
Oracle® Mobile Application Framework
Installing Oracle Mobile Application
Framework

2.5.1.0.0
E92588-01
June 2018

Oracle Mobile Application Framework Installing Oracle Mobile Application Framework, 2.5.1.0.0

E92588-01

Copyright © 2015, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Walter Egan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Related Documents v

Conventions v

1 Installing Mobile Application Framework with JDeveloper

Prerequisites for Installing the MAF Extension 1-1

Installing the MAF Extension in JDeveloper 1-2

2 Setting Up the Development Tools for the iOS Platform

Installing Xcode and iOS SDK 2-1

Specifying the iOS Settings in MAF 2-1

Using the GUI 2-1

Using the Command Line 2-2

Setting Up an iOS Device or Simulator 2-2

Testing the iOS Environment Setup 2-3

3 Setting Up Development Tools for the Android Platform

Installing the Android SDK 3-1

Specifying the Android Settings in MAF 3-1

Using the GUI 3-2

Using the Command Line 3-2

Installing an Emulator Accelerator 3-3

Creating an Android Virtual Device 3-4

Setting Up Your Android Device to Install an App from Your Development Machine 3-4

Testing the Android Environment Setup 3-5

iii

4 Setting Up Development Tools for the Universal Windows Platform

Installing Visual Studio 4-1

Creating a PFX File for MAF Applications 4-3

Installing a PFX File on Windows 10 4-4

Specifying the UWP Settings in MAF 4-5

Enabling Developer Mode on Windows 10 4-5

Testing the Windows Environment Setup 4-6

5 Migrating Your Application to MAF 2.5.1

Migrating an Application to MAF 2.5.1 5-1

Using Xcode 9.x with MAF 2.5.1 5-8

How To Maintain Separate Xcode 9.x and Xcode 8.3.x Installations 5-9

Migrating Cordova Plugins from Earlier Releases to MAF 2.5.1 5-9

Evaluating EL Expressions in the Java VM Layer 5-11

Configuring Application Features with AMX Content to Use WKWebView on iOS 5-12

Security Changes in Release 2.4.0 and Later of MAF 5-12

Security Changes in Release 2.2.1 and Later of MAF 5-13

Migrating an Application Developed Using AMPA to MAF 2.5.1 5-14

Migrating MAF Applications that Use Customer URL Schemes to Invoke Other
Applications 5-17

Migrating to JDK 8 in MAF 2.5.1 5-17

Retaining Legacy Behavior When Navigating a MAF Application Using Android’s
Back Button 5-18

How to Retain Pre-MAF 2.2.0 Application Behavior in Response to Usage of
Android´s Back Button 5-19

Migrating to New cacerts File for SSL in MAF 2.5.1 5-19

iv

Preface

Welcome to Installing Oracle Mobile Application Framework.

Audience
This manual is intended for developers who want to install the Oracle Mobile
Application Framework for use with Oracle JDeveloper to create mobile applications
that run natively on devices.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see Developing Mobile Applications with Oracle Mobile
Application Framework.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements (for example,
menus and menu items, buttons, tabs, dialog controls), including
options that you select.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates language and syntax elements, directory and
file names, URLs, text that appears on the screen, or text that you
enter.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Installing Mobile Application Framework
with JDeveloper

This chapter describes how to install JDeveloper and the Mobile Application
Framework (MAF) extension for application development.
This chapter includes the following sections:

• Prerequisites for Installing the MAF Extension

• Installing the MAF Extension in JDeveloper

Prerequisites for Installing the MAF Extension
Before you can develop MAF applications, you must install Oracle JDeveloper and the
MAF extension.

The MAF extension provides JDeveloper with the design-time support (wizards,
editors, and dialogs) that you use to develop MAF applications in JDeveloper. Ensure
you review and satisfy these prerequisites before proceeding with the installation of
the MAF Extension.

• Procure a computer running the required operating system based on the platform
to which you need to deploy MAF applications.

– For the iOS platform, you need a computer with Apple Mac OS X.

– For the Android platform, you need a computer with Apple Mac OS X or a
supported Microsoft Windows or Linux version.

– For the Universal Windows Platform (UWP), you need a computer with x86
architecture running Windows 10 (version 1511 or later).

For the supported versions of operating systems that you can use to develop MAF
applications, see Certification Information on Oracle Technology Network at: http://
www.oracle.com/technetwork/developer-tools/maf/documentation/index.html.

• Download and install the latest version of JDK 1.8.

For the certified JDK versions required for different operating systems, see
Certification Information on Oracle Technology Network at: http://www.oracle.com/
technetwork/developer-tools/jdev/documentation/index.html.

• Download and install Oracle JDeveloper.

1. Download the installer from http://www.oracle.com/technetwork/developer-
tools/jdev/downloads/index.html.

2. Install and set up JDeveloper as described in Starting the Oracle JDeveloper
Studio Installation Program in Installing Oracle JDeveloper.

1-1

http://www.oracle.com/technetwork/developer-tools/maf/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/maf/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html

Installing the MAF Extension in JDeveloper
After you install Oracle JDeveloper, download and install the MAF extension.

Before you can install the MAF extension, complete these prerequisites:

• Close any existing MAF applications open in JDeveloper. This ensures that MAF
migrates your existing applications to successfully use the new MAF version.
Verify that the application no longer appears in the Applications window of
JDeveloper. For information about migrating a MAF application, see Migrating
Your Application to MAF 2.5.1.

• Configure proxy settings on your development computer if you are behind a
corporate firewall.

– On Windows, select Tools then Preferences, and then Web Browser and
Proxy from the tree on the left of the Preferences dialog.

– On Mac OS X, select JDeveloper then Preferences, and then Web Browser
and Proxy from the tree on the left of the Preferences dialog.

To download and install the MAF extension:

1. In JDeveloper, select Help then Check for Updates.

2. On the Select update source page, select Official Oracle Extensions and
Updates under Search Update Centers, and then click Next.

Chapter 1
Installing the MAF Extension in JDeveloper

1-2

Figure 1-1 Checking for Updates in JDeveloper

Note:

If you need to install an older version of MAF, download the file from the
Update Center and select the Install From Local File option on the
Select update source page. Browse and select the MAF extension file
that you downloaded to your development computer from the Update
Center.

3. In the Select updates to install dialog, select the Mobile Application Framework
update.

4. On the License Agreements page, review The Oracle Technology Network
License Terms for Oracle Mobile, and then click I Agree.

You must comply with all the license terms and conditions with respect to the
Oracle Mobile Application Framework Program. See http://www.oracle.com/
technetwork/indexes/downloads/index.html.

5. Click Next, and then click Finish.

6. Restart JDeveloper.

7. Check whether MAF has been successfully added to JDeveloper:

Chapter 1
Installing the MAF Extension in JDeveloper

1-3

http://www.oracle.com/webfolder/technetwork/jdeveloper/downloads/1213center.xml#oracle.maf
http://www.oracle.com/technetwork/indexes/downloads/index.html
http://www.oracle.com/technetwork/indexes/downloads/index.html

a. Select File, then New and then From Gallery from the main menu to open the
New Gallery dialog.

b. In the Categories tree on the left, select General, then Applications to check
if it contains Mobile Application Framework Application.

Figure 1-2 Verifying MAF Installation

8. Verify whether you have installed the correct version of MAF.

a. Click Help then About to open the About Oracle JDeveloper dialog.

b. Click Extensions, and search for Mobile Application Framework in the
extension list entries. Review the Version column and verify the version
number of the MAF extension.

After you have installed the MAF extension, you need to install other software for the
platforms (Android, iOS, or UWP). Subsequent chapters in this guide describe the
specific steps for each platform.

Chapter 1
Installing the MAF Extension in JDeveloper

1-4

2
Setting Up the Development Tools for the
iOS Platform

This chapter provides information on setting up and configuring development tools for
the iOS platform. Install Xcode and the iOS SDK so that you can deploy the MAF
applications developed in JDeveloper to an iOS device or simulator.
This chapter includes the following sections:

• Installing Xcode and iOS SDK

• Specifying the iOS Settings in MAF

• Setting Up an iOS Device or Simulator

• Testing the iOS Environment Setup

Installing Xcode and iOS SDK
Download and install Xcode. The download includes the iOS SDK.

Download Xcode from http://developer.apple.com/xcode/.

After installing Xcode, you have to run it at least once and complete the Apple
licensing and setup dialogs. If these steps are not followed, the build and deploy cycle
from JDeveloper to Xcode or a device simulator fails with a "Return code 69" error.

Note:

Older versions of Xcode and iOS SDK are not available from the Apple App
Store. To download older versions:

1. Obtain an Apple ID from http://appleid.apple.com.

2. Register the Apple ID with the Apple Developer Program to access the
Apple developer site at http://developer.apple.com.

Specifying the iOS Settings in MAF
Specify the iOS platform settings in JDeveloper so that you can deploy a MAF
application to the iOS platform.

For the iOS platform, you can specify preferences using the GUI or command line.

Using the GUI
To configure your environment for the iOS platform:

1. Ensure Xcode and iOS SDK are installed.

2-1

http://developer.apple.com/xcode/
https://appleid.apple.com/#!&page=signin
http://developer.apple.com

2. In JDeveloper, click Tools, and then click Preferences.

3. In the Preferences dialog, click Mobile Application Framework and then click
iOS Platform.

4. Enter the signing information and export options.

for more information, see Setting the Device Signing Options in Developing Mobile
Applications with Oracle Mobile Application Framework.

Using the Command Line
You can set MAF preferences required to develop MAF applications by specifying
startup parameters when you start JDeveloper.

To launch JDeveloper from the command line with startup parameters, use the -J-D
options. All strings must be enclosed in double-quotes, as shown in the examples.

The following example shows how to override the provisioning profile name.

 ./jdev -J-
Doracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.iosProvisioningProfileName="
Oracle ENT1 2017”

These are the startup parameters you can use to set iOS preferences from the
command line:

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.iosProvisioningProfile

Name

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.iosProvisioningProfile

TeamIdentifier

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.iosCertificate

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.iosExportMethod

Setting Up an iOS Device or Simulator
To deploy MAF applications, connect an iPhone or iPad to your development
computer or configure external network access to use iOS simulators, included in
XCode downloads.

