Oracle® Fusion Middleware
Oracle GoldenGate Security Guide

19¢ (19.1.0)
E98065-06
October 2022

ORACLE"

Oracle Fusion Middleware Oracle GoldenGate Security Guide, 19¢ (19.1.0)
E98065-06

Copyright © 2017, 2022, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 About Oracle GoldenGate Security
1.1 Overview of Security Options 1-1
Part | Securing the Microservices Architecture
2 Securing Deployments
2.1 Creating a Self-Signed Root Certificate 2-1
2.2 Creating Server Certificates 2-2
2.3 Creating a Distribution Server User Certificate 2-3
2.4 Trusted Certificates 2-4
3 Authentication and Authorization
3.1 Authentication 3-1
3.2 Authorization 3-3
3.3 Authentication and Authorization for WebSockets 3-4
3.4 Response Status Codes 3-5
4 Network
4.1 Network Access Control 4-1
4.2 Network Connection Adapter 4-5
4.3 Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices 4-8
4.4 Network Communication 4-11
5 TLS and Secure Network Protocols
5.1 Certificate Access Control List 5-1
5.2 Transport Layer Security Protocols and Ciphers 5-2
5.3 TLS Certificate Revocation List Handling 5-3

ORACLE"

5.4 HTTPS Security and Cache Headers 5-5
6 Using Target-Initiated Distribution Paths
6.1 Overview of Target-Initiated Paths 6-1
6.2 How Do Target-Initiated Distribution Paths Work? 6-1
Part Il Common Security Features
7 Managing Encryption Using a Key Management Service in Oracle
GoldenGate
7.1 What is a Key Management Service? 7-1
7.1.1 Why Use KMS to Store Oracle GoldenGate Encryption Keys? 7-1
7.1.2 Oracle Key Vault Capabilities 7-2
7.2 Managing Encryption Using a Key Management Service in Oracle GoldenGate
Microservices Architecture 7-2
7.2.1 What is an Encryption Profile? 7-3
7.2.2 Prerequisites for Configuring OKV on Oracle GoldenGate 7-4
7.2.3 How to Configure an Encryption Profile in MA? 7-6
7.2.4 Client Behavior Against Different Key States for Oracle Key Vault 7-7
8 Encrypting Data with the Master Key and Wallet Method
8.1 Creating the Wallet and Adding a Master Key 8-1
8.2 Specifying Encryption Parameters in the Parameter File 8-2
8.2.1 Using SOCKS5 Proxy to Deliver Encrypted Data 8-3
8.3 Renewing the Master Key 8-4
8.4 Deleting Stale Master Keys 8-6
9 Managing ldentities in a Credential Store
9.1 Creating and Populating the Credential Store 9-1
9.2 Specifying the Alias in a Parameter File or Command 9-2

Part Ill Securing the Classic Architecture

10 Securing Manager

ORACLE" iv

11 Configuring GGSCI Command Security

11.1 Setting Up Command Security 11-1
11.2 Securing the CMDSEC File 11-3

12 Using Target System Connection Initiation

12.1 Configuring the Passive Extract Group 12-2
12.2 Configuring the Alias Extract Group 12-3
12.3 Starting and Stopping the Passive and Alias Processes 12-3
12.4 Managing Extraction Activities 12-4
12.5 Other Considerations when using Passive-Alias Extract 12-4

A Encrypting a Password in a Command or Parameter File

A.1 Encrypting the Password A-1
A.2 Specifying the Encrypted Password in a Parameter File or Command A-2

B Avoiding Security Attacks

B.1 Cross Site Request Forgery B-1

C Encrypting Data with the ENCKEYS Method

C.1 Setting Up the Data Encryption C-2
C.1.1 Decrypting the Data with the ENCKEYS Method C-3
C.1.2 Examples of Data Encryption using the ENCKEYS Method C-4

C.2 Populating an ENCKEYS File with Encryption Keys C-5
C.2.1 Defining Your Own Key C-6
C.2.2 Using KEYGEN to Generate a Key C-6
C.2.3 Creating and Populating the ENCKEYS Lookup File C-6

ORACLE" Y

Audience

ORACLE

The Oracle GoldenGate Security Guide is intended for database administrators
(DBASs), security administrators, application developers, and others tasked with
performing the following operations securely and efficiently:

» Designing and implementing security policies to protect the data of an
organization, users, and applications from accidental, inappropriate, or
unauthorized actions

e Creating and enforcing policies and practices of auditing and accountability for
inappropriate or unauthorized actions

e Creating, maintaining, and terminating user accounts, passwords, roles, and
privileges

» Developing applications that provide desired services securely in a variety of
computational models, leveraging database and directory services to maximize
both efficiency and ease of use

To use this document, you need a basic understanding of how and why a database is
used, and basic familiarity with SQL.

Documentation Accessibility

ORACLE

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info Or Visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, such as "From the File menu, select Save." Boldface
also is used for terms defined in text or in the glossary.

italic Italic type indicates placeholder variables for which you supply

italic particular values, such as in the parameter statement: TABLE
table name. Italic type also is used for book titles and emphasis.

monospace Monospace type indicates code components such as user exits and

MONOSPACE scripts; the names of files and database objects; URL paths; and input
and output text that appears on the screen. Uppercase monospace type
is generally used to represent the names of Oracle GoldenGate
parameters, commands, and user-configurable functions, as well as
SQL commands and keywords.

UPPERCASE Uppercase in the regular text font indicates the name of a utility unless
the name is intended to be a specific case.

{} Braces within syntax enclose a set of options that are separated by pipe

(]

symbols, one of which must be selected, for example: {optionl |
option2 | option3}.

Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLICAT group name
[, SAVE count]. Multiple options within an optional element are
separated by a pipe symbol, for example: [optionl | optionZ2].

Related Information

The Oracle GoldenGate Product Documentation Libraries are found at
https://docs.oracle.com/en/middleware/goldengate/index.html

Additional Oracle GoldenGate information, including best practices, articles, and solutions, is
found at:

Oracle GoldenGate A-Team Chronicles

ORACLE

https://docs.oracle.com/en/middleware/goldengate/index.html
http://www.ateam-oracle.com/category/data-integration/di-ogg/

About Oracle GoldenGate Security

Oracle GoldenGate has integrated security features and understanding the security features
and the use cases they cover are important first steps when setting up a secure environment.

There are two different architectures offered with Oracle GoldenGate:

Microservices Architecture (MA)

This is a REST API-based services architecture that allows you to configure, monitor, and
manage Oracle GoldenGate services using a web interface or through REST API calls.
Oracle recommends implementing MA to ensure the highest levels of security with Oracle
GoldenGate.

You can use MA to deploy, monitor, manage, and perform Extract and Replicat operations on
trail data within your MA implementation. To learn more about MA see Components of
Oracle GoldenGate Microservices Architecture.

Classic Architecture (CA)

This is the original Oracle GoldenGate architecture to effectively move data across
numerous topologies. To know more about Classic Architecture, see Components of Classic
Architecture and the Oracle GoldenGate user guide for your database.

Oracle GoldenGate Microservices Architecture (MA) is most secure. This guide addresses
MA-specific topics in the main chapters, while security aspects of the Classic Architecture are
addressed in the appendix.

* Overview of Security Options
You can use these security features to protect your Oracle GoldenGate environment and
the data that is being processed.

1.1 Overview of Security Options

You can use these security features to protect your Oracle GoldenGate environment and the
data that is being processed.

What to Security Supported Supported Description
Secure Features Databases Architecture
Master Managing Data All databases Classic and Manages the encryption of trail files by
Encryption Encryption Microservices storing the master keys.
Keys using Oracle
Key Vault.

ORACLE 1-1

Chapter 1
Overview of Security Options

What to
Secure

Security Supported
Features Databases

Supported
Architecture

Description

. Data in the
trails or an
Extract file

. Data sent
across
TCP/IP
networks

User IDs and
passwords
(credentials)
assigned to
Oracle
GoldenGate
processes to
log into a
database.

Passwords
specified in
commands and
parameter files
that are used
by Oracle
GoldenGate
processes to
log into a
database.

ORACLE

Encrypting Data Master key and wallet X
with the Master method is the
Key and Walllet preferred method on
Method platforms that support

it. Not valid for

NonStop platforms.

Credential Credential store is
Store Identity the preferred
Management password

Managing management method
Identities ina On platforms that

Credential support it. Not valid
Store for NonStop
platforms.
Password Valid for all Oracle Classic
Encryption GoldenGate-

See Encrypting Supported databases

a Password in a and platforms.
Command or Blowfish must be

Parameter File. used on the DB2 for i,
DB2 z/OS, and
NonStop platforms.
On other platforms,
the credential store is
the preferred
password-
management
method.

Microservices

Encrypts the data in files, across data
links, and across TCP/IP. Use one of
the following:

e Any Advanced Encryption Security
(AES)

Advanced Encryption Standard
(AES) is a symmetric-key
encryption standard that is used
by governments and other
organizations that require a high
degree of data security. It offers
three 128-bit block-ciphers: a 128-
bit key cipher, a 192-hit key cipher,
and a 256-bit key cipher. The
LD_LIBRARY PATH value is set
to $ORACLE HOME/lib with a
default configuration. Use the
export command to modify this
value.

e Blowfish:

Blowfish encryption: A keyed
symmetric-block cipher. The
Oracle GoldenGate
implementation of Blowfish has a
64-bit block size.

User credentials are maintained in
secure wallet storage. Aliases for the
credentials are specified in commands
and parameters.

Encrypts a password and then
provides for specifying the encrypted
password in the command or
parameter input. Use any of the
following:

e AES-128
* AES-192
e AES-256

. Blowfish

1-2

Chapter 1
Overview of Security Options

What to Security Supported Supported Description
Secure Features Databases Architecture
Oracle Command Valid for all Oracle X Stores authentication permissions in
GoldenGate Authentication GoldenGate- an operating-system-secured file.
commands See supported databases Configure a cMDSEC (Command
issued through configuring and platforms. Security) file.
GGSCI. GGSCI
Command
Security.
TCP/IP Trusted Valid for all Oracle X Use any of the following:
connectionto Connection GoldenGate- « AES-128
untrusted See Using supported databases .« AES-192
Oracle Target System and platforms. . AES-256
GoldenGate Connection)
host machines |nitiation. * Blowfish
that are outside
a firewall.
Access rules for Manager Valid for all Oracle Classic You can secure the following:
Manager. Security GoldenGate- + GGSCI: Secures access to the
Securing supported databases GGSCI command-line interface.
Manager and platforms. e MGR | MANAGER: Secures access
to all inter-process commands
controlled by Manager, such as
START, STOP, and KILL
e REPLICAT: Secures connection to
the Replicat process.
e COLLECTOR | SERVER: Secures the
ability to dynamically create a
Collector process.
Select the CryptoEngine Valid for all Oracle Classic and Selects which cryptographic library the
cryptographic GoldenGate- Microservices Oracle GoldenGate processes will use.
library that supported databases
better suits your and platforms
needs: (Classic and
Portability FIPS140).
(Classic), Valid for all Oracle
Portability and GoldenGate-

compliance with

FIPS-140
standard
(FIPS140), or
enhanced
throughput
(Native).

MA REST
Service
Interface

Authentication

Communication TLS and

Security

ORACLE

Secure Network

Protocols

supported databases
on Linux.x64 and
Windows.x64
(Native).

Valid for all Oracle
GoldenGate-
supported databases
and platforms

Valid for all Oracle
GoldenGate-
supported databases
and platforms

Microservices

Microservices

X

X

1-3

Chapter 1
Overview of Security Options

What to Security Supported Supported Description
Secure Features Databases Architecture
MA REST User Authorization Valid for all Oracle Microservices X

Authorization

Target-initiated
Trails

Reverse Proxy

Target-initiated
trails for trusted
environments

The reverse
proxy only uses
one port. See
Configure
Reverse Proxy
with NGINX to
Access Oracle
GoldenGate
Microservices

GoldenGate-
supported databases
and platforms

Valid for all Oracle
GoldenGate-
supported databases
and platforms

Valid for all Oracle
GoldenGate-
supported databases
and platforms

Microservices

Microservices

See Using Target-Initiated Distribution
Paths.

ORACLE

1-4

Securing the Microservices Architecture

Use this part to secure your Microservices Architecture (MA) environment.

With Microservices, each server (Administration, Distribution, Performance Monitoring,
Receiver Server and Service Manager) runs its own process and communicates with REST.
As REST is a style that uses secure HTTP, all the security related concerns and solutions
applied to HTTPS apply to REST interfaces also. This includes ensuring general security
related to HTTPS-based requests, responses, sessions, cookies, headers and content as
well as addressing issues such as Cross Site Request Forgery, Ul Redressing and delegated
authentication. TLS 1.2 (Transport Layer Security) provides both confidentiality and integrity
with optional Authentication. Server authentication, which verifies the identity of the server
used by the client for communication. Client authentication verifies the identity of the client
that the server is communicating. A typical configuration enforces server authentication while
client authentication is optional. Additional security configurations can specify the level of
security strength and revocation options.

Inbound and Outbound Security Configuration

An inbound configuration defines the security characteristics used for requests being
received by the server from a client; an inbound request.

An outbound configuration defines the security characteristics used for requests being sent
from the server to a client; an outbound request.

A server is generally considered to be operating secured when security is enabled and the
inbound configuration is valid.

All MA servers support inbound security configurations. Only the Distribution Server and
Receiver Server support outbound configurations.

The Distribution Server and Receiver Server use the Outbound security configuration to
secure request between them. When the Distribution Server issues a request to a Receiver
Server or when a Receiver Server issues a request to a Distribution server, each uses their
outbound configurations.

Topics:

* Microservices Security Concepts
Learn about these MA security features:

e Securing Deployments
Microservices REST-based Service Interfaces are agnostic with regard to which
underlying HTTP or HTTPS protocol is used. Their behavior is the same whether issued
over a secure or an unsecure protocol.

* Authentication and Authorization
The MA security defines the communication authorization and authentication.
Authentication includes tasks such as configuring the credential store and aliases for
scripts in the AdminClient. Authorization includes tasks for network and server
configuration.

e Network
Learn how to secure your network for Oracle GoldenGate.

ORACLE

 TLS and Secure Network Protocols
Communication security is the confidentiality and integrity of the information sent
over communications channels, such as TCP/IP-based networks.

* Using Target-Initiated Distribution Paths
Learn about target-initiated distribution paths in MA, the need to set it up, and
various use cases where it is helpful to use target-initiated distribution paths.

Microservices Security Concepts

ORACLE

Learn about these MA security features:

Connection Filtering
This is responsible for qualifying and filtering a candidate connection based on
connection policy specifications.

Certificate Filtering
Similar to connection filtering, this feature enables qualifying certificates as part of
accepting or denying a connection request.

Fall-back Constraints

Network security configuration within MA servers enables you to configure and
constrain the protocol version negotiation fall-back behavior allowing them to control if
and how the protocol versions are negotiated.

Session Management

MA Service Interfaces requests are REST and stateless, which implies that no client
application context it stored on the server between requests. The application session
state is entirely held by the client. Session management includes:

Logical state-tracking of the clients authorization status

The Authorization Cookie used by WebApps and available to other clients is an
opaque token that allows secured client authorization information sent to the
server with each REST request. The client state encoded in the Authorization
Cookie is transferred automatically by the browser with each request, The client's
effective authorization is not maintained by the server.

Secured TLS session caching and reuse

The secured communication sub-system supports TLS session caching and
reuse. This reduces the computational load on the server by allowing
cryptographic session established in a prior require to be reused and skip the
high-cost handshake and cipher negotiation processing. TLS-session caching and
reuse does not reuse any MA service request information.

User Credential Storage

User credentials are stored in a cryptographically secure persistent and fault-tolerant
store. When you add credentials from the Admin Client, they are stored locally to the
executable. This allows the Admin Client to run scripts securely from the local site.

Single Page Applications (SPAs) and WebApp Security

All popular web browsers support both HTTP and HTTPS protocol. MA supports
running WebApps including SPAs and JavaScript-based applications in either HTTPS
(secured) or HTTP (unsecured) mode.

Cipher-Suites
The MA configuration allows you to select the set of allowed cipher-suites if necessary.
Generally, the MA default cipher-suite set is appropriate.

Encryption Profile
The encryption profile allows you to use Oracle Key Vault, which is a full-stack, security-
hardened software appliance built to centralize the management of MA security objects.

ORACLE

Securing Deployments

Microservices REST-based Service Interfaces are agnostic with regard to which underlying
HTTP or HTTPS protocol is used. Their behavior is the same whether issued over a secure
or an unsecure protocol.

Securing deployments involves enabling security through the security configuration when
setting up a deployment for the first time using Oracle GoldenGate microservices.
Administrators who are assigned the security role can change the details of the default MA
security profile to control various aspects of secure operation. See How to Add Users 19c in
Using the Oracle GoldenGate Microservices Architecture to know more about the security
user role.

MA's default security configuration is ranked at a high-medium security level. By enabling
security for an MA deployment, the default coordinated security profile from both inbound and
outbound communications is enabled (excluding the client and server wallet location (WRL).

To secure a deployment, you can use your existing wallets and certificates, or create new
ones. See Setting Up Secure and Non-Secure Deployments in Using the Oracle GoldenGate
Microservices Architecture for more information.

e Creating a Self-Signed Root Certificate
In a secure mode, communication with Oracle GoldenGate MA including administrative
calls and data transport is secured using TLS certificates, which you purchase or create
your own for testing purposes.

» Creating Server Certificates

e Creating a Distribution Server User Certificate
You have the option of using a client certificate or a username and password that is
common to the Distribution Server deployment and the Receiver Server deployment.

* Trusted Certificates
The wss communication protocol is used in the Distribution Server for the Distribution
Path to meet the needs of secure communication using TLS in Oracle GoldenGate
Microservices Architecture.

2.1 Creating a Self-Signed Root Certificate

ORACLE

In a secure mode, communication with Oracle GoldenGate MA including administrative calls
and data transport is secured using TLS certificates, which you purchase or create your own
for testing purposes.

In production environments, it is strongly recommended to use commercial certificates. In test
environments, you may create your own self signed certificates using orapki or OpenSSL.

Each secure Oracle GoldenGate deployment requires two certificates: Server certificate for
the Oracle GoldenGate services and a client certificate used by the distribution and/or
receiver server to securely communicate with other remote deployments It is key that all
certificates are signed by the same root certificate authority (rootCA). rootCA is the trustpoint.
You use only one root certificate authority (rootCA) for all certificates across the deployment.

2-1

Chapter 2
Creating Server Certificates

For each server where Oracle GoldenGate is deployed, you have one specific Server
Certificate.

You may apply your existing root certificate or use the orapki in the 0GG_HOME/bin
directory, see About the orapki Utility in the Oracle Database Security Guide.

Here's an example of how you can create a root certificate using orapki:

1

Create a directory to store your wallets and certificates. For example, ~/
wallet directory.

Create an automatic login wallet. This example uses root ca for the wallet name.

orapki wallet create -wallet ~/wallet directory/root ca -auto login
-pwd welcomel23

In the orapki command to create self-signed (root user) certificate, specify the -
sign alg sha256 option.

In orapki wallet:

add -wallet ~/wallet directory/root ca -dn "CN=RootCA" -keysize
2048 -self signed -validity 7300 -pwd welcomel23 -sign _alg sha256

Export the certificate to a .pen file.

orapki wallet export -wallet ~/wallet directory/root ca -dn
"CN=RootCA" -cert ~/wallet directory/rootCA Cert.pem -pwd welcomel23

The wallet creation is complete.

