
Oracle® Fusion Middleware
Developing Applications with Identity
Directory Services

14c (14.1.2.1.0)
G10435-02
April 2025

Oracle Fusion Middleware Developing Applications with Identity Directory Services, 14c (14.1.2.1.0)

G10435-02

Copyright © 2011, 2025, Oracle and/or its affiliates.

Primary Author: Devanshi Mohan

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Related Documents vi

Conventions vi

 What's New in This Guide

New Features in Release 14c (14.1.2.1.0) vii

1 Introduction to Identity Directory Services

1.1 Overview of Identity Directory Services 1-1

1.1.1 Benefits of Identity Directory Services to Organizations 1-1

1.1.2 Benefits of Identity Directory Services to Developers 1-2

1.2 Understanding Identity Directory Services APIs 1-2

1.3 System Requirements and Certification for Identity Directory Services 1-3

2 Using the Identity Directory API

2.1 Overview of the Identity Directory API 2-1

2.1.1 Understanding Identity Directory API 2-2

2.1.2 Identity Directory Service Architecture 2-2

2.2 Identity Directory API Configuration 2-4

2.2.1 Logical Entity Configuration for an Identity Directory Service 2-4

2.2.1.1 Properties of a Logical Entity Configuration 2-5

2.2.1.2 Attributes of a Logical Entity Configuration 2-5

2.2.1.3 Properties of a Logical Entity Definition 2-6

2.2.1.4 Properties of a Logical Entity Relationship 2-6

2.2.2 Physical Identity Store Configuration for an Identity Directory Service 2-6

2.2.3 Operational Configuration for an Identity Directory Service 2-7

2.3 Design Recommendations for Identity Directory API 2-7

2.3.1 Minimizing Use of defaultFetch Attributes 2-7

2.3.2 Initializing the Identity Directory Once 2-8

iii

2.4 Examples of Using the Identity Directory API 2-8

2.4.1 Initializing and Obtaining Identity Directory Handle 2-8

2.4.2 Initializing and Obtaining Identity Directory Handle from JPS Context 2-10

2.4.3 Initializing and Obtaining In-Memory Identity Directory Handle 2-11

2.4.4 Adding a User 2-13

2.4.5 Obtaining a User for Given Principal 2-13

2.4.6 Modifying a User 2-13

2.4.7 Obtaining a User for Given ID Value 2-14

2.4.8 Searching Users Using Complex Search Filter 2-14

2.4.9 Changing User Password 2-15

2.4.10 Resetting User Password 2-15

2.4.11 Authenticating a User 2-15

2.4.12 Deleting a User 2-16

2.4.13 Creating a Group 2-16

2.4.14 Searching Groups 2-16

2.4.15 Obtaining Management Chain 2-17

2.4.16 Obtaining Reportees of a User 2-17

2.4.17 Adding a Member to a Group 2-18

2.4.18 Deleting a Member From a Group 2-18

2.4.19 Obtaining All The Groups For Which User is a Member 2-18

2.4.20 Using Logical NOT Operator in a Search Filter 2-19

2.5 Supported Cipher Suites in Identity Directory Services 2-19

2.5.1 Supported Cipher Suites for Identity Directory Services in AIX 2-19

2.5.2 Adding Supported Cipher Suites in adapters.os_xml 2-20

3 Migrating to Identity Directory API

3.1 Overview of Migrating to Identity Directory API 3-1

3.2 Migrating the Application to Identity Directory API 3-1

3.2.1 Initializing API 3-1

3.2.2 Getting UserManager and GroupManager Handle 3-2

3.2.3 Searching Filter 3-2

3.2.4 Performing CRUD Operations 3-3

3.2.4.1 APIs to Find a User 3-3

3.2.4.2 APIs to Search a User 3-3

3.2.4.3 APIs to Create a User 3-3

3.2.4.4 APIs to Delete a User 3-3

3.2.4.5 APIs to Authenticate a User 3-4

3.2.4.6 APIs to Modify Users and Manage Related Entities 3-4

3.3 Understanding the Comparison Between User and Role API With IDS API 3-5

3.3.1 Comparison of User-Related APIs With Identity Directory APIs 3-5

3.3.2 Comparison of Role-Related APIs With Identity Directory APIs 3-7

iv

3.4 Moving From a Test to a Production Environment 3-9

3.4.1 Overview of Moving Between Environments 3-10

3.4.2 Modifying Identity Directory Service Move Plan 3-10

3.4.2.1 Locating Identity Directory Service configGroup Elements 3-10

3.4.2.2 Properties to Customize for Identity Directory Service Move Plan 3-12

3.5 Tuning Configuration Parameters for IDS 3-12

3.5.1 Configuration Parameters for IDS 3-12

3.5.2 WLST Commands to Set Tuning Parameters Using File-Based Configuration 3-14

3.5.3 Constants to Set Tuning Parameters Using In-Memory Configuration 3-15

3.5.4 Handling Firewall and Load Balancer Timeout Errors 3-16

3.5.5 Configuring TLS Protocol Versions and Cipher Suites for Secure Connections 3-16

3.6 Allowing Pass-through Attributes in IDS 3-16

v

Preface

This guide provides an introduction to Identity Directory Services and describes how to use the
related developer APIs Oracle has made available. It describes the Identity Directory API,
which is a common service for identity management applications to access and manage
identity information.

Audience
This document is intended for developers who are writing applications that use the Oracle
Fusion Middleware Identity Directory based APIs.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Documents
For more information, see the following documents:

• Securing Applications with Oracle Platform Security Services

• Oracle® Fusion Middleware Infrastructure Security WLST Command Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New in This Guide

Review the new features and significant product changes for the Identity Directory Services
(IDS) and the related developer APIs.

New Features in Release 14c (14.1.2.1.0)
The new features and major enhancements introduced in release 14.1.2.1.0 include:

• JDK Upgrade: Identity Directory Services 14c (14.1.2.1.0) is certified for use with JDK 17,
which introduces new features, optimizations, and bug fixes enhancing the overall
performance and stability.

• TLS 1.3 Support Added: Support for TLS 1.3 and its ciphers has been integrated into the
IDS layer, enhancing security and compliance with the latest TLS standards.

• Deprecating TLS 1.1: Support for TLS 1.1 and earlier versions has been discontinued.
Identity Directory Services now requires TLS 1.2 or TLS 1.3 for secure communication.

• Deprecated Features: Identity Governance Framework introduces some behavioral
changes in the 12c (12.2.1.3.0) release. This includes deprecated and desupported
features and components.
By deprecate, we mean that the feature is no longer being enhanced but is still supported
for the full life of the 12c (12.2.1.3.0) release. By desupported, we mean that Oracle will no
longer fix bugs related to that feature and may remove the code altogether. Where
indicated, a deprecated feature may be desupported in a future major release.

From 12c (12.2.1.3.0) release onward, the User and Role API and the ArisID API features
have been officially deprecated. The following documents have been deprecated from this
release of Identity Governance Framework:

– Java API Reference for Identity Governance Framework IDXUserRole

– Java API Reference for Identity Governance Framework UserRole

– Using the ArisID API

Oracle recommends that you use instead Identity Directory API from Identity Governance
Framework and migrate usage to this framework. For information about this migration, see
Migrating to Identity Directory API.

vii

https://docs.oracle.com/middleware/12212/igf/IGFIR/toc.htm
https://docs.oracle.com/middleware/12212/igf/IGFUR/toc.htm
https://docs.oracle.com/en/middleware/fusion-middleware/identity-governance-framework/12.2.1.4/igfdg/using-arisid-api.html#GUID-2729A040-D485-4B2E-8460-032BBCB3FF3D

1
Introduction to Identity Directory Services

The Identity Directory Services (IDS) initiative enables secure exchange of identity-related
information between users and applications and service providers. It provides privacy and
governance semantics to applications and services infrastructure.
The following topics provide an introduction to the Identity Directory Services and the related
developer APIs Oracle has made available:

• Overview of Identity Directory Services

• Understanding Identity Directory Services APIs

• System Requirements and Certification for Identity Directory Services

1.1 Overview of Identity Directory Services
The Identity Directory Services enables enterprises to define standards that secures the
exchange of identity information and regulates compliance between applications both internally
and with the external world. Identity information may include data such as names, addresses,
numbers, and other information associated with an individual’s identity.

Identity Directory Services is designed to meet the following goal:

• Simplify the development of identity information access regardless of where that
information is stored.

The specifications provide a common framework for defining usage policies, attribute
requirements, and developer APIs pertaining to the use of identity-related information. These
enable businesses to ensure full documentation, control, and auditing regarding the use,
storage, and propagation of identity-related data across systems and applications.

This section contains the following topics:

• Benefits of Identity Directory Services to Organizations

• Benefits of Identity Directory Services to Developers

1.1.1 Benefits of Identity Directory Services to Organizations
The Identity Directory Services makes use of the policies and standards that helps support
enterprise security and provides an assurance to the users that the identity information is
secured and managed appropriately by the parties to whom it has been entrusted.

Organizations need to maintain control and integrity of sensitive personal information about
their customers, employees, and partners. Data related to social security numbers, credit card
numbers, medical history and more are increasingly under scrutiny by regulations seeking to
prevent abuse or theft of such information. Privacy conscious organizations frequently have
reacted to these requirements by enforcing overly strict controls and processes that hinder
business operations and impact productivity, flexibility, and efficiency. At the opposite end of
the spectrum, some organizations do not take the care needed to safeguard this information,
potentially putting identity-related data at risk without sufficient oversight and control. The
Identity Directory Services enables a standards-based mechanism for enterprises to establish
"contracts" between their applications so that identity related information can be shared

1-1

securely and with confidence that this data will not be abused, compromised, or misplaced.
Using this framework, organizations have complete visibility into how identity information is
stored, used, and propagated throughout their business. This enables organizations to
automate controls to streamline business processes without fear of compromising the
confidentiality of sensitive identity related information.

1.1.2 Benefits of Identity Directory Services to Developers
The Identity Directory Services is an agreed-upon process for specifying how identity-related
data is treated when writing applications. This provides developers a standard approach to
write applications that use this data so that governing policies can be used to control it. This
results in faster development of privacy aware applications.

IDS enables the decoupling of identity-aware applications from a specific deployment
infrastructure. Specifically, using IDS enables developers to defer deciding how identity related
information will be stored and accessed by their application. Developers do not need to worry
about whether they should use a SQL database, an LDAP directory, or other system. In the
past, developers were forced to write highly specific code, driving technology and vendor lock-
in.