In your MAF application development and deployment, you can use either the iOS-
powered device itself or its simulator.

Chapter 2
Setting Up an iOS Device or Simulator

2-2

Deployment method Description

Device (iOS-powered) Deploying to an iPhone or iPad is preferable
for testing.

You must connect the device to your computer
to establish a link between the two devices.
Also, you need to have an iOS-powered
device with a valid license, certificates, and
distribution profiles. See Deploying Mobile
Applications in Developing Mobile Applications
with Oracle Mobile Application Framework.

Note:

Since the Apple
licensing terms
and conditions
may change,
ensure that you
understand
them, comply
with them, and
stay up to date
with any
changes.

Simulator Deploying to a simulator is usually much faster
than deploying to a device, and it also means
that you do not have to sign the application
first. Before attempting to deploy your
application from JDeveloper to a device
simulator, you must first run the simulator. A
simulator can be invoked automatically,
without any additional setup.

Testing the iOS Environment Setup
Deploy a MAF sample application to test that you set up your iOS environment
successfully.

You can test your environment setup as follows:

1. In JDeveloper, open the HelloWorld sample application.

See MAF Sample Applications in Developing Mobile Applications with Oracle
Mobile Application Framework.

2. Select Application, and then click Deploy from the main menu.

3. From the dropdown menu, select the deployment profile for the iOS platform.

4. Select Deploy application to simulator in the Deploy dialog.

Using an iOS-powered device simulator test the environment setup is preferable
because it does not require signing of the application.

Chapter 2
Testing the iOS Environment Setup

2-3

Figure 2-1 Selecting Deployment Action for iOS

5. Click Next on the Deploy dialog to verify the Summary page, and then click
Finish.

See Deploying Mobile Applications in Developing Mobile Applications with Oracle
Mobile Application Framework.

After a successful deployment (which might take a few minutes), the device to which
you had deployed the application displays the launch screen of the HelloWorld
application, and then displays the default application feature.

Chapter 2
Testing the iOS Environment Setup

2-4

3
Setting Up Development Tools for the
Android Platform

This chapter provides information on setting up and configuring development tools for
the Android platform. Install the Android SDK and the emulator accelerator so that you
can deploy the MAF applications developed in JDeveloper to a configured Android
device or emulator.
This chapter includes the following sections:

• Installing the Android SDK

• Specifying the Android Settings in MAF

• Installing an Emulator Accelerator

• Creating an Android Virtual Device

• Setting Up Your Android Device to Install an App from Your Development Machine

• Testing the Android Environment Setup

Installing the Android SDK
Install the Android SDK to deploy a MAF application to Android devices.

Android Studio, Google’s IDE for Android development, includes the Android SDK in
its installation and provides wizard options that simplify the management of the SDK
platforms and tools that you need.

Install Android Studio, and the Android SDK that it includes, by downloading the
installation file from https://developer.android.com/studio/index.html. The Android
Developer’s website provides installation instructions for Windows, Mac, and Linux.
See https://developer.android.com/studio/install.html.

The Android SDK provides:

• Tools that build and package your application into an .APK file (the file type that
installs applications on Android devices)

• An emulator to create Android Virtual Devices (AVD) where you can test your
application if you do not have access to a physical Android device

• An OEM USB driver to connect your development machine to a physical Android
device through a USB cable if you do have a device (enables you to deploy an
application from your development machine to the Android device)

Specifying the Android Settings in MAF
Configure the Android-specific settings, such as Android SDK, build tools location, and
signing information to package and deploy applications to the Android platform.

For the Android platform, you can specify preferences using the GUI or command line.

3-1

https://developer.android.com/studio/index.html
https://developer.android.com/studio/install.html

Using the GUI
To configure your environment for the Android platform:

1. Ensure the Android SDK is installed.

2. In JDeveloper, click Tools, and then click Preferences.

3. In the Preferences dialog, click Mobile Application Framework , and then click
Android Platform.

4. Specify the location of the Android SDK on your computer.

5. Specify the location of the Android build tools on your computer.

6. Provide information on the signing credentials.

For more information about creating a key and keystore, see How to Sign a MAF
Application that You Deploy to the Android Platform in Developing Mobile
Applications with Oracle Mobile Application Framework.

Figure 3-1 Configuring Platform Preferences for Android

Using the Command Line
You can set MAF preferences required to develop MAF applications, such as the
Android SDK location, by specifying startup parameters when you start JDeveloper.

To launch JDeveloper from the command line with startup parameters, use the -J-D
options. All strings must be enclosed in double-quotes, as shown in the examples.

The following example shows how to override the location of the Android SDK:

jdeveloper.exe -J-
Doracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.androidPlatformDir="C:

Chapter 3
Specifying the Android Settings in MAF

3-2

\<my_Android_SDK_path>"

These are the startup parameters you can use to set Android preferences from the
command line:

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.androidSdkDir

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.androidBuildToolsDir

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.androidReleaseSigningK

eystorePath

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.androidReleaseSigningK

eystorePath

Installing an Emulator Accelerator
You can accelerate the performance of the emulator that renders AVDs by installing
an emulator accelerator.

Once installed, the emulator accelerator speeds up the performance of the emulator
and the AVDs that it emulates by allocating additional resources from your
development machine. You specify the amount during installation of the accelerator.
Once installed, the accelerator appears in the SDK Tools list of the SDK Manager that
you can launch from Android Studio, as shown in the following image. The Intel x86
Emulator Accelerator (HAXM) is one type of emulator accelerator that is available.

Figure 3-2 Install Emulator Accelerator

Make sure that the update site for the emulator accelerator that you want to download
is selected in the SDK Update Sites tab shown in the previous image. Once
downloaded, execute the installer. See https://developer.android.com/studio/run/
emulator-acceleration.html#accel-vm.

Chapter 3
Installing an Emulator Accelerator

3-3

https://developer.android.com/studio/run/emulator-acceleration.html#accel-vm
https://developer.android.com/studio/run/emulator-acceleration.html#accel-vm

Creating an Android Virtual Device
An Android Virtual Device (AVD) replicates an Android device on your development
computer. It is a useful option for testing, especially if you only have access to one or a
limited range of physical Android devices.

The AVD Manager that you launch from Android Studio by clicking Tools then
Android, and then AVD Manager has a range of ready-to-use virtual devices. It
includes most of those devices developed by Google itself, such as the Nexus and
Pixel XL range. Google maintains documentation describing how to manage AVDs
(see https://developer.android.com/studio/run/managing-avds.html).

Other Android device vendors, such as Samsung, provide specifications on their
websites that you can use to create the AVD yourself.

To create an AVD:

1. In Android Studio, launch the Android Virtual Device Manager by selecting Tools,
then Android, and then AVD Manager.

2. In the Your Virtual Devices screen, click Create Virtual Device.

3. In the Select Hardware screen, select a phone device, such as Pixel, and then
click Next.

4. In the System Image screen, click Download for one of the recommended system
images. Agree to the terms to complete the download.

5. After the download completes, select the system image from the list and click
Next.

6. On the next screen, leave all the configuration settings unchanged and click
Finish.

7. In the Your Virtual Devices screen, select the device you just created and click
Launch this AVD in the emulator.

Setting Up Your Android Device to Install an App from Your
Development Machine

You can install your app directly from your development machine to your Android
device by configuring the Android device and connecting it to your development
machine using a USB cable.

To set up your Android device:

1. Connect your device to your development machine with a USB cable.

If you are developing on Windows, you might need to install the appropriate USB
driver for your device. For help installing drivers, see the OEM USB Drivers
document.

2. Enable USB debugging on your device by going to Settings > Developer
options.

Chapter 3
Creating an Android Virtual Device

3-4

https://developer.android.com/studio/run/managing-avds.html
https://developer.android.com/studio/run/oem-usb.html

Note:

Developer options is hidden by default. To make it available, go to
Settings > About phone and tap Build number seven times. Return to
the previous screen to find Developer options.

Testing the Android Environment Setup
Deploy a MAF sample application to test that you set up your Android environment
successfully.

You can test your environment setup as follows:

1. In JDeveloper, open the HelloWorld sample application.

See MAF Sample Applications in Developing Mobile Applications with Oracle
Mobile Application Framework.

2. Select Application then Deploy from the main menu.

See Deploying Mobile Applications in Developing Mobile Applications with Oracle
Mobile Application Framework.

3. From the dropdown menu, select the deployment profile for the Android platform.

4. Select Deploy application to emulator in the Deploy dialog.

Using an Android-powered device emulator to test the environment setup is
preferable because it does not require signing of the application. Ensure that the
emulator is running before you start the deployment.

Figure 3-3 Selecting Deployment Action for Android

5. Click Next on the Deploy dialog to verify the Summary page, and then click
Finish.

See Deploying Mobile Applications in Developing Mobile Applications with Oracle
Mobile Application Framework.

After a successful deployment (which might take a few minutes), the device to which
you had deployed the application displays the launch screen of the HelloWorld
application, and then displays the default application feature.

Chapter 3
Testing the Android Environment Setup

3-5

4
Setting Up Development Tools for the
Universal Windows Platform

This chapter provides information on setting up and configuring development tools for
the Universal Windows platform. Install Visual Studio along with needed SDKs and
create and install the PFX file so that you can deploy the MAF applications developed
in JDeveloper to the Universal Windows Platform.
This chapter includes the following sections:

• Installing Visual Studio

• Creating a PFX File for MAF Applications

• Installing a PFX File on Windows 10

• Specifying the UWP Settings in MAF

• Enabling Developer Mode on Windows 10

• Testing the Windows Environment Setup

Installing Visual Studio
Install Visual Studio 2017 along with the required Windows 10 SDKs.

The Visual Studio installer also allows you to install the Windows SDKs that enable
deployment of applications to the UWP. Here are the other components you must
install.