2.2 Creating Server Certificates

The following steps are an example of how you can create a sever certificate using a
root certificate named root ca.

1.

ORACLE

Create a directory to store your wallets and certificates. For example, ~/
wallet directory

Create an automatic login server wallet.

orapki wallet create -wallet ~/wallet directory/$ (hostname) -
auto_login -pwd welcomel23*

Enter the password for the server when prompted.

Add a Certificate Signing Request (CSR) to the server’s wallet.

orapki wallet add -wallet ~/wallet directory/$ (hostname) -dn "CN=$
(hostname)" -keysize 2048 -pwd welcomel23

2-2

https://docs.oracle.com/database/121/DBSEG/asoappf.htm#DBSEG9830
https://docs.oracle.com/database/121/DBSEG/title.htm

Chapter 2
Creating a Distribution Server User Certificate

4. Export the CSR to a .pen file.

orapki wallet export -wallet ~/wallet directory/$ (hostname) -dn "CN=$
(hostname)" -request ~/wallet directory/servername req.pem -pwd welcomel23

5. Using the CSR, create a signed server or client certificate and sign it using the root
certificate. Assign a unique serial number to each certificate.

orapki cert create -wallet ~/wallet directory/root ca -request ~/
wallet directory/servername req.pem -cert ~/wallet directory/
servername Cert.pem -serial num 20 -validity 375 -sign_alg sha256

6. Add the root certificate into the client’s or server’s wallet as a trusted certificate.

orapki wallet add -wallet ~/wallet directory/$ (hostname) -trusted cert -
cert ~/wallet directory/rootCA Cert.pem -pwd welcomel23

7. Add the server or client certificate as a user certificate into the client’s or server’s wallet.

orapki wallet add -wallet ~/wallet_directory/$(hostname) -user_cert -cert
~/wallet directory/servername Cert.pem -pwd welcomel23

The wallet creation is complete.

2.3 Creating a Distribution Server User Certificate

You have the option of using a client certificate or a username and password that is common
to the Distribution Server deployment and the Receiver Server deployment.

This certificate is also signed by the root certificate. It provides a common trust point because
the server considers any certificate signed by the same root certificate as the server's
certificate. To create the certificate, use the orapki in the 0GG_HOME/bin directory. For more
information about orapki, see About the orapki Utility in the Oracle Database Security Guide.

The following steps are an example of how you can create a distribution sever user
certificate:

1. Create a directory to store your wallets and certificates. For example, ~/
wallet directory.

2. Create an automatic login client wallet. This example uses dist client for the wallet
name.

orapki wallet create -wallet ~/wallet directory/dist client -auto login -
pwd welcomell?3

3. Add a CSR to the wallet.

orapki wallet add -wallet ~/wallet directory/dist client -dn
"CN=dist client" -keysize 2048 -pwd welcomel23

ORACLE 2-3

https://docs.oracle.com/database/121/DBSEG/asoappf.htm#DBSEG9830
https://docs.oracle.com/database/121/DBSEG/title.htm

Chapter 2
Trusted Certificates

4. Export the CSR to a .pen file.

orapki wallet export -wallet ~/wallet directory/dist client -dn
"CN=dist client" -request ~/wallet directory/dist client req.pem -
pwd welcomell?3

5. Using CSR, create a signed server or client certificate and sign it using the root
certificate. Assign a unique serial number to each certificate.

orapki cert create -wallet ~/wallet directory/root ca -request ~/
wallet directory/dist client reqg.pem -cert ~/wallet directory/
dist client Cert.pem -serial num 30 -validity 375 -pwd welcomel23

6. Add the root certificate as a trusted certificate into the client’s or server’s wallet.

orapki wallet add -wallet ~/wallet directory/dist client -
trusted cert -cert ~/wallet directory/rootCA Cert.pem -pwd
welcomel23

7. Add the server or client certificate as a user certificate into the client’s or server’s
wallet.

orapki wallet add -wallet ~/wallet directory/dist client -user cert
-cert ~/wallet directory/dist client Cert.pem -pwd welcomel23

The wallet creation is complete.

2.4 Trusted Certificates

The wss communication protocol is used in the Distribution Server for the Distribution
Path to meet the needs of secure communication using TLS in Oracle GoldenGate
Microservices Architecture.

There are two types of TLS connections and to use TLS, there are certain requirement
for the certificate trust chain.

Distribution Server and Receiver Server

Both the Distribution Server and Receiver Server need certificates. The Distribution
Server uses the certificate in the client wallet location under outbound section. The
location of that wallet can be found in the deploymentConfiguration.dat file under
deployment home/etc/conf.

The certificates in both wallets need to be trusted by each other, so either both need to
have commercial certificates issued by Classic architecture, or they have to trust each
other for self-signed certificates.

For self-signed certificates, you can choose from one of the following:
* Have both certificates signed by the same Root Certificate.

* The other side’s certificate is added to the local wallet as trusted certificate

ORACLE 2.4

Chapter 2
Trusted Certificates

Here's an example that shows the Distribution Server and Receiver Server certificates.

"distsrvr": {
"Sschema": "ogg:service",
"config": {
"network": {
"servicelisteningPort": 9102
}I
"authorizationDetails": {
"common": {
"allow": [
"Digest",
"x-Cert",
"Basic"

}I
"authorizationEnabled": true,
"workerThreadCount": 24,
"legacyProtocolEnabled": true,
"taskManagerEnabled": true,
"security": false,
//The following is the outbound communication setup.
"securityDetails": {
"network": {
"outbound": {
"authMode": "client server",
"crlEnabled": false,
"role": "client",
"wrl": "file:/u02/o0gg/dporal2c/etc/ssl/740977¢c539%7",
"wrlPassword": ""

In this example, the section that starts with securityDetails is for the outbound communication
setup. The WRL values gives wallet location.

For the Receiver Server, the certificate is in the wallet for the inbound wallet location, which is
in the same deploymentConfiguration.dat file, as shown in the following example.

"recvsrvr" : {
"$schema" : "ogg:service",
"config" : {
"authorizationDetails" : {
"common" : {
"allow" : ["Basic", "x-Cert"]

}I

"authorizationEnabled" : true,

"legacyProtocolEnabled" : true,

"network" : {
"servicelListeningPort" : 10083

}I

"security" : true,

ORACLE 2-5

ORACLE

Chapter 2
Trusted Certificates

"securityDetails" : {
"network" : {
"common" : {

"authMode" : "clientOptional server",

"blockSize" : 4096,

"cipherSuites" : [
"SSL RSA WITH 3DES EDE CBC_SHA",
"TLS ECDHE ECDSA WITH AES 128 CBC SHA256",
"TLS _ECDHE ECDSA WITH RC4 128 SHA",
"TLS RSA WITH AES 256 GCM SHA384"

] r

"crlEnabled" : false,

"crlStore" : "file:",
"id" : "OracleSSL",
"protocolVersion" : "1 2 Or 1 1 Or 1 0 Or 3 0"
}I
"inbound" : {
"role" : "server",
"wrl" : "file:/home/oracle/apps/01lnxSRCSSL/etc/ssl/
OlnxSRC",
"wrlPassword" : ""

b

"outbound" : {

"role" : "client",

"wrl" : "file:/home/oracle/apps/01lnxSRCSSL/etc/ssl/
oggdistclient”,

"wrlPassword" : ""

On the Distribution Server, if the hostname used in the Receiver Server’s certificate
can’t be routed correctly, /etc/hosts file should be updated with the correct IP
address for that host. The Distribution Server will use this IP address to communicate
with the Receiver Server once it accepts the certificate from the Receiver Server.

Using the Reverse Proxy (NGINX) with the Distribution Server and Receiver
Server

You only need to add the Nginx certificate to the Distribution server’s client wallet as a
trusted certificate. Usually the certificate used by Nginx is self-signed. If it is issued by
Classic architecture, then there is no need to perform this step.

The host name in the NGINX certificate should also be routable. If not, on the
Distribution Server, /etc/hosts file needs to be updated to reflect the correct IP
address for that host name.The Distribution Server will use the host name in the
certificate to communicate to the target. If the NGINX certificate doesn’t have a valid
host name in it, but has a Subject Alternative Name record, then the host name is the
DNS name there. For example:

.X509v3 Subject Alternative Name:

DNS:localhost,

DNS:oggmp0802iad,
DNS:oggmp0802iad.sub06261535551 . wernervcnab.oracleven. com,
DNS:127.0.0.1, IP Address:127.0.0.1..

2-6

Authentication and Authorization

The MA security defines the communication authorization and authentication. Authentication
includes tasks such as configuring the credential store and aliases for scripts in the
AdminClient. Authorization includes tasks for network and server configuration.

All the security configurations and services are common to MA-based servers. These servers
authenticate, authorize, and secure access to command and control, monitoring, data
conveyance, and information service interfaces for the MA.

Oracle GoldenGate Microservices define an infrastructure for building service-aware
applications to operate and integrate into global, cloud-based deployment environments.
Oracle GoldenGate server programs are implemented using the microservices infrastructure.
All security and configuration implementations provided by MA are common services.

» Authentication
Learn how you can use identity authentication.

e Authorization
Learn how you can use authorization modes.

« Authentication and Authorization for WebSockets
Learn how you can use WebSocket authentication and authorization.

* Response Status Codes
A few of the MA HTTPS authentication and authorization error codes are:

3.1 Authentication

ORACLE

Learn how you can use identity authentication.

The goal of the authenticated identity design is to establish identity authentication between
users, an MA server or application, and an MA server. The authentication design relies on
either the validity of a certificate or of a user credential (username and password pair).

The MA servers publish REST service interfaces that enable users and applications to
request services including operational control over one or more MA deployments, service
administration, status, and performance monitoring.

3-1

Chapter 3

Authentication
User Application Microservices Architecture Server Database
]
an. - - - 0o G
u . Store [o | (R
! ! it T
¥ ¥
— R — —
User Application Server username/ DB Login Application
Certificate Certificate Certificate passphase to Credentials Certificate
A A validate non- A
certified users
A
I~ I~ a—— I~
- - L] &
L]
User Application Server Credential Credential Application
Wallet Wallet Wallet Store Store Wallet

The following types of certificates are used for authentication:

* User Certificate: A User Certificate is a certificate issued to a specific user. Oracle
GoldenGate client applications store the User Certificate in a user Oracle Wallet.
The default location of the user Oracle Wallet is under the user's home directory.
Service requests issued with User Certificates include the user name and group
information acquired from the host environment. This information identifies the real
user executing the application.

* Application Certificate: An Application Certificate is a certificate issued to a
specific application. The Application Certificate is stored by the application. Oracle
GoldenGate client applications store the Application Certificate in an application
Oracle Wallet designated by the Application configuration. The default location of
the application Oracle Wallet is in the $0GG SSL HOME directory.

» Server Certificate: A Server Certificate is a certificate issued to a specific MA
server. The Server Certificate is stored by the MA server in the server's Oracle
Wallet. The default location of the server Oracle Wallet is under the server's
installation directory. An MA server is authenticated to applications as the identity
described in the Server Certificate.

» User’s or Application’s Database Authentication: MA servers support Service
Interface request whose fulfillment requires logging into a source or target
database. Database actions from an MA Server are limited to specific operations
required to fulfill service request requirements. The following table describes the
type of authentication that are supported by MA servers:

Type of Description
Authentication

OS Authentication This configuration sets the OS server to establish
connections to the database using its own credentials as
the only authenticated user. All service requests requiring
database access use the MA server database session.

ORACLE 3-2

Chapter 3

Authorization
Database operations are logged as originating from the
MA
OS authentication This type sets the MA server to establish connections to
with database proxy [the database using its own credentials but support proxy
support user sessions, through an MA server authenticated

connection. Proxy support is configured using: User Name
or Distinguished Name.

Pass-thru database [This configuration sets the MA server to establish a
authentication session or connection to the database using the client
provided user name and password.

User-alias database [This configuration sets the MA server to establish a
authentication session or connection to the database using a client
provided alias ID that is mapped to a credential, held by
the MA server, to establish a session or connection to the
database.

Example: Using Oracle UTL_HTTPS Authentication as a Client

In database sharding, the user and application authentication model also applies to database
packages that support issuing REST Server Interface requests to MA servers. Depending on
the security configuration of the MA server, packages or procedures that use the UTL _HTTPS
Oracle Database package may need to configure the client database security environment to
enable the use of Client-side certificates for authentication in UTL_HTTPS. Self-written
applications can similarily use UTL_HTTPS for the authentication as a client.

To enable UTL_HTTPS to use client-side certificates:

1. Configure the database client Oracle Wallet, see Creating the Wallet and Adding a
Master Key.

2. Configure UTL HTTPS with TLS (SSL) for client-side authentication, see Using
UTL_HTTPS.

Certificate Revocation List Authentication Support

MA servers supports Certificate Revocation List (CRL) checks as part of the authentication
process. Although MA servers do not automatically query for updated CRLs, the MA
infrastructure supports updating server CRL information at runtime without requiring the MA
servers to restart, see TLS Certificate Revocation List Handling.

3.2 Authorization

ORACLE

Learn how you can use authorization modes.

Security Authentication Modes

The following is the list of supported security authentication modes that establish the
authenticity of the entity presenting the authorization information. These are the available
values that may be used when setting the /config/securityDetails/network/common/
authMode security setting. This configurattion is available from the REST APIs to the
metadata catalog. This mode is set when configuring an Oracle GoldenGate MA deployment.

See the Update Service Properties in the Oracle GoldenGate REST API guide.

3-3

https://docs.oracle.com/en/middleware/goldengate/core/19.1/oggra/op-services-version-deployments-deployment-services-service-patch.html

Chapter 3
Authentication and Authorization for WebSockets

Authorization Mode ID

Notes

server only

Only validate Server certificates. The Server certificates are
required. The Client certificates are ignored.

client server

This is the default. Validate both Client and Server
certificates. Both certificates are required.

clientOptional server

Validate the client certificate if it is present, as it is optional.

Validate the server certificate (it's mandatory).

User Privileges

You can configure these security roles for users from the Administration Server, see
Setting Up Secure or Non-Secure Deployments.

Role ID

Privilege Level

Security

Grants administration of security related
objects and invoke security related
service requests. This role has full
privileges.

Administrator

Grants full access to the user, including
the ability to alter general, non-security
related operational parameters and
profiles of the server.

Operator

Allows users to perform only operational
actions, like starting and stopping
resources. Operators cannot alter the
operational parameters or profiles of the
MA server.

User

Allows information-only service
requests, which do not alter or affect the
operation of either the MA. Examples of
guery and read-only information include
performance metric information and
resource status and monitoring
information.

" Note:

These are authorization privileges and are not directly related to

authentication.

3.3 Authentication and Authorization for WebSockets

Learn how you can use WebSocket authentication and authorization.

ORACLE

REST API calls are made using standard HTTPS request and take advantage of the
authorization mechanism described in the Hypertext Transfer Protocol (RFC2616).
The WebSocket protocol (RFC6455) is different because it is a streaming-like interface

3-4

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc6455

Chapter 3
Response Status Codes

so does not need authorization or require special handling. WebSockets can be governed
with the standard HTTPS authentication and authorization mechanism.

Native HTTPS Authorization

The WebSocket handshake uses the HTTP upgrade header to change from the HTTP
protocol to the WebSocket protocol. The MA server checks the authorization header to
approve or deny the request based on whether the role associated with the requesting user is
equal to or greater than the role assigned for WebSockets establishment requests.

Example 3-1

GET /chat HTTPS/1.1

Host: myserver.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25772Q==
Origin: HTTPS://myserver.com
Sec-WebSocket-Protocol: ogg
Sec-WebSocket-Version: 13

Authorization: Basic xgfDE24sDwrasdbliop875ty=

3.4 Response Status Codes

ORACLE

A few of the MA HTTPS authentication and authorization error codes are:

The following response status codes are used:
e 1xx: Informal

° 2xX: Success

* 3xx: Redirect

e 4xx: Client Error

e 5xx: Server Error

The 4xx client response status is described as follows:

401 Unauthorized

Returned in all cases when the presented credential is poorly formed or missing when
required. This includes incorrectly spelled or unregistered user names when presented as
part of an authorization credential. It does not apply to authorization resources (404 errors).

403 Forbidden
Returned in all cases when the presented credential is well-formed, but is invalid or does not
have sufficient authorization (permissions) to grant access to the underlying resource.

404 Not Found

Returned in cases where the presented credential is well-formed, but the server-side
resource cannot be located.

For example, when attempting to retrieve user information using /services/v2/
authorizations/all/james and the user james is not a registered user. Without a
proper registration, no james resource exists so this error code is returned.

The full list is found in the Internet Engineering Task Force RFC 7231 standard.

3-5

https://tools.ietf.org/html/rfc7231

Network

Learn how to secure your network for Oracle GoldenGate.

This chapter describes endpoint protection such as Network Access Control and Network
Connection Adapters along with the steps to configure and use Reverse Proxy.

Topics:

* Network Access Control
The MA configuration of the network connection takes the form of an array or network
access control list (ACL).

* Network Connection Adapter
Learn about how to specify your network connection configuration.

» Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices

* Network Communication
An MA server is the originator of all the response messages sent to the client when a
request is sent to the server.

4.1 Network Access Control

The MA configuration of the network connection takes the form of an array or network access
control list (ACL).

All configurable ACLs are represented as an array of ACL specifications. In the JISON
configuration this array takes the form:

aclArray := '[' <aclSpec> [, <aclSpec>] ']'

There might be cases where access from specific sides is excluded or access from specific
sides is allowed. Within Oracle GoldenGate, you are able to adjust the Application network
setting so that you can create black or white lists for access points. Similarly, there might be
cases, that you want to have the distribution path working on a specific network adapter only.
This is feasible within Oracle GoldenGate.

Each ACL specification minimally consists of a permission statement indicating whether the
ACL specification allows or denies client connections from the specified address. ACL
specifications are processed in order and terminate when the specified address is qualified. If
the specified address does not qualify, processes continue with the next ACL specification.
Once the address of the client requesting connection is qualified, the ACLs permissions
dictate whether the connection is ‘allowed' or 'denied'. If the ACL specifications qualify

ORACLE 4-1

Chapter 4
Network Access Control

address of the client requesting connection, a default resolution of ‘allow is assumed
and the client is allowed to connect. The ACL in the configuration take the following
syntactic forms:

ipACL := '"[' aclSpec [, aclSpec] ']'

aclSpec := "permission" : ["deny" | "allow"] [, "address":
[ipv4Address | ipv4MappedAddress | ipv6Address]|]

The ipACLs can use IPv4 addresses, ipv6 addresses and IPv4 mapped addresses as
described in RFC 4291.

Inbound connection requests are processed uniformly after they are received over a
network interface. The network interface configuration dictates the form of addressing.
For example, addresses appearing on an IPv6 interface appears as IPv6 addresses. If
the IPv6 configuration specifies IPv4 mapping, then the IPv4 client's address is
mapped into the IPv6 addressing space. An address appearing on an IPv4 interface
appears as an unmapped IPv4 address. Since the ACL qualification focuses on
qualifying addresses and all adapters within the host environment have unique
addresses, no additional interface information is required.

For hosts that support hot-fail over network interfaces, the fail-over and reassignment
of network IP address to adapter MAC addresses is transparent to the application.

Example 4-1 Examples

Deny client connections originating from 192.0.2.254.