For example, the Identity Directory API provides methods for accessing and managing identity
information in a directory server that is the domain identity store. Entity definitions, entity
relationships, and the physical identity store details can be configured using either the Identity
Directory Configuration APIs or Mbeans. The Identity Directory API is used to initialize the
Identity Directory Service. The Identity Directory Service provides an interface to both access
and modify users and group information from different identity stores. See Using the Identity
Directory API.

1.2 Understanding Identity Directory Services APIs
Identity Directory Services rely on the Identity Directory API.

The following API is available based on Identity Directory Services:

• Identity Directory API

The Identity Directory API is a common service for identity management applications to
access and manage identity information. The service can be used in both Java EE and
Java SE modes. See Using the Identity Directory API.

Note:

The Identity Directory API Object should be initialized only once, as it internally
starts the full IDS stack for further initialization. Initializing multiple Identity
Directory API Objects can create performance and stability bottlenecks for the
application. In addition, you must ensure that the Identity Directory API Object is
closed after its usage is complete.

Chapter 1
Understanding Identity Directory Services APIs

1-2

1.3 System Requirements and Certification for Identity Directory
Services

The system requirements document covers information such as hardware and software
requirements, minimum disk space and memory requirements, and required system libraries,
packages, or patches.

Refer to the system requirements and certification documentation for information about
hardware and software requirements, platforms, databases, and other information. Both of
these documents are available on Oracle Technology Network (OTN).

For more information, see Oracle Fusion Middleware System Requirements and
Specifications.

The certification document covers supported installation types, platforms, operating systems,
databases, JDKs, and third-party products. For more information, see Oracle Fusion
Middleware Supported System Configurations.

Chapter 1
System Requirements and Certification for Identity Directory Services

1-3

2
Using the Identity Directory API

The Identity Directory API supports accessing and managing users, groups, organizations, and
can be extended to support new entity types with relationships defined between these entities.

Note:

Oracle recommends that you use the Identity Directory API for aggregating identity
information from single data source only. You must keep in mind that the API does
not support data aggregation from multiple data sources.

The following topics describe the architecture and key functionality of the Identity Directory
Service.

• Overview of the Identity Directory API

• Identity Directory API Configuration

• Design Recommendations for Identity Directory API

• Examples of Using the Identity Directory API

• Supported Cipher Suites in Identity Directory Services

2.1 Overview of the Identity Directory API
The Identity Directory API provides a service for identity management applications to access
and manage identity information. The API is flexible and can be fully configured by clients
supporting heterogeneous identity stores having standard and specific schemas, and is robust
with both high-availability and failover support.

The API can be used in both Java EE and Java SE modes and supports the following actions:

• Create/Read/Update/Delete (CRUD) operations on User, Group, Org, and generic entities

• Get operation on User Account State

• Identity Directory API configuration sharing

• Support for directory servers such as Oracle Internet Directory, Oracle Unified Directory,
Oracle Directory Server EE, and Active Directory.

The IDS API operates in SSL mode using the DefaultAuthenticator (Embedded LDAP).

Identity Directory Service consists of the following:

• Identity Directory API

The Identity Directory API provide methods for accessing and managing identity
information in a directory server that is the domain identity store. Entity definitions, entity
relationships, and the physical identity store details can be configured using either the
Identity Directory Configuration APIs or Mbeans. Directory service instance capabilities can
be queried using getter methods.

2-1

• Identity Directory API Configuration

Identity Directory API configuration comprises logical entity configuration and physical
identity store configuration.

This section contains the following topics:

• Understanding Identity Directory API

• Identity Directory Service Architecture

2.1.1 Understanding Identity Directory API
The Identity Directory Service is a common service used by identity management products to
access and manage an Identity Directory. The Identity Directory API is used to initialize the
Identity Directory Service.

The Identity Directory Service provides an interface to both access and modify users and
group information from different identity stores. An Identity Directory is an instance of the
Identity Directory Service having:

• a unique name (IDS name)

• a logical entity configuration

• a physical identity store configuration

For more information about the Identity Directory Service, also referred to as the Identity Store
Service, see "Introduction to the Identity Store Service" in Oracle® Fusion Middleware
Securing Applications with Oracle Platform Security Services.

2.1.2 Identity Directory Service Architecture
To use the Identity Directory Service APIs, it is essential to understand the architecture to learn
how the identities are integrated, and how they can be used.

The following illustration shows the logical architecture of the Identity Directory Service.

Chapter 2
Overview of the Identity Directory API

2-2

Figure 2-1 Identity Directory API Architecture

The following illustration shows the relationship between the Identity Directory Service
components.

Chapter 2
Overview of the Identity Directory API

2-3

Figure 2-2 Identity Directory API Components

2.2 Identity Directory API Configuration
The Identify Directory API provides an interface to access and modify users and group
information from different identity stores. It is a combination of the logical entity configuration,
the physical identity store configuration, and the operational configuration.

The logical entity configuration and operational configuration is stored in ids-config.xml. This
file is located in the same directory as jps-config.xml. For example, in a Java EE environment
the location is:

DOMAIN_HOME/config/fmwconfig/ids-config.xml

The physical identity store configuration is stored in ovd/ids/adapters.os.xml. For example, in a
Java EE environment the ovd directory is located in:

DOMAIN_HOME/config/fmwconfig

This section contains the following topics:

• Logical Entity Configuration for an Identity Directory Service

• Physical Identity Store Configuration for an Identity Directory Service

• Operational Configuration for an Identity Directory Service

2.2.1 Logical Entity Configuration for an Identity Directory Service
It is important to maintain and control the attributes and properties that are associated with a
logical entity configuration for an Identity Directory.

The following topics describe the logical entity configuration information for an Identity
Directory Service:

• Properties of a Logical Entity Configuration

• Attributes of a Logical Entity Configuration

Chapter 2
Identity Directory API Configuration

2-4

• Properties of a Logical Entity Definition

• Properties of a Logical Entity Relationship

2.2.1.1 Properties of a Logical Entity Configuration
You must keep in mind the properties of a logical entity configuration.

Name Description

name Name that uniquely identifies the Identity Directory Service.

description Detailed description of the Identity Directory Service.

ovd.context Valid values are default or ids. Use default for connecting to the
same identity store configured in OPSS. Use ids to connect to any
physical identity store configured independent of OPSS. Only out-of-
the-box identity directories, that is userrole and idxuserrole, use
default value.

app.name Optional property to specify the specific application for which the
Identity Directory Service is being configured.

2.2.1.2 Attributes of a Logical Entity Configuration
The following table describes the logical entity attributes:

Name Description

name Logical attribute name.

dataType Valid data type values are as follows: string, boolean, integer,
double, datetime, binary, x500name, and rfc822name.

description Detailed description of the logical attribute.

readOnly Default is false. Use true if the attribute is read-only.

pwdAttr Default is false. Use true if the attribute is a password attribute.

Note:

Beginning with the 12c (12.1.3) release, the Identity Directory API supports entity
attribute pass-through. With pass-through support, you do not need to include each
and every attribute in attribute definitions (described in table in Attributes of a Logical
Entity Configuration) and in attribute references under the entity definition (described
in table in Properties of a Logical Entity Definition).

The IDS API allows any attribute in an add, modify, requested attributes, or search
filter operation. The entity definition can hold a minimal set of attributes either to
define entity relationships using logical attribute names that are different from the
back-end identity store or for the default fetch of attributes.

If an input attribute is not in the identity store schema, the IDS API returns the error
thrown by the identity store.

Chapter 2
Identity Directory API Configuration

2-5

2.2.1.3 Properties of a Logical Entity Definition
You must keep in mind the properties required in each logical entity definition.

Name Description

name Name of the entity.

type Valid entity values are as follows: user, group, org and other.

idAttr Logical attribute that uniquely identifies the entity.

create Use true if creating this entity is allowed. Use false otherwise.

modify Use true if modifying this entity is allowed. Use false otherwise.

delete Use true if deleting this entity is allowed. Use false otherwise.

search Use true if search of this entity to be allowed. Use false otherwise.

Attribute References List of entity attribute references that contain the following details:

• name: Logical attribute name.

• defaultFetch: Default value is true. Use true if the attribute will
be fetched by default. For example, when the entity is read using
Identity Directory API, this attribute value is fetched from the
identity store even though this attribute is not included in the
requested attributes.

• filter: Search filter type with one of the following valid values:
none, dynamic, equals, notequals, beginswith, contains,
doesnotcontain, endswith, greaterequal, lessequal,
greaterthan, and lessthan. Value none means no filter
support.

2.2.1.4 Properties of a Logical Entity Relationship
You must keep in mind the properties required in each logical entity relationship definition.

Name Description

name Name of the entity relationship.

type Valid entity values are as follows: OneToOne, OneToMany, ManyToOne,
and ManyToMany.

fromEntity Name of the first entity in the Entity Relationship.

fromAttr The first entity's attribute. Value of this attribute relates to the second
entity in the relationship.

toEntity Name of the second entity in the Entity Relationship.

toAttr The second entity's attribute. Value of the fromAttr property maps to
this attribute in second entity.

recursive Use true if the entity relationship is recursive. Default is false.

2.2.2 Physical Identity Store Configuration for an Identity Directory Service
It is imperative to identify and document the physical characteristics of a configuration item for
an Identity Directory, so that it can used as needed.

The following table describes the physical identity store configuration properties:

Chapter 2
Identity Directory API Configuration

2-6

Name Description

Host and Port Host and Port information of the Identity Store. Alternate Host and Port
details also can be setup for failover.

Directory Type Type of directory. Valid values are: OID, ACTIVE_DIRECTORY, IPLANET,
EDIRECTORY, OPEN_LDAP, WLS_OVD, and OUD.

Bind DN and Password Credentials to connect to the directory.

2.2.3 Operational Configuration for an Identity Directory Service
You must explore and identify the functional and operational aspects associated with a
configuration item for an Identity Directory Service.

The operational configuration contains mainly base, name attribute, and objectclass
configuration for each of the entities.

The following table describes the operational configuration entities:

Name Description

entity.searchbase Container under which the entity should be searched.

entity.createbase Container where the new entity will be created.

entity.name.attr RDN attribute of the entity.

entity.filter.objclasses The objectclass filters to be used while searching this entity.

entity.create.objclasses The objectclasses to be added while creating this new entity.

2.3 Design Recommendations for Identity Directory API
There are some essential design guidelines that one must keep in mind while creating an
Identity Directory API.

The following topics describe these recommendations:

• Minimizing Use of defaultFetch Attributes

• Initializing the Identity Directory Once

2.3.1 Minimizing Use of defaultFetch Attributes
You must keep the number of entity attributes to minimal while configuring a new Identity
Directory.

The entity attribute is defined by defaultFetch value. Also, try to have large attributes like
jpegphoto configured with a defaultFetch value of false. The reason is every time the entity is
read from the backend, all the defaultFetch attributes from backend directory will be retrieved.
Too many defaultFetch attributes will affect the performance.

