
Oracle® Fusion Middleware
Developing Plug-Ins for Oracle Unified
Directory

12c (12.2.1.4.0)
E95877-03
September 2019

Oracle Fusion Middleware Developing Plug-Ins for Oracle Unified Directory, 12c (12.2.1.4.0)

E95877-03

Copyright © 2019, Oracle and/or its affiliates.

Primary Author: Devanshi Mohan

Contributing Authors: Lawallambok Wahlang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Related Documents vi

Conventions vi

 What's New in This Guide

New Features in Release 12c (12.2.1.4.0) viii

New Features in Release 12c (12.2.1.3.0) viii

1 Understanding Basic Oracle Unified Directory Plug-in Concepts

1.1 Determining Whether You Should Implement an OUD Plug-In 1-1

1.2 OUD Plug-Ins and OUD Workflows 1-2

1.3 OUD Plug-In Implementation Points 1-2

1.4 About Oracle Unified Directory Plug-Ins 1-3

2 Building and Deploying an OUD Plug-In

2.1 Before You Begin Deploying OUD Plug-in 2-1

2.2 Deploying a Plug-In to an OUD Instance 2-1

3 Using the OUD Plug-In API Reference

3.1 Overview of OUD Plug-In Configuration 3-1

3.1.1 About Storing OUD Plug-In Configuration 3-1

3.1.1.1 Example for Adding Plug-in Properties 3-2

3.1.1.2 Example for Configuring a Custom Property 3-2

3.1.2 Retrieving OUD Plug-In Configuration 3-2

3.1.3 Creating an Automated Parser for Plug-In Properties 3-3

3.1.4 Making Dynamic OUD Plug-In Configuration Changes 3-4

3.1.5 Validating Plug-In Configuration 3-4

iii

3.2 Request Handling with OUD Plug-in API 3-5

3.2.1 Overview of LDAP Request Handling with OUD Plug-in API 3-5

3.2.2 Modifying OUD Search Requests with Plug-in API 3-6

3.2.3 Modifying Search Requests with Wrapper Object 3-8

3.2.4 Forwarding Requests with OUD Plug-in API 3-8

3.2.5 Returning Results with OUD Plug-in API 3-9

3.3 Handling Responses in OUD Plug-in 3-10

3.3.1 Example for Intercepting bind failure 3-10

3.3.2 Example for Intercepting Search Entries and Final Search Results 3-11

3.4 About Results Handling in OUD Plug-in 3-12

3.4.1 Ignoring Search Results in OUD Plug-in 3-13

3.4.2 Intercepting Search Failures in OUD Plug-in 3-13

3.4.2.1 Logging the Failures of Search Requests 3-14

3.4.3 Counting Entries Returned by Search Requests 3-16

3.4.3.1 Logging the Number of Returned Entries of Search Requests 3-17

3.5 Configuring Filters in Search Requests 3-18

3.5.1 About Filter Processing in Search Requests 3-18

3.5.2 Example of Implementation of the FilterVisitor 3-18

3.5.3 Example for Verifying and Logging the Presence of objectclass=* in a Search
Request 3-21

3.5.4 Verifying and Logging Presence of objectclass=* in a Search Request 3-21

3.6 Configuring Internal Operations in OUD Plug-in API 3-22

3.6.1 About Internal LDAP Requests 3-23

3.6.1.1 Creating Internal LDAP Requests 3-23

3.6.2 Understanding OUD Plug-in API Internal Requests 3-23

3.6.2.1 About Mode 1 of the OUD Plug-in API 3-24

3.6.2.2 Implementing Mode 1 of the OUD Plug-in API 3-24

3.6.2.3 About Mode 2 of the OUD Plug-in API 3-25

3.6.2.4 Implementing Mode 2 of the OUD Plug-in API 3-25

3.7 About OUD Plug-in Exceptions 3-26

3.8 Logging and Debugging Exceptions in the OUD Plug-in API 3-27

3.8.1 About Logging and Debugging Exceptions in the OUD Plug-in API 3-27

3.8.2 Debugging the Plug-In When Servicing a Client Request 3-27

3.8.3 Debugging Plug-In Initialization 3-27

4 Building and Deploying User-defined Password Storage Scheme in
Oracle Unified Directory

4.1 Implementing User-defined Password Storage Scheme 4-1

4.1.1 Important Methods to be Implemented 4-2

4.1.2 Writing into OUD Server Logs 4-3

iv

4.2 Building the User-defined Password Storage Scheme Plugin 4-3

4.3 Configuring and Managing User-defined Password Storage Scheme 4-5

Index

v

Preface

The Oracle Fusion Middleware Developing Plug-Ins for Oracle Unified Directory
describes how to use the Oracle Unified Directory Plug-In API to programmatically
extend OUD functionality.

Audience
This document is intended for software developers who are proficient in using Oracle
Unified Directory.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Unified Directory 12c
Release 12.2.1.3 documentation set:

• Release Notes for Oracle Identity Management

• Oracle Fusion Middleware Installation Guide for Oracle Unified Directory

• Oracle Fusion Middleware Oracle Unified Directory Configuration Reference

• Oracle Fusion Middleware Administrator's Guide for Oracle Unified Directory

• Oracle Fusion Middleware Java API Reference for Oracle Unified Directory

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vii

What's New in This Guide

The following topics introduce the new and changed features of Oracle Fusion
Middleware Developing Plug-ins for Unified Directory, and other significant changes
that are described in this guide. This document is the new edition of the formerly titled
Oracle Unified Directory Developer's Guide.

New Features in Release 12c (12.2.1.4.0)
This revision contains no new features. Minor updates were made throughout the
guide.

New Features in Release 12c (12.2.1.3.0)
This revision contains no new features. Minor updates were made throughout the
guide.

What's New in This Guide

viii

1
Understanding Basic Oracle Unified Directory
Plug-in Concepts

You can decide on the benefits and cost of having a Oracle Unified Directory plug-in
implementation and OUD workflows. OUD plug-ins are used to write LDAP error codes, on-
demand password migration and authentication.
Understanding basic Oracle Unified Directory plug-in is explained in the following sections:

• Determining Whether You Should Implement an OUD Plug-In

• OUD Plug-Ins and OUD Workflows

• OUD Plug-In Implementation Points

• About Oracle Unified Directory Plug-Ins

1.1 Determining Whether You Should Implement an OUD Plug-
In

The Oracle Unified Directory (OUD) plug-in API provides the means to extend existing
Directory Server functionality. You may want to develop a plug-in if you have a very specific
directory server requirement that OUD cannot address straight out of the box.

For example, OUD plug-ins have been used successfully to achieve the following:

• LDAP error code and error message writing

• On-demand password migration

• Authentication using multiple password types

• Operation routing based on criteria in user entry

Some of these plug-ins have played a role in helping Oracle customers to seamlessly migrate
to OUD. These are just examples of how Directory Server functionality can be enhanced by
customizing LDAP operations and programatically manipulating results.

As you analyze the benefits and costs of developing your own OUD plug-in, consider the
following:

• To minimize potential points of failure in your directory deployment, you should develop
your own OUD plug-in only when no existing OUD functionality, nor any combination of
OUD features, can achieve the results you require.

• When upgrading to a later release, you will have to determine whether your custom plug-
in is still relevant in light of new OUD functionality that may evolve over time. Moreover,
you may have to update your plug-in to ensure backward or forward compatibility with
later releases of OUD.

1-1

1.2 OUD Plug-Ins and OUD Workflows
An OUD plug-in can be seen as a new type of OUD workflow element. Workflows and
workflow elements are fundamental building blocks within the OUD directory
architecture.

See Understanding Oracle Unified Directory Concepts and Architecture in Oracle
Fusion Middleware Administrator's Guide for Oracle Unified Directory.

An OUD plug-in can be inserted into any OUD workflow element tree. The following
are typical tasks that an OUD plug-in can perform within a workflow element tree:

• Intercept LDAP requests from the previous workflow elements in the chain, and
keep the option to change or extend them.

• Intercept LDAP entries and results from next workflow element in the chain.

• Stack and leverage other workflow elements delivered out of the box with OUD.

• Invoke a plug-in upon receipt of LDAP requests, and after the routing decision is
done by the workflow.

The following figure illustrates a typical OUD workflow containing a Naming Context
workflow and a DN Renaming workflow element. An OUD plug-in is inserted
downstream from these building blocks, and upstream from a remote backend
workflow element.

Once you have developed a number of OUD plug-ins, you can form a plug-in chain
within an OUD workflow.

1.3 OUD Plug-In Implementation Points
OUD plug-ins interact with the OUD core server through set of implementation points
such as managing and LDAP operation handling.

Following are the sets of implementation points:

• Administrative plug-in management: startup, shutdown, status, and configuration
changes

• LDAP operation handling

• The context that is the main interface between the plug-in and the core directory
server as it is used to log requests and to create instances of objects manipulated
by the plug-in API

The implementation points for managing the plug-in are defined in the
oracle.oud.plugin.ManagedPlugin interface:

• The initializePlugin() method is invoked when the plug-in is initialized at
server startup time.

Chapter 1
OUD Plug-Ins and OUD Workflows

1-2

• The finalizePlugin() method is invoked when the plug-in is stopped.

• The handleConfigurationChange() method is invoked whenever the plug-in
configuration is changed. See Making Dynamic OUD Plug-In Configuration Changes.

Implementation points for intercepting LDAP operations are defined in the
oracle.oud.plugin.RequestManager interface. See Configuring Internal Operations in OUD
Plug-in API .

1.4 About Oracle Unified Directory Plug-Ins
An Oracle Unified Directory plug-in is an implementation of
oracle.oud.plugin.ManagedPlugin which is formed from the following three Java interfaces:
oracle.oud.RequestManager, oracle.oud.plugin.Plugin, and
oracle.oud.plugin.ManagedPlugin.