• MSBuild 15.0 (automatically installed with Visual Studio 2017)

• Universal Windows Platform development tools (a workload available when
installing Visual Studio 2017)

• Windows 10 SDK 10.0.10586.0 (an optional component available when installing
Visual Studio 2017)

• Windows 10 SDK 10.0.14393.0 (an optional component available when installing
Visual Studio 2017)

To install Visual Studio 2017:

1. Ensure MAF and JDeveloper (12.2.1.3.0) are installed on a computer with x86
architecture running the Windows 10 operating system (version 1511 or later).

2. Download an edition of Visual Studio 2017 available at: https://
www.visualstudio.com/downloads/.

Select the Visual Studio edition that you require: Community, Professional, or
Enterprise. All editions provide the required software to develop and deploy a MAF
application to the UWP. Visit the Visual Studio Community product page for
information about the eligibility criteria to use Visual Studio Community edition.

3. During the Visual Studio 2017 installation, select these options.

a. Select the Universal Windows Platform development workload.

4-1

https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/

b. Select Windows 10 SDK (10.0.10586.0) and Windows 10 SDK
(10.0.14393.0) available under the Individual components.

Note:

If you are migrating from an existing MAF and Visual Studio 2015
installation, you might already have the required Windows 10 SDKs
installed. If you are performing a fresh installation of Visual Studio
2017, you must install these Windows 10 SDKs.

Figure 4-1 Installing Visual Studio 2017

For more information on the Windows 10 SDKs, see: https://
developer.microsoft.com/en-us/windows/downloads/sdk-archive.

Chapter 4
Installing Visual Studio

4-2

https://developer.microsoft.com/en-us/windows/downloads/sdk-archive
https://developer.microsoft.com/en-us/windows/downloads/sdk-archive

Creating a PFX File for MAF Applications
MAF applications deployed to the UWP must be digitally signed using a Personal
Information Exchange (PFX) file.

Use Microsoft’s New-SelfSignedCertificate cmdlet in a PowerShell console with
administrator privileges to create a PFX file.

To create a PFX file:

1. Click Start, type PowerShell, right-click Windows PowerShell, and then click
Run as administrator.

The PS C:\windows\system32> prompt is displayed.

2. Change the value for the -Subject parameter, as required and run the following
command.

New-SelfSignedCertificate -CertStoreLocation cert:\localmachine\my -Subject
'CN=Example,OU=MAF,O=Oracle,C=US' -KeyAlgorithm RSA -KeyLength 2048
-Provider 'Microsoft Enhanced RSA and AES Cryptographic Provider' -
KeyExportPolicy Exportable -KeyUsage DigitalSignature
-Type Custom -TextExtension
@('2.5.29.37={text}1.3.6.1.5.5.7.3.3,1.3.6.1.4.1.311.10.3.13','2.5.29.19={text}CA
=False')

In the command:

• -CertStoreLocation: Specifies the certificate store in which to save the new
certificate.

• -Subject: Specifies the string that appears in the subject of the new certificate.

• -KeyAlgorithm: Specifies the algorithm used to create the asymmetric
certificate key.

• -KeyLength: Specifies the length (in bits) of the certificate key.

• -Provider: Specifies the name of the KSP or CSP that the cmdlet uses to
create the certificate.

• -KeyExportPolicy: Specifies the policy that governs the export of the private
key.

• -KeyUsage: Specifies the key usages set in the key usage extension of the
certificate.

• -Type: Specifies the type of certificate that the cmdlet creates.

• -TextExtension: Specifies an array of certificate extensions (strings) the cmdlet
includes in the new certificate.

For more information on the parameters, see Microsoft’s documentation.

If successful, the command prints the thumbprint ID and subject of the certificate.
Here is a sample output.

PSParentPath: Microsoft.PowerShell.Security\Certificate::LocalMachine\my

Thumbprint Subject
---------- -------
EA8DA38619D6FF49C9BBE51651DDD6950EF767AE CN=Example, OU=MAF, O=Oracle, C=US

3. Enter the following command.

Chapter 4
Creating a PFX File for MAF Applications

4-3

https://technet.microsoft.com/itpro/powershell/windows/pkiclient/new-selfsignedcertificate

$pwd = ConvertTo-SecureString -String '<password>' -Force -AsPlainText

In the command, replace <password> with a suitable password.

4. Enter the following command to create the PFX file.

Export-PfxCertificate -cert cert:\localMachine\my\<thumbprint ID> -FilePath
<path> -Password $pwd

In the command:

• Change <thumbprint ID> to the value output to the console (for example,
EA8DA38619D6FF49C9BBE51651DDD6950EF767AE)

• Change <path> to your preferred path, such as c:\someDir\MyPFX.pfx

5. Navigate to the specified path and verify whether the PFX file was created.

Installing a PFX File on Windows 10
Install a Personal Information Exchange (PFX) file in a certificate store on a computer
so that the certificate can be used for application signing.

A Software Publisher Certificate (SPC), with its private and public keys, is used for
application signing and is stored in a Personal Information Exchange (.pfx) file. A PFX
file has to be copied or installed to a certificate store, where the operating system
keeps all certificates.

Note:

The installation has to be completed once, manually, for every PFX file on a
given computer.

To install a PFX file in a certificate store:

1. Locate and double-click the .pfx file to open the file in the Certificate Import
Wizard.

2. Select Current User as the Store Location, and then click Next.

When you install the PFX file in the Local Machine store, the Windows User
Access Control dialog is opened. Click Yes for Do you want to allow this app to
make changes to your PC?

3. Verify whether the name in the File name field is the one you want, and then click
Next.

Note:

The default file location is the location of the file that you double-clicked.

4. Enter a password for the private key, if required.

5. Select Included all extended properties, and then click Next.

6. Select Place all certificates in the following store, and click Browse.

Chapter 4
Installing a PFX File on Windows 10

4-4

7. In Select Certificate Store, select the certificate store that matches the store
location, Personal , click OK.

8. Click Next, and then on Completing the Certificate Import Wizard, click Finish to
import the certificate.

This procedure installs the PFX file in the Personal certificate store.

9. Run the Certificate Import Wizard a second time, select the Current User location,
and the Trusted People certificate store.

10. Run the Certificate Import Wizard a third time, select the Local Machine location,
and the Trusted People certificate store.

Specifying the UWP Settings in MAF
Configure the UWP-specific settings, such as Windows SDK location and PFX file
information to package and deploy applications to the UWP platform.

To package and deploy applications to the platforms supported by MAF, JDeveloper
needs the name of the platform and the names of the directories containing platform-
specific tools and data. For convenience, MAF populates JDeveloper Preferences with
these settings. Each platform-specific page hosts the preferences for the platform SDK
(Android, iOS, or Windows), collecting information, such as the path that MAF needs
to compile and deploy Android, iOS, or Windows projects.

To configure your environment for the UWP platform:

1. Ensure the needed Windows SDKs are installed when installing Microsoft Visual
Studio 2017.

2. In JDeveloper, click Tools then Preferences.

3. In the Preferences dialog, click Mobile Application Framework then Windows
Platform.

4. Specify the location of the Windows SDK files (MSBuild version 15.0).

5. Provide the certificate (PFX file) location and password.

You can use the same PFX file to run your application in the Release and Debug
modes on your computer. We recommend that you use a certificate issued by a
trusted authority, such as your internal CA, if you want to distribute your
application and run it on other devices within your organization.

Enabling Developer Mode on Windows 10
Enable Developer Mode on the Windows 10 development computer to side-load
applications and to run them in the Debug mode.

Windows 10 runs UWP applications from a trusted source. Since the certificates you
imported are self-signed, they will not run by default. If you want to develop and deploy
MAF applications to the UWP you must enable Developer Mode on the Windows 10
computer that you use. Developer Mode is required for the following reasons:

• Side-load, or install and run applications, from unofficial sources.

• Run an application in the Debug mode.

To enable Developer Mode:

Chapter 4
Specifying the UWP Settings in MAF

4-5

1. Press the Windows key, search for Settings, and select Settings - Modern
application from the displayed results.

2. Select Update & Security, then For developers, and click Developer mode.

Note:

If you create an application in Visual Studio, the system prompts you
with a dialog to enable Developer Mode.

3. Configure settings for the Windows platform in JDeveloper as described in
Specifying the UWP Settings in MAF.

Testing the Windows Environment Setup
Deploy a MAF sample application to test that you set up your Windows environment
successfully.

You can test your environment setup as follows:

1. In JDeveloper, open the HelloWorld sample application.

See MAF Sample Applications in Developing Mobile Applications with Oracle
Mobile Application Framework.

2. Select Application then Deploy from the main menu.

See Deploying Mobile Applications in Developing Mobile Applications with Oracle
Mobile Application Framework.

3. From the dropdown menu, select the deployment profile for the Windows platform.

4. Select Deploy application to local machine in the Deploy dialog.

5. Click Next on the Deploy dialog to verify the Summary page, and then click
Finish.

See Deploying Mobile Applications in Developing Mobile Applications with Oracle
Mobile Application Framework.

After a successful deployment (which might take a few minutes), the device to which
you had deployed the application displays the launch screen of the HelloWorld
application, and then displays the default application feature.

Chapter 4
Testing the Windows Environment Setup

4-6

5
Migrating Your Application to MAF 2.5.1

This chapter provides information that you may need to know if you migrate an
application created using an earlier release of MAF to MAF 2.5.1.
This chapter includes the following sections:

• Migrating an Application to MAF 2.5.1

• Using Xcode 9.x with MAF 2.5.1

• Migrating Cordova Plugins from Earlier Releases to MAF 2.5.1

• Evaluating EL Expressions in the Java VM Layer

• Configuring Application Features with AMX Content to Use WKWebView on iOS

• Security Changes in Release 2.4.0 and Later of MAF

• Security Changes in Release 2.2.1 and Later of MAF

• Migrating an Application Developed Using AMPA to MAF 2.5.1

• Migrating MAF Applications that Use Customer URL Schemes to Invoke Other
Applications

• Migrating to JDK 8 in MAF 2.5.1

• Retaining Legacy Behavior When Navigating a MAF Application Using Android’s
Back Button

• Migrating to New cacerts File for SSL in MAF 2.5.1

Migrating an Application to MAF 2.5.1
Customers who migrate to this release of MAF need to be aware of changes
introduced in this release and earlier releases of MAF (for example, MAF 2.3.0) that
may affect the applications you migrate.