Chapter 2
Design Recommendations for Identity Directory API

2-7

2.3.2 Initializing the Identity Directory Once
Initialization of Identity Directory has some overhead to initialize the entire ArisId stack.
Therefore, you must initialize the Identity Directory once.

The Identity Directory API is used to initialize the Identity Directory Service. It has some
overhead. As a result, applications should initialize the Identity Directory once, preferably on
application startup, and use only one handle throughout.

2.4 Examples of Using the Identity Directory API
Use the sample codes for performing various operations associated with the Identity Directory
API.

The following topics describe operations associated with the Identity Directory API:

• Initializing and Obtaining Identity Directory Handle

• Initializing and Obtaining Identity Directory Handle from JPS Context

• Initializing and Obtaining In-Memory Identity Directory Handle

• Adding a User

• Obtaining a User for Given Principal

• Modifying a User

• Obtaining a User for Given ID Value

• Searching Users Using Complex Search Filter

• Changing User Password

• Resetting User Password

• Authenticating a User

• Deleting a User

• Creating a Group

• Searching Groups

• Obtaining Management Chain

• Obtaining Reportees of a User

• Adding a Member to a Group

• Deleting a Member From a Group

• Obtaining All The Groups For Which User is a Member

• Using Logical NOT Operator in a Search Filter

2.4.1 Initializing and Obtaining Identity Directory Handle
You must first call an initialization function to use the functionality of Identity Directory Service.
The Identity Directory handle then obtained is used to perform basic User and Group CRUD
operations.

import oracle.igf.ids.UserManager;
import oracle.igf.ids.GroupManager;

Chapter 2
Examples of Using the Identity Directory API

2-8

import oracle.igf.ids.config.OperationalConfig;
import oracle.igf.ids.IdentityDirectoryFactory;
import oracle.igf.ids.IdentityDirectory;
import oracle.igf.ids.IDSException;

public class IdsSample {

 private IdentityDirectory ids;
 private UserManager uMgr;
 private GroupManager gMgr;

 public IdsSample() throws IDSException {
 // Set Operational Config
 OperationalConfig opConfig = new OperationalConfig();

 // Set the application credentials (optional). This
 overrides the credentials set in
 // physical ID store configuration
opConfig.setApplicationUser("cn=user1,dc=us,dc=example,dc=com");
opConfig.setApplicationPassword("password".toCharArray());

 // Set search/crate base, name, objclass, etc. config
 (optional). This overrides default operational configuration
 in IDS
 opConfig.setEntityProperty("User", opConfig.SEARCH_BASE,
 "dc=us,dc=example,dc=com");
 opConfig.setEntityProperty("User", opConfig.CREATE_BASE,
 "dc=us,dc=example,dc=com");
 opConfig.setEntityProperty("User", opConfig.FILTER
_OBJCLASSES, "person");
 opConfig.setEntityProperty("User", opConfig.CREATE
_OBJCLASSES, "inetorgperson");
 opConfig.setEntityProperty("Group", opConfig.SEARCH
_BASE, "cn=groups,dc=us,dc=example,dc=com");
 opConfig.setEntityProperty("Group", opConfig.CREATE
_BASE, "cn=groups,dc=us,dc=example,dc=com");
 opConfig.setEntityProperty("Group", opConfig.FILTER
_OBJCLASSES, "groupofuniquenames");
 opConfig.setEntityProperty("Group", opConfig.CREATE
_OBJCLASSES, "groupofuniquenames");

 // Get IdentityDirectory "ids1" configured in IDS config
 IdentityDirectoryFactory factory = new
 IdentityDirectoryFactory();
 ids = factory.getIdentityDirectory("ids1", opConfig);

 // Get UserManager and GroupManager handles
 uMgr = ids.getUserManager();
 gMgr = ids.getGroupManager();
 }
}

Chapter 2
Examples of Using the Identity Directory API

2-9

Note:

If you plan to use Tivoli as the authentication provider, then you need to select
OPEN_LDAP as the authentication provider type. This is because Oracle WebLogic
Server does not support Tivoli.

When Identity Governance Framework or Identity Directory Service is initialized to
obtain the directory handle for Tivoli, then the generated adapters.os_xml file
contains the following parameter:

<param name="mapAttribute" value="orclGUID=entryUUID"/>

In this scenario, for Tivoli, you need to map orclGUID attribute to ibm-entryUUID as
follows:

<param name="mapAttribute" value="orclGUID=ibm-entryUUID"/>

You need to update the adapters.os_xml file manually to reflect these changes. In
addition, you must restart the Oracle WebLogic Server for any attribute mapping
update to work.

2.4.2 Initializing and Obtaining Identity Directory Handle from JPS Context
You can initialize and obtain the Identity Directory handle from JPS context. Use the sample
code to perform the task.

import oracle.igf.ids.UserManager;
import oracle.igf.ids.GroupManager;
import oracle.igf.ids.config.OperationalConfig;
import oracle.igf.ids.IdentityDirectoryFactory;
import oracle.igf.ids.IdentityDirectory;
import oracle.igf.ids.IDSException;

import oracle.security.jps.JpsContext;
import oracle.security.jps.JpsContextFactory;
import oracle.security.jps.service.idstore.IdentityStoreService;

public class IdsSample {

 private IdentityDirectory ids;
 private UserManager uMgr;
 private GroupManager gMgr;

 public IdsSample() throws IDSException {

 // Get IdentityDirectory from JpsContext
 try {
 JpsContext context =
JpsContextFactory.getContextFactory().getContext();
 IdentityStoreService idstore = (IdentityStoreService)
context.getServiceInstance(IdentityStoreService.class);
 ids = idstore.getIdentityStore();
 } catch (Exception e) {
 throw new IDSException(e);
 }

 // Get UserManager and GroupManager handles
 uMgr = ids.getUserManager();

Chapter 2
Examples of Using the Identity Directory API

2-10

 gMgr = ids.getGroupManager();
 }
}

2.4.3 Initializing and Obtaining In-Memory Identity Directory Handle
You can initialize and obtain the in-memory Identity Directory handle. Use the sample code
perform this task.

import java.util.ArrayList;
import java.util.List;

import oracle.igf.ids.UserManager;
import oracle.igf.ids.GroupManager;
import oracle.igf.ids.config.AttributeDef;
import oracle.igf.ids.config.AttributeRef;
import oracle.igf.ids.config.EntityDef;
import oracle.igf.ids.config.EntitiesConfig;
import oracle.igf.ids.config.EntityRelationship;
import oracle.igf.ids.config.IdentityStoreConfig;
import oracle.igf.ids.config.OperationalConfig;
import oracle.igf.ids.IdentityDirectoryFactory;
import oracle.igf.ids.IdentityDirectory;
import oracle.igf.ids.IDSException;

public class IdsSample {

 private IdentityDirectory ids;
 private UserManager uMgr;
 private GroupManager gMgr;
 public IdsSample() throws IDSException {

 // Add Attribute definitions
 List<AttributeDef> attrDefs = new ArrayList<AttributeDef>();
 attrDefs.add(new AttributeDef("cn", AttributeDef.DataType.STRING));
 attrDefs.add(new AttributeDef("firstname", AttributeDef.DataType.STRING));
 attrDefs.add(new AttributeDef("sn", AttributeDef.DataType.STRING));
 attrDefs.add(new AttributeDef("telephonenumber",
 AttributeDef.DataType.STRING));
 attrDefs.add(new AttributeDef("uid", AttributeDef.DataType.STRING));
 attrDefs.add(new AttributeDef("uniquemember",
 AttributeDef.DataType.STRING));

 // Add User entity definition
 List<EntityDef> entityDefs = new ArrayList<EntityDef>();
 EntityDef userEntityDef = new EntityDef("User", EntityDef.EntityType.USER,
 "cn");
 userEntityDef.addAttribute(new AttributeRef("cn"));
 userEntityDef.addAttribute(new AttributeRef("firstname"));
 userEntityDef.addAttribute(new AttributeRef("sn"));
 userEntityDef.addAttribute(new AttributeRef("telephonenumber"));
 userEntityDef.addAttribute(new AttributeRef("uid"));
 entityDefs.add(userEntityDef);

 // Add Group entity definition
 EntityDef groupEntityDef = new EntityDef("Group",
 EntityDef.EntityType.GROUP, "cn");
 groupEntityDef.addAttribute(new AttributeRef("cn"));
 groupEntityDef.addAttribute(new AttributeRef("uniquemember", false,
 AttributeRef.FilterType.EQUALS));
 entityDefs.add(groupEntityDef);

Chapter 2
Examples of Using the Identity Directory API

2-11

 // Add Entity relationship definition
 List<EntityRelationship> entityRelations = new
 ArrayList<EntityRelationship>();
 entityRelations.add(new EntityRelationship("user_memberOfGroup",
 EntityRelationship.RelationshipType.MANYTOMANY, "User",
 "principal", "Group", "uniquemember"));
 entityRelations.add(new EntityRelationship("group_memberOfGroup",
 EntityRelationship.RelationshipType.MANYTOMANY, "Group",
 "principal", "Group", "uniquemember", true));
 EntitiesConfig entityCfg = new EntitiesConfig(attrDefs,
 entityDefs, entityRelations);

 // Create physical Identity Store configuration
 IdentityStoreConfig idStoreCfg = new IdentityStoreConfig(
 "ldap://host1:389,ldap://host2:389", "cn=orcladmin",
 "password".toCharArray(), IdentityStoreConfig.IdentityStoreType.OID);

 idStoreCfg.setHighAvailabilityOption(IdentityStoreConfig.HAOption.FAILOVER);
 idStoreCfg.setProperty(IdentityStoreConfig.HEARTBEAT_INTERVAL, "60");
 idStoreCfg.setProperty(IdentityStoreConfig.CONN_TIMEOUT, "30000"); //
 milli sec
 idStoreCfg.setProperty(IdentityStoreConfig.MIN_POOLSIZE, "5");
 idStoreCfg.setProperty(IdentityStoreConfig.MAX_POOLSIZE, "10");
 idStoreCfg.setProperty(IdentityStoreConfig.MAX_POOLWAIT, "1000"); //
 milli sec
 idStoreCfg.setProperty(IdentityStoreConfig.MAX_POOLCHECKS, "10");
 idStoreCfg.setProperty(IdentityStoreConfig.FOLLOW_REFERRAL, "false");
 idStoreCfg.setAttrMapping("firstname", "givenname");

