
Oracle® Identity Governance
Configuring the Database Application Tables
Application

12c (12.2.1.3.0)
F13723-10
February 2023

Oracle Identity Governance Configuring the Database Application Tables Application, 12c (12.2.1.3.0)

F13723-10

Copyright © 2019, 2023, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Conventions x

 What's New in This Guide

Software Updates xi

Documentation-Specific Updates xi

1 About the Connector

1.1 Introduction to the Database Application Tables Connector 1-1

1.2 Understanding Target System Discovery in the DBAT Connector 1-2

1.3 Certified Components 1-3

1.4 Usage Recommendation 1-5

1.5 Certified Languages 1-5

1.6 Supported Data Types 1-5

1.7 Connector Architecture 1-7

1.8 Supported Connector Features Matrix 1-9

1.9 Features of the Connector 1-10

1.9.1 Full and Incremental Reconciliation 1-10

1.9.2 Limited (Filtered) Reconciliation 1-10

1.9.3 Support for Both Target Resource and Trusted Source Reconciliation 1-10

1.9.4 Support for Reconciliation of Deleted User Records 1-11

1.9.5 Transformation and Validation of Account Data 1-11

1.9.6 Support for Adding User-Defined Fields for Reconciliation and Provisioning 1-11

1.9.7 Support for Configuring the Connector for Stored Procedures 1-11

iii

2 Creating an Application By Using the Database Application Tables
Connector

2.1 Process Flow for Creating an Application By Using the Connector 2-1

2.2 Prerequisites for Creating an Application By Using the Connector 2-2

2.2.1 Downloading the Connector Installation Package 2-2

2.2.2 Creating a Target System User Account for Database Application Tables
Connector Operations 2-3

2.3 Creating an Application By Using the Connector 2-3

3 Configuring the Database Application Tables Connector

3.1 Basic Configuration Parameters 3-1

3.2 Advanced Settings Parameters 3-13

3.3 Attribute Mappings for an Oracle Database Target Application 3-24

3.4 Rules, Situations, and Responses 3-24

3.4.1 Rules, Situations, and Responses for a Target Application 3-25

3.4.1.1 Predefined Identity Correlation Rules for a Target Application 3-25

3.4.1.2 Predefined Situations and Responses for a Target Application 3-26

3.4.2 Rules, Situations, and Responses for an Authoritative Application 3-27

3.4.2.1 Predefined Identity Correlation Rules for an Authoritative Application 3-27

3.4.2.2 Predefined Situations and Responses for an Authoritative Application 3-28

3.5 Reconciliation Scheduled Jobs 3-29

3.5.1 Scheduled Job for Lookup Field Synchronization 3-29

3.5.2 Attributes of the Scheduled Jobs 3-30

3.5.2.1 Scheduled Jobs for Reconciliation of User Records 3-30

3.5.2.2 Scheduled Jobs for Reconciliation of Deleted Users Records 3-31

3.5.2.3 Scheduled Jobs for Incremental Reconciliation 3-32

4 Performing the Postconfiguration Tasks

4.1 Configuring the Connector for a Target System with an Autoincrement Primary Key 4-1

4.2 Configuring Oracle Identity Governance 4-2

4.2.1 Creating and Activating a Sandbox 4-2

4.2.2 Creating a New UI Form 4-2

4.2.3 Publishing a Sandbox 4-2

4.2.4 Updating an Existing Application Instance with a New Form 4-3

4.3 Harvesting Entitlements and Sync Catalog 4-3

4.4 Managing Logging for Oracle Identity Governance 4-4

4.4.1 Understanding Log Levels 4-4

4.4.2 Enabling Logging 4-5

4.5 Configuring the IT Resource for the Connector Server 4-6

iv

4.6 Localizing Field Labels in UI Forms 4-7

4.7 Configuring Secure Communication Between the Target System and Oracle Identity
Governance 4-9

4.7.1 Configuring Secure Communication Between IBM DB2 and Oracle Identity
Governance 4-9

4.7.2 Configuring Secure Communication Between Microsoft SQL Server and Oracle
Identity Governance 4-11

4.7.3 Configuring Secure Communication Between MySQL and Oracle Identity
Governance 4-12

4.7.4 Configuring Secure Communication Between Oracle Database and Oracle
Identity Governance 4-13

4.7.4.1 Configuring Data Encryption and Integrity in Oracle Database 4-13

4.7.4.2 Configuring SSL Communication in Oracle Database 4-13

4.8 Configuring Secure Communication Between the Connector Server and Oracle
Identity Governance 4-14

4.9 Configuring the Connector for Stored Procedures and Groovy Scripts 4-14

4.9.1 Configuring the Connector for Custom Stored Procedures 4-15

4.9.2 Groovy Script Arguments 4-16

4.9.3 Sample Groovy Script 4-17

4.9.4 Entries Specific to Groovy Script Configuration 4-18

4.10 Configuring the Datasource and JNDI Properties 4-19

4.11 Configuring the Datasource and JNDI Properties for SAP HANA DB 4-20

5 Using the Database Application Tables Connector

5.1 Configuring Reconciliation 5-1

5.1.1 Performing Full Reconciliation and Incremental Reconciliation 5-1

5.1.2 Performing Limited Reconciliation 5-2

5.1.2.1 Specifying a Value for the Filter Attribute 5-2

5.1.2.2 Specifying a Value for the customizedQuery Parameter 5-2

5.2 Configuring Provisioning 5-3

5.2.1 Guidelines on Performing Provisioning Operations 5-3

5.2.2 Performing Provisioning Operations 5-3

5.3 Configuring Reconciliation Jobs 5-4

5.4 Uninstalling the Connector 5-5

6 Extending the Functionality of the Database Application Tables
Connector

6.1 Configuring Transformation and Validation of Data 6-1

6.2 Configuring Action Scripts 6-1

6.3 Configuring the Connector for Multiple Installations of the Target System 6-2

v

7 Defining and Upgrading the DBAT Connector

7.1 Defining the Connector 7-1

7.2 Upgrading the Connector 7-1

7.2.1 Upgrade Steps 7-2

7.2.2 Postupgrade Steps 7-2

8 Known Issues and Workarounds

8.1 The Custom Schema Feature of IBM DB2 is not Supported 8-1

8.2 Unable to Generate CI Build When DBATConfiguration.groovy File is Configured
Using Data Source and JNDI Properties 8-1

8.3 Connector Operations Using Connector Server Fail 8-1

A Sample Stored Procedures and Groovy Scripts

A.1 Sample Groovy Script for a Create Provisioning Operation A-1

A.2 Sample Groovy Script for an Update Provisioning Operation A-2

A.3 Sample Groovy Script for a Delete Provisioning Operation A-3

A.4 Sample Groovy Script for an Add Child Data Provisioning Operation A-4

A.5 Sample Stored Procedure and Groovy Script for a Delete Child Data Provisioning
Operation A-6

A.6 Sample Stored Procedure and Groovy Script for Lookup Field Synchronization A-7

A.7 Sample Stored Procedure and Groovy Script for Full or Filter Reconciliation A-8

A.8 Sample Stored Procedure and Groovy Script for Incremental Reconciliation A-12

A.9 Tables Used for Sample Groovy and Configuration Scripts A-15

B Performing Common Connector Operations

B.1 Running Incremental Trusted Source Reconciliation B-1

B.2 Running Incremental Target Resource Reconciliation B-1

B.3 Configuring and Performing Lookup Field Synchronization B-2

B.4 Provisioning Child Data B-2

C Files and Directories of the DBAT Connector

C.1 Files and Directories on the Installation Media C-1

C.2 Files and Directories in the Generated Connector Package C-2

vi

List of Figures

1-1 Connector Architecture 1-8

2-1 Overall Flow of the Process for Creating an Application By Using the Connector 2-2

3-1 Simple Correlation Rule for a Database Application Tables Target Application 3-26

3-2 Predefined Situations and Responses for a Database Application Tables Target Application 3-27

3-3 Simple Correlation Rule for a Database Application Tables Authoritative application 3-28

3-4 Predefined Situations and Responses for a Database Application Tables Authoritative Application 3-29

vii

List of Tables

1-1 Certified Components 1-3

1-2 Supported Connector Features Matrix 1-9

3-1 Parameters in the Basic Configuration Section 3-1

3-2 Advanced Setting Parameters 3-13

3-3 Default Attribute Mappings for Oracle DB User Account 3-24

3-4 Predefined Identity Correlation Rule for a Database Application Tables Target Application 3-25

3-5 Predefined Situations and Responses for a Database Application Tables Target

Application 3-26

3-6 Predefined Identity Correlation Rule for a Database Application Tables Authoritative

Application 3-27

3-7 Predefined Situations and Responses for a Database Application Tables Authoritative

Application 3-28

3-8 Attributes of the RESOURCE Lookup Reconciliation Scheduled Job 3-30

3-9 Attributes of the User Reconciliation Scheduled Jobs 3-31

3-10 Attributes of the Delete User Reconciliation Scheduled Jobs 3-32

3-11 Attributes of the Scheduled Jobs for Incremental Reconciliation 3-32

4-1 Log Levels and ODL Message Type:Level Combinations 4-4

4-2 Parameters of the IT Resource for the Connector Server 4-6

4-3 Entries Specific to Groovy Script Configuration 4-18

C-1 Files and Directories on the Installation Media C-1

C-2 Files and Directories in the dbat-generator-12.2.1.3.0.zip File C-1

C-3 Files and Directories in the Generated Connector Package C-3

viii

Preface

This guide describes the connector that is used to integrate Oracle Identity Governance with
database tables that store user data.

Audience
This guide is intended for resource administrators and target system integration teams.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Documents
For information about installing and using Oracle Identity Governance 12.2.1.3.0, visit the
following Oracle Help Center page:

https://docs.oracle.com/en/middleware/idm/identity-governance/12.2.1.3/
index.html
For information about installing and using Oracle Identity Manager 11.1.2.3, visit the following
Oracle Help Center page:

http://docs.oracle.com/cd/E52734_01/index.html
For information about Oracle Identity Governance Connectors 12.2.1.3.0 documentation, visit
the following Oracle Help Center page:

https://docs.oracle.com/en/middleware/idm/identity-governance-connectors/
12.2.1.3/index.html
For information about Oracle Identity Manager Connectors 11.1.1 documentation, visit the
following Oracle Help Center page:

http://docs.oracle.com/cd/E22999_01/index.htm

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/idm/identity-governance/12.2.1.3/index.html
https://docs.oracle.com/en/middleware/idm/identity-governance/12.2.1.3/index.html
http://docs.oracle.com/cd/E52734_01/index.html
https://docs.oracle.com/en/middleware/idm/identity-governance-connectors/12.2.1.3/index.html
https://docs.oracle.com/en/middleware/idm/identity-governance-connectors/12.2.1.3/index.html
http://docs.oracle.com/cd/E22999_01/index.htm

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

x

 What's New in This Guide

These are the updates made to the software and documentation for release 12.2.1.3.0 of the
Database Application Tables connector.

The updates provided in this chapter are divided into the following categories:

• Software Updates

This section describes updates made to the connector software.

• Documentation-Specific Updates

This section describes major changes made to the connector documentation. These
changes are not related to software updates.

Software Updates
These are the updates made to the connector software.

Software Updates in Release 12.2.1.3.0

The following is the software update in release 12.2.1.3.0:

Support for Onboarding Applications Using the Connector

From this release onward, the connector bundle includes application onboarding templates
required for performing connector operations on the Oracle Database, MySQL, Microsoft
SQL, and IBM DB2 targets. This helps in quicker onboarding of the applications for these
targets into Oracle Identity Governance by using an intuitive UI.

Documentation-Specific Updates
These are the updates made to the connector documentation.

Documentation-Specific Updates in Release 12.2.1.3.0

The following documentation-specific update has been made in revision "07" of this guide:

The "Target systems" row of Table 1-1 has been updated to include support for Oracle
Database 19c.

The following documentation-specific update has been made in revision "06" of this guide:

The "Target systems" row of Table 1-1 has been updated to include Microsoft SQL Server
2016.

The following documentation-specific update has been made in revision "05" of this guide:

The "Target systems" row of Table 1-1 has been updated.

xi

The following documentation-specific update has been made in revision "04" of this
guide:

The jdbcUrlTemplate parameter of Basic Configuration Parameters has been updated
to include new sample values for Oracle Database with SID and Oracle Database with
Service Name.

The following documentation-specific updates have been made in revision "03" of this
guide:

• The "Oracle Identity Governance or Oracle Identity Manager" row of Table 1-1 has
been updated to include support for Oracle Identity Governance 12c (12.2.1.4.0).

• The "Target systems" row of Table 1-1 has been updated to include support for
SAP HANA DB version 2.0 SP 01 or SP 04.

• The "ngdbc" row has been added to Table 1-1.

• Usage Recommendation has been updated to include information about using
Oracle Identity Governance versions 12.2.1.3.A and 12.2.1.3.0 of the connector.

• Configuring the Datasource and JNDI Properties for SAP HANA DB has been
added.

• Step 1.e of Creating an Application By Using the Connector has been updated to
include information about adding attributes and providing mappings for Oracle
Identity Governance 12c versions 12.2.1.3.0 and 12.2.1.4.0.

• Entries for parameters jdbcDriver and jdbcUrlTemplate have been added to Basic
Configuration Parameters.

• Entry for parameter sapHanaDb has been added to Advanced Settings
Parameters.

• Information regarding SAP HANA DB has been added to a "Note" in Creating an
Application By Using the Connector.

The following documentation-specific updates have been made in revision "02" of this
guide:

• The "Target systems" row of Table 1-1 has been updated to include Microsoft SQL
Server 2017.

• Configuring the Datasource and JNDI Properties has been updated to include
information about performing the procedure only when the connector uses
datasource configuration to connect to the target system.

The following documentation-specific update has been made in revision "01" of this
guide:

This is the first release of the Oracle Identity Governance Connector for Database
Application Tables. Therefore, there are no documentation-specific updates in this
release.

 What's New in This Guide

xii

1
About the Connector

This chapter introduces the Database Application Tables connector.
This chapter discusses the following topics:

• Introduction to the Database Application Tables Connector

• Understanding Target System Discovery in the DBAT Connector

• Certified Components

• Usage Recommendation

• Certified Languages

• Supported Data Types

• Connector Architecture

• Features of the Connector

1.1 Introduction to the Database Application Tables Connector
Oracle Identity Governance (OIG) platform automates access rights management, security,
and provisioning of IT resources. Oracle Identity Governance connects users to resources,
and revokes and restricts unauthorized access to protect sensitive corporate information.
Oracle Identity Governance connectors are used to integrate Oracle Identity Governance with
external and identity-aware applications such as PeopleSoft and MySQL.

In an enterprise setup, many applications in your organization may use relational database
tables as a repository for user data. This guide describes the procedure to dynamically
generate the connector based on the underlying schema of the database table user store,
and to install and use this connector for managing user lifecycle and entitlements from Oracle
Identity Governance. After you integrate the tables with Oracle Identity Governance by using
the connector, you can use them either as a managed (target) resource or as an authoritative
(trusted) source of user data for Oracle Identity Governance.

The connector that you generate is known as a Database Application Tables connector
(DBAT connector). The following sample scenario describes the requirement that can be
addressed by a DBAT connector:

Example Inc. has some database-driven custom applications. These applications do not have
any APIs for identity administration. The company wants to manage the lifecycle of users in
these custom applications by using a centralized identity management system such as OIM.

The DBAT connector is one of the solutions to this business problem. Example Inc. can use
this connector to enable the exchange of user data between the database and Oracle Identity
Governance.

From Oracle Identity Governance release 12.2.1.3.0 onward, connector deployment can also
be handled using the application onboarding capability of Oracle Identity Self Service. This
capability lets business users to onboard applications with minimum details and effort. The
connector installation package includes a collection of predefined templates (XML files) that
contain all the information required for provisioning and reconciling data from a given

1-1

application or target system. These templates also include basic connectivity and
configuration details specific to your target system. The connector uses information
from these predefined templates allowing you to onboard your applications quickly and
easily using only a single and simplified UI.

Application onboarding is the process of registering or associating an application
with Oracle Identity Governance and making that application available for provisioning
and reconciliation of user information.

Note:

In this release, the DBAT connector can be deployed either by using
application onboarding or the Connector Installer. In this guide, the connector
that is deployed using the Applications option on the Manage tab of Identity
Self Service is referred to as an AOB application. The connector that is
deployed using the Manage Connector option in Oracle Identity System
Administration is referred to as a CI-based connector (Connector Installer-
based connector).

Note:

In this guide:

• The database tables and their relation tables that store user data are
collectively referred to as the target system.

• The computer on which the database is installed is referred to as the
target system host computer.

• RELEASE_NUMBER has been used as a placeholder for the current
release number of the connector. Therefore, replace all instances of
RELEASE_NUMBER with the release number of the connector. For
example, 12.2.1.3.0.

1.2 Understanding Target System Discovery in the DBAT
Connector

Target systems are identity-aware applications such as databases, Microsoft Active
Directory, Siebel and so on that can be managed by Oracle Identity Governance
connectors.

In general, there are two broad categories of target systems for which Oracle Identity
Governance connectors exist:

• Predefined target systems: These are target systems that have a static schema
and the connector is aware of this schema. This means that connectors for such
target systems are shipped with preconfigured metadata or connector artifacts
such as IT resource definition, process forms, resource objects, and so on.

• Discovered target systems: These are target systems for which the schema is
not known in advance. For example, a flat file does not have a fixed schema. Each
target system can have a totally different schema. The connector is not initially

Chapter 1
Understanding Target System Discovery in the DBAT Connector

1-2

aware of the schema that it is supposed to integrate with and the attributes available.

The DBAT connector is a connector for a discovered target system.

Connectors for discovered target systems are not shipped with any artifacts. They are
shipped only with a set of deployment utilities that help in discovering the schema and then
generating the artifacts.

Discovery is the process of identifying the underlying schema of your database. You can
discover the schema of your database by configuring a groovy file and running the DBAT
Generator. This is discussed later in the guide.

1.3 Certified Components
Table 1-1 lists the certified components for this connector.

Table 1-1 Certified Components

Component Requirement for AOB Application Requirement for CI-Based
Connector

Oracle Identity Governance or Oracle
Identity Manager

You can use one of the following
releases of Oracle Identity
Governance:

• Oracle Identity Governance 12c
(12.2.1.4.0)

• Oracle Identity Governance 12c
(12.2.1.3.0)

You can use one of the following
releases of Oracle Identity
Governance or Oracle Identity
Manager:

• Oracle Identity Governance 12c
(12.2.1.4.0)

• Oracle Identity Governance 12c
(12.2.1.3.0)

• Oracle Identity Manager 11g
Release 2 PS3 (11.1.2.3.0)

Target systems The target system can be database
tables from any one of the following
RDBMSs:

• IBM DB2 Version 11.x
• Microsoft SQL Server 2016,

2017
• MySQL 5.x
• Oracle Database 12c Enterprise

Edition Release 12.1.0.1.0
• Oracle Database 19c or 18c or

12c as a single database,
pluggable database (PDB), or
Oracle RAC implementation

* Oracle Database 10g and 11g
as either a single database or
Oracle RAC implementation

• SAP HANA DB version 2.0 SP
01 or SP 04

The target system can be database
tables from any one of the following
RDBMSs:

• IBM DB2 Version 11.x
• Microsoft SQL Server 2016,

2017
• MySQL 5.x
• Oracle Database 12c Enterprise

Edition Release 12.1.0.1.0
• Oracle Database 19c or 18c or

12c as a single database,
pluggable database (PDB), or
Oracle RAC implementation

* Oracle Database 10g and 11g
as either a single database or
Oracle RAC implementation

• SAP HANA DB version 2.0 SP
01 or SP 04

Chapter 1
Certified Components

1-3

Table 1-1 (Cont.) Certified Components

Component Requirement for AOB Application Requirement for CI-Based
Connector

JDBC drivers Depending on the target system that
you use, download one of the
following sets of JDBC drivers from
the Vendor's Web site:

For IBM DB2:
• For all platforms: db2jcc
• For IBM DB2 with the

autoincrement option set on the
primary key column: db2jcc4

For Microsoft SQL Server:
• For Microsoft SQL Server 2014:

sqljdbc4 version 4.0
For MySQL:
mysql-connector-java-5.1.12-bin

For Oracle Database or Oracle
RAC:
• For JDK 1.6: ojdbc6

Depending on the target system that
you use, download one of the
following sets of JDBC drivers from
the Vendor's Web site:

For IBM DB2:
• For all platforms: db2jcc
• For IBM DB2 with the

autoincrement option set on the
primary key column: db2jcc4

For Microsoft SQL Server:
• For Microsoft SQL Server 2014:

sqljdbc4 version 4.0
For MySQL:
mysql-connector-java-5.1.12-bin

For Oracle Database or Oracle
RAC:
• For JDK 1.6: ojdbc6

ngdbc For SAP HANA DB:
Download SAP HANA Database
JDBC Driver jar, for example,
ngdbc-2.4.64.jar from SAP
Development tools for SAP HANA

For SAP HANA DB:
Download SAP HANA Database
JDBC Driver jar, for example,
ngdbc-2.4.64.jar from SAP
Development tools for SAP HANA

Connector Server 11.1.2.1.0 or later 11.1.2.1.0 or later

Connector Server JDK JDK 1.6 or later JDK 1.6 or later

Format in which user data is stored
in the target system

You can use a Database Application
Tables connector only if user data is
stored in the target system in any
one of the following formats:

• All user data is in a single table
or view.

• User data is spread across one
parent table and one or more
child tables. This target system
can be configured only as a
target resource, and not as a
trusted source.

• All user data is in a single
updatable view (that is based on
one or more tables).

