Oracle Fusion Middleware

Developing Applications with Oracle Access
Management

12¢ (12.2.1.3.0) for All Platforms
E97193-01
June 2018

ORACLE"

Oracle Fusion Middleware Developing Applications with Oracle Access Management, 12¢ (12.2.1.3.0) for All
Platforms

E97193-01

Copyright © 2017, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Annapoorna Jagannathan

Contributing Authors: Binitha Monnappa, Kavitha Ramasamy, Vinayak Lokhande

Contributors: Vadim Lander, Vamsi Motukuru, Paresh Raote, Prakash Manwani,Venu Shastri, Sunil Joshi,
Narayana Khadri, Prasanna Anupindi, Arvind Kumar Gupta

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience Xiii
Documentation Accessibility Xiii
Related Documents Xiii
Conventions Xiv

What's New in This Guide?

Part | Introduction

1 Developing with Oracle Access Management Components
1.1 About Access Manager 1-1
1.2 About Identity Federation 1-1
1.3 System Requirements and Certification 1-2

Part Il Developing with Access Manager

2 Developing Access Clients

2.1 About Developing Access Clients 2-1
2.1.1 About the Access SDK and APIs 2-2
2.1.2 About Custom Access Clients 2-3
2.1.2.1 When to Create a Custom Access Client 2-5

2.1.2.2 Types of Resources in the Access Client Architecture 2-5

2.1.3 About Access Client Request Processing 2-6

2.2 Installing Access SDK 2-8
2.3 Developing Access Clients 2-8
2.3.1 Understanding the Structure of an Access Client 2-8
2.3.2 Understanding a Typical Access Client Execution Flow 2-9
2.3.3 Sample Code: Simple Access Client 2-10

ORACLE" iii

2.3.4 Annotated Sample Code: Simple Access Client 2-11
2.3.5 Sample Code: Java Login Servlet 2-14
2.3.6 Annotated Sample Code: Java Login Servlet 2-16
2.3.7 Sample Code: Additional Methods 2-21
2.3.8 Annotated Sample Code: Additional Methods 2-24
2.3.9 Sample Code: Certificate-Based Authentication in Java 2-30

2.4 Understanding Access SDK Logs 2-30
2.5 Building an Access Client Program 2-32
2.5.1 Setting the Development Environment 2-32
2.5.2 Compiling a New Access Client Program 2-33

2.6 Deploying Access Clients 2-33
2.7 Configuring Access Clients 2-34
2.7.1 Understanding Configuration Requirements for Access SDK 2-34
2.7.2 Generating the Required Configuration Files 2-37
2.7.3 SSL Certificate and Key File Requirements 2-37
2.7.3.1 About Simple Transport Security Mode 2-38

2.7.3.2 Working in the Cert Transport Security Mode 2-38

2.8 Best Practices 2-39
2.8.1 Avoiding Problems with Custom Access Clients 2-40
2.8.2 Identifying and Resolving Access Client Problems 2-40
2.8.3 Environment Problems using Java Access SDK with Containers 2-41
2.8.3.1 Resolving Environment Problems with Java EE Containers 2-41

2.8.3.2 Resolving Environment Problems with Oracle WebLogic Server 2-41

2.8.3.3 Resolving Environment Problems with Other Application Servers 2-42

2.8.4 Tuning for High Load Environment 2-42

3 Developing Custom Authentication Plug-ins

3.1 Introduction to Authentication Plug-ins 3-1
3.1.1 About the Custom Plug-in Life Cycle 3-3
3.1.2 About Planning, the Authentication Model, and Plug-ins 3-4
3.1.2.1 About the Decision Engine Approach Process 3-6

3.1.2.2 About the Hard-Coded Approach Process 3-6

3.2 Introduction to Multi-Step Authentication Framework 3-6
3.2.1 About the Multi-Step Framework 3-6
3.2.2 Process Overview: Multi-Step Authentication 3-7
3.2.3 About the PAUSE State 3-8
3.2.4 Information types shared with the credential collector page 3-8
3.2.4.1 UserContextData 3-8

3.2.4.2 UserActionContext 3-9

3.2.4.3 UserAction 3-9

ORACLE

3.2.4.4 UserActionMetaData 3-10

3.3 Introduction to Plug-in Interfaces 3-10
3.3.1 About the Plug-in Interfaces 3-10
3.3.1.1 About the GenericPluginService 3-10

3.3.1.2 About the AuthnPluginService 3-11

3.3.2 About Plug-in Hierarchies 3-11

3.4 Sample Code: Custom Database User Authentication Plug-in 3-14
3.4.1 Sample Code: Database User Authentication Plug-in 3-14
3.4.2 Sample Plug-in Configuration Metadata Requirements 3-17
3.4.3 Sample Manifest File for the Plug-in 3-18
3.4.4 Understanding the Plug-in JAR File Structure 3-19

3.5 Developing an Authentication Plug-in 3-20
3.5.1 About Writing a Custom Authentication Plug-in 3-20
3.5.2 Writing a Custom Authentication Plug-in 3-21
3.5.3 Error Codes in an Authentication Plug-In 3-22
3.5.4 JAR Files Required for Compiling a Custom Authentication Plug-in 3-22

4 Developing Custom Pages

4.1 About the Custom Pages Framework 4-1
4.1.1 Returning the OAM_REQ Token 4-2
4.1.2 Returning the End Point 4-2

4.2 Authenticating with Custom Pages 4-2
4.2.1 Authentication Using an Agent 4-4
4.2.1.1 Program based authentication using OAM Server 4-4

4.2.1.2 Process Overview: Developing Programmatic Clients 4-4

4.2.2 Authentication Using Unsolicited POST 4-4
4.2.3 Authentication Using Unsolicited Login With DCC WebGates 4-5

4.3 About Custom Login Pages 4-6
4.3.1 Understanding Form-Based Login Page authentication 4-7
4.3.2 What is Page Redirection Process 4-7

4.4 Understanding Custom Error Pages 4-8
4.4.1 Enabling Error Page Customization 4-8
4.4.2 Standard Error Codes 4-9
4.4.3 Security Level Configuration 4-10
4.4.4 Secondary Error Message Propagation 4-11
4.45 Sample Code: Retrieving Error Codes 4-11
4.4.6 Error Data Sources Summary 4-12

4.5 Understanding Custom Password Pages 4-13
45.1 Customizing the Password Page WAR 4-13
4.5.2 Using the Request Cache 4-14

ORACLE Y

4.5.3 Specifying the Password Service URL 4-15
4.5.4 Sample Code: Retrieving Warning Messages 4-15
45,5 Sample Code: Retrieving Password Policy Error Codes 4-15
4.5.6 Sample Code: Obtaining Password Policy Rules 4-17
4.6 Using the Credential Collectors with Custom Pages 4-18
4.6.1 About the Detached Credential Collector with Custom Pages 4-19
4.6.2 Creating a Form-Based Login Page Using DCC 4-19
4.6.3 About Custom Login and Error Pages for DCC Tunneling 4-20
4.7 Specifying the Custom Error and Logout Page Deployment Paths 4-20
5 Managing Policy Objects
5.1 About the Policy Administration API 5-1
5.1.1 Access Manager Policy Model 5-1
5.1.2 Security Model 5-3
5.1.3 Resource URLs 5-4
5.1.4 URL Resources and Supported HTTP Methods 5-5
5.1.5 Error Handling 5-6
5.2 Compatibility 5-6
5.3 Managing Policy Objects 5-7
5.3.1 HTTP Methods 5-7
5.3.2 Media Types 5-7
5.3.3 Resources Summary 5-7
5.4 Client Tooling 5-12
5.5 cURL Command Examples 5-12
5.6 Retrieve Application Domains cURL Command 5-13
5.7 Create a New Application Domain cURL Command 5-13
5.8 Retrieve All Authentication Schemes cURL Command 5-13
5.9 Create an Authentication Scheme cURL Command 5-14
5.10 Retrieve a Specific Authentication Scheme cURL Command 5-14
5.11 Retrieve All Resources in an Application Domain cURL Command 5-15
5.12 Create a Resource in an Application Domain cURL Command 5-15
5.13 Retrieve All Policies in an Application Domain cURL Command 5-15
6 Developing an Application to Manage Impersonation
6.1 About the Impersonation feature in Access Manager 6-1
6.1.1 About Impersonation Terminology 6-1
6.1.2 Understanding Impersonation Concepts 6-2
6.1.3 About Impersonation Grant Syntax 6-3
6.1.4 Understanding Impersonation Trigger Invocation Using the SSO Service
6-4
ORACLE Vi

6.1.5 Triggering Impersonation Without API Abstraction 6-6
6.1.6 Impersonator Identity Communication During Impersonation Sessions 6-6
6.2 Configuring Impersonation Support 6-7
6.2.1 Configuring Impersonation Using oam-config.xml 6-7
6.2.2 Configuring Impersonation Using idmConfigTool 6-7
6.2.3 Configuring the Authentication Scheme 6-8
6.3 Testing SSO Login and Impersonation 6-9
7 Customizing Oracle Mobile Authenticator
7.1 About Oracle Mobile Authenticator and Customization 7-1
7.2 Customizing Oracle Mobile Authenticator on iOS 7-1
7.3 Customizing Oracle Mobile Authenticator on Android 7-4
7.3.1 Using apktool to Customize Oracle Mobile Authenticator 7-4
7.3.2 Customizing Options for Oracle Mobile Authenticator Android app 7-4
7.3.2.1 Changing Application Icons 7-5
7.3.2.2 Modifying the Application Name and Text 7-5
7.3.2.3 Editing 3rd party company list with images 7-6
7.3.2.4 Modifying EULA to be shown on first launch 7-6
7.3.2.5 Modifying the Version and Code Number 7-6
7.3.2.6 Modifying the Package Name 7-6
7.3.2.7 Signing the Application 7-7
7.4 Customizing Oracle Mobile Authenticator on Windows 7-7
Part Il Developing with Identity Federation
8 Developing a Custom User Provisioning Plug-in
8.1 Introduction to User Provisioning Plug-ins 8-1
8.2 Introduction to Plug-in Interfaces 8-2
8.3 Sample Code: Custom User Provisioning Plug-in 8-2
8.4 Developing a User Provisioning Plug-in 8-7
8.4.1 Developing a Custom Plug-in: Process Overview 8-7
8.4.2 Files Required for Compiling a Plug-in 8-7
O Developing a Message Processing Plug-in
9.1 Understanding Custom SAML Elements 9-1
9.2 Extending the OIFMessageProcessingPlugin 9-1
9.3 Deploying the Message Processing Plug-in 9-5
ORACLE Vi

9.4 Enabling the Message Processing Plug-in 9-5
10 Using the REST API for Identity Federation
10.1 Resource URLs 10-2
10.2 URL Resources and Supported HTTP Methods 10-2
10.3 Resources Summary 10-2
10.4 cURL Command Examples for Identity Federation 10-5
10.4.1 Configuring SSO Service using POST cURL Command 10-5
10.4.2 Retrieving SSO Service using GET cURL Command 10-6
10.4.3 Configuring SSO Service using PUT cURL Command 10-7
10.4.4 Creating an SP Partner cURL Command 10-7
10.4.5 Listing all SP Partners cURL Command 10-8
10.4.6 Retrieving SP Partner Data cURL Command 10-9
10.4.7 Updating SP Partner Details cURL Command 10-9
10.4.8 Deleting SP Partner Details cURL Command 10-10
10.4.9 Enabling Test SP using POST cURL Command 10-10
10.4.10 Retrieving Test SP Enablement using GET cURL Command 10-10
10.4.11 Disabling Test SP using PUT cURL Command 10-11
10.4.12 Configuring SSO Service using POST cURL Command using /
fedrest/configuresso 10-11
10.4.13 Creating an SP Partner cURL Command using /fedrest/createsp 10-12
10.4.14 Creating an IdP Partner cURL Command using /fedrest/createidp 10-13
10.4.15 Connecting Federation Servers to remote REST services using /
fedrest/orchestrator 10-14
11 Implementing Custom Authentication Actions
11.1 Understanding Custom Authentication Actions 11-1
11.1.1 Using Pre and Post Processing Custom Authentication Actions 11-1
11.1.2 Setting Up a Custom Authentication Action Plug-in 11-2
11.1.3 Understanding the Custom Action Flow 11-2
11.2 Using Pre-Processing Custom Actions 11-3
11.2.1 Passing Data to the Pre-Processing Plug-in 11-3
11.2.2 Configuring Identity Federation for the Pre-Processing Action 11-4
11.3 Example: Custom Action Pre-processing 11-5
11.4 Using Post-Processing Custom Actions 11-6
11.4.1 Passing Data to the Post-Processing Plug-in 11-7
11.4.2 Configuring Identity Federation for the Post-Processing Action 11-8
11.5 Example: Custom Action Post-Processing 11-9

ORACLE

viii

Part I\ Appendices

A Creating Deployment-Specific Pages

A.1 How the Single Sign-On Server Uses Deployment-Specific Pages A-1
A.1.1 Change Password Page Behavior A-2
A.2 How to Write Deployment-Specific Pages A-2
A.2.1 Login Page Parameters A-2
A.2.2 Change Password Page Parameters A-3
A.3 Page Error Codes A-5
A.4 Adding Globalization Support A-6
A.4.1 Deciding What Language to Display the Page In A-7
A.4.1.1 Use the Accept-Language Header to Determine the Page A-7

A.4.1.2 Use Page Logic to Determine the Language A-7

A.4.2 Rendering the Page A-8
A.5 Guidelines for Deployment-Specific Pages A-8
A.6 Customized Deployment-Specific Pages A-8
A.6.1 Customizing Deployment-Specific Pages A-8
A.6.2 Using Custom Classes A-9
A.7 Add External Applications Page A-9
A.7.1 Headings and Fields of Add External Applications Page A-9
A.7.2 Adding an External Application A-10

ORACLE iX

List of Examples

2-1 JAccessClient.java

2-2 Java Login Servlet Example

2-3 access_test java.java

2-4 merge-cred.xml Sample

3-1 XML Metadata: Database User Authentication Plug-in

3-2 Sample Manifest File

3-3 Error Code in a Custom Authentication Plug-in

4-1 Resource Bundle Code

4-2 Error Code Page

6-1 Required Method to Abstract Triggering Mechanism Using SsoService API
6-2 Abbreviated SsoService API Triggering Example

6-3 jps-config.xml With Changes For imp.begin.url and imp.end.url
6-4 Triggering Impersonation Without API Abstraction

6-5 Restore Original Impersonator's Session

6-6 Enabling Impersonation Feature in oam-config.xml

7-1 Changing the Android Version and Code Number
ORACLE

2-10
2-15
2-21
2-36
3-18
3-19
3-22
4-12
4-12
6-5
6-5
6-5
6-6
6-6
6-7
7-6

List of Figures

2-1 Architectural Detail of an Access Client

2-2 Process Overview: Handling a Resource Request
2-3 Process Flow for Form-based Applications

3-1 Custom Plug-in Deployment Workflow

3-2 Authentication Model and Plug-ins

3-3 Plug-in Package Hierarchy

3-4 Plug-in Class Hierarchy

3-5 Plug-in Interface Hierarchy

3-6 Plug-in Annotation Type Hierarchy

3-7 Plug-in Enum Hierarchy

3-8 Database User Authentication Plug-in Part 1

3-9 Database User Authentication Plug-in Part 2

3-10 Database User Authentication Plug-in Part 3

3-11 XSD Configuration Data: Database User Authentication Plug-in
4-1 Authentication Request Flow

4-2 Unarchived WAR

5-1 Policy Model

5-2 Policy Contents

11-1 Custom Actions Plug-in Flow

ORACLE

2-6
2-6
2-9
3-2
3-5
3-12
3-12
3-13
3-13
3-14
3-15
3-16
3-17
3-18

4-14
5-2
5-3

11-3

Xi

List of Tables

2-1
2-2
3-1
3-2
3-3
4-1
4-2
4-3
4-4
4-5
5-1
5-2
5-3
5-4
55
6-1
6-2
10-1
A1
A-2
A-3
A-4
A-5
A-6
A7
A-8
A-9

12c Access SDK Features

Access Client Variations

Plug-in Life Cycle States

Request Approach Comparison

Required Plug-in Methods

Types of Error Information

Standard Error Codes and Message

Error Condition Mapping by Security Level

Authentication Plug-In Error Data Sources

Password Validation Error Codes

Policy Objects

Resource URLs

Error Conditions and HTTP Return Codes

Methods For Managing Policy Objects

Access Manager Policy Resources Summary

Impersonation Terminology

Headers For Identity Information

Access Manager Identity Federation Resources Summary
Change Password Page messages

Login Page Parameters Submitted to the Page by the Single Sign-On Server
Login Page Parameters Submitted by the Page to the Single Sign-On Server
Change Password Parameters Submitted to the Page
Change Password Page Parameters Submitted by the Page
Login Page Error Codes

External Application Login

Authentication Method

Additional Fields

ORACLE

2-3
2-4
3-4
35

3-20
4-9

4-10
4-13
4-16
5-2
5-5
5-6
5-7
5-7
6-2
6-7
10-2
A-2
A-2
A-3
A-3
A-4
A-5
A-9
A-10
A-10

Xii

Preface

Audience

This guide explains how to write custom applications and plug-ins to programmatically
extend access management functionality using the SDKs and APIs provided with
Oracle Access Management.

This Preface covers the following topics:
e Audience

e Documentation Accessibility

* Related Documents

e Conventions

This document is intended for developers who are familiar with Oracle Access
Management.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/ t opi ¢/ | ookup?
ct x=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / ww. or acl e. com pl s/ t opi ¢/

| ookup?ct x=acc&i d=i nfo or visit htt p:// ww. or acl e. com pl s/t opi ¢/ | ookup?ct x=acc& d=trs
if you are hearing impaired.

Related Documents

ORACLE

For more information, see the following documents in the Oracle Fusion Middleware
12c¢ Release 2 (12.2.1.3) documentation set:

e Oracle Fusion Middleware Administering Oracle Access Management

e Oracle Fusion Middleware Access SDK Java API Reference for Oracle Access
Management Access Manager

e Oracle Fusion Middleware Extensibility Java APl Reference for Oracle Access
Management Access Manager

e Oracle Fusion Middleware User Provisioning Plug-in Java API Reference for
Oracle Access Management Identity Federation

Xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

* Oracle Fusion Middleware WebLogic Scripting Tool Command Reference for
Identity and Access Management

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE Xiv

What's New in This Guide?

This section summarizes the new features and significant changes in Developing
Applications with Oracle Access Management 12c¢ (12.2.1.3.0).

Updates in October 2017 Documentation Refresh for 12c Release 2 (12.2.1.3.0)

This revision of Oracle® Fusion Middleware Developing Applications for Oracle
Access Management contains content updates and addresses bug fixes.

A section has been added in Chapter 13, Customizing Oracle Mobile Authenticator on
Windows to help you customize the Oracle Mobile Authenticator (OMA) device
application for Windows.

New Features in 12¢ (12.2.1.3.0)

For information about Oracle Access Management 12¢ (12.2.1.3.0), and its features,
See the following topics in Fusion Middleware Administering Oracle Access
Management :

* Features of Access Manager 12.2.1.3.0
* Features Not Supported in Access Manager 12.2.1.3.0

REST APIs are introduced in 12c for Federation Management, Multi Data Center,
OAuth, Password Management, Multifactor authentication OTP, Password Policy, and
Session Management. They are documented in REST APIs reference documents. See

* REST API for Federation Management in Oracle Access Manager

e REST API for Multi Data Center in Oracle Access Manager

* REST API for OAuth in Oracle Access Manager

* REST API for Password Management in Oracle Access Manager

e REST API for Multifactor Authentication One Time PIN in Oracle Access Manager
 REST API for Password Policy Management in Oracle Access Manager

* REST API for Session Management in Oracle Access Manager

ORACLE v

Introduction

ORACLE

Oracle Access Management provides multiple converged services with several
integrated components. It contains software development kits (SDKs) and application
programming interfaces (APIs) with which you can extend functionality or develop
applications to customize your environment.

This part introduces the Oracle Access Management components and provides
general information about developing with the SDKs and APIs.

Part | contains the following chapter.

» Developing with Oracle Access Management Components

Developing with Oracle Access
Management Components

Oracle Access Management provides multiple converged services with several
integrated components. It contains software development kits (SDKs) and application
programming interfaces (APIs) with which you can extend functionality or develop
applications to customize your environment.

This chapter introduces the Oracle Access Management components.

e About Access Manager
e About Identity Federation

e System Requirements and Certification

1.1 About Access Manager

Access Manager is an enterprise level solution that centralizes critical access control
services to provide an integrated solution that delivers authentication, authorization,
web single sign-on, policy administration, enforcement agent management, session
control, systems monitoring, reporting, logging and auditing.

In this release, you can develop your own Access Clients, custom authentication plug-
ins, custom login and error pages, administer Access Manager policies
programmatically, as well as enable the impersonation feature and develop a custom
user interface for managing, using the provided Java Access SDK and Access
Manager APIs.

For information about developing applications using Access Manager SDKs and APIs,
See Developing with Access Manager.

See Also, Understanding Oracle Access Management Access Manager in
Administering Oracle Access Management.

1.2 About Identity Federation

ORACLE

Identity Federation enables organizations to securely link accounts and identities
across security boundaries without a central user repository or the need to
synchronize data stores. It provides an interoperable way to implement cross domain
single sign-on without the overhead of managing, maintaining, and administering their
identities and credentials.

As a result of cloud, Web Services, and business-to-business transactions, federated
authentication is now a core element of any Web access management solution.
Beginning with this release, SAML-based federation services are not being converged
directly into a single access management server. In this release, convergence is
limited to Service Provider functionality. In this release any Identity Provider
functionality still requires a Oracle Identity Federation installation. However, the linking
of Oracle Access Management 12c and Oracle Identity Federation is very simple and
well integrated.

1-1

Chapter 1
System Requirements and Certification

In this release, you can develop a custom user provisioning plug-in if the out-of-the-
box solution does not meet your needs. You can also develop a message processing
plug-in. For more information on ldentity Federation APIs, See Developing with Identity
Federation.

See Also, Managing Oracle Access Management Identity Federation in Fusion
Middleware Administering Oracle Access Management.

1.3 System Requirements and Certification

ORACLE

System requirements and certification documentation provides information about
hardware and software requirements, platforms, databases, and other information.

Both, System requirements and certification documents are available on Oracle
Technology Network (OTN).

The system requirements document covers information such as hardware and
software requirements, minimum disk space and memory requirements, and required
system libraries, packages, or patches:

http://wwv. oracl e. com t echnet wor k/ ni ddl ewar e/ i as/ downl oads/ f usi on-
requirements-100147. htm

The certification document covers supported installation types, platforms, operating
systems, databases, JDKs, and third-party products:

http:// ww. oracl e. coni t echnet wor k/ m ddl ewar e/ i as/ downl oads/ f usi on-
certification-100350. ht m

1-2

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-requirements-100147.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-requirements-100147.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Developing with Access Manager

ORACLE

Oracle Access Management Access Manager provides a software development kits
(SDKs) and application programming interfaces (APIs) to extend functionality or
develop applications to customize your access environment.

This part discusses developing applications using the Oracle Access Management
Access Manager SDK and APIs.

Part 2 contains the following chapters.

» Developing Access Clients

» Developing Custom Authentication Plug-ins

» Developing Custom Pages

* Managing Policy Objects

» Developing an Application to Manage Impersonation

e Customizing Oracle Mobile Authenticator

Developing Access Clients

Oracle Access Management Access Manager (Access Manager) provides a pure Java
software developer kit (SDK) and application programming interfaces (APIs) for
creating custom Access Clients.

This chapter discusses how to develop a custom Access Client and provides the
following sections.

e About Developing Access Clients
e Installing Access SDK

» Developing Access Clients

» Understanding Access SDK Logs
e Building an Access Client Program
* Deploying Access Clients

e Configuring Access Clients

e Best Practices

2.1 About Developing Access Clients

With the Access Manager you can develop your own Access Clients, custom
authentication plug-ins, custom login and error pages, administer Access Manager
policies programmatically, as well as enable the impersonation feature and develop a
custom user interface for managing, using the provided Java Access SDK and Access
Manager APIs.

A WebGate is a Web server plug-in that intercepts HTTP requests for resources and
forwards them to the OAM Server for authentication and authorization. A WebGate is a
Web server agent that acts as the actual enforcement point for access requests.
Several WebGates are provided out-of-the-box and are ready for installation on an
Oracle HTTP Server, where it intercepts access requests.

An Access Client is a custom WebGate that has been developed using the 12¢c Access
SDK and APIs. When a standard WebGate is not suitable, a custom Access Client can
be written and deployed for processing requests from users or application for either
Web or non-Web resources (non-HTTP).

This section provides the following topics:

* About the Access SDK and APIs
* About Custom Access Clients

e About Access Client Request Processing

ORACLE 2-1

Chapter 2
About Developing Access Clients

2.1.1 About the Access SDK and APIs

ORACLE

The Access SDK is a platform independent package that Oracle has certified on a
variety of enterprise platforms (using both 32-bit and 64-bit modes) and hardware
combinations.

The 12c Access SDK is intended for use by Java application developers in the
development of tightly coupled, performant integrations. It is provided on JDK versions
that are supported across Oracle Fusion Middleware applications. In addition to this
guide, for more information See Oracle Fusion Middleware Access SDK Java API
Reference for Oracle Access Management Access Manager.

Note:

Oracle strongly recommends that developers use the 12c¢ Access SDK for all
new development.

The following Access API are included:

e oracle.security.am.asdk: An authentication and authorization API that provides
enhancements to take advantage of 12¢c OAM Server functionality. The 12¢
Access SDK API can be used with Oracle Access Manager 12c¢ version of the
server.

< Note:

The oracl e. security. am asdk package provides the 12¢ Java APIs. The
12c version is very similar to the previous release APls, with
enhancements for use with the 12c OAM Server. From a functional
perspective, the 12¢ Access SDK maintains parity with the previous
release 11g Access SDK to ensure that you can re-write existing custom
code using the 12¢ API layer.

The 12c¢ Access SDK includes authentication and authorization functionality. However,
it does not include Administrative APIs (for instance, there is no 12c¢ Policy Manager
API).

The most common use of the Access SDK is to enable the development of a custom
integration between Access Manager and other applications (Oracle or third party).
Usage examples include:

» Developing a custom Access Client for a Web server or an application server for
which Oracle does not provide an out-of-the-box integration.

» Accessing session information that may be stored as part of the Access Manager
authentication process.

* Verifying the validity of the Access Manager session cookie rather than trusting an
HTTP header for the user principal.

12c Access SDK Features describes the primary features of the 12¢ Access SDK.

2-2

Chapter 2
About Developing Access Clients

Table 2-1 12c Access SDK Features
]

Feature

Description

Installation

Built In Versioning

Logging

Client Package: Is comprised of a single zip file that contains oamasdk-api.jar, as well
as other JPS jar files needed for 12c agent operations. Supporting files (for signing
and TLS negotiations) are not included and should be generated separately.

Server Related Code: Is included as part of the core Access Manager server
installation.

Note: Access Clients and plug-ins developed with Oracle Access Manager 11g can be
used with 12c release. Oracle Access Manager 11g bundle patches are used to
distribute Java SDK code enhancements for use with 12c environments.

Enables you to:
. Determine the Access SDK version that is installed.

» Validate compatible versions it can operate with (Oracle Access Manager 11g and
12¢).

If there is a mismatch, Access SDK functions halt and an informative message is
logged and presented.

The Access SDK logging mechanism enables you to specify the level (informational,
warning, and error level) of detail you want to see in a local file. Messages provide
enough detail for you to resolve an issue. For example, if an incompatible Access SDK
package is used, the log message includes details about a version mismatch and what
version criteria should be followed.

If the SDK generates large amounts of logs within a given period of time, you can
configure a rollover of the logs based on a file limit or a time period. For example, if a
file limit has been reached (or a certain amount of time has passed), the log file is
copied to an archive directory and a new log file is started.

2.1.2 About Custom Access Clients

ORACLE

You can develop different types of custom Access Clients, depending on their desired
function, by utilizing all, or a subset of, the Access Client API. The APl is generally
agnostic about the type of protected resources and network protocols used to
communicate with the users. For example, the specifics of HTTP protocol and any use
of HTTP cookies are outside of the scope of Access SDK. You can develop Access
Clients to protect non-HTTP resources as easily as agents protecting HTTP resources.

The Access SDK enables development of custom integrations with Access Manager
for controlling access to protected resources such as authentication, authorization, and
auditing. This access control is generally accomplished by developing and deploying
custom Access Clients, which are applications or plug-ins that invoke the Access
Client API to interface with the Access SDK runtime.

Access Client-side caching is used internally within the Access SDK runtime to further
minimize the processing overhead. The Access SDK runtime, together with the OAM
Server, transparently performs dynamic configuration management, whereby any
Access Client configuration changes made using the administration console are
automatically reflected in the affected Access SDK runtimes.

The typical functions that a custom Access Client can perform, individually or in
combination with other Access Clients, are as follows:

» Authenticate users by validating their credentials against Access Manager and its
configured user repositories.

2-3

Chapter 2
About Developing Access Clients

» Authenticate users and check for authorization to access a resource.

* Authenticate users and create unique Access Manager sessions represented by
session tokens.

» Validate session tokens presented by users, and authorize their access to
protected resources.

* Terminate Access Manager sessions given a session token or a named session
identifier.

* Enumerate Access Manager sessions of a given user by specifying named user
identifier.

e Save or retrieve custom Access Manager session attributes.

Some Access Client operations are restricted for use by the designated Access Client
instances. For example, See (perat i onNot Perni t t ed in Oracle Fusion Middleware
Access SDK Java API Reference for Oracle Access Management Access Manager.

Access Clients process user requests for access to resources within the LDAP domain
protected by the OAM Server. Typically, you embed custom Access Client code in a
servlet (plug-in) or a standalone application that receives resource requests. This code
uses Access Manager API libraries to perform authentication and authorization
services on the OAM Server.

If a resource is not protected, the Access Client grants the user free access to the
requested resource. If the resource is protected and the user is authorized to provide
certain credentials to gain access, the Access Client attempts to retrieve those user
credentials so that the OAM Server can validate them. If authentication of the user and
authorization for the resource succeeds, the Access Client makes the resource
available to the user. Access Clients can differ according to a variety of factors, as
described in Table 2-2.

Table 2-2 Access Client Variations

Variation Description
Type of application Standalone application versus server plug-ins.
Development Language Each development language provides a choice of interfaces to

the underlying functionality of the API.

For 12¢, Java is the only development language for custom
Access Clients.

Resource Type Protect both HTTP and non-HTTP resources.

Credential Retrieval Enable HTTP FORM-based input, the use of session tokens,
and command-line input, among other methods.

After it has been written and deployed, a custom Access Client is managed by an
Oracle Access Management administrator the same as a standard WebGate. For
information about managing a custom Access Client using the administration console,
See Resource Types and Their Use .

See Also,

« When to Create a Custom Access Client

» Types of Resources in the Access Client Architecture

ORACLE 2.4

Chapter 2
About Developing Access Clients

2.1.2.1 When to Create a Custom Access Client

Typically, you deploy a custom Access Client instead of a standard WebGate when
you need to control access to a resource for which Oracle Access Manager does not
already supply an out-of-the-box solution. This might include:

Protection for non-HTTP resources.

Protection for a custom web server developed to implement a special feature (for
example, a reverse proxy).

Implementation of single sign-on (SSO) to protect a combination of HTTP and
non-HTTP resources.

For example, you can create an Access Client that facilitates SSO within an
enterprise environment that includes an Oracle WebLogic Server cluster as well as
non-Oracle WebLogic Server resources.

2.1.2.2 Types of Resources in the Access Client Architecture

Each Access Client is built from the following three types of resources:

Custom Access Client code.

Built into a servlet or standalone application. For the 12c release, you write Access
Client code using the Java language platform.

Configuration information.

— ObAccessClient.xml file: Primary configuration file, which contains
configuration information that constitutes an Access Client profile.

— cwallet.sso and jps-config.xml files: For an 12c¢ agent only.

— If the transportation security mode is Simple or Cert, then the following files
are required.

* oamclient-truststore.jks — JKS format trust store file which should
contain CA certificate of the certificate issuing authority.

* oamclient-keystore.jks — JKS format key store file which should contain
certificate and private key issued for the Access Client.

* password.xml — An XML file that holds the value of global pass phrase.
Same password is also used to protect private key file.

Access Manager API libraries.

Facilitates interaction between the Access Client and OAM Server.

Figure 2-1 shows the relationship between the Access Client components installed on
a host server.

ORACLE

2-5

Chapter 2
About Developing Access Clients

Figure 2-1 Architectural Detail of an Access Client

Host Server

Serviet or Stand-Alone
Application Receiving
Resource Requests

Customn Access Client

Embedded Access Configuration info
Client Code REEEESOK APt ObAccessClient.xmi

2.1.3 About Access Client Request Processing

ORACLE

Regardless of the variability introduced by the types of resources discussed in Types
of Resources in the Access Client Architecture, most Access Clients follow the same
basic steps to process user requests. When a user or application submits a resource
request to a servlet or application running on the server where the Access Client is
installed, the Access Client code embedded in that servlet or application initiates the
basic process shown in Figure 2-2. Details of the process overview are explained
below the figure.

Figure 2-2 Process Overview: Handling a Resource Request

User or Server OAM Server
Application imanageas:
—1*| Serviet or Application authentication,
authorization
{6 Access and auditing)
Client
Code
_|\.E s
Access
SDK AFI

={#a— Unprotected Resources

+{10~ Protected Resources

1. The application or servlet containing the Access Client code receives a user
request for a resource.

2. The Access Client constructs a Resour ceRequest structure, which the Access Client
code uses when it asks the OAM Server whether the requested resource is
protected.

3. The OAM Server responds.

4. Depending upon the situation, one of the following occurs:

2-6

10.

Chapter 2
About Developing Access Clients

» If the resource is not protected, the Access Client grants or denies access to
the resource depending on the value of the DenynNot Pr ot ect ed flag. Default
value is true.

For Access Manager 12c agent, DenynNot Pr ot ect ed flag in always true and
cannot be changed.

» If the resource is protected, the Access Client constructs an
Aut hent i cat i onScheme structure, which it uses to ask the OAM Server what
credentials the user needs to supply. This step is only necessary if the Access
Client supports the use of different authentication schemes for different
resources.

The OAM Server responds.

The application uses a form or some other means to ask for user credentials. In
some cases, the user credentials may already have been submitted as part of:

e Avalid session token.
e Input from a web browser.

e Arguments to the command-line script or keyboard input that launched the
Access Client application.

The user responds to the application.

The Access Client constructs an User Sessi on structure, which presents the user
credentials to the OAM Server, which maps them to a user profile in the Oracle
Access Manager user directory.

If the credentials prove valid, the Access Client creates a session token for the
user, then it sends a request for authorization to the OAM Server. This request
contains the user identity, the name of the target resource, and the requested
operation.

For an Access Client developed using the Access SDK, a SSO token is issued as
a string type with no name. Use get Sessi onToken() on an existing User Sessi on
object to return that session's token. If you have an existing token, it can be used
to construct a user session object. The token is encrypted and opaque to a user,
but internally, can be either in 11g or 12c¢ format.

The Access Client grants the user access to the resource, providing that the user
is authorized for the requested operation on the particular resource.

The flow illustrated in Figure 2-2 represents only the main path of the authorization
process. Typically, additional code sections within the servlet or application handle
branch situations where:

The requested resource is not protected.

The authentication challenge method associated with the protected resource is not
supported by the application.

The user fails to supply valid credentials under the specified conditions.
Some other error condition arises.

The developer has built additional custom code into the Access Client to handle
special situations or functionality.

When writing a custom Access Client, it is possible to authenticate users over the
backchannel.

ORACLE

2-7

Chapter 2
Installing Access SDK

2.2 Installing Access SDK

To install the Java Access SDK Client for Access Manager 12¢, perform the following
steps:

1. Download the oamj ava- asdk. zi p file from Oracle Technology Network.
2. Extract the contents of the file oam j ava- asdk. zi p to a local directory.

3. Add oamasdk-api . j ar to your CLASSPATH to configure the build path with the
dependent jars and execute the sample asdk client

4. Execute the command:

java -cp

nap-api-12. 2. 1. 0. 0- SNAPSHOT. j ar : oamasdk- api - 12. 2. 1. 0. 0- SNAPSHOT. j ar: . : opss_sta
ndal one/ nodul es/ oracl e. odl / oj dl . j ar: opss_st andal one/ modul es/ or acl e. j ps/j ps- man
ifest.jar Sanpl eASDK

Once the Access SDK is installed, do not change the relative locations of the
subdirectories and files. Doing so may prevent an accurate build and proper operation
of the API.

2.3 Developing Access Clients

With the Access Manager you can develop your own Access Clients, custom
authentication plug-ins, custom login and error pages, administer Access Manager
policies programmatically, as well as enable the impersonation feature and develop a
custom user interface for managing, using the provided Java Access SDK and Access
Manager APIs.

The following topics are discussed in this section:

e Understanding the Structure of an Access Client

e Understanding a Typical Access Client Execution Flow
e Sample Code: Simple Access Client

e Annotated Sample Code: Simple Access Client

e Sample Code: Java Login Servlet

e Annotated Sample Code: Java Login Servlet

e Sample Code: Additional Methods

e Annotated Sample Code: Additional Methods

e Sample Code: Certificate-Based Authentication in Java

2.3.1 Understanding the Structure of an Access Client

The structure of a typical Access Client application roughly mirrors the sequence of
events required to set up an Access Client session.

* Include or import requisite libraries.
* Getresource.

e Get authentication scheme.

ORACLE 2-8

Chapter 2
Developing Access Clients

» Gather user credentials required by authentication scheme.
* Create user session.

* Check user authorization for resource.

» Clean up (Java uses automatic garbage collection).

e Shut down.

2.3.2 Understanding a Typical Access Client Execution Flow

ORACLE

All HTTP FORM-based Access Client applications and plug-ins follow the same basic
pattern. Figure 2-3 shows a process flow for form-based applications. Details are
described in the following figure.

Figure 2-3 Process Flow for Form-based Applications

| Import Libraries _,| Create an Authentication Creats structure for
¥ Scheme object userid and password s the
| Initialize Access SDK v v user
Create User authorized to
v Session object e he ‘;‘es
‘ Create Resource . 7 reqbuestsd
j object?
i ol chwect authentication ‘Lﬁs !
' scheme HTTP
FORM based?
No
Is the user \339
Is the Yes authenticatsd?
requested resource — No
protected?
Mo
¥
Mo
Deny access, ‘
Shutdown API; Report reason
End Program
*\
Grant access to

requested resource

Import libraries.
Initialize the SDK.

Create Resour ceRequest object.

P W NP

Determine if the requested resource is protected.

Resource Not Protected: If the resource is not protected, the Access Client
grants or denies access to the resource depending on the value of the
DenyOnNot Pr ot ect ed flag. Default value is t rue. For Access Manager agent,
DenyOnNot Prot ect ed flag in always t rue and cannot be changed.

5. Requested Resource is Protected: Create an Aut henti cati onScheme object.

6. Authentication Scheme HTTP FORM-based: Create a structure for user ID and
password, create User Sessi on object, determine if the user is authenticated.

7. Authentication Scheme Not HTTP FORM-based: Deny access and report
reason, shut down the API and end program.

2-9

Chapter 2
Developing Access Clients

8. User is Authenticated: Determine if the user is authorized (Step 10).

9. User is Not Authenticated: Deny access and report reason, shut down the API
and end program.

10. User is Authorized: Grant access, shut down the API, and end program.

11. User Not Authorized: Deny access and report reason, shut down the API and
end program.

Note:

To run this test application, or any of the other examples, you must make
sure that your Access System is installed and set up correctly. Specifically,
check that it has been configured to protect resources that match exactly the
URLs and authentication schemes expected by the sample programs. For
details on creating application domains and protecting resources with
application domains, See Creating a New Application Domain.

2.3.3 Sample Code: Simple Access Client

ORACLE

This example is a simple Access Client program. It illustrates how to implement the
bare minimum tasks required for a working Access Client:

e Connect to the OAM Server

e Log in using an authentication scheme employing the HTTP FORM challenge
method

e Check authorization for a certain resource using an HTTP GET request
e Catch and report Access SDK API exceptions

Typically, this calling sequence is quite similar among Access Clients using the FORM
challenge method. FORM-method Access Clients differ principally in the credentials
they require for authentication and the type of resources they protect.

A complete listing for JAccessO i ent . j ava appears in Example 2-1. You can copy this
code verbatim into the text file JAccessd i ent . j ava and execute it on the computer
where your Access Manager SDK is installed.

See Annotated Sample Code: Simple Access Client for an annotated version of this
example to help you become familiar with 12¢ Java Access Manager API calls.

Example 2-1 JAccessClient.java

import java.util.Hashtable;
i mport oracle.security.am asdk.*;

public class JAccessCient {
public static final String _resource = "//Exanple.com 80/secrets/
index. htm";
public static final String _protocol = "http";
public static final String _method = "CET";
public static final String _login = "jsnith";
public static final String _passwd = "j5nlth";
public static final String mconfiglLocation = "/nyfol der";
public static void main(String argv[]) {

2-10

Chapter 2
Developing Access Clients

AccessCient ac = null;
try {
ac = AccessCient.createDefaul t|Instance(mconfiglocation,
AccessCl i ent. Conpati bilityMde. OAM 11G);

Resour ceRequest rrg = new Resour ceRequest (_protocol, _resource,
_met hod);
if (rrg.isProtected()) {
Systemout. println("Resource is protected.");
Aut henti cationSchene aut hnScheme = new Aut henti cati onSchenme(rrq);
if (authnSchene.isForm)) {
Systemout. println("Form Authentication Schene.");
Hasht abl e creds = new Hashtabl e();
creds. put("userid", _login);
creds. put ("password", _passwd);
User Sessi on session = new User Session(rrq, creds);
if (session.getStatus() == UserSession. LOGGEDIN) {
if (session.isAuthorized(rrqg)) {
Systemout.printIn("User is logged in and authorized for the"
+"request at level " + session.getlevel());
} else {
Systemout.printIn("User is logged in but NOT authorized");

[luser can be |oggedout by calling |ogoff nethod on the session object

} else {
Systemout. printIn("User is NOT |ogged in");
1
} else {
System out. println("non-Form Aut hentication Schene.");
}
} else {

Systemout. println("Resource is NOT protected.");
}
1

catch (AccessException ae) {
Systemout. println("Access Exception: " + ae.getMessage());

}

ac. shut down();

}
}

2.3.4 Annotated Sample Code: Simple Access Client

Import standard Java library class Hashtable to hold credentials.

inmport java.io.Hashtabl e;

Import the library containing the Java implementation of the Access SDK API classes.

import oracle.security.am asdk.*;

This application is named JAccessC i ent.

public class JAccessdient {

Since this is the simplest of example applications, we are declaring global constants to
represent the parameters associated with a user request for access to a resource.

ORACLE 2-11

ORACLE

Chapter 2
Developing Access Clients

Typically, a real-world application receives this set of parameters as an array of strings
passed from a requesting application, HTTP FORM-based input, or command-line
input. For example:

public static final String _resource = "//Exanmple.com 80/secrets/index.htm";
public static final String _protocol = "http";
public static final String _nethod = "CGET";
public static final String _login = "jsnmith";
public static final String _passwd = "j5nilth";

Launch the main method on the Java interpreter. An array of strings hamed ar gv is
passed to the main method. In this particular case, the user j snith, whose password is
j 5nit h, has requested the HTTP resource // Exanpl e. com 80/ secret s/index. htm . GET
is the specific HTTP operation that will be performed against the requested resource.
For details about supported HTTP operations and protecting resources with
application domains, See Resources in an Application Domain.

public static void main(String argv[]) {

Place all relevant program statements in the main method within a large try block so
that any exceptions are caught by the catch block at the end of the program.

AccessCient ac = null;

try {

To initialize the Access SDK, create an AccessC i ent instance by providing the
directory location of the GbAccessC i ent.xnl configuration file. There are multiple ways
to provide configuration location to initialize the Access SDK. For more information
refer to Oracle Fusion Middleware Access SDK Java API Reference for Oracle Access
Management Access Manager.

The instance of Accessd i ent initializes the Access SDK API. When the AccessClient
instance is created in OAM_11g mode, you must use a 11g agent profile. Similarly,
when the AccessClient instance is created in OAM_12c mode, you must use an 12c
agent profile. AccessC i ent. Conpati bi | i t yMbde. OAM 11G indicates that Access SDK will
be initialized to work in an older 11g agent mode that is compatible with both thellg
and 12c servers. By default, if this compatibility mode is not provided, then default
0AM 12c is used, and the agent will be operating in 12¢ agent mode and can only talk
with 12c OAM Servers.

ac = AccessCient.createDefaul tInstance(mconfigLocation ,
AccessC i ent. Conpati bilityMde. OAM 11G);

Create a new resource request object named rr g using the Resour ceRequest
constructor with the following three parameters:

e _protocol, which represents the type of resource being requested. When left
unspecified, the default value is HTTP. EJB is another possible value, although
this particular example does not cover such a case. You can also create custom
types, as described in the Creating a Custom Resource Type.

e _resource, which is the name of the resource. Since the requested resource type
for this particular example is HTTP, it is legal to prepend a host name and port
number to the resource name, as in the following:

/| Exanpl e. com 80/ secret s/ i ndex. ht

e _method, which is the type of operation to be performed against the resource.
When the resource type is HTTP, the possible operations are GET and POST. For

2-12

ORACLE

Chapter 2
Developing Access Clients

EJB-type resources, the operation must be EXECUTE. For custom resource
types, you define the permitted operations when you set up the resource type. For
more information on defining resource types and protecting resources with
application domains, See Managing Resource Types.