You must install Android API Level 27 to build and deploy MAF applications to the
Android platform. Ensure that you install the Android SDK Platform API Level 27 into
the Android SDK Location that you have specified in your MAF preferences, as
described in Setting Up Development Tools for the Android Platform.

This release updates the Cordova engine versions that MAF uses (Android: 7.0.0 and
iOS: 4.5.4). See Migrating Cordova Plugins from Earlier Releases to MAF 2.5.1.

For information about new features introduced in this release, see What's New in This
Guide for MAF Release 2.5.1 in Developing Mobile Applications with Oracle Mobile
Application Framework.

Previous releases of MAF introduced the following changes that affect the applications
you migrate.

5-1

Release Description

MAF 2.5.0 • Required you to install the MAF extension
in Oracle JDeveloper 12c (12.2.1.3.0).
See Installing Mobile Application
Framework with JDeveloper . All MAF
applications that you open for the first
time in JDeveloper using this release of
MAF will prompt you to migrate the
application because this release of MAF
uses a newer version of JDeveloper
(12.2.1.3.0).

• Required Xcode 9.x to build and deploy
MAF applications to the iOS platform.
Upgrade your installation to Xcode 9.x, as
described in Using Xcode 9.x with MAF
2.5.1. The iOS deployment profile now
contains Version and Build input fields
where you can specify version and build
numbers for the MAF applications you
deploy to iOS. See Deploying an iOS
Application.

• For MAF applications that you deploy to
Android, note the following:

– You must install Android API Level 26
to build and deploy MAF applications
to the Android platform. Ensure that
you install the Android SDK Platform
API Level 26 into the Android SDK
Location that you have specified in
your MAF preferences, as described
in Setting Up Development Tools for
the Android Platform. As a result of
this change, MAF applications can no
longer share file:// URLs to
external application and restrictions
apply on the directory location of files
that you display to an external viewer
using the DeviceFeatures data
control’s displayFile method. See
How to Use the displayFile Method to
Enable Displaying Files in Developing
Mobile Applications with Oracle
Mobile Application Framework.

– MAF now includes a new core plugin
"Storage Access" (maf-cordova-
plugin-storage-access) that
controls the storage permissions of
MAF applications you deploy to the
Android platform. MAF enables the
Storage Access plugin by default
which means that MAF applications
you deploy to Android devices can
access local storage if granted
permission by users. MAF enables
the Storage Access plugin in MAF
applications that you migrate to this
release of MAF. You can disable the

Chapter 5
Migrating an Application to MAF 2.5.1

5-2

Release Description

Storage Access plugin in your
migrated MAF application. See
Enabling a Core Plugin in Your MAF
Application in Developing Mobile
Applications with Oracle Mobile
Application Framework.

– MAF applications on the Android
platform that you migrate to this
release of MAF and later enable
multidex support by default. You can
disable multidex support by modifying
the Android deployment profile you
use. See Deploying a MAF
Application to the Android Platform in
Developing Mobile Applications with
Oracle Mobile Application
Framework.

• MAF now uses standard JDeveloper
constructs to deploy MAF applications to
the Universal Windows Platform, which
means that you can deploy your
application from the command line, as
described in Deploying MAF Applications
from the Command Line Using OJDeploy.
The number of log levels that you can
specify when you deploy an application
has also increased. You configure the log
level you want to use (Quiet, Minimal, and
so on) in the Windows deployment profile.
See Working with Deployment Profiles.

• Updated the Cordova engine versions that
MAF uses (Android: 6.2.3, iOS: 4.5.0, and
Windows: 5.0.0). See Migrating Cordova
Plugins from Earlier Releases to MAF
2.5.1.

• MAF applications now evaluate EL
expressions in the Java VM layer where
previously this evaluation took place in the
Web View layer. MAF applications that
you migrate to this release use the new
behavior (evaluate EL expressions in the
Java VM layer). If your MAF application
includes custom components, you must
now create a /META-INF/amx-tag-
libraries.xml file that describes the
custom components your MAF application
uses. See Creating Custom UI
Components. You can configure new or
migrated MAF applications to evaluate EL
expressions in the Web View layer. See
Evaluating EL Expressions in the Java
VM Layer.

Chapter 5
Migrating an Application to MAF 2.5.1

5-3

Release Description

MAF 2.4.2 Used Visual Studio 2017, in addition to Visual
Studio 2015, to set up the development
environment that you use to deploy MAF
applications to the Universal Windows
Platform. Ensure that you have both versions
10.0.10586.0 and 10.0.14393 of the Windows
10 SDK installed in whichever version of
Visual Studio you use. See Setting Up
Development Tools for the Universal Windows
Platform.

MAF 2.4.1 Required Xcode 8.3.x to build and deploy MAF
applications to the iOS platform and you must
select an export method (Ad Hoc, App Store,
Development, or Enterprise) from the Method
dropdown list in the iOS platform page of the
Preferences dialog, as described in Setting the
Device Signing and Export Options of
Developing Mobile Applications with Oracle
Mobile Application Framework. Note also that
you can maintain two separate installations of
Xcode, as described in Using Xcode 9.x with
MAF 2.5.1, if you want to maintain two
separate development environments for
different versions of MAF.

Chapter 5
Migrating an Application to MAF 2.5.1

5-4

Release Description

MAF 2.4.0 • Used Gradle to build and deploy MAF
applications to the Android platform. MAF
downloads and installs Gradle during the
initial deployment of a MAF application to
Android. You may need to configure
Gradle proxy settings to ensure a
successful installation of Gradle. See How
to Configure Gradle Proxy Settings in
Developing Mobile Applications with
Oracle Mobile Application Framework.

• Updated the Cordova engine versions that
MAF used (Android: 6.0.0, iOS: 4.3.0, and
Windows: 4.4.3). As a result, you may
need to update custom Cordova plugins
that you use in your migrated application,
as described in Migrating Cordova Plugins
from Earlier Releases to MAF 2.5.1.

• Removed APIs that were deprecated in
previous releases. Before you upgrade to
this release, review deprecation warnings
reported at build time and modify your
application to use supported APIs. If you
do not do this, your migrated application
may fail to build following upgrade to this
release. For information about the APIs
that MAF supports, see the Java API
Reference for Oracle Mobile Application
Framework.

• Defaulted the HTTPS protocol to TLSv1.2
on MAF applications that you deploy to
the Android platform. Although not
recommended, you can override this
default behavior, as described in Security
Changes in Release 2.4.0 and Later of
MAF.

MAF 2.3.3 and later Required Xcode 8 to develop and deploy MAF
applications to the iOS platform. It also
supports deployment of applications to devices
running on the iOS 10 platform. See Using
Xcode 9.x with MAF 2.5.1.

MAF 2.3.2 and later • Replaced the java.security file in your
migrated MAF application with a new
version generated by MAF. MAF saves
the original file with the following filename:
java.security.orig. If you had
previously made changes to this file you
may need to copy those changes to the
new version of the java.security file.

• Included capability to configure migrated
applications that run on iOS 9 and later to
use WKWebView, as described in
Configuring Application Features with
AMX Content to Use WKWebView on
iOS.

Chapter 5
Migrating an Application to MAF 2.5.1

5-5

Release Description

MAF 2.3.1 and later Included the client data model feature that
provides offline read and write support for
REST services. If you previously used the A-
Team Mobile Persistence Accelerator (AMPA)
extension to develop an application with these
capabilities, you can migrate it to this release
of MAF, as described in Migrating an
Application Developed Using AMPA to MAF
2.5.1.

Chapter 5
Migrating an Application to MAF 2.5.1

5-6

Release Description

MAF 2.3.0 and later • Used newer versions of Cordova (4.x). If
your migrated MAF application uses a
third-party Cordova plugin, verify that it is
compatible with the Android and iOS
versions of Cordova that this release of
MAF uses. See Migrating Cordova
Plugins from Earlier Releases to MAF
2.5.1.

• Stored the RestServiceAdapter interface
to a new package location
(oracle.maf.api.dc.ws.rest). The
functionality that this interface specifies
remains unchanged. For information
about creating a REST web service
adapter, see Creating a Rest Service
Adapter to Access Web Services in
Developing Mobile Applications with
Oracle Mobile Application Framework.

• Removed support for the following
features that were deprecated in earlier
releases:

– Mobile-Social authentication server
type. Customers are recommended
to use another authentication type,
such as OAuth, that MAF supports.

– SOAP web services. Customers are
recommended to use REST web
services with JSON objects. See the
Using Web Services in a MAF
Application in Developing Mobile
Applications with Oracle Mobile
Application Framework.

• No longer bundled the jQuery JavaScript
library (starting with MAF 2.3.0). It is no
longer used in AMX pages or
components. Customers who want to use
the jQuery JavaScript library need to
explicitly include jQuery using feature
includes.

• Introduced support for the deployment of
MAF applications to the Universal
Windows Platform (UWP) (starting with
MAF 2.3.0). If your migrated MAF
application contains platform-specific
code that only executes when the MAF
application runs on a specific platform,
revise your MAF application to include
platform-specific code for the UWP if you
want your MAF application to run on this
newly-supported platform. For information
about deploying a MAF application to the
UWP, see Deploying a MAF Application to
the Universal Windows Platform in
Developing Mobile Applications with
Oracle Mobile Application Framework.

Chapter 5
Migrating an Application to MAF 2.5.1

5-7

Release Description

MAF 2.2.1 Enabled App Transport Security (ATS) by
default for applications that you migrate to this
release. See Security Changes in Release
2.2.1 and Later of MAF. If your migrated
application uses URL schemes to invoke other
applications, configure the migrated
application as described in Migrating MAF
Applications that Use Customer URL Schemes
to Invoke Other Applications.

