Oracle® Fusion Middleware
Developing Applications for Oracle Enterprise
Scheduler

12c (12.2.1.4.0)
E95457-03
August 2020

ORACLE"

Oracle Fusion Middleware Developing Applications for Oracle Enterprise Scheduler, 12¢ (12.2.1.4.0)
E95457-03

Copyright © 2010, 2019, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or “commercial computer software documentation” pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XV
Documentation Accessibility XV
Related Documents Y
Conventions XV
What's New in This Guide
1 Introduction to Oracle Enterprise Scheduler
1.1 About Oracle Enterprise Scheduler 1-1
1.2 Oracle Enterprise Scheduler Overview for Application Developers 1-2
1.2.1 Introduction to Working with Oracle Enterprise Scheduler at Design-
Time 1-2
1.2.2 Introduction to Working with Oracle Enterprise Scheduler at Runtime 1-3
1.2.3 Oracle Enterprise Scheduler Job Requests 1-4
1.2.4 Overview of Integration Steps 1-6
1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduler 1-6
2 Planning Job Development
2.1 Job Development Flow 2-1
2.2 The Hosting Application 2-3
2.3 The Client Application 2-3
2.4 Create the Job Implementation 2-4
2.5 Create Job Metadata 2-4
2.5.1 Automatic Metadata Refresh Post-Submission 2-4
3 Installing and Verifying the Oracle Enterprise Scheduler Installation
3.1 Installing Oracle Enterprise Scheduler 3-1
3.1.1 Targeting Oracle Enterprise Scheduler During Domain Creation 3-1

ORACLE

3.1.2 OWSM-PM Targeting With Oracle Enterprise Scheduler 3-2
3.1.2.1 Targeting OWSM-PM Manually 3-2
3.2 Introduction to Verifying the Oracle Enterprise Scheduler Installation 3-2
3.3 How to Verify the Oracle Enterprise Scheduler Installation Using a Browser 3-3
3.4 How to Programmatically Verify the Oracle Enterprise Scheduler Installation 3-4
3.5 What Happens at Runtime: How the Oracle Enterprise Scheduler Installation
is Verified 34
4 Using the Pre-Deployed Native Hosting Application
4.1 Introduction 4-1
4.2 Properties 4-1
4.3 Metadata 4-2
4.4 Security Permissions 4-2
4.4.1 Configuring the Policy Stripe 4-2
4.4.2 Support for Multiple Application Stripes 4-3
5 Using Ant to Generate a Hosting Application
5.1 Introduction to Generating a Hosting Application with Ant 5-2
5.1.1 Prerequisites for Using the Ant Build Files 5-2
5.2 Ant Targets for Creating and Deploying a Hosting Application 5-3
5.3 Creating a Hosting Application and Project Workspace with Ant 5-4
5.4 Creating a Java Job as a Shared Library with Ant 5-7
5.5 Packaging a Java Job as a Shared Library with Ant 5-10
5.6 Deploying a Shared Library with Ant 5-10
5.7 Packaging a Hosting Application with Ant 5-11
5.8 Deploying a Hosting Application with Ant 5-11
5.9 Configuring the Generated Ant Targets 5-11
6 Creating a Thin Client Application
6.1 Introduction 6-1
6.2 Implementation 6-2
6.2.1 Secured Invocation 6-3
6.2.1.1 Forward Invocation 6-3
6.2.1.2 Callback Invocation 6-3
6.2.2 RemoteConnector API and the Server Affinity Property 6-4
6.2.3 Examples 6-4
6.2.3.1 Java EE Application That Uses RemoteConnector 6-4
6.2.3.2 Implementation 6-5
6.2.3.3 Subject Propagation 6-5

ORACLE

6.3 Using JDeveloper to Build a Thin Client Application for MAR Deployment 6-6
6.3.1 Create and Deploy a Thin Client Application for the Standalone
Environment 6-7
6.4 Using JDeveloper to Create and Configure an EJB and its Job Definition
Metadata 6-17
7 Using Oracle JDeveloper to Generate an Oracle Enterprise
Scheduler Application
7.1 How to Start JDeveloper to Support Building Oracle Enterprise Scheduler
Applications 7-1
7.2 Understanding Oracle Enterprise Scheduler Application Support Created by
Oracle JDeveloper 7-2
7.3 Building a Combined Oracle Enterprise Scheduler Application 7-2
7.3.1 Creating the Application and Projects for EssDemoApp Application 7-4
7.3.1.1 How to Create the EssDemoApp Application and Host Project 7-4
7.3.1.2 How to Create the Client Project 7-5
7.3.2 Creating Metadata and an Implementation Class for the EssDemoApp
Application 7-7
7.3.2.1 How to Create Metadata for the EssDemoApp Application 7-7
7.3.3 Adding Application Code to Submit Job Requests 7-10
7.3.3.1 How to Add Application Code to Submit Job Requests 7-10
7.3.4 Setting Oracle Enterprise Scheduler Properties 7-11
7.3.4.1 How to Set Oracle Enterprise Scheduler Properties for the
Application 7-12
7.3.5 Assembling the EssDemoApp Application 7-12
7.3.5.1 How to Create the EJB-JAR Deployment Profile for the
EssDemoApp 7-13
7.3.5.2 How To Update the WAR Archive Options 7-14
7.3.5.3 Create the Application MAR File 7-15
7.3.5.4 How to Update the EAR Options 7-16
7.3.5.5 Configure Security for the Application 7-17
7.3.5.6 Add Resource Grants for ESS Application Role in the Job
Definition 7-18
7.3.5.7 Configure the weblogic-application.xml File 7-20
7.3.5.8 Update the EssHost MANIFEST File 7-20
7.3.5.9 Change the Realm Field 7-20
7.3.5.10 Edit the adf-config.xml File for the EssDemoApp Application 7-21
7.3.6 Deploying and Running the EssDemoApp Application 7-21
7.3.6.1 How to Deploy the EssDemoApp Application 7-21
7.3.6.2 How to Run the EssDemoApp Sample Application 7-23
7.3.6.3 How to Purge Jobs in the EssDemoApp Sample Application 7-24
7.4 Building Split Submitting and Hosting Applications 7-24

ORACLE

7.4.1 How to Create the Back-End Hosting Application for EssDemoApp 7-25
7.4.1.1 Creating the Back-End Hosting Application 7-25
7.4.1.2 Configuring Security for the Back-End Hosting Application 7-26
7.4.1.3 Defining Metadata for the Back-End Hosting Application 7-27
7.4.1.4 Creating a Java Implementation Class in the Back-End Hosting
Application 7-30
7.4.1.5 Setting Oracle Enterprise Scheduler Properties 7-31
7.4.1.6 Assembling the Back-End Hosting Application for Oracle
Enterprise Scheduler 7-31
7.4.1.7 Update the SuperEss MANIFEST File 7-33
7.4.1.8 Configure the weblogic-application.xml File 7-34
7.4.1.9 Deploying the Back-End Hosting Application 7-34
7.4.1.10 Edit the adf-config.xml File for the EssDemoApp Application 7-34
7.4.2 How to Create the Front-End Submitter Application for Oracle
Enterprise Scheduler 7-35
7.4.2.1 Creating the Front-End Submitter Application 7-35
7.4.2.2 Creating the SuperWeb Project 7-36
7.4.2.3 Configuring Security for the Front-End Submitter Application 7-36
7.4.2.4 Creating the HTTP Servlet for the Front-End Submitter Application 7-37
7.4.2.5 Editing the web.xml File for the Front-End Submitter Application 7-51
7.4.2.6 Editing the weblogic-application.xml file for the Front-End
Submitter Application 7-52
7.4.2.7 Editing the adf-config file for the Front-End Submitter Application 7-53
7.4.2.8 Assembling the Front-End Submitter Application for Oracle
Enterprise Scheduler 7-55
7.4.2.9 Configure the weblogic-application.xml File 7-57
7.4.2.10 Deploying the Front-End Submitter Application 7-57
7.4.2.11 Update the EssHost MANIFEST File 7-58
7.4.2.12 Running the Split Application 7-58
8 Using the Metadata Service
8.1 Introduction to Using the Metadata Service 8-1
8.1.1 Introduction to Metadata Service Name Spaces 8-2
8.1.2 Introduction to Metadata Service Operations 8-2
8.1.3 Introduction to Metadata Service Transactions 8-3
8.2 Accessing the Metadata Service 8-3
8.2.1 How to Access the Metadata Service with a Stateless Session EJB 8-4
8.3 Accessing the Metadata Service with Oracle JDeveloper 8-4
8.4 Querying Metadata Using the Metadata Service 8-4
8.4.1 How to Create a Filter 8-4

ORACLE

Vi

8.4.2 How to Query Metadata Objects 8-5
o Using Parameters and System Properties
9.1 Introduction to Using Parameters and System Properties 9-1
9.1.1 What You Need to Know About Application Defined Property and
System Property Naming 9-1
9.1.2 What You Need to Know About Parameter Conflict Resolution and
Parameter Materialization 9-2
9.1.2.1 What You Need to Know About Job Definition Parameter
Materialization 9-3
9.1.2.2 What You Need to Know About Job Set Level Parameter
Materialization 9-3
9.2 Using Parameters with the Metadata Service 9-4
9.2.1 How to Use Parameters and System Properties in Metadata Objects 9-5
9.3 Using Parameters with the Runtime Service 9-6
9.3.1 How to Use Parameters with the Runtime Service 9-6
9.3.2 How to Use Parameters with a Step ID for Job Set Steps 9-7
9.4 Using System Properties 9-8
10 Using Tokens and Logical Clusters
10.1 Using Token Substitution 10-1
10.1.1 Nested Substitutions 10-2
10.1.2 Automatic Substitution 10-2
10.2 Using Logical Clusters 10-3
11 Creating and Using PL/SQL Jobs
11.1 Introduction to Using PL/SQL Stored Procedure Job Definitions 11-1
11.2 Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler 11-2
11.2.1 How to Define a PL/SQL Stored Procedure with the Correct Signature 11-2
11.2.2 Handling Runtime Exceptions in an Oracle Enterprise Scheduler
PL/SQL Stored Procedure 11-3
11.2.3 How to Access Job Request Information In PL/SQL Stored Procedures 11-4
11.2.4 What You Need to Know When You Define a PL/SQL Stored Procedure 11-4
11.3 Performing Oracle Database Tasks for PL/SQL Stored Procedures 11-5
11.3.1 How to Grant PL/SQL Stored Procedure Permissions 11-5
11.3.2 What You Need to Know About Granting PL/SQL Stored Procedure
Permissions 11-6
11.4 Creating and Storing Job Definitions for PL/SQL Job Types 11-6
11.4.1 How to Create a PL/SQL Job Type 11-7
11.4.2 How to Create and Store a Job Definition for PL/SQL Job Type 11-8
ORACLE Vi

11.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise
Scheduler Application 11-8

12 Creating and Using EJB Jobs

12.1 Introduction to Creating EJB Jobs 12-1
12.2 Planning Job Development 12-2
12.3 Creating and Storing Job Definitions for EJB Job Types 12-2
12.4 Secured Invocation 12-4
12.4.1 Forward Invocation 12-4
12.4.2 Callback Invocation 12-5
12.4.3 RemoteConnector APl and the Server Affinity Property 12-5
12.4.4 CSF Lookup From a Remote Server 12-6
12.5 Synchronous Bean 12-6
12.5.1 Metadata 12-6
12.5.2 EJB Job Sample Code 12-7
12.6 Asynchronous Bean 12-8
12.6.1 Metadata 12-9
12.6.2 EJB Job Sample Code 12-10
12.6.2.1 Sample Implementation of Asynchrony Using a Message-Driven
Bean 12-10
12.6.2.2 Sample Implementation of Asynchrony Using Annotations 12-13

13 Creating and Using Web Service Jobs

13.1 Introduction 13-1
13.2 Predefined Web Service Job Types 13-2
13.3 Cancel and Fault Support 13-3
13.4 Configuration Properties for Web Service Jobs 13-4
13.5 Oracle Web Services Manager Policy Configuration 13-5
13.6 Creating a Web Service Job Definition 13-6

13.6.1 Using Oracle JDeveloper to Create a Job Definition 13-7

13.6.2 Using Oracle Enterprise Manager Fusion Middleware Control to Create
a Job Definition 13-10

14 Creating and Using Process Jobs

14.1 Introduction to Creating Process Job Definitions 14-1
14.2 Creating and Storing Job Definitions for Process Job Types 14-2
14.2.1 How to Create and Store a Process Job Type 14-2
14.2.2 How to Create and Store a Process Type Job Definition 14-4
14.3 Using an Agent Handler for Process Jobs 14-5

ORACLE viii

14.3.1 Choosing an Agent Handler 14-5
14.4 Process Job Locale 14-6

15 Defining and Using Schedules

15.1 Introduction to Schedules 15-1
15.2 Defining a Recurrence 15-1
15.2.1 How to Define a Recurrence with a Recurrence Fields Helper 15-2
15.2.2 How to Define a Recurrence with an iCalendar RFC 2445 Specification 15-4
15.2.3 What You Need to Know When You Use a Recurrence Fields Helper 15-5
15.2.4 What You Need to Know When You Use an iCalendar Expression 15-6
15.3 Defining an Explicit Date 15-6
15.3.1 How to Define an Explicit Date 15-6
15.3.2 What You Need to Know About Explicit Dates 15-7
15.4 Defining and Storing Exclusions 15-7
15.4.1 How to Define an Exclusion 15-7
15.4.2 How to Create an Exclusions Definition 15-7
15.5 Defining and Storing Schedules 15-8
15.5.1 How to Define and Store a Schedule 15-8
15.5.2 What Happens When You Define and Store a Schedule 15-9
15.5.3 What You Need to Know About Handling Time Zones with Schedules 15-9
15.6 Identifying Job Requests That Use a Particular Schedule 15-10
15.7 Updating and Deleting Schedules 15-10

16 Using the Oracle Enterprise Scheduler Web Service

16.1 Introduction to the Oracle Enterprise Scheduler Web Service 16-1
16.2 Developing and Using ESSWebservice Applications 16-3
16.2.1 How to Develop and Use an ESSWebservice Java EE Application 16-4
16.2.2 How to Develop and Use an ESSWebservice SOA Application with
BPEL 16-4
16.2.3 Setting Web Service Addressing Headers for getCompletionStatus()
Operation 16-4
16.2.4 Restrictions When Using ESSWebservice 16-5
16.2.5 ESSWebservice Implementation 16-5
16.3 ESSWebservice WSDL File 16-5
16.4 Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL
Process 16-6

ORACLE iX

17

18

19

Defining and Using Job Sets

17.1 Introduction to Defining and Using Job Sets 17-1
17.2 Defining Job Sets 17-2
17.2.1 How to Define a Job Set 17-2
17.2.2 How to Define Serial Job Set Steps 17-4
17.2.3 How to Define Parallel Job Set Steps 17-6
17.2.4 What Happens When You Define a Job Set 17-7
17.2.5 What You Need to Know About Serial Job Sets 17-7
17.2.6 What You Need to Know About Job Set Application Defined Properties
and System Properties 17-8
17.2.7 What Happens at Runtime for Job Set State Priorities and State
Transitions 17-8
17.3 Cross Application Job Sets 17-10
17.3.1 Overview of Cross Application Job Sets 17-11
17.3.2 Requirements for Cross Application Job Sets 17-11
17.4 Supporting Input and Output Forwarding in Job Sets 17-12
Defining and Using a Job Incompatibility
18.1 Introduction to Using a Job Incompatibility 18-1
18.1.1 Job Self Incompatibility 18-2
18.2 Defining Incompatibility with Oracle JDeveloper 18-2
18.2.1 How to Define a Global Incompatibility 18-3
18.2.2 How to Define a Domain Incompatibility 18-4
18.3 What Happens at Runtime to Handle Job Incompatibility 18-6
18.3.1 What Happens to Subrequests with an Incompatible Parent Request 18-6
Using the Runtime Service
19.1 Introduction to the Runtime Service 19-1
19.2 Accessing the Runtime Service 19-1
19.2.1 How to Access the Runtime Service and Obtain a Runtime Service
Handle 19-2
19.3 Submitting Job Requests 19-3
19.3.1 How to Submit a Request to the Runtime Service 19-3
19.3.2 What You Should Know About Default System Properties When You
Submit a Request 19-4
19.3.3 What You Should Know About Metadata When You Submit a Request 19-4
19.3.4 DMS ECID and Flowld Support 19-5
19.3.4.1 ECID and FlowlID for Child Requests 19-5
19.3.4.2 DMS Flowld and SOA CorrelationFlowld 19-5
19.4 Managing Job Requests 19-6
X

ORACLE

19.4.1 How to Get Job Request Information with getRequestDetall 19-6

19.4.2 How to Change Job Request State 19-7
19.4.3 How to Update Job Request Priority and Job Request Parameters 19-8
19.5 Querying Job Requests 19-9
19.6 Submitting Ad Hoc Job Requests 19-11
19.6.1 How to Create an Ad Hoc Request 19-11
19.6.2 What Happens When You Create an Ad Hoc Request 19-13
19.6.3 What You Need to Know About Ad Hoc Requests 19-13
19.7 Implementing Pre-Process and Post-Process Handlers 19-13
19.7.1 Implementing a Pre-Process Handler 19-13
19.7.1.1 Implementing the PreProcessHandler Interface 19-14

19.7.2 Implementing a Post-Process Handler 19-14
19.7.2.1 Implementing the PostProcessHandler Interface 19-15

20 Using Subrequests

20.1 Introduction to Using Subrequests 20-1
20.2 Creating and Managing Subrequests 20-2
20.2.1 How to Submit Subrequests 20-2
20.2.2 How to Cancel Subrequests 20-2
20.2.3 How to Hold Subrequests 20-3
20.2.4 How to Submit Multiple Subrequests 20-3
20.2.5 How to Manage Paused Subrequests 20-3
20.2.5.1 Indicating Paused Status 20-3
20.2.5.2 Storing the Paused State for a Parent Request 20-3

20.2.6 How Subrequests Are Processed 20-4
20.2.7 How to Identify Subrequests 20-5
20.2.8 How to Manage Subrequests and Incompatibility 20-5
20.3 Creating a Java Procedure that Submits a Subrequest 20-5
20.4 Creating a PL/SQL Procedure that Submits a Subrequest 20-8

21 Working with Asynchronous Java Jobs

21.1 Introduction to Working with Asynchronous Java Jobs 21-1
21.2 Creating an Asynchronous Java Job 21-1
21.2.1 Implementing the Asynchronous Java Job Asynchronous Interface 21-2
21.2.2 Asynchronous Java Job execute() Method 21-2
21.2.3 Invoking a Remote Job from an Asynchronous Java Job 21-2
21.2.4 Calling Back to Oracle Enterprise Scheduler with Status Updates 21-3
21.2.5 Updating the Asynchronous Java Job 21-3

21.2.6 Notifying Oracle Enterprise Scheduler When an Asynchronous Job
Completes 21-4

ORACLE Xi

21.2.6.1 Using the Web Service to Notify When an Asynchronous Job

Completes 21-4
21.2.6.2 Using EJB to Notify When an Asynchronous Job Completes 21-4
21.2.7 Asynchronous Java Job AsyncCancellable Interface 21-5
21.2.8 Sample Asynchronous Java Job Invoking a BPEL Process Through
Event Delivery Network 21-5
21.2.8.1 Sample BPEL Process Design Time with Oracle Enterprise
Scheduler 21-8
21.3 A Use Case lllustrating the Implementation of a BPEL Process as an
Asynchronous Job 21-11
21.3.1 Introduction to the Recommended Design Pattern 21-12
21.3.2 Potential Approaches 21-12
21.3.3 Use Case Summary 21-12
21.4 How to Implement BPEL with an Asynchronous Job 21-13
21.4.1 Use Case: Add Oracle JDeveloper Libraries 21-13
21.4.2 Use Case: Create the Asynchronous Job Definition 21-14
21.4.3 Use Case: Design the Event Payload Schema and Event Definition
Files 21-15
21.4.4 Programmatically Raise a Business Event from the Asynchronous Job
Methods 21-17
21.45 Design the SOA Composite with Meditator and BPEL 21-19
21.4.6 Add Fault Handling and Correlated onMessage Branch for Error and
Cancel Job 21-20
21.4.6.1 Create Correlation Set and Define Initiate Activity 21-21
21.4.6.2 Create the onMessage Branch with Use of Correlation Set 21-23
21.4.6.3 Create the Fault Branch 21-24
21.4.6.4 Populate the onMessage and Fault Branch 21-25
21.4.7 Validating the Deployment 21-26
21.4.8 Troubleshooting the Use Case 21-28
21.5 Handling Time Outs and Recovery for Asynchronous Jobs 21-28
21.5.1 Asynchronous Request Time Outs 21-28
21.5.1.1 Setting the Time Out Value 21-29
21.5.1.2 Discovering the Asynchronous Job Requests that Have Timed
Out 21-29
21.5.1.3 Completing Asynchronous Requests without a Time Out 21-29
21.5.1.4 What Happens When an Asynchronous Job Request Times Out 21-29
21.5.2 Handling Asynchronous Jobs Marked for Manual Recovery 21-30
21.5.3 Using RecoverRequest to Manually Recover a Job Request 21-30
21.6 Oracle Enterprise Scheduler Interfaces and Classes 21-31

ORACLE Xii

22 Job Request Logs and Output

22.1 Request Logs 22-1
22.1.1 System Properties 22-1
22.1.2 Log Header 22-1
22.1.3 Request Logging from a Java Job 22-2

22.1.3.1 APIs for Java Job Logging 22-2
22.1.3.2 Java Request Logging Example 22-3
22.1.4 Request Logging from a PL/SQL Job 22-4
22.1.4.1 ESS_JOB Package Support for Creating Logs 22-4
22.1.4.2 PL/SQL Request Logging Example 22-4
22.1.5 Request Logging from a Process Job 22-5
22.1.6 Request Logging and Output From an EJB Job 22-5
22.1.7 Request Logging from a Web Service Job 22-10
22.1.8 APIs for Handling Request Logs 22-11

22.2 Request Output 22-11

22.2.1 Using the Request File Directory 22-12
22.2.1.1 Common Request File Directory Behavior 22-13
22.2.1.2 Shared Request File Directory Behavior 22-13
22.2.1.3 Local Request File Directory Behavior 22-13

22.2.2 System Properties 22-14

22.2.3 Creating Request Output from a Java Job 22-15
22.2.3.1 APIs for Handling Request Output from a Java Job 22-15
22.2.3.2 Java Request Output Examples 22-18

22.2.4 Creating Request Output from a PL/SQL Job 22-20
22.2.4.1 PL/SQL Package Support for Creating Output 22-21
22.2.4.2 PL/SQL Output Creation Examples 22-22

22.2.5 Creating Request Output from a Process Job 22-25

22.2.6 Creating Request Output from an EJB Job 22-25

22.2.7 Creating Request Output from a Web Service Job 22-26

22.2.8 APIs for Handling Request Output 22-26

23 Oracle Enterprise Scheduler Security

23.1 Introduction to Oracle Enterprise Scheduler Security 23-1
23.1.1 Oracle Enterprise Scheduler Metadata Access Control 23-1
23.1.2 Oracle Enterprise Scheduler Job Execution Security 23-2

23.2 Configuring Metadata Security for Oracle Enterprise Scheduler 23-2
23.2.1 How to Enable Application Security with Oracle ADF Security Wizard 23-3
23.2.2 Including Security Files in EAR File 23-3
23.2.3 How to Define Principals for Security 23-4
23.2.4 Creating Enterprise Role 23-4

ORACLE

Xiii

23.2.5 How to Create Grants with Oracle Enterprise Scheduler Metadata

Pages 23-5
23.2.6 About MetadataPermission APIs 23-6
23.2.7 What Happens When You Configure Metadata Security 23-7
23.3 Configuring Data Security for Oracle Enterprise Scheduler 23-7
23.3.1 How to Change Data Security Permissions 23-7
23.3.1.1 Conditions 23-8
23.3.1.2 Actions 23-10
23.3.2 Examples 23-10
23.4 Configuring Web Service Security for Oracle Enterprise Scheduler 23-13
23.5 Configuring PL/SQL Job Security for Oracle Enterprise Scheduler 23-13
23.6 Elevating Privileges for Oracle Enterprise Scheduler Jobs 23-13
23.7 Configuring a Single Policy Stripe in Oracle Enterprise Scheduler 23-13
23.7.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler 23-14
23.7.2 What Happens When You Configure a Single Policy Stripe 23-15
23.7.3 What Happens at Runtime 23-15

ORACLE Xiv

Preface

Audience

Developing Applications for Oracle Enterprise Scheduler describes how to develop
jobs and other extensions of Oracle Enterprise Scheduler.

Oracle Enterprise Scheduler provides the ability to run different job types, including:
Java, PL/SQL, and binary scripts, distributed across the nodes in an Oracle
WebLogic Server cluster. Oracle Enterprise Scheduler runs these jobs securely, with
high availability and scalability, with load balancing and provides monitoring and
management through Oracle Enterprise Manager Fusion Middleware Control.

This document is intended for Oracle applications developers and assumes familiarity
with Java and SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at htt p: / / www. or acl e. conl pl s/t opi ¢/ | ookup?
ct x=acc& d=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=i nf o or visit htt p: / / www. or acl e. coni pl s/t opi ¢/ | ookup?
ctx=acc&i d=trs if you are hearing impaired.

Related Documents

Refer to the Oracle Fusion Middleware library on the Oracle Help Center for additional
information.

» For Oracle Enterprise Scheduler information, see Oracle Enterprise Scheduler.
* For Oracle SOA Suite information, see Oracle SOA Suite.

* For Oracle Application Development Framework (ADF) information, see Oracle
Application Development Framework.

» For versions of platforms and related software for which Oracle Enterprise
Scheduler is certified and supported, review the Certification Matrix on OTN.

Conventions

ORACLE

The following text conventions are used in this document:

XV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/fusion-middleware/index.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

XVi

What's New Iin This Guide

There are no new features added in this release of Oracle Enterprise Scheduler.

For a list of known issues and workarounds, see Release Notes for Oracle Enterprise
Scheduler.

Note:

Screens shown in this guide may differ slightly from your implementation.
Any differences are cosmetic.

ORACLE Vi

Introduction to Oracle Enterprise Scheduler

This chapter introduces Oracle Enterprise Scheduler as a service for developing jobs
that off-load work such as executing Java, PL/SQL, and binary process code.

This chapter includes the following sections:

* About Oracle Enterprise Scheduler
* Oracle Enterprise Scheduler Overview for Application Developers

* Fixed-Rate Scheduling with Oracle Enterprise Scheduler

1.1 About Oracle Enterprise Scheduler

ORACLE

Using Oracle Enterprise Scheduler you can run different job types, including: Java,
PL/SQL, binary scripts, web services and EJBs distributed across the nodes in an
Oracle WebLogic Server cluster.

Oracle Enterprise Scheduler runs these jobs securely, with high availability and
scalability, with load balancing and provides monitoring and management through
Fusion Middleware Control.

Fusion Middleware Control provides accessibility options for the pages on which you
monitor and manage Oracle Enterprise Scheduler applications. Fusion Middleware
Control supports screen readers and provides standard shortcut keys to support
keyboard navigation. You can also view the console pages in high contrast or with
large fonts for better readability. For information and instructions on configuring
accessibility in Fusion Middleware Control, see "Using Oracle Fusion Middleware
Accessibility Options" in Oracle Fusion Middleware Administrator's Guide.

Oracle Enterprise Scheduler provides scheduling services for the following purposes:

» To distribute job request processing across a grid of application servers
e Torun Java, PL/SQL, binary process jobs, web services and EJBs

» To group job requests into job sets

» To schedule job requests based on recurrence expressions

» To administer job requests with Fusion Middleware Control

Oracle Enterprise Scheduler provides the critical requirements in a service-oriented
environment to automate processes that must recur on a scheduled basis and to defer
heavy processing to specific time windows. Oracle Enterprise Scheduler lets you:

» Support sophisticated scheduling and workload management,
e Automate the running of administrative jobs,
» Schedule the creation and distribution of reports,

» Schedule a future time for a step in a business flow for business process
management.

1-1

Chapter 1
Oracle Enterprise Scheduler Overview for Application Developers

Oracle Enterprise Scheduler provides features to manage the complete life cycle of

a job definition: development, distribution, scheduling, and monitoring. Using Oracle
JDeveloper, application developers can easily create job requests in their development
environment. Application administrators and other users can specify when and where
they want their job requests to run. Users and administrators can monitor how the job
ran and access the end results of those jobs.

Customers that implement large systems typically have to manage a large number of
diverse machines to handle the workload of their users. Oracle Enterprise Scheduler

provides the ability to control how work is distributed to individual machines or groups
of machines.

1.2 Oracle Enterprise Scheduler Overview for Application
Developers

Oracle Enterprise Scheduler is primarily a Java EE application that provides time- and
schedule-based callbacks to other applications to run their jobs.

Oracle Enterprise Scheduler compares with the Calendar application you might use

in your phone or the Oracle Calendar, where you create events and meetings with
details about time and recurrence; the application sends an alarm or notification at the
right time for the particular event. Similarly, Oracle Enterprise Scheduler applications
define jobs and specify when those jobs need to be executed, and Oracle Enterprise
Scheduler gives these applications a callback when that time or when a particular
event arrives. This is a simplified model of how a particular application can interact
with an instance of Oracle Enterprise Scheduler. Oracle Enterprise Scheduler does not
execute the jobs itself, it gives a callback to the application and the application actually
executes the job request. This implies that Oracle Enterprise Scheduler is not aware
of the details of the job request, all the job request details are owned and consumed
by the application. An application that submits requests to run a job is called a client
application.

For development purposes, both Oracle Enterprise Scheduler and the Oracle
Enterprise Scheduler client application are deployed on the same Oracle WebLogic
Server. The Fusion Middleware Control can provide an interface for interacting with
Oracle Enterprise Scheduler. Typically, however, you provide a client application with
which the end user can set up a job request and to specify when the job request

is scheduled to be executed, and eventually gets a callback from Oracle Enterprise
Scheduler when the time or event arrives.

1.2.1 Introduction to Working with Oracle Enterprise Scheduler at
Design-Time

ORACLE

At design time an application developer uses Oracle JDeveloper to create a Java EE
application that contains the Oracle Enterprise Scheduler executable class and Oracle
Enterprise Scheduler specific metadata for this executable. The Oracle Enterprise
Scheduler metadata consists of job definitions, including the executable class and
parameters, and schedules. Schedules capture the times when a job request can

be sent for execution. Schedules are defined independent of job requests and

get associated with job requests at runtime when the job request is submitted for
execution. Figure 1-1 shows the design time view of an Oracle Enterprise Scheduler
application.

1-2

Chapter 1
Oracle Enterprise Scheduler Overview for Application Developers

Figure 1-1 Oracle Enterprise Scheduler Designh Time Integration

{ Oracle JDeveloper client-app.ear
i Developing a A class
1 client application B. class
Alob.class
&

Metadata
Store

Metadata _l

| Essjar ——» ‘ metadata

In Figure 1-1, although the metadata is written to the MDS store through Oracle
Enterprise Scheduler APIs, the client application owns the metadata and the metadata
does not belong to the Oracle Enterprise Scheduler application. This metadata
together with the job implementation is packaged in an OAR, including the EAR for
the application and the MAR containing the metadata; this is deployed in the runtime
environment.

You can create the following types of metadata at design time.

« Job type: This is a basic definition of what a job would be comprised of and
defines the following:

1. The type of job to be run, such as Java, PL/SQL, binary script, and so on.

2. The Java executable class if the job is of Java type, or the PL/SQL function if
the job is of PL/SQL type, or the script if the job is of Script type.

3. Parameters definitions for the job and their data type, and default values.

e Job definition: A job definition, or job, is the smallest unit of work which gets
performed in context of the client application. It is defined by an underlying job
type and any parameters additional to the ones defined in the job type.

e Job set: A job set is a sequential or parallel set of job steps, where a job step can
be a single job or another job set. A job set and each of its job set steps can have
additional parameters, the value for which is provided when the job or job set is
submitted as a job request.

e Schedule: A job schedule is a predefined time or a recurrence for a period of time
or indefinite. Schedules are defined independent of jobs but are associated with
one or more jobs at runtime when a job request is submitted.

* Incompatibility: An incompatibility lets you specify job definitions and job sets that
cannot run at the same time.

1.2.2 Introduction to Working with Oracle Enterprise Scheduler at

Runtime

ORACLE

At runtime an application user associates a schedule with the job to be submitted
and provides values for the job parameters. This information is then submitted as a
job request. After Oracle Enterprise Scheduler receives a job request it determines
the right time to execute the job request, and at that time sends a message to the

1-3

Chapter 1
Oracle Enterprise Scheduler Overview for Application Developers

owning client application. The client application then executes the job based on the job
metadata and runtime values for the parameters.

Figure 1-2 Oracle Enterprise Scheduler Runtime Integration

Oracle Weblogic Server

T [

. © 5

| Oracle Enterprise Scheduler
' T
P e

(s (s

Oracle Enterprise Oracle Enterprise
Scheduler metadata Scheduler Data

!'l‘ —1 __,.| client application

Figure 1-2 shows the sequence involved with running an application using Oracle
Enterprise Scheduler, and the following steps:

1. User submits a request using a client application.

2. Client application sends the request to Oracle Enterprise Scheduler.
3. Oracle Enterprise Scheduler reads the metadata for the request.
4

Oracle Enterprise Scheduler puts the request in a wait queue in Oracle Enterprise
Scheduler data store, along with the metadata.

5. At the appropriate time, according to the request specifics, Oracle Enterprise
Scheduler sends a message to the client application with all the request
parameters and metadata captured at the time of submission.

6. Client application performs the jobs and returns a status.

7. Oracle Enterprise Scheduler updates the history with the job request status.

1.2.3 Oracle Enterprise Scheduler Job Requests

ORACLE

Figure 1-3 shows the important Oracle Enterprise Scheduler components, including
the following:

e The scheduler component itself, including the runtime module, request dispatcher
and request processor.

e The client application, including the runtime EJB and end point Message-Driven-
Bean (MDB) which it calls and the job it requests to execute.

e Oracle Metadata Store and the client application metadata.

e Oracle Enterprise Scheduler schema, including the wait and ready queues and job
history.

1-4

ORACLE

Chapter 1
Oracle Enterprise Scheduler Overview for Application Developers

Figure 1-3 Oracle Enterprise Scheduler Runtime Details

Oracle Weblogic Server
client application

t’ P,
' a | client interface | scheduled job

; f
7 ¢
Runtime EJB Cracle Enterprise
Scheduler application

Endpoint MDE -—|

@ 8

Oracle Enterprise Scheduler

Runtirme
Module

Request
Dispatcher

Request
Frocessor

A

l—l

T
I 1
— |
k#- —& 8 @
Oracle Metadata
Store
o

Wait
- Queue
client ahbllcation
metadata

Cracle Enterprize
Scheduler Schema

As shown in Figure 1-3, a client application is composed and runs as follows:

1. A user interacts with the client application, submitting a job request.

2. The client application specifies the two EJBs and the Endpoint MDB in its ejb-
jar.xml. These beans are then instantiated in the client application context.

3. The beans in the application context contact the underlying Oracle Enterprise
Scheduler modules. The runtime EJB sends the job request to the underlying
runtime module in Oracle Enterprise Scheduler.

4. The runtime module accesses the client application metadata from Oracle MDS.

5. The runtime module persists the request along with its metadata and schedule in
the wait queue in the Oracle Enterprise Scheduler schema.

6. The Oracle Enterprise Scheduler request dispatcher determines the correct time to
run the job request based on its corresponding schedule. At this time, the request
dispatcher moves the request to a ready queue in Oracle Enterprise Scheduler
schema.

7. The Oracle Enterprise Scheduler request processor continues picking up job
requests to be processed from the ready queue.

8. The request processor sends a message to the application using the endpoint
MDB.

1-5

Chapter 1
Fixed-Rate Scheduling with Oracle Enterprise Scheduler

9. Oracle Enterprise Scheduler executes the scheduled job.

In most cases or at least in the simplified case, this application is the same as the
application which submitted the request.

1.2.4 Overview of Integration Steps

After you have installed a basic Oracle WebLogic Server instance, take the following
steps to set up Oracle Enterprise Scheduler.

1. Configure Oracle Enterprise Scheduler.

2. Develop your client application which has your job definitions and other required
metadata.

3. Deploy your client application.

4. Invoke your client application to submit job request, which in turn calls Oracle
Enterprise Scheduler.

5. Invoke your client application to check the status of job request, or other
history, which in turn calls Oracle Enterprise Scheduler. Alternatively, use Fusion
Middleware Control to check the status of a given job request.

1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduler

Oracle Enterprise Scheduler supports fixed-rate scheduling where instances of a
repeating job request are executed at a constant rate starting from the initial scheduled
execution time.

Each job request runs as near to the absolute time of the schedule as possible. Oracle
Enterprise Scheduler ensures that only one job request in a repeating request is
running at any one time. If a job request runs beyond the scheduled execution time of
the next job request, the next job request becomes late and is dispatched immediately
upon completion of the previous job request.

When a job request is dispatched, the next request is placed in the wait queue. The
execution time for the next job request is the next time in the schedule that is no earlier
than the current time. Oracle Enterprise Scheduler skips time slots that are in the past.

If the desired behavior is to run all instances of the repeating request regardless of
when they are run and regardless of the requested or recurrence end date, the request
must set the system property EXECUTE_PAST.

Oracle Enterprise Scheduler does not support fixed-delay scheduling. Using fixed-
delay scheduling, each request is executed a fixed delay period after the previous
request completes. This means that when one request is late, all subsequent requests
are late as well. In contrast, fixed-rate scheduling tries to get things back on schedule
after a late request.

ORACLE 1-6

Planning Job Development

The Oracle Enterprise Scheduler is flexible and provides implementation and
deployment options. Some options use out-of-the-box components that are simpler
to implement, while other options are more complex but allow for a great deal of
customization. This chapter describes the different options you should consider when
planning your Oracle Enterprise Scheduler deployment.

This chapter includes the following sections:

e Job Development Flow

e The Hosting Application

e The Client Application

e Create the Job Implementation

¢ Create Job Metadata

2.1 Job Development Flow

ORACLE

This section describes the steps in the job development process and describes the
options available for each step.

Figure 2-1 contains a diagram that shows the Oracle Enterprise Scheduler
components.

1. Create and deploy the hosting application. You have the following options:

» Use the pre-deployed native hosting application instead of creating a hosting
application.

» Generate and deploy the hosting application from an Ant script.
» Use JDeveloper to create the hosting application from scratch and then deploy
it.
2. Create and deploy the Ul or client application. You have the following options:
» The client application uses the thin client shared library.
* The client application uses the client library.

» Use Oracle Enterprise Manager Fusion Middleware Control as the client
application instead of creating a Ul or client application.

3. Create and deploy the job implementation. You have the following options:

« For non-Java-based jobs, you can implement and deploy the job independent
of Oracle Enterprise Scheduler.

» For Java-based jobs, the Java class must be part of a custom hosting
application.

4. Create job metadata. You have the following options:

» Define the metadata in Oracle Enterprise Manager Fusion Middleware Control.

2-1

Chapter 2
Job Development Flow

* Use Oracle JDeveloper to create predefined/seeded job metadata for
deployment as part of the hosting application.

* Programmatically create the job metadata using the metadata service API.

5. Provide submission and metadata permissions to the deployed job. You have the
following options:

* Use Oracle Enterprise Manager Fusion Middleware Control to specify
permissions.

* Provision permissions as part of your hosting or client application EAR
deployment.

See chapter Oracle Enterprise Scheduler Security for more information.

Figure 2-1 Oracle Enterprise Scheduler Components

Java Jobs
Server

Hosting Application
(Pre-Deployed or Custom)

Client Application
Job 1 Job 2 Job 3 (EM or Custom UI)
i
ESS MDS

Non-Java Jobs
Server
/ Hosting Application
Job1 <> (Pre-Deployed or
p Custom)

Client Application

% (EM or Custom Ul)
h

N |
| —
N | |

ESS MDS

ORACLE 2-2

Chapter 2
The Hosting Application

2.2 The Hosting Application

Jobs execute in the context of a hosting application. If the job is remote (for example,
an EJB), the job is invoked in the hosting application. The pre-deployed native hosting
application is convenient to use, but cannot execute custom Java jobs.

The pre deployed native hosting application is well suited for custom remote jobs like
EJB and web service jobs. See Using the Pre-Deployed Native Hosting Application for
details about the pre-deployed native hosting application.

See Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application
for more information about developing a custom hosting application using JDeveloper.

See Using Ant to Generate a Hosting Application for more information about
developing a custom hosting application using the Oracle Enterprise Scheduler Ant
script.

2.3 The Client Application

ORACLE

Client applications are J2EE applications that use the thin client shared library or the
client shared library.

Client applications are J2EE applications that are typically used to:
e Submit jobs

* Request status

e Read job output and logs

e Possibly, host EJB job implementations that Oracle Enterprise Scheduler can
invoke remotely

Client applications can be combined with a hosting application, but this is not a best
practice.

Deploying a client application to a server other than the Oracle Enterprise Scheduler
server is an advanced use case and requires use of Oracle Enterprise Scheduler
internal templates that are only available to other Oracle embedding products.

Client applications use the thin client shared library or the client shared library. The
main differences between the two libraries are:

e The thin client shared library does not depend on the Oracle Enterprise Scheduler
server or any of the Oracle Enterprise Scheduler data sources being deployed
and is ideal if Oracle Enterprise Scheduler deployment is optional. The thin client
shared library contacts a hosting application to access the Oracle Enterprise
Scheduler metadata and runtime store to do its work.

e The client shared library has an advantage. The Oracle Enterprise Scheduler
server need not be running to submit the job and query status because the library
allows direct access to the Oracle Enterprise Scheduler metadata and runtime
store. It is recommended for use when the client application is co-located on the
same WebLogic server as the Oracle Enterprise Scheduler

» Developing client applications using the thin client shared library is easier because
the client application is not required to have an adf - confi g. xnl file to talk to MDS

2-3

Chapter 2
Create the Job Implementation

or have Oracle Enterprise Scheduler EJB deployment descriptors that the client
shared library requires.

If the metadata is not automatically provisioned by the client application at deployment
time, then the thin client application does not depend on the Oracle Enterprise
Scheduler MDS data source.

Refer to Creating a Thin Client Application for more information about creating a client
application.

2.4 Create the Job Implementation

You use different job implementations for non-Java_based jobs, Java-based jobs, and
EJB jobs.

For non-Java-based jobs (PL/SQL and binary process jobs), you can implement,
setup and deploy the process binaries or PL/SQL procedures independent of Oracle
Enterprise Scheduler.

For Java-based jobs, the Java implementation must conform to the Oracle Enterprise
Scheduler defined interface and must be included as part of a custom hosting
application.

For EJB jobs, the EJB interface must conform to an Oracle Enterprise Scheduler
defined interface. The interface is in the Oracle Enterprise Scheduler shared library.
See Creating and Using EJB Jobs for information about how to create an EJB job
implementation.

See Creating and Using Web Service Jobs for information about how to use a SOA
composite as a web service job implementation.

2.5 Create Job Metadata

The simplest way to create job metadata is to define it through the Oracle Enterprise
Manager Fusion Middleware Control.

You can also use JDeveloper to create metadata and place it in a MAR archive that is
part of a client or hosting application and then deploy the metadata to MDS when the
application is deployed. SOA Suite creates the metadata programmatically on first use
using the metadata APIs.

See Using the Metadata Service for a description of the metadata API.

2.5.1 Automatic Metadata Refresh Post-Submission

ORACLE

Oracle Enterprise Scheduler ensures that a job request and all of its children use a
consistent snapshot of metadata from submission until the request reaches a terminal
state. This is accomplished by caching, at job request submission, all metadata known
to be used by the request. However, this caching prevents long-running recurring
requests from using important metadata changes. In order for incompatibilities to
function as expected, new and updated incompatibilities must apply to all relevant
requests, whether previously or newly submitted. For job metadata, customizable
parameters might have changed and should apply to previously submitted requests.
For example, the request category on a job definition might have changed and this
must be applied to pre-existing requests so that work allocation functions as expected.

2-4

ORACLE

Chapter 2
Create Job Metadata

To address these issues, Oracle Enterprise Scheduler automatically refreshes
metadata for previously submitted requests that are:

» Singleton requests that have not yet run
* Recurring requests that have more recurrences to run

Cached metadata remains consistent during execution of an instance request tree
that consists of the instance parent and all child requests of that instance parent,
including jobset steps and sub-requests. For a singleton request, the instance request
tree includes the submitted request and any child requests. For a recurring request,
each recurrence is an instance request tree that includes the instance parent and any
child requests of that instance parent.

2-5

Installing and Verifying the Oracle
Enterprise Scheduler Installation

This chapter describes how to ensure that Oracle Enterprise Scheduler has been
correctly installed.

This chapter includes the following sections:

* Installing Oracle Enterprise Scheduler

* Introduction to Verifying the Oracle Enterprise Scheduler Installation

* How to Verify the Oracle Enterprise Scheduler Installation Using a Browser
* How to Programmatically Verify the Oracle Enterprise Scheduler Installation

* What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is
Verified

3.1 Installing Oracle Enterprise Scheduler

Oracle Enterprise Scheduler does not have its own installer, but is installed by the
installer of the embedding product such as Oracle SOA Suite.

Refer to the embedding product's installation documentation for details.

The IDE is installed by the Oracle SOA Quick Start for Developers which is described
in Installing Oracle SOA Suite and Business Process Management for Developers.
The installer installs the IDE and automatically configures it to Oracle JDeveloper.
Before you run JDeveloper, make sure to set the variable MV HOVE to the middleware
home location as required by the IDE.

The Oracle Enterprise Scheduler runtime component is installed by the design time

or production installer of the embedding product (for example, Oracle SOA suite
whose installation is described in Installing and Configuring Oracle SOA Suite and
Business Process Management). The embedding product may automatically deploy
Oracle Enterprise Scheduler, but if it does not, then it can be deployed using the
“Oracle Enterprise Scheduler Service Basic" template to a server or cluster. The
“Oracle Enterprise Manager Plugin for ESS" template can then be deployed for Oracle
Enterprise Manager Fusion Middleware Control functionality.

3.1.1 Targeting Oracle Enterprise Scheduler During Domain Creation

ORACLE

When you extend SOA with Oracle Enterprise Scheduler, ess- server1 is created and
by default the ESS-MGD-SVRS server group is targeted to ess_server 1. You can use
the following steps in the FMW Configuration Wizard to re-target Oracle Enterprise
Scheduler to soa_server 1:

1. Check ESS-MGD-SVRS for soa_server 1l
2. Uncheck ESS-MGD-SVRS for ess_serverl

3-1

3.1.2 OWSM-PM Targeting With Oracle Enterprise Scheduler

Chapter 3

Introduction to Verifying the Oracle Enterprise Scheduler Installation

3. Delete ess_serverl

See Creating WebLogic Domains Using the Configuration Wizard for more information

about the wizard.

OWSM-PM is intended to be targeted to just one server in a domain. To facilitate this
requirement, Oracle Enterprise Scheduler templates no longer target OWSM-PM. If
another product in the domain automatically targets OWSM-PM, then there is nothing
to do. However, if there are no managed servers in the domain except for Oracle
Enterprise Scheduler, or none of these servers has OWSM-PM, then OWSM-PM must

be targeted manually.

3.1.2.1 Targeting OWSM-PM Manually

In the Fusion Middleware Configuration Wizard, select the Managed Servers,
Clusters and Coherence check box as shown in Figure 3-1.

Figure 3-1 Fusion Middleware Configuration Wizard

ORACLE
FUSION MIDDLEWARE

Advanced Configuration

Create Domain

Adrministration Server

Modiy Settings
Adminisirator Account i 9

Caomain Mode and J0F Node Manager
Database Configuration Type Configure Mode Manager

Component Datasources ' Managed Servers, Clusters and Coherence

|DEC Test Add or Delete or Modify Settings

Advanced Configuration
Domain Frontend Host Capture
Managed Servers

Clusters

Configure Domain Frantend Host

Coherence Clusiers Deployments and Servioes

Target to Servers ar Clusters

Machines

IMS File Store
Madify Setings

A+
4k

1

t

1

1

1

|

|

|

Help < Back Hext =

Cancel

On the Managed Server screen, for ess_server 1, select the WSMPM-MAN-SVR

server group. ESS-MGD-SVRS should already be selected.

3.2 Introduction to Verifying the Oracle Enterprise Scheduler
Installation

The Oracle Enterprise Scheduler health check enables verifying the Oracle Enterprise

ORACLE

Scheduler installation using a web browser.

3-2

Chapter 3
How to Verify the Oracle Enterprise Scheduler Installation Using a Browser

The health check web page submits a simple scheduled job so as to verify that Oracle
Enterprise Scheduler works as it should.

3.3 How to Verify the Oracle Enterprise Scheduler
Installation Using a Browser

You can verify the installation of Oracle Enterprise Scheduler using a web browser.

Access the Java health check servlet in a web browser. Access to the health check
page is available only to users with administrator privileges.

To verify the Oracle Enterprise Scheduler installation:
1. In a web browser, enter the following URL:

http://<host Name>: <port >/ EssHeal t hCheck/ checkHeal th. j sp

where host Nane is the server to which Oracle Enterprise Scheduler is installed and
port is the port number.

To verify an Oracle Enterprise Scheduler cluster, use the following URL:

http://<host Name>: <port >/ EssHeal t hCheck/ di agnoseHeal th. j sp

The Oracle Enterprise Scheduler Diagnostic Health Check page displays, as
shown in Figure 3-2.

Figure 3-2 Diagnostic Health Check Page

ESS - Diagnostic health check service

Check Health

b

2. Log in to the diagnostic servlet using an Oracle WebLogic Server administrator
user name and password.

3. Click the Check Health button to verify the installation.

ORACLE 3-3

Chapter 3
How to Programmatically Verify the Oracle Enterprise Scheduler Installation

3.4 How to Programmatically Verify the Oracle Enterprise
Scheduler Installation

You can programmatically access the health check servlet from your application to
verify the Oracle Enterprise Scheduler installation.

Access to the health check page is available only to users with administrator
privileges.

To programmatically verify the Oracle Enterprise Scheduler installation:

1. Access the following URL:
http://<host Name>: <port >/ EssHeal t hCheck/ checkHeal t h

where host Nane is the server to which Oracle Enterprise Scheduler is installed and
port is the port number.

2. Use the HTTP response codes to gauge the health of the Oracle Enterprise
Scheduler installation, as shown in Table 3-1.

Table 3-1 HTTP Response Codes

Response Code

Oracle Enterprise Scheduler Comments
Status Code

200(XK) Oracle Enterprise Scheduler is The test job has been submitted and has
up and running. succeeded within the default duration.

202(ACCEPTED) Oracle Enterprise Scheduler is The test job has been submitted but has failed to
up and running but a delay in complete within the default duration.
processing has occurred.

A value of 202

(SC_ACCEPTED) indicates to

the client that the request

is being acted upon but

processing is not yet complete.
500 The Oracle Enterprise An error has occurred during the submission or
(1 NTERNAL_SERVER ERRCR Scheduler installation has execution of the job.

)

errors.

3.5 What Happens at Runtime: How the Oracle Enterprise
Scheduler Installation is Verified

ORACLE

The health check servlet schedules a job with Oracle Enterprise Scheduler as part of
an HTTP request and waits for the job to either reach a terminal state, or run for 10
seconds

The health check servlet schedules a trivial job with Oracle Enterprise

Scheduler as part of an HTTP request. After a few seconds, the servlet calls

Runt i meServi ceBean. get Request St at () to check the status of the job and constructs
a response message within the servlet code. The servlet then returns a response
indicating the success or failure of the job.

3-4

ORACLE

Chapter 3
What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is Verified

The servlet waits for the job to either reach a terminal state, or run for 10 seconds,
whichever occurs first.

If the job reaches a terminal state in less than 10 seconds, the job results in a
state of success.

If the job's terminal state does not change within 10 seconds, the job results in
a state of success. However, the job is listed as not having been executed. This
is because the system may be overloaded such that executing the job may take
some time.

If any problems occur when submitting or executing the job, the job results in a
state of failure.

3-5

Using the Pre-Deployed Native Hosting
Application

The pre-deployed native hosting application is included as part of Oracle Enterprise
Scheduler. It greatly simplifies the process of getting Oracle Enterprise Scheduler up
and running because you do not have to create your own custom hosting application.

The Oracle Enterprise Scheduler is flexible and provides implementation and
deployment options. Planning Job Development is a high-level discussion about how
to plan your job development and deployment process

This chapter includes the following sections:
* Introduction

* Properties

* Metadata

e Security Permissions

4.1 Introduction

The pre-deployed native hosting application provides a convenient alternative to
developing your own custom hosting application and can be used to run any job
except a Java-based job.

The pre-deployed native hosting application is collocated with the Oracle Enterprise
Scheduler core on the Oracle Enterprise Scheduler server. The pre-deployed native
hosting application can be deployed to only one cluster in the domain. The "Enterprise
Scheduler Basic" template deploys the pre-deployed native hosting application along
with scheduler server components and therefore can be targeted to only one cluster in
the domain.

The pre-deployed native hosting application exposes the remote interfaces of Oracle
Enterprise Scheduler beans mapped to the following JNDI Names:

* Runtime service bean: j ava: conp/ env/ essnati ve/ runti meservi ce
e Metadata service bean: j ava: conp/ env/ essnat i ve/ net adat aservi ce
* Async request bean: j ava: conp/ env/ essnati ve/ asyncr equest

If the user uses some other hosting apps, the beans are to be exposed in the above
fashion by declaring in weblogic's ejb-jar.xml.

4.2 Properties

ORACLE

Pre-deployed native-hosting application properties lists the properties and their default
settings.

4-1

Chapter 4
Metadata

Table 4-1 Pre-Deployed Native Hosting Application Properties
|

Property Name Value

PolicyStripe EssNat i veHost i ngApp

Logi cal AppNane EssNat i veHost i ngApp

J2ee App Nare EssNat i veHost i ngApp
Runti neService EJB JNDI name essnative/ runtinmeservice

Met adat aServi ce EJB JNDI nane essnati ve/ net adat aservi ce

AsyncRequest Bean JNDI nane essnati vel asyncrequest
MDS Partition essUser Met adat a
MDS namespace [oracl el apps/ ess

4.3 Metadata

Normally, a hosting application contains the MAR metadata to be loaded into MDS,
however, you cannot add a MAR archive directly into the pre-deployed native hosting
application.

If you have a MAR archive that you want to deploy to the pre-deployed native hosting
application, you have to deploy it through a client application or using the metadata
API (see Using the Metadata Service).

Oracle Enterprise Scheduler promotes the native hosting application's stripe by
registering it with OPSS. This in turn exposes the stripe as viewable from Oracle
Enterprise Manager Fusion Middleware Control and other MBeans. Application roles
and policies can then be configured at runtime for the metadata available in the native
hosting application.

4.4 Security Permissions

Permission must be granted for all jobs run by the pre-deployed native hosting
application.

By default, EssNat i veHost i ngApp extends support for permissions defined in
SOA and Service Bus. This is configured in ess- confi g. xml using the property
Host i ngAppPol i cySt ri pe specified with the value "EssNat i veHost i ngApp,soa-
i nfra,Service_Bus_Consol e".

If you install Oracle Enterprise Scheduler with another product (other than SOA or
Service Bus) then you must use Oracle Enterprise Scheduler or WLST scripts to
extend this property list of stripes.

4.4.1 Configuring the Policy Stripe

ORACLE

The EssNativeHostingApp security policy stripe is configured by customizing

the ess-config. xm file. The Oracle Enterprise Scheduler property name is

Host i ngAppPol i cySt ri pe. The following examples show how to use WLST commands
to check the policy stripe value and change it.

Check the value of the current policy stripe:

4-2

Chapter 4
Security Permissions

oracl e_comon/ bi n/ essManageRunt i meConfi g. sh \
-u weblogic -p welconel -P 7001 -H | ocal host -s ess_serverl \
- A EssNativeHostingApp -n HostingAppPolicyStripe -t ESS

Change the value of the policy stripe:

oracl e_common/ bi n/ essManageRunt i meConfig. sh \
-u weblogic -p wel comel -P 7001 -H | ocal host -s ess_serverl \
-m-A EssNativeHostingApp -n HostingAppPolicyStripe -t ESS
-v MyPolicyStripe

See Oracle Fusion Middleware WLST Command Reference for SOA Suite for more
information about WLST commands.

4.4.2 Support for Multiple Application Stripes

ORACLE

The pre-deployed native hosting application supports multistripes. The pre-deployed
native hosting application policy stripes are pre-configured for SOA and Service Bus
applications.

<EssProperty key="Hosti ngAppPolicyStripe"
val ue="EssNat i veHost i ngApp, soa-i nfra, Servi ces_Bus_Consol "/ >

You can use Oracle Enterprise Manager Fusion Middleware Control or WLST

to extend this list of stripes by appending the policy stripes to the value of

the Host i ngAppPol i cyStri pe property. You can also use the Oracle Enterprise
Manager Fusion Middleware Control Application Properties page to change the
Host i ngAppPol i cySt ri pe property for the pre-deployed native hosting application.

This property is applicable only for the configuration file of the pre-deployed native
hosting application. Note that there is no static definition of policy stripes in the pre-
deployed native hosting application's ej b-j ar. xn file, therefore, you must preserve
the existing policy stripes specified in the Host i ngAppPol i cyStri pe property.

4-3

Using Ant to Generate a Hosting
Application

ORACLE

This chapter describes how you can use Ant targets from a build.xml file included with
Oracle Enterprise Scheduler to create a hosting application for use with Java jobs.

Using these targets, you can create the application artifacts in an Oracle JDeveloper
workspace, create a template for a Java job implementation, and package and deploy
both the application and the Java job (as a shared library).

Note that the Ant targets described here do not create a client user interface with
which users can interact with the job. To perform client tasks, you can use Fusion
Middleware Control or develop a client user interface with Oracle JDeveloper. Also,
custom hosting applications are generally seeded with metadata that is packaged

and deployed to the metadata repository when the application is deployed. Ant-based
scripts that generate custom hosting applications do not provide a way to create
metadata artifacts. For that reason, after you generate a hosting application, you must
open the workspace (. j ws) in Oracle JDeveloper, and add the necessary metadata
before you deploy the application into the server.

When you have created and deployed your application and shared library, you can use
JDeveloper or Enterprise Manager to associate metadata with the deployed outputs.

Note:

Due to 3rd party licensing restrictions, the following . j ar files are not shipped
with 12¢ Enterprise Scheduling Services component: j dom j ar, saxon9. j ar,
ant-contrib.jar, and ant - groovy.jar. Make sure that these . j ar files are
copied under MW HOVE/ or acl e_common/ ess/ extensi bility_scripts/ant/
lib.

This chapter includes the following sections:

* Introduction to Generating a Hosting Application with Ant

* Ant Targets for Creating and Deploying a Hosting Application

» Creating a Hosting Application and Project Workspace with Ant
» Creating a Java Job as a Shared Library with Ant

» Packaging a Java Job as a Shared Library with Ant

* Deploying a Shared Library with Ant

» Packaging a Hosting Application with Ant

* Deploying a Hosting Application with Ant

* Configuring the Generated Ant Targets

5-1

Chapter 5
Introduction to Generating a Hosting Application with Ant

5.1 Introduction to Generating a Hosting Application with Ant

Oracle Enterprise Scheduler includes an Ant build file through which you can generate
the basic artifacts you'll need to get a hosting application running, along with a Java
job you can deploy to be executed by the application.

You use the included Ant build file to generate a hosting application. When you do,
you also generate another Ant build file that contains targets you can use to generate
artifacts for a Java job, as well as to build and deploy the generated components.

When you have created and deployed your application and shared library, you can use
JDeveloper or Enterprise Manager to associate metadata with the deployed outputs.

You can also use a generated build.properties file to customize the work Ant does by
setting values for variables a target uses when it runs.

The steps described in this chapter include the following you can do with Ant.

1. Create a hosting application that can execute jobs. Use the create-user-home in
the included bui | d. xm file.

2. Create a JDeveloper project workspace through which you can edit application
artifacts with the IDE. This is done when you create the hosting application.

3. Create an Ant build file with targets for building and deploying parts of the
application.

4. Create a Java job template to which you can add business logic. Use the cr eat e-
new j ob- def targetin the generated bui | d. xn file.

5. Package the implemented Java job as a shared library. Use the
package_essjob_library target in the generated bui | d. xm file.

6. Deploy the shared library to the hosting application. Use the
depl oy_essj ob_li brary target in the generated bui | d. xni file.

7. Package the hosting application. Use the package_hosti ng_app target in the
generated bui | d. xn file.

8. Deploy the hosting application. Use the depl oy_host i ng_app target in the
generated bui | d. xn file.

5.1.1 Prerequisites for Using the Ant Build Files

Before you get started with the provided and generated build files, make sure you're
set up with the following prerequisites:

* You must have Ant installed and set up, with the ANT_HOME variable set properly
and the PATH pointing to ant's bin directory.

* You must install and set up Oracle JDeveloper. Your PATH variable must contain
the Oracle JDeveloper bi n directory so that the j dev command can be executed
from the command prompt.

ORACLE 5-2

Chapter 5
Ant Targets for Creating and Deploying a Hosting Application

5.2 Ant Targets for Creating and Deploying a Hosting
Application

Oracle Enterprise Scheduler includes an Ant build file to get you started toward
deploying a hosting application that can execute jobs.

However, you're actually using two build files to finish the job: one that is included with
Oracle Enterprise Scheduler and another that is generated by a target in the included
build file. The following tables list and describe the targets that are included by default
in the two files.

By default, the included build.xml file is located in the Oracle Enterprise Scheduler
extensibility scripts directory. For example, in an Oracle JDeveloper installation,
you'll find them in MV HOWE/ or acl e_comon/ ess/ ext ensi bi | i ty_scripts/build.xn ;
with installations of products that include Oracle Enterprise Scheduler, you'll probably
find them in an ORACLE_HOWE/ ext ensi bility_scri pts directory.

Table 5-1 Ant Targets in the Included Build File
|

Ant Target Description
create-user-home Default target to create a user home.
help-create-user-home Help on creating a user home.

When you run the cr eat e- user - hone target from the included bui | d. xnl file, one of
the target's actions is to create another bui | d. xm file. That file contains the following
targets that you can use to create, build and deploy artifacts for your application.

Table 5-2 Ant Targets in the Generated Build File
|

Ant Target Description

build_ears Package the job shared library and the hosting application.
create-new-job-def Create Java job as a shared library.

deploy Package and deploy the job library and hosting application.
deploy_essjob_library Deploy the Java job shared library.

deploy_hosting_app Deploy the hosting application.

deploy_job_logic Package and deploy the job shared library.
package_essjob_library Package the Java job as a shared library.
package_hosting_app Package the hosting application.

ORACLE 5-3

Chapter 5
Creating a Hosting Application and Project Workspace with Ant

5.3 Creating a Hosting Application and Project Workspace

with Ant

ORACLE

You can create a hosting application by running the cr eat e- user - hone Ant target in
the bui I d. xnl file included with Oracle Enterprise Scheduler.

After the script completes successfully, you'll have the artifacts for a hosting
application that you can package and deploy. The artifacts are generated within a
JDeveloper-compatible workspace in the target directory you specified. The created
workspace has a bui | d. xm that you can use to build, package and deploy the hosting
application and the generated Java job as a shared library.

As the target runs, you'll be prompted to enter details that guide the target's work.
These details include the environment for which the target's work is intended (such as
to run with a particular application), the new application's name and target directory,
and so on.

Before you get started, you should have in hand the following information for which
you'll be prompted by the Ant target:

Table 5-3 Information Needed by the Ant Target

|
Input Prompt Description

Which template should be used Possible values are Fusi on and St andal one. If you're
developing for use with Oracle Fusion Applications, enter
Fusi on here.

