE_AUTO_CDR_COLUMN_GROUP procedure removes a column group.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

Chapter 14
Managing Automatic Conflict Detection and Resolution

14-12

2. Run the REMOVE_AUTO_CDR_COLUMN_GROUP procedure and specify the name of the column
group.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 14-8 Removing a Column Group

This example removes the compensation_cg column group from the hr.employees table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR_COLUMN_GROUP(
 schema_name => 'hr',
 table_name => 'employees',
 column_group_name => 'compensation_cg');
END;
/

Removing Delta Conflict Detection and Resolution

The REMOVE_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package removes
delta conflict detection and resolution for a column.

Delta conflict detection and resolution must be configured for the specified column.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR_DELTA_RES procedure and specify the column.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 14-9 Removing Delta Conflict Detection and Resolution for a Table

This example removes delta conflict detection and resolution for the order_total column in
the oe.orders table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR_DELTA_RES(
 schema_name => 'oe',
 table_name => 'orders',
 column_name => 'order_total');
END;
/

Monitoring Automatic Conflict Detection and Resolution
You can monitor Oracle GoldenGate automatic conflict detection and resolution in an Oracle
Database by querying data dictionary views.

• Displaying Information About the Tables Configured for Conflicts

• Displaying Information About Conflict Resolution Columns

• Displaying Information About Column Groups

Chapter 14
Monitoring Automatic Conflict Detection and Resolution

14-13

Displaying Information About the Tables Configured for Conflicts
The ALL_GG_AUTO_CDR_TABLES view displays information about the tables configured
for Oracle GoldenGate automatic conflict detection and resolution.

1. Connect to the database.

2. Query the ALL_GG_AUTO_CDR_TABLES view.

Example 14-10 Displaying Information About the Tables Configured for
Conflict Detection and Resolution

This query displays the following information about the tables that are configured for
conflict detection and resolution:

• The table owner for each table.

• The table name for each table.

• The tombstone table used to store rows deleted for update-delete conflicts, if a
tombstone table is configured for the table.

• The hidden timestamp column used for conflict resolution for each table.

COLUMN TABLE_OWNER FORMAT A15
COLUMN TABLE_NAME FORMAT A15
COLUMN TOMBSTONE_TABLE FORMAT A15
COLUMN ROW_RESOLUTION_COLUMN FORMAT A25

SELECT TABLE_OWNER,
 TABLE_NAME,
 TOMBSTONE_TABLE,
 ROW_RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_TABLES
 ORDER BY TABLE_OWNER, TABLE_NAME;

Your output looks similar to the following:

TABLE_OWNER TABLE_NAME TOMBSTONE_TABLE ROW_RESOLUTION_COLUMN
--------------- --------------- ---------------

HR EMPLOYEES DT$_EMPLOYEES CDRTS$ROW
OE ORDERS DT$_ORDERS CDRTS$ROW

Displaying Information About Conflict Resolution Columns
The ALL_GG_AUTO_CDR_COLUMNS view displays information about the columns
configured for Oracle GoldenGate automatic conflict detection and resolution.

The columns can be configured for row or column automatic conflict detection and
resolution. The columns can be configured for latest timestamp conflict resolution in a
column group. In addition, a column can be configured for delta conflict resolution.

1. Connect to the database as an Oracle GoldenGate administrator.

2. Query the ALL_GG_AUTO_CDR_COLUMNS view.

Chapter 14
Monitoring Automatic Conflict Detection and Resolution

14-14

Example 14-11 Displaying Information About Column Groups

This query displays the following information about the tables that are configured for conflict
detection and resolution:

• The table owner for each table.

• The table name for each table.

• If the column is in a column group, then the name of the column group.

• The column name.

• If the column is configured for latest timestamp conflict resolution, then the name of the
hidden timestamp column for the column.

COLUMN TABLE_OWNER FORMAT A10
COLUMN TABLE_NAME FORMAT A10
COLUMN COLUMN_GROUP_NAME FORMAT A17
COLUMN COLUMN_NAME FORMAT A15
COLUMN RESOLUTION_COLUMN FORMAT A23

SELECT TABLE_OWNER,
 TABLE_NAME,
 COLUMN_GROUP_NAME,
 COLUMN_NAME,
 RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_COLUMNS
 ORDER BY TABLE_OWNER, TABLE_NAME;

Your output looks similar to the following:

TABLE_OWNE TABLE_NAME COLUMN_GROUP_NAME COLUMN_NAME RESOLUTION_COLUMN
---------- ---------- ----------------- ---------------

HR EMPLOYEES COMPENSATION_CG COMMISSION_PCT CDRTS$COMPENSATION_CG
HR EMPLOYEES COMPENSATION_CG SALARY CDRTS$COMPENSATION_CG
HR EMPLOYEES JOB_IDENTIFIER_CG MANAGER_ID
CDRTS$JOB_IDENTIFIER_CG
HR EMPLOYEES JOB_IDENTIFIER_CG JOB_ID
CDRTS$JOB_IDENTIFIER_CG
HR EMPLOYEES JOB_IDENTIFIER_CG DEPARTMENT_ID
CDRTS$JOB_IDENTIFIER_CG
HR EMPLOYEES IMPLICIT_COLUMNS$ PHONE_NUMBER CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ LAST_NAME CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ HIRE_DATE CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ FIRST_NAME CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ EMAIL CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ EMPLOYEE_ID CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_MODE CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_ID CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_DATE CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ CUSTOMER_ID CDRTS$ROW
OE ORDERS DELTA$ ORDER_TOTAL
OE ORDERS IMPLICIT_COLUMNS$ PROMOTION_ID CDRTS$ROW

Chapter 14
Monitoring Automatic Conflict Detection and Resolution

14-15

OE ORDERS IMPLICIT_COLUMNS$ ORDER_STATUS CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ SALES_REP_ID CDRTS$ROW

In this example, the columns with IMPLICIT_COLUMNS$ for the column group name are
configured for row conflict detection and resolution, but they are not part of a column
group. The columns with DELTA$ for the column group name are configured for delta
conflict detection and resolution, and these columns do not have a resolution column.

Displaying Information About Column Groups

The ALL_GG_AUTO_CDR_COLUMN_GROUPS view displays information about the column
groups configured for Oracle GoldenGate automatic conflict detection and resolution.

You can configure Oracle GoldenGate automatic conflict detection and resolution
using the ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package. You can
configure column groups using the ADD_AUTO_CDR_COLUMN_GROUP procedure in the
DBMS_GOLDENGATE_ADM package.

1. Connect to the database as an Oracle GoldenGate administrator.

2. Query the ALL_GG_AUTO_CDR_COLUMN_GROUPS view.

Example 14-12 Displaying Information About Column Groups

This query displays the following information about the tables that are configured for
conflict detection and resolution:

• The table owner.

• The table name.

• The name of the column group.

• The hidden timestamp column used for conflict resolution for each column group.

COLUMN TABLE_OWNER FORMAT A15
COLUMN TABLE_NAME FORMAT A15
COLUMN COLUMN_GROUP_NAME FORMAT A20
COLUMN RESOLUTION_COLUMN FORMAT A25

SELECT TABLE_OWNER,
 TABLE_NAME,
 COLUMN_GROUP_NAME,
 RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_COLUMN_GROUPS
 ORDER BY TABLE_OWNER, TABLE_NAME;

The output looks similar to the following:

TABLE_OWNER TABLE_NAME COLUMN_GROUP_NAME RESOLUTION_COLUMN
--------------- --------------- --------------------

HR EMPLOYEES COMPENSATION_CG
CDRTS$COMPENSATION_CG
HR EMPLOYEES JOB_IDENTIFIER_CG
CDRTS$JOB_IDENTIFIER_CG

Chapter 14
Monitoring Automatic Conflict Detection and Resolution

14-16

15
Using Procedural Replication

Learn about procedural replication and how to configure it.

Topics:

• About Procedural Replication

• Procedural Replication Process Overview
Procedural replication uses a trail record to ensure that sufficient information is
encapsulated with the record.

• Enabling Procedural Replication
Procedural replication is disabled by default. You can enable it by setting the
TRANLOGOPTIONS option, ENABLE_PROCEDURAL_REPLICATION, to yes.

• Determining Whether Procedural Replication Is On
Use the GG_PROCEDURE_REPLICATION_ON function in the DBMS_GOLDENGATE_ADM package to
determine whether Oracle GoldenGate procedural replication is on or off.

• Enabling and Disabling Supplemental Logging
Oracle GoldenGate provides GGSCI commands to allow you to enable or disable
procedural supplemental logging.

• Filtering Features for Procedural Replication
You can specify which procedures and packages you want to include or exclude for
procedure replication.

• Handling Procedural Replication Errors
Procedural replication uses REPERROR parameter to configure the behavior of Replicat
when an procedural error occurs.

• Procedural Replication Pragma Options
There are four pragma options for procedures: AUTO, MANUAL, UNSUPPORTED, and NONE.

• Listing the Procedures Supported for Oracle GoldenGate Procedural Replication
The DBA_GG_SUPPORTED_PROCEDURES view displays information about the supported
packages for Oracle GoldenGate procedural replication.

• Monitoring Oracle GoldenGate Procedural Replication
A set of data dictionary views enable you to monitor Oracle GoldenGate procedural
replication.

About Procedural Replication
Oracle GoldenGate procedural replication is used to replicate Oracle Database supplied
PL/SQL procedures avoiding the shipping and applying of high volume records usually
generated by these operations. Procedural replication implements dictionary changes that
control user and session behavior and the swapping of objects in dictionary.

Procedural replication is not related to the replication of the CREATE, ALTER, and DROP
statements (or DDL), rather it is the replication of a procedure call like:

CALL procedure_name(arg1, arg2, ...);

15-1

As opposed to:

exec procedure_name(arg1, arg2, ...)

After you enable procedural replication, calls to procedures in Oracle Database
supplied packages at one database are replicated to one or more other databases and
then executed at those databases. For example, a call to subprograms in the
DBMS_REDEFINITION package can perform an online redefinition of a table. If the table
is replicated at several databases, and if you want the same online redefinition to be
performed on the table at each database, then you can make the calls to the
subprograms in the DBMS_REDEFINITION package at one database, and Oracle
GoldenGate can replicate those calls to the other databases.

To support procedural replication, your Oracle Database should be configured to
identify procedures that are enabled for this optimization.

To use procedural replication, the following prerequisites must be met:

• Oracle GoldenGate with Extract and Replicat.

• System supplied packages are only working in combination with DML and DDL.

Procedural Replication Process Overview
Procedural replication uses a trail record to ensure that sufficient information is
encapsulated with the record.

To use Oracle GoldenGate procedural replication, you need to enable it. Your Oracle
Database must have a built in mechanism to identify the procedures that are enabled
for this optimization.

PL/SQL pragmas are used to indicate which procedures can be replicated. When the
pragma is specified, a callback is made to Logminer on entry and exit from the routine.
The callback provides the name of the procedure call and arguments and indicates if
the procedure exited successfully or with an error. Logminer augments the redo
stream with the information from the callbacks. For supported procedures, the normal
redo generated by the procedure is suppressed, and only the procedure call is
replicated.

A new trail record is generated to identify procedural replication. This trail record
leverages existing trail column data format for arguments passed to PL/SQL
procedures. For LOBs, data is passed in chunks similar to existing trail format for
LOBs. This trail record has sufficient information to replay the procedure as-is on the
target.

When you enable procedural replication, it prevents writing of individual records
impacted by the procedure to the trail file.

If an error is encountered when applying a PL/SQL procedure, Replicat can replay the
entire PL/SQL procedure.

Chapter 15
Procedural Replication Process Overview

15-2

Enabling Procedural Replication
Procedural replication is disabled by default. You can enable it by setting the TRANLOGOPTIONS
option, ENABLE_PROCEDURAL_REPLICATION, to yes.

Once you enable the procedural option for one Extract, it remains on and can not be
disabled.

If you want to use Oracle GoldenGate in an Oracle Database Vault environment with
procedural replication, then you must set the appropriate privileges. See Oracle Database
Vault Administrator’s Guide.

To enable procedural replication:

1. Ensure that you are in triggerless mode, see Prerequisites for Configuring DDL.

2. Connect to the source database as an Oracle GoldenGate administrator with dblogin.

3. Set the TRANLOGOPTIONS parameter option to yes.

TRANLOGOPTIONS INTEGRATEDPARAMS (ENABLE_PROCEDURAL_REPLICATION Y)
Procedural replication is enabled for Extract.

Determining Whether Procedural Replication Is On
Use the GG_PROCEDURE_REPLICATION_ON function in the DBMS_GOLDENGATE_ADM package to
determine whether Oracle GoldenGate procedural replication is on or off.

If you want to use Oracle GoldenGate in an Oracle Database Vault environment with
procedural replication, then you must set the appropriate privileges. See Oracle Database
Vault Administrator’s Guide.

To enable procedural replication:

1. Connect to the database as sys (sqlplus, sqlcl, sqldeveloper) not as an Oracle
GoldenGate administrator.

2. Run the GG_PROCEDURE_REPLICATION_ON function.

Example 15-1 Running the GG_PROCEDURE_REPLICATION_ON Function

SET SERVEROUTPUT ON
DECLARE
 on_or_off NUMBER;
BEGIN
 on_or_off := DBMS_GOLDENGATE_ADM.GG_PROCEDURE_REPLICATION_ON;
 IF on_or_off=1 THEN
 DBMS_OUTPUT.PUT_LINE('Oracle GoldenGate procedural replication is ON.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Oracle GoldenGate procedural replication is OFF.');
 END IF;
END;
/

Chapter 15
Enabling Procedural Replication

15-3

Enabling and Disabling Supplemental Logging
Oracle GoldenGate provides GGSCI commands to allow you to enable or disable
procedural supplemental logging.

To enable supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with
dblogin.

CONNECT https://localhost:9000 DEPLOYMENT demo AS admin PASSWORD
adminpw
DBLOGIN USERIDALIAS admin_dba DOMAIN OracleGoldenGate

2. Add supplemental logging for procedural replication.

ADD PROCEDURETRANDATA
INFO OGG-13005 PROCEDURETRANDATA supplemental logging has been
enabled.

Supplemental logging is enabled for procedure replication.

To disable supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with
dblogin.

CONNECT https://localhost:9000 DEPLOYMENT demo AS admin PASSWORD
adminpw
DBLOGIN USERIDALIAS admin_dba DOMAIN OracleGoldenGate

2. Remove supplemental logging for procedure replication.

DELETE PROCEDURETRANDATA
Supplemental logging is disabled for procedure replication.

To view information about supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with
dblogin.

CONNECT https://localhost:9000 DEPLOYMENT demo AS admin PASSWORD
adminpw
DBLOGIN USERIDALIAS admin_dba DOMAIN OracleGoldenGate

2. Display supplemental logging information for procedure replication.

INFO PROCEDURETRANDATA
Supplemental logging information for procedure replication is displayed.

Filtering Features for Procedural Replication
You can specify which procedures and packages you want to include or exclude for
procedure replication.

Chapter 15
Enabling and Disabling Supplemental Logging

15-4

You group supported packages and procedures using feature groups. You use the procedure
parameter with the INCLUDE or EXCLUDE keyword to filter features for procedure replication.

In the procedure parameter, INCLUDE or EXCLUDE specify the beginning of a filtering clause.
They specify the procedures to replicate (INCLUDE) or filter out (EXCLUDE). The filtering clause
must consist of the INCLUDE ALL_SUPPORTED or EXCLUDE ALL_SUPPORTED keyword followed by
any valid combination of the other filtering options of the procedure parameter. The EXCLUDE
filter takes precedence over any INCLUDE filters that contain the same criteria.

Note:

When replicating Oracle Streams Advanced Queuing (AQ) procedures, you must
use the RULE option in your parameter file as follows:

PROCEDURE INCLUDE FEATURE ALL_SUPPORTED
or

PROCEDURE INCLUDE FEATURE AQ, RULE
Do not use PROCEDURE INCLUDE FEATURE AQ without the RULE option. See Advanced
Queue Concepts.

Including all system supplied packages at Extract:

1. Connect to Extract in the source database.

EXTRACT edba
USERIDALIAS admin_dbA DOMAIN ORADEV

2. Create a new trail file.

EXTTRAIL ea
3. Enable procedure replication, if not already done.

TRANLOGOPTIONS INTEGRATEDPARAMS (ENABLE_PROCEDURAL_REPLICATION Y)
4. Include filter for procedure replication.

PROCEDURE INCLUDE FEATURE ALL_SUPPORTED
You have successfully included all system supplied packages for procedure replication.

Excluding specific packages at Replicat:

1. Connect to Replicat in the target database.

REPLICAT rdba
USERIDALIAS admin_dbBDOMAIN ORADEV

2. Include filter for procedure replication.

PROCEDURE EXCLUDE FEATURE RLS
You have successfully excluded specific packages for procedure replication.

Chapter 15
Filtering Features for Procedural Replication

15-5

Handling Procedural Replication Errors
Procedural replication uses REPERROR parameter to configure the behavior of Replicat
when an procedural error occurs.

By default, Replicat will abend when a procedural replication occurs so using the
following steps sets up error handling:

1. Connect to Replicat in the target database.

REPLICAT rdba
USERIDALIAS admin_dbBDOMAIN ORADEV

2. Include filter for procedure replication.

PROCEDURE EXCLUDE FEATURE RLS
3. Specify error handling parameter, see REPERROR in Reference for Oracle

GoldenGate for other options.

REPERROR (PROCEDURE, DISCARD)
You have successfully handled errors for procedural replication.

Procedural Replication Pragma Options
There are four pragma options for procedures: AUTO, MANUAL, UNSUPPORTED, and NONE.

PL/SQL enter and exit markers are logged for procedures with pragmas AUTO, MANUAL,
and UNSUPPORTED. The redo logs generated between the enter and exit markers are
grouped and discarded.

Following is a list of the packages and procedures that are pragma constructs for
replication. Any package or procedure not in this list is not considered a pragma
construct for PL/SQL replication and is equivalent to pragma NONE.

PL/SQL Procedures with Pragma are UNSUPPORTED

Procedures and packages with the pragma UNSUPPORTED stop apply at the point of
procedure invocation so that manual intervention can be taken. The following
procedures are pragma and UNSUPPORTED.

Sche
ma

Package Procedure Pragma

SYS DBMS_REDEFINITI
ON

ABORT_UPDATE PRAGMA UNSUPPORTED

SYS DBMS_REDEFINITI
ON

EXECUTE_UPDATE PRAGMA UNSUPPORTED

XDB DBMS_XDBZ ADD_APPLICATION_P
RINCIPAL

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDBZ CHANGE_APPLICATIO
N_MEMBERSHIP

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDBZ DELETE_APPLICATIO
N_PRINCIPAL

PRAGMA UNSUPPORTED with COMMIT

Chapter 15
Handling Procedural Replication Errors

15-6

Sche
ma

Package Procedure Pragma

XDB DBMS_XDBZ SET_APPLICATION_P
RINCIPAL

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_ADMIN CREATENONCEKEY PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XDB_ADMIN INSTALLDEFAULTWAL

LET
PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_ADMIN MOVEXDB_TABLESPAC
E

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_ADMIN REBUILDHIERARCHIC
ALINDEX

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ADDAUTHENTICATION
MAPPING

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ADDAUTHENTICATION
METHOD

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ADDTRUSTMAPPING PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XDB_CONFIG ADDTRUSTSCHEME PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XDB_CONFIG CLEARHTTPDIGESTS PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XDB_CONFIG DELETEAUTHENTICAT

IONMAPPING
PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG DELETEAUTHENTICAT
IONMETHOD

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG DELETETRUSTMAPPIN
G

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG DELETETRUSTSCHEME PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XDB_CONFIG ENABLECUSTOMAUTHE

NTICATION
PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ENABLECUSTOMTRUST PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XDB_CONFIG ENABLEDIGESTAUTHE

NTICATION
PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG ISGLOBALPORTENABL
ED

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG SETDYNAMICGROUPST
ORE

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG SETGLOBALPORTENAB
LED

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XDB_CONFIG SETHTTPCONFIGREAL
M

PRAGMA UNSUPPORTED with COMMIT

XDB DBMS_XMLINDEX DROPPARAMETER PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XMLINDEX MODIFYPARAMETER PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XMLINDEX REGISTERPARAMETER PRAGMA UNSUPPORTED with COMMIT
XDB DBMS_XMLSCHEMA COPYEVOLVE PRAGMA UNSUPPORTED with COMMIT

PL/SQL Procedures with Pragma AUTO
For the procedures and packages with the pragma AUTO, the top-level PL/SQL API is called
during apply.

Chapter 15
Procedural Replication Pragma Options

15-7

Sche
ma

Package Procedure Pragma

DVSYS DBMS_MACADM ADD_AUTH_TO_REALM PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ADD_CMD_RULE_TO_P

OLICY
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_FACTOR_LINK PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ADD_INDEX_FUNCTIO

N
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_NLS_DATA PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ADD_OBJECT_TO_REA

LM
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_OWNER_TO_POLI
CY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_POLICY_FACTOR PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ADD_REALM_TO_POLI

CY
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ADD_RULE_TO_RULE_
SET

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_DATAPUM
P_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_DDL PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM AUTHORIZE_DIAGNOS

TIC_ADMIN
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_MAINTEN
ANCE_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_PREPROC
ESSOR

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_PROXY_U
SER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_SCHEDUL
ER_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM AUTHORIZE_TTS_USE
R

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CHANGE_IDENTITY_F
ACTOR

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CHANGE_IDENTITY_V
ALUE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_COMMAND_RU
LE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_CONNECT_CO
MMAND_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_DOMAIN_IDE
NTITY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_FACTOR PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_FACTOR_TYP

E
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_IDENTITY PRAGMA AUTO with COMMIT

Chapter 15
Procedural Replication Pragma Options

15-8

Sche
ma

Package Procedure Pragma

DVSYS DBMS_MACADM CREATE_IDENTITY_M
AP

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_MAC_POLICY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_POLICY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_POLICY_LAB

EL
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_REALM PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_ROLE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_RULE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_RULE_SET PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM CREATE_SESSION_EV

ENT_CMD_RULE
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_SESSION_EV
ENT_CMD_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_AUTH_FROM_
REALM

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_CMD_RULE_F
ROM_POLICY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_COMMAND_RU
LE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_CONNECT_CO
MMAND_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_FACTOR PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_FACTOR_LIN

K
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_FACTOR_TYP
E

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_IDENTITY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_IDENTITY_M

AP
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_INDEX_FUNC
TION

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_MAC_POLICY
_CASCADE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_OBJECT_FRO
M_REALM

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_OWNER_FROM
_POLICY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_POLICY_FAC
TOR

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_POLICY_LAB
EL

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_REALM PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_REALM_CASC

ADE
PRAGMA AUTO with COMMIT

Chapter 15
Procedural Replication Pragma Options

15-9

Sche
ma

Package Procedure Pragma

DVSYS DBMS_MACADM DELETE_REALM_FROM
_POLICY

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_ROLE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_RULE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_RULE_FROM_

RULE_SET
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_RULE_SET PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DELETE_SESSION_EV

ENT_CMD_RULE
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DELETE_SYSTEM_EVE
NT_CMD_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DISABLE_DV PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DISABLE_DV_DICTIO

NARY_ACCTS
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DISABLE_DV_PATCH_
ADMIN_AUDIT

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DISABLE_ORADEBUG PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM DROP_DOMAIN_IDENT

ITY
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DROP_POLICY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ENABLE_DV PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM ENABLE_DV_DICTION

ARY_ACCTS
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ENABLE_DV_PATCH_A
DMIN_AUDIT

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM ENABLE_ORADEBUG PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM RENAME_FACTOR PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM RENAME_FACTOR_TYP

E
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM RENAME_POLICY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM RENAME_REALM PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM RENAME_ROLE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM RENAME_RULE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM RENAME_RULE_SET PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UNAUTHORIZE_DATAP

UMP_USER
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_DDL PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UNAUTHORIZE_DIAGN

OSTIC_ADMIN
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_MAINT
ENANCE_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_PREPR
OCESSOR

PRAGMA AUTO with COMMIT

Chapter 15
Procedural Replication Pragma Options

15-10

Sche
ma

Package Procedure Pragma

DVSYS DBMS_MACADM UNAUTHORIZE_PROXY
_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_SCHED
ULER_USER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UNAUTHORIZE_TTS_U
SER

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_COMMAND_RU
LE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_CONNECT_CO
MMAND_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_FACTOR PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_FACTOR_TYP

E
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_IDENTITY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_MAC_POLICY PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_POLICY_DES

CRIPTION
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_POLICY_STA
TE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_REALM PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_REALM_AUTH PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_ROLE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_RULE PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_RULE_SET PRAGMA AUTO with COMMIT
DVSYS DBMS_MACADM UPDATE_SESSION_EV

ENT_CMD_RULE
PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM UPDATE_SYSTEM_EVE
NT_CMD_RULE

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM CREATE_ADMIN_AUDI
T

PRAGMA AUTO

DVSYS DBMS_MACADM CREATE_MACOLS_CON
TEXTS

PRAGMA AUTO with COMMIT

DVSYS DBMS_MACADM DROP_MACOLS_CONTE
XTS

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_EVENTS AFTER_CREATE PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_EVENTS AFTER_DROP PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_EVENTS BEFORE_ALTER PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_LGSTNDBY_U
TIL

ADD_COMPARTMENTS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

ADD_GROUPS PRAGMA AUTO

Chapter 15
Procedural Replication Pragma Options

15-11

Sche
ma

Package Procedure Pragma

LBACS
YS

LBAC_LGSTNDBY_U
TIL

ALTER_COMPARTMENT
S

PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

ALTER_GROUPS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

CONFIGURE_OLS PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_LGSTNDBY_U
TIL

CREATE_POLICY PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_LGSTNDBY_U
TIL

DISABLE_OLS PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_LGSTNDBY_U
TIL

DROP_ALL_COMPARTM
ENTS

PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

DROP_ALL_GROUPS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

DROP_COMPARTMENTS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

DROP_GROUPS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

ENABLE_OLS PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_LGSTNDBY_U
TIL

INSERT_LABEL PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

SAVE_DEFAULT_LABE
LS

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_LGSTNDBY_U
TIL

SET_COMPARTMENTS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

SET_DEFAULT_LABEL PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

SET_GROUPS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

SET_LEVELS PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

SET_ROW_LABEL PRAGMA AUTO

LBACS
YS

LBAC_LGSTNDBY_U
TIL

SET_USER_LABELS PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_LGSTNDBY_U
TIL

STORE_LABEL_LIST PRAGMA AUTO

LBACS
YS

LBAC_POLICY_ADM
IN

ALTER_SCHEMA_POLI
CY

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

APPLY_SCHEMA_POLI
CY

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

APPLY_TABLE_POLIC
Y

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

DISABLE_SCHEMA_PO
LICY

PRAGMA AUTO with COMMIT

Chapter 15
Procedural Replication Pragma Options

15-12

Sche
ma

Package Procedure Pragma

LBACS
YS

LBAC_POLICY_ADM
IN

DISABLE_TABLE_POL
ICY

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

ENABLE_SCHEMA_POL
ICY

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

ENABLE_TABLE_POLI
CY

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

POLICY_SUBSCRIBE PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

POLICY_UNSUBSCRIB
E

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

REMOVE_SCHEMA_POL
ICY

PRAGMA AUTO with COMMIT

LBACS
YS

LBAC_POLICY_ADM
IN

REMOVE_TABLE_POLI
CY

PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN AUDIT PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN AUDIT_LABEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN AUDIT_LABEL_ENABL
ED

PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN AUDIT_LABEL_ENABL
ED_SQL

PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN CREATE_VIEW PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN DROP_VIEW PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN NOAUDIT PRAGMA AUTO with COMMIT

LBACS
YS

SA_AUDIT_ADMIN NOAUDIT_LABEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS ALTER_COMPARTMENT PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS ALTER_COMPARTMENT PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS ALTER_GROUP PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS ALTER_GROUP PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS ALTER_GROUP_PAREN
T

PRAGMA AUTO

LBACS
YS

SA_COMPONENTS ALTER_GROUP_PAREN
T

PRAGMA AUTO

LBACS
YS

SA_COMPONENTS ALTER_GROUP_PAREN
T

PRAGMA AUTO

LBACS
YS

SA_COMPONENTS ALTER_LEVEL PRAGMA AUTO with COMMIT

Chapter 15
Procedural Replication Pragma Options

15-13

Sche
ma

Package Procedure Pragma

LBACS
YS

SA_COMPONENTS ALTER_LEVEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS CREATE_COMPARTMEN
T

PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS CREATE_GROUP PRAGMA AUTO

LBACS
YS

SA_COMPONENTS CREATE_LEVEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_COMPARTMENT PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_COMPARTMENT PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_GROUP PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_GROUP PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_LEVEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_LEVEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS ALTER_LABEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS ALTER_LABEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS CREATE_LABEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_LABEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_COMPONENTS DROP_LABEL PRAGMA AUTO with COMMIT