"ipACL" : [{ "permission" : "deny", "address" : "192.0.2.254" }]

Explicitly allow all client connections. The first ACP by default qualifies all addresses.
The second ACL is never processed.

"ipACL" : [{ "permission" : "allow" },
{ "permission" : "deny", "address" : "192.0.2.254" }]

Allow client connections originating from 127.0.0.1, but deny connection originating
from 192.0.2.254 appearing on an interface configured for IPv6 addressing.

"ipACL" : [{ "permission" : "allow", "address" : "127.0.0.1" },
{ "permission" : "deny", "address" :
"££::192.0.2.254" }]

Example 4-2 Example

Allow client connections originating from and IPv6 loopback address (127.0.0.1
represented as ::1 in IPV6 addressing), allow client connections originating from the
unmapped IPv4 address 192.0.2.253, allow client connections originating from IPv6

ORACLE 4-2

https://tools.ietf.org/html/rfc4291

Chapter 4
Network Access Control

address 2001:db8:85a3:0:0:8a2e:370:7334 and deny client connections originating from
mapped IPv4 address ff::192.0.2.254.

"ipACL" : [{ "permission" : "allow", "address" : "::1" },

{ "permission" : "allow", "address" : "192.0.2.254" },

{ "permission" : "allow", "address"
"2001:db8:85a3:0:0:8a2e:370:7334" },

{ "permission" : "deny", "address" : "ff::192.0.2.254" }]

Example 4-3 Example

Using REST API Calls

"Sschema":"api:standardResponse",
"links": [
{
"href":"http://localhost:11000/services/v2/deployments/Local/
services/adminsrvr",
"mediaType":"application/json",
"rel":"canonical"
}I
{
"href":"http://localhost:11000/services/v2/deployments/Local/
services/adminsrvr",
"mediaType":"application/json",
"rel":"self"

1y
"messages": [

]

Example 4-4 Example
Using cURL:

Check initial configuration:

curl -s -k -u ggsca:ggsca -X GET https://abc.us.oracle.com:9100/services/v2/
deployments/depl 01/services/adminsrvr | json reformat

Modify service properties:

curl -s -k -u ggsca:ggsca -X PATCH https://abc.us.oracle.com:9100/
services/v2/deployments/depl 01/services/adminsrvr' -H Cache-Control: no-
cache' -d @"admin 2.json" |

json_reformat

ORACLE' 4.3

ORACLE

Chapter 4
Network Access Control

Admin.json file:

-- 8< -- File Content from admin.json -------
{"config": {
"network": {
"ipACL": [

{
"address": "10.196.9.33 ",
"permission": "allow"

"address": "10.90.136.97",
"permission": "allow"

"address": "10.209.243.80",
"permission": "deny"

1,

"servicelisteningPort": 9101

Example 4-5 Example

Using oggServiceConfig:

-- Check initial configuration

oggServiceConfig https://abc.us.oracle.com:9100 depl 01 adminsrvr --
user ggsca --password ggsca

oggServiceConfig https://abc.us.oracle.com:9100 depl 01 adminsrvr --
user ggsca --password ggsca --path /network

oggServiceConfig https://abc.us.oracle.com:9100 depl 01 adminsrvr --
user ggsca --password ggsca --path /network/ipACL

-- Modify Service Properties
oggServiceConfig https://abc.us.oracle.com:9100 depl 01 adminsrvr --
user ggsca --password ggsca --path /network/ipACL --value

'"[{ "permission" : "allow", "address" : "10.196.9.33 " },
{ "permission" : "allow", "address" : "10.90.136.97" },
{ "permission" : "deny", "address" : "10.209.243.80" }]'

Current value of "/network/ipACL" for "depl 0l/adminsrvr" is <not
defined>.

Setting new value and restarting service.

New value of "/network/ipACL" for "depl 0l/adminsrvr" is

-- Check final configuration

oggServiceConfig https://abc.us.oracle.com:9100 depl 01 adminsrvr --
user ggsca --password ggsca

oggServiceConfig https://abc.us.oracle.com:9100 depl 01 adminsrvr --
user ggsca --password ggsca --path /network

4-4

Chapter 4
Network Connection Adapter

oggServiceConfig https://abc.us.oracle.com:9100 depl 01 adminsrvr --user
ggsca --password ggsca --path /network/ipACL

[

{
"address": "10.196.9.33 ",
"permission": "allow"

"address": "10.90.136.97",
"permission": "allow"

"address": "10.209.243.80",

"permission": "deny"
}
]
ipACL := '"[" aclSpec [, aclSpec] ']'
aclSpec := "permission" : ["deny" | "allow"]
[, "address": [ipv4Address | ipv4MappedAddress | ipv6Address]]

4.2 Network Connection Adapter

ORACLE

Learn about how to specify your network connection configuration.

Network Interface Use Control as Network Connection Adapter is the name of an internal
implementation class. When there are more than one network interface that are configured in
an environment where the host is multi-homed, then it is known as multiple networks. For
example, handling connection requests on different addresses through different network
interface adapters.

The NetworkConnectionSpecs themselves are members of an array associated with the
servicelisteningPort configuration element. For example, using the
serviceListeningPort configuration entry, a network specification may take any of the
following syntactic forms:

1. portValue | portValueString
2. networkSpec
3. '"['" networkSpec [, networkSpec ...] ']'

You can use the following syntax in your network specification:

portValue = [1234567890]+
portValueString := """ portValue '""'
networkSpec := '"{' portSpec [, ipaddressSpec | nameSpec] [,

interfaceSpec] [, networkOptionSpec] '}'

portSpec = "port" : portValue | portValueString
ipaddressSpec := "address" : ipv4Address | ipv6Address | "ANY"
nameSpec := '"' :alphanum: '"'

interfaceSpec = "interface" : '"' :alphanum: '"'
networkOptionSpec := "options" : IPV4 ONLY | IPV6 ONLY

4-5

ORACLE

Chapter 4
Network Connection Adapter

Regardless of the form your specification takes, the internal representation is
normalized into the 3rd form:

1. portValue | portValueString == networkSpec

2. portValue == '{' "port" : portValue '}'

3. portValueString == '['" "{' "port" : portValueString
l}V l}l

The first form retains compatibility with existing network port specifications where only
the portValue Or portValueString is provided.

The second form assigns the networkSpec as a single value. This form still only
defines a single network specification and allows greater control and flexibility in
identifying network values and options.

The third form defines an array of networkSpec instances. It allows you to specify
different network configurations based upon either address or network interface.

Example 4-6 Example

With the following simplified host network interface configuration:

$/sbin/ip addr show
lo: LOOPBACK, UP, LOWER UP mtu 16436 gdisc noqueue state UNKNOWN
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
ethO: BROADCAST,MULTICAST, UP, LOWER UP mtu 1500 gdisc pfifo fast state
UP glen 1000
link/ether 00:16:3e:52:6e:27 brd ff:ff:ff:ff:ff:ff
inet 192.0.2.39/21 brd 10.240.111.255 scope global eth0
inet6 2001:db8:85a3:0:0:8a2e:370:6666 brd ££f02::1 scope link eth0
ethl: BROADCAST,MULTICAST mtu 1500 gdisc pfifo fast state UP glen 1000
link/ether 00:16:3e:1f:99:bc brd ff:ff:ff:ff:ff:ff
inet 192.0.2.98/21 brd 10.100.99.98 scope link ethl
inet6 2001:db8:85a3:0:0:8a2e:370:7334 brd £f£f02::1 scope link ethl
inet6 2001:db8:85a3:0:0:8a2e:370:6666

4-6

Chapter 4
Network Connection Adapter

The following specification is derived:

1. "servicelListeningPort: "9000"

2. "servicelListeningPort: 9000

3. "servicelisteningPort: { "port" : 9000 }

4. "servicelListeningPort: { "port" : "9000" }

5. "servicelisteningPort: { "port" : "9000", "address" : "192.0.2.254" }
6. "servicelListeningPort: { "port" : "9000", "name" : "serverl" }

7. "servicelListeningPort: { "port" : "9000", "interface" : "ethl"}

8. "servicelisteningPort: [

{ "port"™ : "9000", "interface" :

Hloll }
{ "port"™ : "9000", "address" : "192.0.2.39", "option" : "IPV4 ONLY" }
{ "port"™ : "9000", "interface" : "ethl", "option" : "IPV6 ONLY" }

These forms are described as:

Form1-4
Listens on port 9000 on ANY address over ALL interfaces.

Form 5
Listens on port 9000 on address 192.0.2.254 only.

Form 6
Listens on port 9000 on the address associates with serverl.

Form 7
Listens on port 9000 on the address associates with interface ethl and accepts IPV4
address connections using the mapped IPV4.

Form 8

Listens on port 9000 on the address associates with interface 1o, on port 9000 address
192.0.2.39 accepting only IPV4 addresses, and on port 9000 with addresses associated with
interface ethl accepting onlylPV6 addresses.

Most of this logic handles selecting the network interface adapter based on the network

interface adapter’s identifying name or the address. The interface can be searched for based
on the requested address.

ORACLE 47

Chapter 4
Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices

Specifying multiple adapters means that each network specification resolves to only a
subset of adapters. Precedence processing allows the specification of ANY address
and ALL interfaces for the last network specification as a pool specification when the
platform networking interfaces support mapping subset interface matches.

4.3 Configure Reverse Proxy with NGINX to Access Oracle
GoldenGate Microservices

ORACLE

Learn how to configure reverse proxy service using NGINX for accessing Oracle
GoldenGate Microservices without using port numbers.

Reverse proxy enables accessing microservices using one single port (443) in a
deployment. This enables encapsulation of the URL for microservices over an
unsecure deployment.

Note:

Reverse proxy is optional, however, Oracle recommends that you ensure
easy access to microservices and provide enhanced security.

You can run microservices in an unsecure deployment on loopback address and front
it with an HTTP reverse proxy using the NGINX installation.

When sending trail files from Oracle GoldenGate Classic to Microservices environment
that is configured with a reverse proxy, use a pump Extract from Oracle GoldenGate
Classic with SOCKSPROXY option. When sending trail files from Oracle GoldenGate
Microservices to Classic Architecture use the ogg protocol in the Distribution Service
configuration.

See Connecting Classic to MA and Connecting MA to Classic in Administering Oracle
GoldenGate.

Reverse Proxy Support

You can configure Oracle GoldenGate Microservices Architecture to use a reverse
proxy. Oracle GoldenGate MA includes a script called ReverseProxySettings that
generates configuration file for only the NGINX reverse proxy server.

For example, the Administration Service is available on http://
goldengate.example.com: 9001 and the Distribution Service is on http://
goldengate.example.com: 9002. With reverse proxy, each of the microservices
can simply be accessed from the single address. For example, http://
goldengate.example.com/distsrvr for the Distribution Service. The URL is
different for each service and is by name instead of by port.

You can use these options by running the ReverseProxySettings utility. Here are the
options available with this utility:

-0 Or --output
The output file name. The default file name is ogg. conf.

4-8

ORACLE

Chapter 4
Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices

-P or --password
A password for a Service Manager account.

-lor--log
Log file name and initiates logging. The default is no logging.

--trailOnly
Configure only for inbound trail data.

-t or --type
The proxy server type. The default is Nginx.

-s Or --no-ssl
Configure without SSL.

-h or --host
The virtual host name for reverse proxy.

-p Or --port
The reverse proxy port number. The defaults are 80 or 443.

-? Oor --help
Display usage information.

-u Or --user
Name of the Service Manager account to use.

-v Or --version
Displays the version.

These values are used when connecting to the Service Manager and are required when
authentication is enabled.

You can use any reverse proxy service with MA. The following example provides a process
that you can follow to configure other reverse proxy services in conjunction with the
documentation for your proxy server.

Prerequisites

The following prerequisites provide details on the minimum requirements to configure an
NGINX Reverse Proxy. Similar requirements may be required for your environment and
reverse proxy if not using NGINX. Consult the documentation for your reverse proxy.

1. Install NGINX, see Install the NGINX Web Server and Proxy on Oracle Linux. For Oracle
Linux, the command to install NGINX is:

yum —y install NGINX

Check the JRE version to be JRE 8 or higher.
Install Oracle GoldenGate MA.

Create one or more active MA deployments.

Ensure that the Oracle user has sudo permissions.

© o » w N

Configure the PATH environment variable to include the NGINX installation directory path.

4-9

https://docs.oracle.com/en/learn/oracle-linux-nginx/#before-you-begin

ORACLE

Chapter 4
Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices

Configuring NGINX Reverse Proxy

An Oracle GoldenGate MA installation includes the ReverseProxySettings utility. The
ReverseProxySettings utility is located in the $0GG HOME/1ib/utl/reverseproxy
directory. To identify additional commands that can be used with the
ReverseProxySettings utility, run the utility with the --help option:

$OGG_HOME/lib/utl/reverseproxy/ReverseProxySettings --help

To add the NGINX certificate to the Distribution Service’s client wallet as a trusted
certificate, see Trusted Certificates.

1.

To generate a configuration file for NGINX Reverse Proxy, navigate to the location
of the ReverseProxySettings utility:

cd SOGG_HOME/lib/utl/reverseproxy
Run the ReverseProxySetting utility:

ReverseProxySettings -u adminuser -P adminpwd -o ogg.conf http://
localhost:9100

In this code snippet, adminuser is the deployment user name and adminpwd is the
deployment user password used to login to the deployment.

Replace the existing NGINX configuration with the configuration that was
generated using the ReverseProxySetting utility for your MA deployment:

sudo mv ogg.conf /etc/nginx/conf.d/nginx.conf

However, this NGINX configuration isn't complete without the events section, and
enclosing the map and server sections in http.

Optionally, you can use the default nginx.conf file and add the generated
ogg.conf by adding an include statement similar to this:

include /etc/nginx/conf.d/ogg.conf;
In this case, you must comment out the other servers section.

Generate a self-signed certificate for NGINX:

sudo sh /etc/ssl/certs/make-dummy-cert /etc/nginx/ogg.pem

For distribution paths to go through the reverse proxy, you need to use a valid
certificate. It's better to specify the same certificate that the deployment is using to
process incoming requests, otherwise, starting the path will fail with the next error
in Distribution Service:

2019-03-26T11:26:00.324-0700 ERROR| ERROR 0GG-10351 Oracle
GoldenGate Distribution

Service for Oracle: Generic error -1 noticed. Error description -
Certificate validation

4-10

Chapter 4
Network Communication

error: Unacceptable certificate from test0Oabc: application verification
failure. (A4)

5. Validate the NGINX configuration:

sudo NGINX -t

The output would show the following, if the command is successful:

NGINX: the configuration file /etc/NGINX/NGINX.conf syntax is ok
NGINX: configuration file /etc/NGINX/NGINX.conf test is successful

6. Reload NGINX with the new configuration:

sudo NGINX -s reload

If the changes for the configuration file are not loaded, stop and restart the proxy.

7. To testif you can access the microservices after NGINX is set up successfully, open the
web browser.

8. Enter the proxy URL for the Service Manager using port number 443, similar to the
following:

http:/ldc.example.com:443

This would open the Service Manager login page, from where you can access the other
microservices also. If you want to directly access a microservice, you can enter the proxy
URL for that microservice, as given in the ogg.conf file, generated previously.

Also see this video on configuring the NGINX reverse proxy.
SSL Termination

When there is an unsecure connection between the reverse proxy, which uses a TLS-based
connection, and the origin server, it is referred to as reverse proxy SSL-termination.

" Note:

In SSL-Termination the connections between the reverse proxy and the origin
servers are unsecure.

However, SSL-bridging is also supported where the connections between the client and
reverse proxy is secured and the connection between the reverse proxy and the origin server
is also secured.

4.4 Network Communication

An MA server is the originator of all the response messages sent to the client when a request
is sent to the server.

ORACLE 4-11

https://www.youtube.com/watch?v=gjRX8Ue6x1M&ab_channel=OracleLearning

ORACLE

Chapter 4
Network Communication

An MA server neither serves as a proxy nor supports tunneling of response messages
generated by other applications. Secured network communications use TLS 1.2 or
DTLS (Datagram Transport Layer Security) libraries. MA Oracle platforms uses the
Oracle SSL toolkit (NZ), which includes Oracle Wallet integration.

For heterogeneous platforms, the Oracle SSL toolkit is used where available.

4-12

TLS and Secure Network Protocols

Communication security is the confidentiality and integrity of the information sent over
communications channels, such as TCP/IP-based networks.

Secure communication implies confidentiality and integrity of data sent over communications
channels, such as TCP/IP-based networks. It uses cryptographic protocols to provide
communication security over the network.The TLS protocol provides privacy and data
integrity when:

* Routing data using the distribution path between the Distribution and Receiver Server.

* Communicating between Oracle GoldenGate and the client applications (web browser,
Admin Client or any other Rest API calls)

When secured by TLS, connections between a client and a server should have one or more
of the following properties:

* The connection is private (or secure) because cryptography is used to encrypt the data
transmitted

e The identity of the communicating parties can be authenticated using public-key
cryptography The connection is reliable because each message transmitted includes a
message integrity check using a message authentication code to prevent undetected loss
or alteration of the data during transmission.

Topics:

* Certificate Access Control List
Learn how you can refine communication security.

e Transport Layer Security Protocols and Ciphers
Review the supported security protocols.

* TLS Certificate Revocation List Handling
Learn how to configure a revocation list.

e HTTPS Security and Cache Headers
Review the supported security and cache headers.

5.1 Certificate Access Control List

ORACLE

Learn how you can refine communication security.

The communication security accepts a valid certificate during the connection handshake
process. The certificate must be signed by the server or for CA it must trusted by the server.
However, you may need to filter and reject otherwise valid certificates based on internal
policies. To support this additional validation, the MA extends the standard certificate
validation by adding a post-verification certificate Access Control List (ACL) management.
This certificate ACL follows the general model used for network ACLs where the ACL is a
map with the key identifying the governed element and a value indicating whether the
element is allowed or denied. The certACL entry has a scopespecification that allows the ACL
entry to be applied to specific identification elements within a certificate.

5-1

Chapter 5
Transport Layer Security Protocols and Ciphers

The configuration of a certificate ACL takes the form of an array of certACL entry
configuration specification. Each specification minimally contains a permission
statement indicating whether it allows or denies client connections from the specified
address. The certACL entry specifications are processed in order and terminate as
soon as the specified address is qualified. If the specified address does not qualify,
processing continues with the next specification. Once a certificate is qualified, the
certACL permissions dictate whether the certificate is allowed or denied. If a no
certACL entry specification qualify the certificate of the client requesting connection, a
default resolution of 'allow is assumed and the certificate is accepted.

CertACL Entry Syntax

certACL := '[' aclSpec [, aclSpec] ']'
aclSpec ;= '"{'" perm [',"' name [',' scope '}'
perm := "permission" ':' ["deny" | "allow"]
name = "name" "' regex
scope = "scope" ':'" ["subject-name" | "issuer-name"]
regex := ** Uses the dynamic regular expression syntax.

The regex syntax follows the ECMAScript definition. Defining a regular expression as
a JSON node value requires that the any meta symbols used (like \s) have the
\character escaped. You should take care when specifying name regular expression
patterns to ensure that only the full match with the intended target pattern is matched.
In the syntax, the patterns only full match with the intended target pattern
CN=AdminClnt not CN=AdminClntl, CN=AdminClntOther, CN=OtherAdminClnt, Or
CCN=0OtherAdminClnt because the match pattern includes delimiter specifications that
bound the pattern. These patterns assume a standard distinguished name format that
allows no whitespace between the keyname and the value. The CN = AdminClnt non-
standard pattern would not match.