If you're not developing for use with Oracle Fusion
Applications, enter St andal one.

There are significant differences between the Oracle
Fusion Applications and standalone contexts. For example,
in the Oracle Fusion Applications context, the target
generates a slightly different hosting application, as well

as a client application.

Middleware Home directory path ~ The Middleware Home directory that was created when
Oracle Enterprise Scheduler was installed (probably
with another product that embeds it). The locations of
supporting libraries are found relative to this directory.

This feature relies on the o] depl oy utility to create,
package and deploy artifacts to the server. If the
middleware home path does not contain an Oracle
JDeveloper directory with oj depl oy in the bi n directory,
specify the directory where Oracle JDeveloper is installed.

Hosting application name The name you want the new hosting application to have.

Hosting application JPS stripe ID A stripe is a security construct that defines the subset
of values in the policy store that the application intends
to use. At runtime, it determines which set of policies
are applicable for the application. The application name is

often used.
Shared library name for job The name for the shared library into which the generated
business logic Java job source code should be placed.

5-4

ORACLE

Chapter 5
Creating a Hosting Application and Project Workspace with Ant

Table 5-3 (Cont.) Information Needed by the Ant Target

Input Prompt Description
Empty directory where the The directory where you want the generated files to go.
application will be created This is the location of the JDeveloper workspace, where

artifacts such as the bui | d. xnl file you use later is
created.

To create a hosting application with Ant

To get started, open a console window and change directory to where the
included build.xml is located. By default, this is the Oracle Enterprise Scheduler
extensibility_scripts directory. For example, in MV HOME/ or acl e_common/ ess/
extensibility scripts/build. xm.

Run the target with a command such as the following. You can omit the target
name because it is the default target in the build file.

ant

If you want to use the target name, you can do so with the following command.

ant create-user-hone

In the following example of Ant console output, note that the prompts begin with
the word "[input]". For each prompt, type the value you want to use, then press
Enter.

After you've entered the information needed, the target creates the directories and
files you requested, copying needed files into your new workspace and setting up
some of the configuration for the new hosting application.

[extensibility scripts]$ ant
Bui I dfile: build. xn
-init:

creat e- user - hone:
[input] Enter which tenplate should be used (source_tenplate)
(def aul t =Fusi on)

[input] ([Fusion], Standal one)
St andal one

[input] Enter Mddleware Hone Directory path (fnmw home_dir) (default=) []
/ scrat ch/ f mam ool s/ mw_home

[input] Enter hosting application name (hosting_application_nane)
(def aul t =MyAppEss) [MyAppEss]
NewDenoApp

[input] Enter hosting application JPS stripe id
(hosting_application_stripe_id) (default=M/AppEss) [MAppEss]
NewDenoApp

[input] Do you want to add shared library for the (java) job business
| ogic? (use_jobdef library) (default=yes)

[input] ([yes], no)
no
[input] Enter an enpty directory where the applications will be created
(user_home)
/ scrat ch/ W.Ser ver s/ MW HOME/ st andal one_apps/ NewDenoApp

[echo]

5-5

ORACLE

Chapter 5
Creating a Hosting Application and Project Workspace with Ant

[echo]
[mkdir] Created dir:
/ scrat ch/ W.Ser ver s/ MW HOMVE/ st andal one_apps/ NewDenoApp
[propertyfile] Creating new property file:
/ scrat ch/ W.Ser ver s/ MW HOMVE/ st andal one_apps/ NewDenoApp/ t enpl at e. properties
[copy] Copying 9 files to
/ scrat ch/ W.Ser ver s/ MW HOMVE/ st andal one_apps/ NewDenoApp
[copy] Copied 15 enpty directories to 4 enpty directories under
/ scrat ch/ W.Ser ver s/ MW HOME/ st andal one_apps/ NewDenoApp
[copy] Copying 1 file to
/ scrat ch/ W.Ser ver s/ MW HOME/ st andal one_apps/ NewDenoApp/ ant/ confi g
[copy] Copying 1 file to
/ scrat ch/ W.Ser ver s/ MW HOME/ st andal one_apps/ NewDenoApp
[copy] Copying 15 files to
/ scrat ch/ W.Ser ver s/ MW HOMVE/ st andal one_apps/ NewDenpApp
[move] Moving 1 file to
/ scrat ch/ W.Ser ver s/ MW HOVE/ st andal one_apps/ NewDenoApp/ Tenpl at e_Host i ng
[echo]
[echo]
[echo]
[echo] A new workspace has been created at:
/ scrat ch/ W.Ser ver s/ MW HOME/ st andal one_apps/ NewDenpApp
[echo] This workspace can be opened and nodified using JDevel oper
[echo] To deploy the applications, run the follow ng conmand:
[echo] ant -f
/ scrat ch/ W.Ser ver s/ MW HOME/ st andal one_apps/ NewDenoApp/ ant/ bui | d- ess. xm
depl oy
[echo] To create new jobs from predefined tenplates, run the follow ng
comand:
[echo] ant -f
/ scrat ch/ W.Ser ver s/ MW HOVE/ st andal one_apps/ NewDenoApp/ bui | d. xm
creat e-new j ob- def

BUI LD SUCCESSFUL
Total tinme: 49 seconds

[extensibility scripts]$ ant
Bui I dfile: build. xn
-init:

creat e- user - hone:
[input] Enter which tenplate should be used (source_tenplate)
(def aul t =Fusi on)
[input] ([Fusion], Standal one)
St andal one
[input] Enter Mddleware Hone Directory path (fmwv_home_dir) (default=) []
/ scrat ch/ f mat ool s/ mw_hone
[input] Enter hosting application name (hosting_application_nane)
(def aul t =MyAppEss) [MyAppEss]
NewDenmoApp
[input] Enter hosting application JPS stripe id
(hosting_application_stripe_id) (default=M/AppEss) [MAppEss]
NewDenmoApp
[input] Do you want to add shared library for the (java) job business
| ogic? (use_jobdef library) (default=yes)
[input] ([yes], no)
yes
[input] Enter the shared library name for the job business |ogic
(j obdef _I'ibrary_nanme) (default=MyJobsLibrary) [M/JobsLibrary]

5-6

Chapter 5
Creating a Java Job as a Shared Library with Ant

NewDenoAppJobsLi b
[input] Enter an enpty directory where the applications will be created
(user_hore)
/ scrat ch/ W.Ser ver s/ MW HOME/ st andal one_apps/ NewDenoApp
[echo]
[echo]
[mkdir] Created dir:
/ scrat ch/ W.Ser ver s/ MW HOMVE/ st andal one_apps/ NewDenoApp
[propertyfile] Creating new property file
/ scrat ch/ W.Ser ver s/ MW HOMVE/ st andal one_apps/ NewDenoApp/ t enpl at e. properties
[copy] Copying 11 files to
/ scrat ch/ W.Ser ver s/ MW HOME/ st andal one_apps/ NewDenoApp
[copy] Copied 25 enpty directories to 9 enpty directories under
/ scrat ch/ W.Ser ver s/ MW HOME/ st andal one_apps/ NewDenpApp
[copy] Copying 1 file to
/ scrat ch/ W.Ser ver s/ MW HOME/ st andal one_apps/ NewDenpApp/ ant/ confi g
[copy] Copying 1 file to
/ scrat ch/ W.Ser ver s/ MW HOME/ st andal one_apps/ NewDenpApp
[copy] Copying 15 files to
/ scrat ch/ W.Ser ver s/ MW HOMVE/ st andal one_apps/ NewDenoApp
[move] Moving 1 file to
/ scrat ch/ W.Ser ver s/ MW HOVE/ st andal one_apps/ NewDenoApp/ Tenpl at e_Host i ng
[echo]
[echo]
[echo]
[echo] A new workspace has been created at
/ scrat ch/ W.Ser ver s/ MW HOMVE/ st andal one_apps/ NewDenpApp
[echo] This workspace can be opened and nodified using JDevel oper
[echo] To deploy the applications, run the follow ng comand

[echo] ant -f
/ scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenoApp/ ant/ bui | d- ess. xm
depl oy

[echo] To create new jobs from predefined tenplates, run the follow ng
comand

[echo] ant -f

/ scrat ch/ W.Ser ver s/ MV HOVE/ st andal one_apps/ NewDenpApp/ bui | d. xm
creat e- new j ob- def

BUI LD SUCCESSFUL
Total tine: 1 minute 32 seconds

5.4 Creating a Java Job as a Shared Library with Ant

You can create a Java job class template by running the cr eat e- new-j ob- def Ant
target that is in the build file generated when you created a new hosting application.

For more information, see Creating a Hosting Application and Project Workspace with
Ant.

The Java class you create here is a template to which you can add logic that
implements your Java job. A Java job executes Java code. With the Java job
implemented, you can add metadata that comprises some of the specifics for the job.

ORACLE 5.7

ORACLE

Chapter 5
Creating a Java Job as a Shared Library with Ant

< Note:

Currently, you can create only synchronous Java job templates with this Ant
target.

As the target runs, you'll be prompted to enter details that guide the target's work.
Before you get started, you should have in hand the following information for which
you'll be prompted by the Ant target:

Table 5-4 Information Needed by the Ant Target

|
Input Prompt Description

Number of job definition template A number corresponding to the type of Java

to create job implementation you're creating. Currently, only
synchronous Java jobs can be created this way, so the only
supported value is "1".

Java package name for job The package name for the Java job you're creating.
definition

Java class name for job definition The class hame for the Java job you're creating.

To create a Java job class template with Ant:

1. To get started, in a console window change directory to the directory you specified
as the location to create the application. The bui | d. xm file should be there. Use
the following command to run the target:

ant create-new j ob- def

In the following example of Ant console output, you can see where the prompts
occur. After you've entered that information, the target creates the file you
requested, copying needed files into your new workspace and setting up some
of the configuration for the new hosting application.

[extensibility_scripts]$ ant -f /scratch/W.Servers/ MV HOME/ st andal one_apps/
NewDenoApp/ bui | d. xm creat e- newj ob- def

Bui I dfile: /scratch/ W.Servers/ M\ HOVE/ st andal one_apps/ NewDenoApp/ bui | d. xm
-init:

creat e- new j ob- def:

[echo] Available Job Definition Tenpl ates:

[echo] 1) Sinple Synchronous Java Job

[input] Enter nunber of job definition tenplate to create

(job_tenplate_to_create)
1

[echo] Calling default
target on /scratch/m scFil es/ Ext nDeno/ extensibility_scripts/Standal one/
Tenpl at e_JobLi brary/ si npl e_synchronous_j ob/ bui | d. xm

-init:
create-job-definition:

[input] Enter Java package nane for Job Definition (jobdef_package_nane)
(def aul t =or acl e. apps. ess. custon) [oracle. apps. ess. cust onj

5-8

Chapter 5
Creating a Java Job as a Shared Library with Ant

oracl e. apps. ess. cust om
[input] Enter Java class nane for Job Definition (jobdef_class_nane)

(def aul t =MySynchr onousJavaJob) [MySynchronousJavaJob]
NewDenoHel | oWr | d

[copy] Copying 1 file to /scratch/WServers/ MV HOVE/ st andal one_apps/
NewDenoApp/ NewDenmoApp/ EssShar edLi brary/ src

[copy] Copying 1 file to /scratch/WServers/ MV HOVE/ st andal one_apps/
NewDenoApp/ NewDenoApp/ EssShar edLi brary/ src/ oracl e/ apps/ ess/ cust om

BUI LD SUCCESSFUL
Total time: 34 seconds

2. Having created the class template for the Java job, you can add code that
implements the job's logic. The template is located in project in the JDeveloper
workspace you created when you created the hosting application in Creating a
Hosting Application and Project Workspace with Ant. The file's directory path is
shown in the Ant console output. You can use the editor you prefer for editing Java
code, such as JDeveloper or a simple text editor.

Open the Java file and add code to implement the execut e() method.
Example 5-1 shows what the generated code looks like. You would replace

the simple implementation of the or acl e. as. schedul er. Execut abl e interface's
execut e() method with code that does your Java job's work.

Example 5-1 Oracle Enterprise Scheduler HelloWorld Java Class

package oracl e. apps. ess. cust om

inport java.io.StringWiter;

i mport java.security.AccessControl Cont ext;
inmport java.security.AccessController;

i nport javax.security.auth. Subject;

i nport oracl e. as. schedul er. Request Par anet er s;

i nport oracl e. as. schedul er.job. BaseSynchr onousJavaJob;
i mport oracl e. as. schedul er. request. Cont ent Type;

inport oracle.security.jps.util.SubjectUil;

public class NewDermoHel | oWorl d extends BaseSynchronousJavalJob {

public NewDerpoHel | oWorld() {
super();
}

protected void execute() throws Exception

{
l ong requestld = get Request Executi onContext (). get Requestid();
Request Paranet ers parans = get Request Paranmeters();
AccessControl Context accContext = AccessController.getContext();
Subj ect subj ect = Subj ect. get Subj ect (accCont ext);
String username = SubjectUtil.getUser Name(subject);
/*
* Wite contents to request log
*/
StringWiter strWiter = new StringWiter();
strWiter.wite("Sinple ESS Java job execution LOG');
strWiter.wite("ESS Job requestID: " + requestld);
strWiter.wite("Username: " + usernane);
writeToRequest Log(requestld, strWiter.toString());

/*

ORACLE 5-9

}

Chapter 5
Packaging a Java Job as a Shared Library with Ant

* Wite Text contents to request output

*/

strWiter = new StringWiter();

strWiter.wite("Sinple ESS Java job execution Text Qut");
strWiter.wite("ESS Job requestID: " + requestld);
strWiter.wite("Username: " + usernane);

writ eToRequest Qut put (requestld, strWiter.toString(), ContentType.Text);

5.5 Packaging a Java Job as a Shared Library with Ant

You can package a Java job implementation by running the package_essjob_l i brary
Ant target.

< Note:

The build file containing this target is generated when you create a
new hosting application. (For more information, see Creating a Hosting
Application and Project Workspace with Ant.)

The package_essj ob_I| i brary target compiles and JARs the job code. The target
simply runs to completion, requiring no user input.

To package a Java job class implementation with Ant:

In a console window change directory to the directory you specified as the location
to create the hosting application. Use the following command to run the target:

ant package_essjob_library

5.6 Deploying a Shared Library with Ant

You can deploy a Java job shared library by running the depl oy_essj ob_| i brary Ant

ORACLE

target.

Note:

The build file containing this target is generated when you create a
new hosting application. (For more information, see Creating a Hosting
Application and Project Workspace with Ant.)

The depl oy_essj ob_|i brary target deploys the job library. The target simply runs to
completion, requiring no user input.

To deploy a Java job shared library with Ant:

In a console window change directory to the directory you specified as the location
to create the hosting application. Use the following command to run the target:

ant depl oy_essjob_library

5-10

Chapter 5
Packaging a Hosting Application with Ant

5.7 Packaging a Hosting Application with Ant

You can package a hosting application by running the package_host i ng_app Ant
target.

¢ Note:

The build file containing this target is generated when you create a
new hosting application. (For more information, see Creating a Hosting
Application and Project Workspace with Ant.)

The package_hosting_app target packages the hosting app created with the cr eat e-
user - hone target (for more information, see Creating a Hosting Application and Project
Workspace with Ant). The target simply runs to completion, requiring no user input.

To package a hosting application with Ant:

* In a console window change directory to the directory you specified as the location
to create the hosting application. Use the following command to run the target:

ant package_hosting_app

5.8 Deploying a Hosting Application with Ant

You can deploy a hosting application by running the depl oy_host i ng_app Ant target.

" Note:

The build file containing this target is generated when you create a
new hosting application. (For more information, see Creating a Hosting
Application and Project Workspace with Ant.)

The depl oy_host i ng_app target deploys the hosting app created with the cr eat e-
user - hone target (for more information, see Creating a Hosting Application and Project
Workspace with Ant). This target simply runs to completion, requiring no user input.

To deploy a hosting application with Ant:

* In a console window change directory to the directory you specified as the location
to create the hosting application. Use the following command to run the target:

ant depl oy_hosting_app

5.9 Configuring the Generated Ant Targets

The file user_homel ant / confi g/ ess-bui | d. properti es contains various parameters
to specify information used by the Ant scripts during build, packaging and deployment.
The user _hone is the directory specified to contain the application workspace.

ORACLE 5-11

ORACLE

Chapter 5
Configuring the Generated Ant Targets

Before deployment of archives, the WebLogic server based details has to be changed
appropriate to the user's environment.

Use the build properties described in Table 5-5 to customize the Ant targets with
configuration values of your own.

Table 5-5 Build Properties for Customizing Ant Builds

__|
Build Property Description

customEss.hostapp.earprofile -

customEss.hostapp.jarfile -

customEss.hostapp.jarprofile -

customEss.hostapp.jprproject -

customEss.hostapp.jwsfile -

customEss.hostapp.mds.jdbc -

customEss.hostapp.mds.partition -

customEss.hostapp.name The name to be used for the generated hosting application.
customEss.hostapp.workspace -

customEss.project.dir The directory location for the generated JDeveloper project.
customEss.shared.library.name The name to be given to the generated shared library.
ess.script.base.dir -

fmw.home -

jdev.home -

oracle.common -

ess.server.name Comma separated names of Oracle Enterprise Scheduler
admin/managed servers to which the Oracle Enterprise
Scheduler job library and hosting application is deployed.

weblogic.admin.user The WebLogic Server admin user name.
weblogic.server.host -
weblogic.server.port -
weblogic.server.ssl.port -

weblogic.t3.url -

ESS build properties
ess. script. base. di r=${user _hone}

f mw. home=${ f nw_hone}
j dev. home=${f nw. home}/ j devel oper
oracl e. common=${ f mw. hone}/ or acl e_common

========== ESS JDev pr Oj ect details ===============
cust onEss. proj ect . di r=${ess. script. base. dir}

cust onEss. host app. wor kspace=${ host i ng_appl i cati on_nane}
cust onEss. host app. j wsfil e=${hosti ng_appl i cati on_name}
cust onEss. host app. ear profi | e=${ host i ng_appl i cati on_nane}
cust onEss. host app. j prproj ect =EssShar edLi brary

cust onEss. host app. j arprofil e=EssShar edLi brary

cust onEss. host app. jarfil e=${j obdef _Iibrary_nane}

5-12

Chapter 5
Configuring the Generated Ant Targets

cust onEss. shared. | i brary. name=${j obdef _| i brary_name}

cust onEss. host app. nds. partition=${hosting_application_name}
cust onEss. host app. nds. j dbc=mds- ESS_MDS DS
cust onEss. host app. nanme=${ host i ng_appl i cati on_nane}

========== \\¢h| og| ¢ Server details ===============

MV HOVE=${ f nw. horre}

ORACLE_HOVE=${] dev. hone}

MWV ORA_HOME=${ | dev. hone}

COVMON_COVPONENTS_HOVE=${ or acl e. conmon}

VEBLOG C_HOVE=${ f mw. hone}/ wl server_10. 3

webl ogi c. server. host =adc2170657. exanpl e. com

WEBLOG C_HOVE=${ f mw. hone}/ wl server_10. 3

webl ogi c. server. host =adc2170657. exanpl e. com

webl ogi c. server. port=7001

webl ogi c. server. ssl . port=7002

webl ogi ¢. adm n. user =webl ogi ¢

webl ogi c. t 3. url =t3://%${webl ogi c. server. host}: ${webl ogi c. server. port}
Comma separated names of ess adm n/ managed servers to which essjob library
and hosting app is depl oyed

ess. server. name=Adm nSer ver

ORACLE 5-13

Creating a Thin Client Application

The thin client application is typically used to submit jobs, query status and optionally
used to host EJB job implementations. A thin client application uses the Oracle
Enterprise Scheduler thin client library for Oracle Enterprise Scheduler APIs. This
chapter describes the thin client library and how to use Oracle JDeveloper to develop
a thin client application.

This chapter contains the following sections:

e Introduction

* Implementation

* Using JDeveloper to Build a Thin Client Application for MAR Deployment

* Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

6.1 Introduction

ORACLE

Client applications are J2EE applications that execute in the same WebLogic domain
as Oracle Enterprise Scheduler.

Client applications can use the Oracle Enterprise Scheduler APIs to do the following:
e Submit jobs

* Query job status

» Look at job output and logs

e Optionally, perform updates to Oracle Enterprise Scheduler metadata

e Host an EJB job implementation that the Oracle Enterprise Scheduler invokes
remotely

The Oracle Enterprise Scheduler thin client library is used by client applications to
access Oracle Enterprise Scheduler APIs (for example, the metadata service API

or the runtime service API). The thin client library is a thin layer that remotely
invokes an Oracle Enterprise Scheduler hosting application to perform all operations.
The thin client application may optionally have an Oracle Enterprise Scheduler
metadata MAR archive with Oracle Enterprise Scheduler metadata developed using
Oracle JDeveloper. This metadata is automatically loaded into the Oracle Enterprise
Scheduler MDS when the application is deployed. Alternatively, the application can
use APIs to create the metadata dynamically.

The thin client shared library differs from the client shared library in the following ways:

* The client shared library includes local EJBs that do all the Oracle Enterprise
Scheduler work by directly accessing the MDS and runtime databases. The thin
client library does not include the data sources or EJBs, but instead remotely
accesses a hosting application that hosts the EJB and accesses the databases.

* The thin client library more cleanly hides Oracle Enterprise Scheduler internal
functionality from the application.

6-1

Chapter 6
Implementation

» Because it accesses the databases directly, the client shared library works even if
the Oracle Enterprise Scheduler server or cluster is down.

* The thin client library is also useful when deployment of the Oracle Enterprise
Scheduler is optional in an embedding product.

» All of the documented APIs exposed by the client shared library are available in
the thin client library. Therefore, thin client applications can:

— Request submission using the runtime service APIs

— Operate on requests using the runtime service APIs

— Update metadata artifacts using the Metadata Service API
— Remotely complete asynchronous requests

» Because the thin client library remotely invokes an Oracle Enterprise Scheduler
hosting application to perform all operations, it has to look up remote Oracle
Enterprise Scheduler beans instead of local beans. There is some overhead in
obtaining the I ni ti al Cont ext of a remote Oracle Enterprise Scheduler server.
The Renot eConnect or API provides the following assistance for the callback of
Oracle Enterprise Scheduler beans:

— Helper classes use Renot eConnect or s to easily connect back to
Oracle Enterprise Scheduler beans (for example, Runt i meServi ce and
Met adat aSer vi ce)

— Log and output can be handled from a remote implementation
— Asynchronous requests can be completed easily

— Invocations and callbacks can be secured

6.2 Implementation

This topic lists some considerations to keep in mind when you use the thin client
library to implement a remote EJB job.

Consider the following when you use the thin client library to implement a remote EJB
job:

e Make sure the bean implements the Renot eExecut abl e interface for execution
only, or the Renot eCancel | abl eExecut abl e interface for both the execute and
cancel operations.

* Use predefined system properties such as EJB_OPERATI ON_NAME instead of
defining specific properties such as SOA BEAN NAME.

e Theejb-jar.xm file should define the
oracle.security.jps.ee.ejb.Jpslnterceptor interceptor. Use the interceptor to
obtain the subject propagated from the Oracle Enterprise Scheduler layer and use
it in other operations.

* It's best to move the job implementation out of the e b-j ar. xm file to ensure that
the EJBs are not redeployed when the job logic changes.

ORACLE 6-2

Chapter 6
Implementation

Tip:

The application throws a j avax. nani ng. Nam ngExcept i on exception if the
JNDI context cannot be created with the passed in values. Alternatively, the
Scehdul er Except i on exception can be thrown when there is a problem with
look-ups that involve the credential key store.

6.2.1 Secured Invocation

Secured invocation of the remote EJB is required when the JNDI tree of its server

is authenticated. This is also the case when a remote EJB uses secure lookup to

call back to Oracle Enterprise Scheduler EJBs. The following sections provides some
guidance.

6.2.1.1 Forward Invocation

The following apply to forward invocation.

When Oracle Enterprise Scheduler invokes a remote EJB, the subject of the
executing job is always propagated.

When Oracle Enterprise Scheduler executes a job, the Jndi Provi der Ur| of the
current Oracle Enterprise Scheduler Server is always supplied to the remote EJB
through Request Par anmet er s.

If the JNDI tree of the remote server is authenticated, the JNDI _CSF_KEY property
must be specified in the request parameters or the EssConf i gur ati on of the
hosting application.

Oracle Enterprise Scheduler looks up the keystore for the Csf Key to retrieve the
Passwor dCr edent i al and connects to the remote server.

6.2.1.2 Callback Invocation

The following apply to callback invocation.

ORACLE

If the remote EJB must call back to Oracle Enterprise Scheduler beans, the
following properties can be specified:

— The JNDI names of Oracle Enterprise Scheduler Runt i ne, Met adat a
and AsyncRequest beans exposed in Host i ngApp must be specified in
request parameters or the EssConfi gur ati on of the hosting application. If
EssNat i veHost i ngApp is used, these entries are not required.

— If the JNDI tree of the Oracle Enterprise Scheduler server is authenticated,
the ESS_JNDI _CSF_KEY_NAME property must be specified in the request
parameters or EssConf i gur ati on of the hosting application. Oracle Enterprise
Scheduler ensures that this property is available to the remote EJB through
Request Par anet er s.

A remote EJB can make use of the Renot eConnect or API to get the remote
instances of Oracle Enterprise Scheduler beans. This can be done by passing the
following:

— Request Paraneters

6-3

Chapter 6
Implementation

— Request Par anet er s and Jndi MappedNane of the bean (for hosting applications
other than the native hosting application)

— Request Par anet er s, user name and password (if the Oracle Enterprise
Scheduler server is authenticated)

— Initial Context (primarily for Java SE clients with EssNat i veHost i ngApp)

— Initial Context and j ndi MappedNane (primarily for Java SE clients with other
hosting applications)

6.2.2 RemoteConnector APl and the Server Affinity Property

If your code implementation relies on accessing Oracle Enterprise Scheduler EJBs,
use the methods exposed in the Renot eConnect or API class. The Oracle Enterprise
Scheduler requires the server affinity property to be set in the I ni ti al Cont ext
environment before doing a JNDI lookup and the Renot eConnect or API class sets this
property for you. Note that this is especially important in multi-node cluster scenarios.
The Renot eConnect or class is packaged in the Oracle Enterprise Scheduler client
libraries.

If for some reason the Renot eConect or class cannot be used, you can set the
environment map property to the I ni ti al Cont ext before doing the look-up for the
Oracle Enterprise Scheduler EJBs as shown in the following example.

if(Platformtils.isWbLogic())
envProps. put ("webl ogi c. j ndi . enabl eServer Affinity", "true");

In a multi-node cluster environment, it is best to set the cluster algorithm to "round-
robin-affinity".

6.2.3 Examples

This section contains examples that illustrate how to use the thin client library.

6.2.3.1 Java EE Application That Uses RemoteConnector

ORACLE

The following code example shows a snippet from a Java EE application that uses
Renot eConnect or through the pre-deployed native hosting application.

Renot eConnect or essConnect or = newRenot eConnector ();

/I Request Paranet ers contains the Jndi Provi derURL of Oracle Enterprise Schedul er
/] Server which is auto-populated fromthe Oracle Enterprise Schedul er end while
/linvoking an EJB. The CSF key is auto-popul ated in RequestParameters fromthe
/I Oracle Enterprise Scheduler end if configured for the

/I Oracle Enterprise Schedul er Server and specified in the EssConfig of

Host i ngApp.

[Ilf CSF key is present, the CSF | ookup is done from RenoteConnector to resolve
/[aut henti cati on.

RuntineService rts = essConnector. get Runti meServi ceEJB(request Paraneters);
/] Sanpl e i nvocation using RuntimeServiceBean.
Runti neServi ceHandl e handl e = rts. open();

Request Detai|l reqDetail = rts.getRequestDetail (handle,
request Execut i onCont ext . get Request1d());

6-4

Chapter 6
Implementation

6.2.3.2 Implementation

The following example shows a skeletal implementation of an EJB job that uses
the thin client library. See Creating and Using EJB Jobs for more information about
implementing EJB jobs.

@t at el ess(nane = "JMXAdapter")

public class JMXAdapt er Bean i npl enents Renot eCancel | abl eExecut abl e
{

@resour ce

private SessionContext sctx;

publ i c JMXAdapt er Bean() {

}

public void execut e(Request ExecutionCont ext requestExecutionContext,
Request Paranet ers request Paraneters) throws

Execut i onError Excepti on,

Execut i onWar ni ngExcepti on,

Execut i onPausedExcepti on,

Executi onCancel | edException

{

/1"ESS Requestld:" + requestExecutionContext.get Requestid();

/I"EJB Cperation:" +

request Par anet ers. get Val ue(Syst enPr operty. EJB_OPERATI ON_NAME) ;
/1"1nvoke Message:" + request Parameters. get Val ue(SystenProperty. | NVOKE_MESSAGE) ;

public void cancel (Request Executi onCont ext request ExecutionContext,

Request Paranet ers request Paranet ers)

{

/1"ESS Requestld:" + request ExecutionContext.get Request|d();

/I"EJB Cperation:" +

request Par anet ers. get Val ue(Syst enPr operty. EJB_OPERATI ON_NAME) ;

/1"l nvoke Message:" + request Parameters. get Val ue(SystenProperty. | NVOKE_MESSAGE) ;
}

}

6.2.3.3 Subject Propagation

ORACLE

When the Oracle Enterprise Scheduler invokes an EJB job, the subject associated
with the hosting application is always propagated to the job. This ensures that the
subject that executes the job is available in the business operation of the bean. Add
the following code to the ej b-j ar. xn file to retrieve the subject from within the bean.

<i nterceptors>

<interceptor>
<interceptor-class>oracle.security.jps.ee.ejb.Jpslnterceptor</interceptor-class>
<env-entry>

<env-entry-name>appl i cati on. nane</ env- ent ry- name>

<env-entry-type>java.lang. String</env-entry-type>

<env-entry-val ue>NAVE_OF ENTERPRI SE_APPLI CATI ON</ env-entry-val ue>
<injection-target>
<injection-target-class>oracle.security.jps.ee.ejb.Jpslnterceptor</injection-
target-class>
<injection-target-nane>application_nanme</injection-target-nane>
</injection-target>

</ env-entry>

<linterceptor>

</interceptors>

<assenbl y- descri pt or >

6-5

Chapter 6
Using JDeveloper to Build a Thin Client Application for MAR Deployment

<i nterceptor-bindi ng>

<ej b- name>*</ ej b- nane>
<interceptor-class>oracle.security.jps.ee.ejb.Jpslnterceptor</interceptor-class>
</i nterceptor-bi ndi ng>

</ assenbl y-descri ptor >

You can use the following code to invoke an MBean from an EJB operation in the
privileged context of the current subject:

AccessControl Context accContext = AccessController.getContext();
Subj ect current Subj ect = Subject. get Subj ect (accCont ext);

String currentUsernane = SubjectUtil.getUserName(currentSubject);
Subj ect . doAs(current Subj ect, new Privil egedExceptionAction() {
public Gbject run() {

/l1ogic to invoke MBean

}
1

6.3 Using JDeveloper to Build a Thin Client Application for
MAR Deployment

If your job uses the Oracle Enterprise Scheduler pre-deployed native hosting
application, you can simplify the creation of custom job metadata by building a
client application that assists in the creation of the metadata and deploys it to the
pre-deployed native hosting application MDS patrtition (essUser Met adat a).

The following instructions show how to use Oracle JDeveloper to create a thin client
application that:

e Adds job metadata

e Creates an enterprise archive (EAR)

e Packages the metadata archive (MAR) in the EAR

« Deploys the metadata to the pre-deployed native hosting application

The instructions in Using JDeveloper to Create and Configure an EJB and its Job
Definition Metadata describe how to create an EJB that can be invoked by the EJB job
definition added to the pre-deployed native hosting application.

The ADF infrastructure is used to deploy the metadata to a specific partition when
an application gets deployed. The MDS partition for the pre-deployed native hosting
application is essUser Met adat a.

JDeveloper provides accessibility options, such as support for screen readers,
screen magnifiers, and standard shortcut keys for keyboard navigation. You can
also customize JDeveloper for better readability, including the size and color of fonts
and the color and shape of objects. For information and instructions on configuring
accessibility in JDeveloper, see "Oracle JDeveloper Accessibility Information" in
Developing Applications with Oracle JDeveloper.

ORACLE 6-6

Chapter 6
Using JDeveloper to Build a Thin Client Application for MAR Deployment

< Note:

Be sure to set the MW HOME environment variable before you start JDeveloper.
For example: export MN HOVE=/ scrat ch/ prh/ 12c/j dev If this variable is not
set, the Job Type dropdown menu is not populated.

6.3.1 Create and Deploy a Thin Client Application for the Standalone
Environment

The following steps describe how to use JDeveloper to create and deploy a thin client
application.

1. Inthe New Gallery dialog, create a custom application and project as shown in

Figure 6-1.

Figure 6-1 New Gallery Dialog

m
Q

Categories

Items: [] Show All Descriptions

=-General

- Connections
-.Deployment Descriptors
Deployment Profiles
-~ Diagrams
o Java
- Mawen
Projects
umL
ML
~Business Tier
ADF Business Components
Business Rules
-~ Contexts and Dependency Inj
- Data Contrals
-EJB
Enterprise Scheduler Metadat

Help

- | & Java Desktop Application

@ ADF Fusion Web Application
ADF Java Desktop Application
[ﬂ Application from EAR File

[} application Template

Custom Application

Creates an application that includes a single project that can be
custamized toinclude ahy features

[Database Application
@ Extenszion Application
[Java EEWeb Application
QEP Application

Service Bus Application
[P S Iy [JE Y FTUTE PPN Ppp Sy

0K Cancel

2. Inthe Create Custom Application dialog, enter the application name and

application package prefix as shown in Figure 6-2.

ORACLE

ORACLE"

Figure 6-2 Create Custom Application Dialog - Step 1 of 3

£ Create Custom Application - Step 1 of 3

|| Name your application

Chapter 6

Using JDeveloper to Build a Thin Client Application for MAR Deployment

(@ Application Name

)Tk Project Mame

Application Name:
‘Mysamp\eTthliemApp ‘

Directary

|#scratch/riyanu MyWork/MySam pleThinClientApp Browse

Application Package Prefix:
‘com oracle.zamples.ess.thinclient

Help

Mewxt = Einish Cancel

3. Enter the project name, then add ESS Job Support, ESS Client Support and

EJB into the

Figure 6-3 Create Custom Application Dialog - Step 2 of 5

Name your project

project features as shown in Figure 6-3.

Create Custom Application - Step 2 of 6

T Application Name
A
I

Project |ava Settings

" Dirgctory: ‘1,’aJahagirfjdevuser’lzfmywork,fnpplicationZIPrcjecll‘ Browse...

Project Name: [Projectl |

Project Features Generated Components | Associated Libraries

Available Selected

T Project E|B Settings
T Project ESS Job Suppo
-

Build Tool

oy
At

BI:M ESS Client Support
ol ESS Job Support

Composer 8
Customizable Components
Database Modeling 3
EJE Modeling

5SS Host Support

Extension Developm ent

Extension Development Feature Description

The extension development feature allows users to create extensions to
JDeveloper. These extensions may augment or maodify the behavior of
IDeveloper.

Help

<Back | MNext> Einish Cancel

4. Configure the

EJB settings as shown in Figure 6-4.

6-8

ORACLE

5.

Chapter 6

Using JDeveloper to Build a Thin Client Application for MAR Deployment

Figure 6-4 Create Custom Application Dialog - Step 4 of 5

€ Create Custom Application - Step 4 of 5

Configure EJB settings

EJB Wersion
Apnlication Name i
() Enterprise JavaBeans 3.0 (Java EE 5.0}

(3) Enterprise Javafieans 3.1 {Java EE 6.0
Project |ava Settings S] = :

| Project EJB Sertings | | D/ MErsIon 3%

1 Project Mame
®

T Select the preferences that you wish to set for your EJ8 3.x project
-

Build Tool
[] Generate jndi.properties file for project

Generate gjb-jar.xml in this project

Select storage type of EJf meta-data preferences
() Using annotations

(%) In gjb-jar.xml and using annotations

Inwoke Wizard: |Mone ™

Help < Back Mext > Einish Cancel

Configure the application ID value as shown in Figure 6-5

Figure 6-5 Configure ESS Job Support Settings

Create Custom Application - Step 5 of 6 x|

Configure ESS Job Support settings

/\r Project Mame Application Id

Project |ava Settings
Project E|6 Settings

I

T Application Name Entervalues for weblogic-application.xml.
2 Project ESS Job Supy
I

¥
¢

EBuild Tool

Help < Back Ne:k(> Einish Cancel

Click Next.
Click Finish to complete the steps to create a new application.

Edit the MANIFEST.MF file generated in the previous step and remove the
following lines:

essclientapi-Specification-Version: 12

Ext ensi on-Li st: essruntime, essclientapi

\Webl ogi c- Appli cation-Version: 3.0

essclientapi - Extensi on-Nane: oracle.ess.client.api
essrunti me- Ext ensi on- Name: oracl e. ess. runtine
essrunti ne- Speci fication-Version: 12

Right click the project node in the left tree panel, then select project properties and
click “Libraries and Classpath" as shown in Figure 6-6. Make sure to only select

“Java EE" and “Enterprise Scheduler" in the Classpath Entries pane.

6-9

Chapter 6
Using JDeveloper to Build a Thin Client Application for MAR Deployment

Figure 6-6 Project Properties Dialog

Project Properties - ,iscratch,'abab:hakjjde}relnperjmywork{MysampIeThincIientApp,ﬂ x

Libraries and Classpath
& Project Source Paths Use Custom Settings
- ADF Business Components, @) Use Project Settings
- ADF Model
ADF Task Flows lava SEVersion:
ADF View Change
B ANt
& Compiler Classpath Entries:]
Dependencies Export Description Add Library.
Deployment v| @l JavaEE P——
EJE Module vl ol es
Extension v ﬂ] Enterprise Scheduler
Facelets Tag Libraries V| @l TopLink
Features
- Javadoc
Java EE Application
JPa
JSP Tag Libraries
JSP Visual Editor
Maven
Resource Bundle
Run/Debug
Help | oK | Cancel

10. In the New Gallery dialog, select “Enterprise Scheduler Metadata" and “Job
Definition" as shown in Figure 6-7.

Figure 6-7 New Gallery Dialog

Applications
(=] tysampleThinClientapn = |«
= Projects B®RT-E-

hinClientAppMARProj @ New Gallery x|

=[] Application Sources
=2 META-INF Q

A2 ejo-jaromi Categories: Items [] Show &1l Descriptians

[weblogic -ejb-jar x
~Applications [lob Tvpe
Connections
~Deployment Descriptors @ Job Definition
~Deployment Profiles Launches Job Definition Creation: To enable this option, you must select
Diagrams aproject, or afile within a proiect in the Application Naviqator,
Jaa B Job set
~Maven
-Prajects [& Incompatibility
UnL
ML [schedule

- Business Tier
=l Application Resources
ADF Business Components

{3 Build Files Business Rules
[{7 Connections ~Contexts and Dependency Inj
&[] Descriptors -Data Contrals
-] META-INF EJE
-[7] ADF META-INF iE
{3 Libraries -Security
@[] Service Bus System Resources TopLink/|PA

Help oK Cancel b

L "
05:15:46 AM1 TDenlover:149191100eration "denlov” on aonlication "DocThinClientfon” is initial

11. In the Create Job Definition dialog, select / or acl e/ as/ ess/ cor e/ ProcessJobType
from the Job Type dropdown to add simple spawned job definition metadata as
shown in Figure 6-8.

ORACLE 6-10

ORACLE

12.

Chapter 6

Using JDeveloper to Build a Thin Client Application for MAR Deployment

Figure 6-8 Create Job Definition Dialog

£ Create Job Definition

Job Definition

scheduler. A job definition requires a job type

A job definition describes a job (basic unit of work) that runs inthe

Name: [SimpleSpawnedjobDefn

Package: [faraclefapps/ess/custom

Jab Type: | foracieas fess/core /ProcessjobType

i

Location: lyanu /MyWark/MySampleThinClientapp/ThinClientAppMARPraj fessmeta/ |

Help

Ok Cancel

To complete the addition of spawned job definition metadata, select the Override
check box and enter a value for the Command Line entry. Add a system property
named SYS_ef f ecti veAppl i cati on with a value of EssNat i veHost i ngApp.

Figure 6-9 SimpleSpawnedJobDefn.xml Tab

Applications
MySampleThinClientApp v |w

=l Projects B @ 7B
=-{E] ThinClientAppMARPra)
- Application Sources
=1 Ess
-3 oracle
-3 apps
=23 ess
=7 custam
-0 Jobs
------- [3 Simplespawned|obDefn :
SimpleSyncEjblobDefn x

I Application Resources

{7 Build Files

[connections

=-{7] Descriptars

t @) META-INF

-] ADF META-INF

&[] Libraries

-7 service Bus System Resources

[simplespawmed|obDefn xm|

35 Job Definition

I8

Name: SimplespannediobDefn

Display Name: [SimpleSpawnedjabDefn

Description:

swsuadwos

Job Type: foracle fasfess/core/Process)obType

Command Line: [ps -ef

|] override

[] Publish

=[] Application Defined Properties

P

Ho Application Defined Properties

= [System Properties

7+ R

Ho System Properties

Job Definition Editor,

Deployment - Log

Q =

[06:06:45 &M] Updating adf-config.=m] with ESS event listener for jobset
[06:06:45 &H] Updating adf-config.xml with ESS event listener for joh-definition
[06:06:45 AH] Updating adf-config.xml with ESS event listener for johtype

l

Actions T

[06:06:45 AM] Info: Namespace 'Joracle/apps/ess/custom’ is mapped to deploy-target metadata-st

‘demo-app' in adf-config.xml but no metadata from the nanespace is included in the MAR.

FAG MR 4G AHT bleare Frrerneiza Sanlicarinn Hadile ra

13. Add EJB job definition Metadata. Follow the steps in Using JDeveloper to Create

14.

and Configure an EJB and its Job Definition Metadata.

Configure the MAR profile.

a. Select “Application Properties" and click “Deployment Node".
b. Select “MAR Module" in the right side panel and click Edit.

c. Select “User Metadata" in the Edit MAR Deployment Properties dialog as

shown in Figure 6-10.

d. Make sure that the essnet a directory (under the path of the project created
above) is available. If it is not available, add the directory by manually
navigating to the essnet a directory.

6-11

Chapter 6
Using JDeveloper to Build a Thin Client Application for MAR Deployment

Figure 6-10 Edit MAR Deployment Profile Properties Dialog

FroEa BE 0 0+ @d > & B@a Q’
Applications =1 [E simpleSpawnedjobDefnxml &% SimpleSessionBeanjava 0 eib-jarxml 2 webiogic-ejbojarxml G simples,
g [MysampleThinClientapp = = [% Job Definition
ENELCLEENN Y A=A ¢ Edit MAR Deployment Profile Properties [ol[x]|
3 [=E T -
= i = thinclient Q search User Metadata
A F @ SimpleSe: — MAR Options
2 [META-INF B Metadata Fils Groups Eile Group Mame: |User Metadata |
% ejb-jar.xml
=3 ESS ; ;
e - ADF Library Customiza rae ShCoT ot
=Gl oracle L. Directories
ED apps ySampleThinClientApp/Th.. A,
=0 ess
= custom Remave
= Jobs
o[s
LB s -
=l Application Resources ont
-3 Build Files
{77 Connections
=[] Descriptars
@[META-INF
! @[] ADF META-INF |
&[] Libraries
[Service Bus System Resourc
Delete i
i .
i
Help oK Cancel ie%a
I I

15. Select the appropriate metadata to package in the MAR. click the “Directories"
node under “User Metadata" and make sure that the newly added job definitions
are selected as shown in Figure 6-11.

Figure 6-11 Edit MAR Deployment Profile Properties Dialog

€4 Edit MAR Deployment Profile Properties =E3]
Q Search Directories
MAR Options Files
[~ Metadata File Groups
[z} User Select &ll Customizations Deselect All Customizations
= A_DF ibrary Customiza =[] £3 Merged Cantents of This File Group's Contributars
S Directories £V 03 oracle
©-[#] C3 apps
B-[#] 03 ess
=-[¥] £3 custam
A & ol
i [£) simplespawmediobDefn.xml
@ B [£) simplesyncEiblobDefn.xm!
Expand All Nodes Collapse All Nodes
Help oK Cancel

16. Create a deployment profile for an enterprise archive (EAR).
a. Select “Application Properties" and click the deployment node.

b. Click New in the right panel to invoke the Create Deployment Profile dialog.
Choose “EAR File" from the Profile Type dropdown as shown in Figure 6-12.

ORACLE 6-12

ORACLE

Chapter 6
Using JDeveloper to Build a Thin Client Application for MAR Deployment

Figure 6-12 Create Deployment Profile Dialog

Applications (33 simplespaunediobDernaml & simplesessionpeanjaia (%) ejb-jarmt) weblagicejb-jar.zmi
[=] MySampleThinClientapp = | = [Job Definition
SProjects [g) @) V- B)
Toliess Mame SimpleSyncEjblabDefn
-5 thinclient Display Mame: [SimpleSyncEiblobDefn
L@ simpleSessi
[META-INF Description
B ejb-jarxml
: L weblogic-ejb-jar x1 Job Type: Joraclefasfess/corefSyncEibjobType
= . —
=3 Ess 42 7 Create Deployment Profile [oi[x|
=1 oracle —
-7 apps TP Click ok 1o create your newdeployment profile and immediately open it to see its configuration
- ess Profile Type:
22 custam =] | ‘
[EAR File =
=7 Jobs]
B simy Deployment Profile Name:
b Sim
0 sims = 21| [mysampleThinCiientappEar] |
| Application Resources Mamy| Description:
D Build Files ;:;— Creates a profile for depl9ying the Java E_E eljner’pmse archive (EAR) file 10 an application ‘
3 connections s*rsi server. The EAR file consists of the application's assembled WAR, E|B JAR, and client JAR
=[] Descriptors =
- META-INF i Help ok Cancel
-] ADF META-INF = . .

- Libraries Job Definition Editor

17. Configure the application assembly for the EAR. In the dialog, make sure the
following two profiles are selected:

The MAR profile you previously created

The EJB profile. This profile is automatically created. If it is not automatically
created, create a new “EJB JAR" deployment profile for the project as
previously described beginning in step 2.

To create the EJB-JAR deployment profile:

a.

In the Application Navigator, in the Projects panel, right-click the Application
project, then click Project Properties.

In the Project Properties window navigator, click Deployment.

Under Deployment Profiles, delete all profiles listed in the window, then click
New.

In the Create Deployment Profile dialog, from the Profile Type dropdown list,
select EJB JAR file.

In the Name field, enter a name for the EJB. For this example, enter
MySanpl eThi nCl i ent Ej b.

Click OK.

6-13

ORACLE

Chapter 6
Using JDeveloper to Build a Thin Client Application for MAR Deployment

Figure 6-13 Create the EJB-JAR Deployment Profile

1 Edit EJB JAR Deployment Profile Properties x
Q General
m EJB JAR File:
AR Opti
J_ RLans p/ThinClientAppMARProj/deploy /My Sam pleThinClientEjb jar Browse...
=i File Croups
=t Project Output EAR File:
E.Iontrllnutors 3/ ThinClientAppMARProj/ deploy/MySampleThinClientEjb.ear Browse...
ilters
Library Dependencies Ceployment Plan:
Profile Dependencies Erowse
Platform =
Enterprise Application Name: |MySampleThinClientEjb
Deployment Client Maximum Heap Size {in Megabytes): |Auto =
Help [oK | Cancel

In the Edit EJB JAR Deployment Profile Properties dialog navigator on the left,
click General.

In the General window, in the Enterprise Application Name field, enter
MySanpl eThi nCl i ent App.

In the navigator, expand to File Groups > Project Output > Contributors.
In the Contributors window, select the following check boxes:

* Project Output Directory

* Project Source Path

* Project Dependencies

In the navigator, expand to File Groups > Project Output > Filters.

6-14

Chapter 6
Using JDeveloper to Build a Thin Client Application for MAR Deployment

Figure 6-14 Edit EAR Deployment Profile Properties Dialog

Edit EJB JAR Deplnymént Profile Properties

Filters
Ceneral Files Patterns
JAR Options
- File Groups This file group incl_udesthe project output _directory as a contributor. You
% Project Output m_ay need to compile the project to see all files coming from the output
directory.
Contributors
EMCalE] Merged Contents of This File Group's Contributors
Library Dependencies =-[v] £ META-INF
Profile Dependencies sew] =] ejb-jarsml
Platform [v] [E] weblogic-ejb-jar.xml
= th com
=[] C3 oracle
=[] CD samples
=[] 3 ess
=-[v] (23 thinclient
-[w] [£] simpleSessionBean.class
| ﬂ SimpleSessionBean java
[]E3 essmeta
[|0 oracle
Expand All Nodes LCollapse All Nodes
Help [fa]'8 | Cancel

I. Inthe Filters window, in the Files tab, ensure that the following folders are
selected:

e META-INF (and its contents)

e oracle (and its contents)
m. In the JAR Option window, deselect the Include Manifest File item.
n. Click OK.
o. Inthe Project Properties dialog, click OK.

18. Configure the library dependencies for the EAR. Be sure that none of the items are
selected in the Libraries Selected for Deployment pane.

Figure 6-15 Edit EAR Deployment Profile Properties Dialog

] Edit EAR Depluymeﬁt Profile Properties x

Library Dependencies

General Libraries Selected for Deployment
Application Assembly
| EAR Optians | ol Java e
= File Groups e
% Application Descriptar: [il Enterprise Scheduler
Contributors I e
Filters

= Application Libraries
Contributors

Platform

Help Ok Cancel

ORACLE 6-15

ORACLE

19.

20.

21.

Chapter 6
Using JDeveloper to Build a Thin Client Application for MAR Deployment

Configure the adf - confi g. xm file. When you deploy an ADF-based application
from JDeveloper, there is a dialog that asks you to select the MDS partition

into which the metadata is to be deployed. If the EAR file generated from this
application is to be deployed from the WLS console, certain MDS partition entries
must be specified in the adf - confi g. xnl file. If this is the case, ensure that the
adf - confi g. xm file contains the entries shown in Example 6-1. You can find the
adf -confi g. xm file in the Application Resources > Descriptors > ADF META-INF
section in bottom of the left panel.

Configure the webl ogi c- appl i cation. xn file. Make sure the contents of the
webl ogi c- appl i cation. xn file are as shown in Example 6-2.

Deploy the application. To complete the deployment of the EAR, select
essUser Met adat a in the Partition Name dropdown in the Deployment
Configuration dialog and click Deploy.

Figure 6-16 Oracle Deployment Configuration Dialog

#) Oracle Deployment Configuration =IE
Configure and customize settings for thiz deployment [
MDS
- Metadata Repository
Repository Name: |mds-ESS_MDS_DS '|

Repository Type: DB

Partition MName: le:

Path/JNDlInfo: jdbe/mds-ESS_MDS_DS

- Shared Metadata Repositories

Namespace Repository Type Partition Path/INDI Infa

Help Deploy Cancel

Example 6-1 Contents of the adf-config.xml File

<?xm version="1.0" encodi ng="UTF-8" ?>
<adf-config xm ns="http://xn ns. oracl e. cont adf/ confi g">

<adf - mds-config xm ns="http://xm ns. oracl e. con adf / nds/ confi g">
<mds-config xm ns="http://xn ns. oracl e. com nds/ confi g"

version="11.1.1.000">

<persi st ence-confi g>
<net adat a- namespaces>
<namespace path="/oracl e/ apps/ ess/

cust ont met adat a- st or e- usage="ess_cust om net adat a"/ >
</ met adat a- nanmespaces>
<net adat a- st or e- usages>
<net adat a- st or e- usage
i d="ess_cust om net adat a" depl oy-target="true" defaul t-cust-

store="true">

<ns3: net adat a-store cl ass-

name="or acl e. mds. per si st ence. st ores. db. DBMet adat aSt or e"
xm ns: ns3="http://xm ns. oracl e. con mds/ confi g">

<ns3: property nane="repository-

6-16

Chapter 6
Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

nane" val ue="nds- ESS_MDS _DS" />
<ns3: property name="partition-
nane" val ue="essUser Met adata" />
<ns3: property name="jndi -
dat asour ce" val ue="j dbc/ mids- ESS_MDS_DS" />

</ ns3: net adat a- st ore>
</ net adat a- st or e- usage>
</ met adat a- st or e- usages>
</ persi st ence-config>
</ mds- confi g>
</ adf - nds- confi g>
</ adf - confi g>

Example 6-2 Contents of the weblogic-application.xml File

<?xm version = '1.0' encoding = 'UTF-8 ?>
<webl ogi c-application xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-
i nstance"

xsi : schemalLocati on="http://xn ns. oracl e. conf webl ogi c/ webl ogi c-

appl i cation http://

xm ns. oracl e. cont xm ns="http://xm ns. oracl e. con
webl ogi ¢/ webl ogi c- appl i cation">

<l'istener>

<li stener-class>oracl e.nds. | cmwebl ogi c. W.Li f ecycl eLi stener</|istener-class>
</listener>
<library-ref>
<library-nanme>oracle.ess.thin.client</library-name>
</library-ref>
</ webl ogi c- appl i cati on>

6.4 Using JDeveloper to Create and Configure an EJB and
its Job Definition Metadata

You use JDeveloper to create and configure an EJB and its job definition metadata.
The following steps describe how to:

* Create a simple synchronous EJB that conforms to Oracle Enterprise Scheduler's
job implementation requirements.

» Create EJB job definition metadata and deploy it as a part of the enterprise
application.

1. Create a session bean. In the New Gallery dialog, select “Session Bean" to create
a new EJB as shown in Figure 6-17.

ORACLE 6-17

ORACLE

Chapter 6
Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

Figure 6-17 New Gallery Dialog

Applications 1 E@. SimpleSpawnedjobDefn.xml
[=] MysampleThinClientapp = | =
=l Projects B F-E-

[application Sources

[Job Definition

| &[0 META=INF Q
: ; - I
§ ej Jﬂr.x'"I : Categories: ltems: [Shew &1l Descriptions
& l% Wb ogic -ejb-jar. x|
-3 es5 G-Business Tler [8 Data Control
&0 oracte - ADF Business Components
-5 apps Business Rules [E& €16 Diagram (gPa EIE 3.%)
- ess Comests and Dependency Il o & iiestrom: Tables
-~ Data Controls
= custom : :
-3 Jobs EJE) @ Entity
@ simp Enterprise Scheduler Metadat
- Security [& java service Facade (IPA/TopLink)
- TopLink/JPA [@ 1A Mappings (ML
Web Services
— Client Tier [B P Persistence Descriptor (persistence.xml)
= Application Resaurces o g 7
= esktop Intearation
PA Persistence Unit
® 7 Build Files bt Sy B
(3 connections Extension Develapment & Message-Driven Bean
&[] Descriptors

- S g AT :
-Database Tier & Session Bean
*- Database Files Launches the Create Session Bean wizard, which allows you to create a

i @~ META-INF
{ @[] ADF META-INF

[Libraries - Database Objects stateful or stateless session bean. To enable this aption, you must
. : select a project in the Application Navigator
[0 service Bus System Resources L..OMline Database Obects
Help oK Cancel

Configure the session bean. Enter the EJB name in the EJB Name field and enter
the mapped name in the Mapped Name field as shown in Figure 6-18. Click Next
to continue.

Figure 6-18 Create Session Bean Dialog - Step 2 of 5

€ Create Session Bean - Step 2 of 5

General

Enter an EJE name and chaase fram the Session EIB options below,

|
s, General EJE Mame: |Simplesession |

I

Class Definitions
T Session Type (#) Stateless () Stateful () Singleton
T

Transaction Type‘(nmamer’-managed Transactions (CMT) with Implicit Commit v|

Mapped Name: [eib/simpleSessionBean |

[] Generate Session Facade Methods

Help Next = Finish Cancel

Configure the session bean business interface. Make sure that the
Implement a Remote Interface check box is checked and that

oracl e. as. schedul er. Renot eExecut abl e is set as the class for the Remote
Interface field as shown in Figure 6-19. Click Next and proceed to the Finish
step.

6-18

Chapter 6
Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

Figure 6-19 Create Session Bean Dialog - Step 4 of 5

£§ Create Session Bean - Step 4 of 5

Interfaces

Enter the EJB interface names
T
A [#] Implement 2 Remote Interface
| Remaote Interface

Class Definitions

T
|oracle.as.scheduler. Rem oteExecutable| Browse..

W Interfaces

I

™~

Implement a Local Interface
Finish Ll =

[] Implement TimedObject Interface

Help < Back Next > Einish Cancel

4. Configure the generated session bean. Make sure the generated session bean
implements the execute method defined in the Renot eExecut abl e interface

Figure 6-20 Configure the Generated Session Bean

Applications = [[H SimplespawnedjobDetnxml | & simplesessionBean java

[} MySampleThinClientapp ~ (v | Q= Find 2040 880338 > 8B KRE B
=l Projects B V-E- | package com.oracle.samples.ess.thinclient;
iClientAppMARPraj |
wpplication Sources | Eiapert ...;
@ ForTOFSEIE Samples E@statelessinane = "Sinplesession”, mappeddane = "ejb/simpleSessionBean’)

& @ 255 | @local

B0 thinclient ¥l Epublic class SimpleSessionBean implements RemoteExecutable {
& SimpleSessionfeanjava @ Implement Methods...

7] META&-IMF

@ Make ‘SimplesessionBean’ Abstract

% €lafarxml et Initial Serialization Version

weblogic-gjb-jar.xm|

Set Default Serialization Version
333

T oracle
= apps
B[ess
=7 custom

/8 Suppress "Missing Serialization UID" By |Developer Name (SuppressWarnings Annotation)

=l Application Resources
&[] Build Files
w7 Connections

&+{7] Descriptors

5. Complete the implementation of the session bean. Make sure the bean is
complete by implementing the execut e method.

Figure 6-21 Complete the Implementation of the Session Bean

@ SimplespawnedobDefr.xm| @ SimpleSessionBeanjave
Qe Find 2444005 2 30 kEB

jackage com.oracle.samples.ess.thinclient;
| Eimport ...

| B35tateless(nane = "SimpleSession”, mappediame = "ejhb/simpleSessionBean”)
| Mocal
| Eublic class SimpleSessionBean implements RemoteExecutable {

@Resource

SessionContext sessionContext;

jE public SimpleSessionBean{) {
i

@O0verride
public void execute(RequestExecutionContext requestExecutionContext,
EeguestParameters requestParameters) throws ExecutionErrorException, ExecutionWarningExcept
ExecutionCancelledException,
| = ExecutionPausedException {
System.eut.printin("Sinple Session Bean executed. " +
"Reguestld:" + reguestExecutionContext. getRequestld(ll;

b

SimpleSessionBean = execute(RequestExecutionContext, RequestParam eters) 31:62

ORACLE 6-19

ORACLE

Chapter 6
Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

Make sure the ej b-j ar. xm file contains the declaration shown in Example 6-3.
Make sure the webl ogi c-ej b-j ar. xm file contains the declaration shown in
Example 6-4.

This completes the steps used to create an EJB that can be invoked by Oracle
Enterprise Scheduler using the EJB job type.

The following two steps describe how to use JDeveloper to create an EJB Job
definition.

Create EJB job definition metadata. In the New Gallery dialog, select “Job
Definition" under “Enterprise Scheduler Metadata" and fill it in as shown in

Figure 6-22.

Figure 6-22 Create Job Definition Dialog

Applications (7 simplespawnedjobDefnam| (3 SimpleSessionBeanjava 5 efb-jarxml (5 weblogic-ejb-jarxm
[&] MysampleThincliemapp ~ = | Q=0 Fing ER MRk B
Projects @] @~ W~ 3= B @ Create job Definition I=ES
=@ com.oracle.samples = we
i B ess Job Definition ogit
;] .
= thinclient = A job definition describes ajob (basic unit of work) that runs in the
& simplesessi scheduler. A job definition requires a job type.
=0 META-INF =
I% ejb-jar.zml =2
.. weblogic-gjb-jar.xt Mame: [SimplesyncEibjobDefn | | -
B-C3 Ess !
& tl oracle Package: |forac\e]appsfessfcuswm |
-3 apps Job Type: | foracle/as/ess core/SyncEjbjobType -|
&g ess Z
<
B+ custom Location: [yanu MyWork/MySam pleThinClientapp/ThinClientAppMARPraj fessmeta/|
=-{3 Jobs
o[simy
—| Application Resources
-2 Build Files
w7 Connections
&[] Descriptors
. B[] META-INF
. @[ADF META-INF weblogic—¢
7 Libraries Overiien | 3
7] Service Bus System Resources o
Q
fo3:15:32 inCl
[03:15:46 Help ok Cancel
[03:15:46 b i
[03:15: 47 FA—TTEFTOFE T oI TOPETE T T TEf 07— =pR T Car DU e e

Configure system properties in the job definition. In the Add System Property
dialog, specify EssNat i veHost i ngApp in the Initial Value field, and select the
system property SYS ef f ecti veAppl i cati on from the Name dropdown as shown
in Figure 6-23.

6-20

ORACLE

Chapter 6
Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

Figure 6-23 Add System Property Dialog

(7 simplespannedjobDein xml (5® SimpleSessionBeanjava (5 eibojarxml [weblogic-ejbjarceml | (B} SimpleSyncEiblobDefn.xmi

[Job Definition

Hame simpleSyncEibjobDefr

Display Name: [Sim pleSyncEibjobDefn

=]

Mame |55 _effectivepplication)
Jab Type Type: STRING
Class Mame

Description

Initial Value: [EsshiativeHostingApp |

[] Publish [] Read Only

= [Applicati &

Mo Applicatiol

iz 2 System Py Fad

Mo System Pro|

2 E= Access O /

Mo Access Co

= &) Localizat

Job Definition Ed|
Deployment - L

Q

Help ok Cancel

Repeat the process, making sure that the SYS _EXT _j ndi MappedNane property
is configured with an initial value of j ndi Nane. Also add properties like
SYS_EXT_j ndi Provi der Ur| if the application is deployed to a server other than
ESSAPP.