Java Interface
Description

oracle.oud.RequestManager
Defines a method for each type of operation defined by the LDAP protocol. The method
named handleAdd is called each time the plug-in is involved in an LDAP add operation.
Similar methods exist for bind, compare, delete, modify, modifyDN, and search operations.
Exceptions exist for the abandon and unbind operations; these two types of request cannot
be intercepted.

oracle.oud.plugin.Plugin
Associates a name to the plug-in that is unique per instance. Identifying plug-ins is helpful
when a plug-in routes the received requests to a particular plug-in among multiple plug-ins.

oracle.oud.plugin.ManagedPlugin
Defines the life cycle of the plug-in. The life cycle begins with the initialization of the plug-in
when the server starts or the plug-in is created. Once initialized, a plug-in is able to receive
configuration changes. When the server is shut down or the plug-in is removed from the
server configuration, the plug-in is finalized.

An OUD plug-in can be followed by one or more plug-ins in a process chain. The most
common case is an OUD plug-in that is followed by only one plug-in. This type of plug-in
receives requests, may perform extra actions such as logging or modifying the received
requests, and then forwards the requests to the next plug-in. When the LDAP operation
returns a response, similar actions can be performed.

A plug-in that has no subsequent plug-ins in the process chain is responsible for storing the
entries manipulated by the LDAP requests. The storage can be local or remote. In both
cases, the plug-in is responsible for assigning the result of the received LDAP requests.

A plug-in that is followed by multiple plug-ins in the process chain is the most difficult case.
This type of plug-in is used for only complex architectures that include distribution or load
balancing. For example, this type of plug-in might be used for routing bind requests on
dedicated plug-ins, and routing other LDAP operations on other plug-ins.

The OUD plug-in API provides a default implementation of the
oracle.oud.plugin.ManagedPlugin Java interface that is the abstract class
oracle.oud.plugin.AbstractPlugin. This class provides a default implementation of a plug-
in that performs no action apart from forwarding the received requests to its next plug-in the
chain of processing. The default implementation assumes that the plug-in has at least one
subsequent plug-in. But you can overwrite appropriate methods to change the default

Chapter 1
About Oracle Unified Directory Plug-Ins

1-3

behavior if necessary.You should make your plug-in implementation derive from the
oracle.oud.plugin.AbstractPlugin class. This will optimize backward compatibility
in case the implemented Java interface is changed.

Chapter 1
About Oracle Unified Directory Plug-Ins

1-4

2
Building and Deploying an OUD Plug-In

You can build and deploy an Oracle Unified Directory (OUD) plug-in that does not perform
any action.
The following topics explain the building and deploying an OUD Plug-In:

• Before You Begin Deploying OUD Plug-in

• Deploying a Plug-In to an OUD Instance

2.1 Before You Begin Deploying OUD Plug-in
You need to prepare your development environment such as installing OUD and JDK, before
you deploy an OUD plug-in.

Complete the following tasks:

• Install Oracle Unified Directory and create a new instance with fifty generated entries.

• Install the Java Development Kit with the exact same version of the Java Runtime
Environment running in the Oracle Unified Directory instance.

• Create a new project for the development of your plug-in using your favorite integrated
development environment (IDE), and reference the JAR file oud-sdk.jar that is located
in install-dir/oud/lib/oud-sdk.jar

2.2 Deploying a Plug-In to an OUD Instance
The Oracle Unified Directory (OUD) plug-in API provides the means to extend existing
Directory Server functionality.

Perform the following steps to deploy a plug-in to an OUD instance:

1. Create a new class that extends the class oracle.oud.plugin.AbstractPlugin. This
class will not perform any action but will be part of the processing. For example:

package oracle.oud.example;
import oracle.oud.plugin.AbstractPlugin;
/**
* A plug-in that does not perform any action.
*/
public class ExamplePlugin
extends AbstractPlugin
{

}

2. Build your plug-in project.

The content of the generated plug-in JAR file should contain the following files:

• META-INF/MANIFEST.MF

• oracle/oud/example/ExamplePlugin.class

2-1

3. To ensure that your plug-in will continue to work with subsequent releases of the
OUD plug-in API, you can embed a specific versioning file in the produced JAR
file. The name of the file to embed is plugin.properties.

Make the following modifications to the plugin.properties file:

a. To define a target version for all plug-ins contained in the JAR file, add the
following:

plugin.version=11.1.2.1.0

b. To define a target version only for the ExamplePlugin plug-in, specify the
following:

plugin.ExamplePlugin.version=11.1.2.1.0

If the plugin.properties file is missing, then the behavior of the current
implementation of the plug-in API applies.

4. Restart the Oracle Unified Directory instance for the JAR file changes to take
effect.

a. Stop the OUD instance.

UNIX, Linux

$ cd instance-directory/OUD/bin
$ stop-ds

Windows

C:\> cd instance-directory\OUD\bat
C:\> stop-ds

b. Copy the plug-in JAR file into the lib directory.

UNIX, Linux

cp plugin.jar lib

Windows

C:\> copy plugin.jar lib

c. Restart OUD instance.

UNIX, Linux

start-ds

Windows

C:\> start-ds

5. Modify the server configuration so that your plug-in is part of the server
processing.

Use the dsconfig command to declare a plug-in as a workflow element in an OUD
server. You must specify the following information:

• A plug-in name (ExamplePlugin in the example) that uniquely identifies this
plug-in instance

• The name of the Java class that implements the
oracle.oud.plugin.ManagedPlugin Java interface

• Whether the plug-in is enabled or disabled

Chapter 2
Deploying a Plug-In to an OUD Instance

2-2

• The name of the workflow element that is behind the plug-in to be inserted.

A plug-in may have 0, 1, or more next workflow elements depending on the use case
it implements. For example:

dsconfig create-workflow-element \
 --set enabled:true \
 --set plugin-class:oracle.oud.example.ExamplePlugin \
 --set next-workflow-elements:userRoot \
 --type plugin \
 --element-name ExamplePlugin

After creating the plug-in, insert a plug-in workflow element in a workflow. The plug-in
workflow element should appear either as the next element of a workflow, or plug-in class as
the next element of an existing workflow element. The following command changes the
configuration of the workflow userRoot0 to forward LDAP requests to the previously added
example plug-in:

dsconfig set-workflow-prop \
 --workflow-name userRoot0 \
 --set workflow-element:ExamplePlugin

It is possible to create several instances of the same plug-in implementation as long each
instance has a unique name.

Chapter 2
Deploying a Plug-In to an OUD Instance

2-3

3
Using the OUD Plug-In API Reference

OUD Plug-In API is used to handle requests and responses, results and configuring filters in
search requests.

See the Java API Reference for Oracle Unified Directory for detailed information about
Oracle Unified Directory (OUD) Java classes, methods, and related syntax and usage.

This chapter provides general information about using the OUD Plug-In API.

• Overview of OUD Plug-In Configuration

• Request Handling with OUD Plug-in API

• Handling Responses in OUD Plug-in

• About Results Handling in OUD Plug-in

• Configuring Filters in Search Requests

• Configuring Internal Operations in OUD Plug-in API

• About OUD Plug-in Exceptions

• Logging and Debugging Exceptions in the OUD Plug-in API

3.1 Overview of OUD Plug-In Configuration
The OUD Plug-In API provides convenient ways to store, retrieve, modify, and validate the
plug-in configuration.

The following sections provide conceptual information and examples for working with OUD
plug-ins:

• About Storing OUD Plug-In Configuration

• Retrieving OUD Plug-In Configuration

• Creating an Automated Parser for Plug-In Properties

• Making Dynamic OUD Plug-In Configuration Changes

• Validating Plug-In Configuration

3.1.1 About Storing OUD Plug-In Configuration
OUD stores plug-in configuration as part of the plug-in configuration entry. The configuration
elements are stored in the OUD config.ldif file as key-value pairs. For simplicity, you
should use this mechanism. However, the OUD plug-in architecture allows you to use
alternative methods, such as an external file, to retrieve the configuration.

The plug-in configuration is represented as a set of key-value pairs in the default
configuration model. Key and value are treated as raw strings by the OUD server and the
dsconfig command line tools. You can set key-value pairs using the dsconfig tool and the
plugin-properties property associated with plug-in workflow elements.

3-1

For more information, see the following examples:

• Example for Adding Plug-in Properties

• Example for Configuring a Custom Property

3.1.1.1 Example for Adding Plug-in Properties
The following example for Adding Plug-in Properties demonstrates how to add plug-
in properties.

dsconfig set-workflow-element-prop \
 --element-name ExamplePlugin \
 --add plugin-properties:customProperty=localDB1 \
 --hostname host1 \
 --port 4444 \
--trustStorePath install-dir/OUD/config/admin-truststore \
 --bindDN cn=Directory\ Manager \
 --bindPasswordFile ****** \
 --no-prompt

3.1.1.2 Example for Configuring a Custom Property
In the following example for Configuring a Custom Property the plug-in
ExamplePlugin is configured with a custom property named customProperty. This
property is specified as a value of the generic plugin-properties parameter.

$dsconfig get-workflow-element-prop --element-name ExamplePlugin

Property : Value(s)
----------------------:---
enabled : true
next-workflow-elements : localDB1
plugin-class : oracle.oud.plugin.example.ExamplePlugin
plugin-properties : customProperty=localDB1

3.1.2 Retrieving OUD Plug-In Configuration
The OUD plug-in configuration is available from the PluginConfiguration instance
provided during plug-in initialization.The OUD plug-in configuration can be accessed
by overriding the initializePlugin method.

The following example for Overriding initializePlugin to access the OUD plug-in
configuration shows overriding the initializePlugin method.