Example 5-1 Allow All Certificates Example

"CertACL" : [{ "name"™ : "~ (?2:(2:\\s*,?)|.*[\\s,]+) (CN=AdminClnt) (?: (?2:\\s* (,+\
\s*.*))$|\\s$)", "permission" : "deny" }]
Or
"CertACL" : [{ "name" : "~ (?:(?2:\\s*,?)|.*[\\s,]+) (CN=AdminClnt) (?2: (?:\\s* (, +\
\s*.*))$|\\s$)", "scope" : "subject-name", "permission" : "deny" }]

Example 5-2 Deny certificates issued from Deploy2

"CertACL" : [{ "name" : "~ (2:(2:\\s*,?)|.*[\\s,]+) (CN=Deploy2) (?: (?:\\s* (,+\
\s*.*))$|\\s$)", "scope" : "issuer-name", "permission" : "deny" }]

Example 5-3 Certificates Issued to Suspect or Any Certificate Issued ByDeploy2

"CertACL" : [{ "name" : "~ (?:(2:\\s*,?)|.*[\\s,]+) (CN=Suspect) (2: (2:\\s* (, +\
\s*.*))$|\\s$)", "scope" : "subject-name", "permission" : "deny" }, { "name" :
"2 (?2:\\s*, ?) | .*[\\s,]+) (CN=Deploy2) (2: (?:\\s* (,+\\s*.*))$[\\s$)", "scope" :
"issuer-name", "permission" : "deny" }]

5.2 Transport Layer Security Protocols and Ciphers

Review the supported security protocols.

ORACLE 5-2

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

Chapter 5
TLS Certificate Revocation List Handling

TLS 1.2 is the default version used with Oracle GoldenGate. See the RFC 5246 for details
about the TLS protocol version 1.2.

TLS Security Cipher Suites

The following are the supported security cipher suites and these are the available values that
you can use when setting the /config/securityDetails/network/common/
cipherSuites security setting.

TLS v1.1

TLS_RSA WITH AES 128 CBC SHA
TLS RSA WITH AES 256 CBC SHA
TLS_ECDHE_ECDSA WITH 3DES EDE CBC SHA
TLS_ECDHE ECDSA WITH AES 128 CBC SHA
TLS_ECDHE ECDSA WITH AES 256 CBC SHA
TLS_ECDHE ECDSA WITH RC4 128 SHA
TLS_ECDHE RSA WITH 3DES EDE CBC_ SHA
TLS_ECDHE RSA WITH AES 128 CBC SHA
TLS_ECDHE RSA WITH AES 256 CBC SHA
TLS_ECDH ECDSA WITH 3DES EDE CBC SHA
TLS_ECDH ECDSA WITH AES 128 CBC_ SHA
TLS_ECDH ECDSA WITH AES 256 CBC_ SHA
TLS_ECDH ECDSA WITH RC4 128 SHA
TLS_ECDH RSA WITH 3DES EDE CBC_ SHA
TLS_ECDH RSA WITH AES 128 CBC SHA
TLS_ECDH RSA WITH AES 256 CBC SHA
TLS_ECDH RSA WITH RC4 128 SHA

TLS v1.2

TLS_RSA WITH AES 128 CBC SHA256 TLS RSA WITH AES 128 GCM SHA256
TLS RSA WITH AES 256 CBC SHA256 TLS RSA WITH AES 256 GCM SHA384
TLS_ECDHE_ECDSA WITH AES 128 CBC_SHA256 TLS ECDHE ECDSA WITH AES 128 GCM SHA256
TLS_ECDHE_ECDSA WITH AES 256 CBC_SHA384 TLS ECDHE ECDSA WITH AES 256 GCM SHA384
TLS_ECDHE RSA WITH AES 128 CBC SHA256 TLS ECDHE RSA WITH AES 128 GCM SHA256
TLS_ECDHE RSA WITH AES 256 CBC SHA384 TLS ECDHE RSA WITH AES 256 GCM SHA384
TLS DHE_RSA WITH AES 128 CBC SHA256 TLS DHE RSA WITH AES 128 GCM SHA256
TLS DHE RSA WITH AES 256 CBC SHA256 TLS DHE RSA WITH AES 256 GCM SHA384
TLS_ECDH_ECDSA_WITH AES 128 CBC SHA256 TLS_ECDH ECDSA WITH AES 128 GCM SHA256
TLS_ECDH_ECDSA_WITH AES 256 CBC SHA384 TLS ECDH ECDSA WITH AES 256 GCM SHA384
TLS_ECDH_RSA WITH AES 128 CBC_SHA256 TLS ECDH RSA WITH AES 128 GCM SHA256
TLS_ECDH RSA WITH AES 256 CBC_SHA384 TLS ECDH RSA WITH AES 256 GCM SHA384

ECC ciphers are based on the algebraic structure of elliptic curves over finite fields. The
elliptic curve discrete logarithm problem (ECDLP) assumes that finding the discrete logarithm
of a random elliptic curve element with respect to a publicly known base point is infeasible.
The benefit of ECC ciphers is that generally the key sizes are smaller compared to nhon-ECC
cipher equivalents.

5.3 TLS Certificate Revocation List Handling

ORACLE

Learn how to configure a revocation list.

A Certificate Revocation List (CRLS) is a Privacy Enhance Mail (PEM) formatted file that
contains information identifying the issuer of the revocation list followed by zero or more
entries identifying certificate that have been revoked. A secured server is part of establishing
a secure channel with a peer and will initiate a handshake with the peer. During this
handshake security information and capabilities are negotiated and exchanged, which

5-3

https://tools.ietf.org/html/rfc5246

ORACLE

Chapter 5
TLS Certificate Revocation List Handling

includes the one or both certificates of the participants. Depending on security
configurations, one, both, or neither of the participants may present or require the
presentation of the peer's certificate.

After receiving and verifying the validity of a peer's X.509 certificate, the receiving
participant consults the currently configured CRL. The presence of an entry identifying
the just-validated peer certificate causes the receiving participant to consider the
remote participant's certificate as having been revoked. A revoked certificate is
considered invalid for the purposes of authenticating the identity of the remote
participant. A revoked certificate fails the integrity-check portion of the secure channel
handshake and terminates the channel. Depending on the implementation that remote
peer detects that an error occurred during certificate validation, but may not be
informed of the specific cause.

The actual CRL consists of prolog and identifies the issuer of the CRL followed by zero
or more entries. Each entry identifies a specific certificate by serial number along with
security information relating to the date of revocation, the signature algorithm, and
finger-print information.

Typically, the CRL in compact form only includes the contents between the ----- BEGIN
X509 CRL----- and ----—- END X509 CRL----- delimiters. All other data outside these
delimiters is ignored. You can embed a textual representation of the CRL in the CRL
file without affecting the function of the CRL.

The use of CRLs is configured for each MA server individually The CRL configuration
is composed of two properties:

/config/security/common/crlEnabled

Enables or disables CRL processing.

If, however, /config/security/common/crlEnabled is enabled (true), then the /
config/security/common/crlStore property must refer to a valid and well formed
CRL.

/config/security/common/crlStore

When CRL processing is disabled (false), the remote participant's certificate is not
checked against a CRL. When this is the case, you don’t need to set the /config/
security/common/crlStore property.

A valid and well formed CRL file is either a PEM encoded CRL file that conforms to the
RFC2380 - Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile or an empty file.

The following is a sample excerpt declaring and defining CRL processing for a secured
server.

{

"config" : {
"security: {
"common" : {
"crlEnabled" : true,
"crlStore" : "file:/scratch/Tests/unittests/etc/ssl/RootCA/CAs/

Deployl/CRLs/empty CRL.pem"
}
}

5-4

Chapter 5
HTTPS Security and Cache Headers

The CRL file may be updated or replace by other, presumably more current, versions while
the server is running. Replacing the CRL file causes the next request CRL lookup to use the
newly updated file.

Regardless of how the /config/security/common/crlEnabled property is set, CRL
processing is disabled if the general security configuration of the server is disabled. For
example, the value of the /config/security property is false).

One other configure setting that indirectly effects CRL processing is the /config/
securityDetails/network/common/authMode property. This property controls whether the
server requires the client to authenticate using a certificate or whether the server accepts
optionally presented certificate or whether the server will ignore any presented client
certificates. If a certificate is not required, not presented, or ignored by the server, then CRL
processing is not used.

5.4 HTTPS Security and Cache Headers

ORACLE

Review the supported security and cache headers.

The MA server accepts and returns HTTPS envelopes that contain a set of headers that
govern how the server, the client, and proxies handle the HTTPS contents. For HTTPS
information, see:

RFC 7034 - HTTP Header Field X-Frame-Options https://tools.ietf.org/html/rfc7034

RFC 7762 - Initial Assignment for the Content Security Policy https://tools.ietf.org/html/
rfc7762

RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1 https://tools.ietf.org/html/rfc2616

Security Headers

The security headers that can be issued are:

Content Security Policy (CSP)

The CSP is included as a header in server responses and defines how the client should
handle the content sent by the server.

The default CSP header statement is:

Content-Security-Policy: script-src 'self' 'unsafe-eval' 'unsafe-inline'

The options are:
* script-src:
e unsafe-eval:

e unsafe-inline:

X-Frame-Options

The X-Frame-Options is included as headers in server responses and signals the client
whether or not a user-agent should be allowed to render the content in an <frame>,
<iframe>, Or <object>. Websites use<frame> and <iframe> to create mash-ups or to embed
part of one site. However, this exposes the embedded site to clickjacking (classified as a
user interface redress) attacks. This directive disallows the client from rendering the content
as embedded unless the content is from the same site (origin).

The default X-Frame-Options statement is:

X-Frame-Options: SAMEORIGIN

5-5

https://tools.ietf.org/html/rfc7034
https://tools.ietf.org/html/rfc7762
https://tools.ietf.org/html/rfc7762
https://tools.ietf.org/html/rfc2616

ORACLE

Chapter 5
HTTPS Security and Cache Headers

The option is SAMEORIGIN.

X-XSS-Protection

The X-XSS-Protection is included as a header in server responses and configure the
user-agent's built in XSS (Cross-Site-Security)protection. The options are to enable,
disable and can be combined with block and report.

The default X-XSS-Protection statement is:

X-XSS-Protection: 1; mode=block

The options are:
» 1: Enable the user-agent's protection mode.
» 2: Disable the user-agent's protection mode.

* mode=block: Block the server's response if the content script was injected as user
input.

* mode-report=url: Report the potential XSS attack to the designated URL. Only
supported by Chrome and WebKit.

X-Content-Type-Options
The default X-Content-Type-Options Statement is:

X-Content-Type-Options: nosniff
The option is nosniff.

Cache Headers

The supported cache headers are:

Cache-Control
The default Cache-Control statement is:

Cache-Control: no-cache, no-store, must-revalidate

Pragma
The default Pragma statement is:

Pragma: no-cache

Expires
The default Expires statement is:

Expires: 0

HTTP Strict-Transport-Security

The default HTTP Strict-Transport-Security (HSTS) statement is:
Strict-Transport-Security: max-age=expire-time; includeSubDomains

The configured default for max-age is 31536000 and includeSubDomains specifies

that the HSTS applies the requesting domain and all subdomains. The default
configuration is controlled by:

{ "config" : { "hstsEnabled": true, "hstsDetails": "max-age=31536000 ;
includeSubDomains" }}

The options are:

5-6

Chapter 5
HTTPS Security and Cache Headers

hstsEnable controls whether or not the HSTS header is included in responses.
hstsDetails defines the value of the HSTS header, see RFC 6797 HTTP Strict Transport
Security (HSTS).

ORACLE 5.7

https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797

Using Target-Initiated Distribution Paths

Learn about target-initiated distribution paths in MA, the need to set it up, and various use
cases where it is helpful to use target-initiated distribution paths.

Topics:
e Overview of Target-Initiated Paths

* How Do Target-Initiated Distribution Paths Work?

6.1 Overview of Target-Initiated Paths

Target-initiated paths for microservices enable the Receiver Server to initiate a path to the
Distribution Service on the target deployment and pull trail files. This feature allows the
Receiver Server to create a target initiated path for environments such as Demilitarized Zone
Paths (DMZ) or Cloud to on-premise, where the Distribution Server in the source Oracle
GoldenGate deployment cannot open network connections in the target environment to the
Receiver Server due to network security policies.

If the Distribution Server cannot initiate connections to the Receiver Server, but Receiver
Server can initiate a connection to the machine running the Distribution Server, then the
Receiver Server establishes a secure or non-secure target initiated path to the Distribution
Server through a firewall or Demilitarized (DMZ) zone using Oracle GoldenGate and pull the
requested trail files.

The Receiver Server end-points display that the retrieval of the trail files was initiated by the
Receiver Server, see Quick Tour of the Receiver Server Home Page.

You can enable this option from the Configuration Assistant wizard Security options, see How
to Create Deployments. For steps to create a target-initiated distribution path, see How to
Add a Target-Initiated Distrbution Path in Using the Oracle GoldenGate Microservices
Architecture.

6.2 How Do Target-Initiated Distribution Paths Work?

Oracle GoldenGate has been using the passive alias configuration to initiate passive and
alias connection between source and target systems. With MA, this functionality has been
enhanced and is not available with target-initiated distribution paths, which can be managed
from the Receiver and Distribution server and the Admin Client commands.

The path is created from the Receiver Server of the target deployment and has the property
TARGET INITIATED. This is read-only. This path is accessible from the Distribution Server
also. The path information is stored on the target system.

If the communication is lost, then the Receiver Server on the target host needs the path
definition to restart the connection. This information is shared with the Distribution Server
when the path is running.

The path is ephemeral on the source deployment. Ephemeral paths help with consolidation
of path configuration and with reinforcement of target-to-source connection initiation.

ORACLE 6-1

ORACLE

Chapter 6
How Do Target-Initiated Distribution Paths Work?

When the path is stopped or disconnected, the Distribution Server removes all the
path information including the path definition. However, the checkpoint file is retained
because the checkpoint is used to decide whether old trails can be purged or not. It is
recommended that old trails are not purged unless the path is intentionally deleted.

Security Configuration between Secure and Non-Secure Source and Target
Deployments

The communication channel can optionally be secured using SSL and the same
authentication mechanisms. See the Security Options in How to Create Deployments.

6-2

Common Security Features

Use this part to implement security features that are common to both the Microservices
Architecture and theClassic Architecture environments.

Topics:

e Managing Encryption Using a Key Management Service in Oracle GoldenGate
Oracle Key Vault, a Key Management Service (KMS) is supported for both Classic
Architecture and Microservices Architecture. This chapter describes the benefits, system
requirements, processes, and parameters for configuring Oracle Key Vault with Oracle
GoldenGate.

* Encrypting Data with the Master Key and Wallet Method
To use this method of data encryption, you create a master key wallet and add a master
key to the wallet. This method works as follows, depending on whether the data is
encrypted in the trails or across TCP/IP:

* Managing Identities in a Credential Store
Learn how to use an Oracle GoldenGate credential store to maintain encrypted database
passwords and user IDs and associate them with an alias.

ORACLE

Managing Encryption Using a Key
Management Service in Oracle GoldenGate

Oracle Key Vault, a Key Management Service (KMS) is supported for both Classic
Architecture and Microservices Architecture. This chapter describes the benefits, system
requirements, processes, and parameters for configuring Oracle Key Vault with Oracle
GoldenGate.

Topics:

* What is a Key Management Service?
A Key Management Service (KMS) is a utility that centralizes the management of
encryption keys.

e Managing Encryption Using a Key Management Service in Oracle GoldenGate
Microservices Architecture
This chapter describes the benefits of using a Key Management Services with Oracle
GoldenGate Microservices Architecture. It also describes the system requirements,
processes and parameters available with Oracle GoldenGate for configuring Oracle Key
Vault with Oracle GoldenGate.

7.1 What is a Key Management Service?

A Key Management Service (KMS) is a utility that centralizes the management of encryption
keys.

Oracle GoldenGate Microservices Architecture supports KMS to provide scalability in
managing encryption keys and credentials along with security such that the key isn't stored or
managed by Oracle GoldenGate.

The Oracle GoldenGate key uses the encapsulation approach to encrypt trail files. It
generates a data encryption key (DEK) for each trail file, known as local key. An encrypted
version of the local key is included in the trail file header and a master key is used to encrypt
the data encryption key. This process is called encapsulation encryption.

In Oracle GoldenGate, a KMS can be used to manage cryptographic keys within an
enterprise.

Topics:

Why Use KMS to Store Oracle GoldenGate Encryption Keys?
Oracle GoldenGate encryption of trail files is enhanced by using Oracle Key Vault as the
Key Management Service (KMS) to store master keys.

e Oracle Key Vault Capabilities
Oracle GoldenGate supports Oracle Key Vault.

7.1.1 Why Use KMS to Store Oracle GoldenGate Encryption Keys?

Oracle GoldenGate encryption of trail files is enhanced by using Oracle Key Vault as the Key
Management Service (KMS) to store master keys.

ORACLE 7-1

Chapter 7
Managing Encryption Using a Key Management Service in Oracle GoldenGate Microservices Architecture

Key management refers to managing cryptographic keys within an enterprise. It deals
with generating, exchanging, storing, using, and replacing keys as required. A KMS
also includes key servers, user procedures, and protocols. The security of the
enterprise is dependent upon successful key management.

The advantages of using KMS with Oracle GoldenGate are:

» Centralized lifecycle management of master keys. You'll be able to generate and
upload master keys to Oracle Key Vault directly using custom attributes and
perform lifecycle maintenance tasks within the KMS directly.

* Oracle GoldenGate doesn't need to store the master keys locally and is not
involved in the lifecycle management of the master keys.

» Oracle GoldenGate can leverage from the specialized KMS features that provide
key management with several layers of security.

7.1.2 Oracle Key Vault Capabilities

Oracle GoldenGate supports Oracle Key Vault.
The following table provides the behavior and capabilities of Oracle Key Vault.

For more information about configuring Oracle Key Vault, see Installing and
Configuring Oracle Key Vault .

KMS Name KMS Type Support Tags Support Importing of
Keys
Oracle Key Vault Keyname and custom Yes Yes
attributes for
versioning

7.2 Managing Encryption Using a Key Management Service
In Oracle GoldenGate Microservices Architecture

ORACLE

This chapter describes the benefits of using a Key Management Services with Oracle
GoldenGate Microservices Architecture. It also describes the system requirements,
processes and parameters available with Oracle GoldenGate for configuring Oracle
Key Vault with Oracle GoldenGate.

Topics:

* What is an Encryption Profile?
An encryption profile is the configuration information that is used to retrieve a
masterkey from a KMS. This includes all the information necessary to connect and
authenticate to the KMS server, together with all the details necessary to retrieve a
particular masterkey that will be used for encryption and decryption.

» Prerequisites for Configuring OKV on Oracle GoldenGate
Learn the prerequisites for setting up OKV with Oracle GoldenGate.

* How to Configure an Encryption Profile in MA?
This topic describes the steps to configure an encryption profile for different KMS
options available with Oracle GoldenGate MA.

7-2

Chapter 7
Managing Encryption Using a Key Management Service in Oracle GoldenGate Microservices Architecture

» Client Behavior Against Different Key States for Oracle Key Vault
This topic describes the relative behavior of the of the reader or writer client processes
depending on the different encryption key states.