MAF 2.1.0 • Used newer versions of Apache Cordova
and Java. It also changed the way that
JDeveloper registered Cordova plugins in
your MAF application. For SSL, it
delivered a cacerts file that contained
new CA root certificates.

Note:

If you migrate an application to
MAF 2.3.0 or later that was
created in MAF 2.1.0 or
previously migrated to MAF
2.1.0, MAF will have made
already made the changes
required by migration to JDK 8,
management of Cordova
plugins, and a new cacerts
file.

• Included an updated SQLite database and
JDBC driver. Review, and migrate as
necessary, any code in your migrated
MAF application that connects to the
SQLite database. For information about
how to connect to the SQLite database,
see Using the Local SQLite Database in
Developing Mobile Applications with
Oracle Mobile Application Framework.

Using Xcode 9.x with MAF 2.5.1
MAF 2.5.1 requires Xcode 9.x to develop and deploy MAF applications to the iOS
platform.

Install or upgrade to Xcode 9.x, as described in Installing Xcode and iOS SDK. Once
you install or upgrade to Xcode 9.x, make sure to start it so that you accept the license
agreements. Failure to do this may cause deployment errors when JDeveloper
attempts to deploy your MAF application to iOS. With this installation, Xcode 9.x
replaces the previous installation of Xcode. No other changes are required, since
JDeveloper will now use the active Xcode installation. If you want to maintain separate
development environments, you can install two instances of Xcode, as described
below. For example, install Xcode 9.x for MAF 2.5.1 and install Xcode 8.3.x for MAF
2.4.2.

Chapter 5
Using Xcode 9.x with MAF 2.5.1

5-8

How To Maintain Separate Xcode 9.x and Xcode 8.3.x Installations
To maintain separate Xcode 9.x and Xcode 8.3.x installations:

1. Rename the preexisting Xcode.app installation for Xcode 8.3.x (For example,
Xcode8.app.) and reboot your system before you proceed to the next step.

2. Install Xcode 9.x from the Apple App Store, as described in Installing Xcode and
iOS SDK. Make sure that you install, not update, Xcode from the Apple App Store.

3. Once you install Xcode 9.x, make sure to start it so that you accept the license
agreements.

After installation, verify that you have the following Xcode installations in your
Applications location:

Xcode 9.x installation:
/Applications/Xcode.app

Xcode 8.3.x installation:
/Applications/Xcode8.app

4. Once the two versions of Xcode have been installed, you must manually control
which Xcode installation is active at any given time. Use the xcode-select
command in a terminal window to perform this procedure, as shown in the
following examples:

//To make Xcode 9.x active:
sudo xcode-select -s /Applications/Xcode.app

//To make Xcode 8.3.x active:
sudo xcode-select -s /Applications/Xcode8.app

//To determine which instance of Xcode is currently active:
xcode-select --print-path

Migrating Cordova Plugins from Earlier Releases to MAF
2.5.1

MAF 2.5.1 and later use new versions of Cordova. See the Cordova Engine Version
section in the overview editor for the maf-application.xml file for the version that each
targeted platform uses.

To complete the migration and make sure that your migrated MAF application can
continue to use any non-core plugins it used previously, verify that this release of MAF
supports the version of the plugin(s) that your MAF application uses. The Cordova
Engine Versions displays the versions that your release of MAF uses, as illustrated in
Figure 5-1. Obtain a newer version of the plugin if the plugin was created using an
earlier release of Cordova than that used by the current release of MAF. Set the
relative path to the plugin so that the maf-plugins.xml file of the MAF application
correctly references the plugin. See Registering Additional Plugins in Your MAF
Application in Developing Mobile Applications with Oracle Mobile Application
Framework. If the maf-plugins.xml file does not correctly reference a plugin using a
relative path, the overview editor for the maf-application.xml file's Path* field which
requires a value is empty and the maf-plugins.xml displays a validation failure, as
shown in Figure 5-1.

Chapter 5
Migrating Cordova Plugins from Earlier Releases to MAF 2.5.1

5-9

MAF applications developed using earlier releases of MAF (prior to MAF 2.1.0)
registered plugins in the maf-application file. Release MAF 2.1.0 and later registers
plugins in the maf-plugins.xml file. JDeveloper makes the following changes to an
application from an earlier release that uses plugins when you migrate the application:

• Comments out entries in the maf-application.xml file that referenced plugins. For
example, JDeveloper comments out entries such as the following:

<!--<adfmf:cordovaPlugins>
 <adfmf:plugin fullyQualifiedName="BarcodeScanner"
 implementationClass="com.phonegap.plugins.
 barcodescanner.BarcodeScanner" platform="Android"
 name="BarcodeScanner">

</adfmf:cordovaPlugins>-->

• Registers the plugin in the maf-plugins.xml file, as shown in the following example:

<cordova-plugins>
 ...
 <cordova-plugin id="c3" pluginId="org.apache.cordova.barcodeScanner">
 <platform id="p3" name="ios" enabled="true"/>
 <platform id="p4" name="android" enabled="false"/>
 </cordova-plugin>
 </cordova-plugins>

Figure 5-1 MAF Application that Does Not Specify Path to Plugin

Chapter 5
Migrating Cordova Plugins from Earlier Releases to MAF 2.5.1

5-10

Evaluating EL Expressions in the Java VM Layer
Prior to this release, MAF handled AMX file, EL and AMX node creation in the Web
View layer of the MAF application. With this release, MAF performs these tasks in the
Java VM layer of new MAF applications that you create.

MAF applications that you migrate to this release also perform these tasks in the Java
VM Layer. Note the following as you review MAF applications that you migrate to this
release:

• A number of MAF JS APIs have been deprecated. For information about the up-to-
date JS APIs that MAF supports, see JSDoc Reference for Oracle Mobile
Application Framework.

• MAF applications that include custom components must now include a /META-INF/
amx-tag-libraries.xml file with the metadata for the XML namespace you use to
identify the custom components you support and their attributes. See Creating
Custom UI Components in Developing Mobile Applications with Oracle Mobile
Application Framework.

• As EL creation and evaluation has moved to the Java VM layer, EL expressions
should not be evaluated in JavaScript and must not be used from component type
handlers.

You can configure new and migrated MAF applications to use the legacy behavior
where MAF evaluated EL expressions in the Web View Layer, as described in the
following section.

How to Move EL Evaluation to the Web View Layer

You move EL evaluation to the Web View layer by setting the value of the
<amxTagHandling> property in the maf-config.xml file to legacy.

To move EL evaluation to the Web View layer:

1. In the Applications window, expand the Application Resources panel.

2. In the Application Resources panel, expand Descriptors and then ADF META-
INF.

3. Double-click the maf-config.xml file and in the source editor that appears, add the
following entry:

<adfmf-config xmlns="http://xmlns.oracle.com/adf/mf/config">
 ...
 <!-- Use the Java VM layer to handle AMX tags and node hierarchies -->
 <amxTagHandling>legacy</amxTagHandling>
</adfmf-config>

Other valid values that you can add to the maf-config.xml file to handle EL
evaluation include webview or legacy. These force the use of the Web View layer to
handle AMX tags and node hierarchies. A value of default or no entry for the
amxTagHandling property means the Web View layer handles AMX tags and node
hierarchies.

Remove the <amxTagHandling>legacy</amxTagHandling> entry or set it to
<amxTagHandling>default</amxTagHandling> if you want the MAF application to use
the default behavior of evaluating EL expressions in the Java VM layer.

Chapter 5
Evaluating EL Expressions in the Java VM Layer

5-11

Configuring Application Features with AMX Content to Use
WKWebView on iOS

New MAF applications that you create using the MAF 2.3.2 release and later of MAF
use WKWebView by default to render AMX content type when you deploy the MAF
application to an iOS device. You can opt to use this web view in MAF applications
that you migrate to this release of MAF.

The newer WKWebView offers improved performance compared to UIWebView.

The following example illustrates how you configure an application feature with AMX
content in a migrated MAF application to use the newer WKWebView. To revert to
using UIWebView, set the value attribute to legacy. You configure these properties in
the maf-features.xml file for each application feature with AMX content that you want to
use WKWebView.

<adfmf:feature id="WKWebViewExample" name="WKWebViewExample">
 <adfmf:constraints>
 <adfmf:constraint property="device.os" operator="contains" value="iOS"
id="c6"/>
 </adfmf:constraints>
 <adfmf:content id="WKWebViewExample.1">
 <adfmf:amx file="WKWebViewExample/home.amx"/>
 </adfmf:content>
 <adfmf:properties id="wkp1">
 <adfmf:property id="wkp1-1" name="iOSWebView" value="modern" />
 <!-- To revert to using UIWebView, set to legacy -->
 <!-- name="iOSWebView" value="legacy" -->
 </adfmf:properties>
 </adfmf:feature>

Application features that use local HTML or remote URL content types continue to use
the UIWebView as this web view supports the /~maf.device~/ virtual path to access
JavaScript APIs.

When the iOSWebView property is missing or is set to default then WKWebView is used
for AMX content and UIWebView is used for local HTML and remote URL content
types. You can specifically opt-in to using WKWebView for the local HTML and remote
URL content types by setting the value to modern if you do not need the /~maf.device~/
virtual path.

WKWebView is used on iOS 9+ only. UIWebView will always be used on iOS 8.

Security Changes in Release 2.4.0 and Later of MAF
Starting with MAF 2.4.0, MAF defaults the HTTPS protocol to TLSv1.2 on MAF
applications that you deploy to the Android platform.

On supported platforms, you can override this behavior by specifying an alternative
value as a Java command-line argument in the maf.properties file, as shown by the
following example that configures the Java VM layer of your application to use TLSv1.1.