@Override
 public void initializePlugin(PluginConfiguration configuration,PluginContext
context) throws PluginException
 {

 // Plugin configuration as a Set of properties
 Set<String> properties = configuration.getProperties();

 String aParameter=null;

 for(String value: properties)
 {
 if (value.startsWith("customProperty="))
 {

Chapter 3
Overview of OUD Plug-In Configuration

3-2

 aParameter = value.substring(value.indexOf("=")+1);
 break;
 }
 }

 // Expected property not found
 if (aParameter == null)
 {
 throw new PluginException
 (context.getTypeBuilder().newMessage("customProperty missing in
configuration."));
 }

 // Either use the configuration right now or make it persistent using class
members.
 }

In this example, the configuration is retrieved from the raw configuration object as a set of
properties. Once the properties are read, they can be used immediately and/or stored for
later use in members of the Java class that implements the plug-in.

3.1.3 Creating an Automated Parser for Plug-In Properties
You can create an automated parser for plug-In properties as an alternative method to
retrieve plug-in configuration. Follow these steps to create an automated parser for the plug-
in properties.

To create an automated parser for the plug-in properties:

1. Create a Java interface that extends the class
oracle.oud.plugin.PluginConfiguration.

2. For each property that you expect to be retrieved, add a getter in the form get<property-
name>(). The property-name must match the key of the key-value pair defined in the
plugin properties. The case of the name is ignored.

3. The returned method type must be of a class that provides a static method
valueOf(String) - java.lang.String.valueOf(String) matches this assertion.

The Java interface to parse the plug-in property customProperty looks like the following
example for Parsing a Plug-in Property.

public interface PropertyConfiguration
 extends oracle.oud.plugin.PluginConfiguration
{
 /**
 * Return the value associated to the key 'customProperty'.
 *
 * @return the value associated to the key 'customProperty'.
 */
 String getCustomProperty();
}

Then the initialization of the plugin can be rewritten as in the following example:

 @Override
 public void initializePlugin(final PluginConfiguration configuration,
 final PluginContext context)
 throws PluginException

Chapter 3
Overview of OUD Plug-In Configuration

3-3

 {
 super.initializePlugin(configuration, context);

 PropertyConfiguration propertyConfiguration =
this.getConfiguration(PropertyConfiguration.class);

 String customProperty = propertyConfiguration.getCustomProperty();
 // Perform check...
 }

3.1.4 Making Dynamic OUD Plug-In Configuration Changes
Changes to the plug-in configuration can be caught dynamically by overriding the
method handleConfigurationChange().

The new configuration can be retrieved as shown in the following example for
Retrieving Changed Plug-In Configuration.

@Override
 public void handleConfigurationChange(final PluginConfiguration configuration)
 throws PluginException
 {

 // The new configuration is stored in the configuration object
 // parse again the plugin configuration
 String aParameter;
 Set<String> properties = configuration.getProperties();

 for(String value: properties)
 {
 if (value.startsWith("customProperty="))
 {
 aParameter = value.substring(value.indexOf("=")+1);
 break;
 }
 }
 }

The handleConfigurationChange() method is invoked only when the plug-in
properties managed by the OUD server are updated. If you decide to store the
configuration in an external file, changes to the file content won't be detected
dynamically by the mechanism described here.

3.1.5 Validating Plug-In Configuration
The dsconfig tool does not make any syntaxtical cases about the custom plug-in
configuration properties, so the plug-in must validate the configuration at startup or
when the configuration is modified dynamically.

The plug-in code should raise a PluginException when it cannot recover from an
invalid configuration.

The plug-in is automatically disabled when a PluginException is raised during plug-in
initialization. Invalid dynamic configuration changes can be rejected by raising a
PluginException in the handleConfigurationChange() method.

Chapter 3
Overview of OUD Plug-In Configuration

3-4

3.2 Request Handling with OUD Plug-in API
With OUD plug-in API, you will be able to process OUD server LDAP requests, modifying
search requests, forwarding requests, and returning requests.

The topics in this section include:

• Overview of LDAP Request Handling with OUD Plug-in API

• Modifying OUD Search Requests with Plug-in API

• Modifying Search Requests with Wrapper Object

• Forwarding Requests with OUD Plug-in API

• Returning Results with OUD Plug-in API

3.2.1 Overview of LDAP Request Handling with OUD Plug-in API
A plug-in can intercept any LDAP requests processed by the OUD server by implementing
the corresponding callbacks defined by the oracle.oud.RequestManager interface. Each type
of LDAP operation corresponds to a handler method. For example, add operations are
managed by the handleAdd() method and so on.

Received LDAP requests are processed by the server. Thus modifying the properties of the
requests can impact the server regarding performance, integrity, and security.

Each property contained in LDAP requests can be retrieved by getters, and modified by
setters.

Each handler takes three parameters that are tied together:

• The LDAP request that contains all request properties as provided by the workflow
element previous to this plug-in

• The Result handler that is the reference to use to return to the previous workflow
element, the result of the LDAP request once processed

• A context that is a toolbox reference that provides access to various elements of the
server such as logging subsystem, creation of plug-in API objects, client connection,
abandon of request, and so forth

The bind request takes a fourth parameter that is the version of the LDAP protocol and that is
provided for convenience only.The abandon and unbind methods cannot be intercepted. The
abandon of a request can be detected using the request's context. The unbind operation
means that the client connection will disconnect from the server.

The contract that must respect each plug-in in the process chain is to return the LDAP
request in the exact state as it was received. This applies to all implementations of request
handler. This is the most important thing that the plug-in does. This is important because
although a request already has a result, the request may not be complete.

Consider this example: a plug-in is part of the processing that is performed after a load-
balancer. Modifying the requests and giving back the modified request, instead of giving back
the request in the state it was received, may make the load-balancer function improperly.
Indeed, the request will be modified on the first route, and potentially replayed modified on
the second route if the first route fails.

Chapter 3
Request Handling with OUD Plug-in API

3-5

In summary, keep in mind that requests must be submitted in the exact same form as
they are received.

3.2.2 Modifying OUD Search Requests with Plug-in API
OUD Search Requests are modified to change the scope of search request with Plug-
in API .

The following example modifies the scope of a search request. The search scope is
changed to BASE_OBJECT, and then restored when the search request has been
processed.

1. To intercept the search requests, override the handleSearch(...) method in the
example plug-in.

 @Override
 public void handleSearch(final RequestContext requestContext,
 final SearchRequest request,
 final SearchResultHandler resultHandler)
 throws UnsupportedOperationException {

 System.out.println("plug-in: search received " + request);

 // Store the received search scope.
 SearchScope scopeReceived = request.getScope();

 // Set a base search scope for all search requests
 request.setScope(SearchScope.BASE_OBJECT);

 System.out.println("plug-in: search modified " + request);

 // Forward the request to the next plug-in.
 this.getConfiguration()
 .getFirstNextPlugin()
 .handleSearch(requestContext,
 request,
 resultHandler);

 // Restore the original value to give the request back as received.
 request.setScope(scopeReceived);
 }

2. Restart the Oracle Unified Directory instance for the JAR file changes to take
effect.

a. Stop the OUD instance.

UNIX, Linux

$ cd instance-directory/OUD/bin
$ stop-ds

Windows

C:\> cd instance-directory\OUD\bat
C:\> stop-ds

b. Copy the plug-in JAR file into the lib directory.

Chapter 3
Request Handling with OUD Plug-in API

3-6

UNIX, Linux

cp plugin.jar lib

Windows

C:\> copy plugin.jar lib

c. Restart OUD instance.

UNIX, Linux

start-ds

Windows

C:\> start-ds

3. Run the following command:

UNIX, Linux

$ ldapsearch --hostname localhost --port 1389 --bindDN "cn=directory manager" --
bindPasswordFile /tmp/password --searchScope sub --baseDN
"uid=user.1,ou=people,dc=example,dc=com" "(objectclass=*)"

Windows

C:\ ldapsearch --hostname localhost --port 1389 --bindDN "cn=directory manager" --
bindPasswordFile C:\tmp\password --searchScope sub --baseDN
"uid=user.1,ou=people,dc=example,dc=com" "(objectclass=*)"

4. For each command, the log file (instance-dir/OUD/logs/server.out on UNIX or Linux,
instance-dir\OUD\logs\server.out on Windows) should contain information similar to
this:

plug-in: search received
SearchRequest(name=uid=user.1,ou=people,dc=example,dc=com, scope=sub,
dereferenceAliasesPolicy=never, sizeLimit=0, timeLimit=0, typesOnly=false,
filter=(objectClass=*), attributes=[], controls=[])
plug-in: search modified
SearchRequest(name=uid=user.1,ou=people,dc=example,dc=com, scope=base,
dereferenceAliasesPolicy=never, sizeLimit=0, timeLimit=0, typesOnly=false,
filter=(objectClass=*), attributes=[], controls=[])

Note:

The request is passed to the next plug-in by calling:

this.getConfiguration().getFirstNextPlugin().handleSearch(...)

This is exactly what is done by the default implementation of the
AbstractPlugin. The same thing can be achieved by calling the following:

super.handleSearch(...)

Chapter 3
Request Handling with OUD Plug-in API

3-7

3.2.3 Modifying Search Requests with Wrapper Object
An alternative way of modifying requests is to wrap the original request in a special
object named wrapper. A request wrapper is an implementation that offers the same
exact Java interface as the request that it wraps, and then forwards all calls performed
on methods to the wrapped request.

To modify the value of the properties, override the appropriate method. The following
example demonstrates how to change the scope of search requests.

@Override
 public void handleSearch(final RequestContext requestContext,
 final SearchRequest request,
 final SearchResultHandler resultHandler)
 throws UnsupportedOperationException {

 SearchRequest newRequest = new SearchRequestWrapper(request)
 {
 @Override
 public SearchScope getScope()
 {
 // Change the scope of this request.
 return SearchScope.BASE_OBJECT;
 }
 };

 // Forward the request to the next plug-in.
 this.getConfiguration()
 .getFirstNextPlugin()
 .handleSearch(requestContext,
 newRequest,
 resultHandler);
 }

This alternative has the advantage of letting the wrapped request remain untouched.
Thus, there is no need to restore the scope property as this one was not changed.