 // Set operational config
 OperationalConfig opConfig = new OperationalConfig();
 opConfig.setEntityProperty(opConfig.USER_ENTITY, opConfig.SEARCH_BASE,
 "cn=users,dc=us,dc=example,dc=com");
 opConfig.setEntityProperty(opConfig.USER_ENTITY, opConfig.CREATE_BASE,
 "cn=users,dc=us,dc=example,dc=com");
 opConfig.setEntityProperty(opConfig.USER_ENTITY, opConfig.NAME_ATTR,
 "cn");
 opConfig.setEntityProperty(opConfig.USER_ENTITY, opConfig.FILTER
_OBJCLASSES, "inetorgperson");
 opConfig.setEntityProperty(opConfig.USER_ENTITY, opConfig.CREATE
_OBJCLASSES, "inetorgperson");
 opConfig.setEntityProperty(opConfig.GROUP_ENTITY, opConfig.SEARCH_BASE,
 "cn=groups,dc=us,dc=example,dc=com");
 opConfig.setEntityProperty(opConfig.GROUP_ENTITY, opConfig.CREATE_BASE,
 "cn=groups,dc=us,dc=example,dc=com");
 opConfig.setEntityProperty(opConfig.GROUP_ENTITY, opConfig.NAME_ATTR,
 "cn");
 opConfig.setEntityProperty(opConfig.GROUP_ENTITY, opConfig.FILTER
_OBJCLASSES, "groupofuniquenames");
 opConfig.setEntityProperty(opConfig.GROUP_ENTITY, opConfig.CREATE
_OBJCLASSES, "groupofuniquenames");

 // Initialize Identity Store Service
 IdentityDirectoryFactory factory = new IdentityDirectoryFactory();
 ids = factory.getIdentityDirectory("ids1", entityCfg, idStoreCfg,
 opConfig);

 // Get UserManager and GroupManager handles
 uMgr = ids.getUserManager();
 gMgr = ids.getGroupManager();
 }

Chapter 2
Examples of Using the Identity Directory API

2-12

}

2.4.4 Adding a User
After obtaining the Identity Directory handle, you can perform CRUD operations on users and
groups. Use the sample code to add a user to the identity store.

Principal principal = null;

 List<Attribute> attrs = new ArrayList<Attribute>();
 attrs.add(new Attribute("commonname", "test1_user1"));
 attrs.add(new Attribute("password", "mypassword".toCharArray()));
 attrs.add(new Attribute("firstname", "test1"));
 attrs.add(new Attribute("lastname", "user1"));
 attrs.add(new Attribute("mail", "test1.user1@example.com"));
 attrs.add(new Attribute("telephone", "1 650 123 0001"));
 attrs.add(new Attribute("title", "Senior Director"));
 attrs.add(new Attribute("uid", "tuser1"));

 try {
 CreateOptions createOpts = new CreateOptions();

 principal = uMgr.createUser(attrs, createOpts);

 System.out.println("Created user " + principal.getName());

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

2.4.5 Obtaining a User for Given Principal
You can retrieve users for a given principal. Use the sample code to perform the task.

User user = null;

 try {
 ReadOptions readOpts = new ReadOptions();

 user = uMgr.getUser(principal, readOpts);

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

2.4.6 Modifying a User
Once you have created the users, then you can modify the existing attributes of the user or can
add attributes by modifying the user. Use the sample code to perform this task.

try {
 ModifyOptions modifyOpts = new ModifyOptions();

 List<ModAttribute> attrs = new ArrayList<ModAttribute>();
 attrs.add(new ModAttribute("description", "modified test user 1"));

Chapter 2
Examples of Using the Identity Directory API

2-13

 user.modify(attrs, modifyOpts);

 System.out.println("Modified user " + user.getName());
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

2.4.7 Obtaining a User for Given ID Value
You can retrieve the user details based on the identity value of the user. For this you need to
create a retrieval query to fetch the details. Use the sample code to perform this task.

try {
 ReadOptions readOpts = new ReadOptions();

 User user = uMgr.searchUser("tuser1", readOpts);

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

2.4.8 Searching Users Using Complex Search Filter
You might have to create complex filters in the user retrieval query, which match the given
criteria and return the target search operation results. Use the sample code to perform this
task.

try {
 // Complex search filter with nested AND and OR conditiions
 SearchFilter filter = new SearchFilter(
 SearchFilter.LogicalOp.OR,
 new SearchFilter(SearchFilter.LogicalOp.AND,
 new SearchFilter("firstname", SearchFilter.Operator.BEGINS_WITH,
 "test"),
 new SearchFilter("telephone", SearchFilter.Operator.CONTAINS,
 "650")),
 new SearchFilter(SearchFilter.LogicalOp.AND,
 new SearchFilter("firstname", SearchFilter.Operator.BEGINS_WITH,
 "demo"),
 new SearchFilter(SearchFilter.LogicalOp.OR,
 new SearchFilter("orgunit", SearchFilter.Operator.BEGINS_WITH,
 "hr"),
 new SearchFilter("orgunit", SearchFilter.Operator.BEGINS_WITH,
 "it"),

 new SearchFilter("telephone", SearchFilter.Operator.CONTAINS,
 "650")));

 // Requesting attributes
 List<String> reqAttrs = new ArrayList<String>();
 reqAttrs.add("jpegphoto");

 SearchOptions searchOpts = new SearchOptions();
 searchOpts.setPageSize(100);
 searchOpts.setRequestedAttrs(reqAttrs);
 searchOpts.setSortAttrs(new String[] {"firstname"});

Chapter 2
Examples of Using the Identity Directory API

2-14

 ResultSet<User> sr = uMgr.searchUsers(filter, searchOpts);
 while (sr.hasMore()) {
 User user = sr.getNext();
 System.out.println(user.getSubjectName());
 }

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

2.4.9 Changing User Password
After you have created a user, you can modify the attributes of a user. Use the sample code to
modify the password of a user.

ModifyOptions modOpts = new ModifyOptions();

 try {
 user.changePassword("welcome123".toCharArray(),
 "welcome1".toCharArray(), modOpts);
 System.out.println("Changed user password");
 } catch (Exception e) {
 System.out.println("Failed to change user password");
 e.printStackTrace();
 }

2.4.10 Resetting User Password
You can reset the password of the created user in Identity Directory. Use the sample code to
perform this task.

ModifyOptions modOpts = new ModifyOptions();

 try {
 user.resetPassword("welcome123".toCharArray(), modOpts);
 System.out.println("Reset user password");
 } catch (Exception e) {
 System.out.println("Failed to reset user password");
 e.printStackTrace();
 }

2.4.11 Authenticating a User
It is imperative to authenticate a user before granting the access to perform various operations.
You can authenticate a user using APIs.

 ReadOptions readOpts = new ReadOptions();
 try {
 User user = uMgr.authenticateUser("tuser1",
 "mypassword".toCharArray(), readOpts);
 System.out.println("authentication success");
 } catch (Exception e) {
 System.out.println("Authentication failed. " + e.getMessage());
 e.printStackTrace();
 }

Chapter 2
Examples of Using the Identity Directory API

2-15

2.4.12 Deleting a User
You can delete a user that already exists in the identity store using the Identity Directory API.
Use the sample code to perform this task.

try {
 DeleteOptions deleteOpts = new DeleteOptions();

 uMgr.deleteUser(principal, deleteOpts);

 System.out.println("Deleted user " + principal.getName());

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

2.4.13 Creating a Group
It is beneficial to create Groups as it is easier to grant or deny privileges to a groups of users
instead of applying those privileges to each user individually. You can create user groups in
Identity Directory.

Principal principal = null;

 List<Attribute> attrs = new ArrayList<Attribute>();
 attrs.add(new Attribute("name", "test1_group1"));
 attrs.add(new Attribute("description", "created test group 1"));
 attrs.add(new Attribute("displayname", "test1 group1"));
 try {
 CreateOptions createOpts = new CreateOptions();

 principal = gMgr.createGroup(attrs, createOpts);

 System.out.println("Created group " + principal.getName());
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

2.4.14 Searching Groups
You can define search filters to search groups matching the desired criteria.

public void searchGroups() {

 try {
 SearchFilter filter = new SearchFilter("name",
 SearchFilter.Operator.BEGINS_WITH, "test");

 SearchOptions searchOpts = new SearchOptions();
 searchOpts.setPageSize(10);

 ResultSet<Group> sr = gMgr.searchGroups(filter, searchOpts);
 while (sr.hasMore()) {
 Group group = sr.getNext();
 System.out.println(group.getSubjectName());
 }

Chapter 2
Examples of Using the Identity Directory API

2-16

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

2.4.15 Obtaining Management Chain
You can obtain the management hierarchy for any given user in Identity Directory. Use the
sample code to perform this task.

try {
 ReadOptions readOpts = new ReadOptions();
 User user = uMgr.searchUser("tuser1", readOpts);

 SearchOptions searchOpts = new SearchOptions();
 searchOpts.setPageSize(10);
 int nLevels = 0;

 ResultSet<User> sr = user.getManagementChain(nLevels, searchOpts);
 while (sr.hasMore()) {
 User u = sr.getNext();
 System.out.println(u.getSubjectName());
 }

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

2.4.16 Obtaining Reportees of a User
You can obtain the reportees of a user by defining target search filters in Identity Directory.

// Get Reportees with target search filter
 public void getReportees() {

 try {
 ReadOptions readOpts = new ReadOptions();
 User user = uMgr.searchUser("tuser1", readOpts);

 SearchOptions searchOpts = new SearchOptions();
 searchOpts.setPageSize(20);
 int nLevels = 0;

 // get all the direct/indirect reporting of tuser1 who are
 "developers"
 SearchFilter filter = new SearchFilter("title",
 SearchFilter.Operator.CONTAINS, "developer");
 ResultSet<User> sr = user.getReportees(nLevels, filter, searchOpts);
 while (sr.hasMore()) {
 User u = sr.getNext();
 System.out.println(u.getSubjectName());
 }

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

Chapter 2
Examples of Using the Identity Directory API

2-17

2.4.17 Adding a Member to a Group
You can logically group an existing user in Identity Directory by adding them to a specific
group. Use the sample code to perform this task.

try {
 ReadOptions readOpts = new ReadOptions();
 User user = uMgr.searchUser("tuser1", readOpts);
 Group group = gMgr.searchGroup("test1_group1", readOpts);

 ModifyOptions modOpts = new ModifyOptions();
 user.addMemberOf(group, modOpts);

 System.out.println("added tuser1 as a member of test1_group1");

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

2.4.18 Deleting a Member From a Group
A user who is a member of a group can be isolated from the given group using the Identity
Directory API. Use the sample code to perform this task.

try {
 ReadOptions readOpts = new ReadOptions();
 User user = uMgr.searchUser("tuser1", readOpts);
 Group group = gMgr.searchGroup("test1_group1", readOpts);

 ModifyOptions modOpts = new ModifyOptions();
 group.deleteMember(user, modOpts);

 System.out.println("deleted tuser1 from the group test1_group1");

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

Note:

Identity Governance Framework/Identity Directory Service group membership search
evaluates both static and dynamic groups. However, membership updates (addition/
deletion) are not supported for dynamic groups. For instance, if you wish to delete a
member from a group and the member is a dynamic member of that group, then the
delete operation is not supported for the dynamic group.