• User data is spread across one
updatable view (that is based on
one or more tables) and one or
more child views (that are based
on one or more tables). This
type of target system can be
configured only as a target
resource, and not as a trusted
source with this connector. In
other words, a trusted source
cannot store child data.

You can use a Database Application
Tables connector only if user data is
stored in the target system in any
one of the following formats:

• All user data is in a single table
or view.

• User data is spread across one
parent table and one or more
child tables. This target system
can be configured only as a
target resource, and not as a
trusted source.

• All user data is in a single
updatable view (that is based on
one or more tables).

• User data is spread across one
updatable view (that is based on
one or more tables) and one or
more child views (that are based
on one or more tables). This
type of target system can be
configured only as a target
resource, and not as a trusted
source with this connector. In
other words, a trusted source
cannot store child data.

Chapter 1
Certified Components

1-4

Table 1-1 (Cont.) Certified Components

Component Requirement for AOB Application Requirement for CI-Based
Connector

Other requirements of the target
system

The target system must meet the
following requirement:

If parent and child tables are not
joined by a foreign key (for example,
if you are using views), then the
names of the foreign key columns in
both tables must be the same.

The target system must meet the
following requirement:

If parent and child tables are not
joined by a foreign key (for example,
if you are using views), then the
names of the foreign key columns in
both tables must be the same.

1.4 Usage Recommendation
These are the recommendations for the Database Application Tables connector version that
you can deploy and use depending on the Oracle Identity Governance or Oracle Identity
Manager version that you are using.

• If you are using Oracle Identity Governance release 12c (12.2.1.4.0) or 12c (12.2.1.3.0)
or later, SAP HANA DB version 2.0 SP 01 or SP 02 or SP 03, then use the 12.2.1.3.A
(p30197332_122130_Generic.zip) version of this connector.

• If you are using Oracle Identity Governance release 12c (12.2.1.4.0) or 12c (12.2.1.3.0)
or later, SAP HANA DB version 2.0 SP 04 , then use the 12.2.1.3.0 version of this
connector.

• If you are using Oracle Identity Governance release 12c (12.2.1.3.0) or later, then use the
latest 12.2.1.x version of this connector. Deploy the connector using the Applications
option on the Manage tab of Identity Self Service.

• If you are using any of the Oracle Identity Manager releases listed in the 'Requirement for
CI-Based Connector' column in Table 1-1, then use the latest 11.1.x version of this
connector.

• If you want to use the 12.1.x version of this connector, then you can install and use it only
in the CI-based mode. If you want to use the AOB application, then you must upgrade to
Oracle Identity Governance release 12c (12.2.1.3.0) or later.

1.5 Certified Languages
The connector will support the languages that are supported by Oracle Identity Manager.
Resource bundles are not part of the connector installation media as the resource bundle
entries vary depending on the target system being used.

1.6 Supported Data Types
The data types supported for reconciliation and provisioning operations are listed in the
following section:

Chapter 1
Usage Recommendation

1-5

Note:

Complex data types, such as RAW, Binary File, CLOB, and BLOB, are not
supported. Any data type that is not supported and is not a complex data
type is treated as a String data type.

For IBM DB2 Database:

• SMALLINT

• BIGINT

• INTEGER

• REAL

• FLOAT

• DOUBLE

• DECIMAL

• CHARACTER

• VARCHAR

• DATE

• TIMESTAMP

For Microsoft SQL Server:

• CHAR

• VARCHAR

• SMALLINT

• INT

• BIGINT

• DECIMAL

• NUMERIC

• NVARCHAR

• FLOAT

• REAL

• SMALLDATETIME

• DATETIME

For MySQL:

• BOOL

• SMALLINT

• MEDIUMINT

• INT

• BIGINT

Chapter 1
Supported Data Types

1-6

• FLOAT

• DOUBLE

• DECIMAL

• CHAR

• VARCHAR

• TINYTEXT

• DATE

• DATETIME

• TIMESTAMP

For Oracle Database:

• VARCHAR2

• CHAR

• NUMBER

• NUMERIC

• INTEGER

• INT

• SMALLINT

• DOUBLE

• FLOAT

• DECIMAL

• DEC

• REAL

• DATE

• TIMESTAMP

1.7 Connector Architecture
Figure 1-1 shows the architecture of the connector.

Chapter 1
Connector Architecture

1-7

Figure 1-1 Connector Architecture

The Database Application Tables connector is implemented by using the Identity
Connector Framework (ICF). The ICF is a component that provides basic
reconciliation and provisioning operations that are common to all Oracle Identity
Governance connectors. In addition, ICF provides common features that developers
would otherwise need to implement on their own, such as connection pooling,
buffering, time outs, and filtering. The ICF is shipped along with Oracle Identity
Governance.

The DBAT connector can be configured to run in one of the following modes:

• Identity reconciliation

In the identity reconciliation mode, the target system is used as the trusted source
and users are directly created and modified on it directly outside Oracle Identity
Governance.

During reconciliation, a scheduled job establishes a connection with the target
system and sends reconciliation criteria to the APIs. The APIs extract user records
that match the reconciliation criteria and hand them over to the scheduled task,
which brings the records to Oracle Identity Governance. The next step depends on
the mode of connector configuration.

Each record fetched from the target system is compared with existing OIM Users.
If a match is found, then the update made to the record on the target system is
copied to the OIM User attributes. If no match is found, then the target system
record is used to create an OIM User.

Note:

Trusted reconciliation does not support multivalued attributes, for
example, child table entries.

• Account Management

In the account management mode, the target system is used as a target resource.
The connector enables the target resource reconciliation and provisioning

Chapter 1
Connector Architecture

1-8

operations. Through provisioning operations performed on Oracle Identity Governance,
user accounts are created and updated on the target system for OIM Users. During
reconciliation from the target resource, the Database Application Tables connector
fetches into Oracle Identity Governance data about user accounts that are created or
modified on the target system. This data is used to add or modify resources allocated to
OIM Users.

During provisioning operations, adapters carry provisioning data submitted through the
process form to the target system. APIs on the target system accept provisioning data
from the adapters, carry out the required operation on the target system, and return the
response from the target system to the adapters. The adapters return the response to
Oracle Identity Governance.

During reconciliation, a scheduled task calls the connector bundle which gets the data
from target and handles it and returns to OIM and associates it based on Recon rule.

Note:

• It is recommended that you do not configure the target system as both an
authoritative (trusted) source and a managed (target) resource.

• See Installing Connectors in Oracle Fusion Middleware Administering Oracle
Identity Governance for detailed information about connector deployment
configurations.

1.8 Supported Connector Features Matrix
Provides the list of features supported by the AOB application and CI-based connector.

Table 1-2 Supported Connector Features Matrix

Feature AOB Application CI-Based Connector Supported Target
Systems

Full reconciliation Yes Yes All

Incremental
reconciliation

Yes Yes All

Limited (filtered)
reconciliation

Yes Yes All

Both target resource
and trusted source
reconciliation

Yes Yes All

Reconciliation of deleted
user records

Yes Yes All

Transformation and
validation of account
data

Yes Yes All

Adding user-defined
fields for reconciliation
and provisioning

Yes Yes All

Chapter 1
Supported Connector Features Matrix

1-9

Table 1-2 (Cont.) Supported Connector Features Matrix

Feature AOB Application CI-Based Connector Supported Target
Systems

Configuring the
connector for stored
procedures

Yes Yes All

1.9 Features of the Connector
The following are features of the connector:

• Full and Incremental Reconciliation

• Limited (Filtered) Reconciliation

• Support for Both Target Resource and Trusted Source Reconciliation

• Support for Reconciliation of Deleted User Records

• Transformation and Validation of Account Data

• Support for Adding User-Defined Fields for Reconciliation and Provisioning

• Support for Configuring the Connector for Stored Procedures

1.9.1 Full and Incremental Reconciliation
After you create the connector, you can perform full reconciliation to bring all existing
user data from the target system to Oracle Identity Governance. After the first full
reconciliation run, you can configure your connector for incremental reconciliation. In
incremental reconciliation, only records that are added or modified after the last
reconciliation run are fetched into Oracle Identity Governance.

See Performing Full Reconciliation and Incremental Reconciliation for more
information on full and incremental reconciliation.

1.9.2 Limited (Filtered) Reconciliation
To limit or filter the records that are fetched into Oracle Identity Governance during a
reconciliation run, you add conditions in the Filter attribute of the scheduled job or in
the customizedQuery parameter of the IT resource.

See Performing Limited Reconciliation for more information.

1.9.3 Support for Both Target Resource and Trusted Source
Reconciliation

You can use the connector to configure your target system as either a target resource
or trusted source of Oracle Identity Governance.

See Reconciliation Scheduled Jobs for more information.

Chapter 1
Features of the Connector

1-10

1.9.4 Support for Reconciliation of Deleted User Records
Apart from the scheduled jobs for user records reconciliation, there are independent
scheduled jobs for reconciliation of deleted user records. In target resource mode, if a record
is deleted on the target system, then the corresponding Database Application Tables
resource is revoked from the OIM User. In trusted source mode, if a record is deleted on the
target system, then the corresponding OIM User is deleted.

See Scheduled Jobs for Reconciliation of Deleted Users Records for more information about
the scheduled jobs used for reconciling deleted user records.

1.9.5 Transformation and Validation of Account Data
You can configure validation of account data that is brought into or sent from Oracle Identity
Governance during reconciliation and provisioning. In addition, you can configure
transformation of account data that is brought into Oracle Identity Governance during
reconciliation. For more information, see Configuring Transformation and Validation of Data.

1.9.6 Support for Adding User-Defined Fields for Reconciliation and
Provisioning

You can create mappings for OIM User fields that are not included in the list of default
mappings. These fields can be either a part of the standard set of OIM User fields provided
on the target system or user-defined fields that you add to Oracle Identity Governance.

1.9.7 Support for Configuring the Connector for Stored Procedures
The connector runs default SQL queries and statements when you use it to perform
reconciliation and provisioning operations. The connector supports calling custom stored
procedures to perform connector operations. Instead of these default SQL queries and
statements, you can configure the connector to call a script written in the Groovy scripting
language, which runs the custom stored procedures.

See Configuring the Connector for Stored Procedures and Groovy Scripts for more
information.

Chapter 1
Features of the Connector

1-11

2
Creating an Application By Using the
Database Application Tables Connector

Learn about onboarding applications using the connector and the prerequisites for doing so.

• Process Flow for Creating an Application By Using the Connector

• Prerequisites for Creating an Application By Using the Connector

• Creating a Target System User Account for Database Application Tables Connector
Operations

2.1 Process Flow for Creating an Application By Using the
Connector

From Oracle Identity Governance release 12.2.1.3.0 onward, connector deployment is
handled using the application onboarding capability of Identity Self Service.

Figure 2-1 is a flowchart depicting high-level steps for creating an application in Oracle
Identity Governance by using the connector installation package.

2-1

Figure 2-1 Overall Flow of the Process for Creating an Application By Using
the Connector

2.2 Prerequisites for Creating an Application By Using
the Connector

Learn about the tasks that you must complete before you create the application.

• Downloading the Connector Installation Package

• Creating a Target System User Account for Database Application Tables
Connector Operations

2.2.1 Downloading the Connector Installation Package
You can obtain the installation package for your connector on the Oracle Technology
Network (OTN) website.

To download the connector installation package:

1. Navigate to the OTN website at http://www.oracle.com/technetwork/middleware/id-
mgmt/downloads/connectors-101674.html.

2. Click OTN License Agreement and read the license agreement.

Chapter 2
Prerequisites for Creating an Application By Using the Connector

2-2

http://www.oracle.com/technetwork/middleware/id-mgmt/downloads/connectors-101674.html
http://www.oracle.com/technetwork/middleware/id-mgmt/downloads/connectors-101674.html

3. Select the Accept License Agreement option.

You must accept the license agreement before you can download the installation
package.

4. Download and save the installation package to any directory on the computer hosting
Oracle Identity Governance.

5. Extract the contents of the installation package to any directory on the computer hosting
Oracle Identity Governance. This creates a directory named CONNECTOR_NAME-
RELEASE_NUMBER.

6. Copy the CONNECTOR_NAME-RELEASE_NUMBER directory to the OIG_HOME/
server/ConnectorDefaultDirectory directory.

2.2.2 Creating a Target System User Account for Database Application
Tables Connector Operations

Oracle Identity Governance uses a target system user account to provision to and reconcile
data from the target system.

For all target systems certified for this connector, the following are the minimum rights to be
assigned to the target system user account:

• For reconciliation: The user account must have permissions to run SELECT statements
on the tables that must be managed by this connector.

• For provisioning: The user account must have permissions to perform select, insert,
update, and delete operations on the tables to be managed by this connector.

• If you are configuring the connector to use custom stored procedures to perform
connector operations, then the user account must have execute permissions on the
relevant stored procedures. See the target system documentation for the procedure to
create a target system user account with the preceding permissions required for
performing connector operations.

2.3 Creating an Application By Using the Connector
You can onboard an application into Oracle Identity Governance from the connector package
by creating a Target application or Authoritative application. To do so, you must log in to
Identity Self Service and then choose the Applications box on the Manage tab.

The following is the high-level procedure to create an application by using the connector:

Note:

For detailed information on each of the steps in this procedure, see Creating
Applications of Oracle Fusion Middleware Performing Self Service Tasks with
Oracle Identity Governance.

1. Create an application in Identity Self Service. The high-level steps are as follows:

a. Log in to Identity Self Service either by using the System Administration account or
an account with the ApplicationInstanceAdministrator admin role.

b. Ensure that the Connector Package option is selected when creating an application.

Chapter 2
Creating an Application By Using the Connector

2-3

c. Update the basic configuration parameters to include connectivity-related
information.

d. If required, update the advanced setting parameters to update configuration
entries related to connector operations.

e. Add the attributes and provide the mappings:

• If you are using Oracle Identity Governance 12c (12.2.1.3.0), then add the
attributes and provide the mappings.

• If you are using Oracle Identity Governance 12c (12.2.1.4.0), click
Discover. All attributes are automatically fetched from the database and
by default, the Provision field and the Reconciliation field are marked as
true.

f. Review the provisioning, reconciliation, organization, and catalog settings for
your application and customize them if required. For example, you can
customize the default correlation rules for your application if required.

g. Review the details of the application and click Finish to submit the application
details.

The application is created in Oracle Identity Governance.

h. When you are prompted whether you want to create a default request form,
click Yes or No.

If you click Yes, then the default form is automatically created and is attached
with the newly created application. The default form is created with the same
name as the application. The default form cannot be modified later. Therefore,
if you want to customize it, click No to manually create a new form and attach
it with your application.

2. Verify reconciliation and provisioning operations on the newly created application.

Note:

• For Application on Boarding: Export the HANA Database JDBC Driver,
for example, ngdbc-2.4.64.jar to OIM_SEVER_CLASSPATH.

• For Connector Installation: To run the DBAT Generator, copy the HANA
Database JDBC Driver, for example, ngdbc-2.4.64.jar to the dbat-
generator-RELEASE_NUMBER/lib/ directory.

Chapter 2
Creating an Application By Using the Connector

2-4

Note:

For Connector installation, under the Configuration section, update
DBATConfiguration.groovy file with below parameters:

• JDBC driver class name
Sample value for SAP HANA DB: 'jdbcDriver': 'com.sap.db.jdbc.Driver',

• JDBC URL template of the target database
Sample value for SAP HANA DB: 'jdbc:sap://acmedb.com:30015',

Parameter Type Mandatory Required
for JDBC
Driver
Configurat
ion?

Required
for
DataSourc
e
Configurat
ion?

Default
Value

Descriptio
n

sapHana
Db

Boolean Yes No No NA This
property
suggests
sapHana
Db
paramet
er
support,
if using
for
sapHana
Db only.
Sample
value:
True

For more information on connector installation, see Installing the Connector of
Oracle Identity Manager Connector Guide for Database Application Tables.

Chapter 2
Creating an Application By Using the Connector

2-5

3
Configuring the Database Application Tables
Connector

While creating an application, you must configure connection-related parameters that the
connector uses to connect Oracle Identity Governance with your target system and perform
connector operations. In addition, you can view and edit attribute mappings between the
process form fields in Oracle Identity Governance and target system columns, predefined
correlation rules, situations and responses, and reconciliation jobs.

• Basic Configuration Parameters

• Advanced Settings Parameters

• Attribute Mappings for an Oracle Database Target Application

• Rules, Situations, and Responses

• Reconciliation Scheduled Jobs

3.1 Basic Configuration Parameters
These are the connection-related parameters that Oracle Identity Governance requires to
connect to the target. These parameters are common for both target applications and
authoritative applications.

Table 3-1 Parameters in the Basic Configuration Section

Parameter Type Mandatory? Required for
JDBC Driver
Configuration
?

Required for
DataSource
Configuration
?

Default Value Description

host String Yes Yes, when %h No NA Host name or
IP address of
the computer
hosting the
target system.
Sample value:
HOST_IP_ADD
RESS

port String Yes Yes, when %p No NA Enter the
number of the
port at which
the target
system
database is
listening.
Sample value:
PORT_NUMBER

3-1

Table 3-1 (Cont.) Parameters in the Basic Configuration Section

Parameter Type Mandatory? Required for
JDBC Driver
Configuration
?

Required for
DataSource
Configuration
?

Default Value Description

database String Yes Yes, when %d No NA Name of the
target
database.
Sample value:
DB_NAME

jdbcDriver String No Yes No NA JDBC driver
class name.
Sample value
for Oracle
database:
oracle.jdbc
.driver.Ora
cleDriver
Sample value
for MySQL:
com.mysql.j
dbc.Driver
Sample value
for MS SQL:
com.microso
ft.sqlserve
r.jdbc.SQLS
erverDriver
Sample value
for DB2:
com.ibm.db2
.jcc.DB2Dri
ver

Chapter 3
Basic Configuration Parameters

3-2

Table 3-1 (Cont.) Parameters in the Basic Configuration Section

Parameter Type Mandatory? Required for
JDBC Driver
Configuration
?

Required for
DataSource
Configuration
?

Default Value Description

jdbcUrlTemplat
e

String No Yes(%h, %p,
and, %d)

Yes
Provide the
value as NA
when
DataSource is
configured.

NA JDBC URL
template of the
target
database. The
value that you
specify
depends on
the database
product that
you are using.
Sample value
for Oracle
database with
SID:
jdbc:oracle
:thin:@mydb
.com:PORT:o
im
Sample value
for Oracle
database with
Service Name:
jdbc:oracle
:thin:@mydb
.com:PORT/o
im
Sample value
for MySQL:
jdbc:mysql:
//
mydb.com:PO
RT/mysql
Sample value
for MS SQL:
jdbc:sqlser
ver://
mydb.com:PO
RT;Database
=acmedb
Sample value
for DB2:
jdbc:db2://
mydb.com:PO
RT/mydb

Chapter 3
Basic Configuration Parameters

3-3

Table 3-1 (Cont.) Parameters in the Basic Configuration Section

Parameter Type Mandatory? Required for
JDBC Driver
Configuration
?

Required for
DataSource
Configuration
?

Default Value Description

user String Yes Yes Yes for Oracle
Database
No for other
databases

NA User ID of the
database user
account that
Oracle Identity
Governance
uses to
connect to the
target system.
Sample value:
DB_USERNAME

password String Yes Yes No NA Password of
the database
user account
that Oracle
Identity
Governance
uses to
connect to the
target system.
Sample value:
DB_PASSWORD

table String Yes Yes Yes NA Name of the
parent table or
view that
contains user
records.
Sample value:
DB_TABLE_NA
ME

keyColumn String Yes Yes Yes NA Name of the
column that
uniquely
identifies each
row in the
parent table.
Sample value:
PRIMARY_KEY
_OF_DB_PARE
NT_TABLE

Chapter 3
Basic Configuration Parameters

3-4

Table 3-1 (Cont.) Parameters in the Basic Configuration Section

Parameter Type Mandatory? Required for
JDBC Driver
Configuration
?

Required for
DataSource
Configuration
?

Default Value Description

passwordColu
mn

String No No No NA Name of the
column in the
parent table
that holds the
passwords of
the target
system
records. This is
an optional
parameter.
Note: The
value for this
parameter is
the same as
the value
specified for
the
passwordColu
mn property in
the Config
entry. You
cannot change
the value in the
IT resource.

Sample value:
PASSWORD

Chapter 3
Basic Configuration Parameters

3-5

Table 3-1 (Cont.) Parameters in the Basic Configuration Section

Parameter Type Mandatory? Required for
JDBC Driver
Configuration
?

Required for
DataSource
Configuration
?

Default Value Description

statusColumn Boolean No No No NA Name of the
column in the
target system
that holds the
status of a
user record.
You must
specify a value
for this
attribute only if
both the
following
conditions are
true:
• You want

to perform
the enable
user
account or
disable
user
account
provisionin
g
operations
.

• There
exists a
column in
the target
system
that holds
the status
of a user
record.

Sample value:
ACTIVE

enableValue String No No No NA Value used on
the target
system that
depicts that a
user record is
in the enabled
status.
Sample value:
enable

Chapter 3
Basic Configuration Parameters

3-6

Table 3-1 (Cont.) Parameters in the Basic Configuration Section

Parameter Type Mandatory? Required for
JDBC Driver
Configuration
?

Required for
DataSource
Configuration
?

Default Value Description

disableValue String No No No NA Value used on
the target
system that
depicts that a
user record is
in the disabled
status.
Sample value:
disable

relationTables String No No No NA A comma-
separated list
of child table
names when
user data is
spread across
parent and
child tables.
Sample value:
CHILD_DB_TA
BLE_NAME

Connector
Server Name

String No No No NA Name of the
connector
server IT
resource.
Sample value:
CONNECTOR_S
ERVER_NAME

validConnectio
nQuery

String No No No NA If no value is
specified for
this property,
then the
connection is
validated by
switching the
auto commit
mode. For
example, you
might have the
following
query, which
might be more
efficient for
some
databases:

SELECT 1
FROM DUMMY

Chapter 3
Basic Configuration Parameters

3-7

Table 3-1 (Cont.) Parameters in the Basic Configuration Section

Parameter Type Mandatory? Required for
JDBC Driver
Configuration
?