Resour ceRequest rrq = new Resour ceRequest (_prot ocol ,
_resource, _nethod);

Determine whether the requested resource rrq is protected by an authentication
scheme.

if (rrg.isProtected()) {

If the resource is protected, report that fact.

Systemout. printIn("Resource is protected.");

Use the Aut henti cati onScheme constructor to create an authorization scheme object
named aut hnSchene. Specify the resource request rrq so that Aut hent i cati onScheme
checks for the specific authorization scheme associated with that particular resource.

Aut hent i cati onSchene aut hnSchene =new Aut henti cationSchene(rrq);

Determine if the authorization scheme is FORM-based.

if (authnSchene.isForm)) {

If the authorization scheme does use HTTP FORM as the challenge method, report
that fact, then create a hashtable named creds to hold the nane: val ue pairs
representing the user name (useri d) and the user password (passwor d). Read the
values for _| ogi n and _passwd into the hashtable.

System out. println("Form Aut hentication Scheme.");
Hasht abl e creds = new Hashtabl e();

creds. put ("userid", _login);

creds. put ("password", _passwd);

Using the User Sessi on constructor, create a user session object named session.
Specify the resource request as rrq and the authentication scheme as creds so that
User Sessi on can return the new structure with state information as to whether the
authentication attempt has succeeded.

User Sessi on session = new User Session(rrg, creds);

Invoke the get St at us method on the User Sessi on state information to determine if the
user is now successfully logged in (authenticated).

if (session.getStatus() == UserSession. LOGGEDIN) {

If the user is authenticated, determine if the user is authorized to access the resource
specified through the resource request structure rrq.

if (session.isAuthorized(rrq)) {
System out. print!n(
"User is logged in" +
"and authorized for the request " +

Determine the authorization level returned by the get Level method for the user session
named sessi on.

"at level " + session.getlevel());

2-13

Chapter 2
Developing Access Clients

If the user is not authorized for the resource specified in rr g, then report that the user
is authenticated but not authorized to access the requested resource.

} else {
Systemout. printin("User is logged in but NOT authorized");

If the user is not authenticated, report that fact. (A real world application might give the
user additional chances to authenticate).

} else {
Systemout. printIn("User is NOT |ogged in");

If the authentication scheme does not use an HTTP FORM-based challenge method,
report that fact. At this point, a real-world application might branch to facilitate
whatever other challenge method the authorization scheme specifies, such as basi ¢
(which requires only useri d and password), certificate (SSL or TLS over HTTPS), or
secure (HTTPS through a redirection URL). For more information about challenge
Methods and configuring user authentication, see the Credential Challenge Methods.

} else {
Systemout. println("non-Form Authentication Schene.");

}

If the resource is not protected, report that fact. (By implication, the user gains access
to the requested resource, because the Access Client makes no further attempt to
protect the resource).

} else {
Systemout. printIn("Resource is NOT protected.");

}
}

If an error occurs anywhere within the preceding try block, get the associated text
message from object ae and report it.

catch (AccessException ae) {
System out. print!n(
"Access Exception: " + ae.getMessage());

}

If the application needs to logout user, then it can invoke logoff method on the object
of User Sessi on class.

Now that the program is finished calling the OAM Server, shut down the API, thus
releasing any memory the API might have maintained between calls.

ac. shutdown();

}
}

Exit the program. You don't have to deallocate the memory used by the structures
created by this application because Java Garbage Collection automatically cleans up
unused structures when it determines that they are no longer needed.

2.3.5 Sample Code: Java Login Servlet

This example follows the basic pattern of API calls that define an Access Client, as
described in Sample Code: Simple Access Client. However, this example is
implemented as a Java servlet running within a Web server, or even an application

ORACLE 2-14

ORACLE

Chapter 2
Developing Access Clients

server. In this environment, the Access Client servlet has an opportunity to play an
even more important role for the user of a Web application. By storing a session token
in the user's HTTP session, the servlet can facilitate single sign-on for the user. In
other words, the authenticated OAM Server session information that the first request
establishes is not discarded after one authorization check. Instead, the stored session
token is made available to server-side application components such as beans and
other servlets, so that they do not need to interrupt the user again and again to request
the same credentials. For a detailed discussion of session tokens, GbSSOCooki es, and
configuring single sign-on, See Understanding SSO Cookies.

Note:

This example Java servlet does not provide SSO to resources protected by
Access Manager WebGates.

This sample login servlet accepts userid/password parameters from a form on a
custom login page, and attempts to log the user in to Access Manager. On successful
login, the servlet stores a session token in the User Sessi on object. This enables
subsequent requests in the same HTTP session to bypass the authentication step
(providing the subsequent requests use the same authentication scheme as the
original request), thereby achieving single sign-on.

A complete listing for the Java login servlet is shown in Example 2-2. This code can
provide the basis for a plug-in to a web server or application server. Annotated Sample
Code: Java Login Servlet provides an annotated version of this code.

Example 2-2 Java Login Servlet Example

inport java.io.*;

inport javax.servlet.*;

inport javax.servlet.http.*;
inport java.util.*;

i mport oracle.security.am asdk.*;

public class LoginServlet extends HtpServlet {

public void init(ServletConfig config) throws ServletException {
try {

AccessCient ac = AccessCient.createDefaul tlnstance("/nyfol der" ,
AccessCl i ent. Conpati bilityMde. OAM 11G);
} catch (AccessException ae) {
ae.printStackTrace();
1
}

public void service(HtpServl et Request request, HtpServletResponse response)
throws | CException, ServletException {
Aut henti cationSchene aut hnSchenme = nul | ;
User Sessi on user = null;
Resour ceRequest resource = nul l;
response. set Content Type("text/htm");
PrintWiter out = response.getWiter();
out.println("<HTM.>");
out. println("<HEAD><TI TLE>Logi nServl et: Error Page</ Tl TLE></ HEAD>");
out. println("<BODY>");

2-15

Chapter 2
Developing Access Clients

Ht t pSessi on session = request. get Session(fal se);
String requestedPage = request. get Parameter("request");
String regMethod = request. get Met hod();
Hasht abl e cred = new Hashtabl e();
try {
if (requestedPage == null || requestedPage.!ength()==0) {
out. println("<p>REQUESTED PAGE NOT SPECI FI ED\n");
out. println("</BODY></ HTM.>");
return;
}
resource = new ResourceRequest ("http", requestedPage, "GET");
if (resource.isProtected()) {
aut hnSchene = new Aut henti cati onSchene(resource);
if (authnSchene.isBasic()) {
if (session == null) {
String sUserNane = request. get Parameter("userid");
String sPassword = request. get Paramet er ("password");
if (sUserName != null) {
cred. put ("userid", sUserNane);
cred. put ("password", sPassword);
user = new User Session(resource, cred);
if (user.getStatus() == UserSession. LOGGEDIN) {
if (user.isAuthorized(resource)) {
sessi on = request. get Session(true);
sessi on. put Val ue("user", user);
response. sendRedi rect (request edPage);
} else {
out.println("<p>User " + sUserNane + " not" +
" authorized for " + requestedPage + "\n");

}
} else {
out.println("<p>User" + sUserNane + "NOT LOGGED INn");
}
} else {
out. println("<p>USERNAME PARAM REQUI RED\ n");
1
} else {

user = (User Session)session. get Val ue("user");
if (user.getStatus() == UserSession. LOGGEDIN) {
out.println("<p>User " + user.getUserldentity() + " already"+
"LOGGEDI M n");
1
1
} else {
out.println("<p>Resource Page" + requestedPage + " is not"+
" protected with BASIC\n");
}
} else {
out.println("<p>Page " + requestedPage + " is not protected\n");

} catch (AccessException ex) {
out.printin(ex);

}
out. println("</BODY></ HTM.>");

}
}

2.3.6 Annotated Sample Code: Java Login Servlet

Import standard Java packages to support input, output, and basic functionality.

ORACLE 2-16

ORACLE

Chapter 2
Developing Access Clients

inport java.io.*;
inport java.util.*;

Import two packages of Java extensions to provide servlet-related functionality.

i mport javax.servlet.*;
i mport javax.servlet.http.*;

Import the package oracl e. security. am asdk. j ar, which is the Java implementation of
the Access SDK API.

inport oracle.security.am asdk. *;

This servlet, which builds on the functionality of the generic Ht t pServl et supported by
the Java Enterprise Edition, is named Logi nServl et .

public class LoginServlet extends HtpServlet {

The init method is called once by the servlet engine to initialize the Access Client. In
init method, Access SDK can be initialized by instantiating Accessd i ent by passing the
location of the configuration file ObAccessClient.xml file. For more information for
creating Access Client, refer to Oracle Fusion Middleware Access SDK Java API
Reference for Oracle Access Management Access Manager. The 0AM 11G compatibility
flag initializes Access SDK in a mode such that it is compatible with both 11g and 12¢
servers. The 0AM 11G compatibility flag initializes Access SDK in an old 11g agent
mode that is compatible with both 11g and 12c¢ servers. By default, if this compatibility
mode is not provided, the default 0aM 12C flag is used and the agent will operate in 12¢
agent mode and can only talk with 12c OAM Server.

" Note:

When the AccessClient instance is created in OAM_11G mode, you must
use a 11g agent profile. Similarly, when the AccessClient instance is created
in OAM_12c¢ mode, you must use an 12c agent profile.

In the case of initialization failure, report that fact, along with the appropriate error
message.

public void init() {
AccessCient ac =

AccessCient. createDefaul tlnstance("/myfol der" ,
AccessC ient. Conpati bilityMde. OAM 11G);

} catch (AccessException ae) {

ae.printStackTrace();

}

}

Invoke the j avax. servl et. servi ce method to process the user's resource request.

public void service(HtpServl et Request request, HtpServletResponse response)
throws | CException, ServletException {

Initialize members as nul | . These will store the Access structures used to process the
resource request, then set the response type used by this application to text/htni .

Aut henti cati onSchene aut hnSchene = nul | ;
User Sessi on user = nul |l ;

2-17

ORACLE

Chapter 2
Developing Access Clients

Resour ceRequest resource = nul l;
response. set Content Type("text/htm");

Open an output stream titled Logi nServl et: Error Page and direct it to the user's
browser.

PrintWiter out = response.getWiter();

out.println("<HTM.>");

out. println("<HEAD><TI TLE>Logi nServl et: Error Page</ Tl TLE></ HEAD>");
out.println("<BODY>");

Determine if a session already exists for this user. Invoke the get Sessi on method with
fal se as a parameter, so the value of the existing servlet session (and not the
User Sessi on) will be returned if it is present; otherwise, NULL will be returned.

Ht t pSessi on session = request. get Session(fal se);
Retrieve the name of the target resource, assign it to the variable r equest edPage, then

retrieve the name of the HTTP method (such as GET, POST, or PUT) with which the
request was made and assign it to the variable r egMet hod.

String request edPage = request. get Paranet er (Const ant s. REQUEST) ;
String reqMethod = request. get Met hod();

Create a hashtable named cred to hold the user's credentials.

Hasht abl e cred = new Hashtabl e();

If the variable r equest edPage is returned empty, report that the name of the target
resource has not been properly specified, then terminate the servlet.

try {
if (requestedPage == null) {
out. print ! n("<p>REQUESTED PAGE NOT SPECI FI ED\n");
out. println("</BODY></ HTM.>");
return;

}

If the name of the requested page is returned, create a Resour ceRequest Structure and
set the following:

e The resource type is HTTP
e The HTTP method is GET
e resource is the value stored by the variable request edPage

resource = new ResourceRequest ("http", requestedPage, "GET");

If the target resource is protected, create an Aut henti cati onSchene structure for the
resource request and name it aut hnSchene.

if (resource.isProtected()) {
aut hnScheme = new Aut henti cati onSchene(resource);

If the authentication scheme associated with the target resource is HTTP basi ¢ and no
user session currently exists, invoke j avax. servl et . servl etrequest . get Paraneter to
return the user's credentials (user name and password) and assign them to the
variables sUser Nane and sPasswor d, respectively.

2-18

ORACLE

Chapter 2
Developing Access Clients

For the aut hnSchene. i sBasi ¢ call in the following statement to work properly, the user
name and password must be included in the query string of the user's HTTP request,
as in the following:

http://host.exanpl e. con resour ce?user nanme=bhob&user passwor d=bobspasswor d

where resour ce is the resource being requested, bob is the user making the request,
and bobspasswor d is the user's password.

if (authnSchene.isBasic()) {
if (session == null) {
String sUserNane = request. get Paramet er (Const ant s. USERNAME) ;
String sPassword = request. get Paramet er (Const ant s. PASSWORD) ;

If the user name exists, read it, along with the associated password, into the hashtable

named cred.

if (sUserName != null) {
cred. put ("userid", sUserName);
cred. put ("password", sPassword);

Note:

If you substitute aut hnSchene. i sFor mfor aut hnSchene. i sBasi ¢, you need to
write additional code to implement the following steps.

1. Process the original request and determine that form-based login is
required.

2. Send a 302 redirect response for the login form and also save the
original resource information in the HTTP session.

3. Authenticate the user by processing the posted form data with the user's
name and password.

4. Retrieve the original resource from the HTTP resource and sends a 302
redirect response for the original resource.

5. Process the original request once again, this time using the User Sessi on
stored in the HTTP session.

Create a user session based on the information in the Resour ceRequest structure
named resour ce and the hashtable cred.

user = new User Session(resource, cred);

If the status code for the user returns as LOGGEDI N, that user has authenticated
successfully.

if (user.getStatus() == UserSession. LOGGEDIN) {

Determine if the user is authorized to access the target resource.

if (user.isAuthorized(resource)) {

Create a servlet user session (which is not to be confused with an User Sessi on) and
add the name of the user to it.

2-19

ORACLE

Chapter 2
Developing Access Clients

session = request. get Session(true);
sessi on. put Val ue("user", user);

Redirect the user's browser to the target page.

response. sendRedi r ect (request edPage) ;

If the user is not authorized to access the target resource, report that fact.

} else {
out.println("<p>User " + sUserName + " not authorized
for " + requestedPage + "\n");

}

If the user is not properly authenticated, report that fact.

} else {
out.println("<p>User" + sUserNane + "NOT LOGGED INn");
}

If the user name has not been supplied, report that fact.

} else {
out. println("<p>USERNAME PARAM REQUI RED\n");

}

If a session already exists, retrieve USER and assign it to the session variable user.

} else {
user = (User Session)session. get Val ue("user");

If the user is logged in, which is to say, the user has authenticated successfully, report
that fact along with the user's name.

if (user.getStatus() == UserSession.LOGGEDIN) {
out.println("<p>User " + user.getUserldentity() + " already
LOGGEDI N\ n") ;

}
}

If the target resource is not protected by a basi ¢ authentication scheme, report that
fact.

} else {
out.println("<p>Resource Page" + requestedPage + " is not protected
with BASIQ\n");

}

If the target resource is not protected by any authentication scheme, report that fact.

} else {
out.println("<p>Page " + requestedPage + " is not protected\n");

}

If an error occurs, report the backtrace.

} catch (AccessException ex) {
oe.printin(ex);

}

Complete the output stream to the user's browser.

2-20

Chapter 2
Developing Access Clients

out. println("</BODY></ HTM.>");

}
}

2.3.7 Sample Code: Additional Methods

ORACLE

Building on the basic pattern established in the sample application JAccessd i ent . ava,
discussed in Sample Code: Simple Access Client, the following sample invokes
several additional OAM Server methods. For instance, it inspects the session object to
determine which actions and named responses are currently configured in the policy
rules associated with the current authentication scheme.

For this demonstration to take place, you must configure some actions through the
OAM Server prior to running the application. For details about authentication action
and configuring user authentication, See Testing User Authentication from the Access
Tester Console.

The complete listing for this sample application appears in Example 2-3. An annotated
version of the code is provided in Annotated Sample Code: Additional Methods.

Example 2-3 access_test_java.java

inport java.util.*;
import oracle.security.am asdk.*;

public class access_test_java {

public static void main(String[] arg) {
String userid, password, method, url, configDir, type,
| ocation;
Resour ceRequest res;
Hasht abl e parameters = null;
Hasht abl e cred = new Hashtabl e();
AccessCient ac = null;
if (arg.length < 5) {
Systemout. println("Usage: EXPECTED: userid password Type

HTTP- met hod"
+" URL [Installdir [authz-parameters] [location]]]");

return;

} else {
userid = arg[0];
password = arg[1];
type =arg[2];
met hod =arg[3];
url = arg[4];

if (arg.length >= 6) {
confighir = arg[5];
} else {
configDir = null;

if (arg.length >= 7 & arg[6] != null) {
paraneters = new Hashtabl e();
StringTokeni zer tokl = new StringTokenizer(arg[6], "&");
whi | e (tokl. hashoreTokens()) {
String nameVal ue = tokl. next Token();
StringTokeni zer tok2 = new StringTokeni zer (nanmeVal ue,
=y
String name = tok2. next Token();
String val ue = tok2. hasMreTokens() ? tok2.nextToken() :

2-21

ORACLE

Chapter 2
Developing Access Clients

paramet ers. put (name, val ue);
}
}
location = arg.length >= 8 ? arg[7] : null;
try {
ac = AccessCient.createDefaul tInstance(configDir ,
AccessCl i ent. Conpati bilityMde. OAM 11G);

} catch (AccessException ae) {
Systemout. printin("OAM Server SDK Initialization
failed");
ae.printStackTrace();
return;
}
cred. put ("userid", userid);
cred. put ("password", password);
try {
res = new Resour ceRequest (type, url, nethod);
if (res.isProtected()) {

Systemout. println("Resource " + type + ":" + url +"
protected");
} else {

Systemout. println("Resource " + type + ":" + url +"

unprotected");

} catch (Throwable t) {
t.printStackTrace();
Systemout.printin("Failed to created new resource
request");
return;
}

User Sessi on user = nul | ;

try {
user = new User Session(res, cred);

} catch (Throwable t) {
t.printStackTrace();
Systemout.printin("Failed to create new user session");
return;

}

try {

if (user.getStatus() == UserSession. LOGGEDI N) {
if (location != null) user.setLocation(location);
Systemout. printin("user status is " + user.getStatus());

if (paraneters !'= null ? user.isAuthorized(res,
paraneters) :
user. i sAuthorized(res)) {
Systemout. println("Pernission GRANTED");
Systemout. println("User Session Token =" +
user . get Sessi onToken());
if (location !'=null) {
Systemout.println("Location = " +
user. get Location());

} else {
Systemout. println("Pernission DENIED');
if (user.getError() == UserSessi on. ERR_NEED MORE DATA)
{
int nParans =
res. get Number OF Aut hori zat i onPar aneters();

2-22

Chapter 2
Developing Access Clients

System out. print("Required Authorization Paraneters
(" +
nParans + ") :");
Enuneration e =
res. get Aut hori zati onParaneters(). keys();
whil e (e.hasMreEl ements()) {
String nanme = (String) e.nextEl enent();
Systemout.print(" " + name);

}
Systemout. printin();

1
}
}
el se
{
Systemout. println("user status is " + user.getStatus());

}

} catch (AccessException ae)

{

Systemout.printIn("Failed to get user authorization");

String[] actionTypes = user.getActionTypes();
for(int i =0; i < actionTypes.length; i++)

Hasht abl e actions = user.getActions(actionTypes[i]);
Enuneration e = actions. keys();
int item=0;
Systemout.printIn("Printing Actions for type " +
actionTypes[i]);
whi | e(e. hashor eEl ement s())
{
String name = (String)e.nextEl enent();
Systemout.printIn("Actions[" + item+"]: Nane " + nane + "
value " + actions.get(nane));

i tem+;
}
}
Aut henti cationSchene aut hs;
try
{
auths = new Aut henti cationSchene(res);
if (auths.isBasic())
{
Systemout. printIn("Auth scheme is Basic");
}
el se
{
Systemout. printIn("Auth scheme is NOT Basic");
}
}
catch (AccessException ase)
{
ase. print StackTrace();
return;
try

Resour ceRequest resNew = (Resour ceRequest) res.clone();
Systemout. printIn("Cone resource Nane: " +
resNew. get Resource());

}

ORACLE 2-23

Chapter 2
Developing Access Clients

catch (Exception e)
{

1
res = null;
auths = null;
ac. shut down();
1

1

e.printStackTrace();

2.3.8 Annotated Sample Code: Additional Methods

ORACLE

Import standard Java libraries to provide basic utilities, enumeration, and token
processing capabilities.

inmport java.util.*;
Import the Access SDK API libraries.

import oracle.security.am asdk.*;

This class is named access_test java.

public class access_test_java {

Declare seven variable strings to store the values passed through the array named
arg.

public static void main(String[] arg) {
String userid, password, nethod, url, configDir, type, |ocation;

Set the current ResourceRequest to res.

Resour ceRequest res;

Initialize the hashtable parameters to nul I, just in case they were not already empty.

Hasht abl e paraneters = null;

Create a new hashtable named cred.

Hasht abl e cred = new Hashtabl e();

Initialize Accessd i ent reference to null.

AccessCient ac = null;

If the array named ar g contains less than five strings, report the expected syntax and
content for command-line input, which is five mandatory arguments in the specified
order, as well as the optional variables confi gbi r, aut hz- paranet ers, and | ocat i on.

if (arg.length < 5) {
Systemout. println("Usage: EXPECTED: userid password type
HTTP-method URL [configDir [authz-paraneters] [location]]]");

Since fewer than five arguments were received the first time around, break out of the
main method, effectively terminating program execution.

return;
} else {

2-24

ORACLE

Chapter 2
Developing Access Clients

If the array named ar g contains five or more strings, assign the first five arguments
(arg[0] through arg[4]) to the variables useri d, passwor d, t ype, net hod, and ur |,
respectively.

userid = arg[0];
password = arg[1];

type = arg[2];
method = arg[3];
url = arg[4];

}

If ar g contains six or more arguments, assign the sixth string in the array to the
variable configDir.

if (arg.length >= 6)
configDir = arg[5];

If ar g does not contain six or more arguments (in other words, we know it contains
exactly five arguments, because we have already determined it does not contain fewer
than five) then set confi gDir to NULL.

el se
configbDir = null;

If ar g contains at least seven strings, and arg[6] (which has been implicitly assigned to
the variable authz-parameters) is not empty, create a new hashtable named
par anet er s. The syntax for the string authz-parameters is: p1=v1&p2=v2&...

if (arg.length >= 7 & arg[6] '=null) {
paraneters = new Hashtabl e();

Create a string tokenizer named t ok1 and parse arg[6], using the ampersand character
(&) as the delimiter. This breaks arg[6] into an array of tokens in the form pn=vn,
where n is the sequential number of the token.

StringTokeni zer tokl = new StringTokenizer(arg[6], "&");

For all the items in t ok1, return the next token as the variable nameval ue. In this
manner, naneVal ue is assigned the string pn=vn, where n is the sequential number of
the token.

whil e (tokl. hashoreTokens()) {
String nameVal ue = tokl. next Token();

Create a string tokenizer named t ok2 and parse naneVal ue using the equal character
(=) as the delimiter. In this manner, pn=vn breaks down into the tokens pn and vn.

StringTokeni zer tok2 = new StringTokenizer (nameVal ue, "=");

Assign the first token to the variable nane.

String name = tok2. next Token();

Assign the second token to val ue. If additional tokens remain in t ok2, return the next
token and assign it to val ue; otherwise, assign an empty string to val ue.

String val ue = tok2. hasMreTokens() ? tok2.nextToken() : "";

Insert nane and val ue into the hashtable par aneters.

2-25

ORACLE

Chapter 2
Developing Access Clients

paramet ers. put (name, val ue);
1
}

If there are eight or more arguments in ar g, assign arg[7] to the variable | ocat i on;
otherwise make | ocati on empty.

location = arg.length >= 8 ? arg[7] : null;

Create AccessO i ent instance using configbir, in case if its null provide configuration
file location using other options. For more information for creating Access Client, see
Oracle Fusion Middleware Access SDK Java API Reference for Oracle Access
Management Access Manager.

try {
ac = AccessCient.createDefaul tlnstance(configDir ,

AccessC i ent. Conpati bilityMde. 0AM 11G);
}

If the initialization attempt produces an error, report the appropriate error message (ae)
to the standard error stream along with the backtrace.

catch (AccessException ae) {
Systemout. println("

OAM Server SDK Initialize failed");
ae.printStackTrace();

Break out of the main method, effectively terminating the program.

return;

}

Read the variables, user ID, and password into the hashtable named cr ed.

cred. put ("userid", userid);
cred. put ("password", password);

Create a Resour ceRequest object named res, which returns values for the variables
type, url and method from the OAM Server.

try {
res = new ResourceRequest (type, url, nethod);

Determine whether the requested resource res is protected and display the
appropriate message.

if (res.isProtected())

Systemout. printIn("Resource " + type ":" + url + " protected");
el se
Systemout. printIn("Resource " + type + ":" + url + " unprotected");

}

If the attempt to create the Resour ceRequest structure does not succeed, report the
failure along with the error messaget.

catch (Throwable t) {
t.printStackTrace();
Systemout.printIn("Failed to create new resource request");

Break out of the main method, effectively terminating the program.

2-26

ORACLE

Chapter 2
Developing Access Clients

return;

}

Set the User Sessi on parameter user to empty.

User Sessi on user = nul |l ;

Create a User Sessi on structure named user so that it returns values for the
Resour ceRequest structure res and the Aut henti cati onScheme structure cred.

try
user = new User Session(res, cred);

If the attempt to create the User Sessi on structure does not succeed, then report the
failure along with the error message't.

catch (Throwable t) {
t.printStackTrace();
Systemout.printIn("Failed to create new user session");

Break out of the main method, effectively terminating the program.

return;

}

Determine if the user is currently logged in, which is to say, authentication for this user
has succeeded.

try
{
if (user.getStatus() == UserSession. LOGGEDI N) {

If the user is logged in, determine whether the variable | ocat i on is not empty. If

| ocati on is not empty, set the | ocati on parameter for Accessd i ent to the value of the
variable | ocati on, then report that the user is logged in along with the status code
returned by the OAM Server.

if (location !'= null) user.setLocation(location);
Systemout.println("user status is " + user.getStatus());

Check authorization. To accomplish this, determine whether par anet er s exists. If it
does, determine whether the user is authorized with respect to the target resource
when the parameters stored in par anet ers are attached. If par anet er s does not exist,
simply determine whether the user is authorized for the target resource.

try {

if (parameters != null ? user.isAuthorized(res, parameters) :
user.isAuthorized(res)) {

If the user is authorized to access the resource when all the appropriate parameters
have been specified, report that permission has been granted.

Systemout. println("Permnssion GRANTED");

Display also a serialized representation of the user session token.

Systemout. println("User Session Token =" + user. get Sessi onToken());

If the variable location is not empty, report the location.

2-27

ORACLE

Chapter 2
Developing Access Clients

if (location !'=null) {
Systemout. printIn("Location =" + user.getLocation());

}

If the user is not authorized to access the resource, report that permission has been
denied.

} else {
System out. println("Pernission DEN ED");

If User Sessi on returns ERR_NEED_MORE_DATA, set the variable nPar ans to the
number of parameters required for authorization, then report that number to the user.

if (user.getError() == UserSessi on. ERR NEED MORE DATA) {
int nParanms = res. get Nunber Of Aut hori zati onParaneters();
Systemout. print("Required Authorization Paraneters (" +
nParams + ") :");

Set e to the value of the keys parameter in the hashtable returned by the
get Aut hori zat i onPar anet er s method for the Resour ceRequest object named "res."

Enuneration e = res. get Aut hori zati onParanmeters().keys();

Report the names of all the elements contained in e.

whil e (e.hasMreEl ements()) {
String name = (String) e.nextEl enent();

Systemout.print(" " + nane);
}
Systemout. println();
}

Otherwise, simply proceed to the next statement.

el se

}
}

If the user is not logged in, report the current user status.

el se
Systemout. printIn("user status is " + user.getStatus());

In the case of an error, report that the authorization attempt failed.

catch (AccessException ae)
Systemout.printIn("Failed to get user authorization");

}

Now report all the actions currently set for the current user session. Do this by creating
an array named acti onTypes from the strings returned by the get Act i onTypes method.
Next, read each string in acti onTypes into a hashtable named acti ons. Report the
name and value of each of the keys contained in acti ons.

String[] actionTypes = user.get ActionTypes();
for(int i =0; actionTypes[i] != null; i++){
Hasht abl e actions = user.get Actions(actionTypes[i]);
Enuneration e = actions. keys();
int item= 0;
Systemout. printIn("Printing Actions for type " + actionTypes[i]);
whi | e(e. hashor eEl enents()) {
String name = (String)e.nextEl enent();

2-28

ORACLE

Chapter 2
Developing Access Clients

Systemout.printIn("Actions[" + item+"]: Nane " + nane + " value " +
actions. get(nane));

itemt+;
1

}

Attempt to create an Aut henti cati onSchenme object named aut hs for the Resour ceRequest
object res.

Aut henti cati onSchene aut hs;

try
auths = new Aut henticationScheme(res);

If the Aut henti cati onSchene creation attempt is unsuccessful, report the failure along
with the error message ase.

catch (AccessException ase) {
ase. print StackTrace();

Break out of the main method, effectively terminating the program.

return;

}
Determine if the authorization scheme is basic.
try

{
if (auths.isBasic())

If it is, report the fact.

Systemout. println("Auth scheme is Basic");

If it is not basic, report the fact.

el se
Systemout. printIn("Auth scheme is NOT Basic");

Use the copy constructor to create a new Resour ceRequest object named resNEWfrom
the original object res.

Resour ceRequest resNew = (Resour ceRequest) res.clone();

Report the name of the newly cloned object.

Systemout. printIn("Cone resource Nanme: " + resNew. get Resource());

If the Resour ceRequest object cannot be cloned for any reason, report the failure along
with the associated backtrace.

catch (Exception e) {
e.printStackTrace();

}

Set the Resour ceRequest object res and the Aut henti cati onScheme object aut hs to NULL,
then disconnect the Access SDK API.

res = null;
auths = nul | ;
ac. shut down();

2-29

Chapter 2
Understanding Access SDK Logs

}
}

2.3.9 Sample Code: Certificate-Based Authentication in Java

The following is a code snippet that demonstrates implementing an Access Client in
Java that processes an X.509 certificate. This snippet is appropriate when an
administrator configures certificate-based authentication in the Access System.

Note that the certificate must be Base 64-encoded. The OAM Server uses this
certificate only to identify the user. It does not perform validation such as the validity
period, if the root certification is trusted or not, and so on.

File oCertFile = new File("sanple_cert.peni);

Fil el nput StreaminStream = new Filel nput StreamoCertFile);
CertificateFactory cf =
CertificateFactory.getlnstance("X 509");

/1 cert nust point to a valid java.security.cert.X509Certificate instance.
X509Certificate cert = (X509Certificate)
cf.generateCertificate(inStrean;

/1 Convert the certificate into a byte array
byte[] encodedCert = cert.getEncoded();

/1 Encode the byte array using Base 64-encoding and convert it into a string
String base64EncodedCert = new String(Base64. encodeBase64 (encodedCert));

Il Create hashtable to hold credentials
Hasht abl e<String, String> creds = new Hashtabl e<String, String>();

/] Store the Base 64-encoded under the key "certificate"
creds. put ("certificate", base64EncodedCert);

/1 Create ResourceResource request object including all information about the //
/'l resource being accessed including Resource type (for exanple http, ejb etc.
[/ 1f null, defaults to http), and operation for the resource object

/1 (for exanple GET, POST, PUT, HEAD, DELETE, TRACE, OPTIONS, CONNECT, OTHER)
Resour ceRequest resourceRequest = new Resour ceRequest (resour ceType, resourcelrl,
operation);

/] Create a UserSession with the requestRequest and the cred hashtable
User Sessi on user Session = new User Sessi on(resour ceRequest, creds);

/1 The above statement will throw an exception if the certificate cannot be
mapped // to a valid user by the OAM Server.

The following import statements are associated with the snippet:

import java.security.cert.CertificateFactory;
inport java.security.cert.X509Certificate;
import java.io.FilelnputStream
i mport oracle.security.am common. nap. util.Base64;

2.4 Understanding Access SDK Logs

The Access SDK uses Java logging APIs for producing logs. The
oracl e. security.am asdk package contains the AccessLogger class, which produces the
Access SDK log. The log generated by the Access SDK provides information about

ORACLE 2-30

ORACLE

Chapter 2
Understanding Access SDK Logs

operations performed. For example, operation status, any errors or exceptions that
occur, and any general information that is helpful for troubleshooting can be logged.

This section describes the messages and exceptions used by the Access SDK to
indicate status or errors in the execution log.

" Note:

The Access SDK provides support for localized messages that indicate
status or error conditions. Error messages, which are provided to the
application as exceptions, are also localized. These localized error
messages are logged in the Access SDK log file.

The following types of exceptions are used to indicate error conditions in an Access
SDK log.

e OperationNotPermittedException

The Access SDK provides a set of session management APIs. Only privileged
Access Clients can perform these session management operations.

Al | owManagenent Qper at i ons flag must be set for the specified agent profile to
initialize Access SDK.

If the Access Client is not allowed to perform these operations, the OAM Server
returns an error. When the server returns an error, the Access SDK will throw this
exception.

* AccessException

The Access SDK API throws an AccessExcept i on whenever an unexpected,
unrecoverable error occurs during the performance of any operation.

To generate the Access SDK log, you must provide a logging configuration file when
you start the application. Provide this log configuration file as a Java property while
running the application, where the Java property - Dj ava. uti|. | ogging. config.file is
the path to | oggi ng. properties. For example:

java -Djava.util.logging.config.file=JRE DI RECTORY/Ii b/l ogging. properties

The | oggi ng. properti es file defines the number of Loggers, Handlers, Formatters, and
Filters that are constructed and ready to go shortly after the VM has loaded.
Depending on the situation, you can also configure the necessary logging level.

You must provide the log file path against the j ava. util .| oggi ng. Fi | eHandl er. pattern
property in the | oggi ng. properti es file. If you provide only the file name, the file will be
created under the current directory. The following is an example | oggi ng. properti es
file.

"handl ers" specifies a comm separated |ist of |og Handl er

classes. These handlers will be installed during VM startup.

Note that these classes nust be on the system classpath.

By default we only configure a Consol eHandl er, which will only

show nessages at the INFO and above |evels.

Add handlers to the root |ogger.

These are inherited by all other |oggers.

handl ers= java. util.logging. FileHandl er, java.util.logging.Consol eHandl er

Set the logging level of the root |ogger.

2-31

Chapter 2
Building an Access Client Program

Level s fromlowest to highest are

FINEST, FINER, FINE, CONFIG |INFO WARNI NG and SEVERE.
The default level for all |oggers and handlers is I NFO
.level = ALL

Configure the Consol eHandl er.

Consol eHandl er uses java.util.logging.SinpleFormatter by default.

Even though the root |ogger has the same |evel as this,

the next line is still needed because we're configuring a handler,

not a logger, and handlers don't inherit properties fromthe root |ogger.
java.util.logging. Consol eHandl er. | evel =l NFO

java.util.logging. Consol eHandl er.formatter=java.util.logging.Si npl eFor matter

The fol lowing special tokens can be used in the pattern property
which specifies the location and nane of the log file.

| - standard path separator

% - systemtenporary directory

9% - value of the user.hone system property

% - generation nunber for rotating |ogs

% - unique nunber to avoid conflicts

FileHandl er wites to %/ deno0.1o0g by default.
java.util.logging.FileHandl er. pattern=%/asdk%. | og

Configure the FileHandl er.

FileHandl er uses java.util.logging. XM.Formatter by default.
#java.util.logging. FileHandler.limt = 50000

#java.util.logging. FileHandl er.count = 1

java.util.logging.FileHandl er.formatter=java.util.logging.Si npl eFormatter
java.util.logging.FileHandl er.|evel =ALL

2.5 Building an Access Client Program

The following topics are discussed in this section:

e Setting the Development Environment

e Compiling a New Access Client Program

2.5.1 Setting the Development Environment

ORACLE

Setting up your development environment involves installing JDK and Access SDK
software and setting appropriate environment variables. The development
environment has the following requirements:

1. Install JIDK 1.6.0 or higher.
2. Install 12c Access SDK.

3. Define a JAVA_HOME environment variable to point to JDK installation directory.
For example, on UNIX-like operating systems, execute the following command:

setenv JAVA HOVE <JDK install dir>/bin

4. Modify the PATH environment variable to the same location where
JAVA_ HOME/bin points. For example, on UNIX-like operating systems, execute
the following command:

setenv PATH $JAVA_HOMVE/ bi n: $PATH

2-32

Chapter 2
Deploying Access Clients

5. Modify the CLASSPATH environment variable to point to JDK and Access SDK jar
files. For example, on UNIX-like operating systems, execute the following
command:

setenv CLASSPATH $JAVA HOME/ li b/t ool s. | ar: $ACCESSSDK | NSTALL_DI R/ oanasdk-
api . j ar: $CLASSPATH

For a list of all jar files required in the CLASSPATH variable, see Installing Access
SDK.

2.5.2 Compiling a New Access Client Program

After configuring the development environment as documented in Setting the
Development Environment, you can compile your Access Client program using a
command similar to the following:

Javac —-cp <location of Access SDK jar> Sanpl eProgram java

Modify details such as CLASSPATH and Access Client program name as needed. For
more information about the jar files to add to CLASSPATH, see Installing Access SDK.

2.6 Deploying Access Clients

After development, the Access Client must be deployed in a live Access Manager
environment in order to test and use it. It is assumed that the Access Client program is
already developed and compiled

The following overview outlines the tasks that must be performed by a user with
Oracle Access Management administrator credentials. .

1. Retrieve the Access SDK jar file and copy this to the computer you will use to build
the Access Client. .

See Installing Access SDK
2. Copy the Access Client to the computer hosting the application to be protected.
3. Configure the Access Client.
4. Verify you have the required Java environment available.

If your Access Client is in a standalone environment, you can use Java
Development Kit (JDK) or Java Runtime Environment (JRE). If your Access Client
is a servlet application, you can use Java EE or the Java environment available
with your Java EE container.

5. Verify that the Access SDK jar file is in the CLASSPATH. If in a non-JRF
environment, verify that the necessary JPS jar files are in the CLASSPATH.

See, Installing Access SDK.
6. Deploy the Access Client.

To deploy the access client See Registering an OAM Agent Using the Console in
Fusion Middleware Administering Oracle Access Management.

ORACLE 2-33

Chapter 2
Configuring Access Clients

2.7 Configuring Access Clients

This section describes the configuration steps required before deploying an Access
Client developed using the Access SDK. The Access Client deployment process is
similar to that of other Access Manager agents. This section provides the following
details.

Understanding Configuration Requirements for Access SDK
Generating the Required Configuration Files

SSL Certificate and Key File Requirements

2.7.1 Understanding Configuration Requirements for Access SDK

An Access SDK configuration consists of the following files:

ORACLE

ObAccessClient.xml

This configuration file (ObAccessClient.xml) holds various details, such as Access
Manager server host, port, and other configuration items, that decide behavior of
the Access Client. For example, idle session time.

An alternative to using ObAccessClient.xml is to initialize the Access SDK hy
providing a bootstrap configuration. An access client or application can use a
bootstrap configuration from its own configuration store or other method.
Configuration details such as host and port number of the OAM Server can be
invoked using AccessC i ent . creat eDef aul t I nst ance. For more information about
programmatic initialization, See Oracle Fusion Middleware Access SDK Java API
Reference for Oracle Access Management Access Manager.

cwallet.sso

This Oracle wallet file is an artifact created when an 11g agent is registered with
Access Manager. The cwallet.sso file contains the secret key that is used by the
OAM Server when encrypting a token issued for the agent.

The cwallet.sso file can be stored in the same location as other files or elsewhere.
The path must be declared in jps-config.xml and is relative to the jps-config.xml
location. cwallet.sso applies to 11g agents only.

In a JRF environment, there is a system jps-config.xml located under the
<DOMAIN_HOME>/config/fmwconfig directory. This file specifies the use of the
system cwallet.sso located in the same directory; the system wallet contains keys
and credentials for all components in the system. Because of this, you must merge
your agent registration cwallet.sso with the system cwallet.sso using the following
procedure:

1. Prepare a merge-cred.xml, specifying the directory for the source cwallet.sso
(agent registration artifacts) and the destination cwallet.sso (system artifacts).
The file contents are like those defined in Example 2-4.

2. Run the following WLST command to merge the wallets.

<MN HOMVE>/ common/ bi n/ wl st . sh

wls:/of fline> connect ("<usernanme>", "<password>", "<host>:<adm n_port>")

wl s: / base_donai n/ server Confi g>

m grateSecurityStore(type="credStore", configFile="nerge-creds. xm",
src="Fil eSourceContext", dst="Fi | eDesti nati onCont ext")

2-34

ORACLE

Chapter 2
Configuring Access Clients

Run the following command to verify that the agent cwallet.sso has been
successfully merged into the system cwallet.sso.

<MN HOMVE>/ or acl e_common/ bi n/ orapki wal | et display
-wal | et <destination cwallet.sso dir>

ips-config.xml

This file is required by the libraries used to read the cwallet.sso file. It can reside in
either of the following locations:

default under <current working dir>/config/jps-config.xml (template is extracted
from unzipping the client install zip file), where <current working dir> is the
directory where the client install zip file was unzipped. Or,

can be specified through - Dor acl e. security.ps. config=j ps-config.xm file
I ocati on. You must pass the location as a property in the Java command.

A sample jps-config.xml file is included in the client install package zip file. This
applies to 11g agents only.

Note:

In a JRF environment, as previously stated, a system jps-config.xml file
located in the <DOMAIN_HOME>/config/fmwconfig directory is used by
default. There is no need to prepare another jps-config.xml.

Java Security Grants

When Java Security Manager is enabled, you need to add additional grants for the
application to the system-jazn-data.xml file in order to access credentials in the
wallet. Choose one of the following based on your environment.

In a JRF environment with deployed applications, add the following grants to
the system-jazn-data.xml file.

<grant >
<grant ee>
<codesour ce>
<url>.. ...<lurl>
</ codesour ce>
</ grant ee>
<per mi ssi ons>
<permi ssi on>
<cl ass>oracl e. security.jps.service.credstore.
Credenti al AccessPerni ssion</cl ass>
<name>cont ext =SYSTEM mapNanme=0AMAgent , keyName=* </ name>
<actions>read</actions>
</ perni ssi on>
<per mi ssi ons>
<grant>

In a non-JRF environment with a standalone application, if Java Security
Manager is not enabled (which is generally the case for standalone
applications) no policy file is needed.

In a non-JRF environment with deployed applications, when Java Security
Manager is enabled, find the corresponding Java security policy file being
used (for example, weblogic.policy for Weblogic Server) and add the following
security grants to it.

2-35

ORACLE

Chapter 2
Configuring Access Clients

grant codeBase "<url>"

{
per mi ssi on
oracle.security.jps.service.credstore. Credential AccessPerni ssion
"cont ext =SYSTEM mapName=0AMAgent , keyName=*", "read";
b

<url> specifies the code source location for the deployed application; for
example, file:/scratch/instal |/ W.S_HOVE/ user _pr oj ect s/ domai ns/ base_domai n/
servers/ Admi nServer/tnp/ _W._user/ ASDKSer vl et/ -

JKS Keystores for SSL

This file is required only if the transport security mode is Simple or Cert. Both the
11g OAM Server and 12¢c OAM Server supports transport security modes Open,
Simple and Cert to communicate with agents. Credentials are passed using the
Oracle Access Protocol (OAP). When OAP is used in Open mode the
communication is vulnerable to eavesdropping, so Open mode is discouraged in
production environments. Open mode is recommended in testing environments
only.

An Access Client developed using Access SDK is called an agent. Depending on
the mode in which OAM Server is configured, an Access Client will have to be
configured to communicate in the same mode.

Each 12c agent has its own agent key. The 12c¢ agent key is stored in cwallet.sso.
This key is used to encrypt the SSO token, the accessd i ent Passwd, and the global
passphrase (stored in password.xml) used in Simple or Cert transport security
mode. The SSO token issued for one agent cannot be used directly for another
agent, unless you obtain a scoped session token from a master token. See
Managing the Access Protocol for OAM Proxy Simple and Cert Mode Security in
Fusion Middleware Administrator's Guide for Oracle Access Management.

For Simple or Cert transport security mode, the following is required:
— oamclient-truststore.jks

— oamclient-keystore.jks

— password.xml

See Also,

Types of Resources in the Access Client Architecture.
password.xml

This file is required only if the transport security mode is Simple or Cert. This file
contains a password in encrypted form. This password is the one using which SSL
key file is protected.

See Generating the Required Configuration Files.
Log Configuration

Is required in order to generate a log file. For more information, see Understanding
Access SDK Logs.