However, if you use this alternative, you may encounter problems. The wrapped
request does not know about its outbound wrapper. If processing is performed at the
level of the wrapped request, and this processing involves properties that are
redefined at the level of the wrapper, then those properties will be ignored. The
wrapped request only has access to its own properties.

A wrapper is provided for all types of requests in the package oracle.oud.requests.

3.2.4 Forwarding Requests with OUD Plug-in API
In most situations, plug-ins intercept requests, do some processing, then forward the
request to the next workflow in the chain. In the vast majority of case, there is exactly
one next workflow element. In this case, the request can be passed to the next
element by invoking the corresponding method of the super instance.

In the case of a leaf plug-in, all request handlers implemented by
oracle.oud.AbstractPlugin must be overridden, and a result must be returned as
described in the next section.

Chapter 3
Request Handling with OUD Plug-in API

3-8

In some specific cases, a plug-in may be followed by several workflow elements. The plug-in
implementation must determine which workflow element the request must be forwarded to.
The list of next workflow elements can be retrieved from the PluginConfiguration instance
through the getNextPlugins() method. Then the request is forwarded to the appropriate
workflow element by directly invoking the appropriate method as shown in the following
example.

@Override
 public void handleBind(final RequestContext requestContext,
 final int version,
 final BindRequest request,
 ResultHandler resultHandler)
 throws UnsupportedOperationException
 {

 // Get the original bind DN from the bind request
 DN originalDn = request.getName();

 // Transform the bind DN according to custom algorithm
 DN newDn = transformDN(originalDn);

 BindRequestWrapper wrapper = new BindRequestWrapper(request);

 // Update the wrapper object
 wrapper.setName(newDn);

 // Retrieve the list of next plugins and figure out which one to use
 List<Plugin> nextPlugins = this.getConfiguration().getNextPlugins();

 // Pass the request to the appropriate plugin (assume the first one here)
 nextPlugins.get(0).handleBind(requestContext,
 version,
 wrapper,
 resultHandler);

 }

3.2.5 Returning Results with OUD Plug-in API
In some cases, a plug-in may intercept a request and return results by themselves instead of
forwarding the request to the next workflow element of the chain.

A result object instance can be created using the newResult() method of the
oracle.oud.plugin.PluginContext.TypeBuilder class. Then this result can be returned to
the plug-in caller by invoking the handleResult() or handleErrorResult() method from the
resultHandler object passed as an argument of the handler methods. The following example
illustrates how to intercept bind requests and return an Invalid Credentials error.

@Override
 public void handleBind(final RequestContext requestContext,
 final int version,
 final BindRequest request,
 ResultHandler resultHandler)
 throws UnsupportedOperationException
 {

 // Get the original bind DN from the bind request
 DN originalDn = request.getName();

Chapter 3
Request Handling with OUD Plug-in API

3-9

 // Apply custom logic to decide whether access is granted or not
 // Assume invalid credentials

 // Create a Result object
 Result error =
getPluginContext().getTypeBuilder().newResult(ResultCode.INVALID_CREDENTIALS);

 // Return it to the plugin caller
 resultHandler.handleErrorResult(error);

 }

Similarly, LDAP entries can be created using the newSearchResultEntry() method of
the oracle.oud.plugin.PluginContext.TypeBuilder class. Then this entry can be
returned to the plug-in caller by invoking the handleSearchResultEntry() or
handleErrorResult() method from the searchResultHandler object passed as an
argument of the handleSearch() method.

3.3 Handling Responses in OUD Plug-in
Plug-ins that need to intercept responses must explicitly register their interest by
providing their own ResultHandler instance before submitting the request to the next
workflow element. The handleResult() method of the ResultHandler is invoked upon
successful completion of the operation with the corresponding Result instance passed
in argument. Conversely, the handleErrorResult() of the ResultHandler is invoked
when an error occurred.

The custom ResultHandler implementation can examine the result and modify it, but it
is responsible for invoking the appropriate method (handleResult() or
handleErrorResult()) of the original ErrorHandler to pass the result to the calling
workflow element. For simplicity, you should implement custom ResultHandler as a
specialization of the DefaultResultHandler objectclass. By default, results and
errors are passed to the workflow element upstream in the chain, and only the
appropriate methods need to be overridden by the plug-in implementation.

Similarly, SearchResultHandler must be used for search operations, to intercept both
final search result and search entries. The handleEntry() method is invoked every
time an LDAP entry is returned by the next workflow elements. The custom
SearchResultHandler implementation must invoke the handleEntry() method of the
original SearchResultHandler to send the entry up the chain.

3.3.1 Example for Intercepting bind failure
OUD plug-in intercepts responses and bind failure is one such type of response.

In the following example, the plug-in intercepts bind failure only.

@Override
 public void handleBind(final RequestContext requestContext,
 final int version,
 final BindRequest request,
 ResultHandler resultHandler)
 throws UnsupportedOperationException
 {

Chapter 3
Handling Responses in OUD Plug-in

3-10

 // Create a new ResultHandler to intercept bind result
 CustomResultHandler customBindHandler = new CustomResultHandler(resultHandler);

 // Pass the request to the next plug-in with the custom ResultHandler
 super.handleBind(requestContext,
 version,
 request,
 customBindHandler);

 }

// implementation of a custom ResultHandler to intercept errors

private class CustomResultHandler
 extends DefaultResultHandler
{

 public CustomResultHandler(ResultHandler resultHandler)
 {
 super(resultHandler);
 }

 @Override
 public void handleErrorResult(Result error)
 {

 // Invoked when Bind fails
 // Examine the result and implement some logic
 // Pass the result up the chain

 super.handleErrorResult(error);
 }

}

3.3.2 Example for Intercepting Search Entries and Final Search Results
OUD plug-in intercepts responses and intercepting search entries and the final search result
is one such type of response.

The following example intercepts search entries and the final search results.

@Override
 public void handleSearch(final RequestContext requestContext,
 final SearchRequest request,
 SearchResultHandler resultHandler)
 throws UnsupportedOperationException
 {

 // Create a new SearchResultHandler to intercept search entries
 // and result
 CustomSearchResultHandler customHandler = new
CustomSearchResultHandler(resultHandler);

// Pass the request to the next plug-in with the custom ResultHandler
super.handleSearch(requestContext,
 request,
 customHandler);
 }

Chapter 3
Handling Responses in OUD Plug-in

3-11

// implementation of a custom SearchResultHandler to intercept entries and errors
private class CustomSearchResultHandler
extends DefaultSearchResultHandler

{
 public CustomSearchResultHandler(SearchResultHandler resultHandler)
 {
 super(resultHandler);
 }

 @Override
 public void handleErrorResult(Result error)
 {
 // Invoked when Search fails
 // Examine the result and implement some logic
 // Pass the result up the chain
 super.handleErrorResult(error);
 }

 @Override
 public void handleResult(Result result)
 {
 // Invoked when Search complete
 // Examine the result and implement some logic
 // Pass the result up the chain
 super.handleResult(result);
 }

 @Override
 public boolean handleEntry(SearchResultEntry entry)
 {
 // Invoked for every search entry to be returned
 // Examine the result and implement some logic
 // Pass the entry up the chain
 return super.handleEntry(entry);
 }
}

3.4 About Results Handling in OUD Plug-in
Request results are returned using objects called a result handler. All LDAP operations
share the same kind of result except the search operation. The search operation has
additional results that are entries and references. An LDAP operation is composed of a
pair: a request and a result-handler.

The request is used to access the properties of the request. The result handler is used
to post the result of the request that has been processed to the previous plug-in.

The topics in this section include:

• Ignoring Search Results in OUD Plug-in

• Intercepting Search Failures in OUD Plug-in

• Counting Entries Returned by Search Requests

Chapter 3
About Results Handling in OUD Plug-in

3-12

3.4.1 Ignoring Search Results in OUD Plug-in
You have to ignore search results in situations, where the plug-in itself is skipped and the
results returned by the next plug-in will be passed directly from the next plug-in to the
previous plug-in.

In the following example, the result handler provided by the previous plug-in is passed
directly to the next plug-in. The consequence is that the results returned by the next plug-in
will be passed directly from the next plug-in to the previous plug-in, skipping the plug-in itself.
The only way to detect that the request was processed is by returning from the
handlerSearch(...) call.

@Override
 public void handleSearch(final RequestContext requestContext,
 final SearchRequest request,
 final SearchResultHandler resultHandler)
 throws UnsupportedOperationException
 {
 // Pass the resultHandler reference received from the previous plug-in to
 // the next plug-in. This implies that the next plug-in will post the
 // result of the search request directly to the previous plug-in.
 this.getConfiguration()
 .getFirstNextPlugin()
 .handleSearch(requestContext,
 request,
 resultHandler);

 // The search request was processed by next plug-in.
 }

3.4.2 Intercepting Search Failures in OUD Plug-in
To intercept results returned by a subsequent plug-in, the plug-in must provide its own result
handler.

A result handler defines two methods:

• handleResult(Result) called by the next plug-in when the request was successful

• handleErrorResult(Result) called by the next plug-in when the request was
unsuccessful

A search result handler defines two additional methods. These methods must return True to
specify that the next plug-in can still return other entries or references, or False to indicate to
the next plug-in that no more entries or references are expected. For example, no more
entries or references are expected when the size limit reached.