LBACS
YS

SA_SYSDBA ALTER_POLICY PRAGMA AUTO with COMMIT

LBACS
YS

SA_SYSDBA DISABLE_POLICY PRAGMA AUTO with COMMIT

LBACS
YS

SA_SYSDBA DROP_POLICY PRAGMA AUTO with COMMIT

LBACS
YS

SA_SYSDBA ENABLE_POLICY PRAGMA AUTO with COMMIT

LBACS
YS

SA_USER_ADMIN DROP_USER_ACCESS PRAGMA AUTO with COMMIT

LBACS
YS

SA_USER_ADMIN SET_PROG_PRIVS PRAGMA AUTO with COMMIT

LBACS
YS

SA_USER_ADMIN SET_USER_PRIVS PRAGMA AUTO with COMMIT

SYS DBMS_AQ AQ$_BACKGROUND_OP
ER

PRAGMA AUTO

Chapter 15
Procedural Replication Pragma Options

15-14

Sche
ma

Package Procedure Pragma

SYS DBMS_AQ AQ$_DELETE_DIOT_T
AB

PRAGMA AUTO

SYS DBMS_AQ AQ$_DELETE_HIST_T
AB

PRAGMA AUTO

SYS DBMS_AQ AQ$_DELETE_TIOT_T
AB

PRAGMA AUTO

SYS DBMS_AQ AQ$_INSERT_DIOT_T
AB

PRAGMA AUTO

SYS DBMS_AQ AQ$_INSERT_HIST_T
AB

PRAGMA AUTO

SYS DBMS_AQ AQ$_INSERT_TIOT_T
AB

PRAGMA AUTO

SYS DBMS_AQ AQ$_UPDATE_HIST_T
AB

PRAGMA AUTO

SYS DBMS_AQ AQ$_UPDATE_HIST_T
AB_EX

PRAGMA AUTO

SYS DBMS_AQ DEQUEUE_INTERNAL PRAGMA AUTO
SYS DBMS_AQ ENQUEUE_INT_SHARD PRAGMA AUTO
SYS DBMS_AQ ENQUEUE_INT_SHARD PRAGMA AUTO
SYS DBMS_AQ ENQUEUE_INT_SHARD PRAGMA AUTO
SYS DBMS_AQ ENQUEUE_INT_SHARD

_JMS
PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_UNSHA
RDED

PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_UNSHA
RDED

PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_UNSHA
RDED

PRAGMA AUTO

SYS DBMS_AQ ENQUEUE_INT_UNSHA
RDED

PRAGMA AUTO

SYS DBMS_AQ REGISTRATION_REPL
ICATION

PRAGMA AUTO

SYS DBMS_AQADM ALTER_AQ_AGENT PRAGMA AUTO
SYS DBMS_AQADM CREATE_AQ_AGENT PRAGMA AUTO
SYS DBMS_AQADM DISABLE_DB_ACCESS PRAGMA AUTO
SYS DBMS_AQADM DROP_AQ_AGENT PRAGMA AUTO
SYS DBMS_AQADM ENABLE_DB_ACCESS PRAGMA AUTO
SYS DBMS_AQADM GRANT_SYSTEM_PRIV

ILEGE
PRAGMA AUTO

SYS DBMS_AQADM GRANT_TYPE_ACCESS PRAGMA AUTO
SYS DBMS_AQADM REVOKE_SYSTEM_PRI

VILEGE
PRAGMA AUTO

SYS DBMS_AQADM_SYS ALTER_QUEUE PRAGMA AUTO
SYS DBMS_AQADM_SYS ALTER_QUEUE_TABLE PRAGMA AUTO

Chapter 15
Procedural Replication Pragma Options

15-15

Sche
ma

Package Procedure Pragma

SYS DBMS_AQADM_SYS ALTER_SHARDED_QUE
UE

PRAGMA AUTO

SYS DBMS_AQADM_SYS ALTER_SUBSCRIBER_
11G

PRAGMA AUTO

SYS DBMS_AQADM_SYS CREATE_EVICTION_T
ABLE

PRAGMA AUTO

SYS DBMS_AQADM_SYS CREATE_EXCEPTION_
QUEUE

PRAGMA AUTO

SYS DBMS_AQADM_SYS CREATE_NP_QUEUE_I
NT

PRAGMA AUTO

SYS DBMS_AQADM_SYS CREATE_QUEUE PRAGMA AUTO
SYS DBMS_AQADM_SYS CREATE_QUEUE_TABL

E
PRAGMA AUTO

SYS DBMS_AQADM_SYS CREATE_SHARDED_QU
EUE

PRAGMA AUTO

SYS DBMS_AQADM_SYS DROP_EVICTION_TAB
LE

PRAGMA AUTO

SYS DBMS_AQADM_SYS DROP_QUEUE PRAGMA AUTO
SYS DBMS_AQADM_SYS DROP_QUEUE_TABLE PRAGMA AUTO
SYS DBMS_AQADM_SYS DROP_SHARDED_QUEU

E_INT
PRAGMA AUTO

SYS DBMS_AQADM_SYS ENABLE_JMS_TYPES_
INT

PRAGMA AUTO

SYS DBMS_AQADM_SYS GRANT_QUEUE_PRIVI
LEGE

PRAGMA AUTO

SYS DBMS_AQADM_SYS MIGRATE_QUEUE_TAB
LE

PRAGMA AUTO

SYS DBMS_AQADM_SYS PATCH_QUEUE_TABLE PRAGMA AUTO
SYS DBMS_AQADM_SYS PATCH_QUEUE_TABLE PRAGMA AUTO
SYS DBMS_AQADM_SYS PSTUPD_CREATE_EVI

CTION_TABLE
PRAGMA AUTO

SYS DBMS_AQADM_SYS PURGE_QUEUE_TABLE
_INT

PRAGMA AUTO

SYS DBMS_AQADM_SYS REMOVE_ORPHMSGS_I
NT

PRAGMA AUTO

SYS DBMS_AQADM_SYS REMOVE_SUBSCRIBER
_11G_INT

PRAGMA AUTO

SYS DBMS_AQADM_SYS REVOKE_QUEUE_PRIV
ILEGE

PRAGMA AUTO

SYS DBMS_AQADM_SYS START_QUEUE PRAGMA AUTO
SYS DBMS_AQADM_SYS STOP_QUEUE PRAGMA AUTO
SYS DBMS_AQELM SET_MAILHOST PRAGMA AUTO
SYS DBMS_AQELM SET_MAILPORT PRAGMA AUTO
SYS DBMS_AQELM SET_PROXY PRAGMA AUTO

Chapter 15
Procedural Replication Pragma Options

15-16

Sche
ma

Package Procedure Pragma

SYS DBMS_AQELM SET_SENDFROM PRAGMA AUTO
SYS DBMS_AQ_SYS_IMP

_INTERNAL
BUMP_TID_SEQUENCE PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

CLEANUP_SCHEMA_IM
PORT

PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_CMT_TIME_T
ABLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_DEQUEUELOG
_TABLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_EXP_ENTRY PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_HISTORY_TA
BLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_INDEX_TABL
E

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_QTAB_EXPDE
P

PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_QUEUE PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_QUEUE_META PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_QUEUE_SEQ PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_QUEUE_TABL
E

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_SIGNATURE_
TABLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_SUBSCRIBER
_TABLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

IMPORT_TIMEMGR_TA
BLE

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

POST_TTS_REBUILD_
IDX

PRAGMA AUTO with COMMIT

SYS DBMS_AQ_SYS_IMP
_INTERNAL

POST_TTS_SHARDED_
Q

PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

POST_TTS_WORK PRAGMA AUTO

SYS DBMS_AQ_SYS_IMP
_INTERNAL

POST_TTS_WORK_REM
AINING

PRAGMA AUTO

SYS DBMS_DBFS_CONTE
NT_ADMIN

EXIM_MOUNT PRAGMA AUTO

SYS DBMS_DBFS_CONTE
NT_ADMIN

EXIM_MOUNTP PRAGMA AUTO

SYS DBMS_DBFS_CONTE
NT_ADMIN

EXIM_STORE PRAGMA AUTO

Chapter 15
Procedural Replication Pragma Options

15-17

Sche
ma

Package Procedure Pragma

SYS DBMS_DBFS_CONTE
NT_ADMIN

MOUNTSTORE_LOG PRAGMA AUTO

SYS DBMS_DBFS_CONTE
NT_ADMIN

REGISTERSTORE_LOG PRAGMA AUTO

SYS DBMS_DBFS_CONTE
NT_ADMIN

UNMOUNTSTORE_LOG PRAGMA AUTO

SYS DBMS_DBFS_CONTE
NT_ADMIN

UNREGISTERSTORE_L
OG

PRAGMA AUTO

SYS DBMS_DBFS_SFS NORMALIZEFS PRAGMA AUTO with COMMIT
SYS DBMS_DBFS_CONTE

NT_ADMIN
REORGANIZEFS PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_CONTE
NT_ADMIN

SHRINKFS PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_A
DMIN

CREATEFILESYSTEM_
LOG

PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

DELETE_ORPHANS_LO
G

PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_A
DMIN

DROPFILESYSTEM_LO
G

PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_ATTRV PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_FS PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_GRANTS PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_SEQ PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_SNAP PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_TABP PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_TAB_LOG PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

EXIM_VOL PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

INITFILESYSTEM_LO
G

PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

PARTITION_SEQUENC
E_LOG

PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_A
DMIN

RECACHE_SEQUENCE_
LOG

PRAGMA AUTO with COMMIT

SYS DBMS_DBFS_SFS_A
DMIN

REGISTERFILESYSTE
M_LOG

PRAGMA AUTO

SYS DBMS_DBFS_SFS_A
DMIN

SETFSPROPERTIES_L
OG

PRAGMA AUTO

Chapter 15
Procedural Replication Pragma Options

15-18

Sche
ma

Package Procedure Pragma

SYS DBMS_DBFS_SFS_A
DMIN

UNREGISTERFILESYS
TEM_LOG

PRAGMA AUTO

SYS DBMS_DDL SET_TRIGGER_FIRIN
G_PROPERTY

PRAGMA AUTO with COMMIT

SYS DBMS_DDL SET_TRIGGER_FIRIN
G_PROPERTY

PRAGMA AUTO with COMMIT

SYS DBMS_FGA ADD_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_FGA DISABLE_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_FGA DROP_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_FGA ENABLE_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_GOLDENGATE

_ADM_INT_I
ADD_AUTO_CDR_COLG
ROUP_INT

PRAGMA AUTO with COMMIT

SYS DBMS_FGA ADD_AUTO_CDR_DELT
A_RES_INT

PRAGMA AUTO with COMMIT

SYS DBMS_FGA ADD_AUTO_CDR_INT PRAGMA AUTO with COMMIT
SYS DBMS_FGA ALTER_AUTO_CDR_CO

LGROUP_INT
PRAGMA AUTO with COMMIT

SYS DBMS_FGA ALTER_AUTO_CDR_IN
T

PRAGMA AUTO with COMMIT

SYS DBMS_FGA REMOVE_AUTO_CDR_C
OLGROUP_INT

PRAGMA AUTO with COMMIT

SYS DBMS_FGA REMOVE_AUTO_CDR_D
ELTA_RES_INT

PRAGMA AUTO with COMMIT

SYS DBMS_FGA REMOVE_AUTO_CDR_I
NT

PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE
_IMP

ACDR_COLUMN PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE
_IMP

ACDR_COLUMN_GROUP PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE
_IMP

ACDR_END PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE
_IMP

ACDR_START PRAGMA AUTO with COMMIT

SYS DBMS_GOLDENGATE
_IMP

ACDR_TABLE PRAGMA AUTO with COMMIT

SYS DBMS_INTERNAL_L
OGSTDBY

EDS_EVOLVE_DISABL
E

PRAGMA AUTO with COMMIT

SYS DBMS_INTERNAL_L
OGSTDBY

EDS_EVOLVE_ENABLE PRAGMA AUTO with COMMIT

SYS DBMS_INTERNAL_R
OLLING

DESTROY_META PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

INSERT_DGLRDDIR PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

INSERT_DGLRDEVT PRAGMA AUTO

Chapter 15
Procedural Replication Pragma Options

15-19

Sche
ma

Package Procedure Pragma

SYS DBMS_INTERNAL_R
OLLING

SET_UPGRADE_FLAGS PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

UPDATE_DGLRDINS_P
ROGRESS

PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

UPSERT_DGLRDCON PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

UPSERT_DGLRDDAT PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

UPSERT_DGLRDINS PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

UPSERT_DGLRDPAR PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

UPSERT_DGLRDSTA PRAGMA AUTO

SYS DBMS_INTERNAL_R
OLLING

UPSERT_DGLRDSTS PRAGMA AUTO

SYS DBMS_ISCHED CREATE_CREDENTIAL PRAGMA AUTO with COMMIT
SYS DBMS_ISCHED EXEC_JOB_RUN_LSA PRAGMA AUTO
SYS DBMS_ISCHED SET_AGENT_REGISTR

ATION_PASS
PRAGMA AUTO with COMMIT

SYS DBMS_PRVTAQIS SUBID_REPLICATE PRAGMA AUTO with COMMIT
SYS DBMS_PRVTAQIS ADD_DURABLE_SUB PRAGMA AUTO with COMMIT
SYS DBMS_PRVTAQIS ALTER_SUBSCRIBER_

12G
PRAGMA AUTO

SYS DBMS_PRVTAQIS REMOVE_SUBSCRIBER
_12G

PRAGMA AUTO

SYS DBMS_REDACT ADD_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_REDACT ALTER_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_REDACT APPLY_POLICY_EXPR

_TO_COL
PRAGMA AUTO with COMMIT

SYS DBMS_REDACT CREATE_POLICY_EXP
RESSION

PRAGMA AUTO with COMMIT

SYS DBMS_REDACT DISABLE_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_REDACT DROP_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_REDACT DROP_POLICY_EXPRE

SSION
PRAGMA AUTO with COMMIT

SYS DBMS_REDACT ENABLE_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_REDACT FPM_MASK PRAGMA AUTO with COMMIT
SYS DBMS_REDACT FPM_UNMASK PRAGMA AUTO with COMMIT
SYS DBMS_REDACT UPDATE_FULL_REDAC

TION_VALUES
PRAGMA AUTO with COMMIT

SYS DBMS_REDACT UPDATE_POLICY_EXP
RESSION

PRAGMA AUTO with COMMIT

Chapter 15
Procedural Replication Pragma Options

15-20

Sche
ma

Package Procedure Pragma

SYS DBMS_REDEFINITI
ON

ABORT_REDEF_TABLE PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

ABORT_ROLLBACK PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

COPY_TABLE_DEPEND
ENTS

PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

FINISH_REDEF_TABL
E

PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

REGISTER_DEPENDEN
T_OBJECT

PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

ROLLBACK PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

SET_PARAM PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

START_REDEF_TABLE PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

SYNC_INTERIM_TABL
E

PRAGMA AUTO with COMMIT

SYS DBMS_REDEFINITI
ON

UNREGISTER_DEPEND
ENT_OBJECT

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ADD_GROUPED_POLIC
Y

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ADD_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_RLS_INT ADD_POLICY_CONTEX

T
PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ALTER_GROUPED_POL
ICY

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ALTER_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_RLS_INT CREATE_POLICY_GRO

UP
PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT DELETE_POLICY_GRO
UP

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT DISABLE_GROUPED_P
OLICY

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT DROP_GROUPED_POLI
CY

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT DROP_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_RLS_INT DROP_POLICY_CONTE

XT
PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ENABLE_GROUPED_PO
LICY

PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT ENABLE_POLICY PRAGMA AUTO with COMMIT
SYS DBMS_RLS_INT REFRESH_GROUPED_P

OLICY
PRAGMA AUTO with COMMIT

SYS DBMS_RLS_INT REFRESH_POLICY PRAGMA AUTO with COMMIT

Chapter 15
Procedural Replication Pragma Options

15-21

Sche
ma

Package Procedure Pragma

SYS DBMS_RULEADM_IN
TERNAL

ADD_RULE PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

ALTER_EVALUATION_
CONTEXT

PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

ALTER_RULE PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

CREATE_EVALUATION
_CONTEXT

PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

CREATE_RULE PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

CREATE_RULE_SET PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

DROP_EVALUATION_C
ONTEXT

PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

DROP_RULE PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

DROP_RULE_SET PRAGMA AUTO

SYS DBMS_RULEADM_IN
TERNAL

REMOVE_RULE PRAGMA AUTO

SYS DBMS_RULE_ADM GRANT_OBJECT_PRIV
ILEGE

PRAGMA AUTO

SYS DBMS_RULE_ADM GRANT_SYSTEM_PRIV
ILEGE

PRAGMA AUTO

SYS DBMS_RULE_ADM REVOKE_OBJECT_PRI
VILEGE

PRAGMA AUTO

SYS DBMS_RULE_ADM REVOKE_SYSTEM_PRI
VILEGE

PRAGMA AUTO

SYS DBMS_SCHEDULER ADD_EVENT_QUEUE_S
UBSCRIBER

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ADD_GROUP_MEMBER PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER ADD_JOB_EMAIL_NOT

IFICATION
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ADD_TO_INCOMPATIB
ILITY

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ADD_WINDOW_GROUP_
MEMBER

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ALTER_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER ALTER_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER ALTER_RUNNING_CHA

IN
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ALTER_RUNNING_CHA
IN

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER ANALYZE_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER AUTO_PURGE PRAGMA AUTO with COMMIT

Chapter 15
Procedural Replication Pragma Options

15-22

Sche
ma

Package Procedure Pragma

SYS DBMS_SCHEDULER CHECK_CREDENTIAL PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER COPY_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_DATABASE_D

ESTINATION
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_EVENT_SCHE
DULE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_FILE_WATCH
ER

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_GROUP PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_INCOMPATIB

ILITY
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOBS PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOBS PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_JOB_CLASS PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_PROGRAM PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_RESOURCE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_SCHEDULE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_WINDOW PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_WINDOW PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER CREATE_WINDOW_GRO

UP
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_ANYDATA_AR
GUMENT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_CHAIN_EVEN
T_STEP

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_CHAIN_EVEN
T_STEP

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_CHAIN_RULE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DEFINE_CHAIN_STEP PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DEFINE_METADATA_A

RGUMENT
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_PROGRAM_AR
GUMENT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DEFINE_PROGRAM_AR
GUMENT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DELETE_FILE PRAGMA AUTO with COMMIT

Chapter 15
Procedural Replication Pragma Options

15-23

Sche
ma

Package Procedure Pragma

SYS DBMS_SCHEDULER DISABLE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DISABLE1_CALENDAR

_CHECK
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_AGENT_DESTIN
ATION

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_CHAIN_RULE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_CHAIN_STEP PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_CREDENTIAL PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_DATABASE_DES

TINATION
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_FILE_WATCHER PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_GROUP PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_INCOMPATIBIL

ITY
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_JOB PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_JOB_CLASS PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_PROGRAM PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_PROGRAM_ARGU

MENT
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_PROGRAM_ARGU
MENT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER DROP_RESOURCE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_SCHEDULE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_WINDOW PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER DROP_WINDOW_GROUP PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER ENABLE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER END_DETACHED_JOB_

RUN
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER EVALUATE_RUNNING_
CHAIN

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER GET_AGENT_INFO PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_FILE PRAGMA AUTO with COMMIT

Chapter 15
Procedural Replication Pragma Options

15-24

Sche
ma

Package Procedure Pragma

SYS DBMS_SCHEDULER GET_FILE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_FILE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER GET_SCHEDULER_ATT

RIBUTE
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER PURGE_LOG PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER PUT_FILE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER PUT_FILE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER PUT_FILE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER REMOVE_EVENT_QUEU

E_SUBSCRIBER
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER REMOVE_FROM_INCOM
PATIBILITY

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER REMOVE_GROUP_MEMB
ER

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER REMOVE_JOB_EMAIL_
NOTIFICATION

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER REMOVE_WINDOW_GRO
UP_MEMBER

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER RESET_JOB_ARGUMEN
T_VALUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER RESET_JOB_ARGUMEN
T_VALUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER RUN_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER RUN_CHAIN PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE PRAGMA AUTO with COMMIT
SYS DBMS_SCHEDULER SET_ATTRIBUTE_NUL

L
PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_JOB_ANYDATA_V
ALUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_JOB_ANYDATA_V
ALUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_JOB_ARGUMENT_
VALUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_JOB_ARGUMENT_
VALUE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_JOB_ATTRIBUTE
S

PRAGMA AUTO with COMMIT

Chapter 15
Procedural Replication Pragma Options

15-25

Sche
ma

Package Procedure Pragma

SYS DBMS_SCHEDULER SET_RESOURCE_CONS
TRAINT

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SET_SCHEDULER_ATT
RIBUTE

PRAGMA AUTO with COMMIT

SYS DBMS_SCHEDULER SHOW_ERRORS PRAGMA AUTO with COMMIT
SYS DBMS_SQL_TRANSL

ATOR
CLEAR_SQL_TRANSLA
TION_ERROR

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

CREATE_PROFILE PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

DEREGISTER_ERROR_
TRANSLATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

DEREGISTER_SQL_TR
ANSLATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

DROP_PROFILE PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

ENABLE_ERROR_TRAN
SLATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

ENABLE_SQL_TRANSL
ATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

REGISTER_ERROR_TR
ANSLATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

REGISTER_SQL_TRAN
SLATION

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

SET_ATTRIBUTE PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

SET_ERROR_TRANSLA
TION_COMMENT

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

SET_SQL_TRANSLATI
ON_COMMENT

PRAGMA AUTO with COMMIT

SYS DBMS_SQL_TRANSL
ATOR

SET_SQL_TRANSLATI
ON_MODULE

PRAGMA AUTO with COMMIT

SYS DBMS_XDS ALTER_STATIC_ACL_
REFRESH

PRAGMA AUTO

SYS DBMS_XDS DISABLE_OLAP_POLI
CY

PRAGMA AUTO

SYS DBMS_XDS DISABLE_XDS PRAGMA AUTO
SYS DBMS_XDS DROP_OLAP_POLICY PRAGMA AUTO
SYS DBMS_XDS DROP_XDS PRAGMA AUTO
SYS DBMS_XDS ENABLE_OLAP_POLIC

Y
PRAGMA AUTO

SYS DBMS_XDS ENABLE_XDS PRAGMA AUTO
SYS DBMS_XDS PURGE_ACL_REFRESH

_HISTORY
PRAGMA AUTO

SYS DBMS_XDS SCHEDULE_STATIC_A
CL_REFRESH

PRAGMA AUTO

Chapter 15
Procedural Replication Pragma Options

15-26

Sche
ma

Package Procedure Pragma

SYS DBMS_XDS SET_TRACE_LEVEL PRAGMA AUTO
SYS DBMS_XDS XDS$REFRESH_STATI

C_ACL
PRAGMA AUTO

SYS LOGSTDBY_INTERN
AL

EDS_EVOLVE_TABLE_
I

PRAGMA AUTO with COMMIT

SYS LOGSTDBY_INTERN
AL

EDS_REMOVE_TABLE_
I

PRAGMA AUTO with COMMIT

SYS XS_ACL ADD_ACL_PARAMETER PRAGMA AUTO
SYS XS_ACL ADD_ACL_PARAMETER PRAGMA AUTO
SYS XS_ACL APPEND_ACES PRAGMA AUTO
SYS XS_ACL APPEND_ACES PRAGMA AUTO
SYS XS_ACL CREATE_ACL PRAGMA AUTO
SYS XS_ACL DELETE_ACL PRAGMA AUTO
SYS XS_ACL REMOVE_ACES PRAGMA AUTO
SYS XS_ACL REMOVE_ACL_PARAME

TERS
PRAGMA AUTO

SYS XS_ACL REMOVE_ACL_PARAME
TERS

PRAGMA AUTO

SYS XS_ACL REMOVE_ACL_PARAME
TERS

PRAGMA AUTO

SYS XS_ACL SET_DESCRIPTION PRAGMA AUTO
SYS XS_ACL SET_PARENT_ACL PRAGMA AUTO
SYS XS_ACL SET_SECURITY_CLAS

S
PRAGMA AUTO

SYS XS_ADMIN_UTIL GRANT_SYSTEM_PRIV
ILEGE

PRAGMA AUTO

SYS XS_ADMIN_UTIL REVOKE_SYSTEM_PRI
VILEGE

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

ADD_COLUMN_CONSTR
AINTS

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

ADD_COLUMN_CONSTR
AINTS

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

APPEND_REALM_CONS
TRAINTS

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

APPEND_REALM_CONS
TRAINTS

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

APPLY_OBJECT_POLI
CY

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

CREATE_ACL_PARAME
TER

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

CREATE_POLICY PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

DELETE_ACL_PARAME
TER

PRAGMA AUTO

Chapter 15
Procedural Replication Pragma Options

15-27

Sche
ma

Package Procedure Pragma

SYS XS_DATA_SECURIT
Y

DELETE_POLICY PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

DISABLE_OBJECT_PO
LICY

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

ENABLE_OBJECT_POL
ICY

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

REMOVE_COLUMN_CON
STRAINTS

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

REMOVE_OBJECT_POL
ICY

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

REMOVE_REALM_CONS
TRAINTS

PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

SET_DESCRIPTION PRAGMA AUTO

SYS XS_NAMESPACE ADD_ATTRIBUTES PRAGMA AUTO
SYS XS_DATA_SECURIT

Y
ADD_ATTRIBUTES PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

CREATE_TEMPLATE PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

DELETE_TEMPLATE PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

REMOVE_ATTRIBUTES PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

REMOVE_ATTRIBUTES PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

REMOVE_ATTRIBUTES PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

SET_DESCRIPTION PRAGMA AUTO

SYS XS_DATA_SECURIT
Y

SET_HANDLER PRAGMA AUTO

SYS XS_PRINCIPAL ADD_PROXY_TO_DBUS
ER

PRAGMA AUTO

SYS XS_PRINCIPAL ADD_PROXY_USER PRAGMA AUTO
SYS XS_PRINCIPAL ADD_PROXY_USER PRAGMA AUTO
SYS XS_PRINCIPAL CREATE_DYNAMIC_RO

LE
PRAGMA AUTO

SYS XS_PRINCIPAL CREATE_ROLE PRAGMA AUTO
SYS XS_PRINCIPAL CREATE_USER PRAGMA AUTO
SYS XS_PRINCIPAL DELETE_PRINCIPAL PRAGMA AUTO
SYS XS_PRINCIPAL ENABLE_BY_DEFAULT PRAGMA AUTO
SYS XS_PRINCIPAL ENABLE_ROLES_BY_D

EFAULT
PRAGMA AUTO

SYS XS_PRINCIPAL GRANT_ROLES PRAGMA AUTO
SYS XS_PRINCIPAL GRANT_ROLES PRAGMA AUTO

Chapter 15
Procedural Replication Pragma Options

15-28

Sche
ma

Package Procedure Pragma

SYS XS_PRINCIPAL REMOVE_PROXY_FROM
_DBUSER

PRAGMA AUTO

SYS XS_PRINCIPAL REMOVE_PROXY_USER
S

PRAGMA AUTO

SYS XS_PRINCIPAL REMOVE_PROXY_USER
S

PRAGMA AUTO

SYS XS_PRINCIPAL REVOKE_ROLES PRAGMA AUTO
SYS XS_PRINCIPAL REVOKE_ROLES PRAGMA AUTO
SYS XS_PRINCIPAL REVOKE_ROLES PRAGMA AUTO
SYS XS_PRINCIPAL SET_ACL PRAGMA AUTO
SYS XS_PRINCIPAL SET_DESCRIPTION PRAGMA AUTO
SYS XS_PRINCIPAL SET_DYNAMIC_ROLE_

DURATION
PRAGMA AUTO

SYS XS_PRINCIPAL SET_DYNAMIC_ROLE_
SCOPE

PRAGMA AUTO

SYS XS_PRINCIPAL SET_EFFECTIVE_DAT
ES

PRAGMA AUTO

SYS XS_PRINCIPAL SET_GUID PRAGMA AUTO
SYS XS_PRINCIPAL SET_PROFILE PRAGMA AUTO
SYS XS_PRINCIPAL SET_USER_SCHEMA PRAGMA AUTO
SYS XS_PRINCIPAL SET_USER_STATUS PRAGMA AUTO
SYS XS_PRINCIPAL_IN

T
SET_VERIFIER_HELP
ER

PRAGMA AUTO

SYS XS_ROLESET ADD_ROLES PRAGMA AUTO
SYS XS_ROLESET ADD_ROLES PRAGMA AUTO
SYS XS_ROLESET CREATE_ROLESET PRAGMA AUTO
SYS XS_ROLESET DELETE_ROLESET PRAGMA AUTO
SYS XS_ROLESET REMOVE_ROLES PRAGMA AUTO
SYS XS_ROLESET REMOVE_ROLES PRAGMA AUTO
SYS XS_ROLESET REMOVE_ROLES PRAGMA AUTO
SYS XS_ROLESET SET_DESCRIPTION PRAGMA AUTO
SYS XS_SECURITY_CLA

SS
ADD_IMPLIED_PRIVI
LEGES

PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

ADD_IMPLIED_PRIVI
LEGES

PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

ADD_PARENTS PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

ADD_PARENTS PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

ADD_PRIVILEGES PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

ADD_PRIVILEGES PRAGMA AUTO

Chapter 15
Procedural Replication Pragma Options

15-29

Sche
ma

Package Procedure Pragma

SYS XS_SECURITY_CLA
SS

CREATE_SECURITY_C
LASS

PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

DELETE_SECURITY_C
LASS

PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_IMPLIED_PR
IVILEGES

PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_IMPLIED_PR
IVILEGES

PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_IMPLIED_PR
IVILEGES

PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_PARENTS PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_PARENTS PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_PARENTS PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_PRIVILEGES PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_PRIVILEGES PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

REMOVE_PRIVILEGES PRAGMA AUTO

SYS XS_SECURITY_CLA
SS

SET_DESCRIPTION PRAGMA AUTO

SYS DBMS_RESCONFIG ADDREPOSITORYRESC
ONFIG

PRAGMA AUTO with COMMIT

SYS DBMS_RESCONFIG ADDRESCONFIG PRAGMA AUTO
SYS DBMS_RESCONFIG APPENDRESCONFIG PRAGMA AUTO
SYS DBMS_RESCONFIG DELETEREPOSITORYR

ESCONFIG
PRAGMA AUTO with COMMIT

SYS DBMS_RESCONFIG DELETERESCONFIG PRAGMA AUTO
SYS DBMS_RESCONFIG DELETERESCONFIG PRAGMA AUTO
SYS DBMS_XDBZ DISABLE_HIERARCHY PRAGMA AUTO with COMMIT
SYS DBMS_XDBZ ENABLE_HIERARCHY PRAGMA AUTO with COMMIT
SYS DBMS_XDB_VERSIO

N
CHECKIN_INT PRAGMA AUTO

SYS DBMS_XDB_VERSIO
N

CHECKOUT PRAGMA AUTO

SYS DBMS_XDB_VERSIO
N

MAKEVERSIONED_INT PRAGMA AUTO

SYS DBMS_XDB_VERSIO
N

UNCHECKOUT_INT PRAGMA AUTO

SYS DBMS_XLSB DELETERESOURCE PRAGMA AUTO
SYS DBMS_XLSB DELNAMELOCKS PRAGMA AUTO
SYS DBMS_XLSB INSERTRESOURCE PRAGMA AUTO

Chapter 15
Procedural Replication Pragma Options

15-30

Sche
ma

Package Procedure Pragma

SYS DBMS_XLSB INSERTRESOURCENXO
B

PRAGMA AUTO

SYS DBMS_XLSB INSERTRESOURCENXO
BCLOB

PRAGMA AUTO

SYS DBMS_XLSB INSERTRESOURCEREF PRAGMA AUTO
SYS DBMS_XLSB INSERTTOHTABLE PRAGMA AUTO
SYS DBMS_XLSB INSERTTOUSERHTAB PRAGMA AUTO
SYS DBMS_XLSB LINKRESOURCE PRAGMA AUTO
SYS DBMS_XLSB SAVEACL PRAGMA AUTO
SYS DBMS_XLSB SETREFCOUNT PRAGMA AUTO
SYS DBMS_XLSB TOUCHOID PRAGMA AUTO

PL/SQL Procedures with Pragma MANUAL
For the procedures and packages pragma-ed MANUAL, the top-level PL/SQL API is not called.