Example 2-4 merge-cred.xml Sample

<?xm version="1.0" encodi ng="UTF-8" standal one='yes' ?>
<j psConfig
xm ns="http://xn ns. oracl e. con or acl eas/ schema/ 11/ j ps-config-11_1. xsd"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi: schemalLocation="http://xn ns. oracl e. conl or acl eas/ schena/ 11/

2-36

Chapter 2
Configuring Access Clients

jps-config-11_1.xsd" schena-mgj or-version="11" schena- n nor-version="1">

<servi ceProvi der s>
<servi ceProvi der
class="oracle.security.jps.internal.credstore.ssp.SspCredential StoreProvider"
name="credst oressp" type="CREDENTI AL_STORE" >
<description>Fil e-based credential provider</description>
</ servi ceProvi der >
</ servi ceProvi der s>

<servi cel nst ances>
<I'-- Source file-based credential store instance -->
<servi celnstance | ocation="<source cwallet.sso dir>"
provi der="credst oressp" name="credential.file.source">
</ servi cel nstance>

<I'-- Destination file-based credential store instance -->
<servi celnstance | ocation="<destination cwallet.sso dir>"
provi der="credst oressp" nanme="credential.file. destination">
</ servi cel nstance>
</ servi cel nstances>

<j psCont ext s>
<j psCont ext name="Fi | eSour ceCont ext ">
<servicel nstanceRef ref="credential.file.source"/>
</ j psCont ext >

<j psCont ext name="Fi | eDesti nati onContext">
<servicel nstanceRef ref="credential.file.destination"/>
</ j psCont ext >
</ j psCont ext s>
</jpsConfig>

2.7.2 Generating the Required Configuration Files

The ObAccessClient.xml configuration file can be obtained by registering an Access
Client as 11g agent with the OAM 12c¢ Server, using the administration console or a
remote registration tool. When registering 11g agents the cwallet.sso file is also
created. For more information, See Introduction to Agent Registration in Fusion
Middleware Administrator's Guide for Oracle Access Management.

The Oracle Access Management Administration Console will also create a
password.xml file.

An Access Client application developed with the oracl e. security. am asdk APl can
specify the location to obtain the configuration file and other required files. This is done
by initializing the Access SDK and providing the directory location where the
configuration files exist.

For information about options available to specify location of the configuration files to
the Access SDK, See Oracle Fusion Middleware Access SDK Java API Reference for
Oracle Access Management Access Manager.

2.7.3 SSL Certificate and Key File Requirements

The Access SDK uses SSL certificates and key files from a database commonly
known as trust stores or key stores. It requires these stores to be in JKS (Java Key
Standard) format. The following sections have more information.

ORACLE 2-37

Chapter 2
Configuring Access Clients

* About Simple Transport Security Mode
* Working in the Cert Transport Security Mode

2.7.3.1 About Simple Transport Security Mode

In Simple transport mode, the JKS keystores are auto-generated by the OAM Server.
The generated keystores are located in WLS_OAM_DOMAIN_HOME/output/webgate-
ssl/.

2.7.3.2 Working in the Cert Transport Security Mode

In Cert transport security mode, the certificates for the server and agent should be
requested from a certifying authority. Optionally, the Simple mode self-signed
certificates can also be used as a certifying authority, for purposes of issuing Cert
mode certificates. Follow these steps to prepare for Cert mode:

1. Import a CA certificate of the certifying authority using the certificate and key pair
issued for Access Client and OAM Server. Follow the steps in Importing the CA
Certificate. Instead of cacert.pem or cacert.der, substitute the CA certificate file of
the issuing authority.

2. If an earlier version of JNI ASDK install is available, it provides a way to generate
certificate and key file for the Access Client. These certificates will be in PEM
format.

For more information about how to generate a certificate using an imported CA
certificate, See Generating a Certificate Request and Private Key for OAM
Serverin Fusion Middleware Administrator's Guide for Oracle Access
Management.

To import this certificate, key pair in the oamclient-keystore.jks in PEM format,
follow instructions in Setting Up The Keystore.

2.7.3.2.1 Importing the CA Certificate

ORACLE

This step is not required when using the 12¢ Java Access SDK.

The CA certificate must be imported to the trust store when using earlier versions of
JNI SDK. The 11g Access SDK provides a self-signed CA certificate that can be used
in Simple mode, and is used for issuing certificates to the Access Client. 12c OAM
Server provides a self-signed CA certificate.

« OAM 12c Server: The CA certificate (cacert.der) is located
in $SMIDDLEWARE_HOME/user_projects/domains/base_domain/config/fmwconfig.

Execute the following command to import the PEM or DER format CA certificate into
trust store:

1. Edit cacert.pem or cacert.der using a text editor to remove all data except what is
contained within the CERTIFICATE blocks, and save the file. For example:

----- BEG N CERTI FI CATE---- -
Content to retain
----- END CERTI FI CATE---- -

2. Execute the following command, modifying as needed for your environment:

2-38

Chapter 2
Best Practices

keytool -inportcert -file <ca cert file cacert.pemor cacert.der> -
trustcacerts -keystore oantlient-truststore.jks -storetype JKS

3. Enter keystore password when prompted. This must be same as the global pass
phrase used in the OAM Server.

2.7.3.2.2 Setting Up The Keystore

The Access Client's SSL certificate and private key file must be added to the keystore.
The SSL certificate and private key file must be generated in Simple mode so the
Access Client can communicate with OAM Server.

 11g OAM Server: Use the tool Remote Registration and administration console
for generating a certificate file (aaa_cert.pem) and key file (aaa_key.pem) in PEM
format for the Access Client.

Execute the following commands in order to import the certificate and key file into
keystore oamclient-keystore.jks.

1. Editaaa_cert.pem using any text editor to remove all data except that which is
contained within the CERTIFICATE blocks, and save the file. For example:

----- BEG N CERTI FI CATE-- - - -
Content to retain
----- END CERTI FI CATE--- - -

2. Execute the following command, modifying as needed for your environment:

openss| pkcs8 -topk8 -nocrypt -in aaa_key.pem -inform PEM -out aaa_key. der -
out f or m DER

This command will prompt for a password. The password must be the global pass
phrase.

3. Execute the following command, modifying as needed for your environment:
openssl x509 -in aaa_cert.pem-informPEM -out aaa_cert.der -outform DER
4. Execute the following command, modifying as needed for your environment:

java -cp inportcert.jar

oracl e.security.am common. tool s.inportcerts.Certificatelnport -keystore
oantlient-keystore.jks -privatekeyfile aaa_key.der -signedcertfile aaa_cert.der
-storetype jks -genkeystore yes

In this command, aaa_key. der and aaa_cert. der are the private key and certificate
pair in DER format.

5. Enter the keystore password when prompted. This must be same as global pass
phrase.

2.8 Best Practices

ORACLE

This section presents a number of ways to avoid problems and to resolve the most
common problems that occur during development. The following topics are discussed
in this section:

e Avoiding Problems with Custom Access Clients
» ldentifying and Resolving Access Client Problems

e Environment Problems using 11g Java Access SDK with Containers

2-39

Chapter 2
Best Practices

Tuning for High Load Environment

2.8.1 Avoiding Problems with Custom Access Clients

Here are some suggestions for avoiding problems with custom Access Clients.

Make sure that your Access Client attempts to connect to the correct OAM Server.

Make sure the configuration information on your OAM Server matches the
configuration information on your Access Client. You can check the Access Client
configuration information on your OAM Server, using the Oracle Access
Management Administration Console. For details, see Registering and Managing
OAM Agents in Fusion Middleware Administering Oracle Access Management.

To ensure clean connect and disconnect from the OAM Server, use theinitialize
and shut down methods in the AccessC i ent class.

The OBACCESS_INSTALL_DIR environment variable must be set on your
Windows or UNIX-type host computer so that you can compile and link your
Access Client. In general, you also want the variable to be set whenever your
Access Client is running.

Use the exception handling features (try, throw, and catch) of the language used
to write your custom Access Client code to trap and report problems during
development.

Your Access Client represents just one thread in your entire, multi threaded
application. To ensure safe operation within such an environment, Oracle
recommends that developers observe the following practices for developing
thread-safe code:

— Use a thread safe function instead of its single thread counterpart. For
instance, use localtime_r instead of localtime.

— Specify the appropriate build environment and compiler flags to support
multithreading. For instance, use -D_REENTRANT. Also, use -mt for UNIX-
like platforms and /MD for Windows platforms.

— Take care to use in thread-safe fashion shared local variables such as FILE
pointers.

2.8.2 ldentifying and Resolving Access Client Problems

Here are some things to look at if your Access Client fails to perform:

ORACLE

Make sure that your OAM Server is running. On Windows systems, you can check
this by navigating to Computer Management, then to Services, then to
AccessServer, where AccessServer is the name of the OAM Server to which you
want to connect your Access Client.

Make sure that Access Client performs user logout to ensure that OAM Server-
side sessions are deleted. An accumulation of user sessions can prevent
successful user authentication.

Check that the domain policies your code assumes are in place and enabled.
Read the Release Notes.

Check that your Access Client is not being answered by a lower-level Access
System policy which overrides the one you think you are testing.

2-40

Chapter 2
Best Practices

* The Access Tester enables you to check which policy applies to a particular
resource. For details about using the Access Tester and protecting resources with
application domains, see Validating Connectivity and Policies Using the Access
Tester.

2.8.3 Environment Problems using Java Access SDK with Containers

This section provides information about resolving environment conflicts that can
develop when using the Java Access SDK. It contains information regarding the
following containers.

* Resolving Environment Problems with Java EE Containers
* Resolving Environment Problems with Oracle WebLogic Server

» Resolving Environment Problems with Other Application Servers

2.8.3.1 Resolving Environment Problems with Java EE Containers

Use this procedure to resolve Java class version conflicts when a web application is
using the Access SDK.

A conflict can occur when a version of the library, different from the one used by the
Access SDK is loaded by another application hosted on the same Java EE container.
The following is a sample error message that may display:

oracl e/ security/am common/ aaacl i ent/ CbAAAServi ceClient. & t;inité> (Ljavallang
[String;[Cl Ljavallang/ String;Ljavallang/String;[C CzIJJILjavallang/Integer;Ljavalu
til/List;Ljava/util/List;)V

at oracle.security.am asdk. AccessCient.createdient(AccessCient.java: 798)

at oracle.security.amasdk. AccessCient.initialize(AccessCient.java:610)

at oracle.security.amasdk. AccessClient. & t;inité>(AccessCient.java:527)

at

oracle.security.am asdk. AccessC i ent. createDef aul t1nstance(AccessCient.java: 234)

at com newco. aut henticateldentity. AuthenticateldentityAccessCient.authenticateUser(
Aut henti cat el dentityAccessCient.java: 52)

This issue is related to how classes are loaded into the Java EE container. For more
information, see your container's documentation discussing class loading.

To solve this problem, configure class loader filtering for the web application that
needs a specific library version. For more information and steps, see the
documentation for your application server.

2.8.3.2 Resolving Environment Problems with Oracle WebLogic Server

ORACLE

Use WebLogic Server Fil teringd assLoader to specify packages that are always
loaded from the application, rather than loaded using the system class loader.

To resolve this issue, perform these steps:

1. Verify the weblogic.xml file exists in the META-INF folder of your application. If it
does not, create this file and add the following contents:

<?xm version="1.0" encodi ng="UTF-8"?>

<webl ogi c-application xm ns:xsi="http://ww:. w3. org/ 2001/ XM_Schena-i nst ance"
xsi: schemaLocation="http://ww. bea. com ns/webl ogi ¢/ webl ogi c- appl i cation/ 1. 0/ we
bl ogi c-appl i cation. xsd"

xm ns="http://ww. bea. con ns/ webl ogi ¢/ webl ogi c- appl i cati on">

2-41

g w0 D

Chapter 2
Best Practices

<prefer-application-packages>

<?xm version="1.0" encodi ng="UTF-8"?>
<webl ogi c-application xm ns: xsi ="http://ww. w3. org/ 2001/ XM.Schena-i nst ance"
xsi: schemalLocation="http://ww. bea. con ns/webl ogi ¢/ webl ogi c-appl i cation/ 1. 0/ we
bl ogi c-appl i cation. xsd"
xm ns="http: //ww. bea. coni ns/ webl ogi ¢/ webl ogi c-appl i cation">

<prefer-application-packages>

<package- name>Package to be | oaded</package- nane>
<package- name>Package to be | oaded</ package- nane>
</ prefer-application-packages>

</ webl ogi c-appl i cation>

where Package to be | oaded is the corresponding package from the log file. For
example, assume the problem is CbAAASer vi ced i ent , then the corresponding
package name is oracl e. security. am conmon. aaacl i ent. Add as follows:

<package- nane>or acl e. security. am conmon. aaacl i ent . *<package- name>

All classes associated with this package will be loaded by the application loader,
even if identical classes having a different version are specified in the
CLASSPATH of the System class loader.

Stop the application.

Delete the previously deployed version of the application.
Install the application.

Access the resource.

The error should be gone and the application is running smoothly.

2.8.3.3 Resolving Environment Problems with Other Application Servers

All application servers have a configuration file where class loading related options are
configured. In general, the key is to identify the configuration file and tags that are
required to enable a specific class loader to load a set of classes.

1.
2.

Locate the configuration file for the application server.

Use the application class loader to prevent classes from being loaded by the
parent class loader, even if they are specified in the CLASSPATH.

Change the default class loading behavior so the parent class loader is called only
if the current class loader fails to load the class.

Alternately, as in WebLogic Server, there may be a method that enables loading of
classes using the designated class loader.

In some application servers, you may need to define a separate domain for your
application, for a parent domain, and set class loading behavior to load the parent
last.

2.8.4 Tuning for High Load Environment

In a high load, high stress environment, the Access SDK configuration must be tuned
as follows:

ORACLE

2-42

ORACLE

Chapter 2
Best Practices

Configure pool Ti neout as a user defined parameter. You must increase the
number of clients for pool Ti meout .

Tune the maximum (max) number of connections. For high performance, the max
number of connections of primary server should be in the agent profile.

2-43

Developing Custom Authentication Plug-ins

The OAM Server uses both authentication and authorization controls to limit access to
the resources that it protects. Authentication is governed by specific authenticating
schemes, which rely on one or more plug-ins to test the credentials provided by a user
when he or she tries to access a resource. The plug-ins can be taken from a standard
set provided with OAM Server installation, or the custom plug-ins created by your own
Java developers.

This chapter provides the following sections regarding authentication plug-ins.

e Introduction to Authentication Plug-ins

e Introduction to Multi-Step Authentication Framework

e Introduction to Plug-in Interfaces

e Sample Code: Custom Database User Authentication Plug-in
» Developing an Authentication Plug-in

See Also, Deploying and Managing Individual Plug-ins for Authentication in Fusion
Middleware Administering Oracle Access Management.

3.1 Introduction to Authentication Plug-ins

The release provides authentication modules for immediate use out-of-the-box as well
as the following:

* Authentication plug-in interfaces and SDK tooling to build customized
authentication modules (plug-ins) to bridge the out-of-the-box features with
individual requirements. The new interfaces and SDK tooling:

— Provide backward compatibility to support custom Oracle Access Manager
previous release plug-ins.

— Include a deterministic method to orchestrate custom plug-ins within an
authentication module.

* A mechanism that enables quick deployment of customized authentication plug-
ins.

* A mechanism to maintain the complete plug-in State lifecycle.

The development of custom plug-ins for credential collection is supported for
authentication (steps you can orchestrate).

See Also, About the Plug-in Interfaces

Figure 3-1 provides an overview of the tasks involved in custom plug-in deployment.

ORACLE 3-1

ORACLE

Figure 3-1 Custom Plug-in Deployment Workflow

Provide feedback for plug-in updated requiremenls—l
,[&

L

Requirements —

i

Chapter 3

Introduction to Authentication Plug-ins

& &
&

— Plug-in Deliverables —+g{ ¢*

L
Security / System Developer Development
Architact —" Team |
Meet with Develop Deploy and OAM Server 1
Customer Momtor
F‘Iug in
/::
Business ’ Dewveloper OAM Admin | o Il
Requirements rElE = Sandbox Console I
—— OAM Server 2
Plug-in
Deploy and

activate/update
plug-ins with >
proper version

& downtime =
— g

OAM Server N

Plug-in

The following overview identifies the tasks involved in custom plug-in deployment.

1. Planning:

Identify the business requirements for this plug-in and consider the authentication
flow when a user requests a resource, as described in About Planning, the
Authentication Model, and Plug-ins.

The security architect knows how Access Manager is used and knows the
customer's user base. System architects can identify points of improvement in a
customer's implementation.

2. Development:

The developer translates what a security architect has designed into the actual
plug-in using common libraries to interface custom authentication modules.

a. Write the plug-in.
b. Write the metadata XML for the custom module.
c. Prepare the manifest file.

d. Add the following jar files to the CLASSPATH: felix.jar, identitystore.jar, oam-
plugin.jar, utilities.jar.

3. Deployment:

Oracle Access Management administrators deploy and orchestrate multiple plug-
ins to work together in an authentication module and also tests and monitors plug-
ins. Common deployment tasks include the following:

a. Adding custom plug-ins, which includes configuring the plug-in data source or
domain, distributing, and activating the plug-in.

3-2

Chapter 3
Introduction to Authentication Plug-ins

b. Creating a custom Authentication Module for custom plug-ins, which includes
adding and orchestrating steps and outcomes OnSuccess, OnFailure, and
OnError.

c. Creating Authentication Schemes with custom Authentication Modules.
d. Configuring logging for custom plug-ins.

e. Testing the plug-in using the Access Tester as described in Testing User
Authentication from the Access Tester Console

f. Monitoring the plug-in and provide feedback to the security or system
architects to allow for any revisions to the business requirements and
architecture.

For information about deploying authentication plug-ins using the Oracle Access
Management Administration Console, See Deploying and Managing Individual Plug-
ins for Authentication in Fusion Middleware Administering Oracle Access
Management.

3.1.1 About the Custom Plug-in Life Cycle

ORACLE

The life cycle of a plug-in centers around the ability to add plug-ins to the OAM Server
and use the plug-in to create more features. This allows users to build features and
work flows based on the standard (out-of-the-box) plug-ins and user-added plug-ins
that act as extension features to the server.

The typical plug-in life cycle is as follows:

e Planning
e Plug-in development time, includes generating the plug-in metadata artifact
e Load and lifecycle of the plug-in

— Import: Upload the plug-in into Access Manager and use it without restarting
servers

— Distribute: Propagate the plug-in jar file from one local OAM Server file system
to all manage servers in a cluster, without server downtime

— Activate: Load the plug-in implementation at run time when this plug-in is used
in any Authentication Module flow

— Use the start-up parameters or configuration for the plug-in
— Push and pull plug-in configuration data into oam-config.xml
— Maintain complete State life-cycle of OAM Server

e State of the deployed plug-in

e Monitoring and auditing the plug-in

— Collect the matrix data of time taken to execute a plug-in and the number of
times the plug-in is executed

— Collect the matrix data of plug-in input and output
— Collect the matrix data of plug-in execution start time and end time
— Audit the plug-in life-cycle methods code

When a new plug-in JAR file is available, the deployer can import it to a Weblogic
Server DOMAIN_HOME/oam/plugins from the administration console's Import action.

3-3

Chapter 3
Introduction to Authentication Plug-ins

Table 3-1 describes the states of a plug-in life cycle that are controlled by Oracle
Access Management administrators. For more information, See Deploying and
Managing Individual Plug-ins for Authentication in Fusion Middleware Administering
Oracle Access Management.

Table 3-1 Plug-in Life Cycle States
|

State Description

Import Adds the plug-in JAR file to an Weblogic Server DOMAIN_HOME/oam/
plugins and begins plug-in validation.

Distribute Propagates the plug-in to all registered OAM Servers.

Activate After successful distribution the plug-in can be activated on all registered

OAM Servers.

Deactivate Deactivation checks the plug-in entry flag in oam-config.xml.

If any OAM Server fails during the de-activation process, the "De-activation
failed" message is propagated.

Remove Removes the given plug-in (JAR) from DOMAIN_HOME/config/
fmwconfig/oam/plugins directory on Weblogic Server, which natifies all
OAM Servers.

3.1.2 About Planning, the Authentication Model, and Plug-ins

Plug-ins on the OAM Server are part of a custom authentication scheme. Different
types of plug-ins can be used to add the following functionality. This is not a complete
listing; other types of plug-ins are supported.

* User Identity Mapping

Plug-ins can add functionality to handle with forms of user input not in the form of
a log-in username. Fingerprints, a series of security questions, and other methods
can be used. The plug-in translates these inputs and checks them against the
database.

* User Authentication

Responses (not provided out-of-the-box) might be needed when authenticating the
user. Custom plug-ins can fulfill this need.

e Custom Responses

Custom plug-ins can be used for responses and how these responses interact with
the rest of the system.

Figure 3-2 illustrates the authentication flow when a user requests a protected
resource. Remember that authentication is a process and not a protocol. The green
dotted line arrows are custom responses generated by plug-ins that are deployed on
the OAM Server.

ORACLE 3-4

ORACLE

Chapter 3
Introduction to Authentication Plug-ins

Figure 3-2 Authentication Model and Plug-ins

Resource raquest (send ID,

— location, authentication credentials) —s — If successful, get resource —s= Web Server
User Agent e {Contains resources

=«--- Resource or alternate response ------ - Resource ---------- to be accessed)

Check
User !
credentials - Hesponse -
OAM Server

| Plug-in | Plug-n | Plug-n

PSSO TR S

Before designing and developing custom authentication plug-ins, Oracle recommends
that developers analyze the Access Manager authentication decision process closely
to determine how a user should be authenticated.

When a certain request comes in, there are two possible ways to handle it. One is to
have specific schemes run depending on the attributes of the request, using a decision
engine to run one or multiple schemes to properly authenticate the user. This requires
less code within each scheme and allows for more modularity. The second option is to
have every scheme be hard-coded to handle the various attributes of requests for
specific purposes, not using a decision engine to piece together which schemes need
to be run (only one scheme is run). Each request approach has its own advantages
and disadvantages as documented in Table 3-2.

Table 3-2 Request Approach Comparison

|
Approach Description

Decision Engine Divides authentication schemes into smaller sequential
modules that can orchestrated to work together as needed.

Advantages:
* Code re-use is the primary advantage.

* Mirroring the approach of Oracle Adaptive Access
Manager is a secondary advantage.

Hard-coded Leaves nothing to be decided; resembles a complete set of If-
Else statements that the user must pass to authenticate.

Advantages: Could result in greater security.

Suppose a user wants to log in to his online bank account using his home computer, at
midnight. The differences between the two approaches are simple but important and
developers must decide which approach best meets their requirements. The following
process overviews outline the differences between the decision engine approach and
the hard-coded approach.

* About the Decision Engine Approach Process

* About the Hard-Coded Approach Process

3-5

Chapter 3
Introduction to Multi-Step Authentication Framework

3.1.2.1 About the Decision Engine Approach Process

In the decision engine approach to handling authorization requests:

1.
2.

The request comes from the user with a certain IP address at midnight.

The decision engine determines it has previously handled this IP address. It also
determines that a user trying to authenticate at midnight is suspicious and requires
the user to answer a security question, in addition to a username and password.

The security question scheme is run for the specified user, and is successful. This
is the first of two authentication schemes selected by the decision engine.

The user-password scheme is run, and the user authenticates successfully. This is
the second authentication scheme selected by the decision engine.

3.1.2.2 About the Hard-Coded Approach Process

In the hard-coded approach to handling authorization requests:

1.
2.

The request comes from the user with a certain IP address at midnight.

The online bank account access scheme is chosen from among other
authentication schemes (credit card access scheme, new account creation and
verification, and so on).

The scheme first checks the IP address to determine if the user has previously
made attempts to connect from the computer. It determines the user has.

The scheme checks the time. It requires a security question to be answered, which
is answered successfully.

The scheme requires the user to enter his login credentials, and he authenticates
successfully.

3.2 Introduction to Multi-Step Authentication Framework

This section provides the following topics:

About the Multi-Step Framework
Process Overview: Multi-Step Authentication
About the PAUSE State

Information types shared with the credential collector page

3.2.1 About the Multi-Step Framework

The Multi-Step Authentication Framework requires a custom authentication plug-in to
transmit information to the backend authentication scheme several times during the
login process. All information collected by the plug-in and saved in the context will be
available to the plug-in through the authentication process. Context data also can be
used to set cookies or headers in the login page.

Events are the building blocks of the authentication flow. Events are created using
exposed methods of the authentication module plug-in implementation. These events
can be combined with the rules to build a deterministic workflow for the authentication.

ORACLE

3-6

Chapter 3
Introduction to Multi-Step Authentication Framework

The Workflow controller is the module responsible for orchestrating the authentication
workflow. Workflow configuration is defined in the Workflow definition language.

Multi-Factor Authentication is a business term that refers to the collection of multiple
credentials necessary to authenticate a user. The Multi-Step Authentication
Framework can implement Multi-Factor Authentication requirements. It can also
implement Single Factor Authentication requirements using multiple steps as
necessary. For example, the username and password can be collected on separate
pages. Multi-step authentication relies on:

WebGate using a credential collector (DCC or ECC) for dynamic credential
collection with multi-step authentication flows. This enables greater flexibility for
interactions with users or programmatic entities when collecting authentication-
related information that involves several methods to establish the identity of the
user.

Authentication module chaining, where modules of a similar challenge mechanism
are grouped and the credentials are collected in one pass, then validated against
each module. You can chain multiple authentication modules in a new
authentication scheme, and define a new scheme plug-in containing the flows.

The challenge mechanism defines how to collect the credentials. The following
mechanisms are available: FORM, BASIC, X509, WNA, OAM, TAP, and NONE.
The challenge mechanism controls the way in which the required credentials are
collected. Currently, this is tied to the authentication scheme.

Note:

About WebGate Configured as a Detached Credential Collector in Fusion
Middleware Administering Oracle Access Management

3.2.2 Process Overview: Multi-Step Authentication

ORACLE

1.

Process Request: The Master Controller processes the authentication request
and passes it to the plug-in.

Process Event: The authentication scheme is executed and the plug-in
determines whether any input is needed to continue the authentication. If input is
required, the plug-in returns an execution status of PAUSE which suspends the
event flow.

PAUSE indicates that the authentication processing cannot proceed until additional
information is obtained from user. As such, redirection is allowed. When the
requested information is supplied, processing continues from the point it was
paused. The request is updated with details of the associated ACTI ON that must be
performed. The Acti onCont ext has all the information to execute the ACTI ON.

For example, if PAUSE is associated with CREDCOLLECT_ACTI ON, the Master Controller
saves the plug-in execution state and begins executing events corresponding to
the ACTI ON by mapping this CREDCOLLECT_ACTI ON to the CRED COLLECT event and
proceeding with collection as specified by the plug-in's Credenti al Par anet er object.

The saved plug-in state is revived and plug-in execution resumes until either a
state of SUCESS or FAI LURE is reached. FAI LURE indicates that the authentication

3-7

Chapter 3
Introduction to Multi-Step Authentication Framework

attempt has failed. If so, OAM Server will take attempt to reauthenticate the user
once again. For example, the user is presented with a login form.

» If avalid subject is available, a session is created for the user, which is used to
save the execution state. Otherwise, the execution state is stored in the
request object. This session has the lowest Authentication Level (configured
through global (Common) System Configuration).

* When user authentication is finished, the session is updated to a fully valid
session with the authentication level defined in the authentication scheme and
the session timeout configured for the OAM Server.

4. When the events in the dynamic flow controller finish executing, control is merged
back to the parent controller and the execution state is updated.

5. When authentication completes, access is granted to the requested resource.

3.2.3 About the PAUSE State

In multi-step authentication mode, the plug-in can either collect the credentials from
start or use the credentials obtained from the default login page and collect extra
credentials if required. If the challenge parameter i ni ti al _command=NONE is set in the
authentication scheme, control comes to the plug-in directly and the plug-in controls
the credentials to be collected.

The plug-in can employ the PAUSE status to pass the User Acti on parameter for user
interaction to collect credentials. All the credentials required by the module can be
collected in one or more passes to the client. During a PAUSE execution, the plug-in
execution state and the context data will be saved. Once control returns back to the
plug-in, the paused execution resumes and all the collected data is available to the

plug-in.

When the plug-in is set to a PAUSE state, the plug-in can:
» Specify the data to be collected

» Specify the URL to redirect or forward to

* Specify the query string, if any

3.2.4 Information types shared with the credential collector page

The following types of information can be conveyed to the credential collector page.

¢ UserContextData
e UserActionContext
e UserAction

e UserActionMetaData

3.2.4.1 UserContextData

ORACLE

e User Cont ext Dat a specifies metadata: name, display hame and type of parameter to
be collected by the login page. For example, to collect a user name from the login
application:

final UserContextData userNameCont ext = new User Cont ext Dat a(f or m user nane,
formusernanme, new Credential Met aDat a(Pl ugi nConst ants. TEXT));

3-8

Chapter 3
Introduction to Multi-Step Authentication Framework

where name of the attribute is f or m user name.

e User Cont ext Dat a specifies the login page URL to direct a user to for collecting
credentials. Credenti al Met aDat a with URL type specifies the login page URL. For
example:

final UserContextData url Context = new User ContextData (logi nPageURL, new
Credential Met aData("URL"))

where | ogi nPageURL specifies the URL to be directed to.

e User Cont ext Dat a is used to pass query parameters to the login page URL.
Credent i al Met aDat a with QUERY_STRI NG type specifies the query parameters to be
sent with the | ogi nPageURL. This can be processed by the login page. For example:

String queryString = "queryParanml=t est Parameter";
final UserContextData queryStringContext =new User Cont ext Dat a
(queryString, new Credential Met aDat a(" QUERY_STRING'));

3.2.4.2 UserActionContext

User Acti onCont ext holds the User Cont ext Dat a metadata collected from the login page.

3.2.4.3 UserAction

ORACLE

User Act i on class is used to collect the credentials. The action forwards or redirects
(based on the User Act i onMet aDat a parameter) to the login page to collect more
credentials.

The following example shows how the classes can be used to specify information to
the login page:

//create a user nane context data.
User Cont ext Dat a user NameCont ext =
new User Cont ext Dat a("form usernanme", "form username”,
new Credenti al Met aDat a(Pl ugi nConst ant's. TEXT));
/lcreate a password context data
/] Any form paraneter containing the words "password", "passcode" and " _pin"
will be treated as sensitive values for debug | ogging

User Cont ext Dat a passwor dCont ext =
new User Cont ext Dat a("form password", "form password",
new Credenti al Met aDat a(Pl ugi nConst ant's. PASSWORD)) ;

/] create URl context data for login page

User Cont ext Data url Context = new User Cont ext Data (I ogi nPageURL,
new Credential MetaData ("URL"));

User ActionCont ext actionContext = new UserActionContext ();

//add the UserContextData to the Credential ActionCont ext

actionCont ext . get Cont ext Dat a() . add(user NaneCont ext) ;

actionCont ext . get Cont ext Dat a() . add(passwor dCont ext) ;

actionCont ext. get Cont ext Data().add(url Context);

/Ispecify if we FORWARD or REDIRECT with a GET/POST to the login page
User ActionMet aDat a user Action = UserActionMetaData. FORWARD;

Il create a UserAction object and set it to the authentication context.

3-9

Chapter 3
Introduction to Plug-in Interfaces

User Action action = new UserAction (actionContext, userAction);
aut hCont ext . set Action(action);

3.2.4.4 UserActionMetaData

User Act i onMet aDat a specifies the action type to be used with User Acti on. The

User Acti on performs a forward or a redirect (with a GET or PCST) to the login page based
on the User Act i onMet aDat a value. Possible values for User Act i onMet aDat a are: FORWARD,
REDI RECT_GET, and REDI RECT_POST.

3.3 Introduction to Plug-in Interfaces

This section provides the following topics:

e About the Plug-in Interfaces

e About Plug-in Hierarchies

3.3.1 About the Plug-in Interfaces

This topic introduces the hierarchy for packages, classes, interfaces, and annotations.

Custom plug-in implementation includes writing plug-in implementation class artifacts.
The plug-in implementation class must extend the Abst r act Aut hent i cati onPl ugl n class
and implementinitialize and process methods. Custom plug-in implementers must
implement actual custom authentication processing logic in this method and return the
final authentication execution status.

A plug-in's configuration requirements must be given in XML format. This configuration
data (metadata) includes plug-in name, author, creation date, version, interface class,
implementation class, and configuration data in the form of Attribute / Value pairs. The
new plug-in name must be included in the manifest file. A period (.) is not a valid
character in the plug-in name.

This OAM release provides a generic plug-in interface and a more specific
authentication interface as described in the following topics:

* About the GenericPluginService

* About the AuthnPluginService

3.3.1.1 About the GenericPluginService

ORACLE

oracle.security.am.plugin

The public interface, oracl e. security. am pl ugi n, is a generic plug-in interface that
provides methods to get plug-in name, plug-in implementation class name, plug-in
version, plug-in execution status, plug-in monitoring data, plug-in configuration data,
and start and stop the plug-in.

AbstractAMPIlugin

The public abstract class oracl e. security. am pl ugi n. Abst ract AVPI ugi n extends
java.lang. Obj ect inplements GenericPl ugi nService,
org. osgi . framewor k. Bundl eActi vat or.

oracle.security.am.plugin.AbstractAMPlugin

3-10

Chapter 3
Introduction to Plug-in Interfaces

This is a Abstract plug-in class that needs to be extended by all Access Manager plug-
ins. This provides base implementations for plug-ins start and stop methods

¢ See Also:

Oracle Fusion Middleware Access SDK Java API Reference for Oracle
Access Management Access Manager

3.3.1.2 About the AuthnPluginService

oracle.security.am.plugin.authn.AuthnPluginService

The public interface oracl e. securi ty. am pl ugi n. aut hn. Aut hnPl ugi nSer vi ce extends
Generi cPl ugi nServi ce.

This is a authentication plug-in interface that provides an additional authentication
specific method to access and process all the data available in the

Aut hent i cati onCont ext object and return the process execution status. Plug-in can then
set response that will be added to SESSION, request and redirect contexts.

AbstractAuthenticationPlugin

The public abstract class
oracle. security.am pl ugi n. aut hn. Abst ract Aut henti cati onPl ugl n extends
Abst ract AMPl ugi n implements Aut hnPl ugi nSer vi ce.

oracle.security.am.plugin.authn.AbstractAuthenticationPlugin

This is an authentication Abstract plug-in class that will be exposed to the plug-in
developers. All the custom plug-in implementations should extend this

Abst ract Pl ugl nServi ce class. Plug-ins that needs to handle the resource cleanup
should override shut down(Map < String, Chject > OAMEnvironnment Cont ext) method. This
will also provide an instance of java. util . Logger to plug-ins.

3.3.2 About Plug-in Hierarchies

This topic provides a look at the hierarchies:

e Figure 3-3
e Figure 3-4
e Figure 3-5
* Figure 3-6
e Figure 3-7
" See Also:

Oracle Fusion Middleware Access SDK Java API Reference for Oracle
Access Management Access Manager

ORACLE 3-11

ORACLE

Figure 3-3 Plug-in Package Hierarchy

Hierarchy For All Packages

Package Hierarchies:

Chapter 3
Introduction to Plug-in Interfaces

oracle. securnity. am. cormmon policy. api, oracle. security. am. common. utilities. constant, oracle. securnty. am. identity. api,

oracle. securnity. am identity. provider. exception, oracle. security. am. pbliransport, oracle security. am plugin, oracle. security. am. plugin. avthn,

oracle security. am plugin. example, oracle. security. am plugin. internal

Figure 3-4 Plug-in Class Hierarchy

Class Hierarchy

o javalang Object

o eracle. secunty. am plugm AbstractANPlogin (gnplements org osgl famework. Bundle Activator,

oracle.security. am. plugin. GenericPluginService)

o oracle. security. am plugin authn AbstractAuthentic ationPlugIn (implements oracle. security. am. plugin authn AvthnPluginService

0 oracle.security. am. plugin example. LDAPAutlmPlogin

0 oracle.security. am. plugin AbstractPlugimF xecutionStrategy {implements oracle. security. am. plugin PluginFxe cutionStrate gy

oracle.security. am. plugin internal AMPluginT.ocator
oracle.security. am. plugin. authn AuthenticationConstants
oracle.security. am. plugin ChientProfile

oracle.security. am. plugin avthn. Credential
oracle.security. am plugin. authn. CredentialP'aram
oracle.security. am. plugin internal GenencPlnginFactory
oracle.security. am.identity. api. IdmPropertySet
oracle.security. am.identity. api. IdmUser
oracle. security. am.identity. api IdStoreProperty
oracle.security. am. plugin MonitormgD ata
oracle.security. am. plugin PlugmResponse
o javalang Throwable (implements java io. Serializable)
o javalang Exception
0 oracle.security. am.identity. provider. exception IdentitvProviderException
o javalang RuntimeException
o oracle. security. am plugin authn. Authentic ationException
oracle.security. am.pbl transport. TransportTolen

(]
]
(]
]
(]
]
(]
]
(]
]
(]
]

s

oracle.security. am. common. utilitie s. constant. CommmonAttibute (implements oracle. security. am. plugin PluginCommon A ttribute

3-12

Chapter 3
Introduction to Plug-in Interfaces

Figure 3-5 Plug-in Interface Hierarchy

Interface Hierarchy

oracle
oracle
oracle.
oracle.
oracle.
oracle.

o o 0 o o o 0

oracle

[}

o
oracle.
oracle.
oracle.
oracle

o o o O 0

oracle
o

oracle.

o

oracle.

(o

1ava.io
o
]

o oracle.
o oracle.
o oracle.

security. arn identity apt AlVITdentivitoreHandle
secunty. am. plugin nternal ANV PlugmFactorvService

security. am plugin ANVIS ession

secuntty. am. plugin. AN Sulject

security. ammn identity. apd AMUserProfile

secuntty. am. common. utihities. constant. ExrorCode

security. am plugin. GenericPluginService

oracle. secunty. am plugin. authn, AuthnPluginS ervice
oracle security. am plugin PlnginExecutionStrate gy
secuntty. am.identity. apt IdentitvStore Context
security. am plugin. ModuleAdvice

secuntty. am. plugin. PluginC orunonAttiibute

security. arm. plugin. PlugnC onfig
secunty. am. plugin, PluginC ontext

oracle security. amm plugin. authn AuthenticationContext
secuntty. am. plugin. Plugin TransportContext
secunty. am. common. policy apt. PolicvResource
senalizable
oracle security. am common policy. apl. AuthenticationScheine
oracle. security. am. common. policy. apt. PohevBEuntiune Object
o oracle security am common policy. apl. AuthenticationScheine
secuntty. am. pbl transport. TransportContext
security. am phl transport. TransportHandler
secuntty. am. pbl transport. TransportStore

Figure 3-6 Plug-in Annotation Type Hierarchy

Annotation Type Hierarchy

o oracle security.am phigin internal InitParamter (implements java lang annotation Annotation)

ORACLE

3-13

Chapter 3
Sample Code: Custom Database User Authentication Plug-in

Figure 3-7 Plug-in Enum Hierarchy

Enum Hierarchy

o javalang Object

o javalang Enum<E> (implements java lang. Comparable<T>, java.io.Serializable)

o oracle security am phigin PluginAttributeContextTyvpe

oracle security am phugin Advice
oracle securitv am plugin Protocel
oracle security.am plugin ExecutionStatus
oracle_security_am plugin authn AunthenticationErrorCode
oracle security am common policy api AuthenticationScheme.ChallengeMechanism

[= 2 = R = R = R &

3.4 Sample Code: Custom Database User Authentication
Plug-in
This section provides snapshots of a sample implementation for a database user
authentication plug-in to illustrate developer tasks. The following topics are provided:

* Sample Code: Database User Authentication Plug-in
e Sample Plug-in Configuration Metadata Requirements
* Sample Manifest File for the Plug-in

e Understanding the Plug-in JAR File Structure

3.4.1 Sample Code: Database User Authentication Plug-in

Following figures illustrate a sample implementation for a Database user
authentication plug-in, which is presented in three parts:

e Figure 3-8

e Figure 3-9

e Figure 3-10
" See Also:

Oracle Fusion Middleware Oracle Access Manager Java API Reference

ORACLE 3-14

ORACLE

Chapter 3
Sample Code: Custom Database User Authentication Plug-in

Figure 3-8 Database User Authentication Plug-in Part 1

Bublic class DEUserduthentication extends AbstractauthenticationPlugln |

private static final Sting CLASS_MNAME = "UserduthenticationPlugln';
private static final Sting INVALIDUSERNAMEEX = “invalid usemame/password'';
private static final Sting USER_LOCKED_EX ="The account is locked";

private Sting userM ameD M ;
private String dsFRef = "jdba/CISCO";
private String passward;

tap<String, Object: maodule = rull;

public Execution tatus intializelPluginConfig config) {
super.initialize[config);
/¢ Set the pluginConfig
##thiz pluglnConfig = pluglnConfig;

if LOGGER.isLongableLevel FINE]) {
LOGGER.logp(Level FINE, CLASS_MWAME, "initislize”,
"Entering"];

Ohject tmp = config getParameterlPluginConstants KEYLISERMAME)
if [trop 1= Fwall) 4
uzerM ameDM = [Sting)tmp;

tmp = config.getParameter|''D atas ource");
it [troip = wuall) §
dzRef = [Sting]trmp:

tmp = config.getParameter[PluginConstants. KEY_PASSWIORD);
if [trp 1= pll] §
pazsword = [String)tmp;

it LOGGER. isLoggable[Level FINE]) §
LOGGER. logp(Level FIME, CLASS_MAME, "initialize’",
"Damain Marme Ref iz "' + dsRef);

'
it [LOGGER. isLoggable(Level FIME)) {
LOGGER. logp(Level FIME, CLASS _MAME, "initialize’,
"Exiting';

H
return ExecutionStatus. SUCCESS
1

public ExecutionStatus shutdownPluglniM ap< Sting, Objects OAMEmviranmentContest] throws AuthenticationE sception {
return nul;

public: E secutionStatus reLoadPluglniMap< Sting, Objecty DAME nvironmentContest] throws AuthenticationE sception {
return nul;

public Sting getPluglriersion() {
return null;

Continued ..

3-15

Chapter 3
Sample Code: Custom Database User Authentication Plug-in

Figure 3-9 Database User Authentication Plug-in Part 2

public: ExecutionStatus process(SuthenticationContest contest] throws AuthenticationE weeption {
ExecutionStatuz status = ExecutionStatus SUCCESS;
if [LOGGER.isLoggable(Level FINE]) {
LOGGER. logp(Level FINE, CLASS_MNAME, “initialize",
"E ntering);

'
CredentialParam tmp = context. getCredential(). getParam{PluginConstants KEY_USERMAME];
if [trrp 1= rall &8 brop. ety aluel) 1= null] £

uzetameDN = [Shingtrmp. getyalue():

tmp = context. getCredential]). getParam("D ataS ource');
if [tmp = rul] {
dzRef = [Sting)tmp. ety aluel);

tmp = contest. getCredentiall]. getParam(PluginConstants KEY_PASSWORD):
if [tp = rull &8 tmp.getyaluel) 1= null) {
pazzward = [Sting]tmp. gety aluel);

if [LOGGER.isLoggable(Lewvel FINE]) {
LOGGER. logp(Level FINE, CLASS_MAME, "process", "got user name dn and password and identity store = "+ugerNameDM+", "+password+", "+dsRef];
}

boolean user = false;
Sting uzerName = null;
boolean authenticated = false;
Stiing[] retéttrs = null;
try{
if LOGGER.isLoggable(Lewvel FINE]] {
LOGGER . logplLevel FIME, CLASS_MAME. initialize",
"Authenticating the user'+uzer ameDN];

}
IritialContext intialContest = [InitialContest]contest. getd bjectdttibute[FluginConstante JHDI_INITIAL_ COMTEXT):
uzertame = DBUL authenticatel) seruserd ameD M, password, dsRefinitialContest];
if [LOGGER.isLoggable[Lewvel FIME]) {
LOGGER . logplLevel FIME, CLASS_MAME. “initialize",
“Authenticated the uzer:"+uzert ame];

iff userMamne 1= nulll{

uzer = hue;
authenticated = tue;

}eatch(Exception e){
if LOGGER.isLoggable(Level FINER]H
LOGGER. finer["E xception occurred when authenticating the user against UserldentityStore - ' + e.getMessage(])):

checkindT hrowduthenticationE sception(]:

teatch(E xoephion e)f
if [LOGGEER. isLoggable{Level FINER])K
LOGGER . finer"E#ception occured when authenticating the user against UszerldentityStore - + e.gettd eszage(]):

}

checkAndT hrowduthenticationE xception(e];
ifllauthenticated]
{

context. setSubjectnull];

status = ExecutionStatus. FAILURE;
}elze |

Continued...