Required for
DataSource
Configuration
?

Default Value Description

changeLogCol
umn

String No No No NA Name of the
column where
the last
update-related,
non-
decreasing,
value is stored.
Can be a
number or a
timestamp.
The data type
of this column
can be any of
the data types
supported by
the target
system.
However, if you
are using
Oracle
Database, then
data types
such as BLOB,
CLOB, and
LONG are not
supported.
See Supported
Data Types for
information
about data
types
supported for
your target
system.

The values in
this column
are used
during
incremental
reconciliation
to determine
the newest or
youngest
record
reconciled
from the target
system.

Note: You
must specify a
value for this
property if you
want to

Chapter 3
Basic Configuration Parameters

3-8

Table 3-1 (Cont.) Parameters in the Basic Configuration Section

Parameter Type Mandatory? Required for
JDBC Driver
Configuration
?

Required for
DataSource
Configuration
?

Default Value Description

perform
incremental
reconciliation.

customizedQu
ery

String No No No NA A WHERE
clause in a
SQL query
specifying the
subset of
newly added or
modified
records that
you want to
reconcile. The
WHERE
clause can
contain
relations to
other tables or
views.

allNative Boolean No No No false If value of this
property is
false, then
attribute data
is converted to
Strings by
using the
JDBC driver.
Set the value
of this property
to true to use
the appropriate
JDBC types
and to force
the connector
to perform the
conversion.

The new Date
format and
Timestamps
format
invalidate this
setup.

Chapter 3
Basic Configuration Parameters

3-9

Table 3-1 (Cont.) Parameters in the Basic Configuration Section

Parameter Type Mandatory? Required for
JDBC Driver
Configuration
?

Required for
DataSource
Configuration
?

Default Value Description

dateformat String No No No dd/MM/yyyy Allows the user
to format how
date data is
converted to
strings.
• If you

want to
handle
date data
as a date
editor,
then do
not enter
any value
for this
parameter.

• If you
want to
handle
date data
as text,
then you
must enter
the date
format.

Specifying a
value for this
parameter
invalidates the
allNative
parameter.

timestampFor
mat

String No No No dd/MM/yyyy
HH:mm:ss:SS
S

Allows the user
to format how
timestamp
data is
converted to
strings.
Specifying this
property
invalidates the
nativeTimesta
mps and
allNative
properties.

Chapter 3
Basic Configuration Parameters

3-10

Table 3-1 (Cont.) Parameters in the Basic Configuration Section

Parameter Type Mandatory? Required for
JDBC Driver
Configuration
?

Required for
DataSource
Configuration
?

Default Value Description

nativeTimesta
mps

Boolean No No No false If the value of
this property is
set to false,
then
timestamp
data is read as
Strings, which
can cause a
loss of time in
milliseconds.
If the value of
this property is
set to true,
then
timestamp
data is
retrieved as
java.sql.Timest
amp type, and
then the
connector
performs the
conversion.

enableEmptySt
ring

Boolean No No No false Set to true if
you want to
enable support
for writing an
empty string
instead of a
NULL value.
Set to false if
empty strings
must be
written as
NULL values.

Note: This
property can
be applied only
to mandatory
String
attributes

Chapter 3
Basic Configuration Parameters

3-11

Table 3-1 (Cont.) Parameters in the Basic Configuration Section

Parameter Type Mandatory? Required for
JDBC Driver
Configuration
?

Required for
DataSource
Configuration
?

Default Value Description

quoting String No No No None Column
quoting
property (such
as None,
Single,
Double,
Back, or
Brackets)
that best fits
your target
system
database.
Column names
are displayed
between single
quotes, double
quotes, back
quotes, or
brackets in the
generated SQL
when
accessing the
database.

jdbcDriver String No Yes No NA JDBC driver
class name.
Sample value
for SAP HANA
DB:
'jdbcDriver
':
‘com.sap.db
.jdbc.Drive
r',

jdbcUrlTemplat
e

String No Yes No NA JDBC URL
template of the
target
database.
Sample value
for SAP HANA
DB:
'jdbc:sap:/
/
acmedb.com:
30015',

Chapter 3
Basic Configuration Parameters

3-12

Table 3-1 (Cont.) Parameters in the Basic Configuration Section

Parameter Type Mandatory? Required for
JDBC Driver
Configuration
?

Required for
DataSource
Configuration
?

Default Value Description

rethrowAllSQL
Exceptions

Boolean No No No false Set to false if
SQL
exceptions
with a zero
(0x00) error
code must be
considered a
success. In
other words,
SQL
exceptions
with the zero
error code are
caught and
suppressed by
the SQL
statement.
Otherwise, set
to true.

3.2 Advanced Settings Parameters
These are the configuration-related entries that the connector uses during reconciliation and
provisioning operations.

Note:

Unless specified, the parameters in the table are applicable to both target and
authoritative applications.

Table 3-2 Advanced Setting Parameters

Parameter Mandatory? Required for
JDBC Driver
Configuration?

Required for
DataSource
Configuration?

Default Value Description

Connector Name Yes Yes Yes org.identityc
onnectors.dat
abasetable.Da
tabaseTableCo
nnector

This parameter
holds the name of
the connector
class.

Connector
Bundle

Yes Yes Yes org.identityc
onnectors.dat
abasetable

This parameter
holds the name of
the connector
bundle package.

Chapter 3
Advanced Settings Parameters

3-13

Table 3-2 (Cont.) Advanced Setting Parameters

Parameter Mandatory? Required for
JDBC Driver
Configuration?

Required for
DataSource
Configuration?

Default Value Description

Connector
Version

Yes Yes Yes 12.3.0 This parameter
holds the version
of the connector
bundle class.

Pool Max Idle No No No 10 Maximum number
of idle objects in
a pool.

Pool Max Size No No No 10 Maximum number
of connections
that the pool can
create.

Pool Max Wait No No No 150000 Maximum time, in
milliseconds, the
pool must wait for
a free object to
make itself
available to be
consumed for an
operation.

Pool Min Evict
Idle Time

No No No 120000 Minimum time, in
milliseconds, the
connector must
wait before
evicting an idle
object.

Pool Min Idle No No No 1 Minimum number
of idle objects in
a pool.

datasource No No Yes NA Data source
name for the data
source naming
properties.
Sample value:
jdbc/
operationsDB

Chapter 3
Advanced Settings Parameters

3-14

Table 3-2 (Cont.) Advanced Setting Parameters

Parameter Mandatory? Required for
JDBC Driver
Configuration?

Required for
DataSource
Configuration?

Default Value Description

jndiProperties No No Yes NA Properties used
to establish a
connection with
the target system
by using JDBC
drivers, enable
additional
connection
properties, or
look up a
DataSource using
JNDI.
Sample value:

"java.naming
.factory.ini
tial=weblogi
c.jndi.WLIni
tialContextF
actory","jav
a.naming.pro
vider.url=t3
://
example.com:
15000","java
.naming.secu
rity.princip
al=weblogic"
,"java.namin
g.security.c
redentials=W
EBLOGIC_PASS
WORD"

Chapter 3
Advanced Settings Parameters

3-15

Table 3-2 (Cont.) Advanced Setting Parameters

Parameter Mandatory? Required for
JDBC Driver
Configuration?

Required for
DataSource
Configuration?

Default Value Description

createScript No No No None This property is
present only in
the section for
target resource
configuration.

Specify a value
for this property
only if you want to
configure the
connector to use
custom stored
procedures or
SQL statements
rather than
default SQL
statements for
performing
provisioning
operations.

Enter the Groovy
script or the file
URL of the
Groovy script
created for the
create user
account
provisioning
operation. When
this script is
called, the parent
form data is
added.

You must enter
the file URL in the
following format:

file:///URL

Sample value:
file:///home/
jdoe/dbat/
scripts/
create_user.g
roovy

Chapter 3
Advanced Settings Parameters

3-16

Table 3-2 (Cont.) Advanced Setting Parameters

Parameter Mandatory? Required for
JDBC Driver
Configuration?

Required for
DataSource
Configuration?

Default Value Description

updateSript No No No None This property is
present only in
the section for
target resource
configuration.

Specify a value
for this property
only if you want to
configure the
connector to use
custom stored
procedures or
SQL statements
rather than
default SQL
statements for
performing
provisioning
operations.

Enter the Groovy
script or the file
URL of the
Groovy script
created for the
update user
account
provisioning
operation. This
script is called
when you update
the parent form,
or enable or
disable the user
account.

You must enter
the file URL in the
following format:

file:///URL

Sample value:
file:///home/
jdoe/dbat/
scripts/
update_user.g
roovy

Chapter 3
Advanced Settings Parameters

3-17

Table 3-2 (Cont.) Advanced Setting Parameters

Parameter Mandatory? Required for
JDBC Driver
Configuration?

Required for
DataSource
Configuration?

Default Value Description

deleteScript No No No None This property is
present only in
the section for
target resource
configuration.

Specify a value
for this property
only if you want to
configure the
connector to use
custom stored
procedures or
SQL statements
rather than
default SQL
statements for
performing
provisioning
operations.

Enter the Groovy
script or the file
URL of the
groovy script
created for the
delete user
account
provisioning
operation. This
script is called
when you remove
or delete an
account without
child data.

You must enter
the file URL in the
following format:

file:///URL

Sample value:
file:///home/
jdoe/dbat/
scripts/
delete_user.g
roovy

Chapter 3
Advanced Settings Parameters

3-18

Table 3-2 (Cont.) Advanced Setting Parameters

Parameter Mandatory? Required for
JDBC Driver
Configuration?

Required for
DataSource
Configuration?

Default Value Description

executeQueryScri
pt

No No No None Specify a value
for this property
only if you want to
configure the
connector to use
custom stored
procedures or
SQL queries
rather than
default SQL
queries to
perform
reconciliation.

Enter the Groovy
script or the file
URL of the
Groovy script
created for
reconciliation.
The connector
delegates the
reconciliation
operation to the
Groovy script,
which is
responsible for
passing the
information
(connector
object) to the
callback handler.
This script is
called while
performing an
account search
(operations such
as full and filtered
reconciliation).

You must enter
the file URL in the
following format:

file:///URL

Sample value:
file:///home/
jdoe/dbat/
scripts/
recon_user.gr
oovy

Chapter 3
Advanced Settings Parameters

3-19

Table 3-2 (Cont.) Advanced Setting Parameters

Parameter Mandatory? Required for
JDBC Driver
Configuration?

Required for
DataSource
Configuration?

Default Value Description

lookupScript No No No None This property is
present only in
the section for
target resource
configuration.

Specify a value
for this property
only if you want to
configure the
connector to use
custom stored
procedures or
SQL queries
rather than
default SQL
queries to
perform lookup
field
synchronization.

Enter the Groovy
script or the file
URL of the
Groovy script
created for lookup
field
synchronization.

You must enter
the file URL in the
following format:

file:///URL

Sample value:
file:///home/
jdoe/dbat/
scripts/
lookup_field_
sync.groovy

Chapter 3
Advanced Settings Parameters

3-20

Table 3-2 (Cont.) Advanced Setting Parameters

Parameter Mandatory? Required for
JDBC Driver
Configuration?

Required for
DataSource
Configuration?

Default Value Description

syncScript No No No None Specify a value
for this property
only if you want to
configure the
connector to use
custom stored
procedures or
SQL queries
rather than
default SQL
queries to
perform
incremental
reconciliation.

Enter the Groovy
script or the file
URL of the
Groovy script
created for
incremental
reconciliation.

You must enter
the file URL in the
following format:

file:///URL

Sample value:
file:///home/
jdoe/dbat/
scripts/
increm_recon_
user.groovy

Chapter 3
Advanced Settings Parameters

3-21

Table 3-2 (Cont.) Advanced Setting Parameters

Parameter Mandatory? Required for
JDBC Driver
Configuration?

Required for
DataSource
Configuration?

Default Value Description

addMultiValuedAt
tributeScript

No No No None This property is
present only in
the section for
target resource
configuration.

Specify a value
for this property
only if you want to
configure the
connector to use
custom stored
procedures or
SQL statements
rather than
default SQL
statements for
performing
provisioning
operations.

Enter the Groovy
script or the file
URL of the
Groovy script
created for the
add multivalued
attribute
provisioning
operation. This
script is called
when you add
multivalued child
attributes.

You must enter
the file URL in the
following format:

file:///URL

Sample value:

file:///home/
jdoe/dbat/
scripts/
add_mulval_at
tr.groovy

Chapter 3
Advanced Settings Parameters

3-22

Table 3-2 (Cont.) Advanced Setting Parameters

Parameter Mandatory? Required for
JDBC Driver
Configuration?

Required for
DataSource
Configuration?

Default Value Description

removeMultiValue
dAttributeScript

No No No None This property is
present only in
the section for
target resource
configuration.

Specify a value
for this property
only if you want to
configure the
connector to use
custom stored
procedures or
SQL statements
rather than
default SQL
statements for
performing
provisioning
operations.

Enter the Groovy
script or the file
URL of the
Groovy script
created for lookup
field
synchronization.
This script is
called while
removing
multivalued child
attributes.

You must enter
the file URL in the
following format:

file:///URL

Sample value:
file:///home/
jdoe/dbat/
scripts/
remove_mulval
_attr.groovy

Chapter 3
Advanced Settings Parameters

3-23

Table 3-2 (Cont.) Advanced Setting Parameters

Parameter Mandatory? Required for
JDBC Driver
Configuration?

Required for
DataSource
Configuration?

Default Value Description

sapHanaDb Yes No No NA This property
suggests
sapHanaDb
parameter
support, if using
for sapHanaDb
only.
Sample value:
True

3.3 Attribute Mappings for an Oracle Database Target
Application

The Schema page for a target application displays the default schema (provided by
the connector) that maps Oracle Identity Governance attributes to target system
columns. The connector uses these mappings during reconciliation and provisioning
operations.

Table 3-3 lists the user-specific attribute mappings between the process form fields in
Oracle Identity Governance and Oracle Database columns. The table also lists
whether a specific attribute is used during provisioning or reconciliation and whether it
is a matching key field for fetching records during reconciliation. By default, there are
two schema attributes.

For the DBAT connector, you must manually add the attributes based on the database
table in the target application. See Creating a Target Application in Performing Self
Service Tasks with Oracle Identity Governance for information about adding attribute
mappings.

Table 3-3 Default Attribute Mappings for Oracle DB User Account

Display
Name

Target
Attribute

Data Type Mandatory
Provisionin
g Property?

Provision
Field?

Recon
Field?

Key Field? Case
Insensitive
?

Unique Id _UID_ String No No Yes yes No

Password _PASSWOR
D_

String No Yes No No No

3.4 Rules, Situations, and Responses
Learn about the predefined rules, responses, and situations for target and authoritative
applications.

The connector uses these rules and responses for performing reconciliation.

• Rules, Situations, and Responses for a Target Application

Chapter 3
Attribute Mappings for an Oracle Database Target Application

3-24

• Rules, Situations, and Responses for an Authoritative Application

3.4.1 Rules, Situations, and Responses for a Target Application
The connector uses predefined rules, responses, and situations for a target application for
performing reconciliation.

• Predefined Identity Correlation Rules for a Target Application

• Predefined Situations and Responses for a Target Application

3.4.1.1 Predefined Identity Correlation Rules for a Target Application

By default, the Database Application Tables connector provides a simple correlation rule
when you create a target application. The connector uses this correlation rule to compare the
entries in Oracle Identity Governance repository and the target system repository, determines
the difference between the two repositories, and applies the latest changes to Oracle Identity
Governance.

Table 3-4 lists the default simple correlation rule for Database Application Tables connector. If
required, you can edit the default correlation rule or add new rules. You can also create
complex correlation rules. For more information about adding or editing simple or complex
correlation rules, see Creating a Target Application in Oracle Fusion Middleware Performing
Self Service Tasks with Oracle Identity Governance.

Table 3-4 Predefined Identity Correlation Rule for a Database Application Tables Target
Application

Target Attribute Element Operator Identity Attribute Case Sensitive?

NAME Equals User Login No

In this identity rule:

• __NAME__ is a single-valued attribute on the target system that identifies the user
account.

• User Login is the field on the OIG User form.

Figure 3-1 shows the simple correlation rule for a Database Application Tables target
application.

Chapter 3
Rules, Situations, and Responses

3-25

Figure 3-1 Simple Correlation Rule for a Database Application Tables Target
Application

3.4.1.2 Predefined Situations and Responses for a Target Application

The Database Application Tables connector provides a default set of situations and
responses when you create a target application. These situations and responses
specify the action that Oracle Identity Governance must take based on the result of a
reconciliation event.

Table 3-5 lists the default situations and responses for a Database Application Tables
target application. If required, you can edit these default situations and responses or
add new ones. For more information about adding or editing situations and responses,
see Creating a Target Application in Oracle Fusion Middleware Performing Self
Service Tasks with Oracle Identity Governance.

Table 3-5 Predefined Situations and Responses for a Database Application
Tables Target Application

Situation Response

No Matches Found Assign to Administrator With Least Load

One Entity Match Found Establish Link

One Process Match Found Establish Link

Figure 3-2 shows the situations and responses for Database Application Tables that
the connector provides by default.

Chapter 3
Rules, Situations, and Responses

3-26

Figure 3-2 Predefined Situations and Responses for a Database Application Tables
Target Application

3.4.2 Rules, Situations, and Responses for an Authoritative Application
Learn about the predefined rules, responses, and situations for an authoritative application.

The connector uses these rules and responses for performing reconciliation.

• Predefined Identity Correlation Rules for an Authoritative Application

• Predefined Situations and Responses for an Authoritative Application

3.4.2.1 Predefined Identity Correlation Rules for an Authoritative Application

By default, the Database Application Tables connector provides a simple correlation rule
when you create an authoritative application. The connector uses this correlation rule to
compare the entries in Oracle Identity Governance repository and the authoritative
application repository, determines the difference between the two repositories, and applies
the latest changes to Oracle Identity Governance.

Table 3-6 lists the default simple correlation rule for Database Application Tables connector. If
required, you can edit the default correlation rule or add new rules. You can also create
complex correlation rules. For more information about adding or editing simple or complex
correlation rules, see Creating a Target Application in Oracle Fusion Middleware Performing
Self Service Tasks with Oracle Identity Governance.

Table 3-6 Predefined Identity Correlation Rule for a Database Application Tables
Authoritative Application

Authoritative Attribute Element Operator Identity Attribute Case Sensitive?

UID Equals User Login No

In this identity rule:

• __UID__ is an attribute on the target system that uniquely identifies the user account.

• User Login is the field on the OIG User form.

Chapter 3
Rules, Situations, and Responses

3-27

Figure 3-3 shows the simple correlation rule for a Database Application Tables
authoritative application.

Figure 3-3 Simple Correlation Rule for a Database Application Tables
Authoritative application

3.4.2.2 Predefined Situations and Responses for an Authoritative Application

The Database Application Tables connector provides a default set of situations and
responses when you create an Authoritative application. These situations and
responses specify the action that Oracle Identity Governance must take based on the
result of a reconciliation event.

Table 3-7 lists the default situations and responses for a Database Application Tables
authoritative application. If required, you can edit these default situations and
responses or add new ones. For more information about adding or editing situations
and responses, see Creating a Target Application in Oracle Fusion Middleware
Performing Self Service Tasks with Oracle Identity Governance.

Table 3-7 Predefined Situations and Responses for a Database Application
Tables Authoritative Application

Situation Response

No Matches Found Create User

One Entity Match Found Establish Link

Figure 3-4 shows the situations and responses for Database Application Tables that
the connector provides by default.

Chapter 3
Rules, Situations, and Responses

3-28

Figure 3-4 Predefined Situations and Responses for a Database Application Tables
Authoritative Application

3.5 Reconciliation Scheduled Jobs
When you run the Connector Installer, scheduled jobs are automatically created in Oracle
Identity Governance.

This section discusses the following topics:

• Scheduled Job for Lookup Field Synchronization

• Attributes of the Scheduled Jobs

3.5.1 Scheduled Job for Lookup Field Synchronization
The RESOURCE Lookup Reconciliation scheduled job is used for lookup field
synchronization. You must specify values for the attributes of this scheduled job.

Table 3-8 describes the attributes of the RESOURCE Lookup Reconciliation scheduled job.

Note:

• Attribute values are predefined in the connector XML file that you import.
Specify values only for those attributes that you want to change.

• Values (either default or user-defined) must be assigned to all the attributes. If
even a single attribute value were left empty, then reconciliation would not be
performed.

Chapter 3
Reconciliation Scheduled Jobs

3-29

Table 3-8 Attributes of the RESOURCE Lookup Reconciliation Scheduled Job

Attribute Description

Code Key Attribute Enter the name of the attribute that is used to populate the Code Key column of the lookup
definition (specified as the value of the Lookup Name attribute). The value must be in the
following format:

• When scripts are not being used:

TABLE_NAME.COLUMN_NAME

Sample value: ROLES.ROLE_ID
• When scripts are being used, it would be according to the script mentioned in groovy

file.

Sample value: Code Key Attribute-roleId
Where, roleId is the columns in the table on which lookup is being run.

Decode Attribute Enter the name of the attribute that is used to populate the Decode column of the lookup
definition (specified as the value of the Lookup Name attribute). The value must be in the
following format:

• When scripts are not being used:

TABLE_NAME.COLUMN_NAME

Sample value: ROLES.ROLE_NAME
• When scripts are being used, it would be according to the script mentioned in groovy

file.