• handleEntry(SearchResultEntry) returned by the next plug-in when an entry is returned

• handleReference(DN, SearchResultReference) returned by the next plug-in when a
reference is returned

The OUD plug-in API provides a default implementation named
oracle.oud.plugin.DefaultResultHandler for implementing result handlers. This Java
class wraps a result handler (in most cases the result handler provided by the previous plug-
in) and by default forwards the received result to the wrapped result handler. To capture a
result, a plug-in must override the kind of result it is interested in. A similar default

Chapter 3
About Results Handling in OUD Plug-in

3-13

implementation exists for search result handler:
oracle.oud.plugin.DefaultSearchResultHandler.

The following example shows how to log the result in case the request is unsuccessful.

 public class EchoErrorResultHandler
 extends DefaultResultHandler
 {
 public EchoErrorResultHandler(ResultHandler resultHandler)
 {
 super(resultHandler);
 }

 @Override
 public void handleErrorResult(Result error)
 {
 // Echo the result of the request.
 System.out.println("plug-in: error result " + error);

 // Let the default behavior forward the result to the wrapped result
 // handler
 super.handleErrorResult(error);
 }
 }

The following example illustrates how to make search operations print out the results
in case the request is not successful.

@Override
 public void handleSearch(final RequestContext requestContext,
 final SearchRequest request,
 final SearchResultHandler resultHandler)
 throws UnsupportedOperationException
 {
 // The result handler passed to the next plug-in will echo the result in
 // case the request was not successful.
 this.getConfiguration()
 .getFirstNextPlugin()
 .handleSearch(requestContext,
 request,
 new EchoErrorResultHandler(resultHandler));

 // The search request was processed by next plug-in.
 }

Notice the following:

• The result handler is not associated to the request. It is up to the developer to
maintain the association by keeping a reference to the request inside the
implementation of the result handler.

• A new instance of the custom result handler is required for each instance of
received request.

3.4.2.1 Logging the Failures of Search Requests
To log the failures of search requests:

1. Change the example plug-in as shown above.

Chapter 3
About Results Handling in OUD Plug-in

3-14

2. Restart the Oracle Unified Directory instance for the JAR file changes to take effect.

a. Stop the OUD instance.

UNIX, Linux

$ cd instance-directory/OUD/bin
$ stop-ds

Windows

C:\> cd instance-directory\OUD\bat
C:\> stop-ds

b. Copy the plug-in JAR file into the lib directory.

UNIX, Linux

cp plugin.jar lib

Windows

C:\> copy plugin.jar lib

c. Restart OUD instance.

UNIX, Linux

start-ds

Windows

C:\> start-ds

3. Run the following command to search for a user that does not exist.

UNIX, Linux

ldapsearch --hostname localhost --port 1389 --bindDN "cn=directory manager" --
bindPasswordFile /tmp/password --searchScope sub --baseDN
"uid=user.unknown,ou=people,dc=example,dc=com" "(objectclass=*)"
the command displays
SEARCH operation failed
Result Code: 32 (No Such Entry)
Additional Information: The search base entry
'uid=user.unknown,ou=people,dc=example,dc=com' does not exist
Matched DN: ou=people,dc=example,dc=com

Windows

ldapsearch --hostname localhost --port 1389 --bindDN "cn=directory manager" --
bindPasswordFile C:\tmp\password --searchScope sub --baseDN
"uid=user.unknown,ou=people,dc=example,dc=com" "(objectclass=*)"
the command displays
SEARCH operation failed
Result Code: 32 (No Such Entry)
Additional Information: The search base entry
'uid=user.unknown,ou=people,dc=example,dc=com' does not exist
Matched DN: ou=people,dc=example,dc=com

For each command, the log file (instance-dir/OUD/logs/server.out on UNIX, Linux or
instance-dir\OUD\logs\server.out on Windows) should contain information similar to the
following:

Chapter 3
About Results Handling in OUD Plug-in

3-15

plug-in: error result Result(resultCode="No Such Entry",
matchedDN="ou=people,dc=example,dc=com", diagnosticMessage="The search base
entry 'uid=user.unknown,ou=people,dc=example,dc=com' does not exist",
referrals=null, controls=[])

3.4.3 Counting Entries Returned by Search Requests
Request results are returned using objects called a result handler. You can count the
number of entries by EntryCounterResultHandler.

The following example counts the number of entries returned by search requests, and
then logs it. The EntryCounterResultHandler increments a counter each time the
handleEntry(...) method is called.

 public class EntryCounterResultHandler
 extends DefaultSearchResultHandler
 {
 // The number of search result entries returned by this search result
 // handler.
 private int entriesCount;

 public EntryCounterResultHandler(SearchResultHandler resultHandler)
 {
 super(resultHandler);
 }

 @Override
 public boolean handleEntry(SearchResultEntry entry)
 {
 this.entriesCount++;

 return super.handleEntry(entry);
 }

 public int getEntriesCount()
 {
 return this.entriesCount;
 }
 }

The search request handler is modified to pass a result handler that counts returned
entries for each search request processed. Once the request processed by the next
plug-in, the number of returned entries is logged. See the following example.

@Override
 public void handleSearch(final RequestContext requestContext,
 final SearchRequest request,
 final SearchResultHandler resultHandler)
 throws UnsupportedOperationException
 {
 EntryCounterResultHandler counter =
 new EntryCounterResultHandler(resultHandler);

 // The result handler passed to the next plug-in will count the number of
 // entries returned by the next plug-in.
 this.getConfiguration()
 .getFirstNextPlugin()
 .handleSearch(requestContext,
 request,
 counter);

Chapter 3
About Results Handling in OUD Plug-in

3-16

 // The search request was processed by next plug-in.
 System.out.println(String.format("plug-in: request %s returned %d entries",
 request,
 counter.getEntriesCount()));

 }

3.4.3.1 Logging the Number of Returned Entries of Search Requests
To log the number of returned entries of search requests:

1. Change the example plug-in as shown in the example shown above.

2. Restart the Oracle Unified Directory instance for the JAR file changes to take effect.

a. Stop the OUD instance.

UNIX, Linux

$ cd instance-directory/OUD/bin
$ stop-ds

Windows

C:\> cd instance-directory\OUD\bat
C:\> stop-ds

b. Copy the plug-in JAR file into the lib directory.

UNIX, Linux

cp plugin.jar lib

Windows

C:\> copy plugin.jar lib

c. Restart OUD instance.

UNIX, Linux

start-ds

Windows

C:\> start-ds

3. Run the following command to display all users registered:

UNIX, Linux

ldapsearch --hostname localhost --port 1389 --bindDN "cn=directory manager" --
bindPasswordFile /tmp/password --searchScope sub --baseDN
"ou=people,dc=example,dc=com" "(objectclass=*)"

Windows

ldapsearch --hostname localhost --port 1389 --bindDN "cn=directory manager" --
bindPasswordFile C:\tmp\password --searchScope sub --baseDN
"ou=people,dc=example,dc=com" "(objectclass=*)"

For each command, the log file (instance-dir/OUD/logs/server.out on UNIX or Linux,
instance-dir\OUD\logs\server.out on Windows) should contain information similar to this:

Chapter 3
About Results Handling in OUD Plug-in

3-17

plug-in: request SearchRequest(name=ou=people,dc=example,dc=com, scope=sub,
dereferenceAliasesPolicy=never, sizeLimit=0, timeLimit=0, typesOnly=false,
filter=(objectClass=*), attributes=[], controls=[]) returned 51 entries
the number of returned entries corresponds to the 50 users plus the entry
ou=people,dc=example,dc=com

3.5 Configuring Filters in Search Requests
Sometimes applications need to interact with filters contained in search requests. This
interaction is specified by a mechanism based on the visitor design pattern and
defined by the Java interface oracle.oud.types.FilterVisitor<R,P>.

The topics in this section include:

• About Filter Processing in Search Requests

• Example of Implementation of the FilterVisitor

• Example for Verifying and Logging the Presence of objectclass=* in a Search
Request

• Verifying and Logging Presence of objectclass=* in a Search Request

3.5.1 About Filter Processing in Search Requests
The LDAP protocol specifies ten types of filters: and, or, not, equalityMatch,
substrings, greaterOrEqual, lessOrEqual, present, approxMatch and
extensibleMatch.

The filter visitor defines a handler for each type of filter: visitAndFilter(...),
visitOrFilter(...) and so on.

When a filter is parsed, the types of filters that compose the filter to parse are
identified. The visitor methods associated to the identified types are called in
sequence.

The FilterVisitor<R,P> takes two parameters:

• <R> is the returned type of each visitor handler.

• <P> is a parameter that can be provided to each visitor handler.

3.5.2 Example of Implementation of the FilterVisitor
FilterVisitor checks the presence of an attribute in the filter to parse.

The following example provides an implementation of the FilterVisitor. An attribute
is present in a filter if it is associated to the value * such as objectclass=*.In that
case, <R> corresponds to the result of the evaluation. <R> is defined as a Boolean that
has the value TRUE if the attribute is present in the filter to parse, and FALSE if the
attribute is absent. <P> is the parameter and corresponds to a String that defines which
attribute must to be checked.If the filter to parse is objectclass=*, then calling the
visitor with the parameter objectclass will return TRUE. Other values will return FALSE.

Visitors that are composed of sub-filters (and, or and not) forward the check by visiting
all the sub-filters they are composed of.