ORACLE 3-16

Chapter 3
Sample Code: Custom Database User Authentication Plug-in

Figure 3-10 Database User Authentication Plug-in Part 3

Subject subject = new Subject();
subject. getPrincipals(]. addnew OakUzerPrincipaliuserd ame]);
zubject. getPrincipalz(]. addnew DaAMUzerDMPrincipal(uzert ame]);
if [usem ame 1= null) |
| subi{ect.getF’rincipals[].add[new 0AMGUIDPrincipaliuser ame]);
elwe
A zetting username az default falue indicating no GUID exist.
subject. getPrincipals(]. add(new DAMGUID Principallusert ame]);

/fsubject getPrincipals(). addalprincipalz);

Zif [LOGGER isLoggableLevel FINER

\ LOGGER.finer"&uthenticated Subject iz - ' + zubject];
i
CredentialParam param = new CredentialParam);

param.zeth ame[FPluginConzstantz. KEY_USERMAME_DM];

paran.setTupe("'ztring'");

param.sefalue{user);

contest. getCredential(). addCredentialP aram[PluginConstants. KEY_USERMAME DM, param);
context. zetSubject[zubject);

U zerProfile userPrafile = new DB UserProfile(userM ame);

FluginF ezponse rsp = new PluginBesponse(];

rzp.zeth ame[PluginConstantz. KEY_USER_PROFILE];
rzp.zetTupe(PlugindttibuteContext Type LITERAL):

r=p.sety’alue{userPrafile);

context. addR ezponze(rzp];

rzp = new PluginF esponsel);

rzp. zetM ame[FPluginConztantz. KEY_RETURM_ATTRIBUTE];
rzp.zetTupe(PlugindttibuteContext Type LITERAL):

rap.zety alue(retdttrs);

context. addR ezponze(rsp;

rzp = hew PluginFesponzel];
rzp.zeth ame(FluginConzstantz KEY _IDENTITY _STORE_REF);
rep.zetTope[PlugindttributeContext Type LITERAL;
rep.zetaluedzFef);
contest. addR ezponselrsp];
rzp = new PluginA ezponse(];
rzp.settame(PluginCaonstants KEY_AUTHEMTICATED_USER_MAME):
rzp.zetTvpe(PlugindttributeCantest Tupe LITERAL):
Sets0AMU zerPrincipal: userMamePrincipal = contest. getSubject]). getPrincipals[0AMU serPrincipal. class);
r=p. zetyf alue{user amePrincipal iteratar(). next{). getM ame(]);
contest. addR esponse(rspl;

h
it LOGGER . isLoggablefLevel FIME]) {
LOGGER. logp(Level FIME, CLASS_MAME ., "'process”, 'Final return status from authnPlugin = "+statusz);

return status;

@0veride
public: String toStringl) £

return “Authenticate Plugin : DB Store ref name = "+dzRef;

3.4.2 Sample Plug-in Configuration Metadata Requirements

ORACLE

The plug-in's configuration requirements must be given in XML format.

This configuration data (metadata) includes plug-in name, plug-in author, creation
date, plug-in version, plug-in interface class, plug-in implementation class, and plug-in
configuration data in the form of Attribute / Value pairs.

Figure 3-11 shows the XML Schema Definition (XSD) file containing metadata for the
sample: Database User Authentication Plug-in implementation.

3-17

Chapter 3
Sample Code: Custom Database User Authentication Plug-in

Figure 3-11 XSD Configuration Data: Database User Authentication Plug-in

<?xml wversion="1.0" encoding="utf-G"?>
<xs:schema targetMNawespace="http://www.wl.org/XML/ 1998/ namespace™ xmlns:xs="http://www.uwd.org/2001/EMLSchema™
®ml: lang="en">

<xs:element name="Flugin'>
<¥s:icomplexTypes
<HSISequUencer
<xsielement wsdata:Ordinal="0" minOccurs="0" name="author" type="xs:string" />
<xg:elenent wadata:Ordinal="1" minOccurs="0" name="ewail™ type="xs:string™ />
<xg:elenent wadata:ordinal="2" minOccurs="0" name="creationDace” type="xs:string”™ />
<xg:element wadata:ordinal="3" minOccurs="0" name="version" type="xs:string” />
<xg:elenent wadata:Oordinal="4" minOccurs="0" name="description" type="xs:string"” />
"O" pame="interface” type="xs:string" />
name="implementation” type="xs:string" />
<xs:element msdata:Ordinal="7" minOccurs="0" name="configuration":>
<xs:complexTypes
<¥S:ISEqUEncer
<xs:elewent mindccurs="0" maxOccurs="unbounded” name="AttributeValusPair™:>
<xs:complexType>
<¥S1SequUencer
<xsielement minOocurs="0" nawe="wandatory” type="xs:string" />
<xsielement minOocurs="0" nawe="instancedverride™ type="xs:string" />
<xsielement minOocurs="0" nawe="globalUIOverride™ type="xs:string"™ />
<xz:element minOcours="0" nawe="value"™ type="xs:scring"” />
<xs:element mintccurs="0" maxOccurs="unbounded” name="Attribute” nillable="true’:>
<xz:icomplexType:
<xz:simpleContent madaca:Coluwnifame="Arcribuce_Text" mzdata:ordinal=rzr>
<xs:extension base="xs:string">
<xZ:attribute name="type" type="xs:string" />
<xZ:attribute name="length" type="xs:string" />
</xs:extension>
</xs:simpleContents
</xs:complexTypes
</xs:element>
</ x5 sequence>
</ s icowplexTypes
</msrelewents
</®3i1sequence>
</®aiconplexType>
</wsrelement>
</Hsisequence>
<us:attribute nawe="name" type="xs:string” />
<us:attribute nawe="type" type="xs:string” />
</ xs:complexType>
</xs:element:
</ xs:schemar

<xs:element wsdata:Crdinal="5" minOccurs=

<xs:element msdata:Crdinal="6" minlccurs

Example 3-1 shows the XML metadata for the sample: Database User Authentication
Plug-in.

Example 3-1 XML Metadata: Database User Authentication Plug-in

<Pl ugi n type="Authentication">

<aut hor >ui d=User 1</ aut hor >

<emai | >User 1@xanpl e. conx/ enai | >

<creationDat e>09: 32: 20, 2010- 12-02</creat i onDat e>

<descri ption>Custom User Authentication Plugin Validation Against Domain Name</
descripti on>

<configuration>

<AttributeVal uePair>

<Attribute type="string" |ength="20">DataSource</Attribute>
<mandat or y>t r ue</ mandat or y>

<i nstanceOverride>f al se</instanceQverride>

<gl obal Ul Override>true</ gl obal Ul Cverride>

<val ue>j dbc/ Cl SCO</ val ue>

</ AttributeVal uePair>

</ configuration>

</ Pl ugi n>

3.4.3 Sample Manifest File for the Plug-in

Beginning with the 11.1.2 release, the plug-in manifest file contains the following
information:

ORACLE 3-18

Chapter 3
Sample Code: Custom Database User Authentication Plug-in

* The plug-in version is taken from the Bundl e- Ver si on field. This field must be an
integer

e The name=attri but e parameter, which used to be read from the XML file in earlier
releases, is now read from the Bundl e- Synbol i cName or the Bundl e- Nane field. This
parameter does not need to be in the XML file.

e Theinpl enent ati on parameter, which used to be read from the XML file in earlier
releases, is now read from the Bundl e- Acti vat or field. This parameter does not
need to be in the XML file.

e The following can be removed from the XML file:
<interface>oracl e.security.am plugin.aut hn. Abstract Aut henti cati onPl ugl n</
interface>.

Example 3-2 Sample Manifest File

Mani fest-Version: 1.0

Bundl e-Version: 10-->Note this to be an integer.

Bundl e- Nane: MFASanpl ePl ugi n

Bundl e- Activator: nfasanpl epl ugi n. MFASanpl ePl ugi n

Bund| e- Mani f est Versi on: 2

| mpor t - Package:
org.osgi.framework; version="1.3.0", oracl e. security.am pl ugin, oracle.security.a
m pl ugi n. aut hn, oracl e. security.am pl ugin.inpl, oracle.security.am plugin.api,or
acle.security.amcommon. utilities.principal,oracle.security.idmjavax.security
.auth

Bundl e- Synbol i cNane: MFASanpl ePl ugi n

A corresponding sanple nodified XM. file is :

<Pl ugi n type="Authentication">

<aut hor >ui d=User 2</ aut hor >

<emai | >User 2@xanpl e. conx/ enai | >

<creationDate>09: 32: 20 2010- 12- 02</ cr eat i onDat e>

<descri ption>Cust om MFA Sanpl e Auth Pl ugi n</descri ption>
<configuration>

<I-- Attribute "actiontype" indicates if the plugin wants to REDI RECT or
FORWARD to the | ogin page to collect credentials-->
<AttributeVal uePair>

<Attribute type="string" |ength="20">actiontype</Attribute>
<nmandat or y>f al se</ mandat or y>

<i nstanceOverri de>fal se</instanceOverride>

<gl obal Ul Overri de>true</ gl obal Ul Qverride>

<val ue>FORWARD</ val ue>

</ AttributeVal uePair>

</ configuration>

</ Pl ugi n>

3.4.4 Understanding the Plug-in JAR File Structure

ORACLE

The JAR file structure for the sample (Database User Authentication Plug-in) is listed
here:

e <plugin>.xml

e <plugin>.class (per the package structure, as shown in Introduction to Plug-in
Interfaces)

* META-INF (MANIFEST.MF)

3-19

Chapter 3
Developing an Authentication Plug-in

3.5 Developing an Authentication Plug-in

The developer translates what a security architect has designed into the actual plug-in
using common libraries to interface custom authentication modules.

The following topics are discussed:

e About Writing a Custom Authentication Plug-in
e Writing a Custom Authentication Plug-in

e Error Codes in an Authentication Plug-In

e JAR Files Required for Compiling a Custom Authentication Plug-in

3.5.1 About Writing a Custom Authentication Plug-in

Writing the custom plug-in implementation includes writing the plug-in implementation
class to:

e Extend Abstract Aut henti cati onPl ugl n class (see About the Plug-in Interfaces)
e Implementinitialize method
* Implement process method

Table 3-3 describes the methods required for the plug-in's functionality.

Table 3-3 Required Plug-in Methods

|
Required Method Description

initialize Gives a handle to the Pl ugi nConfi g object.

The Pl ugi nConf i g object can be exercised to get plug-in specific system
configuration data that is entered when the plug-in is uploaded. This data
is required for the plug-in's own functionality.

process Gives a handle to the Aut hent i cati onCont ext object, which can be
exercised to get plug-in specific run time configuration data that is:
« either updated at plug-in instance level
e or updated during plug-in orchestration steps
The Aut hent i cati onCont ext object extends Pl ugi nCont ext object which
gives different methods to get the:
* plug-in configuration data
* exception data
e plug-in environment data
In addition, the Aut henti cati onCont ext object provides methods to get
the:
* Authentication scheme
* Authenticated Subject
* Credential object
* Run time policy resource

ORACLE 3-20

Chapter 3
Developing an Authentication Plug-in

Note:

Custom plug-in developers must implement actual custom authentication
processing logic in this method and return the final authentication execution
status.

The following tips will help in developing custom plug-ins.

An external JAR is required in both the Weblogic class path and inside the plug-in
as there is no visibility of the external JAR inside the plug-in.

The plug-in does not use the Weblogic class path and must have its own class
path for the external JAR defined in the manifest file; for example, Bundle-
ClassPath:

,indi-1.2.1.jar,ldap.jar,providerutil.jar, oaamsoap_client.jar,oaamcore.jar, oaam
_uio.jar

The package name must be individually specified in the manifest file. Wildcards
are not supported, and even nested packages must be specified in the Import-
Package: section. For example:

j avax. nam ng; resol ution: =optional , j avax. nam ng. spi ; resol uti on: =opti onal

To avoid bundle constraint exceptions during plug-in activation,
put ; resol ution: =optional in the packages.

If the JAR file is not present inside the plug-in AND its classpath (even though
available in the Weblogic class path) it will throw a classnotfound exception.

If the JAR file is not available in the Weblogic classpath, a type cast exception is
thrown.

3.5.2 Writing a Custom Authentication Plug-in

This section provides steps to write a custom authentication plug-in. The following
overview describes the actions a developer must take after the system architect
identifies the business requirements for this plug-in and considers the authentication
flow when a user requests a resource. For more information, see About Planning, the
Authentication Model, and Plug-ins.

ORACLE

1.

Extend Abst ract Aut hent i cati onPl ugl n class and implement the following methods
(see also About Writing a Custom Authentication Plug-in):

* Implementinitialize method
* Implement process method

Develop plug-in code using appropriate Access Manager 11g interfaces and
packages. See:

e Introduction to Authentication Plug-ins
e Sample Code: Custom Database User Authentication Plug-in
Prepare Metadata for the Custom Plug-in. See:

e Sample Plug-in Configuration Metadata Requirements

3-21

Chapter 3
Developing an Authentication Plug-in

4. Prepare the Plug-in Jar file and manifest and turn these over to your deployment
team. See:

» Sample Manifest File for the Plug-in
* Understanding the Plug-in JAR File Structure
5. Proceed to:
* JAR Files Required for Compiling a Custom Authentication Plug-in

* For information about deploying and managing custom authentication plug-ins,
see Deploying and Managing Individual Plug-ins for Authentication.

3.5.3 Error Codes in an Authentication Plug-In

In the case where a plug-in needs to exchange data to the login page, error page, or
client application pages, this data can be sent as Pl ugi nResponses. The response is in
the format as a Nane=Val ue pair that provides details about the data. The OAM Server
sends these responses to the custom page as HTTP request parameters. The
following response types facilitate the exchange:

e CLIENT: Enables the plug-in to communicate data about the authentication process
or about the user to the client application. The request parameter is
PLUG N_CLI ENT_RESPONSE.

* ERROR: Enables a plug-in to communicate any error about the authentication
process. The request parameter is PLUG N_ERROR RESPONSE.

Example 3-3 Error Code in a Custom Authentication Plug-in

/] Setting responses

Pl ugi nResponse rsp = new Pl ugi nResponse();

rsp = new Pl ugi nResponse();

rsp. set Name(" Pl ugi nd i ent Code");

rsp. set Type(Pl ugi nAttri but eCont ext Type. CLI ENT);
rsp. set Val ue("Err-100");

cont ext . addResponse(rsp);

rsp = new Pl ugi nResponse();

rsp. set Name(" Pl ugi nError Code");

rsp. set Type(Pl ugi nAttri but eCont ext Type. ERROR) ;
rsp.setVal ue("Card Expired");

cont ext . addResponse(rsp);

String errorResponse = request. get Paranmet er (GenericConstants. PLUG N_ERROR_RESPONSE) ;
String clientResponse =
request . get Paranet er (Generi cConst ants. PLUG N_CLI ENT_RESPONSE) ;

3.5.4 JAR Files Required for Compiling a Custom Authentication Plug-

in

ORACLE

Several JAR files are required to compile a custom authentication plug-in:
o felix.jar

e oam-plugin.jar

o utilities.jar

* identity-provider.jar

3-22

Chapter 3
Developing an Authentication Plug-in

These JAR files are located in the following path:

DOVAI N_HOVE/ ser ver s/ MANAGED | NSTANCE_NAME/ t np/ _W._user / oam ser ver / RANDOM STRI NG
[APP-INF/lib

ORACLE' 3-23

Developing Custom Pages

Oracle Access Manager provides default login, logout, error and password pages and
an extensible framework for creating a custom page tailored to the look and feel of
your company's brand.

This chapter explains how to develop custom pages and how to deploy them in your
environment. It provides the following sections.

e About the Custom Pages Framework

e Authenticating with Custom Pages

e About Custom Login Pages

e Understanding Custom Error Pages

e Understanding Custom Password Pages

e Using the Credential Collectors with Custom Pages

e Specifying the Custom Error and Logout Page Deployment Paths

4.1 About the Custom Pages Framework

ORACLE

Access Manager provides a framework that includes a set of static HTML pages
displayed to the user. These default pages can be customized to reflect your
company's look and feel, or replaced entirely with new pages. You can create custom
interactive pages for authentication during login, logout, and error conditioning
processing.

The custom pages framework is generally dynamic which requires that it be
implemented as a script or an application that can perform the required logic. Thus,
you can design, implement, and deploy a custom HTML page that, for example,
displays a different version of the login form depending on whether the user is
accessing via a mobile browser or a desktop browser.

Login, logout, error and password pages are packaged as part of the custom pages
framework. An out-of-the-box Web application archive (WAR) file is provided that can
be used as a starting point to develop customized pages. This WAR is hamed
oamcustompages.war and located in the MW_HOME/ oam server/t ool s/ cust onpages/
directory. After creating a custom HTML page, add it to the WAR.

Note:

A custom page can be used in combination with existing Access Manager
authentication modules or a custom authentication plug-in. For information
about developing a plug-in, See Understanding Form-Based Login Page
authentication.

4-1

Chapter 4
Authenticating with Custom Pages

Any user facing custom pages must return the OAM_REQ token and the
authentication endpoint.

See Also,

e Returning the OAM_REQ Token
e Returning the End Point

4.1.1 Returning the OAM_REQ Token

OAM_REQ is a transient cookie that is set or cleared by Access Manager if the
authentication request context cookie is enabled. This cookie is protected with keys
known to Access Manager only. OAM_REQ must be retrieved from the query string
and sent back as a hidden form variable.

When a resource is requested, the OAM Server redirects or forwards it to the
credential collector page to collect credentials. The OAM Server also sends an
OAM_REQ token to the login page. In the case of a customized login application, the
login application should ensure that the OAM_REQ token is retrieved from the request
and posted back to the OAM Server along with the credentials. OAM_REQ must be
retrieved from the query string and sent back as a hidden form variable. For example:

String reqToken = request. get Paranet er (Generi cConstants. AM REQUEST_TOKEN | DENTI FI ER) ;

<%

if(reqToken != null && reqToken.length() > 0) { %

<input type="hi dden" nanme="<%GCenericConstants. AM REQUEST _TOKEN | DENTI FI ER%"
val ue="<%r eqToken%" >

<%

}

%

See Also, Understanding SSO Cookies in Fusion Middleware Administering Oracle
Access Management.

4.1.2 Returning the End Point

The end point, / oan server/auth_cred_subni t, must be returned to the OAM Server.
For example:

<formaction="/oanf server/auth_cred
_submit"> or "http://oanserverhost:port/oam server/auth
_cred_submt".

4.2 Authenticating with Custom Pages

ORACLE

The authentication process involves determining what credentials a user must supply
when requesting access to a resource, gathering the credentials over HTTP, and
returning an HTTP response that reflects the results of credential validation.

Figure 4-1 shows the end-to-end request flow for authenticating a user accessing an
Access Manager protected resource that results in an error page.

4-2

ORACLE

Chapter 4
Authenticating with Custom Pages

Figure 4-1 Authentication Request Flow

OAM Server .
| AuteN identity Store _ -
| Appllcation —({1)—> podue T 7| ap &
ovD

Error/Login AuthN (4 —
-5
pama ' Plugin
Password

S WLJ
AD

In this process, the resource is protected by a specific authentication scheme that
uses the authentication (AuthN) plug-in. The AuthN plug-in uses the Identity Store API
to authenticate the credentials. The AuthN plug-in can also call a third-party API (not
shown).

1.

When a user requests a protected resource, the authentication flow is triggered
and a login page is displayed. The user enters the required credentials which are
then submitted to the authentication engine.

The Identity Store API establishes a connection to the backend store to complete
authentication. AD and OVD are shown as example identity stores.

The Identity Store layer returns the results to the plug-in and the authentication
engine layer. The authentication layer maps the error codes from the backend to
the corresponding Access Manager error codes. For information on standard error
codes, See Standard Error Codes.

The results include any authentication error codes and native error codes acquired
from the identity stores. Native error codes are returned to the login page as
unmapped secondary error codes (p_sec_error _nsg). For information about
secondary error codes, See Secondary Error Message Propagation.

Error codes are returned as query parameters to the error or login page. Error
codes are transmitted as HTTP Request parameters to the error page. The query
parameter is named p_error _code.

The primary error code message is a localized string containing the detailed text
for the error code. This can be obtained from the appropriate resource bundle file
using the error code.

The following sections contain more information.

Authentication Using an Agent
Authentication Using Unsolicited POST
Authentication Using Unsolicited Login With DCC WebGates

4-3

Chapter 4
Authenticating with Custom Pages

4.2.1 Authentication Using an Agent

Programmatic authentication using HTTP client APIs is supported for the OAM Server.
The following sections have more information.

Program based authentication using OAM Server

Process Overview: Developing Programmatic Clients

4.2.1.1 Program based authentication using OAM Server

In this release, the OAM Server uses Javascript to transmit the login form for
credential input to the client. In the case where the client or device cannot understand
a script-based redirect, the user-agent the client uses must be configured as a
programmatic client. OAM Server is then recognized the client as a programmatic one
and not as a browser based one. In this case, OAM Server will not use javascript
based redirect.

The following is an example of the configuration setting in oam-config.xml. Multiple
entries can be added under the user Agent Type setting.

<Setting Name="userAgent Type" Type="htf: mp">

<Setting Name="Mzilla/4.0 (conpatible; Wndows NT 5.1)
O acl eEMAgent URLTi mi ng/ 3. 0" Type="xsd: string">PROGRAMATI C</ Set ti ng>
</ Setting>

4.2.1.2 Process Overview: Developing Programmatic Clients

Use the following process when developing Access Manager programmatic clients.

The application invokes a protected resource via HTTP channel using the client
API.

OAM Server redirects to the login page with the request parameters:
si te2pst oret oken and p_subnit _url .

p_subnit _url contains the programmatic authentication endpoint. For example:
http(s)://host:port/sso/auth. The default browser action URL creates a session
on the server side and is not present in the programmatic authentication endpoint.
The programmatic authentication endpoint will not create a session for every
authentication, rather it will use a global session for a user. This session will be the
same for all authentication performed programmatically for a specific user.

Programmatic clients are expected to submit credentials to the programmatic
endpoint.

Clients must submit the following information to p_subnit _url : ssouser nane,
passwor d, s2pst or et oken (0Obtained in Step 3).

OAM Server validates credentials, and if valid, redirects the request to the initial
protected application.

In case of credential validation error, p_error_code is returned.

4.2.2 Authentication Using Unsolicited POST

Use the following process for programmatic authentication using unsolicited POST.

ORACLE

4-4

1.

Chapter 4
Authenticating with Custom Pages

Enable Direct Authentication.

In oam-config.xml, ensure that Servi ceSt at us under
Di rect Aut henti cati onServi ceDescri pt or iS set to true.
(Di rect Aut hent i cat i onServi ceDescri pt or is under OAMSer vi cesDescri ptor).

Submit the following information to the endpoint htt ps: // oam host : oam port/ oam
server/aut hentication:

e username
e password

e successurl, for example, http:// machi nenanme. exanpl e. com 7778/ sanpl e- web/
headers. j sp.

Once the credentials are validated, OAM Server redirects to the success URL after
setting 0AM | D cookie as part of HTTP redirect (HTTP response code 302).

To allow direct authentication only for POST, or vice-versa:

1.

Login to Oracle Access Management administration console and navigate to
Policy Configuration, then Application Domains.

Select edit IAMSuite. Navigate to Resources, then search and edit resource /
oambDirectAuthentication.

Under Operations, de-select all operations that are not to be supported, except
POST. For example, GET, DELETE.

To change how username and password credentials are authenticated for different
success URLs:

1.

During the direct authentication request, along with user nane, password and
successur |, pass another parameter t ype with a value specifying the authentication
mechanism.

Go to IAMSuite application domain. Create a new resource with the resource
URL / oanDi r ect Aut henti cati on, and query string with name t ype and value
specified in Step 1.

Associate this resource to the authentication scheme that supports the t ype
selected.

Create multiple resources with the URL / oanDi r ect Aut hent i cat i on and different
values for the query string type (for example, t ype=FORM t ype=CREDS) and associate
it to corresponding authentication schemes.

4.2.3 Authentication Using Unsolicited Login With DCC WebGates

The following procedure will configure an unsolicited login using DCC WebGates.

ORACLE

1.

Configure the DCC WebGate.

See Configuring a DCC WebGate for X509 Authentication in Oracle Fusion
Middleware Administrator's Guide for Oracle Access Management.

Enable Direct Authentication.

Ensure that ServiceStatus under DirectAuthenticationServiceDescriptor in the oam
config. xnl file is set to true. The DirectAuthenticationServiceDescriptor parameter
is under OAMServicesDescriptor.

4-5

Chapter 4
About Custom Login Pages

Add Tunnel edUr | s=/ oani server/ aut henti cati on to the User-defined parameters of
the DCC WebGate profile.

/ oan server/ aut henti cati on is a Direct Authentication URL.
Restart the DCC WebGate.
Ensure that the host/port variation is added to the resource's WebGate.

For example, if the resource's WebGate is htt p: / / <RWG Host >: <port >/, add the host
variation <RWG-Host> and the port variation <port> to the Host Identifier.

Note:

DCC WebGates require no configuration in the Host Identifier so add the
host variation to the resource's WebGate host identifier only. The
resource WebGate and DCC WebGate have different profiles and sets of
host identifiers.

Protect / pages/ | ogi n. j sp and / oam ** and / oansso- bi n/ | ogi n. pl with the Public
Resource Authentication and Authorization Policy of the DCC WebGate
application domain.

/ oam server/ aut henti cati on should be protected by the Public Resource
Authentication and Authorization Policy scheme in the DCC Application Domain. /
oanmsso- bin/1 ogin. pl and /pages/ | ogin. | sp are login pages and should be marked
as public resources in the DCC. The successurl value needs to be protected and
is provided as the post parameter.

" Note:

See Authentication Using Unsolicited POST to configure the
Authentication Scheme for the resources protected using the Direct
Authentication URL.

The DCC authentication end point can be accessed here at http: // <dcc-
host >: <dcc- port >/ oam server/ aut henti cati on.

There is a TYPE parameter which can be mapped to a specific application. Post
the username, password and successurl parameters to this DCC end point to
access the resource.

4.3 About Custom Login Pages

ORACLE

The custom login page can be created as a WAR file and packaged with the
necessary resource bundle files. The WAR file can then be deployed on an application
behind a DCC, or if DCC is not used, the page can be deployed on the same server
where ECC is running.

When using ECC, the following settings must be specified for the Authentication
scheme using the custom WAR file.

Context Type = CustomWar
Challenge URL = Relative path for the URL of the login page inside the WAR file

4-6

Chapter 4
About Custom Login Pages

* Context Value = Custom WAR's root path. If a customized error page is included
as part of the Custom WAR file, you must specify the absolute URL in the
authentication policy-failure redirect URI. For example: http://host: port/

Sanpl eLogi n\r/ pages/ MFAError. j sp.

See Also,

» Authentication Schemes and Pages in Fusion Middleware Administering Oracle
Access Management

» Understanding Form-Based Login Page authentication

* What is Page Redirection Process

4.3.1 Understanding Form-Based Login Page authentication

4.3.2 What i

ORACLE

Form-based authentication enables the development of customized Web forms that
process login credentials using Access Manager's authentication mechanisms. These
forms are HTML pages that enable you to present login information in different
languages, to display user interface elements that comply with your company's
presentation standards, and to add functions required for password management.

The form or login application can be written to process the redirect from the user and
render the HTML using your preferred technology (JSP, ASP.net, Perl, PHP, and so
on). This allows you to customize the look and feel of the page so it reflects company
standards, and it enables pre-processing of the user's submission (POST) before their
credentials are sent to the OAM Server, if desired.

Three modes of request cache are supported: basi c, cooki e, and f orm When working
in basi c mode, the request _i d is a mandatory parameter and should be sent back. In

f ormmode, the OAM_REQ token is mandatory and should be sent back if available. In
cooki e mode, OAM_REQ is set as a cookie.

A custom login form page has the following requirements:

* The page must be built to support the desired authentication module.

* The page must support retrieval of the OAM_REQ token. See Returning the
OAM_REQ Token.

* The page must retrieve the end point. See Returning the End Point.

s Page Redirection Process

When writing a custom login page for authentication by Access Manager, a common
method is to redirect a user to a login page that is hosted outside of the OAM Server.
The user is redirected to the custom page or application you have written.

When a form-based authentication scheme has been created with an external
challenge type, the OAM agent redirects the user first to the obrareq. cgi URL, which in
turn redirects the user to the login page specified as the Challenge URL for the
authentication scheme. The Challenge Redirect URL declares the DCC or ECC
endpoint. The Challenge URL is the URL associated with the Challenge method such
as FORM.

On the redirect page, request _i d and redi rect _url are added to the query string. For
example:

4-7

Chapter 4
Understanding Custom Error Pages

?request _i d=5092769420627701289¢&r edi rect _ur | =ht t p98AYRFY%2Fexanpl e. com
YBATTTTY2Fscri pt a%Fprintenv

When using the x509 authentication scheme there is no separate page for login
credentials as authentication occurs transparently. However, page redirection also
applies to non-form based authentication methods. For example, when using an x509
Authentication Scheme, you can direct users to a confidentiality disclaimer statement,
or similar, before a protected resource is displayed. In this case, enter the path to the
disclaimer page and have that page redirect to the / oam CredCol | ect Ser vl et / X509 page.
Be sure to present the original query scheme.

4.4 Understanding Custom Error Pages

This section contains information specific to the development of custom error pages. It
contains the following information.

» Enabling Error Page Customization

» Standard Error Codes

e Security Level Configuration

e Secondary Error Message Propagation
» Sample Code: Retrieving Error Codes
e Error Data Sources Summary

For information on how error code query parameters p_error_code and p_sec_error _nsg
will map to the custom error codes in your environment, see Sample Code: Retrieving
Error Codes.

Note:

Error Codes in an Authentication Plug-In and Sample Code: Retrieving
Password Policy Error Codes

4.4.1 Enabling Error Page Customization

ORACLE

Once a custom Error page is packaged and deployed as an out-of-the-box Web
application archive (WAR) file, use the updat eCust onPages WLST command to enable
and disable it. The custom Error page has a specific location that must be respected
when deploying the custom web application. The location is:

http(s)://<host>: <port>/<cont ext >/ pages/ Error. <pageExt ensi on>
See Also,

Oracle Fusion Middleware WebLogic Scripting Tool Command Reference for Identity
and Access Management. For information on updat eCust onPages and other WLST
commands.

Specifying the Custom Error and Logout Page Deployment Paths

4-8

Chapter 4
Understanding Custom Error Pages

4.4.2 Standard Error Codes

ORACLE

Access Manager provides standard error codes that indicate the reasons for failure.
Common reasons include an invalid username and password combination, a locked or
disabled user account, or an internal processing error. The reason for the
authentication error is received from the backed identity store and mapped to a
specific error code maintained in the Access Manager Server. This error code is then
propagated to the login or error page. (The custom error page also displays any
internal server errors as well.)

Table 4-1 summarizes the standard error information available in login and error
pages.

Table 4-1 Types of Error Information

__|
Message Type Description

Error code A string containing a specific number. The error codes are
managed solely by Access Manager. Query string parameter is
named p_error_code.

Primary error message A localized string containing the detailed text for the error code.
Is based on the client locale, namely, the user's browser
language setting.

Secondary error message A non localized string containing the real cause for the failure.
Secondary error message can be provided by a custom
authentication plug-in or be returned by an identity store. Query
string parameter is named p_sec_error_nsg.

Table 4-2 lists all the error message codes sent by the OAM Server and the
corresponding primary error message. If a primary error message has been
customized for an application, the application must map this custom message to the
corresponding standard error message maintained by OAM Server. There is no
difference between OAM-1 and OAM-2 error codes.

Table 4-2 Standard Error Codes and Message
|

Error Code Primary Error Message

OAM-1 An incorrect Username or Password was specified.

OAM-2 An incorrect Username or Password was specified.

OAM-3 Unexpected Error occurred while processing credentials. Please
retry your action again!

OAM-4 System error. Please contact the System Administrator.

OAM-5 The user account is locked or disabled. Please contact the

System Administrator.

OAM-6 The user has already reached the maximum allowed number of
sessions. Please close one of the existing sessions before trying
to login again.

OAM-7 System error. Please re-try your action. If you continue to get
this error, please contact the Administrator.
OAM-8 Authentication failed.

4-9

Chapter 4
Understanding Custom Error Pages

Table 4-2 (Cont.) Standard Error Codes and Message

__|
Error Code Primary Error Message

OAM-9 System error. Please re-try your action. If you continue to get
this error, please contact the Administrator.

OAM-10 The password has expired. Please contact the System
Administrator.

4.4.3 Security Level Configuration

ORACLE

An error code's security level determines the error code that is returned by OAM
Server. The security level is configured by an administrator using the Access Manager
Configuration panel in the administration console. The following security level settings
are available when configuring error codes for custom login pages:

 SECURE: Most secure level. Provides a generic primary error message that gives
little information about the internal reason for the error.

« EXTERNAL: The recommended level and is the default.

* INTERNAL: The least secure level. Enables propagation of error code to login or
error page.

Table 4-3 lists the standard error codes (see Table 4-2) that are propagated to the
login or error page according to security level.

Table 4-3 Error Condition Mapping by Security Level
|

Error Condition Internal Mode External Mode Secure Mode
Invalid login attempt. OAM-1 OAM-2 OAM-8
Processing submitted credentials OAM-3 OAM-3 OAM-8

failed for a reason. For example, in
WNA mode the spnego token is not

received.

An authentication exception is raised OAM-4 OAM-4 OAM-9

for a reason.

User account is locked due to certain OAM-5 OAM-5 OAM-8, or
conditions. For example, the invalid OAM-9 if OIM is
attempt limit is exceeded. integrated

User account is disabled. OAM-5 OAM-5 OAM-9

User exceeded the maximum number OAM-6 OAM-6 OAM-9

of allowed sessions.
This is a configurable attribute.
Can be due to multiple reasons. The OAM-7 OAM-7 OAM-9

exact reason is not propagated to the
user level for security reasons.

Is the default error message displayed
when no specific error messages are
propagated up.

4-10

Chapter 4
Understanding Custom Error Pages

When an error condition occurs, the OAM Server will forward to the default error page,
unless the default page has been overridden as a fail ure-redirect-url in the
authentication policy. When using a custom error page, the absolute error page URL
must be set as the failure_redirect _url in the authentication policy so that the server
will redirect to the custom page. The custom login page typically has the logic to serve
as the error page.

In the case of error conditions OAM-1 and OAM-8, which enable the credentials to be
collected again, the user is returned to the login page.

4.4.4 Secondary Error Message Propagation

The authentication engine layer maps exceptions from the backend identity store to
error codes specific to OAM Server. These codes are then propagated. Plug-ins can
retrieve the secondary error code and then propagate so that appropriate action can
be taken.

Note:

The primary error codes are propagated to the error or login page in all
modes. The secondary error message is propagated only when the security
level is configured to be INTERNAL. For more information, see Security
Level Configuration.

Secondary error messages are sent as HTTP Request parameters to the error page.
The query parameter is named p_sec_error_nsg. This message is a concatenated
string of code and message text from the backend and is not translated.

For example, in the case where OVD is the backend and invalid credentials are
entered, authentication fails and the cause is returned from the backend as LDAP: err or
code 49-Invalid Credential s and the OAM Server error code is returned as OAM 1. In
this case the following data will appear in the log in page:

4.4.5 Sample Code: Retrieving Error Codes

ORACLE

An error code is sent as HTTP Request parameters to the error page. The query
parameter is named p_error _code. This parameter value will contain error code values
returned by the OAM Server, such as OAM-1.

" Note:

See Table 4-2 for standard Access Manager error codes and corresponding
message. These error codes do not have supplementary information.

A custom login page can be associated with a custom resource bundle to transform
the error codes to meaningful messages that can be displayed to the end user.
However, if the custom login page does not require meaningful error messages or
translations, then the custom resource bundle is not required.

4-11

Chapter 4
Understanding Custom Error Pages

A local resource bundle file must be created with the error condition mapped to Access
Manager error codes as summarized in Table 4-3. The file can be consumed in the
login or error page. Example 4-1 provides a resource bundle code sample and
Example 4-2 provides an error code page sample.

Example 4-1 Resource Bundle Code

package mytest.error;
I mport java.util.ListResourceBundl e;
public class Exanpl eErrorMsg extends ListResourceBundl e {
/* (non- Javadoc)
* @ee java.util.ListResourceBundl e#get Cont ents()

*/
public Object[][] getContents()
{
return mcontents;
}

[** The Constant mcontents. */
private static final Object[][] mcontents =

{
{"OAM 1", " An incorrect Username or Password was
specified "},
{"OAM 2", " An incorrect Username or Password was
specified "},

{"OAM 3", "Unexpected Error occurred while processing
credentials. Please retry your action again!"},
"k
}
}

Example 4-2 Error Code Page

<Y@page i nport="nytest.error.Exanpl eErrorMsg" %
[linitializing the messageBundle first
String defaul t ResourceBundl e = "nytest.error. Exanpl eError Msg";
java.util.Local e nyLocal e = request. getLocal e();
Resour ceBundl e nsgBundl e=
Resour ceBundl e. get Bundl e(def aul t Resour ceBundl e, nyLocal e) ;
String errCode = request.getParanmeter("p_error_code");
String secondaryErrMessage = request. get Paraneter("p_sec_error_nsg");

<%
if(errCode !'= null && errCode.length() > 0) {
try {
si npl eMessage = nmsgBundl e. get String(errCode);
} catch(Exception e) {
//get the default authn failed nessage
si npl eMessage = nmsgBundl e. get String(" OAM 8");
1
%

<div class="nessage-row'>
<p class="logi nFai |l ed"> <%si npl eMessage% </ p>
</div>

4.4.6 Error Data Sources Summary

Table 4-4 summarizes the error data sources available to an authentication plug-in.

ORACLE 4-12

Chapter 4
Understanding Custom Password Pages

Table 4-4 Authentication Plug-In Error Data Sources

Source Parameter
Error code HTTP Request parameter: p_error_code
Primary error message Is obtained from the resource bundle, using the error code

Secondary Error Message HTTP Request parameter: p_sec_error _nsg
(sent only in INTERNAL
error mode)

Concatenated list of server HTTP Request parameter: p_error_codes_| i st
error codes

Password Plugin error HTTP Request parameter: r ej ect edRul esDesc

message

Plugin client responses HTTP Request parameter: PLUGIN_CLIENT_RESPONSE
Plugin error responses HTTP Request parameter: PLUGIN_ERROR_RESPONSE

4.5 Understanding Custom Password Pages

When writing a custom password page for authenticating users, a common method to
follow is to redirect the user to a password page hosted outside Access Manager;
custom pages are written to process a redirect from the user and to render the HTML.

Access Manager processes user-entered passwords and password changes with
form-based Java Server Pages (JSP). These pages can be customized in several
languages or to display a company logo. Custom password pages can be kept as a
JSP, or written using ASP.net, Perl, PHP, and other similar technologies. The pages
enable pre-processing of the user's submission (POST) before their credentials are
sent to Access Manager, if desired. The following sections contain more details.

e Customizing the Password Page WAR

* Using the Request Cache

* Specifying the Password Service URL

* Sample Code: Retrieving Warning Messages

* Sample Code: Retrieving Password Policy Error Codes

e Sample Code: Obtaining Password Policy Rules

4.5.1 Customizing the Password Page WAR

ORACLE

A basic Web archive (WAR) file that includes the required translation bundles for login
and password pages is provided when Access Manager is installed. This WAR is
called oantust onpages. war and is the starting point for customizing password pages. A
custom password service form page has the following requirements:

* The page must support retrieval of the OAM_REQ token as documented in
Returning the OAM_REQ Token.

* The page must retrieve the end point as documented in Returning the End Point.

The WAR is located in the $IDM_HOME//oam/server/tools/custompages/ directory.
The advantage of using the WAR is that the basic structure is already in place.

4-13

Chapter 4
Understanding Custom Password Pages

Figure 4-2 displays the structure of the WAR; the CSS and images can be customized

as per your requirements.

Figure 4-2 Unarchived WAR

¥ = META-INF
-] MANIFEST.MF
¥ (= pages
P =css
P =images
| changePswd.jsp
=| locale-ctx jsp
=] login.jsp
| pswd.jsp
~| pswdChangeAccept.jsp
| pswdChangeError.jsp
| pswdChangeReject jsp

=| pswdChangeRequest.jsp

=| servererror.jsp

B warningMsg_ jsp

(= WEB-INF
P =lib

X web.xmil

4.5.2 Using the Request Cache

Three modes of request cache are supported: basic, form and cookie.

» Basic mode defines the request_id as a mandatory parameter that must be sent

back.

* Form mode defines the OAM_REQ token as mandatory and should be sent back,

if available.

e Cookie mode sets OAM_REQ as a cookie.

ORACLE"

4-14

Chapter 4
Understanding Custom Password Pages

4.5.3 Specifying the Password Service URL

The starting point for password pages is pswd. j sp. The location of this page is
configured under Password Policy using the Oracle Access Management
Administration Console. See Password Policy Management.

1. Log into the Access Manager Administration Console as administrator.
2. Click the Password Policy link under Access Manager.

3. Define or modify the value of the Password Service URL attribute.

4.

Click Apply.

4.5.4 Sample Code: Retrieving Warning Messages

A user-facing page has access to the number of days before which the password will
expire. The following code snippet illustrates how to obtain the nhumber of days or
hours before the password expires.

String nessage = ""

if(errCode != null && errCode.equals("1")) {

message = nsgBundl e. get String("USER PSWD WARNI NG') + errCode +

msgBundl e. get Stri ng(" USER_PSWD_DAY");

} else if (errCode !'= null && errCode.equal s("0")) { message =

msgBundl e. get Stri ng(" USER_PSWD WARNI NG HOURS"); } el se {

message = nsgBundl e. get String("USER PSWD WARNING')+ " " + errCode + " " +
msgBundl e. get Stri ng(" USER_PSWD DAYS");

}

4.5.5 Sample Code: Retrieving Password Policy Error Codes

ORACLE

A user-facing page has access to the password policy result context and has the
ability to obtain applicable messages. Each message may include supplementary
information, depending on the message. The following code snippet shows how a
page can obtain the message and supplementary information from the password
policy result context:

String sinpl eMessage = "";
String result = request.getParaneter("rejectedRul eDesc");
if(result.indexOf("~") !=-1) {
String[] results =result.split("~");
for(String eachResult : results) {
i f(eachResult.indexOf(":") !=-1) {
String messageKey = eachResult.substring(0, eachResult.indexCfF(":"));
String resourceBundl eKey =
Url Substit uti onMessages. ERRORCODEMAP. get (nessageKey) ;
String placeHol derVal ue = eachResul t. substring(eachResult.indexOf(":") + 1,
eachResul t.length());
String displayVal ue = Localizer.localize(resourceBundl eKey,
pl aceHol der Val ue, nyLocal e);
si npl eMessage += di spl ayVal ue + "
";
}
el se {
String resourceBundl eKey =
Url Substituti onMessages. ERRORCODEMAP. get (eachResul t);
String displayVal ue = Localizer.localize(resourceBundl eKey, null, nyLocale);
si npl eMessage += di spl ayVal ue + "
";

4-15

ORACLE

Chapter 4
Understanding Custom Password Pages

}
}

For example, if the password doesn't have enough characters, the following will be the
result in context:

* Passwor dRul eDescri ption. get Resour ceBundl eKey() returns
"passwor dPol i cy. error. ninLength”

e Passwor dRul eDescri ption. get Pl aceHol der Val ue() returns minimum number of
characters

* Passswor dRul eDescri pti on. eachDesc. get Di spl ayVal ue() returns fully translated
message

The password plug-in redirects to the password pages and the corresponding
message is received from the password policy. These error codes are sent to the
password policy pages as HTTP Request parameter named r ul eDes. Table 4-5 lists
the available error codes, message key, and the corresponding message that can be
returned during password validation.

Table 4-5 Password Validation Error Codes

Message Message Key for Resource Message Text
Key in URL Bundle

PSWD-1 passwordPolicy.message.min Password must be at least {0} characters long
Length

PSWD-2 passwordPolicy.message.max Password must not be longer than {0}
Length characters

PSWD-3 passwordPolicy.message.min Password must contain at least {0} alphabetic
Alpha characters

PSWD-4 passwordPolicy.message.min Password must contain at least {0} numeric
Number characters

PSWD-5 passwordPolicy.message.min Password must contain at least {0}
AlphaNumeric alphanumeric characters

PSWD-6 passwordPolicy.message.min Password must contain at least {0} special
SpecialChars characters

PSWD-7 passwordPolicy.message.max Password must not contain more than {0}
SpecialChars special characters

PSWD-8 passwordPolicy.message.max Any particular character in the password must
Repeated not be repeated more than {0} times

PSWD-9 passwordPolicy.message.min Password must contain at least {0} unique
Unique characters

PSWD-10 passwordPolicy.message.min Password must contain at least {0} uppercase
UpperCase letters

PSWD-11 passwordPolicy.message.min Password must contain at least {0} lowercase
LowerCase letters

PSWD-12 passwordPolicy.message.max Password will expire {0} days after the last
Age password change

PSWD-13 passwordPolicy.message.war Password change reminder will be sent {0}
nAfter days after the last password change

4-16

Chapter 4
Understanding Custom Password Pages

Table 4-5 (Cont.) Password Validation Error Codes
|

Message Message Key for Resource Message Text

Key in URL Bundle

PSWD-14 passwordPolicy.message.req Password must contain the following
dChars characters: {0}

PSWD-15 passwordPolicy.message.inva Password must not contain the following
lidChars characters: {0}

PSWD-16 passwordPolicy.message.vali Password can contain the following characters:
dChars {0}

PSWD-17 passwordPolicy.message.inva Password must not contain the following
lidStrings strings: {0}

PSWD-18 passwordPolicy.message.start Password must start with an alphabetic
sWithChar character

PSWD-19 passwordPolicy.message.disA Password must not match or contain user ID
llowUserld

PSWD-20 passwordPolicy.message.disA Password must not match or contain first name
llowFirstName

PSWD-21 passwordPolicy.message.disA Password must not match or contain last name
llowLastName

PSWD-22 passwordPolicy.message.dict Password must not be a dictionary word
Message

PSWD-23 passwordPolicy.message.enfo Password must not be one of {0} previous
rceHistory passwords

PSWD-24 passwordPolicy.message.min Password cannot be changed for {0} days after
Age the last password change

PSWD-25 passwordPolicy.message.min Password must contain at least {0} Unicode
Unicode characters

PSWD-26 passwordPolicy.message.max Password must not contain more than {0}

Unicode

Unicode characters

4.5.6 Sample Code: Obtaining Password Policy Rules

A user-facing page has access to the password policy rules applicable for the user.
Each message may include supplementary information, depending on the message.
The following code snippet shows how a page can obtain the rules and supplementary
information from the password policy result context:

ORACLE

String sinpleMessage = "";

String result = request.getParaneter("rul eDesc");

if(result.indexOr("~") I=-1) {
String[] results = result.split("~");
for(String eachResult : results) {

i f (eachResul t.indexCOF(":") '=-1) {

String nessageKey = eachResult.substring(0, eachResult.indexCfi(":"));
String resourceBundl eKey = Url Substituti onMessages. ERRORCODEMAP. get (messageKey) ;
String placeHol der Val ue = eachResul t. substring(eachResul t.indexOr(":") + 1,

eachResul t.length());

String displayValue = Localizer.|ocalize(resourceBundl eKey, placeHol derVal ue,

myLocal e);
si npl eMessage += di spl ayVal ue + "
";

4-17

Chapter 4
Using the Credential Collectors with Custom Pages

}

el se {

String resourceBundl eKey = Url SubstitutionMessages. ERRORCODEMAP. get (eachResul t);
String displayVal ue = Localizer.localize(resourceBundl eKey, null, nyLocale);

si npl eMessage += di spl ayVal ue + "
";

}
}
}

For example, if the password does not have enough characters, the following will be
the result in context:

* Passwor dRul eDescri ption. get Resour ceBundl eKey() returns
"passwor dPol i cy. error. ninLength"

e Passwor dRul eDescri ption. get Pl aceHol der Val ue() returns minimum number of
characters

* Passswor dRul eDescri pti on. eachDesc. get Di spl ayVal ue() returns fully translated
message

4.6 Using the Credential Collectors with Custom Pages

A credential collection component is enabled to serve as communication endpoint for
custom pages. The credential collector facilitates interaction with the customized user
interface.