2.4.19 Obtaining All The Groups For Which User is a Member
For an existing user in Identity Directory, you can obtain all the groups to which the user
belongs to using Identity Directory API. Use the sample code to perform this task.

try {
 ReadOptions readOpts = new ReadOptions();

Chapter 2
Examples of Using the Identity Directory API

2-18

 User user = uMgr.searchUser("tuser1", readOpts);

 SearchOptions searchOpts = new SearchOptions();
 searchOpts.setPageSize(10);
 int nLevels = 0;

 ResultSet<Group> sr = user.getMemberOfGroups(nLevels, null,
 searchOpts);
 while (sr.hasMore()) {
 Group group = sr.getNext();
 System.out.println(group.getSubjectName());
 }

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

2.4.20 Using Logical NOT Operator in a Search Filter
Identity Directory supports the use of NOT operator in a search filter. You can easily define a
NOT operator in a search filter for obtaining results that match the criteria.

try {
 SearchFilter f1 = new SearchFilter("firstname", SearchFilter.Operator.BEGINS_WITH, "demo");
 SearchFilter f2 = new SearchFilter("orgunit", SearchFilter.Operator.CONTAINS, "myorg");
 f2.negate();
 SearchFilter filter = new SearchFilter(SearchFilter.LogicalOp.AND, f1, f2);

 ResultSet<User> sr = uMgr.searchUsers(filter, searchOpts);
 }

2.5 Supported Cipher Suites in Identity Directory Services
Learn about the cipher suites that Identity Directory Services uses.

This section contains the following topics.

• Supported Cipher Suites for Identity Directory Services in AIX

• Adding Supported Cipher Suites in adapters.os_xml

2.5.1 Supported Cipher Suites for Identity Directory Services in AIX
This section provides a list of the cipher suites supported by the IBM JDK, which are enabled
by default.

Note:

It is recommended to avoid using weak ciphers for IDS in AIX. While IDS does not
offer additional cipher support, it will still communicate with the backend server using
the specified ciphers. Therefore, it's advisable to avoid weak ciphers and remove
them from the LDAP backend server as well.

 TLS_EMPTY_RENEGOTIATION_INFO_SCSV
 SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
 SSL_ECDHE_RSA_WITH_AES_256_CBC_SHA384

Chapter 2
Supported Cipher Suites in Identity Directory Services

2-19

 SSL_RSA_WITH_AES_256_CBC_SHA256
 SSL_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
 SSL_ECDH_RSA_WITH_AES_256_CBC_SHA384
 SSL_DHE_RSA_WITH_AES_256_CBC_SHA256
 SSL_DHE_DSS_WITH_AES_256_CBC_SHA256
 SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
 SSL_ECDHE_RSA_WITH_AES_256_CBC_SHA
 SSL_RSA_WITH_AES_256_CBC_SHA
 SSL_ECDH_ECDSA_WITH_AES_256_CBC_SHA
 SSL_ECDH_RSA_WITH_AES_256_CBC_SHA
 SSL_DHE_RSA_WITH_AES_256_CBC_SHA
 SSL_DHE_DSS_WITH_AES_256_CBC_SHA
 SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
 SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256
 SSL_RSA_WITH_AES_128_CBC_SHA256
 SSL_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
 SSL_ECDH_RSA_WITH_AES_128_CBC_SHA256
 SSL_DHE_RSA_WITH_AES_128_CBC_SHA256
 SSL_DHE_DSS_WITH_AES_128_CBC_SHA256
 SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
 SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA
 SSL_RSA_WITH_AES_128_CBC_SHA
 SSL_ECDH_ECDSA_WITH_AES_128_CBC_SHA
 SSL_ECDH_RSA_WITH_AES_128_CBC_SHA
 SSL_DHE_RSA_WITH_AES_128_CBC_SHA
 SSL_DHE_DSS_WITH_AES_128_CBC_SHA
 SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
 SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 SSL_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 SSL_RSA_WITH_AES_256_GCM_SHA384
 SSL_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
 SSL_ECDH_RSA_WITH_AES_256_GCM_SHA384
 SSL_DHE_DSS_WITH_AES_256_GCM_SHA384
 SSL_DHE_RSA_WITH_AES_256_GCM_SHA384
 SSL_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 SSL_RSA_WITH_AES_128_GCM_SHA256
 SSL_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
 SSL_ECDH_RSA_WITH_AES_128_GCM_SHA256
 SSL_DHE_RSA_WITH_AES_128_GCM_SHA256
 SSL_DHE_DSS_WITH_AES_128_GCM_SHA256

2.5.2 Adding Supported Cipher Suites in adapters.os_xml
You can add IBM JDK enabled ciphers in adapters.os_xml.

To add the ciphers:

1. Open the adapters.os_xml file.

2. Add the required ciphers in adapters.os_xml as shown below:

<ldap id="DefaultAuthenticator" version="0">
 ...
 <ssl>
 <protocols>TLSv1.2,TLSv1.1</protocols>
 <cipherSuites>
 <cipher>SSL_RSA_WITH_AES_128_CBC_SHA</cipher>
 <cipher>SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA</cipher>

 ...

 <cipher>SSL_ECDH_ECDSA_WITH_AES_128_GCM_SHA256</cipher>
 </cipherSuites>

Chapter 2
Supported Cipher Suites in Identity Directory Services

2-20

 </ssl>
 ...
 </ldap>

3. Restart the weblogic server.

Chapter 2
Supported Cipher Suites in Identity Directory Services

2-21

3
Migrating to Identity Directory API

Use the topics to understand how to migrate applications from the User and Role API to the
Identity Directory API.

• Overview of Migrating to Identity Directory API

• Migrating the Application to Identity Directory API

• Understanding the Comparison Between User and Role API With IDS API

• Moving From a Test to a Production Environment

• Tuning Configuration Parameters for IDS

• Allowing Pass-through Attributes in IDS

3.1 Overview of Migrating to Identity Directory API
The Identity Directory API allows applications to access identity information (users and other
entities) in a uniform and portable manner. If you have an application that uses the User and
Role API, then you can migrate it to use Identity Directory API.

The Identity Directory API also picks up the LDAP-based identity store confirmation from the
jps-config file. As such, when migrating an application from the User and Role API to the
Identity Directory API you do not need to change the configuration in the jps-config file.

Applications that initialize the User and Role API with a programmatic configuration can use a
similar method to initialize the Identity Directory API, as described in Initializing and Obtaining
In-Memory Identity Directory Handle.

3.2 Migrating the Application to Identity Directory API
You need to implement some code changes while migrating an application from the User and
Role API to the Identity Directory API.

The following topics describe the code changes needed while migration:

• Initializing API

• Getting UserManager and GroupManager Handle

• Searching Filter

• Performing CRUD Operations

3.2.1 Initializing API
All applications must initialize the API to obtain the Identity Directory handle. The program
should perform the initialization only once. Use the sample code to initialize an API.

The process of initializing is similar to using IdentityStoreService.GetIdmStore() for getting
oracle.security.idm.IdentityStore handle. Identity Directory Service uses
IdentityStoreService.getIdentityStore() to get IdentityDirectory handle. For example:

3-1

import oracle.igf.ids.IdentityDirectory;
import oracle.igf.ids.IDSException;
import oracle.security.jps.JpsContext;
import oracle.security.jps.JpsContextFactory;
import oracle.security.jps.service.idstore.IdentityStoreService;

// Get IdentityDirectory from JpsContext
JpsContext context = JpsContextFactory.getContextFactory().getContext();
IdentityStoreService idstore = (IdentityStoreService)
context.getServiceInstance(IdentityStoreService.class);
Identity Directory ids = idstore.getIdentityStore();

3.2.2 Getting UserManager and GroupManager Handle
All operations on a user instance are handled by a user manager and all operations on a group
are handled by a group manager. Use the sample code to perform CRUD operations on users
and groups instance respectively.

User related CRUD operations can be performed with oracle.igf.ids.UserManager and Role
related CRUD operations can be performed with oracle.igf.ids.GroupManager. UserManager
and GroupManager handles can be obtained from IdentityDirectory object. For example:

import oracle.igf.ids.UserManager;
import oracle.igf.ids.GroupManager;

// Get UserManager and GroupManager handles
 UserManager uMgr = ids.getUserManager();
 GroupManager gMgr = ids.getGroupManager();

3.2.3 Searching Filter
You can create simple or complex search filter to be used in searching the identity repository.
Use the sample code to facilitate a variety of search operations.

You can build a simple or complex search filter using oracle.igf.ids.SearchFilter. For
example:

import oracle.igf.ids.SearchFilter;

// Simple search filter for (firstname equals "john")

SearchFilter filter1 = new SearchFilter("firstname",
SearchFilter.Operator.EQUALS, "john");

 // Complex search filter for
 ((title contains "manager") and (org equals "amer")) or
((title contains "senior manager") and (org equals "apac"))

 SearchFilter filter = new SearchFilter(
 SearchFilter.LogicalOp.OR,
 new SearchFilter(SearchFilter.LogicalOp.AND,
 new SearchFilter("manager", SearchFilter.Operator.CONTAINS,
 "manager"),
 new SearchFilter("org", SearchFilter.Operator.EQUALS, "amer")),
 new SearchFilter(SearchFilter.LogicalOp.AND,
 new SearchFilter("manager", SearchFilter.Operator.CONTAINS,
 "senior manager"),
 new SearchFilter("org", SearchFilter.Operator.EQUALS, "apac")));

Chapter 3
Migrating the Application to Identity Directory API

3-2

3.2.4 Performing CRUD Operations
You can perform Create/Read/Update/Delete (CRUD) operations on User, Group, Org, and
generic entities. This requires that the CRUD APIs be implemented for use in the applications.