Chapter 3
Configuring Filters in Search Requests

3-18

In the following example, for illustration purposes, the relevant visitors also log some
information.

private class PresenceOfFilterVisitor
 implements FilterVisitor<Boolean,
 String>
 {
 @Override
 public Boolean visitAndFilter(final String presenceName,
 final List<Filter> subFilters)
 {
 System.out.println("plug-in: visit AND with " + subFilters);

 boolean result = false;

 // Iterate through all sub filters with this filter visitor.
 for(Filter subFilter: subFilters)
 {
 result = subFilter.accept(this, presenceName);

 if (result)
 {
 break;
 }
 }

 return result ? Boolean.TRUE : Boolean.FALSE;
 }

 @Override
 public Boolean visitApproxMatchFilter(final String presenceName,
 final String attributeDescription,
 final ByteString assertionValue)
 {
 return Boolean.FALSE;
 }

 @Override
 public Boolean visitEqualityMatchFilter(final String presenceName,
 final String attributeDescription,
 final ByteString assertionValue)
 {
 System.out.println("plug-in: visit EQUAL with " + attributeDescription + "=" +
assertionValue);

 return Boolean.FALSE;
 }

 @Override
 public Boolean visitExtensibleMatchFilter(final String presenceName,
 final String matchingRule,
 final String attributeDescription,
 final ByteString assertionValue,
 final boolean dnAttributes)
 {
 return Boolean.FALSE;
 }

 @Override
 public Boolean visitGreaterOrEqualFilter(final String presenceName,
 final String attributeDescription,

Chapter 3
Configuring Filters in Search Requests

3-19

 final ByteString assertionValue)
 {
 return Boolean.FALSE;
 }

 @Override
 public Boolean visitLessOrEqualFilter(final String presenceName,
 final String attributeDescription,
 final ByteString assertionValue)
 {
 return Boolean.FALSE;
 }

 @Override
 public Boolean visitNotFilter(final String presenceName,
 final Filter subFilter)
 {
 System.out.println("plug-in: visit NOT with " + subFilter);

 // Visit the associated filter with this filter visitor.
 return subFilter.accept(this, presenceName);
 }

 @Override
 public Boolean visitOrFilter(final String presenceName,
 final List<Filter> subFilters)
 {
 System.out.println("plug-in: visit OR with " + subFilters);

 boolean result = false;

 // Iterate through all sub filters with this filter visitor.
 for(Filter subFilter: subFilters)
 {
 result = subFilter.accept(this, presenceName);

 if (result)
 {
 break;
 }
 }

return result ? Boolean.TRUE : Boolean.FALSE;
 }

 @Override
 public Boolean visitPresentFilter(final String presenceName,
 final String attributeDescription)
 {
 System.out.println("plug-in: visit Presence with '" + attributeDescription
+ "'");

 return presenceName.equalsIgnoreCase(attributeDescription) ? Boolean.TRUE
 : Boolean.FALSE;
 }

 @Override
 public Boolean visitSubstringsFilter(final String presenceName,
 final String attributeDescription,
 final ByteString initialSubstring,
 final List<ByteString> anySubstrings,

Chapter 3
Configuring Filters in Search Requests

3-20

 final ByteString finalSubstring)
 {
 return Boolean.FALSE;
 }

 @Override
 public Boolean visitUnrecognizedFilter(final String presenceName,
 final byte filterTag,
 final ByteString filterBytes)
 {
 return Boolean.FALSE;
 }
 }

3.5.3 Example for Verifying and Logging the Presence of objectclass=* in a
Search Request

You can verify and log objectclass=* in a search request filter processed by the plug-in.

The following example verifies and logs the presence of objectclass=* in a search request
filter.

@Override
 public void handleSearch(final RequestContext requestContext,
 final SearchRequest request,
 final SearchResultHandler resultHandler)
 throws UnsupportedOperationException
 {
 Filter filter = request.getFilter();

 System.out.println("plug-in: visitor returned "
 + filter.accept(new PresenceOfFilterVisitor(),
 "objectclass"));

 // Pass the resultHandler reference received from the previous plug-in to
 // the next plug-in. This implies that the next plug-in will post the
 // result of the search request directly to the previous plug-in.
 super.handleSearch(requestContext,
 request,
 resultHandler);

 // The search request was processed by next plug-in.
 }

3.5.4 Verifying and Logging Presence of objectclass=* in a Search Request
You can verify and log the presence of objectclass=* in a search request filter processed by
the plug-in.

1. Change the example plug-in as shown in Example for Verifying and Logging the
Presence of objectclass=* in a Search Request.

2. Restart the Oracle Unified Directory instance for the JAR file changes to take effect.

a. Stop the OUD instance.

Chapter 3
Configuring Filters in Search Requests

3-21

UNIX, Linux

$ cd instance-directory/OUD/bin
$ stop-ds

Windows

C:\> cd instance-directory\OUD\bat
C:\> stop-ds

b. Copy the plug-in JAR file into the lib directory.

UNIX, Linux

cp plugin.jar lib

Windows

C:\> copy plugin.jar lib

c. Restart OUD instance.

UNIX, Linux

start-ds

Windows

C:\> start-ds

3. Run the following command to display all users registered:

UNIX, Linux

ldapsearch --hostname localhost --port 1389 --bindDN "cn=directory manager"
--bindPasswordFile /tmp/password --searchScope sub --baseDN
"ou=people,dc=example,dc=com" "(objectclass=*)"

Windows

ldapsearch --hostname localhost --port 1389 --bindDN "cn=directory manager"
--bindPasswordFile C:\tmp\password --searchScope sub --baseDN
"ou=people,dc=example,dc=com" "(objectclass=*)"

For each command, the log file (instance-dir/OUD/logs/server.out on UNIX or
Linux, instance-dir/OUD/logs/server.out on Windows) should contain similar to
the following:

plug-in: visit Presence with 'objectClass' plug-in: visitor returned true

Running the command with different filters shows how the visitor mechanism works.
Searching with the filter &(|(!(uid=user.1))) logs the following:

plugin: visit AND with [(|(!(uid=user.1)))]
 plugin: visit OR with [(!(uid=user.1))]
 plugin: visit NOT with (uid=user.1)
 plugin: visit EQUAL with uid=user.1
 plugin: visitor returned false

3.6 Configuring Internal Operations in OUD Plug-in API
The API provides methods to make LDAP-like calls into the OUD. In first method, plug-
in makes calls within the current plug-in workflow and in second method, the plug-in
makes LDAP-like calls into the OUD.

Chapter 3
Configuring Internal Operations in OUD Plug-in API

3-22

Configuring internal operations in OUD plug-in is described in the following section:

• About Internal LDAP Requests

• Understanding OUD Plug-in API Internal Requests

3.6.1 About Internal LDAP Requests
Internal LDAP requests are internal, that are not initiated directly by external requests from
clients, but internally by plug-ins. Use internal request calls when your plug-in needs OUD to
perform an operation for which no client request exists. For instance, a plug-in can do a
search request to the user entry to retrieve additional credentials upon reception of a bind
request from a client

oracle.oud.plugin.RequestManager callbacks are invoked for every operation processed by
OUD, including internal operation. In many cases, plug-ins apply to operations directly
initiated by a client application only. It is possible to make distinction between internal
operation and regular operation by calling the isInternal() method on the request object.

Internal LDAP requests are created through the oracle.oud.plugin RequestBuilder
objectclass. A reference to a requestBuilder can be retrieved from a RequestContext
associated with a request received from a client application through the
getRequestBuilder() method.

The user credentials used to perform an internal operation is specified at creation time. In
general, internal operations are performed within the current a security context, with the
credentials of the user which triggered the plug-in. In some situations, internal operations
require privileged access. For instance, an internal search performed before handing a bind
request will be performed as anonymous because at that point of time, the current user is not
authenticated yet.

3.6.1.1 Creating Internal LDAP Requests
To create a privilege request, use a privilege RequestBuilder with the call
requestContext.getRequestBuilder(true). Only requests created from this builder can be
performed with privileges of root.otherwise, and get a default requestBuilder through
requestContext.getRequestBuilder(false).

3.6.2 Understanding OUD Plug-in API Internal Requests
The OUD plug-in API provides two ways to invoke internal requests. In the first mode, the
plug-in makes calls within the current plug-in workflow by invoking the appropriate
subsequent workflow element configured in the chain if any. In the second mode, the plug-in
makes LDAP-like calls into the OUD as though they were coming from an end client.

Each call offers the ability to let the router select appropriate workflow for the operation.

Results from internal requests can be retrieved using result handlers, as described in About
Results Handling in OUD Plug-in.

• About Mode 1 of the OUD Plug-in API

• Implementing Mode 1 of the OUD Plug-in API

• About Mode 2 of the OUD Plug-in API

• Implementing Mode 2 of the OUD Plug-in API

Chapter 3
Configuring Internal Operations in OUD Plug-in API

3-23

3.6.2.1 About Mode 1 of the OUD Plug-in API
The next workflow elements of a plug-in can be retrieved from the plug-in configuration
through the call configuration.getNextPlugins(). The name of these plug-ins can
be retrieved using the getName() method. After retrieving the name, you can select
which workflow element the request must be sent to in the situation where there are
more than one next workflow element configured. For instance, a plug-in providing a
load-balancing service would probably have several subsequent workflow elements
configured. Once the internal request is instantiated, and the target workflow element
is located, the request can be submitted via the appropriate handler method.

3.6.2.2 Implementing Mode 1 of the OUD Plug-in API
The following example requires the server schema to be modified to accept the
attribute customTimeStamp. The plug-in uses an internal modify operation to store the
login time in the user entry attribute customTimeStamp.

Notice that a privilege request builder getRequestBuilder(true) must be used
because at that point of the processing, the bind is not yet completed. So the user is
considered to be anonymous.

@Override
public void handleBind(final RequestContext requestContext,
 final int version,
 final BindRequest request,
 ResultHandler resultHandler)
 throws UnsupportedOperationException
 {

 ...

 // Get a privileged request builder
 RequestBuilder myRequestBuilder = requestContext.getRequestBuilder(true);

 // Create a new modify request using that builder
 // Target LDAP entry is the user about to be authenticated
 ModifyRequest addTimestampModifyRequest =
myRequestBuilder.newModifyRequest(request.getName());

 // Populate the modification object
 addTimestampModifyRequest.addModification(ModificationType.REPLACE,
 "customTimeStamp", System.currentTimeMillis()) ;

 // Create a ResultHandler to catch the result of the modify operation
 ResultHandler modifyResultHandler = new
CustomModifyResultHandler(resultHandler);

 // submit the request to the next workflow element
 getConfiguration().getFirstNextPlugins().handleModify(requestContext,
 addTimestampModifyRequest, modifyResultHandler);

 ...