Either one of two Access Manager credential collection components can be enabled to
serve as the communication endpoint for custom pages, and to facilitate interaction
with the customized user interface. The Access Manager credential collection
components are:

* The Embedded Credential Collector (ECC) which can be used out-of-the-box with
no additional installation and setup. In cases where the ECC is used, the default
pages are accessed from the following locations:

— Login page: http(s)://host:port/oam/pages/login.jsp
— Error page: http(s)://host:port/oam/pages/servererror.jsp

* The Detached Credential Collector (DCC) which is recommended for greater
scalability and security isolation in production deployments. In cases where the
DCC is used, the default pages are accessed from the following locations:

— Login page: /oamsso-bin/login.pl

— Login action URL: /oam/server/auth_cred_submit. This is the default action
URL if no acti on is configured in the authentication scheme parameters. No
corresponding physical page is located with the default URL. A physical page
is needed at the URL location only when an acti on has been configured in the
authentication scheme and a runtime acti on type results in a pass through on
the action URL.

— Error page: /oberr.cgi. This is a URL pattern recognized by DCC and is not a
physical location.

Regardless of which credential collection component is enabled for communicating
with users, the design and implementation of custom pages in your environment is
almost identical.

ORACLE 4-18

Chapter 4
Using the Credential Collectors with Custom Pages

Note:

For more information about the Access Manager Server credential collectors,
See Configuring 11g WebGate and Authentication Policy for DCC.

This section contains details regarding the DCC.

About the Detached Credential Collector with Custom Pages
Creating a Form-Based Login Page Using DCC
About Custom Login and Error Pages for DCC Tunneling

4.6.1 About the Detached Credential Collector with Custom Pages

The primary differences when using the DCC to collect credentials from a custom
page include the following:

The DCC is installed with default pages implemented as Perl scripts using HTML
templates located in the following Webgate Oracle Home (WebgateOH)
directories:

— WebgateOH/webgate/ohs/oamsso
— WebgateOH/webgate/ohs/oamsso-bin

In addition to customizing login pages for supported authentication mechanisms,
the default error and logout pages can be customized.

— The default error page is triggered when an error condition occurs outside of
the authentication flow, or if the failure redirect URL is not specified in the
authentication scheme. The default error page template and associated error
messages are located in a language and locale specific subdirectory within the
Webgate Oracle Home. For example, the exact location for en- us is:
WebgateOH/webgate/ohs/lang/en-us/WebGate.xml.

— The default logout page is located in WebgateOH/webgate/ohs/oamsso-bin/
logout.pl.

Custom pages can be deployed on the Oracle HTTP Server hosting the DCC or, in
the case of JSP or Servlets, on a web container fronted by it.

Use a configurable URL to allow HTML forms to post collected data to the DCC.
The acti on challenge parameter in the authentication scheme specifies the URL
where the credentials are expected.

requestid query parameter handling is not required.

4.6.2 Creating a Form-Based Login Page Using DCC

To create a a form based login page using DCC:

ORACLE

1.

Create an HTML form from which the user's credentials (user name and
password) can be submitted.

For more information, see Understanding Form-Based Login Page authentication.

Place the form in an unprotected directory, or in a directory protected by an
Anonymous authentication scheme, on your Web server with DCC.

4-19

Chapter 4
Specifying the Custom Error and Logout Page Deployment Paths

3. Create a form-based authentication scheme and specify the path to the login form
as the Challenge URL.

Call the form action using HTTP GET or POST.

4
5. Protect the target URL in the action of the login form with a policy.
6. Configure the challenge parameters in the authentication scheme.
7

Specify the authentication module to use to process the credentials.

4.6.3 About Custom Login and Error Pages for DCC Tunneling

Custom login and error pages can be created when using DCC tunneling. The default
pages are accessed from the following locations:

* Login page: http(s)://DCChost:DCCportloam/pages/login.jsp
» Error page: http(s)://DCChost:DCCport/oam/pages/servererror.jsp

A procedure (similar to Creating a Form-Based Login Page Using DCC) should be
followed to create and use these custom pages. For more details on credential
collection and DCC tunneling, See Understanding Credential Collection and Login.

4.7 Specifying the Custom Error and Logout Page
Deployment Paths

Custom Error and logout pages have specific paths that must be respected when
deploying the custom application. The error page path is:

http(s)://<host>:<port>/<context > pages/ Error.<pageExt ensi on>

The logout page path is:

http(s)://<host>: <port>/ <cont ext >/ pages/ Logout . <pageExt ensi on>

context and pageExtension are variables that can be configured using the

updat eCust onPages WLST command. pageExtension has a default value of jsp but can
be left blank while running the command. updat eCust onPages will add a context path
and page extension to the configuration.

<Setting Name="ssoengi ne" Type="htf:mp">
<Setting Name="ErrorConfig" Type="htf:mp">
<Setting Name="ErrorMbde" Type="xsd:string">EXTERNAL</ Setting>
<Setting Name="Cust onPageExt ensi on" Type="xsd:string">htm </ Setting>
<Setting Name="Cust onPageContext" Type="xsd: string">Sanpl eApp</ Setting>
</ Setting>
</ Setting>

Note:

See updateCustomPages in Oracle Fusion Middleware WebLogic Scripting
Tool Command Reference for Identity and Access Management for details.

ORACLE 4-20

Managing Policy Objects

Access Manager provides a Policy Administration API that enables Create, Read,
Update, and Delete (CRUD) operations on its policy objects. This chapter describes
the API and provides examples for using a RESTful Web service for Access Manager
policy administration.

The following sections contain details regarding the Policy Administration API.

e About the Policy Administration API
e Compatibility

* Managing Policy Objects

e Client Tooling

¢ cURL Command Examples

5.1 About the Policy Administration API

Oracle Policy Administration API supports representational state transfer (REST)
interfaces for administering Access Manager policy objects as RESTful resources

Oracle Policy Administration APl conforms to the Java Specification Request (JSR)
311: JAX-RS 1.1 specifications: Java API for RESTful Web Services 1.1. For more

information, See: http://downl oad. oracl e. con ot ndocs/j cp/j axrs-1. 1-nrel - eval - ot h-
JSpec/ .

This section provides the following topics:

e Access Manager Policy Model

e Security Model

* Resource URLs

e URL Resources and Supported HTTP Methods

e Error Handling

5.1.1 Access Manager Policy Model

The Policy Administration API exposes Access Manager policy model objects (also
known as artifacts) to RESTful clients, modeling operations on these objects to HTTP
requests containing specific URLs and operations. Operations are subject to Access
Manager policy administration rules that enforce policy validation and consistency.

Figure 5-1 shows the policy model and the relationship of the policy objects that can
be managed.

ORACLE 5-1

http://download.oracle.com/otndocs/jcp/jaxrs-1.1-mrel-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/jaxrs-1.1-mrel-eval-oth-JSpec/

ORACLE

Figure 5-1 Policy Model

Chapter 5

About the Policy Administration API

OAM
Authentication Resource Host
Application
Schemes D -3 Types Identifiers
Authentication
{ Modules
¥
| Policies Resources
Y . Legend
¥ | v ¥ | v /f\ Relationship: One-to-Many
Authentication Authorization Token Issuance Sl
Policies Policies Policies X Relationship: Many-to-Many
i LI w1, Al
" w i
lemmom———- SRR bememcmnn - ; Extarnal Dependencies
i i ik T Relationship: Containment
{ Identities E Contextual Data

Table 5-1 provides details about the policy objects that can be managed using the
RESTful interfaces. Each policy object is represented as an HTTP resource that is
accessible through an HTTP uniform resource locator (URL).

Table 5-1 Policy Objects
|

Object Name

Description

Application Domain

The top-level construct of the 11g policy model. Each application
domain provides a logical container for resources, and the
associated authentication and authorization policies that dictate
who can access these.

Host Identifier

A host can be known by multiple names. To ensure that Access
Manager recognizes the URL for a resource, Access Manager
must know the various ways used to refer to that resource's host
computer.

Resource

Resources represent a document, or entity, or pieces of content
stored on a server and available for access by a large audience.
Clients communicate with the server and request the resource
(using HTTP methods) that is defined by an existing Resource

Type.

Resource Type

A resource type describes the kind of resource to be protected.

Authentication Policy

Authentication policies specify the authentication methodology to
be used for authenticating the user. Policies define the way in
which the resource access is to be protected.

5-2

Chapter 5
About the Policy Administration API

Table 5-1 (Cont.) Policy Objects

__|
Object Name Description

Authorization Policy Authorization policies specify the conditions under which a
subject or identity has access to a resource.

Token Issuance Policy A Token Issuance Policy defines the rules under which a token
can be issued for a resource (Relying Party Partner) based on
the client's identity, with the client either being a Requester
Partner or an end user.

Authentication Scheme A named component that defines the challenge mechanism,
level of trust, and the underlying authentication module required
to authenticate a user.

Figure 5-2 shows the contents of the Access Manager policies.

Figure 5-2 Policy Contents

Authentication Policies Authorization Policies Token |ssuance Policies

Resources Resources Resources

Authentication Scheme I Conditions -E‘I Rules l Conditions d‘l Rules

Responses | Responses | Responses

You can access the OAM Server RESTful interfaces through client applications such
as:

* Web browsers
¢ CcURL
* GNU Woget

5.1.2 Security Model

REST services are protected by the container security that enforces the required roles.
The Policy Administration REST API is protected by administrative roles.

The enforcement policy configuration for the APl is similar to the policy enforcement
for Policy Administration actions performed in the administration console. For example,
client invocations are expected to supply credentials in the Authorization Header of the
HTTP request, ensuring that the client invocations remain stateless as seen in the
following sample request:

ORACLE 5-3

Chapter 5
About the Policy Administration API

Request URL: hitp /¥ adminserver:adminoort joam/servicesiresti 1.1 1 6 0fssapolicyadminfappdomain
Request Method: GET
Status Code: HTTP#1.1 200 OK

Request Headers 14:04:04.528
Accept: texthtml applicationshtmlaml applicationtbomlg=0.9 ** =08
Accept-Charset: [30-3559-1 utf-8,g=0.7 % =07
Accept-Encoding: gzip, deflate
Accept-Language: en-us en;q=0.5 .
Authorization: Basic d2WibGEnaBd 2V sy 25t FTE= I
Connection: keep-alive

Host: adminserver :adminoort
User-Agent: Mozillass.0 (indowes MT 5.9, re 80010 Gecko/20100109 Firsfo:rg .09

The following is an example of the response content returned from the sample HTTP
request, which contains a list of application domains:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?><Appl i cati onDomai ns>
<Appl i cati onDomai n>

<nanme>Demo Application Domai n</ name>

<description>Policy objects enabling OAM Agent to protect deployed Demo
appl i cati ons</description>
</ Appl i cati onDomai n>

<Appl i cati onDomai n>
<nane>Cl ear Vision Domai n</ nane>
<description>Policy objects enabling OAM Agents to protect Cear Vision
appl i cati ons</description>
</ Appl i cati onDomai n>
</ Appl i cati onDonai ns>

The authentication provider for user authentication is based on Access Manager
application configuration. When the REST service is protected by a Webgate, the
Webgate decides about the access request based on the Authentication Scheme
associated with the URL. These URLs have Cookieless Basic as the authentication
method. The Cookieless Basic scheme should not be changed, instead have it
protected with more than one scheme. In such a case, the Webgate treats an access
request to these resources as pass-through, preserving the Authorization headers of
the request. Access Manager process the request based on the Authorization header
provided.

5.1.3 Resource URLs

ORACLE

Resource URLSs are structured to include the Access Manager product version, the
component exposed by the REST service, and the resources being invoked. The basic
structure of a resource URL is as follows:

http(s)://host:port/oam services/rest/path
where:

* hostis the host where the OAM Server is running.
e portisthe HTTP or HTTPS port.

» path is the relative path that identifies a particular resource. path is constructed
as /version/componentiservicel where:

— version - is the Access Manager product version, such as 11.1.2.0.0

5-4

Chapter 5
About the Policy Administration API

— component - is the component exposed by the RESTful service, such as ssa
or sso

— service - is the root resource for that given API, such as hostidentifier

An example of a path value is: / oanf servi ces/rest/11. 1. 2. 0. 0/ ssa/ pol i cyadni n/
hosti denti fier/ host_identifier_name.

The Policy Administration REST Web Application Description Language (WADL) file
lists the supported policy resources and methods. The Policy Administration REST
WADL document is available at http://admi nserver. exanpl e. comadni nport/ oan
services/rest/11.1.2.0.0/ssal policyadm n/application. wadl .

Additional parameters are required to process the request query parameters. All
resource URLs support the OPTIONS method.

Policy objects can be identified by name or id. If both are provided, the id is used.

Table 5-2 summarizes the resource URLSs that are exposed to enable administration of
the policy objects shown in Figure 5-1. In the following table:

» |IDENTIFER refers to the name or id of the object the request refers to.

 APPDOM_IDENTIFER uniquely identifies an existing Application Domain type
object by appid or appname.

Table 5-2 Resource URLs
]

Policy Object

URL Artifact Mandatory
Parameter

Application Domain /oam services/rest/11.1.2.0.0/ssal policyadnm n/ appdonai n IDENTIFIER

Host Identifier / oam services/rest/11.1.2.0.0/ssal pol i cyadnin/ IDENTIFIER
hosti dentifier
Resource Type [oanf services/rest/11.1.2.0.0/ssal pol i cyadni n/ IDENTIFIER

resourcet ype

Resource / oam services/rest/11.1.2.0.0/ssal pol i cyadni n/ resource IDENTIFIER,
APPDOM_IDENTIFIE
R
Authentication Policy /oanf services/rest/11.1.2.0.0/ssalpolicyadm n/ IDENTIFIER,
aut hnpol i cy APPDOM_IDENTIFIE
R
Authorization Policy / oam services/rest/11.1.2.0.0/ssal/ pol i cyadni n/ IDENTIFIER,
aut hzpol i cy APPDOM_IDENTIFIE
R
Token Issuance Policy /oani services/rest/11.1.2.0.0/ssalpolicyadni n/ IDENTIFIER,
t okenpol i cy APPDOM_IDENTIFIE
R

5.1.4 URL Resources and Supported HTTP Methods

ORACLE

Access Manager policy object services are mapped to URL resources. Each resource
is referenced by a global identifier (URI).

Access to URL resources is based on user role. The RESTful service expects user
credentials to be present in the Authentication header of the HTTP request in BASIC

5-5

Chapter 5
Compatibility

mode. If the authenticated user has the policy administration role, the requested policy
administration action is performed.

5.1.5 Error Handling

A service request can result in various error conditions ranging from invalid service
invocation to server side failures. Failures and error code conditions are reported back
to the clients as HTTP return codes with an explanatory message.

Table 5-3 contains the mapping between HTTP return codes and message.

Table 5-3 Error Conditions and HTTP Return Codes
]

Error Condition HTTP Return Code Content

Unable to parse input, or input 400 Bad request

does not match required entities.

Service not located 404 Not found

Requested object not found 404 Not found <additional

information indicating the
not found object)

User not authorized to execute 401 Unauthorized

service

Requested method not 405 Method not allowed
supported

Client does not accept produced 406 Not acceptable

content type

Request parameters semantics 422 Unprocessable entity
incorrect <additional information on

nature of error>

Client media type unsupported 415 Unsupported media type.

Note: The supported media
types are text/xml (or
application/xml) and
application/json.

Failed dependency 424 Failed dependency
<additional information on
failed dependency>

Generic server failure 500 Internal server error

5.2 Compatibility

The release version number is embedded as part of the REST service URLs exposed
by OAM Server. There is no support for forward compatibility. Clients of newer
versions cannot expect to send a request to an older version of OAM Server and
receive back newer versions of objects. There is backward compatibility support for
older clients.

ORACLE 5-6

Chapter 5
Managing Policy Objects

5.3 Managing Policy Objects

Access Manager provides a Policy Administration API that enables Create, Read,
Update, and Delete (CRUD) operations on its policy objects. Use these sections to
understand the API and refer to examples for using a RESTful Web service for Access
Manager policy administration.

This section provides the following topics:
e HTTP Methods
e Media Types

* Resources Summary

5.3.1 HTTP Methods

Table 5-4 describes the supported HTTP methods. A successful HTTP method acts
upon a representation of the policy object (resource), which is an xml file. A JavaScript
Object Notation (JSON) object is returned.

Table 5-4 Methods For Managing Policy Objects
|

Method Action

GET Retrieves the policy objects.
POST Creates the policy object.
PUT Modify a policy object.
DELETE Delete a policy object.

5.3.2 Media Types

The supported media types are:

e application/xml
e application/json

e text/xml

5.3.3 Resources Summary

Table 5-5 provides detail about each policy resource, the supported HTTP methods,
and the results of each action.

Table 5-5 Access Manager Policy Resources Summary
|

Resource Method Description

oan servi ces/rest/ GET All matching Application Domain resources are returned. If no
11.1.2.0.0/ssal pol i cyadm n/ query parameter is provided, all Application Domain resources
appdonai n are returned. If an ID or NAME query parameter is specified, all

matching Application Domain resources are returned.

ORACLE .

Chapter 5
Managing Policy Objects

Table 5-5 (Cont.) Access Manager Policy Resources Summary

Resource Method

Description

oanl services/rest/ POST
11.1.2.0.0/ssal pol i cyadni n/
appdonai n

The Application Domain object is created by this method. The
request body must contain an Application Domain. An
Application Domain object matching the request is created.

All the policy child objects are also created.

oanl services/rest/ PUT
11.1.2.0.0/ssal pol i cyadni n/
appdonai n

An Application Domain object is modified by this method. The
request body must contain the Application Domain resource
that represents the object.

The Application Domain resource matching the specified ID or
NAME query parameter is modified.

If query parameters are not matched, the Application Domain
object matching ID or NAME query parameters will be
modified. If both ID and NAME are present, the ID value will be
used.

oani servi ces/rest/ DELETE

11.1.2.0.0/ssal pol i cyadni n/
appdomai n

An Application Domain object is deleted by this method. The
Application Domain matching NAME or ID query parameter is
deleted.

oanl servi ces/rest/ GET
11.1.2.0.0/ssal pol i cyadm n/
t okeni ssuancepol i cy

A Token Issuance Policy object is retrieved by this method.
The resource that represents the Token Issuance Policy object
is returned. This representation contains the matching Token
Issuance Policy resource attributes and their values.

Valid query parameters are ID or NAME, and APPDOMAINID
or APPDOMAIN. If an APPDOMAINID or APPDOMAIN
parameter is not specified, a status code 424 is returned with
the appropriate message. If an ID or NAME query parameter is
not specified, all Token Issuance Policy resources in the
Application Domain are returned.

If the ID or NAME parameter matches, all Token Issuance
Policy resources in that Application Domain are returned. In all
cases, if both ID and NAME are present, ID will be used.

oan servi ces/rest/ POST
11.1.2.0.0/ssal pol i cyadni n/
t okeni ssuancepol i cy

A Token Issuance Policy object is created by this method. The
request is performed on the resource that is the parent of the
object. The request body must contain a Token Issuance
Policy resource that represents the object. A Token Issuance
Policy object matching the request is created in the
corresponding Application Domain.

oan servi ces/rest/ PUT
11.1.2.0.0/ssal pol i cyadni n/
t okeni ssuancepol i cy

A Token Issuance Policy object is modified by this method. The
request body must contain the Token Issuance Policy resource
that represents the object.

The Token Issuance Policy resource matching the ID or NAME
query parameters is modified.

The Token Issuance Policy object should belong to an
Application Domain matching the APPDOMAINID or
APPDOMAIN query parameter.

If query parameters are not specified, the Token Issuance
Policy matching the ID or NAME parameter will be modified.

The Token Issuance Policy should belong to the Application
Domain specified in the Application Domain Name attribute. If
both ID and NAME are present, ID value will be used.

ORACLE

5-8

Chapter 5
Managing Policy Objects

Table 5-5 (Cont.) Access Manager Policy Resources Summary

Resource Method

Description

oanl services/rest/ DELETE
11.1.2.0.0/ssal pol i cyadni n/
t okeni ssuancepol i cy

A Token Issuance Policy object is deleted by this method. The
Token Issuance Policy matching the ID or NAME query
parameter, in the Application Domain specified in the
APPDOMAINID or APPDOMAIN query parameter, is deleted.

oant servi ces/rest/ GET
11.1.2.0.0/ssal pol i cyadni n/
resource

A Resource object is retrieved by this method. The resources
that represents the Resource object is returned. This
representation contains the matching Resource resource
attributes and their values.

Valid query parameters ID or NAME, and APPDOMAINID or
APPDOMAIN. If an APPDOMAINID or APPDOMAIN
parameter is not specified, a status code 424 is returned with
the appropriate message.

If an ID or NAME query parameter is not specified, all
Resource resources in that Application Domain are returned. If
the ID or NAME parameter matches, the matching Resource
resource in the Application Domain is returned. In all cases, if
both ID and NAME are present, ID will be used.

oant servi ces/rest/ POST
11.1.2.0.0/ssal pol i cyadni n/
resource

A Resource object is created by this method. The request is
performed on the resource that is a parent of the object. A
Resource object matching the request is created in the
corresponding Application Domain.

oant servi ces/rest/ PUT
11.1.2.0.0/ssal pol i cyadni n/
resource

A Resource object is modified by this method. The request
body must contain the Resource resource that represents the
object.

The Resource matching ID or NAME query parameters is
modified. The Resource should belong to an Application
Domain matching the APPDOMAINID or APPDOMAIN query
parameter.

If query parameters are not specified, the Resource object
matching the ID or NAME specified will be modified.

The Resource should belong to the Application Domain
specified in the Application Domain Name attribute.

If both ID and NAME are present, the ID value will be used.

oant servi ces/rest/ DELETE
11.1.2.0.0/ssal pol i cyadni n/
resource

A Resource object is deleted by this method. The Resource
object matching the ID or NAME query parameters, in the
Application Domain in the APPDOMAINID or APPDOMAIN
query parameters, is deleted.

ORACLE

5-9

Chapter 5
Managing Policy Objects

Table 5-5 (Cont.) Access Manager Policy Resources Summary
]

Resource Method

Description

oanl services/rest/ GET
11.1.2.0.0/ssal pol i cyadni n/
aut hzpol i cy

An Authorization Policy object is retrieved by this method. The
resource that represents the Authorization Policy object is
returned. This representation contains the matching
Authorization Policy resource attributes and their values.

Valid query parameters are ID or NAME, and APPDOMAINID
or "appdomain”. If an appdomainid or APPDOMAIN parameter
is not specified, a status code 424 is returned with the
appropriate message.

If an ID or NAME parameter is not specified, all Authorization
Policy resources in that Application Domain are returned.

If the ID or NAME parameter matches, the matching
Authorization Policy resource in the Application Domain is
returned. In all cases, if both ID and NAME are present, 1D will
be used.

oanl services/rest/ POST
11.1.2.0.0/ssal pol i cyadni n/
aut hzpol i cy

An Authorization Policy object is created by this method. The
request is performed on the resource that is the parent of the
object. An Authorization Policy object matching the request is
created in the corresponding Application Domain.

oani servi ces/rest/ PUT
11.1.2.0.0/ssal pol i cyadni n/
aut hzpol i cy

An Authorization Policy object is modified by this method. The
request body must contain the Authorization Policy resource
that represents the object.

The Authorization Policy resources that matching the ID or
NAME query parameter is modified.

The Authorization Policy should belong to an Application
Domain matching the APPDOMAINID or APPDOMAIN query
parameter.

If query parameters are not specified, the Authorization Policy
matching the ID or NAME parameter will be modified. The
Authorization Policy should belong to the Application Domain
specified in the Application Domain Name attribute.

If both ID and NAME are present, ID value will be used.

oan servi ces/rest/ DELETE
11.1.2.0.0/ssal pol i cyadni n/
aut hzpol i cy

An Authorization Policy object is deleted by this method. The
Authorization Policy matching the ID or NAME query
parameters, in the Application Domain specified in
APPDOMAINID or APPDOMAIN query parameters, is deleted.

oani servi ces/rest/ GET
11.1.2.0.0/ssal pol i cyadni n/
hostidentifier

A Host Identifier object is retrieved by this method. The
resource that represents the Host Identifier object is returned.
This representation contains the matching Host Id en tier
resource attributes and their values.

Valid query parameters are ID or NAME. If a query parameter
is not specified, all the Host Identifier resources are returned. If
the ID or NAME parameter matches, the matching Host
Identifier resource is returned.

oant servi ces/rest/ POST
11.1.2.0.0/ssal pol i cyadni n/
hostidentifier

A Host Identifier object is created by this method. The request
is performed on the resource that is the parent of the object. A
Host Identifier object matching the request is created.

ORACLE

5-10

Chapter 5
Managing Policy Objects

Table 5-5 (Cont.) Access Manager Policy Resources Summary

Resource Method Description

oan servi ces/rest/ PUT A Host Identifier object is modified by this method. The request

11.1.2.0.0/ssal pol i cyadni n/ body must contain the Host Identifier resource that represents

hostidentifier the object.
The Host Identifier resource matching the ID or NAME query
parameters is modified. If query parameters are not specified,
the Host Identifier matching the ID or NAME parameter will be
modified. If both ID and NAME are present, ID value will be
used.

oan servi ces/rest/ DELETE A Host Identifier object is deleted by this method. The Host

11.1.2. 0.0/ ssal pol i cyadmi n/ Identifier matching the ID or NAME query parameter is deleted.

hostidentifier

oan servi ces/rest/ GET A Resource Type object is retrieved by this method. The

11.1.2.0.0/ssal/ pol i cyadmi n/ resource that represents the Resource Types object is

resour cetype returned. This representation contains the matching Resource
Type resource attributes and their values.
Valid query parameters ID or NAME. If a query parameter is
not provided, all Resource Type resources are returned. If the
query parameter id or name matches, the matching Resource
Type is returned.

oanl services/rest/ POST A Resource Type object is created by this method. The request

11.1.2.0.0/ssal pol i cyadni n/ body is performed on the parent of the object. A Resource

resour cet ype Type object matching this request is created.

oan services/rest/ PUT A Resource Type object is modified by this REST method. The

11.1.2.0.0/ssal pol i cyadni n/ request body must contain the Resource Type resource that

resour cet ype represents the object.
The Resource Type resource matching ID or NAME query
parameter is modified. If query parameters are not specified,
the Resource Type matching the ID or NAME parameter will be
modified. If both ID and NAME are present, ID value will be
used.

oan servi ces/rest/ DELETE A Resource Type object is deleted by this method. The

11.1.2.0.0/ssal pol i cyadm n/ Resource Type matching the NAME or ID query parameter is

resour cet ype deleted.

oani servi ces/ rest/ GET An Authentication Scheme object is retrieved by this method.

11.1.2.0.0/ssal/ pol i cyadni n/ The resource that represents the Authentication Schemes

aut hnschene object is returned. This representation contains the matching
Authentication Scheme resource attributes and their values.
Valid query parameters are ID or NAME. If a query parameter
is not specified, all Authentication Scheme resources are
returned. If the query parameter ID or NAME matches, the
matching Authentication Scheme is returned.

oan services/rest/ POST An Authentication Scheme object is created by this method.

11.1.2.0.0/ssal pol i cyadni n/
aut hnschene

The request is performed on the resource that is the parent of
the object. An Authentication Scheme object matching the
request is created.

ORACLE

5-11

Chapter 5
Client Tooling

Table 5-5 (Cont.) Access Manager Policy Resources Summary

Resource Method

Description

oant servi ces/rest/ PUT
11.1.2.0.0/ssal pol i cyadni n/
aut hnschene

An Authentication Scheme object is modified by this method.
The request body must contain the Authentication Scheme
resource that represents the object.

The Authentication Scheme resource matching the ID or
NAME query parameter is modified. If query parameters are
not specified, the Authentication Scheme matching ID or
NAME parameter will be modified. If both ID and NAME are
present, ID value will be used.

oant servi ces/rest/ DELETE
11.1.2.0.0/ssal pol i cyadni n/
aut hnschene

An Authentication Scheme object is deleted by this method.
The Authentication Scheme matching the NAME or ID query
parameter is deleted.

/ oani servi ces/rest/ GET
11.1.2.0.0/ssal pol i cyadni n/
appl i cation. wadl

Web Application Definition Document is generated. It describes
the REST services provided. The document contains a
stylesheet reference that renders HTML content.

5.4 Client Tooling

Two XML schemas are available for generating client side POJOs, which represent
the RESTful service resources:

* For the policyadmin service, the schema is oam-policyadmin-11.1.2.0.0.xsd.

* For the token service, the schema is oam-token-11.1.2.0.0.xsd.

To generate the client side object, run the JAXB command xj ¢ (part of the JDK) as

follows:

xjc [-p package-nane] oam policyadnin-11.1.2.0.0.xsd

This command generates the Java POJO objects for the RESTful resources, which
can be used in the client side Java code. These objects can be converted back to XML
using JAXB and can then be sent to the REST server over HTTP.

For more information about JAXB, see http://jaxb.java. net/. For more information
about building clients for Jersey-based REST server, see http://jersey.java. net/.

5.5 cURL Command Examples

The following examples are provided as reference.

* Retrieve Application Domains cURL Command

* Create a New Application Domain cURL Command

¢ Retrieve All Authentication Schemes cURL Command

e Create an Authentication Scheme cURL Command

* Retrieve a Specific Authentication Scheme cURL Command

* Retrieve All Resources in an Application Domain cURL Command

» Create a Resource in an Application Domain cURL Command

ORACLE

5-12

http://jaxb.java.net/
http://jersey.java.net/

Chapter 5
Retrieve Application Domains cURL Command

» Retrieve All Policies in an Application Domain cURL Command

5.6 Retrieve Application Domains cURL Command

$ curl -u USER PASSWORD htt p:// <SERVER>: <PORT>/ oani services/rest/11.1.2.0.0/ssa/
pol i cyadmi n/ appdomai n

The following is sample output from this cURL command.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?><Appl i cati onDomai ns>
<Appl i cati onDonai n>

<i d>759463e3- 2b63- 4e38- 893c- 00d5da479719</ i d>

<nane>| AM Sui t e</ name>

<description>Policy objects enabling OAM Agent to protect deployed |AM Suite
appl i cati ons</description>
</ Appl i cati onDomai n>

<Appl i cati onDonai n>

<i d>69f 6be9b- f 000- 48db- 9b6d- df 4724cc0bd9</i d>

<name>Fusi on Apps | ntegration</name>

<description>Policy objects enabling integration with Oracle Fusion
Appl i cations</description>
</ Appl i cati onDomai n>

5.7 Create a New Application Domain cURL Command

curl -u webl ogic:wel conel -H "Content-Type: application/xm" --request POST --data
"@tnp/cr.appdomain. xm " http://<SERVER>: <PORT>/ oan servi ces/rest/11.1.2.0. 0/ ssa/
pol i cyadm n/ appdomai n

The following is a sample input file for this cURL command.

<Appl i cati onDomai n>

<nane>Appdonai n1</ nane>

<description>test application domain</description>
</ Appl i cati onDomai n>

The following is sample output from this cURL command.

http: // <SERVER>: <PORT>/ oan servi ces/rest/11.1.2.0. 0/ ssa/ pol i cyadmi n/ appdomai n?
i d=f a60e312-f e65- 4aa8- aace- 1735a39c¢4058

5.8 Retrieve All Authentication Schemes cURL Command

ORACLE

curl -u USER PASSWORD htt p: // <SERVER>: <PORT>/ oani servi ces/rest/11.1.2.0. 0/ ssa/
pol i cyadmi n/ aut hnschene

The following is sample output from this cURL command.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<Aut hent i cati onSchenmes>
<Aut henti cati onSchene>
<i d>aa84h589- 7f 16- 4b3a- 942c- ba51bh3ab6de5</i d>
<name>Ker ber osSchene</ nanme>
<descri ption>Kerberos Scheme</description>

5-13

Chapter 5
Create an Authentication Scheme cURL Command

<aut hnMbdul eNane>Ker ber os</ aut hnhvbdul eNane>
<aut hnSchenelLevel >2</ aut hnSchemeLevel >
<chal | engeMechani smPWNA</ chal | engeMechani snp
<Chal | engePar anet er s>
<chal | engePar anet er >
<key>spnegot oken</ key>
<val ue>string</val ue>
</ chal | engePar anet er >
<chal | engePar anet er >
<key>chal | enge_ur| </ key>
<val ue>/ oam CredCol | ect Ser vl et/ WNA</ val ue>
</ chal | engePar anet er >
</ Chal | engePar anet er s>
<chal | engeRedi r ect URL>/ oani server/ </ chal | engeRedi r ect URL>
</ Aut henti cati onSchenme>
</ Aut hent i cati onSchenes>

5.9 Create an Authentication Scheme cURL Command

curl -u webl ogic:wel conel -H "Content-Type: application/xm" --request POST --data
"@tnp/cr.authnschene. xm " http://<SERVER>: <PORT>/ oant servi ces/rest/11.1.2.0.0/ssa/
pol i cyadni n/ aut hnschene

The following is a sample input file.

<Aut hent i cati onScheme>
<nane>Test Aut hnSchene</ name>
<description>test authn scheme</description>
<aut hnhbdul eNane>Test Modul e1</ aut hnModul eName>
<aut hnSchenelLevel >2</ aut hnScheneLevel >
<chal | engeMechani smPWNA</ chal | engeMechani s
<Chal | engePar anet er s>
<chal | engePar anet er >
<key>spnegot oken</ key>
<val ue>string</val ue>
</ chal | engePar anet er >
<chal | engePar anet er >
<key>chal | enge_ur| </ key>
<val ue>/ oanf CredCol | ect Servl et/ WNA</ val ue>
</ chal | engePar anet er >
</ Chal | engePar anet er s>
<chal | engeRedi r ect URL>/ oani server/ </ chal | engeRedi r ect URL>
</ Aut hent i cat i onSchene>

The following is sample output from this cURL command.

http:// <SERVER>: <PORT>/ oani servi ces/rest/11.1. 2. 0. 0/ ssa/ pol i cyadni n/ aut hnscheme?
i d=acb1f a95- f 780- 4091- be88- 2e96¢f 5hbd49

5.10 Retrieve a Specific Authentication Scheme cURL
Command

curl -u USER: PASSWORD htt p: // <SERVER>: <PORT>/ oant servi ces/rest/11.1.2.0. 0/ ssa/
pol i cyadmi n/ aut hnscheme?name=Ker ber osSchene

The following is sample output from this cURL command.

ORACLE 5-14

Chapter 5
Retrieve All Resources in an Application Domain cURL Command

<Aut hent i cati onSchene>
<i d>aa84h589- 7f 16- 4b3a- 942c- ba51h3ab6de5</ i d>
<nane>Ker ber osScheme</ nane>
<descri ption>Kerberos Scheme</description>
<aut hnMbdul eNane>Ker ber os</ aut hnhvbdul eNane>
<aut hnScheneLevel >2</ aut hnScheneLevel >
<chal | engeMechani smPWNA</ chal | engeMechani s
<Chal | engePar anet er s>
<chal | engePar anet er >
<key>spnegot oken</ key>
<val ue>string</val ue>
</ chal | engePar anet er >
<chal | engePar anet er >
<key>chal | enge_ur| </ key>
<val ue>/ oam CredCol | ect Ser vl et/ WNA</ val ue>
</ chal | engePar anet er >
</ Chal | engePar anet er s>
<chal | engeRedi r ect URL>/ oani server/ </ chal | engeRedi r ect URL>
</ Aut henti cati onSchene>

5.11 Retrieve All Resources in an Application Domain cURL
Command

curl -u USER PASSWORD htt p: // <SERVER>: <PORT>/ oani servi ces/rest/11.1.2.0. 0/ ssal
pol i cyadni n/ resour ce?appdomai n="1 AM Suite"5

5.12 Create a Resource in an Application Domain cURL
Command

curl -u webl ogic:welconel -H "Content-Type: application/xm" --request POST --data
"@tnp/cr.resource. xm " http://<SERVER>: <PORT>/ oam services/rest/11.1.2.0.0/ssal
pol i cyadni n/ r esour ce?appdonai n=" AppDonai n1"

5.13 Retrieve All Policies in an Application Domain cURL
Command

curl -u USER PASSWORD htt p: // <SERVER>: <PORT>/ oani servi ces/rest/11.1.2.0. 0/ ssal
pol i cyadmi n/ aut hnpol i cy?appdonai n="1 AM Sui t e"

ORACLE 5-15

Developing an Application to Manage
Impersonation

Access Manager impersonation support enables a user to designate other users to act
on their behalf within a constrained time frame. While impersonation grants are
natively supported by Access Manager, you will need to develop a custom user
interface or modify an existing interface in order to manage impersonation grants. This
chapter provides information about enabling impersonation and developing a custom
user interface. It includes the following sections:

* About the Impersonation feature in Access Manager
e Configuring Impersonation Support

e Testing SSO Login and Impersonation

" Note:

See Integrating Oracle ADF Applications with Access Manager SSO.

6.1 About the Impersonation feature in Access Manager

The Access Manager user impersonation feature enables a user to perform operations
and access resources on behalf of another user. Impersonation grants, specified with
a user identifier and start and end time, are required for a user to be able to
impersonate another.

The following topics are discussed:

* About Impersonation Terminology

* Understanding Impersonation Concepts

* About Impersonation Grant Syntax

* Understanding Impersonation Trigger Invocation Using the SSO Service
* Triggering Impersonation Without API Abstraction

* Impersonator Identity Communication During Impersonation Sessions

6.1.1 About Impersonation Terminology

Table 6-1 introduces common Access Manager impersonation concepts and terms.

ORACLE 6-1

Chapter 6
About the Impersonation feature in Access Manager

Table 6-1 Impersonation Terminology

Term Definition

Impersonator A user who acts on another user's behalf.

Impersonatee The user who is being impersonated by another.

Impersonation grant Security metadata created by the impersonatee to designate a
particular impersonator to impersonate her within a specified
time window.

Impersonation trigger An act of an impersonator choosing to initiate an impersonation
session on behalf of another user.

Access Manager A distinct type of Access Manager session that can be

impersonation session distinguished from regular user session by the target application.

Impersonation consent A consent given by the impersonator to acknowledge the
awareness that Access Manager impersonation session is in
effect.

6.1.2 Understanding Impersonation Concepts

ORACLE

Access Manager user impersonation support allows an end user (the impersonatee) to
designate one or more users (impersonators) to act on their behalf within a
constrained window of time. This information is collected using a custom user interface
you develop, and persisted as a set of impersonation grants in the user directory.

The impersonator, while holding an authenticated session and interacting with a
custom user interface, may choose to initiate an impersonation session on behalf of
another named user. Access Manager performs required authorization checks to
ascertain that the impersonator is allowed to impersonate the impersonatee. If
allowed, the impersonation session is created.

The Access Manager-protected application behaves as if the impersonated user was
accessing it. The application can determine whether the user is the impersonator or
the impersonatee.

The impersonation session terminates when the impersonator chooses to do so
through the application user interface. The impersonator will return to their regular user
session and be able to access the application as himself once again. The
impersonator is not allowed to switch the impersonatee user during his impersonation
session (that is, nested or recursive impersonation is not allowed).

Access Manager provides the runtime enforcement of the impersonation semantics as
described above, while all of the user interface aspects and associated metadata
(impersonation grant) lifecycle are provided by your custom interface. The integration
between Access Manager and a custom user interface can be codified in terms of the
following three interfaces (touch points):

e Impersonation grant syntax, persistence, and lifecycle
e Impersonation trigger invocation

e Impersonator identity communication during Access Manager impersonation
session

6-2

Chapter 6
About the Impersonation feature in Access Manager

6.1.3 About Impersonation Grant Syntax

ORACLE

The following two impersonation grants are part of the or cl | DXPer son object class:

e orclInpersonationG antee: If this attribute contains grants for a user, then that user
can impersonate the current user. This is the attribute checked by OAM Server
during an impersonation request.

e orclInpersonationG anter: If this attribute contains grants for a user, then that user
can be impersonated by the current user. This attribute is not used to enforce
impersonation, it is used to start the impersonation session from the application.

Impersonation grants of an impersonatee are persisted in the user's record in the
LDAP directory as a multi-valued attribute. Each of the values represents a specific
grant to a named impersonator and a specified time window. Each value of the multi-
valued attribute is a composite string, with individual fields delineated by a separator
character. For this release, Oracle Identity Directory is also supported when using
impersonation feature.

You can create or modify a custom user interface to enable users to create, view,
update, or delete impersonation grants within their user profile. The user interface
must be constructed to persist impersonation grants in the designated LDAP directory
in the multi-valued attribute named or cl | nper sonat i onG ant ee. The format of individual
values is <l npersonator orcl QU D> | <begin LDAP tinestanp> | <end LDAP tinestanmp>.
For example:

orcl I npersonati onG ant ee: xyz123abcd| 201006042245177| 20100604234517Z;
kI m980nopr | 201006042245177| 20100604234517Z

In the following example, assume:
* Impersonator: jdoe
* Impersonatee: Ismith

jdoe is trying to impersonate Ismith. The following command can be used to obtain the
O cl cui d of the impersonator (jdoe):

| dapsearch -h <hostnane> -w <password> -p <port> -D'cn=orcladnin" -
b"dc=us, dc=exanpl e, dc=conf "cn=j doe" orcl guid

For example, LDAP search for orcl gui d:
| dapsearch -h nyhost 1. us. exanpl e. com -w wel conel -p 16890 -

b"dc=us, dc=exanpl e, dc=conf -D'cn=orcladnmin" "cn=jdoe" orclguid
version: 1

where:

e dn: cn=jdoe, cn=Users, dc=us, dc=exanpl e, dc=com

e orclguid: Al4BEB42E822D605E040E50AB29327E7

For example, LDAP search for orcl | nper sonat i onG ant ee:

| dapsearch -h host 1. us. exanmpl e.com -w wel comel -p 16890 -b"dc=us, dc=exanpl e, dc=cont' -
D'cn=orcladnin® "cn=lsmith" orcl|npersonationG antee
version: 1

where:

6-3

Chapter 6
About the Impersonation feature in Access Manager

e dn: cn=lsmth, cn=Users, dc=us, dc=exanpl e, dc=com

e orcllnpersonationG antee: Al4BEB42E822D605E040E50AB29327E7| 20100324163000Z|
20120524172000Z

Add this value to the orcl I nper sonat i onG ant ee entry to impersonatee user in OID as
follows:

Al14BEB42E822D605E040E50AB29327E7| 20100324163000Z| 20120524172000Z

Note:

No spaces are permitted in the list of individual values.

Object class and attribute definition for this attribute must be bootstrapped in the LDAP
server's schema. OID 11.1.1.3 and later contains the necessary object class.

Access Manager retrieves impersonation grants of a given impersonatee when an
impersonator attempts to create an impersonation session. However, if the grant
doesn't exist for the given impersonator or if the current time is not within the time
window of any such grants, impersonation session creation fails. Access Manager
does not otherwise read or modify the grants within user profiles.

Subsequent revocation of the impersonation grant (for example, by modifying the
orcl I nper sonati onG ant ee attribute) that authorized the impersonation session will not
affect the impersonation sessions still in progress.

6.1.4 Understanding Impersonation Trigger Invocation Using the SSO

Service

ORACLE

An authenticated user can select to impersonate another user. The user interface to
select which user to impersonate is provided by an application. After the information
has been collected, the application invokes the impersonation trigger.

This can be done by invoking one of the methods in the SSO Service as shown in
Required Method to Abstract Triggering Mechanism Using SsoService API or directly
by redirecting the user's browser to Access Manager trigger URLSs.

For more information about the SSO Service, See Configuring the Identity Provider,
Property Sets, and SSOin Oracle Fusion Middleware Application Security Guide.

Required Method to Abstract Triggering Mechanism Using SsoService API illustrates
the methods required to use the SSO Service to abstract the specifics of the triggering
mechanism (preferred).