// Configure Java VM layer of the MAF app to use TLSv1.1
java.commandline.argument=-Dhttps.protocols=TLSv1.1

Chapter 5
Configuring Application Features with AMX Content to Use WKWebView on iOS

5-12

// Configure the HTTPS cipher suite(s) that an application uses by
// providing a comma-separated list as a value
java.commandline.argument=-Dhttps.cipherSuites=TLS_RSA_WITH_AES_256_CBC_SHA

Android’s authentication mechanism honors the properties in the maf.properties file if
the Android version supports the legacy protocols. Devices running Android 7+, for
example, do not support TLSv1 and disable RC4-based cipher suites.

On the iOS and Universal Windows Platform, specifying these properties in the
maf.properties file does not change the authentication mechanism of the application.
This is managed by the platform itself. However, application code, such as REST calls,
may be affected by these properties.

We recommend that you retain the default MAF behavior in your application.
Otherwise you may introduce security risks to your application. Overriding the default
behavior is described here to assist you if you need to test your application with
servers that use older versions of SSL or deprecated cipher suites.

Security Changes in Release 2.2.1 and Later of MAF
Migrating an application from MAF 2.2.0 or earlier to MAF 2.3.0 and later requires you
to make some configuration changes to your migrated application so that it adheres to
the latest security standards supported by this release of MAF.

Starting with MAF 2.2.1, use of HTTPS with TLS 1.2 for all connections to the server
from MAF applications on iOS is required. Any MAF application that uses non-HTTPS
connections and an SSL version lower than TLS1.2 will fail to run on iOS. MAF
enforces this behavior to meet the Apple iOS requirement to use App Transport
Security (ATS) that requires use of HTTPS with TLS 1.2. You can disable use of ATS,
as described below.

MAF applications also adhere to the default behavior enforced by the JVM of Java 8 to
use the latest SSL version and cipher suites. While we encourage you to upgrade your
servers to use these later versions, you can configure your MAF application to work
around SSL errors you may encounter by using servers with older SSL versions, as
described below.

Disabling App Transport Security for MAF Applications on iOS Devices

MAF applications that you migrate to this release of MAF enable ATS by default. You
can disable ATS in your MAF application as follows:

1. In JDeveloper, choose Application > Application Properties > Deployment.

2. In the Deployment page, double-click the iOS deployment profile.

3. Select iOS Options.

4. Select Disable Application Transport Security and click OK.

Note:

We recommend that you do not disable ATS. Apple plans to enforce use
of ATS from January 01, 2017. MAF applications that disable ATS will
not be approved for publication by the Apple App Store.

Chapter 5
Security Changes in Release 2.2.1 and Later of MAF

5-13

SSL Configuration Changes

Customers who use SSL versions lower than TLS 1.2, deprecated cipher suites or
deprecated encryption algorithms will see SSL errors like "invalid cipher suite",
"close notify", "TLS error", and so on. Java 8 enforces use of the latest SSL version
and cipher suites. It disables use of insecure SSL versions by default. We encourage
you to update your servers to use the later SSL version. If this is not possible, you can
use the following configuration to work around the SSL errors just described:

1. Update maf.properties file with the version of SSL that you want to use. For
example, add the following entry to the maf.properties file to use TLS 1:

java.commandline.argument=-Dhttps.protocols=TLSv1

2. Update maf.properties file with the full list of cipher suites required by the
application. For the list of cipher suites that Java supports, see the Cipher Suites
section on this page.

For example, to enable SSL_RSA_WITH_RC4_128_MD5, add the following:

java.commandline.argument=-D SSL_RSA_WITH_RC4_128_MD5

3. Update the java.security file to enable deprecated algorithms. Existing MAF
applications will not have this file so create a new empty MAF application and copy
the java.security file created in the new MAF application’s /resources/security to
the same directory in the existing application.

For example, the RC4 algorithm is disabled by default per the following entry in the
java.security file:

jdk.tls.disabledAlgorithms=SSLv3, RC4, DH keySize < 768

If you use a cipher suite that requires the RC4 algorithm, such as
SSL_RSA_WITH_RC4_128_MD5, an error is thrown at runtime while establishing the SSL
connection. To work around this, change the java.security entry as follows to
enable the RC4 algorithm:

jdk.tls.disabledAlgorithms=SSLv3, DH keySize < 768

Migrating an Application Developed Using AMPA to MAF
2.5.1

Describes how to migrate an application developed using the A-Team Mobile
Persistence Accelerator (AMPA) extension and an earlier release of MAF to this
release of MAF.

MAF 2.3.1 and later incorporates AMPA, a persistence and data synchronization
framework, as part of the client data model feature in MAF. Application developers can
develop new MAF applications using the design-time and runtime features of the MAF
client data model to generate the data model of their application, decide what data
objects to persist on end user’s devices, plus generate a complete user interface from
data controls created from the service objects in the generated client data model. See
Creating the Client Data Model in a MAF Application in Developing Mobile Applications
with Oracle Mobile Application Framework.

You can migrate applications developed using the AMPA extension and earlier
releases of MAF to this release of MAF by performing the following tasks:

Chapter 5
Migrating an Application Developed Using AMPA to MAF 2.5.1

5-14

http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html

• Change the namespace in the persistence-mapping.xml file

• Modify the lifecycle listener in the maf-application.xml file

• Change the package names of AMPA classes to use the MAF client data model
package names

Change the Namespace in the persistence-mapping.xml File

Change the namespace in the persistence-mapping.xml file to use the MAF client data
model value, as shown in the following example:

<mobileObjectPersistence xmlns="http://xmlns.oracle.com/adf/mf/amx/cdm/
persistenceMapping" ...

The persistence-mapping.xml file is in the following directory of the
ApplicationController project in your migrated application:

/ApplicationController/src/META-INF

Modify the Lifecycle Listener in the maf-application.xml File

Change the value of the listener-class attribute in the maf-application.xml file from
oracle.ateam.sample.mobile.lifecycle.InitDBLifeCycleListener to the MAF client data
model value, as shown in the following example:

<adfmf:application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:adfmf="http://xmlns.oracle.com/adf/mf"
 ...
 listener-class="oracle.maf.impl.cdm.lifecycle.InitDBLifeCycleListener">

The maf-application.xml file is in the following directory of your migrated application:

./.adf/META-INF/maf-application.xml

Change AMPA Package Name to MAF Client Data Model Package Names

Revise the package names of Java classes in your migrated application to the
package names used by MAF client data model. The mapping between AMPA
packages and the MAF client data model packages is as follows:

oracle.ateam.sample.mobile -----> oracle.maf.impl.cdm
oracle.ateam.sample.mobile.v2.security -----> oracle.maf.impl.cdm.security
oracle.ateam.sample.mobile.v2.persistence -----> oracle.maf.impl.cdm.persistence

If, for example, the AMPA application that you migrate to this release of MAF contains
a Java class that imports oracle.ateam.sample.mobile.mcs.analytics.AnalyticsEvent,
modify the Java class in your migrated application to import
oracle.maf.impl.cdm.mcs.analytics.AnalyticsEvent.

Note:

Classes in the oracle.maf.impl.cdm package are internal classes of the MAF
client data model and subject to change. MAF may refactor some of these
classes in later releases but, for now, we recommend that you do not extend
these classes.

Chapter 5
Migrating an Application Developed Using AMPA to MAF 2.5.1

5-15

All the classes in the oracle.maf.api.cdm... packages are publicly available classes
that you can extend. If, for example, the AMPA application that you migrate to this
release of MAF contains a Java class that imports
oracle.ateam.sample.mobile.mcs.storage.StorageObject, modify it so that it imports
oracle.maf.api.cdm.mcs.storage.StorageObject.

The following list identifies the publicly available classes in the oracle.maf.api.cdm
package:

controller.bean.ConnectivityBean
exception.RestCallException
mcs.storage.StorageObject
mcs.storage.StorageObjectService
persistence.cache.EntityCache
persistence.db.BindParamInfo
persistence.manager.DBPersistenceManager
persistence.manager.MCSPersistenceManager
persistence.manager.RestJSONPersistenceManager
persistence.manager.RestXMLPersistenceManager
persistence.metadata.AttributeMapping
persistence.metadata.AttributeMappingDirect
persistence.metadata.AttributeMappingOneToMany
persistence.metadata.AttributeMappingOneToOne
persistence.metadata.ClassMappingDescriptor
persistence.model.Entity
persistence.service.DataSynchAction
persistence.service.DataSynchService
persistence.service.ValueHolderInterface
persistence.util.EntityUtils

See the Java reference documentation for the AMPA framework to identify the
package name in AMPA for the list of publicly available classes above and revise to
use the package name in the MAF client data model. For information about publicly
available classes in MAF, see Java API Reference for Oracle Mobile Application
Framework.

Also refer to the above reference documentation for other changes implemented in the
MAF client data model since it incorporated AMPA. For example, if you extended
DBPersistenceManager in an application developed using AMPA and the extended class
referenced constants, such as SQL_SELECT_KEYWORD, you need to supply your own
constants in the extended class as the MAF client data model’s implementation of
DBPersistenceManager no longer provides these constants.

Make the above changes for all Java classes in your migrated application and in
pageDefinition.xml files that reference Java managed beans using the AMPA package
names.

Apart from the above changes, make sure that the application you migrate uses
supported classes and methods. For example, AMPA deprecated
oracle.ateam.sample.mobile.util.MCSManager in a recent release. Any application
migrated to this release of MAF which uses the AMPA-deprecated MCSManager should
be revised to use oracle.maf.api.cdm.persistence.manager.MCSPersistenceManager.

Chapter 5
Migrating an Application Developed Using AMPA to MAF 2.5.1

5-16

http://htmlpreview.github.io/?https://github.com/oracle/mobile-persistence/blob/development/Projects/Framework/Runtime/javadoc/index.html

Migrating MAF Applications that Use Customer URL
Schemes to Invoke Other Applications

If the application you migrate to MAF 2.2.2 or later uses a custom URL scheme to
invoke another application, add the scheme(s) to the Allowed Scheme list in the
Security page of the maf-application.xml file’s overview editor.

This change addresses the iOS 9 requirement that applications declare any URL
schemes they use to invoke other applications. Click the Add icon in the Allow
Schemes section of the Security page to add the custom URL scheme.