Figure 6-24 Job Definition Tab

(5 simplespawnedjobDem.xml 52 simpleSessionBeanjava [ejp-jarxml &% weblogic-ejb-jarxml (I} simplesyncEjblobDefn.xm|

[# Job Definition =
Mame: SimplesyncEjbjobDefn
Dizplay Mame: [SimpleSyncEibjobDefn
Description
lob Type Joraclefasfess/core/SyncEiblobType
Class Name: |oracle.as schedulerjob.ejb.SyncElBjob ‘
[] Publish
(= [Application Defined Properties F R
Mo Application Defined Properties
= 2 System Properties VA 3k
Name Type Initial Value Read Only
SYS_effectivedpplication STRING EssNativeHostingApp
SYS_EXT_jndiMappediame STRING ejb/simpleSessionBean
SY5_EXT_indiProviderUrl STRING 13/ localnost7001
= E= Access Control 7 R
Job Definition Editor, i
Example 6-3 Contents of the ejb-jar.xml File
<?xm version = '1.0" encoding = 'UTF-8 7>
<ejb-jar xmns:xsi="http://ww.w3.org/ 2001/ XM_.Schema- i nst ance"
xsi:schenalLocation="http://java.sun.con xm /ns/javaee http://

java. sun. com xm / ns/j avaeel/ ej b-jar_3_0."
version="3.0" xm ns="http://java. sun.con xnl/ns/javaee">
<enterprise-beans>
<sessi on>
<descri ption>Si npl e Sessi on Bean</description>
<ej b- name>Si npl eSessi on</ ej b- nane>
cl ass>oracl e. com sanpl es. ess. thinclient. Si npl eSessi onBean
</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>

<ej b-

6-21

ORACLE

Chapter 6
Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

<transaction-type>Cont ai ner</transaction-type>
<security-identity>

<use-cal ler-identity/>
</security-identity>

</ sessi on>
</ enterprise-beans>
</ejb-jar>

Example 6-4 Contents of the weblogic-ejb-jar.xml File

<?xm version = "1.0" encoding = 'UTF-8 ?>
<webl ogi c-ej b-jar xm ns:xsi="http://ww:.w3. org/ 2001/ XM_Schena-
i nstance" xsi : schemalLocation="http://
xm ns. oracl e. coni webl ogi ¢/ webl ogi c- €] b-j ar http://xm ns. oracl e. conf
xm ns="http://xm ns. oracl e. conf webl ogi ¢/ webl ogi c-ej b-j ar">
<webl ogi c-ent erpri se- bean>
<ej b- name>Si npl eSessi on</] b- nane>
<st at el ess- sessi on-descri ptor>
<busi ness-i nter f ace-j ndi - name- map>
<busi ness-renot e>or acl e. as. schedul er. Renot eExecut abl e</ busi ness-
renot e>
<j ndi - nane>ej b/ si npl eSessi onBean</ j ndi - nane>
</ busi ness-i nt erface- | ndi - nane- map>
</ st at el ess-sessi on-descri pt or >
</ webl ogi c- ent er pri se- bean>
</ webl ogi c-ej b-j ar>

6-22

Using Oracle JDeveloper to Generate an
Oracle Enterprise Scheduler Application

This chapter is a tutorial that describes how to create and run an application that uses
Oracle Enterprise Scheduler to run job requests and demonstrates how to work with
Oracle JDeveloper to create an application using Oracle Enterprise Scheduler.

The chapter then shows a variation on the sample application using two split
applications — a job submission application, a submitter, and a job execution
application, a hosting application.

This chapter includes the following sections:

* How to Start JDeveloper to Support Building Oracle Enterprise Scheduler
Applications

* Understanding Oracle Enterprise Scheduler Application Support Created by
Oracle JDeveloper

* Building a Combined Oracle Enterprise Scheduler Application

e Building Split Submitting and Hosting Applications

7.1 How to Start JDeveloper to Support Building Oracle
Enterprise Scheduler Applications

ORACLE

Some aspects of developing Oracle Enterprise Scheduler applications with Oracle
JDeveloper require that you set the Middleware Home environment variable to

the installation location of Oracle JDeveloper itself. Before you begin using Oracle
JDeveloper to develop Oracle Enterprise Scheduler applications, be sure to set this
variable.

JDeveloper provides accessibility options, such as support for screen readers,
screen magnifiers, and standard shortcut keys for keyboard navigation. You can
also customize JDeveloper for better readability, including the size and color of fonts
and the color and shape of objects. For information and instructions on configuring
accessibility in JDeveloper, see "Oracle JDeveloper Accessibility Information” in
Developing Applications with Oracle JDeveloper.

To set an environment for building Oracle Enterprise Scheduler applications:

1. Open a command prompt.

2. Change directory to the installed location of Oracle JDeveloper. For example, on
Windows you might do the following:

>cd c:\Oracl e\ M ddl ewar e\ j devel oper
3. Set MW_HOME to the location of Oracle JDeveloper. For example:
>set MW HOME=c:\ O acl e\ M ddl ewar e

4. Start Oracle JDeveloper.

7-1

Chapter 7
Understanding Oracle Enterprise Scheduler Application Support Created by Oracle JDeveloper

>j devel oper

7.2 Understanding Oracle Enterprise Scheduler Application
Support Created by Oracle JDeveloper

As you create projects in Oracle JDeveloper for developing Oracle Enterprise
Scheduler applications, you add underlying support for application functionality by
specifying support for particular project technologies.

For more information on creating Oracle Enterprise Scheduler applications, see
Building a Combined Oracle Enterprise Scheduler Application and Building Split
Submitting and Hosting Applications.

When you create an application using Oracle JDeveloper, you select from the following
technologies, depending on your application requirements:

» ESS Host Support for developing a hosting application, including:
— Updating weblogic-application.xml for application support.
— Updating EJB deployment profile for project support.
— Updating EAR deployment profile for application support.
— Adding the Oracle Enterprise Scheduler library.

— Adding context menu to project (accessed by right-clicking and selecting
Enterprise Scheduler Properties), which allows the following ejb-jar.xml
properties to be modified: Logical Application Name, Application Policy Stripe,
JPS Interceptor Application Name.

» ESS Client Support for developing a client application, including:
— Updating weblogic-application.xml for application support.
— Updating EJB deployment profile for project support.
— Adding the Oracle Enterprise Scheduler library.

— Adds context menu to project (accessed by right-clicking and selecting
Enterprise Scheduler Properties), which allows the following ejb-jar.xml
properties to be modified: JPS Interceptor Application Name.

» ESS Job Support for developing scheduler applications, including:
— Creating or updating a MAR profile.
— Creating a JAR deployment profile for project support.
— Adding the Oracle Enterprise Scheduler library.

7.3 Building a Combined Oracle Enterprise Scheduler
Application

ORACLE

The EssDemoApp sample application you build in this tutorial includes a complete
application that you build with Oracle JDeveloper using Oracle Enterprise Scheduler
APIs.

In this example, you'll create a hosting application and a simple Java job
implementation. Though the example here is simple, its job class implements the

7-2

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

Execut abl e interface from which a more complex Java job might call out to other code
as part of its work.

To create an application that schedules job requests you do the following:

» Create the Java class that specifies the logic you want to schedule and run with
Oracle Enterprise Scheduler.

» Specify Oracle Enterprise Scheduler metadata and the characteristics for job
requests.

» Define the Java application that uses Oracle Enterprise Scheduler APIs to specify
and submit job requests. The application consists of two projects: one for hosting
jobs and another for submitting them.

» Assemble and deploy the Java application that uses Oracle Enterprise Scheduler
APlIs.

* Run the Java application that uses Oracle Enterprise Scheduler APIs.

" Note:

The instructions in this chapter assume that you are using a new Oracle
JDeveloper that you installed without previously saved projects or other
saved Oracle JDeveloper state. If you have previously used Oracle
JDeveloper, some of the instructions may not match the exact steps shown

in this chapter, or you may be able to shorten procedures or perform the
same action in fewer steps. In some cases Oracle JDeveloper does not show
certain dialogs based on your past use of Oracle JDeveloper.

When you use Oracle Enterprise Scheduler the application metadata is stored with
MDS. To use MDS you need to have access to a database with MDS user and
schema configured.

You also need a WebLogic Server instance to which Oracle Enterprise Scheduler is
deployed in standalone mode. You should have access to a database with the Oracle
Enterprise Scheduler schema installed.

This section includes the following subsections:

* Creating the Application and Projects for EssDemoApp Application

* Creating Metadata and an Implementation Class for the EssDemoApp Application
e Adding Application Code to Submit Job Requests

e Setting Oracle Enterprise Scheduler Properties

* Assembling the EssDemoApp Application

* Deploying and Running the EssDemoApp Application

ORACLE 7-3

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

7.3.1 Creating the Application and Projects for EssDemoApp

Application

Using Oracle JDeveloper you create an application and projects within the application
that contains the code and supporting files for the application. To create the sample
application you need to do the following:

Create an application in Oracle JDeveloper.

Create projects in Oracle JDeveloper. You create two projects -- one in which to
develop "Hello World"-style Java job and another in which to develop a client that
submits requests with the job.

7.3.1.1 How to Create the EssDemoApp Application and Host Project

ORACLE

To work with Oracle Enterprise Scheduler, you first create an application in Oracle
JDeveloper. You'll also create a hosting application to support job execution.

To create the EssDemoApp application and hosting project:

1.

Start Oracle JDeveloper as described in How to Start JDeveloper to Support
Building Oracle Enterprise Scheduler Applications.

In the Select Role dialog, select the Default Role, then click OK.
Click the Application menu, then click New and select the From Gallery option.

In the Name your application window enter the name and location for the new
application.

a. Inthe New Gallery window, select Custom Application listed under the
General Categories Applications item, then click OK.

b. Inthe Application Name field, enter an application name. For this sample
application, enter EssDenpApp.

c. Inthe Directory field, accept the default.
d. Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial project
of an application.

e. Click Next.

In the Name your project window, enter the name for the host project you're
creating and select supporting technologies. See Figure 7-1.

a. Inthe Project Name field, enter a name for your hosting project. For this
sample application, enter EssHost .

b. On the Project Features tab, under Available, double-click ESS Host
Support and ESS Job Support so that they are both listed under Selected
on the right side of the dialog box.

For more on these, see Understanding Oracle Enterprise Scheduler
Application Support Created by Oracle JDeveloper.

c. Click Next.

7-4

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

Figure 7-1 Create the Custom Application

Create Custom Application - Step 2 of 6

Name your project

Project Name |E55Hus| |
b Application Name

1 Project Name Directory: |js:ral:h,’ababchakjjdeveloperjmy'workassDEmoApprssHust | Browse...
Ll

+ Project Java Settings Project Features Generated Components Associated Libraries

Available: Selected

| Database Modeling e |
l EJE Maodeling ESS Host Support

ESS Client Support ESS Job Support

Extension Development ava

HTML and C55

ava Modeling »

avaScript

avaServer Faces (JSF) ¢

SPand Servlets

Maven

OFEP Library Suite

OEP Suite

FFlima Datah

ESS Client Suppart Feature Description:

Usedto build an Enterprise Scheduler Service based client application, which includes EJB.

Help < Back Next > Finish Cancel

In the Configure Java settings window, in the Default Package field, enter
oracl e. esshost.

Click Next.
In the Configure EJB settings window, select the following:
e Under EJB Version, select the Enterprise JavaBeans 3.0 option button.

e Under EJB Version 3.x, select the Generate ejb-jar.xml in this project check
box.

Click Next.

In the Configure ESS Host Support settings window, in the Application Id field,
enter EssDenpApp.

Click Finish.

This displays the EssDemoApp Overview page. You can use sections of this page
to get information about aspects of the application you're creating, as well as to
manage its development progress. For now, though, you'll move on to creating
project artifacts to support creating jobs.

7.3.1.2 How to Create the Client Project

In the preceding step, you created a project in which to develop the application to host
your jobs. In this section, you'll use Oracle JDeveloper to create another project in the
EssDemoApp application. This second project provides support for client interaction
with the hosting application.

ORACLE

To create the client project:

1
2
3.
4

Click the File menu, then click New > Project.
In the New Gallery, under Categories, expand General, then click Projects.
Under Items, click Custom Project, then click OK.

In the Name your project window, enter the name for the client project you're
creating and select supporting technologies. See Figure 7-2.

7-5

ORACLE

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

a. Inthe Project Name field, enter a name for your client project. For this sample

application, enter EssC i ent .

b. On the Project Features tab, under Available, double-click the following
items so that they are listed under Selected on the right side of the dialog
box:

ESS Client Support
HTML & CSS

JSF

SP and Servlets
XML

For more on this, see Understanding Oracle Enterprise Scheduler Application
Support Created by Oracle JDeveloper.

c. Click Next.

Figure 7-2 Create a Custom Project

Create Custom Project - S5tep 1 of 4

Name your project

Project Name ‘Esscliem |

J Project Name

I Directory: scratchjababchak/jdeveloperfmywork/EssDem ok EssClient Erowse
T Project lava Setiings Bt/ "’ ! /) pEr/ Y / pe/ | =
[Project Features Cenerated Components Associated Libraries

Available: Selected:

ur

Dl

ESS Client Support
HTML and C55

Extension Development
ava Modeling
avaServer Faces (|5F)

QEF Library Suite
QEP Suite

lia Fosno

Maven Feature Description

Apache Maven is a software project management and comprehension tool. Based on the
concept of a project object model (POM), Maven can manage a project's build, reporting
and documentation from a central piece of information

Help Next > Einish Cancel

L

In the Configure Java settings window, in the Default Package field, enter
oracl e. essclient.

Click Next.
In the Configure EJB settings window, select the following:
e Under EJB Version, select the Enterprise JavaBeans 3.0 option button.

Click Next.

In the Configure ESS Client Support settings window, in the Application Id field,
ensure the EssDenpApp is displayed there.

Click Finish.

7-6

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

7.3.2 Creating Metadata and an Implementation Class for the
EssDemoApp Application

For a Java job, which is what you'll be adding here, an implementation class
implements the logic of your job -- the code that does job's actual work. The class
implements the or acl e. as. schedul er. Execut abl e interface. The interface's execut e
method provides a place where you can add the job's logic. Though the code in this
example is very simple, the execute method can also serve as a starting place for
processing that continues into code to which the Java job has access.

As with other job types, including PL/SQL and process jobs, a Java job's work is
guided by metadata. This metadata forms a job-specific context that can include
Oracle Enterprise Scheduler-defined system properties, properties you create, and
control of who has access to the metadata. For example, metadata might be a way for
you to collect and pass instance data to downstream code.

To use the EssDemoApp sample application to submit a job request, you need to
create:

e Metadata in the form of a job definition that is the basic unit of work that defines a
job request in Oracle Enterprise Scheduler.

e A Java job implementation class.

7.3.2.1 How to Create Metadata for the EssDemoApp Application

ORACLE

In this section, you use Oracle JDeveloper to create job definition metadata and a
simple implementation class for a Java job.

To create metadata for the application:
1. Inthe Application Navigator, select the EssHost project.

2. Press Ctrl-N. This displays the New Gallery.

3. Inthe Categories area expand Business Tier and select Enterprise Scheduler
Metadata.

4. Inthe Items area, select Job Definition as shown in Figure 7-3.

7-7

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

Figure 7-3 Adding Job Type Metadata to the Sample Application

New Gallery
Q
Categaries: Items ["] Show Al Descriptions
+-Diagrams ﬁé’ Job Type
Lejava
Lo Maven [E Job Definition
Projects Launches Job Definition Creation. To enable this option, you must select a
s UML project, or afile within a project in the Application Navigator,
XML
Job Set
=--EPM Tier @
;»--Activily Cuide @ Incom patibility
+-Business Components
“-Simulation @ AEhRaL

EF-Business Tier

?---ADF Business Components
Business Rules

v Contexts and Dependency Inje

Data Controls
)8

s SECUrity
~-Spring
- TopLink/IPA
“-Web Services

Help oK Cancel

5. Click OK. This displays the Create Job Definition dialog.
6. In the Create Job Definition dialog, specify the following:

a. Inthe Name field, enter a name for the job definition. For this example, enter
the name: Hel | oWor | dJobDef i ni ti on.

b. Inthe Package field, enter a package name. For this example, enter / or acl e/
esshost/ net adat a.

Note that you should use slashes, rather than dots, to delimit names in
metadata package names. A metadata package ending in ".metadata" is not
visible in Oracle JDeveloper.

c. Inthe Job Type field, from the dropdown list select /oraclelaslessi/corel
JavaJobType.

If job types are not listed in the dropdown, ensure that you started Oracle
JDeveloper as described in How to Start JDeveloper to Support Building
Oracle Enterprise Scheduler Applications.

d. Ensure that the Create Java Class check box and the Synchronous option
button are selected.

By selecting the Create Java Class check box, you're asking that a Java class
for your Java job be created, saving you the trouble of creating one later.
Selecting the Synchronous option specifies that this is a synchronous Java
job.

e. Under Java Class, specify details for the Java class you're creating.
In the Java Package field, enter its package name -- here, enter
oracl e. esshost. i npl . In the Class Name field, enter a name for the class
-- here, enter Hel | oWor | dl npl as shown in Figure 7-4

ORACLE 7-8

ORACLE

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

Figure 7-4 Creating a Job Definition with the Job Definition Creation

Wizard
7 Create Job Definition x|
Job Definition E

A job definition describes ajob (basic unit of work) that runs inthe scheduler. A job
definition requires a job type
Hame: |HeHc)WDr\dJobDeﬂn|t|on ‘
Package: |forac|a,’asshustjmetadala] ‘
Job Type: | roraciesas esscaretavajonType -
Location: |fscrat:hjababchakjjdeveloperjmywurk,fEssDemuApp,’EssHoslfessmelaf ‘

Create Java Class
Java Class

() Synchronous

) Asynchronous

Location: |,’stra{chfababthak,udeueluperfmymrk,’EssDemoApprssHustjsrc |

Java Package: |orac|e.esshcsl\mpl | Q

Class Name: |HeIIoWandImp\ |

Help [o] 8 Cancel

f. Click OK.

This creates the Java class you requested, along with the
Hel | oWor | dJobDefinition. xm file. Oracle JDeveloper displays XML file's

contents in the Job Definition page.

On the Job Definition page, you can edit job definition metadata, including
properties that specify parameters for the job, access to this metadata, and a
resource bundle to use for localization.

7. In the Job Definition page, in the Description field enter a description for the job

type. For this example enter: Sanpl e Java Job Definition.

Leave the rest of the metadata unchanged.

8. In the Application Navigator, locate the class you created by expanding the items

in the projects panel to EssHost > Application Sources > oracle.esshost.impl >
HelloWorldimpl.java.

9. Open HelloWorldimpl.java in the source editor.

10. In the source editor, add simple code to implement the execute method. The
execute method is where execution for a Java job begins. Your HelloWorldimpl
class should look something like Example 7-1.

11. Save and close HelloWorldimpl.java.

Example 7-1 HelloWorldimpl with Execute Method Implemented

public class Hell oWorldlnpl inplenents Executable, Cancellable
{

public voi d execut e(Request ExecutionContext ctx, RequestParaneters parans)
throws ExecutionErrorException, ExecutionWrningException,
Execut i onCancel | edException, ExecutionPausedException

Systemout. println("**** Sanple Job Running, Request ID. " +
ctx. get Request 1 d());

}

public void cancel ()

7-9

}

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

7.3.3 Adding Application Code to Submit Job Requests

In an Oracle Enterprise Scheduler application you use the Oracle Enterprise
Scheduler APIs to submit job requests from any component in the application. The
EssDemoApp sample application provides a Java servlet for a servlet-based user
interface for submitting job requests (using Oracle Enterprise Scheduler).

7.3.3.1 How to Add Application Code to Submit Job Requests

In this section, you'll create a servlet for receiving job submission requests.

ORACLE

To add a servlet to support job request submissions:

1
2
3.
4

In the Application Navigator, select the EssClient project.
Press Ctrl-N. This displays the New Gallery.
In the New Gallery, in the Categories area, expand Web Tier and select Servlets.

In the Items area, select HTTP Servlet as shown in Figure 7-5.

Figure 7-5 Adding Job Type Metadata to the Sample Application

‘r"l New Gallery x|

Q

Categories: Items [] Show All Descriptions

=~ OEF Files
--Service Bus Tier Bl HTTP serviet
e SEFVICES Launches the Create HTTF Servlet wizard, which allows you to add a
customized HTTP servlet {java) file to your active project. To enable this
option, you must select a project or a file within a project in the Application
Navigater,

-~ Interfaces

-~ Transformations
- SECUrity

- Utility [&] serviet Finer
-~ System
E--SOA Tier

-~ Faults

@ Servlet Listener

Interfaces
--Service Components

Tests
~~Transformations/Translations
E-Web Tier
-~ HTML
- |SF
~|SFfFacelets

5P X

~All ltems

Help oK Cancel

Click OK. This displays the Create HTTP Servlet wizard.
In the Welcome page, click Next.

In the Create HTTP Servlet - Step 2 of 4: Servlet Information page, specify the
following:

a. Inthe Class field, enter a name for the servlet class. For this example, enter
the name: EssDeno.

b. Inthe Package field, enter a package name. For this example, enter
oracle.essclient.servlet.

c. Inthe Generate Content Type field, from the dropdown list ensure the HTML
is selected.

7-10

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

d. Inthe Implement Methods area, select the doGet() and doPost() check
boxes, as shown in Figure 7-6.

Figure 7-6 Creating a Servlet -- Step 2 of 4

1 Create HTTP Servlet - Step 2 of 4 x
Enter servlet details
¥ Welcome Class: EssDemo
I
@ Servlet Information Package oracle.essclient.serviet = Browse...
|
4 2ErVIer Mapping
servlet Mappin Generate Content Type HTML ol
Cenerate Header Comments
Registration:
#) Configuration file (web.xml)
Annotations
Implement Methods:
v| doCetd doDelete() doPut) v| doPost)
service()
Help < Back I Next > | Cancel

e. Inthe Registration area, select the Configuration file (web.xml) radio
button.

f. Click Next.

In the Create HTTP Servlet - Step 3 of 4: Mapping Information page, specify the
following:

a. Inthe Name field, enter a name for the servlet. For this example, enter the
name: EssDeno.

b. Inthe URL Pattern field, enter a URL for servlet mapping. For this example,
enter / essdeno/ *.

c. Click Finish.

The supplied EssDemo application includes the completed servlet. You need to
copy the source code into your project. To do this, in Oracle JDeveloper replace
the contents of the servlet with the contents of the file EssDemo.java supplied with
the sample application.

7.3.4 Setting Oracle Enterprise Scheduler Properties

With Oracle Enterprise Scheduler properties, you set values for settings used in the
ejb-jar.xml file associated with the application. These properties include the following:

ORACLE

Logical Application Name

Specifies the logical name used to identify this application. Separate from the
application name used when deploying the application to the container, this value
lets you safely hard code the logical application name in source code.

Application Policy Stripe

Specifies which JPS security stripe (or "security context") should be used to
perform security checks.

7-11

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

* JPS Interceptor Application Name

Specifies the application stripe name used at runtime to determine which set of
security policies are applicable.

7.3.4.1 How to Set Oracle Enterprise Scheduler Properties for the Application

In this section, you'll set default values for Oracle Enterprise Scheduler properties.
To set values for Oracle Enterprise Scheduler properties:

1. Inthe Application Navigator, right-click the EssHost project, then click Enterprise
Scheduler Properties.

2. Inthe Enterprise Scheduler Properties dialog, enter EssDenpApp for all three of the
fields provided: Logical Application Name, Application Policy Stripe, and JPS
Interceptor Application Name.

3. Click OK.

Figure 7-7 Set Values for Oracle Enterprise Scheduler Properties

Enterprise Scheduler Properties

Enter values for ejb-jar.xml

Logical Application Name: |E55DemﬂApp |

Application Policy Stripe: |E55DemﬂApp |

|PS Inmterceptar Application Name: |E55DemoApp |

Help [s]8 Cancel

7.3.5 Assembling the EssDemoApp Application

After you create the sample application you use Oracle JDeveloper to assemble the
application.

To assemble the application you do the following:

* Create the EJB JAR files.
» Create the application MAR file.
» Create the application EAR file.
* Update WAR file options.

ORACLE 7-12

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

7.3.5.1 How to Create the EJB-JAR Deployment Profile for the EssDemoApp

ORACLE

The sample application must contain the required EJB descriptors. You need to create
the ejb-jar.xml and weblogic-ejb-jar.xml files and include these files with any Java
implementation class that you create.

Oracle Enterprise Scheduler requires an application to assemble and provide an EJB
JAR so that Oracle Enterprise Scheduler can find its entry point in the application
while running job requests on behalf of the application. This EJB jar should have

its required EJB descriptors in ejb-jar.xml and weblogic-ejb-jar, as well as any Java
class implementations that are going to be submitted to Oracle Enterprise Scheduler.
The descriptor files ejb-jar.xml and weblogic-ejb-jar must contain descriptions for the
Oracle Enterprise Scheduler EJBs and should not be modified.

To create the EJB-JAR deployment profile:

1. Inthe Application Navigator, in the Projects panel, right-click the EssHost project,
then click Project Properties.

2. In the Project Properties window, in the navigator, click Deployment.
3. Under Deployment Profiles, delete all profiles listed in the window, then click New.

4. Inthe Create Deployment Profile dialog, from the Profile Type dropdown, select
EJB JAR file.

5. In the Name field, enter a name for the EJB. For this example, enter ess- ej b.
6. Click OK.

Figure 7-8 Create the EJB-JAR Deployment Profile

Create Deployment Profile

Click OK to create your new deployment profile and immediately open it to see its configuration.
Profile Type

'EJB JAR File -/
Deployment Profile Name

ess-ejh\

Description:

Creates a profile for deploying the Java EE EJE module (EJB JAR) to an application server. The
EJE JAR contains the EJE components and the corresponding deployment descriptors.

Help | Ok | Cancel
7. Inthe Edit EJB JAR Deployment Profile Properties dialog, in the navigator on the
left, click General.

8. Inthe General window, in the Enterprise Application Name field, enter
EssDenmoApp.

9. In the navigator, expand to File Groups > Project Output > Contributors.
10. In the Contributors window, select the following check boxes:

* Project Output Directory

* Project Source Path

* Project Dependencies

11. In the navigator, expand to File Groups > Project Output > Filters.

7-13

12.

13.
14.
15.

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

In the Filters window, on the Files tab, ensure that the following folders are
selected:

* META-INF (and its contents)

* oracle (and its contents)

In the JAR Option window, deselect the Include Manifest File item.
Click OK.

In the Project Properties dialog, click OK.

7.3.5.2 How To Update the WAR Archive Options

In this section, you specify information that Oracle JDeveloper can use to generate a
WAR file.

ORACLE

To update the WAR archive options:

1.

10.
11.

In the Application Navigator, in the Projects panel, right-click the EssClient
project, then click Project Properties.

In the Project Properties window, in the navigator, click Deployment.

Under Deployment Profiles, delete all profiles listed in the window and then click
New.

In the Create Deployment Profile dialog, from the Archive Type dropdown, select
WAR file.

In the Name field enter WAR_EssDenpApp.
Click OK.

In the Edit WAR Deployment Profile Properties dialog, in the navigator on the left,
click General.

In the WAR Options window deselect | ncl ude Manifest Fil e(META- I NF/
MANI FEST. MF) .

In the General window, select the Specify Java EE Web Context Root option. In
the field beneath the option, enter EssDenpApp.

In the navigator, expand to File Groups > Web Files > Contributors.

In the Contributors window, select the following check boxes as shown in
Figure 7-9:

* Project Output Directory
* Project HTML Root Directory

* Project Source Path

7-14

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

Figure 7-9 Update the WAR Archive Options

Edit WAR Deployment Profile Properties

Q search | Contributors

- General

- WAR Options

W EleGroupy [v] Project HTML Root Directory

{ & WebFiles
[Contributors |w]|Project Source Path

|¥| Project Output Directory

¢t Filters e

| WEB-INF/classes | | Project Dependencies
i Contributors

i - Filters .)
o = WEE-INF/lib Py Project HTML Root Directary 1 Add...

Order of Contributors:

- Contributors

- Filters Remove

o Library Dependencies
i Profile Dependencies
Platform

Move Up

Help f ok | Cancel

12. In the navigator, expand to File Groups > Web Files > Filters.

13. In the Filters window, on the Files tab, ensure that the following folders are
selected:

e oracle (and its contents)
WEB-INF (and its contents)
Click OK.

14. Navigate to the Project Properties > Libraries and Classpath window. Use the
Add Library button to add the following libraries:

¢ ADF Common Runtime

* ADF Faces Runtimell

¢ ADF Common Web Runtime
e ADF Page FlowRuntime

* ADF Controller Schema

* ADF Controller Runtime

7.3.5.3 Create the Application MAR File

To create the MAR options:

1. Click the Application menu, then click Application Properties.
2. In the Application Properties dialog, in the navigation pane, click Deployment.

3. Inthe Under Deployment Profiles window, delete all profiles listed in the window
and then click New.

4. Select MAR File Option from dropdown menu and enter MAR_EssDenpbApp as the
deployment profile's name.

5. Click OK.

ORACLE 7-15

10.

11.

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

In the Edit MAR Deployment Profile Properties dialog, in the navigation pane,
navigate to Metadata File Groups > User Metadata.

Add the EssDempApp/ EssHost / essmet a directory.

This selects the appropriate Oracle Enterprise Scheduler user metadata for the
application.

Click OK.
Click Edit in the Edit MAR Deployment Profile Properties window.

Navigate to Metadata File Groups > User Metadata > Directories and select
Directories. Select the bottom most directory in the tree. Select the default values.

This is the directory from which the name space is created. For example, when
you select oracle, the name space is or acl e. When you select the product
directory, the names pace is or acl e/ apps/ product . To create the name space /
oracl e/ esshost/ net adat a, click the metadata directory. The folder you select in
this dialog determines the top-level name space in the adf - confi g. xn file.

Click OK.

7.3.5.4 How to Update the EAR Options

In this section, you'll prepare an EAR file that assembles the EssDemoApp sample
application. The EAR archive consists of the following:

EJB JAR including the Oracle Enterprise Scheduler Java job implementation.

WAR archive with the EssDemo servlet.

To update the EAR options:

1
2
3.
4

ORACLE

Click the Application menu, then click Application Properties.
In the Application Properties dialog, in the navigation pane, click Deployment.
In the Deployment window, click New.

In the Create Deployment Profile dialog, select EAR File from the dropdown
menu. In the Name field, enter EAR_EssDenoApp as the deployment profile's name.

Click OK.

In the Edit EAR Deployment Profile Properties dialog, in the navigation pane on
the left, click Application Assembly.

In the Application Assembly window, under Java EE Modules, ensure that all item
check boxes are selected.

In the EAR Options window, select Include Manifest File and add EssHost / src/
META- | NF/ MANI FEST. MF.

Click OK.
In the Application Properties dialog, click OK.

7-16

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

Figure 7-10 Update the EAR Archive Options

Edit EAR Deploymer;t Profile Properties

General

Application Assembly

EAR Options

File Croups

= Application Descriptor:
Contributors

Filters
=i Application Libraries
Contributors

Application Assembly

Select the Java EE modules that you would like to assemble into your Java EE
application.

lava EE Modules
= @ EssClient.jpr
V| |;| WAR_EssDemodpp
= |:| EssHost jpr
v E| ess-gjb
v E MAR_EssDemoApp

Filters
Library Dependencies
Platform

Path in EAR:

Help | ok | Cancel

7.3.5.5 Configure Security for the Application

You must create a user that is assigned to the EssAppl i cat i onRol e role. The following
steps describe how to configure security for the back-end hosting application:

1.
2.

ORACLE

Select Application > Secure > Configure ADF Security from the main menu.

In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication, then click Next.

In the Authentication Type page, choose EssClient.jpr in the WebProject
dropdown.

Select HTTP Basic Authentication.
Click Finish.

A file named j ps- confi g. xm is generated. You can find this file in the Application
Resources panel by expanding Descriptors and META-INF. This file contains a
security context or security stripe named after the application.

Select Application > Secure > Test Users & Roles from the main menu.
A file named j azn- dat a. xnl is generated.

In the overview editor for the j azn-dat a. xm file, click the Add button in the Users
list.

Set the name to EssUser and set the password to wel conmel.

Click the Application Roles navigation tab to open the Application Roles window
as shown in Figure 7-11.

7-17

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

Figure 7-11 Application Roles Window

Applications @Jazn—data.xm\

[EssbemoApp -

=| Projects hl- A

= | @ ? & Application Roles lication Rol

) @ EssClient Applic s
Resource Grants

#-|3| EssHost Create roles specific to this application. Map a role to users or enterprise roles fortesting
Entitlement Crants
Test Users & Roles

Roles oap - 3 | Name EssApplicationRole
[# anonymous-role Display Mame:

ﬂ authenticated-role

= Description:
:_ﬁ EssApplicationRole

Mappings Crants

Mapped Users and Roles
o EssUser

=l Application Resources
{77 Build Files
[:l Connections
= D Descriptors
=-[Z1) META-INF
@jazn—da\a xml
%jps—cunfig xml
@ weblogic-application.xml
(1] ADF META-INF

Overview Source History
-7 Libraries e H

9. Click the Add button in the Roles list and choose Add New Role.
10. Set the name to EssAppl i cati onRol e.

11. Click the Add button in the Mappings tab and choose Add User.
12. Select EssUser and click OK.

7.3.5.6 Add Resource Grants for ESS Application Role in the Job Definition

ORACLE

The following steps describe how to update the job definition by adding resource
grants for the ESS application role.

1. Inthe HelloWorldJobDefinition.xml Job Definition page, in the Description field,
enter Hel | oWor | d Exanpl e.

2. In the System Properties section, click the Add button.

w

In the Add System Property dialog, from the Name dropdown menu, select
SYS_effectiveApplication.

In the Initial Value field, enter EssDenmApp.
Click OK.

In the Access Control section, click the Add button.

N o o »

In the Add Access Control dialog, from the Role dropdown menu, select
EssApplicationRole. This is the role that you created Configure Security for the
Application.

8. Select the Read and Execute actions.
9. Click OK.

10. Verify that the contents of the generated file are identical to Example 7-2.

7-18

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

Example 7-2 jazn-data.xml

<?xm version = '1.0" encoding = 'UTF-8 standal one = 'yes' ?>
<jazn-data xnl ns: xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : noNanespaceSchenalLocati on="http://xm ns. oracl e. coni or acl eas/ schema/ j azn-
dat a. xsd">
<j azn-real mdefaul t="jazn. con'>
<real n»
<nane>>Username / password is: EssUser / wel conel</name>
<users>
<user >
<name>EssUser </ nane>
<credenti al s>{903} LngEdVs3z 00/ QrP90t i hXv4nRq5YqYSL</ cr edenti al s>
</ user>
</ users>
</real m
</jazn-real n»
<pol i cy-store>
<appl i cations>
<appl i cation>
<nanme>EssDenpApp</ name>
<app-rol es>
<app-rol e>
<nane>EssAppl i cati onRol e</ nane>
<cl ass>oracl e. security.jps.service. policystore. ApplicationRol e</cl ass>
<nenber s>
<nenber >
<cl ass>oracl e.security.jps.internal.core. principals.JpsXm User | npl </
cl ass>
<name>EssUser </ nane>
</ menber >
</ menber s>
</ app-rol e>
</ app-rol es>
<j azn-policy>
<grant>
<grant ee>
<princi pal s>
<pri nci pal >
<cl ass>oracl e. security.|ps.service. policystore. ApplicationRol e</cl ass>
<nane>EssAppl i cati onRol e</ nane>
</ princi pal >
</ princi pal s>
</ grant ee>
<perm ssi ons>
<per mi ssi on>
<cl ass>oracl e. as. schedul er. security. Met adat aPer mi ssi on</
cl ass>
<name>or acl e. esshost . net adat a. JobDef i ni ti on. Hel | oWor | dJobDef i ni ti on</
nane>
<actions>Read, Updat e, Del et e, Execut e</ act i ons>
</ perm ssi on>
</ perm ssi ons>
</grant>
</jazn-policy>
</ application>
</ applications>
</ policy-store>
<system policy/>
</jazn-dat a>

ORACLE 7-19

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

7.3.5.7 Configure the weblogic-application.xml File

Use the source editor to remove the following lines from webl ogi c- appl i cati on. xni :

<library-ref>

<l'i brary-nanme>or acl e. appl cp. runti me</|ibrary-nane>
</library-ref>
<library-ref>

<l'i brary-nane>or acl e. xdo. runti me</|i brary- nane>
</library-ref>

7.3.5.8 Update the EssHost MANIFEST File

Replace the content of the EssHost META- | NF/ MANI FEST. | NF file with the following
lines:

Mani fest-Version: 1.0

\\ebl ogi c- Appl i cation-Version: 3.0

Ext ensi on- List: essruntine

essrunti me- Ext ensi on- Nare: oracl e. ess. runtine
essrunti ne- Speci fication-Version: 12

7.3.5.9 Change the Realm Field

ORACLE

Navigate to EssClient > Web Content > WEB-INF > web.xml as shown in
Figure 7-12. Change the value in the Security window Realm field from:

° jazn.com
to:

e Usernane / password is: EssUser / welconel

Figure 7-12 Change the Realm Field

Applications %jazn—dala.xmi @ web xml
EI EssDemolppR s [
=| Projects hd TR
4 1 @ Eﬂ ? = Application Security
= DEssChenF . [r—
+ % Application Sources Filters =] Login Authentication
= Web Content
=-[23) WEE-INF Security
: : Mone
|_—'|'§| adfc-config.xml Pages S REC 2617
faces—config.xnﬂ T #) Http Basic Authentication bl
£ =Username [pa3y is: \
trinidad-config.xml Realm: B E NN sl sword is: EssUser / welcom
%Wﬁb-m' Http Digest Authentication { RFC 2617)
weblogic.xml
+-[17) Page Flows
+-|3] EssHost Form-Based Authentication

Http Client Authentication { public key certificate)

+ Security Roles
= Application Resaurces

D Euild Files + Security Constraints
Fa rammar timme

7-20

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

7.3.5.10 Edit the adf-config.xml File for the EssDemoApp Application

1. Inthe Application Resources panel, expand Descriptors, expand ADF META-
INF, and double-click adf-config.xml.

2. In the source editor, replace the contents of the adf - confi g. xn file with the XML
code shown in Example 7-3.

Example 7-3 adf-config.xml File for a EssDemoApp Application

<?xm version="1.0" encodi ng="UTF-8" ?>

<adf-config xm ns="http://xm ns. oracl e. conml adf/config" xm ns:sec="http://

xm ns. oracl e. conl adf / security/ config">

<sec: adf-security-child xm ns="http://xn ns. oracl e. con adf / security/config">

<Credenti al StoreCont ext

credential StoreC ass="oracl e. adf . share. security. provi ders.jps. CSFCredenti al St ore"

credential StoreLocation="../../src/ META-I NF/ | ps-

config.xm"/>
<sec: JaasSecuri t yCont ext

i nitial ContextFactoryCd ass="oracl e. adf.share. security.JAASI nitial Context Factory"

j aasProvi der G ass="oracl e. adf . share. security. provi ders.jps.JpsSecurityContext"
aut hori zati onEnforce="fal se" authenticati onRequire="true"/>
</ sec: adf - security-chil d>
<adf - mds-config xm ns="http://xn ns. oracl e. cont adf / nds/ confi g">
<nmds-config version="11.1.1.000" xm ns="http://xm ns.oracl e. com mds/ config">
<persi st ence-confi g>
<net adat a- namespaces>
<namespace path="/oracl e/ as/ ess/core" netadata-store-usage="ess-core"/>
</ met adat a- namespaces>
<net adat a- st or e- usages>
<met adat a- st ore- usage i d="ess-core" depl oy-
target="fal se" defaul t-cust-store="fal se">
<net adat a-store cl ass-
name="or acl e. nis. persi st ence. st or es. db. DBMet adat aSt or e" >
<property nanme="j ndi - dat asource" val ue="j dbc/ mis- ESS_MDS DS'/ >
<property nane="repository-name" val ue="nds- ESS_MDS _DS"/ >
<property nane="partition-name" val ue="essapp-internal-partition"/>
</ met adat a- st or e>
</ net adat a- st or e- usage>
</ net adat a- st or e- usages>
</ persi st ence-confi g>
</ mds- confi g>
</ adf - nds- confi g>
</ adf - confi g>

7.3.6 Deploying and Running the EssDemoApp Application

After you complete the steps to build and assemble the EssDemoApp application you
need to deploy the application to Oracle WebLogic Server. After you successfully
deploy an application you can run the application. For the EssDemoApp sample
application you use a browser to run the EssDemo servlet to submit job requests

to Oracle Enterprise Scheduler running on Oracle WebLogic Server.

7.3.6.1 How to Deploy the EssDemoApp Application

To deploy the EssDemoApp application you need a properly configured and running
Oracle WebLogic Server, and you need an active metadata server. When you deploy

ORACLE 7-21

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

the application Oracle JDeveloper brings up the Deployment Configuration page.
Select your repository from the dropdown list and Enter a partition name (the partition
name defaults to application name).

To deploy the EssDemoApp application:

1.

6.
7.

ORACLE

Check to make sure the Oracle WebLogic Server is up and running. If the Oracle
WebLogic Server is not running, start the server. Make sure Oracle JDeveloper
has a connection to the server (for this example, "MyConnection").

In the Application Navigator, select the EssDemoApp application.

In the Application Navigator from the Application Menu select Deploy >
EAR_EssDemoApp > to > MyConnection.

Oracle JDeveloper shows the Deployment Configuration page. Select the
appropriate options for your Metadata Repository.

Make the following choices when prompted during deployment. In the Metadata
Repository section choose the repository and partition names as follows and
shown in Figure 7-13:

a. Repository Name: mds-ESS_MDS_DS

b. Partition Name: essUser Met adat a

Figure 7-13 Oracle Deployment Configuration Window

Oracle Deplnyme_nt Configuration

Configure and customize settings for this deployment 2

MD3

Metadata Repository
Repository Name: |mds=ESS_MDS_DS fiu
Repository Type: DB

Partition Name:

Path/JNDI Info: jdbe/mds-ESS_MDS_DS

Shared Metadata Repositories

Mamespace Repository Type Partition Path/JNDI Info
foracle/as/ess/core mds-ESS_MDS_DS - DB essapp-internal-partition = jdbc/mds-ESS_MDS_DS
Help Deploy Cancel
Click Deploy.

Verify the deployment using the Deployment Log.

7-22

Chapter 7
Building a Combined Oracle Enterprise Scheduler Application

7.3.6.2 How to Run the EssDemoApp Sample Application

To run the EssDemoApp sample application you access the EssDemo servlet in a
browser.

To access the EssDemo servlet:

1. Enter the following URL in a browser:
http://host:http-porticontext-root/essdemo
For example,

http://myserver. exanpl e. com 7101/ EssDenmoApp/ essdeno
This shows the EssDemo servlet, as shown in Figure 7-14.

Figure 7-14 Running EssDemo Servlet for Oracle Enterprise Scheduler
Sample Application

Enterprise Scheduler Service DemoApp

Launch Job

Job: HelloWorldTestAppJob ~
Schedule: Immediately -

Messages

Request Status

|rquD | Description | Scheduled time | State |Acti0n
[1 [Basiclavalob@lmmediately [Mon Feb 24 02:33:28 PST 2014 [SUCCEEDED |
[2 [HelloWorldJobDefinition@Immediately [Mon Feb 24 05:24:16 PST 2014 SUCCEEDED |
[3 |HelloWorldJobDefinition@lmmediately [Mon Feb 24 05:25:44 PST 2014|SUCCEEDED |

[4 [Basiclavalob@lmmediately [Mon Feb 24 05:25:49 PST 2014 SUCCEEDED |
[S |[HelloWorldJobDefinition@Immediately [Mon Feb 24 05:25:52 PST 2014 SUCCEEDED |
[6 [HelloWorldlob@Immediately [Mon Feb 24 10:00:10 PST 2014 |SUCCEEDED |

Select a job definition from the Job drop-down menu.
Select a value from the Schedule drop-down menu.
Click Submit.

g M w D

Refresh the browser to see the progress of the job in the Request Status area, as
shown in Figure 7-15.

ORACLE 7-23

Chapter 7
Building Split Submitting and Hosting Applications

Figure 7-15 Running EssDemo Servlet with Request Status for Submitted
Requests

Enterprise Scheduler Service Tutorial

Launch Job

Joh: | JobwithParams v Messages

Schedule: | mmediately ~. Mew request 2 launched using Job_essdeme 1@Imme diately

Request Status
|req]I) | Description | Scheduled time | State | Action
1 [rob_essdemo1@Immediately [Wed Jan 07 14:05.05 PST 2009 [SUCCEEDED |[Purge
2 [Tob_essdemol@Immediately [Fri Jan 09 14:3147 PST 2009 [WAIT [Cancel

7.3.6.3 How to Purge Jobs in the EssDemoApp Sample Application

Using the EssDemoApp sample application and the EssDemo servlet you can remove
completed jobs from the Request Status list.

To remove completed jobs:

1. Click Purge to purge a request.
2. Click Cancel to cancel a request that is either RUNNI NG or VWAI TI NG.

7.4 Building Split Submitting and Hosting Applications

When you build and deploy Oracle Enterprise Scheduler applications, you can use
two split applications -- a job submission application, a submitter, and a job execution
application, a hosting application. Using this design, you need to configure and deploy
each application with options that support such a split configuration.

In addition, some Oracle Enterprise Scheduler deployments use a separate Oracle
WebLogic Server for the hosting and the submitting applications; for this deployment
option the submitting application and the hosting application are deployed to separate
Oracle WebLogic Servers. When the submitter application and the hosting application
for Oracle Enterprise Scheduler run on separate Oracle WebLogic Servers, you need
to configure the Oracle WebLogic Server for the hosting application so that the
submitting application can find the hosting application.

ORACLE 7-24

Chapter 7
Building Split Submitting and Hosting Applications

< Note:

This section creates a new application. If you have created EssDemoApp
with the sections beginning with Creating the Application and Projects for
EssDemoApp Application, note that this section creates a project of the
same name. You'll need to choose a different location for the application or
delete the previous application in order to use the EssDemoApp application
name in this section.

To build the sample split applications, you do the following:

1. Build a back-end hosting application that includes the code to be scheduled and
run.

2. Build a front-end submitter application initiates the job requests.

This section includes the following subsections:

* How to Create the Back-End Hosting Application for EssDemoApp

* How to Create the Front-End Submitter Application for Oracle Enterprise
Scheduler

7.4.1 How to Create the Back-End Hosting Application for
EssDemoApp

Using Oracle JDeveloper you create the back-end application. To create the
EssDemoApp back-end sample application you do the following:

e Create a back-end application and project.
e Configure security.
e Define the deployment descriptors.

e Create the Java class that implements the Oracle Enterprise Scheduler executable
interface.

e Create the Oracle Enterprise Scheduler metadata to describe the job
e Assemble the application.

e Deploy the application.

7.4.1.1 Creating the Back-End Hosting Application

To work with Oracle Enterprise Scheduler with a split application you use Oracle
JDeveloper to create the back-end application and project, and to add Oracle
Enterprise Scheduler extensions to the project.

To create the back-end hosting application:

1. From JDeveloper choose File > New from the main menu.

2. Inthe New Gallery, expand General, select Applications and then Custom
Application, and click OK.

ORACLE 7-25

Chapter 7
Building Split Submitting and Hosting Applications

3. In the Name your application page of the Create Generic Application wizard, set
the Application Name field to EssDenpApp.

4. Click Next.

5. In the Name your project window, enter the name for the host project you're
creating and select supporting technologies. This project is where you create and
save the Oracle Enterprise Scheduler metadata

a. Inthe Project Name field, enter a name for your hosting project. For this
sample application, enter Super Ess.

b. On the Project Features tab, under Available, double-click ESS Host
Support and ESS Job Support so that both are listed under Selected on
the right side of the dialog box.

For more on these, see Understanding Oracle Enterprise Scheduler
Application Support Created by Oracle JDeveloper.

c. Click Next.

Figure 7-16 Create the Back-End Hosting Application

Create Custom Application - Step 2 of 6

Name your project

Project Name: |SuperEss ‘

b Application Name
Dirgctory

i
=8 Froject Name
Jr Project |ava Settings Project Features ~ Generated Components = Associated Libraries

Available Selected
[AP WUUET D SITESS CUmor
ADF Page Flow

[ADF Swing

ESS Host Support
ESS Job Support

Database Modeling @
EJE Modeling
ESS Client Support

Extension Development

Extension Development Feature Description:

The extension development feature allows users to create extensions to
JDeveloper. These extensions may augment or modify the behavior of
|Developer.

Help < Back Next > inish Cancel

Fi
3

6. In the Configure Java Settings page, change the default package to
oracl e. apps. ess. how o, then click Next.

7. Inthe Configure EJB Settings page, select Generate ejb-jar.xml in this project
and click Next.

8. Inthe Configure ESS Host Support settings page, in the Application Id field, enter
EssDemoApp.

9. Click Finish.

7.4.1.2 Configuring Security for the Back-End Hosting Application

You need to create a user that is assigned to the EssDempAppRole role.
To configure security for the back-end hosting application:

1. Select Application > Secure > Configure ADF Security from the main menu.

ORACLE 7-26

Chapter 7
Building Split Submitting and Hosting Applications

2. Inthe ADF Security page of the Configure ADF Security wizard, select ADF
Authentication, then click Next.

3. In the Authentication Type page, accept the default values as this application does
not have a web module to secure.

4. Click Finish.

A file named j ps- confi g. xn is generated. You can find this file in the Application
Resources panel by expanding Descriptors, and expanding META-INF. This file
contains a security context or security stripe named after the application.

5. Select Application > Secure > Test Users & Roles from the main menu.
A file named j azn- dat a. xnl is generated.

6. In the overview editor for the j azn- dat a. xnl file, click the Add button in the Users
list.

7. Set the name to EssDenpAppUser and set the password to wel conel.
8. Click the Application Roles navigation tab.

9. Click the Add button in the Roles list and choose Add New Role.
10. Set the name to EssDenpAppRol e.

11. Click the Add button in the Mappings tab and choose Add User.

12. Select EssDembAppUser and click OK.

Figure 7-17 Configuring Security

@ Start Page E’a HelloWorldjobDef.xml @Jaznfda:a.xm.'

@
Application Roles Application Roles Security Policy: |EssDemofApp ™
Resource Grants)
Create roles specific to this application. Map a role to users or enterprise roles for testing.
Entitlement Crants
Test Users & Roles
Roles o - x Name |[EssDemoAppRole
'_ﬁ anonymous-role Display Name:
i _a authenticated-role ;o
- Description:
._a EssDemoAppRole
Mappings Crants
Mapped Users and Roles l* = %

j EssDemoAppUser

7.4.1.3 Defining Metadata for the Back-End Hosting Application

To use the Oracle Enterprise Scheduler split application to submit a job request you
need to create metadata that defines a job request, including the following:

* Ajob type: this specifies an execution type and defines a common set of
parameters for a job request.

* Ajob definition: this is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler.

To create metadata for the back-end hosting application:

ORACLE 7-27

ORACLE

Chapter 7
Building Split Submitting and Hosting Applications

In the Application Navigator, select the SuperEss project.

Press Ctrl-N. This displays the New Gallery.

In the Categories area expand Business Tier and select Enterprise Scheduler
Metadata.

In the Items area, select Job Definition as shown in Figure 7-18.

Figure 7-18 Adding Job Definition to the Sample Application

& New Galle ry

X

r All Technalogies |/ Current Project Technalogies |

(&8)
Categories: Items: [] Shows &ll Descriptions
S
3
L Sl Ea Job Type
E-Business Tier. % Job Definition
""" ADF Business Camponents Launches Job Definition Creation,
----- Business Inteligence
..... Data Controls To enable this option, you must select a praject, or a file within a project in the
Application Mavigator.
nterprise Scheduler Metadata @ Jab Set
----- Security
..... TopLink{ P& E"g Incormpatibilicy
----- ‘Web Services E schedule
[=h-Client Tier
----- ADF Deskbop Integration
----- ADF Swing
----- Extension Development
----- Swing/AawWT

[=}-Database Tier
-Database Files

> ----- Database Objects

_ teb | |

Ok . | Cancel
2%

Click OK. This displays the Create Job Definition dialog.

In the Create Job Definition dialog, specify the following as shown in Figure 7-19:

a.

In the Name field, enter a name for the job definition. For this example, enter
the name: Hel | o\Wr | dJobDef .

In the Package field, enter a package name. For this example, enter or acl e/
apps/ ess/ howt o/ met adat a.

In the Job Type field, from the dropdown list select loraclelaslessi/corel
JavaJobType.

If job types are not listed in the dropdown, ensure that you started Oracle
JDeveloper as described in How to Start JDeveloper to Support Building
Oracle Enterprise Scheduler Applications.

Ensure that the Create Java Class check box and the Synchronous option
button are selected.

By selecting the Create Java Class check box, you're asking that a Java class
for your Java job be created, saving you the trouble of creating one later.
Selecting the Synchronous option specifies that this is a synchronous Java
job.

Under Java Class, specify details for the Java class you're creating.
In the Java Package field, enter its package name -- here, enter

7-28

ORACLE

10.
11.
12.
13.

Chapter 7
Building Split Submitting and Hosting Applications

oracl e. apps. ess. howt 0. In the Class Name field, enter a name for the class
-- here, enter Hel | oWor | dJob.

f. Click OK.

This creates the Java class you requested, along with the
Hel | oWor | dJobDefinition. xm file. Oracle JDeveloper displays XML file's
contents in the Job Definition page.

On the Job Definition page, you can edit job definition metadata, including
properties that specify parameters for the job, access to this metadata, and a
resource bundle to use for localization.

Figure 7-19 Create a Job Definition

Create Job Definition

Job Definition

A job definition describes a job (basic unit of work) that runs in the
scheduler. A job definition requires a job type.

Mame: HelloWorld|obDef

Package: oraclefapps/ess/howto/metadata

Job Type: Joracle/as/ess/fcore/avajobType -
Location: ‘scratch/fababchak/jdeveloper/mywark/EssDemofpp/SuperEss

| Create Java Class
Java Class

#) Synchronous

Asynchronous

Location: fscratch/ababchak/jdeveloper/mywork/EssDemofpp/Sup
|ava Package: [g1ac)e apps.ess.howto Q

Class Name: HE||E|WDF|L’JJD|J|

Help oK Cancel

In the HelloWorldJobDef.xml Job Definition page, in the Description field, enter
Hel | oWor| d Exanpl e.

In the System Properties section, click the Add button.

In the Add System Property dialog, from the Name dropdown, select
SYS_effectiveApplication.

In the Initial Value field, enter EssDenoApp.
Click OK.
In the Access Control section, click the Add button.

In the Add Access Control dialog, from the Role dropdown, ensure that
EssDemoAppRole is selected. This is the role that you created during
Configuring Security for the Back-End Hosting Application.

7-29

Chapter 7
Building Split Submitting and Hosting Applications

14. Select the Read and Execute actions as shown in Figure 7-20.

Figure 7-20 Add Access Control Dialog

£y Add Access Control x
Select a role and specify the actions it can perform.
Role: |FsspemoAppRole -
v| Bead
v | Execute
Update
Delete
Help oK Cancel
15. Click OK.

7.4.1.4 Creating a Java Implementation Class in the Back-End Hosting

Application

ORACLE

To define an application that runs a Java class under control of Oracle Enterprise
Scheduler you need to create the Java class that implements the Oracle Enterprise
Scheduler Execut abl e interface. The Execut abl e interface specifies the contract that
allows you to use Oracle Enterprise Scheduler to invoke a Java class.

To implement the execute method:

1. Inthe Application Navigator, locate the class you created by expanding the items
in the projects panel to SuperEss > Application Sources > oracle.apps.ess >
howto > HelloWorldJob.java.

2. Open HelloWorldJob.java in the source editor.

3. Inthe source editor, add the following code to implement the execut e method. The
execut e method is where execution for a Java job begins. The code inside your
method should look something like Example 7-4.

Example 7-4 HelloWorldJob Execute Method Code

StringBuilder sb = new StringBuilder(1000);
sh. append("\n ");
sh. append("\ n= EssDenpApp request is now running");
| ong nyRequestld = ctx. get Request!d();
sh. append("\n= Request Id =" + nyRequestld);
sh. append("\ n= Request Properties:");
for (String paranKey : parans. get Names()) {
bj ect paranval ue = parans. get Val ue(par ankey) ;

sb. append("\n=\t(" + paramkey + ", " + paranmValue + ")");
}
sbh. append("\n=");
sh. append("\n ")

7-30

Chapter 7
Building Split Submitting and Hosting Applications

Logger |ogger = Logger.getLogger("oracle. apps. ess. how 0");
| ogger.info(sb.toString());

7.4.1.5 Setting Oracle Enterprise Scheduler Properties

With Oracle Enterprise Scheduler properties, you set values for settings used in the
ejb-jar.xml file associated with the application. These properties include the following:

Logical Application Name

Specifies the logical name used to identify this application. Separate from the
application name used when deploying the application to the container, this value
lets you safely hard code the logical application name in source code.

Application Policy Stripe

Specifies which JPS security stripe (or "security context") should be used to
perform security checks.

JPS Interceptor Application Name

Specifies the application stripe name used at runtime to determine which set of
security policies are applicable.

To set values for Oracle Enterprise Scheduler properties:

1.

3.

In the Application Navigator, right-click the SuperEss project, then click
Enterprise Scheduler Properties.

In the Enterprise Scheduler Properties dialog, enter EssDenoApp for all three of the
fields provided: Logical Application Name, Application Policy Stripe, and JPS
Interceptor Application Name.

Click OK.

7.4.1.6 Assembling the Back-End Hosting Application for Oracle Enterprise

Scheduler

After you create the back-end sample application you use Oracle JDeveloper to
assemble the application.

To assemble the back-end application you do the following:

Create the EJB Java Archive
Create the application MAR and EAR files

7.4.1.6.1 How to Assemble the EJB JAR File for the Back-End Hosting Application

The EJB Java archive file includes descriptors for the Java job implementations.

ORACLE

To create the EJB-JAR deployment profile:

1.

In the Application Navigator, in the Projects panel, right-click the SuperEss
project, then click Project Properties.

In the Project Properties window, in the navigator, click Deployment.
Under Deployment Profiles, delete all profiles listed in the window, then click New.

In the Create Deployment Profile dialog, from the Profile Type dropdown, select
EJB JAR file.

7-31

Chapter 7
Building Split Submitting and Hosting Applications

5. In the Name field, enter a name for the EJB. For this example, enter
JAR Super EssEj bJar.

6. Click OK.

7. Inthe Edit EIJB JAR Deployment Profile Properties dialog, in the navigator, expand
to File Groups > Project Output > Contributors.

8. In the Contributors window, select the following check boxes:
e Project Output Directory
e Project Source Path
e Project Dependencies
9. In the navigator, expand to File Groups > Project Output > Filters.

10. In the Filters window, on the Files tab, ensure that the following folders are
selected:

e META-INF (and its contents)

e oracle (and its contents)
11. In the JAR Option window, deselect the Include Manifest File item.
12. Click OK.
13. In the Project Properties dialog, click OK.

7.4.1.6.2 How to Assemble the MAR and EAR Files for the Back-End Hosting Application

ORACLE

In this section, you'll prepare an EAR file that assembles the EssDemoApp sample
application. The EAR archive consists of the EJB JAR including the Oracle Enterprise
Scheduler Java job implementation.

To update the EAR options:

1. Click the Application menu, then click Application Properties.

2. In the Application Properties dialog, in the navigation pane, click Deployment.
3. Select the default MAR file profile, then click Edit.
4

In the Edit MAR Deployment Profile Properties dialog, in the navigation pane,
expand to Metadata File Groups > User Metadata then click the Add button to
add a contributor and add this directory: EssDenmpApp/ Super Ess/ essnet a

Click OK.
6. Click Edit on Edit MAR Deployment Profile Properties window.

7. Inthe Directories window, select the oracle.apps.ess.howto check box, then click
OK.

8. Delete all profiles listed in the Under Deployment Profiles window and click New.
9. Add the EssDemoApp/EssHost/essmeta directory.

This selects the appropriate Oracle Enterprise Scheduler user metadata for the
application.

10. Click OK.
11. Click Edit on Edit MAR Deployment Profile Properties window.

7-32

12.

13.

14.

15.
16.
17.

18.

19.
20.

Chapter 7
Building Split Submitting and Hosting Applications

In the Create Deployment Profile dialog, from the Profile Type dropdown, select
EAR File.

In the Name field, enter EAR_EssDenoAppEar .
Click OK.

In the Edit EAR Deployment Profile Properties dialog, in the navigation pane,
select General.

In the General window, in the Application Name field, enter EssDenpApp.
In the navigation pane, select Application Assembly.

In the Application Assembly window, ensure that all check boxes are selected as
shown in Figure 7-21.

Figure 7-21 Edit EAR Deployment Profile Properties

Edit EAR Deployiient Profile Properties

Q search Application Assembly

----- Ceneral

Select the Java EE modules that you would like to assemble into your Java EE
application.

Application Assembly
----- EAR Options
- File Groups lava EE Modules:
- pplication Descriptors bt MAR_EssDemodpp
Contributors =}
- Filters
pplication Libraries
- Contributors

JAR_SuperEssEjbjar

L Filters
----- Library Dependencies
----- Platform N

Help QK Cancel

In the EAR Options window, select Include Manifest File and add EssDenpApp/
Super Ess/ sr ¢/ META- 1 NF/ MANI FEST. M.

Click OK.
In the Application Properties dialog, click OK.

7.4.1.7 Update the SuperEss MANIFEST File

Replace the content of the SuperEss META- | NF/ MANI FEST. | NF file with the following
lines:

ORACLE

Mani f est - Ver si on:

1.0

Wbl ogi c- Application-Version: 3.0

Ext ensi on- Li st :

essruntine

7-33

Chapter 7
Building Split Submitting and Hosting Applications

essrunti ne- Ext ensi on- Nare: oracl e. ess.runtine
essrunti ne- Speci fication-Version: 12

7.4.1.8 Configure the weblogic-application.xml File

Use the source editor to remove the following lines from webl ogi c- appl i cati on. xni :
Path to the Weblogic application:
EssDenoApp/ src/ META- | NF/ webl ogi c- appl i cati on. xm

<library-ref>

<l'i brary-nanme>or acl e. appl cp. runti me</|ibrary-nane>
</library-ref>
<library-ref>

<l'i brary-nanme>or acl e. xdo. runti me</|i brary- nane>
</library-ref>

7.4.1.9 Deploying the Back-End Hosting Application

After assembling the application, you can deploy it to the server.
To deploy the back-end hosting application:
1. From the main menu, choose Application > Deploy > EAR_EssDemoAppEar...

2. Set up and deploy the application to a container.

3. When the Deployment Configuration dialog appears, make a note of the default
values, but do not change them.

7.4.1.10 Edit the adf-config.xml File for the EssDemoApp Application

ORACLE

In the Application Resources panel:

1. Expand Descriptors.

2. Expand ADF META-INF.

3. Double-click adf-config.xml.
4.

In the source editor, replace the contents of the adf - confi g. xm file with the XML
shown in Example 7-5.

Example 7-5 adf-config.xml File

<?xm version="1.0" encodi ng="UTF-8" ?>
<adf-config xm ns="http://xnm ns.oracl e. conf adf/ config" xm ns:config="http://
xm ns. oracl e. com bc4j/ configuration">
<adf -security-child xm ns="http://xm ns.oracl e. conf adf/ security/config">
<JaasSecurit yCont ext
i nitial ContextFactoryCd ass="oracl e. adf. share. security.JAASI nitial Cont ext Factory"

j aasProvi der O ass="oracl e. adf . share. security. providers.jps.JpsSecurityContext"
aut hori zati onEnforce="fal se" authenticationRequire="true"/>
</ adf - security-child>
<adf -adf mconfig xm ns="http://xm ns. oracl e. conf adf m confi g">
<def aul ts changeEvent Pol i cy="ppr"
useBi ndVarsFor ViewCriteriaLiteral s="true"
useBi ndVal uesl nFi ndByKey="t rue"/ >
<startup>
<anconfig-overrides>

7-34

Chapter 7
Building Split Submitting and Hosting Applications

<confi g: Dat abase j bo. | ocki ng. mode="optim stic"/>
</ anctonfi g-overrides>
</startup>
</ adf - adf m confi g>
<adf - mds-config xm ns="http://xnl ns. oracl e. conf adf / nds/ confi g">
<nds-config version="11.1.1.000" xm ns="http://xm ns. oracl e. conf mds/ config">
<persi st ence-confi g>
<net adat a- namespaces>
<namespace path="/oracl e/ as/ ess/core" netadat a-store-usage="ess-core"/>
</ met adat a- namespaces>
<net adat a- st or e- usages>
<met adat a- st ore- usage i d="ess-core" depl oy-target="fal se"
defaul t-cust-store="fal se">
<net adat a-store cl ass-
name="or acl e. nis. persi st ence. st or es. db. DBMet adat aSt or e" >
<property nane="j ndi - dat asource" val ue="j dbc/ mis- ESS_MDS DS'/ >
<property nane="repository-name" val ue="nds- ESS_MDS DS"/ >
<property nane="partition-name" val ue="essapp-internal-partition"/>
</ net adat a- st or e>
</ net adat a- st or e- usage>
</ net adat a- st or e- usages>
</ persi st ence-confi g>
</ mds- confi g>
</ adf - nds- confi g>
</ adf - config>

7.4.2 How to Create the Front-End Submitter Application for Oracle
Enterprise Scheduler

In an Oracle Enterprise Scheduler split application you use the Oracle Enterprise
Scheduler APIs to submit job requests from a front-end application. The EssDenpAppUl
application provides a Java servlet for a servlet based user interface for submitting job
requests (using Oracle Enterprise Scheduler).