In this example props contains | MP_USER | D of the impersonatee, SUCCESS_URL,
FAI LURE_URL, and TARGET_URL similar to login/logout/auto-login API of the SSOService.
Abbreviated SsoService API Triggering Example shows an abbreviated example.

jps-config.xml With Changes For imp.begin.url and imp.end.url provides a snippet from
jps-config.xml showing the configuration changes needed (i np. begi n. url and
i np. end. url properties):

6-4

ORACLE

Chapter 6
About the Impersonation feature in Access Manager

Example 6-1 Required Method to Abstract Triggering Mechanism Using
SsoService API

voi d begi nl npersonation(Ht tpServl et Request request, HttpServletResponse response,
Map<String, ?> props) throws SsoServiceException

voi d endl npersonation(Ht tpServl et Request request, H tpServl et Response response,
Map<String, ?> props) throws SsoServiceException

Example 6-2 Abbreviated SsoService API Triggering Example

import oracle.security.jps.JpsException;

import oracle.security.jps.service.JpsServicelocator;
import oracle.security.jps.service. Servicelocator;
import oracle.security.jps.service.sso.SsoService;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws Servl et Exception, |COException

try {
Servi ceLocator servicelLocator = JpsServicelLocator. get Servi ceLocator();

SsoService sso = (SsoService)serviceLocator. | ookup(SsoServi ce. cl ass)
Map m = new HashMap();

m put (SsoServi ce. SUCCESS_URL, "https://Iogin0l. exanpl e.com 7777/ appl 2. htm");
m put (SsoServi ce. FAILURE_URL, "https://1ogin0l. exanple.com7777/fail.htm");
m put (SsoServi ce. | MP_USER I D, "ntooper");

$S0. begi nl npersonation(req, res, nj;

[..]

m put (SsoServi ce. TARGET_URL, "https://Iogin02. exanpl e. com 8080/
nor mal Session. htm");
sso. endl npersonation(req, res, m;

} catch(JpsException jpse) {
j pse.printStackTrace();
}
}

Example 6-3 jps-config.xml With Changes For imp.begin.url and imp.end.url

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<jpsConfig xm ns="http://xm ns. exanpl e. conl or acl eas/ schena/ 11/ ps-config-11_1. xsd"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi :schemaLocation="http://xm ns. exanpl e. coni or acl eas/ schema/ 11/ ps-config-11_1
1.xsd">
<property val ue="of f" name="oracl e.security.jps.jaas.node"/>
<propertySet s>
<propertySet name="sam .trusted.issuers.1">
<property val ue="www. exanpl e. conf nanme="name"/>
</ propertySet >

<propertySet name="props.auth.uri.0">
<property val ue="/oanmsso/ | ogout. htm" nanme="Iogout.url"/>
<property val ue="https://Iogin0l. exanpl e. com 7777/ oam server/i npersonat e/

6-5

Chapter 6
About the Impersonation feature in Access Manager

end
name="i np. end.url"/>
<property val ue="https://Iogin01. exanpl e. com 7777/ oanl server/i npersonat e/
start
name="i np. begi n. url"/>
<property val ue="/${app. context}/adf Aut henti cati on" name="Iogin. url
.BASIC'/>
<property val ue="/${app. context}/adf Aut henti cati on" name="I ogin.
ur | . ANONYMOUS" / >
<property val ue="/${app. context}/adf Aut henticati on" name="Iogin.
url. FORM'/ >
</ propertySet >
<propertySet name="props.auth.l|evel.0">
<property val ue="0" nane="type-| evel : ANONYMOUS"/ >
<property val ue="1" nanme="type-|evel : BASIC'/ >
<property val ue="2" nane="type-|evel : FORM'/ >
</ propertySet >
</ propertySets>

[..]

6.1.5 Triggering Impersonation Without APl Abstraction

To invoke the Access Manager impersonation triggers directly, without the use of an
API abstraction, the redirection to Access Manager maintained trigger end point has to
contain a specification of query parameters for useri d, success_url, and failure_url.

The useri d field carries the Impersonatee's userid, the success_url/failure_url is where
the impersonator's browser should be pointed to after the impersonation session has
been created or failed to be created, respectively. The URLs provided must include
protocol and host:port information, as shown in Triggering Impersonation Without API
Abstraction.

To terminate the impersonation session and restore the original impersonator's Access
Manager session, the user interface must force a browser redirect to an Access
Manager maintained end point, and provides the target URL for the impersonator to
come back to shown in Restore Original Impersonator's Session. Use of failure_url is
optional.

Example 6-4 Triggering Impersonation Without APl Abstraction

https://1ogin. exanpl e. cont oani server/inpersonat e/ start ?useri d=i nper sonat ee
useridé&success_url =SuccessRedirect URL&failure_url=FailureRedirect URL

Example 6-5 Restore Original Impersonator's Session

https:/ /1 ogin. exanmpl e. com oant server /i nper sonat e/ end?end_ur | =Tar get Redi r ect
URL&f ai | ure_url =Fai | ureRedi rect URL

6.1.6 Impersonator Identity Communication During Impersonation

Sessions

ORACLE

Use the header names provided for communicating the identity of the impersonator to
the downstream application.

Headers For Identity Information provides the header names for communicating the
identity of the impersonator to the downstream application. The WebGate uses an
additional HTTP header injected into the request. The interested application may

6-6

Chapter 6
Configuring Impersonation Support

detect that the Access Manager impersonation session is in progress by inspecting the
HTTP headers of inbound requests.

Table 6-2 Headers For Identity Information

Header Name Description

OAM_IMPERSONATOR_U The header name that carries the impersonator userID.
SER

OAM_REMOTE_USER The header that carries the end userID, which is the same as
with a standard Access Manager user session.

6.2 Configuring Impersonation Support

Use the information in the topics provided to enable the impersonation feature.

The impersonation feature is not enabled by default. You enable the impersonation
feature by either configuring oam confi g. xm or by using the i dnConfi gTool command.
The following sections contain details.

* Configuring Impersonation Using oam-config.xml
* Configuring Impersonation Using idmConfigTool

e Configuring the Authentication Scheme

6.2.1 Configuring Impersonation Using oam-config.xml

The impersonation feature for the OAM Server is enabled by configuring the oam
config. xnl file. Example 6-6 shows the relevant section of the file and the parameters
that can be set. Enabl el nper sonati on must be set to 'true' to enable impersonation. The
default setting is 'false'.

Example 6-6 Enabling Impersonation Feature in oam-config.xml

<Setting Name="I|npersonationConfig" Type="htf: map">
<Setting Name="Enabl el npersonation" Type="xsd: bool ean">t rue</ Setti ng>

<Setting Name="UserAttributeNane"

Type="xsd: string">orcl | npersonati onG ant ee</ Setti ng>

<Setting Name="ErrorPage" Type="xsd:string"> pages/servererror.jsp</Setting>
</ Setting>

Impersonation requires that the login request context be preserved either with a
server Request CacheType setting of COOKIE or BASIC. The default setting is COOKIE.
This OAM Server parameter can be set in the oam confi g. xnl file or using the

confi gRequest CacheType WLST command. For more information about the

confi gRequest CacheType command, see configRequestCacheType in Oracle Fusion
Middleware WebLogic Scripting Tool Command Reference for Identity and Access
Management.

6.2.2 Configuring Impersonation Using idmConfigTool

ORACLE

Use the procedure to configure the impersonation feature.

Follow this procedure to configure the impersonation feature using i dnConf i gTool . For
information about the i dnConfi gTool command and input parameters, See Using the

6-7

Chapter 6
Configuring Impersonation Support

idmConfigTool Command in Oracle Fusion Middleware Integration Guide for Oracle
Identity Management Suite.

1. UseidnConfigTool with the - preparel DSt ore command to seed the Identity Store
with the users required by Access Manager.

The command syntax is ./ i dnConfi gTool . sh - preparel DSt ore node=0AM
i nput _file=i nput_parameters.

2. Configure the impersonation feature using i dnConf i gTool with the confi gOAM
command with the parameter CAML1G | MPERSONATI ON_FLAG: t r ue.

The command syntax is ./ i dnConfi gTool . sh - confi gOAM
i nput_file=input_paraneters.

3. Define the impersonator grant permissions by providing the session timestamps
for the impersonation session duration.

The format of individual values is <l nper sonat or orcl GU D> | <begin LDAP
timestanp> | <end LDAP tinestanp>. NO spaces are permitted. For example, in OID
add similar timestamp values to or cl | nper sonat i onG ant ee entry as shown in the
following:

83295E092B2F9FDAE040E50AEBBI1998| 201006042245177| 20110604224517Z;
90FE8C8083CEBCLFE040ES0AEBBI176A] 201007042245177) 20110604224517Z

where:

e The first block is the GUID of the impersonator. As shown here,
83295E092B2F9FD4E040E50AEBBY1998 is the GUID of the impersonator.

* The second block is the timestamp start date.
* The third block is the timestamp end date.

4. Submit the data to the LDAP server.

6.2.3 Configuring the Authentication Scheme

Use these steps to set the authentication scheme to LDAPScheme.

For impersonation support the authentication scheme for the protected application
must be set to LDAPScheme. This must be done before initiating an impersonation
session. To set the authentication scheme to LDAPScheme:

1. Inthe Oracle Access Management Administration Console, go to the Policy
Configuration tab, App Domain, Authentication Policies, Protected Resource
Policy.

2. From the Authentication Scheme list, select LDAPScheme.

For more information about the LDAPScheme, See Managing Authentication
Schemes.

ORACLE 6-8

Chapter 6
Testing SSO Login and Impersonation

6.3 Testing SSO Login and Impersonation

ORACLE

Use these steps to test the impersonation set up according to your environment and
your custom user interface.

The steps to test impersonation set up will vary according to your environment and
your custom user interface. The following general advice is provided as an example of
the steps to take. Adjust the steps as needed for your environment.

1. Log into Oracle Access Management using your own userlD and credentials.

2. Access a resource for which you have authorization to verify that Access Manager
is working with your credentials as expected.

3. Start your impersonation session.

4. In the impersonation confirmation form that appears, enter your own (that is,
impersonator's) password and click Submit to provide impersonation consent.

5. Inthe same browser, access a resource for which the impersonated user has
authorization.

6. Confirm the Impersonating column in the Access Manager Session Management
Page displays true.

For more information, See Session Management Controls in Oracle Fusion
Middleware Administering Oracle Access Management.

7. Confirm that HTTP header variables (OAM_REMOTE_USER and
OAM_IMPERSONATOR_USER) are set in the impersonation session by using a
script or Perl program that will print header variable.

For more information, See Impersonator Identity Communication During
Impersonation Sessions.

8. Terminate your impersonation session.

9. Confirm that OAM_REMOTE_USER is set to user before impersonation trigger,
and OAM_IMPERSONATOR_USER HTTP header variable is empty or blank, by
using a script or Perl program that will print header var.

6-9

Customizing Oracle Mobile Authenticator

The Oracle Mobile Authenticator (OMA) is a mobile device application that uses One
Time Password (OTP) and push notifications to authenticate users without incurring
the cost of hardware tokens or SMS charges. This application provides password less
authentication. The supported platforms are iOS, Android and Windows universal app.
This chapter contains procedures that you can use to brand the Oracle Mobile
Authenticator to represent your company's logo and colors. It contains the following
sections.

* About Oracle Mobile Authenticator and Customization
e Customizing Oracle Mobile Authenticator on iOS
e Customizing Oracle Mobile Authenticator on Android

e Customizing Oracle Mobile Authenticator on Windows

7.1 About Oracle Mobile Authenticator and Customization

The Oracle Access Management Adaptive Authentication Service offers the ability to
add multiple steps to the user authentication process. This additional security may be
enforced by adding a OTP step, or an Access Request (Push) Notification step after
initial user authentication. In certain cases, the enforcement involves the use of the
Oracle Mobile Authenticator (OMA), a mobile device app that uses Time-based One
Time Password and push notifications to authenticate users within the additional
second factor authentication scheme. For more details on the Adaptive Authentication
Service and how it works with the OMA, See Managing the Adaptive Authentication
Service and Oracle Mobile Authenticator in Fusion Middleware Administering Oracle
Access Management.

As the Administrator, you can customize the following features in the OMA application
and distribute the application for internal use.

* Application logo and images
e String resources
» End User License Agreement (EULA), Private Policy and Help of the app

* Name, Identity and Version information of the app

7.2 Customizing Oracle Mobile Authenticator on iIOS

ORACLE

The Oracle Mobile Authenticator (OMA) is distributed as a ZIP of xcarchive which can
be used to customize the application. Xcode is used to sign the xcarchive and
generate the IPA(App which can be installed on devices).

7-1

ORACLE

Chapter 7
Customizing Oracle Mobile Authenticator on i0OS

Note:

To get the Oracle Mobile Authenticator (OMA) customizing app, contact
Oracle support to get access to an unsigned mobile archive.

Before you Begin
The following resources are required to customize OMA:

e MAC with Xcode installed

Customize iOS OMA app

The iOS OMA app can be customized in 3 steps.
1. Extract/unpack xcarchive

2. Customize xcarchive

3. Sign xcarchive from Xcode using the certificates generated by your company. This
action is required to install the app on the devices, to setup the notification services
and to upload the app to the app store.

Extract/Unpack xcarchive
OracleAuthenticator.xcarchive is provided to the user.

1. Right click on OracleAuthenticator.xcarchive and navigate to open package
contents -->Products --> Appl i cati ons -->Aut hent i cat or

2. Right click on Aut hent i cat or, and select open package contents.

Customize xcarchive

1. Splash Screen
This screen is visible for small amount of time while launching the app.

e There are 8 images starting with Launchimage... . Create customized images
using the image sizes provided. Sizes are mentioned as a part of the image
name.

2. App lcon
This is the image shown in the Home screen or Spring board.

e There are 12 images starting with Applicon... Create customized images using
the image sizes provided. Sizes are mentioned as a part of the image name.

* Replace the image with the same name.
3. OMA logo
These images are shown as the default icons of the account.

* There are two images with different foreground colors with transparent
background.

Image 1. oma_blue.png with size 96*96 pixels.
Image 2. oma_white.png with size 205*270 pixels.

* Replace the customized files with the same name and png format.

7-2

ORACLE

10.

Chapter 7
Customizing Oracle Mobile Authenticator on iOS

. Note that changing the Image size aspect ratio may at times cause the user
interface to look distorted. Verify that the image size/aspect ratio looks as
required, before it is finalized.

Other company icons.

Each account has an image associated with it. The account image can be selected
among the available images while adding the account during the manual entry of
shared secret or, the existing account images can be changed in the edit screen.

e others.png with 140*140 pixels.

App display name.

This is the name of the App which is shown in the home screen.
e Open Info.plist file

» Edit the value of the field Bundl e di spl ay name. The default value is
Authenticator.

EULA, Private Policy and Help.

« Inside en.lproj there are files for each file(eula.txt, help.html and privacy.html).
These files can be edited. The eula.txt is not localized.

Note:

Files have to be updated in all the Localized languages. Localized
language folder will have ".Iproj" as extension.

3rd party company list with images.

These are the 3rd party companies which could be used to configure the account
through OMA. This page can be viewed while creating a new account through a
manual entry of Key or Editing the account information. The company name and
image would be shown in the same order.

* Open CompanylList.json file, The company nhame and image is shown in the
same order. Any Item can be deleted. Available image name can be updated
in lconName.

If EULA needs to be displayed on first launch.

* Open CustomizableFlags.plist, change the value of
shoul dEULAShownOnFi r st Launch to YES or NO. Default is YES.

App version can be changed from (Bundle versions string, short) in info.plist.

Application name is shown inside the OMA in various places. Only the application
name can be customized and localization is not supported. The default application
name is Oracl e Mobi |l e Aut henti cat or. This can be customized by
changing the field ConpanyNane in info.plist file.

Sign xcarchive

Get the App Bundle Identifier of the certificate which is generated in
apple.developer.com. Certificates related to this bundle Identifier is used to sign
the application. For an example the Bundle Identifier looks like
com.acme.authenticator.

7-3

Chapter 7
Customizing Oracle Mobile Authenticator on Android

— The customer generates the certificates which is used to sign the application.
— They use their apple developer's account to generate the certificates.

— The certificates have a unique string which is used to distinguish between the
apps.
— The unique string is called as Bundle Identifier that is used here.

For more information , See https://developer.apple.com/library/content/
documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingCertificates/
MaintainingCertificates.html

* Open info.plist file, Update the field Bundl e i denti fi er with the App Bundle
Identifier.

Save all changes, double click on the xcarchive folder. This will launch Xcode.

To sign the app, Follow the instruction given in https://developer.apple.com/library/ios/
documentation/IDEs/Conceptual/AppDistributionGuide/Introduction/Introduction.html.

To sign and export iPA from Xcarchive, follow the steps given in https://
developer.apple.com/library/content/documentation/IDEs/Conceptual/
AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html

7.3 Customizing Oracle Mobile Authenticator on Android

The Oracle Mobile Authenticator is shipped to customers as an Android application
package (.apk). The apkt ool is a tool that allows you to decompile an Android
application, modify it and then rebuild it with the modifications. See the following
sections for information on using the apkt ool .

* Using apktool to Customize Oracle Mobile Authenticator

* Customizing Options for Oracle Mobile Authenticator Android app

7.3.1 Using apktool to Customize Oracle Mobile Authenticator

The apkt ool installation and usage guide can be accessed from the apktool project
home at https://ibotpeaches.github.io/Apktool/. The following sample command is used
to decompile an Android app package.

apkt ool d Oracl eMbbi | eAut henti cat or - andr oi d-
rel ease_branch_21 03_2017-170403. 181503. apk

This next sample command is used to recompile the updated contents of Android app
package. It will create a signed version of the customized app.

apktool b Oracl eMbbi | eAut henti cat or - andr oi d-rel ease_branch_21 03 2017-170403. 181503

7.3.2 Customizing Options for Oracle Mobile Authenticator Android
app

The following sections document the customizing options for the Oracle Mobile
Authenticator Android app.

e Changing Application Icons

e Modifying the Application Name and Text

ORACLE 7-4

https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingCertificates/MaintainingCertificates.html
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingCertificates/MaintainingCertificates.html
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingCertificates/MaintainingCertificates.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html#//apple_ref/doc/uid/TP40012582-CH8-SW1
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html#//apple_ref/doc/uid/TP40012582-CH8-SW1
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/TestingYouriOSApp/TestingYouriOSApp.html#//apple_ref/doc/uid/TP40012582-CH8-SW1
https://code.google.com/p/android-apktool/

Chapter 7
Customizing Oracle Mobile Authenticator on Android

« Editing 3rd party company list with images
* Modifying EULA to be shown on first launch
* Modifying the Version and Code Number

* Modifying the Package Name

e Signing the Application

7.3.2.1 Changing Application Icons

For better UX control and multiple screen support, Android provides separate folders
to better organize drawables for each screen type. (As an example the drawable-hdpi
is for high pixel density devices.) Android application icons are located in the res/
folder.

Based on the requirement the OMA application icons can also be updated in the
corresponding drawable folder. In order to customize the application icons, replace the
old icons with the new icons without changing the icon name.

The icon must be replaced in all the following folders:

e res\drawable-mdpi-v4

e res\drawable-hdpi-v4

e res\drawable-xhdpi-v4

e res\drawable-xxhdpi-v4
e res\drawable-xxxhdpi-v4

The following icons can be replaced with your customized icons with same size and
name as that of original icons:

1. Launcher Icon: res\mipmap-mdpi-v4\ic_launcher.png

2. OMA logo There are two Images with different foreground colours with transparent
background.

Image 1. res\drawable-mdpi-v4\oma_logo.png
Image 2. res\drawable-mdpi-v4\mfa_icon.png
3. Other company icons

Other company icon is a default company icon shown for 3rd party companies. It
can be changed in companylist.json

res\drawable-mdpi-v4\others.png

7.3.2.2 Modifying the Application Name and Text

ORACLE

The name Aut henti cat or can be customized by modifying the existing value of the
string app_nane in the /res/ val ues/ strings. xn file. Find the default value in the file as:

<string nanme="app_name">Aut henti cat or </ stri ng>

Change this value to the preferred name and save; for example, Acme Authenticator.
No special characters can be used.

<string name="app_name">Acne Aut henticator</string>

7-5

Chapter 7
Customizing Oracle Mobile Authenticator on Android

The End-user License Agreement, Privacy and Help text can also be customized. To
change the text, replace the original version of the file(s) with the new file(s) in the
directory structure as specified below. Do not change the file name.

* End-user License Agreement: /res/raw/eula.txt
* Privacy: /res/raw/privacy.html
* Help: /res/raw/help.html

Help is localized. To customize help, the help file needs to be changed in the
localization folders.

" Note:

When app name and strings are changed, Do make sure to change the
corresponding translated strings. For example, res\values-ar, res\raw-ar

7.3.2.3 Editing 3rd party company list with images

Open res\raw\companylist.json file. The company name and image would be shown in
the same order. Any item can be deleted. Available image name can be updated in
"lconName".

7.3.2.4 Modifying EULA to be shown on first launch

Open res\raw prop. txt . Change the value of showEul a to yes . The values are
treated as case-insensitive. Default value is yes.

7.3.2.5 Modifying the Version and Code Number

Modify the version and code number of the application by changing details in the

apkt ool . yni located in the directory where the .apk file content has been de-compiled.
(See Using apktool to Customize Oracle Mobile Authenticator) The apktool.yml file
can be viewed and modified in any text editor. The versionCode and versionName
parameters are located under the versioninfo property as illustrated in Example 7-1. In
this example, the version name has been changed to test.xx.x.x from the default value
11.1.2.3.0.

Example 7-1 Changing the Android Version and Code Number

versionl nfo:versionCode: '3'versionName: 'test.xx.Xx.Xx'

7.3.2.6 Modifying the Package Name

ORACLE

To modify the package name

1. Open AndroidManifest.xml present in the decompiled apk folder in Notepad++.
"Find All" <package name> and replace with the new package name and set
Directory as the location of the decompiled apk folder and filter as "*.*".

Example: Find what: oracle.idm.mobile.authenticator Replace what :
example.idm.mobile.authenticator

2. Similarly, Find All and Replace package name appended with 'L' and "." replaced
with /'

7-6

Chapter 7
Customizing Oracle Mobile Authenticator on Windows

Example : Find what :Loracle/idm/mobile/authenticator Replace
what :Lexample/idm/mobile/authenticator

3. Go to smali folder in the decompiled apk folder and rename the folder names
according to new package name.

4. Build the folder using apk tool. For example:

apktool b Oracl eMobi | eAut henti cat or -
andr oi drel ease_branch_21_03_2017-170403. 181503

7.3.2.7 Signing the Application

Android requires that all apps be digitally signed before they can be installed. Android
uses the certificate to identify the author of the app. The certificate does not need to be
signed by a certificate authority so Android apps often use self-signed certificates.
Additional details on this Android requirement and its process, including the procedure
you can use to sign your apps, are described at htt p: // devel oper. andr oi d. coni t ool s/
publ i shi ng/ app- si gni ng. ht ni #si gni ng- nanual | y

7.4 Customizing Oracle Mobile Authenticator on Windows

ORACLE

The Oracle Mobile Authenticator (OMA) is distributed as a ZIP package which can be
used to customize the application.

" Note:

To get the Oracle Mobile Authenticator (OMA) customizing app, contact
Oracle support to get access to an unsigned mobile archive.

Before you Begin

The following resources are required to customize OMA:
* Windows 10 onwards

* Vlsual Studio 2015 onwards

Customize Windows OMA app

The Windows OMA app can be customized in 3 steps.
1. Extract/unpack package

2. Customize package

3. Create/pack package

Extract/Unpack Package
Open Developer Command Prompt for VS2015 and run the following commands:

1. MakeAppx unbundle /o /p / <full path of appxbundle > /d <full folder path where
appxbundle will be extracted >

For example, MakeAppx unbundle /o /p FA\OMA\OMA.
10_1.9.2.0_x86_x64 arm_Release UWP10.appxbundle /d F\OMA\unbundle

7-7

http://developer.android.com/tools/publishing/app-signing.html#signing-manually
http://developer.android.com/tools/publishing/app-signing.html#signing-manually

ORACLE

2.

Chapter 7
Customizing Oracle Mobile Authenticator on Windows

MakeAppx unpack /o /Il Ip <full path of appx file> Id <full folder path where appx
file will be extracted>

For example, MakeAppx unpack /o /1 /[p FA\OMA\unbundle\OMA.
10_1.9.2.0_x64 Release_UWP10.appx /d F\OMA\unpack

Customize Package

Once you extract the package under the OMA folder, the folder structure will look
similar to the sample as shown in the below figure.

OMA
_Resources
AppxMetadata
Assets
Config
Strings

Note:

e Customize every package present in appxbundle (or appx files present in
output location of MakeAppx unbundle command.). the steps given here
help you customize one package.

* When you update an image file, make sure that the image file name and
dimension remain the same.

* When you update the Help file or EULA file, make sure that the file name
remains the same.

* When you update any string resource, make sure that the string key
name remains the same and only the value is updated.

Splash Screen
This screen is visible for a small amount of time while launching the app.

e The screen image files start with SplashScreen... under OMA\Assets. Create
customized images using the image sizes provided. Sizes are mentioned as a
part of the image name.

for example, SplashScreen.scale-200.png
App Icon
This is the image shown in the Home screen or Spring board.

e The following app icon images are under OMA\Assets. Create customized
images using the image sizes provided. Sizes are mentioned as a part of the
image name. Replace the image with the same name.

— LockScreenLogo.scale-200.png
— Square44x44logo.scale-200.png

7-8

ORACLE

Chapter 7
Customizing Oracle Mobile Authenticator on Windows

— Squared4x44logo.targetsize-24_altform-unplated.png
— Square71x71Logo.scale-200.png
— Squarel150x150Logo.scale-200.png
— Square310x310Logo.scale-200.png
— StoreLogo.png
— Wide310x150Logo.scale-200.png
OMA Logo
These images are shown as the default icons of the account.
* There are two images that you can update under OMA\Assets.
Image 1. MFA_Icon.png.
Image 2. OMA_Logo_70.png
* Replace the customized files with the same name and png format.

. Note that changing the Image size aspect ratio may at times cause the user
interface to look distorted. Verify that the image size/aspect ratio looks as
required, before it is finalized.

Other Company Icons.

Each account has an image associated with it. The account image can be selected
among the available images while adding the account during the manual entry of
shared secret or, the existing account images can be changed in the edit screen.

e Others.png

App Display Name.

This is the name of the App which is shown in the home screen.

* Open AppxManifest.xml under OMA folder and update following information.

— Package - Identity —~ Name

Package — Identity — Publisher
— Package - Properties — DisplayName
— Package - Properties - PublisherDisplayName

— Package - Applications — Application Id="App" - uap:visualElements -
DispalyName

— Package - Applications — Application Id="App" - uap:visualElements -
Description

— Open Config.json file under OMA\Config folder and update following string
resource

* appConfig.json - appName

* appConfig.json - companyName
EULA.
Update the following file under OMA\Assets.
e eula.html

Private Policy.

7-9

ORACLE

10.

11.

Chapter 7
Customizing Oracle Mobile Authenticator on Windows

Open Config.json file under OMA\Config folder and update the following string
resource.

* appConfig.json - privacyPolicyUrl

Help.

Update the following file under OMA\Strings\en.
e help.html

3rd Party Company List with Images.

These are the 3rd party companies which could be used to configure the account
through OMA. This page can be viewed while creating a new account through a
manual entry of Key or Editing the account information.

* Open companylist.json file under OMA\Assets folder and update as many
entries as needed, The company name and image is shown in the same order
as present in file. Any Item can be deleted. Available image name can be
updated in IconName. The image mentioned in lconName key must be
present in OMA\Assets folder.

If EULA needs to be displayed on first launch.

* Open Config.json under OMA\Config folder and update following information
with value as true or false. True is for show at first launch and false is for not
showing.

— appConfig.json - showEULA
App Version Number.
Open AppxManifest.xml under OMA folder and update the following information.

» Package - ldentity — Version

Create/Pack Package

Open Developer Command Prompt for VS2015 and run the following commands:

Note:

In the following commands, appx and appxbundle file name and full path
must be same.

MakeAppx pack /o /I /d <full path of customized folder> [p <full path of customized
appx file>

For example, MakeAppx pack /o /I /d FA\OMA\unpack /p F\OMA\unbundle\OMA.
10_1.9.2.0_x64 Release UWP10.appx

< Note:

The step mentioned above helps you to customize one package. Use the
step to customize every package and then run the following commands
to generate the appxbundle and signing it.

7-10

Chapter 7
Customizing Oracle Mobile Authenticator on Windows

2. MakeAppx bundle /o /d <full path of customized unbundle folder> /p <full path of
customized appxbundle file>

For example, MakeAppx bundle /o /d F\OMA\unbundle /p FAOMA\OMA.
10_1.9.2.0 x86_x64_arm_Release_UWP10.appxbundle

3. SignTool sign /fd SHA256 /a /f <full path of pfx certificate file> [p <password of pfx
file> <full path of customized appxbundle file>

For example, SignTool sign /fd SHA256 /a /f FAOMA\OMA.10_TemporaryKey.pfx
FAOMA\OMA.10_1.9.2.0 x86_x64 arm_Release UWP10.appxbundle

Note:

Ip <password> parameter in the above command is optional, if pfx file is not
protected by password then ignore this parameter. https://
msdn.microsoft.coml/en-us/library/lwindows/desktopljj835832(v=vs.
85).aspx describes how to create a signed certificate used

in SignTool command.

For more information about MakeAppx utility, See https://msdn.microsoft.coml/en-
usllibrarylwindows/desktop/hh446767(v=vs.85).aspx.

ORACLE 7-11

https://msdn.microsoft.com/en-us/library/windows/desktop/jj835832(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/jj835832(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/jj835832(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh446767(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh446767(v=vs.85).aspx

Developing with Identity Federation

ORACLE

Oracle Identity Federation enables business partners to achieve a federated
environment by providing the mechanism with which companies can form a federation
and securely share services and data across their respective security domains.

This part discusses developing applications using the Oracle Access Management
Identity Federation APIs.

It contains the following chapters:

» Developing a Custom User Provisioning Plug-in
» Developing a Message Processing Plug-in

* Implementing Custom Authentication Actions

Developing a Custom User Provisioning

Plug-in

Oracle Access Management Identity Federation (Identity Federation) leverages the
Access Manager plug-in framework to facilitate the provisioning of users. A standard
user provisioning plug-in is provided or you can develop a custom plug-in.

This chapter provides the following sections:

e Introduction to User Provisioning Plug-ins

e Introduction to Plug-in Interfaces

» Sample Code: Custom User Provisioning Plug-in
» Developing a User Provisioning Plug-in

See Also,

Using the Default Identity Provisioning Plug-in in Fusion Middleware Administering
Oracle Access Management.

8.1 Introduction to User Provisioning Plug-ins

ORACLE

When Identity Federation is acting in Service Provider (SP) mode, the user assertion is
mapped to a local store to complete the federated single sign-on. However, in some
cases when a Service Provider is performing user assertion, a user may not be found.
The default user provisioning plug-in (LDAPPr ovi si oni ngPl ugi n) will provision the user in
the LDAP store configured as the Access Manager identity store.

All the information collected at runtime is passed to any user provisioning plug-in,
standard or custom. The custom user provisioning plug-in must decide, based on this
information, what user information it needs to retrieve and use. Additionally, each
custom plug-in can include its own configuration designed to perform extra processing
of the user to be provisioned.

When Identity Federation is acting in SP mode and fails to map assertion to a user, it
will look for a configuration property to check if the missing user should be provisioned.
If the user provisioning flag is set to true, Identity Federation will look up the plug-in
name that needs invoking. The stand plug-in (LDAPPr ovi si oni ngPl ugi n) is invoked by
default if a custom plug-in is not being used. The Genri cPl ugi nFact ory is used to locate
the plug-in defined and executes the provisioning logic.

Identity Federation retrieves the property associated with the partner nanei deat t r name
to populate the nanei d value in the attribute list sent to the plug-in. If Identity Federation
is configured to use the standard plug-in, the options for data store selection is as
follows:

e If Identity Federation is using the partner specific data store (multi-store), then
Identity Federation will pass the identify store name to the plug-in.

e If Identity Federation uses the default user identity store, the standard plug-in will
use the User Provisioning APIs to provision user data in the data store.

8-1

Chapter 8
Introduction to Plug-in Interfaces

* If no partner specific store is configured, the default identity store is used.

The User Provisioning API used to provision a user is the same regardless whether a
default identity store or a partner specific store is used.

8.2 Introduction to Plug-in Interfaces

Reviewers: Do we want to provide a short summary of each OIF interface here? If so,
please provide. See Introduction to Plug-in Interfaces in the OAM plug-in chapter that
provides a similar discussion.

The main class a custom user provisioning plug-in extends is
O FUser Provi si oni ngPl ugi n. The following interfaces are exposed to custom plug-ins:

e oracle.security.fed.plugins.fed. provisioning. d FUser Provi sioni ngPl ugi n. j ava
(extends oracl e. security. am pl ugi n. Abst ract AVPI ugi n)

* oracle.security.fed.plugins.fed. provisioning. User Context.java
e oracle.security.fed.plugins.fed. provisioning.UserProvisioni ngException.java
e oracle.security.fed.plugins.fed. provisioning.UserProvisioni ngConstants.java

For more information about these interfaces, see Oracle Fusion Middleware User
Provisioning Plug-in Java API Reference for Oracle Access Management Identity
Federation.

8.3 Sample Code: Custom User Provisioning Plug-in

ORACLE

The custom user provisioning plug-in jar file structure must conform to an Access
Manager custom authentication plug-in structure. Namely, it requires the following
files: plugin.class, plugin.xml, and MANIFEST.MF. For more information about this
structure, see Sample Code: Custom Database User Authentication Plug-in .

This section provides the following user provisioning plug-in code samples:

e Sample UserProvisioning.java
e Sample UserPlugin.xml
e Sample MANIFEST.MF

Sample UserProvisioning.java
The following sample code explains user provisioning plug-in:

package oif.test;

inport java.util.Hashtable;
inport java.util.lterator;

inport java.util.Mp;

inport java.util.Set;

inport java.util.StringTokenizer;

i nport javax. naming. Cont ext;

i nport j avax. nani ng. Nam ngExcepti on;

inport javax.naming.directory. Attribute;
inport javax.naming.directory. Attributes;
import javax.naming.directory. BasicAttribute;
inport javax.naming.directory. BasicAttributes;
i nport javax.naming.directory. DirContext;

8-2

ORACLE

Chapter 8
Sample Code: Custom User Provisioning Plug-in

i mport javax.naming.directory.lnitialDirContext;

import oracle.security.am plugin. ExecutionSt at us;

import oracle.security.am plugin.MnitoringData,

i mport oracle.security.am plugin.PluginConfig;

i mport oracle.security.fed. plugins.fed. provisioning. 0 FUser Provi si oni ngPl ugi n;
import oracle.security.fed. plugins.fed. provisioning. User Cont ext;

i mport oracle.security.fed. plugins.fed. provisioning. UserProvi si oni ngConst ant s;
i mport oracle.security.fed. plugins.fed. provisioning. UserProvi si oni ngExcepti on;

/*
* Sanple OF User provisioning plugin
*/

public class ProvisioningPlugin extends O FUserProvisioningPlugin {

private bool ean nonitoringStatus = fal se;
private Map paramvap ;
private String userRecordAttrList = null;
private String useridAssertionAttr = null;

/* (non-Javadoc)
*/
@verride
public ExecutionStatus process(UserContext context) throws
User Provi si oni ngException {
/*
* Execute nmethod for plugin
*|
bool ean provisioni ngStatus = fal se;
tryf
Map<String, Object> attrs = context.getAttributes();
Map<String, Object> attrsMapping = context.getAttributesUsedl nMappi ng();
if (useridAssertionAttr == null) {
Systemout.printIn("User id attribute to create user is not found in the attributes
list");
return ExecutionStatus. ABORT;
}

String userid = null;

if (attrs.containsKey(useridAssertionAttr)) {

oj ect val ueChj = attrs.get(useridAssertionAttr);
if (valueQnj instanceof String)

userid = (String) val uej;

el se {

userid = (String)((Set) valueChj).iterator().next();
}

}

DirContext ctx = getContext();

/] creating the user record
Attributes record = new Basi cAttributes();

/] Create the objectclass to add

Attribute objdasses = new BasicAttribute("objectd ass");
obj Gl asses. add("top");

8-3

ORACLE

Chapter 8
Sample Code: Custom User Provisioning Plug-in

obj Cl asses. add(" person");

String objectCass = "inetOrgPerson;
obj O asses. add(obj ect d ass);

obj Cl asses. add(" or gani zat i onal Person");
record. put (obj O asses);

String userlDAttr = "uid";

/1 Set the attributes

record. put (new Basi cAttribute(userI DAttr, userid));
StringTokeni zer st = new StringTokeni zer (userRecordAttrList, ",");
whil e (st.hasMreTokens()) {
String key = (String) st.nextToken();

record. put (new Basi cAttribute(key, attrs.get(key)));
}

Set keys = attrsMapping. keySet();

Iterator itr = keys.iterator();
while (itr.hasNext()) {
String key = (String) itr.next();
if (lattrs.containsKey(key)) {

record. put (new Basi cAttribute(key, attrsMapping.get(key)));

}
String | dapUser BaseDN = "dc=i pl anet, dc=cont;
[/ Create the record
ctx.createSubcontext("cn=" + userid + "," + | dapUserBaseDN, record);
provi sioningStatus = true;
}
}
cat ch(Exception e){
/*
* |f exception abort the authentication.
*
/

e.printStackTrace();
return ExecutionStatus. ABORT;

}

i f(provisioningStatus){
/*
* Success
*/
return ExecutionStatus. SUCCESS;
}el se{
/*
* Failure.
*/
return ExecutionStatus. FAl LURE;

}

/* (non-Javadoc)
* @ee oracle.security.am plugin. GenericPl uginServicef#initialize(java.util.Mp)
*|
@verride
public ExecutionStatus initialize(PluginConfig config) {
//success for the execution status
userRecordAttrList =
(String)config.getParaneter(UserProvisioningConstants. KEY_USER RECORD ATTRI BUTE_LI ST)

useri dAssertionAttr =

8-4

ORACLE

Chapter 8
Sample Code: Custom User Provisioning Plug-in

(String)config.getParaneter(UserProvisioningConstants. KEY_USERI D_ATTRI BUTE_NAME) ;

return ExecutionStatus. SUCCESS;
}

/* (non-Javadoc)
* @ee oracle.security.am plugin. GenericPl ugi nServi ce#get Descri ption()
*/
@wverride
public String getDescription() {
return "Ldap Provisioning Plugin";
}

/* (non-Javadoc)
* @ee oracle.security.am plugin. GenericPl uginServi ce#get Moni t ori ngDat a()
*/
@verride
public Map < String, MnitoringData > getMnitoringData() {
/] TODO Aut o-generated nethod stub
return nul l;

}

/* (non-Javadoc)
* @ee oracle.security.am plugin. Generi cPl ugi nServi ce#get Moni toringSt atus()
*|
@verride
public bool ean get MnitoringStatus() {
return nonitoringStatus;
}

/* (non-Javadoc)
* @ee oracle.security.am plugin. GenericPl ugi nServi ce#get Nane()
*/
@verride
public String getPlugi nName() {
return "LDAP_Provi sioni ng_pl ugi n";
}

/* (non-Javadoc)
* @ee oracle.security.am plugin. GenericPl ugi nServi ce#get Versi on()
*/
@wverride
public int getRevision() {
return 10;
}

/* (non-Javadoc)
* Gee

oracl e.security.am plugin. Generi cPl ugi nServi ce#set Moni t ori ngSt at us(bool ean)

*|

@verride

public void setMnitoringStatus(bool ean status) {
moni toringStatus = status;

}
private DirContext getContext() {
try {

DirContext context = null;

String I dapURL = "l dap://nyl dap. exanpl e. com 389";

8-5

ORACLE

Chapter 8
Sample Code: Custom User Provisioning Plug-in

String | dapUser BaseDN = "dc=i pl anet, dc=cont;

Hasht abl e<String, String> env = new Hashtable <String, String> ();

env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, "com sun. | ndi.|dap. LdapCt xFactory");
env. put (Cont ext . PROVI DER_URL, | dapURL);

env. put (Cont ext . SECURI TY_AUTHENTI CATI ON, "sinple");

env. put (Cont ext . REFERRAL, "fol | ow');

String credential = "password";

String secPrincipal = "cn=Directory Manager";

env. put (Cont ext . SECURI TY_PRI NCI PAL, secPrincipal);
env. put (Cont ext . SECURI TY_CREDENTI ALS, credential);

context = new InitialDirContext (env);
return context;

} catch (Nami ngException ne) {

t hrow new User Provi si oni ngExcepti on(ne);
} catch (Throwable e) {

throw new User Provi si oni ngException(e);

}

}
}

Sample UserPlugin.xml
The following sample code provides UserPlugin.xml

<Pl ugi n type="User Provisioning">
<aut hor >ui d=User 1</ aut hor >
<emai | >User 1@xanpl e</ emai | >
<creationDat e>09: 32: 20, 2012- 06- 15</ cr eat i onDat >
<description>User provisioning</description>
<configuration>
<AttributeVal uePai r>
<Attribute type="string" |ength="100">KEY_USERI D_ATTRI BUTE_NAME</ Attri but e>
<mandat or y>f al se</ mandat or y>
<i nstanceOverri de>f al se</instanceQverride>
<gl obal Ul Overri de>t rue</ gl obal Ul Qverride>
<val ue>ui d</ val ue>
</ AttributeVal uePair>
<AttributeVal uePai r>
<Attribute type="string" |ength="200">KEY_USER RECORD ATTRI BUTE_LI ST</Attribute>
<mandat or y>t r ue</ mandat or y>
<i nstanceOverri de>f al se</instanceQverride>
<gl obal Ul Overri de>t rue</ gl obal Ul Qverri de>
<val ue>mi | , ui d</ val ue>
</ AttributeVal uePair>
</ configuration>
</ Pl ugi n>

Sample MANIFEST.MF
The following sample code provides MANIFEST.MF

Mani f est-Version: 1.0

Bund| e- Mani f est Versi on: 2

Bundl e- Nane: Provi si oni ngPl ugi n

Bundl e- Synbol i cNanme: Provi si oni ngPl ugin

Bund| e- Versi on: 10

Bundl e- Activator: oif.test.ProvisioningPlugin

8-6

Chapter 8
Developing a User Provisioning Plug-in

| mpor t - Package:
org.osgi. framework; version="1.3.0", oracl e. security.fed. plugins.fed. provisi oni ng
Bundl e- Requi r edExecut i onEnvi ronnent: JavaSE-1.6

8.4 Developing a User Provisioning Plug-in

This section provides steps to write a custom Identity Federation user provisioning
plug-in. The following describes the actions a developer must take after the system
architect identifies the business requirements for the custom plug-in and considers the
user provisioning flow when a user is not mapped to a local user store.

This section contains the following topics:

e Developing a Custom Plug-in: Process Overview

e Files Required for Compiling a Plug-in

8.4.1 Developing a Custom Plug-in: Process Overview

As ldentity Federation leverages the Access Manager plug-in framework, the process
is similar for both. For more information, see About Planning, the Authentication
Model, and Plug-ins.

1. Extend O FUser Provi si oni ngPl ugi n class and implement the following methods. For
more information, see About Writing a Custom Authentication Plug-in .

* Implementinitialize method
* Implement process method

2. Develop plug-in code using appropriate Access Manager 11g interfaces and
packages. For more information, see:

e Introduction to Plug-in Interfaces
e Sample Code: Custom Database User Authentication Plug-in

3. Prepare metadata for the custom plug-in. For more information, see Sample Plug-
in Configuration Metadata Requirements.

4. Prepare the plug-in jar file and manifest and deliver to your deployment team. For
more information, see:

e Sample Manifest File for the Plug-in
e Understanding the Plug-in JAR File Structure
5. Proceed to Files Required for Compiling a Plug-in.

For information about deploying and managing custom authentication plug-ins, see
Deploying and Managing Individual Plug-ins for Authentication.

8.4.2 Files Required for Compiling a Plug-in

The following jar files are needed for compiling the custom user provisioning plug-in:
o felix.jar
e oam-plugin.jar

» fed.jar

ORACLE 8.7

Chapter 8
Developing a User Provisioning Plug-in

The file are located in DOMAIN_HOME/servers/managed_instance_nameltmp/
_WL_userloam_server_11.1.2.0.0/RANDOM_STRING/APP-INF/lib.

ORACLE 8-8

Developing a Message Processing Plug-in

You can develop a plug-in that allows Oracle Access Management Identity Federation
to process SAML messages that contain custom elements and attributes often
required by third party or custom SAML implementations. In effect, you will be
extending the functionality of the O FMessagePr ocessi ngPl ugi n.

This chapter contains the following sections.

* Understanding Custom SAML Elements
» Extending the OIFMessageProcessingPlugin
* Deploying the Message Processing Plug-in

* Enabling the Message Processing Plug-in

9.1 Understanding Custom SAML Elements

Because SAML is an extensible protocol, custom elements and attributes can be
inserted into SAML messages where needed. Third party or custom SAML
implementations might require these particular custom elements or attributes to
function. For example, an Identity Provider (IdP) might require a custom <Conpany! nf 0>
element included in the SAML extensions portion of the message to provide the name
of the company issuing the SAML request. The Oracle Access Management Identity
Federation (Identity Federation) O FMessagePr ocessi ngPl ugi n can be modified to
process these custom elements.

" Note:

Only one plug-in is allowed in your Oracle Access Management environment
but you can use conditional logic in the plug-in to accomplish different things
for different messages.

9.2 Extending the OIFMessageProcessingPlugin

ORACLE

Follow this procedure to extend the O FMessagePr ocessi ngPl ugi n code.