The following topics describes these CRUD operations:

• APIs to Find a User

• APIs to Search a User

• APIs to Create a User

• APIs to Delete a User

• APIs to Authenticate a User

• APIs to Modify Users and Manage Related Entities

3.2.4.1 APIs to Find a User
The following APIs are used for finding a user:

• Get user for given principal identifier. For example:

User getUser(Principal principal, ReadOptions opts)
• Search for user matching given id attribute value that uniquely identifies the user. For

example:

User searchUser(String id, ReadOptions opts)
• Finds user matching given attribute name and value. For example:

User searchUser(String attrName, String attrVal, ReadOptions opts)
• Search for user matching given GUID value that uniquely identifies the user. For example:

searchUserByGuid(String guid, ReadOptions opts)

3.2.4.2 APIs to Search a User
The following is an example of the API for searching a user.

ResultSet<User> searchUsers(SearchFilter filter, SearchOptions opts)

3.2.4.3 APIs to Create a User
You can create a user using an API.

The following is an example of the API for creating a user.

Principal createUser(List<Attribute> attrVals, CreateOptions opts)

3.2.4.4 APIs to Delete a User
You can delete a user using an API.

The following are examples of the API for deleting a user.

• Delete the user given the principal identifier.

void deleteUser(Principal principal, DeleteOptions opts)

Chapter 3
Migrating the Application to Identity Directory API

3-3

• Delete the user given the id attribute value.

void deleteUser(String id, DeleteOptions opts)

3.2.4.5 APIs to Authenticate a User
It is a common mechanism to authenticate users via an API.

The following are examples of the API for user authentication.

• Authenticate the user matching the given id attribute value.

User authenticateUser(String id, char[] password, ReadOptions opts)
• Authenticate the user for given principal identifier.

boolean authenticateUser(Principal principal, char[] password)

3.2.4.6 APIs to Modify Users and Manage Related Entities
The APIs for modifying user attributes and for getting the related entities are in User object
instead of UserManager.

Modifying a User

The following are examples of the API for modifying a user.

• Modify user attributes.

void User.modify(List<ModAttribute> attrVals, ModifyOptions opts)
• Set the user attribute value.

void User.setAttributeValue(String attrName, String attrVal, ModifyOptions opts)
Managing Related Entities

The following are examples of the APIs for managing entities.

• Get the management chain.

ResultSet<User> getManagementChain(int nLevels, SearchOptions opts)
• Check if the given user is manager of this user.

boolean isManager(User user, boolean direct, ReadOptions opts)
• Check if the given user is manager of this user.

boolean isManager(User user, boolean direct, ReadOptions opts)
• Set the given user as manager of this user.

void setManager(User user, ModifyOptions opts)
• Get all the reportees of this user.

ResultSet<User> getReportees(int nLevels,
 SearchFilter targetFilter, SearchOptions opts)

• Get all the groups this user is a member of and matching the given filter criteria.

ResultSet<Group> getMemberOfGroups(int
 nLevels, SearchFilter targetFilter, SearchOptions opts)

• Check if this user is a member of the given group.

Chapter 3
Migrating the Application to Identity Directory API

3-4

boolean isMemberOf(Group group, boolean direct, ReadOptions opts)
• Add this user as a member to given group.

void addMemberOf(Group group, ModifyOptions opts)
• Delete this user as a member to given group.

void deleteMemberOf(Group group, ModifyOptions opts)

3.3 Understanding the Comparison Between User and Role API
With IDS API

It is essential that you understand the mapping between the User and Role API and Identity
Directory API before implementing the change in your application.

The following topics describe the differences:

• Comparison of User-Related APIs With Identity Directory APIs

• Comparison of Role-Related APIs With Identity Directory APIs

3.3.1 Comparison of User-Related APIs With Identity Directory APIs
You must understand the mapping between the endpoints for the User API with those in the
Identity Directory API.

The following table maps the User-related API method with its corresponding Identity Directory
API method.

Functionality User/Role API Method Identity Directory Service Method

User Creation User
UserManager.createUser(Strin
g name, char[] password)

User
UserManager.createUser(Strin
g name, char[] password,
PropertySet pset)

Principal
UserManager.createUser(List<Attribute>
attrVals, CreateOptions opts)

Delete User void
UserManager.dropUser(UserP
rofile user)

void
UserManager.dropUser(User
user);

void UserManager.deleteUser(Principal
principal, DeleteOptions opts)

void UserManager.deleteUser(String id,
DeleteOptions opts)

Authenticate User User
UserManager.authenticateUse
r(String user_id, char[]
passwd)

User
UserManager.authenticateUse
r(User user, char[] passwd)

User
UserManager.authenticateUse
r(String user_id, String
authProperty, char[] passwd)

User UserManager.authenticateUser(String id,
char[] password, ReadOptions opts)

boolean
UserManager.authenticateUser(Principal
principal, char[] password)

Chapter 3
Understanding the Comparison Between User and Role API With IDS API

3-5

Functionality User/Role API Method Identity Directory Service Method

Check if create User is
supported

boolean
UserManager.isCreateUserSu
pported()

boolean
UserManager.getCapabilities().isCreateCapabl
e()

Check if modify User is
supported

boolean
UserManager.isModifyUserSu
pported()

boolean
UserManager.getCapabilities().isUpdateCapab
le()

Check if drop User is
supported

boolean
UserManager.isDropUserSupp
orted()

boolean
UserManager.getCapabilities().isDeleteCapabl
e()

Search Users by given
search criteria

SearchResponse
IdentityStore.searchUsers(Sea
rchParameters params)

ResultSet<User>
UserManager.searchUsers(SearchFilter filter,
SearchOptions opts)

Search an User by
name/uniquename /guid

User
IdentityStore.searchUser(Strin
g name)

User UserManager.searchUser(String id,
ReadOptions opts)

User UserManager.searchUser(String
attrName, String attrVal, ReadOptions opts)

Check if User exists in
the repository for a
given User object

boolean IdentityStore.exists
(User user)

User.getPrincipal() if the following method
returns null user doesn't exist; otherwise exists

User getUser(Principal principal, ReadOptions
opts)

Simple search filter
(search based on a
single attribute name,
type and value)

SimpleSearchFilter SearchFilter(String propertyName, Operator
op, String propertyVal)

Complex Search Filter
(search based on more
than one attribute with
filter conditions and
nested filters)

ComplextSearchFilter SearchFilter(LogicalOp op, SearchFilter...
searchFilters)

Getting a property value
for a given property
name

String
User.getPropertyVal(String
propName)

(User Role API fetches the
attribute values from cache. If
it misses cache, it fetches from
repository)

String User.getAttributeValue(String attrName)

Limitation: Returns attribute values from User
object that has been already fetched from the
repository.

Getting the User
property for a given
property name

Property
User.getProperty(String
propName)

Attribute User.getAttribute(String attrName)

Getting the user
properties for a given
set of property names

Map User.getProperties() Map<String, Attribute> User.getAllAttributes()

Get all user properties
from the repository for a
user

PropertySet
User.getAllUserProperties()

Map<String, Attribute> User.getAllAttributes()

Get all user property
names from the schema

List
IdentityStore.getUserProperty
Names()

Returns the names of all the
properties in the schema

List<String> UserManager.getEntityAttributes()

Chapter 3
Understanding the Comparison Between User and Role API With IDS API

3-6

Functionality User/Role API Method Identity Directory Service Method

Changing the attribute
value in the repository
of an user

void
User.setProperty(ModProperty
mprop)

void User.setAttributeValue(String attrName,
String attrVal, ModifyOptions opts)

Changing the set of
attribute values in the
repository for an user

void
User.setProperties(ModProper
ty[] modPropObjs)

void
User.setProperties(LdapConte
xt ctx, ModProperty[]
modPropObjs)

void User.modify(List<ModAttribute> attrVals,
ModifyOptions opts)

Get all the reportees of
an User either direct or
indirect

SearchResponse
User.getReportees(boolean
direct)

ResultSet<User> User.getReportees(int
nLevels, SearchFilter targetFilter,
SearchOptions opts)

Get Management chain
of an user

List
User.getManagementChain(int
max, String
upToManagerName, String
upToTitle)

ResultSet<User>
User.getManagementChain(int nLevels,
SearchOptions opts)

List<User> User.getManagementChain(int
nLevels, String manager, String title,
SearchOptions opts)

Get/Set of Binary
Attributes

Available

Property in User/Role API
supports binary attributes

byte[] user.getJPEGPhoto()

void
user.setJPEGPhoto(String
imgpath)

Returns base64 encoded value

While setting the value either base64 encoded
value or byte[] can be used for creating
ModAttribute.

Selecting the Realm Available

env.put(OIDIdentityStoreFacto
ry.RT_SUBSCRIBER_NAME,
"<realm dn>");

IdentityStoreFactory.getIdentit
yStoreInstance(env);

This is part of IDS Operational configuration.
At API level searchbase and createbase can
be specified as well.

3.3.2 Comparison of Role-Related APIs With Identity Directory APIs
You must understand the mapping between the endpoints for the User/Role API with those in
the Identity Directory API.

The following table maps the Role-related API method with its corresponding Identity Directory
API method.

Functionality User/Role API Method Identity Directory Service Method

Creating a Role Role
RoleManager.createRole(String
name, int scope)

Role
RoleManager.createRole(String
name)

Principal
GroupManager.createGroup(List<Attribute>
attrVals, CreateOptions opts)

Chapter 3
Understanding the Comparison Between User and Role API With IDS API

3-7

Functionality User/Role API Method Identity Directory Service Method

Deleting a Role void
RoleManager.dropRole(RolePr
ofile role)

void
RoleManager.dropRole(Role
role)

void GroupManager.deleteGroup(Principal
principal, DeleteOptions opts)

Check if create role is
supported

boolean
RoleManager.isCreateRoleSup
ported()

boolean
GroupManager.getCapabilities().isCreateCap
able()

Check if modify role is
supported

boolean
RoleManager.isModifyRoleSup
ported()

boolean
GroupManager.getCapabilities().isUpdateCa
pable()

Check if delete role is
supported

boolean
RoleManager.isDropRoleSuppo
rted()

boolean
GroupManager.getCapabilities().isDeleteCap
able()

Is the Group owned by
a User

boolean
RoleManager.isGranted(Role
parent, Principal principal)

boolean Group.isMember(User user, boolean
direct, ReadOptions opts)

boolean User.isMemberOf(Group group,
boolean direct, ReadOptions opts)

Is the Group owned by
a User

boolean
RoleManager.isOwnedBy(Role
parent, Principal principal)

boolean User.isOwnerOf(Group group,
boolean direct, ReadOptions opts)

Is the group managed
by a User

boolean
RoleManager.isManagedBy(Rol
e parent, Principal principal)

Not supported

Get all the members of
a Role either direct /
indirect

SearchResponse
Role.getGrantees(SearchFilter
filter, boolean direct)

ResultSet<User> Group.getMembers(int
nLevels, SearchFilter targetFilter,
SearchOptions opts)

Add an user as a
member to a role

void
RoleManager.grantRole(Role
parent, Principal principal)

void Group.addMember(User user,
ModifyOptions opts)

Remove a user from
being member of a role

void
RoleManager.revokeRole(Role
parent, Principal principal)

void Group.deleteMember(User user,
ModifyOptions opts)

Get all the owners of a
specific Role either
direct / indirect

SearchResponse
Role.getOwners(SearchFilter
filter, boolean direct)

SearchResponse
Role.getOwners(SearchFilter
filter)

ResultSet<User> Group.getOwners(int
nLevels, SearchFilter targetFilter,
SearchOptions opts)

Add a user as a owner
of a role

void Role.addOwner(Principal
principal)

void Group.addOwner(User user,
ModifyOptions opts)

Remove a user from
being a owner of a Role

void
Role.removeOwner(Principal
principal)

void Group.deleteOwner(User user,
ModifyOptions opts)

Get all the managers of
a Role either direct /
indirect

SearchResponse
Role.getManagers(SearchFilter
filter, boolean direct)

SearchResponse
Role.getManagers(SearchFilter
filter)

Not Supported

Chapter 3
Understanding the Comparison Between User and Role API With IDS API

3-8

Functionality User/Role API Method Identity Directory Service Method

Add a user as a
manager of a Role

void
Role.addManager(Principal
principal)

Not Supported

Remove a user from
being manager of a
Role

void
Role.removeManager(Principal
principal)

Not Supported

Getting the role
property

Property
Role.getProperty(String
propName)

Note: User Role API fetches
these attribute values from
cache. If it misses cache, it
fetches from repository.