Sample value: Decode Attribute-roleName
Where, roleName is the columns in the table on which lookup is being run.

IT Resource Name Enter the name of the IT resource for the target system installation from which you want to
reconcile records.

Default value: DBAT Lookup
Lookup Name Enter the name of the lookup definition in Oracle Identity Governance that must be

populated with values fetched from the target system.

Default value: Lookup.DBAT.Example
Note: Before you perform lookup field synchronization, the lookup definition name that you
specify must exist in Oracle Identity Governance.

Object Type Enter the type of object you want to reconcile.

Default value: Other
Note: For lookup field synchronization, the object type must be any object other than
"User."

3.5.2 Attributes of the Scheduled Jobs
This section discusses the attributes of the following scheduled jobs:

• Scheduled Jobs for Reconciliation of User Records

• Scheduled Jobs for Reconciliation of Deleted Users Records

• Scheduled Jobs for Incremental Reconciliation

3.5.2.1 Scheduled Jobs for Reconciliation of User Records
After you create the connector, the scheduled task for user data reconciliation is
automatically created in Oracle Identity Governance. A scheduled job, which is an

Chapter 3
Reconciliation Scheduled Jobs

3-30

instance of this scheduled task is used to reconcile user data from the target system. The
following scheduled jobs are used for user data reconciliation:

• RESOURCE Target Resource User Reconciliation

This scheduled job is used to reconcile user data in the target resource (account
management) mode of the connector.

• RESOURCE Trusted Resource User Reconciliation

This scheduled job is used to reconcile user data in the trusted source (identity
management) mode of the connector.

You must specify values for the attributes of the user reconciliation scheduled jobs. Table 3-9
describes the attributes of both scheduled jobs.

Table 3-9 Attributes of the User Reconciliation Scheduled Jobs

Attribute Description

Filter Enter the search filter for fetching records from the target system during a
reconciliation run.

See Performing Limited Reconciliation for more information.

ITResource Name Enter the name of the IT resource for the target system installation from which you
want to reconcile user records.

Sample value: DBAT
Object Type Enter the type of object you want to reconcile.

Sample value: User
Note: User is the only object that is supported. Therefore, do not change the value of
the attribute.

Resource Object Name Enter the name of the resource object that is used for reconciliation.

Sample value: DBAT User
Scheduled Task Name Name of the scheduled task that is used for reconciliation.

The default value of this attribute in the RESOURCE Target Resource User
Reconciliation scheduled job is RESOURCE Target Resource User
Reconciliation.
The default value of this attribute in the RESOURCE Trusted User Reconciliation
scheduled job is RESOURCETrusted Resource User Reconciliation.

3.5.2.2 Scheduled Jobs for Reconciliation of Deleted Users Records
After you create the connector, the scheduled task for reconciling data about deleted user
records is automatically created in Oracle Identity Governance. A scheduled job, which is an
instance of this scheduled task is used to reconcile user data from the target system. The
following scheduled jobs are used for reconciliation of deleted user records data:

• RESOURCE Target Resource User Delete Reconciliation

This scheduled job is used to reconcile data about deleted user records in the target
resource (account management) mode of the connector.

• RESOURCETrusted User Delete Reconciliation

This scheduled job is used to reconcile data about deleted user records in the trusted
source (identity management) mode of the connector.

Chapter 3
Reconciliation Scheduled Jobs

3-31

You must specify values for the attributes of the user reconciliation scheduled jobs.
Table 3-10 describes the attributes of both scheduled jobs.

Table 3-10 Attributes of the Delete User Reconciliation Scheduled Jobs

Attribute Description

Filter No value should be provided in filter.

ITResource Name Enter the name of the IT resource for the target system installation from which you
want to reconcile user records.

Sample value: DBAT
Object Type Enter the type of object you want to reconcile.

Sample value: User
Note: User is the only object that is supported. Therefore, do not change the value of
the attribute.

Resource Object Name Enter the name of the resource object that is used for reconciliation.

Sample value: DBAT User

3.5.2.3 Scheduled Jobs for Incremental Reconciliation
When you create a DBAT application, then the scheduled job for incremental
reconciliation is automatically created in Oracle Identity Governance. To configure
incremental reconciliation, you need to specify a value for the changeLogColumn
property in the Basic Configurations section of the application.

The following scheduled jobs are used for incremental reconciliation:

• RESOURCE Target Incremental Resource User Reconciliation

This scheduled job is used to perform incremental reconciliation in the target
resource (account management) mode of the connector.

• RESOURCE Trusted Incremental Resource User Reconciliation

This scheduled job is used to perform incremental reconciliation in the trusted
source (identity management) mode of the connector.

Table 3-9 describes the attributes of both scheduled jobs.

Table 3-11 Attributes of the Scheduled Jobs for Incremental Reconciliation

Attribute Description

ITResource Name Enter the name of the IT resource for the target system installation from which you
want to reconcile user records.

Sample value: DBAT
Object Type Enter the type of object you want to reconcile.

Default value: User
Note: User is the only object that is supported. Therefore, do not change the value of
the attribute.

Resource Object Name Enter the name of the resource object that is used for reconciliation.

Sample value: DBAT User

Chapter 3
Reconciliation Scheduled Jobs

3-32

Table 3-11 (Cont.) Attributes of the Scheduled Jobs for Incremental Reconciliation

Attribute Description

Scheduled Task Name Name of the scheduled task that is used for reconciliation.

Default value: RESOURCE Target Incremental Resource User
Reconciliation

Sync Token Depending on the value specified for the changeLogColumn property in the Config
entry of the DBATConfiguration.groovy file, this attribute holds one of the following
values:

• For date or time stamp based columns:

This attribute holds the date or time stamp at which the last reconciliation run
started.

• For columns that are not date or time stamp based (for example, numeric or
strings):

This attribute holds the newest or the most recent value of the changeLog column
of the record that was last reconciled.

Sample value: <String>3</String>
Note:
- Do not enter a value for this attribute. The reconciliation engine automatically enters
a value in this attribute.

- This attribute stores values in an XML serialized format.

Chapter 3
Reconciliation Scheduled Jobs

3-33

4
Performing the Postconfiguration Tasks

These are the tasks that you can perform after creating an application in Oracle Identity
Governance.

• Configuring the Connector for a Target System with an Autoincrement Primary Key

• Configuring Oracle Identity Governance

• Harvesting Entitlements and Sync Catalog

• Managing Logging for Oracle Identity Governance

• Configuring the IT Resource for the Connector Server

• Localizing Field Labels in UI Forms

• Configuring Secure Communication Between the Target System and Oracle Identity
Governance

• Configuring Secure Communication Between the Connector Server and Oracle Identity
Governance

• Configuring the Connector for Stored Procedures and Groovy Scripts

• Configuring the Datasource and JNDI Properties

4.1 Configuring the Connector for a Target System with an
Autoincrement Primary Key

Note:

Perform the procedure described in this section only if both the conditions are true:

• You have configured your target system as a target resource.

• The key column of the target system is configured with an autoincrement
option.

Perform the following steps to configure the connector for a target system with an
autoincrement primary key:

• By default, the key column of the target system is mapped to the OIM User Login field in
the reconciliation rule. Before you perform any connector operation, you can modify the
reconciliation rule to map the OIM User Login field to a different target system column.

• If the key column of the child table has been configured with the autoincrement option,
then modify the child form by removing the 'required=true' property for the key field of the
child table by using the Design Console.

4-1

• If the prepopulate adapter contains a mapping for the key column, then either
disable the prepopulate adapter or modify it to remove the connector key column
by using the Design Console.

4.2 Configuring Oracle Identity Governance
During application creation, if you did not choose to create a default form, then you
must create a UI form for the application that you created by using the connector.

Note:

Perform the procedures described in this section only if you did not choose to
create the default form during creating the application.

The following topics describe the procedures to configure Oracle Identity Governance:

• Creating and Activating a Sandbox

• Creating a New UI Form

• Publishing a Sandbox

• Updating an Existing Application Instance with a New Form

4.2.1 Creating and Activating a Sandbox
You must create and activate a sandbox to begin using the customization and form
management features. You can then publish the sandbox to make the customizations
available to other users.

See Creating a Sandbox and Activating a Sandbox in Oracle Fusion Middleware
Developing and Customizing Applications for Oracle Identity Governance.

4.2.2 Creating a New UI Form
You can use Form Designer in Oracle Identity System Administration to create and
manage application instance forms.

See Creating Forms By Using the Form Designer in Oracle Fusion Middleware
Administering Oracle Identity Governance.

While creating the UI form, ensure that you select the resource object corresponding
to the newly created application that you want to associate the form with. In addition,
select the Generate Entitlement Forms check box.

4.2.3 Publishing a Sandbox
Before publishing a sandbox, perform this procedure as a best practice to validate all
sandbox changes made till this stage as it is difficult to revert the changes after a
sandbox is published.

1. In Identity System Administration, deactivate the sandbox.

2. Log out of Identity System Administration.

Chapter 4
Configuring Oracle Identity Governance

4-2

3. Log in to Identity Self Service using the xelsysadm user credentials and then activate the
sandbox that you deactivated in Step 1.

4. In the Catalog, ensure that the application instance form for your resource appears with
correct fields.

5. Publish the sandbox. See Publishing a Sandbox in Oracle Fusion Middleware Developing
and Customizing Applications for Oracle Identity Governance.

4.2.4 Updating an Existing Application Instance with a New Form
For any changes that you do in the schema of your application in Identity Self Service, you
must create a new UI form and update the changes in an application instance.

To update an existing application instance with a new form:

1. Create and activate a sandbox.

2. Create a new UI form for the resource.

3. Open the existing application instance.

4. In the Form field, select the new UI form that you created.

5. Save the application instance.

6. Publish the sandbox.

See Also:

• Creating a Sandbox and Activating a Sandbox in Oracle Fusion Middleware
Developing and Customizing Applications for Oracle Identity Governance

• Creating Forms By Using the Form Designer in Oracle Fusion Middleware
Administering Oracle Identity Governance

• Publishing a Sandbox in Oracle Fusion Middleware Developing and
Customizing Applications for Oracle Identity Governance

4.3 Harvesting Entitlements and Sync Catalog
To harvest entitlements and sync catalog:

1. Run the scheduled jobs for lookup field synchronization listed in Scheduled Job for
Lookup Field Synchronization.

2. Run the Entitlement List scheduled job to populate Entitlement Assignment schema from
child process form table. See Predefined Scheduled Tasks in Oracle Fusion Middleware
Administering Oracle Identity Governance for more information about this scheduled job.

3. Run the Catalog Synchronization Job scheduled job. See Predefined Scheduled Tasks in
Oracle Fusion Middleware Administering Oracle Identity Governance for more
information about this scheduled job.

Chapter 4
Harvesting Entitlements and Sync Catalog

4-3

4.4 Managing Logging for Oracle Identity Governance
Oracle Identity Governance uses the Oracle Diagnostic Logging (ODL) logging service
for recording all types of events pertaining to the connector.

The following topics provide detailed information about logging:

• Understanding Log Levels

• Enabling Logging

4.4.1 Understanding Log Levels
When you enable logging, Oracle Identity Governance automatically stores in a log file
information about events that occur during the course of provisioning and
reconciliation operations.

ODL is the principle logging service used by Oracle Identity Governance and is based
on java.util.logger. To specify the type of event for which you want logging to take
place, you can set the log level to one of the following:

• SEVERE.intValue()+100

This level enables logging of information about fatal errors.

• SEVERE

This level enables logging of information about errors that might allow Oracle
Identity Governance to continue running.

• WARNING

This level enables logging of information about potentially harmful situations.

• INFO

This level enables logging of messages that highlight the progress of the
application.

• CONFIG

This level enables logging of information about fine-grained events that are useful
for debugging.

• FINE, FINER, FINEST

These levels enable logging of information about fine-grained events, where
FINEST logs information about all events.

These message types are mapped to ODL message type and level combinations as
shown in Table 4-1.

Table 4-1 Log Levels and ODL Message Type:Level Combinations

Java Level ODL Message Type:Level

SEVERE.intValue()+100 INCIDENT_ERROR:1

SEVERE ERROR:1

WARNING WARNING:1

Chapter 4
Managing Logging for Oracle Identity Governance

4-4

Table 4-1 (Cont.) Log Levels and ODL Message Type:Level Combinations

Java Level ODL Message Type:Level

INFO NOTIFICATION:1

CONFIG NOTIFICATION:16

FINE TRACE:1

FINER TRACE:16

FINEST TRACE:32

The configuration file for OJDL is logging.xml, which is located at the following path:

DOMAIN_HOME/config/fmwconfig/servers/OIM_SERVER/logging.xml

Here, DOMAIN_HOME and OIM_SERVER are the domain name and server name specified
during the installation of Oracle Identity Governance.

4.4.2 Enabling Logging
To enable logging in Oracle WebLogic Server:

1. Edit the logging.xml file as follows:

a. Add the following blocks in the file:

<log_handler name='dbat-handler' level='[LOG_LEVEL]'
class='oracle.core.ojdl.logging.ODLHandlerFactory'>
<property name='logreader:' value='off'/>
 <property name='path' value='[FILE_NAME]'/>
 <property name='format' value='ODL-Text'/>
 <property name='useThreadName' value='true'/>
 <property name='locale' value='en'/>
 <property name='maxFileSize' value='5242880'/>
 <property name='maxLogSize' value='52428800'/>
 <property name='encoding' value='UTF-8'/>
 </log_handler>

<logger name="ORG.IDENTITYCONNECTORS.DATABASETABLE" level="[LOG_LEVEL]"
useParentHandlers="false">
 <handler name="dbat-handler"/>
 <handler name="console-handler"/>
 </logger>

b. Replace both occurrences of [LOG_LEVEL] with the ODL message type and level
combination that you require. Table 4-1 lists the supported message type and level
combinations.

Similarly, replace [FILE_NAME] with the full path and name of the log file in which you
want log messages to be recorded.

The following blocks show sample values for [LOG_LEVEL] and [FILE_NAME]:

<log_handler name='dbat-handler' level='NOTIFICATION:1'
class='oracle.core.ojdl.logging.ODLHandlerFactory'>
<property name='logreader:' value='off'/>
 <property name='path' value='/<%OIM_DOMAIN%>/servers/oim_server1/logs/
DBATlogs.log'/>
 <property name='format' value='ODL-Text'/>

Chapter 4
Managing Logging for Oracle Identity Governance

4-5

 <property name='useThreadName' value='true'/>
 <property name='locale' value='en'/>
 <property name='maxFileSize' value='5242880'/>
 <property name='maxLogSize' value='52428800'/>
 <property name='encoding' value='UTF-8'/>
 </log_handler>

<logger name="ORG.IDENTITYCONNECTORS.DATABASETABLE"
level="NOTIFICATION:1" useParentHandlers="false">
 <handler name="dbat-handler"/>
 <handler name="console-handler"/>
 </logger>

With these sample values, when you use Oracle Identity Governance, all
messages generated for this connector that are of a log level equal to or higher
than the NOTIFICATION:1 level are recorded in the specified file.

2. Save and close the file.

3. Set the following environment variable to redirect the server logs to a file:

For Microsoft Windows:

set WLS_REDIRECT_LOG=FILENAME

For UNIX:

export WLS_REDIRECT_LOG=FILENAME

Replace FILENAME with the location and name of the file to which you want to
redirect the output.

4. Restart the application server.

4.5 Configuring the IT Resource for the Connector Server
If you have used the Connector Server, then you must configure values for the
parameters of the Connector Server IT resource.

After you create the application for your target system, you must create an IT resource
for the Connector Server as described in Creating IT Resource of Oracle Fusion
Middleware Administering Oracle Identity Governance. While creating the IT resource,
ensure to use to select Connector Server from the IT Resource Type list.

In addition, specify values for the parameters of the IT resource for the Connector
Server listed in Table 4-2.

Table 4-2 Parameters of the IT Resource for the Connector Server

Parameter Description

Host Enter the host name or IP address of the computer hosting the Connector Server.

Sample value: myhost.com
Key Enter the key for the Connector Server.

Chapter 4
Configuring the IT Resource for the Connector Server

4-6

Table 4-2 (Cont.) Parameters of the IT Resource for the Connector Server

Parameter Description

Port Enter the number of the port at which the Connector Server is listening.

By default, this value is blank. You must enter the port number that is displayed on
the terminal when you start the Connector Server.

Sample value: 8759
Timeout Enter an integer value which specifies the number of milliseconds after which the

connection between the Connector Server and Oracle Identity Governance times
out.

Recommended value: 0
A value of 0 means that the connection never times out.

UseSSL Enter true to specify that you will configure SSL between Oracle Identity
Governance and the Connector Server. Otherwise, enter false.
Default value: false
Note: It is recommended that you configure SSL to secure communication with
the connector server. To configure SSL, see Configuring the Java Connector
Server with SSL in Oracle Fusion Middleware Developing and Customizing
Applications for Oracle Identity Governance.

4.6 Localizing Field Labels in UI Forms
To localize a field label that is added to the UI forms:

1. Create a properties file (for example, DBAT_ja.properties) containing localized versions
for the column names in your target system (to be displayed as text strings for GUI
elements and messages in the Administrative and User Console).

2. Log in to Oracle Enterprise Manager.

3. In the left pane, expand Application Deployments and then select
oracle.iam.console.identity.sysadmin.ear.

4. In the right pane, from the Application Deployment list, select MDS Configuration.

5. On the MDS Configuration page, click Export and save the archive to the local computer.

6. Extract the contents of the archive, and open the following file in a text editor:

SAVED_LOCATION/xliffBundles/oracle/iam/ui/runtime/BizEditorBundle_en.xlf

7. Edit the BizEditorBundle.xlf file in the following manner:

a. Search for the following text:

<file source-language="en"
original="/xliffBundles/oracle/iam/ui/runtime/BizEditorBundle.xlf"
datatype="x-oracle-adf">

b. Replace with the following text:

<file source-language="en" target-language="LANG_CODE"
original="/xliffBundles/oracle/iam/ui/runtime/BizEditorBundle.xlf"
datatype="x-oracle-adf">

Chapter 4
Localizing Field Labels in UI Forms

4-7

In this text, replace LANG_CODE with the code of the language that you want
to localize the form field labels. The following is a sample value for localizing
the form field labels in Japanese:

<file source-language="en" target-language="ja"
original="/xliffBundles/oracle/iam/ui/runtime/BizEditorBundle.xlf"
datatype="x-oracle-adf">

c. Search for the application instance code. This procedure shows a sample edit
for Database Application Tables application instance. The original code is:

<trans-unit id="$
{adfBundle['oracle.adf.businesseditor.model.util.BaseRuntimeResourceBundl
e']
['persdef.sessiondef.oracle.iam.ui.runtime.form.model.user.entity.userEO.
UD_ACMEDBAP_APP_DFLT_HOME__c_description']}">
<source>APP_DFLT_HOME</source>
<target/>
</trans-unit>
<trans-unit
id="sessiondef.oracle.iam.ui.runtime.form.model.ACMEFORM.entity.ACMEFORME
O.UD_ACMEDBAP_APP_DFLT_HOME__c_LABEL">
<source>APP_DFLT_HOME</source>
<target/>
</trans-unit>

d. Open the properties file created in Step 1 and get the value of the attribute, for
example, global.udf.D_ACMEDBAP_APP_DFLT_HOME=\u4567d.

e. Replace the original code shown in Step 7.c with the following:

<trans-unit id="$
{adfBundle['oracle.adf.businesseditor.model.util.BaseRuntimeResourceBundl
e']
['persdef.sessiondef.oracle.iam.ui.runtime.form.model.user.entity.userEO.
UD_ACMEDBAP_APP_DFLT_HOME__c_description']}">
<source>APP_DFLT_HOME</source>
<target>\u4567d</target>
</trans-unit>
<trans-unit
id="sessiondef.oracle.iam.ui.runtime.form.model.ACMEFORM.entity.ACMEFORME
O.UD_ACMEDBAP_APP_DFLT_HOME__c_LABEL">
<source>APP_DFLT_HOME</source>
<target>\u4567d</target>
</trans-unit>

f. Repeat Steps 7.a through 7.d for all attributes of the process form.

g. Save the file as BizEditorBundle_LANG_CODE.xlf. In this file name, replace
LANG_CODE with the code of the language to which you are localizing.

Sample file name: BizEditorBundle_ja.xlf.

8. Repackage the ZIP file and import it into MDS.

See Also:

Deploying and Undeploying Customizations in Oracle Fusion Middleware
Developing and Customizing Applications for Oracle Identity Governance
for more information about exporting and importing metadata files

Chapter 4
Localizing Field Labels in UI Forms

4-8

9. Log out of and log in to Oracle Identity Governance.

4.7 Configuring Secure Communication Between the Target
System and Oracle Identity Governance

Note:

It is recommended that you perform the procedure described in this section to
secure communication between the target system and Oracle Identity Governance.

The procedure to secure communication depends on the database that you are using:

• Configuring Secure Communication Between IBM DB2 and Oracle Identity Governance

• Configuring Secure Communication Between Microsoft SQL Server and Oracle Identity
Governance

• Configuring Secure Communication Between MySQL and Oracle Identity Governance

• Configuring Secure Communication Between Oracle Database and Oracle Identity
Governance

4.7.1 Configuring Secure Communication Between IBM DB2 and Oracle
Identity Governance

Note:

• IBM DB2 version 11.x and later support secure communication over SSL.

• Before configuring secure communication between IBM DB2 and Oracle
Identity Governance, you must install the IBM Global Security Kit (GSKit).

See the IBM DB2 documentation for more information about enabling SSL
communication between IBM DB2 and a client system. In this context, the client
is Oracle Identity Governance.