1. Create a directory.
In this tutorial, we will call it pl ugi ndev.
2. Create the following subdirectories.
pl ugi ndev/ src/ msgprocpl ugin
3. Create Sanpl eMsgPr ocPl ugi n. j ava using the content in SampleMsgProcPlugin.java.

Oracle Access Management overrides the standard JDK XML classes with Oracle-
specific ones so the DOM factory objects are retrieved directly from the System
Class Loader using Class.forName.

9-1

ORACLE

Chapter 9
Extending the OlIFMessageProcessingPlugin

SampleMsgProcPlugin.java

package nsgprocpl ugin;

inport java.io.*;

inport java.util.*;

inport javax.xn.parsers.?*;

i mport oracle.security.amplugin.*;

i mport oracle.security.fed. plugins.fed. nsgprocessing.*;
import org.w3c. dom *;

import org.w3c.domls.*;

inport org.xnl.sax.*;

inport static java.lang. Systemerr;

public class Sanpl eMsgProcPl ugi n extends O FMessageProcessingPl ugin {
private bool ean nonitoringStatus;

public ExecutionStatus process(MessageContext nessageCx) throws
MessageProcessi ngException {

try {
String msg = "";
I’TBg += "************************************\n";
meg += "* SAWMPLE MESSAGE PROCESSI NG PLUG N *\n";
I’TBg += "************************************\n"-

meg += "Partner Nanme: " + messageCtx. getPartnerNane() +
msg += "Message Type: " + messageCtx. get MessageType() +

msg += "Message Version: " +
messageCt x. get MessageVersion() + "\n";

meg += "User DN. " + messageCtx.getUserDN() + "\n";

meg += "User ID: " + messageCtx.getUserID() + "\n";

msg += "User ID Store: " + nmessageCtx.getUserIDStore() +
"\n";

/] Deternmine if this nessage neets our criteria for
modi fication
bool ean matches =
"Loopbackl DP". equal s("" +
messageCt x. get Part ner Nane()) &&
"SSO AUTHN REQUEST_QUTGO NG'. equal s("" +
messageCt x. get MessageType()) &&
"SAML2. 0". equal s("" +
messageCt x. get MessageVersion());

if (!matches)
meg += " @a00AM CRI TERIA NOT MET - SKIPPING TH' S
MVESSACGE @aogad n”;
el se {
Il your business |ogic here
}
msg += " ENDS \n";

err.println(msg);

return ExecutionStatus. SUCCESS;
} catch (Exception e) {

e.printStackTrace();

throw handl e(e);

9-2

Chapter 9
Extending the OIFMessageProcessingPlugin

@wverride
public String getDescription(){

return "Sanmpl e Message Processing Plugin";
}

@verride
public Map<String, MonitoringData> getMnitoringData(){
return null;

}

@verride
publi c bool ean get MonitoringStatus(){
return nonitoringStatus;

}

@wverride
public String getPlugi nNane(){
return "Sanpl eMsgProcPl ugin";

}

@verride
public int getRevision() {
return 123;

}

@verride
public void setMnitoringStatus(bool ean status){
this.nonitoringStatus = status;

}
}

4. Place Sanpl eMsgPr ocPl ugi n. j ava in the pl ugi ndev/ src/ nsgpr ocpl ugi n directory.

5. Create the Sanpl eMsgProcPl ugi n. xnl plug-in manifest using the content in
SampleMsgProcPlugin.java.

In this step, you can also define configuration settings for the plug-in that can then
be modified using the Oracle Access Management Console.

SampleMsgProcPlugin.xml

<?xm version="1.0"?>

<Pl ugi n type="Message Processing">
<aut hor >John Doe</ aut hor >
<enai | >donot repl y@xanpl e. conx/ enai | >
<creationDat €>2015-04- 16 12:53: 37</ creati onDat >
<descri pti on>Sanpl e Message Processing Plugin</description>
<configuration>
</ configuration>

</ Pl ugi n>

6. Put Sanpl eMsgProcPl ugi n. xnl in the pl ugi ndev/ directory
7. Create the MANIFEST.MF file using the content in MANIFEST.MF.

This represents the OSGi bundle metadata. It lists the Java packages required by
the plug-in.

ORACLE 9-3

ORACLE

Chapter 9
Extending the OlIFMessageProcessingPlugin

Note:

Note that Import-Package is all on one-line.

MANIFEST.MF

Mani f est-Version: 1.0

Bund| e- Mani f est Versi on: 2

Bundl e- Nane: Sanpl eMsgPr ocPl ugi n

Bundl e- Synbol i cNanme: Sanpl eMsgPr ocPl ugi n

Bundl e- Version: 1

Bundl e- Activator: oracle.ateam nsgprocpl ugi n. Sanpl eMsgPr ocPl ugi n

| mport - Package:

javax. xnl . parsers, oracl e. security.am plugin, oracl e. security.fed. plugins.fed. nsgpr
ocessing, org. osgi . framework; versi on="1. 3. 0", org. w3c. dom or g. w3c. dom | s, org. xm . sa
X

Bundl e- Requi r edExecut i onEnvi ronment: JavaSE- 1.6

Put MANI FEST. MF in the pl ugi ndev/ directory
Create the conpi | e. sh shell script using the content in compile.sh.

This shell script compiles the plug-in. Another option would be to use ANT or
Maven. The path DOMAIN_HOME and the SERVER_NAME will need to be
changed for your environment. Also note that JARS= is all on one line.

Note:

Note that JARS=is all on one-line.

compile.sh

#!'/ bi n/ bash
DOVAI N_HOVE=/ i dnt op/ confi g/ domai ns/ | AMAccessDonai n
SERVER_NAME=wl s_oanl

JARS="$(find $DOMAI N HOVE/ servers/ $SERVER NAVE/ t np/ _W._user/
oamserver _11.1.2.0.0/ -nane fed.jar -o -nane oamplugin.jar -o -nanme felix.jar
| tr “\n" ":" | sed -e "s/:$//")"

SRCS="$(find src -name '*.java')"

rm-rf build

nkdir build

javac -d build -classpath $JARS $SRCS

cp Sanpl eMsgProcPl ugi n. xm build

nkdi r bui | d/ META- | NF

cp MANI FEST. MF bui | d/ META- | NF

cd build

jar cvnf META-1NF/ MANI FEST. MF ../ Sanmpl eMsgProcPl ugin.jar *

10. Put conpi | e. sh in the pl ugi ndev/ directory

11. Run compile.sh to create SampleMsgProcPlugin.jar.

9-4

Chapter 9
Deploying the Message Processing Plug-in

9.3 Deploying the Message Processing Plug-in

Use this procedure to import and activate the Sanpl eMsgProcPl ugi n. j ar.

1.
2.
3.

6
7
8.
9

Login to Oracle Access Management Console as administrator.
Click Application Security at the top of the Console.
Click Authentication Plug-ins under the Plug-ins section.

The Authentication Plug-ins screen is used to configure all Oracle Access
Management plug-ins.

Click Import Plug-in.
An Import Plug-in screen is displayed.

Click Browse and search for the Sanpl eMsgProcPl ugi n. j ar that was built in
"Extending the OIFMessageProcessingPlugin®.

Click Import to upload the JAR.
Refresh the table and search for the plug-in you just imported.
Click Distribute Selected.

Click the Refresh icon to confirm that the status has changed to Distributed.

10. Click Activate Selected.

11. Click the Refresh icon to confirm that the status has changed to Activated.

The plug-in has now been installed and activated.

9.4 Enabling the Message Processing Plug-in

Use this procedure to tell Identity Federation that the Sanpl eMsgPr ocPl ugi n. j ar is ready

ORACLE

for use.

1. Open the $DOVAI N_HOVE/ confi g/ f mrconfi g/ oam confi g. xm file in a text editor.

2. Find the Setting with name messagepr ocessi ngepl ugi n tag defined under the Setting
with name f edser ver confi g tag.

3. Change the value of nessagepr ocessi ngepl ugi n to the name of the plug-in.

4. Find the Setting with name messagepr ocessi ngenabl ed tag defined under the Setting
with name f edser ver confi g tag.

5. Change the value of messagepr ocessi ngenabl ed from false to true.

6. Find the Setting with name Versi on (near the top of the file) and increment the
version number.
This should be done every time the oam confi g. xnl file is modified.

7. Save the file.

When the version number in the oam confi g. ref file in the same directory has
increased to the new version number, the modifications have been loaded.

9-5

Using the REST API for Identity Federation

The Identity Federation Wiring REST API is designed to support establishment and
management of federation agreements. It facilitates SAML metadata exchange
between the Identity Provider partner and a Service Provider partner and enables or
disables federation SSO between those two partners. This chapter describes the
Oracle Access Management Identity Federation API.

Notes About Using cURL

This chapter uses cURL to demonstrate the REST calls that the identity federation
client sends to the identity federation server. cURL is free software that you can
download from the cURL website at http://curl. haxx. se/

Using cURL to send REST calls to the server can help you better understand how the
client interacts with the server. It can also be a helpful troubleshooting tool. Consider
the following when using this chapter.

* cURL commands that contain single quotes (') will fail on Windows. When
possible, use double quotes (") in place of single quotes.

e If a command requires both single quotes and double quotes, escape the double
guotes with a backslash (for example: \") and replace the single quotes with
double quotes.

" Note:

In this guide, line breaks in cURL commands and server responses are for
display purposes only.

Available Java API References

In addition to this Oracle Fusion Middleware Developer's Guide for Oracle Access
Management, the Oracle Fusion Middleware Java API Reference for Oracle Access
Management OAuth Services is available.

This section provides the following topics:

* Resource URLs
* URL Resources and Supported HTTP Methods
* Resources Summary

* cURL Command Examples for Identity Federation

ORACLE 10-1

http://curl.haxx.se/

Chapter 10
Resource URLs

10.1 Resource URLSsS

Resource URLs are structured to include the Access Manager product version, the
component exposed by the REST service, and the resources being invoked. The basic
structure of a resource URL is as follows:

http(s)://host:port/oanl services/rest/path
where:

e host is the host where the OAM Server is running.
e portisthe HTTP or HTTPS port.

- path is the relative path that identifies a particular resource. path is constructed
as /version/componentiservicel where:

— version - is the Access Manager product version, such as 11.1.2.0.0

— component - is the component exposed by the RESTful service, such as ssa
or fed

— service - is the root resource for that given API, such as hostidentifier

An example of a path value is: / oanf servi ces/rest/11. 1. 2. 0. 0/ f ed/ adni n/ sso/
hostidentifier/host_identifier_nane.

The Access Manager identity federation REST Web Application Description Language
(WADL) file lists the supported identity federation resources and methods. The Identity
Federation REST WADL document is available at htt p: / / HOST:PCRT/ oant ser vi ces/ rest /
11.1.2.0.0/fed/ adm n/ appl i cati on. wadl .

10.2 URL Resources and Supported HTTP Methods

Access Manager identity federation are mapped to URL resources. Each resource is
referenced by a global identifier (URI).

Access to URL resources is based on user role. The RESTful service expects user
credentials to be present in the Authentication header of the HTTP request in BASIC
mode. If the authenticated user has the policy administration role, the requested policy
administration action is performed.

10.3 Resources Summary

Table 5-5 provides detail about each policy resource, the supported HTTP methods,
and the results of each action.

Table 10-1 Access Manager Identity Federation Resources Summary

Resource Method Description
/ oam services/rest/ POST Enable Federation SSO service on the server and configure
11.1.2.0.0/fed/ adni n/ sso the logout done URL.

PUT Same as POST operation.

GET Get the enable status of the Federation SSO service and the

logout done URL

ORACLE

10-2

Chapter 10
Resources Summary

Table 10-1 (Cont.) Access Manager Identity Federation Resources Summary

Resource Method Description
/ oant services/rest/ POST A service provider (SP) or identity provider (IdP) partner
11.1.2.0.0/fed/ adm n/ resource is created. The request is performed on the resource
trustedpartners that is the parent of the
/ oam services/rest/ GET A list of IdP partners is retrieved by this method.
11.1.2.0.0/fed/ admin/
trustedpartners/idp
/ oant services/rest/ GET A list of SP partners is retrieved by this method. The resource
11.1.2.0.0/fed/ adni n/ that represents the Resource Types object is returned. This
trustedpartners/sp representation contains the matching Resource Type resource
attributes and their values.
/ oam services/rest/ POST A specific IdP partner resource is created by this method,
11.1.2.0.0/fed/ admi n/ where partnerName is the name of the partner to be created.
trust edpartners/idp/
part ner Nane
PUT Same as POST operation.
GET A specified IdP partner resource is retrieved by this method,
where partnerName is the name of the IDP partner requested.
DELETE A specified IdP partner resource is deleted by this method.
/ oani servi ces/rest/ POST A specific SP partner resource is created by this method,
11.1.2.0.0/fed/ admi n/ where partnerName is the name of the partner to be created.
trust edpartners/sp/
part ner Name
PUT Same as POST operation.
GET A specified SP partner resource is retrieved by this method,
where partnerName is the name of the SP partner requested.
DELETE A specified SP partner resource is deleted by this method.
The SP partner resource matching the ID or NAME query
parameters is deleted
/ oam services/rest/ POST A client uses this service to connect two federation servers to
11.1.2.0.0/fed/ admi n/ remote REST services by this method. In this case both the
orchestrator federation servers are OAM installation
/ oam services/rest/ POST A test SP resource is enabled or disabled by this method.
11.1.2.0.0/fed/ admi n/ testsp
PUT Same as POST operation.
GET A test SP resource is retrieved by this method.
/ oant services/rest/ POST A local server for local authentication or federation SSO is
11.1.2.0.0/fed/ admi n/ created using this method. This REST service is published on
ssoservice the Access Management Admin Server for backward
compatibility where the OIF 11gR1 server or existing OIF
REST clients will connect to those services. The input data
type is FORM POST data.
/ oant services/rest/ POST A specific SP partner resource is created using this method.

11.1.2.0.0/fed/ adm n/
trustedsppartners

This REST service is published on the Access Management
Admin Server for backward compatibility where the OIF 11gR1
server or existing OIF REST clients will connect to those
services. The input data type is FORM POST data.

ORACLE

10-3

Chapter 10
Resources Summary

Table 10-1 (Cont.) Access Manager Identity Federation Resources Summary

Resource

Method

Description

[oam services/rest/
11.1.2.0.0/fed/ adm n/
trustedi dppartners

POST

A specific IdP partner resource is created by this method. This
REST service is published on the Access Management Admin
Server for backward compatibility where the OIF 11gR1 server
or existing OIF REST clients will connect to those services.
The input data type is FORM POST data.

[oam services/rest/
11.1.2.0.0/fed/ adm n/
orchestrat orservice

POST

A client uses this service to connect two federation servers to
remote REST services. This REST service is published on the
Access Management Admin Server for backward compatibility
where the OIF 11gR1 server or existing OIF REST clients will
connect to those services. The input data type is FORM POST
data.

[oam services/rest/
11.1.2.0.0/fed/ adnm n/
testspservice

POST

A test SP resource is enabled or disabled by this method. This
REST service is published on the Access Management Admin
Server for backward compatibility where the OIF 11gR1 server
or existing OIF REST clients will connect to those services.
The input data type is FORM POST data.

oant servi ces/rest/
11.1.2.0.0/ssal pol i cyadni n/
resource

POST

A Resource object is created by this method. The request is
performed on the resource that is a parent of the object. A
Resource object matching the request is created in the
corresponding Application Domain.

/fedrest/configuresso

POST

Re-directs the respective fedrest url to / oam servi ces/rest/
11.1.2.0.0/fed/ admi n/ ssoservi ce. This is used to create a
local server for local authentication or federation SSO. This
REST service is published on the Access Management Admin
Server for backward compatibility where the OIF 11gR1 server
or existing OIF REST clients will connect to those
services.The input data type is FORM POST data.

/fedrest/createsp

POST

Re-directs the respective fedrest url to / oam servi ces/rest/
11.1.2.0.0/fed/ adni n/ trust edsppartners. This is used to
create a specific SP partner resource. This REST service is
published on the Access Management Admin Server for
backward compatibility where the OIF 11gR1 server or
existing OIF REST clients will connect to those services. The
input data type is FORM POST data.

/fedrest/createidp

POST

Re-directs the respective fedrest url to / oam servi ces/rest/
11.1.2.0.0/fed/ adni n/ trust edi dppart ners. This is used to
create a specific IdP partner resource. This REST service is
published on the Access Management Admin Server for
backward compatibility where the OIF 11gR1 server or
existing OIF REST clients will connect to those services. The
input data type is FORM POST data.

/ fedrest/orchestrator

POST

Re-directs the respective fedrest url to / oanl servi ces/rest/
11.1.2.0.0/fed/ admi n/ orchest rat or servi ce. This service is
used by a client to connect two federation servers to remote
REST services. This REST service is published on the Access
Management Admin Server for backward compatibility where
the OIF 11gR1 server or existing OIF REST clients will
connect to those services. The input data type is FORM POST
data.

ORACLE

10-4

Chapter 10
cURL Command Examples for Identity Federation

10.4 cURL Command Examples for Identity Federation

The following examples are provided as reference.

Configuring SSO Service using POST cURL Command
Retrieving SSO Service using GET cURL Command
Configuring SSO Service using PUT cURL Command
Creating an SP Partner cURL Command

Listing all SP Partners cURL Command

Retrieving SP Parther Data cURL Command

Updating SP Partner Details cURL Command

Deleting SP Partner Details cURL Command

Enabling Test SP using POST cURL Command
Retrieving Test SP Enablement using GET cURL Command
Disabling Test SP using PUT cURL Command

Configuring SSO Service using POST cURL Command using /fedrest/
configuresso

Creating an SP Partner cURL Command using /fedrest/createsp
Creating an IdP Partner cURL Command using /fedrest/createidp

Connecting Federation Servers to remote REST services using /fedrest/
orchestrator

10.4.1 Configuring SSO Service using POST cURL Command

The REST endpoint /oam/services/rest/11.1.2.0.0/fed/admin/sso request is used to
configure the SSO service when the customer is the identity provider using the POST
method. This API is used for wiring with Fusion Applications and it configures the
FAAuthScheme.

ORACLE

For Fusion Applications, IdP is configured at global level to:

Enable SAML 2.0 only.

Enable SSO POST, SSO Artifact, SLO Redirect profiles only.
NamelD

— Email Address with mail as the attribute of the user.

— Unspecified with uid as the attribute of the user (default).

One set of keys/certificates for SAML operations

OAMI/Fed will be able to have specific SP Partner configuration:

SSO binding to be used.
NamelD format and value to be used.

NamelD format and value to be used.

10-5

Chapter 10
cURL Command Examples for Identity Federation

« Extra attributes to be sent.

— NamelD value sent as an attribute: SP Partner will indicate the SAML Attribute
name, and whether to send user’s ID or email address.

— Static attribute value used by the SP during Assertion mapping operations: SP
Partner will indicate the SAML Attribute name and its value.

When IdP needs to authenticate the user, it will redirect the user to an URL
protected by WebGate OAM with the FAAuthScheme:

* If OAM is configured for local authentication, FAAuthScheme will instruct OAM to
display a login page for the user to enter its credentials.

* If OAM is configured for Federation SSO, FAAuthScheme will instruct OAM to start
a Federation SSO flow by redirecting the user to SaaS OIF/SP.

* If OAM is configured to let the user decide how to authenticate, FAAuthScheme
will instruct OAM to display a chooser page and to then perform a local
authentication or Federation SSO operation, depending on the user’s choice.

The following is a sample file for this cURL command.
Where

» ssoFederation

— is the setting in FAAuthScheme that enables federated SSO for the protected
resource.

» ssoChooser

— is the setting that enables the login page to show both federated SSO link and
local login with username and password.

¢ oamLogoutDoneURL

— is the URL to redirect after user has been logged out through single logout.

curl -X
POST -H "Content-Type: application/json" -d '{"ssoFederation": "true",
"ssoChooser": "fal se", "oanLogout DoneURL": "http://test.com custonlogout"}’

http://hostname: 7001/ oanf servi ces/rest/11.1.2.0.0/fed/ adnm n/ sso --user
USER: PASSWORD

Sample result:

{

"status":"1",
"statusMessage":""}

10.4.2 Retrieving SSO Service using GET cURL Command

ORACLE

The REST endpoint /oam/services/rest/11.1.2.0.0/fed/admin/sso request is used to
retrieve the SSO service information when the customer is the identity provider using
the GET method.

The following is a sample file for this cURL command.

curl -u USER PASSWORD - -request GET
"http://hostnane: 7001/ oam servi ces/rest/11.1.2.0.0/fed/ adni n/sso'

Sample result:

10-6

Chapter 10
cURL Command Examples for Identity Federation

{

"ssoFederation":"true",

"ssoChooser": "fal se",

"oamLogout DoneURL": "http://test.conl cust omLogout”
}

10.4.3 Configuring SSO Service using PUT cURL Command

The REST endpoint /oam/services/rest/11.1.2.0.0/fed/admin/sso request is used to
configure the SSO service when the customer is the identity provider using the PUT
method.

The following is a sample file for this cURL command.

curl -X PUT -H "Content-Type: application/json" -d '{"ssoFederation": "false",
"ssoChooser": "fal se", "oanLogout DoneURL": ""}'

http://hostname: 7001/ oanf servi ces/rest/11.1.2.0.0/fed/ adn n/sso --user

USER: PASSWORD

Sample result:

{

"status":"1",

"stat usMessage":

}

10.4.4 Creating an SP Partner cURL Command

ORACLE

The REST endpoint /oam/services/rest/11.1.2.0.0/fed/admin/trustedpartners/ sp/
partnerName request creates a Trusted Partners Service. The service /
trustedpartners/sp/acmeSP is used, containing the name of the SP Partner.

The following is a sample file for this cURL command.
Where

« metadataB64

— is the hexadecimal string corresponding to base 64 encoding of the peer
partner's metadata XML. When using curl, you will have to escape the + signs
in the base 64 encoded metadata string.

* ssoProfile
— the SAML 2.0 SSO profile to use (artifact or httppost)
¢ namelDFormat

— the NamelD format used during Federation SSO. Possible values are
emailaddress or unspecified. If emailaddress, then the NamelD value of an
Assertion created by the IdP will contain the user’'s email address; if
unspecified, then the NamelD value of an Assertion created by the IdP will
contain the user’s ID.

curl -X PCST
-H "Content-Type: application/json" -d
“{ "metadataB64": "...", "partnerType": "sp", "partnerName": "acnmeSP",

"namel DFormat ": "unspecified", "ssoProfile": "httppost" }'
http:// SERVER PORT/ oani servi ces/rest/11.1.2.0.0/fed/ admi n/trustedpartners/sp/a
cmeSP --user USER PASSWORD

10-7

Chapter 10
cURL Command Examples for Identity Federation

Sample result:

{

“status":"1",
"statusMessage":""

}

10.4.5 Listing all SP Partners cURL Command

ORACLE

The REST endpoint /oam/services/rest/11.1.2.0.0/fed/admin/trustedpartners/sp
request retrieves a list of Trusted Partners Services.

The following is a sample file for this cURL command.

curl -u USER PASSWORD - -request GET
"http://hostnane: 7001/ oanm services/rest/11.1.2.0.0/fed/ adm n/trustedpartners/sp'

Sample result:

{
"partnerlnfolist":
[

{
"met adat aB64": "... ",

"partnerName": "acneSP",

"namel DFor mat ": "unspeci fied",

"ssoProfile":"httppost"”,

"provider|D':"http://acne: 7499/ fed/ sp",

"assertionConsunmer URL": "http://acme: 7777/ f ed/ sp/ sso",

"1 ogout Request URL": "http://acme: 7777/ fed/ i dp/ sam v20",

"1 ogout ResponseURL": "http://acme: 7777/ fed/i dp/ sam v20",
"admi nManual Creation":"fal se",

"di spl aySi gni ngCert DN': "CN=acme O F Signing Certificate",
"di spl aySi gni ngCert | ssuer DN': " CN=Ql FCert ",

"di spl aySi gni ngCert Start":"2014- 10- 07T06: 32: 16- 07: 00",

"di spl aySi gni ngCert Expiration":"2024-10- 11T06: 32: 17- 07: 00",
"di spl ayEncryptionCertDN':" CN=acme O F Enc Certificate",
"di spl ayEncryptionCertlssuerDN':"CN=Ql FCert",

"di spl ayEncryptionCertStart": "2014-10- 07T06: 32: 16-07: 00",
"di spl ayEncryptionCert Expiration":"2024- 10- 11T06: 32: 17-07: 00"

met adat aB64":"...",

"partnerNane":"ci scoSP",

"nanel DFormat": "emai | addr ess”,

"ssoProfile":"httppost"”,

"providerID':"http://cisco: 7499/ fed/ sp",
"assertionConsunmer URL": "http://cisco: 7777/ fed/ sp/ sso",

"1 ogout Request URL": "http://cisco: 7777/ fed/i dp/ sam v20",

"1 ogout ResponseURL": "http://cisco: 7777/ fed/i dp/ sam v20",

"] ast NameAt t r Name": "| ast nane”,

"firstNameAttrName": "firstnane",

“user NameAt t r Name": "user name",

"emai | AttrNane": "enmail"

"admi nManual Creation":"fal se",

"di spl aySi gni ngCert DN": "CN=ci sco O F Signing Certificate",
"di spl aySi gni ngCert | ssuer DN": " CN=Ql FCert ",

"di spl aySi gni ngCert Start":"2014- 10- 07T06: 32: 16- 07: 00",

"di spl aySi gni ngCert Expiration":"2024-10- 11T06: 32: 17- 07: 00",
"di spl ayEncryptionCertDN':" CN=cisco O F Enc Certificate",

10-8

Chapter 10
cURL Command Examples for Identity Federation

"di spl ayEncryptionCertlssuer DN': "CN=Ol FCert",

"di spl ayEncryptionCertStart":"2014-10- 07T06: 32: 16- 07: 00",

"di spl ayEncryptionCert Expiration":"2024-10- 11T06: 32: 17- 07: 00"
}

|

}

10.4.6 Retrieving SP Partner Data cURL Command

The REST endpoint /oam/services/rest/11.1.2.0.0/fed/admin/trustedpartners/sp/
partnerName request retrieves information for a specific Trusted Partners Service.

The following is a sample file for this cURL command.

curl -u USER PASSWORD - -request GET
"http://hostnanme: 7001/ oant servi ces/rest/11.1.2.0.0/fed/adm n/trust edpartners/sp/
acmeSP

Sample result:

{

"met adat aB64":"...",
"partnerName": "acnmeSP",

"namel DFormat ": "unspeci fied",

"ssoProfile":"httppost",

"provider|D":"http://acne: 7499/ fed/ sp",

"assertionConsuner URL": "http://acme: 7777/ f ed/ sp/ sso",

"] ogout Request URL": "http://acne: 7777/ fed/i dp/ sam v20",

"] ogout ResponseURL": "http://acne: 7777/ fed/ i dp/ sam v20",
"adni nManual Creation": "fal se",

"di spl aySi gni ngCert DN": "CN=acnme O F Signing Certificate",
"di spl aySi gni ngCert | ssuer DN': "CN=Ol FCert",

"di spl aySi gni ngCert Start":"2014-10- 07706: 32: 16- 07: 00",

"di spl aySi gni ngCert Expiration":"2024-10- 11T06: 32: 17-07: 00",
"di spl ayEncryptionCertDN':" CNcacme O F Enc Certificate",
"di spl ayEncryptionCertlssuer DN': "CN=Ol FCert",

"di spl ayEncryptionCertStart":"2014-10- 07T06: 32: 16- 07: 00",
"di spl ayEncryptionCert Expiration":"2024-10- 11T06: 32: 17- 07: 00"

10.4.7 Updating SP Partner Details cURL Command

ORACLE

The REST endpoint /oam/services/rest/11.1.2.0.0/fed/admin/trustedpartners/sp/
partnerName request is used to modify information for a specific Trusted Partners
Service.

The following is a sample file for this cURL command.

curl -X PUT
-H "Content-Type: application/json" -d
"{ "netadataB64": "..." }'

http://hostname: 7001/ oanf services/rest/11.1.2.0.0/fed/ admi n/trustedpartners/sp/acm
eSP --user USER PASSWORD

Sample result:

{

"status":"1",
"statusMessage":""

}

10-9

Chapter 10
cURL Command Examples for Identity Federation

10.4.8 Deleting SP Partner Details cURL Command

The REST endpoint /oam/services/rest/11.1.2.0.0/fed/admin/trustedpartners/sp/
partnerName request is used to delete information for a specific Trusted Partners
Service.

The following is a sample file for this cURL command.

curl -u

USER: PASSWORD - - request DELETE

"http://hostnanme: 7001/ oant servi ces/rest/11.1.2.0.0/fed/adm n/trust edpartners/sp/
acmeSP

Sample result:

{

"status":"1",

"stat usMessage":

}

10.4.9 Enabling Test SP using POST cURL Command

The REST endpoint/oam/services/rest/11.1.2.0.0/fed/admin/testsp service request is
used to enable a test SP using the POST method.

The following is a sample file for this cURL command.

curl -X PCST

-H "Content-Type: application/json" -d '{"enabled": "true"}'
http://hostname: 7001/ oam servi ces/rest/11.1.2.0.0/fed/ adnmi n/testsp
--user USER PASSWORD

Sample result:

{

"status":"1",

"stat usMessage":

}

10.4.10 Retrieving Test SP Enablement using GET cURL

Command

ORACLE

The REST endpoint /oam/services/rest/11.1.2.0.0/fed/admin/testsp service request is
used to retrieve test SP enablement details using the GET method.

The following is a sample file for this cURL command.

curl -u USER PASSWORD - -request GET
"http://hostnane: 7001/ oam servi ces/rest/11.1.2.0.0/fed/ adni n/test sp'

Sample result:

{

"enabl ed": "true"

}

10-10

Chapter 10
cURL Command Examples for Identity Federation

10.4.11 Disabling Test SP using PUT cURL Command

The REST endpoint/oam/services/rest/11.1.2.0.0/fed/admin/testsp service request is
used to disable a test SP using the PUT method.

The following is a sample file for this cURL command.

curl -X PUT

-H "Content-Type: application/json" -d '{"enabled": "false"}'
http://hostname: 7001/ oanf servi ces/rest/11.1.2.0.0/fed/ admi n/testsp
--user USER PASSWORD

Sample result:

{

"status":"1",

"stat usMessage":

}

10.4.12 Configuring SSO Service using POST cURL Command
using Ifedrest/configuresso

The /fedrest/configuresso request redirects the request url to the actual required
url /oam/services/rest/11.1.2.0.0/fed/admin/ssoservice, which is used to configure the
SSO service when the customer is the identity provider using the POST method.

The following is a sample file for this cURL command.

curl -v -i -u USER PASSWORD
-X PCST -d @soConfigureData.in http://SERVER PORT/fedrest/configuresso

File ssoConfigureData.in:

spTenant Name= & dpProvi der | D=
&preverify=fal se

&ssoFederati on=true
&ssoChooser =t rue

&oanadni nuser =USER

&oamadni npasswor d=PASSWORD
&oanadni nhost =SERVER

&oamadmi npor t =PORT

curl -u USER PASSWORD --data "spTenant Nane=""& dpProvi der | D=""
&preverify="fal se"&ssoFederation="true"&soChooser="true"

&oamadmi nuser =" USER" &anmadni npasswor d=" PASSWORD"

&oamadmi nhost =" SERVER"

&oamadmi nport =" PORT"

&oanLogout DoneURL=""" --request

POST ' http:// SERVER PORT/ oani servi ces/rest/11.1.2.0.0/fed/ adm n/ ssoservice';
-X PCST -d @soConfigureData.in http://SERVER PORT/fedrest/configuresso

ORACLE 10-11

Chapter 10
cURL Command Examples for Identity Federation

10.4.13 Creating an SP Partner cURL Command using /fedrest/

createsp

ORACLE

The /fedrest/createsp request redirects the request url to the actual required url/oam/
services/rest/11.1.2.0.0/fed/admin/trustedsppartners, which creates a Trusted Partners
Service.

The following is a sample file for this cURL command.
Where

* ssoProfile
— the SAML 2.0 SSO profile to use (artifact or httppost).
¢ namelDFormat

— the NamelD format used during Federation SSO. Possible values are
emailaddress or unspecified. If emailaddress, then the NamelD value of an
Assertion created by the IdP will contain the user’'s email address; if
unspecified, then the NamelD value of an Assertion created by the IdP will
contain the user’s ID.

curl -v -i -u USER PASSWORD
-X PCST -d @pCurlData.in http://HOST: PORT/ f edrest/ creat esp

File spCurlData.in:

i dpTenant Nane=& dpTenant URL=

&spPar t ner Name=spPar t ner - sanpl e

&spProvi der | D=&net adat a=

&net adat aURL=&asser t i onConsuner URL=&l ogout Request URL=

&l ogout ResponseURL=4&si gni ngCert =&encryptionCert =

&namel DFor mat =unspeci fi ed&ssoProf i | e=arti f act &gener at eNewKeys=

&val i di t yNewKeys=&pr everify=f al se& ast NaneAt t r Nane=&f i r st NaneAt t r Nanme=

&user NameAt t r Name=&enmi | At t r Nane=&st ati cAtt r Nane=&st ati cAt trVal ue=&cust omAt trs=

curl -v -i -u USER PASSWORD
-X PCST -d @pCurlData.in
https:// SERVER PORT/ oanl servi ces/rest/11.1.2.0.0/fed/ adni n/ trust edsppartners

File spCurlData.in:

i dpTenant Nanme=

& dpTenant URL=&spPar t ner Name=spPar t ner - sanpl e

&spProvi der | D=&net adat a=&ret adat aURL=

&asserti onConsuner URL=&l ogout Request URL=

&l ogout ResponseURL=4&si gni ngCert =&encryptionCert =

&namel DFor mat =unspeci fi ed&ssoProf i | e=arti f act &gener at eNewKeys=

&val i di t yNewKeys=&preveri fy=f al se& ast NaneAt t r Name=&f i r st NaneAt t r Name=

&user NarmeAt t r Name=&enai | At t r Name=&st ati cAttrName=&st ati cAttrVal ue=&cust omAttrs=. ..

10-12

Chapter 10
cURL Command Examples for Identity Federation

10.4.14 Creating an IdP Partner cURL Command using /fedrest/

createidp

ORACLE

The /fedrest/createidp request redirects the request url to the actual required url /oam/
services/rest/11.1.2.0.0/fed/admin/trustedidppartners, which creates a Trusted IdP
Partner Service.

The following are sample files for this cURL command.
Where

» ssoProfile
— the SAML 2.0 SSO profile to use (artifact or httppost).
 namelDFormat

— the NamelD format used during Federation SSO. Possible values are
emailaddress or unspecified. If emailaddress, then the NamelD value of an
Assertion created by the IdP will contain the user’'s email address; if
unspecified, then the NamelD value of an Assertion created by the IdP will
contain the user’s ID.

curl -v -i -u USER PASSWORD
-X PCST -d @dpCurl Data.in http://SERVER: PORT/ f edrest/createi dp

File idpCurlData.in:

spTenant Nane=&spTenant URL=

& dpPar t ner Nane=i dpPar t ner - sanpl e

& dpProvi der | D=&net adat a=

&net adat aURL=&sS0URL=&ss0SCAPURL=

&l ogout Request URL=&l ogout ResponseURL=4&si gni ngCert =

&encrypti onCert =&succi nct | D=&nanel DFor mat =enai | addr ess
&attribut eLDAP=&at tri but eSAM_.=&ssoProfil e=artifact

&f a\el conePage=4&t enant KeyNane=&t enant KeyVal ue=&gener at eNewkeys=
&val i di t yNewKeys=&pr everify=fal se

curl -v -i -u USER PASSWORD
-X PCST -d @dpCurlData.in
https:// SERVER PORT/ oanl services/rest/11.1.2.0.0/fed/ adni n/ trust edi dppartners

File idpCurlData.in:

spTenant Name=&spTenant URL=

& dpPart ner Nane=i dpPar t ner - sanpl e& dpProvi der | D=

&net adat a=&net adat aURL=8sS0URL=&s50SCAPURL=

&l ogout Request URL=&l ogout ResponseURL=4&si gni ngCert =
&encryptionCert =&succi nct | D=&nanel DFor mat =emai | addr ess
gattribut eLDAP=&at tri but eSAML=&ssoProfile=artifact

&f a\el comePage=4&t enant KeyNane=&t enant KeyVal ue=
&gener at eNewKeys=&val i di t yNewKeys=&pr everi f y=f al se

10-13

Chapter 10
cURL Command Examples for Identity Federation

10.4.15 Connecting Federation Servers to remote REST services
using /fedrest/orchestrator

ORACLE

The /fedrest/orchestrator request redirects the request url to the actual required
url/loam/services/rest/11.1.2.0.0/fed/admin/orchestrator, which connect two federation
servers to remote REST services.

The following are sample files for this cURL command.
Where

» ssoProfile
— the SAML 2.0 SSO profile to use (artifact or httppost).
* namelDFormat

— the NamelD format used during Federation SSO. Possible values are
emailaddress or unspecified. If emailaddress, then the NamelD value of an
Assertion created by the IdP will contain the user’'s email address; if
unspecified, then the NamelD value of an Assertion created by the IdP will
contain the user’s ID.

curl -v -i -u USER PASSWORD
-X POST -d @rch.in http://SERVER PORT/f edrest/orchestrator

File orch.in:

conmmand=set upSPAndI dPTr ust

&spresturl =https:// SERVER PORT/ f edrest/createi dp

&spadmi nuser =USER&spadni npasswor d=PASSWORD

&sprnet adat aur | =& dpPar t ner Nane=sanpl e- i dp&spt ype=oi f

& dpresturl =http://SERVER PORT/ f edrest/ creat esp

& dpadmi nuser =USER&i dpadni npasswor d=PASSWORD

& dpnet adat aur | =&spPar t ner Nane=sanpl e- sp

& dpt ype=oi f &anel DFor nmat =enai | addr ess&ssoPr of i | e=ht t ppost

" Note:

idpmetadataurl and spmetadataurl should be url encoded.

curl -v -i -u USER PASSWORD
-X PCST -d @rch.in
htt ps:// SERVER: PORT/ oanf servi ces/rest/11.1.2.0.0/fed/ admi n/ or chestrat or servi ce

File orch.in:

conmand=set upSPAnd| dPTr ust

&spresturl =http:// SERVER PORT/ oan servi ces/rest/11.1.2.0.0/fed/ adm n/
trust edi dppartners

&spadm nuser =USER

&spadm npasswor d=PASSWORD

&spnet adat aur | =

10-14

Chapter 10
cURL Command Examples for Identity Federation

& dpPart ner Nane=sanpl e-i dp
&spt ype=oi f
& dpresturl =http://SERVER PORT/ oam services/rest/11.1.2.0.0/fed/ adm n/trustedsp

ORACLE 10-15

Implementing Custom Authentication
Actions

Custom authentication actions enable site-specific operations to be executed during a
Federation single sign-on flow with Oracle Access Management Identity Federation
acting as an ldentity Provider. These actions can be used to authenticate the user or
check the validity of the user's session if the user is already authenticated.

The following sections explain how to implement custom authentication actions.

e Understanding Custom Authentication Actions
e Using Pre-Processing Custom Actions

e Example: Custom Action Pre-processing

* Using Post-Processing Custom Actions

e Example: Custom Action Post-Processing

11.1 Understanding Custom Authentication Actions

The Oracle Access Management ldentity Federation server (Identity Federation)
implements custom actions using the pre- and post-processing action plug-ins. The
pre- and post-processing plug-ins are implemented as JSP or JavakEE servlets which
are invoked during a Federation single sign-on (SSO) flow either before or after
invoking Oracle Access Manager. The following sections explain how the actions work
and how they interact with Identity Federation.

» Using Pre and Post Processing Custom Authentication Actions
» Setting Up a Custom Authentication Action Plug-in

* Understanding the Custom Action Flow

11.1.1 Using Pre and Post Processing Custom Authentication Actions

ORACLE

Identity Federation acting as an Identity Provider (IdP) always invokes Oracle Access
Manager during a Federation SSO operation. This is done either to identify the user or
to check the user's session to see if the user is already authenticated. If Identity
Federation determines the user must be identified, the user is forwarded to Oracle
Access Manager, specifying the root context and the relative path of the OAM
endpoint. At this point, Oracle Access Manager will:

* Perform an authentication operation if necessary.
» Check the validity of the user's session

* (Optionally) perform an Authorization verification to ensure that the user can
perform a Federation SSO operation with the SP Partner.

If these operations are successful, Oracle Access Manager forwards the user back to
Identity Federation with the authentication information (a user identifier and the time at
which the identity was established). Identity Federation analyzes the information and

11-1

Chapter 11
Understanding Custom Authentication Actions

creates or updates the user session. Custom actions can be used during this
interaction to:

* Manipulate the data exchanged between Identity Federation and the Oracle
Access Manager Authentication Engine. For example, you can construct an email
address from a user name: j ohndoe becomes j ohndoe@ryconpany. com

» Perform additional steps during authentication. For example, you can contact an
external data source or system to obtain more information about the user.

11.1.2 Setting Up a Custom Authentication Action Plug-in

The following overview illustrates how to set up a custom action plug-in.

1. Implement one or more custom action plug-ins as explained.

* Implement a pre-processing action plug-in to be performed before invoking
Oracle Access Manager. (See "Using Pre-Processing Custom Actions.")

* Implement a post-processing plug-in for any actions or changes to be
performed after authentication. This would occur when the user is returned
from Oracle Access Manager to Identity Federation. (See "Using Post-
Processing Custom Actions.")

2. Deploy the plug-in(s) to the WebLogic Managed Server on which Oracle Access
Manager is running.

3. Configure Identity Federation based on the plug-in task you are implementing.

» Configure ldentity Federation to invoke the plug-in (rather than Oracle Access
Manager) if the plug-in is to perform pre-processing tasks.

» Configure Identity Federation to have Oracle Access Manager invoke the plug-
in (rather than redirecting to Identity Federation) if the plug-in is to perform
post-processing tasks.

11.1.3 Understanding the Custom Action Flow

When Identity Federation needs to authenticate a user, the flow is as follows.

1. ldentity Federation, as part of a runtime IdP SSO flow, determines whether the:
e User needs to be locally authenticated by Oracle Access Manager.

e User has an existing session and needs to be forwarded to Oracle Access
Manager to check the validity of the session.

2. ldentity Federation (acting as the IdP) invokes the pre-processing plug-in to
perform the applicable custom tasks.

3. The pre-processing plug-in invokes Oracle Access Manager.

4. Oracle Access Manager challenges and authenticates the user, or checks the
validity of the user's session.

5. Oracle Access Manager bundles the authentication data and invokes the post-
processing plug-in to perform applicable custom tasks.

6. The post-processing plug-in invokes Identity Federation, providing the
authentication data.

7. ldentity Federation (acting as an IdP) resumes operations.

ORACLE 11-2

Chapter 11
Using Pre-Processing Custom Actions

Figure 11-1 illustrates this flow when Identity Federation is customized and configured
to invoke plug-ins:

» Before Identity Federation invokes Oracle Access Manager for authentication or
session validation. (See "Using Pre-Processing Custom Actions.")

- Before Oracle Access Manager invokes Identity Federation after authentication or
session validation. (See "Using Post-Processing Custom Actions.")

Figure 11-1 Custom Actions Plug-in Flow

WLS Managed Server

OIF / IdP | Pre-Processing OAM
Action Plugin
SAML / WS-Fed / _— " 7 Federation
OpenlD i 5 Authentication
*_| Posi-Processing
Federation Engine e - Module
L

11.2 Using Pre-Processing Custom Actions

The pre-processing plug-in is a module to which the user is directed, as part of an
authentication operation, before invoking Oracle Access Manager. The plug-in enables
custom actions to be taken before authentication. When the plug-in is in use, ldentity
Federation does not redirect the user to the Authentication Engine; rather, it forwards
the user internally to the plug-in, passing to it certain data for use during
authentication. After performing its custom actions, the plug-in forwards the user to
Oracle Access Manager, along with the data originally provided by Identity Federation,
to resume the authentication flow. The following sections contain details.

» Passing Data to the Pre-Processing Plug-in

» Configuring Identity Federation for the Pre-Processing Action

11.2.1 Passing Data to the Pre-Processing Plug-in

ORACLE

The pre-processing custom action interacts with Identity Federation. When Identity
Federation redirects a user to Oracle Access Manager, it passes certain data as
attributes in the Ht t pSer vl et Request object. The same data must be made available to
pre-processing plug-ins. The data includes:

* The default scheme identifier to be used to challenge the user. This String is
identified by oracl e. security. f ed. aut hn. def aul t schenei d.

» Alist of scheme identifiers requested by the service provider (SP) to be used to
challenge the user. This String list is identified by
oracle.security.fed.authn. schenei dl evel s.

* The comparison rule requested by the SP to determine the scheme with which to
challenge the user when a list of scheme identifiers is provided. This is a String
identified by oracl e. securi ty. f ed. aut hn. schenei dconp.

e The Force Authentication flag indicating whether Oracle Access Manager should
challenge the user - even if the user is already authenticated. This is a Boolean
identified by oracl e. security. fed. aut hn. f or ceaut hn. If missing, false is assumed.

11-3

Chapter 11
Using Pre-Processing Custom Actions

The Is Passive flag indicating whether Oracle Access Manager is allowed to
visually interact with the user. This is a Boolean identified by
oracle. security. fed. aut hn. passi ve. If missing, false is assumed.

An identifier referencing the action being performed. This String is identified by
oracle.security.fed.authn.refid.

The identifier (userID) of the user if set. This String is identified by
oracle. security.fed.authn. userid.