Attribute Group.getAttribute(String attrName)

Determine the Role
Type

Role.isApplicationRole

Role.isEnterpriseRole

Role.isSeeded

Not Supported

Search Roles for a
given search criteria

SearchResponse
IdentityStore.searchRoles(int
scope, SearchParameters
params)

ResultSet<Group>
GroupManager.searchGroups(SearchFilter
filter, SearchOptions opts)

Search a Role by name/
uniquename /guid

Role
IdentityStore.searchRole(int
searchType, String value)

Group searchGroup(String id, ReadOptions
opts)

Group searchGroup(String attrName, String
attrVal, ReadOptions opts)

Search both User and
Roles for a given filter

SearchResponse
IdentityStore.search(SearchPar
ameters params)

Available through separate methods:

UserManager.searchUsers

GroupManager.searchGroups

Get all the roles
assigned to user/group

SearchResponse
getGrantedRoles(Principal
principal, boolean direct)

ResultSet<Group>
User.getMemberOfGroups(int nLevels,
SearchFilter targetFilter, SearchOptions opts)

ResultSet<Group>
Group.getMemberOfGroups(int nLevels,
SearchFilter targetFilter, SearchOptions opts)

Get all the roles owned
by user/group

SearchResponse
getOwnedRoles(Principal
principal, boolean direct)

ResultSet<Group>
User.getOwnedGroups(int nLevels,
SearchFilter targetFilter, SearchOptions opts)

ResultSet<Group>
Group.getOwnedGroups(int nLevels,
SearchFilter targetFilter, SearchOptions opts)

Get all the roles
managed by user/group

SearchResponse
getManagedRoles(Principal
principal, boolean direct)

Not supported

3.4 Moving From a Test to a Production Environment
Moving from one environment to another, especially from a test environment to production
environment, provides you the flexibility to test applications in a test environment and then roll
them out in the production environment.

The following topics describe the Identity Directory Services (IDS) properties that you need to
modify while moving from a test environment to production environment:

Chapter 3
Moving From a Test to a Production Environment

3-9

• Overview of Moving Between Environments

• Modifying Identity Directory Service Move Plan

3.4.1 Overview of Moving Between Environments
You can move IDS to a new environment or from a test to a production environment. Moving
IDS installation diminishes the amount of work that would otherwise be required to reapply all
the customization and configuration changes made in one environment to another.

You can install, configure, customize, and validate IDS in a test environment. Once the system
is stable and performs as required, you can create the production environment by moving a
copy of the server and its configuration from the test environment, instead of redoing all the
changes that were incorporated into the test environment.

3.4.2 Modifying Identity Directory Service Move Plan
A move plan contains configuration settings of the source environment. You can customize the
move plan settings for Oracle Fusion Middleware entities and components.

When you move between environments, you run the extractMovePlan script to create a move
plan for the entity that you are moving. The extractMovePlan script extracts configuration
information from the archive into a move plan. It also extracts any needed configuration plans.
Before you apply the archive to the target, you must edit the move plan to reflect the values of
the target environment.

You can modify properties with the scope of READ_WRITE. Do not modify the properties with
the scope of READ_ONLY. For a comprehensive description and the procedure to follow for
moving between environments, see About Changing the Network Configuration in
Administering Oracle Fusion Middleware.

This section contains the following topics:

• Locating Identity Directory Service configGroup Elements

• Properties to Customize for Identity Directory Service Move Plan

3.4.2.1 Locating Identity Directory Service configGroup Elements
Move plans usually contain multiple configGroup elements. When a property is associated with
a particular configGroup element, the tables listing the properties group the properties by
configGroup element.

To locate IDS ConfigGroup, in the generated move plan, you must look for
<type>LIBOVD_ADAPTERS</type>. This tag provides comprehensive information about the
libOVD adapter properties that you might have to update. A property is associated with a
particular configGroup element.

Each adapter is represented by a configProperty id tag of the form:

"LDAP:<context_name>:<adapter_name>"

Consider the following example: "LDAP:ids:myOID"
The following example shows a section of the move plan for IDS, with portion of the
LIBOVD_ADAPTERS configGroup elements:

<configGroup>
 <type>LIBOVD_ADAPTERS</type>
 <configProperty id="LDAP:ids:myOID">

Chapter 3
Moving From a Test to a Production Environment

3-10

 <configProperty>
 <name>Context Name</name>
 <value>ids</value>
 <itemMetadata>
 <dataType>STRING</dataType>
 <scope>READ_ONLY</scope>
 </itemMetadata>
 </configProperty>
 <configProperty>
 <name>Adapter Name</name>
 <value>myOID</value>
 <itemMetadata>
 <dataType>STRING</dataType>
 <scope>READ_ONLY</scope>
 </itemMetadata>
 </configProperty>
 <configProperty>
 <name>LDAP URL</name>
 <value>ldap://hostname:1389</value>
 <itemMetadata>
 <dataType>STRING</dataType>
 <scope>READ_WRITE</scope>
 </itemMetadata>
 </configProperty>
 <configProperty>
 <name>LDAP Host Read Only</name>
 <value>false</value>
 <itemMetadata>
 <dataType>STRING</dataType>
 <scope>READ_WRITE</scope>
 </itemMetadata>
 </configProperty>
 <configProperty>
 <name>LDAP Host Percentage</name>
 <value>100</value>
 <itemMetadata>
 <dataType>STRING</dataType>
 <scope>READ_WRITE</scope>
 </itemMetadata>
 </configProperty>
 <configProperty>
 <name>DN</name>
 <value>cn=orcladmin</value>
 <itemMetadata>
 <dataType>STRING</dataType>
 <scope>READ_WRITE</scope>
 </itemMetadata>
 </configProperty>
 <configProperty>
 <name>Password File</name>
 <value/>
 <itemMetadata>
 <dataType>STRING</dataType>
 <password>true</password>
 <scope>READ_WRITE</scope>
 </itemMetadata>
 </configProperty>
 </configProperty>
 </configGroup>

Chapter 3
Moving From a Test to a Production Environment

3-11

3.4.2.2 Properties to Customize for Identity Directory Service Move Plan
You can customize the properties of a move plan.

Table 3-1 describes the move plan properties you can customize for IDS adapter.

Table 3-1 Move Plan Properties for IDS

Property Description Sample Value

Context Name The IDS context to use with which the adapter is
associated.

This is a read-only property.

ids

Adapter Name The name of the adapter. This is a read-only
property.

myOID

LDAP URL The LDAP URL value for the adapter in the form of
ldap://host:port. This is a read-write property.

ldap://
slc05kym:1389

DN The DN of the user to connect to the backend
LDAP. This is a read-write property.

cn=orcladmin

Password File The absolute path to the secure file containing the
password of the user. This is a read-write property.

/tmp/p.txt

LDAP Host Read Only The flag indicating if the given host is read only. The
default value is false. This is a read-write property.

false

LDAP Host Percentage It specifies the load percentage value for the given
LADAP host. The default value is 100. This is a
read-write property.

100

3.5 Tuning Configuration Parameters for IDS
Tuning is the adjustment or modification of parameters to meet specific deployment
requirements. The default IDS configuration must be tuned for your deployment scenario.

You must review the requirements and recommendations in this section carefully.

This section contains the following topics:

• Configuration Parameters for IDS

• WLST Commands to Set Tuning Parameters Using File-Based Configuration

• Constants to Set Tuning Parameters Using In-Memory Configuration

• Handling Firewall and Load Balancer Timeout Errors

• Configuring TLS Protocol Versions and Cipher Suites for Secure Connections

3.5.1 Configuration Parameters for IDS
You can use configuration parameters to tune performance and to balance memory
requirements for a real-time deployment scenario. Tuning these parameters based on your
requirements can greatly enhance the scalability characteristics of an application.

Table 3-2 lists the configuration parameters for IDS that require tuning for real deployment
scenarios.

Chapter 3
Tuning Configuration Parameters for IDS

3-12

Table 3-2 Configuration Parameters for IDS

Parameter Description

InitialPoolSize The initial number of LDAP connections created when the
LDAP connection pool is set up.

MaxPoolSize The maximum number of LDAP connections allowed in the
LDAP connection pool.

Note: If a deployment has numerous concurrent requests
coming in, then you must set this value appropriately to
prevent running out of connections or waiting for a
connection during an operation.

MaxPoolWait
MaxPoolChecks

These parameters determine the waiting time for free
LDAP connection when all the LDAP connections in the
connection pool are in use. IDS waits for MAX_POOLWAIT
and MAX_POOLCHECKS milliseconds for a free connection to
be available first and then tries to expand the connection
pool.

PoolCleanupInterval This is the timer interval (in seconds) used by the LDAP
connection pool cleanup timer. The LDAP connection pool
cleanup timer runs using this timer interval to perform pool
cleanup tasks like shrinking the connection pool based on
the idle connection if needed.

MaxPoolConnectionIdleTime This specifies the maximum idle time for an LDAP
connection. In an LDAP connection remains idle for this
amount of time, it will be closed when the next LDAP
connection pool cleanup timer runs.

OperationTimeout The amount of time in milliseconds IDS waits for an LDAP
request to be acknowledged by the LDAP remote host.

ConnectTimeout This specifies the LDAP connection timeout duration in milli
seconds. If a connection cannot be established in this
period, then the connection attempt is aborted.