Schem
a

Package Procedure Pragma

SYS DBMS_AQ AQ$_BACKGROUND_OPE
R_PAS

PRAGMA MANUAL

SYS DBMS_AQ DEQUEUE_INTERNAL_P
AS

PRAGMA MANUAL

SYS DBMS_AQ ENQUEUE_INT_UNSHAR
DED_PAS

PRAGMA MANUAL

SYS DBMS_AQADM_SYS ALTER_PROPAGATION_
SCHEDULE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS ALTER_QUEUE_INT PRAGMA MANUAL
SYS DBMS_AQADM_SYS ALTER_QUEUE_TABLE_

INT
PRAGMA MANUAL

SYS DBMS_AQADM_SYS ALTER_SUBSCRIBER_1
1G_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS CREATE_QUEUE_INT PRAGMA MANUAL
SYS DBMS_AQADM_SYS CREATE_QUEUE_TABLE

_INT
PRAGMA MANUAL

SYS DBMS_AQADM_SYS DISABLE_PROP_SCHED
ULE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS DROP_QUEUE_INT PRAGMA MANUAL
SYS DBMS_AQADM_SYS DROP_QUEUE_TABLE_I

NT
PRAGMA MANUAL

SYS DBMS_AQADM_SYS ENABLE_PROP_SCHEDU
LE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS GRANT_QUEUE_PRIVIL
EGE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS MIGRATE_QUEUE_TABL
E_INT

PRAGMA MANUAL

Chapter 15
Procedural Replication Pragma Options

15-31

Schem
a

Package Procedure Pragma

SYS DBMS_AQADM_SYS PURGE_QUEUE_TABLE PRAGMA MANUAL
SYS DBMS_AQADM_SYS RECOVER_PROPAGATIO

N_INT
PRAGMA MANUAL

SYS DBMS_AQADM_SYS REMOVE_ORPHMSGS_NR PRAGMA MANUAL
SYS DBMS_AQADM_SYS REMOVE_SUBSCRIBER_

11G
PRAGMA MANUAL

SYS DBMS_AQADM_SYS REVOKE_QUEUE_PRIVI
LEGE_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS SCHEDULE_PROPAGATI
ON_INT

PRAGMA MANUAL

SYS DBMS_AQADM_SYS START_QUEUE_INT PRAGMA MANUAL
SYS DBMS_AQADM_SYS STOP_QUEUE_INT PRAGMA MANUAL
SYS DBMS_AQADM_SYS UNSCHEDULE_PROPAGA

TION_INT
PRAGMA MANUAL

SYS DBMS_GOLDENGATE_
AUTH

GRANT_ADMIN_PRIVIL
EGE

PRAGMA MANUAL with COMMIT

SYS DBMS_GOLDENGATE_
AUTH

REVOKE_ADMIN_PRIVI
LEGE

PRAGMA MANUAL with COMMIT

SYS DBMS_INTERNAL_LO
GSTDBY

EDS_EVOLVE_TABLE_S
TART

PRAGMA MANUAL with COMMIT

SYS DBMS_PRVTAQIS SUBID_REPLICATE_IN
T

PRAGMA MANUAL

SYS LOGSTDBY_INTERNA
L

EDS_ADD_TABLE_I PRAGMA MANUAL with COMMIT

SYS XS_ADMIN_UTIL DROP_SCHEMA_OBJECT
S

PRAGMA MANUAL

XDB DBMS_XDBZ0 DISABLE_HIERARCHY_
INTERNAL

PRAGMA MANUAL

XDB DBMS_XDBZ0 ENABLE_HIERARCHY_I
NTERNAL

PRAGMA MANUAL

PL/SQL Procedures with Pragma NONE
For the procedures and packages pragma-ed NONE, PL/SQL markers are not
generated and no grouping is performed. Redo logs generated by these procedures
are applied or skipped based on table level replication semantics.

Sche
ma

Package Procedure Pragma

DVSYS DBMS_MACADM DISABLE_EVENT PRAGMA NONE
DVSYS DBMS_MACADM DV_SANITY_CHECK PRAGMA NONE
DVSYS DBMS_MACADM ENABLE_EVENT PRAGMA NONE
DVSYS DBMS_MACADM SET_PRESERVE_CASE PRAGMA NONE
DVSYS DBMS_MACADM INIT_SESSION PRAGMA NONE

Chapter 15
Procedural Replication Pragma Options

15-32

Sche
ma

Package Procedure Pragma

DVSYS DBMS_MACADM UPDATE_POLICY_LAB
EL_CONTEXT

PRAGMA NONE

DVSYS DBMS_MACOLS_SES
SION

LABEL_AUDIT_RAISE PRAGMA NONE

DVSYS DBMS_MACOLS_SES
SION

RESTORE_DEFAULT_L
ABELS

PRAGMA NONE

DVSYS DBMS_MACOLS_SES
SION

SET_POLICY_LABEL_
CONTEXT

PRAGMA NONE

DVSYS DBMS_MACOUT DISABLE PRAGMA NONE
DVSYS DBMS_MACOUT ENABLE PRAGMA NONE
DVSYS DBMS_MACOUT PL PRAGMA NONE
DVSYS DBMS_MACOUT PUT_LINE PRAGMA NONE
DVSYS DBMS_MACOUT SET_FACTOR PRAGMA NONE
DVSYS DBMS_MACSEC_ROL

ES
SET_ROLE PRAGMA NONE

DVSYS DBMS_MACSEC_ROL
ES

EVALUATE PRAGMA NONE

DVSYS DBMS_MACSEC_ROL
ES

EVALUATE_TR PRAGMA NONE

DVSYS DBMS_MACSEC_ROL
ES

EVALUATE_WR PRAGMA NONE

DVSYS DBMS_MACUTL CHECK_DVSYS_DML_A
LLOWED

PRAGMA NONE

DVSYS DBMS_MACUTL RAISE_ERROR PRAGMA NONE
DVSYS DBMS_MACUTL RAISE_UNAUTHORIZE

D_OPERATION
PRAGMA NONE

DVSYS EVENT SET PRAGMA NONE
DVSYS EVENT SETDEFAULT PRAGMA NONE
DVSYS EVENT SET_C PRAGMA NONE
SYS DBMS_AQ AQ$_DEQUEUE PRAGMA NONE
SYS DBMS_AQ AQ$_DEQUEUE PRAGMA NONE
SYS DBMS_AQ AQ$_DEQUEUE PRAGMA NONE
SYS DBMS_AQ AQ$_DEQUEUE PRAGMA NONE
SYS DBMS_AQ BIND_AGENT PRAGMA NONE
SYS DBMS_AQ DEQUEUE PRAGMA NONE
SYS DBMS_AQ DEQUEUE PRAGMA NONE
SYS DBMS_AQ DEQUEUE PRAGMA NONE
SYS DBMS_AQ ENQUEUE PRAGMA NONE
SYS DBMS_AQ ENQUEUE PRAGMA NONE
SYS DBMS_AQ ENQUEUE PRAGMA NONE
SYS DBMS_AQ LISTEN PRAGMA NONE
SYS DBMS_AQ LISTEN PRAGMA NONE
SYS DBMS_AQ POST PRAGMA NONE

Chapter 15
Procedural Replication Pragma Options

15-33

Sche
ma

Package Procedure Pragma

SYS DBMS_AQ REGISTER PRAGMA NONE
SYS DBMS_AQ UNBIND_AGENT PRAGMA NONE
SYS DBMS_AQ UNREGISTER PRAGMA NONE
SYS DBMS_AQADM ADD_ALIAS_TO_LDAP PRAGMA NONE
SYS DBMS_AQADM ADD_CONNECTION_TO

_LDAP
PRAGMA NONE

SYS DBMS_AQADM ADD_CONNECTION_TO
_LDAP

PRAGMA NONE

SYS DBMS_AQADM ADD_SUBSCRIBER PRAGMA NONE
SYS DBMS_AQADM ALTER_PROPAGATION

_SCHEDULE
PRAGMA NONE

SYS DBMS_AQADM ALTER_QUEUE PRAGMA NONE
SYS DBMS_AQADM ALTER_QUEUE_TABLE PRAGMA NONE
SYS DBMS_AQADM ALTER_SHARDED_QUE

UE
PRAGMA NONE

SYS DBMS_AQADM ALTER_SUBSCRIBER PRAGMA NONE
SYS DBMS_AQADM ALTER_SUBSCRIBER PRAGMA NONE
SYS DBMS_AQADM CREATE_EXCEPTION_

QUEUE
PRAGMA NONE

SYS DBMS_AQADM CREATE_NP_QUEUE PRAGMA NONE
SYS DBMS_AQADM CREATE_QUEUE PRAGMA NONE
SYS DBMS_AQADM CREATE_QUEUE_TABL

E
PRAGMA NONE

SYS DBMS_AQADM CREATE_SHARDED_QU
EUE

PRAGMA NONE

SYS DBMS_AQADM DEL_ALIAS_FROM_LD
AP

PRAGMA NONE

SYS DBMS_AQADM DEL_CONNECTION_FR
OM_LDAP

PRAGMA NONE

SYS DBMS_AQADM DISABLE_PROPAGATI
ON_SCHEDULE

PRAGMA NONE

SYS DBMS_AQADM DROP_QUEUE PRAGMA NONE
SYS DBMS_AQADM DROP_QUEUE_TABLE PRAGMA NONE
SYS DBMS_AQADM DROP_SHARDED_QUEU

E
PRAGMA NONE

SYS DBMS_AQADM ENABLE_JMS_TYPES PRAGMA NONE
SYS DBMS_AQADM ENABLE_PROPAGATIO

N_SCHEDULE
PRAGMA NONE

SYS DBMS_AQADM GET_PROP_SEQNO PRAGMA NONE
SYS DBMS_AQADM GET_REPLAY_INFO PRAGMA NONE
SYS DBMS_AQADM GET_TYPE_INFO PRAGMA NONE
SYS DBMS_AQADM GET_TYPE_INFO PRAGMA NONE
SYS DBMS_AQADM GET_WATERMARK PRAGMA NONE

Chapter 15
Procedural Replication Pragma Options

15-34

Sche
ma

Package Procedure Pragma

SYS DBMS_AQADM GRANT_QUEUE_PRIVI
LEGE

PRAGMA NONE

SYS DBMS_AQADM MIGRATE_QUEUE_TAB
LE

PRAGMA NONE

SYS DBMS_AQADM NONREPUDIATE_RECE
IVER

PRAGMA NONE

SYS DBMS_AQADM NONREPUDIATE_RECE
IVER

PRAGMA NONE

SYS DBMS_AQADM NONREPUDIATE_SEND
ER

PRAGMA NONE

SYS DBMS_AQADM NONREPUDIATE_SEND
ER

PRAGMA NONE

SYS DBMS_AQADM PURGE_QUEUE_TABLE PRAGMA NONE
SYS DBMS_AQADM RECOVER_PROPAGATI

ON
PRAGMA NONE

SYS DBMS_AQADM REMOVE_SUBSCRIBER PRAGMA NONE
SYS DBMS_AQADM RESET_REPLAY_INFO PRAGMA NONE
SYS DBMS_AQADM REVOKE_QUEUE_PRIV

ILEGE
PRAGMA NONE

SYS DBMS_AQADM SCHEDULE_PROPAGAT
ION

PRAGMA NONE

SYS DBMS_AQADM SET_WATERMARK PRAGMA NONE
SYS DBMS_AQADM START_QUEUE PRAGMA NONE
SYS DBMS_AQADM START_TIME_MANAGE

R
PRAGMA NONE

SYS DBMS_AQADM STOP_QUEUE PRAGMA NONE
SYS DBMS_AQADM STOP_TIME_MANAGER PRAGMA NONE
SYS DBMS_AQADM UNSCHEDULE_PROPAG

ATION
PRAGMA NONE

SYS DBMS_AQADM VERIFY_QUEUE_TYPE
S

PRAGMA NONE

SYS DBMS_AQADM VERIFY_QUEUE_TYPE
S_GET_NRP

PRAGMA NONE

SYS DBMS_AQADM VERIFY_QUEUE_TYPE
S_NO_QUEUE

PRAGMA NONE

SYS DBMS_AQELM GET_MAILHOST PRAGMA NONE
SYS DBMS_AQELM GET_MAILPORT PRAGMA NONE
SYS DBMS_AQELM GET_PROXY PRAGMA NONE
SYS DBMS_AQELM GET_SENDFROM PRAGMA NONE
SYS DBMS_AQELM GET_TXTIMEOUT PRAGMA NONE
SYS DBMS_AQELM HTTP_SEND PRAGMA NONE
SYS DBMS_AQELM SEND_EMAIL PRAGMA NONE
SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE
SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE

Chapter 15
Procedural Replication Pragma Options

15-35

Sche
ma

Package Procedure Pragma

SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE
SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE
SYS DBMS_AQIN AQ$_DEQUEUE_IN PRAGMA NONE
SYS DBMS_AQIN AQ$_DEQUEUE_RAW PRAGMA NONE
SYS DBMS_AQIN AQ$_DEQUEUE_RAW PRAGMA NONE
SYS DBMS_AQIN AQ$_ENQUEUE_OBJ PRAGMA NONE
SYS DBMS_AQIN AQ$_ENQUEUE_OBJ PRAGMA NONE
SYS DBMS_AQIN AQ$_ENQUEUE_OBJ_N

O_RECPL
PRAGMA NONE

SYS DBMS_AQIN AQ$_ENQUEUE_OBJ_N
O_RECPL

PRAGMA NONE

SYS DBMS_AQIN AQ$_ENQUEUE_RAW PRAGMA NONE
SYS DBMS_AQIN AQ$_JMS_ENQUEUE_B

YTES_MESSAGE
PRAGMA NONE

SYS DBMS_AQIN AQ$_JMS_ENQUEUE_M
AP_MESSAGE

PRAGMA NONE

SYS DBMS_AQIN AQ$_JMS_ENQUEUE_O
BJECT_MESSAGE

PRAGMA NONE

SYS DBMS_AQIN AQ$_JMS_ENQUEUE_S
TREAM_MESSAGE

PRAGMA NONE

SYS DBMS_AQIN AQ$_JMS_ENQUEUE_T
EXT_MESSAGE

PRAGMA NONE

SYS DBMS_AQIN AQ$_LISTEN PRAGMA NONE
SYS DBMS_AQIN AQ$_QUEUE_SUBSCRI

BERS
PRAGMA NONE

SYS DBMS_AQIN SET_DEQ_SORT PRAGMA NONE
SYS DBMS_AQIN SET_MULTI_RETRY PRAGMA NONE
SYS DBMS_AQJMS AQ$_GET_PROP_STAT PRAGMA NONE
SYS DBMS_AQJMS AQ$_GET_TRANS_TYP

E
PRAGMA NONE

SYS DBMS_AQJMS AQ$_REGISTER PRAGMA NONE
SYS DBMS_AQJMS AQ$_UNREGISTER PRAGMA NONE
SYS DBMS_AQJMS AQ$_UPDATE_PROP_S

TAT_QNAME
PRAGMA NONE

SYS DBMS_AQJMS CLEAR_DBSESSION_G
UID

PRAGMA NONE

SYS DBMS_AQJMS CLEAR_GLOBAL_AQCL
NTDB_CTX_CLNT

PRAGMA NONE

SYS DBMS_AQJMS CLEAR_GLOBAL_AQCL
NTDB_CTX_DB

PRAGMA NONE

SYS DBMS_AQJMS GET_DB_USERNAME_F
OR_AGENT

PRAGMA NONE

SYS DBMS_AQJMS SET_DBSESSION_GUI
D

PRAGMA NONE

Chapter 15
Procedural Replication Pragma Options

15-36

Sche
ma

Package Procedure Pragma

SYS DBMS_AQJMS SET_GLOBAL_AQCLNT
DB_CTX

PRAGMA NONE

SYS DBMS_AQJMS SUBSCRIBER_EXISTS PRAGMA NONE
SYS DBMS_AQJMS SUBSCRIBER_EXISTS PRAGMA NONE
SYS DBMS_ISCHED GET_AGENT_PASS_VE

RIFIER
PRAGMA NONE

SYS DBMS_ISCHED OBFUSCATE_CREDENT
IAL_PASSWORD

PRAGMA NONE

SYS DBMS_REDEFINITI
ON

CAN_REDEF_TABLE PRAGMA NONE

SYS DBMS_REDEFINITI
ON

REDEF_TABLE PRAGMA NONE

SYS DBMS_SCHEDULER CHECK_SYS_PRIVS PRAGMA NONE
SYS DBMS_SCHEDULER CLOSE_WINDOW PRAGMA NONE
SYS DBMS_SCHEDULER CREATE_CALENDAR_S

TRING
PRAGMA NONE

SYS DBMS_SCHEDULER CREATE_CREDENTIAL PRAGMA NONE
SYS DBMS_SCHEDULER EVALUATE_CALENDAR

_STRING
PRAGMA NONE

SYS DBMS_SCHEDULER FILE_WATCH_FILTER PRAGMA NONE
SYS DBMS_SCHEDULER GENERATE_EVENT_LI

ST
PRAGMA NONE

SYS DBMS_SCHEDULER GENERATE_JOB_NAME PRAGMA NONE
SYS DBMS_SCHEDULER GET_AGENT_VERSION PRAGMA NONE
SYS DBMS_SCHEDULER GET_CHAIN_RULE_AC

TION
PRAGMA NONE

SYS DBMS_SCHEDULER GET_CHAIN_RULE_CO
NDITION

PRAGMA NONE

SYS DBMS_SCHEDULER GET_DEFAULT_VALUE PRAGMA NONE
SYS DBMS_SCHEDULER GET_JOB_STEP_CF PRAGMA NONE
SYS DBMS_SCHEDULER GET_SYS_TIME_ZONE

_NAME
PRAGMA NONE

SYS DBMS_SCHEDULER GET_VARCHAR2_VALU
E

PRAGMA NONE

SYS DBMS_SCHEDULER GET_VARCHAR2_VALU
E

PRAGMA NONE

SYS DBMS_SCHEDULER IS_SCHEDULER_CREA
TED_AGENT

PRAGMA NONE

SYS DBMS_SCHEDULER OPEN_WINDOW PRAGMA NONE
SYS DBMS_SCHEDULER RESOLVE_CALENDAR_

STRING
PRAGMA NONE

SYS DBMS_SCHEDULER RESOLVE_CALENDAR_
STRING

PRAGMA NONE

SYS DBMS_SCHEDULER RESOLVE_NAME PRAGMA NONE

Chapter 15
Procedural Replication Pragma Options

15-37

Sche
ma

Package Procedure Pragma

SYS DBMS_SCHEDULER RUN_JOB PRAGMA NONE
SYS DBMS_SCHEDULER SET_AGENT_REGISTR

ATION_PASS
PRAGMA NONE

SYS DBMS_SCHEDULER STIME PRAGMA NONE
SYS DBMS_SCHEDULER STOP_JOB PRAGMA NONE
SYS DBMS_SCHEDULER SUBMIT_REMOTE_EXT

ERNAL_JOB
PRAGMA NONE

SYS XS_PRINCIPAL SET_PASSWORD PRAGMA NONE
SYS XS_PRINCIPAL SET_VERIFIER PRAGMA NONE

Listing the Procedures Supported for Oracle GoldenGate
Procedural Replication

The DBA_GG_SUPPORTED_PROCEDURES view displays information about the supported
packages for Oracle GoldenGate procedural replication.

When a procedure is supported and Oracle GoldenGate procedural replication is on,
calls to the procedure are replicated, unless the procedure is excluded specifically.

1. Connect to the database as sys (sqlplus, sqlcl, sqldeveloper) not as an Oracle
GoldenGate administrator.

2. Query the DBA_GG_SUPPORTED_PROCEDURES view.

Example 15-2 Displaying Information About the Packages Supported for
Oracle GoldenGate Procedural Replication

This query displays the following information about the packages:

• The owner of each package

• The name of each package

• The name of each procedure

• The minimum database release from which the procedure is supported

• Whether there is an exclusion rule that prevents the procedure from being
replicated for some database objects

COLUMN OWNER FORMAT A10
COLUMN PACKAGE_NAME FORMAT A15
COLUMN PROCEDURE_NAME FORMAT A15
COLUMN MIN_DB_VERSION FORMAT A14
COLUMN EXCLUSION_RULE_EXISTS FORMAT A14

SELECT OWNER,
 PACKAGE_NAME,
 PROCEDURE_NAME,
 MIN_DB_VERSION,

Chapter 15
Listing the Procedures Supported for Oracle GoldenGate Procedural Replication

15-38

 EXCLUSION_RULE_EXISTS
 FROM DBA_GG_SUPPORTED_PROCEDURES;

Your output looks similar to the following:

OWNER PACKAGE_NAME PROCEDURE_NAME MIN_DB_VERSION EXCLUSION_RULE
---------- --------------- --------------- -------------- --------------
XDB DBMS_XDB_CONFIG ADDTRUSTMAPPING 12.2 NO
CTXSYS CTX_DDL ALTER_INDEX 12.2 NO
SYS DBMS_FGA DROP_POLICY 12.2 NO
SYS XS_ACL DELETE_ACL 12.2 NO
.
.
.

Monitoring Oracle GoldenGate Procedural Replication
A set of data dictionary views enable you to monitor Oracle GoldenGate procedural
replication.

You can use the following views to monitor Oracle GoldenGate procedural replication:

View Description

DBA_GG_SUPPORTED_PACKAGES Provides details about supported packages for
Oracle GoldenGate procedural replication.

When a package is supported and Oracle
GoldenGate procedural replication is on, calls to
subprograms in the package are replicated.

DBA_GG_SUPPORTED_PROCEDURES Provides details about the procedures that are
supported for Oracle GoldenGate procedural
replication.

DBA_GG_PROC_OBJECT_EXCLUSION Provides details about all database objects that
are on the exclusion list for Oracle GoldenGate
procedural replication.

A database object is added to the exclusion list
using the INSERT_PROCREP_EXCLUSION_OBJ
procedure in the DBMS_GOLDENGATE_ADM
package. When a database object is on the
exclusion list, execution of a subprogram n the
package is not replicated if the subprogram
operates on the excluded object.

1. Connect to the database as sys (sqlplus, sqlcl, or sqldeveloper) not as an Oracle
GoldenGate administrator.

2. Query the views related to Oracle GoldenGate procedural replication.

Chapter 15
Monitoring Oracle GoldenGate Procedural Replication

15-39

16
Configuring Oracle GoldenGate in a
Multitenant Container Database

This chapter contains additional configuration instructions when configuring Oracle
GoldenGate in a multitenant container database (CDB).
Topics:

• Capturing from Pluggable Databases

• Applying to Pluggable Databases

• Excluding Objects from the Configuration

• Other Requirements for Multitenant Container Databases
This topic describes the special requirements that apply to replication to and from
multitenant container databases.

Capturing from Pluggable Databases
One Extract group can capture from multiple pluggable databases to a single trail. In the
parameter file, source objects must be specified in TABLE and SEQUENCE statements with their
fully qualified three-part names in the format of container.schema.object.

As an alternative to specifying three-part names, you can specify a default pluggable
database with the SOURCECATALOG parameter, and then specify only the schema.object in
subsequent TABLE or SEQUENCE parameters. You can use multiple instances of this
configuration to handle multiple source pluggable databases. For example:

SOURCECATALOG pdb1
TABLE phoenix.tab;
SEQUENCE phoenix.seq;
SOURCECATALOG pdb2
TABLE dallas.tab;
SEQUENCE dallas.seq;

Applying to Pluggable Databases
Replicat can only connect and apply to one pluggable database. To specify the correct one,
use a SQL*Net connect string for the database user that you specify with the USERID or
USERIDALIAS parameter. For example: GGADMIN@FINANCE. In the parameter file, specify only
the schema.object in the TARGET portion of the MAP statements. In the MAP portion, identify
source objects captured from more than one pluggable database with their three-part names
or use the SOURCECATALOG parameter with two-part names. The following is an example of this
configuration.

SOURCECATALOG pdb1
MAP schema_1.tab, TARGET 1;
MAP schema_1.seq, TARGET 1;
SOURCECATALOG pdb2

16-1

MAP schema_2.tab, TARGET 2;
MAP schema_2.seq, TARGET 2;

The following is an example without the use of SOURCECATALOG to identify the source
pluggable database. In this case, the source objects are specified with their three-part
names.

MAP pdb1.schema_1.tab, TARGET 1;
MAP pdb1.schema_1.seq, TARGET 1;

To configure replication from multiple source pluggable databases to multiple target
pluggable databases, you can configure parallel Extract and Replicat streams, each
handling data for one pluggable database. Alternatively, you can configure one Extract
capturing from multiple source pluggable databases, which writes to one trail that is
read by multiple Replicat groups, each applying to a different target pluggable
database. Yet another alternative is to use one Extract writing to multiple trails, each
trail read by a Replicat assigned to a specific target pluggable database :

Excluding Objects from the Configuration
To exclude pluggable databases, schemas, and objects from the configuration, you
can use the CATALOGEXCLUDE, SCHEMAEXCLUDE, TABLEEXCLUDE, MAPEXCLUDE, and
EXCLUDEWILDCARDOBJECTSONLY parameters.

Other Requirements for Multitenant Container Databases
This topic describes the special requirements that apply to replication to and from
multitenant container databases.

The requirements are:

Chapter 16
Excluding Objects from the Configuration

16-2

• The different pluggable databases in the multitenant container database can have
different character sets. Oracle GoldenGate captures data from any multitenant database
with different character sets into one trail file and replicates the data without corruption
due to using different character sets.

• Extract must operate in integrated capture mode. See Deciding Which Capture Method to
Use for more information about Extract capture modes. Replicat can operate in any of its
modes.

• Extract must connect to the root container (cdb$root) as a common user in order to
interact with the logmining server. To specify the root container, use the appropriate
SQL*Net connect string for the database user that you specify with the USERID or
USERIDALIAS parameter. For example: C##GGADMIN@FINANCE. See Establishing Oracle
GoldenGate Credentials for how to create a user for the Oracle GoldenGate processes
and grant the correct privileges.

• To support source CDB 12.2, Extract must specify the trail format as release 12.3. Due to
changes in the redo logs, to capture from a multitenant database that is Oracle 12.2 or
higher, the trail format release must be 12.3 or higher.

• The dbms_goldengate_auth.grant_admin_privilege package grants the appropriate
privileges for capture and apply within a multitenant container database. This includes the
container parameter, which must be set to ALL, as shown in the following example:

exec dbms_goldengate_auth.grant_admin_privilege('C##GGADMIN',container=>'all')
• DDL replication works as a normal replication for multitenant databases. However, DDL

on the root container should not be replicated because Replicats must not connect to the
root container, only to PDBs.

FLUSH SEQUENCE for Multitenant Database

FLUSH SEQUENCE must be issued at the PDB level, so the user will need to create an Oracle
GoldenGate user in each PDB that they wish to do sequence replication for, and then use
DBLOGIN to log into that PDB, and then perform the FLUSH SEQUENCE command.

It is recommended that you use the same schema in each PDB, so that it works with the
GGSCHEMA GLOBALS parameter file. Here is an example:

Environment Information OGG 18.1 Oracle 12c to Oracle 12c Replication,
Integrated Extract, Parallel Replicat
Source: CDB GOLD, PDB CERTMISSN
Target: CDB PLAT, PDB CERTDSQ
Source OGG Configuration
 Container User: C##GGADMIN
 PDB User for Sequences: GGATE
sqlplus / as sysdbao
SQL> alter session set container=CERTMISSN;
SQL> create user ggate identified by password default tablespace users
temporary tablespace temp quota unlimited on users container=current;

Run @sequence
sqlplus / as sysdba
SQL> alter session set container=CERTMISSN;
SQL> @sequence

Chapter 16
Other Requirements for Multitenant Container Databases

16-3

When prompted enter

GGATE GLOBALS
GGSCHEMA GGATE

FLUSH SEQUENCE:

GGSCI> DBLOGIN USERIDALIAS GGADMIN DOMAIN GOLD_QC_CDB$ROOT

GGSCI> FLUSH SEQUENCE CERTMISSN.SRCSCHEMA1.*

Target Oracle GoldenGate Configuration:

 PDB User: GGATE
Run @sequence
sqlplus / as sysdba
SQL> alter session set container=CERTDSQ;
SQL> @sequence

When prompted enter GGATE.