Figure 5-2 Registering a Custom URL Scheme that a MAF Applications Use to
Invoke Another Application

Migrating to JDK 8 in MAF 2.5.1
MAF applications that you create in MAF 2.1.0 and later use JDK 8. If you migrate a
MAF application that compiled with an earlier version of Java, note that MAF 2.1.0 and
later requires JDK 8 and compiles applications using the Java SE Embedded 8
compact2 profile.

When you open an application that you migrated from a pre-MAF 2.1.0 release for the
first time, JDeveloper makes the following changes:

• Renames the configuration file that specifies the startup parameters of the JVM
from cvm.properties to maf.properties. For information about the maf.properties
file, see How to Enable Debugging of Java Code and JavaScript in Developing
Mobile Applications with Oracle Mobile Application Framework.

• Replaces instances (if any) of the following import statement in the Java source
files of the application:

com.sun.util.logging

With:

java.util.logging

• Replaces the following entries in the logging.properties file of the application

.handlers=com.sun.util.logging.ConsoleHandler

.formatter=com.sun.util.logging.SimpleFormatter

With:

.handlers=java.util.logging.ConsoleHandler

.formatter=java.util.logging.SimpleFormatter

Chapter 5
Migrating MAF Applications that Use Customer URL Schemes to Invoke Other Applications

5-17

For information about the logging.properties file, see How to Configure Logging
Using the Properties File in Developing Mobile Applications with Oracle Mobile
Application Framework.

Retaining Legacy Behavior When Navigating a MAF
Application Using Android’s Back Button

MAF 2.2.0 introduced a change in the way that MAF applications created using that
release respond to usage of the Android system’s Back button. A MAF application that
you created in a previous release and migrate to MAF 2.2.0 or later uses the new
behavior.

The figure shows a navigation flow on a MAF application where an end user has
navigated between three application features (Customer, Sales, and Billing) to the
Billing Page 3 page of the Billing application feature.

Figure 5-3 Navigation Flow Between Application Features and Pages in a MAF Application

Prior to Release MAF 2.2.0, the default MAF application behavior in response to an
end user tapping Android’s system Back button on:

• Billing Page 3 was to navigate to the Sales application feature

• Sales application feature was to navigate to the Customers application feature

• Customer application feature was to close the MAF application

In MAF 2.2.0 and later, the default MAF application behavior in response to an end
user tapping Android’s system Back button on:

• Billing Page 3 is to navigate to Billing Page 2

• Billing Page 2 is to navigate to Billing Page 1

Chapter 5
Retaining Legacy Behavior When Navigating a MAF Application Using Android’s Back Button

5-18

• Billing Page 1 is to hibernate the MAF application

You can customize how your MAF application responds to an end user´s tap of the
Android system´s Back button, as described in Navigating a MAF Application Using
Android’s Back Button of Developing Mobile Applications with Oracle Mobile
Application Framework.

You can also configure your MAF application to exhibit the pre-MAF 2.2.0 application
behavior (navigate between application features) by setting a property in the maf-
config.xml, as described in How to Retain Pre-MAF 2.2.0 Application Behavior in
Response to Usage of Android´s Back Button.

How to Retain Pre-MAF 2.2.0 Application Behavior in Response to
Usage of Android´s Back Button

You configure the legacyBack element in the maf-config.xml file to make your MAF
application exhibit pre-MAF 2.2.0 behavior when an end user taps Android´s Back
button.

To Retain Pre-MAF 2.2.0 Application Behavior in Response to Usage of Android´s
Back Button:

1. In the Applications window, double-click the maf-config.xml file.

By default, this is in the Application Resources pane under the Descriptors and
ADF META-INF nodes.

2. In the maf-config.xml file, set the value of the legacyBack element to true, as
shown in Example 5-1.

Example 5-1 legacyBack element to Retain Pre-MAF 2.2.0 Application Behavior for Usage of
Android Back Button

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-config xmlns="http://xmlns.oracle.com/adf/mf/config">
 ...
 <legacyBack>true</legacyBack>
</adfmf-config>

Migrating to New cacerts File for SSL in MAF 2.5.1
MAF 2.1.0 delivered a new cacerts file for use in MAF applications. Make sure that the
cacerts file packaged in the application that you publish for end users to install
contains the same CA root certificates as the HTTPS server that end users connect to
when they use your MAF application.

You may need to import new certificates to the cacerts file of your MAF application if
the HTTPS server contains certificates not present in the cacerts file of your MAF
application. Similarly, system administrators for the HTTPS servers that your MAF
application connects to may need to import new certificates if your MAF application
uses a certificate not present on the HTTPS server.

Use the keytool utility of JDK 8 to view and manage the certificates in the cacerts file
of your MAF application . The following example demonstrates how you might use the
keytool utility of JDK 8 to display the list of certificates in a cacerts file:

JDK8install/bin/keytool -list -v -keystore dirPathToCacertsFile/cacerts –storepass
changeit | grep "Issuer:"

Chapter 5
Migrating to New cacerts File for SSL in MAF 2.5.1

5-19

For information about using the keytool utility of JDK 8 to manage certificates, see
http://docs.oracle.com/javase/8/docs/technotes/tools/#security. For example, to use
the keytool utility on Windows, see http://docs.oracle.com/javase/8/docs/technotes/
tools/windows/keytool.html. For UNIX-based operating systems, see http://
docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html.

For information about the cacerts file and using SSL to secure your MAF application,
see Supporting SSL in Developing Mobile Applications with Oracle Mobile Application
Framework.

Example 5-2 lists the issuers of CA root certificates included in the MAF 2.1.0 cacerts
file. Use the keytool utility of JDK 8, as previously described, to manage the
certificates in this file to meet the requirements of the environment where your MAF
application will be used.

Example 5-2 CA Root Certificate Issuers in MAF 2.1.0 cacerts File

Issuer: CN=DigiCert Assured ID Root CA, OU=www.digicert.com, O=DigiCert Inc, C=US
Issuer: CN=TC TrustCenter Class 2 CA II, OU=TC TrustCenter Class 2 CA, O=TC TrustCenter GmbH, C=DE
Issuer: EMAILADDRESS=premium-server@thawte.com, CN=Thawte Premium Server CA, OU=Certification
Services Division, O=Thawte Consulting cc, L=Cape Town, ST=Western Cape, C=ZA
Issuer: CN=SwissSign Platinum CA - G2, O=SwissSign AG, C=CH
Issuer: CN=SwissSign Silver CA - G2, O=SwissSign AG, C=CH
Issuer: EMAILADDRESS=server-certs@thawte.com, CN=Thawte Server CA, OU=Certification Services
Division, O=Thawte Consulting cc, L=Cape Town, ST=Western Cape, C=ZA
Issuer: CN=Equifax Secure eBusiness CA-1, O=Equifax Secure Inc., C=US
Issuer: CN=SecureTrust CA, O=SecureTrust Corporation, C=US
Issuer: CN=UTN-USERFirst-Client Authentication and Email, OU=http://www.usertrust.com, O=The
USERTRUST Network, L=Salt Lake City, ST=UT, C=US
Issuer: EMAILADDRESS=personal-freemail@thawte.com, CN=Thawte Personal Freemail CA, OU=Certification
Services Division, O=Thawte Consulting, L=Cape Town, ST=Western Cape, C=ZA
Issuer: CN=AffirmTrust Networking, O=AffirmTrust, C=US
Issuer: CN=Entrust Root Certification Authority, OU="(c) 2006 Entrust, Inc.", OU=www.entrust.net/CPS
is incorporated by reference, O="Entrust, Inc.", C=US
Issuer: CN=UTN-USERFirst-Hardware, OU=http://www.usertrust.com, O=The USERTRUST Network, L=Salt Lake
City, ST=UT, C=US
Issuer: CN=Certum CA, O=Unizeto Sp. z o.o., C=PL
Issuer: CN=AddTrust Class 1 CA Root, OU=AddTrust TTP Network, O=AddTrust AB, C=SE
Issuer: CN=Entrust Root Certification Authority - G2, OU="(c) 2009 Entrust, Inc. - for authorized use
only", OU=See www.entrust.net/legal-terms, O="Entrust, Inc.", C=US
Issuer: OU=Equifax Secure Certificate Authority, O=Equifax, C=US
Issuer: CN=QuoVadis Root CA 3, O=QuoVadis Limited, C=BM
Issuer: CN=QuoVadis Root CA 2, O=QuoVadis Limited, C=BM
Issuer: CN=DigiCert High Assurance EV Root CA, OU=www.digicert.com, O=DigiCert Inc, C=US
Issuer: EMAILADDRESS=info@valicert.com, CN=http://www.valicert.com/, OU=ValiCert Class 1 Policy
Validation Authority, O="ValiCert, Inc.", L=ValiCert Validation Network
Issuer: CN=Equifax Secure Global eBusiness CA-1, O=Equifax Secure Inc., C=US
Issuer: CN=GeoTrust Universal CA, O=GeoTrust Inc., C=US
Issuer: OU=Class 3 Public Primary Certification Authority, O="VeriSign, Inc.", C=US
Issuer: CN=thawte Primary Root CA - G3, OU="(c) 2008 thawte, Inc. - For authorized use only",
OU=Certification Services Division, O="thawte, Inc.", C=US
Issuer: CN=thawte Primary Root CA - G2, OU="(c) 2007 thawte, Inc. - For authorized use only",
O="thawte, Inc.", C=US
Issuer: CN=Deutsche Telekom Root CA 2, OU=T-TeleSec Trust Center, O=Deutsche Telekom AG, C=DE
Issuer: CN=Buypass Class 3 Root CA, O=Buypass AS-983163327, C=NO
Issuer: CN=UTN-USERFirst-Object, OU=http://www.usertrust.com, O=The USERTRUST Network, L=Salt Lake
City, ST=UT, C=US
Issuer: CN=GeoTrust Primary Certification Authority, O=GeoTrust Inc., C=US
Issuer: CN=Buypass Class 2 Root CA, O=Buypass AS-983163327, C=NO
Issuer: CN=Baltimore CyberTrust Code Signing Root, OU=CyberTrust, O=Baltimore, C=IE
Issuer: OU=Class 1 Public Primary Certification Authority, O="VeriSign, Inc.", C=US