To create the front-end submitter sample application you do the following:
* Create a front-end application and project.

e Configure the ej b-j ar. xnl file.

* Create the web project

» Configure security.

* Create the HTTP servlet.

» Edit the web. xnl file.

» Edit the webl ogi c- appl i cation. xn file.

* Editthe adf - confi g file.

e Assemble the application.

e Deploy the application.

7.4.2.1 Creating the Front-End Submitter Application

You use JDeveloper to build the front-end submitter application using similar steps as
you used for the back-end hosting application.

ORACLE 7-35

Chapter 7
Building Split Submitting and Hosting Applications

To create the front-end submitter application:

Complete the steps in Creating the Back-End Hosting Application but this time
use ESSDenpAppU as the name of the application. When you configure ESS host
support settings, in the Application Id field, be sure to enter EssDemoApp.

7.4.2.2 Creating the SuperWeb Project

You need to create a web project for the servlet.

To create the SuperWeb project:

1.
2.

7.

Right-click the SuperEss project and choose New.

In the New Gallery, expand General, select Projects and then Custom Project,
and click OK.

In the Name your project window, enter the name for the host project you're
creating and select supporting technologies. This project is where you create and
save the Oracle Enterprise Scheduler metadata

a. Inthe Project Name field, enter a name for your hosting project. For this
sample application, enter Super V\éb.

b. On the Project Features tab, under Available, double-click ESS Client
Support, JSP and Servlets, so that both are listed under Selected on the
right side of the dialog box.

For more on ESS Client Support, see Understanding Oracle Enterprise
Scheduler Application Support Created by Oracle JDeveloper.

Click Next.

In the Default Package field of the Configure Java settings window, enter
oracl e. apps. ess. howt 0. Click Next.

In the Configure EJB Settings window, under EJB Version, select the Enterprise
JavaBeans 3.0 option button.

In the Configure EJB Settings window, under EJB Version 3.x, select the
Generate ejb-jar.xml in this project check box.

Click Finish.

7.4.2.3 Configuring Security for the Front-End Submitter Application

ORACLE

You need to configure security for the application. You do not have to create any users
or roles as the EssDemoAppUI application simply shares the users and roles created
by the EssDemoApp application.

To configure security for the front-end submitter application:

1.
2.

Select Application > Secure > Configure ADF Security from the main menu.

In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication.

In the Authentication Type page, select SuperWeb.jpr from the Web Project
dropdown list.

Select HTTP Basic Authentication.

7-36

7.4.2.4 Creating the HTTP Servlet for the Front-End Submitter Application

ORACLE

Chapter 7

Building Split Submitting and Hosting Applications

Figure 7-22 Configure ADF Security

Select authentication type

Configure ADF Security - Step 2 of 4

i ADF Security

Authentication Type

C—€-1€ _3

Authenticated Welco

Help

Click Finish.

Configure authentication type for your web project. If configuring ADF security for a
model application that doesn't require web authentication, select < No Web
Authentication =.

Web Project: SuperWeb jpr A

Authentication Type

(3) HTTF Basic Authentication

() HTTP Digest Authentication

() HTTPS Client Authentication (Public Key Certificate)

(") Farm-Based Authentication

Example for ADF Faces pages: /faces/page. jspx

< Back Mewxt = Einish Cancel

.

A file named j ps- confi g. xn is generated. You can find this file in the Application

Resources panel by expanding Descriptors, and expanding META-INF.

Normally, more complex user interfaces that are built on heavy weight frameworks
such as Oracle Application Development Framework are employed, but for the sake of
simplicity, you use a basic HTTP servlet for the submitter application.

To create the HTTP Servlet for the front-end submitter application:

1.
2.

N o o »

Example 7-6 HTTP Servlet Code for the Front-End Submitter Application

Right-click the SuperWeb project and choose New.

In the New Gallery, expand Web Tier, select Servlets and then HTTP Servlet,

and click OK.

In the Create HTTP Servlet - Step 1 of 3: Servlet Information page, enter
EssDenmoAppSer vl et in the Class field.

Change the selection from Annotation to Configuration File(web.xml).

Enter or acl e. apps. ess. howt o in the Package field and click Next.

Click Finish.

In the source editor, replace the contents of ESSDenmoAppSer vl et . j ava with the
code in Example 7-6.

package oracl e. apps. ess. how o;

i mport java.io.lOException;
inmport java.io.PrintWiter;
inport java.io.StringWiter;

7-37

ORACLE

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

i mport
i mport
i mport
i mport
i mport
i mport

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.

j avax.
j avax.
j avax.
j avax.
j avax.
j avax.

oracl
oracl
oracl
oracl
oracl
oracl
oracl
oracl
oracl
oracl
oracl

util.Arraylist;
util. Cal endar;
util.Enuneration;

util.HashSet;
util.lterator;
util. List;
util.Listlterator;
util. Map;

util. Set;

util.SortedSet;

util.TreeSet;

util.logging.Level;

util.logging. Logger;

util.regex. Pattern;

servl et.
servlet.
servl et.
servlet.
servlet.
servlet.

e. as. schedul er.
e. as. schedul er.
e. as. schedul er.
e. as. schedul er.
e. as. schedul er.
e. as. schedul er.
e. as. schedul er.
e. as. schedul er.
e. as. schedul er.
e. as. schedul er.
e. as. schedul er.

Chapter 7

Building Split Submitting and Hosting Applications

Servl et Confi g;

Servl et Excepti on;

http. H tpServlet;

http. H t pServl et Request ;
http. H t pServl et Response;
http. Ht pSession;

Met adat albj ect | d;

Met adat albj ect | d. Met adat aChj ect Type;
Met adat aSer vi ce;

Met adat aSer vi ce. Quer yFi el d;
Met adat aSer vi ceHand! e;
Request Det ai | ;

Request Par anet er s;

Runt i neSer vi ce;

Runt i neSer vi ceHandl e;
State;

core.Jndi Uil ;

public class EssDemoAppServl et extends HttpServlet {
@uppr ess\ar ni ngs("conpatibility: 4685800289380934682")

private static final

private
private
private
private
private
private
private
"<p>Enterprise Schedul er Service is currently unavailable. Cause: %</

p>";

static fi
static fi
static fi
static fi
static fi
static fi
static fi

nal
nal
nal
nal
nal
nal
nal

| ong serial VersionU D = 1L;

Stri
Stri
Stri
Stri
Stri
Stri
Stri

ng
ng
ng
ng
ng
ng
ng

CONTENT_TYPE = "text/htm; charset=UTF-8";
MESSACGE_KEY = "Message";

PATH SUBM T = "/subnit Request";

PATH ALTER = "/al ter Request";

MDO SEP = ";";

ACTI ON_CANCEL = "Cancel ";

ESS_UNAVAI L_MSG =

private enum PseudoSchedul eChoi ces {
I mredi atel y(0),

I nTenSeconds(10),

InTenM nut es(10 * 60);

@uppr essWar ni ngs("conpati bility:-5637079380819677366")

private static final

l ong serial VersionU D = 1L;

private int mseconds;

private PseudoSchedul eChoi ces(int seconds) {

7-38

ORACLE

Chapter 7
Building Split Submitting and Hosting Applications

m seconds = seconds;

}

public int getSeconds() {
return mseconds;

}

publ i ¢ EssDemoAppServlet() throws Servl et Exception {

}

super ();

@verride
public void init(ServletConfig config) throws ServletException {

}

super.init(config);

@verride
public void doGet (HtpServl et Request request, HttpServletResponse response)

throws ServletException, |OException

{
response. set Cont ent Type(CONTENT_TYPE) ;
H t pSessi on session = request. get Session(true);
String | ast Message = String.val ueCf (session. get Attri but e(MESSAGE_KEY));
if ("null".equal s(lastMessage)) {
| ast Message = ""
}
try {
RuntineLists runtineLists = getRuntimeLists();
Met adat aLi sts nmetadatalists = get Met adat alLi sts();
render Response(net adat aLi sts, runtineLists,
request, response, |astMessage);
} catch (ServletException se) {
t hrow se;
} catch (Exception e) {
t hrow new Servl et Exception(e);
}
}
@verride

public void doPost (HttpServl et Request request,

Ht t pSer vl et Response response)
throws ServletException, |OException

response. set Cont ent Type(CONTENT_TYPE) ;
request. set Char act er Encodi ng(" UTF-8");

H t pSessi on session = request. get Session(true);
String pathlinfo = request.getPathlnfo();

/1 Clear the nessage on every post request
StringBuilder nmessage = new StringBuilder("");

try {

7-39

ORACLE

}

/**

* Handl e the job subnission form
* @aram request

* (@par am message

* @hrows ServletException

Chapter 7
Building Split Submitting and Hosting Applications

/'l Sel ect each handl er based on the formaction
if ("".equal s(pathlnfo)) {
/1 No processing
} else if (PATH_SUBM T. equal s(pathlnfo)) {
post Submi t Request (request, message);
} else if (PATH ALTER equal s(pathlnfo)) {
post Al t er Request (request, message);
} else {
message. append(String. format ("<p>No handl er for pathlnfo=%s</p>",
pat hi nfo));
}

catch (ServletException se) {
Throwabl e t = se. get Cause();
String cause = (t == null) ? se.toString() : t.toString();
nmessage. append (String. format (ESS_UNAVAI L_MSG cause));

}

/1 Storing the messages in the session allows themto persist
/1 through the redirect and across refreshes.
session. set Attri but e(MESSAGE_KEY, message.toString());

/'l render the page by redirecting to doGet(); this intentionally
/] strips the actions and post data fromthe request.
response. sendRedi rect (request . get Cont ext Pat h() +

request. get ServletPath());

private void postSubm t Request (Htt pServl et Request request,

StringBuil der nessage)
throws ServletException

String jobDef Name = request.get Paraneter("job");
String schedul eDef Nanme = request. get Paranet er ("schedul e");

Il Various required args for subnission
Cal endar start = Cal endar.getlnstance();
start.add(Cal endar. SECOND, 2);

/'l Launch the job based on formcontents
if (jobDefNane == null || schedul eDef Nane == null) {
nmessage. append("Both a job nane and a schedul e nane nust be

specified\in");

} else {
PseudoSchedul eChoi ces pseudoSchedul e = nul | ;

/1 See if schedule given is actually a pseudo schedul e
try {

pseudoSchedul e = PseudoSchedul eChoi ces. val uef (schedul eDef Nane) ;
} catch (111l egal Argunent Exception e) {

/1 The string is not a valid menber of the enum

pseudoSchedul e = nul | ;

7-40

ORACLE

Chapter 7
Building Split Submitting and Hosting Applications

Met adat albj ect 1 d schedul eDefld = nul | ;
String schedul eDef NamePart = nul | ;
Met adat aCbj ect|d jobDefld = stringToMet adat aChj ect | d(j obDef Nare) ;

/1 Don't ook up schedules that aren't real
i f (pseudoSchedule !'= null) {
schedul eDef NamePart = schedul eDef Nane;
start.add(Cal endar. SECOND, pseudoSchedul e. get Seconds());
} else {
schedul eDef I d = stringToMet adat alhj ect | d(schedul eDef Narre) ;
schedul eDef NamePart = schedul eDef | d. get NanePart () ;

}

String jobDef NamePart = jobDefld. get NanePart ();
String requestDesc = jobDef NanePart + "@ + schedul eDef NanePart;

Logger |ogger = getLogger();
I ong requestld = submit Request (pseudoSchedul e, requestDesc,
jobDefld, schedul eDefld, start,

| ogger);
/1 Popul ate the message bl ock based on results
nmessage. append(String. format ("<p>New request %l | aunched using %</
p>",
requestld, requestDesc));
}
}

private Long subm t Request (final PseudoSchedul eChoi ces pseudoSchedul e,
final String requestDesc,
final MetadataChjectld jobDefld,
final MetadataChjectld schedul eDefld,
final Calendar start,
final Logger |ogger)
throws Servl et Exception
{
Runt i neSer vi cePayl oad<Long> nyPayl oad = new
Runt i neServi cePayl oad<Long>() {
@verride
Long execute(RuntimeService service,
Runt i neServi ceHandl e handl e,
Logger | ogger)
throws Exception

{
Request Paranet ers paranms = new Request Paraneters();
return (null != pseudoSchedul e)
? service. subm t Request (handl e, requestDesc, jobDefld,
start, parans)
. service.subnitRequest (handl e, requestDesc, jobDefld,
schedul eDef 1 d, null,
start, null, parans);
}
¥
try {

return perfornmCperation(nyPayl oad, |ogger);
} catch (Exception e) {
t hrow new Servl et Exception("Error submtting request using job: " +
jobDefld + " and schedule: " +
schedul eDefld, e);

7-41

ORACLE

Chapter 7
Building Split Submitting and Hosting Applications

* Handl e the "Cancel" and "Purge" actions fromthe form enclosing
* the Request Status table.

* @aram request

* (@par am message

* @hrows ServletException

private void post Al terRequest (H tpServl et Request request,

StringBuil der nessage)
throws ServletException

String cancel ID = null;

/*

* there are a few assunptions going on here...

* the HTTP button being used to transmt the action and

* request is backwards fromits normal usage (eg. the nane

* shoul d be invariable, and the value variable). Because we

* want to display either "Purge" or "Cancel"” on the button, and
* transmit the reqld with it, we are reversing the map entry

* to get the key (which in this case is the reqlD), and

* match it to the value (Purge or Cancel).

* Assunptions are that there is only one entry in the map

* per request (one purge or cancel). Al'so, that the datatypes
* for the key and val ue are those docunented for

* Servl et Request (<K, V> = <String, String[]>).

*/

Map request Map = request. get Paramet er Map() ;
Iterator maplter = requestMap.entrySet().iterator();
while (maplter.hasNext()) {

Map. Entry entry = (Map. Entry)maplter. next();

String key = (String)entry. getKey();

String[] values = (String[])entry.getValue();

i f (ACTI ON_CANCEL. equal s(val ues[0])) {

cancel I D = key;
}

}

if (cancellD!=null) {
try {
final String cancelld2 = cancel I D
Runt i meServi cePayl oad<Voi d> nyPayl oad = new

Runt i neServi cePayl oad<Voi d>() {

@verride
Voi d execut e(Runti meService service,
Runt i neSer vi ceHandl e handl e,
Logger | ogger)
throws Exception

servi ce. cancel Request (handl e, Long. val ueOf (cancel 1 d2));
return nul | ;

b
Logger |ogger = getLogger();
per f or mOper ati on(myPayl oad, | ogger);

message. append
(String.format("<p>Cancel |l ed request %</p>", cancellD));

7-42

Chapter 7
Building Split Submitting and Hosting Applications

} catch (Exception e) {
throw new Servl et Exception
("Error canceling or purging request”, e);

} else {
nmessage. append("<p>No purge or cancel action specified</p>");
}

}

private String netadataCbject!ldToString(MetadataChjectld ndol D)
throws ServletException {

String nmdoString =
mdol D. get Type().val ue() + MDO_SEP + ndol D. get PackagePart () +
MDO_SEP + ndol D. get NanePart ();

return ndoString;
}

private MetadataObjectld stringToMetadatahjectld(String ndoString)
throws ServletException {
String[] ndoStringParts = ndoString.split(Pattern.quote(MO _SEP));
if (ndoStringParts.length I'=3) {
t hrow new Servl et Exception(String.format("Unexpected nunber of
conponents % found " +
"when converting % to
Met adat aGbj ect | D',
mdoStri ngParts. | engt h,
mdoString));
}

Met adat albj ect Type ndType =

Met adat aGbj ect Type. get MOType(ndoSt ri ngParts[0]);
String ndPackage = ndoStringParts[1];
String ndName = ndoStringParts[2];

Met adat aCbj ect1d ndol D =
Met adat albj ect | d. cr eat eMet adat aCbj ect | d(mdType, ndPackage, ndNane);

return ndol D
}
/**
* this changes the format used in this class for job definitions to the one
* which is used in the runtine query.
* @aram strMet adat aChj ect
* @eturn string representing object in runtime store
* @hrows ServletException
*

/
private String fixMetadataString(String strMetadataject)
throws ServletException {
String fslash = "/";
String[] ndoStringParts =
st rMet adat abj ect. split(Pattern. quote(MDO _SEP));
if (ndoStringParts.length I'=3) {
t hrow new Servl et Exception(String.format("Unexpected nunber of
conponents % found " +
"when converting % to
Met adat aGbj ect | D',
mdoStri ngParts. | engt h,
strMet adat aChj ect));

ORACLE 7-43

ORACLE

Chapter 7
Building Split Submitting and Hosting Applications

String[] trinBtringParts = new String[ndoStringParts.|ength];
for (int i =0; i < ndoStringParts.length; i++) {

String nmdoStringPart = ndoStringParts[i];

trinBtringParts[i] = ndoStringPart.replaceAll(fslash, " ").trim);
}

Met adat aQbj ect Type ndType =
Met adat aCbj ect Type. get MOType(trinStringParts[0]);
String ndPackage = fslash + trinStringParts[1];
String nmdName = trinStringParts[2];
Met adat albj ect1d netadataChjld =
Met adat albj ect | d. cr eat eMet adat aCbj ect | d(mdType, ndPackage, ndNane);
return netadataCbjld.toString();

}

private Set<String> get Set Fromvet adat aEnum(Enumer at i on<Met adat atbj ect | d>
enumvet adat a)
throws Servl et Exception {
Set<String> stringSet = new HashSet<String>();

whi | e (enum\et adat a. hashor eEl enents()) {
Met adat aCbj ect1d obj 1 d = enunet adat a. next El enent () ;
String strNanePart = objld. getNamePart ();
stringSet.add(strNamePart);

}

return stringSet;

}
I

LR E SRS EEEE SRR EEEEEEEEEEEREESEEESES]
1
Il HTML Renderi ng Met hods
1
1

EE R R SR SRR EEEEEEEEEEEEEEEEEREREEE SRS

/**

* Rendering code for the page displayed.
* In areal application this would be done using JSP, but this approach
* keeps everything in one file to nake the exanple easier to follow.
* @aram response The response object fromthe main request.
* (@param message Text that appears in the nessage panel, may contain HTM
* @hrows | OException
*/
private void render Response(Met adataLists ni,
RuntimeLists rl,
Ht t pSer vl et Request request,
Ht t pSer vl et Response response,
String message)
throws | CException, ServletException

response. set Cont ent Type(CONTENT_TYPE) ;
PrintWiter out = response.getWiter();

String url Base = request. get ContextPath() + request.getServletPath();

/1 Indents maintained for clarity
out.println("<htm >");
out.println("<head><title>EssDemo</titl|e></head>");
out. println("<body>");

out.println("<table align=\"center\"><tbody>");

7-44

ORACLE

Chapter 7
Building Split Submitting and Hosting Applications

out.printin(" <tr><td align=\"center\"><hl1>Cracle Enterprise Schedul er

Tutorial </hl></td></tr>");

tr>");

}

out.println(" <tr><td align=\"center\"><table cellspacing=6><tr>");

/1 Job launch form

out.println(" <td align=\"center\">");

out.println(" <h2>Launch Job</h2>");

r ender LaunchJobForm(m , out, urlBase);

out.println(" </[td>");

out.println(" <td align=\"center\" bgcolor=\"blue\" wdth=\"2\"/>");

out.println(" </tr></table></td></tr>");
out.println(" <tr><td bgcolor=\"red\"/></tr>");

/'l Message panel

out.println(" <tr><td align=\"center\"><h3>Messages</h3></t d></
out.println(" <tr><td>");

out.println(nessage);

out.println(" </td></tr>");

out.println(" <tr><td bgcolor=\"red\"/></tr>");

/'l Request status
out.println(" <tr><td align=\"center\">");
out.println(" <formname=\"attrs\" action=\"" + urlBase +
PATH_ALTER + "\" net hod=\"post\">");
out.println(" <h2>Request Status</h2>");
out.println(" <t abl e border=2><t body>");
out.println(" <th>reql D</th>");
out.println(" <th>Description</th>");
out.println(" <th>Schedul ed tine</th>");
out.println(" <th>State</th>");
out.println(" <th>Action</th>");

render St at usTabl e(out, rl.requestDetails);

out.println(" </tbody></tabl e>");
out.println(" </form");
out.println(" </td></tr>");
out.println("</tbody></table>");
out.println("</body></htm >");
out. cl ose();

private void renderLaunchJobForn{ Met adataLists ml, PrintWiter out, String

url Base)

throws ServletException {
out.println(" <formname=\"attrs\" action=\"" + url Base +
PATH_ SUBM T + "\" met hod=\"post\">");
<t abl e><t body>");
<tr><td align=\"right\">");
Job: </ b>");
<sel ect name=\"job\">");

out.println("
out.println("
out.println("
out.println("
r ender Met adat aChoi ces(out, nl.jobDeflList, false);
r ender Met adat aChoi ces(out, nl.jobSetList, false);

out.println(" </select>");

7-45

ORACLE

Chapter 7
Building Split Submitting and Hosting Applications

out.println(" <[td></tr>");

out.println(" <tr><td align=\"right\">");
out.println(" Schedul e: </ b>");
out.println(" <sel ect nane=\"schedul e\">");

r ender PseudoSchedul eChoi ces(out);
r ender Met adat aChoi ces(out, nl.schedul eList, false);

out.println(" </select>");
out.println(" <td></tr>");
out.println(" <tr><td align=\"center\">");
out.println(" <i nput name=\"submt\" val ue=\"Submit\"
type=\"subm t\">");
out.println(" <td></tr>");
out.println(" </tbody></tabl e>");
out.println(" </form");
}
/**

*

* @aramout - printwiter

* @aram jobChoices -- netadata to be displayed

* @aram bBl ankFirst -- blank first (so that this paramis not required)
* @hrows ServletException

*/

private void renderMet adat aChoi ces(PrintWiter out,
Enuner at i on<Met adat albj ect | d> j obChoi ces,
bool ean bBI ankFirst)
throws ServletException

if (jobChoices == null)
return;

bool ean bFirst = true;
whi | e (jobChoi ces. hasMoreEl enents()) {
Met adat aCbj ectld job = jobChoi ces. next El ement ();
String strJob = netadat aloj ect!dToString(job);
String strNanePart = job. get NamePart();
i f (strNamePart.conpareTo("BatchPurgeJob") == 0) {
conti nue;
} else {
if (bFirst & bBlankFirst) {
out.printf("<option value=\"%\">%</option>", "", "");
bFirst = fal se;
}
out.printf("<option value=\"%\">%</option>", strJob,
strNamePart);

/**
* hel per method for rendering choices based on strings, adding an enpty
* string to the beginning of the list
* @ar am out
* @aram choi ces
*/
private void renderStringChoices(PrintWiter out, Set<String> choices) {
if (choices == null)
return;

7-46

Chapter 7
Building Split Submitting and Hosting Applications

choi ces. add("");
SortedSet<String> sorted = new TreeSet<String>(choices);
Iterator choicelter = sorted.iterator();
whil e (choicelter.hasNext()) {
String choice = (String)choicelter.next();

out.printf("<option value=\"%\">%</option>", choice, choice);

}

private void renderPseudoSchedul eChoi ces(PrintWiter out) {
for (PseudoSchedul eChoices ¢ : PseudoSchedul eChoi ces. val ues()) {
out.printf("<option value=\"%\">%</option>", ¢, c);
}
}

private void render StatusTabl e
(PrintWiter out, List<RequestDetail> reqDetails)
{
if (reqbDetails == null) {
return;
}

for (RequestDetail regDetail : reqDetails) {
State state = reqDetail.getState();

Cal endar schedul edTime = reqDetail . get Schedul edTi ne();
String schedul edTi meString = nul | ;

if (scheduledTime == null) {

schedul edTimeString = "null schedul ed tine";
} else {

schedul edTi meString = String.val ued (schedul edTi me. get Ti me()) ;
}

final String actionButton;
if (!state.isTermnal ()) {
String action = ACTI ON_CANCEL;
String regld = String.val ueC (reqDetail.get Requestid());
actionButton = String. format
("<button type=submit val ue=% nane=\"9%\">%</button>",
action, reqld, action);
} else {
actionButton = " ";
}

out. printf("<tr><td>%</td><td>%s</td><td>%</td><t d>Us</td><t d>%s</
td></tr>\n",
reqDet ai | . get Request1d(), reqDetail.getDescription(),
schedul edTi neString, state, actionButton);

private MetadataService get MetadataService() throws Exception {
return Jndi Uil .get Metadat aServi ceEJB();

}

private RuntineService getRuntineService() throws Exception {
return Jndi Uil .getRuntimeServiceEJB();

}

ORACLE 7-47

ORACLE

Chapter 7
Building Split Submitting and Hosting Applications

private abstract class Payl 0ad<SERVI CE, HANDLE, RETURN> {

}

abstract SERVI CE get Service() throws Exception;
abstract HANDLE get Handl e(SERVI CE service) throws Exception;
abstract void cl oseHandl e(SERVI CE servi ce,
HANDLE handl e,
bool ean abort)
throws Excepti on;
abstract RETURN execut e(SERVI CE service, HANDLE handl e, Logger |ogger)
throws Excepti on;

private abstract class MetadataServicePayl oad<T>

{

}

extends Payl oad<Met adat aServi ce, Metadat aServi ceHandl e, T>

@verride
Met adat aServi ce get Service() throws Exception {
return get Met adat aServi ce();

}

@verride
Met adat aSer vi ceHandl e get Handl e(Met adat aSer vi ce servi ce)
throws Exception

{

return service.open();
}
@verride

voi d cl oseHandl e(Met adat aSer vi ce servi ce,
Met adat aSer vi ceHandl e handl e,
bool ean abort)
throws Exception

service. cl ose(handl e, abort);

private abstract class RuntineServicePayl oad<T>

{

extends Payl oad<Runti meService, RuntimeServiceHandle, T>

@verride
RuntimeServi ce get Service() throws Exception {
return getRuntimeService();

}

@verride
Runt i neServi ceHandl e get Handl e(Runti meServi ce service)
throws Exception

{

return service.open();
}
@verride

voi d cl oseHandl e(Runti neServi ce service,
Runt i neServi ceHandl e handl e,
bool ean abort)
throws Exception

service. cl ose(handl e, abort);

7-48

ORACLE

Chapter 7
Building Split Submitting and Hosting Applications

private <S, H, R> R perfornperation

}

(Payl oad<S, H, R> payload, Logger I|ogger)
throws Exception

S service = payl oad. get Service();
H handl e = payl oad. get Handl e(service);

Exception origException = null;
try {

return payl oad. execute(service, handle, |ogger);
} catch (Exception e2) {

ori gException = e2;

throw e2;
} finally {
if (null !'= handle) {
try {
bool ean abort = (null != origException);

payl oad. cl oseHand| e(service, handle, abort);
} catch (Exception e2) {
if (null !'= origException) {
| ogger.log(Level . WARNING "An error occurred while " +
“closing handl e, however, a previous failure was " +
"detected. The following error will be logged " +
"but not reported: " + stackTraceToString(e2));

private final String stackTraceToString(Exception e) {

}

StringWiter sw = new StringWiter();
PrintWiter pw = new PrintWiter(sw);
e.printStackTrace(pw);

pw. f 1 ush();

pw. cl ose();

return sw toString();

private Logger getlLogger() {

}

return Logger. getLogger (this.getC ass().getNane());

private class Metadatalists {

private final Enuneration<MetadataCObjectld> jobDeflList;
private final Enuneration<MetadataCObjectld> jobSetlList;
private final Enumeration<MetadataQbject!|d> schedul eList;
private final Enuneration<MetadataChjectld> jobTypelist;

private MetadataLi sts(Enunerati on<Met adat aChj ect | d> j obDef Li st,
Enuner at i on<Met adat aGbj ect 1 d> j obSet Li st,
Enuner at i on<Met adat aGbj ect | d> schedul eLi st,
Enuner at i on<Met adat albj ect | d> j obTypelLi st)

{
this.jobDefList = jobDeflList;
this.jobSetList = jobSetList;
this. schedul eLi st = schedul eLi st;
this.jobTypeList = jobTypelist;
}

7-49

ORACLE

Chapter 7
Building Split Submitting and Hosting Applications

private class RuntinmeLists {
private final List<RequestDetail> requestDetails;
private final Set<String> applicationChoices;
private final Set<String> stateChoices;
private final Set<MetadataObjectld> jobDef MDOChoi ces;

private RuntineLists(List<RequestDetail > requestDetails,
Set <String> applicationChoi ces,
Set <String> stateChoices,
Set <Met adat aCbj ect | d> j obDef MDOChoi ces)

{
super();
this.requestDetails = requestDetails;
this.applicationChoi ces = applicationChoices;
this. stateChoi ces = stateChoices;
this. j obDef MDOChoi ces = j obDef MDCOChoi ces;
}
}
/**

* Retrieve lists of jobs, schedules, and status for use by the renderer
* @hrows ServletException
*/
private Metadatalists get Metadatalists() throws Exception {
Logger |ogger = getlLogger();

Met adat aSer vi cePayl oad<Met adat aLi st s> myPayl oad =
new Met adat aSer vi cePayl oad<Met adat alLi st s>()

{
@verride
Met adat aLi sts execut e(Met adat aServi ce servi ce,
Met adat aSer vi ceHandl e handl e,
Logger | ogger)
throws Exception
{
Enuner at i on<Met adat aCbj ect | d> j obDefs =
servi ce. queryJobDefinitions(handl e, null, QueryFiel d. NAME,
true);
Enuner at i on<Met adat aCbj ect | d> jobSets =
servi ce. queryJobSets(handl e, null, QueryField. NAVE, true);
Enuner at i on<Met adat aCbj ect | d> schedul es =
servi ce. querySchedul es(handl e, null, QueryField.NAME, true);
Enuner at i on<Met adat aChj ect | d> j obTypes =
service. queryJobTypes(handl e, null, QueryField. NAME, true);
return new Met adat aLi sts(jobDefs, jobSets, schedul es, jobTypes);
}
¥
Met adat aLi sts m = perfornOperation(nyPayl oad, |ogger);
return ni;
}

private RuntineLists getRuntineLists() throws Exception {
Logger |ogger = getlLogger();

Runt i meSer vi cePayl oad<Li st <Request Det ai | >> nyPayl oad2 =
new Runti neServi cePayl oad<Li st <Request Det ai | >>()
{

@verride
Li st <Request Det ai | > execut e(Runti meServi ce servi ce,

7-50

Chapter 7
Building Split Submitting and Hosting Applications

Runt i neServi ceHandl e handl e,
Logger | ogger)
throws Exception

{
Li st <Request Detai |l > reqDetails =
new Arrayli st <Request Detai | >(10);
Enuneration requestlds = service. queryRequests
(handl e, null, RuntimeService.QueryField. REQUESTID, true);
whil e (request!ds. hashoreEl enents()) {
Long reqld = (Long)request!ds. nextEl enent ();
RequestDetai| detail = service.getRequestDetail (handl e,
reqld);
reqDet ai | s. add(detail);
}
return regDetails;
}
¥
Li st <Request Det ai | > reqDetai | s = perfornQOperation(nyPayl oad2, |ogger);
RuntineLists rl = getRuntimeLists(reqDetails);
return rl;
}

private RuntineLists getRuntineLists(List<RequestDetail> reqDetails) {
Set<String> applicationSet = new HashSet<String>(10);
Set<String> stateSet = new HashSet<String>(10);
Set <Met adat aChj ect | d> j obDef MOSet = new HashSet <Met adat albj ect | d>(10) ;

if (regDetails !'= null) {

Listlterator detaillter = reqDetails.listlterator();

while (detaillter.hasNext()) {
Request Detai |l detail = (RequestDetail)detaillter.next();
appl i cationSet. add(detail.getDepl oyedApplication());
State state = detail.getState();
if (state.isTerminal())

stateSet. add(state. name());

j obDef MOSet . add(detai | . get JobDefn());

}
}
RuntineLists rl = new RuntineLists

(regDetails, applicationSet, stateSet, jobDefMXSet);
return rl;

}

7.4.2.5 Editing the web.xml File for the Front-End Submitter Application

You need to edit the web. xm file to and Oracle Enterprise Scheduler metadata and
runtime EJB references.

To edit the web.xml file for the front-end submitter application:

1. Inthe Application Navigator, expand SuperWeb, expand Web Content, expand
WEB-INF and double-click web.xml.

2. Inthe overview editor, click the References navigation tab and expand the EJB
References section.

ORACLE 7-51

4,
5.

Chapter 7
Building Split Submitting and Hosting Applications

Add two EJB resources with the information shown in Table 7-1.

Table 7-1 EJB Resources for the Front-End Submitter Application
]

EJB Name Interface EJB Local/lRemote Interface
Type Type
ess/ netadata Local Session oracl e. as. schedul er. Met adat aSer vi ceLoc
al
ess/runtime Local Session oracl e. as. schedul er. Runti meServi ceLoca

Click the Servlets navigation tab and click the Servlet Mappings tab.

Change the / essdempappser vl et URL pattern to / essdemoappservl et/ *.

7.4.2.6 Editing the weblogic-application.xml file for the Front-End Submitter

Application

ORACLE

You need to create and edit the weblogic-application.xml file.

To edit the weblogic-application.xml file for the front-end submitter application:

1.
2.

In Application Navigator, right-click the SuperEss project and select New.

In the New Gallery, expand General, select Deployment Descriptors and then
Weblogic Deployment Descriptor, and click OK.

In the Select Descriptor page select weblogic-application.xml.
Click Next, click Next again, and click Finish.

In the source editor, replace the contents of the webl ogi c-appl i cation. xni file
that you just created with the XML shown in Example 7-7.

Example 7-7 Contents to Copy to weblogic-application.xml for a Front-End
Submitter Application

<?xm version = "1.0" encoding = 'UTF-8 ?>
<webl ogi c-application xm ns:xsi="http://ww.w3. org/ 2001/ XM.Schema- i nst ance"

xsi: schenmalLocation="http://ww. bea. com ns/ webl ogi c/

webl ogi c- appl i cation

http://ww. bea. com ns/ webl ogi ¢/ webl ogi c- appl i cation/ 1. 0/ webl ogi c- appl i cati on. xsd"

xm ns="http://wwmv. bea. con ns/ webl ogi c/ webl ogi c-

application">

<I-- The followi ng application parameter tells JPS which stripe it should
- use to upload the jazn-data.xm policy. |If this paranmeter is not
- specified, it uses the Java EE depl oynment name plus the version
- nunber (e.g. EssDenpApp#V2.0).
-->
<appl i cati on- par anp
<par am name>j ps. pol i cystore. appl i cati oni d</ par am nane>
<par am val ue>EssDenmpAppUl </ par am val ue>
</ appl i cati on- paran»

<I-- This listener allows JPS to configure itself and upload the

- jazn-data.xm policy to the appropriate stripe
-->

7-52

Chapter 7
Building Split Submitting and Hosting Applications

<li stener>
<li stener-
class>oracle.security.jps.ws.listeners.JpsApplicationLifecyclelListener</
|'istener-class>
</listener>

<I-- This listener allows MDS to configure itself and upload any netadata
- as defined by the MAR profile and adf-config.xn
-->
<listener>
<listener-class>oracle.nds. | cmwebl ogi c. W.Li fecycl eLi stener</listener-
cl ass>
</listener>

<I-- This listener allows Oracle Enterprise Scheduler to configure itself
-->
<listener>
<li stener-
cl ass>oracl e. as. schedul er. platformw s. depl oy. ESSAppl i cati onLi f ecycl eLi st ener </
|'istener-class>
</listener>

<l-- This shared library contains all the Oracle Enterprise Schedul er classes
-->
<library-ref>
<l'i brary-nane>oracl e. ess. client</library-nane>
</library-ref>
<library-ref>
<li brary-nane>adf. oracl e. domai n</ | i brary- nane>
</library-ref>
</ webl ogi c-appl i cati on>

7.4.2.7 Editing the adf-config file for the Front-End Submitter Application

ORACLE

You need to edit the adf-config.xml file to tell the application to share the metadata that
was created in the hosting application.

To edit the adf-config.xml file for the front-end submitter application:

1. From the Application Resources panel, expand Descriptors, expand ADF META-
INF, and double-click adf-config.xml.

2. In the source editor, replace the contents of the adf - confi g. xm file with the XML
shown in Example 7-8.

Example 7-8 Contents to Copy to adf-config.xml for a Front-End Submitter
Application

<?xm version="1.0" encodi ng="UTF-8" ? >
<adf-config xm ns="http://xn ns. oracl e. conf adf / confi g"
xm ns: sec="http://xm ns. oracl e. com adf / security/config">
<sec: adf -security-child xm ns="http://xn ns. oracl e. con adf / security/config">
<Credenti al StoreCont ext
credential StoreC ass="oracl e. adf . share. security. providers.jps. CSFCredential Sto
re"

credential StoreLocation="../../src/META-INF/jps-config.xm"/>

sec: JaasSecuri t yCont ext
i nitial ContextFactoryCd ass="oracl e. adf . share. security. JAASI nitial Cont ext Fact or
y"

7-53

ORACLE

Chapter 7
Building Split Submitting and Hosting Applications

j aasProvider G ass="oracl e. adf . share. security.providers.ps.JpsSecurityContext"

aut hori zati onEnforce="fal se"
aut henti cati onRequi re="true"/
</ sec: adf - security-chil d>
<adf - mds-config xm ns="http://xn ns. oracl e. cont adf / nds/ confi g">
<nds-config version="11.1. 1. 000"
xm ns="http://xm ns. oracl e. conm nmds/ config">
<type-config>
<type-definitions>
<cl asspat hschena/ Excl usi on. xsd/ cl asspat h>
<cl asspat hschema/ | nconpati bility. xsd/ cl asspat h>
<cl asspat hschema/ JobDef i ni ti on. xsd/ cl asspat h>
<cl asspat hschema/ JobSet . xsd/ cl asspat h>
<cl asspat hschema/ JobType. xsd/ cl asspat h>
<cl asspat hschema/ Schedul e. xsd/ cl asspat h>
<cl asspat hschena/ Speci al i zati on. xsd/ cl asspat h>
<cl asspat hschema/ Tri gger . xsd/ cl asspat h>
<cl asspat hschema/ Tri gger Expr essi on. xsd/ cl asspat h>
<cl asspat hschenma/ Wr kAssi gnnent . xsd/ cl asspat h>
<cl asspat hschenma/ Wor kshi ft . xsd/ cl asspat h>
</type-definitions>
</type-config>
<per si st ence-confi g>
<net adat a- namespaces>
<namespace path="/oracl e/ as/ ess/ core"
met adat a- st or e- usage="ess-core"/ >
namespace path="/oracl e/ apps/ ess"
met adat a- st or e- usage="deno- app"/ >
</ met adat a- namespaces>
<net adat a- st or e- usages>
<net adat a- st ore- usage i d="ess-core" depl oy-target="fal se"
defaul t-cust-store="fal se">
<net adat a-store
cl ass- nane="or acl e. mis. per si st ence. st ores. db. DBMet adat aSt ore" >
<property nane="j ndi - dat asource" val ue="j dbc/ mis- ESS_MDS DS'/ >
<property nane="repository-name" val ue="nds- ESS_MDS DS"/ >
<property nane="partition-nang"
val ue="essapp-internal -partition"/>
</ et adat a- st or e>
</ met adat a- st or e- usage>
met adat a- st or e- usage i d="deno-app" depl oy-target="true"
defaul t-cust-store="fal se">
<net adat a-store
cl ass- nane="or acl e. mds. persi st ence. st ores. db. DBMet adat aSt ore" >
<property name="j ndi - dat asour ce" val ue="j dbc/ nds- ESS_MDS_DS'/ >
<property name="repository-nane" val ue="nmds- ESS MDS DS"/>
<property name="partition-name" val ue="essUser Met adata"/>
</ met adat a- st or e>
</ met adat a- st or e- usage>
</ net adat a- st or e- usages>
</ persi st ence-confi g>
</ mds- confi g>
</ adf - nds- confi g>
</ adf - confi g>

7-54

Chapter 7
Building Split Submitting and Hosting Applications

7.4.2.8 Assembling the Front-End Submitter Application for Oracle Enterprise

Scheduler

After you create the front-end sample application you use Oracle JDeveloper to
assemble the application.

To assemble the front-end application you do the following:

Create the EJB Java Archive
Create the WAR file
Create the application MAR and EAR files

7.4.2.8.1 How to Assemble the EJB JAR File for the Front-End Submitter Application

The EJB Java archive file includes descriptors for the Java job implementations.

To assemble the EJB JAR File for the front-end submitter application:

1.
2.

4.
5.
6.

In Application Navigator, right-click the SuperEss project and choose New.

In the New Gallery, expand General, select Deployment Profiles and then EJB
JAR File, and click OK.

In the Create Deployment Profile dialog, set the Deployment Profile Name to
JAR Super EssEj bJar.

On the Edit EJB JAR Deployment Profile Properties dialog, click OK.
Delete the other JAR profiles created by default. Only include EJB and WAR.
On the Project Properties dialog, click OK.

7.4.2.8.2 How to Assemble the WAR File for the Front-End Submitter Application

You need to create a web archive file for the web application.

To assemble the WAR file for the front-end submitter application

1.
2.

5.
6.

In Application Navigator, right-click the SuperWeb project and choose New.

In the New Gallery, expand General, select Deployment Profiles and then WAR
File, and click OK.

In the Create Deployment Profile dialog, set the Deployment Profile Name to
WAR Super Web\War .

On the Edit WAR Deployment Profile Properties dialog, click the General
navigation tab, select Specify Java EE Web Context Root, and enter
ESSDermoAppUIl .

Click OK.
On the Project Properties dialog, click OK.

7.4.2.8.3 How to Assemble the MAR and EAR Files for the Front-End Hosting Application

The sample application must contain the MAR profile and the EAR file that assembles
the EssDemoApp back-end application.

ORACLE

7-55

Chapter 7
Building Split Submitting and Hosting Applications

To create the MAR and EAR files for the front-end submitter application:

1. From the main menu, choose Application Menu > Application Properties...

2. In the Application Properties dialog, delete the profile listed under Deployment
Profiles and click New.

3. Inthe Create Deployment Profile dialog, select MAR File from the Profile Type
dropdown list.

4. Inthe Name field, enter MAR EssDenmoAppUl Mar and click OK.

5. Click OK.

6. In the Deployment page of the Application Properties dialog, click New.

7. Inthe Create Deployment Profile dialog, select EAR File from the Profile Type
dropdown list.

8. Inthe Name field, enter EAR EssDenpAppU Ear and click OK.

9. In the Edit EAR Deployment Profile dialog, click the General navigation tab and
enter EssDemoAppUl in the Application Name field.

10. Select WAR_Super W\ebWar .

11. Click the Application Assembly navigation tab, then select MAR_ESSDenpAppUl Mar
and select JAR Super EssEj bJar.

12. Click OK.

13. In the Application Properties dialog, click OK.

7.4.2.8.4 Add ADF Libraries

Navigate to the Project Properties > SuperWeb > Libraries and Classpath window. Use
the Add Library button to add the following libraries:

ADF Common Runtime
ADF Faces Runtimell

ADF Common Web Runtime
ADF Page FlowRuntime
ADF Controller Schema
ADF Controller Runtime

7.4.2.8.5 Set Oracle Enterprise Scheduler Properties for the Application

ORACLE

The following steps describe how to set values for Oracle Enterprise Scheduler
properties:

1.

In the Application Navigator, right-click the SuperEss project, then click
Enterprise Scheduler Properties.

In the Enterprise Scheduler Properties dialog, enter EssDemoAppUl as the value for
all three of the following fields:

* Logical Application Name
* Application Policy Stripe

* JPS Interceptor Application Name

7-56

3. Click OK.

Chapter 7
Building Split Submitting and Hosting Applications

7.4.2.9 Configure the weblogic-application.xml File

Use the source editor to remove the following lines from webl ogi c- appl i cati on. xn :

<library-ref

<l'i brary-nane>or acl e. xdo. runti me</|i brary- nane>

</[library-ref>
<library-ref>

<l'i brary-nane>or acl e. appl cp. runtine</library- nane>

</library-ref>

7.4.2.10 Deploying the Front-End Submitter Application

After assembling the application, you can deploy it to the server.

ORACLE

To deploy the front-end submitter application:

1. From the main menu, choose Application > Deploy > EAR_EssDemoUIEar...

2. Set up and deploy the application to a container.

3. On the Deployment Configuration dialog, there should be two entries in the
Shared Metadata Repositories panel. Find the shared repository mapped to
the / or acl e/ apps/ ess/ howt 0 name space. Change its partition to the partition
used when deploying EssDenoApp. If you used the default value, this should be

EssDemoApp_V2.0.

Figure 7-23 Oracle Deployment Configuration Window

1 Oracle Deployment Configuration x

Configure and customize settings for this deployment

MDS
Metadata Repository

Repository Name: | \mds-ESS_MDS_DS
Repository Type: DB

Partition Name:

essUserMetadatal

Path/INDI Info: jdbc/mds-ESS_MDS_DS

Shared Metadata Repositories

Mamespace Repository Type
Joracle/apps/ess/howto |mds=ESS_MDS_DS > Db
Help
4. Click OK.

essUserMetadata

Path/JNDI Info
|jdbc/mds-ESS_MDS5_DS

Deploy Cancel

7-57

Chapter 7
Building Split Submitting and Hosting Applications

7.4.2.11 Update the EssHost MANIFEST File

Replace the contents of the EssHost META- | NF/ MANI FEST. | NF file with the following
lines:

Mani f est - Versi on: 1. 0 Wbl ogi c- Appl i cation-Version: 3.0
Ext ensi on- Li st: essruntine

essrunti ne- Ext ensi on- Nare: oracl e. ess.runtine
essruntine- Speci fication-Version: 12

7.4.2.12 Running the Split Application

To run the split application:
1. Enter the following URL in a browser:
http://host:http-port:/ESSDemoAppUl/essdemoappserviet
For example,
http://myserver. exanpl e. com 7101/ EssDemoAppUl / essdenpappser vl et
2. Login as EssDenoAppUser with the password wel conel.

3. Follow the same steps as in the combined application.

ORACLE 7-58

Using the Metadata Service

This chapter describes how to use the Oracle Enterprise Scheduler Metadata Service
to create, update and manage schedules, job definitions, and other Oracle Enterprise
Scheduler metadata to a metadata store. You can also use the Metadata Service
guery methods to list objects stored in the metadata repository.

This chapter includes the following sections:

e Introduction to Using the Metadata Service

* Accessing the Metadata Service

* Accessing the Metadata Service with Oracle JDeveloper
* Querying Metadata Using the Metadata Service

For information about how to create job definitions, see the following chapter: Creating
and Using PL/SQL Jobs , and Creating and Using Process Jobs .

8.1 Introduction to Using the Metadata Service

Oracle Enterprise Scheduler provides the Metadata Service and exposes it to

your application program as a Stateless Session Enterprise Java Bean (EJB). The
Metadata Service allows you to create, update and manage application-level metadata
objects.

The Metadata Service uses Oracle Metadata Services (MDS) to save metadata
objects to a repository (the repository can be either database based or file based).
The Metadata Service allows you to reuse application-level metadata across multiple
job request submissions.

Oracle Enterprise Scheduler metadata objects include the following:

e Application Level Metadata: You use the Metadata Service to store job type, job
definition, job set, and other application-level metadata object definitions for job
requests.

e Default (global) Oracle Enterprise Scheduler Metadata: The global Oracle
Enterprise Scheduler metadata includes administrative objects such as schedules,
workshifts and work assignments. Oracle Enterprise Scheduler provides
Met adat aSer vi ceMXBean and the Met adat aSer vi ceMXBeanPr oxy to access and
store default administrative objects

" Note:

Oracle Enterprise Scheduler metadata objects are used both in application-
level metadata and in global metadata

ORACLE 8-1

Chapter 8
Introduction to Using the Metadata Service

Access to application level-metadata objects is exposed only with the

Met adat aSer vi ce interface. The Met adat aSer vi ce is exposed as a stateless session
EJB. External clients must access the service only through the corresponding EJB.
Clients should not interact with the internal API layer directly. When an application
client uses the metadata service through the stateless session EJB, all the methods in
this interface accept a reference to a MetadataServiceHandle argument, which stores
state across multiple calls, for example when multiple methods are to be called within
a user transaction. The MBeanPr oxy interface does not require a handle.

In an Oracle Enterprise Scheduler application you do not need to access or
manipulate the MetadataServiceHandle. The application must hold on to the reference
created by the open method and pass it in methods being called. Finally the handle
must explicitly be closed by calling the close method. Only upon calling the close
method are any changes made using a given handle be committed (or aborted).

Metadata object names must be unique within the scope of a given package or name
space. Within a given package, two metadata objects with the same name and of the
same type cannot be created.

8.1.1 Introduction to Metadata Service Name Spaces

Each Oracle WebLogic Server domain generally includes one metadata repository.
A metadata repository is divided into a number of partitions, where each partition is
independent and isolated from the others in the repository.

Each application can choose which partition to use. Two applications can also choose
to share a partition.

Within a patrtition, you can organize the data in any way. Usually, the data is organized
hierarchically like the file system of an operating system. Where a file system uses
folders or directories, the Metadata Service uses hame spaces or package names
which form a unique name used to locate a file.

For all other Oracle Enterprise Scheduler applications, the application name and

an optional package name containing the application-level metadata displays under
the name space / or acl e/ apps/ ess. For example, the metadata repository for an
application named appl i cati onl can be divided into packages with the names dev,
test, and producti on.

The metadata repository for this application has the following structure:

[oracl el apps/ ess/ appl i cati onl/ dev/ net adat a
[oracl el apps/ ess/ applicationl/test/metadata
[oracl el apps/ ess/ appl i cationl/ production/ met adat a

Each Metadata Service method that creates a metadata object takes a required
packageNane argument that specifies the package part of the directory structure.

8.1.2 Introduction to Metadata Service Operations

After you access an Oracle Enterprise Scheduler metadata repository you can perform
different types of Metadata Service operations, including:

* Add, Update, Delete: These operations have transactional characteristics.

» Copy: These operations have transactional characteristics.

ORACLE 8-2

Chapter 8
Accessing the Metadata Service

* Query: These operations have read-only characteristics and let you list metadata
objects in the metadata repository.

» Get: These operations have either read-only or transactional characteristics,
depending on the value of the f or Updat e flag.

8.1.3 Introduction to Metadata Service Transactions

Because clients access the Metadata Service through a Stateless Session EJB,

each method uses a reference to a Met adat aSer vi ceHandl e argument; this argument
stores state for Metadata Service operations. The Metadata Service open() method
begins each metadata repository user transaction. In an Oracle Enterprise Scheduler
application client you obtain a Met adat aSer vi ceHandl e reference with the open()
method and you pass the reference to subsequent Metadata Service methods. The
Met adat aSer vi ceHandl e reference provides a connection to the metadata repository
for the calling application.

In a client application that uses the Metadata Service you must explicitly close

a Metadata Service transaction by calling cl ose() . This ends the transaction and
causes the transaction to be committed or rolled back (undone). The cl ose() not
only controls the transactional behavior within the Metadata Service, but it also allows
Oracle Enterprise Scheduler to release certain resources. Thus, the cl ose() is also
required for Metadata Service read-only query() and get() operations.

Note:

The Metadata Service does not support JTA global transactions, but you
can still make Metadata Service calls in the boundary of your transactions.
While you can make Metadata Service calls in bean/container managed
transactions, the calls are not part of your transaction.

8.2 Accessing the Metadata Service

There are several ways to access the Metadata Service.
To access the Metadata Service:

e Stateless Session EJB access: Use this type of access with Oracle Enterprise
Scheduler user applications.

e MBean access: This access is intended for use by applications that perform
administrative functions using the or acl e. as. schedul er. nanagenent APIs.

» MBean proxy access: This access is intended for use by applications that perform
administrative functions using the or acl e. as. schedul er. managenent APIs. Use
the MBean proxy if the administrative client is remote to the Oracle Enterprise
Scheduler.

ORACLE 8-3

Chapter 8
Accessing the Metadata Service with Oracle JDeveloper

8.2.1 How to Access the Metadata Service with a Stateless Session

EJB

User applications use a Stateless Session EJB to access the Metadata Service
for application level metadata operations. Using JNDI you can lookup the Metadata
Service associated with an Oracle Enterprise Scheduler application.

Example 8-1 shows the JNDI lookup for the Oracle Enterprise Scheduler
Metadata Service that allows you to use application level metadata. Note that the
get Met adat aSer vi ceEJB() method looks up the metadata service using the name
"ess/metadata”. By convention, Oracle Enterprise Scheduler applications use "ess/
metadata" for the EJB reference to the Met adat aSer vi ceBean.

Example 8-1 JNDI Lookup for Stateless Session EJB Access to Metadata
Service

/1 Denonstration on how to | ookup netadata service froma Java EE application
/1 JNDI | ookup on the netadata service EJB

i mport oracle. as. schedul er.core.Jndi Wil;

Met adat aService nms = Jndi Uil . get Met adat aServi ceEJB();

8.3 Accessing the Metadata Service with Oracle JDeveloper

Using Oracle JDeveloper at design time you can create, view, and update application
level metadata objects.

8.4 Querying Metadata Using the Metadata Service

The Metadata Service query methods let you view objects in the metadata repository.

You can query job types with the quer yJobTypes() method, query job definitions with
queryJobDefini tions() method, and likewise you can query other metadata objects
using the corresponding Met adat aSer vi ce query method.

Associated with a query you can use a filter to restrict the output to obtain only items of
interest (in a manner similar to using a SQL WHERE clause).

8.4.1 How to Create a Filter

ORACLE

A filter specifies a comparison or a criteria for a query. You create a filter by
creating a comparison that includes a fi el d argument (St ri ng), a conpar at or, and
an associated val ue (Obj ect). In a filter, you can use the filter methods to combine
comparisons to form filter expressions.

Table 8-1 lists the comparison operators (conpar at or argument).

Table 8-1 Filter Comparison Operators

___|
Comparison Operator Description

CONTAI NS Field contains the specified value

8-4

Chapter 8
Querying Metadata Using the Metadata Service

Table 8-1 (Cont.) Filter Comparison Operators

Comparison Operator

Description

ENDS_W TH
EQUALS

GREATER_THAN
GREATER THAN_EQUALS
LESS_THAN
LESS_THAN_EQUALS
NOT_CONTAI NS
NOT_EQUALS
STARTS_W TH

Field ends with the specified value

Field equals the specified value

Field is greater than the specified value

Field is greater than or equal to the specified value
Field is less than the specified value

Field is less than or equal to the specified value
Field does not contain the specified value

Field does not equal the specified value

Field starts with the specified value

Example 8-2 shows code that creates a new filter.

Table 8-2 MetadataService Query Fields

Query Field

Description

Met adat aSer vi ce
Met adat aSer vi ce
Met adat aSer vi ce
Met adat aSer vi ce

Met adat aSer vi ce
Met adat aSer vi ce
Met adat aSer vi ce
Met adat aSer vi ce
Met adat aSer vi ce

Met adat aSer vi ce

Met adat aSer vi ce

. QueryFi el d. PACKACE
. QueryFi el d. NAME
. QueryFi el d. JOBTYPE

. Quer yFi el d. EXECUTI ONTYPE

The name of the package.
The job definition name.
The job type associated with the job definition.

The type of job execution, synchronous or
asynchronous.

. QueryField.
. QueryFi el d.
. QueryField.
. QueryField.
. QueryField.

. QueryField.

. QueryField.

REQUEST _CATEGORY
EXECUTI ONMODE

FI RSTSTEP

ACTI VE

PRODUCT

EFFECTI VEAPPLI CATI ON

LOG CAL_CLUSTER NAME

The name of the request category.

The mode of job set execution, parallel or serial.
The first step in a job set.

Indicates whether a work assignment is active.

Indicates the name of the product with which the
job is associated.

The name of the hosting application wherein this
job should run.

The logical cluster associated with the job.

Example 8-2 Creating a Filter with a Filter Comparator for a Query

Filter filter
new Filter(MetadataService. QueryFiel d. PACKAGE. fi el dName(),

Filter. Conparator. NOT_EQUALS, null);

8.4.2 How to Query Metadata Objects

A Met adat aSer vi ce query returns an enumeration list of Met adat atbj ect | Ds of the
form:

java.util.Enuneration<Met adat albj ect | d>

ORACLE

8-5

Chapter 8
Querying Metadata Using the Metadata Service

Example 8-3 shows a sample routine that queries for a list of job types in the
metadata.

Example 8-3, shows the following important steps for using the quer yJobTypes()
method:

* You need to supply a reference to a metadata repository by obtaining an instance
of Met adat aSer vi ceHandl e.

* You need to create a filter for the query. The filter contains the fields, comparators,
and values to search for.

* You determine the field to sort by in the query using the or der By argument, or you
set the or der By argument to null to indicate that no specific ordering is applied.

* You set the ascendi ng argument for the query. When ordering is applied setting
the ascendi ng argument to t r ue indicates ascending order or f al se indicates
descending order for the result list.

Example 8-3 Using Metadata Service Query Methods

Enuner at i on<Met adat aCbj ect I d> gryResul ts
= mservice. queryJobTypes(handl e, filter, null, false);

ORACLE 8-6

Using Parameters and System Properties

This chapter describes how you can define parameters and values in the Oracle
Enterprise Scheduler metadata and runtime services you submit with a job request.
A given parameter may represent a value for an Oracle Enterprise Scheduler system
property or a value for an application defined property.

This chapter includes the following sections:

e Introduction to Using Parameters and System Properties
* Using Parameters with the Metadata Service

* Using Parameters with the Runtime Service

e Using System Properties

9.1 Introduction to Using Parameters and System Properties

Oracle Enterprise Scheduler system properties are parameters with names that
Oracle Enterprise Scheduler reserves. For some system properties Oracle Enterprise
Scheduler also defines the values or provides a default value if you do not specify a
value.

You can define Oracle Enterprise Scheduler parameters as follows:

* In metadata associated with a job definition, a job type, or a job set.

* Inthe request parameters when a job request is submitted. A request parameter
can override a parameter specified in metadata or can specify a value for a
parameter not previously defined in the metadata associated with a job request
(subject to certain constraints). You can also add new parameters or update
parameter values (subject to certain constraints) after a job request has been
submitted.

For more information on the Oracle Enterprise Scheduler system properties, see Using
System Properties.

9.1.1 What You Need to Know About Application Defined Property and
System Property Naming

ORACLE

Oracle Enterprise Scheduler application defined and system properties are case
sensitive. For example the application defined property name USER_PARA and
user _par a represent different parameters in Oracle Enterprise Scheduler.

When you use application defined properties, note that Oracle Enterprise Scheduler
reserves the names starting with "SYS_" (case-insensitive) for Oracle Enterprise
Scheduler-defined system properties. Thus, you should not use application defined
properties with names that start with "SYS_" (case-insensitive).

9-1

Chapter 9
Introduction to Using Parameters and System Properties

0.1.2 What You Need to Know About Parameter Conflict Resolution
and Parameter Materialization

ORACLE

When submitting a job request, Oracle Enterprise Scheduler combines parameters
specified in the job metadata with any submission parameters to form the runtime
request parameters. The runtime parameters are saved to the database runtime store
and used for subsequent processing of the request. The metadata parameters are
obtained from the job definition, job type, and if applicable, the job set as they are
defined in the metadata repository at the time of submission. Any subsequent changes
to the metadata is normally not seen or used as the request is processed. Oracle
Enterprise Scheduler resolves parameter conflicts for parameters with the same name
associated with the job metadata or the submit parameters.

A parameter conflict can occur in the following cases:

e A parameter is defined repeatedly with different values. For example if the
Syst enProperty. PRI ORI TY property is set with different values in the job type and
in the job definition associated with a request.

« A parameter is defined repeatedly and at least one definition is specified as read-
only with the Par anet er I nf o readonl y flag setto t r ue.

To resolve conflicts with parameters, Oracle Enterprise Scheduler uses one of the
following conflict resolution models and the parameter value inheritance hierarchy
shown in Table 9-1:

» Last definition wins: used when the same parameter is defined repeatedly with the
readonl y flag set to f al se in all cases. In the last definition wins model, conflicts
are resolved according to the precedence rules where the highest level wins (last
definition). For example a property specified at the job request level wins over the
same property specified at the job definition level.

e First read-only definition wins: used when the same parameter is defined
repeatedly and at least one definition is read-only (the Par amet er | nf o r eadonl y
flag is set to t r ue.) In the first read-only definition wins model, parameter conflicts
are resolved according to the precedence rules shown in Table 9-1, lowest level
wins. For example a readonly parameter specified at the job type definition level
wins over the same property specified at the job definition level, read-only or not.

Table 9-1 Parameter Precedence Levels

Object Level

JobType 1 - Lowest Level
JobDefinition 2

Job set step 3

job set 4

Job request (using 5 - Highest Level

Request Par anet er s passed to
submi t Request ())

9-2

Chapter 9
Introduction to Using Parameters and System Properties

9.1.2.1 What You Need to Know About Job Definition Parameter Materialization

Figure 9-1 illustrates the order of precedence taken by parameters defined in various
components.

Figure 9-1 Parameter Precedence

Job definition request Job set request

Job Type Job Set Step

Job Definition Job Set (top-level)

‘ Request Parameters

In the case of a job request, the parameters defined by the job type take first
precedence, followed by the parameters defined in the job definition. The parameters
submitted with the job request take final precedence. In the case of a job set request,
the parameters defined in the job set take first precedence, followed by the parameters
defined by the job request run as a child of the job set.

9.1.2.2 What You Need to Know About Job Set Level Parameter Materialization

ORACLE

When the job set step parameters are materialized, if the job set defines any of

the following system properties as read-only, and those properties are defined in the
definition of the topmost job set, that is the job set of the absolute parent, the job set
values override the values set at the job set step level. This causes every definition,
job definition, or job set definition that runs in the context of a specific job set to run
with the same values.

PRIORITY
REQUEST_EXPIRATION
RETRIES, only if the step definition value is > 0

There is an exception for RETRI ES because a value of 0 may mean that the job is
not capable of being restarted. So if a step is defined with RETRI ES = 0, it is not
overridden, but if the step has RETRI ES > 0, it is overridden with the job set value.

Properties for a job set step request are materialized during the processing of a job
set when the step is reached. Properties for a job step request are materialized in the
following order.

1. Job type and job definition (if the step is a job definition) or job set (if the step is a
job set).

2. Job set step.

9-3

9.2 Using

ORACLE

Chapter 9
Using Parameters with the Metadata Service

3. Parent request properties and system properties (parent is step's parent job set).
4. Scoped request properties.

Example 9-2 illustrates the parameter precedence for job set steps.

Figure 9-2 Parameter Precedence for Job Set Steps

Job definition Job sat
step step
JobType JobSet (for step)
JobDefinition

.o

| JobSet Step

l

Parent JobSet and
other parameters
from parent request

l

Overwrite specific
raad-only System
Properties with
values from top-level
JobSat

l

Scoped request
parameters

When job sets include steps that are job sets, this is a nested job set. For a nested
job set, the precedence shown in Table 9-1 applies. When a nested job set is reached,
Oracle Enterprise Scheduler applies the parameters of the parent request and the
parameters of the parent request follow the same precedence. The effect is that
parameters of the parent request, job set and job set step are inherited by nested job
sets.