This also applies to the @sequence.sql script, which must also be run at each PDB
that you are going to capture from.

Chapter 16
Other Requirements for Multitenant Container Databases

16-4

17
Using Oracle GoldenGate with Autonomous
Database

You can replicate data to Oracle Autonomous Database using Oracle GoldenGate.

Topics:

• About Capturing and Replicating Data Using Autonomous Databases

• Details of Support When Using Oracle GoldenGate with Autonomous Databases

• Configuring Extract to Capture from an Autonomous Database

• Configuring Replicat to Apply to an Autonomous Database

About Capturing and Replicating Data Using Autonomous
Databases

You can capture changes from the Oracle Autonomous Database instance and replicate to
any target database or platform that Oracle GoldenGate supports, including another Oracle
Autonomous Database instance.

Use Case: When Using Oracle GoldenGate with Autonomous Databases

Using Oracle GoldenGate in the Oracle Autonomous Database can be configured to support
the following scenarios:

• Scalable Active-Active architecture: Synchronize changes made across two or more
databases to scale out workloads, provide increase resilience and near instantaneous
failover across multiple data centers or regions.

• Real-Time Data Warehouse: Provide continuous, real-time capture and delivery of
changed data between Oracle Autonomous Database systems.

• Big Data Integration: With Oracle GoldenGate for Big Data you can replicate data from
the Oracle Autonomous Database to provide real-time streaming integration to all
platforms supported by Big Data targets.

• Real-Time Streaming Analytics: Oracle GoldenGate integrates seamlessly with Oracle
Stream Analytics to enable users to identify events of interest by executing queries
against event streams in real time. It allows creating custom operational dashboards that
provide real-time monitoring, transform streaming data, or raise alerts based on stream
analysis.

• Hybrid Replication: Oracle GoldenGate replicates data from the Oracle Autonomous
Database instance back to on-premise or to another cloud database or platform.

The following features are not available with Always Free Autonomous Databases:

• Supplemental logging

• Oracle GoldenGate Extract

17-1

See Always Free Autonomous Database for details.

Details of Support When Using Oracle GoldenGate with
Autonomous Databases

Review the supported data types and limitations before replicating data to an Oracle
Autonomous Database.

Oracle GoldenGate Replicat Limitations for Autonomous Databases

These are the limitations of Oracle GoldenGate when replicating to or from the Oracle
Autonomous Database.

Supported Replicats
The following combinations of Replicats are supported in different modes when using
Oracle GoldenGate with Oracle Autonomous Database:

• Parallel Replicat in integrated mode is supported for Oracle Autonomous
Database.

• Classic and coordinated Replicats in integrated mode are not supported for
Oracle Autonomous Database.

• Classic, coordinated, and parallel Replicats in non-integrated mode are supported
for Oracle Autonomous Database.

Data Type Limitations for DDL and DML Replication
See the section Non-Supported Oracle Data Types.
Also see Limitation on the Use of Certain Data Types in the Autonomous Database on
Dedicated Exadata Infrastructure Documentation and Data Types in the Using Oracle
Autonomous Database Serverless guide.
DDL replication is supported depending on the restrictions in the Autonomous
Databases.

Details of Support for Archived Log Retention
The two types of Autonomous Databases, Oracle Autonomous Database Serverless
and Oracle Autonomous Database on Dedicated Exadata Infrastructure have different
log retention behavior.

• Oracle Autonomous Database Serverless: Archived log files are kept in Fast
Recovery Area (FRA) for up to 48 hours. After that, it is purged and the archived
log files are moved to NFS mount storage, which is accessible by logminer. Three
copies are created. The logminer should be able to access any of the copies. This
is transparent to Oracle GoldenGate Extract. After it reaches 7 days, the NFS
mounted copy is permanently removed. The Extract abends with the archived
log unavailable error if the required archived log file is older than 7 days.

• Oracle Autonomous Database on Dedicated Exadata Infrastructure: When Oracle
Autonomous Data Guard or Oracle GoldenGate is enabled, archived log files are
kept in Fast Recovery Area (FRA) for up to 7 days. After that, the files are purged.
There is no NFS mount location available for logminer to access archived log files
that are older than 7 days. The Extract abends with the archived log
unavailable error if the required archived log file is older than 7 days.

Chapter 17
Details of Support When Using Oracle GoldenGate with Autonomous Databases

17-2

Note:

If the database instance is closed for more than 15 minutes, then the retention
time is set back to 3 days. This implies that retention of archived log files is
confirmed only for 3 days, regardless of whether the database instance is
closed. The files are retained for 7 days only if the database instance is not
closed.

Configuring Replicat to Apply to an Autonomous Database
You can replicate into the Autonomous Database from any source database or platform that
is supported by Oracle GoldenGate.

Topics:

• Prerequisites for Configuring Oracle GoldenGate Replicat to an Autonomous Database

• Configure Replicat to Apply to an Autonomous Database

Prerequisites for Configuring Oracle GoldenGate Replicat to an
Autonomous Database

Learn about the prerequisites for configuring Oracle GoldenGate data replication to
Autonomous Databases.

You should have the following details available with you:

• Your source database with Oracle GoldenGate Extract processes configured and writing
trails to where the Replicat is running to apply data to the Autonomous Database target.

• Oracle Autonomous Database environment is provisioned and running.

To deliver data to the Autonomous Database instance using Oracle GoldenGate, perform the
following tasks:

• Configure Oracle GoldenGate Replicat for an Autonomous Database

• Obtain the Autonomous Database Client Credentials

Configure Oracle GoldenGate Replicat for an Autonomous Database
Learn the steps to configure Oracle GoldenGate Replicat for an Autonomous Database.

Here are the steps to complete the configuration tasks:

Note:

Instructions are based on the assumption that the source environment is already
configured.

1. For Oracle GoldenGate on-premises, make sure that Oracle GoldenGate is installed.

Chapter 17
Configuring Replicat to Apply to an Autonomous Database

17-3

Oracle GoldenGate Classic Architecture supports Autonomous Database capture
using Marketplace for Oracle Autonomous Database Serverless

2. (Microservices only) Create a deployment for your Oracle GoldenGate
environment. This is the deployment where the Replicat that applies data into the
Autonomous Database (ADB) will be created. See How to Create Deployments for
steps to add a deployment.

3. The Autonomous Database has a pre-existing user created for Oracle GoldenGate
on-premise called ggadmin. The ggadmin user has been granted the required
privileges for Replicat to work. This is the user where any objects used for Oracle
GoldenGate processing will be stored, like the checkpoint table and heartbeat
objects. By default, this user is locked. To unlock the ggadmin user, connect to the
Oracle Autonomous Database instance as the ADMIN user using any SQL client
tool. See Create Users on Autonomous Database with Database Actions.

4. Run the ALTER USER command to unlock the ggadmin user and set the password
for it. This will be used in GGSCI or Admin Client for any DBLOGIN operations on
the Autonomous Database. It will be used in Replicat to allow Oracle GoldenGate
to connect to the Autonomous Database and apply data. See Create Users on
Autonomous Database with Database Actions.

ALTER USER ggadmin IDENTIFIED BY p0$$word ACCOUNT UNLOCK;

Obtain the Autonomous Database Client Credentials
Learn how to establish a connection to your Autonomous Database.

To establish a connection with an Oracle Autonomous Database instance, you need to
download the client credentials files. There are two ways to download the client
credentials files: the Oracle Cloud Infrastructure Console or Database Actions
Launchpad. See Downloading Client Credentials (Wallets).

Note:

If you do not have administrator access to the Oracle Autonomous Database,
you should ask your service administrator to download and provide the
credentials files to you.

The following steps use the Database Actions Launchpad to download the client
credentials files:

1. Log into your Autonomous Database account.

2. From the Database Instance page, click Database Actions. This launches the
Database Actions Launchpad. The Launchpad attempts to log you into the
database as ADMIN. If that is not successful, you will be prompted for your
database ADMIN username and password.

3. On the Database Actions Launchpad, under Administration, click Download
Client Credentials (Wallets).

4. Enter a password to secure your Client Credentials zip file and click Download.

Chapter 17
Configuring Replicat to Apply to an Autonomous Database

17-4

Note:

The password you provide when you download the wallet protects the
downloaded Client Credentials wallet.

5. Save the credentials ZIP file to your local system. The credentials ZIP file contains the
following files:

• cwallet.sso
• ewallet.p12
• keystore.jks
• ojdbc.properties
• sqlnet.ora
• tnsnames.ora
• truststore.jks
• ewallet.pem
• README.txt
Refer and update (if required) the sqlnet.ora and tnsnames.ora files while configuring
Oracle GoldenGate to work with the Oracle Autonomous Database instance.

Configure Replicat to Apply to an Autonomous Database
This section assumes that the source environment is already configured and provides the
steps required to establish replication in the Oracle Autonomous Database environment.

In the Oracle GoldenGate instance, you need to complete the following:

1. Follow the steps given in Prerequisites for Configuring Oracle GoldenGate Replicat to an
Autonomous Database.

2. Follow the steps given in Configure Oracle GoldenGate Replicat for an Autonomous
Database.

3. Follow the steps given in Obtain the Autonomous Database Client Credentials.

4. Log into the server where Oracle GoldenGate was installed.

5. Transfer the credentials zip file that you downloaded from Oracle Autonomous Database
to your Oracle GoldenGate instance.

6. In the Oracle GoldenGate instance, unzip the credentials file into a new directory /u02/
data/adwc_credentials. This is your key directory.

7. To configure the connection details, open the tnsnames.ora file from the Oracle client
location in the Oracle GoldenGate instance.

cd /u02/data/adwc_credentials
ls
tnsnames.ora

Chapter 17
Configuring Replicat to Apply to an Autonomous Database

17-5

8. Edit the tnsnames.ora file in the Oracle GoldenGate instance to include the
connection details available in the tnsnames.ora file in your key directory (the
directory where you unzipped the credentials zip file downloaded from Oracle
Autonomous Database).

Sample Connection String
graphdb1_low = (description=
 (retry_count=20)(retry_delay=3)
(address=(protocol=tcps)(port=1522)(host=adb-preprod.us-
phoenix-1.oraclecloud.com))

(connect_data=(service_name=okd2ybgcz4mjx94_graphdb1_low.adb.oraclec
loud.com))
 (security=(ssl_server_cert_dn="CN=adwc-
preprod.uscom-east-1.oraclecloud.com,OU=Oracle BMCS US,O=Oracle
Corporation,L=Redwood City,ST=California,C=US")))

If Replicat becomes unresponsive due to a network timeout or a lost connection,
then you can add the following into the connection profile in the tnsnames.ora file:

(DESCRIPTION = (RECV_TIMEOUT=120) (ADDRESS_LIST =
 (LOAD_BALANCE=off)(FAILOVER=on)(CONNECT_TIMEOUT=3)
(RETRY_COUNT=3)
 (ADDRESS = (PROTOCOL = TCP)(HOST = adb-preprod.us-
phoenix-1.oraclecloud.com)(PORT = 1522))

Note:

The tnsnames.ora file provided with the credentials file contains three
database service names identifiable as:

ADWC_Database_Name_low
ADWC_Database_Name_medium
ADWC_Database_Name_high

For Oracle GoldenGate replication, use ADWC_Database_Name_low.

9. To configure the wallet, create a sqlnet.ora file in the Oracle client location in the
Oracle GoldenGate instance.

cd /u02/data/oci/network/admin
ls
sqlnet.ora tnsnames.ora

10. Edit this sqlnet.ora file to include your key directory.

WALLET_LOCATION = (SOURCE = (METHOD = file) (METHOD_DATA =
(DIRECTORY="/u02/data/adwc_credentials")))
SSL_SERVER_DN_MATCH=yes

11. Use the Admin Client or GGSCI to log into the Oracle GoldenGate deployment.

Chapter 17
Configuring Replicat to Apply to an Autonomous Database

17-6

12. Create a credential to store the GGADMIN user and password for the Replicat to use. For
example:

ADD CREDENTIALSTORE ALTER CREDENTIALSTORE ADD USER
ggadmin@databasename_low PASSWORD complex_password alias adb_alias

13. Add and configure a Replicat to deliver to Oracle Autonomous Database. When creating
the Replicat, use the alias created in the previous step. For setting up your Replicat and
other processes, see Configuring Oracle GoldenGate Apply.

Note:

You can use classic Replicat, coordinated Replicat, and parallel Replicat in non-
integrated mode. Parallel Replicat in integrated mode is also supported for
Oracle Autonomous Database.

14. You can now start your Replicat and perform data replication to the Autonomous
Database.

Note:

Oracle Autonomous Data Warehouse times out and disconnects the Replicat
when it is idle for more than 60 minutes. When Replicat tries to apply changes
(when it gets new changes) after being idle, it encounters a database error and
abends. Oracle recommends that you configure Oracle GoldenGate with
AUTORESTART parameter (Classic Architecture) or configure the AUTORESTART
profile (Microservices Architecture) to avoid having to manually restart a
Replicat when it times out.

Configuring Extract to Capture from an Autonomous Database
Oracle Autonomous Database has a tight integration with Oracle GoldenGate. There are a
number of differences when setting up Extract for an Autonomous database instance
compared to a traditional Oracle Database.

Oracle Autonomous Database security has been enhanced to ensure that Extract is only able
to capture changes from the specific tenant it connected to. However, downstream Extract is
not supported.

Before You Begin

Before you start the process of capturing data from the Autonomous Database using Oracle
GoldenGate you must first:

1. Unlock the pre-created Oracle GoldenGate database user ggadmin in the Autonomous
Database.

2. Obtain the Autonomous Database client credentials to connect to the database instance.

Topics:

• Establishing Oracle GoldenGate Credentials

Chapter 17
Configuring Extract to Capture from an Autonomous Database

17-7

• Prerequisites for Configuring Oracle GoldenGate Extract to Capture from
Autonomous Databases

• Configure Extract to Capture from an Autonomous Database

Establishing Oracle GoldenGate Credentials
To capture from an Autonomous Database only the GGADMIN account is used. The
GGADMIN account is created inside the database when the Autonomous Database is
provisioned. This account is locked. It must be unlocked before it can be used with
Oracle GoldenGate. This account is the same account used for both Extracts and
Replicats in the Autonomous Database.

Run the ALTER USER command to unlock the ggadmin user and set the password for it.
See Creating Users with Autonomous Database with Client-Side Tools.

This ALTER USER command must be run by the admin account user for Autonomous
Databases.

ALTER USER ggadmin IDENTIFIED BY PASSWORD ACCOUNT UNLOCK;

Prerequisites for Configuring Oracle GoldenGate Extract to Capture
from Autonomous Databases

Prior to configuring and starting the Extract process to capture from the Autonomous
Database, make sure that the following requirements are met:

• Oracle Autonomous Database environment is provisioned and running.

• Autonomous Database-level supplemental logging should be enabled by the
ADMIN or GGADMIN.

Configuring Autonomous Database Supplemental Logging for Extract

To add minimal supplemental logging to your Autonomous Database instance, log into
the instance as GGADMIN or ADMIN account and execute the following commands:

ALTER PLUGGABLE DATABASE ADD SUPPLEMENTAL LOG DATA;

To DROP Autonomous Database-level supplemental logging incase you decide to stop
capturing from that database instance:

ALTER PLUGGABLE DATABASE DROP SUPPLEMENTAL
 LOG DATA;

You can verify that the Autonomous Database-level supplemental logging is configured
properly by issuing this SQL statement:

SELECT MINIMAL FROM dba_supplemental_logging;

Chapter 17
Configuring Extract to Capture from an Autonomous Database

17-8

The output for this statement is:

MINIMAL

YES

The MINIMAL column will be YES if supplemental logging has been correctly set for this
Autonomous Database instance.

Configure Extract to Capture from an Autonomous Database
Following are the steps to configure an Extract to capture from an Oracle Autonomous
Database :

1. Install Oracle GoldenGate for your Oracle Autonomous Databaseinstance.

2. (Microservices only) Create a deployment for your Oracle GoldenGate environment. This
is the deployment where the Extract that captures data from the Autonomous Database
(ADB) will be created. See How to Create Deployments for steps to add a deployment.

3. Obtain Autonomous Database Client Credentials.

To establish connection to your Oracle Autonomous Database instance, download the
client credentials file. To download client credentials, you can use the Oracle Cloud
Infrastructure Console or Database Actions Launchpad. See Downloading Client
Credentials (Wallets).

Note:

If you do not have administrator access to the Autonomous Database you
should ask your service administrator to download and provide the credentials
files to you.

The following steps use the Database Actions Launchpad to download the client
credentials

a. Log in to your Oracle Autonomous Databaseaccount.

b. From the Database Instance page, click Database Actions. This launches the
Database Actions Launchpad. The Launchpad attempts to log you into the database
as ADMIN. If that is not successful, you will be prompted for your database ADMIN
username and password.

c. On the Database Actions Launchpad, under Administration, click Download
Client Credentials (Wallets).

d. Enter a password to secure your Client Credentials zip file and click Download.

Note:

The password you provide when you download the wallet protects the
downloaded Client Credentials wallet.

e. Save the credentials zip file to your local system.

Chapter 17
Configuring Extract to Capture from an Autonomous Database

17-9

The credentials zip file contains the following files:

• cwallet.sso
• ewallet.p12
• keystore.jks
• ojdbc.properties
• sqlnet.ora
• tnsnames.ora
• truststore.jks
• ewallet.pem
• README.txt
Refer and update (if required) the sqlnet.ora and tnsnames.ora files while
configuring Oracle GoldenGate to work with the Autonomous Database instance.

4. Configure the server where Oracle GoldenGate is running to connect to the
Autonomous Database instance.

a. Log into the server where Oracle GoldenGate was installed.

b. Transfer the credentials zip file that you downloaded from Oracle Autonomous
database instance to the Oracle GoldenGate server.

c. In the Oracle GoldenGate server, unzip the credentials file into a new
directory, for example: /u02/data/adwc_credentials. This is your key
directory.

d. To configure the connection details, open your tnsnames.ora file from the
Oracle client location in the Oracle GoldenGate instance.

e. Use the connection string with the LOW consumer group dbname_low, for
example, graphdb1_low, and move it to your local tnsnames.ora file.

See Local Naming Parameters in the tnsnames.ora File chapter in the Oracle
Database Net Services Reference guide.

Note:

The tnsnames.ora file provided with the credentials file contains
three database service names identifiable as:

ADWC_Database_Name_low
ADWC_Database_Name_medium
ADWC_Database_Name_high

Oracle recommends that you use ADWC_Database_Name_low with
Oracle GoldenGate. See Predefined Database Service Names for
Autonomous Database in the Using Oracle Autonomous Database
Serverless guide or Predefined Database Service Names for
Autonomous Databases for Oracle Autonomous Database on
Dedicated Exadata Infrastructure

Chapter 17
Configuring Extract to Capture from an Autonomous Database

17-10

https://docs.oracle.com/en-us/iaas/autonomous-database/doc/predefined-database-service-names.html
https://docs.oracle.com/en-us/iaas/autonomous-database/doc/predefined-database-service-names.html

f. Edit the tnsnames.ora file in the Oracle GoldenGate instance to include the
connection details available in the tnsnames.ora file in your key directory (the
directory where you unzipped the credentials zip file downloaded from the
Autonomous Databas.

Sample Connection Stringadw1_low. = (description=
 (retry_count=20)(retry_delay=3)
 (address=(protocol=tcps)(port=1522)(host=adb-
preprod.us-phoenix-1.oraclecloud.com))

(connect_data=(service_name=okd2ybgcz4mjx94_graphdb1_low.adb.oracleclo
ud.com))
 (security=(ssl_server_cert_dn="CN=adwc-preprod.uscom-
east-1.oraclecloud.com,OU=Oracle BMCS US,O=Oracle
Corporation,L=Redwood City,ST=California,C=US"))
)

If the database is within a firewall protected environment, you might not have direct
access to the database. With an existing HTTP Proxy, you can pass the firewall with
the following modifications to the sqlnet.ora and tnsnames.ora:

• sqlnet parameters

• address modification of tns_alias

If Extract becomes unresponsive due to a network timeout or connection loss, then
you can add the following into the connection profile in the tnsnames.ora file:

(DESCRIPTION = (RECV_TIMEOUT=30) (ADDRESS_LIST =
 (LOAD_BALANCE=off)(FAILOVER=on)(CONNECT_TIMEOUT=3)
(RETRY_COUNT=3) (ADDRESS = (PROTOCOL = TCP)(HOST = adb-preprod.us-
phoenix-1.oraclecloud.com)(PORT = 1522))

g. To configure the wallet, create a sqlnet.ora file in the Oracle client location in the
Oracle GoldenGate instance.

cd /u02/data/oci/network/admin
ls
sqlnet.ora tnsnames.ora

See Autonomous Database Client Credentials in Using Oracle GoldenGate on Oracle
Cloud Marketplace.

h. Edit this sqlnet.ora file to include your key directory.

WALLET_LOCATION = (SOURCE = (METHOD = file) (METHOD_DATA =
(DIRECTORY="/u02/data/adwc_credentials")))
SSL_SERVER_DN_MATCH=yes

5. Use Admin Client or GGSCI to log into the Oracle GoldenGate deployment, depending
on whether you are using Microservices or Classic Architecture.

6. Create credentials for the Extract database (or a user with same privileges). In this case,
GGADMIN is the user and will be used to connect to the Autonomous Database, and

Chapter 17
Configuring Extract to Capture from an Autonomous Database

17-11

perform commands that require a database connection. It will also be used in the
USERIDALIAS parameter for the Extract database connection.

ALTER CREDENTIALSTORE ADD USER
ggadmin@dbgraph1_low PASSWORD complex_password alias adb_alias

7. Connect to the database using DBLOGIN. The DBLOGIN user should be the
adb_alias account user.

DBLOGIN USERIDALIAS adb_alias

8. Configure supplemental logging on the tables, which you want to capture using
ADD TRANDATA or ADD SCHEMATRANDATA. Remember that you are connected directly
to the database instance, so there is no need to include the database name in
these commands. Here's an example:

ADD TRANDATA HR.EMP

or

ADD SCHEMATRANDATA HR

See Prerequisites for Configuring Oracle GoldenGate Extract to Capture from
Autonomous Databases.

9. Add heartbeat table.

ADD HEARTBEATTABLE

10. Add and configure an Extract to capture from the Oracle Autonomous Database
instance. See Configuring the Primary Extract in Integrated Capture Mode for
steps to create an Extract.

Oracle GoldenGate Extract is designed to work with the Oracle Autonomous
Database instance to ensure that it only captures from a specific database
instance. This means that the database instance name is not needed for any
TABLE or MAP statements.

The following example creates an Extract (required for capturing from an Oracle
Autonomous Database) called exte, and instructs it to begin now.

ADD EXTRACT exte, INTEGRATED TRANLOG, BEGIN NOW

To capture specific tables, use the two part object names.. For example, to capture
from the table HR.EMP, in your Oracle Autonomous Database instance, use this
entry in the Extract parameter file.

TABLE HR.EMP;

Chapter 17
Configuring Extract to Capture from an Autonomous Database

17-12

If you want to replicate HR.EMP into COUNTRY.EMPLOYEE, then your map statement would
look like this:

MAP HR.EMP, TARGET COUNTRY.EMPLOYEE;

11. Register Extract with the Oracle Autonomous Database instance. For example, to
register an Extract named exte, use the following command:

REGISTER EXTRACT exte DATABASE

12. You can now start your Extract and perform data replication to the Oracle Autonomous
Database instance. Here is an example:

START EXTRACT exte

This completes the process of configuring an Extract for Oracle Autonomous Database
and you can use it like any other Extract process.

Chapter 17
Configuring Extract to Capture from an Autonomous Database

17-13

A
Optional Parameters for Integrated Modes

This appendix contains optional parameters that may be required when operating Extract in
integrated capture mode or Replicat in integrated Replicat mode.
Topics:

• Additional Parameter Options for Integrated Capture
This section contains additional parameters that may be required for your Extract
configuration.

• Additional Parameter Options for Integrated Replicat
You can set these parameters by using the DBOPTIONS parameter with the
INTEGRATEDPARAMS option or dynamically by issuing the SEND REPLICAT command with
the INTEGRATEDPARAMS option in GGSCI.

Additional Parameter Options for Integrated Capture
This section contains additional parameters that may be required for your Extract
configuration.

Integrated capture uses a database logmining server in the mining database to mine the redo
stream of the source database. You can set parameters that are specific to the logmining
server by using the TRANLOGOPTIONS parameter with the INTEGRATEDPARAMS option in the
Extract parameter file.

Note:

For detailed information and usage guidance for these parameters, see the
"DBMS_CAPTURE_ADM" section in Oracle Database PL/SQL Packages and
Types Reference.

The following parameters can be set with INTEGRATEDPARAMS:

• CAPTURE_IDKEY_OBJECTS: Controls the capture of objects that can be supported by FETCH.
The default for Oracle GoldenGate is Y (capture ID key logical change records).

• DOWNSTREAM_REAL_TIME_MINE: Controls whether the logmining server operates as a real-
time downstream capture process or as an archived-log downstream capture process.
The default is N (archived-log mode). Specify this parameter to use real-time capture in a
downstream logmining server configuration. For more information on establishing a
downstream mining configuration, see Configuring a Downstream Mining Database .

• INLINE_LOB_OPTIMIZATION: Controls whether LOBs that can be processed inline (such as
small LOBs) are included in the LCR directly, rather than sending LOB chunk LCRs. The
default for Oracle GoldenGate is Y (Yes).

• MAX_SGA_SIZE: Controls the amount of shared memory used by the logmining server. The
shared memory is obtained from the streams pool of the SGA. The default is 1 GB.

A-1

• PARALLELISM: Controls the number of processes used by the logmining server. The
default is 2. For Oracle Standard Edition, this must be set to 1.

• TRACE_LEVEL: Controls the level of tracing for the Extract logmining server. For use
only with guidance from Oracle Support. The default for Oracle GoldenGate is 0
(no tracing).

• WRITE_ALERT_LOG: Controls whether the Extract logmining server writes messages
to the Oracle alert log. The default for Oracle GoldenGate is Y (Yes).

See Managing Server Resources.

Additional Parameter Options for Integrated Replicat
You can set these parameters by using the DBOPTIONS parameter with the
INTEGRATEDPARAMS option or dynamically by issuing the SEND REPLICAT command with
the INTEGRATEDPARAMS option in GGSCI.

The default Replicat configuration as directed in Configuring Oracle GoldenGate Apply
should be sufficient. However, if needed, you can set the following inbound server
parameters to support specific requirements.

Note:

For detailed information and usage guidance for these parameters, see the
"DBMS_APPLY_ADM" section in Oracle Database PL/SQL Packages and
Types Reference.

See Reference for Oracle GoldenGate for more information about the
DBOPTIONS parameter.

• COMMIT_SERIALIZATION: Controls the order in which applied transactions are
committed and has 2 modes, DEPENDENT_TRANSACTIONS and FULL. The default
mode for Oracle GoldenGate is DEPENDENT_TRANSACTIONS where dependent
transactions are applied in the correct order though may not necessarily be
applied in source commit order. In FULL mode, the source commit order is
enforced when applying transactions.

• BATCHSQL_MODE: Controls the batch execution scheduling mode including pending
dependencies. A pending dependency is a dependency on another transaction
that has already been scheduled, but not completely executed. The default is
DEPENDENT. You can use following three modes:

DEPENDENT
Dependency aware scheduling without an early start. Batched transactions are
scheduled when there are no pending dependencies.

DEPENDENT_EAGER
Dependency aware batching with early start. Batched transactions are scheduled
irrespective of pending dependencies.

Appendix A
Additional Parameter Options for Integrated Replicat

A-2

SEQUENTIAL
Sequential batching. Transactions are batched by grouping the transactions sequentially
based on the original commit order.

• DISABLE_ON_ERROR: Determines whether the apply server is disabled or continues on an
unresolved error. The default for Oracle GoldenGate is N (continue on errors), however,
you can set the option to Y if you need to disable the apply server when an error occurs.

• EAGER_SIZE: Sets a threshold for the size of a transaction (in number of LCRs) after
which Oracle GoldenGate starts applying data before the commit record is received. The
default for Oracle GoldenGate is 15100.

• ENABLE_XSTREAM_TABLE_STATS: Controls whether statistics on applied transactions are
recorded in the V$GOLDENGATE_TABLE_STATS view or not collected at all. The default for
Oracle GoldenGate is Y (collect statistics).

• MAX_PARALLELISM: Limits the number of apply servers that can be used when the load is
heavy. This number is reduced again when the workload subsides. The automatic tuning
of the number of apply servers is effective only if PARALLELISM is greater than 1 and
MAX_PARALLELISM is greater than PARALLELISM. If PARALLELISM is equal to
MAX_PARALLELISM, the number of apply servers remains constant during the workload.
The default for Oracle GoldenGate is 50.

• MAX_SGA_SIZE: Controls the amount of shared memory used by the inbound server. The
shared memory is obtained from the streams pool of the SGA. The default for Oracle
GoldenGate is INFINITE.