Chapter 5
Migrating to New cacerts File for SSL in MAF 2.5.1

5-20

http://docs.oracle.com/javase/8/docs/technotes/tools/#security
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

Issuer: CN=Baltimore CyberTrust Root, OU=CyberTrust, O=Baltimore, C=IE
Issuer: OU=Starfield Class 2 Certification Authority, O="Starfield Technologies, Inc.", C=US
Issuer: CN=Chambers of Commerce Root, OU=http://www.chambersign.org, O=AC Camerfirma SA CIF
A82743287, C=EU
Issuer: CN=T-TeleSec GlobalRoot Class 3, OU=T-Systems Trust Center, O=T-Systems Enterprise Services
GmbH, C=DE
Issuer: CN=VeriSign Class 3 Public Primary Certification Authority - G5, OU="(c) 2006 VeriSign, Inc.
- For authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US
Issuer: CN=T-TeleSec GlobalRoot Class 2, OU=T-Systems Trust Center, O=T-Systems Enterprise Services
GmbH, C=DE
Issuer: CN=TC TrustCenter Universal CA I, OU=TC TrustCenter Universal CA, O=TC TrustCenter GmbH, C=DE
Issuer: CN=VeriSign Class 3 Public Primary Certification Authority - G4, OU="(c) 2007 VeriSign, Inc.
- For authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US
Issuer: CN=VeriSign Class 3 Public Primary Certification Authority - G3, OU="(c) 1999 VeriSign, Inc.
- For authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US
Issuer: CN=XRamp Global Certification Authority, O=XRamp Security Services Inc,
OU=www.xrampsecurity.com, C=US
Issuer: CN=Class 3P Primary CA, O=Certplus, C=FR
Issuer: CN=Certum Trusted Network CA, OU=Certum Certification Authority, O=Unizeto Technologies S.A.,
C=PL
Issuer: OU=VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized use only", OU=Class 3
Public Primary Certification Authority - G2, O="VeriSign, Inc.", C=US
Issuer: CN=GlobalSign, O=GlobalSign, OU=GlobalSign Root CA - R3
Issuer: CN=UTN - DATACorp SGC, OU=http://www.usertrust.com, O=The USERTRUST Network, L=Salt Lake
City, ST=UT, C=US
Issuer: OU=Security Communication RootCA2, O="SECOM Trust Systems CO.,LTD.", C=JP
Issuer: CN=GTE CyberTrust Global Root, OU="GTE CyberTrust Solutions, Inc.", O=GTE Corporation, C=US
Issuer: OU=Security Communication RootCA1, O=SECOM Trust.net, C=JP
Issuer: CN=AffirmTrust Commercial, O=AffirmTrust, C=US
Issuer: CN=TC TrustCenter Class 4 CA II, OU=TC TrustCenter Class 4 CA, O=TC TrustCenter GmbH, C=DE
Issuer: CN=VeriSign Universal Root Certification Authority, OU="(c) 2008 VeriSign, Inc. - For
authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US
Issuer: CN=GlobalSign, O=GlobalSign, OU=GlobalSign Root CA - R2
Issuer: CN=Class 2 Primary CA, O=Certplus, C=FR
Issuer: CN=DigiCert Global Root CA, OU=www.digicert.com, O=DigiCert Inc, C=US
Issuer: CN=GlobalSign Root CA, OU=Root CA, O=GlobalSign nv-sa, C=BE
Issuer: CN=thawte Primary Root CA, OU="(c) 2006 thawte, Inc. - For authorized use only",
OU=Certification Services Division, O="thawte, Inc.", C=US
Issuer: CN=Starfield Root Certificate Authority - G2, O="Starfield Technologies, Inc.", L=Scottsdale,
ST=Arizona, C=US
Issuer: CN=GeoTrust Global CA, O=GeoTrust Inc., C=US
Issuer: CN=Sonera Class2 CA, O=Sonera, C=FI
Issuer: CN=Thawte Timestamping CA, OU=Thawte Certification, O=Thawte, L=Durbanville, ST=Western Cape,
C=ZA
Issuer: CN=Sonera Class1 CA, O=Sonera, C=FI
Issuer: CN=QuoVadis Root Certification Authority, OU=Root Certification Authority, O=QuoVadis
Limited, C=BM
Issuer: CN=AffirmTrust Premium ECC, O=AffirmTrust, C=US
Issuer: CN=Starfield Services Root Certificate Authority - G2, O="Starfield Technologies, Inc.",
L=Scottsdale, ST=Arizona, C=US
Issuer: EMAILADDRESS=info@valicert.com, CN=http://www.valicert.com/, OU=ValiCert Class 2 Policy
Validation Authority, O="ValiCert, Inc.", L=ValiCert Validation Network
Issuer: CN=AAA Certificate Services, O=Comodo CA Limited, L=Salford, ST=Greater Manchester, C=GB
Issuer: CN=America Online Root Certification Authority 2, O=America Online Inc., C=US
Issuer: CN=AddTrust Qualified CA Root, OU=AddTrust TTP Network, O=AddTrust AB, C=SE
Issuer: CN=KEYNECTIS ROOT CA, OU=ROOT, O=KEYNECTIS, C=FR
Issuer: CN=America Online Root Certification Authority 1, O=America Online Inc., C=US
Issuer: CN=VeriSign Class 2 Public Primary Certification Authority - G3, OU="(c) 1999 VeriSign, Inc.
- For authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US
Issuer: CN=AddTrust External CA Root, OU=AddTrust External TTP Network, O=AddTrust AB, C=SE
Issuer: OU=VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized use only", OU=Class 2

Chapter 5
Migrating to New cacerts File for SSL in MAF 2.5.1

5-21

Public Primary Certification Authority - G2, O="VeriSign, Inc.", C=US
Issuer: CN=GeoTrust Primary Certification Authority - G3, OU=(c) 2008 GeoTrust Inc. - For authorized
use only, O=GeoTrust Inc., C=US
Issuer: CN=GeoTrust Primary Certification Authority - G2, OU=(c) 2007 GeoTrust Inc. - For authorized
use only, O=GeoTrust Inc., C=US
Issuer: CN=SwissSign Gold CA - G2, O=SwissSign AG, C=CH
Issuer: CN=Entrust.net Certification Authority (2048), OU=(c) 1999 Entrust.net Limited,
OU=www.entrust.net/CPS_2048 incorp. by ref. (limits liab.), O=Entrust.net
Issuer: OU=ePKI Root Certification Authority, O="Chunghwa Telecom Co., Ltd.", C=TW
Issuer: CN=Global Chambersign Root - 2008, O=AC Camerfirma S.A., SERIALNUMBER=A82743287, L=Madrid
(see current address at www.camerfirma.com/address), C=EU
Issuer: CN=Chambers of Commerce Root - 2008, O=AC Camerfirma S.A., SERIALNUMBER=A82743287, L=Madrid
(see current address at www.camerfirma.com/address), C=EU
Issuer: OU=Go Daddy Class 2 Certification Authority, O="The Go Daddy Group, Inc.", C=US
Issuer: CN=AffirmTrust Premium, O=AffirmTrust, C=US
Issuer: CN=VeriSign Class 1 Public Primary Certification Authority - G3, OU="(c) 1999 VeriSign, Inc.
- For authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US
Issuer: OU=Security Communication EV RootCA1, O="SECOM Trust Systems CO.,LTD.", C=JP
Issuer: OU=VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized use only", OU=Class 1
Public Primary Certification Authority - G2, O="VeriSign, Inc.", C=US
Issuer: CN=Go Daddy Root Certificate Authority - G2, O="GoDaddy.com, Inc.", L=Scottsdale, ST=Arizona,
C=US

Chapter 5
Migrating to New cacerts File for SSL in MAF 2.5.1

5-22

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Installing Mobile Application Framework with JDeveloper
	Prerequisites for Installing the MAF Extension
	Installing the MAF Extension in JDeveloper

	2 Setting Up the Development Tools for the iOS Platform
	Installing Xcode and iOS SDK
	Specifying the iOS Settings in MAF
	Using the GUI
	Using the Command Line

	Setting Up an iOS Device or Simulator
	Testing the iOS Environment Setup

	3 Setting Up Development Tools for the Android Platform
	Installing the Android SDK
	Specifying the Android Settings in MAF
	Using the GUI
	Using the Command Line

	Installing an Emulator Accelerator
	Creating an Android Virtual Device
	Setting Up Your Android Device to Install an App from Your Development Machine
	Testing the Android Environment Setup

	4 Setting Up Development Tools for the Universal Windows Platform
	Installing Visual Studio
	Creating a PFX File for MAF Applications
	Installing a PFX File on Windows 10
	Specifying the UWP Settings in MAF
	Enabling Developer Mode on Windows 10
	Testing the Windows Environment Setup

	5 Migrating Your Application to MAF 2.5.1
	Migrating an Application to MAF 2.5.1
	Using Xcode 9.x with MAF 2.5.1
	How To Maintain Separate Xcode 9.x and Xcode 8.3.x Installations

	Migrating Cordova Plugins from Earlier Releases to MAF 2.5.1
	Evaluating EL Expressions in the Java VM Layer
	Configuring Application Features with AMX Content to Use WKWebView on iOS
	Security Changes in Release 2.4.0 and Later of MAF
	Security Changes in Release 2.2.1 and Later of MAF
	Migrating an Application Developed Using AMPA to MAF 2.5.1
	Migrating MAF Applications that Use Customer URL Schemes to Invoke Other Applications
	Migrating to JDK 8 in MAF 2.5.1
	Retaining Legacy Behavior When Navigating a MAF Application Using Android’s Back Button
	How to Retain Pre-MAF 2.2.0 Application Behavior in Response to Usage of Android´s Back Button

	Migrating to New cacerts File for SSL in MAF 2.5.1