Parameters with the Metadata Service

Oracle Enterprise Scheduler metadata includes parameters that you can associate
with a metadata object. The parameters can include both application defined
properties and system properties for a given definition (metadata object).

An instance of the Par anet er Li st class declares the parameters for a given

job definition, job type or job set. To set parameters for a given job definition,

job type, or job set definition, you can use a Par anet er Li st object with the

set Par amet er s() method for the metadata object or you can use the constructor and
supply a Par anet er Li st. To supply parameter information in a parameter list, each
Par anet er Li st object includes Par anet er | nf 0 objects that represent parameters,
such that each parameter is defined with properties as shown in Table 9-2.

9-4

Chapter 9
Using Parameters with the Metadata Service

Table 9-2 Parameterinfo Parameter Properties

___|
Parameter Property Description

Name
Value

Readonly

Legacy

DataType

Specifies the parameter name.
Specifies the parameter value.

This boolean flag can be set for each parameter. This flag indicates
whether the parameter is read-only.

When t r ue, subsequent objects in the parameter precedence hierarchy,
such as request submission parameter, cannot change the parameter
value. Typically a read-only parameter has a default value that cannot be
changed by subsequent objects.

Note that the value of a read-only parameter can be changed in

the object itself where this parameter is defined. For example if this
parameter is defined in a job type as a read-only parameter, its value
can be changed in the job type definition itself, but a job definition that
uses the job type or a request submission parameter cannot override
the value, subject to the conflict resolution rules specified for parameter
values. For more information, see What You Need to Know About
Parameter Conflict Resolution and Parameter Materialization.

A boolean that specifies that a parameter should be visible when used in
a GUI.

Values can only be one of the supported types, including: Boolean,
Integer, Long, String, and DATETI ME that represents a date as a
java. util. Cal endar object.

You can set parameters at different levels appropriate to parameter precedence rules
for a job request. For example, you can set parameters that apply for a job type, a job
definition, a job set, a job set step, or a request submission parameter. For information
about the precedence rules, see What You Need to Know About Parameter Conflict
Resolution and Parameter Materialization.

9.2.1 How to Use Parameters and System Properties in Metadata

Objects

ORACLE

Example 9-1 shows code that uses a Par anet er Li st to set parameter and system
property values in a metadata object.

Example 9-1, shows the following important steps for using parameters with a

metadata object:

* You need a reference to a metadata service handle to create the metadata object
where you want to add parameters.

* You need to use the Paranet er Li st add() method to add parameter information.

* You can use a Syst enProperty as the name for a parameter to specify a value for
a system property.

e You can specify an application defined property by using a name that you define
with the parameter information in a Par anet er Li st .

* You need to use a metadata object set Par amet er s() method to apply the
parameters specified in the Par anet er Li st to the metadata object. In this case,
use the job definition set Par anet er s() method.

9-5

9.3 Using

Chapter 9
Using Parameters with the Runtime Service

Example 9-1 Adding Parameters and System Properties in a Metadata Object

String nane = "JobDescription_name";
Met adat aChj ect 1 d j obt ype;

JobDefinition jd = new JobDefinition(name, jobtype);

ParaneterList parlist = new ParaneterList();

parlist.add(SystenProperty. APPLI CATI ON, "METADATA UNI TTEST_APP", fal se);
parlist.add(SystenProperty. PRODUCT, "METADATA UN TTEST_PROD', fal se);
parlist.add(SystenProperty. CLASS NAME, "oracl e. as.schedul er.nysel f", false);
parlist.add(SystenProperty. RETRIES, "2", false);

parlist.add(SystenProperty. REQUEST_EXPI RATION, "60", false);
parlist.add("MProp", "Value", false);

parlist.add("MReadOnl yProp", "readyOnlyVal ue", true);
jd.setParanmeters(parlist);

Parameters with the Runtime Service

You can specify parameters when a job request is submitted by supplying a

Request Par anet er s object with submi t Request () . A request parameter can override a
parameter specified in metadata or can specify a value for a parameter not previously
defined in the metadata associated with a job request (subject to certain constraints).

You can also use the runtime service set Request Par anet er () method to set or
modify request parameters (subject to certain constraints) after the request has been
submitted.

The subni t Request () method validates each request parameter against its definition
in the metadata, if one exists. Such validations include checking the data type of the
parameter against the data type specified in the metadata, checking the read-only
constraint for the parameter, and so on. If a given request parameter does not exist in
the corresponding metadata, the data type for the parameter is determined by doing
an instanceof on the parameter value. The data type of a request parameter value
must be one of the supported types specified by Par anet er | nf 0. Dat aType.

If the value of a request parameter is null and the property has not been assigned
in the metadata, it defaults to the STRI NG data type when calling submi t Request ().
Oracle Enterprise Scheduler assigns a null value to the parameter. As such, a
parameter need not be assigned in the metadata.

The Runt i meSer vi ce set Request Par anet er () method allows a previously undefined
request parameter to be set by a job during execution.

0.3.1 How to Use Parameters with the Runtime Service

ORACLE

When you submit a job request you set a parameter in a Request Par anet er s object.
This parameter may represent an Oracle Enterprise Scheduler system property or an
application defined property. The Request Par anet er s parameter value may be used to
override a parameter specified in metadata, or to specify the value for a parameter not
previously defined in metadata associated with the job request.

Example 9-2 shows code using a Request Par anet er s object with the add() method to
set a system property value.

9-6

Chapter 9
Using Parameters with the Runtime Service

The example assumes that there is a user-created r unt i meSer vi ceHandl e named
rs_handl e.

Example 9-2 Using the PRIORITY System Property with Request Parameters

inport oracle. as.schedul er. Request Par anet ers;
inport oracle. as.schedul er. Met adat albj ect | d;
inport oracle.as.schedul er. Runti meServi ce;
inport oracle.as.schedul er. RuntinmeServi ceHandl e;
i mport oracl e. as. schedul er. Syst enProperty;

Runti neService runtime;

Runti neServi ceHandl e rs_handl e;
Met adat aObj ectd jobSet!d;

int startsln;

| ong request!D = OL;

Request Paraneters req_par = new Request Paraneters();
req_par. add(SystenProperty. PRICRI TY, new Integer(7));

Cal endar start = Cal endar. getlnstance();
start. add(Cal endar. SECOND, startslin);

requestiD =
runtinme. submtRequest (rs_handle,"My job set", jobSetld, start, req_par);

9.3.2 How to Use Parameters with a Step ID for Job Set Steps

ORACLE

The Request Par anet er s object is a container for all the parameters for a request.
Some of the Request Par anet er s methods take a step ID as an argument. Such
methods allow you to specify parameters for a job set at request submission, where
parameters can be specified for, or scoped to, individual steps associated with a job
set request. For such methods, the step ID argument identifies the step within the job
set to which the given parameter applies. For non-job set requests, the step ID does
not apply, but you can use the parameter as required by your application requirements.

When a step ID is specified in a Request Par aret er s method such as add(), you need
to specify the step ID using the following format:

idl.id2.ids...

where the fully qualified step ID identifies the unique step, node, in the job set
hierarchy (tree).

Parameters without a step ID in a job set request are treated as global parameters
and they apply to each step of the job set request. The step ID argument for

Request Par anet er s provides the capability to support shared parameters, where the
parameter can apply to both a job set and either a job definition or a job type.

Oracle Enterprise Scheduler prepends the step ID to the name in the form of
st epl d: name to generate the unique identifier, with a colon as a separator.

Example 9-3 shows code using a Request Par anet er s object with a step ID specified
with the add() method to set a system property value for a step in a job set.

9-7

9.4 Using

Chapter 9
Using System Properties

The example assumes that there is a user-created r unt i meSer vi ceHandl e named
rs_handl e.

Example 9-3 Using the CLASS_NAME System Property with Job Set Request
Parameters

inport oracle. as.schedul er. Request Par anet ers;
inport oracle.as.schedul er. Met adat albj ect | d;
inport oracle.as.schedul er. Runti meServi ce;
inport oracle.as.schedul er. RuntimeServi ceHandl e;
i mport oracl e. as. schedul er. Syst enProperty;

Runti neService runtime;

Runti neServi ceHandl e rs_handl e;
Met adat aObj ect I d jobSet!d,;

int startsln;

| ong requestID = OL;

Request Paraneters req_par = new Request Paraneters();

req_par.add(SystenProperty. PRICRI TY, "stepld-1", new Integer(8));
reg_par. add(SystenProperty. PRICRI TY, "stepld-2.stepld-1", new Integer(6));

Cal endar start = Cal endar. getlnstance();
start.add(Cal endar. SECOND, startslin);

requestiD =
runtinme. submtRequest (rs_handle,"My job set", jobSetld, start, req_par);

System Properties

Oracle Enterprise Scheduler represents parameter names that are known to and used
by the system in the Syst enProperty class. You can specify system properties as
parameter names in the application metadata and using request parameters when a
request is submitted. Oracle Enterprise Scheduler sets certain system properties when
a request is submitted or at some point in the life cycle of a request.

Table 9-3 lists the available system properties, as defined in

oracl e. as. schedul er. Syst enPr operty. Most system properties are common to all job
types while some system properties are specific to a particular job type, as indicated in
the descriptions in Table 9-3.

When you use parameters, note that Oracle Enterprise Scheduler reserves the
parameter names starting with "SYS_" (case-insensitive) for Oracle Enterprise
Scheduler defined properties.

Table 9-3 System Properties

Name

Description

ALLON MULT_PENDI NG Specifies whether multiple pending requests for the same job definition is allowed. This

ORACLE

property has no meaning for a job set step.
Type: BOOLEAN

9-8

Chapter 9
Using System Properties

Table 9-3 (Cont.) System Properties

Name

Description

APPLI CATI ON

ASYNC_REQUEST _TI MEO
ut

Bl Z_ERROR_EXI T_CODE

CLASS_NAME

CMVDLI NE

CMDLINE_UNI X

CMVDLI NE_W NDOW6

EFFECT! VE_APPLI| CATI
ON

EJB_OPERATI ON_NAME

ORACLE

Specifies the logical name of the Java EE application used for request processing.
This property is automatically set by Oracle Enterprise Scheduler during request
submission.

Type: STRI NG

Specifies the time, in minutes, that the processor waits for an asynchronous request
after it has begun execution. Following this period, the request is considered to have
timed out.

Type: LONG

Specifies the process exit code for a Process job request that denotes an execution
business error. If this property is not specified, the system treats a process exit code of
4 as an execution business error.

This property is optional for a Process job type. It is not used for other job types.

Type: STRI NG

Specifies the Java executable for a Java job request. This should be the name of a
Java class that implements the or acl e. as. schedul er. Execut abl e interface. This
property is required for a Java job type. It is not used for other job types.

Type: STRI NG

Specifies the command line used to invoke an external program for a Process job
request.

This property is required for a Process job type. It is not used for other job types.
Type: STRI NG

Specifies the full command line for executing a Process type request executable on

a Unix or Unix-like operating system. Typically, this property is specified in the job
type and the executable name, path, and arguments are used to indicate values to be
substituted at runtime.

See the following properties: EXECUTABLE NAME, EXECUTABLE DI R_UNI X,
EXECUTABLE_SUFFI X_UNI X, PROCESS ARGUMENTS

Type: STRI NG

Specifies the full command line for executing a Process type request executable on a
Windows operating system. Typically, this property is specified in the job type and the
executable name, path, and arguments are used to indicate values to be substituted at
runtime.

See properties: EXECUTABLE_NAVE, EXECUTABLE DI R_W NDOWS,

EXECUTABLE _SUFFI X_ W NDOWS, PROCESS ARGUMENTS

Type: STRI NG

Specifies the logical name of the Java EE application that is the effective application
used to process the request. A job definition, job type, or a job set step can be
associated with a different application by defining the EFFECTI VE_APPLI| CATI ON

system property. This property can only be specified using metadata and cannot be
specified as a submission parameter.

Type: STRI NG

Specifies the operation name of the EJB. This can be used by the Bean implementation
to branch to appropriate business methods. This property is used for the EJB job type.

Type: STRI NG

9-9

Chapter 9
Using System Properties

Table 9-3 (Cont.) System Properties

Name

Description

ENVI RONVENT_VAR!I ABL
ES

ESS_ASYNC_REQUEST J
NDI _MAPPED NAME

ESS_JNDI _CSF_KEY_NA
ME

ESS_RUNTI ME_JNDI _MA
PPED_NAMVE

ESS_METADATA_JNDI _M
APPED_NANE

EXECUTABLE_NAME

EXECUTABLE_DI R_UNI X

EXECUTABLE_DI R_W ND
(o)

EXECUTABLE_SUFFI X_U
NI X

EXECUTABLE_SUFFI X_W
| NDOW6

ORACLE

Specifies the environment variables to be set for the spawned process of a Process
job request.The property value should be a comma separated list of name value pairs
(name=value) representing the environment variables to be set.

This property is optional for a Process job type. It is not used for other job types.

Type: STRI NG

Specifies the mapped name of the AsyncRequest EJB of Oracle Enterprise Scheduler
bound to the JNDI of an Oracle Enterprise Scheduler server.

Type: STRI NG

Specifies the name that denotes the CSF KEY name of a JNDI provider of the

underlying Oracle Enterprise Scheduler server. This property can be set in EssConfig
of a hosting application.

Type: STRI NG
Specifies the mapped name of the RuntimeService EJB of the Oracle Enterprise

Scheduler bound to the JNDI of an Oracle Enterprise Scheduler server. This property is
used for the EJB job type.

Type: STRI NG

Specifies the mapped name of the MetadataService EJB of the Oracle Enterprise
Scheduler bound to a JNDI of Oracle Enterprise Scheduler server.

Type: STRI NG

Specifies the name of the executable for a Process type request. The value should not
include the path to the executable.

See properties: EXECUTABLE_DI R_UNI X, EXECUTABLE_DI R_W NDOAG

Type: STRI NG

Specifies the directory where the executable resides for a Process type request on a
Unix or Unix-like operating system.

Type: STRI NG

Specifies the directory where the executable resides for a Process type request on a
Windows operating system.

Type: STRI NG

Specifies the file extension of the executable for a Process type request if executed on
a generic Unix or Unix-like operating system. The default is no extension.

Type: STRI NG

Specifies the file extension of the executable for a Process type request if executed on
a Windows operating system. The default is no extension.

Type: STRING

9-10

Chapter 9
Using System Properties

Table 9-3 (Cont.) System Properties

Name

Description

EXECUTE_AUTO_EXPORT

EXECUTE_PAST

EXTERNAL_I D

EXTERNAL_JOB_TYPE

GROUP_NAME

ORACLE

Specifies whether the request's previously imported output content is automatically
exported to the request's output directory before the job's execute stage runs. This
property is applicable to the execute stage for Process, synchronous Java, and
asynchronous Java job types. It does not apply to the update stage of asynchronous
Java job types or PL/SQL job types.

Valid values are:

e true: All previously imported output content are exported to files in the request's
output directory before the job's execute stage.

- fal se: No output content is automatically exported. The job may choose to
manually export output content.

If this property is not specified, the system default f al se is used.

Type: BOOLEAN

Specifies whether instances of a repeating request with an execution time in the past
should be generated. Instances are never generated before the requested start time
nor after the requested end time. To cause past instances to be generated, you must
set this property to TRUE and specify the requested start time as the initial time from
which instances should be generated. Note that a null requested start time defaults to
the current time.

Valid values for this property are:

« TRUE: All instances specified by a schedule are generated regardless of the time of
generation.

e FALSE: Instances with a scheduled execution time in the past (that is, before the
time of generation) are not generated.

If this property is not specified, the system defaults to TRUE.

Type: BOOLEAN

Specifies an identifier for an external portion of an asynchronous Java job. For example,
an asynchronous Java job usually invokes some remote process and then returns
control to Oracle Enterprise Scheduler. This property can be used to identify the remote
process. This property should be set by the job implementation of asynchronous Java
jobs when the identifier is known. It is never set by Oracle Enterprise Scheduler.

Type: STRI NG

Specifies an indicator of the type of the remote component of the job. For requests that
have a remote component such as asynchronous Java jobs, WebService jobs, or EJB
jobs this property specifies the nature of the remote job. Currently supported external
job types are the names of the elements in the Syst enPr oper ty. Ext er nal JobType
property.

The supported values are SOA, 0SB, ADFBC

This property is optional. If it is not specified, Oracle Enterprise Scheduler does

not associate the request with an external job type, regardless of how the job is
implemented.

Type: STRI NG

Specifies the name of the Oracle Enterprise Scheduler isolation group to which this
request is bound. This property is automatically set by Oracle Enterprise Scheduler
during request submission.

Type: STRI NG

9-11

Chapter 9
Using System Properties

Table 9-3 (Cont.) System Properties

__|]
Name Description

[NPUT_LI ST Specifies input to a request. The input to a serial job set is forwarded as input to the first
step only. The input to a parallel job set is forwarded as input to all the parallel steps.

Oracle Enterprise Scheduler imposes no format on the value of this property.
Type: STRI NG

| NVOKE_MESSAGE Specifies the XML message payload used as the input for invoking the remote web
service. This property is used for the EJB job type and WebService job type. This
property is a pass-through parameter for the EJB job type.

Type: STRI NG

JNDI _CSF_KEY Specifies the CSF alias that is mapped to the user name and password in keystore.
This specific user name/password is the credential needed to access the secured JNDI
for Jndi MappedNarne lookup. This property is needed only if the INDI tree is secured.
This property is used for the EJB job type.

Type: STRI NG

JNDI _MAPPED NAME Specifies the mapped name of an EJB that is bound to the JNDI of a local/remote
server. This property is used for the EJB job type.

Type: STRI NG

JNDI _PROVI DER_URL Specifies the URL of the JNDI provider pertaining to a remote server. This property is
optional, needed only if the EJB and Oracle Enterprise Scheduler are remotely located.
If this property is not specified, the job is executed in a local server. This property is
used for the EJB job type.

Type: STRI NG
LI STENER Specifies the event listener class associated with the request. This should be the
name of a Java class that implements the or acl e. as. schedul er. Event Li st ener
interface.
Type: STRI NG
LOCALE Specifies the locale associated with the request.
Type: STRI NG
LOGd CAL_CLUSTER NAM Specifies the name of a logical cluster. A logical cluster consists of information related
E to a physical cluster and is usually stored in the hosting application's configuration.

The logical cluster name is a reference to a set of physical cluster information in
the application's configuration. If the property is not specified, no logical cluster is
associated with the request.

Type: STRI NG

QUTPUT_LI ST Specifies output from a request.
The output of a serial job set is the QUTPUT_LI ST of the
last step. The output of a parallel job set is the concatenation
of the QUTPUT _LI ST of all the steps, in no guaranteed order,
with or acl e. as. schedul er. Syst enProperty. QUTPUT LI ST DELIM TERas a

separator.
Type: STRI NG

POST_PROCESS Specifies the post-process callout handler class. This should be the name of a Java
class that implements the or acl e. as. schedul er. Post ProcessHandl er interface.
Type: STRI NG

PRE_PROCESS Specifies the pre-process callout handler class. This should be the name of a Java
class that implements the or acl e. as. schedul er. PreProcessHandl er interface.
Type: STRI NG

ORACLE 9-12

Chapter 9
Using System Properties

Table 9-3 (Cont.) System Properties

Name

Description

PRIORITY

PROCEDURE_NAVE

PRODUCT

PROCESS_ARGUMENTS

REDI RECTED OUTPUT F
| LE

REPROCESS_DELAY

REQUEST CATEGORY

REQUEST EFFECTI VE_E
NCODI NG

REQUEST_EXPI RATI ON

ORACLE

Specifies the request processing priority. The priority interval is [0..9] with O as the
lowest priority and 9 as the highest.

Default: If this property is not specified, the system default value used is 4.

Type: | NTEGER

Specifies the name of the PL/SQL stored procedure to be called for a SQL job request.
The stored procedure should be specified using schema.name format.

The property is required for a SQL job type. It is not used for other job types.

Type: STRI NG

Specifies the product within the application that submitted the request.
Type: STRI NG

Specifies the arguments passed to the executable of a Process type spawned process.
Type: STRI NG
Specifies the file where standard output and error streams are redirected for a Process

job request. This represents the full path of the log file where the standard output and
error streams are redirected for the spawned process when the request is executed.

This property is optional for a Process job type. It is not used for other job types.

Type: STRI NG

Specifies the callout handler processing delay time. This represents the time, in
minutes, to delay request processing when a delay is requested by a callback handler.
Default: If this property is not specified, the system default used is 5.

Type: | NTEGER

Specifies an application-specific label for a request. The label, defined by an application

or system administrator, allows administrators to group job requests according to their
own specific requirements.

Type: STRI NG

Specifies the effective encoding associated with a Process job request.

SpawnLauncher determines the Locale setting for a spawned job request in the
following precedence order:

1. LC_ALL/LANG specified in environment properties
(Syst enProperty. ENVI RONVENT_VARI ABLES) for the request

2. LC_ALL/LANG specified in the hosting application ess- confi g. xm file
3. Weblogic server LC_ALL/LANG

The effective encoding is computed before the process is spawned and is stored in this
property. This is later used to determine the encoding to use for the request log and
output.

Type: STRI NG

Specifies the expiration time for a request. This represents the time, in minutes, that a
request expires after its scheduled execution time. A expiration value of zero (0) means
that the request never expires. If this property is not specified, the system default value
used is 0.

Request expiration only applies to requests that are waiting to run. If a request waits
longer than the specified expiration period, it does not run. After a request starts
running the request expiration no longer applies.

Type: | NTEGER

9-13

Chapter 9
Using System Properties

Table 9-3 (Cont.) System Properties

Name

Description

REQUEST LOG LEVEL

REQUESTED_PROCESSCR

RESOLVED_CMDLI NE

RETRI ES

RUNAS_APPLI CATI ONI D

SELECT_STATE

SQL_JOB_CLASS

ORACLE

Specifies the log level for request logging. Valid values for log level are the String
representations of levels defined in j ava. util .| oggi ng. The level is obtained using
Level . get Nang() . The default log level is "INFO".

Type: STRI NG

Specifies the request processor node on which the request should be processed. This
allows processor affinity to be specified for a request. If this property is not specified,
the request can run on any available request processor node. In general, this property
should not be specified.

If this property is specified for a request, the request processor's work assignments
oracl e. as. schedul er. Wr kAssi gnment (specialization) must allow the execution of
such requests, otherwise the request is never executed. If the specified node is not
running, the request remains in the READY state and is not executed until the node is
restarted.

Type: STRI NG

Specifies the command line used for a Process type job request. This property is only
set by Oracle Enterprise Scheduler. It is meant for diagnostic purposes only.

Type: STRI NG

Specifies the retry limit for a failed request. If request execution fails, the request retries
up to the number of times specified by this property until the request succeeds. If retry
limit is zero (0), a failed request is not retried.

Default: If this property is not specified, the system default used is 0.
Type: | NTEGER

Specifies the r unAs identifier that should be used to execute the request. Normally, a
request runs as the submitting user. However, if this property is set in the metadata of
the job associated with the request, then the request executes under the user identified
by this property. This property can only be specified using metadata and cannot be
specified as a submission parameter.

Type: STRI NG

Specifies whether the result state of a job set step affects the eventual state of
its parent job set. In order for the state of a job set step to be considered when
determining the state of the job set, the SELECT _STATE must be setto t r ue. If
SELECT_STATE is not specified on a job set step, the state of the step is included
in the determination of the state of the job set.

Type: BOOLEAN

Specifies an Oracle Enterprise Scheduler job class to be assigned to the Oracle
Enterprise Scheduler job used to execute a SQL job request. This property need not
be specified unless the job used for a job request is associated with a particular Oracle
Database resource consumer group or has affinity to a database service.

If this property is not specified, a default Oracle Enterprise Scheduler job class is used
for the job that executes the SQL request. That job class is associated with the default
resource consumer group. It belongs to the default service, such that it has no service
affinity and, in an Oracle RAC environment, any one of the database instances within
the cluster might run the job. No additional privilege or grant is required for an Oracle
Enterprise Scheduler SQL job request to use that default job class.

This property is optional for a SQL job type. It is not used for other job types.
Type: STRI NG

9-14

Chapter 9
Using System Properties

Table 9-3 (Cont.) System Properties

Name

Description

SUBM TTI NG_APPLI CAT
[ON

SUCCESS_EXI T_CODE

SUPPCORT_QUTPUT_FI LE
S

UPLOAD_CONTENT_TO R
EPCS| TORY

USE_ALTERNATE_ENV

USE_EXTENDED_SETUP

ORACLE

Specifies the logical name of the Java EE application for the submitted (absolute
parent) request. This property is automatically set by Oracle Enterprise Scheduler
during request submission.

Type: STRI NG
Specifies the process exit code for a Process job request that denotes an execution

success. If this property is not specified the system treats a process exit code of 0 as
execution success.

This property is optional for a Process job type. It is not used for other job types.
Type: STRI NG

Specifies whether the request creates temporary or output files. The property applies
during these stages: pre-processing, execution, async update, and post-processing.

The request can always use the API to create output content directly in the content
store.

The property value specifies the action to take. If this property is not specified, no
directories are created. Non-valid values are treated as though the property is not
specified.

Valid values are:

e SystenProperty. SUPPORT_QUTPUT_FI LES_NONE

e SystenProperty. SUPPORT_OUTPUT_FI LES WORK

e SystenProperty. SUPPORT_OUTPUT_FI LES_QUTPUT

Type: STRI NG

Specifies whether to upload request log and output files to a separate repository,

such as Universal Content Management (UCM), from the internal repository when the
request execution completes.

Property value specifies the action to take. If this property is not specified, content is
not uploaded. Non-valid values are treated as though the property were not specified.
Valid value is:

Syst enProperty. UPLOAD _CONTENT_TO REPOSI TORY_COPY

Type: STRI NG

Specifies whether to use an alternative environment from a callout rather than the
normal application environment. If this property is not specified, the normal application
environment is used.

Type: BOOLEAN
Specifies whether to initiate capabilities like Appl Sessi ons prior to invoking job-
related code such as the job executable or pre-process handler, post-process handler.

Extended functionality is invoked only in an environments where it is available. If this
property is not specified, no extended functionality is set up prior to job execution.

Type: BOOLEAN

9-15

Chapter 9
Using System Properties

Table 9-3 (Cont.) System Properties

Name

Description

USER FI LE DIR

USER FI LE_DI R_SHARE
D

USER_NAME

WARNI NG _EXI T_CCDE

WORK_DI R_ROOT

WS_WSDL_URL

W5 _WSDL_BASE_URL

WS TARGET NS

ORACLE

Specifies a base directory in the file system where files, such as input and output files,
may be stored for use by the request executable.

Oracle Enterprise Scheduler supports a configuration parameter that specifies a file
directory where requests may store files. At request submission, a USER_FI LE_DI R
property is automatically added for the request if the configuration parameter is
currently set and USER_FI LE_DI R property was not specified for the request. If the
property is added, it is initialized to the value of the configuration parameter. The
property is not added if the configuration parameter is not set at the time of request
submission.

Type: STRI NG

Specifies whether the request's USER_FI LE_DI R (configured Request Fi | eDi r)
directory is shared. This property represents the value of Request Fi | eDi r Shar ed.
This property is valid for a request in standard or extended request mode.

Valid values are:

e true: USER FI LE DI Ris a shared directory.

- false:USER FI LE DI Ris a local directory.

If this property is not specified, system default f al se is used.

Type: BOOLEAN

Specifies the name of the user used to execute the request. Normally this is the
submitting user unless the RUNAS_APPLI| CATI ONI D property was set in the job
metadata. This property is automatically set by Oracle Enterprise Scheduler during
request submission.

Type: STRI NG
Specifies the process exit code for a Process job request that denotes an execution

warning. If this property is not specified, the system treats a process exit code of 3 as
execution warning.

This property is optional for a Process job type. It is not used for other job types.
Type: STRI NG

Specifies the working directory for the spawned process of a Process job request.
This property is optional for a Process job type. It is not used for other job types.
Type: STRI NG

Specifies the relative URL for web service WSDL. The base URL is given by the
W5 _WEDL_BASE _URL system property. This property is used for a WebService job type.

Type: STRI NG

Specifies a base URL that can be used in conjunction with the W5_WSDL_URL system
property to provide a full URL for the web service WSDL. The property is usually used
in conjunction with the LOG CAL_CLUSTER NAME system property. It is meant to be

a generic base URL that is common for all web service WSDLs in the cluster. This
property is used for a WebService job type.

This property is optional. If it is not specified, equivalent information may be retrieved
from the information associated with the LOG CAL_CLUSTER_NAME system property of
the request if it is configured in the hosting application's configuration.

Type: STRI NG

Specifies the target name space for the web service. This property is used for a
WebService job type.

Type: STRI NG

9-16

Chapter 9
Using System Properties

Table 9-3 (Cont.) System Properties

Name

Description

W5 _ENDPO NT_URL

W5_ENDPOI NT_BASE_UR
L

WS_SERVI CE_NANE

WS_PORT_NAME

WS_OPERATI ON_NAME

WS_CANCEL_OPERATI ON

_NAME

WS_CANCEL_MESSAGE

Specifies the relative URL for a web service endpoint. The base URL is given by the
WS_ENDPQO NT_BASE_URL system property. This property is used for a WebService job
type.

Type: STRI NG

Specifies a base URL that can be used in conjunction with the W5_ENDPO NT_URL
system property to provide a full URL for the web service endpoint. This property is
usually used in conjunction with the LOG CAL_CLUSTER NAME system property. It is
meant to be a generic base URL that is common for all web service endpoints in the
cluster. This property is used for a WebService job type.

This property is optional. If it is not specified, equivalent information may be retrieved
from the information associated with the LOG CAL_CLUSTER NAME system property of
the request if it is configured in the hosting application's configuration.

Type: STRI NG

Specifies the WSDL service name for a web service operation. This property is used for
a WebService job type.

Type: STRI NG

Specifies the WSDL port name for a web service operation. This property is used for a
WebService job type.

Type: STRI NG

Specifies the WSDL operation name for a web service operation. This property is used
for a WebService job type.

Type: STRI NG

Specifies the WSDL operation name for a web service cancel operation. This property
is used for a WebService job type.

Type: STRI NG

Specifies the XML message payload used as the input for invoking cancel on remote
web service. This property is used for a WebService job type.

Type: STRI NG

ORACLE

9-17

Using Tokens and Logical Clusters

In order to make job definitions easily portable from test environments to production
environments, it is best for job definitions not to contain environment-specific
information such as host names and port numbers. The Oracle Enterprise Scheduler
token substitution and logical cluster features allow you to abstract metadata so that it
can be easily changed to correctly fit the target deployment during the T2P process.

This chapter contains the following sections:

e Using Token Substitution

e Using Logical Clusters

10.1 Using Token Substitution

To improve the flexibility of configuration and reduce the need for provisioning, Oracle
Enterprise Scheduler allows you to include substitutable tokens in request parameters
and environment properties.

Tokens take the following form: ${ TokenPrefix: token}

Where token is the name of the token and TokenPrefix is where the substitution
value is specified. Supported token prefixes are: APP_ENV, ESS_ENV, and ESS_REQ. The
examples given below are simple, but illustrate the capabilities of Oracle Enterprise
Scheduler substitution.

« APP_ENV
The substitution value comes from the application environment properties.

For example, the following environment variable is specified in the hosting
application configuration properties using Oracle Enterprise Manager Fusion
Middleware Control or WLST:

AppEnvVar 1=f oo

A request parameter is specified in a job definition:

MyPar am=${ APP_ENV: appEnvVar 1}

After the substitution, the value of MyPar amis f 0o.
« ESS_ENV

Substitution values come from the Oracle Enterprise Scheduler server
environment. This includes the following three possible sources:

— JVM system properties: The token value is the name of the system property.

— JVM environment variables: The token value is the name of the environment
variable.

— JRF: Token values are j rf Server LogPat h, j rf Server Confi ghDi rectory, and
j rfDomai nConfigDirectory.

ORACLE 10-1

Chapter 10
Using Token Substitution

The following example shows the use of the ESS_ENV token prefix in the
specification of an environment variable in the hosting application configuration
properties.

wl st Location = ${ESS_ENV: common. conponent s. hone}/ comron/ bi n/ Wl st . sh.

When the substitution is performed, the Oracle Enterprise Scheduler process job
environment includes an environment variable named w st Locat i on whose value
is a complete path. For example:

/ nyl nst al | Home/ mw_horre/ or acl e_conmon/ common/ bi n/ Wl st . sh.
- ESS_REQ

ESS REQsubstitutions come from information specific to the Oracle Enterprise
Scheduler request in question. The following are the supported tokens:

— REQUEST ID
— REQUEST HANDLE
— |'S_RESUMED

— PAUSED_STATE

— Request parameter names for those requests

10.1.1 Nested Substitutions

Nested substitutions are automatically resolved when the top-level substitution is
done. For example, the following request parameters are specified in a job definition
for a process job:

MyPar aml=${ ESS_REQ MyPar an?}
MyPar an2=${ APP_ENV: MyEnvPr op1}

An application's environment properties includes the following:

M/EnvPropl=${ ESS_ENV: webl ogi c. Nane}

The value of the JVM system property webl ogi c. Name might be something like
ess_server 1. When substitution is performed on MyPar ant, it resolves to the value
of MyPar an®, which in turn resolves to the value of M/EnvPropl. The the result of the
nested substitution is that the value of MyPar antl is ess_server 1.

10.1.2 Automatic Substitution

ORACLE

Automatic Oracle Enterprise Scheduler substitution is available for process job
command lines and environment properties, as well as for some request properties
used by EJB and web service jobs.

These sections list the automatically substituted request parameters for EJB jobs, web
service jobs, and process jobs.

For more information about these properties refer to the following chapters:

e Creating and Using EJB Jobs
* Creating and Using Web Service Jobs

e Creating and Using Process Jobs .

10-2

Chapter 10
Using Logical Clusters

EJB Job Type Automatically Substituted Properties

The automatically substituted properties for the EJB job type are:
e SYS _EXT_j ndi Provi der Url

e SYS_EXT_essRuntinmeJndi MappedName

e SYS EXT_essMet adat aJndi MappedNane

e SYS EXT_essAsyncRequest Jndi MappedNane

e SYS EXT_essJndi Csf Key

e SYS EXT_invokeMessage

Web Services Job Type: Automatically Substituted Properties

The automatically substituted properties for the web service job type are:
e SYS_EXT_wsEndpoi nt Baselr |

e SYS_EXT_wsEndpoi nt Ur |

° SYS EXT_ws\Védl BaseUr|

¢ SYS_EXT wsWédl Url

e SYS EXT_invokeMessage

e SYS_EXT_wsCancel Message

Process Job Type: Automatically Substituted Properties

The automatically substituted properties for the process job type are:
e SYS crmdlLine

e SYS EXT_cndLi ne. Uni x

e SYS_EXT_cmdLi ne. W ndows

e SYS environnent Vari abl es

10.2 Using Logical Clusters

ORACLE

Oracle Enterprise Scheduler provides the means by which EJB and web service

jobs can define an abstract job location. The job location is specified by the

Oracle Enterprise Scheduler SYS | ogi cal Cl ust er Nane system property and specifies
a logical cluster name (LCN).

If the job definition for an EJB or web service job specifies a value for an LCN,

certain environment-specific properties are specified using Oracle Enterprise Manager
Fusion Middleware Control or WLST commands at the hosting application level rather
than in the job definition. All job definitions with the same LCN share the value of

the properties entered in the hosting application configuration properties using Oracle

Enterprise Manager Fusion Middleware Control or WLST commands.

10-3

Chapter 10
Using Logical Clusters

< Note:

Oracle Enterprise Manager Fusion Middleware Control refers to logical
cluster functionality as "job location." The terms "logical clusters" and "job
location" can be used interchangeably.

If a job definition specifies a value for the SYS | ogi cal T ust er Nane property, then the
value is used as a prefix for a set of application configuration properties that define
attributes of the logical cluster. Table 10-1 lists the properties associated with job
location, where prefix represents the logical cluster name. Note that these properties
need not be specified if they are configured in the hosting application.

Table 10-1 Properties Associated With a Job Location
|

Property Name Corresponding System Description
Property

LCN. prefix.Jndi Provi der Url SYS_EXT_j ndi Provi der The JNDI provider for the cluster.
Url Used with the EJB job type. The

corresponding system property,
SYS _EXT _j ndi ProviderUrl,
need not be specified in the job.

LCN. prefix. WsEndpoi nt Base SYS EXT_wsEndpoi nt Ba The host and port. For example,

Ur | selr| http:// host: port/ . Used with
the EJB job type. The
corresponding system property,
SYS_EXT_wsEndpoi nt Baselr |,
need not be specified in the job.

LCN. prefix. Ws\Wdl BaseUr | SYS_EXT_wsWédl BaseUr The host and port of the WSDL.
I For example, ht t p: / / host: port/ .
Used with the EJB job type. The
Corresponding system property,
SYS_EXT_ws\Wédl BaseUr |, need
not be specified in the job.

For example, if a job defines the SYS | ogi cal O ust er Narme property as SOA Cl uster1,
then the application configuration might contain the following properties:

LCN. SOA O ust er 1. WEndpoi nt BaseURL=htt p: // host : port/
LCN. SOA C uster 1. WWsdl BaseURL=htt p:// host: port/
LCN. SOA _C uster 1. Jndi Provi der URL=t 3: // host 1; port 1; host 2: port 2/

Note:

The value of the SYS | ogi cal C ust er Nane property cannot contain the “."
character.

ORACLE 10-4

Creating and Using PL/SQL Jobs

This chapter describes how to create PL/SQL stored procedures for use with Oracle
Enterprise Scheduler, and describes Oracle Database tasks that you need to perform
to use PL/SQL stored procedures with Oracle Enterprise Scheduler.

After you create a PL/SQL procedure and define a job definition, you can use the
Oracle Enterprise Scheduler runtime service to submit a job request for a PL/SQL
procedure.

This chapter includes the following sections:

e Introduction to Using PL/SQL Stored Procedure Job Definitions

* Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler
» Performing Oracle Database Tasks for PL/SQL Stored Procedures

* Creating and Storing Job Definitions for PL/SQL Job Types

For information about how to use the Runtime Service, see Using the Runtime
Service.

11.1 Introduction to Using PL/SQL Stored Procedure Job
Definitions

ORACLE

Oracle Enterprise Scheduler lets you run job requests of different types, including:
Java classes, PL/SQL stored procedures, and process requests that run as a forked
process.

To use Oracle Enterprise Scheduler with PL/SQL stored procedures you need to do
the following:

e Create or obtain the PL/SQL stored procedure that you want to use with Oracle
Enterprise Scheduler.

e Load the PL/SQL stored procedure in the Oracle Database and grant the required
permissions and perform other required DBA tasks.

e Use Oracle JDeveloper to create job type and job definition objects and store
these objects with the Oracle Enterprise Scheduler application metadata.

e Use Oracle JDeveloper to create an application with Oracle Enterprise Scheduler
APIs that runs and submits a PL/SQL stored procedure.

Finally, after you create an application that uses the Oracle Enterprise Scheduler APls
you use Oracle JDeveloper to deploy and run the application.

At runtime, after you submit a job request you can monitor and manage the job
request. For more information, see Using the Runtime Service.

Oracle Enterprise Scheduler uses an asynchronous execution model for PL/SQL
stored procedure job requests. This means that Oracle Enterprise Scheduler does
not directly call the PL/SQL stored procedure, but instead uses Oracle Database

11-1

Chapter 11
Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

Scheduler (an Oracle Database feature). When a PL/SQL stored procedure job
request is ready to execute, Oracle Enterprise Scheduler creates an immediate,
run-once Oracle Database Scheduler job. This Oracle Database Scheduler job is
created by the Oracle Enterprise Scheduler runtime schema user associated with the
container instance that executes the PL/SQL request, and is owned by the application
procedure owner. The Oracle Database Scheduler job procedure is a PL/SQL wrapper
procedure owned by the Oracle Enterprise Scheduler runtime schema user. Finally,
when the Oracle Database Scheduler job runs, the wrapper procedure calls the
application stored procedure using dynamic SQL. After the PL/SQL stored procedure
completes, either by a successful return or by raising an exception, the Oracle
Database Scheduler job finishes and creates an event that informs Oracle Enterprise
Scheduler that the remote executable finished.

11.2 Creating a PL/SQL Stored Procedure for Oracle
Enterprise Scheduler

When you want to use a PL/SQL stored procedure with Oracle Enterprise Scheduler,
the PL/SQL procedure must have certain characteristics to work with an Oracle
Enterprise Scheduler application and a DBA must assure that certain Oracle Database
permissions are assigned to the PL/SQL stored procedure.

Creating a PL/SQL stored procedure involves the following steps:

e Define the PL/SQL stored procedure that has the correct signature for use with
Oracle Enterprise Scheduler

e Perform the required DBA tasks to make the PL/SQL stored procedure available to
Oracle Enterprise Scheduler

11.2.1 How to Define a PL/SQL Stored Procedure with the Correct

Signature

ORACLE

The PL/SQL stored procedure that you call from Oracle Enterprise Scheduler must
have a specific signature and include specific procedure parameters, as follows:

PROCEDURE ny_proc(request _handl e | N VARCHAR?) ;

The request _handl e parameter is an opaque value representing an execution context
for the Oracle Enterprise Scheduler request being executed.

Example 11-1 shows a sample HELLO WORLD stored procedure for use with Oracle
Enterprise Scheduler.

Example 11-1 HELLO_WORLD PL/SQL Stored Procedure

create or replace procedure HELLO WORLD(request _handl e in varchar2)
as

v_request _id nunber := null;
v_prop_name varchar2(500) := null;
v_prop_int integer :=null;

begin

- Get the Oracle Enterprise Schedul er request |D being executed.
begi n

v_request _id := ess_runtine. get_request _id(request_handle);
exception

when ot hers then

11-2

Chapter 11
Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

rai se_application_error(-20000,
"Failed to get request id for request handle ' ||
request _handle || '. [" || SQLERRM || '1');
end;

- Retrieve value of an existing request property.

begi n
v_prop_nanme := 'mytestintProp';
v_prop_int := ess_runtime.get_reqprop_int(v_request_id, v_prop_nane);
exception
when ot hers then
rol | back;
rai se_application_error(-20001,
"Failed to get request property ' || v_prop_nane ||
" for Oracle Enterprise Scheduler request ID"' || v_request_id ||
oI SQLERRMIT "])
end;

- Update an existing request property with a new val ue.
- This procedure is responsible for commit/rollback of the update operation.
begi n
v_prop_nane : = 'nyJobdefProp';
ess_runti me. updat e_reqprop_varchar2(v_request _id, v_prop_nane,
"myUpdat eVal ue') ;

commi t;
exception
when ot hers then
rol | back;
rai se_application_error(-20002,
"Failed to update request property ' || v_prop_nane ||
" for Oracle Enterprise Scheduler request ID"' || v_request_id ||
o0 SQLERRM||])
end;

end hel | owor| d;

/

11.2.2 Handling Runtime Exceptions in an Oracle Enterprise
Scheduler PL/SQL Stored Procedure

In the PL/SQL stored procedure, you can handle exceptions and other issues

by raising a RAI SE_APPLI CATI ON_ERROR exception. The RAI SE_APPLI CATI ON_ERROR
requires that the error code from the PL/SQL stored procedure range from -20000

to -20999. The PL/SQL stored procedure can use RAI SE_APPLI CATI ON_ERROR if it must
raise an exception. RAI SE_APPLI CATI ON_ERROR requires that the error code range from
-20000 to -20999.

ORACLE

Table 11-1 indicates the Oracle Enterprise Scheduler state based on the result of the
PL/SQL stored procedure.

Table 11-1 Terminal States for PL/ISQL Stored Procedure Results
|

Final State Description

SUCCEEDED If the PL/SQL stored procedure returns normally, without raising an exception,

the request state transitions to the SUCCEEDED state, bearing any subsequent
errors completing the request.

11-3

Chapter 11
Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

Table 11-1 (Cont.) Terminal States for PL/ISQL Stored Procedure Results

___|
Final State Description

WARNI NG If the PL/SQL stored procedure returns with an exception, the request state is
based on the SQL error code of the exception.
The request transitions to the WARNI NGterminal state if the SQL error code
ranges from -20900 to -20919.

ERROR If the PL/SQL stored procedure returns with an exception, the request state is
based on the SQL error code of the exception.

The request transitions to the ERROR terminal state for any error code outside
the range of -20900 to -20919 (error codes within this range indicate a

WARNI NG).

Return codes in the range -20920 to -20929 result in an ERROR state with a
BUSI NESS error type, where the request is not subject to automatic retries.

11.2.3 How to Access Job Request Information In PL/SQL Stored

Procedures

Oracle Enterprise Scheduler provides a PL/SQL package, ESS_RUNTI ME to perform
certain operations that you may need when you are working in a PL/SQL stored
procedure. You can use these procedures perform job request operations and to
obtain job request information for an Oracle Enterprise Scheduler runtime schema.
For example, you can use these runtime procedure to submit requests and retrieve
and update request information associated with an Oracle Enterprise Scheduler job
request.

The following sample code shows use of an ESS_RUNTI ME procedure:

v_request _id := ess_runtine.get_request_id(request_handle);

This request obtains the request ID associated with a job request.

Certain procedures in the ESS_RUNTI ME package require a request handle parameter
and provide information on an executing request (these should only be called from the
PL/SQL stored procedure that is executing the PL/SQL stored procedure request). You
can call some procedures in the ESS_RUNTI ME package from outside of the context of
an executing request; these procedures may include a request ID parameter.

11.2.4 What You Need to Know When You Define a PL/SQL Stored

Procedure

ORACLE

You need to know the following when you create an use a PL/SQL stored procedure
with Oracle Enterprise Scheduler:

e ltis not required that the PL/SQL stored procedure exist when the Oracle
Enterprise Scheduler request is submitted, but the PL/SQL stored procedure must
exist and be callable when the request is ready to run.

* The PL/SQL stored procedure must exist on the same database as the Oracle
Enterprise Scheduler Runtime schema.

11-4

Chapter 11
Performing Oracle Database Tasks for PL/SQL Stored Procedures

11.3 Performing Oracle Database Tasks for PL/SQL Stored
Procedures

After you create the PL/SQL stored procedure that you want to use with Oracle
Enterprise Scheduler a DBA must load the PL/SQL stored procedure in the Oracle
Database and grant the required permissions.

11.3.1 How to Grant PL/SQL Stored Procedure Permissions

Before the DBA grants permissions, the DBA must determine the Oracle Database
and the Oracle Enterprise Scheduler runtime schema that is associated with the
deployed Java EE application that is going to submit the Oracle Enterprise Scheduler
PL/SQL stored procedure request.

Use the following definitions when you grant PL/SQL stored procedure permissions:

ess_schena: specifies the Oracle Enterprise Scheduler runtime schema associated
with the Java EE application.

user _schena: specifies the name of the application user schema.

PROC_NAME: specifies the name of the PL/SQL stored procedure associated with the
Oracle Enterprise Scheduler job request.

To grant Oracle Database permissions:

1. Inthe Oracle Database grant execute on the ESS_RUNTI ME package to the
application user schema. For example:

GRANT EXECUTE ON ess_schena. ESS RUNTI ME to user_schens;

2. Inthe Oracle Database, create a private synonym for the ESS_RUNTI ME package.
This is a convenience step that allows the PL/SQL stored procedure to
reference the ESS_RUNTI ME as simply ESS_RUNTI ME rather than using the full
schema_name.ESS_RUNI ME. For example:

CREATE OR REPLACE SYNOWYM user _schena. ESS_RUNTI ME for ess_schema. ESS_RUNTI ME;

3. Inthe Oracle Database, grant execute on the ESS_JOB package to the application
user schema. This step can be skipped if ESS_JOB is not used. For example:

GRANT EXECUTE ON ess_schenmm. ESS JOB to user_schems;

4. Inthe Oracle Database, create a private synonym for the ESS_JOB package. This
is a convenience step that allows the PL/SQL stored procedure to reference the
ESS_JOB as simply ESS_JOB rather than using the full schema_name. ESS_JOB. This
step can be skipped if ESS_JOB is not used. For example:

CREATE OR REPLACE SYNONYM user _schena. ESS_JOB for ess_schema. ESS_JOB;

5. Inthe Oracle Database, grant execute on a PL/SQL stored procedure owned by
the Oracle Enterprise Scheduler runtime schema user that serves as the Oracle
Enterprise Scheduler job procedure. For example:

GRANT EXECUTE ON ess_schena. ESS_SCHIOB_PROC t o user_scheng;

ORACLE 11-5

Chapter 11
Creating and Storing Job Definitions for PL/SQL Job Types

As an example, if the Oracle Enterprise Scheduler runtime schema is TEST_ESS, the
application user schema is HOM O, and the PL/SQL procedure is named HELLO WORLD,
the DBA operations are:

GRANT EXECUTE ON test _ess.ess_runtine to howo;

CREATE OR REPLACE SYNONYM howt 0. ess_runtime for test _ess.ess_runting;
GRANT EXECUTE ON test_ess.ess_job to how o;

CREATE OR REPLACE SYNONYM howt 0. ess_j ob for test_ess.ess_job;

GRANT EXECUTE ON test ess. ESS SCHIOB PROC to howt o;

11.3.2 What You Need to Know About Granting PL/SQL Stored
Procedure Permissions

The two steps shown for DBA tasks for granting permissions on the ESS_RUNTI MVE
package are only required if the ESS_RUNTI ME package is referenced by a PL/SQL
procedure. The two steps shown for DBA tasks use to grant permissions on the

ESS JOB package are only required if the ESS_JOB package is referenced by a PL/SQL
procedure. The step shown for the ESS_SCHIOB_PRCC procedure is always required
since it allows the Oracle Enterprise Scheduler wrapper procedure to be called.

All PL/SQL stored procedures in a given application user schema that are used
for Oracle Enterprise Scheduler PL/SQL stored procedure jobs should always be
associated with the same (single) Oracle Enterprise Scheduler Runtime schema.
While this is not technically required, it greatly simplifies the DBA setup and does
not require the PL/SQL stored procedure to explicitly specify the Oracle Enterprise
Scheduler runtime schema if the procedure references the ESS_RUNTI ME.

11.4 Creating and Storing Job Definitions for PL/SQL Job

Types

ORACLE

To use PL/SQL stored procedures with Oracle Enterprise Scheduler you need to
locate the Metadata Service and create a job definition. You create a job definition
by specifying a name and a job type. When you create a job definition you also

need to set certain system properties. You can then store the job definition and other
associated objects using the Metadata Service.

For information about how to use the Metadata Service, see Using the Metadata
Service .

Oracle Enterprise Scheduler uses an Oracle Database Scheduler job to execute the
PL/SQL stored procedure for a SQL job request. An Oracle Database Scheduler job
class can be associated with the job when that job must have affinity to a database
service or is to be associated with an Oracle Database resource consumer group.

The Oracle Database Scheduler job owner must have EXECUTE privilege on the Oracle
Database Scheduler job class in order to successfully create a job using that job class.

You can use Oracle Enterprise Scheduler system properties to specify certain
attributes for the Oracle Enterprise Scheduler job that calls the PL/SQL stored
procedure.

These SystemProperty properties apply specifically to SQL job types;
PROCEDURE_NAME, SQL_JOB_CLASS.

11-6

11.4.1 How

Chapter 11
Creating and Storing Job Definitions for PL/SQL Job Types

The PROCEDURE_NAME system property specifies the name of the PL/SQL stored
procedure to be executed. The stored procedure name should have a owner. name
format, where owner is the schema owner of the job procedure and name is the
procedure name. This property must be specified for either the job type or job
definition.

The SQL_JOB_CLASS system property specifies an Oracle Database Scheduler job class
to be assigned to the Oracle Database Scheduler job used to execute an SQL job
request. This property does not need to be specified unless the Oracle Database
Scheduler job used for a request should be associated with a particular Oracle
Database resource consumer group or have affinity to a database service.

If the SQL_JOB_CLASS system property is not specified, a default Oracle Database
Scheduler job class created by Oracle Enterprise Scheduler is used for the Oracle
Database Scheduler job. The default job class is associated with the default resource
consumer group. It belongs to the default service, which means it has no service
affinity and in an Oracle RAC environment any one of the database instances within
the cluster might run the job. No additional privilege grant is needed for an Oracle
Enterprise Scheduler SQL request to use that default job class.

to Create a PL/SQL Job Type

An Oracle Enterprise Scheduler JobType object specifies an execution type and
defines a common set of properties for a job request. A job type can be defined and
then shared among one or more job definitions. Oracle Enterprise Scheduler supports
three execution types:

* JAVA TYPE: for job definitions that are implemented in Java and run in the
container.

e SQ._TYPE: for job definitions that run as PL/SQL stored procedures in a database
server.

* PROCESS_TYPE: for job definitions that are binaries and scripts that run as separate
processes.

When you specify the JobType you can also specify properties that define
the characteristics associated with the JobType. Table 11-2 describes the
Syst enProperti es that are appropriate for a PL/SQL stored procedure job type.

Table 11-2 Oracle Enterprise Scheduler System Properties for a PL/ISQL Stored Procedure Job

Type

System Property

Description

PROCEDURE_NAME

SQL_JOB_CLASS

Specifies the name of the stored procedure to run as part of PL/SQL job execution.

For a SQL_TYPE application, this is a required property.

Specifies an Oracle Database Scheduler job class to be assigned to the Oracle Database
Scheduler job used to execute an SQL job request.

This is an optional property for a SQL_TYPE job type.

ORACLE

When you create and store a PL/SQL job type, you do the following:

* Use the JobType constructor and supply a Stri ng name and a
JobType. Executi onType. SQL_TYPE argument.

» Set the appropriate properties for the new JobType.

11-7

Chapter 11

Creating and Storing Job Definitions for PL/SQL Job Types

» Obtain the metadata pointer, as shown in Accessing the Metadata Service. Use

the Metadata Service addJobType() method to store the JobType in metadata.

e Use a Met adat albj ect | d that uniquely identifies metadata objects in the metadata
repository, and, using a unique identifier the Met adat aCbj ect | D contains the fully
qualified name for a metadata object.

See Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler
Application for sample code.

11.4.2 How to Create and Store a Job Definition for PL/SQL Job Type

To use PL/SQL with Oracle Enterprise Scheduler, you need to create and store a job
definition. A job definition is the basic unit of work that defines a job request in Oracle

Enterprise Scheduler. Each job definition belongs to one and only one job type.

< Note:

After you create a job definition with a job type, you cannot change the type
or the job definition name. To change the type or the job definition name, you
need to create a new job definition.

Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler Application
shows how to create a job definition using the job definition constructor and the job

type.

11.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise
Scheduler Application

This section shows sample code in which job type and job definition application

metadata are created for a SQL job type.

i nport oracle.
i nport oracle.
i nport oracle.
i nport oracle.
i nport oracle.
i nport oracle.
i nport oracle.
i mport oracle.

as.
as.
as.
as.
as.
as.
as.
as.

schedul er.
schedul er.
schedul er.
schedul er.
schedul er.
schedul er.
schedul er.
schedul er.

void createDefinition()

{

JobType;
JobDefinition;

Met adat aSer vi ce;

Met adat aSer vi ceHand! e;
Met adat alhj ect | d;

Par anet er | nf o;

Par aret er | nf 0. Dat aType,;

Par anet er Li st ;

Met adat aServi ce metadata = ...
Met adat aSer vi ceHandl e nshandl e = nul | ;

try
{

Parameterlnfo pinfo;
Par anmet er Li st plist;

mshandl e = net adat a. open();

/1 Define and add a PL/SQ job type for the application netadata.

ORACLE

11-8

ORACLE

Chapter 11
Creating and Storing Job Definitions for PL/SQL Job Types

String jobTypeName = "PLSQLJobDef Type";
JobType jobType = null;
Met adat aCbj ect1d j obTypeld = nul |;

j obType = new JobType(j obTypeNane, JobType. Executi onType. SQL_TYPE);

plist new Par aret er Li st ();

pi nfo = SystenProperty. get SysPropl nf o(Syst enProperty. PROCEDURE_NAME) ;
plist.add(info.getName(), pinfo.getDataType(), "HOAMO HELLO WORLD', false);
pi nfo = SystenProperty. get SysPropl nf o(Syst enProperty. PRODUCT) ;
plist.add(pinfo.getName(), pinfo.getDataType(), "HOWTO PROD', false);

j obType. set Paraneters(plist);

j obTypel d = net adat a. addJobType(nshandl e, jobType, "HOWNTO PROD');

/1 Define and add a job definition for the application nmetadata.
String jobDef Nanme = "PLSQ.JobDef";

JobDefinition jobDef = null;

Met adat abj ect!d jobDefld = null;

j obDef = new JobDefinition(jobDef Nane, jobTypeld);
j obDef . set Description("Deno PLSQL Job Definition " + jobDefNare);

plist = new ParameterlList();
plist.add("myJobdef Prop", DataType.STRING "myJobdefVal", false);
j obDef . set Paramet ers(plist);

jobDefld = netadata. addJobDefinition(nshandl e, jobDef, "HOWNTO PROD');

}
catch (Exception e)
{
[...]
}
finally
{
/'l always close netadata service handle in finally bl ock
if (null !'= nshandle)
{
met adat a. cl ose(nshandl e) ;
nshandle = nul | ;
}
}

11-9

Creating and Using EJB Jobs

This chapter describes how to use Oracle Enterprise Scheduler to create Enterprise
Java Bean (EJB) jobs.

This chapter contains the following sections:

e Introduction to Creating EJB Jobs

e Planning Job Development

e Creating and Storing Job Definitions for EJB Job Types
» Secured Invocation

e Synchronous Bean

e Asynchronous Bean

12.1 Introduction to Creating EJB Jobs

ORACLE

The EJB job type allows you to create Java-based jobs and take advantage of the
convenience of the pre-deployed hosting application. In addition, the EJB can be
located remotely on a different server.

Unlike Java SE-based jobs, EJB jobs are not required to be embedded inside

the hosting application. This allows them to be located remotely and to be used

with the pre-deployed hosting application. An EJB job can be invoked from any
hosting application, including the pre-deployed hosting application. Note that the EJB
implementation must be in the same WebLogic domain as the scheduler server.

The EJB conforms to an interface defined by Oracle Enterprise Scheduler (defined in a
shared library). The EJB is non-transactional. Both synchronous and asynchronous
EJB jobs are supported. When running asynchronously, the EJB returns quickly

and the Oracle Enterprise Scheduler EJB is invoked later when the job completes.

The EJB implementation can work with any of the three shared libraries—server

(oracl e. ess), client (oracl e. ess. cl i ent), and thin client (oracl e. ess. thin.client).
The thin client shared library does not depend on Oracle Enterprise Scheduler data
sources. See Creating a Thin Client Application for more information about using the
thin client library.

The EJB can submit sub-requests and it can write to output and a log. The EJB
interface is similar or the same as a Java job and can do similar things. To improve
performance, it is possible to consolidate multiple job implementations under a single
shared EJB.

An EJB job is a Java job that is executed remotely using the EJB remote business
interface. The execution type is JAVA_TYPE. The remote job is an EJB deployed

in a remote server. The remote business interface of this bean extends the

oracl e. as. schedul er. Renot eExecut abl e interface and defines the execut e method.
The contract between Oracle Enterprise Scheduler and the servicing component is
defined with the execut e method. Figure 12-1 shows the components in a typical EJB
job deployment.

12-1

Chapter 12
Planning Job Development

The EJB must be located in the same domain as the hosting application and the
Subj ect object is propagated to the EJB. For JNDI lookup operations, you can supply
optional credentials. The default identity is "anonymous".

Figure 12-1 EJB Job Environment

server/cluster/domain

oracle.ess.thin.client
shared library

EM <<interface>>

- RemoteCancellableExecutable
execute()
cancel()
Metadata &
Request A
Submission L
<business-remote>: !
RemoteExecutable or :
v RemoteCancellableExecutable !
ESS server/cluster/domain RemoteJobBean
@stateless
. — execute ——> execute()
ESSAPP Hosting A|
9 App cancel()
— cancel —— operationi()

- Implement RemoteExecutable if execute functionality is sufficient.
- Implement RemoteCancellableExecutable if execute and cancel functionalities are required.

12.2 Planning Job Development

The Oracle Enterprise Scheduler is flexible and provides implementation and
deployment options. Planning Job Development is a high-level discussion about how
to plan your job development and deployment process.

12.3 Creating and Storing Job Definitions for EJB Job Types

To use EJB type jobs with Oracle Enterprise Scheduler, you must locate the Metadata
Service and create a job definition. You create a job definition by specifying a name
and a job type. When you create a job definition you must also set certain system
properties.

You can store the job definition in the metadata repository using the Metadata Service.
Sample metadata files are provided later in this chapter.

For information about how to use the Metadata Service, see Using the Metadata
Service .

When you specify the JobType for the job definition, you can also specify

Syst enProperti es that define the characteristics associated with the JobType.

Table 12-1 and Table 12-2 describe the properties that specify how the request should
be processed.

ORACLE 12-2

ORACLE

Chapter 12
Creating and Storing Job Definitions for EJB Job Types

Table 12-1 EJB Job Type Properties

Property Name [Field in Description
SystemProperty class]

SYS_EXT_j ndi Provi der Ur | Optional. Specifies the URL of the remote server. Required
[JNDI _PROVI DER_URL] only if the EJB is remotely located.

The Jndi Provi der Url can be specified to contain tokens
that are resolved at runtime.

The following are two examples:
« ${WRINGurn:oracle: fmv soa:t3}

This URN is resolved at runtime and the actual URL
value is fetched.

« t3://local host: 19283

Where | ocal host is the host where EJB's are
deployed and 19283 is the server port number.

SYS_EXT_j ndi MappedNane Required. Specifies the JNDI lookup name of a remote EJB
[JNDI _MAPPED_NAME] implementation.

Example: ej b/ fi | eAdapt er
SYS_EXT_ej bOperationName Optional. Specifies a pass-through parameter used by the

[EJB_OPERATI ON_NAME] EJB implementation to branch to the appropriate business
methods.
Example: nanageFi | eAdapt er
SYS_EXT_j ndi CSFKey Required only if the JNDI tree of the EJB server is secured.
[JNDI _CSF_KEY] Points to the CSF alias that is mapped to the user name

and password in the keystore. This specific user name/
password pair is the credential required to access the
secured JNDI for Jndi MappedNane lookup.

This property can be added to either the
Request Par anet er s object or to the Oracle Enterprise
Scheduler configuration of the hosting application.

< Note:

You can use Oracle Enterprise Manager Fusion Middleware Control or
WLST scripts to configure the CSF key aliases as a post installation step.
Prior to the post installation step, the Keystore's CSF map can be set to the
default value of oracl e. ess. security.

Table 12-2 lists the properties that can be added either to the Request Par anet er s
object or to the Oracle Enterprise Scheduler configuration of the hosting application. In
a production environment, environment specific data should not be entered into the job
definition because the job definition is replicated when going from the test environment
to the production environment. Instead, this data should be entered separately as
configuration data with the hosting application. The Oracle Enterprise Scheduler token
substitution and logical cluster features allow you to abstract metadata so that it can
be easily changed to correctly fit the target deployment during the T2P process. See
Using Tokens and Logical Clusters for information about using these features.

12-3

Chapter 12
Secured Invocation

Table 12-2 Additional Properties
|

Property Name [Field in Description

SystemProperty class]

SYS_EXT_essJndi Csf Key Optional. Specifies the CSF key alias of the

[ESS_JNDI _CSF_KEY_NAME] authenticated Oracle Enterprise Scheduler server.

This property is required only if the Oracle
Enterprise Scheduler JNDI tree is authenticated.

Example: ess-j ndi - csf - key

SYS_EXT_essRunt i meJndi MappedName{ Specifies the INDI mapped name of Oracle

ESS_RUNTI ME_JNDI _ MAPPED_NAME] Enterprise Scheduler's Runt i meSer vi ce bean
that is defined in the hosting application and
bound to the Oracle Enterprise Scheduler server's
JNDI tree.