• MESSAGE_TRACKING_FREQUENCY: Controls how often LCRs are marked for high-level LCR
tracing through the apply processing. The default value is 2000000, meaning that every 2
millionth LCR is traced. A value of zero (0) disables LCR tracing.

• PARALLELISM: Sets a minimum number of apply servers that can be used under normal
conditions. Setting PARALLELISM to 1 disables apply parallelism, and transactions are
applied with a single apply server process. The default for Oracle GoldenGate is 4. For
Oracle Standard Edition, this must be set to 1.

• PARALLELISM_INTERVAL: Sets the interval in seconds at which the current workload
activity is computed. Replicat calculates the mean throughput every 5 X
PARALLELISM_INTERVAL seconds. After each calculation, the apply component can
increase or decrease the number of apply servers to try to improve throughput. If
throughput is improved, the apply component keeps the new number of apply servers.
The parallelism interval is used only if PARALLELISM is set to a value greater than one and
the MAX_PARALLELISM value is greater than the PARALLELISM value. The default is 5
seconds.

• PRESERVE_ENCRYPTION: Controls whether to preserve encryption for columns encrypted
using Transparent Data Encryption. The default for Oracle GoldenGate is N (do not apply
the data in encrypted form).

• OPTIMIZE_PROGRESS_TABLE: Integrated Delivery uses this table to track the transactions
that have been applied. It is used for duplicate avoidance in the event of failure or restart.
If it is set to N (the default), then the progress table is updated synchronously with the
apply of each replicated transaction. When set to Y, rather than populating the progress
table synchronously, markers are dropped into the redo stream so when the apply
process starts up, it mines the redo logs for these markers, and then updates the
progress table for the previously applied transactions.

Appendix A
Additional Parameter Options for Integrated Replicat

A-3

• TRACE_LEVEL: Controls the level of tracing for the Replicat inbound server. For use
only with guidance from Oracle Support. The default for Oracle GoldenGate is 0
(no tracing).

• WRITE_ALERT_LOG: Controls whether the Replicat inbound server writes messages
to the Oracle alert log. The default for Oracle GoldenGate is Y (yes).

Appendix A
Additional Parameter Options for Integrated Replicat

A-4

B
Configuring a Downstream Mining Database

This appendix contains instructions for preparing a downstream Oracle mining database to
support Extract in integrated capture mode.
For more information about integrated capture, see Deciding Which Capture Method to Use.

For examples of the downstream mining configuration, see Example Downstream Mining
Configuration.

Topics:

• Evaluating Capture Options for a Downstream Deployment
Downstream deployment allows you to offload the source database.

• Preparing the Source Database for Downstream Deployment
The source database ships its redo logs to a downstream database, and Extract uses the
logmining server at the downstream database to mine the redo logs.

• Preparing the Downstream Mining Database
A downstream mining database can accept both archived logs and online redo logs from
a source database.

Evaluating Capture Options for a Downstream Deployment
Downstream deployment allows you to offload the source database.

A downstream mining database can accept both archived logs and online redo logs from a
source database.

Multiple source databases can send their redo data to a single downstream database;
however the downstream mining database can accept online redo logs from only one of
those source databases. The rest of the source databases must ship archived logs.

When online logs are shipped to the downstream database, real-time capture by Extract is
possible. Changes are captured as though Extract is reading from the source logs. In order to
accept online redo logs from a source database, the downstream mining database must have
standby redo logs configured.

When using a downstream mining configuration, the source database and mining database
must be the same endian and same bitsize, which is 64 bits. For example, if the source
database was on Linux 64-bit, you can have the mining database run on Windows 64-bit,
because they have the same endian and bitsize.

Preparing the Source Database for Downstream Deployment
The source database ships its redo logs to a downstream database, and Extract uses the
logmining server at the downstream database to mine the redo logs.

This section guides you in the process of:

B-1

• Creating the Source User Account
There must be an Extract user on the source database. Extract uses the
credentials of this user to do metadata queries and to fetch column values as
needed from the source database.

• Configuring Redo Transport from Source to Downstream Mining Database
To set up the transfer of redo log files from a source database to the downstream
mining database, and to prepare the downstream mining database to accept these
redo log files, perform the steps given in this topic.

Creating the Source User Account
There must be an Extract user on the source database. Extract uses the credentials of
this user to do metadata queries and to fetch column values as needed from the
source database.

The source user is specified by the USERIDALIAS parameter.

To assign the required privileges, follow the procedure in Establishing Oracle
GoldenGate Credentials

Configuring Redo Transport from Source to Downstream Mining
Database

To set up the transfer of redo log files from a source database to the downstream
mining database, and to prepare the downstream mining database to accept these
redo log files, perform the steps given in this topic.

The following summarizes the rules for supporting multiple sources sending redo to a
single downstream mining database:

• Only one source database can be configured to send online redo to the standby
redo logs at the downstream mining database. The log_archive_dest_n setting
for this source database should not have a TEMPLATE clause.

• Source databases that are not sending online redo to the standby redo logs of the
downstream mining database must have a TEMPLATE clause specified in the
log_archive_dest_n parameter.

• Each of the source databases that sends redo to the downstream mining database
must have a unique DBID. You can select the DBID column from the v$database
view of these source databases to ensure that the DBIDs are unique.

• The FAL_SERVER value must be set to the downstream mining database.
FAL_SERVER specifies the FAL (fetch archive log) server for a standby database.
The value is a list of Oracle Net service names, which are assumed to be
configured properly on the standby database system to point to the desired FAL
servers. The list contains the net service name of any database that can
potentially ship redo to the downstream database.

• When using redo transport, there could be a delay in processing redo due to
network latency. For Extract, this latency is monitored by measuring the delay
between LCRs received from source database and reporting it. If the latency
exceeds a threshold, a warning message appears in the report file and a
subsequent information message appears when the lag drops to normal values.
The default value for the threshold is 10 seconds.

Appendix B
Preparing the Source Database for Downstream Deployment

B-2

Note:

The archived logs shipped from the source databases are called foreign archived
logs. From Oracle Database 12.2.0.1 onward, the archived logs sent to downstream
are purged automatically in downstream database as long as it is stored on Flash
Recovery Area (FRA).

These instructions take into account the requirements to ship redo from multiple sources, if
required. You must configure an Extract process for each of those sources.

To Configure Redo Transport

1. Configure Oracle Net so that each source database can communicate with the mining
database. For instructions, see Oracle Database Net Services Administrator's Guide.

2. Configure authentication at each source database and at the downstream mining
database to support the transfer of redo data. Redo transport sessions are authenticated
using either the Secure Sockets Layer (SSL) protocol or a remote login password file. If a
source database has a remote login password file, copy it to the appropriate directory of
the mining database system. The password file must be the same at all source
databases, and at the mining database. For more information about authentication
requirements for redo transport, see Preparing the Primary Database for Standby
Database Creation in Oracle Data Guard Concepts and Administration.

3. At each source database, configure one LOG_ARCHIVE_DEST_n initialization parameter to
transmit redo data to the downstream mining database. Set the attributes of this
parameter as shown in one of the following examples, depending on whether real-time or
archived-log-only capture mode is to be used.

• Example for real-time capture at the downstream logmining server, where the source
database sends its online redo logs to the downstream database:

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap'

• Example for archived-log-only capture at the downstream logmining server:

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_2='SERVICE=DMBSCAP.EXAMPLE.COM ASYNC NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
TEMPLATE=/usr/oracle/log_for_dbms1/dbms1_arch_%t_%s_%r.log
DB_UNIQUE_NAME=dbmscap'

Note:

When using an archived-log-only downstream mining database, you must
specify a value for the TEMPLATE attribute. Oracle also recommends that you
use the TEMPLATE clause in the source databases so that the log files from all
remote source databases are kept separated from the local database log files,
and from each other.

4. At the source database, set a value of ENABLE for the LOG_ARCHIVE_DEST_STATE_n
initialization parameter that corresponds with the LOG_ARCHIVE_DEST_n parameter that

Appendix B
Preparing the Source Database for Downstream Deployment

B-3

corresponds to the destination for the downstream mining database, as shown in
the following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE
5. At the source database, and at the downstream mining database, set the

DG_CONFIG attribute of the LOG_ARCHIVE_CONFIG initialization parameter to include
the DB_UNIQUE_NAME of the source database and the downstream database, as
shown in the following example.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)'

Preparing the Downstream Mining Database
A downstream mining database can accept both archived logs and online redo logs
from a source database.

The following sections explain how to prepare the downstream mining database:

• Creating the Downstream Mining User Account

• Configuring the Mining Database to Archive Local Redo Log Files

• Preparing a Downstream Mining Database for Real-time Capture

Creating the Downstream Mining User Account
When using a downstream mining configuration, there must be an Extract mining user
on the downstream database. The mining Extract process uses the credentials of this
user to interact with the downstream logmining server. The downstream mining user is
specified by the TRANLOGOPTIONS parameter with the MININGUSERALIAS option. See
Establishing Oracle GoldenGate Credentials to assign the correct credentials for the
version of your database.

Configuring the Mining Database to Archive Local Redo Log Files
This procedure configures the downstream mining database to archive redo data in its
online redo logs. These are redo logs that are generated at the downstream mining
database.

Archiving must be enabled at the downstream mining database if you want to run
Extract in real-time integrated capture mode, but it is also recommended for archive-
log-only capture. Extract in integrated capture mode writes state information in the
database. Archiving and regular backups will enable you to recover this state
information in case there are disk failures or corruption at the downstream mining
database.

To Archive Local Redo Log Files

1. Alter the downstream mining database to be in archive log mode. You can do this
by issuing the following DDL.

STARTUP MOUNT;
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

2. At the downstream mining database, set the first archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example:

Appendix B
Preparing the Downstream Mining Database

B-4

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE,PRIMARY_ROLE)'

Alternatively, you can use a command like this example:

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION='USE_DB_RECOVERY_FILE_DEST'
valid_for=(ONLINE_LOGFILE,PRIMARY_ROLE)'

Note:

The online redo logs generated by the downstream mining database can be
archived to a recovery area. However, you must not use the recovery area of
the downstream mining database to stage foreign archived logs or to archive
standby redo logs. For information about configuring a fast recovery area, see
Oracle Database Backup and Recovery User’s Guide.

3. Enable the local archive destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

For more information about these initialization parameters, see Oracle Data Guard Concepts
and Administration.

Preparing a Downstream Mining Database for Real-time Capture
This procedure is only required if you want to use real-time capture at a downstream mining
database. It is not required to use archived-log-only capture mode. To use real-time capture,
it is assumed that the downstream database has already been configured to archive its local
redo data as shown in Configuring the Mining Database to Archive Local Redo Log Files .

• Create the Standby Redo Log Files

• Configure the Database to Archive Standby Redo Log Files Locally

Create the Standby Redo Log Files
The following steps outline the procedure for adding standby redo log files to the downstream
mining database. The following summarizes the rules for creating the standby redo logs:

• Each standby redo log file must be at least as large as the largest redo log file of the redo
source database. For administrative ease, Oracle recommends that all redo log files at
source database and the standby redo log files at the downstream mining database be of
the same size.

• The standby redo log must have at least one more redo log group than the redo log at the
source database, for each redo thread at the source database.

The specific steps and SQL statements that are required to add standby redo log files
depend on your environment. See Oracle Data Guard Concepts and Administration 11g
Release 2 (11.2) for detailed instructions about adding standby redo log files to a database.

Appendix B
Preparing the Downstream Mining Database

B-5

Note:

If there will be multiple source databases sending redo to a single
downstream mining database, only one of those sources can send redo to
the standby redo logs of the mining database. An Extract process that mines
the redo from this source database can run in real-time mode. All other
source databases must send only their archived logs to the downstream
mining database, and the Extracts that read this data must be configured to
run in archived-log-only mode.

To Create the Standby Redo Log Files

1. In SQL*Plus, connect to the source database as an administrative user.

2. Determine the size of the source log file. Make note of the results.

SELECT BYTES FROM V$LOG;
3. Determine the number of online log file groups that are configured on the source

database. Make note of the results.

SELECT COUNT(GROUP#) FROM V$LOG;
4. Connect to the downstream mining database as an administrative user.

5. Add the standby log file groups to the mining database. The standby log file size
must be at least the size of the source log file size. The number of standby log file
groups must be at least one more than the number of source online log file groups.
This applies to each instance (thread) in a RAC installation. So if you have "n"
threads at the source database, each having "m" redo log groups, you should
configure n*(m+1) redo log groups at the downstream mining database.

The following example shows three standby log groups.

ALTER DATABASE ADD STANDBY LOGFILE GROUP 3
('/oracle/dbs/slog3a.rdo', '/oracle/dbs/slog3b.rdo') SIZE 500M;
ALTER DATABASE ADD STANDBY LOGFILE GROUP 4
('/oracle/dbs/slog4.rdo', '/oracle/dbs/slog4b.rdo') SIZE 500M;
ALTER DATABASE ADD STANDBY LOGFILE GROUP 5
('/oracle/dbs/slog5.rdo', '/oracle/dbs/slog5b.rdo') SIZE 500M;

6. Confirm that the standby log file groups were added successfully.

SELECT GROUP#, THREAD#, SEQUENCE#, ARCHIVED, STATUS
FROM V$STANDBY_LOG;

The output should be similar to the following:

GROUP# THREAD# SEQUENCE# ARC STATUS
---------- ---------- ---------- --- ----------
 3 0 0 YES UNASSIGNED
 4 0 0 YES UNASSIGNED
 5 0 0 YES UNASSIGNED

7. Ensure that log files from the source database are appearing in the location that is
specified in the LOCATION attribute of the local LOG_ARCHIVE_DEST_n that you set.
You might need to switch the log file at the source database to see files in the
directory.

Appendix B
Preparing the Downstream Mining Database

B-6

Configure the Database to Archive Standby Redo Log Files Locally
This procedure configures the downstream mining database to archive the standby redo logs
that receive redo data from the online redo logs of the source database. Keep in mind that
foreign archived logs should not be archived in the recovery area of the downstream mining
database.

To Archive Standby Redo Logs Locally

1. At the downstream mining database, set the second archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbms1
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

Oracle recommends that foreign archived logs (logs from remote source databases) be
kept separate from local mining database log files, and from each other. You must not
use the recovery area of the downstream mining database to stage foreign archived
logs..

2. Enable the LOG_ARCHIVE_DEST_2 parameter you set in the previous step as shown in the
following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE

Appendix B
Preparing the Downstream Mining Database

B-7

C
Example Downstream Mining Configuration

This appendix contains examples for preparing a downstream Oracle mining database to
support Extract in integrated capture mode.
Configuring a downstream mining database, see Configuring a Downstream Mining
Database .

Topics:

• Example 1: Capturing from One Source Database in Real-time Mode
This example captures changes from source database DBMS1 by deploying an
integrated capture session at a downstream mining database DBMSCAP.

• Example 2: Capturing from Multiple Sources in Archive-log-only Mode
The following example captures changes from database DBMS1 and DBMS2 by
deploying an integrated capture session at a downstream mining database DBMSCAP.

• Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only
Mode
The following example captures changes from database DBMS1, DBMS2 and DBMS3 by
deploying an integrated capture session at a downstream mining database DBMSCAP.

Example 1: Capturing from One Source Database in Real-time
Mode

This example captures changes from source database DBMS1 by deploying an integrated
capture session at a downstream mining database DBMSCAP.

Note:

The example assumes that you created the necessary standby redo log files as
shown in Configuring a Downstream Mining Database .

This assumes that the following users exist:

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and metadata
from DBMS1. This user has the alias of ggadm1 in the Oracle GoldenGate credential store
and logs in as ggadm1@dbms1. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the source database.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve logical
change records from the logmining server at the downstream mining database
DBMSCAP. This user has the alias of ggadmcap in the Oracle GoldenGate credential
store and logs in as ggadmcap@dbmscap. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the mining database.

C-1

• Prepare the Mining Database to Archive its Local Redo

• Prepare the Mining Database to Archive Redo Received in Standby Redo Logs
from the Source Database

• Prepare the Source Database to Send Redo to the Mining Database

• Set up Integrated Capture (ext1) on DBMSCAP

Prepare the Mining Database to Archive its Local Redo
To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this by
issuing the following DDL.

 STARTUP MOUNT;
 ALTER DATABASE ARCHIVELOG;
 ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local
redo.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Prepare the Mining Database to Archive Redo Received in Standby
Redo Logs from the Source Database

To prepare the mining database to archive the redo received in standby redo logs from
the source database:

1. At the downstream mining database, set log_archive_dest_2 as shown in the
following example.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbms1
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

2. Enable log_archive_dest_2 as shown in the following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE
3. Set DG_CONFIG at the downstream mining database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)'

Prepare the Source Database to Send Redo to the Mining Database
To prepare the source database to send redo to the mining database:

1. Make sure that the source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

NAME VALUE

Appendix C
Example 1: Capturing from One Source Database in Real-time Mode

C-2

--------- ---------------------
compatible 11.1.0.7.0

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at the source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)';
3. Set up redo transport at the source database.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Set up Integrated Capture (ext1) on DBMSCAP
To set up integrated capture (ext1) on DBMSCAP:

1. Register Extract with the downstream mining database. In the credential store, the alias
name of ggadm1 is linked to a user connect string of ggadm1@dbms1. The alias name of
ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

GGSCI> DBLOGIN USERIDALIAS ggadm1
GGSCI> MININGDBLOGIN USERIDALIAS ggadmcap
GGSCI> REGISTER EXTRACT ext1 DATABASE

2. Create Extract at the downstream mining database.

GGSCI> ADD EXTRACT ext1 INTEGRATED TRANLOG BEGIN NOW
3. Edit Extract parameter file ext1.prm. The following lines must be present to take

advantage of real-time capture. In the credential store, the alias name of ggadm1 is linked
to a user connect string of ggadm1@dbms1. The alias name of ggadmcap is linked to a user
connect string of ggadmcap@dbmscap.

USERIDALIAS ggadm1
TRANLOGOPTIONS MININGUSERALIAS ggadmcap
TRANLOGOPTIONS INTEGRATEDPARAMS (downstream_real_time_mine Y)

4. Start Extract.

GGSCI> START EXTRACT ext1

Note:

You can create multiple Extracts running in real-time integrated capture mode in the
downstream mining database, as long as they all are capturing data from the same
source database, such as capturing changes for database DBMS1 in the preceding
example.

Appendix C
Example 1: Capturing from One Source Database in Real-time Mode

C-3

Example 2: Capturing from Multiple Sources in Archive-log-
only Mode

The following example captures changes from database DBMS1 and DBMS2 by
deploying an integrated capture session at a downstream mining database DBMSCAP.

It assumes the following users:

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and
metadata from DBMS1. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at DBMS1.

• User GGADM2 in DBMS2 whose credentials Extract will use to fetch data and
metadata from DBMS2. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at DBMS2.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve
logical change records from the logmining server at the downstream mining
database. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the downstream mining database DBMSCAP.

This procedure also assumes that the downstream mining database is configured in
archive log mode.

• Prepare the Mining Database to Archive its Local Redo

• Prepare the Mining Database to Archive Redo from the Source Database

• Prepare the First Source Database to Send Redo to the Mining Database

• Prepare the Second Source Database to Send Redo to the Mining Database

• Set up Extracts at Downstream Mining Database

Prepare the Mining Database to Archive its Local Redo
To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this by
issuing the following DDL.

 STARTUP MOUNT;
 ALTER DATABASE ARCHIVELOG;
 ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local
redo.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Appendix C
Example 2: Capturing from Multiple Sources in Archive-log-only Mode

C-4

Prepare the Mining Database to Archive Redo from the Source Database
Set DG_CONFIG at the downstream mining database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbms2, dbmscap)'

Prepare the First Source Database to Send Redo to the Mining Database
To prepare the first source database to send redo to the mining database:

1. Make certain that DBMS1 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

NAME VALUE
--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS1 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbmscap)';
3. Set up redo transport at DBMS1 source database. The TEMPLATE clause is mandatory if

you want to send redo data directly to foreign archived logs at the downstream mining
database.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
TEMPLATE='/usr/orcl/arc_dest/dbms1/dbms1_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Prepare the Second Source Database to Send Redo to the Mining
Database

To prepare the second source database to send redo to the mining database:

1. Make sure that DBMS2 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

NAME VALUE
--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS2 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms2, dbmscap)';
3. Set up redo transport at DBMS2 source database. The TEMPLATE clause is mandatory if

you want to send redo data directly to foreign archived logs at the downstream mining
database.

Appendix C
Example 2: Capturing from Multiple Sources in Archive-log-only Mode

C-5

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
TEMPLATE='/usr/orcl/arc_dest/dbms2/dbms2_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Set up Extracts at Downstream Mining Database
These steps set up Extract at the downstream database to capture from the archived
logs sent by DBMS1 and DBMS2.

Example 3: Capturing from Multiple Sources with Mixed
Real-time and Archive-log-only Mode

The following example captures changes from database DBMS1, DBMS2 and DBMS3
by deploying an integrated capture session at a downstream mining database
DBMSCAP.

Note:

This example assumes that you created the necessary standby redo log files
as shown in Configuring a Downstream Mining Database .

It assumes the following users:

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and
metadata from DBMS1. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at DBMS1.

• User GGADM2 in DBMS2 whose credentials Extract will use to fetch data and
metadata from DBMS2. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at DBMS2.

• User GGADM3 in DBMS3 whose credentials Extract will use to fetch data and
metadata from DBMS3. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at DBMS3.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve
logical change records from the logmining server at the downstream mining
database. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the downstream mining database DBMSCAP.

This procedure also assumes that the downstream mining database is configured in
archive log mode.

In this example, the redo sent by DBMS3 will be mined in real time mode, whereas the
redo data sent from DBMS1 and DBMS2 will be mined in archive-log-only mode.

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

C-6

• Prepare the Mining Database to Archive its Local Redo

• Prepare the Mining Database to Accept Redo from the Source Databases

• Prepare the First Source Database to Send Redo to the Mining Database

• Prepare the Second Source Database to Send Redo to the Mining Database

• Prepare the Third Source Database to Send Redo to the Mining Database

• Set up Extracts at Downstream Mining Database

Prepare the Mining Database to Archive its Local Redo
To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this by
issuing the following DDL.

STARTUP MOUNT;
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local redo.

ALTER SYSTEM SETLOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/
localVALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Prepare the Mining Database to Accept Redo from the Source Databases
Because redo data is being accepted in the standby redo logs of the downstream mining
database, the appropriate number of correctly sized standby redo logs must exist. If you did
not configure the standby logs, see Configuring a Downstream Mining Database .

1. At the downstream mining database, set the second archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example. This is
needed to handle archive standby redo logs.

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbms3
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

2. Enable the LOG_ARCHIVE_DEST_STATE_2 initialization parameter that corresponds with the
LOG_ARCHIVE_DEST_2 parameter as shown in the following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE
3. Set DG_CONFIG at the downstream mining database to accept redo data from all of the

source databases.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbms2, dbms3, dbmscap)'

Prepare the First Source Database to Send Redo to the Mining Database
To prepare the first source database to send redo to the mining database:

1. Make certain that DBMS1 source database is running with the required compatibility.

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

C-7

select name, value from v$parameter where name = 'compatible';

NAME VALUE
--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS1 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbmscap)';
3. Set up redo transport at DBMS1 source database. The TEMPLATE clause is

mandatory if you want to send redo data directly to foreign archived logs at the
downstream mining database.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
TEMPLATE='/usr/orcl/arc_dest/dbms1/dbms1_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Prepare the Second Source Database to Send Redo to the Mining
Database

To prepare the second source database to send redo to the mining database:

1. Make sure that DBMS2 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

NAME VALUE
--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS2 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms2, dbmscap)';
3. Set up redo transport at DBMS2 source database. The TEMPLATE clause is

mandatory if you want to send redo data directly to foreign archived logs at the
downstream mining database.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
TEMPLATE='/usr/orcl/arc_dest/dbms2/dbms2_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Prepare the Third Source Database to Send Redo to the Mining
Database

To prepare the third source database to send redo to the mining database:

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

C-8

1. Make sure that DBMS3 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

NAME VALUE
--------- ---------------------
compatible 11.1.0.0.0

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS3 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms3, dbmscap)';
3. Set up redo transport at DBMS3 source database. Because DBMS3 is the source that

will send its online redo logs to the standby redo logs at the downstream mining
database, do not specify a TEMPLATE clause.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC OPTIONAL NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Set up Extracts at Downstream Mining Database
These steps set up Extract at the downstream database to capture from the archived logs
sent by DBMS1 and DBMS2.

• Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1

• Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2

• Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs
Sent by DBMS3

Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1
Perform the following steps on the DBMSCAP downstream mining database.

1. Register Extract with DBMSCAP for the DBMS1 source database. In the credential store,
the alias name of ggadm1 is linked to a user connect string of ggadm1@dbms1.The alias
name of ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

GGSCI> DBLOGIN USERIDALIAS ggadm1
GGSCI> MININGDBLOGIN USERIDALIAS ggadmcap
GGSCI> REGISTER EXTRACT ext1 DATABASE

2. Add Extract at the mining database DBMSCAP.

GGSCI> ADD EXTRACT ext1 INTEGRATED TRANLOG BEGIN NOW
3. Edit the Extract parameter file ext1.prm. In the credential store, the alias name of ggadm1

is linked to a user connect string of ggadm1@dbms1. The alias name of ggadmcap is linked
to a user connect string of ggadmcap@dbmscap.

USERIDALIAS ggadm1
TRANLOGOPTIONS MININGUSERALIAS ggadmcap
TRANLOGOPTIONS INTEGRATEDPARAMS (downstream_real_time_mine N)

4. Start Extract.

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

C-9

GGSCI> START EXTRACT ext1

Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2
Perform the following steps on the DBMSCAP downstream mining database.

1. Register Extract with the mining database for source database DBMS2. In the
credential store, the alias name of ggadm2 is linked to a user connect string of
ggadm2@dbms2.The alias name of ggadmcap is linked to a user connect string of
ggadmcap@dbmscap.

GGSCI> DBLOGIN USERIDALIAS ggadm2
GGSCI> MININGDBLOGIN USERIDALIAS ggadmcap
GGSCI> REGISTER EXTRACT ext2 DATABASE

2. Create Extract at the mining database.

GGSCI> ADD EXTRACT ext2 INTEGRATED TRANLOG, BEGIN NOW
3. Edit the Extract parameter file ext2.prm. In the credential store, the alias name of

ggadm2 is linked to a user connect string of ggadm2@dbms2.The alias name of
ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

USERIDALIAS ggadm2
TRANLOGOPTIONS MININGUSERALIAS ggadmcap
TRANLOGOPTIONS INTEGRATEDPARAMS (downstream_real_time_mine N)

4. Start Extract.

GGSCI> START EXTRACT ext2

Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs
Sent by DBMS3

Perform the following steps on the DBMSCAP downstream mining database.

1. Register Extract with the mining database for source database DBMS3. In the
credential store, the alias name of ggadm3 is linked to a user connect string of
ggadm3@dbms3.The alias name of ggadmcap is linked to a user connect string of
ggadmcap@dbmscap.

GGSCI> DBLOGIN USERID ggadm3
GGSCI> MININGDBLOGIN USERID ggadmcap
GGSCI> REGISTER EXTRACT ext3 DATABASE

2. Create Extract at the mining database.

GGSCI> ADD EXTRACT ext3 INTEGRATED TRANLOG, BEGIN NOW
3. Edit the Extract parameter file ext3.prm. To enable real-time mining, you must

specify downstream_real_time_mine. In the credential store, the alias name of
ggadm3 is linked to a user connect string of ggadm3@dbms3.The alias name of
ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

USERIDALIAS ggadm3
TRANLOGOPTIONS MININGUSERALIAS ggadmcap
TRANLOGOPTIONS INTEGRATEDPARAMS (downstream_real_time_mine Y)

4. Start Extract.

GGSCI> START EXTRACT ext3

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

C-10

Note:

You can create multiple Extracts running in real-time integrated capture mode in the
downstream mining database, as long as they all are capturing data from the same
source database, such as all capturing for database DBMS3 in the preceding
example.

Appendix C
Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode

C-11

D
Installing Trigger-Based DDL Capture

This appendix contains instructions for installing the objects that support the trigger-based
method of Oracle GoldenGate DDL support.
To configure Oracle GoldenGate to capture and replicate DDL, see Configuring DDL
Support .

Note:

DDL support for sequences (CREATE, ALTER, DROP, RENAME) is compatible with, but
not required for, replicating the sequence values themselves. To replicate just
sequence values, you do not need to install the Oracle GoldenGate DDL support
environment. You can just use the SEQUENCE parameter in the Extract configuration.

Topics:

• When to Use Trigger-based DDL Capture
This topic describes the configuration where you must use trigger-based DDL Extract.

• Overview of the Objects that Support Trigger-based DDL Capture
This topic lists the requirements for installing Oracle GoldenGate trigger-based DDL
environment.

• Installing the DDL Objects
To install DDL objects, you need scripts to perform various tasks during the installation.

When to Use Trigger-based DDL Capture
This topic describes the configuration where you must use trigger-based DDL Extract.

You must use trigger-based DDL capture when Extract will operate in the following
configurations:

Extract operates in classic capture mode against any version of Oracle Database.
If Extract will run in integrated mode against a version 11.2.0.4 or later Oracle Database, the
DDL trigger is not required. By default, DDL capture is handled transparently through the
database logmining server.

If Extract will capture from a multitenant container database, integrated capture mode must
be used with the native DDL capture method.

See Choosing Capture and Apply Modes for more information about capture modes.

See Configuring DDL Support for more information about configuring DDL support.

D-1

Overview of the Objects that Support Trigger-based DDL
Capture

This topic lists the requirements for installing Oracle GoldenGate trigger-based DDL
environment.