To configure secure communication between IBM DB2 and Oracle Identity Governance:

1. Generate the certificate store by running the GSKit tool. To do so, run the following
command:

GSKCAPICMD -keydb -create -db "KEY_DATABASE_LOCATION" -pw KEY_DATABASE_PASSWORD -
stash

In the command, replace:

• GSKCAPICMD with the full path and name of the GSKit tool. For example, for the
target system running on a 64-bit Microsoft Windows platform, replace
GSKCAPICMD with C:\Program Files (x86)\IBM\GSK8\bin\gsk8capicmd_64.exe.

Chapter 4
Configuring Secure Communication Between the Target System and Oracle Identity Governance

4-9

• KEY_DATABASE_LOCATION with the full path and name of the key database
to be created.

• KEY_DATABASE_PASSWORD with the password for the key database.

The following is a sample command that generates a certificate store
(db2oim.kdb):

C:\DB2>"\Program Files\IBM\gsk8\bin\gsk8capicmd_64.exe" -keydb -create
-db "c:\db2\db2oim.kdb" -pw PASSWORD -stash

2. Generate the self-signed certificate by running the following command:

GSKCAPICMD -cert -create -db "KEY_DATABASE_LOCATION" -pw
KEY_DATABASE_PASSWORD -label "CERT_LABEL" -dn "DISTINCT_NAME"

In the command, replace:

• GSKCAPICMD with the full path and name of the GSKit tool. For example, for
the target system running on a 64-bit Microsoft Windows platform, replace
GSKCAPICMD with C:\Program Files
(x86)\IBM\GSK8\bin\gsk8capicmd_64.exe.

• KEY_DATABASE_LOCATION with the full path and name of the key database
to store the certificate.

• KEY_DATABASE_PASSWORD with the password for the key database.

• CERT_LABEL with a label that is used to uniquely identify the certificate.

• DISTINCT_NAME with the distinguished name that uniquely identifies the
certificate.

The following is a sample command that generates a self-signed certificate:

C:\DB2>"\Program Files\IBM\gsk8\bin\gsk8capicmd_64.exe" -cert -create
-db "c:\db2\db2oim.kdb" -pw PASSWORD -label "db2oim" -dn
"CN=example.com,O=org,OU=myorg,L=myLocation,ST=CA,C=USA"

3. Export the server certificate by running the following command:

GSKCAPICMD -cert -extract -db "KEY_DATABASE_LOCATION" -pw
KEY_DATABASE_PASSWORD -label "CERT_LABEL" -target "LOCATION" -format FORMAT -
fips

In the command, replace:

• GSKCAPICMD with the full path and name of the GSKit tool. For example, for
the target system running on a 64-bit Microsoft Windows platform, replace
GSKCAPICMD with C:\Program Files
(x86)\IBM\GSK8\bin\gsk8capicmd_64.exe.

• KEY_DATABASE_LOCATION with the full path and name of the key
database.

• KEY_DATABASE_PASSWORD with the password for the key database.

• CERT_LABEL with the label that is used to uniquely identify the certificate to
be extracted.

• LOCATION with the full path and name of the file to which the certificate is to
be extracted.

• FORMAT with the certificate format, which can be either ascii or binary.

Chapter 4
Configuring Secure Communication Between the Target System and Oracle Identity Governance

4-10

The following is a sample command that exports the server certificate to db2oim.arm:

C:\DB2>"\Program Files\IBM\gsk8\bin\gsk8capicmd_64.exe" -cert -extract -db
"c:\db2\db2oim.kdb" -pw PASSWORD -label "db2oim" -target "c:\db2\db2oim.arm"
-format ascii -fips

4. Configure the database to enable both SSL and TCP/IP communication protocols by
running the following command:

db2set.exe DB2COMM=SSL,TCPIP
5. Check protocols by using db2set.exe to validate that the SSL and TCP/IP protocols are

enabled in DB2COMM.

DB2PROCESSORS=0,1

DB2INSTPROF=C:\ProgramData\IBM\DB2\DB2COPY1

DB2COMM=SSL,TCPIP

6. Verify your SSL settings by running the db2 GET DATABASE MANAGER
CONFIGURATION command.

7. Import the certificate into the Java keystore of the application server on which Oracle
Identity Governance is running.

To import the certificate into the Java keystore, run the following command:

keytool -importcert -file FILE_LOCATION -alias ALIAS -storepass STORE_PASSWORD -
keystore STORE_LOCATION

In this command, replace:

• FILE_LOCATION with the full path and name of the certificate file.

• ALIAS with an alias for the certificate.

• STORE_PASSWORD with a password for the truststore.

• STORE_LOCATION with one of the truststore paths from

The following is a sample command that imports the certificate into the Java keystore:

C:\DB2>keytool -importcert -file db2oim.arm -alias db2oim -storepass PASSWORD -
keystore C:\Users\example_user\.keystore

The certificate is imported into the keystore.

4.7.2 Configuring Secure Communication Between Microsoft SQL Server
and Oracle Identity Governance

To configure secure communication between Microsoft SQL Server and Oracle Identity
Governance:

1. Refer to Microsoft SQL Server documentation for information about enabling SSL
communication between Microsoft SQL Server and a client system. In this context, the
client is Oracle Identity Governance.

Export the certificate on the Microsoft SQL Server host computer.

2. Copy the certificate to the Oracle Identity Governance host computer.

3. Import the certificate into the JVM truststore of the application server on which Oracle
Identity Governance is running.

Chapter 4
Configuring Secure Communication Between the Target System and Oracle Identity Governance

4-11

To import the certificate into the truststore, run the following command:

..\..\bin\keytool -import -file FILE_LOCATION -keystore TRUSTSTORE_LOCATION -
storepass TRUSTSTORE_PASSWORD -trustcacerts -alias ALIAS

In this command:

• Replace FILE_LOCATION with the full path and name of the certificate file.

• Replace ALIAS with an alias for the certificate.

• Replace TRUSTSTORE_PASSWORD with a password for the truststore.

• Replace TRUSTSTORE_LOCATION with the following truststore path:

JAVA_HOME/jre/lib/security/cacerts

4.7.3 Configuring Secure Communication Between MySQL and Oracle
Identity Governance

To configure secure communication between MySQL and Oracle Identity Governance:

1. See MySQL documentation for information about enabling SSL communication
between MySQL and a client system. In this context, the client is Oracle Identity
Governance.

2. Export the certificate on the MySQL host computer.

3. Restart the MySQL database service by using the certificate exported in the
preceding step. See MySQL documentation for information on restarting the
database service.

4. Copy the ca-cert.pem and client-cert.pem certificates to the Oracle Identity
Governance host computer.

5. Import the certificates into the JVM truststore of the application server on which
Oracle Identity Governance is running.

To import the certificates into the truststore, run the following command for each
certificate:

keytool -import -file FILE_LOCATION -keystore TRUSTSTORE_LOCATION -storepass
TRUSTSTORE_PASSWORD -trustcacerts -alias ALIAS

In this command:

• Replace FILE_LOCATION with the full path and name of the certificate file.

• Replace ALIAS with an alias for the certificate.

• Replace TRUSTSTORE_PASSWORD with a password for the truststore.

• Replace TRUSTSTORE_LOCATION with the following truststore path:

JAVA_HOME/jre/lib/security/cacerts

Note:

In an Oracle Identity Governance cluster, you must import the file into the
truststore on each node of the cluster.

Chapter 4
Configuring Secure Communication Between the Target System and Oracle Identity Governance

4-12

4.7.4 Configuring Secure Communication Between Oracle Database and
Oracle Identity Governance

To secure communication between Oracle Database and Oracle Identity Governance, you
can perform either one or both of the following procedures:

• Configuring Data Encryption and Integrity in Oracle Database

• Configuring SSL Communication in Oracle Database

4.7.4.1 Configuring Data Encryption and Integrity in Oracle Database
See Configuring Network Data Encryption and Integrity in Oracle Database Security Guide
for information about configuring data encryption and integrity.

4.7.4.2 Configuring SSL Communication in Oracle Database

To enable SSL communication between Oracle Database and Oracle Identity Governance:

Note:

See Enabling Secure Sockets Layer in Oracle Database Security Guide for detailed
information about enabling SSL communication between Oracle Database and
Oracle Identity Governance.

1. Export the certificate on the Oracle Database host computer.

2. Copy the certificate to Oracle Identity Governance.

3. Import the certificate into the JVM truststore of the application server on which Oracle
Identity Governance is running.

To import the certificate into the truststore, run the following command:

keytool -import -file FILE_LOCATION -keystore TRUSTSTORE_LOCATION -storepass
TRUSTSTORE_PASSWORD -trustcacerts -alias ALIAS

In this command:

• Replace FILE_LOCATION with the full path and name of the certificate file.

• Replace ALIAS with an alias for the certificate.

• Replace TRUSTSTORE_PASSWORD with a password for the truststore.

• Replace TRUSTSTORE_LOCATION with the following truststore path:

JAVA_HOME/jre/lib/security/cacerts

Chapter 4
Configuring Secure Communication Between the Target System and Oracle Identity Governance

4-13

Note:

In an Oracle Identity Governance cluster, you must import the file into the
truststore on each node of the cluster.

4.8 Configuring Secure Communication Between the
Connector Server and Oracle Identity Governance

If you have deployed this connector on a Connector Server, then it is recommended
that you secure communication between the Connector Server and Oracle Identity
Governance. The procedure to configure secure communication is the same as the
procedure described in section Configuring Secure Communication Between the
Target System and Oracle Identity Governance. While performing the procedure
described in that section, consider the Connector Server as a separate system, similar
to the target system.

Before you configure secure communication:

• Ensure that the Connector Server is running under a user that has the appropriate
rights to access the keystore.

• Ensure that the keystore on the Connector Server is present and accessible.

• Ensure that the keystore on the Connector Server contains the expected
certificates.

• If you are not using the default Java keystore on the Connector Server, then
modify the keystore paths and password in the IT resource URL or the
jndiProperties property (of the DBATConfiguration.groovy file) to match the
location on the Connector Server.

4.9 Configuring the Connector for Stored Procedures and
Groovy Scripts

The connector runs default SQL queries and SQL statements when you use it to
perform reconciliation and provisioning operations, respectively. Instead of default SQL
statements and queries, if you want the connector to use custom stored procedures for
performing reconciliation or provisioning operations, then you must perform the
procedure described in this section.

See Also:

Sample Stored Procedures and Groovy Scripts for sample stored procedures
and Groovy scripts

This section contains the following topics:

• Configuring the Connector for Custom Stored Procedures

• Groovy Script Arguments

Chapter 4
Configuring Secure Communication Between the Connector Server and Oracle Identity Governance

4-14

• Sample Groovy Script

• Entries Specific to Groovy Script Configuration

4.9.1 Configuring the Connector for Custom Stored Procedures
To configure the connector for custom stored procedures:

1. On the target system, create the stored procedures that must be used for performing
provisioning operations. The following are sample stored procedures (created on Oracle
Database) that run the DELETE SQL statement for deleting the groups and roles child
data. For target systems other than Oracle Database, the syntax of this sample
procedure may vary.

The stored procedure for DELETE_USERGROUP is as follows:

create or replace PROCEDURE DELETE_USERGROUP
(userin IN VARCHAR2, gId IN VARCHAR2
) AS
BEGIN
DELETE from USER_GROUP where USERID=userin and GROUPID=gId;
END DELETE_USERGROUP;

The stored procedure for DELETE_USERROLE is as follows:

create or replace PROCEDURE DELETE_USERROLE
(userin IN VARCHAR2, rId IN VARCHAR2
) AS
BEGIN
DELETE from USER_ROLE where USERID=userin and ROLEID=rId;
END DELETE_USERROLE;

2. On the Oracle Identity Governance host computer, create Groovy scripts that call the
relevant stored procedures on the target system to perform provisioning operations. See
Groovy Script Arguments for information about the arguments that can be directly used in
the groovy script.

Note:

See Sample Groovy Script for a sample Groovy script that calls the
DELETE_USERGROUP and DELETE_USERROLE stored procedure.

3. Update the Advanced configuration details definition to include information about the
Groovy scripts as listed in Table 4-3.

Note:

Instead of the file URL of the Groovy script, you can directly enter the Groovy
script. In such a case, ensure that the corresponding attribute does not contain
[LOADFROMURL]. For example, if you directly enter the Groovy script for the
create user account provisioning operation, then the corresponding attribute
name must be createScript, instead of createScript[LOADFROMURL].

Chapter 4
Configuring the Connector for Stored Procedures and Groovy Scripts

4-15

The following is a sample value for the
removeMultiValuedAttributeScript[LOADFROMURL] entry:

file:///home/myname/dbat/scripts/removechilddata.groovy

4. To reset the password during the update procedure, do the following:

a. Check whether script argument "attributes" contains password
(__PASSWORD__) attribute.

import org.identityconnectors.common.security.GuardedString;
GuardedString pass = attributes.get("__PASSWORD__")!=null?
attributes.get"__PASSWORD__").getValue().get(0):null;

b. If "attributes" contains __PASSWORD__ attribute (not null), call targetstore
procedure/sql query to reset password.

upstmt = conn.prepareStatement("UPDATE PASSWORD....
if(pass!=null){
 pass.access(new GuardedString.Accessor(){
 public void access(char[] clearChars){
 upstmt.setString(1, new String(clearChars));
 }
 });
} else {
 //Update other attributes
}
 upstmt.executeUpdate();

4.9.2 Groovy Script Arguments
The following arguments can be directly used in the Groovy script:

• connector - The Database Application Tables connector object.

• conn - JDBC connection.

• timing - When the Groovy script is called. In addition, the timing attribute also
explains the type of operation being performed. For example, if it is search
operation, then the object class being search is also returned.

The following is the format of the timing argument for lookup field synchronization:

executeQuery:OBJECT_CLASS

In this format, OBJECT_CLASS is replaced with the type of object being
reconciled.

For example, for a lookup field synchronization scheduled job that contains the
object type "Role", the value of the timing argument will be as follows:

executeQuery:Role
• attributes - All attributes.

• trace - Logger as a script trace bridge to the application.

• where - String where condition for execute query, or null.

• handler - resultSetHandler or SyncResultsHandler for the connector objects
produced by the execute query, sync operation or null return.

• quoting - The type of table name quoting to be used in SQL. The default value is
an empty string. The value of this argument is obtained from the IT resource.

Chapter 4
Configuring the Connector for Stored Procedures and Groovy Scripts

4-16

• nativeTimestamps - Specifies whether the script retrieves the timestamp data of the
columns as java.sql.Timestamp type from the database table. This information is
obtained from the IT resource.

• allNative - Specifies whether the script must retrieve the data type of the columns in a
native format from the database table. The value of this argument is obtained from the IT
resource.

• rethrowAllSQLExceptions - The value of this argument is also obtained from the IT
resource. The value of this argument specifies whether the script must throw exceptions
when a zero (0x00) error code is encountered.

• enableEmptyString - Specifies whether support for writing an empty string instead of a
NULL value must be enabled. The value of this argument is obtained from the IT
resource.

• filterString - String filter condition for execute query, or null.

• filterParams - List of filter parameters. Each parameter is present in the
COLUMN_NAME:VALUE format. For example, FIRSTNAME:test.

• syncattribute - Name of the database column configured for incremental reconciliation.
This argument is available in the sync script, which is called during an incremental
reconciliation run.

• synctoken - Value of the sync attribute. This argument is available in the sync script.

4.9.3 Sample Groovy Script
The following is a sample Groovy script that calls the DELETE_USERGROUP and
DELETE_USERROLE stored procedure created in step 1 of Configuring the Connector for
Custom Stored Procedures.

import org.identityconnectors.framework.common.objects.*;
System.out.println("[removeMultiValuedAttributeScript] Removing Child data::"+
attributes);

try {
childDataEOSet = null;
delSt = null;
//Get UID
String id = attributes.get("__UID__").getValue().get(0);
if(attributes.get("USER_GROUP")!=null)
{
childDataEOSet=attributes.get("USER_GROUP").getValue();
//Delete child data using stored procedure
delSt= conn.prepareCall("{call DELETE_USERGROUP(?,?)}");
 if(childDataEOSet !=null){
System.out.println("[removeMultiValuedAttributeScript] Removing Group data.");
//Iterate through child data and delete
for(iterator = childDataEOSet.iterator(); iterator.hasNext();)
{
eo = iterator.next();
attrsSet = eo.getAttributes();
grpattr=AttributeUtil.find("GROUPID",attrsSet);
if(grpattr!=null){
groupid=grpattr.getValue().get(0);
delSt.setString(1, id);
delSt.setString(2, groupid);
delSt.executeUpdate();
System.out.println("[removeMultiValuedAttributeScript] Deleted Group::"+ grpattr);

Chapter 4
Configuring the Connector for Stored Procedures and Groovy Scripts

4-17

} }; } }
} finally {
if (delSt != null)
delSt.close();
};
try {
childDataEOSet = null;
delSt = null;
String id = attributes.get("__UID__").getValue().get(0);
if(attributes.get("USER_ROLE")!=null)
{
childDataEOSet=attributes.get("USER_ROLE").getValue();
delSt= conn.prepareCall("{call DELETE_USERROLE(?,?)}");
 if(childDataEOSet !=null){
System.out.println("[removeMultiValuedAttributeScript] Removing Role data.");
for(iterator = childDataEOSet.iterator(); iterator.hasNext();)
{
eo = iterator.next();
attrsSet = eo.getAttributes();
roleattr=AttributeUtil.find("ROLEID",attrsSet);
if(roleattr!=null){
rolename=roleattr.getValue().get(0);
delSt.setString(1, id);
delSt.setString(2, rolename);
delSt.executeUpdate();
System.out.println("[removeMultiValuedAttributeScript] Deleted Role::"+
rolename);
} }; } }
} finally {
if (delSt != null)
delSt.close();
};

4.9.4 Entries Specific to Groovy Script Configuration
Table 4-3 describes the lookup entries specific to groovy script configuration.

Table 4-3 Entries Specific to Groovy Script Configuration

Code Key Decode

createScript[LOADFROMURL] Enter the file URL of the Groovy script created for the create user account
provisioning operation.

updateScript[LOADFROMURL] Enter the file URL of the Groovy script created for the update user account
provisioning operation.

deleteScript[LOADFROMURL] Enter the file URL of the Groovy script created for the delete user account
provisioning operation.

executeQueryScript[LOADFROMU
RL]

Enter the file URL of the Groovy script created for full and filtered
reconciliation.

lookupScript[LOADFROMURL] Enter the file URL of the Groovy script created for lookup field
synchronization.

syncScript[LOADFROMURL] Enter the file URL of the Groovy script created for incremental reconciliation.

addMultiValuedAttributeScript[LOA
DFROMURL]

Enter the file URL of the Groovy script created for the add multivalued
attributes provisioning operation.

removeMultiValuedAttributeScript[L
OADFROMURL]

Enter the file URL of the Groovy script created for the remove multivalued
attributes provisioning operation.

Chapter 4
Configuring the Connector for Stored Procedures and Groovy Scripts

4-18

4.10 Configuring the Datasource and JNDI Properties
Perform the procedure described in this topic if the connector uses datasource configuration
to connect to your target system.

To configure the datasource and JNDI properties

1. Login to Oracle WebLogic Server Administration Console.

2. On the Domain Structure left navigation pane, expand Services, and click Data
Sources.

3. Click Lock & Edit.

4. In the Configuration tab, below Data Source, click the New menu, and select Generic
Data Source.

5. In the Create a New JDBC Data Source page, provide the following values, and then
click Next.

• Name: Enter the datasource name.

• JNDI Name: Enter the JNDI name in the format jdbc/DATASOURCE_NAME.

• Database Type: Select a database type. For example, if you are using an Oracle
database, then select Oracle.

6. From the JDBC Driver list, select *Oracle's Driver (Thin) for Service connections;
Versions:Any, and then click Next.

7. Deselect the Supports Global Transactions option, and then click Next.

8. In the Connection Properties page, provide the following values, and then click Next.

• Database Name: Enter the name of the database that you want to connect to.

• Host Name: Enter the name or IP address of the database server.

• Port: Enter the port number of the database server.

• Database User Name: Enter the user name for connecting to the database.

• Password: Enter the password for connecting to the database.

• Confirm Password: Re-enter the password.

9. Click Test Configuration.

A message states that the connection test is successful.

10. Click Next.

11. Under Servers, select AdminServer.

12. Select all OIM servers listed or select the OIM cluster and then click Finish.

13. Click Activate Changes to activate the datasource creation.

Note:

Add the Java property -Dweblogic.jdbc.remoteEnabled=true in Weblogic OIM
Domain Environment script, and restart the WebLogic server.

Chapter 4
Configuring the Datasource and JNDI Properties

4-19

4.11 Configuring the Datasource and JNDI Properties for
SAP HANA DB

Perform the procedure described in this topic to configure the datasource and JNDI
properties for SAP HANA DB:

1. Login to Oracle WebLogic Server Administration Console.

2. On the Domain Structure left navigation pane, expand Services, and click
DataSources.

3. Click Lock & Edit.

4. In the Configuration tab, below Data Source, click the New menu, and select
Generic Data Source.

5. In the Create a New JDBC Data Source page, provide the following values, and
then click Next.

• Name: Enter the datasource name.

• JNDI Name: Enter the JNDI name in the format jdbc/DATASOURCE_NAME.

• Database Type: Select a database type. For example, if you are using an SAP
Hana database, then select Other and then click Next.

6. From the JDBC Driver list, select Other for Service connections and then click
Next.

7. Deselect the Supports Global Transactions option, and then click Next.

8. In the Connection Properties page, provide the following values, and then click
Next.

• Database Name: Enter the name of the database that you want to connect to.

• Password: Enter the password for connecting to the database, and then click
Next.

9. Test Database Connection:

• Driver Class Name: Enter the name or IP address of the database server.

• url: Enter the port number of the database server.

• Database User Name: Enter the user name for connecting to the database.

• Password: Enter the password for connecting to the database.