This property is required only if you use a hosting
application other than EssNat i veHost i ngApp
and the remote bean has to call the Oracle
Enterprise Scheduler runtime bean (for example,
to write output or log information, submit requests
or operate on requests).

SYS_EXT_essMet adat aJndi MappedNane Specifies the JNDI mapped name of Oracle

[ESS_METADATA JNDI _MAPPED_NAME] Enterprise Scheduler's Met adat aSer vi ce bean
defined in the hosting application and bound to the
Oracle Enterprise Scheduler server's JNDI tree.
This property is required only if you use a hosting
application other than ESsNat i veHost i ngApp
and the remote bean requires access to Oracle
Enterprise Scheduler's metadata bean.

SYS_EXT_essAsyncRequest Jndi Mapped Specifies the INDI mapped name of Oracle
Nane[ESS_ASYNC REQUEST JNDI MAPPE Enterprise Scheduler's AsyncRequest bean
D_NAME] defined in the hosting application and bound to
Oracle Enterprise Scheduler server's JNDI tree.
This property is required only if:
e The EJB invocation is asynchronous
* You use a hosting application other than
EssNat i veHost i ngApp
* The remote bean has to call back to Oracle
Enterprise Scheduler beans (for example, an
asynchronous callback).

For more information about system properties, see Using Parameters and System
Properties .

12.4 Secured Invocation

Secured invocation of remote EJBs is required when the JNDI tree of its server is
authenticated. This is also true when a remote EJB calls back to Oracle Enterprise
Scheduler EJBs using secured lookup. The following sections provide some guidance.

12.4.1 Forward Invocation

The following apply to forward invocation.

ORACLE 12-4

Chapter 12
Secured Invocation

* When Oracle Enterprise Scheduler invokes a remote EJB, the subject of the
executing job is always propagated.

* When Oracle Enterprise Scheduler executes a job, the Jndi Provi der Url of the
current Oracle Enterprise Scheduler Server is always supplied to the remote EJB
through Request Par anmet ers.

« If the JNDI tree of the remote server is authenticated, the JNDI _CSF_KEY property
must be specified in the request parameters or the EssConf i gur ati on of the
hosting application.

» Oracle Enterprise Scheduler looks up the keystore for the Csf Key to retrieve the
Passwor dCredent i al and connects to the remote server.

12.4.2 Callback Invocation

The following apply to callback invocation.

* If the remote EJB must call back to Oracle Enterprise Scheduler beans, the
following properties can be specified:

— The JNDI names of Oracle Enterprise Scheduler Runt i ne, Met adat a
and AsyncRequest beans exposed in Host i ngApp must be specified in
request parameters or the EssConf i gur at i on of the hosting application. If
EssNat i veHost i ngApp is used, these entries are not required.

— If the JNDI tree of the Oracle Enterprise Scheduler server is authenticated,
the ESS_JNDI _CSF_KEY_NANE property must be specified in the request
parameters or EssConf i gur at i on of the hosting application. Oracle Enterprise
Scheduler ensures that this property is available to the remote EJB through
Request Par amet er s.

* Aremote EJB can make use of the Renot eConnect or API to get the remote
instances of Oracle Enterprise Scheduler beans. This can be done by passing the
following:

— Request Paraneters

— Request Par anet er s and Jndi MappedNane of the bean (for hosting applications
other than the native hosting application)

— Request Par anet er s, user name and password (if the Oracle Enterprise
Scheduler server is authenticated)

— Initial Context (primarily for Java SE clients with EssNat i veHost i ngApp)

— Initial Context andjndi MappedNane (primarily for Java SE clients with other
hosting applications)

12.4.3 RemoteConnector APl and the Server Affinity Property

If your code implementation relies on accessing Oracle Enterprise Scheduler EJBs,
use the methods exposed in the Renot eConnect or API class. The Oracle Enterprise
Scheduler requires the server affinity property to be set in the I ni ti al Cont ext
environment before doing a JNDI lookup and the Renot eConnect or API class sets this
property for you. Note that this is especially important in multi-node cluster scenarios.
The Renmot eConnect or class is packaged in the Oracle Enterprise Scheduler client
libraries.

ORACLE 12-5

Chapter 12
Synchronous Bean

If for some reason the Renot eConect or class cannot be used, you can set the
environment map property to the I ni ti al Cont ext before doing the look-up for the
Oracle Enterprise Scheduler EJBs as shown in the following example.

if(Platformltils.isWhbLogic())
envProps. put ("webl ogi c. j ndi . enabl eServer Affinity", "true")

In a multi-node cluster environment, it is best to set the cluster algorithm to "round-
robin-affinity".

12.4.4 CSF Lookup From a Remote Server

If the beans of Oracle Enterprise Scheduler Services are authenticated, remote
applications must use a secured lookup to make callbacks to Oracle Enterprise
Scheduler. You can use Oracle Enterprise Scheduler's Renot eConnect or APl which
uses the ESS_JNDI _CSF_KEY_NAME property available in the request parameters to do
the look-up. But to assist this CSF lookup, the code that invokes the Renot eConnect or
must grant permission for credential store access. The following XML fragment can be
added to the j azn- dat a. xni file of the remote application.

<jazn-policy>
<grant >
<gr ant ee>
<codesour ce>
<url>file:${domain. home}/servers/$
{webl ogi c. Nane}/t mp/ _W._user/ <AppNane>/ -</url >
</ codesour ce>
</ grant ee>
<per ni ssi ons>
<per ni ssi on>
<cl ass>oracl e. security.jps.service.credstore. Credential AccessPermni ssion
</cl ass>
<name>cont ext =SYSTEM napNane=or acl e. ess. securi ty, keyName=*</ name>
<acti ons>READ</ acti ons>
</ permi ssi on>
<per mi ssi on>
<cl ass>oracl e. security.jps.JpsPerm ssion</class>
<name>| denti t yAsserti on</ name>
<actions>execute</actions>
</ permi ssi on>
<per mi ssi on>
<cl ass>oracl e. security.jps.JpsPerm ssion</class>
<nane>AppSecurityCont ext . set Appl i cati onl D. *</ nane>
</ permi ssi on>
</ perm ssi ons>
</ grant>
</jazn-policy>

12.5 Synchronous Bean

This section contains examples that illustrate how to create a synchronous bean.

12.5.1 Metadata

This section shows metadata as it applies to synchronous beans.

ORACLE 12-6

Chapter 12
Synchronous Bean

The following example shows a sample job definition for an EJB job located in the file
oracl e/ apps/ ess/ cust onl Jobs/ EssGat ewayJobDef n. xni

<?xm version = "'1.0'?>
<job-definition xmns:xsi="http://ww.w3. org/ 2001/ XM_Schema-
i nst ance" xm ns="http://xm ns. oracl e. con schedul er"

name="Soakj bJobhDef n"
j ob-type="/oracl e/ as/ ess/ core/ JobType/ SyncEj bJobType. xm ">
<descri ption/>
<di spl ay- name>EssGat ewayBean</ di spl ay- name>
<paraneter-|ist>
<paraneter name="SYS_EXT j ndi KeyNane" data-type="string" read-only="true">
ej b/ essGat ewayBean</ par anet er >
<paraneter name="SYS _EXT j ndi ProviderUr|l" data-type="string" r ead-
onl y="true">URL</ par anet er >
<paraneter name="SYS_EXT ej bCperati onName" data-type="string"
read-onl y="true">acti vat eFi | eAdapt er </ par anet er >
<paraneter name="SYS effectiveApplication" data-type="string">
ESS_NATI VE_HOSTI NG APP_LOG CAL_NAVE</ par anet er >
</ paraneter-|ist>
</job-definition>

12.5.2 EJB Job Sample Code

This section shows a sample implementation of a synchronous EJB job expected by
Oracle Enterprise Scheduler.

The following code snippet shows a fragment of the ej b-j ar. xrmi file that defines this
bean.

<sessi on>

<descri pti on>ESS Gateway Bean</descri ption>
<ej b- name>EssGat eway</ ej b- name>
<ej b- cl ass>com soa. beans. EssGat ewayBean</ ej b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>
<security-identity>

<use-cal ler-identity/>

</security-identity>

</ sessi on>

The following code snippet shows a fragment of the webl ogi c- ej b-j ar. xnl file that
defines this bean.

<webl ogi c- ent er pri se- bean>
<ej b- name>Fi | eAdapt er Bean</ ej b- nane>
<st at el ess- sessi on-descri ptor>
<busi ness-i nterface-j ndi - name- map>
<busi ness-renot e>or acl e. as. schedul er. Renot eCancel | abl eExecut abl e
</ busi ness-renot e>
<j ndi - nane>ej b/ essCGat ewayBean</ j ndi - name>
</ busi ness-i nterface-jndi - nane- nap>
</ st at el ess-sessi on-descri pt or >
</ webl ogi c-ent erpri se- bean>

inport javax.ejb.Stateless

inport oracle.as.schedul er. SystenProperty
inport oracle. as.schedul er. Executi onCancel | edException

ORACLE 12-7

Chapter 12
Asynchronous Bean

inport oracle.as.schedul er. Executi onErrorException;

i nport oracle. as. schedul er. Executi onPausedExcepti on;
inport oracle.as.schedul er. Executi onWar ni ngExcepti on;
inport oracle.as.schedul er. Renot eCancel | abl eExecut abl e;
inport oracle.as.schedul er. Request Execut i onCont ext ;

i nport oracle. as. schedul er. Request Par anet ers;

@t at el ess(nane = "EssGateway", mappedNane = "ej b/ essGat ewayBean")
public class EssGat ewayBean inpl enents RenoteCancel | abl eExecut abl e
{

publi ¢ EssGat ewayBean()

{

}

public voi d execut e(Request Executi onCont ext context,
Request Paraneters paraneters) throws ExecutionErrorException,
Execut i onWar ni ngExcepti on, ExecutionCancel | edExcepti on,
Execut i onPausedException

/1 Get the value of 'SYS EXT_ej bOperationNane' property
String opName =
(String)paraneters. get Val ue(Syst enProperty. EJB_OPERATI ON_NAME) ;

i f("manageFi | eAdapter". equal s(opName))

{
Il
/1 Call business method of this bean or some other bean
Il
//H nt: User defined properties can be set in RequestParameters while
//subnmitting the job and can be retrieved here for further

processi ng.
}

}

public voi d cancel (Request Executi onCont ext context,
Request Par anet ers par anet ers)

{
I
/ILogic to cancel the execution of a business nethod.
I
/] Execute the actual logic of cancellation, notifies back to ESS
/'l by throwi ng ExecutionCancel | edException through execute method.
}

}

12.6 Asynchronous Bean

ORACLE

When Oracle Enterprise Scheduler invokes a bean asynchronously, it does not wait for
the execute method to finish. For that reason, the bean implementation has to notify
the Oracle Enterprise Scheduler after processing finishes. The Renot eAsyncHel per
class can be used for this purpose. Alternatively, the AsyncRequest Bean obtained from
Renot eConnect or can be used to notify Oracle Enterprise Scheduler with a status
update.

Asynchronous EJBs are typically used:

* For long-running operations

» For processor-intensive tasks

12-8

Chapter 12
Asynchronous Bean

* For background tasks
» Toincrease application throughput

» To improve application response time if the method invocation result is not
required immediately

The synchronous EJB job is more appropriate for short-running user business
methods.

There are a couple of ways for Oracle Enterprise Scheduler to execute a bean
asynchronously:

e Explicit asynchrony: Use a synchronous stateless bean to invoke a message-
driven bean asynchronously. (Add a Java Message Service message to a topic/
gueue that is listened to by a message-driven bean)

* Implicit asynchrony: Use the EJB Asynchronous annotation to declare a
business method (other than execute, cancel methods) to behave asynchronously.

Note:

Oracle Enterprise Scheduler can invoke a synchronous bean
asynchronously. However, if you use this method the bean must be modeled
in a way that long-running methods are marked for asynchrony.

" Note:

As specified in the EJB standard, you cannot use the @synchr onous
annotation in the execut e method or the entire class because the execute
method throws custom exceptions which are not permitted. Oracle Enterprise
Scheduler requires the execut e method to throw custom exceptions.

12.6.1 Metadata

This section shows metadata as it applies to asynchronous beans.

This example shows a sample job definition for an EJB job located in the file or acl e/
apps/ ess/ cust onf Jobs/ AsyncJobDef n. xm

<?xm version = '1.0'?>
<j ob-definition xmns:xsi="http://ww.w3. org/ 2001/ XM.Schena- i nst ance"
xm ns="http://xm ns. oracl e. conml schedul er" name="EssAsyncJobDef n"
j ob-type="/oracl e/ as/ ess/ core/ JobType/ AsyncEj bJobType. xn ">
<di spl ay- name>EssGat ewayBean</ di spl ay- name>
<paraneter-|ist>
<paraneter name="SYS _EXT j ndi KeyNane" data-type="string"
read- onl y="true">ej b/ essAsyncGat ewayBean</ par anet er >
<paraneter name="SYS EXT j ndi ProviderUr|" data-type="string"
read-onl y="true">t3://1 ocal host: 10801</ par anet er >
<paraneter name="SYS_EXT ej bQper ati onNanme"
dat a-type="string"read-onl y="t rue">activat eFi | eAdapt er </ par anet er >
<paraneter name="SYS effectiveApplication" data-type="string">
ESS_NATI VE_HOSTI NG_APP_LOGQ CAL_NAME</ par anet er >

ORACLE 12-9

Chapter 12
Asynchronous Bean

</ paraneter-list>

</job-definition>

12.6.2 EJB Job Sample Code

This section includes sample code that illustrates how to implement asynchrony using
both the explicit and implicit methods described in Asynchronous Bean.

12.6.2.1 Sample Implementation of Asynchrony Using a Message-Driven Bean

The following code sample shows a synchronous stateless bean that is used to invoke
a message driven bean asynchronously.

package com soa.test;

inport java.io.Serializable;

inmport java.util.Arraylist;

inport javax.ejb.Statel ess;

i nport javax.jms. Cbj ect Message;

i mport javax.jns. Queue;

i nport javax.jms. QueueConnecti on;

i nport javax.jms. QueueConnecti onFactory;
i nport javax.jms. QueueSender;

i nport javax.jms. QueueSessi on;

i nport javax.jms. Session;

i nport javax.naming.lnitial Context;

i nport oracl e. as. schedul er. AsyncRequest BeanRenot e;

i nport oracl e. as. schedul er. Executi onCancel | edExcepti on;
i nport oracl e. as. schedul er. Executi onError Excepti on;

i nport oracl e. as. schedul er. Execut i onPausedExcept i on;

i nport oracl e. as. schedul er. Execut i on\War ni ngExcept i on;

i nport oracl e. as. schedul er. Renot eCancel | abl eExecut abl e;
i mport oracl e. as. schedul er. Request Execut i onCont ext ;

i nport oracl e. as. schedul er. Request Par aret er s;

i nport oracl e. as. schedul er. request. Renot eConnect or ;

@t at el ess(nane = "EssAsyncPilot")
public class EssAsyncPil ot Bean inpl ements RenpteCancel | abl eExecut abl e

{

ORACLE

publ i c EssAsyncPil otBean() {
}

public void execut e(Request Executi onCont ext request Executi onCont ext,
Request Par anet ers request Par anet ers)
t hrows ExecutionErrorException, ExecutionWrni ngException,
Execut i onPausedExcepti on, ExecutionCancel | edException {
/'l Delegate the job request cancellation to nessage driven bean
post ToQueue(" execut e", request ExecutionContext, requestParaneters);

}

public void cancel (Request Executi onCont ext requestExecutionContext,
Request Paranet ers request Paraneters) {
Rerot eConnect or connector = new Renpt eConnector ();
AsyncRequest BeanRenot e asyncRequest ;

/'l Delegate the job request cancellation to nessage driven bean

try {
post ToQueue("cancel ", request ExecutionContext, requestParaneters);

12-10

Chapter 12
Asynchronous Bean

} catch (Exception e) {

/I Mark this request as ERRORed
}
/
QO her ways to cancel the job request.

asyncRequest = connect or. get AsyncRequest EJB(r equest Par anet ers) ;
asyncRequest . onCancel (request Executi onCont ext);

(or)

asyncRequest = connect or. get AsyncRequest EJB(r equest Par anet ers) ;
asyncRequest . set Request St at us(
request Executi onCont ext, AsyncStatus. CANCEL, "Cancel ling the

I

job");
(or sinply)
Rerot eAsyncHel per asyncHel per = new Renot eAsyncHel per (

request Executi onCont ext, requestParaneters);
asyncHel per. onCancel ();

I

}

private void post ToQueue(String instruction,
Request Execut i onCont ext context, RequestParaneters params) {
try {
QueueConnecti onFactory gconFactory;
QueueConnection qcon;
QueueSessi on gsessi on;
QueueSender qsender;
Queue queue;
bj ect Message nsg;
Initial Context ic = new Initial Context();

gconFactory = (QueueConnectionFactory) ic
.1 ookup(" EssAsyncJnsConnFact ory");
gcon = qconFactory. creat eQueueConnection();
gsessi on = qcon. creat eQueueSessi on(fal se, Sessi on. AUTO_ACKNOALEDGE) ;

queue = (Queue) ic.lookup("EssAsyncimsQueue");

gsender = gsession. creat eSender (queue);
neg = qsession. creat eChj ect Message();
gcon.start();

ArraylList<Serializabl e> objsList = new ArrayLi st<Serializabl e>(2);
obj sLi st. add(context);

obj sLi st . add(par ans) ;

obj sLi st.add(instruction);

neg. set Chj ect (obj sLi st);

gsender. send(nsg);

Systemout. println("The nessage, " + instruction
+ ", has been sent to the EssAsyncJnmsQueue.");
gsender. cl ose();
gsession. cl ose();
gcon. cl ose();
} catch (Exception e) {
Systemout.print("error " + e);

}

ORACLE 12-11

Chapter 12
Asynchronous Bean

}

inport java.util.List;
inport java.io.Serializable;
i nport javax.ejb. MessageDriven;

i nport javax.jms. Message;
i nport javax.jms. MessagelLi stener;
i nport javax.jms. Cbj ect Message;

inport oracle.as.schedul er. Request Execut i onCont ext ;
inport oracle. as. schedul er. Request Par anet ers;
i mport oracl e. as. schedul er. async. Renot eAsyncHel per;

/**
* This message driven bean sanple relies on execute/cancel instructions.
* Upon conpl etion of execution or cancellation, this bean notifies
* ESS about its status so that the job request is nmarked for conpletion.
*/
@essageDriven(mappedNane = "ej b/ essAsyncJns")
public class EssAsyncJmsBean inpl ements Messageli stener {
public void onMessage(Message nessage) {
if (message instanceof ObjectMessage) {
bj ect Message obj Message = (hj ect Message) message;
try {
Li st<Seri al i zabl e> obj sLi st
(List<Serializabl e>)obj Message. get Obj ect();
Request Execut i onCont ext ct x
(Request Execut i onCont ext) obj sLi st. get (0);
Request Paraneters params = (Request Paranet ers) obj sLi st. get (1);
String instruction = (String)objsList.get(2);
Renot eAsyncHel per asyncHel per = new Renot eAsyncHel per (ctx,

par ans) ;
if ("cancel".equal sl gnoreCase(instruction)) {
/I EssAsyncJnsBean. cancel : Cancel ling the Execution
try {
/1Do the actual cancellation
Thr ead. sl eep(1000);
} catch (InterruptedException e) {
}
asyncHel per. onCancel ();
/I EssAsyncJnsBean. cancel : Conpl eted cancel | ation
} else {
Il EssAsyncJnsBean. execute: Started the Execution ");
try {
//Do the actual execution
Thr ead. sl eep(5000);
} catch (InterruptedException e) {
}
asyncHel per.onSuccess();
/I EssAsyncJnsBean. execut e: Conpl eted the Execution ");
} catch (Exception e) {
e.printStackTrace();
}
}
}
}

ORACLE 12-12

Chapter 12
Asynchronous Bean

12.6.2.2 Sample Implementation of Asynchrony Using Annotations

The following code snippet uses the EJB Asynchr onousto declare a bean or its
methods to behave asynchronously.

package com soa.test;
import java.util.concurrent. Future;
i mport javax.annotation. Resource;

i mport javax.ejb. AsyncResul t;

i mport javax.ejb. Asynchronous;

i mport javax.ejb. Sessi onCont ext;
i mport javax.ejb. Statel ess;

i mport javax.xnl.transform Result;

i mport oracl e. as. schedul er. Executi onCancel | edExcepti on;
i mport oracl e. as. schedul er. Execut i onError Excepti on;

i mport oracl e. as. schedul er. Executi onPausedExcepti on;
i mport oracl e. as. schedul er. Execut i on\War ni ngExcept i on;
i mport oracl e. as. schedul er. Renot eExecut abl e;

i mport oracl e. as. schedul er. Request Execut i onCont ext ;

i mport oracl e. as. schedul er. Request Not FoundExcept i on;
i mport oracl e. as. schedul er. Request Par anet ers;

i mport oracl e. as. schedul er. Runti meServi ceExcepti on;

i mport oracl e. as. schedul er. Schedul er Excepti on;

i mport oracl e. as. schedul er. async. Renot eAsyncHel per;

@t at el ess(nanme = "EssAsyncAnnot at edBean", mappedName = "ej b/
essAsyncAnnBean")
public class EssAsyncAnnot at edBean i npl enents Renot eExecut abl e {

@Resour ce
Sessi onCont ext sessi onCont ext ;

public voi d execut e(Request Executi onCont ext request ExecutionContext,
Request Par anet ers request Paraneters) throws

Execut i onError Exception, ExecutionWarni ngException,

Execut i onPausedExcept i on, Execut i onCancel | edExcepti on

{
Renot eAsyncHel per asyncHel per = nul | ;

try {
asyncHel per = new
Renot eAsyncHel per (request Execut i onCont ext, request Paraneters);

[Ilnitiate processing
i nitiateProcessing(requestExecutionContext,
request Paraneters);

/] Get processed results

Future<Result[]> results =
get ProcessedResul t s(request Executi onCont ext, requestParaneters);

ORACLE 12-13

ORACLE

Chapter 12
Asynchronous Bean

/1do further processing

[I'Finally, conplete the request
asyncHel per.onSuccess();

iatch (Exception e)

{
try
{

asyncHel per. onBi zError(e. get Message());

iatch (Exception f)
{
}

}

@synchr onous

public void initiateProcessing(Request Executi onCont ext
request Execut i onCont ext ,

Request Par anet ers request Par anet er s)

//'startProcessing

@\synchr onous
public Future<Result[]> getProcessedResul t s(Request Executi onCont ext
request Execut i onCont ext ,

Request Par anet er s

request Par anet er s)

Resul t[] resultsArr = null
//do processing
return new AsyncResul t <Resul t[]>(resul tsArr)

12-14

Creating and Using Web Service Jobs

This chapter describes how to use Oracle Enterprise Scheduler to create Web Service
jobs and contains the following sections:

* Introduction

» Predefined Web Service Job Types

e Cancel and Fault Support

e Configuration Properties for Web Service Jobs

* Oracle Web Services Manager Policy Configuration

e Creating a Web Service Job Definition

13.1 Introduction

ORACLE

Web services provide a standard means to expose services on the web. Web services
are accessible from a URL and use SOAP and XML as their payloads. Web services
are described by the WSDL standard that defines the interface and the URL of the
web service.

The following are examples of web services

* SOA suite composites
» Oracle Service Bus proxy services
* ADF Business Component web services

Web services can expose one-way, synchronous, or asynchronous operations. A
one-way web service operation is a fire-and-forget operation where the web service
does not return a response. A synchronous web service operation returns a response
as part of the same web service invocation. Typically, a web service client blocks

until the synchronous operation response is received. An asynchronous web service
operation involves two one-way messages: one for the web service operation request
and a separate one for the response. Asynchronous web service operations typically
represent long running operations. A web service client invokes an asynchronous web
service operation, but does not wait for the response. Instead, the client specifies a
callback URL at which to receive the response from the web service. The web service
processes the request in the background and uses a callback operation to return the
response to the client-specified callback URL.

Oracle Enterprise Scheduler supports web service jobs that use synchronous, one-
way and asynchronous interfaces. The web service job definition can be defined using
JDeveloper (as part of a hosting application or client application) or using Oracle
Enterprise Manager Fusion Middleware Control. When the web service job type is
selected, a wizard leads the user through a simple set of steps to define the web
service job (see the example in Using Oracle Enterprise Manager Fusion Middleware
Control to Create a Job Definition). This wizard obtains the WSDL URL and asks the
user to select the WSDL service, port type, and operation. It then creates sample XML
for the payload based on the WSDL, and allows the user to update it. Asynchronous

13-1

Chapter 13
Predefined Web Service Job Types

and synchronous web service may optionally have a designated operation for cancel.
If there is a cancel operation, the operation is selected and the sample XML code

for the cancel operation is modified. The wizard populates a set of predefined system
properties in the job definition with values entered or derived from what the user enters
in the wizard.

Note:

The WSDL URL in a web services job type must be a concrete WSDL URL.
It cannot be an abstract WSDL URL.

The job definition can have user defined parameters. Elements or attributes in the
invoke or cancel payload XML code can specify that one of these parameters be
plugged in as the element value by specifying a token substitution instruction. For
example, plug in the parameter cust oner | D with the token substitution command $
{ESS_REQ custoner | D}. This allows the job submitter to just enter parameter values
and have the XML payload constructed from them. Token substitutions can also be
specified for the WSDL base URL and WSDL relative URL system properties. For
more information about token substitution see Using Tokens and Logical Clusters .

Web service jobs are secured by Oracle Web Services Manager (OWSM) policies.

In Oracle Enterprise Manager Fusion Middleware Control or JDeveloper, you can
attach OWSM directly attached policies for the job definition for the invocation (client
policy) and the callback (service policy) actions. You can use globally attached policies
to define policies globally or you can secure individual job definitions with directly
attached policies.

Note:

See the following sections in Securing Web Services and Managing Policies
with Oracle Web Services Manager for more information about using Oracle
Web Services Manager (OWSM) policies:

e "Attaching Policies Globally Using Fusion Middleware Control"
e "Attaching Policies Globally Using WLST"
e "Attaching Policies Directly Using WLST"

Progress messages are supported for asynchronous web service jobs. These
messages are written to the job log. In the callback operation, the job can indicate
if the job succeeded or failed. The callback message comprises the job's output

13.2 Predefined Web Service Job Types

ORACLE

Oracle Enterprise Scheduler supports three predefined web services job types. The
job type you specify in the web service job definition implicitly determines whether the
configured web service operation is invoked using an asynchronous, synchronous or
one-way (fire-and-forget) operation.

13-2

Chapter 13
Cancel and Fault Support

As described in Introduction, Oracle Enterprise Scheduler supports three predefined
web service job types. The web service predefined job types are shown in Table 13-1.

Table 13-1 The Predefined Web Service Job Types
]

Predefined Job Type Description
l oracl el as/ ess/ corel/ JobType/ (Asynchronous) The caller invokes the web service,
Async\Webser vi ceJobType the web service runs asynchronously in the

background, and the web service calls back to the
caller at a callback URL

 oracl e/ as/ ess/ core/ JobType/ (Synchronous) The caller blocks until the response

SyncWebser vi ceJobType is returned (request/response)

l oracl e/ as/ ess/ corel/ JobType/ (One-way) The caller does not expect a response.

OnewayVebser vi ceJobType The web service runs in the background (fire-and-
forget).

13.3 Cancel and Fault Support

Supporting a cancel operation for web service jobs is optional. The web service
may support a cancel operation that allows a running web service invocation to be
canceled.

The cancel operation must not be an abort operation (hammer-on-head style), where
the composite is terminated and never calls back to complete the original operation.
A well-behaved cancel implementation by a web service provider ensures the original
web service operation returns an "operation canceled response,” with a predefined
wsa: Acti on code (see Table 13-2) in the SOAP response header. The cancel web
service operation must be a synchronous web service operation.

Both synchronous and asynchronous web service jobs can indicate whether the

web service operation was canceled or resulted in a fault (error) by specifying the
appropriate value in the wsa: Acti on SOAP response message header. If the callback
response SOAP message does not match the “Canceled” or “Fault" response (through
one of the mechanisms listed below), then the job state is “Succeeded".

The Table 13-2 shows the different web service operation statuses that can be
specified using the SOAP wsa: Acti on header.

Table 13-2 SOAP Web Service Operation Statuses
]

Action Code Name Action URI
Cancelled "http://xmIns.oracle.com/schedulercallback/wsOperationCancelled"
Fault « Standard web service addressing: "htt p: / / schemas. xm soap. or g/ ws/

2004/ 08/ addr essi ng/ faul t"
» Oracle application server: "htt p: // xml ns. or acl e. con or acl eas/ schena/
oracle-fault-11 O/ Fault"

The Oracle SOA Suite does not support setting wsa: Act i on message headers. As
an alternative you can add one of the strings listed in Table 13-3 to the SOAP body
element of a callback message.

ORACLE 13-3

Chapter 13
Configuration Properties for Web Service Jobs

Table 13-3 Oracle SOA Suite Status Operations

Operation String
Cancelled "wsOperationCancelled"
Fault "wsOperationFault"

13.4 Configuration Properties for Web Service Jobs

Oracle Enterprise Scheduler uses specific configuration properties for web service
jobs.

Table 13-4 lists the properties associated with the web service job type.

Table 13-4 Web Service Job Configuration Properties

Property Name Description
SYS _EXT ws\Wdl BaseUr |1 The base URL part of WSDL URL.
SYS EXT wsWdl Url? The relative part of the web service WSDL URL (must be

a concrete WSDL URL). Either the SYS_EXT_wsEndpoi nt Ur |

property or the SYS_EXT_wsWsdl Ur| property must be completely

specified. For example, either SYS_EXT ws\Wdl BaseUr| and
SYS_EXT_wsWsdl Ur | are both configured, or SYS_EXT_wsEndpoi nt Baselr |
and SYS_EXT_wsEndpoi nt Url are both configured.

SYS _EXT wsEndpoi nt BaseUr| 1 The base URL part of endpoint URL.

SYS EXT _wsEndpoi nt Url 1 The relative part of the web service endpoint URL (must

be a concrete WSDL URL). Either the SYS_EXT_wsEndpoi nt Ur |

property or the SYS_EXT_wsWsdl Ur| property must be completely

specified. For example, either SYS_EXT_ws\Wdl BaseUr| and
SYS_EXT_wsWsdl Ur | are both configured, or SYS_EXT_wsEndpoi nt Baselr |
and SYS_EXT_wsEndpoi nt Url are both configured.

SYS _EXT_wsTar get Nanespace The target name space.

SYS_EXT_wsServi ceName The service name.

SYS_EXT_wsPor t Nanme The port name.

SYS_EXT_wsQper at i onNane The operation name.

SYS_EXT i nvokeMessage! The XML submit message used to invoke the web service.
SYS_EXT_wsCancel Qper ati onNa Optional. The cancel operation name.

me

SYS_EXT _wsCancel Message? Optional. The XML message for the web service cancel operation.
SYS_ext ernal JobType Optional. The supported values are “ADFBC", “OSB" or “SOA". Any other

value is invalid.

1 This property can be specified using token substitution. Refer to Using Tokens and Logical Clusters for more information.

ORACLE

If the SYS_EXT_wsEndpoi nt BaseUr | property and the SYS EXT wsEndpoi nt Url property
are specified in the job definition, Oracle Enterprise Scheduler has enough
information to invoke the web service. If the SYS_EXT_wsEndpoi nt BaseUr| and
SYS_EXT_wsEndpoi nt Ur| properties are not specified in the job definition and the
SYS_EXT_wsWsdl BaseUr| and the SYS EXT wsWsdl Url properties are specified, Oracle

13-4

Chapter 13
Oracle Web Services Manager Policy Configuration

Enterprise Scheduler retrieves the WSDL at runtime (before invoking the job), gets the
Endpoi nt Url and Tar get Namespace property values from the WSDL and invokes the
web service.

The SYS_EXT_wsSer vi ceName, SYS_EXT_wsPor t Name and SYS_EXT_wsQper at i onName
properties must be specified to identify the specific web service operation to be
invoked.

The SYS_EXT i nvokeMessage property contains the XML message (SOAP body
payload) for invocation. This can either be an XML template or full XML.

An XML template contains tokens that are replaced at runtime. The job submitter
specifies the parameter values to substitute for the tokens in the template. If full XML
is used without tokens, no substitution is required and the specified XML in the job
definition is used “as is" for job invocation.

< Note:

The angle brackets (“<*and “>") in XML statements must be escaped.

After it is invoked, the remote web service can log progress messages to update its
status. These messages are logged by the web service job and are available in the
request logs. The web service response XML is captured as job output.

If the SYS_EXT_wsCancel Message and SYS_EXT_wsCancel Qper at i onNane properties are
configured with a cancel message, the message is invoked when a cancel operation
is initiated on a running web service job. The cancel operation is always invoked as a
synchronous web service operation.

The cancel message SOAP header is automatically populated with the W5- Addr essi ng
rel at esTol d property set to the wsa: messagel d associated with the invoke web
service operation. The cancel operation uses the same OWSM policy as the invoke
operation. If the SYS_EXT_wsCancel Message property is not configured, it indicates that
the web service does not support cancellation and therefore cannot be canceled.

The SYS_ext er nal JobType property allows web service job definitions to specify a
web service type (ADFBC, Service Bus or SOA). Intended for future customized web
service job implementations.

13.5 Oracle Web Services Manager Policy Configuration

ORACLE

The web service job type uses decoupled Oracle Web Services Manager (OWSM)
policy subjects (Job-Invoke, Job-Callback) and associated globally attached policies
and directly attached policies for web service invocation and callback operations.

The Job-Invoke policy subject is associated with all web service job types (one-way,
synchronous and asynchronous), whereas the Job-Callback policy subject is available
only for the asynchronous web service job type. The Job-Invoke and Job-Callback
globally attached policies can be specified at the domain level and configured using
EM or WLST.

If a Job-Invoke globally attached policy or a directly attached policy is not specified
for a web service job definition, an attempt is made to invoke the web service

13-5

Chapter 13
Creating a Web Service Job Definition

anonymously. This only works for the one-way and synchronous job type, because
anonymous callbacks are not supported for the asynchronous web service job type.

Job-Invoke and Job-Callback directly attached policies are specific to individual web
service job definitions and are captured in the policy assembly descriptor associated
with the web service job definition. These directly attached policies can be specified at
design time using JDeveloper or at runtime using Oracle Enterprise Manager Fusion
Middleware Control, or using WLST commands.

Globally attached policies for web service job policy subjects can be set up using
Oracle Enterprise Manager Fusion Middleware Control or using a WLST script to
configure domain-level globally attached policies for web service job policy subjects.
Example 13-1 shows how such a script might look.

Example 13-1 WLST Script to Configure Globally Attached Policies

connect (adnmi nuser, admi npassword, adminurl)

begi nReposi t or ySessi on()

del et ePol i cySet (' domai n-defaul t-j ob-invoke-client-policies')
descri beReposi t orySessi on()

conmi t Reposi t orySessi on()

begi nReposi t or ySessi on()

del et ePol i cySet (' domai n-def aul t-j ob-cal | back-service-policies')
descri beReposi t orySessi on()

conmi t Reposi t orySessi on()

print "-- create dommin-defaul t-job-invoke-client-policies --"

begi nReposi t or ySessi on()

descri beReposi t orySessi on()

createPolicySet (' domai n-defaul t-job-invoke-client-policies', 'job-invoke',
" Domai n("*")")

attachPol i cySet Pol i cy("oracl e/

wss1ll sam _token_with_nessage_protection_client_policy")

descri beReposi t orySessi on()

conmi t Reposi t orySessi on()

print "-- create donmin-default-job-callback-service-policies --"
begi nReposi t or ySessi on()

descri beReposi t orySessi on()

createPol i cySet (' domai n-defaul t-job-cal |l back-service-policies',
"job-cal | back', 'Domain("*")")

attachPol i cySet Pol i cy("oracl e/

wss1ll sam _or _usernanme_t oken_wi th_nessage_protection_service_policy")
descri beReposi t orySessi on()

conmi t Reposi t orySessi on()

13.6 Creating a Web Service Job Definition

ORACLE

Both Oracle JDeveloper and Oracle Enterprise Manager Fusion Middleware Control
offer convenient graphical user interfaces to help you create web service job
definitions.

Using Oracle JDeveloper to Create a Job Definition describes how to use Oracle
JDeveloper to create a job definition and Using Oracle Enterprise Manager Fusion
Middleware Control to Create a Job Definition describes how to use Oracle Enterprise
Manager Fusion Middleware Control to do the same.

13-6

Chapter 13
Creating a Web Service Job Definition

13.6.1 Using Oracle JDeveloper to Create a Job Definition

ORACLE

You can use Oracle JDeveloper to create a web service job definition while creating
your application. Refer to Using Oracle JDeveloper to Generate an Oracle Enterprise
Scheduler Application for general information about how to use Oracle JDeveloper to
create applications that work with the Oracle Enterprise Scheduler.

JDeveloper provides accessibility options, such as support for screen readers,
screen magnifiers, and standard shortcut keys for keyboard navigation. You can
also customize JDeveloper for better readability, including the size and color of fonts
and the color and shape of objects. For information and instructions on configuring
accessibility in JDeveloper, see Oracle JDeveloper Accessibility Information in
Developing Applications with Oracle JDeveloper.

The following steps show you how to create a job definition for an asynchronous web
service job type.

1. Navigate to the Job Definition tab. Fill in the Name, Display Name, and
Description fields and choose an appropriate web service job type as shown
in the example in Figure 13-1. Have the WSDL URL for the target web service
available.

Figure 13-1 Oracle JDeveloper: Job Definition Tab

[#] Oracle JDeveloper 12c - EssDemoApp.jws : EssDemo.jpr : fscmtchNnanjundﬂmpﬂeslDemuMpJ’EssDemnﬁpp.’EssDemufessmela.’urav:Ielappslesslseeﬂei|Menmpackage.rJuhsm@i'
File Edit Wiew Application Refactor Search Navigate Build Run Team Tools Window Help
=5 H) Q @- G > &
Applications (2) start Page (B} AsyncwsjenZ xaml w
=
EssDemoApp ~ | [Job Definition
=l Projects A - Thd
— RO hame Asynews)obz
-8 pemout Display Asyncussjab2
= isplay Name: [£syncirsjol
= [EssDemo play i
@[Application Seurces Inwoke Async SOA Compasitel
o Ess Description
-] oracle
= DEPS Job Type Joraclefasfess/carefAsynciebserviceobType @b
= {Dess
553 seeded Class Name: [oracle.as.scheduler jobuwebservice AzyncWSlob
Publish
= [Application Defined Properties 7R
Mo Application Defined Properties
) Application Resources
+I Data Controls = & System Properties 7 R
| Recent Files
Mame Type Initial Value Read Only
AsynciSiobZ.xml - Struciure SY5_effectivedpplication STRING EssDemodpp
= E= Access Control 7R
Mo Access Control
= @ Localization
Joh Definition Editor]
Messages - Log ~ | Liwe Issues: AsynchiSjob2 xml - Issues |
Jul 03, 2013 6:41:30 AM oracle.security.jps.internal.config.onl . XnlConfigurationFactory initbefaul eConfiguration
SEVERE: java.io.FileNotFoundException: . /config/ips-config.xnl (No such file or directory)
Jul 03, 2013 6:41:31 AM oracle.security.jps.internal.config.xml.XnlConfigurationFactory initDefaultConfiguration
SEVERE: java.io.FileNotFoundException: . config/jps-config.znl CNo such file or directory)
Jul 03, 2013 £:41:31 AM oracle.security.jps.internal.config.xml.Xn1ContigurationFactory initbefaulcContiguracion
SEVERE: java.io.FileNotFoundException: ./ config/ips-config.xnl (No such file or directory)
Jul 03, 2013 £:41:32 AM aracle.security.jps.internal.config.:ml.XnlConfigurationFactory initDefaultConfiguration
SEVERE: java.io.FileNotFoundExceprion: . /Config/ips-config.xnl (No such file or directory)
Jul 03, 2013 £:41:32 A oracle.security.jps.internal.config.xml.XnlConfigurationFactory initDefaultConfiguration
SEVERE: java.io.FileNotFoundException: ./ config/ips-config.znl (No such file or directory)

2. Click the Web Service Explorer button to launch the Web Service configuration
wizard as shown in Figure 13-2. Enter the WSDL URL, the Service, Port,
Operation and configure the payload XML as shown in the example, then click
OK.

13-7

Chapter 13
Creating a Web Service Job Definition

3.

Note:

The example shown in Figure 13-2 shows the invoke XML payload with
the substitutable token Subni t Ar gunent 1, whose value is provided at
submission request time. Token substitution is described in Using Tokens
and Logical Clusters .

Figure 13-2 Oracle JDeveloper: Web Service Popup

[#] Oracle JDeveloper 12c ttchivnanjundftmp/testDemoApp/Ess DemoApp/Ess Demo/essmetasoracle/apps/essiseeded/demopackag

¥ oBaa8

Applications = = _ mAsyncWSjcbZ.me ®

EssDemoApp ~ ™| [Job Definition

Projects @] @ T & eh Service 2
: R V= Name: Asynewsiob2 [¢] el

(5 pemout
5 Display Mame: [Asyncwsjab2 L3
=[5l Essbema Specify 3 WSDL, select the service, port, and operation. An inftial payload ill b generated

&[] Application Sources Invake Async SOA Com| inwhich specific values can be inserted.
= Ess Description:
- oracle WSDL: rdefauit/asyncsoaProjectl fasyncsoacompositel_client_ep?wsDL| Q

&[0 apps Job Type Joraclefas fess fcore A
&£ ess
&£ seeded Class Mame: [oracleas.schedulerjob

s asy compositel_client_ep
[Publish ervice as compositel_client_ep

Web Service Tyne: [5on =

= [Application Defined Properties Z P R

No Application Defined Praperties
4l Application Resources
4 Dara Controls = [System Properties
4| Recent Files

7+ R

Port: [ASVHESOACDmpDSIlel_p(v]

o1 Name 1
Sr5_effectiveApplication

Invoke Gperation

Asyncisjobz xm! - Structure <]

Operation: [pm[ESS v]

¥R U

(= &= Access Control

Mo Access Control Payload: | cne1:pracess sminsnsl="rttp:/ fxmins aracle com fAsyncSOAAPRLASYN
<nsLinput>${ESS_REQ:Submithrgumentlfenslinput>
= & Localization </ns1process>

Jab Definition Editor] ¢ [

Messages - Log « | Live Issuss: Asynchy
Jul 03, 2013 6:41:32 &M oracle.s stion -
Mo Structure SEWERE: jawa.io.FileNotFountExcs
Jul 03, 2013 5:43:43 &M oracle.]
INFO: --------- BEGIN MSG NODE-
Jul 03, 2013 6:43:43 &M oracle.
INFO: ----- Complex Part payload
Jul 03, 2013 5:43:43 &M oracle.]
INFO: ----- End Complex Part pay
6:43:43 &M oracle.
INFO: -- ---END MSG NODE---

g > »

Help QK Cancel

TR T O g

@

Click the Specify Security Policies button as shown in Figure 13-3. Select For
Request to configure the directly attached policy for the Job-Invoke policy subject.

ORACLE"

13-8

Chapter 13
Creating a Web Service Job Definition

Figure 13-3 Oracle JDeveloper: Job Definition Tab

[®] Oracle JDeveloper 12c - EssDemoApp.Jws : EssDemo.jpr : /scratchivhanjunditmpitestDemoApp/Ess DemoApp/Ess Demo/essmetasoracie/apps/essiseeded/iemopackage/Jobs/As]

Eile Edit View Application Refactor Search Mavigate Build Run Team Tools Window Help

Messages - Log

Live Issues: AsynciSjobZ xml - Issues |

EHd ¢ 9@ Q @~ oo B Qr(search
Applications (2) startPage | (B} Asyncwsjonz xmt =
=
EssDemoApp ~ =/| [@ Job Definition
=l Projects A - hd
Bl G- V- = Name Asynews|obz
Gl oemaur Display Name: [AsyncWslobz]
¢ G =T isplay Mame: [&syncwsol
[Application Sources Invoke Async S04 Compositel
= e Description
= [eracle
=) C‘ apps Job Type: foraclefas/ess/corefAsyncWebservicelobType @ () For request
B ess | Forcallback..
£ seeded Class Name: [oracle as scheduler job webservice Asyncwislob |
[Publish
= [Application Defined Froperties 7+ R
Mo Application Defined Properties
4l Application Resources
4l Data Controls = [System Properties P
4| Recent Files
x Mame Type Initial Walue Read Only
P ———— SY5_effectiveApplication STRING EssDemoApp
SY5_EXT_wsWsdiBaseUr| STRING hitp:/ fadc0Dcglus.oracle.com 242... W
SY5_EXT_wsWsdiUrl STRING F5oa-infrafservices/defaultfAsync... ¥
SY5_externaljobType STRING S0A 4
SY5_EXT_wsServiceName STRING asyncsoacomposiel_client_ep 4
SY5_EXT_wsPortName STRING AsyncSOACom positel_pt 4
SY5_EXT_wsOperationiame STRING process v
SY5_EXT_inwokeMessage STRING <nsLiprocess xmins:nsl="http:/ fx
Job Definition Editar I

, 2013 6:41:132 AM oracle.security.jps.internal.config.znl.XnlConfigurationFactory initDefaul tConfiguration
+ dava.io.FileNotFoundException: . /config/dps-config.zml (N such file or directoryd
, 2013 6:43:43 AW oracle.jZee.ws.ndds.adt.ADTUti1s printHessageNode

D ommmmmeen BEGIN WSG MODE------------

2013 6:43:43 AM oracle.j2ee.ws.ndds.ade.ADTUTi1s printMessageNode

---Conplex Part payload----

2013 6:43:43 AM oracle.jZee.ws.ndds.adt.2DTUti1s printMessageNode

---End Complex Part payload----

2013 £:43:43 AM oracle.j2ee.ws.ndds. adt. ADTUEI1s printMessageNode

R END MSG HODE------------

4. The Job-Invoke policy subject is available for all web service job definition types
(one-way, synchronous and asynchronous. Select and attach the required OWSM
client policy for the Job-Invoke directly attached policy. You should see a screen
like the one shown in Figure 13-4.

Figure 13-4 Oracle JDeveloper: ESS Web Service Policies Popup

ORACLE

1 ESS Web Service Policies X
ESS Request Web Service Policies
Configure web service policies for job definition: JobDefinition:/ fwer/fasd/Jobl
B %S %
e e
Security ':3:‘ / ﬁ| @ Lé
Management q‘}r / m | @ !:B
Help OF Cancel
A

This completes directly attached policy configuration for a synchronous or one-

way web service job definition. For asynchronous job definitions, you can also
configure the directly attached policy for the Job-Callback policy subject.

To configure a Job-Callback directly attached policy for an asynchronous job
definition, repeat step 3 of this procedure and instead of For request, select

13-9

Chapter 13
Creating a Web Service Job Definition

For callback. Select and attach the required OWSM service policy for the Job-
Callback directly attached policy as shown in Figure 13-4.

Note:

Post deployment, you can use Oracle Enterprise Manager Fusion
Middleware Control to change job policies associated with web service
job definitions.

Figure 13-5 Oracle JDeveloper: ESS Web Service Policies Popup

[#] Oracle JDeveloper 12c - EssDemoApp.jws : EssDemo.jpr : fscratchfvnanjundfimpftestDemoApp/Ess DemoApp/EssDemo/essmetaloraclefappsiess/seeded/demopackage/Johs /A<

File Edit Wiew Application Refagtar Search Mavigate Build Run Team Tools Mindow Help

o] Q)~ Gty () P]
Applications (3 startPage | (B AsyncWsleh2.xm! ~
=
(& EssDemoipe ~ [=1| [Job Definition
=l Projects [&] 8- ¥~ F- Mame JR— [#] ESS Web Service Policies
(3] Demal
=[5 EssDemo Display Name: A synciSjob2 ESS Callback Web Service Policies
4[4 Application Sources Invoke Async SOA Coml Canfigure web service palicies for job definition
=LA Ess Description JobDefinition: faracle fapps/ess seeded/demopackage /AsyneiSob2
= {4 oracle L3
=P ans . (Confiqure web service policies for jab definftion
2 [ess JobType: foraclefas/ess/care/A obDefinition:/ foraclefapps/ess/seeded, /dem opackage A syncirsob2
[seeded Class Name: [oracle.as schedulerjol| nrom — —
Publish
= [Application Defined Properties | Reliability *X 98 + %
Mo Application Defined Praperties
41 Application Resources Addressing s we
4] Data Controls = i System Properties G oraci foadar oo @ + %
oracle fwsaddr_palic G
41 Recent Files E
Name
Sv5_effectiveApplication Security /R VY
Asyncislabz xm| - Structure - =
SYS_EXT_wsWrdlBaselr| [oraclefwss10_sam_token_service_policy @
S3_EXT_wsWisellUrl
S7S_externalobType
S5 EXT_wsServiceMame
Sv5_EXT_wsPortiame
Sv5_EXT_wsOperationkiame
S75_BXT_invokeMessage
Johb Definition Editar 0
Messages - Log » | Live Issues: Asyne
Management
Jul 03, 2013 6:43:143 AM oracle. 9 *I/R|VR
INFO: e BEGIN HSG HODE-
Jul 03, 7013 6:43:43 AH oracle.
INFO: ----- Complex Part payload
1ul 03, 2013 6:43:43 AW oracle.| ok Cancel
INFO: -----End Conplex Part pay
Jul 03, 7013 6:43:43 AH aracle. freerwormamrT -
INFO; —mmmmmem END HSG NODE=-----------

Jul 03, 2013 6:47:13 AN oracle.security.jps.internal.contig.xnl.XnlContigurationFactary initDetaul tonti guration
SEVERE: java.io.FileNotFoundEzception: ./config/ips-config.xul (No such file or directory)

13.6.2 Using Oracle Enterprise Manager Fusion Middleware Control to
Create a Job Definition

ORACLE

This procedure shows how to use the Oracle Enterprise Manger to create and
configure a web service job definition.

1.
2.

Start and log in to Oracle Enterprise Manager Fusion Middleware Control.

From the navigation pane, expand the Scheduling Services folder and select the
Oracle Enterprise Scheduler application.

From the Scheduling Services menu, select Job Metadata > Job Definitions and
then click the Create button.

Fill in the Name, Display Name, and Description fields and choose the
appropriate web service job type from the Job Type dropdown as shown in the
example in Figure 13-6.

13-10

ORACLE

Chapter 13

Creating a Web Service Job Definition

Figure 13-6 Fusion Middleware Control Console: Create Job Definition

Page

ORACLE Enterprise Manager Fusion Middleware Control 12¢

@1 WebLogic Domain v

Target Navigation
View v
I> 3 Application Deployments
& (3 soa
7 3 webLogic Domain
v Eﬂ soainfra
& Adminserver
§| bam_serveri
&l mft_servert
&5l soa_server1
1> B3 Business Activity Monitoring
[£ Metadata Repositories
7 [0 Scheduling Services
[ES5APP (mft_server1)
Iz
> [3) User Messaging Service

i EssaPP @

Create Job Definition

[10b Definition

* Name

Package
Description

4 * Job Type

* Display Name | A

[i@ scheduling Service v [StartUp @) ShutDown...

Scheduling Service Home > Job Definitions > Create Job Definition

Application EssNativeHostingApp(V1.0)

AsyncWsJobl

WSJob1

Jorade fapps/ess/custom

Invoke AsyNESQACoMDasite

AsyncWebserviceJobType [w]

Clzss Mame oracle,as, scheduler. job. webservice, AsyncWsJob

Logged in as weblogic| (3 bir225 1788.idc.orade.com
Page Refreshed Aug 7, 2013 11:55:22 PM IST O

1] weblogic » logout O

OK Cancel ||#

«|[#] Application Defined Properties 7 R
|rlame |Read Only \

I Application Defined Properties found

| i@ System Properties 7 R
[Hame [Read only |

5v5_effectivepplication

[

Click the Select Web Service button and enter the WSDL URL in the Select Web
Service popup window. After you enter the URL, select the Service, Port Type,

Operation and configure the Invoke Operation XML payload.

The example shown in Figure 13-7 shows the invoke XML payload with the
substitutable token Subni t Ar gunent 1, whose value is provided at submission

request time.

< Note:

Token substitution is described in Using Tokens and Logical Clusters .

13-11

ORACLE

6.

Chapter 13
Creating a Web Service Job Definition

Figure 13-7 Fusion Middleware Control Console: Select Web Service
Popup

ORACLE Enterprise Manager Fusion Middleware Contral 12¢ Help » | g8 weblogic » | Logouwt O

&1 WebLogic Domain ~

Target Navigat select web Service... 9.idc.oracle. com
e 4 anist G
View =
i I *# WSDL | nttp: [fadO0el Us.oracle, com: 185 14/e0a-infra cervices defauit Cancelabie, Go
5 [spplicaton De *\eb Service Type [S0A]
> (3504
~
7 B3 webLogic Don Cancel |_
W & soainfra * services feynchpelprocess4, cient. en
& Admins
5l bam_se
&l mft_ser
& soa_ser
&> (3 Business Activ = Port Type | AsyncBPELProcess4_pt [a]
b £ Metadata Rep
¥ 3 scheduling Ser Invoke Operation Cancel Operation
R =sse2 * Operation | process [v] Payload
3 ESSARRY b L

*Payload [<ns1:process xmins:ns1="htip: //xmins. orade.com/CancellableAsyncSOA4
fCancellableAsyncSOAComposite4/AsyncBPELProcess4™>
<ns Linput >${ESS_REQ:SubmitArgument 1} </ns 1:input>
<[nsliprocess:

b= 3 User Messagin

[

p X
|

l [v]

After you create the job definition, return to the Job Definitions page and select
the job definition name (“AsyncWSJob1" in this example) in the Results table.
Click the Attach/Detach Policy button and select Invoke as shown in Figure 13-8
to configure the directly attached policy for the Job-Invoke policy subject. The
Job-Invoke policy subject is available for all web service job type definitions.

Figure 13-8 Fusion Middleware Control Console: Job Definitions Page

ORACLE Enterprise Manager Fusion Middleware Contrel 12¢ Help v | 3@ weblogic v | Logout O

@i Weblogic Domain +

Target Navigation % essapp @ Logged in 25 weblogicl [bir276 1735, cc. oracie, com
View - 7 Scheduiing Service ~ [StartUp - [ShutDown.. Page Refreshed Aug 8, 2013 12:40:08 AM 1ST (s

> £3 application Deployments

= B3 soa Scheduling Service Home > Job Definitions
"7 £3 WebLogic Domain Job Definitions
7 5] soainfra
8 Adminserver Select the application (J2EE application deployment name) for which you want to view the job definitions.
& bam_servert Filter Criteria
mft_server1
&5 soa_servert Application | EssNativeHostingApp(v1.0) [w]
> 3 Business Activity Monitoring Name
B g Metadata Repositories Packege
7 B3 Scheduiing Services
[essaPP (mft_server1) ﬂ
e —

b= [0 User Messaging Service
Creste.. PEdt. 3§ Delste.. &P WebServicePoides =

|rizme [P @ 1nvoke 1 |30b Type |pescription
I | e) Invoke
AsyncWSlob1 I %Callback Luslnm AsyncWebserviceJobType AsyncSOAComposi

a3 m |2

13-12

ORACLE

Chapter 13

Creating a Web Service Job Definition

7. Inthe Web Services Policy page, select the policy and click the Attach/Detach
button to attach the required OWSM client policy for the Job-Invoke directly
attached policy. This is shown in Figure 13-9. The Attach/Detach Policies popup

is displayed.

Figure 13-9 Fusion Middleware Control Console: Web Service Policies

Page

ORACLE Enterprise Manager Fusion Middiewars Contral 12¢

31 WeblLogic Domain =

Target Navigation
view v
L= [0 Application Deployments
I (3 504
v [Weblogic Domain
7] scainfra
& adminserver
bam_serverl
&5l mft_servert
5l soa_servert
b= 3 Business Activity Monitoring
b= [Metadats Repositaries
'V 23 Scheduling Services
[EssaPP (mft_server1)
B
L= [User Messaging Service

& Essapp @
[f@ Stheduing Service + [StartUp [ShutDown...

Scheduling Service Home > Job Definitions > Vb Service Policies
Web Service Policies

Application EssNativeHostingApp(y1.0)
Job Definition Name AsyncWSJob1
Subject Type Invoke

Select an expressian fram the Cantraint drapdawn ta view the carrespending Ffectiy
validation error details, For security policy references, dick the violatans count link
references are recaicuiated

Constraint None
Globally Attached Policies

Category/Policy Name [Policy set

Help + | 38 weblogic + | Logout O

Loaged in 2s weblogicl (2] bir2zs 1785, 1de.oracle. com
Page Refreshed Aug 8, 2013 5:20:05 AMIST (&

Back

/ references, For palicy set flagged as Mot Valid”, dick the ink to view the
iclation details. When plicies are attached/detached, effective policy

Status Not Valid

Enabled [Total violations|

no rows yet

3¢ Disable

Override Policy Configuration

Oeffective Orly @ All | & Detach

| Effective | Enabled [Total violations|

v addressing

aracle fwsaddr _policy

“ s L]

8. Select the policy and click OK to complete the attachment.

13-13

Chapter 13
Creating a Web Service Job Definition

Figure 13-10 Fusion Middleware Control Console: Policy Attachment
Popup

ORACLE Enterprise Manager Fusion Widdleware Contral 12¢ telp » | 38 weblogic v | Logout O

1 WeblLogic Domain v

Target Navi picy attachment - Oracle Enterprise Manager R [jdc-orade.com
View = Attach/Detach Policies(WsmPolicy:/ / oracle/apps/ess/custom/AsyncWSJob1) ... Ok Validate \ Cancel | pr11sT &
& [0 Apolicatic Globally Attached Policies
5 B s0a [Name [category [Policy set | Enabled [Description =
7 3 Weblogit 1o roms yet
7 =5 soainf
&5 ad
< [T} >
o [l 2]
& mf
&l s Directly Attached Policies d”, dick the
& [Business |rame |category | Enabled |Description | view Detal | ™
> B3 Metadatz orade/wsaddr_policy WS-Addressi.. + This policy causes the pla... o3 s Mot Valid
¥ 3 Schedulin
08 e=a fvond
iolatior
iz)]
> B3 User Mes

o Attach # Detach

Available Policies

View v i Detach

¢ [& o \ s
MName |Category \ Status |Descriphon \ Wiew Detail b Viclations |
oraclefno_sddressing_policy ws-addressi . & This policy fadiitates .., & A
oradeflog_policy Management L4 This palicy causes the req... &a 0
oraclefno_mtom_policy MTOM Attac & This policy facilitates ... &3
orade fwsmtom_policy MTOM Attac. & This Message Transmission ... &3
oraclefhtp_basic_suth_over_ss|_client_palicy Security This policy indudes usern. ., &
orade/http_saml20_token_bearer_client_policy Security & This policy includes SAML ... &3
orade http_sam|20_token_bearer_over_ssl_client_palicy Security L4 This palicy indudes SAML ... -] [il

— P P
Showing 71 out of 71 Rows
J |

This completes directly attached policy configuration for a synchronous or one-way
web service job definition. For an asynchronous job definitions, you can also
configure the directly attached policy for the Job-Callback policy subject.

To configure Job-Callback directly attached policy for an asynchronous job
definition, repeat step 6 of this procedure and instead of Invoke, select Callback.
Select and attach the required OWSM service policy for the Job-Callback directly
attached policy.

ORACLE"

13-14

Creating and Using Process Jobs

This chapter describes how to use Oracle Enterprise Scheduler to create process jobs,
which run a script or binary command in a forked process.

This chapter includes the following sections:

e Introduction to Creating Process Job Definitions

* Creating and Storing Job Definitions for Process Job Types
* Using an Agent Handler for Process Jobs

* Process Job Locale

For information about how to use the Runtime Service, see Using the Runtime
Service.

14.1 Introduction to Creating Process Job Definitions

ORACLE

Oracle Enterprise Scheduler lets you run job requests of different types, including:
Java classes, PL/SQL stored procedures, or process jobs that run as spawned jobs.

To use Oracle Enterprise Scheduler to run process type jobs you need to specify
certain metadata to define the characteristics of the process type job that you want to
run. You may also want to specify properties of the job request, such as the schedule
for when it runs.

Specifying a process type job request with Oracle Enterprise Scheduler is a three step
process:

1. You create or obtain the script or binary command that you want to run with Oracle
Enterprise Scheduler. We do not cover this step because we assume that you
have previously created the script or command for the spawned process.

2. Using the Oracle Enterprise Scheduler APIs in your application, you create job
type and job definition objects and store these objects to the metadata repository.

3. Using the Oracle Enterprise Scheduler APIs you submit a job request. For
information about how to submit a request, see Using the Runtime Service.

After you create an application that uses the Oracle Enterprise Scheduler APIs, you
need to package and deploy the application.

At runtime, after you submit a job request you can monitor and manage the job
request. For more information on monitoring and managing job requests, see Using
the Runtime Service.

14-1

Chapter 14
Creating and Storing Job Definitions for Process Job Types

14.2 Creating and Storing Job Definitions for Process Job

Types

14.2.1 How

To use process type jobs with Oracle Enterprise Scheduler, you need to locate the
Metadata Service and create a job definition.

You create a job definition by specifying a name and a job type. When you create a
job definition you also need to set certain system properties. You can store the job
definition in the metadata repository using the Metadata Service.

For information about how to use the Metadata Service, see Using the Metadata
Service .

to Create and Store a Process Job Type

An Oracle Enterprise Scheduler JobType object specifies an execution type and
defines a common set of properties for a job request. A job type can be defined and
then shared among one or more job definitions. Oracle Enterprise Scheduler supports
three execution types:

e JAVA TYPE: for job definitions that are implemented in Java and run in the
container.

* SQL_TYPE: for job definitions that run as PL/SQL stored procedures in a database
server.

* PROCESS_TYPE: for job definitions that are binaries and scripts that run as separate
processes under the control of the host operating system.

When you specify the JobType you can also specify Syst enProperti es that define
the characteristics associated with the JobType. Table 14-1 describes the properties
that specify how the request should be processed if the request results in spawning a
process for a process job type.

Table 14-1 System Properties for Process Type Jobs

System Property

Description

Bl Z_ ERROR_EXI T_CODE Specifies the process exit code for a process job request that denotes an execution

CMDLI NE

business error. If this property is not specified, the system treats a process exit
code of 4 as an execution business error.

Command line required for invoking an external program.

ENVI RONMENT_VARI ABLES A comma-separated list of name/value pairs (hame=value) representing the

environment variables to be set for spawned processes.

REDI RECTED QUTPUT_FI LE Specifies the file where standard output and error streams are redirected for a

process job request.

REQUESTED_PROCESSCOR The Oracle WebLogic Server node on which a spawned job is executed.
SUCCESS_EXI T_CODE The process exit code for a process job request that denotes a successful

execution. If this property is not specified, the system treats a process exit code
of 0 as a successful completion.

WARNI NG_EXI T_CCDE The process exit code for a spawned job that denotes a successful execution. If this

ORACLE

property is not specified, the system treats a process exit code of 3 as a warning
exit.

14-2

Chapter 14
Creating and Storing Job Definitions for Process Job Types

Table 14-1 (Cont.) System Properties for Process Type Jobs

System Property

Description

WORK_DI R_ROOT

The working directory for a spawned process.

ORACLE

For more information about system properties, see Using Parameters and System
Properties .

Example 14-1 shows a sample job definition with a PROCESS TYPE.