 }

Chapter 3
Configuring Internal Operations in OUD Plug-in API

3-24

3.6.2.3 About Mode 2 of the OUD Plug-in API
In this mode, the request is performed through an internal request manager object. This
object can be obtained from a RequestContext through the method
getInternalRequestManager(). Then the request can be submitted through the appropriate
handler method.

Each request is subject to routing to the appropriate workflow, so an internal request initiated
by a plug-in within a given workflow may be routed to the same workflow. There are situations
where a plug-in can intercept requests it generated by itself. To prevent unexpected recursive
loops in the internal operation processing, it is possible to attach an additional attachment
(contextual information) to an internal operation when it is submitted. This attachment can be
retrieved and checked by the proxy upon reception of a new request to detect loops and take
the appropriate action. Attachments can be managed via the AttachmentHolder interface
implemented by the Request objects.

3.6.2.4 Implementing Mode 2 of the OUD Plug-in API
The following example searches for the customTimeStamp attribute in the entry of a user
before a modification. A modify request is created with the current user credentials and
submitted through the internal request manager as if it was coming from an end client. For
clarity, exception handling was removed from the code example.

public void handleModify(final RequestContext requestContext,
 final ModifyRequest request,
 ResultHandler resultHandler)
 throws UnsupportedOperationException
 {
 ...

 // Get a standard request builder
 RequestBuilder myRequestBuilder = requestContext.getRequestBuilder(false);

 // Create a new search request using that builder
 // Target LDAP entry is the user about to be modified
 SearchRequest getLastTimestampRequest = myRequestBuilder.newSearchRequest(
 request.getName(), SearchScope.BASE_OBJECT,
 getPluginContext().getTypeBuilder().newFilter("(objectclass=*)"),
 "currentTimeStamp");

 // Create a ResultHandler to catch the result of the search operation
 SearchResultHandler searchResultHandler = new
CustomSearchResultHandler(resultHandler);

 // submit the request via the internal request manager
 requestContext.getInternalRequestManager().handleSearch(requestContext,
 getLastTimestampRequest, searchResultHandler);

 ...
 }

The following example shows how to deal with loops. The first time a search request is
received by the plug-in, it has no attachment with name nbLoops. The plug-in flags the
request with an attachment (name=nbLoops, value=1), then rebalance the request to the
internal request manager. The search request will eventually come back to the plug-in. The
second time the plug-in gets the attachment, increment the value to 2 and set the attainment
to the request. Then rebalance it to the internal request manager. The third time, since the

Chapter 3
Configuring Internal Operations in OUD Plug-in API

3-25

value (2) is greater or equal to MAX_LOOPS, the plug-in will send the request to the next
Workflow element (with method super.handleSearch(...)

// Let search requests loop 2 times within the internal request manager,
// before sending them to next WorkflowElement
public static final int MAX_LOOPS = 2;

 @Override
 public void handleSearch(RequestContext requestContext,
 SearchRequest request,
 SearchResultHandler resultHandler)
 throws UnsupportedOperationException
 {
 String name = "nbLoops";
 Integer nbLoops = 0;
 Set<String> attachmentNames = request.getAttachmentNames();

 // Get "nbLoops" attachment value, if ound in the request
 if (attachmentNames.contains(name))
 {
 nbLoops = (Integer) request.getAttachment(name);
 }

 // if we reach max number of loops...
 if (nbLoops >= MAX_LOOPS)
 {
 // ...remove attachment
 request.removeAttachment(name);

 // forward request to next WorkflowElement
 super.handleSearch(requestContext,
 request,
 resultHandler);
 } else
 {
 // increment nbLoops value
 nbLoops++;

 // set attachment nbLoops new value
 request.setAttachment(name, nbLoops);

 // log request (as internal op) + attachment value
 Logger logger = requestContext.getLogger();
 HashMap<String, String> map = new HashMap<String, String>();
 map.put("nbLoops", Integer.toString(nbLoops));
 logger.logSearchRequestIntermediateMessage(request, map);

 // re-balance tge search request via the internal request manager
 requestContext.getInternalRequestManager().handleSearch(requestContext,
 request,
 resultHandler);
 }

3.7 About OUD Plug-in Exceptions
Plug-in implementation can raise the subclass of PluginException when unexpected
error conditions occur.

Chapter 3
About OUD Plug-in Exceptions

3-26

The behavior of the server depends on when the exception is raised. When raised during
LDAP operation processing, a LDAP error 80 "Internal Error" is returned to the client
application. When raised during plug-in initialization, the plug-in is disabled.

3.8 Logging and Debugging Exceptions in the OUD Plug-in API
You can handle logging and debugging exceptions in OUD plug-in API.
oracle.oud.plugin.RequestContext.Logger interface is used to log a message in the OUD.

The topics in this section include:

• About Logging and Debugging Exceptions in the OUD Plug-in API

• Debugging the Plug-In When Servicing a Client Request

• Debugging Plug-In Initialization

3.8.1 About Logging and Debugging Exceptions in the OUD Plug-in API
Uncaught exceptions generated within the plug-in API are logged in the OUD debug log with
the Warning level.

The standard output of the plug-in is redirected to the log file (instance-dir/OUD/logs/debug on
UNIX or Linux, instance-dir\OUD\logs\debug on Windows) present in the OUD directory
server instance hosting the plug-in.

During plug-in development you can enable the debug log using the following dsconfig
command:

dsconfig set-log-publisher-prop \ --publisher-name "File-Based Debug Logger" \ --set
default-debug-level:warning \ --set enabled:true

The plug-in implementation can log a message in the OUD access, error, or debug log using
the oracle.oud.plugin.RequestContext.Logger interface.

3.8.2 Debugging the Plug-In When Servicing a Client Request
Unexpected error conditions occur during implementation of the plug-in. You need to debug
the plug-in when servicing a client request through an IDE.

Follow these steps to debug the plug-in when servicing a client request:

1. Export OPENDS_JAVA_ARGS with the value of start-ds.java-args taken from instance-
directory/config/java.properties plus -Xdebug -
Xrunjdwp:transport=dt_socket,address=127.0.0.1:8888,server=y,suspend=n

2. Restart the OUD instance.

This will open the debug port 8888.

3. Attach to the OUD process on port 8888, and debug the plug-in through an IDE.

3.8.3 Debugging Plug-In Initialization
Unexpected error conditions occur during implementation of the plug-in. You need to debug
plug-in initialization.

Follow these steps to debug plug-in initialization:

Chapter 3
Logging and Debugging Exceptions in the OUD Plug-in API

3-27

1. Export OPENDS_JAVA_ARGS with the value of start-ds.java-args taken from
instance-directory/config/java.properties plus -Xdebug -
Xrunjdwp:transport=dt_socket,address=127.0.0.1:8888,server=y,suspend=y

2. Restart the OUD instance.

This will open the debug port 8888.

3. At this point, you must attach three times to the OUD process on port 8888 before
you can debug the plug-in initialization code (using the pluginInitialization()
method).

You should export OPENDS_JAVA_ARGS rather than modify the java.properties file.
Exporting OPENDS_JAVA_ARGS does not require you to change the OUD instance
configuration files, posing no risk to exporting the debug JVM args in production.

Chapter 3
Logging and Debugging Exceptions in the OUD Plug-in API

3-28

4
Building and Deploying User-defined
Password Storage Scheme in Oracle Unified
Directory

 This content applies only to OUD Bundle Patch 12.2.1.4.211008 and later
releases.

The user-defined password storage scheme in Oracle Unified Directory provides the ability to
implement and deploy custom password hashing schemes into the server. This framework
provides an ability to implement schemes which are not available out of the box in Oracle
Unified Directory.

This chapter provides general information about building and deploying user-defined
password storage schemes in Oracle Unified Directory.

• Implementing User-defined Password Storage Scheme

• Building the User-defined Password Storage Scheme Plugin

• Configuring and Managing User-defined Password Storage Scheme

4.1 Implementing User-defined Password Storage Scheme
The user-defined password storage scheme framework in Oracle Unified Directory (OUD)
follows an approach similar to the one of the plugin API described earlier. The User-defined
password storage scheme related interfaces and classes are defined in the package,
oracle.oud.pwdstoragescheme. For more information on how to set up the IDE environment,
see Oracle® Fusion Middleware Java API Reference for Oracle Unified Directory 12c
(12.2.1.4.0) and see Before You Begin Deploying OUD Plug-in.

The custom user-defined password storage scheme must implement the
oracle.oud.pwdstoragescheme.ManagedPasswordStorageScheme interface with the generic T
as oracle.oud.pwdstoragescheme.UserPassword or
oracle.oud.pwdstoragescheme.AuthPassword.

For ease of development, OUD API provides an abstract class
oracle.oud.pwdstoragescheme.AbstractPasswordStorageScheme that implements the
oracle.oud.pwdstoragescheme.ManagedPasswordStorageScheme interface.

The custom implementation class can extend from
oracle.oud.pwdstoragescheme.AbstractPasswordStorageScheme. The implementation class
must provide a default constructor implementation and override the methods that implement
the underlying logic for encoding and validating password.

4-1

https://docs.oracle.com/en/middleware/idm/unified-directory/12.2.1.4/oudjd/index.html
https://docs.oracle.com/en/middleware/idm/unified-directory/12.2.1.4/oudjd/index.html

Example:

public class CustomUserPasswordHash extends
AbstractPasswordStorageScheme<UserPassword>

4.1.1 Important Methods to be Implemented
You need to implement the following important methods:

encodePassword - This method gets invoked when the server needs to encrypt and
store the cleartext password. This method must contain the custom implementation
code that performs the hashing. While persisting this value, Oracle Unified Directory
(OUD) prefixes this encoded value by the name of the custom scheme that is
configured in the server.