• Confirm Password: Re-enter the password.

10. Click Test Configuration. A message states that the connection test is
successful.

11. Click Next.

12. Under Servers, select AdminServer.

13. Select all OIM servers listed or select the OIM cluster and then click Finish.

14. Click Activate Changes to activate the Data Source creation.

Chapter 4
Configuring the Datasource and JNDI Properties for SAP HANA DB

4-20

5
Using the Database Application Tables
Connector

You can use the connector for performing reconciliation and provisioning operations after
configuring it to meet your requirements.

This chapter provides information about the following topics:

• Configuring Reconciliation

• Performing Provisioning Operations

• Reconciliation Scheduled Jobs

• Uninstalling the Connector

5.1 Configuring Reconciliation
Reconciliation involves duplicating in Oracle Identity Governance the creation of and
modifications to user accounts on the target system. This section discusses the following
topics related to configuring reconciliation:

• Performing Full Reconciliation and Incremental Reconciliation

• Performing Limited Reconciliation

5.1.1 Performing Full Reconciliation and Incremental Reconciliation
Full reconciliation involves reconciling all existing user records from the target system into
Oracle Identity Governance. After you deploy the connector, you must first perform full
reconciliation. In addition, you can switch from incremental reconciliation to full reconciliation
whenever you want to ensure that all target system records are reconciled in Oracle Identity
Governance.

You can perform a full reconciliation run in one of the following manners:

• Ensure that no value is specified for the Filter attribute of the scheduled job for user data
reconciliation. See Scheduled Jobs for Reconciliation of User Records for information
about the Filter attribute.

• Ensure the Sync Token attribute of the scheduled job for incremental reconciliation does
not contain any value. See Scheduled Jobs for Incremental Reconciliation for information
about the Sync Token attribute.

In incremental reconciliation, only records created or modified after the latest date/ timestamp
the last reconciliation was run are considered for reconciliation. To perform incremental
reconciliation, configure and run the scheduled job for incremental reconciliation. The first
time you run the scheduled job for incremental reconciliation, note that a full reconciliation is
performed. Note that the scheduled job for incremental reconciliation is generated only if you
specify a last update column value for the changeLogColumn property in the
DBATConfiguration.groovy file.

5-1

5.1.2 Performing Limited Reconciliation
By default, all target system records that are added or modified after the last
reconciliation run are reconciled during the current reconciliation run. You can
customize this process by specifying the subset of added or modified target system
records that must be reconciled. You do this by creating filters for the reconciliation
module.

You can configure limited reconciliation by performing the procedures described in one
of the following sections:

• Specifying a Value for the Filter Attribute

• Specifying a Value for the customizedQuery Parameter

5.1.2.1 Specifying a Value for the Filter Attribute
You can perform limited reconciliation by creating filters for the reconciliation module.
This connector provides a Filter attribute (a scheduled task attribute) that allows you to
use any of the Database Application Tables resource attributes to filter the target
system records.

When you specify a value for the Filter attribute, only the target system records that
match the filter criterion are reconciled into Oracle Identity Governance. If you do not
specify a value for the Filter attribute, then all the records in the target system are
reconciled into Oracle Identity Governance.

You specify a value for the Filter attribute while configuring the user reconciliation
scheduled job.

For detailed information about Filters, see ICF Filter Syntax in Oracle Fusion
Middleware Developing and Customizing Applications for Oracle Identity Governance.

5.1.2.2 Specifying a Value for the customizedQuery Parameter
If you want to filter values that are being retrieved from different tables by using native
SQL queries, then use the customizedQuery property to configure limited
reconciliation. You can configure limited reconciliation by specifying a value for either
the customizedQuery property in the DBATConfiguration.groovy file or
customizedQuery IT resource parameter.

You must specify a WHERE clause specifying the subset of newly added or modified
records that you want to reconcile as the value of the customizedQuery parameter. For
example, specifying the following WHERE clause as the value of the customizedQuery
parameter returns all user records whose first name is John:

WHERE FIRST_NAME='JOHN'

The following is another example of a WHERE clause that returns all user records
whose location contains "land":

WHERE LOCATION LIKE '%LAND'

Chapter 5
Configuring Reconciliation

5-2

Note:

If you are configuring limited reconciliation by using the customizedQuery property,
then first test the query by running it on a staging server to ensure that data in the
production server is altered as desired.

5.2 Configuring Provisioning
Learn about performing provisioning operations in Oracle Identity Governance and the
guidelines that you must apply while performing these operations.

• Guidelines on Performing Provisioning Operations

• Performing Provisioning Operations

5.2.1 Guidelines on Performing Provisioning Operations

These guidelines provide information on what to do when performing provisioning operations.

For a Create User provisioning operation, you must specify a value for the User Name field.
For example, John Doe. It is a mandatory field.

5.2.2 Performing Provisioning Operations
You create a new user in Identity Self Service by using the Create User page. You provision
or request for accounts on the Accounts tab of the User Details page.

To perform provisioning operations in Oracle Identity Governance:

1. Log in to Identity Self Service.

2. Create a user as follows:

a. In Identity Self Service, click Manage. The Home tab displays the Manage options.
Click Users. The Manage Users page is displayed.

b. From the Actions menu, select Create. Alternatively, you can click Create on the
toolbar. The Create User page is displayed with input fields for user profile attributes.

c. Enter details of the user in the Create User page.

3. On the Account tab, click Request Accounts.

4. In the Catalog page, search for and add to cart the application instance created for the
connector that you created earlier, and then click Checkout.

5. Specify values for fields in the application form, and then click Ready to Submit.

6. Click Submit.

Chapter 5
Configuring Provisioning

5-3

Note:

See Creating a User in Oracle Fusion Middleware Performing Self Service
Tasks with Oracle Identity Governance for information about the fields on the
Create User page.

5.3 Configuring Reconciliation Jobs
Configure reconciliation jobs to perform reconciliation runs that check for new
information on your target system periodically and replicates the data in Oracle Identity
Governance.

You can apply this procedure to configure the reconciliation jobs for users and
entitlements.

To configure a reconciliation job:

1. Log in to Identity System Administration.

2. In the left pane, under System Management, click Scheduler.

3. Search for and open the scheduled job as follows:

a. In the Search field, enter the name of the scheduled job as the search
criterion. Alternatively, you can click Advanced Search and specify the search
criterion.

b. In the search results table on the left pane, click the scheduled job in the Job
Name column.

4. On the Job Details tab, you can modify the parameters of the scheduled task:

• Retries: Enter an integer value in this field. This number represents the
number of times the scheduler tries to start the job before assigning the
Stopped status to the job.

• Schedule Type: Depending on the frequency at which you want the job to run,
select the appropriate schedule type. See Creating Jobs in Oracle Fusion
Middleware Administering Oracle Identity Governance.

In addition to modifying the job details, you can enable or disable a job.

5. On the Job Details tab, in the Parameters region, specify values for the attributes
of the scheduled task.

Note:

Values (either default or user-defined) must be assigned to all the
attributes. If even a single attribute value is left empty, then reconciliation
is not performed.

6. Click Apply to save the changes.

Chapter 5
Configuring Reconciliation Jobs

5-4

Note:

You can use the Scheduler Status page in Identity System Administration to
either start, stop, or reinitialize the scheduler.

5.4 Uninstalling the Connector
Uninstalling the connector deletes all the account-related data associated with its resource
objects.

If you want to uninstall the connector for any reason, then run the Uninstall Connector utility.
Before you run this utility, ensure that you set values for ObjectType and ObjectValues
properties in the ConnectorUninstall.properties file. For example, if you want to delete
resource objects, scheduled tasks, and scheduled jobs associated with the connector, then
enter "ResourceObject", "ScheduleTask", "ScheduleJob" as the value of the ObjectType
property and a semicolon-separated list of object values corresponding to your connector (for
example, Databasetable User; Databasetable Group) as the value of the ObjectValues
property.

Note:

If you set values for the ConnectorName and Release properties along with the
ObjectType and ObjectValue properties, then the deletion of objects listed in the
ObjectValues property is performed by the utility and the Connector information is
skipped.

For more information, see Uninstalling Connectors in Oracle Fusion Middleware
Administering Oracle Identity Governance.

Chapter 5
Uninstalling the Connector

5-5

6
Extending the Functionality of the Database
Application Tables Connector

You can extend the functionality of the connector to address your specific business
requirements.

This chapter contains the following topics:

• Configuring Transformation and Validation of Data

• Configuring Action Scripts

• Configuring the Connector for Multiple Installations of the Target System

6.1 Configuring Transformation and Validation of Data
Configure transformation and validation of user account data by writing Groovy script logic
while creating your application.

You can configure transformation of reconciled single-valued user data according to your
requirements. For example, you can use First Name and Last Name values to create a value
for the Full Name field in Oracle Identity Governance.

Similarly, you can configure validation of reconciled and provisioned single-valued data
according to your requirements. For example, you can validate data fetched from the First
Name attribute to ensure that it does not contain the number sign (#). In addition, you can
validate data entered in the First Name field on the process form so that the number sign (#)
is not sent to the target system during provisioning operations.

To configure transformation or validation of user account data, you must write Groovy scripts
while creating your application. For more information about writing Groovy script-based
validation and transformation logic, see Validation and Transformation of Provisioning and
Reconciliation Attributes of Oracle Fusion Middleware Performing Self Service Tasks with
Oracle Identity Governance.

6.2 Configuring Action Scripts
You can configure Action Scripts by writing your own Groovy scripts while creating your
application.

These scripts can be configured to run before or after the create, update, or delete an
account provisioning operations. For example, you can configure a script to run before every
user creation operation.

For information on adding or editing action scripts, see Updating the Provisioning
Configuration in Oracle Fusion Middleware Performing Self Service Tasks with Oracle Identity
Governance.

6-1

6.3 Configuring the Connector for Multiple Installations of
the Target System

You must create copies of configurations of your base application to configure it for
multiple installations of the target system.

The following example illustrates this requirement:
The London and New York offices of Example Multinational Inc. have their own
installations of the target system, including independent schema for each. The
company has recently installed Oracle Identity Governance, and they want to
configure it to link all the installations of the target system.

To meet the requirement posed by such a scenario, you must clone your application
which copies all configurations of the base application into the cloned application. For
more information about cloning applications, see Cloning Applications in Oracle Fusion
Middleware Performing Self Service Tasks with Oracle Identity Governance.

Chapter 6
Configuring the Connector for Multiple Installations of the Target System

6-2

7
Defining and Upgrading the DBAT Connector

Define and upgrade the Database Application Tables connector using Oracle Identity System
Administration.

• Defining the Connector

• Upgrading the Connector

7.1 Defining the Connector
Using Oracle Identity System Administration, you can define a customized or reconfigured
connector. Defining a connector is equivalent to registering the connector with Oracle Identity
Governance.

A connector is automatically defined when you install it by using the Install Connectors
feature or when you upgrade it using the Upgrade Connectors feature. You must manually
define a connector if:

• You import the connector by using the Deployment Governance.

• You customize or reconfigure the connector.

• You upgrade Oracle Identity Governance.

The following events take place when you define a connector:

• A record representing the connector is created in the Oracle Identity Governance
database. If this record already exists, then it is updated.

• The status of the newly defined connector is set to Active. In addition, the status of a
previously installed release of the same connector is automatically set to Inactive.

See Defining Connectors With Oracle Identity Manager in Oracle Fusion Middleware
Administering Oracle Identity Governance for detailed information about the procedure to
define connectors.

7.2 Upgrading the Connector
If you have already deployed the 11.1.1.6.0 version of the DBAT connector, then you can
upgrade the connector to version 12.2.1.3.0 by uploading the new connector JAR files to the
Oracle Identity Governance database.

7-1

Note:

Before you perform the upgrade procedure:

• Create a backup of the Oracle Identity Governance database. See the
database documentation for information about creating a backup.

• As a best practice, initially perform the upgrade procedure in a test
environment.

The following topics describe the procedure to upgrade the connector:

• Upgrade Steps

• Postupgrade Steps

Note:

See Upgrading Connectors in Oracle Fusion Middleware Administering
Oracle Identity Governance for detailed information about upgrade steps.

7.2.1 Upgrade Steps

This is a summary of the procedure to upgrade the connector for both staging and
production environments.

Depending on the environment in which you are upgrading the connector, perform one
of the following steps:

• Staging environment: Perform the upgrade procedure by using the wizard mode.

Note:

Do not upgrade IT resource type definition. In order to retain the default
setting, you must map the IT resource definition to 'None'.

• Production environment: Perform the upgrade procedure by using the silent mode.

7.2.2 Postupgrade Steps

Postupgrade steps involve uploading new connector JAR to Oracle Identity
Governance database.
Perform the following steps:

1. Delete the old Connector JARs. Run the Oracle Identity Governance Delete JARs
($ORACLE_HOME/bin/DeleteJars.sh) utility to delete the existing ICF bundle
org.identityconnectors.databasetable-1.2.2.jar from the Oracle Identity
Governance database.

Chapter 7
Upgrading the Connector

7-2

When you run the Delete JARs utility, you are prompted to enter the login credentials of
the Oracle Identity Governance administrator, URL of the Oracle Identity Governance
host computer, context factory value, type of JAR file being deleted, and the name of the
JAR file to be removed. Specify 4 as the value of the JAR type.

2. Upload the new connector JAR files. To do so:

a. Run the Oracle Identity Governance Upload JARs ($ORACLE_HOME/bin/
UploadJars.sh) utility to upload the connector JARs.

b. Upload the org.identityconnectors.databasetable-12.3.0.jar bundle as an ICF
Bundle. Run the Oracle Identity Governance Upload JARs utility to post the new ICF
bundle org.identityconnectors.databasetable-12.3.0.jar file to the Oracle
Identity Governance database.
When you run the Upload JARs utility, you are prompted to enter the login credentials
of the Oracle Identity Governance administrator, URL of the Oracle Identity
Governance host computer, context factory value, type of JAR file being uploaded,
and the location from which the JAR file is to be uploaded. Specify 4 as the value of
the JAR type.

3. Restart Oracle Identity Governance.

4. If the connector is deployed on a connector server, then:

a. Stop the connector server.

b. Replace the existing bundle JAR file
org.identityconnectors.databasetable-1.2.2.jar with the new bundle JAR file
org.identityconnectors.databasetable-12.3.0.jar.

c. Start the connector server.

Chapter 7
Upgrading the Connector

7-3

8
Known Issues and Workarounds

The following are issues and workarounds associated with this release of the connector:

8.1 The Custom Schema Feature of IBM DB2 is not Supported
You can create a custom schema in the IBM DB2 database. Currently, the connector does
not support custom schema and thus you cannot generate the DBAT connector using custom
schema attributes of IBM DB2.

If you configure the DBATConfiguration.groovy file by creating a table (for example,
VCDOG44B_SECR_SRC) using custom schema attributes and try to run the DBAT
Generator, the following error is encountered:

"FINE DatabaseTableConfiguration: Get for a key MSG_INVALID_TABLE_NAME connector
message Invalid table name (TABLE_NAME). FINE SchemaApiOp: Exception:
java.lang.IndexOutOfBoundsException: Invalid table name (TABLE_NAME)."

As a workaround, you must configure the default or user schema that is defined in the
DBATConfiguration.groovy file and then run the DBAT Generator.

8.2 Unable to Generate CI Build When
DBATConfiguration.groovy File is Configured Using Data Source
and JNDI Properties

While generating CI build using DBATConfiguration.groovy file configured with data source
and JNDI properties, the build generation fails with the following error:

java.lang.UnsupportedOperationException: Remote JDBC disabled

The cause of this issue is missing wlfulclient.jar, which is required for build generation. This
JAR file has been deprecated in Oracle Identity Governance 12c and later releases.
Currently, there is no alternative JAR file available.

8.3 Connector Operations Using Connector Server Fail
When the Database Application Tables connector is configured using connector server in
basic configurations and by configuring data source and JNDI properties in advance
configurations, the connector operations fails with the following error:

java.lang.UnsupportedOperationException: Remote JDBC disabled

8-1

The cause of this issue is missing wlfulclient.jar, which is required to be placed in the
connector server. This JAR file has been deprecated from Oracle Identity Governance
12c and later releases. Currently, there is no alternative JAR file available. However,
you can use the respective JDBC URL template instead of DataSource and JNDI
properties.

Chapter 8
Connector Operations Using Connector Server Fail

8-2

A
Sample Stored Procedures and Groovy
Scripts

This appendix lists sample stored procedures and Groovy scripts for some of the provisioning
operations. Depending on your requirement, you can either extend these stored procedures
and groovy scripts or create new ones. Note that the sample stored procedures and groovy
scripts listed in this appendix can be created only on an Oracle Database target system.

The appendix includes the following topics:

• Sample Groovy Script for a Create Provisioning Operation

• Sample Groovy Script for an Update Provisioning Operation

• Sample Groovy Script for a Delete Provisioning Operation

• Sample Groovy Script for an Add Child Data Provisioning Operation

• Sample Stored Procedure and Groovy Script for a Delete Child Data Provisioning
Operation

• Sample Stored Procedure and Groovy Script for Lookup Field Synchronization

• Sample Stored Procedure and Groovy Script for Full or Filter Reconciliation

• Sample Stored Procedure and Groovy Script for Incremental Reconciliation

• Tables Used for Sample Groovy and Configuration Scripts

A.1 Sample Groovy Script for a Create Provisioning Operation
The following is a sample groovy script for performing a create provisioning operation.

Register the create script as follows:

import java.sql.PreparedStatement;
import org.identityconnectors.framework.common.objects.*;
import java.text.*;

// START HERE
System.out.println("[Create-Groovy] Attributes::"+attributes);

//Get all the attributes from script argument
String uid = attributes.get("__NAME__")!=null?
attributes.get("__NAME__").getValue().get(0):null;
String firstName=attributes.get("FIRSTNAME")!=null?
attributes.get("FIRSTNAME").getValue().get(0):null;
String lastName=attributes.get("LASTNAME")!=null?
attributes.get("LASTNAME").getValue().get(0):null;
String email=attributes.get("EMAIL")!=null?
attributes.get("EMAIL").getValue().get(0):null;
String description=attributes.get("DESCRIPTION")!=null?
attributes.get("DESCRIPTION").getValue().get(0):null;
salary=attributes.get("SALARY")!=null? attributes.get("SALARY").getValue().get(0):null;
joindate = attributes.get("JOININGDATE")!=null?

A-1

attributes.get("JOININGDATE").getValue().get(0):null;
enableValue = attributes.get("__ENABLE__")!=null?
attributes.get("__ENABLE__").getValue().get(0):true;

PreparedStatement createStmt = null;
try {
 //Initialize the prepare statement to insert the data into database table
 createStmt = conn.prepareStatement("INSERT INTO
USERINFO(USERID,FIRSTNAME,LASTNAME,EMAIL,DESCRIPTION,SALARY,JOININGDATE,STATUS)
VALUES(?,?,?,?,?,?,?,?)");
 //Set the input parameters
 createStmt.setString(1, uid);
 createStmt.setString(2, firstName);
 createStmt.setString(3, lastName);
 createStmt.setString(4, email);
 createStmt.setString(5, description);
 createStmt.setBigDecimal(6, salary);
 dateStr = null;
 //Convert the joindate into oracle date format
 if(joindate != null) {
 SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss.S");
 java.util.Date date= df.parse(joindate);
 DateFormat targetFormat = new SimpleDateFormat("dd-MMM-yy");
 dateStr = targetFormat.format(date);
 }
 createStmt.setString(7,dateStr);
 if(enableValue)
 createStmt.setString(8,"Enabled");
 else
 createStmt.setString(8,"Disabled");
 //Execute sql statement
 createStmt.executeUpdate();
} finally {
 //close the sql statements
 if (createStmt != null)
 createStmt.close();
}
System.out.println("[Create] Created User::"+uid);
//Return Uid from the script
return new Uid(uid);

A.2 Sample Groovy Script for an Update Provisioning
Operation

The following is a sample groovy script for performing an update provisioning
operation.

Register the update script as follows:

import org.identityconnectors.framework.common.objects.*;
import java.text.*;
import org.identityconnectors.framework.common.exceptions.*;

System.out.println("[Update-Groovy] Atrributes::"+ attributes);

/** During an Update operation,OIM sends the UID attribute along with updated
attributes.
Get all the values of attributes **/

Appendix A
Sample Groovy Script for an Update Provisioning Operation

A-2

String id = attributes.get("__UID__")!=null?
attributes.get("__UID__").getValue().get(0):null;
String firstName=attributes.get("FIRSTNAME")!=null?
attributes.get("FIRSTNAME").getValue().get(0):null;
String lastName=attributes.get("LASTNAME")!=null?
attributes.get("LASTNAME").getValue().get(0):null;
String email=attributes.get("EMAIL")!=null?
attributes.get("EMAIL").getValue().get(0):null;
String description=attributes.get("DESCRIPTION")!=null?
attributes.get("DESCRIPTION").getValue().get(0):null;
salary=attributes.get("SALARY")!=null? attributes.get("SALARY").getValue().get(0):null;
joindate = attributes.get("JOININGDATE")!=null?
attributes.get("JOININGDATE").getValue().get(0):null;
status = attributes.get("STATUS")!=null?
attributes.get("STATUS").getValue().get(0):null;
enableValue = attributes.get("__ENABLE__")!=null?
attributes.get("__ENABLE__").getValue().get(0):true;

//Throw exception if uid is null
if(id==null) throw new ConnectorException("UID Cannot be Null");
stmt = null;
try {
//Create prepare statement to update the USERINFO table
 stmt = conn.prepareStatement("UPDATE USERINFO SET FIRSTNAME=COALESCE(?,
FIRSTNAME),LASTNAME =COALESCE(?, LASTNAME), EMAIL= COALESCE(?,
EMAIL),DESCRIPTION=COALESCE(?, DESCRIPTION),SALARY=COALESCE(?,
SALARY),JOININGDATE=COALESCE(to_date(?,'dd-Mon-yy'), JOININGDATE),STATUS=COALESCE(?,
STATUS) WHERE USERID =?");
 //Set sql input parameters
 stmt.setString(1, firstName);
 stmt.setString(2, lastName);
 stmt.setString(3, email);
 stmt.setString(4, description);
 stmt.setBigDecimal(5, salary);
 dateStr = null;
 //Convert the joindate into oracle date format
 if(joindate != null) {
 SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss.S");
 java.util.Date date= df.parse(joindate);
 DateFormat targetFormat = new SimpleDateFormat("dd-MMM-yy");
 dateStr = targetFormat.format(date); }
 stmt.setString(6,dateStr);
 if(enableValue)
 stmt.setString(7,"Enabled");
 else
 stmt.setString(7,"Disabled");
 stmt.setString(8, id);
 stmt.executeUpdate();
} finally {
 if (stmt != null)
 stmt.close();
};
System.out.println("[Update] Updated user::"+ id);
return new Uid(id);

A.3 Sample Groovy Script for a Delete Provisioning Operation
The following is a sample groovy script for performing a delete provisioning operation.