The canonical user identifier of the user (userID + Identity Store Name + LDAP
DN) if set. This String is identified by oracl e. securi ty. f ed. aut hn. canoni cal useri d.

The Identity Federation SessionID if set. This String is identified by
oracle.security.fed. sessionid.

The identifier referencing the Oracle Access Manager server used to authenticate
the user. This String is identified by oracl e. security. f ed. aut hn. engi nei d.

The partner name and the description of the remote SP for which this local
authentication is requested, if a federated SSO operation is performed. This String
is identified by oracl e. security. fed. aut hn. provi deri d and

oracle.security. fed. aut hn. provi derdescri pti on respectively.

The web context where the user should be redirected after authentication by
Oracle Access Manager. This String is identified by
oracle.security. fed. return. webcontext. The root web context is /oam.

The web relative path where the user should be redirected after authentication by
Oracle Access Manager. This String is identified by
oracle.security. fed.return. webpat h. The relative path is /server/fed/authn.

Note:

The pre-processing plug-in can modify all attributes that were set in the
Ht t pSer vl et Request object except the following:

e oracle.security.fed.authn.defaultschemeid
e oracle.security.fed.authn.schemeidlevels
e oracle.security.fed.authn.schemeidcomp
e oracle.security.fed.authn.refid

e oracle.security.fed.authn.engineid

e oracle.security.fed.return.webcontext

e oracle.security.fed.return.webpath

11.2.2 Configuring Identity Federation for the Pre-Processing Action

ORACLE

Configure Identity Federation to forward the user to a pre-processing plug-in by
performing these tasks.

Enter the WLST environment.
$| AM_HOVE/ common/ bi n/ wi st. sh
Connect to the WLS Admin Server.

11-4

Chapter 11
Example: Custom Action Pre-processing

connect ()
3. Navigate to the Domain Runtime folder.
domai nRunt i me()
4. Execute the put StringProperty() WLST command to set the following properties:

e The preauthnenginewebcontext property references the web context where
the custom JSP Page or servlet of the pre-processing plug-in resides. Replace
CUSTOM_WEB_CONTEXT with the value specific to your plug-in.

putStringProperty("/authnengines/preauthnenginewebcontext",
"CUSTOM_WEB_CONTEXT ")

e The preauthnenginewebpath property references the path in the web context
where the pre-processing plug-in resides. Replace CUSTOM_WEB_PATH
with the value specific to your plug-in.

putStringProperty("/authnengines/preauthnenginewebpath”,
"CUSTOM_WEB_PATH")

5. [Execute the put Bool eanProperty() WLST command to enable or disable the pre-
processing custom plug-in.

» putBooleanProperty("/authnengines/preauthnengineenabled", "true") to
configure Identity Federation to invoke the pre-processing plug-in.

» putBooleanProperty("/authnengines/preauthnengineenabled", "false") to
configure Identity Federation not to invoke the pre-processing plug-in.

11.3 Example: Custom Action Pre-processing

ORACLE

This section illustrates a simple pre-processing plug-in that is invoked by Identity
Federation before the user is redirected to Oracle Access Manager. This pre-
processing plug-in retrieves the name of the SP partner with which the Federation
SSO operation is performed and will save it in a custom cookie that can be used by
custom pages; for example, a custom error page. In this example:

e |dentity Federation acts as an IdP

e A custom pre-authentication plug-in is used in this example to set a cookie
containing the SP partner name. The cookie is called fed-sppartner-cookie.

The pre-processing plug-in consists of a Web application with a root context set to /
plugin. It contains one JSP page (named cooki epart ner set. j sp) which sets the SP
partner name in a cookie. cookiepartnerset.jsp is an example implementation of
cooki epartnerset.jsp.

cookiepartnerset.jsp

<Y%@age buffer="5" aut oFl ush="true" session="fal se" %

<%@age | anguage="java" inmport="java.util.*, javax.namng.*,
javax. naming.directory.*, java.net.*"%

<%

response. set Header (" Cache- Control ", "no-cache");

response. set Header ("Pragma", "no-cache");

response. set Header ("Expires", "Thu, 29 CQct 1969 17:04:19 GVI");

String partnerName = (String)request.getAttribute
("oracle.security.fed. authn. providerid");

11-5

Chapter 11
Using Post-Processing Custom Actions

Cooki e cooki e = new Cooki e("fed-sppartner-cookie", partnerName);
response. addCooki e(cooki e) ;

/] forward to the OAM server to resume the flow

request . get Sessi on(). get Servl et Cont ext (). get Cont ext ("/oant'). get Request Di spat cher
("/server/fed/authn").forward(request, response);

%

Note:

The WAR file of this Web application will need to be deployed to the WLS
Managed Server on which Oracle Access Manager is running.

To resume the flow, the plug-in redirects the user to Oracle Access Manager by
means of an internal forward. Take the following steps to configure Identity Federation
to invoke the pre-processing plug-in.

1. Enter the WLST environment:
$| AM_HOVE/ common/ bi n/ Wl st . sh

2. Connect to the WLS Admin Server:
connect ()

3. Navigate to the Domain Runtime folder:
domai nRunt i me()

4. Execute the put StringProperty() WLST command to set the
preauthnenginewebcontext property.

putStringProperty("/authnengines/preauthnenginewebcontext”, "/plugin")

5. Execute the put StringProperty() WLST command to set the
preauthnenginewebpath property.

putStringProperty("/authnengines/preauthnenginewebpath”, "/
cookiepartnerset.jsp")

6. Execute the put Bool eanProperty() WLST command to enable the pre-processing
plug-in to be invoked by Identity Federation.

putBooleanProperty("/authnengines/preauthnengineenabled”, "true")

11.4 Using Post-Processing Custom Actions

ORACLE

The user is directed to the post-processing plug-in module, as part of an authentication
operation, after the Oracle Access Manager Authentication Engine has completed
processing and before the user is directed to Identity Federation. The plug-in enables
custom actions to be taken after authentication.

When the post-processing plug-in is in use, Oracle Access Manager forwards the user
and authentication data internally to it. After performing its custom actions, the plug-in
returns the user to ldentity Federation, supplying the authentication data. The plug-in
must provide Identity Federation with the data that was passed to it as part of the
authentication flow; this consists of attributes that were set in the Ht t pSer vl et Request
object. The following sections have details.

11-6

Chapter 11
Using Post-Processing Custom Actions

» Passing Data to the Post-Processing Plug-in

» Configuring Identity Federation for the Post-Processing Action

11.4.1 Passing Data to the Post-Processing Plug-in

ORACLE

The post-processing plug-in interacts with Identity Federation. When Oracle Access
Manager redirects a user to Identity Federation, it passes certain data to the plug-in as
attributes in the Ht t pSer vl et Request object. The data includes:

* The identifier referencing the requested action that was performed. The String is
identified by oracl e. security. fed. aut hn.refid.

* The schemelD and level of the authentication performed by Oracle Access
Manager. The String is identified by
oracle.security.fed.authn.result.scheneidl evel .

* The result of the authentication operation. The String is identified by
oracle.security.fed.authn.resul t.statuscode as SUCCESS, if the operation was
successful.

e The partner name of the remote SP for which this local authentication is requested
if a federated SSO operation is performed. The String is identified by
oracle.security. fed. authn. providerid.

* The Oracle Access Manager module identifier used to authenticate the user. The
String is identified by oracl e. security. f ed. aut hn. engi nei d.

e The canonical identifier of the user (userID + Identity Store Name + LDAP DN).
The String is identified by oracl e. security. fed. aut hn. useri d.

* The authentication time. The Date is identified by
oracle.security. fed. aut hn. aut hntine.

e The expiration time of the authenticated session. The Date is identified by
oracle.security.fed.authn.expirationtinme.

* The user's Oracle Access Manager SessionID. The String is identified by
oracle.security. fed. aut hn. oansessi oni d.

* The user's Oracle Access Manager Session type. The String is identified by
oracle.security. fed. aut hn. oansessi ont ype.

* The Identity Federation SessionID if set. The String is identified by
oracle.security.fed. sessionid.

Note:

The plug-in can modify all attributes that were set on the Ht t pSer vl et Request
object except:

e oracle.security.fed.authn.result.schemeidlevel
e oracle.security.fed.authn.engineid

e oracle.security.fed.authn.oamsessionid

e oracle.security.fed.authn.oamsessiontype

e oracle.security.fed.sessionid

11-7

Chapter 11
Using Post-Processing Custom Actions

The custom post-processing plug-in can add these optional elements.

* A map of attributes to be included in the outgoing SAML Assertion as SAML
Attributes. This map has String objects as keys and a Collection (Set/List) of String
objects or a String object as values (identified by
oracl e.security.fed. authn.fedattributes).

The attributes will be included in the outgoing SSO response as is, and will only be
sent for this current Federation SSO operation. They will be discarded afterwards.

e Astring to be used as the SAML NamelD value instead of the configured NamelD
expression in the SP Partner entry. For SAML 2.0 SP Partners, this string will only
be used if the NamelD format for the SP Partner is not Persistent or Transient.
The String is identified by oracl e. security. fed. aut hn. f eduseri d.

This string will only be used as the NamelD for this current Federation SSO
operation and will be discarded afterwards.

After processing, the post-processing plug-in must forward the user to Identity
Federation. (Oracle Access Manager would invoke in the absence of the plug-in).

* The root web context is /oamfed

e The relative path is /user/loginsso

11.4.2 Configuring Identity Federation for the Post-Processing Action

ORACLE

Configure ldentity Federation to forward the user to a post-processing plug-in by
performing the following tasks.

1. Enter the WLST environment:
$1 AM_HOVE/ conmon/ bi n/ wi st . sh

2. Connect to the WLS Admin Server:
connect ()

3. Navigate to the Domain Runtime folder:
domai nRunt i me()

4. Execute the put StringProperty() WLST command to set the two following
properties:

* The post aut hnengi newebcont ext property references the web context where the
custom JSP Page or servlet of the post-processing plug-in resides. Replace
CUSTOM_WEB_CONTEXT by the value specific to your plug-in.

putStringProperty("/authnengines/postauthnenginewebcontext”,
"CUSTOM_WEB_CONTEXT")

e The post aut hnengi newebpat h property references the path in the web context
where the post-processing plug-in resides. Replace CUSTOM_WEB_PATH by
the value specific to your plug-in.

putStringProperty("/authnengines/postauthnenginewebpath”,
"CUSTOM_WEB_PATH")

5. Execute the put Bool eanProperty() WLST command to enable or disable the post-
processing plug-in.

* putBooleanProperty("/authnengines/postauthnengineenabled”, "true") to
configure Identity Federation to invoke the post-processing plug-in.

11-8

Chapter 11
Example: Custom Action Post-Processing

* putBooleanProperty("/authnengines/postauthnengineenabled”, "false") to
configure Identity Federation not to invoke the post-processing plug-in.

11.5 Example: Custom Action Post-Processing

This section illustrates a simple post-processing plug-in that is invoked by Oracle
Access Manager before the user is redirected to Identity Federation at the end of a
local authentication operation. This plug-in accesses a custom cookie presented by
the browser, extracts data from it, and sets the data as attributes. Identity Federation
will then include it in the outgoing SAML assertion. In this example:

» |dentity Federation acts as an IdP.

* The custom post authentication plug-in sets some attributes as session attributes
called attrl and attr2.

* Identity Federation (as the IdP) will send the attrl and attr2 attributes to the SP
Partner with which the Federation SSO operation is being performed when
creating an assertion.

* A custom component sets the cookie used in this example.

In this sample, the plug-in adds the following attributes, extracted from a custom
cookie that is previously set by another component, after a successful authentication:

e cookie-language contains the preferred language of the user.
e cookie-homepage contains the preferred home page of the user.

The post-processing plug-in consists of a Web application with a root context set to /
plugin. It contains one JSP page (named cookieextract.jsp) which extracts the data
from the custom cookie and sets it as session attributes. cookieextract.jsp is an
example implementation of cookieextract.jsp.

cookieextract.jsp

<Y%@age buffer="5" aut oFl ush="true" session="fal se" %

<%@age | anguage="java" inmport="java.util.*, javax.namng.*,
javax. naming.directory.*, java.net.*"%

<%

response. set Header (" Cache- Control ", "no-cache");

response. set Header ("Pragma", "no-cache");

response. set Header ("Expires", "Thu, 29 Cct 1969 17:04:19 GVI");

/1 check if authentication was successful

i f

(" SUCCESS". equal s(request.getAttribute("oracle.security.fed. authn.result.statuscode")
))

{

/1 authentication was successful. Attributes will be added
Map attributes = new HashMap();

/'l get the cookie
Cooki e[] cookies = request. get Cookies();
String cookievalue = null;
for(int i =0; i < cookies.length; i++)
{
Cooki e cookie = cookies[i];
i f (cookie.getNanme().equal s("custoncookie"))
cooki eVal ue = cooki e. get Val ue();

ORACLE 11-9

Chapter 11
Example: Custom Action Post-Processing

if (cookieValue != null && cookieValue.length() > 0)

{

StringTokeni zer st = new StringTokeni zer (cooki eVal ue, "+");
String | anguage = st.next Token();
String homepage = st.next Token();

attributes. put("cookie-language", |anguage);
attributes. put("cookie-homepage", honepage);

request.setAttribute("oracle.security.fed.authn.fedattributes",
attributes);

}
}

/] forward to the OF server to resume the flow

request . get Sessi on(). get Servl et Cont ext (). get Cont ext ("/

oanf ed"). get Request Di spat cher ("/ user/ | ogi nsso"). forward(request, response);
%

" Note:

The WAR file of this Web application will need to be deployed on the WLS
Managed Server where OAM is running

The plug-in redirects the user to the Identity Federation server by means of an internal
forward to resume the flow. Take the following steps to configure Identity Federation to
invoke the post-processing plug-in at the end of local authentication flow.

1. Enter the WLST environment:
$!| AM_HOVE/ common/ bi n/ Wl st . sh

2. Connect to the WLS Admin Server:
connect ()

3. Navigate to the Domain Runtime folder:
domai nRunt i me()

4. Execute the put StringProperty() WLST command to set the
postauthnenginewebcontext property.

putStringProperty("/authnengines/postauthnenginewebcontext", "/plugin')

5. Execute the put StringProperty() WLST command to set the
postauthnenginewebpath property.

putStringProperty("/authnengines/postauthnenginewebpath”, "/cookieextract.jsp™)

6. [Execute the put Bool eanProperty() WLST command to enable the post-processing
plug-in.
putBooleanProperty("/authnengines/postauthnengineenabled"”, "true")

ORACLE 11-10

Appendices

Information that is outside the scope of day-to-day developer tasks with Oracle Access
Management is discussed here.

This part contains the following appendices:

* Creating Deployment-Specific Pages

ORACLE

Creating Deployment-Specific Pages

Oracle Single Sign-On provides a framework for integrating deployment-specific login,
change password, and single sign-off pages with the single sign-on server. This
means that you can tailor these pages to your Ul look and feel and globalization
requirements.

Oracle recommends that you use JavaServer (JSP) pages. Other Web technologies
may provide inconsistent results. PLSQL pages are not supported. Sample pages are
provided with the product. The Oracle Single Sign-On product ships with sample
pages that are designed for testing with the Oracle Application Server.

This chapter contains the following topics:

* How the Single Sign-On Server Uses Deployment-Specific Pages
* How to Write Deployment-Specific Pages

» Page Error Codes

* Adding Globalization Support

* Guidelines for Deployment-Specific Pages

* Customized Deployment-Specific Pages

* Add External Applications Page

A.1 How the Single Sign-On Server Uses Deployment-
Specific Pages

ORACLE

The process that enables single sign-on pages can be summarized as follows:

1. The user requests a application and is redirected to the single sign-on server.

2. If the user is not authenticated, the single sign-on server redirects the user to the
sample login page or to a deployment-specific page. As part of the redirection, the
server passes to the page the parameters contained in Table A-2.

3. The user submits the login page, passing the parameters contained in Table A-3
to the authentication URL:

http://sso_host:sso_port/oan server/auth_cred_subnit

or

https://sso_host:sso_ssl _port/oant server/auth_cred_submt

At least two of these parameters, ssouser name and passwor d, appear on the page as
modifiable fields.

4. If authentication fails, the server redirects the user back to the login page and
displays an error message.

A-1

Appendix A
How to Write Deployment-Specific Pages

5. To finish the single sign-on session, the user clicks Logout in the application he or
she is working in. This act calls application logout URLs in parallel, logging the
user out from all accessed applications and ending the single sign-on session.

6. The user is redirected to the single sign-on server, which presents the single sign-
off page.

A.1.1 Change Password Page Behavior

Users who try to log in when their passwords have expired or are about to expire
experience the following server behavior.

Table A-1 Change Password Page messages

__|
Message Description

Password Has Expired Users are shown the password expiry page. User must enter the
old and the new password. The new password must conform to
the Access Manager password policy rules.

Password is About to Expire A warning page is displayed where the user can either change
their password, or continue without changing before continuing.

Grace Login Is in Force Same behavior as when password is about to expire.

Force Change Password This feature prompts users to change their password after it has
been reset by an administrator. The reset is required after the
attribute obpasswor dchangef | ag is set to 1. Once the attribute is
set, the user is required to change the password at next login.

A.2 How to Write Deployment-Specific Pages

The URLs for login, change password, and single sign-off pages must accept the
parameters described in the tables that follow if these pages are to function properly.

This section contains the following topics:

e Login Page Parameters

e Change Password Page Parameters

A.2.1 Login Page Parameters

The URL for the login page must accept the parameters listed in Table A-2.

Table A-2 Login Page Parameters Submitted to the Page by the Single Sigh-On
Server

|
Parameter Description

Contains the error code in the form of a string. Passed when an

error_code . -
P - error occurs during authentication.

Unique identifier that is used to track requests routed back and

r t .
equest _id forth between client and server.

User login request context tracked at client until authentication

OAM REQ process is completed.

ORACLE A-2

Appendix A
How to Write Deployment-Specific Pages

The login page must pass the parameters listed in Table A-3 to the authentication
URL:

http://sso_host:sso_port/sso/auth

Table A-3 Login Page Parameters Submitted by the Page to the Single Sigh-On
Server

__|
Parameter Description

Contains the username. Must be UTF-8 encoded.
SSouser nanme

Contains the password entered by the user. Must be UTF-8

assword
P encoded.
OAM _REQ if present in User login request context tracked at client until authentication
request process is completed.

request _i d, if presentin Unique identifier that is used to track requests routed back and
request forth between client and server.

The login page must have at least two fields: a text field with the parameter name
ssouser nane and a password field with the parameter name passwor d. The values are
submitted to the authentication URL.

In addition to submitting these parameters, the login page is responsible for displaying
appropriate error messages, as specified by p_error_code, redirecting to p_cancel _ur! if
the user clicks Cancel.

A.2.2 Change Password Page Parameters

ORACLE

27 June: Lakshmi advises: "Is this not same as custom Ul pages.. The intention seems
to be the same to me." 22Jun2012: Dev advises that this behavior has changed in R2.
Awaiting details from dev to update section.

The URL for the change password page must accept the parameters listed in
Table A-4.

Note:

In a GIT deployment, when a partner logout flow requires query parameters
in the p_done_ur |, the parameters must be URL encoded such that the
Access Manager logout servlet does not interpret them as being Access
Manager parameters but elements of the single p_done_url .

Table A-4 Change Password Parameters Submitted to the Page

___|
Parameter Description

0_user nane Contains the user name to be displayed somewhere on the page.

o_subscri ber nane The subscriber nickname when hosting is enabled.

Note: This field is required on the login page.

A-3

ORACLE

Appendix A
How to Write Deployment-Specific Pages

Table A-4 (Cont.) Change Password Parameters Submitted to the Page

Parameter

Description

p_error_code

p_done_url

site2pst or et oken

p_pwd_i s_exp

| ocal e

Contains the error code, in the form of a string, if an error
occurred in the prior attempt to change the password.

Contains the URL of the appropriate page to return to after the
password is saved.

Contains the si t e2pst or et oken that is required by the /sso/auth
login URL if the password has expired or is about to expire.

Contains the flag value indicating whether the password has
expired or is about to expire. The value can be either WARN or
FORCE. See Table A-6 for the associated error codes.

User's language preference (optional). Must be in ISO format. For
example, French is fr-fr. For more about this parameter, see
"Adding Globalization Support".

The change password page must pass the parameters listed in Table A-5 to the

change password URL.:

http://sso_host:sso_port/sso/ ChangePwdSer vl et

Table A-5 Change Password Page Parameters Submitted by the Page

Parameter

Description

p_user nane

p_ol d_passwor d

p_new_passwor d

p_new_password_confirm

p_done_url

p_pwd_i s_exp

site2pstoretoken

p_action

p_subscri ber nane

p_request

Contains the user name to be displayed somewhere on the page.
Should be posted as a hidden field by the change password
page. Must be UTF-8 encoded.

Contains the user's old password. Must be UTF-8 encoded.

Contains the user's new password. Must be UTF-8 encoded.

Contains the confirmation of the user's new password. Must be
UTF-8 encoded.

Contains the URL of the appropriate page to return to after the
password is saved.

Contains the flag value indicating whether the password has
expired or is about to expire. The value can be either WARN or
FORCE. See Table A-6 for the associated error codes.

Contains the redirect URL information for login processing.
Commits changes. The values must be either OK (commit) or
CANCEL (ignore).

Contains the user name to be displayed somewhere on the page.

Protected URL requested by the user.

A-4

Appendix A
Page Error Codes

Table A-5 (Cont.) Change Password Page Parameters Submitted by the Page

___|
Parameter Description

User's language preference (optional). Must be in ISO format.

locale Example: Frenchis fr-fr.

See "Adding Globalization Support”.

The change password page must have at least three password fields: p_ol d_passwor d,
p_new_password, and p_new_passwor d_confi rm The page should submit these fields to
the change password URL.

The page should also submit p_done_ur| as a hidden parameter to the change
password URL. In addition, it should display error messages according to the value of
p_error_code.

A.3 Page Error Codes

URLSs for login and change password pages must accept the process errors described
in the tables that follow if these pages are to function properly.

When OAM Server is set up, the login page must process the error codes listed in
Table A-6.

Table A-6 Login Page Error Codes

|
Value of p_error_code Corresponding message and description

Description: The user has committed too many
login failures.

Message: "Your account is locked. Please notify
the system administrator."

acct _lock err

Description: The user's password has already
expired.

Message: "Your password has expired. Please
contact the administrator to reset it."

pwd_exp_err

Description: The user left the user name field
blank.

Message: "You must enter a valid user name."

nul | _uname_pwd_err

Description: Authentication has failed.

Message: "Authentication failed. Please try
again."

auth_fail _exception

Description: The user left the password field
blank.

Message: "You must enter your logon password."

nul | _password_err

Description: The application requires

sso_forced_auth authentication.

Message: "The application you are trying to
access requires you to sign in again even if you
have signed in previously."

ORACLE A-5

Appendix A
Adding Globalization Support

Table A-6 (Cont.) Login Page Error Codes
|

Value of p_error_code

Corresponding message and description

unexpect ed_exception

unexp_err

internal _server_err

internal _server_try again_err

internal_server_try_later_err

gito_err

cert_auth_err

session_exp_error

userid_m smat ch

Description: An unexpected error occurred during
authentication.

Message: "An unexpected error occurred. Please
try again.”

Description: Unexpected error.
"Unexpected Error. Please contact Administrator."

Description: Internal server error report.

Message: "Internal Server Error. Please contact
Administrator.”

Description: Internal server error report with "try
again" prompt.

Message: "Internal Server Error. Please retry the
operation."

Description: Internal server error report with "try
later" prompt.

Message: "Internal Server Error. Please try the
operation later."”

Description: Inactivity timeout. User must log in
again.

Message: "Your Single Sign_on session has
expired. For your security, your session expires
after some duration of inactivity. Please sign in
again."

Description: Certificate sign-on has failed. User
should check that the certificate is valid or should
contact the administrator.

Message: "Certificate-based sign in failed. Please
ensure that you have a valid certificate or contact
the administrator."

Description: Single sign-on session time limit
reached.

Message: "Your Single Sign-On session has
expired. For your security, your session expires
after the specified amount of time. Please sign in
again."

Description: The user ID presented during a
forced authentication does not match the user ID
in the current single sign-on session.

Message: "The user name submitted for
authentication does not match the user name
present in the existing Single Sign-On session."

A.4 Adding Globalization Support

The OracleAS Single Sign-On framework enables you to globalize deployment-specific
pages to fit the needs of your deployment. When deciding what language to display

ORACLE

A-6

Appendix A
Adding Globalization Support

the page in, you can adopt different strategies. Two strategies are presented in the
following sections.

» Deciding What Language to Display the Page In
* Rendering the Page

A.4.1 Deciding What Language to Display the Page In

This section explains how to use either the HTTP Accept-Language header or
deployment page logic to choose a language to display. The two strategies are
explained in the following sections.

e Use the Accept-Language Header to Determine the Page

e Use Page Logic to Determine the Language

A.4.1.1 Use the Accept-Language Header to Determine the Page

Browsers enable end users to decide the language (locale) they would like to view
their Web content in. The browser sends the language that the user chooses to the
server in the form of the HTTP Accept-Language header. The logic of the deployment-
specific page must examine this header and render the page accordingly. When it
receives this page, the single sign-on server takes note of the header value for Accept-
Language and sends it to applications when it propagates the user's identity. Note
that, although many applications enable users to override this header, the single sign-
off page appears in the language established at sign-on. The net effect is a consistent
session language for all applications.

The Accept-Language header is the preferred mechanism for determining the
language preference. A major benefit of this approach is that end users have typically
already set their language preference while browsing other Web sites. The result is
browsing consistency between these pages and single sign-on pages.

A.4.1.2 Use Page Logic to Determine the Language

ORACLE

Although Oracle recommends the approach described in the preceding section, you
may choose to implement globalization based on mechanisms that extend or override
the language preference set in the browser. You may, for instance, do one of the
following:

» Display a list of languages on the login page and allow the user to select from this
list. As a convenience to the user, you can make this selection persistent by
setting a persistent cookie.

* Render the page in one, fixed language. This method is appropriate when you
know that the user population is monolingual.

* Obtain language preferences from a centralized application repository or a
directory. A centralized store for user and system preferences and configuration
data is ideal for storing language preferences.

If you use page logic to set language preferences, the page must propagate this
information to the single sign-on server. The server must propagate this information to
applications. The net result is a consistent globalization experience for the user. Your
page must pass the language in ISO-639 format, using the | ocal e parameter

(Table A-3) in the login form. A number of sites contain a full list of ISO-639 two-letter

A-7

Appendix A
Guidelines for Deployment-Specific Pages

language codes. Here is a site that contains a full list of ISO-3166 two-letter country
codes:

http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

A.4.2 Rendering the Page

Once it determines the end-user's locale, the deployment-specific page must use the
corresponding translation strings to render the page. To learn how to store and
retrieve these strings, see the chapter about locale awareness in Oracle Application
Server Globalization Guide. You may also want to consult standard documents about
Java development. Here are two links:

Java Internationalization Guide:
http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html
General link for Java documentation:

http://java.sun.com/j2se/1.4.2/docs

A.5 Guidelines for Deployment-Specific Pages

When implementing deployment-specific pages, observe the following guidelines:

Oracle recommends that login and change password pages be protected by SSL.

The login and change password pages must code against cross-site scripting
attacks.

The login and change password pages must have auto-fill and caching set to of f .
This prevents user credentials from being saved or cached in the browser. Here is
an example of the Aut oConpl et e tag:

<FORM NAVE="f 00" Aut oConpl et e="of f" METHOD="POST" ACTI ON="bar ">

Oracle recommends that you configure your login page to display a banner that
warns against unauthorized access. You may, for example, want to use the
following text or a variant thereof:

Unaut hori zed use of this site is prohibited and may subject you to civil and
crimnal prosecution.

Deploy the login and change password pages on the computer that hosts the
single sign-on server. This makes it easier to detect false versions of these pages.

A.6 Customized Deployment-Specific Pages

The following sections describe customizing deployment-specific pages.

Customizing Deployment-Specific Pages

Using Custom Classes

A.6.1 Customizing Deployment-Specific Pages

The i passanpl e. j ar file contains the files | ogi n-ex. j sp, passwor d- ex. j sp, and si gnof f -
ex. j sp. You may customize these to suit your deployment. If you want to use these
files. Use this command to extract the file:

ORACLE

A-8

http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html
http://java.sun.com/j2se/1.4.1/docs/guide/intl/index.html
http://java.sun.com/j2se/1.4.1/docs

Appendix A
Add External Applications Page

ORACLE_HOWE/ j dk/ bin/jar -xvf ORACLE_HOMVE sso/lib/ipassanple.jar

A.6.2 Using Custom Classes

In general, customized deployment-specific pages must operate with the current
versions of component classes in use by OC4J_SECURITY. If your custom application
needs to use a different version of a given class, you must deploy that class in a
separate OC4J instance and not in the OC4J_SECURITY instance.

For example, if your deployment requires the use of custom log4j classes that conflict
with the versions in use by OC4J_SECURITY, start a separate OC4J_SECURITY
instance that uses a local log4j j ar file containing the custom classes.

WARNING:

Replacing the classes used by OC4J_ SECURITY with custom versions may
render Oracle Single Sign-On or other Oracle Application Server
components unusable.

A.7 Add External Applications Page

From the Single Sign-On Server Administration page, clicking the Administer External
Applications link, then clicking Add External Application link takes you to the Add
External Applications page. The following sections describe the Add External
Applications Page:

e Headings and Fields of Add External Applications Page
e Adding an External Application

A.7.1 Headings and Fields of Add External Applications Page

This page contains the following headings and fields:

Table A-7 External Application Login
]

Field

Description

Application Name

Login URL

Enter a name that identifies the external application. This is the default name for the
external application.

Enter the URL to which the HTML login page for the external application is submitted
for authentication. This, for example, is the login URL for Yahoo! Mail:

http://1o0gin.yahoo. con confi g/ | ogi n?6p4f 5s403j 3h0

Username/ID Field Name Enter the term that identifies the user name or user ID field of the HTML login form for

ORACLE

the application. You find this term by viewing the HTML source of the form. (See the
example after the steps immediately following). This field is not applicable if you are
using basic authentication.

A-9

Appendix A
Add External Applications Page

Table A-7 (Cont.) External Application Login

___|]
Field Description

Password Field Name Enter the term that identifies the password field of the HTML login form for the
application. You find this term by viewing the HTML source of the form. (See the
example after the steps immediately following). This field is not applicable if you are
using basic authentication.

Table A-8 Authentication Method

___|]
Field Description

Type of Authentication Use Use the pull-down menu to select the form submission method for the application.
This method specifies how message data is sent by the browser. You find this term by
viewing the HTML source for the login form. Select one of the following three
methods:

POST: Posts data to the single sign-on server and submits login credentials within the
body of the form.

GET: Presents a page request to a server, submitting the login credentials as part of
the login URL.

Basic authentication: Submits the login credentials in the application URL, which is
protected by HTTP basic authentication.

Notes:

e Basic authentication uses pop-up windows, which by default are blocked by
Windows XP, service pack 2. If you use this service pack, make sure that you
reconfigure browser settings to display the window for the single sign-on login
page. Use the pop-up blocker item in the Tools menu of Internet Explorer.

Other browsers and browser plug-ins are able to block pop-ups. Mozilla is one of
these. Make sure that these do not block the single sign-on login page.

« If you use Internet Explorer 5.0 or a later version, basic authentication may not
work with external applications. This version of Internet Explorer includes
Microsoft MS04-004 Cumulative Security Update (832894). See this link for a
workaround:

http://support.microsoft.com

Table A-9 Additional Fields

]
Field Description

Field Name Enter the name of any additional fields on the HTML login form that may require user
input to log in. This field is not applicable if you are using basic authentication.

Field Value Enter a default value for a corresponding field name value, if applicable. This field is
not applicable if you are using basic authentication.

A.7.2 Adding an External Application

Perform the following task to add an external application:

1. From the Administer External Applications page, select Add External
Application.

The Add External Applications page appears.

ORACLE A-10

http://support.microsoft.com

ORACLE

Appendix A
Add External Applications Page

2. In the External Application Login field, enter the name of the external application
and the URL to which the HTML login form is submitted. If you are using basic
authentication, enter the protected URL.

3. If the application uses HTTP POST or HTTP GET authentication, in the User
Name/ID Field Name field, enter the term that identifies the user name or user ID
field of the HTML login form.

You can find the name by viewing the HTML source of the login form.

If the application uses the basic authentication method, the User Namel/ID Field
Name field should be empty.

4. |If the application uses HTTP POST or HTTP GET authentication, in the Password
Field Name field, enter the term that identifies the password field of the
application.

See the HTML source of the login form.

If the application uses the basic authentication method, the Password Field
Name field should be empty.

5. Inthe Additional Fields field, enter the name and default values for any additional
fields on the HTML login form that may require user input.

If the application uses the basic authentication method, these fields should be
empty.

6. Select the Display to User check box to allow the default value of an additional
field to be changed by the user on the HTML login form.

7. Click OK. The new external application appears under the Edit/Delete External
Application heading on the Administer External Applications page, along with the
other external applications.

8. Click the application link to test the login.
The following example shows the source of the values that are used for Yahoo! Mail.

<f orm nmet hod=post action="http://|ogin.yahoo. conl confi g/l ogi n?6p4f 55403} 3h0"
aut oconpl et e=of f nane=a>

.<£d><i nput nane=l ogi n size=20 maxl| engt h=32></td>
<td><| nput nane=passwd type=password size=20 max| engt h=32></td>
<| ﬁput t ype=checkbox name=".persistent" value="Y" >Renenber ny ID & password
</ form
The source provides values for the following:
e Login URL:
http://1ogin. yahoo. conm confi g/ | ogi n?6p4f 5s403j 3h0
* Username/ID Field Name: | ogi n
e Password Field Name: passwd
* Type of Authentication Used: PCST

* Field Name: . persistent Y

* Field Value: [of f]

A-11

Appendix A
Add External Applications Page

< Note:

If you change the host name of the AS middle tier, you must manually update
the Login URL field for external applications on this middle tier. You do this
on the Edit External Applications page, described in the next section.

ORACLE A-12

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide?
	Part I Introduction
	1 Developing with Oracle Access Management Components
	1.1 About Access Manager
	1.2 About Identity Federation
	1.3 System Requirements and Certification

	Part II Developing with Access Manager
	2 Developing Access Clients
	2.1 About Developing Access Clients
	2.1.1 About the Access SDK and APIs
	2.1.2 About Custom Access Clients
	2.1.2.1 When to Create a Custom Access Client
	2.1.2.2 Types of Resources in the Access Client Architecture

	2.1.3 About Access Client Request Processing

	2.2 Installing Access SDK
	2.3 Developing Access Clients
	2.3.1 Understanding the Structure of an Access Client
	2.3.2 Understanding a Typical Access Client Execution Flow
	2.3.3 Sample Code: Simple Access Client
	2.3.4 Annotated Sample Code: Simple Access Client
	2.3.5 Sample Code: Java Login Servlet
	2.3.6 Annotated Sample Code: Java Login Servlet
	2.3.7 Sample Code: Additional Methods
	2.3.8 Annotated Sample Code: Additional Methods
	2.3.9 Sample Code: Certificate-Based Authentication in Java

	2.4 Understanding Access SDK Logs
	2.5 Building an Access Client Program
	2.5.1 Setting the Development Environment
	2.5.2 Compiling a New Access Client Program

	2.6 Deploying Access Clients
	2.7 Configuring Access Clients
	2.7.1 Understanding Configuration Requirements for Access SDK
	2.7.2 Generating the Required Configuration Files
	2.7.3 SSL Certificate and Key File Requirements
	2.7.3.1 About Simple Transport Security Mode
	2.7.3.2 Working in the Cert Transport Security Mode
	2.7.3.2.1 Importing the CA Certificate
	2.7.3.2.2 Setting Up The Keystore

	2.8 Best Practices
	2.8.1 Avoiding Problems with Custom Access Clients
	2.8.2 Identifying and Resolving Access Client Problems
	2.8.3 Environment Problems using Java Access SDK with Containers
	2.8.3.1 Resolving Environment Problems with Java EE Containers
	2.8.3.2 Resolving Environment Problems with Oracle WebLogic Server
	2.8.3.3 Resolving Environment Problems with Other Application Servers

	2.8.4 Tuning for High Load Environment

	3 Developing Custom Authentication Plug-ins
	3.1 Introduction to Authentication Plug-ins
	3.1.1 About the Custom Plug-in Life Cycle
	3.1.2 About Planning, the Authentication Model, and Plug-ins
	3.1.2.1 About the Decision Engine Approach Process
	3.1.2.2 About the Hard-Coded Approach Process

	3.2 Introduction to Multi-Step Authentication Framework
	3.2.1 About the Multi-Step Framework
	3.2.2 Process Overview: Multi-Step Authentication
	3.2.3 About the PAUSE State
	3.2.4 Information types shared with the credential collector page
	3.2.4.1 UserContextData
	3.2.4.2 UserActionContext
	3.2.4.3 UserAction
	3.2.4.4 UserActionMetaData

	3.3 Introduction to Plug-in Interfaces
	3.3.1 About the Plug-in Interfaces
	3.3.1.1 About the GenericPluginService
	3.3.1.2 About the AuthnPluginService

	3.3.2 About Plug-in Hierarchies

	3.4 Sample Code: Custom Database User Authentication Plug-in
	3.4.1 Sample Code: Database User Authentication Plug-in
	3.4.2 Sample Plug-in Configuration Metadata Requirements
	3.4.3 Sample Manifest File for the Plug-in
	3.4.4 Understanding the Plug-in JAR File Structure

	3.5 Developing an Authentication Plug-in
	3.5.1 About Writing a Custom Authentication Plug-in
	3.5.2 Writing a Custom Authentication Plug-in
	3.5.3 Error Codes in an Authentication Plug-In
	3.5.4 JAR Files Required for Compiling a Custom Authentication Plug-in

	4 Developing Custom Pages
	4.1 About the Custom Pages Framework
	4.1.1 Returning the OAM_REQ Token
	4.1.2 Returning the End Point

	4.2 Authenticating with Custom Pages
	4.2.1 Authentication Using an Agent
	4.2.1.1 Program based authentication using OAM Server
	4.2.1.2 Process Overview: Developing Programmatic Clients

	4.2.2 Authentication Using Unsolicited POST
	4.2.3 Authentication Using Unsolicited Login With DCC WebGates

	4.3 About Custom Login Pages
	4.3.1 Understanding Form-Based Login Page authentication
	4.3.2 What is Page Redirection Process

	4.4 Understanding Custom Error Pages
	4.4.1 Enabling Error Page Customization
	4.4.2 Standard Error Codes
	4.4.3 Security Level Configuration
	4.4.4 Secondary Error Message Propagation
	4.4.5 Sample Code: Retrieving Error Codes
	4.4.6 Error Data Sources Summary

	4.5 Understanding Custom Password Pages
	4.5.1 Customizing the Password Page WAR
	4.5.2 Using the Request Cache
	4.5.3 Specifying the Password Service URL
	4.5.4 Sample Code: Retrieving Warning Messages
	4.5.5 Sample Code: Retrieving Password Policy Error Codes
	4.5.6 Sample Code: Obtaining Password Policy Rules

	4.6 Using the Credential Collectors with Custom Pages
	4.6.1 About the Detached Credential Collector with Custom Pages
	4.6.2 Creating a Form-Based Login Page Using DCC
	4.6.3 About Custom Login and Error Pages for DCC Tunneling

	4.7 Specifying the Custom Error and Logout Page Deployment Paths

	5 Managing Policy Objects
	5.1 About the Policy Administration API
	5.1.1 Access Manager Policy Model
	5.1.2 Security Model
	5.1.3 Resource URLs
	5.1.4 URL Resources and Supported HTTP Methods
	5.1.5 Error Handling

	5.2 Compatibility
	5.3 Managing Policy Objects
	5.3.1 HTTP Methods
	5.3.2 Media Types
	5.3.3 Resources Summary

	5.4 Client Tooling
	5.5 cURL Command Examples
	5.6 Retrieve Application Domains cURL Command
	5.7 Create a New Application Domain cURL Command
	5.8 Retrieve All Authentication Schemes cURL Command
	5.9 Create an Authentication Scheme cURL Command
	5.10 Retrieve a Specific Authentication Scheme cURL Command
	5.11 Retrieve All Resources in an Application Domain cURL Command
	5.12 Create a Resource in an Application Domain cURL Command
	5.13 Retrieve All Policies in an Application Domain cURL Command

	6 Developing an Application to Manage Impersonation
	6.1 About the Impersonation feature in Access Manager
	6.1.1 About Impersonation Terminology
	6.1.2 Understanding Impersonation Concepts
	6.1.3 About Impersonation Grant Syntax
	6.1.4 Understanding Impersonation Trigger Invocation Using the SSO Service
	6.1.5 Triggering Impersonation Without API Abstraction
	6.1.6 Impersonator Identity Communication During Impersonation Sessions

	6.2 Configuring Impersonation Support
	6.2.1 Configuring Impersonation Using oam-config.xml
	6.2.2 Configuring Impersonation Using idmConfigTool
	6.2.3 Configuring the Authentication Scheme

	6.3 Testing SSO Login and Impersonation

	7 Customizing Oracle Mobile Authenticator
	7.1 About Oracle Mobile Authenticator and Customization
	7.2 Customizing Oracle Mobile Authenticator on iOS
	7.3 Customizing Oracle Mobile Authenticator on Android
	7.3.1 Using apktool to Customize Oracle Mobile Authenticator
	7.3.2 Customizing Options for Oracle Mobile Authenticator Android app
	7.3.2.1 Changing Application Icons
	7.3.2.2 Modifying the Application Name and Text
	7.3.2.3 Editing 3rd party company list with images
	7.3.2.4 Modifying EULA to be shown on first launch
	7.3.2.5 Modifying the Version and Code Number
	7.3.2.6 Modifying the Package Name
	7.3.2.7 Signing the Application

	7.4 Customizing Oracle Mobile Authenticator on Windows

	Part III Developing with Identity Federation
	8 Developing a Custom User Provisioning Plug-in
	8.1 Introduction to User Provisioning Plug-ins
	8.2 Introduction to Plug-in Interfaces
	8.3 Sample Code: Custom User Provisioning Plug-in
	8.4 Developing a User Provisioning Plug-in
	8.4.1 Developing a Custom Plug-in: Process Overview
	8.4.2 Files Required for Compiling a Plug-in

	9 Developing a Message Processing Plug-in
	9.1 Understanding Custom SAML Elements
	9.2 Extending the OIFMessageProcessingPlugin
	9.3 Deploying the Message Processing Plug-in
	9.4 Enabling the Message Processing Plug-in

	10 Using the REST API for Identity Federation
	10.1 Resource URLs
	10.2 URL Resources and Supported HTTP Methods
	10.3 Resources Summary
	10.4 cURL Command Examples for Identity Federation
	10.4.1 Configuring SSO Service using POST cURL Command
	10.4.2 Retrieving SSO Service using GET cURL Command
	10.4.3 Configuring SSO Service using PUT cURL Command
	10.4.4 Creating an SP Partner cURL Command
	10.4.5 Listing all SP Partners cURL Command
	10.4.6 Retrieving SP Partner Data cURL Command
	10.4.7 Updating SP Partner Details cURL Command
	10.4.8 Deleting SP Partner Details cURL Command
	10.4.9 Enabling Test SP using POST cURL Command
	10.4.10 Retrieving Test SP Enablement using GET cURL Command
	10.4.11 Disabling Test SP using PUT cURL Command
	10.4.12 Configuring SSO Service using POST cURL Command using /fedrest/configuresso
	10.4.13 Creating an SP Partner cURL Command using /fedrest/createsp
	10.4.14 Creating an IdP Partner cURL Command using /fedrest/createidp
	10.4.15 Connecting Federation Servers to remote REST services using /fedrest/orchestrator

	11 Implementing Custom Authentication Actions
	11.1 Understanding Custom Authentication Actions
	11.1.1 Using Pre and Post Processing Custom Authentication Actions
	11.1.2 Setting Up a Custom Authentication Action Plug-in
	11.1.3 Understanding the Custom Action Flow

	11.2 Using Pre-Processing Custom Actions
	11.2.1 Passing Data to the Pre-Processing Plug-in
	11.2.2 Configuring Identity Federation for the Pre-Processing Action

	11.3 Example: Custom Action Pre-processing
	11.4 Using Post-Processing Custom Actions
	11.4.1 Passing Data to the Post-Processing Plug-in
	11.4.2 Configuring Identity Federation for the Post-Processing Action

	11.5 Example: Custom Action Post-Processing

	Part IV Appendices
	A Creating Deployment-Specific Pages
	A.1 How the Single Sign-On Server Uses Deployment-Specific Pages
	A.1.1 Change Password Page Behavior

	A.2 How to Write Deployment-Specific Pages
	A.2.1 Login Page Parameters
	A.2.2 Change Password Page Parameters

	A.3 Page Error Codes
	A.4 Adding Globalization Support
	A.4.1 Deciding What Language to Display the Page In
	A.4.1.1 Use the Accept-Language Header to Determine the Page
	A.4.1.2 Use Page Logic to Determine the Language

	A.4.2 Rendering the Page

	A.5 Guidelines for Deployment-Specific Pages
	A.6 Customized Deployment-Specific Pages
	A.6.1 Customizing Deployment-Specific Pages
	A.6.2 Using Custom Classes

	A.7 Add External Applications Page
	A.7.1 Headings and Fields of Add External Applications Page
	A.7.2 Adding an External Application