For example, {custom1}encoded_value, where custom1 is the name of the user-
defined password storage scheme in OUD configuration and encoded_value is the
value returned by this method.

passwordMatches - This method gets invoked when the server needs to validate the
provided cleartext password.

For example, during a ldapbind or ldapcompare operation to validate the credential.
This method must contain the custom implementation code that performs this
validation and must return true only if the password matches. OUD takes the
authentication success or failure decision based on the result of this method
invocation.

initializePasswordStorageScheme and handleConfigurationChange - These methods
need to be overridden for retrieving user-defined password storage scheme
configurations from the server.

A PasswordStorageSchemeConfiguration containing the configurations are provided
during invocation of these methods.

The following example shows how to read configurations using
oracle.oud.pwdstoragescheme.PasswordStorageSchemeConfiguration. Consider
there are two configuration parameters named rounds and saltlength that can be
defined in the custom scheme. The custom configuration interface appears as follows:

Example:

publicinterfaceCustomPasswordConfig
extendsPasswordStorageSchemeConfiguration {
 publicintgetRounds() throwsNullPointerException;
 publicintgetSaltlength() throwsNullPointerException;
}

Inside the user-defined scheme implementation, the above two configuration related
overridden methods would read these two parameters as follows:

@Override
public void initializePasswordStorageScheme(
final PasswordStorageSchemeConfiguration configuration)
throws PasswordStorageSchemeException {
try {

Chapter 4
Implementing User-defined Password Storage Scheme

4-2

 super.initializePasswordStorageScheme(configuration);
 CustomPasswordConfig conf =
this.getConfiguration(CustomPasswordConfig.class);
 readConfigParams(conf);
} catch (Exception e) {
 getLogger().logError("Error during
CustomUserPasswordHash.initializePasswordStorageScheme "
 + e.getMessage());
 throw new PasswordStorageSchemeException(ResultCode.OPERATIONS_ERROR, e);
 }
}

@Override
public void handleConfigurationChange(
final PasswordStorageSchemeConfiguration configuration)
throws PasswordStorageSchemeException {
try {
 super.handleConfigurationChange(configuration);
 CustomPasswordConfig conf =
this.getConfiguration(CustomPasswordConfig.class);
 readConfigParams(conf);
} catch (Exception e) {
 getLogger().logError("Error during
CustomUserPasswordHash.handleConfigurationChange " + e.getMessage());
 throw new PasswordStorageSchemeException(ResultCode.OPERATIONS_ERROR, e);
 }
}

private void readConfigParams(CustomPasswordConfig conf) {
 try {
 this.numSaltBytes = conf.getSaltlength();
 } catch (Exception e) {
 getLogger().logDebug(LEVEL.INFO, "Config parameter saltlength not set");
 }
 try {
 this.numRounds = conf.getRounds();
 } catch (Exception e) {
 getLogger().logDebug(LEVEL.INFO, "Config parameter rounds not set");
 }
}

4.1.2 Writing into OUD Server Logs
The getLogger() method provides a handle to Oracle Unified Directory (OUD) server's logger
which can be used to write log messages into error or debug logs at different log levels of the
OUD instance.

4.2 Building the User-defined Password Storage Scheme Plugin
The Oracle Unified Directory (OUD) plug-in API provides the means to compile, build, and
deploy the custom code and its dependent jars into OUD.

Perform the following steps to deploy a plug-in to an OUD instance:

Chapter 4
Building the User-defined Password Storage Scheme Plugin

4-3

1. Build your plug-in project.

The content of the generated plug-in JAR file should contain the following files:

• META-INF/MANIFEST.MF

• oracle/oud/example/ExamplePlugin.class

2. To ensure that your plug-in will continue to work with subsequent releases of the
OUD plug-in API, you can embed a specific versioning file in the produced JAR
file. The name of the file to embed is plugin.properties.

Make the following modifications to the plugin.properties file:

a. To define a target version for all plug-ins contained in the JAR file, add the
following:

plugin.version=11.1.2.1.0

b. To define a target version only for the ExamplePlugin plug-in, specify the
following:

plugin.ExamplePlugin.version=11.1.2.1.0

If the plugin.properties file is missing, then the behavior of the current
implementation of the plug-in API applies.

3. Restart the Oracle Unified Directory instance for the JAR file changes to take
effect.

a. Stop the OUD instance.

UNIX, Linux

$ cd instance-directory/OUD/bin
$ stop-ds

Windows

C:\> cd instance-directory\OUD\bat
C:\> stop-ds

b. Copy the plug-in JAR file into the lib directory.

UNIX, Linux

cp plugin.jar lib

Windows

C:\> copy plugin.jar lib

c. Restart OUD instance.

UNIX, Linux

start-ds

Windows

C:\> start-ds

Chapter 4
Building the User-defined Password Storage Scheme Plugin

4-4

4.3 Configuring and Managing User-defined Password Storage
Scheme

After you deploy the custom code into Oracle Unified Directory (OUD), you can configure the
custom storage scheme using dsconfig commands as shown in the following examples:

1. Create user-defined password storage with name custom1 whose implementation class
name is example.oud.customscheme.CustomUserPasswordHash and optional
configuration properties rounds and saltlength.

a. With custom configuration parameters:

dsconfig create-password-storage-scheme --set enabled:true --set
password-storage-scheme-
class:example.oud.customscheme.CustomUserPasswordHash --type user-
defined --scheme-name custom1 --set configuration-
properties:rounds=10 --set configuration-properties:saltlength=16

b. Without any custom configuration parameters:

dsconfig create-password-storage-scheme --set enabled:true --set
password-storage-scheme-
class:example.oud.customscheme.CustomUserPasswordHash --type user-
defined --scheme-name custom1

2. Change applicable password policy (eg: "Default Password Policy") to use this new
custom scheme

dsconfig --port 4444 -D "cn=Directory Manager" -j /scratch/htanaya/oud/
pwd.txt set-password-policy-prop --policy-name "Default Password Policy"
--set default-password-storage-scheme:bcrypt

3. After you configure, you can use the following command to update settings:

dsconfig set-password-storage-scheme-prop

Chapter 4
Configuring and Managing User-defined Password Storage Scheme

4-5

Index

Index-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New Features in Release 12c (12.2.1.4.0)
	New Features in Release 12c (12.2.1.3.0)

	1 Understanding Basic Oracle Unified Directory Plug-in Concepts
	1.1 Determining Whether You Should Implement an OUD Plug-In
	1.2 OUD Plug-Ins and OUD Workflows
	1.3 OUD Plug-In Implementation Points
	1.4 About Oracle Unified Directory Plug-Ins

	2 Building and Deploying an OUD Plug-In
	2.1 Before You Begin Deploying OUD Plug-in
	2.2 Deploying a Plug-In to an OUD Instance

	3 Using the OUD Plug-In API Reference
	3.1 Overview of OUD Plug-In Configuration
	3.1.1 About Storing OUD Plug-In Configuration
	3.1.1.1 Example for Adding Plug-in Properties
	3.1.1.2 Example for Configuring a Custom Property

	3.1.2 Retrieving OUD Plug-In Configuration
	3.1.3 Creating an Automated Parser for Plug-In Properties
	3.1.4 Making Dynamic OUD Plug-In Configuration Changes
	3.1.5 Validating Plug-In Configuration

	3.2 Request Handling with OUD Plug-in API
	3.2.1 Overview of LDAP Request Handling with OUD Plug-in API
	3.2.2 Modifying OUD Search Requests with Plug-in API
	3.2.3 Modifying Search Requests with Wrapper Object
	3.2.4 Forwarding Requests with OUD Plug-in API
	3.2.5 Returning Results with OUD Plug-in API

	3.3 Handling Responses in OUD Plug-in
	3.3.1 Example for Intercepting bind failure
	3.3.2 Example for Intercepting Search Entries and Final Search Results

	3.4 About Results Handling in OUD Plug-in
	3.4.1 Ignoring Search Results in OUD Plug-in
	3.4.2 Intercepting Search Failures in OUD Plug-in
	3.4.2.1 Logging the Failures of Search Requests

	3.4.3 Counting Entries Returned by Search Requests
	3.4.3.1 Logging the Number of Returned Entries of Search Requests

	3.5 Configuring Filters in Search Requests
	3.5.1 About Filter Processing in Search Requests
	3.5.2 Example of Implementation of the FilterVisitor
	3.5.3 Example for Verifying and Logging the Presence of objectclass=* in a Search Request
	3.5.4 Verifying and Logging Presence of objectclass=* in a Search Request

	3.6 Configuring Internal Operations in OUD Plug-in API
	3.6.1 About Internal LDAP Requests
	3.6.1.1 Creating Internal LDAP Requests

	3.6.2 Understanding OUD Plug-in API Internal Requests
	3.6.2.1 About Mode 1 of the OUD Plug-in API
	3.6.2.2 Implementing Mode 1 of the OUD Plug-in API
	3.6.2.3 About Mode 2 of the OUD Plug-in API
	3.6.2.4 Implementing Mode 2 of the OUD Plug-in API

	3.7 About OUD Plug-in Exceptions
	3.8 Logging and Debugging Exceptions in the OUD Plug-in API
	3.8.1 About Logging and Debugging Exceptions in the OUD Plug-in API
	3.8.2 Debugging the Plug-In When Servicing a Client Request
	3.8.3 Debugging Plug-In Initialization

	4 Building and Deploying User-defined Password Storage Scheme in Oracle Unified Directory
	4.1 Implementing User-defined Password Storage Scheme
	4.1.1 Important Methods to be Implemented
	4.1.2 Writing into OUD Server Logs

	4.2 Building the User-defined Password Storage Scheme Plugin
	4.3 Configuring and Managing User-defined Password Storage Scheme

	Index