Register the delete script as follows:

Appendix A
Sample Groovy Script for a Delete Provisioning Operation

A-3

import java.sql.PreparedStatement;
import org.identityconnectors.framework.common.objects.*;

//Get the UID from the input map 'attributes'
String uid = attributes.get("__UID__").getValue().get(0);
System.out.println("[Delete-Groovy] Deleting user:: "+ uid);

try {
 //Delete data from child tables and then, main table
 //Delete user roles
 st = conn.prepareStatement("DELETE FROM USER_ROLE WHERE USERID=?");
 st.setString(1, uid);
 st.executeUpdate();
 st.close();

 //Delete user groups
 st = conn.prepareStatement("DELETE FROM USER_GROUP WHERE USERID=?");
 st.setString(1, uid);
 st.executeUpdate();
 st.close();

 //Delete user account
 st = conn.prepareStatement("DELETE FROM USERINFO WHERE USERID=?");
 st.setString(1, uid);
 st.executeUpdate();
} finally {
 if (st != null)
 st.close(); };
System.out.println("Deleted user:: "+ uid);

A.4 Sample Groovy Script for an Add Child Data
Provisioning Operation

The following is a sample groovy script for adding child data.

Register the add child data script as follows:

import org.identityconnectors.framework.common.objects.*;
import java.text.*;

System.out.println("[addMultiValuedAttributeScript-Groovy] Adding Child data::"+
attributes);
childst =null;
try {
 //Adding Group data
 childDataEOSet = null;

 /**The child attributes are returned as a set of embedded objects. Each
Embedded object will provide a row of data in the child table.
 For example, if DBAT contains USER_GROUP as a child in OIM and contains two
rows of groups data then, we will get a set of embedded objects with count 2 and
each embedded object represents a row in child data.
 This groovy script is based on a child table named USER_GROUP and containing
USERID, GROUP_ID as its columns.**/

 if(attributes.get("USER_GROUP")!=null)
 {
 childDataEOSet=attributes.get("USER_GROUP").getValue();
 childst = conn.prepareStatement("INSERT INTO USER_GROUP VALUES (?,?)");

Appendix A
Sample Groovy Script for an Add Child Data Provisioning Operation

A-4

 String id = attributes.get("__UID__").getValue().get(0);
 if(childDataEOSet !=null){
 //Iterate through child data and insert into table
 System.out.println("[addMultiValuedAttributeScript] Adding Group data.");
 for(iterator = childDataEOSet.iterator(); iterator.hasNext();)
 {
 eo = iterator.next();
 attrsSet = eo.getAttributes();
 grpattr=AttributeUtil.find("GROUPID",attrsSet);
 if(grpattr!=null){
 groupid=grpattr.getValue().get(0);
 childst.setString(1, id);
 childst.setString(2, groupid);
 childst.executeUpdate();
 childst.clearParameters();
 } };
 } } } finally {
 if (childst != null)
 childst.close();
};

try {
 //Adding Role data
 childDataEOSet = null;
 if(attributes.get("USER_ROLE")!=null){
 SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss.S");
 DateFormat targetFormat = new SimpleDateFormat("dd-MMM-yy");
 childDataEOSet=attributes.get("USER_ROLE").getValue();
 childst = conn.prepareStatement("INSERT INTO USER_ROLE VALUES (?,?,?,?)");
 String id = attributes.get("__UID__").getValue().get(0);
 if(childDataEOSet !=null){
 System.out.println("[addMultiValuedAttributeScript] Adding Role data.");
 for(iterator = childDataEOSet.iterator(); iterator.hasNext();) {
 eo = iterator.next();
 attrsSet = eo.getAttributes();
 roleattr=AttributeUtil.find("ROLEID",attrsSet);
 fromdateAttr=AttributeUtil.find("FROMDATE",attrsSet);
 todateAttr=AttributeUtil.find("TODATE",attrsSet);
 if(roleattr!=null){
 roleid=roleattr.getValue().get(0);
 childst.setString(1, id);
 childst.setString(2, roleid);
 fromdate = null;
 if(fromdateAttr!= null)
 {
 java.util.Date date= df.parse(fromdateAttr.getValue().get(0));
 fromdate = targetFormat.format(date);
 }
 childst.setString(3, fromdate);
 todate = null;
 if(todateAttr!= null)
 {
 java.util.Date date= df.parse(todateAttr.getValue().get(0));
 todate = targetFormat.format(date);
 }
 childst.setString(4, todate);
 childst.executeUpdate();
 childst.clearParameters();
 } };
 } } } finally {
 if (childst != null)

Appendix A
Sample Groovy Script for an Add Child Data Provisioning Operation

A-5

 childst.close();
};

A.5 Sample Stored Procedure and Groovy Script for a
Delete Child Data Provisioning Operation

The following is a sample groovy script for deleting child data.

The delete child data procedure is called as follows:

delSt= conn.prepareCall("{call DELETE_USERGROUP(?,?)}");

delSt= conn.prepareCall("{call DELETE_USERROLE(?,?)}");

The procedure for DELETE_USERGROUP is as follows:

create or replace PROCEDURE DELETE_USERGROUP
(userin IN VARCHAR2, gId IN VARCHAR2
) AS
BEGIN
DELETE from USER_GROUP where USERID=userin and GROUPID=gId;
END DELETE_USERGROUP;

The procedure for DELETE_USERROLE is as follows:

create or replace PROCEDURE DELETE_USERROLE
(userin IN VARCHAR2, rId IN VARCHAR2
) AS
BEGIN
DELETE from USER_ROLE where USERID=userin and ROLEID=rId;
END DELETE_USERROLE;

Register the delete child data script as follows:

import org.identityconnectors.framework.common.objects.*;
System.out.println("[removeMultiValuedAttributeScript] Removing Child data::"+
attributes);

try {
 childDataEOSet = null;
 delSt = null;
 //Get UID
 String id = attributes.get("__UID__").getValue().get(0);
 if(attributes.get("USER_GROUP")!=null)
 {
 childDataEOSet=attributes.get("USER_GROUP").getValue();
 //Delete child data using stored procedure
 delSt= conn.prepareCall("{call DELETE_USERGROUP(?,?)}");
 if(childDataEOSet !=null){
 System.out.println("[removeMultiValuedAttributeScript] Removing
Group data.");
 //Iterate through child data and delete
 for(iterator = childDataEOSet.iterator(); iterator.hasNext();)
 {
 eo = iterator.next();
 attrsSet = eo.getAttributes();
 grpattr=AttributeUtil.find("GROUPID",attrsSet);
 if(grpattr!=null){
 groupid=grpattr.getValue().get(0);

Appendix A
Sample Stored Procedure and Groovy Script for a Delete Child Data Provisioning Operation

A-6

 delSt.setString(1, id);
 delSt.setString(2, groupid);
 delSt.executeUpdate();
 System.out.println("[removeMultiValuedAttributeScript] Deleted
Group::"+ grpattr);
 } }; } }
} finally {
 if (delSt != null)
 delSt.close();
};
try {
 childDataEOSet = null;
 delSt = null;
 String id = attributes.get("__UID__").getValue().get(0);
 if(attributes.get("USER_ROLE")!=null)
 {
 childDataEOSet=attributes.get("USER_ROLE").getValue();
 delSt= conn.prepareCall("{call DELETE_USERROLE(?,?)}");
 if(childDataEOSet !=null){
 System.out.println("[removeMultiValuedAttributeScript] Removing Role
data.");
 for(iterator = childDataEOSet.iterator(); iterator.hasNext();)
 {
 eo = iterator.next();
 attrsSet = eo.getAttributes();
 roleattr=AttributeUtil.find("ROLEID",attrsSet);
 if(roleattr!=null){
 rolename=roleattr.getValue().get(0);
 delSt.setString(1, id);
 delSt.setString(2, rolename);
 delSt.executeUpdate();
 System.out.println("[removeMultiValuedAttributeScript] Deleted
Role::"+ rolename);
 } }; } }
} finally {
 if (delSt != null)
 delSt.close();
};

A.6 Sample Stored Procedure and Groovy Script for Lookup
Field Synchronization

The following is a sample groovy script for performing lookup field synchronization.

The Lookup field procedures are called as follows:

st = conn.prepareCall("{call GET_ROLES(?)}");

st = conn.prepareCall("{call GET_GROUPS(?)}");

The procedure for GET_ROLES is as follows:

create or replace PROCEDURE GET_ROLES
(user_cursor OUT TYPES.cursorType
) AS
BEGIN
OPEN user_cursor FOR
SELECT ROLENAME,ROLEID from ROLES;
END GET_ROLES;

Appendix A
Sample Stored Procedure and Groovy Script for Lookup Field Synchronization

A-7

The procedure for GET_GROUPS is as follows:

create or replace PROCEDURE GET_GROUPS
(user_cursor OUT TYPES.cursorType
) AS
BEGIN
OPEN user_cursor FOR
SELECT GROUPNAME,GROUPID from GROUPS;
END GET_GROUPS;

Register the lookup field synchronization script as follows:

import org.identityconnectors.framework.common.objects.*;
rs = null;
st = null;
try {
 System.out.println("[Lookup] Lookup Recon timing::"+ timing);
 System.out.println("[Lookup] Attributes to Get::"+ ATTRS_TO_GET);
 // This script is common for all lookups. Read the timing (input) and
return the data accordingly
 // The format of timing is : executeQuery:<objectclass>
 String codekey = ATTRS_TO_GET[0];
 String decodekey = ATTRS_TO_GET[1];
 if(timing.equals("executeQuery:Role"))
 {
 System.out.println("[Lookup] Getting Roles.");
 st = conn.prepareCall("{call GET_ROLES(?)}");
 }
 else
 {
 System.out.println("[Lookup] Getting Groups.");
 st = conn.prepareCall("{call GET_GROUPS(?)}"); }
 st.registerOutParameter(1, oracle.jdbc.driver.OracleTypes.CURSOR);
 st.execute();
 rs = st.getObject(1);
 while (rs.next()) {
 cob = new ConnectorObjectBuilder();
 Attribute codeattr= AttributeBuilder.build(decodekey,rs.getString(2));
 Attribute decodeattr= AttributeBuilder.build(codekey,rs.getString(1));
 cob.addAttribute(codeattr);
 cob.addAttribute(decodeattr);
 cob.setUid(rs.getString(2));
 cob.setName(rs.getString(2));
 handler.handle(cob.build());
 } } finally {
 if(null != rs)
 rs.close();
 if(null != st)
 st.close();
}

A.7 Sample Stored Procedure and Groovy Script for Full or
Filter Reconciliation

The following is a sample groovy script for performing full or filter reconciliation.

The full reconciliation procedure is called as follows:

st = conn.prepareCall("{call EXECUTE_QUERY(?)}");

Appendix A
Sample Stored Procedure and Groovy Script for Full or Filter Reconciliation

A-8

The filtered reconciliation procedure is called as follows:

st = conn.prepareCall("{call EXECUTE_QUERY_WITH_FILTER(?,?,?)}");

The get user role procedure is called as follows:

roleStmt = conn.prepareCall("{call GET_USERROLE(?,?)}");

The get user group procedure is called as follows:

groupStmt = conn.prepareCall("{call GET_USERGROUP(?,?)}");

The procedure for EXECUTE_QUERY is as follows:

create or replace PROCEDURE EXECUTE_QUERY
(user_cursor OUT TYPES.cursorType
) AS
BEGIN
OPEN user_cursor FOR
SELECT USERINFO.USERID, USERINFO.FIRSTNAME , USERINFO.LASTNAME,
USERINFO.EMAIL ,USERINFO.DESCRIPTION,USERINFO.SALARY,USERINFO.JOININGDATE ,USERINFO.STA
TUS FROM USERINFO;
END EXECUTE_QUERY;

The procedure for EXECUTE_QUERY_WITH_FILTER is as follows:

create or replace PROCEDURE EXECUTE_QUERY_WITH_FILTER
(user_cursor OUT TYPES.cursorType, columnName IN VARCHAR2, columnValue IN VARCHAR2
) AS
BEGIN
open user_cursor for 'SELECT USERINFO.USERID, USERINFO.FIRSTNAME , USERINFO.LASTNAME,
USERINFO.EMAIL ,USERINFO.DESCRIPTION,USERINFO.SALARY,USERINFO.JOININGDATE ,USERINFO.STA
TUS FROM USERINFO USERINFO where '|| columnName ||' like '''||columnValue||'''';
END EXECUTE_QUERY_WITH_FILTER;

The procedure for GET_USERROLE is as follows:

create or replace PROCEDURE GET_USERROLE
(user_cursor OUT TYPES.cursorType, userin IN VARCHAR2
) AS
BEGIN
OPEN user_cursor FOR
SELECT ROLEID,FROMDATE,TODATE from USER_ROLE where USERID=userin;
END GET_USERROLE;

The procedure for GET_USERGROUP is as follows:

create or replace PROCEDURE GET_USERGROUP
(user_cursor OUT TYPES.cursorType, userin IN VARCHAR2
) AS
BEGIN
OPEN user_cursor FOR
SELECT GROUPID from USER_GROUP where USERID=userin;
END GET_USERGROUP;

Register the full or filtered reconciliation script as follows:

import org.identityconnectors.framework.common.objects.*;
import java.lang.reflect.*;
import java.lang.String;
import org.identityconnectors.common.security.GuardedString;
import java.text.*;

Appendix A
Sample Stored Procedure and Groovy Script for Full or Filter Reconciliation

A-9

rs = null;
st = null;
try {
 if(filterString != "")
 {
 System.out.println("[Execute Query] Performing Recon with Filter. Filter
is::"+ filterString+" And Filer Params are::"+filterParams);
 String[] filter = filterParams.get(0).split(":");
 st = conn.prepareCall("{call EXECUTE_QUERY_WITH_FILTER(?,?,?)}");
 st.setString(2, filter[0]);
 st.setString(3, filter[1]);
 }
 else
 {
 System.out.println("[Execute Query] Performing Full Recon.");
 st = conn.prepareCall("{call EXECUTE_QUERY(?)}");
}
 st.registerOutParameter(1, oracle.jdbc.driver.OracleTypes.CURSOR);
 st.execute();
 rs = st.getObject(1);
 SimpleDateFormat targetFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss
z");
 DateFormat df = new SimpleDateFormat("yyyy-MM-dd");

 while (rs.next()) {
 cob = new ConnectorObjectBuilder();
 cob.setObjectClass(ObjectClass.ACCOUNT);
 Attribute fname= AttributeBuilder.build(new
String("FIRSTNAME"),rs.getString(2));
 Attribute lname= AttributeBuilder.build(new
String("LASTNAME"),rs.getString(3));
 Attribute uid= AttributeBuilder.build(new
String("__UID__"),rs.getString(1));
 Attribute name= AttributeBuilder.build(new
String("__NAME__"),rs.getString(1));
 Attribute email= AttributeBuilder.build(new
String("EMAIL"),rs.getString(4));
 Attribute salary= AttributeBuilder.build(new
String("SALARY"),rs.getBigDecimal(6));
 Attribute description= AttributeBuilder.build(new
String("DESCRIPTION"),rs.getString(5));
 dbDate = rs.getDate(7);
 joinDateStr = null;
 if(null != dbDate)
 {
 java.util.Date date= df.parse(dbDate.toString());
 joinDateStr = targetFormat.format(date);
 }
 Attribute joindate= AttributeBuilder.build(new
String("JOININGDATE"),joinDateStr);
 Attribute status= AttributeBuilder.build(new
String("STATUS"),rs.getString(8));
 cob.addAttribute(fname);
 cob.addAttribute(lname);
 cob.addAttribute(uid);
 cob.addAttribute(name);
 cob.addAttribute(email);
 cob.addAttribute(salary);
 cob.addAttribute(description);
 cob.addAttribute(joindate);

Appendix A
Sample Stored Procedure and Groovy Script for Full or Filter Reconciliation

A-10

 cob.addAttribute(status);
 roleStmt = conn.prepareCall("{call GET_USERROLE(?,?)}");
 roleStmt.registerOutParameter(1, oracle.jdbc.driver.OracleTypes.CURSOR);
 roleStmt.setString(2, rs.getString(1));
 roleStmt.execute();
 roleResultSet = roleStmt.getObject(1);
 java.util.List<EmbeddedObject> eoList = new ArrayList<EmbeddedObject>();
 while (roleResultSet.next()) {
 Attribute roleId= AttributeBuilder.build(new
String("ROLEID"),roleResultSet.getString(1));
 dbDate = roleResultSet.getDate(2);
 fromDateStr = null;
 if(null != dbDate)
 {
 java.util.Date date= df.parse(dbDate.toString());
 fromDateStr = targetFormat.format(date);
 }
 dbDate = roleResultSet.getDate(2);
 toDateStr = null;
 if(null != dbDate)
 {
 java.util.Date date= df.parse(dbDate.toString());
 toDateStr = targetFormat.format(date);
 }

 Attribute fromdate= AttributeBuilder.build(new
String("FROMDATE"),fromDateStr);
 Attribute todate= AttributeBuilder.build(new String("TODATE"),toDateStr);
 EmbeddedObjectBuilder roleEA = new EmbeddedObjectBuilder();
 roleEA.addAttribute(roleId);
 roleEA.addAttribute(fromdate);
 roleEA.addAttribute(todate);
 roleEA.setObjectClass(new ObjectClass("USER_ROLE"));
 eoList.add(roleEA.build());
 }
 roleResultSet.close();
 roleStmt.close();
 EmbeddedObject[] roleEm = eoList.toArray(new EmbeddedObject[eoList.size()]);
cob.addAttribute(AttributeBuilder.build("USER_ROLE", (Object[]) roleEm));
 groupStmt = conn.prepareCall("{call GET_USERGROUP(?,?)}");
 groupStmt.registerOutParameter(1, oracle.jdbc.driver.OracleTypes.CURSOR);
 groupStmt.setString(2, rs.getString(1));
 groupStmt.execute();
 groupResultSet = groupStmt.getObject(1);
 java.util.List<EmbeddedObject> geoList = new ArrayList<EmbeddedObject>();
 while (groupResultSet.next()) {
 Attribute groupId= AttributeBuilder.build(new
String("GROUPID"),groupResultSet.getString(1));
 EmbeddedObjectBuilder groupEA = new EmbeddedObjectBuilder();
 groupEA.addAttribute(groupId);
 groupEA.setObjectClass(new ObjectClass("USER_GROUP"));
 geoList.add(groupEA.build());
 }
 groupResultSet.close();
 groupStmt.close();
 EmbeddedObject[] groupEm = geoList.toArray(new EmbeddedObject[geoList.size()]);
cob.addAttribute(AttributeBuilder.build("USER_GROUP", (Object[]) groupEm));

 if(!handler.handle(cob.build())) return;
 } } finally {
 if(null != rs)

Appendix A
Sample Stored Procedure and Groovy Script for Full or Filter Reconciliation

A-11

 rs.close();
 if(null != st)
 st.close();
}

A.8 Sample Stored Procedure and Groovy Script for
Incremental Reconciliation

The following is a sample groovy script for performing incremental reconciliation.