7.2.1 What is an Encryption Profile?

ORACLE

An encryption profile is the configuration information that is used to retrieve a masterkey from
a KMS. This includes all the information necessary to connect and authenticate to the KMS
server, together with all the details necessary to retrieve a particular masterkey that will be
used for encryption and decryption.

Any Key Management Service uses an authentication token to access their APIs. Oracle
GoldenGate Microservices Architecture stores this access token as a credential. This
credential is created using the encryption profile in Microservices Architecture. Encryption
profile configuration only available with Microservices Architecture. For Classic Architecture,
see Managing Encryption Using a Key Management Service in Oracle GoldenGate Classic
Architecture.

An encryption profile is used by the writer and reader clients. A writer client encrypts
information, while a reader client decrypts information. In the Microservices Architecture, this
is defined by the following roles assigned to each component:

e Extract: Writer client.
e Replicat: Reader client.
« Distribution Server Path: Writer and Reader client.

e LogDump: Reader client.

The clients use the encryption profile that you choose when setting up the encryption MA.
The Distribution Server has both the roles of a writer and a reader and only one encryption
profile is used. However, if a Distribution Server is operating in PASSTHRU mode then it does
not require any encryption profile. Decryption is only needed when column filtering is used.
You can create different encryption profiles and all the clients can access the required
encryption profile. Clients access their associated encryption profile whenever they need it. A
reader will access the encryption profile every time a new trail is being read. The TTL
parameter is used to keep the key on memory until time to live (TTL) has been reached.

In MA, each Extract and Replicat process is associated with an encryption profile. The default
encryption profile is Local Wallet if you haven't specified any other encryption profile as the
default.

Already created Extracts, Replicats and Distribution Paths use their associated encryption
profile and not a newly created one. Only processes created after the default encryption
profile has been changed, will use the newly created encryption profile. So, the Local Wallet
profile is not used if you specify any other encryption profile for the Extract, Replicat, and
Distribution path processes.

A distribution path will use the encryption profile when:

1. the source trail is not encrypted and you have specified the algorithm property in the
encryption object:

"target": {
"details": {
"encryption": {
"algorithm": "AES256"
}

7-3

Chapter 7
Managing Encryption Using a Key Management Service in Oracle GoldenGate Microservices Architecture

b
"uri": "ogg://localhost:13101/services/v2/targets?

trail=b4"
}

2. The source trail is encrypted and there is a defined filter of type COLUMNVALUES.

The Administration Server in microservices allows you to manage your encryption
profiles. You cannot modify an encryption profile. If you need to change it, you must
delete and add a new profile using the Administration Server.

7.2.2 Prerequisites for Configuring OKV on Oracle GoldenGate

ORACLE

Learn the prerequisites for setting up OKV with Oracle GoldenGate.

The following steps belong to the OKV configuration on the machine where the Oracle
GoldenGate instance is running:

1. Download the okvrestservices.jar from the OKV server, where Oracle
GoldenGate is deployed as the same system user as the deployment.

2. Download and install the endpoint file, okvclient.jar from the OKV server, where
Oracle GoldenGate is deployed as the same system user as the deployment. For
example,

0S> java -jar okvclient.jar -d /u0l/app/oracle/OKV

3. Create the key. The name of the wallet is provided by the OKV administrator. The
following example show how the key is created:

0S> java -jar okvrestservices.jar kmip

--config /ull/app/oracle/OKV/conf/okvclient.ora

--service create key

--algorithm AES

--length 256

--mask
"ENCRYPT, DECRYPT, TRANSLATE ENCRYPT, TRANSLATE DECRYPT, TRANSLATE WRAP,
TRANSLATE UNWRAP"

--wallet OKV_WALLET76876ABA-B06D-4F35-BF7C-D9306D29764B

Alternatively, you can register your own key, as shown in the following example:

OS>java -jar okvrestservices.jar kmip

--config ./conf/okvclient.ora --service reg key -
ENCRYPT, DECRYPT, TRANSLATE ENCRYPT, TRANSLATE DECRYPT, TRANSLATE WRAP,T
RANSLATE UNWRAP

--wallet OGG_WALLET

--object /ull/key.txt64B3AAD0-BE77-1821-
E053-0100007FD178

4. Set the OKV_HOME environment variable.
0S> setenv OKV_HOME /uOl/app/oracle/OKV

The sub-directory structure contains the necessary libraries, binaries, and
configuration files for the OKV environment. See Install OKV Software Onto

7-4

Chapter 7
Managing Encryption Using a Key Management Service in Oracle GoldenGate Microservices Architecture

Endpoint in the Oracle Key Vault Administration Guide for details about the configuration
within the OKYV server.

5. Activate the key as shown in the following example:

0S> java -jar okvrestservices.jar kmip
--config /u0l/app/oracle/OKV/conf/okvclient.ora
--service activate
--uid 76876ABA-B06D-4F35-BF7C-D9306D29764B
INFO: Success

6. Add the Oracle GoldenGate related key attributes (KeyName, KeyVersion) to the
configuration. The key name must match the master keyname in the KMS encryption
profile created within Oracle GoldenGate. The key value must match the version number
of the masterkey.

0S> java -jar okvrestservices.jar kmip
--config /u0l/app/oracle/OKV/conf/okvclient.ora
--service add custom attr
--uid 76876ABA-B06D-4F35-BF7C-D9306D29764B
--attribute x-0GG-KeyName
--type TEXT
--value 0GG Masterkey

INFO: Success

0S> java -jar okvrestservices.jar kmip
--config /u0l/app/oracle/OKV/conf/okvclient.ora
--service add custom attr
--uid 76876ABA-B06D-4F35-BF7C-D9306D29764B
--attribute x-0GG-KeyVersion
--type TEXT
--value 1

INFO: Success

7. Use okvutil to list the configuration setting and check the endpoint status. As shown in
the following example:

0S>okvutil list -v 4

okvutil version 18.2.0.0.0

Endpoint type: Oracle (non-database)

Configuration file: /u0l/app/oracle/OKV/conf/okvclient.ora
Server: 10.245.64.45:5696 10.245.64.46:5696

Standby Servers:Read Servers: 10.245.64.48:5696
Auto-login wallet found, no password needed

Trying to connect to 10.245.64.45:5696 ...

Connected to 10.245.64.45:5696.

Unique ID Type Identifier
72B673E8-840B-4AD6-8400-CB77B68D74B5 Template Default template for OGG EP
76876ABA-B06D-4F35-BF7C-D9306D29764B Symmetric Key -

The next steps are managed within Oracle GoldenGate and are shown as an implementation
from the Admin Client.

ORACLE 7.5

Chapter 7
Managing Encryption Using a Key Management Service in Oracle GoldenGate Microservices Architecture

7.2.3 How to Configure an Encryption Profile in MA?

ORACLE

This topic describes the steps to configure an encryption profile for different KMS
options available with Oracle GoldenGate MA.

You can configure encryption profiles from the Administration Server or the
AdminClient. To configure the encryption profile using the Administration Server, see
Administration Server: Key Management tab.

The Admin Client commands used to set up the encryption profile for Extract, Replicat,
and Distribution Path, include ADD ENCRYPTIONPROFILE, ALTER ENCRYPTIONPROFILE,
DELETE ENCRYPTIONPROFILE, INFO ENCRYPTIONPROFILE. In addition, the ADD or ALTER
the Extract, DISTPATH, or Replicat commands have been modified to include the
parameter ENCRYPTIONPROFILE encryption-profile-name.

To know more, see AdminClient Command Line Interface Commands in Command
Line Interface Reference for Oracle GoldenGate.

There are two options for managing masterkeys:
* Local Wallets
* KMS, which is OKV.

Local Wallet Encryption Profile

The default encryption profile is set to Local Wallet after you install Oracle GoldenGate
MA or upgrade to Oracle GoldenGate 19c¢ (19.1.0). For Extract, Replicat, and
Distribution Path, the Profile Name field displays the value as Local Wallet.

Oracle Key Vault Encryption Profile

For Oracle Key Vault, the encryption profile credentials require the following inputs:
* Name: Specify the name of the Oracle Key Vault encryption profile.
* Type: Specify the KMS type as 0Kv.

* Home Path: Specify the directory location where Oracle Key Vault is installed. In
Admin Client, this is the OKV path. In the web interface, this is the KMS library
path.

» Key Name Attribute: Specify the name of the encryption key using this custom
attribute. This value must match the key name in the KMS parameter in Oracle
GoldenGate and cannot be changed once replication has started.

» Key Version Attribute: Specify the version of the encryption key using this custom
attribute. This value must be numeric.

* MasterKey Name: Specify the name of the master key.

* MasterKey Version: Specify the version of Oracle Key Vault. Default value is
LATEST or you can specify the version number such as 18.1.

e Time to live: Time to live (TTL) for the key retrieved by Extract from KMS. When
encrypting the next trail, Extract checks if TTL has expired. If so, it retrieves the
latest version of the master key. The default is 24 hours.

7-6

Chapter 7
Managing Encryption Using a Key Management Service in Oracle GoldenGate Microservices Architecture

< Note:

Do not upload keys with duplicate values of Key Name and Key Version. At the time
of startup, restart, or rollover, Oracle GoldenGate processes retrieve the highest
Key Version value.

7.2.4 Client Behavior Against Different Key States for Oracle Key Vault

This topic describes the relative behavior of the of the reader or writer client processes
depending on the different encryption key states.

ORACLE

A key can be in the following states:

Active: Trail writer choose the highest version number (unless _Version is specified) with
Active state for encryption. Trail reader can use this (key, version number) to decrypt the
trail.

Preactive: Trail writer ignores the key and version number with this state.

Deactivated: Trail writer ignores the key and version number with this state. Trail file
reader retrieves and uses this key and version number to decrypt the trail if it is
deactivated or compromised.

Compromised: Trail writer ignores the key and version number with this state. Trail file
reader retrieves and uses this key and version number to decrypt the trail if it is
deactivated or compromised.

Destroyed: Trail writer ignores the key and version number with this state. Trail file reader
generates an error and abends if the key and version number required to decrypt is in
this state.

Destroyed-Compromised: Trail writer ignores the key and version number with this state.
Trail file reader generates an error and abends if the key and version number required to
decrypt is in this state.

7-7

Encrypting Data with the Master Key and
Wallet Method

To use this method of data encryption, you create a master key wallet and add a master key
to the wallet. This method works as follows, depending on whether the data is encrypted in
the trails or across TCP/IP:

« Each time Oracle GoldenGate creates a trail file, it generates a new encryption key
automatically. This encryption key encrypts the trail contents. The master key encrypts
the encryption key. This process of encrypting encryption keys is known as key wrap and
is described in standard ANS X9.102 from American Standards Committee.

» For the Classic Architecture, to encrypt data across the network, Oracle GoldenGate
generates a session key using a cryptographic function based on the master key.
However, the Distribution Server ogg protocol doesn't support this method.

Oracle GoldenGate uses an auto-login wallet (file extension .sso), which is an obfuscated
container that does not require human intervention to supply the necessary passwords.

Encrypting data with a master key and wallet is not supported on the NonStop platforms.
Topics:

* Creating the Wallet and Adding a Master Key

» Specifying Encryption Parameters in the Parameter File

* Renewing the Master Key

* Deleting Stale Master Keys

8.1 Creating the Wallet and Adding a Master Key

ORACLE

The wallet is created in a platform-independent format. The wallet can be stored on a shared
file system that is accessible by all systems in the Oracle GoldenGate environment.
Alternatively, you can use an identical wallet on each system in the Oracle GoldenGate
environment. If you use a wallet on each system, you must create the wallet on one system,
typically the source system, and then copy it to all of the other systems in the Oracle
GoldenGate environment. This must also be done every time you add, change, or delete a
master key.

This procedure creates the wallet on the source system and then guides you through copying
it to the other systems in the Oracle GoldenGate environment.

1. (Optional) To store the wallet in a location other than the dirwlt subdirectory of the
Oracle GoldenGate installation directory, specify the desired location with the
WALLETLOCATION parameter in the GLOBALS file.

WALLETLOCATION directory path
2. Create a master-key wallet with the CREATE WALLET command in GGSCI.

3. Open the wallet after it has been created with the OPEN WALLET command.

8-1

Chapter 8
Specifying Encryption Parameters in the Parameter File

Add a master key to the wallet with the ADD MASTERKEY command.

Issue the INFO MASTERKEY command to confirm that the key you added is the
current version. In a new installation, the version should be 1.

Issue the INFO MASTERKEY command with the VERSTON option, where the version is

the current version number. Record the version number and the AES hash value
of that version.

INFO MASTERKEY VERSION version
Copy the wallet to all of the other Oracle GoldenGate systems.

Issue the INFO MASTERKEY command with the VERSION option on each system to
which you copied the wallet, where the version is the version number that you
recorded. For each wallet, make certain the status is Current. All wallets must
show identical key versions.

INFO MASTERKEY VERSION version

8.2 Specifying Encryption Parameters in the Parameter File

ORACLE

This procedure adds the parameters that are required to support data encryption in the
trails and across the network with the master key and wallet method.

In the following parameter files, add the following:

e To encrypt trail data: In the parameter file of the primary Extract group and the
data pump, add an ENCRYPTTRAIL parameter statement before any parameter
that specifies a trail or file that you want to be encrypted. Parameters that
specify trails or files are EXTTRAIL, RMTTRAIL, EXTFILE, and RMTFILE. The
syntax is:

ENCRYPTTRAIL {AES128 | AES192 | AES256 | BLOWFISH}

* To encrypt data across TCP/IP: You can either modify the parameters file
using the RMTHOSTOPIONS ENCRYPT option or use SOCKSS5 proxy to deliver
data over the network via a SOCKS5 Proxy. See Using SOCKS5 Proxy to
Deliver Encrypted Data.

In the parameter file of the data pump (or the primary Extract, if no pump is
being used), use the ENCRYPT option of the RMTHOSTOPTIONS parameter. The
syntax is:

RMTHOSTOPTIONS host, MGRPORT port, ENCRYPT {AES128 | AES192 | AES256
BLOWFISH}

RMTHOSTOPTIONS ENCRYPT {AES128 | AES192 | AES256 | BLOWFISH}
Where:

° RMTHOSTOPTIONS is used for Extract including passive extracts. See Using

Target System Connection Initiation for more information about passive
Extract.

e ENCRYPTTRAIL without options specifies 256-key byte substitution. This format
is not secure and should not be used in a production environment. Use only
for backward compatibility with earlier Oracle GoldenGate versions.

e AES128 encrypts with the AES-128 encryption algorithm.
* AES192 encrypts with AES-192 encryption algorithm.

8-2

Chapter 8
Specifying Encryption Parameters in the Parameter File

AES256 encrypts with AES-256 encryption algorithm.

BLOWFISH uses Blowfish encryption with a 64-bit block size and a variable-length key
size from 32 bits to 128 bits. Use AES if supported for the platform. Use BLOWFISH for
backward compatibility with earlier Oracle GoldenGate versions, and for DB2 z/OS
and DB2 for i. AES is not supported on those platforms.

Use the DECRYPTTRAIL parameter for a data pump if you want trail data to be decrypted
before it is written to the output trail. Otherwise, the data pump automatically decrypts it, if
processing is required, and then reencrypts it before writing to the output trail. (Replicat
decrypts the data automatically without any parameter input.) Also see How to Configure
an Encryption Profile in MA?.

DECRYPTTRAIL

4

Note:

You can explicitly decrypt incoming trail data and then re-encrypt it again for any
output trails or files. First, enter DECRYPTTRAIL to decrypt the data, and then enter
ENCRYPTTRAIL and its output trail specifications. DECRYPTTRAIL must precede
ENCRYPTTRAIL. Explicit decryption and re-encryption enables you to vary the AES
algorithm from trail to trail, if desired. For example, you can use AES 128 to encrypt
a local trail and AES 256 to encrypt a remote trail. Alternatively, you can use the
master key and wallet method to encrypt from one process to a second process,
and then use the ENCKEYS method to encrypt from the second process to the third
process.

Using SOCKS5 Proxy to Deliver Encrypted Data

8.2.1 Using SOCKSS5 Proxy to Deliver Encrypted Data

The SOCKSS5 protocol routes packets between a server and a client using a proxy server.
The protocol establishes a TCP connection to another server on behalf of the client and then
routes the traffic between the client and server, while hiding the identity of the client from the
public network.

ORACLE

In Oracle GoldenGate, you can use SOCKS5 proxy to deliver data over the network with the
RMHOSTOPTIONS parameter. See RMTHOSTOPTIONS for details.

To create a SOCKSS5 proxys with SSH tunneling to securely transmit data over the network,
perform the following steps:

1.

On Linux, a SOCKSS5 proxy can be set up along with SSH tunneling using the following
SSH command:

ssh -i private key file -v -N -f -D listening IP Address:listening IP
port GGCS

Oracle User@QGGCS IP Address socksproxy output file

: No execution command on remote system

: Dynamic Port Forwarding

: Private Key File

: Run the proxy process in the background

8-3

Chapter 8

Renewing the Master Key
-v: Verbose Mode
-C: Compression

The following example shows the SOCKS5 proxy with SSH tunnel connecting to a
GoldenGate Cloud Service (GGCS) instance with IP address 129.145.2.34:

ssh -N -f -i opc rsa.ppk -D 127.0.0.1:1080 opc€129.145.2.34 /tmp/
0gg_socksproxy.log

After setting up the SOCKSS5 proxy, you can set up Oracle GoldenGate on-premises
Pump to deliver data to GGCS using the SOCKSPROXY parameter from the proxy
server, as shown in the following example:

RMTHOST 129.145.2.34, COMPRESS, MGRPORT 1021, SOCKSPROXY 127.0.0.1:1080

8.3 Renewing the Master Key

ORACLE

This procedure renews the master encryption key in the encryption-key wallet.
Renewing the master key creates a new version of the key. Its name remains the
same, but the bit ordering changes. As part of your security policy, you should renew
the current master key regularly so that it does not get stale.

All renewed versions of a master key remain in the wallet until they are marked for
deletion with the DELETE MASTERKEY command and then the wallet is purged with the
PURGE WALLET command, see Deleting Stale Master Keys.

Unless the wallet is maintained centrally on shared storage (as a shared wallet), the
updated wallet must be copied to all of the other systems in the Oracle GoldenGate
configuration that use that wallet. To do so, the Oracle GoldenGate processes need to
be stopped. This procedure includes steps for performing those tasks in the correct
order.

1. Stop Extract. You need to stop the TRANLOG Extract group, which is the Extract
capturing from the transaction logs.

" Note:

If the TRANLOG Extract group is also acting as an Extract pump, then you
need to stop the applicable and stop all activity on the database as well.

STOP EXTRACT group

2. Check the read RBA of the Extract data pump against the size of the Extract trail

by performing the following:

INFO EXTRACT SHELL ls -1 ./dirdat/[trail identifier]*

When the read RBA matches the trail size, then there is no more data to process.
When the Extract pump or Extract sends all the trail files to the target, then you
should start checking the Replicat to determine when it is at EOF.

8-4

ORACLE

10.

11.

12.

13.

14.

15.

Chapter 8
Renewing the Master Key

On the source system, stop the data pumps.
STOP EXTRACT group
Check the read RBA of the Replicat against the size of the remote trail.

On the target systems, stop the Replicat when the read RBA matches the size of the
remote trail.

STOP REPLICAT group
On the source system, issue the following command to open the wallet.
OPEN WALLET

On the source system, issue the following command to confirm the version of the current
key. Make a record of the version.