HeartbeatInterval This is the interval in seconds to check the availability of
backend LDAP.

SocketOptions This parameters set SO_TIMEOUT (in seconds),
SO_REUSEADDR, TCP_NODELAY, SO_KEEPALIVE
properties for the underlying JNDI sockets in the LDAP
connection.

MaxPoolConnectionReuseTime This specifies the maximum time any connection can
potentially be reused after which the pool removes and
closes a connection. The value is specified in seconds.

PoolConnectionReclaimTime This specifies the time duration in seconds that a borrowed
connection can remain unused before it is automatically
reclaimed by the pool.

Protocols This specifies the protocol versions supported by IDS.

Chapter 3
Tuning Configuration Parameters for IDS

3-13

3.5.2 WLST Commands to Set Tuning Parameters Using File-Based
Configuration

The configuration information is stored in an XML file. You must use the WebLogic Scripting
Tool (WLST) to modify the tuning parameters using the file-based configuration.

You use the following WLST commands to configure the tuning parameters:

Note:

In all the WLST command examples in this section, ADAPTER_NAME refers to the name
of the IDS repository. For instance, the IDS adapter name.

• For InitialPoolSize:

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='InitialPoolSize', value=10,
contextName='ids')

• For MaxPoolSize:

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='MaxPoolSize', value=100,
contextName='ids')

• For MaxPoolWait and MaxPoolCheck:

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='MaxPoolWait', value=1000,
contextName='ids')

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='MaxPoolChecks', value=10,
contextName='ids')

• For PoolCleanupInterval:

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='PoolCleanupInterval',
value=300, contextName='ids')

• For MaxPoolConnectionIdleTime:

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='MaxPoolConnectionIdleTime',
value=3600, contextName='ids')

• For OperationTimeout:

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='OperationTimeout',
value=120000, contextName='ids')

• For ConnectTimeout
modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='ConnectTimeout',
value=10000, contextName='ids')

• For HeartbeatInterval:

modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='HeartBeatInterval',
value=60, contextName='ids')

• For SocketOption:

modifySocketOptions(adapterName='ADAPTER_NAME', reuseAddress=false, keepAlive=false,
tcpNoDelay=true, readTimeout=1800, contextName='ids')

Chapter 3
Tuning Configuration Parameters for IDS

3-14

• For MaxPoolConnectionReuseTime
modifyLDAPAdapter(adapterName='ADAPTER_NAME',
attribute='MaxPoolConnectionReuseTime', value=3600, contextName='ids')

• For PoolConnectionReclaimTime
modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='PoolConnectionReclaimTime',
value=180, contextName='ids')

• For Protocols
modifyLDAPAdapter(adapterName='ADAPTER_NAME', attribute='Protocols',
value='TLSv1.2', contextName='ids')

Note:

You must run the activateLibOVDConfigChanges('ids') WLST command or restart
the WebLogic server for configuration changes to take effect.

3.5.3 Constants to Set Tuning Parameters Using In-Memory Configuration
Use the constants to configure the tuning parameters using in-memory configuration.

The configuration information is stored by the IDS consumer and is passed during run-time to
IDS by invoking the IdentityStoreConfig class. For more information about using the class
and its properties, see Java API Reference for Identity Directory Services.

You can modify the following configuration parameters using the Java API class:

Table 3-3 Field Name for Configuration Parameters

Parameter Field Name to Modify

InitialPoolSize IdentityStoreConfig.INITIAL_POOLSIZE
MaxPoolSize IdentityStoreConfig.MAX_POOLSIZE
MaxPoolWait

MaxPoolChecks

IdentityStoreConfig.MAX_POOLWAIT
IdentityStoreConfig.MAX_POOLCHECK

PoolCleanupInterval IdentityStoreConfig.POOL_CLEANUP_INTERVAL
MaxPoolConnectionIdleTime IdentityStoreConfig.MAX_POOL_CONNECTION_IDLE_TI

ME
OperationTimeout IdentityStoreConfig.CONN_TIMEOUT
ConnectTimeout IdentityStoreConfig.CONNECT_TIMEOUT
HeartbeatInterval IdentityStoreConfig.HEARTBEAT_INTERVAL
SocketOptions IdentityStoreConfig.SOCKET_READTIMEOUT

IdentityStoreConfig.SOCKET_REUSEADDRESS
IdentityStoreConfig.SOCKET_KEEPALIVE
IdentityStoreConfig.SOCKET_TCPNODELAY

MaxPoolConnectionReuseTime IdentityStoreConfig.MAX_POOL_CONNECTION_REUSE_T
IME

Chapter 3
Tuning Configuration Parameters for IDS

3-15

Table 3-3 (Cont.) Field Name for Configuration Parameters

Parameter Field Name to Modify

PoolConnectionReclaimTime IdentityStoreConfig.POOL_CONNECTION_RECLAIM_TIM
E

3.5.4 Handling Firewall and Load Balancer Timeout Errors
It is imperative to set up timeout on firewalls and load balancers to improve the communication
process. It helps to detect issues in a distributed system.

SocketOptions setting helps detect and safely close orphan socket connections caused by
remote server failure. TCP waits for the configured duration of time for a response from the
remote server before closing the socket. However, when there is a firewall or a Load Balancer
between IDS and the backend LDAP, then you must set the readTimeout value in the
SocketOptions appropriately to prevent timeout errors. It is recommended that you set this
value to a value which is less than the firewall or the Load Balancer timeout.

3.5.5 Configuring TLS Protocol Versions and Cipher Suites for Secure
Connections

You can configure TLS protocol version and cipher suites using the WLST commands for the
underlying IDS adapter.

Use the modifyLDAPAdapter WLST command to configure the TLS protocol version for the
underlying IDS adapter. See modifyLDAPAdapter in Oracle® Fusion Middleware WLST
Command Reference for Infrastructure Security.

You can configure the cipher suites by using the addCipherSuite and removeCipherSuite
WLST commands respectively for the underlying IDS adapter. See addCipherSuite and
removeCipherSuite in Oracle® Fusion Middleware WLST Command Reference for
Infrastructure Security.

3.6 Allowing Pass-through Attributes in IDS
In IDS while executing the Search or Update operation, you need to define every attribute that
is used by IDS APIs in the entity definition. However, Identity Directory allows you to
dynamically add attributes on runtime. These are referred to as the pass-through attributes.

In certain scenarios attributes are specified dynamically. In other words, they could be used in
requested attributes or filters without being defined in the entity definition. The pass-through
feature implements this usage and does not throw any exception.

Chapter 3
Allowing Pass-through Attributes in IDS

3-16

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New Features in Release 14c (14.1.2.1.0)

	1 Introduction to Identity Directory Services
	1.1 Overview of Identity Directory Services
	1.1.1 Benefits of Identity Directory Services to Organizations
	1.1.2 Benefits of Identity Directory Services to Developers

	1.2 Understanding Identity Directory Services APIs
	1.3 System Requirements and Certification for Identity Directory Services

	2 Using the Identity Directory API
	2.1 Overview of the Identity Directory API
	2.1.1 Understanding Identity Directory API
	2.1.2 Identity Directory Service Architecture

	2.2 Identity Directory API Configuration
	2.2.1 Logical Entity Configuration for an Identity Directory Service
	2.2.1.1 Properties of a Logical Entity Configuration
	2.2.1.2 Attributes of a Logical Entity Configuration
	2.2.1.3 Properties of a Logical Entity Definition
	2.2.1.4 Properties of a Logical Entity Relationship

	2.2.2 Physical Identity Store Configuration for an Identity Directory Service
	2.2.3 Operational Configuration for an Identity Directory Service

	2.3 Design Recommendations for Identity Directory API
	2.3.1 Minimizing Use of defaultFetch Attributes
	2.3.2 Initializing the Identity Directory Once

	2.4 Examples of Using the Identity Directory API
	2.4.1 Initializing and Obtaining Identity Directory Handle
	2.4.2 Initializing and Obtaining Identity Directory Handle from JPS Context
	2.4.3 Initializing and Obtaining In-Memory Identity Directory Handle
	2.4.4 Adding a User
	2.4.5 Obtaining a User for Given Principal
	2.4.6 Modifying a User
	2.4.7 Obtaining a User for Given ID Value
	2.4.8 Searching Users Using Complex Search Filter
	2.4.9 Changing User Password
	2.4.10 Resetting User Password
	2.4.11 Authenticating a User
	2.4.12 Deleting a User
	2.4.13 Creating a Group
	2.4.14 Searching Groups
	2.4.15 Obtaining Management Chain
	2.4.16 Obtaining Reportees of a User
	2.4.17 Adding a Member to a Group
	2.4.18 Deleting a Member From a Group
	2.4.19 Obtaining All The Groups For Which User is a Member
	2.4.20 Using Logical NOT Operator in a Search Filter

	2.5 Supported Cipher Suites in Identity Directory Services
	2.5.1 Supported Cipher Suites for Identity Directory Services in AIX
	2.5.2 Adding Supported Cipher Suites in adapters.os_xml

	3 Migrating to Identity Directory API
	3.1 Overview of Migrating to Identity Directory API
	3.2 Migrating the Application to Identity Directory API
	3.2.1 Initializing API
	3.2.2 Getting UserManager and GroupManager Handle
	3.2.3 Searching Filter
	3.2.4 Performing CRUD Operations
	3.2.4.1 APIs to Find a User
	3.2.4.2 APIs to Search a User
	3.2.4.3 APIs to Create a User
	3.2.4.4 APIs to Delete a User
	3.2.4.5 APIs to Authenticate a User
	3.2.4.6 APIs to Modify Users and Manage Related Entities

	3.3 Understanding the Comparison Between User and Role API With IDS API
	3.3.1 Comparison of User-Related APIs With Identity Directory APIs
	3.3.2 Comparison of Role-Related APIs With Identity Directory APIs

	3.4 Moving From a Test to a Production Environment
	3.4.1 Overview of Moving Between Environments
	3.4.2 Modifying Identity Directory Service Move Plan
	3.4.2.1 Locating Identity Directory Service configGroup Elements
	3.4.2.2 Properties to Customize for Identity Directory Service Move Plan

	3.5 Tuning Configuration Parameters for IDS
	3.5.1 Configuration Parameters for IDS
	3.5.2 WLST Commands to Set Tuning Parameters Using File-Based Configuration
	3.5.3 Constants to Set Tuning Parameters Using In-Memory Configuration
	3.5.4 Handling Firewall and Load Balancer Timeout Errors
	3.5.5 Configuring TLS Protocol Versions and Cipher Suites for Secure Connections

	3.6 Allowing Pass-through Attributes in IDS