To install the Oracle GoldenGate trigger-based DDL environment, you will be installing
the database objects listed in the following table.

Object Purpose Default name

DDL marker table Stores DDL information. This
table only receives inserts.

GGS_MARKER

Sequence on marker
table

Used for a column in the marker
table.

GGS_DDL_SEQ

DDL history table Stores object metadata history.
This table receives inserts,
updates, deletes.

GGS_DDL_HIST

Object ID history table Contains object IDs of configured
objects.

GGS_DDL_HIST_ALT

DDL trigger Fires on DDL operations. Writes
information about the operation to
the marker and history tables.
Installed with the trigger are
some packages.

GGS_DDL_TRIGGER_BEFORE

DDL schema Contains the DDL
synchronization objects.

None; must be specified during
installation and in the GLOBALS
file.

User role Establishes the role needed to
execute DDL operations.

GGS_GGSUSER_ROLE

Internal setup table Database table for internal use
only.

GGS_SETUP

ddl_pin Pins DDL tracing, the DDL
package, and the DDL trigger for
performance improvements.

ddl_pin

ddl_cleartrace.sql Removes the DDL trace file. ddl_cleartrace.sql
ddl_status.sql Verifies that the Oracle

GoldenGate DDL objects are
installed

ddl_status.sql

marker_status.sql Verifies that the marker table is
installed.

marker_status.sql

ddl_tracelevel.sql Sets the level for DDL tracing. ddl_tracelevel.sql

Appendix D
Overview of the Objects that Support Trigger-based DDL Capture

D-2

Installing the DDL Objects
To install DDL objects, you need scripts to perform various tasks during the installation.

These scripts are located in the installation directory of Oracle GoldenGate Microservices.
The specific location is: oggma_install_home/lib/sql/legacy.

Follow these steps to install the database objects that support Oracle GoldenGate DDL
capture.

Note:

When using Extract in classic mode to capture in an Active Data Guard
environment, the DDL objects must be installed on the source database, not the
standby.

1. Choose a schema that can contain the Oracle GoldenGate DDL objects. This schema
cannot be case-sensitive.

2. Grant the following permission to the Oracle GoldenGate schema.

GRANT EXECUTE ON utl_file TO schema;
3. Create a default tablespace for the Oracle GoldenGate DDL schema. This tablespace

must be dedicated to the DDL schema; do not allow any other schema to share it.

4. Set AUTOEXTEND to ON for the DDL tablespace, and size it to accommodate the growth of
the GGS_DDL_HIST and GGS_MARKER tables. The GGS_DDL_HIST table, in particular, will grow
in proportion to overall DDL activity.

5. (Optional) To cause user DDL activity to fail when the DDL tablespace fills up, edit the
params.sql script and set the ddl_fire_error_in_trigger parameter to TRUE. Extract
cannot capture DDL if the tablespace fills up, so stopping the DDL gives you time to
extend the tablespace size and prevent the loss of DDL capture. Managing tablespace
sizing this way, however, requires frequent monitoring of the business applications and
Extract to avoid business disruptions. As a best practice, make certain to size the
tablespace appropriately in the first place, and set AUTOEXTEND to ON so that the
tablespace does not fill up.

WARNING:

Make a backup of the params.sql script before you edit it to preserve its
original state.

6. Create a GLOBALS file (or edit it, if one exists).

EDIT PARAMS ./GLOBALS

Appendix D
Installing the DDL Objects

D-3

Note:

EDIT PARAMS creates a simple text file. When you save the file after EDIT
PARAMS, it is saved with the name GLOBALS in upper case, without a file
extension, at the root of the Oracle GoldenGate directory. Do not alter
the file name or location.

7. In the GLOBALS file, specify the name of the DDL schema by adding the following
parameter to the GLOBALS file.

GGSCHEMA schema_name
8. (Optional) To change the names of other objects listed in DDL synchronization

objects, the changes must be made now, before proceeding with the rest of the
installation. Otherwise, you will need to stop Oracle GoldenGate DDL processing
and reinstall the DDL objects. It is recommended that you accept the default
names of the database objects. To change any database object name (except the
schema), do one or both of the following:

• Record all name changes in the params.sql script. Edit this script and change
the appropriate parameters. Do not run this script.

• List the names shown in Table D-1 in the GLOBALS file. The correct parameters
to use are listed in the Parameter column of the table.

Table D-1 GLOBALS Parameters for Changing DDL Object Names

Object Parameter

Marker table MARKERTABLE new_table_name1

History table DDLTABLE new_table_name

1 Do not qualify the name of any of these tables. The schema name for these table must be
either the one that is specified with GGSCHEMA or the schema of the current user, if GGSCHEMA
is not specified in GLOBALS.

9. To enable trigger-based DDL replication to recognize Oracle invisible indexes as
unique identifiers, set the following parameter to TRUE in the params.sql script:

define allow_invisible_index_keys = 'TRUE'
10. Save and close the GLOBALS file and the params.sql file.

11. Change directories to the Oracle GoldenGate installation directory.

12. Exit all Oracle sessions, including those of SQL*Plus, those of business
applications, those of the Oracle GoldenGate processes, and those of any other
software that uses Oracle. Prevent the start of any new sessions.

13. Run SQL*Plus and log in as a user that has SYSDBA privilege. This privilege is
required to install the DDL trigger in the SYS schema, which is required by Oracle.
All other DDL objects are installed in the schema that you created.

14. Run the marker_setup.sql script. Supply the name of the Oracle GoldenGate
schema when prompted, and then press Enter to execute the script. The script
installs support for the Oracle GoldenGate DDL marker system.

@marker_setup.sql

Appendix D
Installing the DDL Objects

D-4

15. Run the ddl_setup.sql script. You are prompted to specify the name of the DDL schema
that you configured. (Note: ddl_setup.sql will fail if the tablespace for this schema is
shared by any other users. It will not fail, however, if the default tablespace does not have
AUTOEXTEND set to ON, the recommended setting.)

@ddl_setup.sql
16. Run the role_setup.sql script. At the prompt, supply the DDL schema name. The script

drops and creates the role that is needed for DDL synchronization, and it grants DML
permissions on the Oracle GoldenGate DDL objects.

@role_setup.sql
17. Grant the role that was created (default name is GGS_GGSUSER_ROLE) to all Oracle

GoldenGate Extract users. You may need to make multiple grants if the processes have
different user names.

GRANT role TO user;
18. Run the ddl_enable.sql script to enable the DDL trigger.

@ddl_enable.sql
To Install and Use the Optional Performance Tool

To improve the performance of the DDL trigger, make the ddl_pin script part of the database
startup. It must be invoked with the Oracle GoldenGate DDL user name, as in:

@ddl_pin DDL_user

This script pins the PL/SQL package that is used by the trigger into memory. If executing this
script from SQL*Plus, connect as SYSDBA from the Oracle GoldenGate installation directory.
This script relies on the Oracle dmbs_shared_pool system package, so install that package
before using ddl_pin.

Appendix D
Installing the DDL Objects

D-5

E
Supporting Changes to XML Schemas

This appendix contains instructions for supporting changes to an XML schema. Both classic
and integrated capture modes do not support the capture of changes made to an XML
schema.
Topics:

• Supporting RegisterSchema
RegisterSchema can be handled by registering the schema definition on both source and
target databases before any table is created that references the XML schema.

• Supporting DeleteSchema
Issue DeleteSchema on the source database first.

• Supporting CopyEvolve
The CopyEvolve procedure evolves, or changes, a schema and can modify tables by
adding or removing columns.

Supporting RegisterSchema
RegisterSchema can be handled by registering the schema definition on both source and
target databases before any table is created that references the XML schema.

Supporting DeleteSchema
Issue DeleteSchema on the source database first.

Once Replicat is caught up with the changes made to the source database, issue the
DeleteSchema call on the target database.

Supporting CopyEvolve
The CopyEvolve procedure evolves, or changes, a schema and can modify tables by adding
or removing columns.

The CopyEvolve procedure can also be used to change whether or not XML documents are
valid. Handling CopyEvolve requires more coordination. Use the following procedure if you
are issuing CopyEvolve on the source database.

1. Quiesce changes to dependent tables on the source database.

2. Execute the CopyEvolve on the primary or source database.

3. Wait for Replicat to finish applying all of the data from those tables to the target database.

4. Stop Replicat.

5. Apply the CopyEvolve on the target database.

6. Restart Replicat.

E-1

F
Preparing DBFS for an Active-Active
Configuration

This appendix contains steps to configure Oracle GoldenGate to function within an active-
active bidirectional or multi-directional environment where Oracle Database File System
(DBFS) is in use on both (or all) systems.
Topics:

• Supported Operations and Prerequisites
This topic lists what is supported by Oracle GoldenGate for DBFS.

• Applying the Required Patch
Apply the Oracle DBFS patch for bug-9651229 on both databases.

• Examples Used in these Procedures
The following procedures assume two systems and configure the environment so that
DBFS users on both systems see the same DBFS files, directories, and contents that are
kept in synchronization with Oracle GoldenGate.

• Partitioning the DBFS Sequence Numbers
DBFS uses an internal sequence-number generator to construct unique names and
unique IDs.

• Configuring the DBFS file system
To replicate DBFS file system operations, use a configuration that is similar to the
standard bi-directional configuration for DML.

• Mapping Local and Remote Peers Correctly
The names of the tables that underlie the DBFS file systems are generated internally and
dynamically.

Supported Operations and Prerequisites
This topic lists what is supported by Oracle GoldenGate for DBFS.

Oracle GoldenGate for DBFS supports the following:

• Supported DDL (like TRUNCATE or ALTER) on DBFS objects except for CREATE statements
on the DBFS objects. CREATE on DBFS must be excluded from the configuration, as must
any schemas that will hold the created DBFS objects. The reason to exclude CREATES is
that the metadata for DBFS must be properly populated in the SYS dictionary tables
(which itself is excluded from Oracle GoldenGate capture by default).

• Capture and replication of DML on the tables that underlie the DBFS file system.

The procedures that follow assume that Oracle GoldenGate is configured properly to support
active-active configuration. This means that it must be:

• Installed according to the instructions in this guide.

• Configured according to the instructions in the Oracle GoldenGate Windows and UNIX
Administrator's Guide.

F-1

Applying the Required Patch
Apply the Oracle DBFS patch for bug-9651229 on both databases.

To determine if the patch is installed, run the following query:

connect / as sysdba
select procedure_name
from dba_procedures
where object_name = 'DBMS_DBFS_SFS_ADMIN'
and procedure_name = 'PARTITION_SEQUENCE';

The query should return a single row. Anything else indicates that the proper patched
version of DBFS is not available on your database.

Examples Used in these Procedures
The following procedures assume two systems and configure the environment so that
DBFS users on both systems see the same DBFS files, directories, and contents that
are kept in synchronization with Oracle GoldenGate.

It is possible to extend these concepts to support three or more peer systems.

Partitioning the DBFS Sequence Numbers
DBFS uses an internal sequence-number generator to construct unique names and
unique IDs.

These steps partition the sequences into distinct ranges to ensure that there are no
conflicts across the databases. After this is done, further DBFS operations (both
creation of new file systems and subsequent file system operations) can be performed
without conflicts of names, primary keys, or IDs during DML propagation.

1. Connect to each database as sysdba.

Issue the following query on each database.

select last_number
from dba_sequences
where sequence_owner = 'SYS'
and sequence_name = 'DBFS_SFS_$FSSEQ'

2. From this query, choose the maximum value of LAST_NUMBER across both systems,
or pick a high value that is significantly larger than the current value of the
sequence on either system.

3. Substitute this value ("maxval" is used here as a placeholder) in both of the
following procedures. These procedures logically index each system as myid=0
and myid=1.

Node1

declare
begin
dbms_dbfs_sfs_admin.partition_sequence(nodes => 2, myid => 0, newstart
=> :maxval);
commit;

Appendix F
Applying the Required Patch

F-2

end;
/

Node 2

declare
begin
dbms_dbfs_sfs_admin.partition_sequence(nodes => 2, myid => 1, newstart
=> :maxval);
commit;
end;
/

Note:

Notice the difference in the value specified for the myid parameter. These are
the different index values.

For a multi-way configuration among three or more databases, you could make the
following alterations:

• Adjust the maximum value that is set for maxval upward appropriately, and use that
value on all nodes.

• Vary the value of myid in the procedure from 0 for the first node, 1 for the second
node, 2 for the third one, and so on.

4. (Recommended) After (and only after) the DBFS sequence generator is partitioned,
create a new DBFS file system on each system, and use only these file systems for DML
propagation with Oracle GoldenGate. See Configuring the DBFS file system.

Note:

DBFS file systems that were created before the patch for bug-9651229 was applied
or before the DBFS sequence number was adjusted can be configured for
propagation, but that requires additional steps not described in this document. If you
must retain old file systems, open a service request with Oracle Support.

Configuring the DBFS file system
To replicate DBFS file system operations, use a configuration that is similar to the standard
bi-directional configuration for DML.

Some guidelines to follow while configuring Oracle GoldenGate for DBFS are:

• Use matched pairs of identically structured tables.

• Allow each database to have write privileges to opposite tables in a set, and set the other
one in the set to read-only. For example:

– Node1 writes to local table t1 and these changes are replicated to t1 on Node2.

– Node2 writes to local table t2 and these changes are replicated to t2 on Node1.

Appendix F
Configuring the DBFS file system

F-3

– On Node1, t2 is read-only. On Node2, t1 is read-only.

DBFS file systems make this kind of table pairing simple because:

• The tables that underlie the DBFS file systems have the same structure.

• These tables are modified by simple, conventional DML during higher-level file
system operations.

• The DBFS ContentAPI provides a way of unifying the namespace of the individual
DBFS stores by means of mount points that can be qualified as read-write or read-
only.

The following steps create two DBFS file systems (in this case named FS1 and FS2)
and set them to be read-write or read, as appropriate.

1. Run the following procedure to create the two file systems. (Substitute your store
names for FS1 and FS2.)

2. Run the following procedure to give each file system the appropriate access rights.
(Substitute your store names for FS1 and FS2.)

In this example, note that on Node 1, store FS1 is read-write and store FS2 is read-
only, while on Node 2 the converse is true: store FS1 is read-only and store FS2 is
read-write.

Note also that the read-write store is mounted as local and the read-only store is
mounted as remote. This provides users on each system with an identical
namespace and identical semantics for read and write operations. Local path
names can be modified, but remote path names cannot.

Example F-1

declare
dbms_dbfs_sfs.createfile system('FS1');
dbms_dbfs_sfs.createfile system('FS2');

dbms_dbfs_content.registerStore('FS1',
'posix', 'DBMS_DBFS_SFS');
dbms_dbfs_content.registerStore('FS2',
'posix', 'DBMS_DBFS_SFS');
commit;
end;
/

Example F-2 Node 1

declare
dbms_dbfs_content.mountStore('FS1', 'local');
dbms_dbfs_content.mountStore('FS2', 'remote',
read_only => true);
commit;
end;
/

Example F-3 Node 2

declare
dbms_dbfs_content.mountStore('FS1', 'remote',
read_only => true);
dbms_dbfs_content.mountStore('FS2', 'local');
commit;

Appendix F
Configuring the DBFS file system

F-4

end;
/

Mapping Local and Remote Peers Correctly
The names of the tables that underlie the DBFS file systems are generated internally and
dynamically.

Continuing with the preceding example, there are:

• Two nodes (Node 1 and Node 2 in the example).

• Four stores: two on each node (FS1 and FS2 in the example).

• Eight underlying tables: two for each store (a table and a ptable). These tables must be
identified, specified in Extract TABLE statements, and mapped in Replicat MAP statements.

1. To identify the table names that back each file system, issue the following query.
(Substitute your store names for FS1 and FS2.)

The output looks like the following examples.

2. Identify the tables that are locally read-write to Extract by creating the following TABLE
statements in the Extract parameter files. (Substitute your pluggable database names,
schema names, and table names as applicable.)

3. Link changes on each remote file system to the corresponding local file system by
creating the following MAP statements in the Replicat parameter files. (Substitute your
pluggable database, schema and table names.)

This mapping captures and replicates local read-write source tables to remote read-only
peer tables:

• file system changes made to FS1 on Node 1 propagate to FS1 on Node 2.

• file system changes made to FS2 on Node 2 propagate to FS2 on Node1.

Changes to the file systems can be made through the DBFS ContentAPI (package
DBMS_DBFS_CONTENT) of the database or through dbfs_client mounts and conventional
file systems tools.

All changes are propagated in both directions.

• A user at the virtual root of the DBFS namespace on each system sees identical
content.

• For mutable operations, users use the /local sub-directory on each system.

• For read operations, users can use either of the /local or /remote sub-directories,
depending on whether they want to see local or remote content.

Example F-4

select fs.store_name, tb.table_name, tb.ptable_name
from table(dbms_dbfs_sfs.listTables) tb,
table(dbms_dbfs_sfs.listfile systems) fs
where fs.schema_name = tb.schema_name
and fs.table_name = tb.table_name
and fs.store_name in ('FS1', 'FS2')
;

Appendix F
Mapping Local and Remote Peers Correctly

F-5

Example F-5 Example output: Node 1 (Your Table Names Will Be Different.)

STORE NAME TABLE_NAME PTABLE_NAME
------------- ------------- -------------
FS1 SFS$_FST_100 SFS$_FSTP_100
FS2 SFS$_FST_118 SFS$_FSTP_118

Example F-6 Example output: Node 2 (Your Table Names Will Be Different.)

STORE NAME TABLE_NAME PTABLE_NAME
------------- ------------- -------------
FS1 SFS$_FST_101 SFS$_FSTP_101
FS2 SFS$_FST_119 SFS$_FSTP_119

Example F-7 Node1

TABLE [container.]schema.SFS$_FST_100
TABLE [container.]schema.SFS$_FSTP_100;

Example F-8 Node2

TABLE [container.]schema.SFS$_FST_119
TABLE [container.]schema.SFS$_FSTP_119;

Example F-9 Node1

MAP [container.]schema.SFS$_FST_119, TARGET [container.]schema.SFS$_FST_118;
MAP [container.]schema.SFS$_FSTP_119, TARGET [container.]schema.SFS$_FSTP_118

Example F-10 Node2

MAP [container.]schema.SFS$_FST_100, TARGET
[container.]schema.SFS$_FST_101;MAP [container.]schema.SFS$_FSTP_100, TARGET
[container.]schema.SFS$_FSTP_101;

Appendix F
Mapping Local and Remote Peers Correctly

F-6

G
Support for Classic Extract

This topic describes data types, objects and operations that are supported by Oracle
GoldenGate Classic Extract.

Data type Classic capture

Scalar columns including DATE and
DATETIME columns

Captured from redo.

LONG VARCHAR Not supported.

BASICFILE LOB columns LOB modifications done using DML (INSERT/UPDATE/DELETE) are
captured from redo.

LOB modifications done using DBMS_LOB package are captured from the
source table by fetching values from the base table.

SECUREFILE LOB columns Captured from redo, except for the following cases where SECUREFILE
LOBs are fetched from the source table:

• LOB is encrypted
• LOB is compressed
• LOB is deduplicated
• LOB is stored in-line
• LOB is modified using DBMS_LOB package

• NOLOGGING LOBs

Index Organized Tables (IOT) Captured from redo with the following restrictions:

• IOT with mapping table not supported.
• Direct load inserts to IOT tables cannot have the SORTED clause.

• IOT with prefix compression as specified with COMPRESS clause is not
supported.

XML columns stored as CLOB Captured from redo.

XML columns stored as Binary Fetched from source table.

XML columns stored as Object-
Relational

Not supported.

XML Type Table Not supported.

User Defined Type (UDT) columns Fetched from source table.

Invisible Columns Not supported.

G-1

Data type Classic capture

ANYDATA columns Fetched from source table with the following data types only:

BINARY_DOUBLE
BINARY_FLOAT
CHAR
DATE
INTERVAL DAY TO SECOND
INTERVAL YEAR TO MONTH
NCHAR
NUMBER
NVARCHAR2
RAW
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIMEZONE
UDTs

VARCHAR/VARCHAR2
Requires source database compatibility to be set to 11.2.0.0.0 or higher.

Spatial Types columns Fetched from source table.

Collections columns (VARRAYs) Fetched from source table.

Collections columns (Nested Tables) Fetched from source table with limitations.

See Details of Support for Objects and Operations in Oracle DML.

Object Table Fetched from source table.

Transparent Data Encryption (Column
Encryption & Tablespace Encryption)

Captured from redo.

Basic Compression Not supported.

OLTP-Compression Not supported.

Exadata Hybrid Columnar
Compression

Not supported.

XA on non-RAC database Captured from redo.

XA on RAC database Not supported.

To get support, must make sure all branches of XA goes to the same
instance.

PDML on non-RAC database Captured from redo.

PDML on RAC database Not supported.

To get support, you must make sure child transactions spawned from a
PDML transaction do not span multiple instances.

• Details of Support for Objects and Operations in Oracle DML
This section outlines the Oracle objects and operations that Oracle
GoldenGatesupports for the capture and replication of DML operations.

• Details of Support for Objects and Operations in Oracle DDL (Classic)
This topic outlines the Oracle objects and operation types that Oracle GoldenGate
supports for the capture and replication of DDL operations.

Appendix G

G-2

Details of Support for Objects and Operations in Oracle DML
This section outlines the Oracle objects and operations that Oracle GoldenGatesupports for
the capture and replication of DML operations.

Supported Objects and Operations in Oracle DML

Identity Columns are supported.

• Limitations of Support for Index-Organized Tables

• Limitations of Support for Clustered Tables

• Non-supported Objects and Operations in Oracle DML (Classic)

Limitations of Support for Index-Organized Tables
These limitations apply to classic capture mode.

• IOT with key compression enabled (indicated by the COMPRESS keyword in the
key_compression clause) is not supported in classic capture mode, but is supported in
integrated capture mode.

Limitations of Support for Clustered Tables
Indexed clusters are supported by Extract while hash clusters are not supported. In classic
capture mode the following limitations apply:

• Encrypted and compressed clustered tables are not supported in classic capture.

• Extract in classic capture mode captures DML changes made to index clustered tables if
the cluster size remains the same. Any DDL that causes the cluster size to increase or
decrease may cause Extract to capture subsequent DML on that table incorrectly.

Non-supported Objects and Operations in Oracle DML (Classic)
The following are not supported in classic capture:

• Exadata Hybrid Columnar Compression

• Capture from tables with OLTP table compression

• Capture from tablespaces and tables created or altered with COMPRESS
• Capture from encrypted and compressed clustered tables

• Invisible column

• Distributed transactions. In Oracle versions 11.1.0.6 and higher, you can capture these
transactions if you make them non-distributed by using the following command, which
requires the database to be restarted.

alter system set _CLUSTERWIDE_GLOBAL_TRANSACTIONS=FALSE;
• RAC distributed XA and PDML distributed transactions

• Version enabled-tables

Also see Non-supported Objects and Operations in Oracle DML.

Appendix G
Details of Support for Objects and Operations in Oracle DML

G-3

Details of Support for Objects and Operations in Oracle DDL
(Classic)

This topic outlines the Oracle objects and operation types that Oracle GoldenGate
supports for the capture and replication of DDL operations.

Trigger-based capture is required for Oracle releases that are earlier than version
11.2.0.4. If Extract will run in integrated mode against a version 11.2.0.4 or later of
Oracle Database, then the DDL trigger and supporting objects are not required.

Appendix G
Details of Support for Objects and Operations in Oracle DDL (Classic)

G-4

H
Configuring Capture in Classic Mode

This chapter contains instructions for configuring the Oracle GoldenGate capture process in
classic mode.

Note:

To switch an active Extract configuration from integrated to classic mode, perform
these configuration steps and then see Administering Oracle GoldenGate.

Topics:

• Prerequisites for Configuring Classic Capture
You must adhere to the guidelines in this topic before configuring an Extract in classic
mode.

• What to Expect from these Instructions
These instructions show you how to configure a basic Extract parameter (configuration)
file for the primary Extract, which captures transaction data from the data source, and for
a data-pump Extract, which propagates captured data that is stored locally in a trail
from the source system to the target system.

• Configuring the Primary Extract in Classic Capture Mode
You can set up a classic Extract process for intial loading of source data and replicating it.

• Configuring the Data Pump Extract
These steps configure the data pump that reads the local trail and sends the data across
the network to a remote trail. The data pump is optional, but recommended.

• Next Steps
A parameter file is a plain text file that is read by an associated Oracle GoldenGate
process to control the product functionality.

Prerequisites for Configuring Classic Capture
You must adhere to the guidelines in this topic before configuring an Extract in classic mode.

The guidelines for configuring Extract in classic mode are:

1. Preparing the Database for Oracle GoldenGate.

2. Establishing Oracle GoldenGate Credentials.

3. Choosing Capture and Apply Modes.

4. Create the Oracle GoldenGate instance on the source system by configuring the
Manager process. See Administering Oracle GoldenGate.

5. Additionally, review the guidelines in Administering Oracle GoldenGate.

H-1

What to Expect from these Instructions
These instructions show you how to configure a basic Extract parameter
(configuration) file for the primary Extract, which captures transaction data from the
data source, and for a data-pump Extract, which propagates captured data that is
stored locally in a trail from the source system to the target system.

Your business requirements probably will require a more complex topology, but this
procedure forms a basis for the rest of your configuration steps.

By performing these steps, you can:

• get the basic configuration files established.

• build upon them later by adding more parameters as you make decisions about
features or requirements that apply to your environment.

• use copies of them to make the creation of additional parameter files faster than
starting from scratch.

Note:

These instructions do not configure Oracle GoldenGate to perform DDL
capture or replication. To support DDL, create the parameter files and then
see the following chapters:

Installing Trigger-Based DDL Capture

Configuring DDL Support

Configuring the Primary Extract in Classic Capture Mode
You can set up a classic Extract process for intial loading of source data and
replicating it.

These steps configure Extract to capture transaction data in classic mode.

1. In GGSCI on the source system, create the Extract parameter file.

EDIT PARAMS name

Where: name is the name of the primary Extract.

2. Enter the Extract parameters in the order shown, starting a new line for each
parameter statement.

Basic parameters for the primary Extract in classic capture mode

EXTRACT finance
USERIDALIAS tiger1
LOGALLSUPCOLS
ENCRYPTTRAIL AES192
EXTTRAIL /ggs/dirdat/lt
SEQUENCE hr.employees_seq;
TABLE hr.*;

Appendix H
What to Expect from these Instructions

H-2

Parameter Description

EXTRACT group group is the name of the Extract group. For more information, see Reference
for Oracle GoldenGate.

USERIDALIAS alias Specifies the alias of the database login credential of the user that is
assigned to Extract. This credential must exist in the Oracle GoldenGate
credential store, see Establishing Oracle GoldenGate Credentials.

LOGALLSUPCOLS Writes all supplementally logged columns to the trail, including those
required for conflict detection and resolution and the scheduling columns
required to support integrated Replicat. (Scheduling columns are primary
key, unique index, and foreign key columns.) You configure the database to
log these columns with GGSCI commands. See Configuring Logging
Properties.

UPDATERECORDFORMAT COMPACT Combines the before and after images of an UPDATE operation into a single
record in the trail. This parameter is valid for Oracle Databases version 12c
and later to support Replicat in integrated mode. Although not a required
parameter, UPDATERECORDFORMAT COMPACT is a best practice and
significantly improves Replicat performance. See Reference for Oracle
GoldenGate for more information.

ENCRYPTTRAIL algorithm Encrypts the local trail.

EXTTRAIL pathname Specifies the path name of the local trail to which the primary Extract writes
captured data. For more information, see Reference for Oracle GoldenGate

{TABLE | SEQUENCE}
schema.object;

Specifies the database object for which to capture data.

• TABLE specifies a table or a wildcarded set of tables.

• SEQUENCE specifies a sequence or a wildcarded set of sequences.

• schema is the schema name or a wildcarded set of schemas.

• object is the table or sequence name, or a wildcarded set of those
objects.

See Administering Oracle GoldenGate for information about how to specify
object names with and without wildcards.

Terminate the parameter statement with a semi-colon.

To exclude tables from a wildcard specification, use the TABLEEXCLUDE
parameter. See Reference for Oracle GoldenGate for more information about
usage and syntax.

For more information and for additional TABLE options that control data
filtering, mapping, and manipulation, see Reference for Oracle GoldenGate.

3. Enter any optional Extract parameters that are recommended for your configuration. You
can edit this file at any point before starting processing by using the EDIT PARAMS
command in GGSCI. For more information, see the Reference for Oracle GoldenGate.

4. Save and close the file.

Configuring the Data Pump Extract
These steps configure the data pump that reads the local trail and sends the data across the
network to a remote trail. The data pump is optional, but recommended.

The steps to set up the data pump are:

1. In GGSCI on the source system, create the data-pump parameter file.

Appendix H
Configuring the Data Pump Extract

H-3

EDIT PARAMS name

Where: name is the name of the data pump Extract.

2. Enter the data-pump parameters in the order shown, starting a new line for each
parameter statement. Your input variables will be different. See Basic parameters
for the data-pump Extract for descriptions.

Basic parameters for the data-pump Extract group using two-part object
names:

EXTRACT extpump
USERIDALIAS tiger1
RMTHOST fin1, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey2
RMTTRAIL /ggs/dirdat/rt
SEQUENCE hr.employees_seq;
TABLE hr.*;

Basic parameters for the data-pump Extract group using three-part object
names (including a pluggable database):

EXTRACT extpump
USERIDALIAS tiger1
RMTHOST fin1, MGRPORT 7809 ENCRYPT AES192, KEYNAME securekey2
RMTTRAIL /ggs/dirdat/rt
TABLE test.ogg.tab1;
SOURCECATALOG pdb1
SEQUENCE hr.employees_seq;
TABLE hr.*;
SOURCECATALOG pdb2
TABLE sales.*;
TABLE acct.*;

Parameter Description

EXTRACT group group is the name of the data pump Extract. For more information, see Reference for
Oracle GoldenGate.