The incremental reconciliation procedure is called as follows:

st = conn.prepareCall("{call EXECUTE_QUERY_INCREMENTAL(?,?,?)}");

The get user role procedure is called as follows:

roleStmt = conn.prepareCall("{call GET_USERROLE(?,?)}");

The get user group procedure is called as follows:

groupStmt = conn.prepareCall("{call GET_USERGROUP(?,?)}");

The procedure for EXECUTE_QUERY_INCREMENTAL is as follows:

create or replace PROCEDURE EXECUTE_QUERY_INCREMENTAL
(user_cursor OUT TYPES.cursorType, columnName IN VARCHAR2, columnValue IN
VARCHAR2
) AS
BEGIN
if columnValue is NULL then
open user_cursor for 'SELECT
USERID,FIRSTNAME,LASTNAME,EMAIL,DESCRIPTION,SALARY,JOININGDATE,STATUS,
to_char(LASTUPDATED) FROM USERINFO';
else
open user_cursor for 'SELECT
USERID,FIRSTNAME,LASTNAME,EMAIL,DESCRIPTION,SALARY,JOININGDATE,STATUS,
to_char(LASTUPDATED) FROM USERINFO where '|| columnName ||' > to_timestamp
('''||columnValue||''')';
end if;
END EXECUTE_QUERY_INCREMENTAL;

The procedure for GET_USERROLE is as follows:

create or replace PROCEDURE GET_USERROLE
(user_cursor OUT TYPES.cursorType, userin IN VARCHAR2
) AS
BEGIN
OPEN user_cursor FOR
SELECT ROLEID,FROMDATE,TODATE from USER_ROLE where USERID=userin;
END GET_USERROLE;

The procedure for GET_USERGROUP is as follows:

create or replace PROCEDURE GET_USERGROUP
(user_cursor OUT TYPES.cursorType, userin IN VARCHAR2
) AS
BEGIN
OPEN user_cursor FOR
SELECT GROUPID from USER_GROUP where USERID=userin;
END GET_USERGROUP;

Appendix A
Sample Stored Procedure and Groovy Script for Incremental Reconciliation

A-12

Register the incremental reconciliation script as follows:

import org.identityconnectors.framework.common.objects.*;
import java.lang.reflect.*;
import org.identityconnectors.common.security.GuardedString;
import java.text.*;
import java.lang.String;
rs = null;
st = null;
try {
System.out.println("[Sync] Performing Incremental Recon.");
System.out.println("[Sync] Sync Attribute::"+syncattribute);
System.out.println("[Sync] Sync token:: "+synctoken);
st = conn.prepareCall("{call EXECUTE_QUERY_INCREMENTAL(?,?,?)}");
st.setString(2, syncattribute);
st.setString(3, synctoken!=null? synctoken.getValue():null);
st.registerOutParameter(1, oracle.jdbc.driver.OracleTypes.CURSOR);
st.execute();
rs = st.getObject(1);
SimpleDateFormat targetFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss z");
DateFormat df = new SimpleDateFormat("yyyy-MM-dd");
while (rs.next()) {
 cob = new ConnectorObjectBuilder();
 cob.setObjectClass(ObjectClass.ACCOUNT);
 Attribute fname= AttributeBuilder.build(new
String("FIRSTNAME"),rs.getString(2));
 Attribute lname= AttributeBuilder.build(new
String("LASTNAME"),rs.getString(3));
 Attribute uid= AttributeBuilder.build(new String("__UID__"),rs.getString(1));
 Attribute name= AttributeBuilder.build(new String("__NAME__"),rs.getString(1));
 Attribute email= AttributeBuilder.build(new String("EMAIL"),rs.getString(4));
 Attribute salary= AttributeBuilder.build(new
String("SALARY"),rs.getBigDecimal(6));
 Attribute description= AttributeBuilder.build(new
String("DESCRIPTION"),rs.getString(5));
 dbDate = rs.getDate(7);
 joinDateStr = null;
 if(null != dbDate)
 {
 java.util.Date date= df.parse(dbDate.toString());
 joinDateStr = targetFormat.format(date);
 }
 Attribute joindate= AttributeBuilder.build(new
String("JOININGDATE"),joinDateStr);
 Attribute status= AttributeBuilder.build(new String("STATUS"),rs.getString(8));
 cob.addAttribute(fname);
 cob.addAttribute(lname);
 cob.addAttribute(uid);
 cob.addAttribute(name);
 cob.addAttribute(email);
 cob.addAttribute(salary);
 cob.addAttribute(description);
 cob.addAttribute(joindate);
 cob.addAttribute(status);
 roleStmt = conn.prepareCall("{call GET_USERROLE(?,?)}");
 roleStmt.registerOutParameter(1, oracle.jdbc.driver.OracleTypes.CURSOR);
 roleStmt.setString(2, rs.getString(1));
 roleStmt.execute();
 roleResultSet = roleStmt.getObject(1);
 java.util.List<EmbeddedObject> eoList = new ArrayList<EmbeddedObject>();
 while (roleResultSet.next()) {

Appendix A
Sample Stored Procedure and Groovy Script for Incremental Reconciliation

A-13

 Attribute roleId= AttributeBuilder.build(new
String("ROLEID"),roleResultSet.getString(1));
 dbDate = roleResultSet.getDate(2);
 fromDateStr = null;
 if(null != dbDate)
 {
 java.util.Date date= df.parse(dbDate.toString());
 fromDateStr = targetFormat.format(date);
 }
 dbDate = roleResultSet.getDate(2);
 toDateStr = null;
 if(null != dbDate)
 {
 java.util.Date date= df.parse(dbDate.toString());
 toDateStr = targetFormat.format(date);
 }
 Attribute fromdate= AttributeBuilder.build(new
String("FROMDATE"),fromDateStr);
 Attribute todate= AttributeBuilder.build(new
String("TODATE"),toDateStr);
 EmbeddedObjectBuilder roleEA = new EmbeddedObjectBuilder();
 roleEA.addAttribute(roleId);
 roleEA.addAttribute(fromdate);
 roleEA.addAttribute(todate);
 roleEA.setObjectClass(new ObjectClass("USER_ROLE"));
 eoList.add(roleEA.build());
 }
 roleResultSet.close();
 roleStmt.close();
 EmbeddedObject[] roleEm = eoList.toArray(new
EmbeddedObject[eoList.size()]);
cob.addAttribute(AttributeBuilder.build("USER_ROLE", (Object[]) roleEm));
 groupStmt = conn.prepareCall("{call GET_USERGROUP(?,?)}");
 groupStmt.registerOutParameter(1, oracle.jdbc.driver.OracleTypes.CURSOR);
 groupStmt.setString(2, rs.getString(1));
 groupStmt.execute();
 groupResultSet = groupStmt.getObject(1);
 java.util.List<EmbeddedObject> geoList = new ArrayList<EmbeddedObject>();
 while (groupResultSet.next()) {
 Attribute groupId= AttributeBuilder.build(new
String("GROUPID"),groupResultSet.getString(1));
 EmbeddedObjectBuilder groupEA = new EmbeddedObjectBuilder();
 groupEA.addAttribute(groupId);
 groupEA.setObjectClass(new ObjectClass("USER_GROUP"));
 geoList.add(groupEA.build());
 }
 groupResultSet.close();
 groupStmt.close();
 EmbeddedObject[] groupEm = geoList.toArray(new
EmbeddedObject[geoList.size()]);
cob.addAttribute(AttributeBuilder.build("USER_GROUP", (Object[]) groupEm));
 Attribute timestamp= AttributeBuilder.build(new
String("LASTUPDATED"),rs.getString(9));
 token = AttributeUtil.getSingleValue(timestamp);
 SyncToken syncToken = new SyncToken(token);
 SyncDeltaBuilder bld = new SyncDeltaBuilder();
 bld.setObject(cob.build());
 bld.setToken(syncToken);
 bld.setDeltaType(SyncDeltaType.CREATE_OR_UPDATE);
 handler.handle(bld.build());
 } } finally {

Appendix A
Sample Stored Procedure and Groovy Script for Incremental Reconciliation

A-14

 if(null != rs)
 rs.close();
 if(null != st)
 st.close();
}

A.9 Tables Used for Sample Groovy and Configuration Scripts
The tables that are used by sample groovy scripts and configuration scrips are listed below:

• Lookup tables for roles and groups:

create table ROLES(
roleid varchar2(50),
rolename varchar2(50));

create table GROUPS(
groupid varchar2(50),
groupname varchar2(50));

• Tables for user accounts:

– Parent Table:

create table USERINFO(
UserId varchar2(50),
FirstName varchar2(50),
LastName varchar2(50),
email varchar2(50),
Description varchar2(50),
Salary NUMBER,
JoiningDate date,
status varchar2(50),
lastupdated timestamp,
PRIMARY KEY (UserId));

– Child Table:

create table USER_ROLE(
userid varchar2(50),
roleid varchar2(50),
fromdate date,
todate date);

create table USER_GROUP(
userid varchar2(50),
groupid varchar2(50));

ALTER TABLE USER_GROUP ADD CONSTRAINT GROUP_PK PRIMARY KEY ("USERID",
"GROUPID") ENABLE;

ALTER TABLE USER_ROLE ADD CONSTRAINT ROLE_PK PRIMARY KEY ("USERID", "ROLEID")
ENABLE;

Appendix A
Tables Used for Sample Groovy and Configuration Scripts

A-15

B
Performing Common Connector Operations

This appendix summarizes the procedure for some of the common operations that can be
performed by using this connector. This appendix discusses the following topics:

• Running Incremental Trusted Source Reconciliation

• Running Incremental Target Resource Reconciliation

• Configuring and Performing Lookup Field Synchronization

• Provisioning Child Data

B.1 Running Incremental Trusted Source Reconciliation
Perform the following tasks for an incremental trusted source reconciliation run:

1. The target system (database) must have users.

2. Create the DBAT application. See Creating an Application By Using the Connector for
detailed information about creating an application.

Note:

While creating the application, make sure to specify a value for the
changeLogColumn property.

3. Run the RESOURCE Trusted Resource User Reconciliation scheduled job to perform a
full trusted source reconciliation run to fetch all user records in the target system to
Oracle Identity Governance. See Scheduled Jobs for Reconciliation of User Records for
more information about this scheduled job.

4. Perform some changes to user records in your target system.

5. Run the RESOURCETrusted Incremental Resource User Reconciliation scheduled job to
perform an incremental reconciliation run to fetch only the user records that were
modified in the target system since the last reconciliation run. See Scheduled Jobs for
Incremental Reconciliation for more information about this scheduled job.

B.2 Running Incremental Target Resource Reconciliation
Perform the following tasks for an incremental target resource reconciliation run:

1. The target system (database) must have users.

2. Create the DBAT application. See Creating an Application By Using the Connector for
detailed information about creating an application.

B-1

Note:

While creating the application, make sure to specify a value for the
changeLogColumn property.

3. Run the RESOURCE Target Resource User Reconciliation scheduled job to
perform a full target resource reconciliation run to fetch all user records in the
target system to Oracle Identity Governance.

See Scheduled Jobs for Reconciliation of User Records for more information
about the scheduled job.

4. Perform some changes to user records in your target system.

5. Run the RESOURCE Target Incremental Resource User Reconciliation scheduled
job to perform an incremental reconciliation run to fetch only the user records that
were modified in the target system since the last reconciliation run. See Scheduled
Jobs for Incremental Reconciliation for more information about this scheduled job.

B.3 Configuring and Performing Lookup Field
Synchronization

This section describes the procedure to configure and perform lookup field
synchronization to use lookup definitions as the input source for some of the fields on
the process form during provisioning operations. The following are the tasks to achieve
this:

1. Create the DBAT application. See Creating an Application By Using the Connector
for detailed information about creating an application.

2. Ensure that you have empty lookup definitions such as
Lookup.RESOURCE.Example to store values from child tables in your target
system.

3. Update the form and lookup definition to include information that specifies the field
is a lookup field.

4. Run the RESOURCETarget Lookup Reconciliation scheduled job to perform
lookup field synchronization. See Scheduled Job for Lookup Field Synchronization
for more information about this scheduled job.

B.4 Provisioning Child Data
To perform provisioning operations on child data:

1. Create the DBAT application. See Creating an Application By Using the Connector
for detailed information about creating an application.

2. To provision child data, see Performing Provisioning Operations for more
information.

Appendix B
Configuring and Performing Lookup Field Synchronization

B-2

C
Files and Directories of the DBAT Connector

This appendix lists the tables that describe the files and directories corresponding to the
DBAT connector. It contains the following topics:

• Files and Directories on the Installation Media

• Files and Directories in the Generated Connector Package

C.1 Files and Directories on the Installation Media
Table C-1 describes the files and directories on the installation media.

Table C-1 Files and Directories on the Installation Media

Files in the Installation
Media Directory

Description

org.identityconnectors.databas
etable-12.3.0.jar

This JAR file is the ICF connector bundle.

generator/dbat-
generator-12.2.1.3.0.zip

This zip file contains the DBAT generator. The DBAT generator
discovers the target system schema and generates the connector
package. The Connector Installer uses the XML file in this package to
create connector components that are used for connector operations.

The directory structure of the connector package is described in
Table C-3.

Files in the resources directory Each of these resource bundles contains language-specific
information that is used by the connector. During connector
deployment, this file is copied to the Oracle Identity Governance
database.

Note: A resource bundle is a file containing localized versions of the
text strings that include GUI element labels and messages.

Table C-2 describes the files and directories in the dbat-generator-12.2.1.3.0.zip file.

Table C-2 Files and Directories in the dbat-generator-12.2.1.3.0.zip File

Files and Directories in the dbat-
generator-12.2.1.3.0.zip File

Description

bin/classpath.cmd

bin/classpath-append.cmd

These files contain the commands that add the
JAR files (located in the lib directory) to the
classpath on Microsoft Windows.

bin/DBATGenerator.cmd

bin/DBATGenerator.sh

This file contains commands to run the DBAT
generator:Note that the .cmd file is the Microsoft
Windows version of the DBAT Generator. Similarly,
the .sh file is the UNIX version of the DBAT
Generator.

C-1

Table C-2 (Cont.) Files and Directories in the dbat-generator-12.2.1.3.0.zip File

Files and Directories in the dbat-
generator-12.2.1.3.0.zip File

Description

bin/logging.properties This file contains the default logging configurations
of the DBAT generator.

lib/connector-framework-internal This JAR files contains class files that implement
ICF.

lib/connector-framework This JAR file contains class files that define the
ICF Application Programming Interface (API). This
API is used communicate between Oracle Identity
Governance and this connector.

lib/dbat-generator-oim-integration This JAR file contains the class files of the DBAT
generator.

lib/groovy-all This JAR file contains the groovy libraries required
for running the DBAT generator.

lib/org.identityconnectors.databasetable-12.3.0.jar This JAR file is the Identity Connector bundle.
During connector installation, this file is copied to
the Oracle Identity Governance database.

resources/DBATConfiguration.groovy This file contains properties that store basic
information about the target system schema,
which is used for configuring your target system
either as a trusted source or target resource. In
addition, it stores information about the manner in
which the connector must connect to the target
system.

xml/DBAT-auth-template.xml This file contains definitions for the connector
objects required for creating an authoritative
application. It includes certain details required to
connect Oracle Identity Governance with the
target system. It also includes configuration details
specific to your target system, attribute mappings,
correlation rules, and reconciliation jobs.

xml/DBAT-target-template.xml This file contains definitions for the connector
objects required for creating a target application. It
includes certain details required to connect Oracle
Identity Governance with the target system. It also
includes configuration details specific to your
target system, attribute mappings, correlation
rules, and reconciliation jobs.

C.2 Files and Directories in the Generated Connector
Package

Table C-3 describes the files and directories in the generated connector package.

Appendix C
Files and Directories in the Generated Connector Package

C-2

Table C-3 Files and Directories in the Generated Connector Package

File in the Connector
Package

Description

bundle/
org.identityconnectors.databas
etable-12.3.0.jar

This JAR file contains the connector bundle.

configuration/IT_RES_DEF-
CI.xml

This XML file contains configuration information that is used by the
Connector Installer during the connector installation process.

dataset If you have entered values for the provisionDatasetFile,
modifyResourceDatasetFile, or requestDMDatasetsFile entries of the
groovy file, then the dataset directory contains the Dataset.xml file.
Otherwise this directory is empty.

The Dataset.xml file contains dataset-related definitions for the create
and modify user provisioning operations. This file is used if you want
to enable request-based provisioning.

resources/dbat-
generator.properties

This property file contains locale-specific properties. You can use this
file as a template to add or update locale-related properties.

xml/IT_RES_DEF-
ConnectorConfig.xml file

This XML file contains definitions for connector components such as
IT resource, lookup definitions, scheduled tasks, process forms, and
resource objects.

This file is also referred to as the connector configuration file.

Appendix C
Files and Directories in the Generated Connector Package

C-3

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	 What's New in This Guide
	Software Updates
	Documentation-Specific Updates

	1 About the Connector
	1.1 Introduction to the Database Application Tables Connector
	1.2 Understanding Target System Discovery in the DBAT Connector
	1.3 Certified Components
	1.4 Usage Recommendation
	1.5 Certified Languages
	1.6 Supported Data Types
	1.7 Connector Architecture
	1.8 Supported Connector Features Matrix
	1.9 Features of the Connector
	1.9.1 Full and Incremental Reconciliation
	1.9.2 Limited (Filtered) Reconciliation
	1.9.3 Support for Both Target Resource and Trusted Source Reconciliation
	1.9.4 Support for Reconciliation of Deleted User Records
	1.9.5 Transformation and Validation of Account Data
	1.9.6 Support for Adding User-Defined Fields for Reconciliation and Provisioning
	1.9.7 Support for Configuring the Connector for Stored Procedures

	2 Creating an Application By Using the Database Application Tables Connector
	2.1 Process Flow for Creating an Application By Using the Connector
	2.2 Prerequisites for Creating an Application By Using the Connector
	2.2.1 Downloading the Connector Installation Package
	2.2.2 Creating a Target System User Account for Database Application Tables Connector Operations

	2.3 Creating an Application By Using the Connector

	3 Configuring the Database Application Tables Connector
	3.1 Basic Configuration Parameters
	3.2 Advanced Settings Parameters
	3.3 Attribute Mappings for an Oracle Database Target Application
	3.4 Rules, Situations, and Responses
	3.4.1 Rules, Situations, and Responses for a Target Application
	3.4.1.1 Predefined Identity Correlation Rules for a Target Application
	3.4.1.2 Predefined Situations and Responses for a Target Application

	3.4.2 Rules, Situations, and Responses for an Authoritative Application
	3.4.2.1 Predefined Identity Correlation Rules for an Authoritative Application
	3.4.2.2 Predefined Situations and Responses for an Authoritative Application

	3.5 Reconciliation Scheduled Jobs
	3.5.1 Scheduled Job for Lookup Field Synchronization
	3.5.2 Attributes of the Scheduled Jobs
	3.5.2.1 Scheduled Jobs for Reconciliation of User Records
	3.5.2.2 Scheduled Jobs for Reconciliation of Deleted Users Records
	3.5.2.3 Scheduled Jobs for Incremental Reconciliation

	4 Performing the Postconfiguration Tasks
	4.1 Configuring the Connector for a Target System with an Autoincrement Primary Key
	4.2 Configuring Oracle Identity Governance
	4.2.1 Creating and Activating a Sandbox
	4.2.2 Creating a New UI Form
	4.2.3 Publishing a Sandbox
	4.2.4 Updating an Existing Application Instance with a New Form

	4.3 Harvesting Entitlements and Sync Catalog
	4.4 Managing Logging for Oracle Identity Governance
	4.4.1 Understanding Log Levels
	4.4.2 Enabling Logging

	4.5 Configuring the IT Resource for the Connector Server
	4.6 Localizing Field Labels in UI Forms
	4.7 Configuring Secure Communication Between the Target System and Oracle Identity Governance
	4.7.1 Configuring Secure Communication Between IBM DB2 and Oracle Identity Governance
	4.7.2 Configuring Secure Communication Between Microsoft SQL Server and Oracle Identity Governance
	4.7.3 Configuring Secure Communication Between MySQL and Oracle Identity Governance
	4.7.4 Configuring Secure Communication Between Oracle Database and Oracle Identity Governance
	4.7.4.1 Configuring Data Encryption and Integrity in Oracle Database
	4.7.4.2 Configuring SSL Communication in Oracle Database

	4.8 Configuring Secure Communication Between the Connector Server and Oracle Identity Governance
	4.9 Configuring the Connector for Stored Procedures and Groovy Scripts
	4.9.1 Configuring the Connector for Custom Stored Procedures
	4.9.2 Groovy Script Arguments
	4.9.3 Sample Groovy Script
	4.9.4 Entries Specific to Groovy Script Configuration

	4.10 Configuring the Datasource and JNDI Properties
	4.11 Configuring the Datasource and JNDI Properties for SAP HANA DB

	5 Using the Database Application Tables Connector
	5.1 Configuring Reconciliation
	5.1.1 Performing Full Reconciliation and Incremental Reconciliation
	5.1.2 Performing Limited Reconciliation
	5.1.2.1 Specifying a Value for the Filter Attribute
	5.1.2.2 Specifying a Value for the customizedQuery Parameter

	5.2 Configuring Provisioning
	5.2.1 Guidelines on Performing Provisioning Operations
	5.2.2 Performing Provisioning Operations

	5.3 Configuring Reconciliation Jobs
	5.4 Uninstalling the Connector

	6 Extending the Functionality of the Database Application Tables Connector
	6.1 Configuring Transformation and Validation of Data
	6.2 Configuring Action Scripts
	6.3 Configuring the Connector for Multiple Installations of the Target System

	7 Defining and Upgrading the DBAT Connector
	7.1 Defining the Connector
	7.2 Upgrading the Connector
	7.2.1 Upgrade Steps
	7.2.2 Postupgrade Steps

	8 Known Issues and Workarounds
	8.1 The Custom Schema Feature of IBM DB2 is not Supported
	8.2 Unable to Generate CI Build When DBATConfiguration.groovy File is Configured Using Data Source and JNDI Properties
	8.3 Connector Operations Using Connector Server Fail

	A Sample Stored Procedures and Groovy Scripts
	A.1 Sample Groovy Script for a Create Provisioning Operation
	A.2 Sample Groovy Script for an Update Provisioning Operation
	A.3 Sample Groovy Script for a Delete Provisioning Operation
	A.4 Sample Groovy Script for an Add Child Data Provisioning Operation
	A.5 Sample Stored Procedure and Groovy Script for a Delete Child Data Provisioning Operation
	A.6 Sample Stored Procedure and Groovy Script for Lookup Field Synchronization
	A.7 Sample Stored Procedure and Groovy Script for Full or Filter Reconciliation
	A.8 Sample Stored Procedure and Groovy Script for Incremental Reconciliation
	A.9 Tables Used for Sample Groovy and Configuration Scripts

	B Performing Common Connector Operations
	B.1 Running Incremental Trusted Source Reconciliation
	B.2 Running Incremental Target Resource Reconciliation
	B.3 Configuring and Performing Lookup Field Synchronization
	B.4 Provisioning Child Data

	C Files and Directories of the DBAT Connector
	C.1 Files and Directories on the Installation Media
	C.2 Files and Directories in the Generated Connector Package

