5.2 Transport Layer Security Protocols and Ciphers
Review the supported security protocols.
TLS 1.2 is the default version used with Oracle GoldenGate. See the RFC 5246 for details about the TLS protocol version 1.2.
TLS Security Cipher Suites
The following are the supported security cipher suites and these are the available values that you can use when setting the /config/securityDetails/network/common/cipherSuites
security setting.
- TLS v1.1
-
TLS_RSA_WITH_AES_128_CBC_SHA TLS_RSA_WITH_AES_256_CBC_SHA TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA TLS_ECDHE_ECDSA_WITH_RC4_128_SHA TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA TLS_ECDH_ECDSA_WITH_RC4_128_SHA TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA TLS_ECDH_RSA_WITH_AES_128_CBC_SHA TLS_ECDH_RSA_WITH_AES_256_CBC_SHA TLS_ECDH_RSA_WITH_RC4_128_SHA
- TLS v1.2
-
TLS_RSA_WITH_AES_128_CBC_SHA256 TLS_RSA_WITH_AES_128_GCM_SHA256 TLS_RSA_WITH_AES_256_CBC_SHA256 TLS_RSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
ECC ciphers are based on the algebraic structure of elliptic curves over finite fields. The elliptic curve discrete logarithm problem (ECDLP) assumes that finding the discrete logarithm of a random elliptic curve element with respect to a publicly known base point is infeasible. The benefit of ECC ciphers is that generally the key sizes are smaller compared to non-ECC cipher equivalents.
Parent topic: TLS and Secure Network Protocols