USERIDALIAS alias Specifies the alias of the database login credential of the user that is assigned to
Extract. This credential must exist in the Oracle GoldenGate credential store, see
Establishing Oracle GoldenGate Credentials.

RMTHOST hostname,
MGRPORT portnumber,
[, ENCRYPT algorithm
KEYNAME keyname]

• RMTHOST specifies the name or IP address of the target system.

• MGRPORT specifies the port number where Manager is running on the target.

• ENCRYPT specifies optional encryption of data across TCP/IP.

For additional options and encryption details, see Reference for Oracle GoldenGate.

RMTTRAIL pathname Specifies the path name of the remote trail. For more information, see Reference for
Oracle GoldenGate.

SOURCECATALOG
container

Use this parameter when the source database is a multitenant container database.
Specifies the name of a pluggable database that is to be used as the default container
for all subsequent TABLE and SEQUENCE parameters that contain two-part names.
This parameter enables you to use two-part object names (schema.object) rather
than three-part names (container.schema.object). It remains in effect until
another SOURCECATALOG parameter is encountered or a full three-part TABLE or
SEQUENCE specification is encountered. Use this parameter when the source
database is a multitenant container database. See Reference for Oracle GoldenGate
for more information about SOURCECATALOG.

Appendix H
Configuring the Data Pump Extract

H-4

Parameter Description

{TABLE | SEQUENCE}
[container.]schema.ob
ject;

Specifies a table or sequence, or multiple objects specified with a wildcard. In most
cases, this listing will be the same as that in the primary Extract parameter file.

• TABLE specifies a table or a wildcarded set of tables.

• SEQUENCE specifies a sequence or a wildcarded set of sequences.

• container is the name of the root container or pluggable database that contains
the table or sequence, if this source database is a multitenant container
database. See the SOURCECATALOG description in this table.

• schema is the schema name or a wildcarded set of schemas.

• object is the name of a table or sequence, or a wildcarded set of those objects.

See Administering Oracle GoldenGate for information about how to specify object
names with and without wildcards.

Terminate this parameter statement with a semi-colon.

To exclude tables or sequences from a wildcard specification, use the TABLEEXCLUDE
or SEQUENCEEXCLUDE parameter after the TABLE statement.

For more information and for additional TABLE options that control data filtering,
mapping, and manipulation, see Reference for Oracle GoldenGate.

3. Enter any optional Extract parameters that are recommended for your configuration. You
can edit this file at any point before starting processing by using the EDIT PARAMS
command in GGSCI. For more information, see the Reference for Oracle GoldenGate
and Optional Parameters for Integrated Modes for additional configuration
considerations..

4. Save and close the file.

Next Steps
A parameter file is a plain text file that is read by an associated Oracle GoldenGate process
to control the product functionality.

Once you have created a basic parameter file for classic capture, see the following for related
configuration steps.

Configuring Oracle GoldenGate Apply

Additional Oracle GoldenGate Configuration Considerations

Additional Configuration Steps for Using Classic Capture

Installing Trigger-Based DDL Capture (to use Oracle GoldenGate DDL support)

Configuring DDL Support (to use Oracle GoldenGate DDL support)

Creating Process Groups

Instantiating Oracle GoldenGate Replication

Supporting Changes to XML Schemas

Appendix H
Next Steps

H-5

I
Additional Configuration Steps for Using
Classic Capture

This chapter contains additional configuration and preparation requirements that are specific
only to Extract when operating in classic capture mode.
These requirements supplement the basic configuration requirements documented in
Configuring Capture in Classic Mode .

Topics:

• Configuring Oracle TDE Data in Classic Capture Mode
This section does not apply to Extract in integrated capture mode.

• Using Classic Capture in an Oracle RAC Environment
The following general guidelines apply to Oracle RAC when Extract is operating in classic
capture mode.

• Mining ASM-stored Logs in Classic Capture Mode
This topic covers additional configuration requirements that apply when Oracle
GoldenGate mines transaction logs that are stored in Oracle Automatic Storage
Management (ASM).

• Ensuring Data Availability for Classic Capture
To ensure the continuity and integrity of capture processing when Extract operates in
classic capture mode, enable archive logging.

• Configuring Classic Capture in Archived Log Only Mode
You can configure Extract to read exclusively from the archived logs. This is known as
Archived Log Only (ALO) mode.

• Configuring Classic Capture in Oracle Active Data Guard Only Mode
You can configure Classic Extract to access both redo data and metadata in real-time to
successfully replicate source database activities using Oracle Active Data Guard. This is
known as Active Data Guard (ADG) mode.

• Avoiding Log-read Bottlenecks in Classic Capture
When Oracle GoldenGate captures data from the redo logs, I/O bottlenecks can occur
because Extract is reading the same files that are being written by the database logging
mechanism.

Configuring Oracle TDE Data in Classic Capture Mode
This section does not apply to Extract in integrated capture mode.

The following special configuration steps are required to support TDE when Extract is in
classic capture mode.

I-1

Note:

When in integrated mode, Extract leverages the database logging server and
supports TDE column encryption and TDE tablespace encryption without
special setup requirements or parameter settings. For more information
about integrated capture, see Choosing Capture and Apply Modes.

• Overview of TDE Support in Classic Capture Mode

• Requirements for Capturing TDE in Classic Capture Mode

• Required Database Patches for TDE Support

• Configuring Classic Capture for TDE Support

• Recommendations for Maintaining Data Security after Decryption

• Performing DDL while TDE Capture is Active

• Rekeying after a Database Upgrade

• Updating the Oracle Shared Secret in the Parameter File

Overview of TDE Support in Classic Capture Mode
TDE support when Extract is in classic capture mode requires the exchange of two
kinds of keys:

• The encrypted key can be a table key (column-level encryption), an encrypted
redo log key (tablespace-level encryption), or both. This key is shared between the
Oracle Database and Extract.

• The decryption key is named ORACLEGG and its password is known as the shared
secret. This key is stored securely in the Oracle and Oracle GoldenGate domains.
Only a party that has possession of the shared secret can decrypt the table and
redo log keys.

The encrypted keys are delivered to the Extract process by means of built-in PL/SQL
code. Extract uses the shared secret to decrypt the data. Extract never handles the
wallet master key itself, nor is it aware of the master key password. Those remain
within the Oracle Database security framework.

Extract never writes the decrypted data to any file other than a trail file, not even a
discard file (specified with the DISCARDFILE parameter). The word "ENCRYPTED" will be
written to any discard file that is in use.

The impact of this feature on Oracle GoldenGate performance should mirror that of the
impact of decryption on database performance. Other than a slight increase in Extract
startup time, there should be a minimal affect on performance from replicating TDE
data.

Requirements for Capturing TDE in Classic Capture Mode
The following are requirements for Extract to support TDE capture:

• To maintain high security standards, the Oracle GoldenGate Extract process
should run as part of the oracle user (the user that runs the Oracle Database).

Appendix I
Configuring Oracle TDE Data in Classic Capture Mode

I-2

That way, the keys are protected in memory by the same privileges as the oracle user.

• The Extract process must run on the same machine as the database installation.

• Even if using TDE with a Hardware Security Module, you must use a software wallet.
Instructions are provided in Oracle Security Officer Tasks in the configuration steps for
moving from an HSM-only to an HSM-plus-wallet configuration and configuring the
sqlnet.ora file correctly.

• Whenever the source database is upgraded, you must rekey the master key.

Required Database Patches for TDE Support
To support TDE on Oracle 11.2.0.2, refer to article 1557031.1 on the My Oracle Support
website (https://support.oracle.com).

Configuring Classic Capture for TDE Support
The following outlines the steps that the Oracle Security Officer and the Oracle GoldenGate
Administrator take to establish communication between the Oracle server and the Extract
process.

• Agree on a Shared Secret that Meets Oracle Standards

• Oracle DBA Tasks

• Oracle Security Officer Tasks

• Oracle GoldenGate Administrator Tasks

Agree on a Shared Secret that Meets Oracle Standards
Agree on a shared secret password that meets or exceeds Oracle password standards. This
password must not be known by anyone else. For guidelines on creating secure passwords,
see Oracle Database Security Guide.

Oracle DBA Tasks
1. Log in to SQL*Plus as a user with the SYSDBA system privilege. For example:

sqlplus sys/as sysdba
Connected.
Enter password: password

2. Run the prvtclkm.plb file that is installed in the Oracle admin directory. The
prvtclkm.plb file creates the DBMS_INTERNAL_CLKM PL/SQL package, which enables
Oracle GoldenGate to extract encrypted data from an Oracle Database.

@?/app/oracle/product/orcl111/rdbms/admin/prvtclkm.plb
3. Grant EXEC privilege on DBMS_INTERNAL_CLKM PL/SQL package to the Extract database

user.

GRANT EXECUTE ON DBMS_INTERNAL_CLKM TO psmith;
4. Exit SQL*Plus.

Appendix I
Configuring Oracle TDE Data in Classic Capture Mode

I-3

https://support.oracle.com

Oracle Security Officer Tasks
1. Oracle GoldenGate requires the use of a software wallet even with HSM. If you

are currently using HSM-only mode, move to HSM-plus-wallet mode by taking the
following steps:

a. Change the sqlnet.ora file configuration as shown in the following example,
where the wallet directory can be any location on disk that is accessible (rwx)
by the owner of the Oracle Database. This example shows a best-practice
location, where my_db is the $ORACLE_SID.

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=(METHOD=HSM)(METHOD_DATA=
 (DIRECTORY=/etc/oracle/wallets/my_db)))

b. Log in to orapki (or Wallet Manager) as the owner of the Oracle Database,
and create an auto-login wallet in the location that you specified in the
sqlnet.ora file. When prompted for the wallet password, specify the same
password as the HSM password (or HSM Connect String). These two
passwords must be identical.

cd /etc/oracle/wallets/my_db
orapki wallet create -wallet . -auto_login[_local]

Note:

The Oracle Database owner must have full operating system
privileges on the wallet.

c. Add the following entry to the empty wallet to enable an 'auto-open' HSM:

mkstore -wrl . -createEntry ORACLE.TDE.HSM.AUTOLOGIN non-empty-string
2. Create an entry named ORACLEGG in the wallet. ORACLEGG must be the name of

this key. The password for this key must be the agreed-upon shared secret, but
do not enter this password on the command line. Instead, wait to be prompted.

mkstore -wrl ./ -createEntry ORACLE.SECURITY.CL.ENCRYPTION.ORACLEGG
Oracle Secret Store Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
Your secret/Password is missing in the command line
Enter your secret/Password: sharedsecret
Re-enter your secret/Password: sharedsecret
Enter wallet password: hsm/wallet_password

3. Verify the ORACLEGG entry.

mkstore -wrl . -list
Oracle Secret Store Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
Enter wallet password: hsm/wallet_password
Oracle Secret Store entries:
ORACLE.SECURITY.CL.ENCRYPTION.ORACLEGG

4. Log in to SQL*Plus as a user with the SYSDBA system privilege.

5. Close and then re-open the wallet.

Appendix I
Configuring Oracle TDE Data in Classic Capture Mode

I-4

SQL> alter system set encryption wallet close identified by "hsm/wallet_password";
System altered.
SQL> alter system set encryption wallet open identified by "hsm/wallet_password";
System altered.

This inserts the password into the auto-open wallet, so that no password is required to
access encrypted data with the TDE master encryption key stored in HSM.

6. Switch log files.

alter system switch logfile;
System altered.

7. If this is an Oracle RAC environment and you are using copies of the wallet on each
node, make the copies now and then reopen each wallet.

Note:

Oracle recommends using one wallet in a shared location, with synchronized
access among all Oracle RAC nodes.

Oracle GoldenGate Administrator Tasks
1. Run GGSCI.

2. Issue the ENCRYPT PASSWORD command to encrypt the shared secret so that it is
obfuscated within the Extract parameter file. This is a security requirement.

ENCRYPT PASSWORD sharedsecret {AES128 | AES192 | AES256} ENCRYPTKEY keyname

Where:

• sharedsecret is the clear-text shared secret. This value is case-sensitive.

• {AES128 | AES192 | AES256} specifies Advanced Encryption Standard (AES)
encryption. Specify one of the values, which represents the desired key length.

• keyname is the logical name of the encryption key in the ENCKEYS lookup file. Oracle
GoldenGate uses this key to look up the actual key in the ENCKEYS file. To create a
key and ENCKEYS file, see Administering Oracle GoldenGate.

Example:

ENCRYPT PASSWORD sharedsecret AES256 ENCRYPTKEY mykey1
3. In the Extract parameter file, use the DBOPTIONS parameter with the DECRYPTPASSWORD

option. As input, supply the encrypted shared secret and the decryption key.

DBOPTIONS DECRYPTPASSWORD sharedsecret {AES128 | AES192 | AES256} ENCRYPTKEY
keyname

Where:

• sharedsecret is the encrypted shared secret.

• {AES128 | AES192 | AES256} must be same value that was used for ENCRYPT
PASSWORD.

• keyname is the logical name of the encryption key in the ENCKEYS lookup file.

Appendix I
Configuring Oracle TDE Data in Classic Capture Mode

I-5

Example:

DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAAIALCKDZIRHOJBHOJUH AES256
ENCRYPTKEY mykey1

4. Log in to SQL*Plus as a user with the SYSDBA system privilege.

5. Close and then re-open the wallet.

SQL> alter system set encryption wallet close identified by "hsm/
wallet_password";
System altered.
SQL> alter system set encryption wallet open identified by "hsm/
wallet_password";
System altered.

Recommendations for Maintaining Data Security after Decryption
Extract decrypts the TDE data and writes it to the trail as clear text. To maintain data
security throughout the path to the target database, it is recommended that you also
deploy Oracle GoldenGate security features to:

• encrypt the data in the trails

• encrypt the data in transit across TCP/IP

See ENCRYPTTRAIL | NOENCRYPTTRAIL commands in Reference for Oracle
GoldenGate.

Performing DDL while TDE Capture is Active
If DDL will ever be performed on a table that has column-level encryption, or if table
keys will ever be re-keyed, you must either quiesce the table while the DDL is
performed or enable Oracle GoldenGate DDL support. It is more practical to have the
DDL environment active so that it is ready, because a re-key usually is a response to a
security violation and must be performed immediately. To install the Oracle
GoldenGate DDL environment, see Installing Trigger-Based DDL Capture. To
configure Oracle GoldenGate DDL support, see Configuring DDL Support . For
tablespace-level encryption, the Oracle GoldenGate DDL support is not required.

Rekeying after a Database Upgrade
Whenever the source database is upgraded and Oracle GoldenGate is capturing TDE
data, you must rekey the master key, and then restart the database and Extract. The
commands to rekey the master key are:

alter system set encryption key identified by "mykey";

Updating the Oracle Shared Secret in the Parameter File
Use this procedure to update and encrypt the TDE shared secret within the Extract
parameter file.

1. Run GGSCI.

2. Stop the Extract process.

STOP EXTRACT group

Appendix I
Configuring Oracle TDE Data in Classic Capture Mode

I-6

3. Modify the ORACLEGG entry in the Oracle wallet. ORACLEGG must remain the name of the
key. For instructions, see Oracle Database Advanced Security Guide.

4. Issue the ENCRYPT PASSWORD command to encrypt the new shared secret.

ENCRYPT PASSWORD sharedsecret {AES128 | AES192 | AES256} ENCRYPTKEY keyname

Where:

• sharedsecret is the clear-text shared secret. This value is case-sensitive.

• {AES128 | AES192 | AES256} specifies Advanced Encryption Standard (AES)
encryption. Specify one of the values, which represents the desired key length.

• keyname is the logical name of the encryption key in the ENCKEYS lookup file.

Example:

ENCRYPT PASSWORD sharedsecret AES256 ENCRYPTKEY mykey1
5. In the Extract parameter file, use the DBOPTIONS parameter with the DECRYPTPASSWORD

option. As input, supply the encrypted shared secret and the Oracle GoldenGate-
generated or user-defined decryption key.

DBOPTIONS DECRYPTPASSWORD sharedsecret {AES128 | AES192 | AES256} ENCRYPTKEY
keyname

Where:

• sharedsecret is the encrypted shared secret.

• {AES128 | AES192 | AES256} must be same value that was used for ENCRYPT
PASSWORD.

• keyname is the logical name of the encryption key in the ENCKEYS lookup file.

Example:

DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAAIALCKDZIRHOJBHOJUH AES256 ENCRYPTKEY
mykey1

6. Log in to SQL*Plus as a user with the SYSDBA system privilege.

7. Close and then re-open the wallet.

SQL> alter system set encryption wallet close identified by "hsm/wallet_password";
System altered.
SQL> alter system set encryption wallet open identified by "hsm/wallet_password";
System altered.

8. Start Extract.

START EXTRACT group

Using Classic Capture in an Oracle RAC Environment
The following general guidelines apply to Oracle RAC when Extract is operating in classic
capture mode.

• During operations, if the primary database instance against which Oracle GoldenGate is
running stops or fails for any reason, Extract abends. To resume processing, you can
restart the instance or mount the Oracle GoldenGate binaries to another node where the
database is running and then restart the Oracle GoldenGate processes. Stop the

Appendix I
Using Classic Capture in an Oracle RAC Environment

I-7

Manager process on the original node before starting Oracle GoldenGate
processes from another node.

• Whenever the number of redo threads changes, the Extract group must be
dropped and re-created. For the recommended procedure, see Administering
Oracle GoldenGate.

• Extract ensures that transactions are written to the trail file in commit order,
regardless of the RAC instance where the transaction originated. When Extract is
capturing in archived-log-only mode, where one or more RAC instances may be
idle, you may need to perform archive log switching on the idle nodes to ensure
that operations from the active instances are recorded in the trail file in a timely
manner. You can instruct the Oracle RDBMS to do this log archiving automatically
at a preset interval by setting the archive_lag_target parameter. For example, to
ensure that logs are archived every fifteen minutes, regardless of activity, you can
issue the following command in all instances of the RAC system:

SQL> alter system set archive_lag_target 900
• To process the last transaction in a RAC cluster before shutting down Extract,

insert a dummy record into a source table that Oracle GoldenGate is replicating,
and then switch log files on all nodes. This updates the Extract checkpoint and
confirms that all available archive logs can be read. It also confirms that all
transactions in those archive logs are captured and written to the trail in the correct
order.

The following table shows some Oracle GoldenGate parameters that are of specific
benefit in Oracle RAC.

Parameter Description

THREADOPTIONS parameter with the
INQUEUESIZE and OUTQUEUESIZE
options

Sets the amount of data that Extract queues in memory before sending it to
the target system. Tuning these parameters might increase Extract
performance on Oracle RAC.

TRANLOGOPTIONS parameter with the
PURGEORPHANEDTRANSACTIONS |
NOPURGEORPHANEDTRANSACTIONS
and TRANSCLEANUPFREQUENCY
options

Controls how Extract handles orphaned transactions, which can occur
when a node fails during a transaction and Extract cannot capture the
rollback. Although the database performs the rollback on the failover node,
the transaction would otherwise remain in the Extract transaction list
indefinitely and prevent further checkpointing for the Extract thread that
was processing the transaction. By default, Oracle GoldenGate purges
these transactions from its list after they are confirmed as orphaned. This
functionality can also be controlled on demand with the SEND EXTRACT
command in GGSCI.

Mining ASM-stored Logs in Classic Capture Mode
This topic covers additional configuration requirements that apply when Oracle
GoldenGate mines transaction logs that are stored in Oracle Automatic Storage
Management (ASM).

• Accessing the Transaction Logs in ASM

• Ensuring ASM Connectivity

Appendix I
Mining ASM-stored Logs in Classic Capture Mode

I-8

Accessing the Transaction Logs in ASM
Extract must be configured to read logs that are stored in ASM. Depending on the database
version, the following options are available:

• Reading Transaction Logs Through the RDBMS

• ASM Direct Connection

Reading Transaction Logs Through the RDBMS
Use the TRANLOGOPTIONS parameter with the DBLOGREADER option in the Extract parameter file
if the RDBMS is Oracle 11.1.0.7 or Oracle 11.2.0.2 or later 11g R2 versions.

An API is available in those releases (but not in Oracle 11g R1 versions) that uses the
database server to access the redo and archive logs. When used, this API enables Extract to
use a read buffer size of up to 4 MB in size. A larger buffer may improve the performance of
Extract when redo rate is high. You can use the DBLOGREADERBUFSIZE option of
TRANLOGOPTIONS to specify a buffer size.

Note:

DBLOGREADER also can be used when the redo and archive logs are on regular disk
or on a raw device.

When using DBLOGREADER and using Oracle Data Vault, grant the
DV_GOLDENGATE_REDO_ACCESS Role to the Extract database user in addition to the privileges
that are listed in Establishing Oracle GoldenGate Credentials.

ASM Direct Connection
If the RDBMS version is not one of those listed in Reading Transaction Logs Through the
RDBMS, do the following:

1. Create a user for the Extract process to access the ASM instance directly. Assign this
user SYS or SYSDBA privileges in the ASM instance. Oracle GoldenGate does not support
using operating-system authentication for the ASM user.

ASM password configuration1 Permitted user

ASM instance and the database share a
password file

You can use the Oracle GoldenGate source
database user if you grant that user SYSDBA, or
you can use any other database user that has
SYSDBA privileges.

ASM instance and the source database have
separate password files

You can overwrite the ASM password file with
the source database password file,
understanding that this procedure changes the
SYS password in the ASM instance to the value
that is contained in the database password file,
and it also grants ASM access to the other
users in the database password file. Save a
copy of the ASM file before overwriting it.

Appendix I
Mining ASM-stored Logs in Classic Capture Mode

I-9

1 To view how the current ASM password file is configured, log on to the ASM instance and issue the
following command in SQL*Plus: SQL> SELECT name, value FROM v$parameter WHERE
name = 'remote_login_passwordfile';

2. Add the ASM user credentials to the Oracle GoldenGate credential store by
issuing the ALTER CREDENTIALSTORE command. See Reference for Oracle
GoldenGate for usage instructions and syntax.

3. Specify the ASM login alias in the Extract parameter file by including the
TRANLOGOPTIONS parameter with the ASMUSERALIAS option. For more information
about TRANLOGOPTIONS, see Reference for Oracle GoldenGate.

Ensuring ASM Connectivity
To ensure that the Oracle GoldenGate Extract process can connect to an ASM
instance, list the ASM instance in the tnsnames.ora file. The recommended method for
connecting to an ASM instance when Oracle GoldenGate is running on the database
host machine is to use a bequeath (BEQ) protocol. The BEQ protocol does not require
a listener. If you prefer to use the TCP/IP protocol, verify that the Oracle listener is
listening for new connections to the ASM instance. The listener.ora file must contain
an entry similar to the following.

SID_LIST_LISTENER_ASM =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = ASM)
 (ORACLE_HOME = /u01/app/grid)
 (SID_NAME = +ASM1)
)
)

Note:

A BEQ connection does not work when using a remote Extract configuration.
Use TNSNAMES with the TCP/IP protocol.

Ensuring Data Availability for Classic Capture
To ensure the continuity and integrity of capture processing when Extract operates in
classic capture mode, enable archive logging.

The archive logs provide a secondary data source should the online logs recycle
before Extract is finished with them. The archive logs for open transactions must be
retained on the system in case Extract needs to recapture data from them to perform a
recovery.

Appendix I
Ensuring Data Availability for Classic Capture

I-10

WARNING:

If you cannot enable archive logging, there is a high risk that you will need to
completely resynchronize the source and target objects and reinstantiate replication
should there be a failure that causes an Extract outage while transactions are still
active. If you must operate this way, configure the online logs according to the
following guidelines to retain enough data for Extract to capture what it needs
before the online logs recycle. Allow for Extract backlogs caused by network
outages and other external factors, as well as long-running transactions.

In a RAC configuration, Extract must have access to the online and archived logs for all
nodes in the cluster, including the one where Oracle GoldenGate is installed.

• Log Retention Requirements per Extract Recovery Mode

• Log Retention Options

• Determining How Much Data to Retain

• Purging Log Archives

• Specifying the Archive Location

• Mounting Logs that are Stored on Other Platforms

Log Retention Requirements per Extract Recovery Mode
The following summarizes the different recovery modes that Extract might use and their log-
retention requirements:

• By default, the Bounded Recovery mode is in effect, and Extract requires access to the
logs only as far back as twice the Bounded Recovery interval that is set with the BR
parameter. This interval is an integral multiple of the standard Extract checkpoint interval,
as controlled by the CHECKPOINTSECS parameter. These two parameters control the
Oracle GoldenGate Bounded Recovery feature, which ensures that Extract can recover
in-memory captured data after a failure, no matter how old the oldest open transaction
was at the time of failure. For more information about Bounded Recovery, see Reference
for Oracle GoldenGate.

• In the unlikely event that the Bounded Recovery mechanism fails when Extract attempts
a recovery, Extract reverts to normal recovery mode and must have access to the
archived log that contains the beginning of the oldest open transaction in memory at the
time of failure and all logs thereafter.

Log Retention Options
Depending on the version of Oracle, there are different options for ensuring that the required
logs are retained on the system.

• All Other Oracle Versions

Appendix I
Ensuring Data Availability for Classic Capture

I-11

All Other Oracle Versions
For versions of Oracle other than Enterprise Edition, you must manage the log
retention process with your preferred administrative tools. Follow the directions in
Determining How Much Data to Retain.

Determining How Much Data to Retain
When managing log retention, try to ensure rapid access to the logs that Extract would
require to perform a normal recovery (not a Bounded Recovery). See Log Retention
Requirements per Extract Recovery Mode. If you must move the archives off the
database system, the TRANLOGOPTIONS parameter provides a way to specify an
alternate location. See Specifying the Archive Location.

The recommended retention period is at least 24 hours worth of transaction data,
including both online and archived logs. To determine the oldest log that Extract might
need at any given point, issue the SEND EXTRACT command with the SHOWTRANS option.
You might need to do some testing to determine the best retention time given your
data volume and business requirements.

If data that Extract needs during processing was not retained, either in online or
archived logs, one of the following corrective actions might be required:

• Alter Extract to capture from a later point in time for which log data is available
(and accept possible data loss on the target).

• Resynchronize the source and target data, and then start the Oracle GoldenGate
environment over again.

Purging Log Archives
Make certain not to use backup or archive options that cause old archive files to be
overwritten by new backups. Ideally, new backups should be separate files with
different names from older ones. This ensures that if Extract looks for a particular log,
it will still exist, and it also ensures that the data is available in case it is needed for a
support case.

Specifying the Archive Location
If the archived logs reside somewhere other than the Oracle default directory, specify
that directory with the ALTARCHIVELOGDEST option of the TRANLOGOPTIONS parameter in
the Extract parameter file.

You might also need to use the ALTARCHIVEDLOGFORMAT option of TRANLOGOPTIONS if the
format that is specified with the Oracle parameter LOG_ARCHIVE_FORMAT contains sub-
directories. ALTARCHIVEDLOGFORMAT specifies an alternate format that removes the sub-
directory from the path. For example, %T/log_%t_%s_%r.arc would be changed to
log_%t_%s_%r.arc. As an alternative to using ALTARCHIVEDLOGFORMAT, you can create
the sub-directory manually, and then move the log files to it.

Appendix I
Ensuring Data Availability for Classic Capture

I-12

Mounting Logs that are Stored on Other Platforms
If the online and archived redo logs are stored on a different platform from the one that
Extract is built for, do the following:

• NFS-mount the archive files.

• Map the file structure to the structure of the source system by using the LOGSOURCE and
PATHMAP options of the Extract parameter TRANLOGOPTIONS.

Configuring Classic Capture in Archived Log Only Mode
You can configure Extract to read exclusively from the archived logs. This is known as
Archived Log Only (ALO) mode.

In this mode, Extract reads exclusively from archived logs that are stored in a specified
location. ALO mode enables Extract to use production logs that are shipped to a secondary
database (such as a standby) as the data source. The online logs are not used at all. Oracle
GoldenGate connects to the secondary database to get metadata and other required data as
needed. As an alternative, ALO mode is supported on the production system.

Note:

ALO mode is not compatible with Extract operating in integrated capture mode.

• Limitations and Requirements for Using ALO Mode

• Configuring Extract for ALO mode

Limitations and Requirements for Using ALO Mode
Observe the following limitations and requirements when using Extract in ALO mode.

• Log resets (RESETLOG) cannot be done on the source database after the standby
database is created.

• ALO cannot be used on a standby database if the production system is Oracle RAC and
the standby database is non-RAC. In addition to both systems being Oracle RAC, the
number of nodes on each system must be identical.

• ALO on Oracle RAC requires a dedicated connection to the source server. If that
connection is lost, Oracle GoldenGate processing will stop.

• It is a best practice to use separate archive log directories when using Oracle
GoldenGate for Oracle RAC in ALO mode. This will avoid any possibility of the same file
name showing up twice, which could result in Extract returning an "out of order scn" error.

• The LOGRETENTION parameter defaults to DISABLED when Extract is in ALO mode. You
can override this with a specific LOGRETENTION setting, if needed.

Appendix I
Configuring Classic Capture in Archived Log Only Mode

I-13

Configuring Extract for ALO mode
To configure Extract for ALO mode, follow these steps as part of the overall process
for configuring Oracle GoldenGate, as documented in Configuring Capture in Classic
Mode .

1. Enable supplemental logging at the table level and the database level for the
tables in the source database. (See Configuring Logging Properties .)