As shown in Example 14-1, when you create and store a process job type, you do the
following:

e Use the JobType constructor and supply a Stri ng name and a
JobType. Execut i onType. PROCESS_TYPE argument.

e Obtain the metadata pointer, as shown in Accessing the Metadata Service. Use
the Metadata Service addJobType() method to store the JobType in metadata.

e The Medat dat aObj ect | d, returned by addJobType(), uniquely identifies metadata
objects in the metadata repository using a unique identifier.

Example 14-1 Creating an Oracle Enterprise Scheduler Job Definition and
Setting Job Definition Properties

i mport oracl e. as. schedul er. Concur r ent Updat eExcepti on;
i mport oracl e. as. schedul er. JobType;

i mport oracl e. as. schedul er. JobDefinition;

i mport oracl e. as. schedul er. Met adat aServi ce;

i nport oracl e. as. schedul er. Met adat aSer vi ceHandl e;

i mport oracl e. as. schedul er. Met adat aChj ect | d;

i mport oracl e. as. schedul er. Met adat aSer vi ceExcepti on;
i mport oracl e. as. schedul er. Paranet er | nf o;

i mport oracl e. as. schedul er. Paranet er | nf 0. Dat aType;

i mport oracl e. as. schedul er. ParaneterLi st;

i mport oracl e. as. schedul er. Syst enProperty;

i mport oracl e. as. schedul er. Val i dati onExcepti on;

void createDefinition()
throws Met adat aServi ceException, Concur rent Updat eExcepti on,
Val i dati onException

Met adat aServi ce netadata = ...
Met adat aSer vi ceHandl e nshandle = nul | ;

try
{

Par amet er I nfo pi nfo;
Par amet er Li st plist;

nmshandl e = et adat a. open();

/1 Define and add a PL/SQL job type for the application netadata.
String jobTypeNane = "ProcessJobDef Type";

JobType jobType = null;

Met adat aCbj ectld jobTypeld = null;

j obType = new JobType(j obTypeNane, JobType. Executi onType.
PROCESS_TYPE) ;

14-3

Chapter 14
Creating and Storing Job Definitions for Process Job Types

plist = new ParameterlList();
pinfo = SystenProperty. get SysPropl nfo(Syst enProperty. CVMDLI NE) ;
plist.add(pinfo.getName(), pinfo.getDataType(), "/bin/nmyprogram
argl arg2", false);
pi nfo = SystenProperty. get SysPropl nf o(SystenProperty.
ENVI RONVENT_VARI ABLES) ;

plist.add(pinfo.get Name(), pinfo.getDataType(),

"LD_LI BRARY_PATH=/usr/lib", false);
pinfo = SystenProperty. get SysPropl nfo(Syst enProperty. PRODUCT) ;
plist.add(pinfo.get Name(), pinfo.getDataType(), "HOWNTO PROD',

fal se);
j obType. set Paraneters(plist);
j obTypel d = met adat a. addJobType(nshandl e, jobType, "HONTO PROD');
/1 Define and add a job definition for the application nmetadata.
String jobDef Name = "ProcessJobDef";
JobDefinition jobDef = null;
Met adat aCbj ect1d jobDefld = null;
j obDef = new JobDefinition(jobDef Nane, jobTypeld);
j obDef . set Description("Deno Process Type Job Definition " +
j obDef Narre) ;
plist = new ParameterlList();
plist.add("myJobdef Prop", DataType.STRING "myJobdefVal", false);
pi nfo = SystenProperty. get SysPropl nf o(SystenProperty.
REDI RECTED_QUTPUT FI LE);
plist.add(pinfo.getNane(), pinfo.getDataType(), "/tnmp/" + jobDef Nane
+ ".out", false);
j obDef . set Paramet ers(plist);
jobDefld = netadata. addJobDefinition(nshandl e, jobDef,
"HOW TO _PROD");
}
catch (Exception e)
{
[...]
}
finally
{
/1 Cose metadata service handle in finally block.
if (null !'= nshandle)
{
met adat a. ¢l ose(nshandl e) ;
nshandl e = nul | ;
}
}
}

14.2.2 How to Create and Store a Process Type Job Definition

To use process type jobs, you need to create and store a job definition.

ORACLE 14-4

Chapter 14
Using an Agent Handler for Process Jobs

< Note:

After you create a job definition with a job type, you cannot change the type
or the job definition name. To change the job type or the job definition name,
you need to create a new job definition.

Example 14-1 shows how to create a job definition using the job definition constructor
and the job type. Table 14-1 describes some of the system properties that are
associated with the job definition.

As shown in Example 14-1, when you create and store a job definition you do the
following:

e Use the JobDefi ni tion constructor and supply a St ri ng name and a
Met adat aObj ect | D that points to a job type stored in the metadata.

e Set the appropriate properties for the new job definition.

e Obtain the metadata pointer, as shown in Accessing the Metadata Service. Then,
use the Metadata Service addJobDef i ni tion() method to store the job definition
in the metadata repository and to return a Met adat abj ect | D.

14.3 Using an Agent Handler for Process Jobs

Oracle Enterprise Scheduler requires an agent handler to manage individual process
jobs. The agent handler validates, spawns, monitors and controls process job
execution, and also returns the exit status of process jobs to Oracle Enterprise
Scheduler.

The agent handler also monitors Oracle Enterprise Scheduler availability and handles
job cancellation requests. In the event of abnormal job termination (or job cancellation
requests), the agent handler terminates the spawned process (along with its children)
and exits. It detects the operating system type and uses appropriate system calls to
invoke, manage and terminate process jobs.

The Oracle Enterprise Scheduler agent handler can generate its log under the / t np
folder. Log generation must be enabled by setting the Oracle Enterprise Scheduler log
level to FI NE, FI NER or FI NEST and ensuring read and write access to the / t np folder.
One log file is generated for each process job invocation. The log file lists the process
job invocation log, including a list of environment variables, the command line and
redirected output file specified for the process job, process ID and exit code for the
process job or errors detected while spawning the process.

14.3.1 Choosing an Agent Handler

ORACLE

Oracle Enterprise Scheduler provides two different agent handlers, the Java agent
handler and the Perl agent handler. Both agent handlers are functionally equivalent
with the exception that the Java agent handler does not support t er ni nat e- spawned-
process-on-restart behavior on Windows.

By default, Oracle Enterprise Scheduler uses the Java agent handler for requests in
standard and extended mode. It always uses the Perl agent handler for requests in
Fusion mode. To use the Perl agent handler in standard and extended request modes,

14-5

Chapter 14
Process Job Locale

you must add the Per| Command property to the ess- confi g. xm file associated with the
hosting application running the process job as shown in the following example.

<EssProperties>

<EssProperty key="RequestFileDirectory" val ue="/tnp/ess/
requestFileDirectory"/>

<EssProperty key="RequestFil eDirectoryShared" val ue="fal se"/>

<EssProperty key="Perl| Cormand" val ue="/usr/bin/perl"/>
</ EssProperties>

You can use token substitution to specify environment dependent values like directory
names. Refer to Using Tokens and Logical Clusters for more information.

The Oracle Enterprise Scheduler Perl agent handler requires Oracle Perl version
5.10 or later. Instructions for installing Perl to support process jobs can be found in
the chapter "Configuring Perl to Support Process Jobs" in Oracle Fusion Middleware
Administering Oracle Enterprise Scheduler.

Note:

If you run Oracle Enterprise Scheduler in a Fusion Applications environment
you must use the Perl agent handler.

14.4 Process Job Locale

Individual process jobs can use different locales and encoding as determined by the
locale environment variable settings applicable to the process job at execution time.
For a process job, Oracle Enterprise Scheduler imports the request log and output file
into the content store after completing the request.

Locale environment variables for a process job can be specified at multiple places
including the process job definition and the hosting application's ess- confi g. xnl file.
The locale resolution logic for a process job uses the following precedence order to
determine the effective LC_ALL and LANG environment variable values for the request:

1. SYS environnent variables associated with the request (highest precedence)
2. The hosting application's ess- confi g. xn file
3. The WebLogic server locale (lowest precedence)

For every process job, the effective locale and encoding is determined based on the
above precedence order (with the effective LC_ALL value overriding the effective LANG
value). This encoding applies to the log only, and not the output.

ORACLE 14-6

Defining and Using Schedules

This chapter describes how to define schedules that you can associate with a

Oracle Enterprise Scheduler job definition, specifying when a job request runs and
including administrative actions such as workshifts that specify time-based controls for
processing with Oracle Enterprise Scheduler.

This chapter includes the following sections:

* Introduction to Schedules

» Defining a Recurrence

* Defining an Explicit Date

* Defining and Storing Exclusions

» Defining and Storing Schedules

e Identifying Job Requests That Use a Particular Schedule
e Updating and Deleting Schedules

15.1 Introduction to Schedules

Using Oracle Enterprise Scheduler you can create a schedule to determine when a
job request runs or use a schedule for other purposes, such as determining when a
work assignment becomes active. A schedule can contain a list of explicit dates, such
as July 14, 2012. A schedule can also include expressions that represent a set of
recurring dates (or times and dates).

Using Oracle Enterprise Scheduler you create a schedule with one or more of the
following:

» Explicit Date: Defines a date for use in a schedule or exclusion.

* Recurrence: Contains an expression that represents a pattern for a recurring date
and time. For example, you can specify a recurrence representing a regular period
such as Mondays at 10:00AM.

» Exclusion: Contains a list of dates to exclude or dates and times to exclude from a
schedule. For example, you can create an exclusion that contains a list of holidays
to exclude from a schedule.

15.2 Defining a Recurrence

ORACLE

A recurrence is an expression that represents a recurring date and time. You specify
a recurrence using an Oracle Enterprise Scheduler Recurr ence object. You use a
Recurrence object when you create a schedule or with an exclusion to specify a list of
dates.

The Recurrence constructor allows you to create a recurrence as follows:

» Using the fields defined in the Recur r enceFi el ds class, such as DAY_OF MONTH.

15-1

Chapter 15
Defining a Recurrence

» Using a recurrence expression compliant with the iCalendar (RFC 2445)
specification. For information about using iCalendar RFC 2245 expressions see,

http://ww.ietf.org/rfc/rfc2445.txt

Note:

When you create a recurrence you can only use one of these two
mechanisms for each recurrence instance.

A recurrence can also include the following (these are not required):

» Start date: The starting time and date for the recurrence pattern.
» End date: The ending time and date for the recurrence pattern.

» Count: The count for the recurrence pattern. The count indicates the maximum
number of occurrences the object generates. For example, if you specify a
recurrence representing a regular period such as Mondays at 10:00AM, and a
count of 4, then the recurrence includes only four Mondays.

The start date, end date, and count attributes are valid for either a Recur r enceFi el ds
helper based instance or an iCalendar based instance of a recurrence.

You can validate a recurrence using the recurrence val i dat e() method that checks if

an instance of a Recurr ence object represents a well defined and complete recurrence
pattern. A Recur r ence instance is considered complete if it has the minimum required

fields that can generate occurrences of dates or dates and times.

15.2.1 How to Define a Recurrence with a Recurrence Fields Helper

You can create a recurrence using a recurrence fields helper. The RecurrenceFi el ds
helper class provides a user-friendly way to specify a recurrence pattern. Table 15-1
shows the recurrence fields helper classes available to specify a recurrence pattern.

Table 15-1 Recurrence Field Helper Patterns
|

Recurrence Field Description

DAY_OF_MONTH Defines the day of a month

DAY_OF_VEEK Enumeration of the day of a week

FREQUENCY Defines the repeat frequency of a Recurrence. Choices are:

e DAILY: Indicates every day repetition

e HOURLY: Indicates every hour repetition
M NUTELY: Indicates every minute repetition
e MONTHLY: Indicates every month repetition

o SECONDLY: Indicates every second repetition
e WEEKLY: Indicates every week repetition

« YEARLY: Indicates every year repetition

MONTH_OF YEAR Defines the months of the year
TI ME_OF_DAY Defines the time of the day
VEEK_OF _MONTH Enumerations for the week of a month

ORACLE 15-2

http://www.ietf.org/rfc/rfc2445.txt

ORACLE

Chapter 15
Defining a Recurrence

Table 15-1 (Cont.) Recurrence Field Helper Patterns

__|
Recurrence Field Description

YEAR Encapsulate the value of a year

Example 15-1 shows a sample recurrence created using the Recur r enceFi el ds helper
class with a weekly frequency (every Monday at 10:00 a.m.) using no start or end
date.

In Example 15-1, note the following:

* The schedule becomes active as specified with the start time supplied at runtime
by Oracle Enterprise Scheduler when a job request that uses the schedule is
submitted.

* The interval parameter 1 specifies that this recurrence generates occurrences
every week. You calculate this value by multiplying the frequency with the interval.

Example 15-2 shows a sample recurrence for every 4 hours with no start or end date.
The recurrence was created using the Recur r enceFi el ds helper class with an hourly
frequency, an interval multiplier of 4, a null start date, and a null end date.

In Example 15-2, note the following:

* The schedule becomes active as specified with the start time supplied at runtime
by Oracle Enterprise Scheduler when a job request that uses the schedule is
submitted.

* The interval parameter 4 specifies that this recurrence generates occurrences
every 4 hours. You calculate this value by multiplying the frequency with the
interval.

Example 15-3 shows a sample recurrence created using the RecurrenceFi el ds helper
class and a monthly frequency.

Example 15-3 specifies a recurrence with the following characteristics:

e Includes an interval parameter with the value 1 specifies that this recurrence
generates occurrences every month.

* Includes a specification for the week of month, indicating the second week.
* Includes a specification for the day of week, Tuesday.
* Includes the specification for the time of day, with the value 11:00.

Example 15-4 shows a sample recurrence created using the Recur renceFi el ds helper
class and a monthly frequency specified with a start date and time.

Example 15-4 defines a recurrence with the following characteristics:

e The end date is specified as null meaning no end date.

e Using this recurrence, the start date is specified with the Cal endar instance cal ,
and its value is set with the set () method calls.

Example 15-1 Defining a Recurrence with Weekly Frequency

Recurrence recurl =
new Recurrence(RecurrenceFi el ds. FREQUENCY. WEEKLY, 1, null, null);
recur 1. addDayOf Week(Recur renceFi el ds. DAY_OF_WEEK. MONDAY) ;

15-3

Chapter 15
Defining a Recurrence

recurl. set Recur Ti me(RecurrenceFi el ds. TI ME_OF_DAY. val ueGf (10, 0, 0));
recurl.validate();

Example 15-2 Defining a Recurrence with Four Hourly Frequency

Recurrence recur2 =
new Recurrence(RecurrenceFi el ds. FREQUENCY. HOURLY, 4, null, null);
recur2.validate();

Example 15-3 Defining a Recurrence with Monthly Frequency

Recurrence recur3 =

new Recurrence(RecurrenceFi el ds. FREQUENCY. MONTHLY, 1, null, null);
recur 3. add\WeekOf Mont h(Recur r enceFi el ds. WEEK_OF _MONTH. SECOND) ;
recur 3. addDayOf Week(Recur renceFi el ds. DAY_OF_ WEEK. TUESDAY) ;
recur 3. set Recur Ti me(Recur renceFi el ds. TI ME_OF_DAY. val ueOf (11, 00, 00));
recur3.validate();

Example 15-4 Defining a Recurrence with Start Date and Time Specified

Cal endar cal = Cal endar.getlnstance();

cal . set (Cal endar. YEAR, 2007);

cal . set (Cal endar. MONTH, Cal endar. JULY);

cal . set (Cal endar. DAY_OF_MONTH, 1);

cal . set(Cal endar. HOUR, 9);

cal . set (Cal endar. M NUTE, 0);

cal . set (Cal endar. SECOND, 0);

Recurrence recur4 = new Recurrence(RecurrenceFi el ds. FREQUENCY. WEEKLY,
1,
cal,
null);

recur4.validate();

15.2.2 How to Define a Recurrence with an iCalendar RFC 2445
Specification

ORACLE

You can specify a recurrence pattern using the Recur r ence constructor with a St ri ng
containing an iCalendar (RFC 2445) specification.

For information about using iCalendar RFC 2245 expressions see the following link:
http://ww.ietf.org/rfc/rfc2445. txt

Example 15-5 shows a sample recurrence created using an iCalendar expression.

¢ Note:
The following are not supported through iCalendar expressions:
COUNT, UNTI L, BYSETPCS, WKST

You can still directly specify a count on the Recurr ence object using the
set Count method.

15-4

http://www.ietf.org/rfc/rfc2445.txt

Helper

ORACLE

Chapter 15
Defining a Recurrence

Example 15-5 Defining a Recurrence with an iCalendar String Expression

Recurrence recur5 = new
Recurrence(" FREQ=YEARLY; | NTERVAL=1; BYMONTH=5; BYDAY=2MD, ") ;
recur5.validate();

15.2.3 What You Need to Know When You Use a Recurrence Fields

When you define a recurrence with a Recurr enceFi el ds helper, note the following:

Providing a frequency with one of the Recur r enceFi el ds. FREQUENCY constants
is always mandatory when you define a recurrence pattern using the

Recur renceFi el ds helper classes (for more information on frequency, see
Table 15-1).

The frequency interval supplied with the recurrence constructor is an integer that
acts as a multiplier for the supplied frequency. For example if the frequency is
RecurrenceFi el ds. FREQUENCY. HOURLY and the interval is 8, then the combination
represents every 8 hours.

Providing either a start or end date is optional. But if a start or end date is
specified, it is guaranteed that the object does not generate any occurrences
before the start date or after the end date (and if specified, any associated start
time or end time).

In general if both start date and recurrence fields are used, then the recurrence
fields always take precedence. This qualification means the following:

— If a start date is specified with just the frequency fields from the
Recur renceFi el ds then the start date defines the occurrences with the
frequency field, starting with the first occurrence on the start date itself.
For example if a start date is specified as 01-MAY-2007:09:00:00 with a
Recur renceFi el ds. FREQUENCY of WVEEKLY without using other recurrence fields,
the occurrences happen once every week starting on 01-MAY-2007:09:00:00
(and including 08-MAY-2007:09:00:00, 15-MAY-2007:09:00:00, and so on).

Thus, providing a start date along with a specification of frequency fields
provides a quick way of defining a recurrence pattern.

— If the start date or end date is specified together with additional recurrence
fields, the recurrence fields take precedence, and the start date or end date
only act as absolute boundary points. For example, with a start date of 01-
MAY-2007:09:00:00 and a frequency of VEEKLY if the additional recurrence
field DAY_OF VEEK is used with a value of WEDNESDAY the occurrence happens
on every Wednesday starting with the first Wednesday that comes after 01-
MAY-2007. Because 01-MAY-2007 is a Tuesday, the first occurrence happens
on 02-MAY-2007:09:00:00 and not on 01-MAY-2007:09:00:00.

In this case, with the start date of 01-MAY-2007:09:00:00, if the TI ME_OF_DAY is
also specified as 11:00:00, all the occurrences happen at 11:00:00 overriding
the 09:00:00 time from the starting date specification.

When just a frequency is supplied and a recurrence does not include either a
start date, start time, or a TI ME_OF_DAY field, the occurrences happen based on
a timestamp that Oracle Enterprise Scheduler supplies at runtime (typically this
timestamp is provided during request submission).

15-5

Chapter 15
Defining an Explicit Date

For example, when a recurrence indicates a 2 hour recurrence then the time of
the job request submission determines the start time for the occurrences. Thus, in
such cases the occurrences for a job request are each 2 hours apart, but when
multiple job requests are submitted, the start times are different and are set at the
request submission time for the job requests.

When the start date is not used, recurrence fields can be included such

that a recurrence pattern is completely defined. For example, specifying a
MONTH_OF_YEAR alone does not define a recurrence pattern when a start date is
not also present. Without a start date the number of minimum recurrence fields
required to define a pattern depends upon the value of the frequency used.

For example with frequency of WVEEKLY, only DAY _OF WEEK and TI ME_OF DAY are
sufficient to define which day the weekly occurrences should happen. With a
frequency of YEARLY, MONTH_OF_YEAR, DAY_OF_MONTH (or the WEEK_OF _MONTH and
DAY_OF MEEK) and the Tl ME_OF_DAY are sufficient to define the recurrence pattern.

You can supply multiple values for recurrence fields, except for the frequency

field. However, at runtime Oracle Enterprise Scheduler skips invalid combinations
silently. For example with MONTH_OF_YEAR specified as January and ending in June,
and with DAY_OF_MONTH as 30, the recurrence skips an invalid day, that is day 30
for February.

15.2.4 What You Need to Know When You Use an iCalendar

Expression

When you define a recurrence with an iCalendar expression, note the following:

When the recurrence does not include either a start date or time and the iCalendar
expression does not specify a time of day, the occurrences happen based on

a timestamp that Oracle Enterprise Scheduler supplies at runtime (typically this
timestamp is provided during request submission).

For example a recurrence can indicate a 2 hour recurrence, and the start date
and time of the job request submission determines the exact start time for the
occurrences. Note that in such cases, when the start time is not specified,
occurrences for different job requests can happen at different times, based on
the submission time, but the individual occurrences are 2 hours apart.

Providing either a start date with set St art Dat e() or an end date with

set EndDat e() is optional. But if a start or end date is specified, it is guaranteed
that the object does not generate any occurrences before the start date or after the
end date (and if specified, any associated start time or end time).

15.3 Defining an Explicit Date

An explicit date defines a date and time for use in a schedule or an exclusion. You
construct an Expl i ci t Dat e using appropriate fields from the RecurrenceFi el ds class.

15.3.1 How to Define an Explicit Date

Example 15-6 shows an explicit date definition.

ORACLE

15-6

Chapter 15
Defining and Storing Exclusions

Example 15-6 Defining an Explicit Date

ExplicitDate date = new ExplicitDate(RecurrenceFiel ds. YEAR val ue(f (2007),
RecurrenceFi el ds. MONTH_OF_YEAR. AUGUST, RecurrenceFi el ds. DAY_OF_MONTH. val ueOf (17)) ;

In Example 15-6 a RecurrenceFi el ds helper defines a date in the constructor and the
value does not include a time of day. You can optionally use set Ti e to set the time
associated with an explicit date.

15.3.2 What You Need to Know About Explicit Dates

The Expl i ci t Dat e class provides the ability to define a partial date, when compared
with j ava. util. Cal endar where the time part is not specified. Also all other

java. util. Cal endar fields such as Ti meZone are not defined with an Expl i ci t Dat e.
When the time part is not specified in an Expl i ci t Dat e, Oracle Enterprise Scheduler
computes the time appropriately. For example, consider a schedule that indicates
every Monday after June 1, 2007, and adds an explicit date for the 17th of August
2007 (a Friday). In this example, the 17th of August 2007 is a partial date since it does
not include a time.

15.4 Defining and Storing Exclusions

Using an Oracle Enterprise Scheduler exclusion you can represent dates that need to
be excluded from a schedule. For example, you can use an exclusion to create a list of
holidays to skip in a schedule.

15.4.1 How to Define an Exclusion

You represent an individual exclusion with an Excl usi on object. You can define the
dates to exclude in an exclusion using either an Expl i ci t Dat e or with a Recurrence
object.

Example 15-7 shows how to create an Excl usi on instance using a recurrence.

Example 15-7 defines an individual exclusion. For information about creating a list of
Exclusions, see How to Create an Exclusions Definition.

Example 15-7 Defining Explicit Dates and an Exclusion

Recurrence recur = new Recurrence(RecurrenceFi el ds. FREQUENCY. YEARLY, 1);
recur . addMont h(Recur renceFi el ds. MONTH_OF_YEAR. JULY) ;

recur. addDayOf Mont h(Recur renceFi el ds. DAY_OF_MONTH. val ueCf (4)) ;

Excl usi on e = new Excl usi on("| ndependence Day", recur);

15.4.2 How to Create an Exclusions Definition

ORACLE

To create a list of exclusions and persist the exclusion dates you do the following:
1. Create a list of exclusions.
2. Define an Excl usi onsDef i ni ti on object using the list of exclusions.

3. Use the Metadata Service addExcl usi onDef i ni ti on() method to persist the
Excl usi onsDef i ni tion.

15-7

Chapter 15
Defining and Storing Schedules

Example 15-8 Creating and Storing a List of Exclusions in an
ExlusionDefinition

Col | ecti on<Excl usi on> excl usi ons = new ArrayLi st <Excl usi on>();

Excl usi on e = new Excl usi on("| ndependence Day", recur);

excl usi ons. add(e);

Excl usi onsDefinition exDefl =

new Excl usi onsDefinition("O cl Holidaysl", "Annual Holidays", exclusions);
Met adat aSer vi ceHandl e handl e = m service. open();

Met adat aChj ect1d exld1l = m servi ce. addExcl usi onDefi ni ti on(handl e, exDef 1,
" METADATA_UNI TTEST_PROD') ;

Finally, when you want to associate an Excl usi onsDef i ni ti on with a schedule, you
use the schedule addExcl usi on() method.

Example 15-8 shows how to create an Excl usi onDef i ni ti on and store the definition
to the metadata repository.

Note in Example 15-8 that the Excl usi onsDef i ni ti on constructor requires three
arguments.

15.5 Defining and Storing Schedules

Using Oracle Enterprise Scheduler you can create a schedule to determine when a
job request runs or use the schedule for other purposes (such as determining when a
work assignment becomes active). A schedule contains a list of explicit dates, such as
June 13, 2007 or a set of expressions that represent a recurring date or date and time.
A schedule can also specify specific exclusion and inclusion dates.

You create a schedule using the following:

» Explicit Dates: Define a date for use in a schedule or exclusion. For more
information, see Defining an Explicit Date

* Recurrences: Contain an expression that represents a pattern for a recurring date
and time. For example, you can specify a recurrence representing a regular period
such as Mondays at 10:00AM. For more information, see Defining a Recurrence

* Exclusions: Contain a list of dates to exclude or dates and times to exclude
from a schedule. For example, you can create an exclusion that contains a list
of holidays to exclude from a schedule. For more information, see Defining and
Storing Exclusions

15.5.1 How to Define and Store a Schedule

ORACLE

To define a schedule:

1. Create a schedule by defining an Oracle Enterprise Scheduler Schedul e object
and using the schedule constructor to create a new schedule.

2. Obtain a metadata service reference, m net adat aSer vi ce, and open a metadata
session in atry block with Met adat aSer vi ceHandl e.

Met adat albj ectd scheduleld =
m servi ce. addSchedul eDefi ni ti on(handl e, schedul e, "HON TO PROD") ;

3. Define the date, recurrences and exclusions.

4. Store the schedule using addSchedul eDef i ni tion.

15-8

Chapter 15
Defining and Storing Schedules

5. Close the session with a fi nal | y block.

15.5.2 What Happens When You Define and Store a Schedule

Example 15-9 shows a sample schedule definition using a recurrence with the
Recur renceFi el ds helper class for a weekly schedule, specified to run on Mondays
at 10:00AM.

The schedule uses the addl ncl usi onDat e() method to add an explicit date to
the occurrences in the schedule, and the addExcl usi onDat e() method to explicitly
exclude the date of May 15 from schedule occurrences.

Example 15-10 shows sample code used to store a schedule. The method
addSchedul eDefi ni tion() is used to store the schedule within a t ry block, followed
by a final | y block that includes error handling.

Example 15-9 Creating a Schedule Recurrence with RecurrenceFields Helpers

Recurrence recur = new Recurrence(RecurrenceFi el ds. FREQUENCY. VEEKLY, 1);
recur. addDayOf Week(Recur r enceFi el ds. DAY_OF_WEEK. MONDAY) ;
recur. set Recur Ti me(RecurrenceFi el ds. TI ME_OF_DAY. val ueCf (10, 0, 0));

ExplicitDate julyl0 = new ExplicitDate(RecurrenceFi el ds. YEAR val ueCf (2008),
RecurrenceFi el ds. MONTH_OF_YEAR JULY,
RecurrenceFi el ds. DAY_OF_MONTH. val ueCf (10)) ;

ExplicitDate mayl5 = new ExplicitDate(RecurrenceFi el ds. YEAR val ueOf (2008),
RecurrenceFi el ds. MONTH_OF_YEAR MAY,
RecurrenceFi el ds. DAY_OF_MONTH. val ueCf (15)) ;

Schedul e schedul e = new Schedul e("everyMnday", "Wekly Schedul e", recur);
schedul e. addl ncl usi onDat e(j ul y10);
schedul e. addExcl usi onDat e(may15);

Example 15-10 Storing a Schedule

Met adat aSer vi ceHandl e handl e = nul | ;
bool ean abort = true;

try
{
handl e = m service. open();
m servi ce. addSchedul eDefi ni ti on(handl e, schedule, "HOWTO PROD');
abort = fal se;
finally
if (handle !'= null)
{
m servi ce. cl ose(handl e, abort);
}
}

15.5.3 What You Need to Know About Handling Time Zones with
Schedules

You can use ajava. util . Ti meZone object to set the time zone for a schedule. Use
the Schedule set Ti meZone() method to set or clear the Ti neZone for a Schedule. The

ORACLE 15-9

Chapter 15
Identifying Job Requests That Use a Particular Schedule

Schedule method get Ti neZone() returns a j ava. util . Ti meZone value if the Schedule
object has as Ti neZone set.

15.6 Identifying Job Requests That Use a Particular
Schedule

You can use Fusion Middleware Control to search for job requests that use a particular
schedule.

For more information about searching for job requests that use a certain schedule, see
the section "Searching for Oracle Enterprise Scheduler Job Requests" in the chapter
"Managing Oracle Enterprise Scheduler Requests" in Oracle Fusion Middleware
Administering Oracle Enterprise Scheduler.

15.7 Updating and Deleting Schedules

You can use Fusion Middleware Control to edit and delete schedules.

For information about editing and deleting schedules, see the section "Managing
Schedules" in the chapter "Managing Oracle Enterprise Scheduler Requests" in Oracle
Fusion Middleware Administering Oracle Enterprise Scheduler.

ORACLE 15-10

Using the Oracle Enterprise Scheduler
Web Service

This chapter describes how you can use the Oracle Enterprise Scheduler web service
for accessing a subset of the Oracle Enterprise Scheduler runtime functionality.

This chapter includes the following sections:

e Introduction to the Oracle Enterprise Scheduler Web Service
» Developing and Using ESSWebservice Applications
 ESSWebservice WSDL File

* Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL
Process

16.1 Introduction to the Oracle Enterprise Scheduler Web
Service

Oracle Enterprise Scheduler provides a rich set of functionality for enterprise level
scheduling.

This functionality includes support for the following operations:

» Creating and managing Oracle Enterprise Scheduler metadata
e Submitting and managing Oracle Enterprise Scheduler job requests
e Configuring and managing Oracle Enterprise Scheduler

Client applications can use the Oracle Enterprise Scheduler web service
(ESSWebservice) to access a subset of the Oracle Enterprise Scheduler runtime
functionality. The ESSWebservice is provided primarily to support SOA integration,
for example invoking Oracle Enterprise Scheduler from a BPEL process. However,
any client that requires a web service to interact with Oracle Enterprise Scheduler
can use ESSWebservice. ESSWebservice exposes job scheduling and management
functionality for request submission and request management.

ESSWebservice is deployed within the Oracle Enterprise Scheduler application, where
the application is a Java EE application within the Oracle Enterprise Scheduler runtime
framework. Thus, the ESSWebservice is available on every node where Oracle
Enterprise Scheduler is installed and deployed.

The ESSWebservice is a synchronous web service, such that all the operations
invoked are synchronous operations. Although the Oracle Enterprise Scheduler
internal job execution model is asynchronous, the ESSWebservice APIs need not be
asynchronous. However, Oracle Enterprise Scheduler web service also provides the
capability to retrieve the job completion events asynchronously (in a manner similar to
implementing the Oracle Enterprise Scheduler EventListener contract in the core API
layer).

ORACLE 16-1

Chapter 16
Introduction to the Oracle Enterprise Scheduler Web Service

The ESSWebservice WSDL describes the complete functionality for the
ESSWebservice. Table 16-1 summarizes the operations available with
ESSWebservice.

Table 16-1 Summary of Operations Available with ESSWebservice

Operation Communication Description
Type
addPPAct i on Synchronous Adds a post-processing action to a step in a job set request.
This method is called prior to submitting the request. The
method provides support for action previously supported
by add_printer, add_notification, add_layout in concurrent
processing. The parameters to these legacy routines are
passed as arguments to addPPAction in the order in which they
were declared in the original routine.
addPPAct i ons Synchronous Similar to addPPAct i on, except that you can package multiple
actions in your request.
cancel Request Synchronous Cancels the processing of a request that is not in a terminal
state.
Oracle Enterprise Synchronous Marks a request in a terminal state for deletion. This does not
SchedulerOracle physically remove any data, although the request is no longer
Enterprise be accessible by most methods.
SchedulerCracle For parent requests, this operation cascades to all children.
Enterprise Scheduler
Oracle Enterprise
SchedulerOracle
Enterprise Scheduler
get Conpl eti onSt at us Asynchronous Registers for an asynchronous status update when the request
completes. A one-way operation with a separate asynchronous
response.
get Request Executi onCo Synchronous Gets an or acl e. as. schedul er. Request Exect i onCont ext
nt ext object from a serialized request execution context string. This
operation should only be invoked from a remote running ESS
job.
get Request Det ai | Synchronous Gets the runtime details of the specified request.
get Request Stat e Synchronous Retrieves the current state of the specified request.
hol dRequest Synchronous Withholds further processing of a request that is in WAI T or
READY state. For parent requests, this operation cascades to all
eligible child requests.
rel easeRequest Synchronous Releases a request from the HOLD state. For parent requests,
this operation cascades to all eligible child requests.
set AsyncRequest St at us Synchronous Sets the status of an asynchronous java job.
set NLSOpt i ons Synchronous Sets NLS environment options for a request.
set St epsArgs Synchronous Marshals arguments in the previous concurrent processing style
into a Oracle Enterprise Scheduler properties for a step in a
job set request. This operation is invoked prior to submitting a
request.
ORACLE 16-2

Chapter 16
Developing and Using ESSWebservice Applications

Table 16-1 (Cont.) Summary of Operations Available with ESSWebservice

Operation Communication Description
Type
set Submi t Ar gs Synchronous Marshals arguments in the previous concurrent

processing style into Oracle Enterprise Scheduler
properties.This operation is invoked prior to submitting

the request. The key of each argument is
ARGUMENT_PREFIX#, where # is the ordinal value of the
argument. For example ARGUMENT_PREFIX1="firstArg" and
ARGUMENT_PREFIX2="secondArg".

submi t Recurri ngReques Synchronous Submits a new recurring job request (a request with a

t
submi t Request

schedule).

Synchronous Submits a new job request. For more information, see Use
Case: Using Oracle Enterprise Scheduler ESSWebservice from
a BPEL Process

16.2 Developing and Using ESSWebservice Applications

ORACLE

Oracle Enterprise Scheduler executes a job request, for example a Java type job
request, in the context of the application that submitted the job.

Typically, for development purposes, Oracle Enterprise Scheduler and client
applications co-exist locally on any given node which allows Oracle Enterprise
Scheduler to execute the job in the context of the target application. For the purposes
of production, the client application and Oracle Enterprise Scheduler often reside on
different servers.

A Java EE application that uses Oracle Enterprise Scheduler contains all the Oracle
Enterprise Scheduler artifacts including the following:

* Metadata, including a job type, a job definition, a schedule, and any other required
metadata such as a job set.

e Job implementation classes (for Java jobs).

A Required Oracle Enterprise Scheduler endpoint description (an MDB description
inejb-jar.xn).

Any clients interacting with Oracle Enterprise Scheduler using ESSWebservice need to
provide this type of Java EE application, so that Oracle Enterprise Scheduler can run
jobs in the context of the correct target application. All such web service clients must
know the name of the corresponding Java EE hosting application and should pass it

to Oracle Enterprise Scheduler and should pass it to the Oracle Enterprise Scheduler
web service call wherever required (as defined in the WSDL).

Such an application is a regular Oracle Enterprise Scheduler client application,
where the job request submission and management are done using ESSWebservice
operations.

16-3

Chapter 16
Developing and Using ESSWebservice Applications

16.2.1 How to Develop and Use an ESSWebservice Java EE

Application

When the Oracle Enterprise Scheduler functionality is accessed using the
ESSWebservice web service, a corresponding hosting Java EE application must be
available to Oracle Enterprise Scheduler. Even though clients can interact with Oracle
Enterprise Scheduler remotely using the Oracle Enterprise Scheduler web service,

the associated Java EE hosting application must still be co-located with Oracle
Enterprise Scheduler. This allows Oracle Enterprise Scheduler to execute job requests
in the correct application context. Therefore, ESSWebservice clients must still develop,
package and deploy a corresponding Java EE hosting application that contains all the
required Oracle Enterprise Scheduler artifacts.

16.2.2 How to Develop and Use an ESSWebservice SOA Application

with BPEL

For SOA clients all the SOA components such as a BPEL process are deployed as
a SOA composite. A SOA composite is not a Java EE application. The composite is
executed using the SOA fabric runtime framework (within soa-infra).

For SOA components, create a separate Java EE hosting application that acts as

the proxy between the composite and Oracle Enterprise Scheduler. This hosting
application can either be created in a one-to-one association with one Oracle
Enterprise Scheduler application for each composite deployed, or multiple composites
can share a single Java EE hosting application. The Java EE hosting application
contains all the desired Oracle Enterprise Scheduler artifacts.

16.2.3 Setting Web Service Addressing Headers for
getCompletionStatus() Operation

ORACLE

As shown in the ESSWebservice WSDL, if clients want to be notified asynchronously
on job completion they can invoke the get Conpl eti onSt at us() operation. Upon

job completion, Oracle Enterprise Scheduler invokes the callback operation
onJobConpl etion() following ws-addressing where ESSWebservice captures the
caller's address in the incoming call. Clients should be capable of receiving the
callback at any arbitrary time in the future. Such a callback depends entirely upon the
time required to complete the job. This is similar to the Oracle Enterprise Scheduler
functionality for invoking a client's listener (that implements the Oracle Enterprise
Scheduler EventListener contract) upon job completion.

When you use get Conpl etionSt at us() clients must include certain required web
service addressing headers (in particular the wsa: Messagel D and wsa: Repl yTo
headers). This allows the Oracle Enterprise Scheduler runtime to asynchronously
notify the job completion status be sent to the correct Repl yTo address. When you
use get Conpl eti onSt at us() from a BPEL process the SOA runtime automatically
adds the required headers. When using get Conpl eti onSt at us() programmatically on
the client side, using the web service proxies, the web service client must set these
addressing headers.

16-4

Chapter 16
ESSWebservice WSDL File

16.2.4 Restrictions When Using ESSWebservice

ESSWebservice does not support the following Oracle Enterprise Scheduler features:

* Ad hoc Request Submission: ESSWebservice does not support ad hoc job
request submission (ad hoc request submission is available using the EJB
APIs). Therefore any job that is submitted using the ESSWebservice must have
its corresponding definition, including a job type and job definition along with
the schedule definitions created as metadata objects in the associated proxy
application. The web service operation can then refer to such metadata objects
using their identifier arguments as specified in the WSDL.

* Query APIl: ESSWebservice does not expose the query APls. Web service clients
do not need to obtain the query information for Oracle Enterprise Scheduler
requests. ESSWebservice web service clients do not provide generic monitoring
and managing functionality that would require the use of query APIs.

16.2.5 ESSWebservice Implementation

The Oracle Enterprise Scheduler functionality is exposed as web a service using a
Service Endpoint Interface (SEI) annotated with the JAX-WS annotations. The web
service implementation of this SEI web service invokes the common Oracle Enterprise
Scheduler implementation layer. The ESSWebservice is exposed in Document/literal
wrapped mode for maximum interoperability.

Some of the data types used in ESSWebservice are not suitable to be used in a web
service directly. Such data types cannot be readily converted into corresponding XML
representation. Therefore, the Oracle Enterprise Scheduler web service layer defines
wrapper classes around these data types that are exposed in the ESSWebservice, and
visible in the WSDL. In general, the web service layer reuses the existing data types
where possible.

16.3 ESSWebservice WSDL File

When Oracle Enterprise Scheduler is installed and running, you can obtain the WSDL
definition file from the web services page.

When Oracle Enterprise Scheduler is installed and running, you can obtain the WSDL
definition file from the web services page at the following type of URL:

http://host:port/ess/esswebservi ce?\WsDL

For example,

http://systeml: 7001/ ess/ esswebser vi ce?WsDL

Note that you cannot invoke web service operations by directly accessing the
ESSWebservice URL from a browser.

ORACLE 16-5

Chapter 16
Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

16.4 Use Case: Using Oracle Enterprise Scheduler
ESSWebservice from a BPEL Process

ORACLE

This example demonstrates how to use the ESSWebService from a BPEL process; in
the BPEL process you use ESSWebService to submit a job request.

The use case demonstrates one way of using Oracle Enterprise Scheduler for BPEL
and SOA users. Experienced SOA users and designers may have other ideas for how
to work with Oracle Enterprise Scheduler using the web service.

Oracle JDeveloper is used to create an application and the projects within the
application that contain the code and support files for the application.

JDeveloper provides accessibility options, such as support for screen readers,
screen magnifiers, and standard shortcut keys for keyboard navigation. You can
also customize JDeveloper for better readability, including the size and color of fonts
and the color and shape of objects. For information and instructions on configuring
accessibility in JDeveloper, see "Oracle JDeveloper Accessibility Information” in
Developing Applications with Oracle JDeveloper.

To create the ESSWebService sample application, follow these steps:
Start Oracle JDeveloper.

Click the New Application button.

In the New Gallery - Items area select SOA Application.

Click OK.

g © Db P

Use the Name your application window to enter the name and location for the
new application and to specify the application template.

a. Inthe Application Name field, enter an application name. For this example,
enter Ess\WebAppl i cati on.

b. Inthe Directory field, accept the default or specify a location for the
application to be created.

c. Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial project
of an application.

d. Click Next.
6. Inthe Name Your Project dialog, select SOA project options.

a. Inthe Project Name field, enter a project name or accept the default,
Proj ect 1.

b. On the Project Features tab, select SOA Suite.
c. Click Next.

7. Inthe Configure SOA Settings dialog, select Composite with BPEL Process and
click Finish.

8. Choose one of the two BPEL specifications as shown in Figure 16-1.

16-6

Chapter 16
Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-1 Choose a BPEL Specification

Create BEPEL Process

BPEL Process |_:[
A BPEL process is a service orchestration, based on the EPEL specification, used to ﬁ

describefexecute a business process {or large grained service), which is implemented as a
stateful service.

(@) BPEL 2.0 Specification| () BPEL 1.1 Specification

Name: |EPELProcessl |

MNamespace: |http:,’,‘xmIns.oracle.com,'Applicationlerojectl,’EPELProcessl |

Directory: |,’scratch,’shaiverm ftest_jdev fjdeveloper/mywork/Applicationl fProjectl /SOA JEPEL | 'Ck

Template: [f& Asynchronous BPEL Process '] @

Service Mame: |bpe|processl_cliem |

Expose as a SOAP service

Delivery: [async.persist "] @

Input: |{http:,i,i><mIns.oracle.com,-‘AppIicationl,p‘Projectl,fBPELProcessl}process | Ck

Qutput: |,l’,h<mIns.oracle.comp‘Application1,-‘Project1,l‘BPELProcess1}processResponse| Ck

Help | oK | Cancel

Select the service type from the Template dropdown menu as shown in
Figure 16-2 and click OK.

Figure 16-2 Selecting the Service Type

Create BPEL Process

BPEL Process |_:[
A BPEL process is a service orchestration, based on the BPEL specification, used to ﬁ

describe/execute a business process (or large grained service), which is implemented as a
stateful service.

(%) BPEL 2.0 Specification () BPEL 1.1 Specification

Mame: |BPELProcessl |

Mamespace: |http:},’xmIns.oracle.com,’AppIication2,’ProjectljBPELProcessl |

Directory: |jscratch}shai\termjtest_jdev,’jdeveloper,’mv\mrk,’ﬁpplicationZ,’ProjectljSDA,’EPEL | Cg

Template: E}!nsynchronous EPEL Process

3PEL Pro
Synchronous BEPEL Process
=0 One Way EFEL Process
-C} Cefine Service Later
| Base on a WSDL
1 .
I P' SUbslfrletF? Events B T T T T T T | Ck

Service Name:

Qutput: |NxmIns.oracle.com,n‘AppIication2,l’Projectl,u‘BPELProcessl}processResponse| C}%a

Help . OK | Cancel

ORACLE"

16-7

Chapter 16
Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

10. In the Editor pane (BPELPr ocessl. bpel), drag the Schedule Job component from
the Oracle Extensions section of the Components palette to the position between
the receivelnput and callBackClient components as shown in Figure 16-3.

Figure 16-3 Adding the Schedule Job Component

@ Start Page D{E Projectl ﬁli BPELProcessl.bpel] Components

|§,Mamprocess '|V g~ | @2 '%'n'ﬁ" 9'@@@@ > 0 ng O

g@@ &| @ BPEL 2.0

Partner Links Fartner Links M | I BPEL Constructs
2 O | Subprocesses
=l Oracle Extensions
=) =
g Dehydrate Java
Embedding
@ o
Replay
receivelnput
oy
o
5 Translate
f e —
1 o A
@ '4 i i Transfarm
bpelprocessl_client - -
\Sthedulejobl s B H
XQuery HELT
Transform Transform
callbackClient L_ﬁ lﬂ
| SOA Components
| BPEL Services
] Custom Activity Templates
: Properties
Q Find €]
@ schedule Job
process/sequence/scope Zoom: 1DD|§| Q A & Gene.lal. ; Applic
Application Properties
, Design| Source History

11. Create a connection to the metadata server as shown in Figure 16-4.

a. Click the New button in the resource window.

b. In the dropdown menu, select IDE Connecitons > SOA-MDS. In the Create

SOA-MDS Connection dialog, fill in the appropriate information about your
MDS server.

¢ Note:

You can also create the connection by choosing File > New Gallery
> General > Connections > SOA-MDS Connections.

ORACLE 16-8

Chapter 16

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-4 Creating a Connection to the Metadata Server

lga Applications Places System %@@5@

“a Oracle |Developer 12c Development Build - Applicationl.jws : Projectl.jpr

o,
o)

| & BPELProcess1.bpel
A M IR S S T T IRy
PeEvd e

Applications = i3
(=] Application1 - |~

2P @@V E

= [

Resources « |
Q[Hame

New Catalog...

=~ BPEL -
& BPELProcessL.bpel i 3r L3 =

@)

Partner Links ‘-

Import

) Refresh

E% E‘;:::as M ADF Business Components REST Service...
i B, BPELProcesslxsd =] Application Server..
-F] testsuites 3 BAM Connection..
------- [©] fiteListxmi L = Database
- Transformations > Eile System
{2 wsbLs 1 receivelnpu M.
< [s D LDAP...
+ Application Resources OEF Connection..
+ DataCont... @) 7 &~ v
-+ Recent Files & 3 UDDI Registry
S bpelprocessl_client schedulejob URL...
BPELPr. - Thumbnail | WebDAY..
@R $/% ' e

& BPELProcessl.bpel
[Partner Links
[variables
-] Correlation Sets
L[] Extensions

® [0 Impons

[Properties

callbackClient

@)

[Property Aliases
-] Message Types
[0 Inline Subprocesses
-] Activities

BPEL2.0

[] Show Detailed Node Infarm... zoom:[100[] =T Q\@h@

process/sequence/scope

BPEL

Source Design | Source Histary

Properties

=
Q, Find @

4§) »

@% Terminal 1 [vNC config] © Oracle JDeveloper 12c Development ... | |||

12.
the Edit Schedule Job dialog shown in Figure 16-5.

Figure 16-5 Editing Schedule Job

o Edit Schedule Job x

System Properties Skip Condition Targets Sources
Application Properties
Application: | |
Mame: [schedulejobl |
Description: ‘ | E
lob: \ |
Schsduie: | Q¢
Start Time: | | By
Help apply | ok | cancel
4

Right-click the Schedulejobl component and select the Edit item. This invokes

13. Click the Job browse button to select the job definition through the MDS

connection. Figure 16-6 shows an example.

ORACLE"

16-9

Chapter 16
Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-6 Selecting the Job Definition Through the MDS Connection

0 Enterprise Scheduler Browser x

Enterprise Scheduler Browser

MDS Connection: IMDSConnectionl - MDS Connection: |MDSCunnectiun1 -

I ESS Metadata [ESS Metadata
& & oracle SOA_DesignTimeRepository =5 oracle

-3 apps - apps
& ess
[=-[= demopackage
: @RemoteExecmableSyncEssSubReql
B
@ RemoteExecutableAsyncEjb)obWith

- [B RemoteExecutableSyncEjbjobWithL
b @ RemoteElEMetadataOperationjobDy
: @testComentHe\perManuallmport
@ LogginglevelTestGetLoggerExpn
: @TesIASvnchrnousWebSemcejob
b @TestSynchronousWebser-vi:ejob
i @ testContentHelperBasicOutput
; @RemoteAsvncSubReques‘UobDe‘rn

Help Cancel Help OK Cancel

14. If the Sys_effectiveApplication property is not defined in the job definition you
selected, you are prompted to provide it in Application field on the general tab.
If Sys_effectiveApplication property is defined in the selected job definition, it
appears in the Application field and cannot be edited. See Figure 16-7.

Figure 16-7 Defining the Sys_effectiveApplication Property (if not Already

Defined)
(D sanrage diProjestl | dh EPELrocessd opel ~ e Edit Schedule Job x
h Main Proce = -
o Edit Schedule job x e System Properties Skip Condition ~ Targets Sources
cumer| System Properties | Skip Condition Targets Sources o n General Apnplication Properties
Genersl Application Fropenies
Application: [ZEsENEENTY |
Application; | |
e [Seneduielobl | Name: [schedulejobl |
Description | & Description: ‘ | Eﬁ‘!
Job: [foracle/apps/ess demapackage/Basicjavajob
lob: [/aricl!lapps,’essld!mopackagE/Basi(Javajab | Q
1 (X o saplicuion (5V5.effectiveA ppication; as found, Make sure 1o specity an application. | |em HACED [| Qe
bpels or Start Time ‘ | &
Help Apply oK Cancel
process/sequence/scope zoom)[100f3) ——)—— G la ¥
= &l Help Apply [o] 4 Cancel
Design Source History

15. Add system properties:
a. Select the System Properties tab.

b. The Job Properties pane should be populated with system properties
obtained through the MDS connection from the job definition.

c. Use the Add button to add additional system properties in the User Defined
Properties pane.

ORACLE" 16-10

Chapter 16
Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-8 Adding User Defined Properties

7y Edit Schedule job x|

System Properties Skip Condition Targets Sources
Ceneral Application Properties

Job Properties

Mame Type Walue
User Defined Properties EF b4
Mame Type Value

SYS_outputList
SY¥S_postProcess
SYS_preProcess

SYS_priority

SYS_procedureMame
SYS_product
SYS_reprocessDelay

SYS_requestCategory
Help

Apply Ok Cancel

16. Add application properties:

a.

b.

Select the Application Properties tab.

The Job Properties pane should be populated with properties obtained
through the MDS connection from the job definition.

Use the Add button to add additional properties in the User Defined
Properties pane.

ORACLE"

16-11

Chapter 16
Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-9 Adding Additional User Defined Properties

Edit Schedule Job

System Properties Skip Condition Targets Sources
Ceneral Application Properties

Job Properties

MNam e Type Value
User Defined Properties 4 4
Mam e Type Value

[ppprop] ——

Help Apply [Ok | Cancel

17. Attach the WSDL URL.
a. Click the Project Editor tab (Figure 16-10).

b. Edit the ESSService component. Provide the Name, WSDL URL, Port Type
and other information (Figure 16-11).

ORACLE" 16-12

Chapter 16

Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-10 The Project Editor Tab

‘@ Start Page | D{E Projectl

| ﬁg. BPELProcess1.bpel

CPd L BEARBEUT D

Projectl

Exposed Services

=]
bpelprocess1_clie...

Operations

process
processResponse

Components

=

External References

EssService
Operations

submitRequest
submitRecurring...

getCompletionSta...
getRequestState
getRequestDetail
getRequestExecu. ..
holdRequest
releaseRequest |

Figure 16-11 The Update Reference Dialog

¥

18. Add a security policy to the service.

a.

| =,

SO0AP

Web service is a service external to the SOA composite.

Mame:

WSDL URL:

Fort Type:

Callback Port Type

|:| copy wsdl and its dependent artifacts into the project

Update Reference

2

|EssService

[/4pplication1/Projectl /SOA /WSDLs /ESSWebServiceAbstract wsdl| 8]

[Esswebservice

7]

[Esswebservicecaliback

7]

Transaction Participation: |WSDLDriven

Help

Cancel

In the Project Editor tab, right-click the Oracle Enterprise Scheduler web

service and select Configure SOA WS Policies > For Request to open the
Configure SOA WS Policies dialog as shown in Figure 16-12.

ORACLE"

16-13

Chapter 16
Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-12 Opening the Configure SOA WS Policies

|® Start Page ‘ n{t& Projectl | ﬁgn BPELProcessl.bpel | (]
PG RRXRBNRI B Project1
Exposed Services Components External References

=
bpelprocess1_clie...

Operations
process

2a P \
() gpeLProce) &
EssService .

]

i

i

Operations:

submitRequest
submitRecurring. ..
getCompletionSta...
getRequestState \

Edit...
= Rename

x Delete

o Validate

For Request...

For Callback... | Protect Sensitive Data 3

4" Configure Sensors

TODO Tasks...

Design| Source History

b. Inthe Security area of the Configure SOA WS Policies, click the
Add button to attach the desired security policies. For example, oracle/
wss_http_token_client _policy as shown in Figure 16-13 and Figure 16-14.
If you are creating an asynchronous BPEL process you must also use this
process to attach a service policy to the callback.

Figure 16-13 The Configure SOA WS Policies Dialog

Configure SOA WS Policies

SOA Client WS Policies: EssService - Binding WS

Port: SchedulerServicelmplPort

B % %%
WToM X @@
| \
Reliability L x| (N
| \
Addressing % x| @ EB

Security @ x| @ L—.B

Management % / x| @ [B

Help Cancel

ORACLE" 16-14

ORACLE

Chapter 16
Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-14 The Select Security Policies Dialog

7 Select. Security Policies x|

Select Security policies from the list:

oracle/no_authentication_client_policy
oracle/no_messageprotection_client_palicy

oracle/sts_trust_config_client_policy

s_http_token_client_policy

oracle/wss_http_token_over_ssl_client_policy
oracle/wss_sam|_token_bearer_client_policy
oracle/wss_sam|_token_bearer_over_ssl_client_policy
oracle/wss_sam|_token_over_ssl_client_policy

oracle/wss_sam|20_token_bearer_over_ssl_client_policy

eeeeceeeeee

oracle/wss_sam|20_token_over_ssl_client_policy

m
o
a
Il
o

Help oK

19. Add the Invoke activity for the get Conpl et i onSt at us operation.

a.

Click the Design tab to switch the display from the source view back to the
design view.

From the BPEL Constructs section of the Component Palette, drag and
drop an Invoke component between Schedulejobl and callbackClient as
shown in Figure 16-15.

Figure 16-15 Drag and Drop an Invoke Component Between
Schedulejobl and callbackClient

Oracle |[Developer 12c Development Build - myTestApplication. jws : myTestProject.jpr

File Edit View Application Refactor Search Navigate Build Run Team Tools Window Help

cEag ¥ 9@ Q ©- o ba o0 > Qr(Search

Applications US| £ BPELProcesslbpel o[myTestProject | ga BPELProcessLbpel (1] . Compon Resources

] myTestappitcation = ||| [wamprocess =] & da- 195 | %~ @8 W - B B W | > 6 ol a-

P Bl V- E- Eq’g|® BPEL 2.0
1 BPEL s T B - BPEL Constructs

& BPELProcess1.bpel E

T Events) Web Service
] Schemas @

i BPELProcesslxsd receivelnput e s
" testsuites

i fed] fileList xml & 2
1 Transformations - Receive Reply
) wsDLs S & 2] Subprocesses

| Application Resources
| Data Cont.. @ F 35~
+| Recent Files

EPELPr. Thumbnail |

T @l %+ 7 R

&% BPELProcessl.bpel
[Partner Links
53 variables

o ga Frocess
Correlation Sets
[Extensions
=[] Imports

[Properties
[Property Aliases
[0 Message Types
~[] Inling Subprocesses
=l Artivities

[] Show Detailed Node Inform

Source BPEL

)

<
bpelprocess1_client

callbackClient

o

process/sequence/invoke[1]

Design| Source History

zoom [105[H ————TF——— & A «

| Oracle Extensions
I SOA Components
| BPEL Services

2| Custom Activity Templates

Properties

Q, Find

@ invoke
General
Correlations
Properties
Assertions
Annotations
Headers
Documentation
Skip Condition
Targets

Sources

Name

Conversatiol

Interactic

Partner Li
Port Type

naratinr

Right-click the Invokel button to open the Edit Invoke dialog. Rename the
component getStatusAsync.

Drag the arrow from the getStatusAsync component to the EssService
component in the Partner Links area. The Edit Invoke dialog opens as shown
in Figure 16-16.

16-15

ORACLE

Chapter 16
Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

From the Edit Invoke dialog Operation dropdown, select
getCompletionStatus as shown in Figure 16-16.

Create an input variable named x and click OK to close the Edit Invoke dialog.

Figure 16-16 The Edit Invoke Dialog

._,’!__- Applications Places System %@Q@@

He

O Oracle |Developer 12c D Build - AppjobC Jjws : Projob

Jpr : /scratch/shaiverm/jd E]E]E]

File Edit View Application Refactor Search Mavigate Build Run Team Tools Window Help

cda @ 9@ Q0 @~ R Q- search

Applicatio (@ startFage offip "-/’o Edit Invoke Edlocess1 bpel ba|
(] Appjob.> | = i A @ |
‘w Headers = Documentation | Skip Condition | Targets | Sources | @

@l @7~ & General Correlations Properties Assertions Annotations M| BPEL2.0
ProjobComple

Mame: |ge(Sta(usAsync ‘ {?

Conversation ID: | ‘ If‘fi‘ =\ Invoke

@

bpelprocessi |

[Invoke as Detail

Interaction Type: |43 Partner Link~ 3]

Renlayv

Partner Link: [EssService | @

| Application R...

| Subprocesses
=l Qracle Extensio...

= BPEL Canstructs

| SOA Compone...

2w - Port Type: | §” Esswebservice - L BREL Services
| Recent Files Operation: | Gy submitReguest] | Custom Activit..
X Input | Quj T submitRequest 2
B Th. | T submitRecurringRequest Properties
[@F-YEPIT = getCom pleti 3 P
TRAW . } T getRequestState _| @ Find @
Za BPELProcesslt Input: [| getRequestDerail R
B0 Partner Lint G getRequestExecutionContext
=53 variables T holdRequest
- da Process T releaseRequest
[Correlation
[Extensions
3 Impons
L[Properties
L. Property Al
-] Message Ty — & a «
2] Inline Subpt Help Apply 0K Cancel
LB artiities Design| Source Histol
Build - Issues
[[] sShow Detailed ... GEImE o | 2 a
Source | BPEL g Live Issues: BRELProcess1bpel | Build » | -
[5:17:55 AM] Successful c.. [a] gl

[ﬂ Terminal][E VNC config][’O Oracle JDeveloper 12c Development ... E

Drag and drop an Assign component from the BPEL Construct area in the
Component Palette to between the ScheduleJobl and the getStatusAsync
component.

Double-click the Assigh component to open the Edit Assign dialog and map
the ScheduleJobl output parameter r equest | D to the getStatusAsync input
parameter r equest | D as shown in Figure 16-17. Click OK.

16-16

Chapter 16
Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-17 Use the Edit Assign Dialog to Map the ScheduleJob1l
Output parameter requestlID to the getStatusAsync Input Parameter
requestiD

7 Edit Assign x

Ceneral Copy Rules Annotations = Documentation Skip Condition | Targets | Sources

Insert New Rule After ¥

a BPELProcessl bpel
[Partner Links

BE&O@awa
BPELProcessl bpel g
Partner Links []

53 Variables Wariables [53-5
&g Process Process a2
= [53 variables Variables [53-£)
@-0e) inputvariable clisntBRELFrocesslRequestiessac inputvariable clisntBPELProcess1Requesttessag: ()
@) outputvariable client BFELFrocess1Responseiies outputiariable client BFELFrocess1Responsebessage () H
£) x nsligetCompletionstatusinput x nsl:getCompletionStatusinput Q-8 |

= Scope - Scheduleobl 2 2 parameters [F-=
=5 Variables i nsligetCompletionStatus getCompletionStatus €2
00 Essinput nsLsubmitrequestinput nsiirequestld long €&
-0 Essoutput nslisubmitRequestoutput scope - Schedulelobl [E] =
[=t parameters Variables [
E-49 nslisubmitkequestResponse submits
“odP requestid long

+x 43

From
B, $EssOutput.param eters/requestld @, $x.parameters/nslrequestld

Help Apply Ok Cancel

20. Receive job completion status.

a. From the BPEL Constructs section of the Component Palette, drag
and drop a Receive component between the getStatusAsync and the
callbackClient components as shown in Figure 16-18.

Figure 16-18 Drag and Drop a Receive Component Between the
getStatusAsync and the callbackClient Components

Oracle |Developer 12c Development Build - AppJobCompletionStatus. jws : ProjobCompletionStatus. jpr

Eile Edit View Application Refactor Search Davigate Build Run Team Tools Window Help

B8 ¥ 9@ 9 O~ o B > Q- Search
.icy & BPELProcesslbpel o ProjobCompletionStatus g PELProcessibpel ol myTestProject b BPELProcessibpel . Co. Resou...
l[fmnross |V AT N B BER > B o Buva o |
5
bl Partner Links Partner Links || BPEL2.0
2 O =l BPEL Constructs
= e —
& El -
] ¥ *
= Rep
@
[Basic Activities
3 receivelnput
T 0 an ~
| - ssaenee | Subprocesses
2 {“" | Oracle Extensions
&
2 Schedulelobl + SOA Components
g -+ BPEL Services
g v + Custom Activity Te.
= 2
: &)
2 bpel 1 client Properties
= pelprocessl_client getStatusAsync
' Q Find @
=l -—
c P S———
\ .
£ e i R receive
3 @0
Z ! i General
x I Receivel 1 : Ham
e B 4 Correlations
Froperties Con
Annotations
Assertions
callbackClient Headers 1
Timeout Pa
I Documentation
O Po
Skip Condition
process/sequence/receive[2] Zoom:| s4[2] (o Targets op
Design| Source History

a9k

ORACLE 16-17

ORACLE

Chapter 16
Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Attach the Receivel component to ESSService in Partner Links area
by dragging the arrow from the Receivel component to the ESSService
component. This action also opens the Edit Receive dialog. Rename the
Receivel component to OnJobCompletion as shown in Figure 16-19.

Figure 16-19 Rename the Receivel component to OnJobCompletion

'E- Applications Places System %@Q@

§o

Jjws : ProJobCompletionStatus. jpr : /scratch/shaiverm/jd E]E]E]

0 Oracle |Developer 12c Dev P Build - AppJobC P
Eile Edit View Application Refactor Search Mavigate Build Run Team Tools Window Help
CHa @ 9@ 9 ©- [E0 R S Q- search
Applicatio iy s BPELProcessl.bpel o[ProjobCompletionsStatus s BPELProcess1.bpel 5 .. Compon... Resources
&= Applob.> |~ | & Main Process - ‘ﬁ Edit Receive B | @ &
B @ V-E- B BFEL20

Documentation | Skip Condition Targets | Sources

FrojabComple —I BPEL Constructs

Annotations Assertions Headers Timeout
General Carrelations Properties B i s
@ @
B Mame [Receiver |
i Invoke Partner Link
bpelprocess1_clen : =
Conversation ID: | ‘ Di' s
=] 2
[] Create Instance Receive Reply

T + Subprocesses
Interaction Type: |3 Partner Link ™ Efsn

-] Oracle Extensions
] SOA Components

| BPEL Services

+| Application R...
28T E-

+| Recent Files

Partner Link: [EssService | &

Port Type: | " ESSWebServiceCallback -

Operation: | Gy onjobCompletion -
B Th. Properties

(") Arguments Mapping (3) Variable @ Q Find

| Custom Activity Templates

TRW k.
© [Extensians Variable: | e Q =
[mpons
" Properties [Auto-Create Variabe]
~[] Property Al
[Message Ty
[Inline subp
=3 Activities
=B sequen
R rece
w5y sch
4R inve
- 3};\” Design| Source History

Help Apply QK Cancel

Build - Issues

Bodo@o & Q

Source BPEL EE‘ Live Issues: BPELProcessl bpel Build M

[] Show Detailed

[5117:55 AM] Successful compilation: 0 errors, 0 warnings

g

][(3 vNC config][O Oracle JDeveloper 12c Development ...]E

[B Terminal

Select the OnJobCompletion operation and add a variable named y as
shown in Figure 16-19. Click OK to close the Edit Receive dialog.