INFO MASTERKEY
On the source system, issue the following command to renew the master key.
RENEW MASTERKEY

On the source system, issue the following command to confirm that a new version is
current.

INFO MASTERKEY

" Note:

If you are using a shared wallet, go to step 12. If you are using a wallet on each
system, continue to the next step.

On the source system, issue the following command, where version is the new version
of the master key. Make a record of the hash value.

INFO MASTERKEY VERSION version

Copy the updated wallet from the source system to the same location as the old wallet on
all of the target systems.

On each target, issue the following command, where version is the new version number
of the master key. For each wallet, make certain the Status is Current and compare the
new hash value with the one that you originally recorded. All wallets must show identical
key versions and hash values.

INFO MASTERKEY VERSION version
Restart Extract.

START EXTRACT group

Restart the data pumps.

START EXTRACT group

Restart Replicat.

START REPLICAT group

8-5

Chapter 8
Deleting Stale Master Keys

8.4 Deleting Stale Master Keys

ORACLE

This procedure deletes stale versions of the master key. Deleting stale keys should be
part of the overall policy for maintaining a secure Oracle GoldenGate wallet. It is
recommended that you develop a policy for how many versions of a key you want to
keep in the wallet and how long you want to keep them.

Note:

For Oracle GoldenGate deployments using a shared wallet, the older
versions of the master key should be retained after the master key is
renewed until all processes are using the newest version. The time to wait
depends on the topology, latency, and data load of the deployment. A
minimum wait of 24 hours is a conservative estimate, but you may need to
perform testing to determine how long it takes for all processes to start using
a new key. To determine whether all of the processes are using the newest
version, view the report file of each Extract immediately after renewing the
master key to confirm the last SCN that was mined with the old key. Then,
monitor the Replicat report files to verify that this SCN was applied by all
Replicat groups. At this point, you can delete the older versions of the master
key.

If the wallet is on central storage that is accessible by all Oracle GoldenGate
installations that use that wallet, you need only perform these steps once to the shared
wallet. You do not need to stop the Oracle GoldenGate processes.

If the wallet is not on central storage (meaning there is a copy on each Oracle
GoldenGate system) you can do one of the following:

e If you can stop the Oracle GoldenGate processes, you only need to perform the
steps to change the wallet once and then copy the updated wallet to the other
systems before restarting the Oracle GoldenGate processes.

e If you cannot stop the Oracle GoldenGate processes, you must perform the steps
to change the wallet on each system, making certain to perform them exactly the
same way on each one.

These steps include prompts for both scenarios.

1. On the source system, issue the following command to determine the versions of
the master key that you want to delete. Typically, the oldest versions should be the
ones deleted. Make a record of these versions.

INFO MASTERKEY
2. On the source system, issue the following command to open the wallet.
OPEN WALLET

3. Issue the following command to delete the stale master keys. Options are
available to delete a specific version, a range of versions, or all versions including
the current one. To delete all of the versions, transaction activity and the Oracle
GoldenGate processes must be stopped.

DELETE MASTERKEY {VERSION version | RANGE FROM begin value TO end value}

8-6

ORACLE

10.

11.

12.

13.

14.

Chapter 8
Deleting Stale Master Keys

< Note:

DELETE MASTERKEY marks the key versions for deletion but does not actually
delete them.

Review the messages returned by the DELETE MASTERKEY command to ensure that the
correct versions were marked for deletion. To unmark any version that was marked
erroneously, use the UNDELETE MASTERKEY VERSION version command before proceeding
with these steps. If desired, you can confirm the marked deletions with the INFO
MASTERKEY command.

When you are satisfied that the correct versions are marked for deletion, issue the
following command to purge them from the wallet. This is a permanent deletion and
cannot be undone.

PURGE WALLET

Next steps:
» If the wallet resides on shared storage, you are done with these steps.

» If there is a wallet on each system and you cannot stop the Oracle GoldenGate
processes, repeat the preceding steps on each Oracle GoldenGate system.

» If there is a wallet on each system and you can stop the Oracle GoldenGate
processes, continue with these steps to stop the processes and copy the wallet to the
other systems in the correct order.

Stop Extract.
STOP EXTRACT group

In GGSCI, issue the following command for each data pump Extract until each returns At
EOF, indicating that all of the data in the local trail has been processed.

SEND EXTRACT group STATUS
Stop the data pumps.
STOP EXTRACT group

On the target systems, issue the following command for each Replicat until it returns At
EOF.

SEND REPLICAT group STATUS
Stop the Replicat groups.
STOP REPLICAT group

Copy the updated wallet from the source system to the same location as the old wallet on
all of the target systems.

Restart Extract.

START EXTRACT group
Restart the data pumps.
START EXTRACT group

Restart Replicat.

8-7

Chapter 8
Deleting Stale Master Keys

START REPLICAT group

ORACLE" 8-8

Managing Identities in a Credential Store

Learn how to use an Oracle GoldenGate credential store to maintain encrypted database
passwords and user IDs and associate them with an alias.

It is the alias, not the actual user ID or password, that is specified in a command or parameter
file, and no user input of an encryption key is required. The credential store is implemented
as an autologin wallet within the Oracle Credential Store Framework (CSF).

Another benefit of using a credential store is that multiple installations of Oracle GoldenGate
can use the same one, while retaining control over their local credentials. You can partition
the credential store into logical containers known as domains, for example, one domain per
installation of Oracle GoldenGate. Domains enable you to develop one set of aliases (for
example ext for Extract, rep for Replicat) and then assign different local credentials to those
aliases in each domain. For example, credentials for user oggl can be stored as ALIAS ext
under DOMAIN systeml, while credentials for user ogg2 can be stored as ALIAS ext under
DOMAIN system2.

The credential store security feature is not supported on the DB2 for i, DB2 z/OS, and
NonStop platforms. For those platforms and any other supported platforms, see Encrypting a
Password in a Command or Parameter File.

Topics:
* Creating and Populating the Credential Store

» Specifying the Alias in a Parameter File or Command

9.1 Creating and Populating the Credential Store

ORACLE

1. (Optional) To store the credential store in a location other than the dircrd subdirectory of
the Oracle GoldenGate installation directory, specify the desired location with the
CREDENTIALSTORELOCATION parameter in the GLOBALS file.

2. From the Oracle GoldenGate installation directory, run GGSCI.
3. Issue the following command to create the credential store.
ADD CREDENTIALSTORE
4. Issue the following command to add each set of credentials to the credential store.

ALTER CREDENTIALSTORE ADD USER userid,
[PASSWORD password]
[ALIAS alias]
[DOMAIN domain]

Where:

* useridis the user name. Only one instance of a user name can exist in the
credential store unless the ALIAS or DOMAIN option is used.

9-1

Chapter 9
Specifying the Alias in a Parameter File or Command

password is the password. The password is echoed (not obfuscated) when this
option is used. For security reasons, it is recommended that you omit this
option and allow the command to prompt for the password, so that it is
obfuscated as it is entered.

aliasis an alias for the user name. The alias substitutes for the credential in
parameters and commands where a login credential is required. If the ALIAS
option is omitted, the alias defaults to the user name. If you do not want user
names in parameters or command input, use ALIAS and specify a different
name from that of the user.

domain is the domain that is to contain the specified alias. The default domain
is Oracle GoldenGate.

9.2 Specifying the Alias in a Parameter File or Command

The following commands and parameters accept an alias as substitution for a login
credential.

ORACLE

Table 9-1 Specifying Credential Aliases in Parameters and Commands

Purpose of the Credential Parameter or Command to Use

Oracle GoldenGate database login.

USERIDALIAS alias

Oracle GoldenGate database login for Oracle

TRANLOGOPTIONS ASMUSERALIAS alias

ASM instance.

Oracle GoldenGate database login for a

TRANLOGOPTIONS MININGUSERALIAS alias

downstream Oracle mining database.

Password substitution for {CREATE | ALTER}
USER name IDENTIFIED BY password.

DDLOPTIONS DEFAULTUSERPASSWORDALIAS
alias

Oracle GoldenGate database login from

GGSCI.

DBLOGIN USERIDALIAS alias

Oracle GoldenGate database login to a

MININGDBLOGIN USERIDALIAS alias

downstream Oracle mining database from

GGSCI.

9-2

Securing the Classic Architecture

Use this part to secure your Classic Architecture environments.

Topics:

Securing Manager

You can use the Manager parameter, ACCESSRULE, to set security access rules for
Manager. It allows GGSCI access from a remote host if you are using passive Extract or
Director.

Configuring GGSCI Command Security
You can establish command security for Oracle GoldenGate to control which users have
access to which Oracle GoldenGate functions.

Using Target System Connection Initiation
Learn how to allow Oracle GoldenGate to replicate into a more secure network or server
where communication must be established from the target back to the source system..

Managing Encryption Using a Key Management Service in Oracle GoldenGate Classic
Architecture

This chapter describes the benefits of using a Key Management Service with Oracle
GoldenGate Classic Architecture. It also describes the system requirements, processes
and parameters available with Oracle GoldenGate for configuring Oracle Key Vault with
Oracle GoldenGate.

Configuring SSL Support for PostgreSQL

Managing Encryption Using a Key
Management Service in Oracle GoldenGate
Classic Architecture

ORACLE

This chapter describes the benefits of using a Key Management Service with Oracle
GoldenGate Classic Architecture. It also describes the system requirements, processes and
parameters available with Oracle GoldenGate for configuring Oracle Key Vault with Oracle
GoldenGate.

Topics:

Registering Oracle GoldenGate Endpoint in Oracle Key Vault
To retrieve trail file encryption from Oracle Key Vault, you must register the Oracle
GoldenGate endpoints.

Uploading Master Keys in Oracle Key Vault
You decide the method you want to use to upload the master keys to Oracle Key Vault.

Configuring Oracle GoldenGate
You need to configure the Key Management Services (KMS) global parameters in Oracle
GoldenGate for Oracle Key Vault.

Oracle GoldenGate Trail Writer and Reader Behavior for Different Master Key
States
Oracle GoldenGate behaves differently depending on the key states.

Registering Oracle GoldenGate Endpoint in Oracle Key

Vault

To retrieve trail file encryption from Oracle Key Vault, you must register the Oracle
GoldenGate endpoints.

To configure Oracle GoldenGate:

1.

Register the Oracle GoldenGate in Oracle Key Vault 18.1 or later:
Download and install the endpoint file, okvclient.jar, where Oracle GoldenGate
is deployed as the same system user as the deployment.

java -jar okvclient.jar -d OKV_HOME

¢ Note:

Ensure that wallet created while installing the endpoint is an auto-login
wallet.

Specify the following Oracle Key Vault details with the GLOBALS parameter using

these options:

* Location of OKV_HOME

* Name of the master key master key name.

* KMS TYPE with the value set as OKV

* KMS VERSION with the value setas 18.1.

e Time to live TTL.

See Configuring Oracle GoldenGate for details about KMS globals parameter
values.

Uploading Master Keys in Oracle Key Vault

You decide the method you want to use to upload the master keys to Oracle Key Vault.

ORACLE

There are some prerequisites when uploading master keys to Oracle Key Vault.

Generate symmetric master keys of 256 bits and upload to Oracle Key Vault.
Add custom attributes to the uploaded key:

— x-0GG-KeyName key name: This value must match the key name in the KMS
parameter in Oracle GoldenGate and cannot be changed once replication has
started.

— x-0GG-KeyVersion version#: This value must be numeric.

Do not upload keys with duplicate values of x-0GG-KeyName and x-0GG-KeyVersion. At
the time of startup, restart, or rollover, Oracle GoldenGate processes retrieve the highest
x-0GG-KeyVersion value

Topics:

Register and Upload Master Keys in Oracle Key Vault
Advanced Encryption Standard (AES) 256 master keys can be generated externally and
uploaded to the Oracle Key Vault.

Create Oracle GoldenGate Master Keys in Oracle Key Vault
You can create an AES 256 master key for Oracle GoldenGate instead of registering it.

Register and Upload Master Keys in Oracle Key Vault

Advanced Encryption Standard (AES) 256 master keys can be generated externally and
uploaded to the Oracle Key Vault.

ORACLE

Use the Oracle Key Vault REST utility to register or create the master keys, which Oracle
GoldenGate can retrieve for trail file encryption and decryption.

For details, see Oracle Key Vault Automation with RESTful Services.

Here are the steps to register the master key using the REST utility:

1.

Register an AES 256 master key. The following is an example:

java -jar okvrestservices.jar kmip
--config ./conf/okvclient.ora
--service reg key -
ENCRYPT, DECRYPT, TRANSLATE ENCRYPT, TRANSLATE DECRYPT, TRANSLATE WRAP, TRANSLA
TE _UNWRAP
--wallet OGG _WALLET
--object /ull/key.txt
@Returns a UID, eg: 64B3AAD0-BE77-1821-E053-0100007FD178

See Oracle Key Vault Use Case Scenarios for more information about registering and
uploading master keys.

Activate the master key. The following is a example:

java -jar okvrestservices.jar kmip
--config ./conf/okvclient.ora
--service activate
--uid A9917590-4F7C-4F5B-BF62-E7872C797638

Add the Oracle GoldenGate master key name and version attributes to the key, as shown
in the following example:

java -jar okvrestservices.jar kmip
--config ./conf/okvclient.ora
--service add _custom attr
--uid 64B3AAD0-BE77-1821-E053-0100007FD178
--attribute x-0GG-KeyName

-—-type TEXT
--value OGG _MASTER KEY NAME

java -jar okvrestservices.jar kmip
--config ./conf/okvclient.ora
--service add custom attr
--uid 64B3AAD0-BE77-1821-E053-0100007FD178
--attribute x-O0GG-KeyVersion
-—type TEXT
--value 201

Oracle GoldenGate identifies the master key for a particular deployment using the
custom attributes, x-0GG-KeyName and x-0GG-KeyVersion.

Specify the following Oracle Key Vault values in the new KMS global parameter.
See Configuring Oracle GoldenGate :

» The location of Oracle Key Vault home directory (OKV_HOME)
* Name of the master key

e Time-to-live

An example with the Oracle Key Vault values is:

KMS TYPE OKV KMS VERSION 18.1 HOME /u0l/app/okv_home
MASTER KEY NAME 0GGl TTL 60mins

< Note:

Do not register multiple keys with the same x-0GG-KeyName and x-0GG-
KeyVersion.

Create Oracle GoldenGate Master Keys in Oracle Key Vault

You can create an AES 256 master key for Oracle GoldenGate instead of registering it.

ORACLE

Here are the steps to create the Oracle GoldenGate master key in Oracle Key Vault:

1

Create an AES 256 Oracle GoldenGate master key, as shown in the following
example.

java -jar okvrestservices.jar kmip --config ./conf/okvclient.ora --
service create key

--algorithm AES --length 256 --mask "ENCRYPT,DECRYPT" --wallet
0GG_WALLET

This code returns a UID similar to 64B3AAD0-BE77-1821-E053-0100007FD177.

2. Activate the master key, as shown in the following example.

java -jar okvrestservices.jar kmip --config ./conf/okvclient.ora --
service activate
--uid 64B3AAD0-BE77-1821-E053-0100007FD177

3. Add the Oracle GoldenGate master key name and version attributes to the key, as shown
in the following example.

java -jar okvrestservices.jar kmip --config ./conf/okvclient.ora
--service add custom attr --uid 64B3AAD0-BE77-1821-
E053-0100007FD178
--attribute x-0GG-KeyName --type TEXT --value OGG_MASTER KEY NAME

java -jar okvrestservices.jar kmip --config ./conf/okvclient.ora
--service add custom attr --uid 64B3AAD0-BE77-1821-
E053-0100007FD178
--attribute x-0GG-KeyVersion --type TEXT --value 201

Oracle GoldenGate identifies the master key for a particular deployment using the custom
attributes, x-0GG-KeyName and x-0GG-KeyVersion.

Configuring Oracle GoldenGate

ORACLE

You need to configure the Key Management Services (KMS) global parameters in Oracle
GoldenGate for Oracle Key Vault.

The syntax for specifying the KMS global parameter is:

KMS TYPE kms type KMS VERSION kms version HOME okv_home MASTER KEY NAME
master key name [TTL time]

For example:

KMS TYPE OKV KMS VERSION 18.1 HOME /u0l1/0KV MASTER KEY NAME OGGl [TTL 10]

These are the KMS global parameter values.

Option Mandatory Value Description
TYPE Yes OKV Specifies type of KMS.
Only OKYV is supported.
HOME Yes KMS endpoint software Directory location of the
installation directory. OKV_HOME where the

Oracle Key Vault
endpoint software was
installed.

KMS VERSION Yes Version of the KMS Specifies the version of
the KMS software.

Option

Mandatory Value

Description

MASTER KEY NAME

Master key name

Master key name that
needs to the same on
source and target and
cannot be changed
without quiescing
replication.

TTL

Time

Time to live (TTL) for the
key retrieved by Extract
from KMS. When
encrypting the next trail,
Extract checks if TTL
has expired. If so, it
retrieves the latest
version of the master
key. The default is 24
hours.

Oracle GoldenGate Trail Writer and Reader Behavior for
Different Master Key States

Oracle GoldenGate behaves differently depending on the key states.

These are the behaviors of the trail writer (encryption) and trail reader (decryption) for

each key state.

Key State Trail Writer (encryption) Trail Reader (decryption)
Active Trail writer chooses the Trail reader can use this key
highest version number with and version number to decrypt
Active state for encryption. the trail.
Preactive Trail writer ignores and does ~ Not Applicable
not consider the key version
number with these states.

Deactivated None Trail file reader retrieves and
decrypts the trail if the key and
version number is deactivated
or compromised.

Compromised None Trail file reader retrieves and
decrypts the trail if the key and
version number is deactivated
or compromised.

Destroyed Non Trail file reader generates an

error and abends if the key
and version number required
to decrypt is in the destroyed
or destroyed-compromised
state.

ORACLE

Key State Trail Writer (encryption) Trail Reader (decryption)

Destroyed-Compromised None Trail file reader raises an error
and abends if the key and
version number required to
decrypt is in the destroyed or
destroyed-compromised state.

Configuring SSL Support for PostgreSQL

ORACLE

SSL can be enabled by setting the configuration parameter SSL to on in the PostgreSQL
configuration file (SPGDATA /postgresqgl.conf). If SSL is enabled, the corresponding hostssl
entry must be present or added in the pg_hba. conf file.

When SSL is enabled, Oracle GoldenGate uses the root certificate, root certification
revocation list (CRL), server client certificate, and key from the default locations, as shown in
the following snippet:

~/.postgresqgl/root.crt
~/.postgresqgl/root.crl
~/.postgresqgl/postgresqgl.crt
~/.postgresqgl/postgresqgl.key

You need to create the desired entities from this list, and store them in appropriate locations.

If the SSL configuration is setup using non-default locations, then the following environment
variables should be set up as per the environment.

PGSSLROOTCERT
PGSSLCRL
PGSSLCERT
PGSSLKEY

Changes required in SODBCINI file

The SSL support can be enabled by setting the EncryptionMethod DSN attribute to 1 or 6 in
the SODBCINTI file.

If set to 0 (No Encryption), data is not encrypted.

If setto 1 (SSL), data is encrypted using the SSL protocols specified in the Crypto Protocol
Version connection option. If the specified encryption method is not supported by the
database server, the connection fails and the driver returns an error.