2. When Oracle GoldenGate is running on a different server from the source
database, make certain that SQL*Net is configured properly to connect to a
remote server, such as providing the correct entries in a TNSNAMES file. Extract
must have permission to maintain a SQL*Net connection to the source database.

3. Use a SQL*Net connect string for the name of the user in the credential store that
is assigned to the process. Specify the alias of this user in the following:

• The USERIDALIAS parameter in the parameter file of every Oracle GoldenGate
process that connects to that database.

• The USERIDALIAS portion of the DBLOGIN command in GGSCI.

Note:

If you have a standby server that is local to the server that Oracle
GoldenGate is running on, you do not need to use a connect string for
the user specified in USERIDALIAS. You can just supply the user login
name.

See Creating and Populating the Credential Store in Oracle GoldenGate Security
Guide for more information about using a credential store.

4. Use the Extract parameter TRANLOGOPTIONS with the ARCHIVEDLOGONLY option. This
option forces Extract to operate in ALO mode against a primary or logical standby
database, as determined by a value of PRIMARY or LOGICAL STANDBY in the db_role
column of the v$database view. The default is to read the online logs.
TRANLOGOPTIONS with ARCHIVEDLOGONLY is not needed if using ALO mode against a
physical standby database, as determined by a value of PHYSICAL STANDBY in the
db_role column of v$database. Extract automatically operates in ALO mode if it
detects that the database is a physical standby.

5. Other TRANLOGOPTIONS options might be required for your environment. For
example, depending on the copy program that you use, you might need to use the
COMPLETEARCHIVEDLOGONLY option to prevent Extract errors.

6. Use the MAP parameter for Extract to map the table names to the source object
IDs..

7. Add the Extract group by issuing the ADD EXTRACT command with a timestamp as
the BEGIN option, or by using ADD EXTRACT with the SEQNO and RBA options. It is
best to give Extract a known start point at which to begin extracting data, rather
than by using the NOW argument. The start time of NOW corresponds to the time of
the current online redo log, but an ALO Extract cannot read the online logs, so it
must wait for that log to be archived when Oracle switches logs. The timing of the

Appendix I
Configuring Classic Capture in Archived Log Only Mode

I-14

switch depends on the size of the redo logs and the volume of database activity, so there
might be a lag between when you start Extract and when data starts being captured. This
can happen in both regular and RAC database configurations.

Configuring Classic Capture in Oracle Active Data Guard Only
Mode

You can configure Classic Extract to access both redo data and metadata in real-time to
successfully replicate source database activities using Oracle Active Data Guard. This is
known as Active Data Guard (ADG) mode.

ADG mode enables Extract to use production logs that are shipped to a standby database as
the data source. The online logs are not used at all. Oracle GoldenGate connects to the
standby database to get metadata and other required data as needed.

This mode is useful in load sensitive environments where ADG is already in place or can be
implemented. It can also be used as cost effective method to implement high availability
using the ADG Broker role planned (switchover) and failover (unplanned) changes. In an
ADG configuration, switchover and failover are considered roles. When either of the
operations occur, it is considered a role change. For more information, see Oracle Data
Guard Concepts and Administration and Oracle Data Guard Broker.

You can configure Integrated Extract to fetch table data and metadata required for the fetch
from an ADG instead of the source database. This is possible because an ADG is a physical
replica of the source database. Fetching from an ADG using the FETCHUSER parameter is
supported by Extract in all configurations except when running as Classic Extract. Classic
Extract already has the ability to connect directly to an ADG and mine its redo logs and fetch
from it using standard connection information supplied using the USERID parameter. The
impact to the source database is minimized because Extract gathers information from the
source database at startup, including compatibility level, database type, and source database
validation checks, when fetching from an ADG.

All previous fetch functionality and parameters are supported.

Note:

Integrated Extract cannot capture from a standby database because it requires
READ and WRITE access to the database, and an ADG standby only provides READ
ONLY access.

• Limitations and Requirements for Using ADG Mode

• Configuring Classic Extract for ADG Mode

• Migrating Classic Extract To and From an ADG Database

• Handling Role Changes In an ADG Configuration

Limitations and Requirements for Using ADG Mode
Observe the following limitations and requirements when using Extract in ADG mode.

Appendix I
Configuring Classic Capture in Oracle Active Data Guard Only Mode

I-15

• Extract in ADG mode will only apply redo data that has been applied to the
standby database by the apply process. If Extract runs ahead of the standby
database, it will wait for the standby database to catch up.

• You must explicitly specify ADG mode in your classic Extract parameter file to run
extract on the standby database.

• You must specify the database user and password to connect to the ADG system
because fetch and other metadata resolution occurs in the database.

• The number of redo threads in the standby logs in the standby database must
match the number of nodes from the primary database.

• No new RAC instance can be added to the primary database after classic Extract
has been created on the standby database. If you do add new instances, the redo
data from the new thread will not be captured by classic Extract.

• Archived logs and standby redo logs accessed from the standby database will be
an exact duplicate of the primary database. The size and the contents will match,
including redo data, transactional data, and supplemental data. This is guaranteed
by a properly configured ADG deployment.

• ADG role changes are infrequent and require user intervention in both cases.

• With a switchover, there will be an indicator in the redo log file header (end of the
redo log or EOR marker) to indicate end of log stream so that classic Extract on
the standby can complete the RAC coordination successfully and ship all of the
committed transactions to the trail file.

• With a failover, a new incarnation is created on both the primary and the standby
databases with a new incarnation ID, RESETLOG sequence number, and SCN value.

• You must connect to the primary database from GGSCI to add TRANDATA or
SCHEMATRANDATA because this is done on the primary database.

• DDL triggers cannot be used on the standby database, in order to support DDL
replication (except ADDTRANDATA). You must install the Oracle GoldenGate DDL
package on the primary database.

• DDL ADDTRANDATA is not supported in ADG mode; you must use
ADDSCHEMATRANDATA for DDL replication.

• When adding extract on the standby database, you must specify the starting
position using a specific SCN value, timestamp, or log position. Relative
timestamp values, such as NOW, become ambiguous and may lead to data
inconsistency.

• When adding extract on the standby database, you must specify the number of
threads that will include all of the relevant threads from the primary database.

• During or after failover or switchover, no thread can be added or dropped from
either primary or standby databases.

• Classic Extract will only use one intervening RESETLOG operation.

• If you do not want to relocate your Oracle GoldenGate installation, then you must
position it in a shared space where the Oracle GoldenGate installation directory
can be accessed from both the primary and standby databases.

• If you are moving capture off of an ADG standby database to a primary database,
then you must point your net alias to the primary database and you must remove
the TRANLOG options.

Appendix I
Configuring Classic Capture in Oracle Active Data Guard Only Mode

I-16

• Only Oracle Database releases that are running with compatibility setting of 10.2 or
higher (10g Release 2) are supported.

• Classic Extract does not support the DBLOGREADER option. Use ASMUSER (there is
approximately a 20gb/hr read limit) or move the online and archive logs outside of the
Application Security Manager (ASM) on both the primary and the standby databases.

Note:

The combination of MINEFROMACTIVEDG and DBLOGREADER options is not
supported with Classic Extract. However, the Extract process will start without
any warning or error even though this combination is used. Ensure that you do
not use this combination while using classic Extract with ADG.

Configuring Classic Extract for ADG Mode
To configure Classic Extract for ADG mode, follow these steps as part of the overall process
for configuring Oracle GoldenGate, as documented in Configuring Capture in Classic Mode.

1. Enable supplemental logging at the table level and the database level for the tables in the
primary database using the ADD SCHEMATRANDATA parameter. If necessary, create a DDL
capture.)

2. When Oracle GoldenGate is running on a different server from the source database,
make certain that SQL*Net is configured properly to connect to a remote server, such as
providing the correct entries in a TNSNAMES file. Extract must have permission to maintain
a SQL*Net connection to the source database.

3. On the standby database, use the Extract parameter TRANLOGOPTIONS with the
MINEFROMACTIVEDG option. This option forces Extract to operate in ADG mode against a
standby database, as determined by a value of PRIMARY or LOGICAL STANDBY in the
db_role column of the v$database view.

Other TRANLOGOPTIONS options might be required for your environment. For example,
depending on the copy program that you use, you might need to use the
COMPLETEARCHIVEDLOGONLY option to prevent Extract errors.

4. On the standby database, add the Extract group by issuing the ADD EXTRACT command
specifying the number of threads active on the primary database at the given SCN. The
timing of the switch depends on the size of the redo logs and the volume of database
activity, so there might be a limited lag between when you start Extract and when data
starts being captured. This can happen in both regular and RAC database configurations.

Migrating Classic Extract To and From an ADG Database
You must have your parameter files, checkpoint files, bounded recovery files, and trail files
stored in shared storage or copied to the ADG database before attempting to migrate a
classic Extract to or from an ADG database. Additionally, you must ensure that there has not
been any intervening role change or Extract will mine the same branch of redo.

Use the following steps to move to an ADG database:

1. Edit the parameter file ext1.prm to add the following parameters:

DBLOGIN USERID userid@ADG PASSWORD password
TRANLOGOPTIONS MINEFROMACTIVEDG

Appendix I
Configuring Classic Capture in Oracle Active Data Guard Only Mode

I-17

2. Start Extract by issuing the START EXTRACT ext1 command.

Use the following steps to move from an ADG database:

1. Edit the parameter file ext1.prm to remove the following parameters:

DBLOGIN USERID userid@ADG PASSWORD password
TRANLOGOPTIONS MINEFROMACTIVEDG

2. Start Extract by issuing the START EXTRACT ext1 command.

Handling Role Changes In an ADG Configuration
In a role change involving a standby database, all sessions in the primary and the
standby database are first disconnected including the connections used by Extract.
Then both databases are shut down, then the original primary is mounted as a standby
database, and the original standby is opened as the primary database.

The procedure for a role change is determined by the initial deployment of Classic
Extract and the deployment relation that you want, database or role. The following
table outlines the four possible role changes and is predicated on an ADG
configuration comprised of two databases, prisys and stansys. The prisys system
contains the primary database and the stansys system contains the standby
database; prisys has two redo threads active, whereas stansys has four redo threads
active.

Initial Deployment Primary (prisys) Initial Deployment ADG (stansys)

Original Deployment:

ext1.prm
DBLOGIN USERID userid@prisys, PASSWORD
password

ext1.prm
DBLOGIN USERID userid@stansys,
PASSWORD password
TRANLOGOPTIONS MINEFROMACTIVEDG

Database Related:

Appendix I
Configuring Classic Capture in Oracle Active Data Guard Only Mode

I-18

Initial Deployment Primary (prisys) Initial Deployment ADG (stansys)

After Role Transition: Classic Extract to ADG

1. Edit the ext1.prm file to add:

TRANLOGOPTIONS MINEFROMACTIVEDG
DBLOGREADER option cannot be used in
ADG mode. If DBLOGREADER option
exists, remove it. If using ASM, add the
ASMUSER parameter to connect to the
ASM instance.

2. If a failover, add TRANLOGOPTIONS
USEPREVRESETLOGSID.

3. Start Extract:

START EXTRACT ext1
Extract will abend once it reaches the role
transition point, then it does an internal
BR_RESET and moves both the I/O
checkpoint and current checkpoint to
SCN s.

4. If failover, edit the parameter file again
and remove:

TRANLOGOPTIONS
USEPREVRESETLOGSID

5. Execute ALTER EXTRACT ext1 SCN #,
where # is the SCN value from role
switch message.

6. Based on the thread counts, do one of the
following:

If the thread counts are same between
the databases, then execute the START
EXTRACT ext1; command.

or

If thread counts are different between the
databases, then execute the following
commands:

DROP EXTRACT ext1
ADD EXTRACT ext1 THREADS t BEGIN
SCN s
START EXTRACT ext1

After Role Transition: ADG to classic Extract

1. Edit ext1.prm and remove:

TRANLOGOPTIONS MINEFROMACTIVEDG
2. If a failover, add TRANLOGOPTIONS

USEPREVRESETLOGSID.

3. Start Extract:

START EXTRACT ext1
Extract will abend once it reaches the role
transition point, then it does an internal
BR_RESET and moves both the I/O
checkpoint and current checkpoint to SCN
s.

4. If failover, edit the parameter file again and
remove:

TRANLOGOPTIONS USEPREVRESETLOGSID
5. Execute ALTER EXTRACT ext1 SCN #,

where # is the SCN value from role switch
message.

6. Based on the thread counts, do one of the
following:

If the thread counts are same between the
databases, then execute the START
EXTRACT ext1; command.

or

If thread counts are different between the
databases, then execute the following
commands:

DROP EXTRACT ext1
ADD EXTRACT ext1 THREADS t BEGIN
SCN s
START EXTRACT ext1

Role Related:

Appendix I
Configuring Classic Capture in Oracle Active Data Guard Only Mode

I-19

Initial Deployment Primary (prisys) Initial Deployment ADG (stansys)

After Role Transition: Classic Extract to classic
Extract

1. Edit ext1.prm to change the database
system to the standby system:

DBLOGIN USERID userid@stansys,
PASSWORD password

2. If a failover, add TRANLOGOPTIONS
USEPREVRESETLOGSID.

3. Start Extract:

START EXTRACT ext1
Extract will abend once it reaches the role
transition point, then it does an internal
BR_RESET and moves both the I/O
checkpoint and current checkpoint to
SCN s.

4. If failover, edit the parameter file again
and remove:

TRANLOGOPTIONS
USEPREVRESETLOGSID

5. Execute ALTER EXTRACT ext1 SCN #,
where# is the SCN value from role switch
message.

6. Based on the thread counts, do one of the
following:

If the thread counts are same between
the databases, then execute the START
EXTRACT ext1; command.

or

If thread counts are different between the
databases, then execute the following
commands:

DROP EXTRACT ext1
ADD EXTRACT ext1 THREADS t BEGIN
SCN s
START EXTRACT ext1

After Role Transition: ADG to ADG

1. Edit ext1.prm to change the database
system to the primary system:

DBLOGIN USERID userid@prisys,
PASSWORD password

2. If a failover, add TRANLOGOPTIONS
USEPREVRESETLOGSID.

3. Start Extract:

START EXTRACT ext1
Extract will abend once it reaches the role
transition point, then it does an internal
BR_RESET and moves both the I/O
checkpoint and current checkpoint to SCN
s.

4. If failover, edit the parameter file again and
remove:

TRANLOGOPTIONS USEPREVRESETLOGSID
5. Execute ALTER EXTRACT ext1 SCN #,

where# is the SCN value from role switch
message.

6. Based on the thread counts, do one of the
following:

If the thread counts are same between the
databases, then execute the START
EXTRACT ext1; command.

or

If thread counts are different between the
databases, then execute the following
commands:

DROP EXTRACT ext1
ADD EXTRACT ext1 THREADS t BEGIN
SCN s
START EXTRACT ext1

Avoiding Log-read Bottlenecks in Classic Capture
When Oracle GoldenGate captures data from the redo logs, I/O bottlenecks can occur
because Extract is reading the same files that are being written by the database
logging mechanism.

Performance degradation increases with the number of Extract processes that read
the same logs. You can:

• Try using faster drives and a faster controller. Both Extract and the database
logging mechanism will be faster on a faster I/O system.

Appendix I
Avoiding Log-read Bottlenecks in Classic Capture

I-20

• Store the logs on RAID 0+1. Avoid RAID 5, which performs checksums on every block
written and is not a good choice for high levels of continuous I/O.

Appendix I
Avoiding Log-read Bottlenecks in Classic Capture

I-21

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Information
	Conventions

	1 Understanding What’s Supported
	Details of Support for Oracle Data Types and Objects
	Non-Supported Oracle Data Types

	Details of Support for Objects and Operations in Oracle DML
	Multitenant Container Database
	Tables, Views, and Materialized Views
	Limitations of Support for Regular Tables
	Limitations of Support for Views
	Limitations of Support for Materialized Views
	Limitations of Support for Clustered Tables

	Sequences and Identity Columns
	Limitations of Support for Sequences

	Non-supported Objects and Operations in Oracle DML

	Details of Support for Objects and Operations in Oracle DDL
	Supported Objects and Operations in Oracle DDL
	Non-supported Objects and Operations in Oracle DDL
	Excluded Objects
	Other Non-supported DDL

	Integrating Oracle GoldenGate into a Cluster
	General Requirements in a Cluster
	Adding Oracle GoldenGate as a Windows Cluster Resource

	2 Preparing the Database for Oracle GoldenGate
	Configuring Connections for Integrated Processes
	Configuring Logging Properties
	Enabling Minimum Database-level Supplemental Logging
	Enabling Schema-level Supplemental Logging
	Enabling Table-level Supplemental Logging

	Enabling Oracle GoldenGate in the Database
	Setting Flashback Query
	Managing Server Resources
	Ensuring Row Uniqueness in Source and Target Tables

	3 Establishing Oracle GoldenGate Credentials
	Assigning Credentials to Oracle GoldenGate
	Oracle GoldenGate Users (Database)
	Granting the Appropriate User Privileges
	Oracle Database Privileges
	About the dbms_goldengate_auth.grant_admin_privilege Package
	Optional Grants for dbms_goldengate_auth.grant_admin_privilege

	Securing the Oracle GoldenGate Credentials

	4 Choosing Capture and Apply Modes
	Overview of Oracle GoldenGate Capture and Apply Processes
	Deciding Which Capture Method to Use
	About Integrated Capture
	Integrated Capture Deployment Options

	About Classic Capture

	Deciding Which Apply Method to Use
	About Parallel Replicat
	About Non-integrated Replicat
	About the Integrated Replicat Mode
	Benefits of Integrated Replicat
	Integrated Replicat Requirements

	Using Different Capture and Apply Modes Together
	Switching to a Different Process Mode

	5 Using Parallel Replicat
	Parallel Replication Architecture
	Basic Parameters for Parallel Replicat
	Creating a Parallel Replicat

	6 Configuring Capture in Integrated Mode
	Prerequisites for Configuring Integrated Capture
	What to Expect from these Instructions
	Configuring the Primary Extract in Integrated Capture Mode
	Configuring the Data Pump Extract
	Next Steps

	7 Configuring Oracle GoldenGate Apply
	Prerequisites for Configuring Replicat
	What to Expect from these Instructions
	Creating a Checkpoint Table
	Adding the Checkpoint Table to the Target Database
	Specifying the Checkpoint Table in the Oracle GoldenGate Configuration
	Disabling Default Asynchronous COMMIT to Checkpoint Table

	Configuring Replicat
	Next Steps

	8 Additional Oracle GoldenGate Configuration Considerations
	Installing Support for Oracle Sequences
	Handling Special Data Types
	Multibyte Character Types
	Oracle Spatial Objects
	TIMESTAMP
	Large Objects (LOB)
	XML
	User Defined Types

	Handling Other Database Properties
	Controlling the Checkpoint Frequency
	Excluding Replicat Transactions
	Advanced Configuration Options for Oracle GoldenGate

	9 Additional Configuration Steps For Using Nonintegrated Replicat
	Disabling Triggers and Referential Cascade Constraints on Target Tables

	10 Configuring DDL Support
	Prerequisites for Configuring DDL
	Support for DDL Capture in Integrated Capture Mode
	Support for DDL Capture in Classic Capture Mode

	Overview of DDL Synchronization
	Limitations of Oracle GoldenGate DDL Support
	DDL Statement Length
	Supported Topologies
	Filtering, Mapping, and Transformation
	Renames
	Interactions Between Fetches from a Table and DDL
	Comments in SQL
	Compilation Errors
	Interval Partitioning
	DML or DDL Performed Inside a DDL Trigger
	LogMiner Data Dictionary Maintenance

	Configuration Guidelines for DDL Support
	Database Privileges
	Parallel Processing
	Object Names
	Data Definitions
	Truncates
	Initial Synchronization
	Data Continuity After CREATE or RENAME

	Understanding DDL Scopes
	Mapped Scope
	Unmapped Scope
	Other Scope

	Correctly Identifying Unqualified Object Names in DDL
	Enabling DDL Support
	Filtering DDL Replication
	Filtering with PL/SQL Code
	Filtering With Built-in Filter Rules
	DDLAUX.addRule() Function Definition
	Parameters for DDLAUX.addRule()
	Valid DDL Components for DDLAUX.addRule()
	Examples of Rule-based Trigger Filtering
	Dropping Filter Rules

	Filtering with the DDL Parameter

	Special Filter Cases
	DDL EXCLUDE ALL
	Implicit DDL

	How Oracle GoldenGate Handles Derived Object Names
	MAP Exists for Base Object, But Not Derived Object
	MAP Exists for Base and Derived Objects
	MAP Exists for Derived Object, But Not Base Object
	New Tables as Derived Objects
	CREATE TABLE AS SELECT
	RENAME and ALTER TABLE RENAME

	Disabling the Mapping of Derived Objects

	Using DDL String Substitution
	Controlling the Propagation of DDL to Support Different Topologies
	Propagating DDL in Active-Active (Bidirectional) Configurations
	Propagating DDL in a Cascading Configuration

	Adding Supplemental Log Groups Automatically
	Removing Comments from Replicated DDL
	Replicating an IDENTIFIED BY Password
	How DDL is Evaluated for Processing
	Viewing DDL Report Information
	Viewing DDL Reporting in Replicat
	Viewing DDL Reporting in Extract
	Statistics in the Process Reports

	Tracing DDL Processing
	Using Tools that Support Trigger-Based DDL Capture
	Tracing the DDL Trigger
	Viewing Metadata in the DDL History Table
	Handling DDL Trigger Errors

	Using Edition-Based Redefinition

	11 Creating Process Groups
	Prerequisites
	Registering Extract with the Mining Database
	Add the Primary Extract
	Add the Local Trail
	Add the Data Pump Extract Group
	Add the Remote Trail
	Add the Replicat Group

	12 Instantiating Oracle GoldenGate Replication
	Overview of the Instantiation Process
	Prerequisites for Instantiation
	Configuring and Adding Change Synchronization Groups
	Disabling DDL Processing
	Adding Collision Handling
	Preparing the Target Tables

	Configuring the Initial Load
	Configuring a Load with an Oracle Data Pump
	Configuring a Direct Bulk Load to SQL*Loader
	Configuring a Load from an Input File to SQL*Loader

	Performing the Target Instantiation
	Performing Instantiation with Oracle Data Pump
	Performing Instantiation with Direct Bulk Load to SQL*Loader
	Performing Instantiation From an Input File to SQL*Loader

	Monitoring and Controlling Processing After the Instantiation
	Verifying Synchronization
	Backing up the Oracle GoldenGate Environment

	13 Managing the DDL Replication Environment
	Disabling DDL Processing Temporarily
	Enabling and Disabling the DDL Trigger
	Maintaining the DDL Marker Table
	Deleting the DDL Marker Table
	Maintaining the DDL History Table
	Deleting the DDL History Table
	Purging the DDL Trace File
	Applying Database Patches and Upgrades when DDL Support is Enabled
	Apply Oracle GoldenGate Patches and Upgrades when DDL support is Enabled
	Restoring an Existing DDL Environment to a Clean State
	Removing the DDL Objects from the System

	14 Automatic Conflict Detection and Resolution
	About Automatic Conflict Detection and Resolution
	Automatic Conflict Detection and Resolution
	Requirements for Automatic Conflict Detection and Resolution
	Latest Timestamp Conflict Detection and Resolution
	Delta Conflict Detection and Resolution
	Column Groups

	Configuring Automatic Conflict Detection and Resolution
	Configuring Latest Timestamp Conflict Detection and Resolution
	Configuring Delta Conflict Detection and Resolution

	Managing Automatic Conflict Detection and Resolution
	Altering Conflict Detection and Resolution for a Table
	Altering a Column Group
	Purging Tombstone Rows
	Removing Conflict Detection and Resolution From a Table
	Removing a Column Group
	Removing Delta Conflict Detection and Resolution

	Monitoring Automatic Conflict Detection and Resolution
	Displaying Information About the Tables Configured for Conflicts
	Displaying Information About Conflict Resolution Columns
	Displaying Information About Column Groups

	15 Using Procedural Replication
	About Procedural Replication
	Procedural Replication Process Overview
	Enabling Procedural Replication
	Determining Whether Procedural Replication Is On
	Enabling and Disabling Supplemental Logging
	Filtering Features for Procedural Replication
	Handling Procedural Replication Errors
	Procedural Replication Pragma Options
	Listing the Procedures Supported for Oracle GoldenGate Procedural Replication
	Monitoring Oracle GoldenGate Procedural Replication

	16 Configuring Oracle GoldenGate in a Multitenant Container Database
	Capturing from Pluggable Databases
	Applying to Pluggable Databases
	Excluding Objects from the Configuration
	Other Requirements for Multitenant Container Databases

	17 Using Oracle GoldenGate with Autonomous Database
	About Capturing and Replicating Data Using Autonomous Databases
	Details of Support When Using Oracle GoldenGate with Autonomous Databases
	Configuring Replicat to Apply to an Autonomous Database
	Prerequisites for Configuring Oracle GoldenGate Replicat to an Autonomous Database
	Configure Oracle GoldenGate Replicat for an Autonomous Database
	Obtain the Autonomous Database Client Credentials

	Configure Replicat to Apply to an Autonomous Database

	Configuring Extract to Capture from an Autonomous Database
	Establishing Oracle GoldenGate Credentials
	Prerequisites for Configuring Oracle GoldenGate Extract to Capture from Autonomous Databases
	Configure Extract to Capture from an Autonomous Database

	A Optional Parameters for Integrated Modes
	Additional Parameter Options for Integrated Capture
	Additional Parameter Options for Integrated Replicat

	B Configuring a Downstream Mining Database
	Evaluating Capture Options for a Downstream Deployment
	Preparing the Source Database for Downstream Deployment
	Creating the Source User Account
	Configuring Redo Transport from Source to Downstream Mining Database

	Preparing the Downstream Mining Database
	Creating the Downstream Mining User Account
	Configuring the Mining Database to Archive Local Redo Log Files
	Preparing a Downstream Mining Database for Real-time Capture
	Create the Standby Redo Log Files
	Configure the Database to Archive Standby Redo Log Files Locally

	C Example Downstream Mining Configuration
	Example 1: Capturing from One Source Database in Real-time Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Archive Redo Received in Standby Redo Logs from the Source Database
	Prepare the Source Database to Send Redo to the Mining Database
	Set up Integrated Capture (ext1) on DBMSCAP

	Example 2: Capturing from Multiple Sources in Archive-log-only Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Archive Redo from the Source Database
	Prepare the First Source Database to Send Redo to the Mining Database
	Prepare the Second Source Database to Send Redo to the Mining Database
	Set up Extracts at Downstream Mining Database

	Example 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Accept Redo from the Source Databases
	Prepare the First Source Database to Send Redo to the Mining Database
	Prepare the Second Source Database to Send Redo to the Mining Database
	Prepare the Third Source Database to Send Redo to the Mining Database
	Set up Extracts at Downstream Mining Database
	Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1
	Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2
	Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs Sent by DBMS3

	D Installing Trigger-Based DDL Capture
	When to Use Trigger-based DDL Capture
	Overview of the Objects that Support Trigger-based DDL Capture
	Installing the DDL Objects

	E Supporting Changes to XML Schemas
	Supporting RegisterSchema
	Supporting DeleteSchema
	Supporting CopyEvolve

	F Preparing DBFS for an Active-Active Configuration
	Supported Operations and Prerequisites
	Applying the Required Patch
	Examples Used in these Procedures
	Partitioning the DBFS Sequence Numbers
	Configuring the DBFS file system
	Mapping Local and Remote Peers Correctly

	G Support for Classic Extract
	Details of Support for Objects and Operations in Oracle DML
	Limitations of Support for Index-Organized Tables
	Limitations of Support for Clustered Tables
	Non-supported Objects and Operations in Oracle DML (Classic)

	Details of Support for Objects and Operations in Oracle DDL (Classic)

	H Configuring Capture in Classic Mode
	Prerequisites for Configuring Classic Capture
	What to Expect from these Instructions
	Configuring the Primary Extract in Classic Capture Mode
	Configuring the Data Pump Extract
	Next Steps

	I Additional Configuration Steps for Using Classic Capture
	Configuring Oracle TDE Data in Classic Capture Mode
	Overview of TDE Support in Classic Capture Mode
	Requirements for Capturing TDE in Classic Capture Mode
	Required Database Patches for TDE Support
	Configuring Classic Capture for TDE Support
	Agree on a Shared Secret that Meets Oracle Standards
	Oracle DBA Tasks
	Oracle Security Officer Tasks
	Oracle GoldenGate Administrator Tasks

	Recommendations for Maintaining Data Security after Decryption
	Performing DDL while TDE Capture is Active
	Rekeying after a Database Upgrade
	Updating the Oracle Shared Secret in the Parameter File

	Using Classic Capture in an Oracle RAC Environment
	Mining ASM-stored Logs in Classic Capture Mode
	Accessing the Transaction Logs in ASM
	Reading Transaction Logs Through the RDBMS
	ASM Direct Connection

	Ensuring ASM Connectivity

	Ensuring Data Availability for Classic Capture
	Log Retention Requirements per Extract Recovery Mode
	Log Retention Options
	All Other Oracle Versions

	Determining How Much Data to Retain
	Purging Log Archives
	Specifying the Archive Location
	Mounting Logs that are Stored on Other Platforms

	Configuring Classic Capture in Archived Log Only Mode
	Limitations and Requirements for Using ALO Mode
	Configuring Extract for ALO mode

	Configuring Classic Capture in Oracle Active Data Guard Only Mode
	Limitations and Requirements for Using ADG Mode
	Configuring Classic Extract for ADG Mode
	Migrating Classic Extract To and From an ADG Database
	Handling Role Changes In an ADG Configuration

	Avoiding Log-read Bottlenecks in Classic Capture