Drag and drop an Assign component from the BPEL Construct area in the
Component Palette to between the onJobCompletion component and the
callbackClient component.

Double-click the Assigh component to open the Edit Assign dialog and map
the onJobCompletion component's output parameter r esul t Message to the
callbackClient component's input parameter r esul t variable as shown in
Figure 16-20. Click OK.

16-18

Chapter 16
Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

Figure 16-20 Map the onJobCompletion Component's Output
Parameter resultMessage to the callbackClient Component's input

Parameter result Variable

i Edit Assign x
General Copy Rules Annotations Documentation Skip Condition Targets Sources
Insert New Rule After ¥ B & @ &
iPELProcess1 bpel BPELPracessLbpel g
7] Partner Links Partner Links [
3 Warlables Wariables [53-2
% g Process Process g Bl
-2 Variables Variables [£3-5
§x) inputvariable client BPELProcess1RzquesiMessage inputvariable client EPELProcessLRequestilessage ()
(x) outputvariable client BPELProcess1Responseblessage outputiariable client EPELProcess1ResponseMessage (-5
£) x nslgetCompletionStatusinput payload =
-6 v nslionjobCompletioninput & client:processResponse <ananymouss €98
=] parameters 4 client:result string € H
=-4% nslionjobCompletion onjobCompletion ¥ x nsl.getCompletionStatusinput b.')
L-@h requestid long y nsLlionjobCompletioninput gy
~fae] state state
&P resultMessage string
S A
+XE D

Help Apply oK Cancel

ORACLE" 16-19

Defining and Using Job Sets

This chapter describes how to define and submit an Oracle Enterprise Scheduler job
set, a collection of job definitions that can be grouped together to run as a single unit.

This chapter includes the following sections:

e Introduction to Defining and Using Job Sets

e Defining Job Sets

e Cross Application Job Sets

e Supporting Input and Output Forwarding in Job Sets

17.1 Introduction to Defining and Using Job Sets

Oracle Enterprise Scheduler provides for collections of job definitions that can be
grouped together to run as a single unit called a job set. A job set may be nested; thus
a job set may contain a collection of job definitions or one or more child job sets. Each
job definition or job set included within a job set is called a job set step.

A job set is defined as either a serial job set or a parallel job set. At runtime, Oracle
Enterprise Scheduler runs parallel job set steps together, in parallel. When a serial job
set runs, Oracle Enterprise Scheduler runs the steps one after another in a specific
sequence. Using a serial job set Oracle Enterprise Scheduler supports conditional
branching between steps based on the execution status of a previous step.

You can define a serial job set to include a parallel job set, or a parallel job set to
include a serial job set. Job sets that include a mix of parallel and serial job sets are
called complex job sets. For example, when a serial job set contains a child parallel
job set, the serial job set runs serially until it reaches the child parallel job set. Then, all
the job definitions or job set definitions in the child parallel job set run in parallel. Upon
completion of the child parallel job set the serial job set continues running its remaining
steps serially. Nested parallel job sets behave the same as non-nested parallel job
sets.

For every step in a job set Oracle Enterprise Scheduler supports a property
(SYS_sel ect St at €) that provides runtime flexibility for how a particular step affects
the entire job set. This property is defined on a per step basis. Table 17-1 describes
SYS_selectState.

ORACLE 17-1

Chapter 17
Defining Job Sets

Table 17-1 Job Set Step Property

Property

Description

SYS select State Specifies whether the result state of a job set step should be included when determining

the state of the job set. Specifies whether the execution state of the step affects the
eventual state of entire job set.

By default, all job set steps affect the job set state. To prevent the state of a particular
job set step from affecting the state of the job set, set SELECT _STATE to f al se for that
step. To allow the state of a job set step to affect the overall state of the job set, set
SELECT_STATE to t r ue for that step.

Oracle Enterprise Scheduler provides the capability for a job set to execute across
multiple applications. A job set runs in its hosting application and by default all job set
steps also run in this application.

17.2 Defining Job Sets

The contents of a job set are specified when you define the job set steps. For
example, for a serial job set you specify the name and the execution mode and then
you add the job set steps to define the sequence of job definitions or child job sets that
run when the job set runs.

You can define a job set in Oracle JDeveloper by specifying the following:
e The name, package, and description for the job set

e The application defined properties for the job set

e The system properties for the job set

e Specifying the job set steps

17.2.1 How to Define a Job Set

ORACLE

An Oracle Enterprise Scheduler job set is defined by a name, a package, a job
set execution mode, step definitions, application defined properties, and system
properties.

To create a job set:

1. In Oracle JDeveloper, right-click in the project to view the New Gallery.

2. Inthe All Technologies tab, under Categories, expand Business Tier and select
Enterprise Scheduler Metadata.

3. Under Items, select Job Set and click OK. This displays the Create Job Set
window.

4. In the Create Job Set window, specify the following:
a. Inthe Name field, enter a name for the job set or accept the default name.
b. Inthe Package field, enter a package name for the job set.

c. The Location field displays the full path of the directory where the job set file
is stored.

17-2

ORACLE

Chapter 17
Defining Job Sets

d. Click OK. This creates the job set and displays the Job Set Definition page, as
shown in Figure 17-1.

Figure 17-1 Job Set Editor with Serial Job Set

@ExampleJobSet.Hml x I E]
[Job Set

Tame: ExamplelobSet

Display Mame: |ExampIeJ0bSet

Dvescription:

[Publish

= “@" Job Set Steps ZERae

() Parallel (3 Serial

Available Steps

Application Defined Properties / 4= %
2 System Properties bR
E= Access Control R

@ Localization

Jobset Editor 15

In the Job Set Editor pane, in the Description field enter a description for the job
set.

In the Job Set Steps area, select the Parallel or Serial radio button to specify
parallel or serial execution mode for the job set.

In the Job Set Editor pane add the job set steps. For more information on adding
job set steps, see How to Define Serial Job Set Steps or How to Define Parallel
Job Set Steps.

In the Application Defined Properties area, click Add to add properties associated
with the job set. You use these to represent an application-specific or step-specific
application defined property for the job set. For more information on using
application defined properties, see Introduction to Using Parameters and System
Properties. For more information, see What You Need to Know About Job Set
Level Parameter Materialization.

17-3

Chapter 17
Defining Job Sets

9. Inthe System Properties area, click Add to add system properties associated with

the job set. For more information on using system properties, see Using System
Properties.

10. In the Access Control area, click Add to modify the list of roles that have access
to this metadata, along with their access levels. For more information on defining
access, see Oracle Enterprise Scheduler Security .

11. In the Localization area, enter the following information for localizing this job set:

* Resource Bundle Base Name -- The base name for the resource bundle that
specifies internationalized values.

» Display Name Resource Key -- The resource key that specifies the display
name value in the resource bundle.

» Description Resource Key -- The resource key that specifies the description
text in the resource bundle.

12. Save the job set.

17.2.2 How to Define Serial Job Set Steps

To define serial job set steps you select the serial execution mode and then add job
set steps. Job set steps are created from the available job definitions and job sets
defined in the current project. You define serial job set steps when you specify a step
ID and a job definition child job set definition associated with the step. You also define
links from a job set step terminal states to specify the next step. Table 17-2 lists the
possible terminal states that you can specify using JDeveloper.

Table 17-2 Job Set Serial Execution Step Terminal States
]

Terminal State

Description

SUCCEEDED

WARNI NG

ERROR

Oracle JDeveloper indicates this state with a check mark button. This path represents a child
step or child job set was successfully processed by the system.

Oracle JDeveloper indicates this step with a warning button. A child step or child job set
resulted in a warning.

Oracle JDeveloper indicates this step with an error button. Some aspect of the request to run
the child step or child job set processing resulted in an error.

ORACLE

To add serial job set steps:

1. First, define the appropriate job definitions or job sets and define the parent job set
to contain the steps.

2. Inthe Job Set Editor pane, in the Job Set Steps area, select Serial execution
mode.

3. Click the Add button to add a job set step. This displays the Add Step window.
4. Inthe Step ID field, enter the step ID. For example, enter st epl.

5. Inthe Job field, from the dropdown list select a job definition or a job set to
associate with the step. For example, select Job1.

6. If you need to define step level application defined properties, then select the
Application Defined Properties tab and add properties for the step.

17-4

ORACLE

10.

11.

12.
13.

Chapter 17

Defining Job

If you need to define step level system properties, then select the System
Properties tab and add job set step system properties for the step.

Sets

Select a destination for the step. The step can be added as part of the job set by
selecting Insert into main diagram. To make the step available for use in another

step, for either error or warning states, select Add to list of available steps.

Click OK, this adds the job set step, as shown in Figure 17-2.

Figure 17-2 Job Set with a Step Added

(B Exampletobset.xml * |

1 Job Set

Mame: ExampleJobSet

Display Mame: |Examp|eJobSet

Description:

[Publish

= “@* Job Set Steps VAN Tl

() Parallel (3) Serial

Available Steps

| Skep_error

@ |Ste|:|_error = |
Stepl

Y |Step_warning - |

| Skep_warning

From the dropdown list next to the error icon, select Stop or select the step for

the ERROR terminal state for the step. For example, from the dropdown list select

Step_error (Step_error must be defined).

From the dropdown list next to the warning icon, select Stop or select the step

for

the WARNI NG terminal state for the step. For example, from the dropdown list select

St ep_war ni ng (Step_warning must be defined).
Click the Add button and add additional steps as needed.
Click OK, as shown in Figure 17-3.

17-5

1«

Chapter 17
Defining Job Sets

Figure 17-3 Job Set with Two Steps Added

@Example)ﬂbSet.xnﬂ x I

[1o0b Set

Mame: ExampleJobSet

Display Mame: |Examp|eJ0bSet

Descripkion:

[Publish

= “3* Job Set Steps P RaAa

() Parallel (3) Serial

Available Steps

O | |Step_error

| Step_warning

@ |Step_error '|
Stepl

s |Step_warning '|
v

@ |Step_error '|
Stepz

s |Step_warning '|
v

@)

17.2.3 How to Define Parallel Job Set Steps

You can add parallel job set steps to a job set.

ORACLE

To add parallel job set steps:

1.

First, define the appropriate job definitions and job set definitions and the parent
job set.

In the Job Set Editor, select the Parallel execution mode.
Click the Add button to add a job set step to the job set.
The Add Step window displays.

In the Job field, select a job definition or a job set.

If you need to define step level application defined properties, then select the
Application Defined Properties tab and add properties for the step.

If you need to define step level system properties, then select the System
Properties tab and add job set step system properties for the step.

Click OK, this adds the job set step.
Click the Add button.

17-6

Chapter 17
Defining Job Sets

9. Inthe Add Step dialog, select the job set or job definition to use for next job in the
parallel job set.

10. Click OK. The job set step displays in the job set, as shown in Figure 17-4.

Figure 17-4 Adding Job Set Steps to a Parallel Job Set

@Example]ﬂbSet.xml x |

3 Job Set

Tame: ExampleJobSet

Display Mame: [ExamplelobSet

Descripkion:

[] Publish
5 ‘@ Job Set Steps / ¥ o
() Parallel () Serial

Step2 Stepl

17.2.4 What Happens When You Define a Job Set

When you define a job set with Oracle JDeveloper, Oracle JDeveloper creates an XML
file containing elements that represent the steps that you define.

When you define a parallel job set you specify a set of job set steps that run together.
A parallel job set only contains steps, and does not contain links between steps, as

all the steps execute together and do not depend on each other or upon the order in
which each step runs.

When you define a job set Oracle JDeveloper creates an XML document that
conforms to the Oracle Enterprise Scheduler job step schema.

17.2.5 What You Need to Know About Serial Job Sets

When you define a serial job set, the associated XML document includes job set steps

and links. Oracle Enterprise Scheduler enforces the following limitations for serial job
set definitions:

» To prevent looping within a job set, job set definitions should not contain circular
execution paths. A circular execution path, or a loop, is defined at the job set level
as follows: loop is a path from one job set step along the links of any number

ORACLE 17-7

Chapter 17
Defining Job Sets

of other steps back to the same job set step. For example, in a job set with a

flow from Job_A, to Job_B, to Job_C defined, Oracle Enterprise Scheduler does not
allow you to define an execution path from Job_B or Job_Cback to Job_A. For
example you could a create circular execution path, or a loop, if one of the links in
a job set step for success, error, or warning links back to the same job set step.
Thus, each job set step can link to any of the available job definitions or job sets,
or they could all use the same job definition or job set as a link for the success,
error and warning case. There is only a possible loop based on the path through
the job set steps, as identified by the job set step ID. Oracle Enterprise Scheduler
validates job sets at submission time to try to prevent job set step level looping.
Also, Oracle JDeveloper does not allow you to create a job set containing a job set
step level loop.

» To prevent looping within a job set, job set definitions should not contain self-
referencing execution paths. For example, in a job set with Job_B defined, Oracle
Enterprise Scheduler does not allow you to define an execution path from Job_B
to Job_Bitself if Job_B ends up with a terminal state of ERROR. However using the
RETRI ES property available for a job definition or a job set, you can have multiple
executions up to the configured RETRI ES number.

* When there is no job set link defined for a terminal state of a step, it implies that
the job set should stop if the step ends with the unspecified terminal state. For
example if there is no link defined for a step Job_D for the state WARNI NG, and if the
step Job_D ends up with the state of WARNI NG, the job set stops execution.

Each job set step can be defined to use any of the available job definitions or job sets,
and multiple steps may use the same job definition or job set.

17.2.6 What You Need to Know About Job Set Application Defined
Properties and System Properties

There are cases where job set application defined properties or system properties may
conflict with application defined properties or system properties set either in metadata
or when a job request is submitted. For more information on how job set application
defined properties and system properties are handled, see Using Parameters with the
Metadata Service and Using Parameters with the Runtime Service.

17.2.7 What Happens at Runtime for Job Set State Priorities and State

Transitions

ORACLE

At runtime, the individual steps in a job set can end up with different terminal states,
as indicated in Table 17-2. When a job set step is a job set, the job set step also

ends with one of these terminal states. Oracle Enterprise Scheduler provides a priority
hierarchy for the terminal states of job set steps. This means that when there are
multiple steps in a job set, the job set terminal state is applied the terminal state of the
step with the highest priority terminal state. Thus, the highest priority terminal state of
the steps determines the resulting state for the entire job set.

The resulting state of a job set affects all subsequent state dependent processing
within the system. A job set always follows the basic rule of transitioning to a terminal
state based on the terminal states of its child requests, only after the completion of
all child requests. As a rule, the job set transitions to one of the computed terminal
states only after all child requests have finished and transitioned to terminal states.
For example, if a given job set is actually a step within another job set, then the way

17-8

Chapter 17
Defining Job Sets

in which the state of the inner job set request is computed affects the conditional

execution within the outer job set.

Table 17-3 shows the possible job set terminal states with the level indicated in the

Priority column.

Table 17-3 Job Set Terminal State Transitions

__|]
Terminal State Description

Priority

ERROR

WARNI NG

EXPI RED

CANCELLED

SUCCEEDED

If any step in a job set finishes with the terminal state of ERRCR, the entire job
set is marked with the terminal state of ERROR no matter what the state of the
other steps.

For serial job sets, if one step goes to ERROR, subsequent steps do not
execute. For parallel job sets, all steps begin at the same time, and the job
set state is not determined until the job set steps reach a terminal state.

If any step in a job set ends up with the terminal state of WARNI NG, and
there is no step with the terminal state of ERROR then the job set is marked
with the terminal state WARNI NG. When the terminal state is WARNI NG, post
processing begins.

The job set transitions to EXPI RED state if at least one of the child requests
expires while there is no step that ends with the terminal state of ERROR or
WARNI NG,

Based on the actual outcome of a cancellation attempt, the job set

can transition to CANCELLED if at least one child request successfully
processes the cancellation attempt and transitions to CANCELLED state. The
cancellation might have been requested on the entire job set or just a
specific child request.

Further the transition to CANCELLED follows the priorities of terminal states.
Therefore the job set transitions to CANCELLED terminal state only if there is
no step that ends with the state of ERROR, WARNI NG, or EXPI RED and there is
at least one step with terminal state of CANCELLED.

When a job set is canceled, steps that have not been added or run are
considered to be CANCELLED for the purpose of final state.

The job set is considered as SUCCEEDED if and only if all child requests
completed with the terminal state of SUCCEEDED.

The ERRCR state
has the highest
priority.

Lower than ERROR

Lower than ERROR
and WARNI NG

Lower than ERROR,
WARNI NG, and
EXPI RED

The SUCCEEDED
state has the
lowest priority
among all terminal
states

Table 17-4 lists additional possible states for a job set:

Table 17-4 Possible Job Set Runtime States

State Description

VAIT This is the initial state of the submitted job set request. After the job set request
transitions to RUNNI NG state, however, all generated child requests transition directly
to READY state rather than WAI T state.

READY Job sets go from WAI T to READY to RUNNI NG. This is true for all job set steps, whether
the step is a job definition or nested job set.

RUNNI NG The submitted job set transitions from WAl T to READY to RUNNI NG. Nested job sets
start in READY and transition to RUNNI NG,

ORACLE 17-9

Chapter 17
Cross Application Job Sets

Table 17-4 (Cont.) Possible Job Set Runtime States
]

State

Description

CANCELLI NG

COWMPLETED

BLOCKED

A job set transitions to CANCELLI NGwhen the user requests a cancellation for the
entire job set. This can be done by calling cancel Request () with the request ID of
the parent request representing the job set. Passing the parent request ID indicates
that the user wants to cancel entire job set irrespective of its current, non-terminal,
state and the states of its child requests.

In such cases, a cancellation is attempted on all child requests that are still active and
have not already transitioned to a terminal state.

On the other hand if cancellation is attempted only on a specific child request in the
job set, there won't be any state change for the parent request and only the particular
child request transitions to CANCELLI NGif possible.

If the cancel happens during post-processing, the state is set to WARNI NG rather than
CANCELLED. If the job set finishes before the cancel is issued, the job set can have
state SUCCEEDED.

This state indicates that the job set or job set step has finished executing and post-
processing begins.

The BLOCKED state is not a terminal state. However any request can remain in a
BLOCKED state for a long period until the blocking condition is eliminated (such as
incompatibility).

In the case of a job set, any individual step might be BLOCKED while other steps either
complete or may be running. The job set itself, however, remains in a RUNNI NG state.
Eventually if all steps in the job set complete except the ones that are in the BLOCKED
state, the job set cannot continue further until the blocking step is ready to run. When
the blocked step unblocks and completes, the job set can proceed. After the steps
complete, the job set eventually goes to the appropriate terminal state.

For a serial job set, the job set may stop at a step that is in BLOCKED state. In
such cases, all previous steps are complete and the job set cannot continue until the
blocked step executes.

However for a parallel job set, multiple steps can remain in BLOCKED state. Further,
while some steps are blocked, other steps can still continue to run.

The HOLD state is very similar to the BLOCKED state. Following the same rules for the
BLOCKED state, a job set cannot continue running while a step is in HOLD state. A
serial job set cannot continue if the current step in the execution flow is stuck at HOLD
state. In the case of a parallel job set, if at least one step is stuck in HOLD state while

all other steps have completed, the job set can complete when the step is no longer in
HOLD state.

17.3 Cross Application Job Sets

Oracle Enterprise Scheduler provides the capability for a job or a job set to execute
across multiple applications.

ORACLE

Job set FIN has three steps, two of which are defined to execute in different
applications.

Job set FIN is submitted to the GL application.

Step 1 has the EFFECTI VE_APPLI CATI ON system property set to ODI, so Step 1
executes in the ODI application.

Step 2 does not have an effective application set, so it executes in the GL
application.

17-10

Chapter 17
Cross Application Job Sets

e Step 3 has the EFFECTI VE_APPLI CATI ON system property set to INV, so Step 3
executes in the INV application.

Figure 17-5 Cross Application Job Set Steps

Jobset FIN Definition Oracle Weblogic Server

Stepi

="0DI”

EFFECTIVE_APPLICATION to GL App

Submit Jobset FIN

GL ool INV

| FIN.Step2 | FIN.Step1 FIN.Step3

Step2

Step3

="INV"

‘ Oracle Enterprise Scheduler

EFFECTIVE_APPLICATION

17.3.1 Overview of Cross Application Job Sets

A job set runs in its hosting application and by default, all job set steps also run in
this application. The system property SYS ef f ectiveAppl i cati on should be defined
on the job definition or job set (rather than the job set step). For a nested job set that
defines SYS ef f ecti veAppl i cati on, the application applies to any child requests of
that nested job set. If it is a nested job set, the jobs in the nested job set execute

in the effective application. When SYS ef f ectiveAppl i cati on is defined for a job, the
request for the job set and any child requests of the job set are associated with the
effective application, meaning the APPLI CATI ON system property for those requests is
set to the effective application.

The SYS_effectiveApplication system property may only be defined in

metadata, specifically job set, job set step, job type, and job. The property

SYS effectiveApplicationis not supported in the request parameters. The effective
application must be in the same cluster as the hosting application, or an error results.
If a submitted job set defines the effective application, that value must be the same as
the hosting application, or the job set submission is rejected.

For a job set that executes across multiple applications, querying for requests

by application is not sufficient to retrieve all children. Oracle Enterprise Scheduler
supports absolute parent ID as a query field, making it possible to query for all
requests in a job set regardless of the application. The absolute parent ID is the
request ID of the job set that was submitted to the hosting application.

17.3.2 Requirements for Cross Application Job Sets

ORACLE

Oracle Enterprise Scheduler supports cross-application job set subject to the following
requirements:

1. All applications for a given job set must be deployed in the same cluster.
2. All applications in the job set must share the same enterprise security.

3. All request metadata must be accessible from the application the job set is
submitted to, referred to as the hosting application. All metadata for the request
are persisted to the runtime store for the hosting application. The persisted

17-11

Chapter 17
Supporting Input and Output Forwarding in Job Sets

metadata include all metadata used by the submitted job set and any nested job
set.

4. Metadata for subrequests must be accessible from the application that submits the
subrequest, unless the metadata used by the subrequest were already persisted
to the runtime store at job set submission time.

17.4 Supporting Input and Output Forwarding in Job Sets

ORACLE

Sometimes a step in a job set requires input from the previous step in the job

set. Oracle Enterprise Scheduler uses two system properties SYS_i nput Li st and
SYS out put Li st to facilitate forwarding the output from one step to the input of the
next step.

When a job produces information, such as a list of output files, that must be

passed on to the next step in a job set, the job adds the information to the

SYS out put Li st property. Upon completion of the job request execution, Oracle
Enterprise Scheduler forwards the SYS out put Li st property of the request so that

it becomes the SYS i nput Li st property of the next step before it executes. The next
step takes as its input the output of the previous step.

A job set step can be a single job or a job set, Oracle Enterprise Scheduler supports
forwarding with nested job sets as well. For a serial job set, Oracle Enterprise
Scheduler defines the output of the job set as the output of the last step of the job

set, meaning that only the SYS out put Li st property of the last step is forwarded to the
next step. Similarly, the input to a serial job set is forwarded only to the first step of the
job set; that is, only the first step of a serial job set has the SYS i nput Li st property set
to the value of the SYS_out put Li st property of the previous step.

For a parallel job set, Oracle Enterprise Scheduler specifies that the output of the job
set is the concatenation of the SYS out put Li st property of every job in the job set,
separated by a delimiter (with no order guaranteed). The input to a parallel job set is
forwarded to every job in the job set, meaning that every job in the parallel job set has
the same | NPUT_LI ST property. The system property OUTPUT_LI ST_DELI M TER specifies
the delimiter used when listing output files.

Suppose a job set has two jobs, each job producing its own output file, fil el.t xt
and fil e2.txt. The system property SYS out put Li st for that job set has the values
filel.txt;file2. txt,assuming the value of QUTPUT_LI ST_DELI M TERis a semi-
colon. The concatenated list of output files enables the next job step in the job set
to access output files generated by previous steps within the job set.

The I nput Fi | e class provides access to files as input to a job definition. There is
currently no mechanism for accepting a file as an input to a job request.

Except for forwarding the value of the SYS out put Li st property of a step to the value
of the SYS i nput Li st property of the next step, Oracle Enterprise Scheduler treats the
two properties like any other system properties. Oracle Enterprise Scheduler does not
define the format for the value of the properties (except for the semicolon delimiter

in case of parallel job set). It is the responsibility of the job to define the syntax and
semantics for the properties; for example using a fully qualified name or relative path
name and a comma or space as a delimiter.

17-12

Defining and Using a Job Incompatibility

This chapter describes how to use an Oracle Enterprise Scheduler job incompatibility,
with which you can specify job requests that cannot run together.

This chapter includes the following sections:

e Introduction to Using a Job Incompatibility
* Defining Incompatibility with Oracle JDeveloper
* What Happens at Runtime to Handle Job Incompatibility

For information about how to create and submit job requests see Creating and Using
PL/SQL Jobs , and Creating and Using Process Jobs . For more information on using
job sets, see Defining and Using Job Sets .

< Note:

To simplify the discussion we refer only to job definitions in this
incompatibility chapter, but in all cases this discussion applies to both job
definitions and job sets.

18.1 Introduction to Using a Job Incompatibility

ORACLE

A given incompatibility specifies either a global incompatibility or a domain, property-
based, incompatibility. Oracle Enterprise Scheduler supports incompatibility between
job definitions or job sets based on an incompatibility definition as represented by the
oracl e. as. schedul er. I nconpati bi | ity Java class. The I nconpati bi | i t yType enum
specifies the valid incompatibility types.

+ Domain-Specific (DOMAI N): where one or more job definitions are marked as
incompatible within the scope of a resource, where the resource is identified by
a system property name or a user-defined parameter name. A property name
must be specified for each job definition used to define the incompatibility. Oracle
Enterprise Scheduler ensures that requests for the incompatible jobs do not run at
the same time if they have the same value for that resource. Parameters specified
through par anet er VO are submitted as request properties having the property
name submi t. argument 1, ... subni t. ar gunent #. To use such a parameter as the
domain incompatibility property, specify submi t. argument 1, ... submi t. ar gunment #
for the incompatibility property name.

* Global (G.OBAL): where one or more job definitions are marked as incompatible,
regardless of any resource or property. Oracle Enterprise Scheduler ensures that
requests for the incompatible jobs do not run at the same time.

An Oracle Enterprise Scheduler incompatibility definition specifies either a global
incompatibility or a domain (property-based) incompatibility. An incompatibility consists
of one or more entities (job definition or job set) and the resource over which they must

18-1

Chapter 18
Defining Incompatibility with Oracle JDeveloper

be incompatible. A resource is not specified for a global incompatibility. Each entity can
be flagged as being self-incompatible. If an incompatibility is defined for only one entity
that entity must be flagged as self-incompatible. Oracle Enterprise Scheduler does not
support a mixed mode where one entity represents a domain (property-based) entity
and another entity represents a global (no property) entity.

For a domain incompatibility, the resource is represented by a property name that
might be different for each entity of the incompatibility. For example, if a domain
incompatibility is created for two job definitions, JobA and JobB, then the resource
(property) identified for each entity might have different property names in JobA and
JobB. It might be called f oo in JobA while it might be called f 002 in JobB. Oracle
Enterprise Scheduler considers a request for JobA and a request for JobB to be
incompatible if they have the same value for their respective property, and those
requests would not run at the same time. If the requests have a different value for their
respective property, they are considered compatible and allowed to run concurrently.

An incompatibility definition specifies which job definition is incompatible with another
job definition. A given job definition does not directly point to or reference any
incompatibility definitions.

Oracle Enterprise Scheduler determines which, if any, incompatibility definitions
reference the job definition of a request when it is about to executed for the first

time. It also determines the resource (property) value for any domain incompatibility at
that time. That information is used throughout the subsequent processing life cycle

of the request, including any retries of the request. For job set requests, Oracle
Enterprise Scheduler determines which, if any, incompatibility definitions reference the
job definition of any potential job set step when the top-most job set request is about to
be executed rather than when individual step requests are executed.

For a Schedule-based submission, Oracle Enterprise Scheduler creates new child
requests for instances of the Schedule. Only one instance request is executed

at a given time. Oracle Enterprise Scheduler tracks metadata changes made to
incompatibility definitions and may refresh the incompatibility definitions, if any, when
an instance request is about to be executed for the first time. This means the
incompatibility definitions used when the next instance request is executed may be
different than the incompatibility definitions used when a prior instance request was
executed.

18.1.1 Job Self Incompatibility

A job definition or job set can be defined as self incompatible where the job definition
or job set is incompatible with itself. A self-incompatibility implies that multiple job
requests associated with a single job definition cannot run together. An incompatibility
definition can contain a single entity if it is marked as self-incompatible. For global
self-incompatibly, Oracle Enterprise Scheduler ensures that multiple requests for that
particular job or job set definition are not run simultaneously. For property-based self-
incompatibly, Oracle Enterprise Scheduler ensures that requests for that particular job
or job set definition, and having the same value for the property, are not run at the
same time.

18.2 Defining Incompatibility with Oracle JDeveloper

You can define an incompatibility in Oracle JDeveloper by specifying the following:

* The name and package for the incompatibility

ORACLE 18-2

Chapter 18
Defining Incompatibility with Oracle JDeveloper

* The incompatibility type
* The entity for the incompatibility and whether there is a self incompatibility

* For a domain specific incompatibility, the property associated with the
incompatibility for each entity

18.2.1 How to Define a Global Incompatibility

ORACLE

An Oracle Enterprise Scheduler global incompatibility is defined by a name, a package
and entities.

To create a global incompatibility:

1. In Oracle JDeveloper, right-click in the project to view the New Gallery.

2. Under Categories, expand Business Tier and select Enterprise Scheduler
Metadata.

3. Under Items, select Incompatibility and click OK. This displays the Create
Incompatibility window, as shown in Figure 18-1.

Figure 18-1 Create Incompatibility Window

Create Incompatibility g|
Incompatiblity |‘—‘:"]
Allows wou ko specify jobs that cannot be executed at the same time, %

Mame: | Incompatibility 1 |

Package: | |

Location: |,I’C:,I’JDeveIoperImyworHApplication1S,I’Projectl,l' |

Incompatibilicy Type:
() Global {entire job)

() Domain {property of the job)

| Help | | a4 | | Cancel |

4. Use the Create Incompatibility dialog to specify the following:

a. Inthe Name field, enter a name for the incompatibility or accept the default
name.

b. Inthe Package field, enter a package name for the incompatibility.

c. The Location field displays the full path of the directory where the
incompatibility file is stored.

d. In the Incompatibility Type field, select Global. and click OK.
The incompatibility is created, and the Incompatibility Definition page displays.

5. In the Incompatibility Editor pane, in the Description field enter a description for
the incompatibility.

6. Inthe Entities area, click Add to add entities. This displays the Add Entity dialog,
as shown in Figure 18-2.

18-3

9.

10.

Chapter 18
Defining Incompatibility with Oracle JDeveloper

Figure 18-2 Incompatibility Add Entity Window

Add Entity 3

Seleck one or maore jobs,

Jobz
Jobsetl

| Help | | Ok || Cancel |

Select one or more entities for the incompatibility and click OK. The Incompatibility
Editor displays.

To specify a self incompatibility or to change the entity, double-click the entity in
the Entities area. This displays the Edit Entity dialog as shown in Figure 18-3.

Figure 18-3 Edit Entity Window for Global Incompatibility

Edit Entity X
Self Incompatible
Job: | Jab1 -

| Help | | Ok J | Cancel |

To specify self incompatibility, select Self Incompatible.

Save the incompatibility.

18.2.2 How to Define a Domain Incompatibility

An Oracle Enterprise Scheduler domain incompatibility is defined by a name, a
package, entities, and properties for each entity.

To create an incompatibility:

1.
2.

ORACLE

In Oracle JDeveloper, right-click in the project to view the New Gallery.

Under Categories, expand Business Tier and select Enterprise Scheduler
Metadata.

18-4

ORACLE

Chapter 18
Defining Incompatibility with Oracle JDeveloper

Under Items, select Incompatibility and click OK. This displays the Create
Incompatibility window.

Use the Create Incompatibility dialog to specify the following:

a. Inthe Name field, enter a name for the incompatibility or accept the default
name.

b. Inthe Package field, optionally enter a package name for the incompatibility.

c. The Location field displays the full path of the directory where the
incompatibility file is stored.

d. In the Incompatibility Type field, select Domain, as shown in Figure 18-4.

Figure 18-4 Create Incompatibility Window

Create Incompatibility E|
Incompatiblity |‘—‘:"]
Allows wou ko specify jobs that cannot be executed at the same time, %

Mame: | Incompatibility 1 |

Package: | |

Location: |,I’C:,l’JDeveIoper,l’myworlq'.qpplication15,|’Pr0ject1,|’ |

Incompatibilicy Type:
() Glabal {entire job)

(3) Damain {property of the job)

Help [al4 | | Cancel

Click OK. This creates the incompatibility and displays the Incompatibility
Editor.

In the Incompatibility Editor pane, in the Description field enter a description for
the incompatibility.

In the Incompatibility Entities area, click Add.

The Add Entity window displays.

Select one or more jobs or job sets to add to the incompatibility and click OK.
The Incompatibility Editor displays.

To specify a self incompatibility or modify an entity or its properties, under the
Entities field, double-click an entity.

The Edit Entity window displays, as shown in Figure 18-5.

18-5

Chapter 18
What Happens at Runtime to Handle Job Incompatibility

Figure 18-5 Incompatibility Edit Entity Window

Edit Entity 3
[] 5elf Incompatible
Job: [30b3 -|
Property: | parameterl -|

Datatype: STRING

| Help | | [o] 4 | | Cancel |

9. To specify self incompatibility, select Self Incompatible.

10. Save the incompatibility.

18.3 What Happens at Runtime to Handle Job
Incompatibility

Oracle Enterprise Scheduler handles incompatibility definitions according to the
incompatibility type, global or domain (property-based), at runtime.

When a job request is about to be executed, Oracle Enterprise Scheduler determines
which incompatibility definitions reference the job or job set definition used for the
request submission. For each domain incompatibility it also determines the value of
the resource or property, to use for that incompatibility. Oracle Enterprise Scheduler
checks to determine if there are any incompatible requests already executing. If so,
the request is blocked until all requests with which it is incompatible have completed.

Note:

The value of the property for a domain incompatibility is obtained from

the request parameters at request execution. That value usually originates
either in the job definition or in a request parameter specified at request
submission. If no such parameter is found, that incompatibility is ignored
during subsequent request processing. The request is compatible with any
other request with regard to that incompatibility definition. This initial property
value is used as the incompatibility resource value even if the property is
subsequently altered.

18.3.1 What Happens to Subrequests with an Incompatible Parent

Request

ORACLE

A request which is incompatible with another request is also incompatible with the
sub-requests of that request (the children). A request that has been blocked by a
sub-request parent remains blocked while any sub-requests execute and until the
sub-request parent request is resumed and completes.

18-6

Using the Runtime Service

This chapter describes how to use the Oracle Enterprise Scheduler runtime service
APIs for submitting and managing job requests and for querying job request
information from the job request history.

" Note:

The runtime service also includes log and output APIs. These APIs are
documented separately in Job Request Logs and Output .

This chapter includes the following sections:

Introduction to the Runtime Service
Accessing the Runtime Service
Submitting Job Requests
Managing Job Requests

Querying Job Requests

Submitting Ad Hoc Job Requests

Implementing Pre-Process and Post-Process Handlers

19.1 Introduction to the Runtime Service

Oracle Enterprise Scheduler lets you define and run different job types including: Java
classes, PL/SQL procedures, and process job types (forked processes). To run these
job types you need to submit a job definition.

You can use the runtime service to perform different types of operations, including:

Submit: These operations let you supply a job definition to Oracle Enterprise
Scheduler to create job requests.

Manage: These operations allow you to change the state of job requests and to
update job requests.

Query: These operations let you find the status of job requests and report job
request history.

19.2 Accessing the Runtime Service

Like the metadata service, Oracle Enterprise Scheduler provides a runtime MBean
proxy interface.

ORACLE

19-1

Chapter 19
Accessing the Runtime Service

The runtime service open() method begins each Oracle Enterprise Scheduler runtime
service user transaction. In an Oracle Enterprise Scheduler application client you
obtain a Runt i neSer vi ceHandl e reference that is created by open() and you pass the
reference to runtime service methods. The Runt i meSer vi ceHandl e reference provides
a connection to the runtime service for the client application. In the client application
you must explicitly close the runtime service by calling cl ose() . This ends the
transaction and causes the transaction to be committed or rolled back (undone). The
cl ose() not only controls the transactional behavior within the runtime service, but it
also allows Oracle Enterprise Scheduler to release the resources associated with the
Runti meServi ceHandl e.

19.2.1 How to Access the Runtime Service and Obtain a Runtime
Service Handle

ORACLE

Oracle Enterprise Scheduler exposes the runtime service to your application program
as a Stateless Session Enterprise Java Bean (EJB). You can use JNDI to locate the
Oracle Enterprise Scheduler runtime service Stateless Session EJB.

Example 19-1 shows a lookup for the Oracle Enterprise Scheduler runtime service
using the Runt i neSer vi ceLocal Hone object.

Note:
When you access the runtime service:

e Jndi Uil.getRuntimeServi ceEJB() assumes that the RuntimeService
EJB has been mapped to the local JINDI location "ess/runtime”. This
happens automatically in the hosted application's message-driven bean
(MDB).

e The open() call provides a Runt i meSer vi ceHandl| e reference. You use
this reference with the methods that access the runtime service in your
application program.

e When you finish using the runtime service you must call cl ose() to
release the resources associated with the Runt i meSer vi ceHandl e.

Example 19-1 JNDI Lookup to Access Oracle Enterprise Scheduler Runtime
Service

i mport oracle. as. schedul er.core. Jndi Wil;
/1 Denonstration of how to | ookup runtime service froma
/1 Java EE application conponent

RuntinmeService runtime = Jndi Util.get RuntimeServiceEJB();
Runt i neServi ceHandl e rHandl e = nul | ;

try
{

rHandl e = runtinme. open();

19-2

Chapter 19
Submitting Job Requests

}
finally
{
if (rHandle !'= null)
{
runtime. cl ose(rHandl e);
}
}

19.3 Submitting Job Requests

When you submit a job definition you create a new job request.

You can submit a job request using a job definition that is persisted to a metadata
repository, or you can create a job request in an ad hoc manner where the job
definition or the schedule is not stored in the metadata repository (for information
about ad hoc requests, see Submitting Ad Hoc Job Requests).

19.3.1 How to Submit a Request to the Runtime Service

ORACLE

You create a job request by calling subni t Request () . Depending on your
requirements, you can create a job request with one of the following formats:

» Create a new job request using a job definition stored in the metadata repository,
to run once at a specific time.

» Create a new job request using a job definition and a schedule, each stored in the
metadata repository.

Example 19-2 shows the submi t Request () method that creates a new job request with
a job definition that resides in the metadata repository. You can also submit an ad

hoc job request where the job definition and schedule are not stored in the metadata
repository. For more information, see Submitting Ad Hoc Job Requests. You can also
submit a sub-request. For more information, see Using Subrequests .

¢ Note:
When you submit a job request using the runtime service:

e You obtain the runtime service handle as shown in Example 19-1.

e The runtime service internally uses the metadata service to obtain job
definition metadata with the supplied Met adat aCbj ect | d, j obDef nl d.

Example 19-2 Creating a Job Request with submitRequest()

l ong request!D = OL;
Met adat aObj ect I d j obDef nl d;

Request Paraneters p = new Request Paraneters();

Cal endar start = Cal endar. getlnstance();
start.add(Cal endar. SECOND, startsln);

request | D = runtine. submtRequest (r, "My Java job", jobDefnld, start, p);

19-3

Chapter 19
Submitting Job Requests

19.3.2 What You Should Know About Default System Properties When
You Submit a Request

When you create a job request Oracle Enterprise Scheduler resolves and stores
the properties associated with the job request. Certain system properties can be
associated with a job request. If you do not set these properties anywhere in

the properties hierarchy when a job request is submitted, then Oracle Enterprise
Scheduler provides default values.

Table 19-1 shows the default runtime service field names and the corresponding
system properties.

Table 19-1 Runtime Service Default Value Fields and Corresponding System Properties
|

Value Runtime Service Default Value Corresponding System Description
Field Property
0 DEFAULT _REQUEST EXPI RATION SYS request Expirati The default expiration time, in minutes,
on for a request. The default value is 0

which means the request never expires.

4 DEFAULT_PRI ORI TY SYS priority The default system priority associated

with a request.

5 DEFAULT_REPROCESS DELAY SYS reprocessDel ay The default period, in minutes, in

which processing must be postponed
by a callout handler that returns
Act i on. DELAY.

0 DEFAULT_RETRI ES SYS retries The default number of times a failed

request is retried. The default value is
0 which means a failed request is not
retried.

0 DEFAULT_ASYNC_REQUEST_TI MEO SYS request _timeout Specifies the time in minutes that the

ur

processor waits for an asynchronous
response after the job execution has
begun. After the time elapses, the
request is timed out.

19.3.3 What You Should Know About Metadata When You Submit a

Request

ORACLE

All Oracle Enterprise Scheduler Metadata associated with a job request is persisted

in the runtime store at the time of request submission. Persisted metadata objects
include job definition, job type, job set, schedule, incompatibility definitions, and
exclusion definition. Metadata is stored in the context of a top level request, and

each metadata object is uniquely identified by the absolute parent request ID and its
metadata ID. Each unique metadata object is stored only once for a top-level request,
even if the definition is used multiple times in the request. This ensures that every child
request uses the same definition.

When a request is submitted, all known metadata for the request is persisted.
For subrequests, the metadata is not know until the subrequest is submitted, so
subrequest metadata is persisted when the subrequest is submitted, after first
checking that the metadata object is not already persisted in the runtime store.

19-4

Chapter 19
Submitting Job Requests

Metadata persisted in the runtime store is removed when the absolute parent request
is deleted.

19.3.4 DMS ECID and Flowld Support

Oracle Enterprise Scheduler associates a DMS ECID and Fl ow d value with every
request. Oracle Enterprise Scheduler usually obtains the ECID and Fl ow d from the
current DMS execution context, if present, at request submission and uses that ECID
and Fl owl d value during subsequent processing of the request. For example, Oracle
Enterprise Scheduler sets up a DMS execution context that associates the ECID and
Fl owl d with the request when it initiates the job executable.

If a DMS Fl owt d property is not present in the DMS execution context at request
submission, then a new Fl owl d is associated with the request. For example, if the
request is not submitted by SOA, there might not be a Fl owl d present on the DMS
execution context and Oracle Enterprise Scheduler associates a new Fl owl d with the
request.

If no DMS execution context is present at request submission, then a new ECID and
new Fl ow d are associated with the request. For example, if a request is submitted
using the Oracle Enterprise Scheduler PL/SQL interface, there might be no DMS
context information available from the database session when the PL/SQL submit
procedure is called. A new ECID and new Fl ow d are associated with the request after
it is successfully validated by the Oracle Enterprise Scheduler mid-tier.

19.3.4.1 ECID and FlowlID for Child Requests

In general, child requests inherit the ECID and Fl ow d from their parent request.
For example, Oracle Enterprise Scheduler uses the ECID and Fl ow d of the parent
request when a job set step request is created.

A sub-request is a submitted request, therefore the ECID and Fl ow d of the current
DMS execution context of the sub-request submission is associated with the sub-
request. Usually the ECID and Fl owl d values are the same as those of the parent
request because Oracle Enterprise Scheduler sets up a DMS execution context that
has the ECID and Fl owl d of the parent request prior to initiating the parent job
executable. It is possible that the application or some component layer changed

the ECID or Fl owi d prior to Oracle Enterprise Scheduler receiving the sub-request
submission. If that is the case, the parent and sub-request might have a different ECID
or Fl ow d.

If a schedule is specified at request submission, the submitted request represents

an absolute parent that does not execute. Oracle Enterprise Scheduler automatically
creates child instance requests according to the specified schedule and a new ECID
and Fl owl d is used for each child instance. The child instance request represents an
instance parent request and may have children of its own; for example, a sub-request
or job set step request. Any such children typically have the same ECID and Fl ow d as
its instance parent request.

19.3.4.2 DMS Flowld and SOA CorrelationFlowld

ORACLE

Oracle Enterprise Scheduler uses the DMS Flowld property whose property name
is "Flowld". SOA has several properties that might be present on a DMS execution
context. Two such properties are the SOA Correl ati onFl owm d and SOA Fl ow d.

properties. The DMS Fl owl d property ("Flowld") is used to propagate the value for

19-5

Chapter 19
Managing Job Requests

the SOA Correl ati onFl owt d. The DMS property hame "oracle.soa.tracking.Flowld" is
used to propagate the value for the SOA Fl owl d property. For that reason, the Fl ow d
property associated with an Oracle Enterprise Scheduler request submitted by SOA
might match the SOA Correl ati onFl ow d value.

19.4 Managing Job Requests

After you submit a job request, using the r equest | D you can do the following:
e Get request information
e Change the state of the request

+ Update request parameters

19.4.1 How to Get Job Request Information with getRequestDetail

ORACLE

Using the runtime service, with a r equest | D, you can obtain information about a job
request that is in the system. Table 19-2 shows the runtime service methods that allow
you to obtain job request information.

Table 19-2 Runtime Service Get Request Methods
|

Runtime Service Method Description
get Request Detai | () Retrieves complete runtime details for the specified request
get Request Det ai | Basi c() Retrieves basic runtime details of the specified request.

The RequestDetail returned by this method includes most
of the information as get Request Det ai | (), but certain
less commonly used information is omitted to improve

performance.
get Request Par anet er () Retrieves the value of a request parameter.
get Request s() Retrieves an enumeration of immediate child request

identifiers associated with the specified request. This
includes IDs for requests that did not complete, such as
when the request transaction is rolled back or an error
occurs.

get Request St at e() Retrieves the current state of the specified request

Example 19-3 shows code that determines if there is any immediate child request in
the HOLD state.

Example 19-3 Determining Whether Any Immediate Child Job Requests Are on
Hold

h = s_runtine.open();
try {

s_runtime. hol dRequest (h, reqi d);
Enuneration e = s_runtime.get Requests(h, reqid);

bool ean foundHol d = fal se;
whi | e (e.hasMoreEl ements()) {

long childid = ((Long)e.nextEl enent()).longVal ue();

19-6

Chapter 19
Managing Job Requests

State state = s_runtine. get Request State(h, childid);
if (state == State. HOLD) {

foundHol d = true;

br eak;

}

19.4.2 How to Change Job Request State

ORACLE

Using the runtime service, with a r equest | D, you can change the state of a job
request. Table 19-3 shows the runtime service job request state change methods.
The job request management methods allow you to change the state of a request,
depending on the state of the job request. For example, you cannot cancel a request
with cancel Request () if the request is in the COVPLETED state.

Table 19-3 Runtime Service Job Request State Methods
|

Runtime Service Description

Method

cancel Request () Cancels the processing of a request that is not in a terminal state.

del et eRequest () Marks a request in a terminal state for deletion.

hol dRequest () Withholds further processing of a request that is in WAI T or READY
state.

rel easeRequest () Releases a request from the HOLD state.

Example 19-4 shows a submi t Request () with methods that control the state of

the job request. The hol dRequest () holds the processing of the job request. The
corresponding r el easeRequest () releases the request. This example does not show
the conditions that require the hold for the request.

< Note:
Note the following in Example 19-4:

¢ You obtain the runtime service handle, r Handl e, as shown in
Example 19-1.

e The hol dRequest () places the request in the HOLD state.

e You may do some required processing while the request is in the HOLD
state.

e Therel easeRequest () releases the request from the HOLD state.

Example 19-4 Runtime Service releaseRequest() Usage

rHandl e = runtine. open();
try

{
runti me. hol dRequest (rHandl e, reqi d);

19-7

Chapter 19
Managing Job Requests

runtime. rel easeRequest (rHandl e, reqid);

}
finally

{
if (rHandle !'= null)

{
}

runtime. cl ose(rHandl e);

}

19.4.3 How to Update Job Request Priority and Job Request
Parameters

Using the runtime service you can update job request system properties or request
parameters. Table 19-4 shows the runtime service methods that allow you to lock and
update up a job request.

Table 19-4 Runtime Service Update Methods

___|
Runtime Service Method Description

| ockRequest () Acquires a lock for the given request. The lock is released
when cl 0se() operation is subsequently invoked or the
encompassing transaction is committed. If an application
tries to invoke this operation while the lock is being held by
another thread, this method blocks until the lock is released.
Use this method to ensure data consistency when updating
request parameters or system properties.

set Request Par aret er () Updates the property value of the specified request subject to
the property read-only constraints.

Example 19-5 shows code that updates a job request parameter. This code would be
wrapped in a try/finally block as shown in Example 19-1.

Example 19-5 shows the following:

e Obtain the runtime service handle, r handl e, as shown in Example 19-1.
* Acquire a lock for either the request using | ockRequest ()

e Perform the update operation with set Request Par anet er ()

* Useclose() to cause the transaction to be committed or rolled back (undone).
The cl ose() not only controls the transactional behavior within the runtime
service, but it also allows Oracle Enterprise Scheduler to release the resources
associated with the Runt i neSer vi ceHandl e.

Example 19-5 Sample Runtime Service Parameter Update

s_runtime. | ockRequest (rhandl e, reqid);
s_runtime. set Request Paranet er (rhandl e, reqld, paramName, "yy");

ORACLE 19-8

Chapter 19
Querying Job Requests

19.5 Querying Job Requests

Using the runtime service you can query job request information.
This involves the following steps:

e Query for request identifiers and limit results with a filter.

e Get request details to provide additional information for each request ID that the
query returns.

There is only one query method; the runtime service quer yRequest s() method returns
an enumeration of request IDs that match the query. The quer yRequest s() net hod
includes a filter argument that contains field, comparator, and value combinations that
help select query results. Note that the return value includes IDs for requests that did
not complete, such as when the request transaction is rolled back or an error occurs.
For more information on filters, see How to Create a Filter.

When you create a filter for a query, you can use any of the field names shown in
Table 19-5 when querying the runtime store.

Table 19-5 Query Filter Fields For Querying the Runtime (Defined in Enum
RuntimeService.QueryField)

Name Description

ABSPARENTI D The absolute parent request ID of a request.

APPLI CATI ON The application name.

ASYNCHRONQUS Indicates if the job is asynchronous, synchronous or unknown. The value of the field

is not set until the request is processed. The field data type is j ava. | ang. Bool ean.
The value may be NULL if the nature of the job has not yet been determined.

CLASSNAME The name of the executable class that processed the request

COVPLETED_TI ME The date and time that Oracle Enterprise Scheduler finished processing the request.
This field represents the time the process phase was set to COMPLETED.

DEFI NI TI ON The job definition ID (Metadata Object ID).

ELAPSEDTI ME The amount of time, in milliseconds, that elapsed while the request was running.

ENTERPRI SE_I D The enterprise ID.

ERROR_TYPE The request error type.

EXTERNAL_| D The identifier for an external portion of an Oracle Enterprise Scheduler asynchronous
Java job.

EXTERNAL_JOB TYPE Indicates the type of the remote job

| NSTANCEPARENTI D The request ID of the instance parent request.

JOB_TYPE The job type ID (Metadata Object ID).

LOG CAL_CLUSTER _NAME Indicates the logical cluster on which a remote job is executed.

NAMVE The request description.

PARENTREQUESTI D The parent request ID.

PRIORITY The priority of the request.

PROCESS_PHASE The process phase of the request.

ORACLE 19-9

Chapter 19
Querying Job Requests

Table 19-5 (Cont.) Query Filter Fields For Querying the Runtime (Defined in Enum
RuntimeService.QueryField)

Name Description

PROCESSEND The date and time that the process ended. The PROCESSSTART is set only when
a request transitions from READY to RUNNI NG. This implies that (PROCESSEND -
PROCESSSTART) encompasses the entire span of execution: from the time the state
becomes RUNNI NGto the time it transitions to a terminal state.

PROCESSOR The name of the instance that processed the request.

PROCESSSTART The date and time that the process started. The PROCESSSTART is set only when
a request transitions from READY to RUNNI NG. This implies that (PROCESSEND -
PROCESSSTART) encompasses the entire span of execution: from the time the state
becomes RUNNI NGto the time it transitions to a terminal state.

PRODUCT The product name.

READYWAI T_TI ME

REQUEST CATEGORY
REQUEST_DMVB_ECI D
REQUESTEDEND
REQUESTEDSTART
REQUESTI D
REQUESTTYPE
RESULTI NDEX

RETRI ED_COUNT

REQUESTTRI GGER
SCHEDULE
SCHEDULED

STATE

SUBM SSI ON

SUBM TTER

SUBM TTER_DVB_ECI D
SUBM TTER FLOW D
SUBM TTERGUI D

TI MED_QUT

TYPE

USERNANE

VAl TTI ME

WORKASS! GNVENT

The amount of time, in milliseconds, a request has been waiting to run since it
became READY.

The request category specified for the request.

The DMS ECID used for processing of a request.

The requested end time.

The requested start time.

The request ID of a submitted request.

The type of request (that is, an element of Request Type)

Controls the starting and ending index of the returned results. This field allows users
to express result constraints such as "return only results 10 through 20".

The retried count associated with a job. This field represents the number of times the
job was retried.

The Trigger ID (Metadata Object ID).

The schedule ID (Metadata Object ID).

The time when the request is scheduled to be executed.

The job request state.

The submission time of the request.

The submitter of the request.

The DMS ECID from the DMS context at request submission.

The SOA/DMS Flowld from the DMS context at request submission.
The submitter GUID of the request.

Indicates whether the job has timed out.

The execution type of the request.

The name of the user who submitted the request.

The amount of time, in milliseconds, a request has been waiting to run.

The name of the work assignment that was active when the request was processed.

Table 19-6 shows the runtime service method for querying job requests and
Example 19-6 shows the use of this method.

ORACLE

19-10

Chapter 19
Submitting Ad Hoc Job Requests

Table 19-6 Runtime Service Query Methods

___|]
Runtime Query Method Description

quer yRequest s() Gets a summary of requests.

Example 19-6 Using queryRequest() Method

Filter filter =
new Filter(RuntimeService. QueryFiel d. DEFI NI TION. fi el dNane(),
Fi |l ter. Conparat or. EQUALS,
myJavaSucJobDef . toString())
.and(Runti neServi ce. QueryFi el d. STATE. fi el dName(),
Fi | ter. Conparat or. EQUALS,
new | nteger(12));

11
Enurer ation requests =
runtime. queryRequests(h, filter,
Runt i meServi ce. QueryFi el d. REQUESTI D, true);

19.6 Submitting Ad Hoc Job Requests

To use an ad hoc request you supply request parameters, a job definition, and
optionally a schedule that you create and define without saving it to a metadata
repository.

An ad hoc request does not require you define the details of a job request in

a metadata repository. Thus, ad hoc requests support an abbreviated job request
submission process that can occur without using a connection to the metadata
repository.

< Note:

Ad hoc requests have the following limitation: job sets are not supported with
ad hoc requests.

19.6.1 How to Create an Ad Hoc Request

To create an ad hoc request you use the ad hoc version of submi t Request () . For the
job definition, instead of supplying a job definition Met adat atbj ect | d, you can define
the job definition object and use a system property that corresponds to the job type, as
shown in Table 19-7.

Table 19-7 Ad Hoc Request Job Definition System Properties for Job Types
]

System Property Description
CLASS_NAME Specifies the Java class to execute (for a Java job type).
PROCEDURE_NAME Specifies the PL/SQL stored procedure to execute (for an SQL job type).

ORACLE 19-11

Chapter 19
Submitting Ad Hoc Job Requests

Table 19-7 (Cont.) Ad Hoc Request Job Definition System Properties for Job Types

System Property

Description

CMDLI NE Specifies the command line used to invoke an external program for a process job
request.

With one signature of the ad hoc version of subni t Request () you do not need to

supply Met adat aQbj ect | ds, you can provide the Schedul e object as an argument

as object instances directly to subm t Request () . Other ad hoc submi t Request ()
signatures allow you to submit a job request using a job definition from metadata
and an instance for the Schedul e object.

Example 19-7 shows sample code for an ad hoc request submission that uses a

schedule.

In this example, note the following ad hoc specific details for the request submission:

* The CLASS name is set to define the Java class that runs when Oracle Enterprise
Scheduler executes the job request: p. add(Syst enProperty. CLASS NAME,
"test.job.HelloWrld"),

e The submit Request () includes an argument that specifies the job type:
JobType. Executi onType. JAVA TYPE.

» Specify the Java class, the procedure name, or the command line program to
execute when the ad hoc Request is processed by setting one of the system
properties shown in Table 19-7.

e Call the ad hoc version of submi t Request () specifying the type argument to
correspond with the system property you set to define the request. The type you
supply must be one of JAVA TYPE, SQL_TYPE, or PROCESS TYPE.

* As with any job request, set the appropriate system properties to be associated
with the job request.

Example 19-7 Creating Request Parameters and a Schedule for an Ad Hoc

Request

Request Paraneters p = new Request Paraneters();
String propNane = "testProp";
String propVal ue = "testVal ue";
p. add(propNane, propVal ue);
p. add(Syst enPr operty. REQUEST_EXPI RATI ON, new | nteger(10));
p. add(SystenProperty. LI STENER, "test.listener. TestListener");
p. add(Syst enPr operty. EXECUTE_PAST, "TRUE");
p.add("application", getApplication());
p. add(Syst enProperty. CLASS NAME, "test.job.HelloWrld");
Cal endar start = Cal endar. getlnstance();
start. add(Cal endar. SECOND, 5);
Cal endar end = (Cal endar) start.clone();
end. add(Cal endar . SECOND, 5);
Recurrence recur = new
Recur rence(RecurrenceFi el ds. FREQUENCY. SECONDLY,
2, start, end);
Schedul e schedul e = new Schedul e("nmySchedul e",
"Run every 2 sec for 5 seconds.", recur);
ORACLE 19-12

Chapter 19
Implementing Pre-Process and Post-Process Handlers

/1 adhoc subnmi ssion, no netadata definitions passed
reqld = runtime. subm t Request (h,
"t est AdhocJavaW t hSchedul e",
JobType. Executi onType. JAVA_TYPE,
schedul e, nul |, Cal endar. getlnstance(),
nul'l, p);

19.6.2 What Happens When You Create an Ad Hoc Request

The ad hoc submi t Request () returns the request identifier for the request. You can
use this request identifier with runtime calls such as set Request Par anet er () or
get Request Detai | () as you would with any other job request.

There is only one subni t Request signature that creates a request with an ad hoc job
definition. The job definition ID, obtained from Request Det ai | . get JobDef n(), is null in
this case. Without an ad hoc job definition, a request cannot be considered ad hoc.

19.6.3 What You Need to Know About Ad Hoc Requests

If you want to define a schedule to use with an ad hoc request and you want to specify
exclusion dates, you need to exclude the dates using the addExcl usi onDat e() method
for the schedule. For ad hoc requests, you cannot use a schedule that specifies
exclusion dates using addExcl usi on() method for the schedule.

Currently, if the schedule is ad hoc, a check of Excl usi onDef i ni ti on is skipped. Thus,
if you use a schedule and use addExcl usi on() and submit an ad hoc job request, then
Oracle Enterprise Scheduler does not use the Excl usi onsDefi ni ti on IDs with the job
request.

19.7 Implementing Pre-Process and Post-Process Handlers

Along with the core logic of your job, you can include code that executes before and
after the job's main execution code. With code that executes before, known as a
pre-process handler, you can do such things as set up certain conditions for the job
executable.

With code that executes after, known as a post-process handler, you can do such
things as processing the results of the job executable, perhaps by printing reports or
sending notifications.

You provide pre- and post-process handlers by implementing specific interfaces,
then connecting your implementations to the service through a system property that
indicates which of your classes to use.

19.7.1 Implementing a Pre-Process Handler

ORACLE

With a pre-process handler, your code can do things to create an environment for
your job to execute. This could include creating connections to resources that your job
requires, for example.

The pre-processor is instantiated and invoked at the start of request execution when
the request transitions to RUNNING state. This is done each time the request is
executed, including when a failed request is retried or a paused request is resumed
after its sub-requests have completed.

19-13

Chapter 19
Implementing Pre-Process and Post-Process Handlers

You create a pre-process handler by implementing the

oracl e. as. schedul er. PreProcessHandl er interface. With your pre-process handler
class in hand, you specify that it should be used by setting the SYS _pr eProcess system
property to the fully-qualified name of your handler class. You can define the property
on job metadata or include it in the request submission parameters.

19.7.1.1 Implementing the PreProcessHandler Interface

Your PreProcessHandl er implementation should do the pre-process actions your

job requires, then return an or acl e. as. schedul er. Handl er Act i on instance from the
interface's one method, pr eProcess. (Your class may also implement the Cancel | abl e
interface if you want the job to support cancellation. It must also provide an empty
constructor.)

The Handl er Act i on instance your pr ePr ocess implementation returns should give
status about whether, and under what conditions, the job should proceed. When
constructing the Handl er Acti on class, you pass it a Handl er St at us instance that
indicates the status of pre-processing for the request.

Supported Handl er St at us values and actions are listed below. An unsupported status
causes the request to transition to an error state and be subject to retries if configured.

e PROCEED informs Oracle Enterprise Scheduler that request processing should
commence. The request remains in the RUNNING state.

* WARNinforms Oracle Enterprise Scheduler that request processing should
commence but that a warning should be logged. The request remains in the
RUNNING state.

» CANCEL informs Oracle Enterprise Scheduler that request pre-processing has been
canceled. The request transitions to the CANCELLED state.

e DELAY informs Oracle Enterprise Scheduler to postpone request processing by
the quantum of time specified by the SYS_reprocessDel ay system property. The
request remains in RUNNING state during the delay.

e SYSTEM ERRCR informs Oracle Enterprise Scheduler that the handler has
experienced an error. The request transitions to an error state and is subject to
retries if configured.

* Bl Z_ERROR informs Oracle Enterprise Scheduler that the handler has experienced
a business error. The request transitions to an error state not subject to retries.

19.7.2 Implementing a Post-Process Handler

ORACLE

With a post-process handler, your code can do things that should take place after your
job has executed. This could include releasing connections to resources that your job
required, for example, or generating a report based on request-specific data or status.

The post-processor is instantiated and invoked after job execution, when the request
transitions to COMPLETED state. The post-processor is invoked only once for a
request, in contrast to the pre-processor.

You create a post-process handler by implementing the

oracl e. as. schedul er. Post ProcessHandl er interface. With your post-process handler
class in hand, you specify that it should be used by setting the SYS_post Process
system property to the fully-qualified name of your handler class. You can define the
property on job metadata or include it in the request submission parameters.

19-14

Chapter 19
Implementing Pre-Process and Post-Process Handlers

19.7.2.1 Implementing the PostProcessHandler Interface

ORACLE

Your Post ProcessHandl er