If set to 6 (RequestSSL), the login request and data are encrypted using SSL if the server is
configured for SSL. If the server is not configured for SSL, an unencrypted connection is
established. The SSL protocol used is determined by the setting of the Crypto Protocol
Version connection option.

ORACLE

If the database server/client certificates also need to be validated, then the
corresponding KeyStore file needs to be created and the below mentioned ODBC
DSN attributes should be setup accordingly in SODBCINI.

KeyStore=<path to .pl2 keystore file>
KeyStorePassword=<keystore-passwd>
TrustStore=<path to root certificate>
ValidateServerCertificate=1

Securing Manager

ORACLE

You can use the Manager parameter, ACCESSRULE, to set security access rules for Manager. It
allows GGSCI access from a remote host if you are using passive Extract or Director.

The ACCESSRULE parameter controls connection access to the Manager process and the
processes under its control. You can establish multiple rules by specifying multiple
ACCESSRULE statements in the parameter file and control their priority. To establish priority, you
can either list the rules in order from most important to least important, or you can explicitly
set the priority of each rule with the PRI option.

You must specify one of the following options:
IPADDR, login ID, Of PROGRAM

For example, the following access rules have been assigned explicit priority levels through
the PRI option. These rules allow any user to access the Collector process (the SERVER
program), and in addition, allow the IP address 122.11.12.13 to access GGSCI commands.
Access to all other Oracle GoldenGate programs is denied.

ACCESSRULE, PROG *, DENY, PRI 99
ACCESSRULE, PROG SERVER, ALLOW, PRI 1
ACCESSRULE, PROG GGSCI, IPADDR 122.11.12.13, PRI 1

Another example, the following access rule grants access to all programs to the user JOEN
and designates an encryption key to decrypt the password. If the password provided with
PASSWORD matches the one in the ENCKEYS lookup file, connection is granted.

ACCESSRULE, PROG *, USER JOHN, PASSWORD OCEAN1, ENCRYPTKEY lookupl

10-1

Configuring GGSCI Command Security

You can establish command security for Oracle GoldenGate to control which users have
access to which Oracle GoldenGate functions.

" Note:

The GGSCI program is only available in the Oracle GoldenGate CA.

For example, you can allow certain users to issue INFO and STATUS commands, while
preventing their use of START and STOP commands. Security levels are defined by the
operating system's user groups.

To implement security for Oracle GoldenGate commands, you create a CMDSEC file in the
Oracle GoldenGate directory. Without this file, access to all Oracle GoldenGate commands is
granted to all users.

" Note:

The security of the GGSCI program is controlled by the security controls of the
operating system.

Topics:
e Setting Up Command Security
e Securing the CMDSEC File

11.1 Setting Up Command Security

1. Open a new ASCII text file.

2. Referring to the following syntax and the example on , create one or more security rules
for each command that you want to restrict, one rule per line. List the rules in order from
the most specific (those with no wildcards) to the least specific. Security rules are
processed from the top of the cMDSEC file downward. The first rule satisfied is the one that
determines whether or not access is allowed.

Separate each of the following components with spaces or tabs.

command_name command object OS group OS user (YES | NO}

Where:

* command_name is @ GGSCI command name or a wildcard, for example START or STOP
or*.

ORACLE 11-1

Chapter 11
Setting Up Command Security

* command object is any GGSCI command object or a wildcard, for example
EXTRACT Or REPLICAT Or MANAGER.

* 0S group is the name of a Windows or UNIX user group. On a UNIX system,
you can specify a numeric group ID instead of the group name. You can use a
wildcard to specify all groups.

* 0S useris the name of a Windows or UNIX user. On a UNIX system, you can
specify a numeric user ID instead of the user name. You can use a wildcard to
specify all users.

e YES | NO specifies whether access to the command is granted or prohibited.

3. Save the file as CMDSEC (using upper case letters on a UNIX system) in the Oracle
GoldenGate home directory.

The following example illustrates the correct implementation of a CMDSEC file on a UNIX
system.

Table 11-1 Sample CMDSEC File with Explanations

__|
File Contents Explanation

#GG command security Comment line

STATUS REPLICAT * Smith NO STATUS REPLICAT is denied to user Smith.

Except for the preceding rule, all users in dpt1 are granted

STATUS * dptl * YES
all STATUS commands.

START REPLICAT is granted to all members of the root
group.

Except for the preceding rule, START REPLICAT is denied
to all users.

START REPLICAT root * YES

START REPLICAT * * NO

All EXTRACT commands are denied to all groups with ID of
200.

* EXTRACT 200 * NO

* % root root YES Grants the root user any command.

Denies all commands to all users. This line covers security
for any other users that were not explicitly granted or
denied access by preceding rules. Without it, all
commands would be granted to all users except for
preceding explicit grants or denials.

* x % * NO

The following incorrect example illustrates what to avoid when creating a CMDSEC file.

Table 11-2 Incorrect CMDSEC Entries

|
File Contents Description

STOP * dpt2 * NO All STOP commands are denied to everyone in group dpt2.

STOP * * Chen YES All STOP commands are granted to Chen.

ORACLE 11-2

Chapter 11
Securing the CMDSEC File

The order of the entries in Table 11-2 causes a logical error. The first rule (line 1) denies all
STOP commands to all members of group dpt2. The second rule (line 2) grants all STOP
commands to user Chen. However, because Chen is a member of the dpt2 group, he has
been denied access to all STop commands by the second rule, even though he is supposed
to have permission to issue them.

The proper way to configure this security rule is to set the user-specific rule before the more
general rule(s). Thus, to correct the error, you would reverse the order of the two STOP rules.

11.2 Securing the CMDSEC File

ORACLE

The security of the GGSCI program and that of the CMDSEC file is controlled by the security

controls of the operating system. Because the CMDSEC file is a source of security, it must be
secured. You can grant read access as needed, but Oracle recommends denying write and
delete access to everyone except for system administrators.

11-3

Using Target System Connection Initiation

Learn how to allow Oracle GoldenGate to replicate into a more secure network or server
where communication must be established from the target back to the source system..

When a target system resides inside a trusted intranet zone, initiating connections from the
source system (the standard Oracle GoldenGate method) may violate security policies if the
source system is in a less trusted zone. It also may violate security policies if a system in a
less trusted zone contains information about the ports or IP address of a system in the
trusted zone, such as that normally found in an Oracle GoldenGate Extract parameter file.

In this kind of intranet configuration, you can use a passive-alias Extract configuration.
Connections are initiated from the target system inside the trusted zone by an alias Extract
group, which acts as an alias for a regular Extract group on the source system, known in this
case as the passive Extract. Once a connection between the two systems is established,
data is processed and transferred across the network by the passive Extract group in the
usual way.

Lintrusted Source System Trusted Target System
(Manager e 2 H = | [GGSCI]<—:'1.'j:—- Alias ‘ 7
— ; AT = Extract JS HAR
:.- 5\ ‘.
Zﬁ_;[Manager | Manager | » (AUTOSTART/AUTORESTART)
—
Fublic Metwork iy
¥ . +
—_— Fassive e ' |] —
p— * Exract |© LT ~ | Collector | [_ b-l Replicat —»——
Source TRAIL Target
L1 1] 1 I
T T T T T T
- . - S
Firewall Firawall

ORACLE

1. An Oracle GoldenGate user starts the alias Extract on the trusted system, or an
AUTOSTART Or AUTORESTART parameter causes it to start.

2. GGSCI on the trusted system sends a message to Manager on the less trusted system to
start the associated passive Extract. The host name or IP address and port number of the
Manager on the trusted system are sent to the less trusted system.

3. Onthe less trusted system, Manager starts the passive Extract, and the passive Extract
finds an open port (according to rules in the DYNAMICPORTLIST Manager parameter) and
listens on that port.

4. The Manager on the less trusted system returns that port to GGSCI on the trusted

system.

12-1

Chapter 12
Configuring the Passive Extract Group

5. GGSCI on the trusted system sends a request to the Manager on that system to
start a Collector process on that system.

6. The target Manager starts the Collector process and passes it the port number
where Extract is listening on the less trusted system.

7. Collector on the trusted system opens a connection to the passive Extract on the
less trusted system.

8. Data is sent across the network from the passive Extract to the Collector on the
target and is written to the trail in the usual manner for processing by Replicat.

Topics:

e Configuring the Passive Extract Group

e Configuring the Alias Extract Group

e Starting and Stopping the Passive and Alias Processes

e Managing Extraction Activities

e Other Considerations when using Passive-Alias Extract

12.1 Configuring the Passive Extract Group

ORACLE

The passive Extract group on the less trusted source system will be one of the
following, depending on which one is responsible for sending data across the network:

* A solo Extract group that reads the transaction logs and also sends the data to the
target, or:

* A data pump Extract group that reads a local trail supplied by a primary Extract
and then sends the data to the target. In this case, there are no special
configuration requirements for the primary Extract, just the data pump.

Note:

The passive Extract group is only available in the Oracle GoldenGate CA.

To create an Extract group in passive mode, use the standard ADD EXTRACT command
and options, but add the PASSIVE keyword in any location relative to other command
options. Examples:

ADD EXTRACT fin, TRANLOG, BEGIN NOW, PASSIVE, DESC 'passive Extract'
ADD EXTRACT fin, PASSIVE, TRANLOG, BEGIN NOW, DESC 'passive Extract'

To configure parameters for the passive Extract group, create a parameter file in the
normal manner, except:

* Exclude the RMTHOST parameter, which normally would specify the host and port
information for the target Manager.

e Use the optional RMTHOSTOPTIONS parameter to specify any compression and
encryption rules. For information about the RMTHOSTOPTIONS options, see
Reference for Oracle GoldenGate.

12-2

Chapter 12
Configuring the Alias Extract Group

12.2 Configuring the Alias Extract Group

The alias Extract group on the trusted target does not perform any data processing activities.
Its sole purpose is to initiate and terminate connections to the less trusted source. In this
capacity, the alias Extract group does not use a parameter file nor does it write processing
checkpoints. A checkpoint file is used only to determine whether the passive Extract group is
running or not and to record information required for the remote connection.

" Note:

The alias Extract group is only available in the Oracle GoldenGate CA.

To create an Extract group in alias mode, use the ADD EXTRACT command without any other
options except the following:

ADD EXTRACT group

, RMTHOST {host name | IP_address}
, MGRPORT port

[, RMTINAME name]

[, DESC 'description']

The RMTHOST specification identifies this group as an alias Extract, and the information is
written to the checkpoint file. The host name and IP address options specify the name or IP
address of the source system. MGRPORT specifies the port on the source system where
Manager is running.

The alias Extract name can be the same as that of the passive Extract, or it can be different.
If the names are different, use the optional RMTNAME specification to specify the name of the
passive Extract. If RMTNAME is not used, Oracle GoldenGate expects the names to be identical
and writes the name to the checkpoint file of the alias Extract for use when establishing the
connection.

Error handling for TCP/IP connections is guided by the TCPERRS file on the target system. It is
recommended that you set the response values for the errors in this file to RETRY. The default
is ABEND. This file also provides options for setting the number of retries and the delay

between attempts. For more information about error handling for TCP/IP and the TCPERRS file.

12.3 Starting and Stopping the Passive and Alias Processes

ORACLE

To start or stop Oracle GoldenGate extraction in the passive-alias Extract configuration, you
must start or stop the alias Extract group from GGSCI on the target.

START EXTRACT alias group name

or,

STOP EXTRACT alias_group name

The command is sent to the source system to start or stop the passive Extract group. Do not
issue these commands directly against the passive Extract group. You can issue a KILL
EXTRACT command directly for the passive Extract group.

12-3

Chapter 12
Managing Extraction Activities

When using the Manager parameters AUTOSTART and AUTORESTART to automatically
start or restart processes, use them on the target system, not the source system. The
alias Extract is started first and then the start command is sent to the passive Extract.

12.4 Managing Extraction Activities

Once extraction processing has been started, you can manage and monitor it in the
usual manner by issuing commands against the passive Extract group from GGSCI on
the source system. The standard GGSCI monitoring commands, such as INFO and
VIEW REPORT, can be issued from either the source or target systems. If a monitoring
command is issued for the alias Extract group, it is forwarded to the passive Extract
group. The alias Extract group name is replaced in the command with the passive
Extract group name. For example, INFO EXTRACT alias becomes INFO EXTRACT
passive. The results of the command are displayed on the system where the
command was issued.

12.5 Other Considerations when using Passive-Alias Extract

When using a passive-alias Extract configuration, these rules apply:

ORACLE

In this configuration, Extract can only write to one target system.

This configuration can be used in an Oracle RAC installation by creating the
Extract group in the normal manner (using the THREADS option to specify the
number of redo threads).

The ALTER EXTRACT command cannot be used for the alias Extract, because that
group does not do data processing.

To use the DELETE EXTRACT command for a passive or alias Extract group, issue
the command from the local GGSCI.

Remote tasks, specified with RMTTASK in the Extract parameter file and used for
some initial load methods, are not supported in this configuration. A remote task
requires the connection to be initiated from the source system and uses a direct
connection between Extract and Replicat.

12-4

Encrypting a Password in a Command or
Parameter File

Learn how to encrypt a database password that is to be specified in a command or parameter
file. This method should only be used for HP NonStop platforms. All other platforms should
use the Oracle Credential store to create an alias for using commands or parameter files.

This method takes a clear-text password as input and produces an obfuscated password
string and a lookup key, both of which can then be used in the command or parameter file.
This encryption method supports all of the databases that require a login for an Oracle
GoldenGate process to access the database.

Oracle recommends that you use the USERIDALIAS, ASMUSERALIAS, Or MININGUSERALIAS
options before using this method.

Depending on the database, you may be able to use a credential store as an alternative to
this method. See Managing Identities in a Credential Store.

Topics:
* Encrypting the Password

» Specifying the Encrypted Password in a Parameter File or Command

A.1 Encrypting the Password

1. Run GGSCI.
2. Issue the ENCRYPT PASSWORD command.

ENCRYPT PASSWORD password algorithm ENCRYPTKEY {key name | DEFAULT}

Where:

* password is the clear-text login password. Do not enclose the password within
guotes. If the password is case-sensitive, type it that way.

e algorithm specifies the encryption algorithm to use:
— AES128 uses the AES 128 cipher, which has a key size of 128 hits.
— AES192 uses the AES 192 cipher, which has a key size of 192 bits.
— AES256 uses the AES 256 cipher, which has a key size of 256 bits.

— BLOWFISH uses Blowfish encryption with a 64-bit block size and a variable-length
key size from 32-bits to 128-bits. Use AES if supported for the platform. Use
BLOWFISH for backward compatibility with earlier Oracle GoldenGate versions,
and for DB2 z/OS and DB2 for i. AES is not supported on those platforms.

* ENCRYPTKEY key name specifies the logical name of a user-created encryption key in
the ENCKEYS lookup file. The key name is used to look up the actual key in the
ENCKEYS file. Using a user-defined key and an ENCKEYS file is required for AES

ORACLE A-1

Appendix A

Specifying the Encrypted Password in a Parameter File or Command

encryption. To create a key and ENCKEYS file, see Populating an ENCKEYS
File with Encryption Keys.

° ENCRYPTKEY DEFAULT directs Oracle GoldenGate to generate a predefined
Blowfish key. This type of key is insecure and should not be used in a
production environment if the platform supports AES. Use this option only for
DB2 on /OS and DB2 for i when BLOWFISH is specified. ENCRYPT PASSWORD
returns an error if AES is used with DEFAULT.

If no algorithm is specified, AES 128 is the default for all database types
except DB2 z/OS, where BLOWFISH is the default.

The following are examples of ENCRYPT PASSWORD with its various options.

ENCRYPT PASSWORD mypassword AES256 ENCRYPTKEY mykeyl
ENCRYPT PASSWORD mypassword BLOWFISH ENCRYPTKEY mykeyl
ENCRYPT PASSWORD mypassword BLOWFISH ENCRYPTKEY DEFAULT

3. The encrypted password is output to the screen when you run the ENCRYPT
PASSWORD command. Copy the encrypted password and then see Specifying the
Encrypted Password in a Parameter File or Command for instructions on pasting it

to a command or parameter.

A.2 Specifying the Encrypted Password in a Parameter File
or Command

Copy the encrypted password that you generated with the ENCRYPT PASSWORD
command (see Encrypting a Password in a Command or Parameter File), and then
paste it into the appropriate Oracle GoldenGate parameter statement or command as
in the following table. Option descriptions follow the table.

ORACLE

Table A-1 Specifying Encrypted Passwords in Parameters and Commands

Purpose of the Password

Parameter or Command to Use

Oracle GoldenGate database login
Syntax elements required for
USERID vary by database type.
See Reference for Oracle
GoldenGate for more information.

USERID user, PASSWORD encrypted-password, &
algorithm ENCRYPTKEY {keyname | DEFAULT}

Oracle GoldenGate database login
for Oracle ASM instance

TRANLOGOPTIONS ASMUSER SYSGASM instance name, &
ASMPASSWORD encrypted-password, &
algorithm ENCRYPTKEY {keyname | DEFAULT}

Oracle GoldenGate database login
for a downstream Oracle mining
database

[MININGUSER {/ | user}[, MININGPASSWORD
encrypted-password] &

[algorithm ENCRYPTKEY {key name | DEFAULT}]&
[SYSDBA]] a

Password substitution for { CREATE
| ALTER} USER name
IDENTIFIED BY password

DDLOPTIONS DEFAULTUSERPASSWORD encrypted-
password &
algorithm ENCRYPTKEY {keyname | DEFAULT}

A-2

ORACLE

Appendix A
Specifying the Encrypted Password in a Parameter File or Command

Table A-1 (Cont.) Specifying Encrypted Passwords in Parameters and
Commands

__|
Purpose of the Password Parameter or Command to Use

Oracle TDE shared-secret

password DBOPTIONS DECRYPTPASSWORD encrypted-passwordt

algorithm &
ENCRYPTKEY {keyname | DEFAULT}

Oracle GoldenGate database login

DBLOGIN USERID user, PASSWORD encrypted-
from GGSCI ' P

password, &
algorithm ENCRYPTKEY {keyname | DEFAULT}

Oracle GoldenGate database login
to a downstream Oracle mining
database from GGSCI

MININGDBLOGIN USERID user, PASSWORD encrypted—
password, &
algorithm ENCRYPTKEY {keyname | DEFAULT}

1 This is the shared secret.

Where:

e user is the database user name for the Oracle GoldenGate process or (Oracle only) a
host string. For Oracle ASM, the user must be sYs.

* encrypted-passwordis the encrypted password that is copied from the ENCRYPT PASSWORD
command results. Do not enclose the password within quotes. Do not use commas in
passwords. If the password is case-sensitive, type it that way.

* algorithm specifies the encryption algorithm that was used to encrypt the password:
AES128, AES192, AES256, Or BLOWFISH. AES128 is the default if the default key is used and
no algorithm is specified.

° ENCRYPTKEY keyname specifies the logical name of a user-created encryption key in the
ENCKEYS lookup file. Use if ENCRYPT PASSWORD was used with the KEYNAME keyname option.

e ENCRYPTKEY DEFAULT directs Oracle GoldenGate to use a random key. Use if ENCRYPT
PASSWORD was used with the KEYNAME DEFAULT option.

The following are examples of using an encrypted password in parameters and command:

Note:
In the following example, comma is used as a separator and is not part of the

password.

SOURCEDB dbl USERID ogg, &
PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFETC, &
AES128, ENCRYPTKEY securekeyl

USERID ogg, PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTENDKEJFFFETC, &
BLOWFISH, ENCRYPTKEY securekeyl

USERID ogg, PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTENDKEJFFFTC, &

A-3

ORACLE

Appendix A
Specifying the Encrypted Password in a Parameter File or Command

BLOWFISH, ENCRYPTKEY DEFAULT

TRANLOGOPTIONS ASMUSER SYS@asml, &
ASMPASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
AES128, ENCRYPTKEY securekeyl

DBLOGIN USERID ogg, PASSWORD &
AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJIDJTFNDKEJFFFTC, &
AES128, ENCRYPTKEY securekeyl

DDLOPTIONS DEFAULTUSERPASSWORD &
AACAAARAAAAAAAJAUEUGODSCVGJIEETUGKIDITENDKEJFFFTC, &
AES 256 ENCRYPTKEY mykey

DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJIEEIUGKJIDJITENDKEJFFFTC, &
AES 256 ENCRYPTKEY mykey

DDLOPTIONS PASSWORD AACAAAAAAAARAAJAUEUGODSCVGJIEEIUGKJIDJITENDKEJFFFTC, &
AES 256 ENCRYPTKEY mykey

Avoiding Security Attacks

Learn about security attacks and ways to mitigate them.
Topics:

» Cross Site Request Forgery
Learn how to avoid client-side attacks.

B.1 Cross Site Request Forgery

ORACLE

Learn how to avoid client-side attacks.

Oracle GoldenGate has CSRF mitigation support that is controlled by the server's
configuration. The default configuration is to enforce CSRF-token based protection.

Cross Site Request Forgery (CSRF) protection when enabled applies to any request issued
from a web browser that's originating from a script or programmatic interface. CSRF
protection is only checked for requests that intend to modify resources at the origin server.
This means that PUT, POST, and DELETE are the only HTTP request verbs where CSRF
protection will be enforced (if enabled).

CSRF protection will not be enforced regardless of CSRF being enabled for requests issued
from non-browser clients such as curl, wget, or netcat. CSRF is also not enforced for
request from Admin Client as none of these clients are web browsers.

For more information, see Open Web Application Security Project Cross-Site Request
Forgery (CSRF) page for further details.

B-1

https://www.owasp.org/index.php/Cross-Site_Request_Forgery
https://www.owasp.org/index.php/Cross-Site_Request_Forgery

Encrypting Data with the ENCKEYS Method

ORACLE

To use this method of data encryption, you configure Oracle GoldenGate to generate an
encryption key and store the key in a local ENCKEYS file.

" Note:

Oracle only recommends the use of this method for platforms where master key
and wallet support is not available. You should not use this method if wallet-based
support is available.

The method secures the date in the trails or an Extract file and data sent across TCP/IP
networks.

The ENCKEYS method is valid for all Oracle GoldenGate-supported databases and platforms.
Blowfish must be used on the DB2 for i, DB2 z/OS, and NonStop platforms.

Encrypts the data in files, across data links, and across TCP/IP. Use any of the following:

* Any Advanced Encryption Security (AES) cipher: Advanced Encryption Standard (AES) is
a symmetric-key encryption standard that is used by governments and other
organizations that require a high degree of data security. It offers three 128-bit block-
ciphers: a 128-bit key cipher, a 192-bit key cipher, and a 256-bit key cipher. To use AES
for any database other than Oracle on a 32-bit platform, the path to the lib sub-directory
of the Oracle GoldenGate installation directory must be set with the library path variable.
Bug 27523872 For different platforms the library path variable is different. For Linux it is
LD_LIBRARY_PATH. For IBM i and AlX it is LIBPATH, SHLIB_PATH variable for Solaris
and the PATH variable on Windows. Not required for 64-bit platforms.

AES-128
AES-192
AES-256

* Blowfish encryption: A keyed symmetric-block cipher. The Oracle GoldenGate
implementation of Blowfish has a 64-bit block size with a variable-length key size from 32
bits to 256 bits.

This method makes use of a permanent key that can only be changed by regenerating the
algorithm, see Populating an ENCKEYS File with Encryption Keys.

The ENCKEYS file must be secured through the normal method of assigning file permissions in
the operating system.

This procedure generates an AES encryption key and provides instructions for storing it in the
ENCKEYS file. ENCKEYS file for microservices is stored in the deployment dir/etc/conf/ogg
directory. In classic architecture, it's in the install location (same location as GGSCI).

Topics:

» Setting Up the Data Encryption

C-1

Appendix C
Setting Up the Data Encryption

Populating an ENCKEYS File with Encryption Keys
Learn how to use an ENCKEYS file.

C.1 Setting Up the Data Encryption

ORACLE

1.

Generate an encryption key and store it in the ENCKEYS file, see Populating an
ENCKEYS File with Encryption Keys. Make certain to copy the finished ENCKEYS
file to the Oracle GoldenGate installation directory on any intermediary systems
and all target systems.

In the following parameter files, add the following:

To encrypt trail data: In the parameter file of the primary Extract group and the
data pump, add an ENCRYPTTRAIL parameter before any parameter that
specifies a trail or file that you want to be encrypted. Parameters that specify
trails or files are EXTTRAIL, RMTTRAIL, EXTFILE, and RMTFILE. The syntax is
one of the following:

ENCRYPTTRAIL {AES128 | AES192 | AES256 | BLOWFISH}

ENCRYPTTRAIL AES192, KEYNAME keyname

To encrypt data across TCP/IP: In the RMTHOSTOPTIONS parameter in the
parameter file of the data pump (or the primary Extract, if no pump is being
used), add the ENCRYPT option with the KEYWORD clause. The syntax is one of
the following:

RMTHOSTOPTIONS host, MGRPORT port, ENCRYPT {AES128 | AES192 | AES256
BLOWFISH} KEYNAME keyname

RMTHOSTOPTIONS ENCRYPT {AES128 | AES192 | AES256 | BLOWFISH} KEYNAME
keyname

Where:

RMTHOSTOPTIONS is used for passive Extract, see Populating an ENCKEYS File
with Encryption Keys.

ENCRYPTTRAIL without options uses AES 128 as the default for all database
types except the DB2 for i, DB2 z/OS, and NonStop platforms, where
BLOWFISH is the default.

AES128 encrypts with the AES 128 encryption algorithm. Not supported for
iDB2 for i, DB2 z/OS, and NonStop platforms.

AES192 encrypts with AES 192 encryption algorithm. Not supported for DB2 for
i, DB2 z/OS, and NonStop platforms.

AES256 encrypts with AES 256 encryption algorithm. Not supported for iSeries,
z/0S, and NonStop platforms.

BLOWFISH uses Blowfish encryption with a 64-bit block size and a variable-
length key size from 32-bits to 128-bits. Use AES if supported for the platform.
Use BLOWFISH for backward compatibility with earlier Oracle GoldenGate
versions, and for DB2 for | and DB2 z/OS. AES is not supported on those
platforms.

KEYNAME keyname specifies the logical look-up name of an encryption key in
the ENCKEYS file. Not an option of ENCRYPTTRAIL.

C-2

Appendix C
Setting Up the Data Encryption

< Note:
RMTHOST is used unless the Extract is in a passive configuration.
3. If using a static Collector with data encrypted over TCP/IP, append the following
parameters in the Collector startup string:

-KEYNAME keyname
-ENCRYPT algorithm

The specified key name and algorithm must match those specified with the KEYNAME and
ENCRYPT options of RMTHOST.

* Decrypting the Data with the ENCKEYS Method
* Examples of Data Encryption using the ENCKEYS Method

C.1.1 Decrypting the Data with the ENCKEYS Method

ORACLE

Data that is encrypted over TCP/IP connections is decrypted automatically at the destination
before it is written to a trail, unless trail encryption also is specified.

Data that is encrypted in the trail remains encrypted unless the DECRYPTTRAIL parameter is
used. DECRYPTTRAIL is required by Replicat before it can apply encrypted data to the target. A
data pump passes encrypted data untouched to the output trail, unless the DECRYPTTRAIL and
ENCRYPTTRAIL parameters are used. If the data pump must perform work on the data, decrypt
and encrypt the data as follows.

To Decrypt Data for Processing by a Data Pump

Add the DECRYPTTRAIL parameter to the parameter file of the data pump. The decryption
algorithm and key must match the ones that were used to encrypt the trail, see Setting Up the
Data Encryption.

DECRYPTTRAIL {AES128 | AES192 | AES256 | BLOWFISH}

To Encrypt Data After Processing by a Data Pump

To encrypt data before the data pump writes it to an output trail or file, use the ENCRYPTTRAIL
parameter before the parameters that specify those trails or files. Parameters that specify
trails or files are EXTTRAIL, RMTTRAIL, EXTFILE, and RMTFILE. The ENCRYPTTRAIL parameter
and the trail or file specifications must occur after the DECRYPTTRAIL parameter.

" Note:

The algorithm specified with ENCRYPTTRAIL can vary from trail to trail. For example,
you can use AES 128 to encrypt a local trail and AES 256 to encrypt a remote trail.

To Decrypt Data for Processing by Replicat

If a trail that Replicat reads is encrypted, add a DECRYPTTRAIL parameter statement to the
Replicat parameter file. The decryption algorithm and key must match the ones that were
used to encrypt the trail.

C-3

Appendix C
Setting Up the Data Encryption

C.1.2 Examples of Data Encryption using the ENCKEYS Method

ORACLE

The following example shows how to turn encryption on and off for different trails or
files. In this example, Extract writes to two local trails, only one of which must be
encrypted.

In the Extract configuration, trail bb is the non-encrypted trail, so its EXTTRAIL
parameter is placed before the ENCRYPTTRAIL parameter that encrypts trail aa.
Alternatively, you can use the NOENCRYPTTRAIL parameter before the EXTTRAIL
parameter that specifies trail bb and then use the ENCRYPTTRAIL parameter before the
EXTTRAIL parameter that specifies trail aa.

EXTTRAIL...bb

TABLE sales.”;
ENCRYPTTRA _
EXTTRAIL...aa

TABLE fin.&;

=

[ea [[oo

BMTHOST myhost2... MAF sales.”, TARGET sales.”,
RMTTRAIL...dd
TABLE sales.”;

e

DECHYPTTRAIL... DECRYPTTRAIL..
BMTHOST myhost1... MAP fin.", TARGET fin.";
ENCHYPTTRAIL...

RMTTRAIL...cc

TABLE fin.";

In this example, the encrypted data must be decrypted so that data pump 1pump can

perform work on it. Therefore, the DECRYPTTRAIL parameter is used in the parameter

file of the data pump. To re-encrypt the data for output, the ENCRYPTTRAIL parameter

must be used after DECRYPTTRAIL but before the output trail specifications. If the data
pump did not have to perform work on the data, the DECRYPTTRAIL and ENCRYPTTRAIL
parameters could have been omitted to retain encryption all the way to Replicat.

Example C-1 Extract Parameter File

EXTRACT capt

USERIDALIAS ogg

DISCARDFILE /ogg/capt.dsc, PURGE
-- Do not encrypt this trail.
EXTTRAIL /ogg/dirdat/bb

TABLE SALES.*;

-- Encrypt this trail with AES-192.
ENCRYPTTRAIL AES192

EXTTRAIL /ogg/dirdat/aa

TABLE FIN.*;

Example C-2 Data Pump 1 Parameter File

EXTRACT lpump
USERIDALIAS 0gg

C-4

Appendix C
Populating an ENCKEYS File with Encryption Keys

DISCARDFILE /ogg/lpmp.dsc, PURGE

-- Decrypt the trail this pump reads. Use encryption key mykeyl.
DECRYPTTRAIL AES192

-- Encrypt the trail this pump writes to, using AES-192.
RMTHOSTOPTIONS myhostl, MGRPORT 7809

ENCRYPTTRAIL AES192

RMTTRAIL /ogg/dirdat/cc

TABLE FIN.*;

Example C-3 Data pump 2 Parameter File

EXTRACT 2pump

USERIDALIAS ogg

DISCARDFILE /ogg/2pmp.dsc, PURGE
RMTHOST myhost2, MGRPORT 7809
RMTTRAIL /ogg/dirdat/dd

TABLE SALES.*;

Example C-4 Replicatl (on myhostl) Parameter File

REPLICAT 1ldeliv

USERIDALIAS 0gg

ASSUMETARGETDEFS

DISCARDFILE /ogg/ldeliv.dsc, PURGE

-- Decrypt the trail this Replicat reads. Use encryption key mykey2.
DECRYPTTRAIL AES192

MAP FIN.*, TARGET FIN.*;

Example C-5 Replicat 2 (on myhost2) parameter file

REPLICAT 2deliv

USERIDALIAS ogg

ASSUMETARGETDEFS

DISCARDFILE /ogg/2deliv.dsc, PURGE
MAP SALES.*, TARGET SALES.*;

C.2 Populating an ENCKEYS File with Encryption Keys

ORACLE

Learn how to use an ENCKEYS file.
You must generate and store encryption keys when using the security features:

e ENCRYPTTRAIL (see Setting Up the Data Encryption)

° ENCRYPT PASSWORD with ENCRYPTKEY keyname (See Encrypting a Password in a Command
or Parameter File)

° RMTHOST or RMTHOSTOPTIONS with ENCRYPT (See Setting Up the Data Encryption)

You can define your own key or run the Oracle GoldenGate KEYGEN utility to create a random
key.

Topics:

* Defining Your Own Key

* Using KEYGEN to Generate a Key

» Creating and Populating the ENCKEYS Lookup File

C-5

Appendix C
Populating an ENCKEYS File with Encryption Keys

C.2.1 Defining Your Own Key

Use a tool of your choice. The key value can be up to 256-bits (32 bytes) as either of
the following:

e aquoted alphanumeric string (for example "Dailykey")

e a hex string with the prefix 0x (for example
0x420E61BE7002D63560929CCA17A4ELFB)

C.2.2 Using KEYGEN to Generate a Key

Change directories to the Oracle GoldenGate home directory on the source system,
and issue the following shell command. You can create multiple keys, if needed. The
key values are returned to your screen. You can copy and paste them into the ENCKEYS
file.

KEYGEN key length n

Where:

* key lengthis the encryption key length, up to 256-bits (32 bytes).
* nrepresents the number of keys to generate.

Example:

KEYGEN 128 4

C.2.3 Creating and Populating the ENCKEYS Lookup File

1. Onthe source system, open a new ASCII text file.

2. For each key value that you generated, enter a logical name of your choosing,
followed by the key value itself.

* The key name can be a string of 1 to 24 alphanumeric characters without
spaces or quotes.

» Place multiple key definitions on separate lines.

* Do not enclose a key name or value within quotes; otherwise it is interpreted
as text.

Use the following sample ENCKEYS file as a guide.

Encryption key name Encryption key value

Key name Key value

superkey 0x420E61BE7002D63560929CCA17A4ELFB
secretkey 0x027742185BBF232D7C664A5E1AT76B040
superkeyl 0x42DACD1B0OE94539763C6699D3AE8E200
superkey?2 0x0343AD757A50A08E7F9A17313DBAB045
superkey3 0x43AC8DCE660CED861B6DCAC6408CTESA

3. Save the file as the name ENCKEYS in all upper case letters, without an extension,
in the Oracle GoldenGate installation directory.

ORACLE C-6

ORACLE

Appendix C
Populating an ENCKEYS File with Encryption Keys

Copy the ENCKEYS file to the Oracle GoldenGate installation directory on every system.
The key names and values in all of the ENCKEYS files must be identical, or else the data
exchange will fail and Extract and Collector will abort with the following message:

GGS error 118 - TCP/IP Server with invalid data.

C-7

	Contents
	Audience
	Documentation Accessibility
	Conventions
	Related Information
	1 About Oracle GoldenGate Security
	1.1 Overview of Security Options

	Part I Securing the Microservices Architecture
	Microservices Security Concepts
	2 Securing Deployments
	2.1 Creating a Self-Signed Root Certificate
	2.2 Creating Server Certificates
	2.3 Creating a Distribution Server User Certificate
	2.4 Trusted Certificates

	3 Authentication and Authorization
	3.1 Authentication
	3.2 Authorization
	3.3 Authentication and Authorization for WebSockets
	3.4 Response Status Codes

	4 Network
	4.1 Network Access Control
	4.2 Network Connection Adapter
	4.3 Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices
	4.4 Network Communication

	5 TLS and Secure Network Protocols
	5.1 Certificate Access Control List
	5.2 Transport Layer Security Protocols and Ciphers
	5.3 TLS Certificate Revocation List Handling
	5.4 HTTPS Security and Cache Headers

	6 Using Target-Initiated Distribution Paths
	6.1 Overview of Target-Initiated Paths
	6.2 How Do Target-Initiated Distribution Paths Work?

	Part II Common Security Features
	7 Managing Encryption Using a Key Management Service in Oracle GoldenGate
	7.1 What is a Key Management Service?
	7.1.1 Why Use KMS to Store Oracle GoldenGate Encryption Keys?
	7.1.2 Oracle Key Vault Capabilities

	7.2 Managing Encryption Using a Key Management Service in Oracle GoldenGate Microservices Architecture
	7.2.1 What is an Encryption Profile?
	7.2.2 Prerequisites for Configuring OKV on Oracle GoldenGate
	7.2.3 How to Configure an Encryption Profile in MA?
	7.2.4 Client Behavior Against Different Key States for Oracle Key Vault

	8 Encrypting Data with the Master Key and Wallet Method
	8.1 Creating the Wallet and Adding a Master Key
	8.2 Specifying Encryption Parameters in the Parameter File
	8.2.1 Using SOCKS5 Proxy to Deliver Encrypted Data

	8.3 Renewing the Master Key
	8.4 Deleting Stale Master Keys

	9 Managing Identities in a Credential Store
	9.1 Creating and Populating the Credential Store
	9.2 Specifying the Alias in a Parameter File or Command

	Part III Securing the Classic Architecture
	10 Securing Manager
	11 Configuring GGSCI Command Security
	11.1 Setting Up Command Security
	11.2 Securing the CMDSEC File

	12 Using Target System Connection Initiation
	12.1 Configuring the Passive Extract Group
	12.2 Configuring the Alias Extract Group
	12.3 Starting and Stopping the Passive and Alias Processes
	12.4 Managing Extraction Activities
	12.5 Other Considerations when using Passive-Alias Extract

	Managing Encryption Using a Key Management Service in Oracle GoldenGate Classic Architecture
	Registering Oracle GoldenGate Endpoint in Oracle Key Vault
	Uploading Master Keys in Oracle Key Vault
	Register and Upload Master Keys in Oracle Key Vault
	Create Oracle GoldenGate Master Keys in Oracle Key Vault

	Configuring Oracle GoldenGate
	Oracle GoldenGate Trail Writer and Reader Behavior for Different Master Key States

	Configuring SSL Support for PostgreSQL

	A Encrypting a Password in a Command or Parameter File
	A.1 Encrypting the Password
	A.2 Specifying the Encrypted Password in a Parameter File or Command

	B Avoiding Security Attacks
	B.1 Cross Site Request Forgery

	C Encrypting Data with the ENCKEYS Method
	C.1 Setting Up the Data Encryption
	C.1.1 Decrypting the Data with the ENCKEYS Method
	C.1.2 Examples of Data Encryption using the ENCKEYS Method

	C.2 Populating an ENCKEYS File with Encryption Keys
	C.2.1 Defining Your Own Key
	C.2.2 Using KEYGEN to Generate a Key
	C.2.3 Creating and Populating the ENCKEYS Lookup File

