
Oracle® Fusion Middleware
Understanding Oracle SOA Suite

12c Release (12.2.1.3.0)
E96879-04
June 2021

Oracle Fusion Middleware Understanding Oracle SOA Suite, 12c Release (12.2.1.3.0)

E96879-04

Copyright © 2014, 2021, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility vii

Diversity and Inclusion vii

Related Documents vii

Conventions viii

Part I Introduction to Oracle SOA Suite

1 Overview of Oracle SOA Suite

1.1 About Oracle SOA Suite 1-1

1.2 Key Concepts 1-2

1.3 Key Components 1-3

1.4 Key Management Tools and Processes 1-5

1.4.1 Oracle JDeveloper 1-5

1.4.2 Oracle Enterprise Manager Fusion Middleware Control 1-5

1.4.3 Additional Design and Runtime Tools 1-5

1.5 Overview of an Oracle SOA Suite Process Flow 1-6

Part II Business Challenges and Oracle SOA Suite

2 Business Challenges of Company X

2.1 Business Challenges of Company X 2-1

2.2 Solutions 2-1

3 Creating a Credit Validation System

3.1 Business Challenge 3-1

3.2 Business Solution 3-1

3.2.1 Creating a Credit Validation Composite 3-3

3.2.2 Retrieving Credit Card Payment Information from the Database 3-4

iii

3.2.2.1 Configuring the Database Adapter with the Adapter Configuration Wizard 3-5

3.2.3 Invoking the Database Adapter from the BPEL Process 3-7

3.2.4 Calculating Payment Status with XSLT Transformations 3-10

3.2.5 Tracking Payment Status with Composite Sensors 3-12

3.2.6 Deploying the validatePayment Composite 3-14

3.2.7 Registering SOA Composite Applications with Oracle Service Bus 3-15

3.2.7.1 Sharing Resources with Folders 3-16

3.2.7.2 Registering the Composite URI of the SOA Composite Application 3-17

3.2.7.3 Configuring Pipelines and Proxies 3-18

3.2.8 Deploying and Testing 3-19

3.3 Related Documentation 3-20

4 Creating an Order Processing System

4.1 Business Challenge 4-1

4.2 Business Solution 4-1

4.2.1 Creating a SOA Composite Application From a SOA Project Template 4-3

4.2.2 Customizing the Contents of the SOA Project Template 4-5

4.2.3 Updating Order Status with an Inline BPEL Subprocess 4-9

4.2.4 Tracking the Order Number with Composite Sensors 4-10

4.2.5 Updating Order Status After Payment Authorization 4-11

4.2.6 Deploying and Testing in Oracle Enterprise Manager Fusion Middleware
Control 4-13

4.2.7 Registering the ProcessOrder Composite on Oracle Service Bus 4-14

4.2.7.1 Registering the ProcessOrder Composite as a Business Service 4-15

4.2.7.2 Creating a New Pipeline with a Proxy Using the Pipeline Template 4-16

4.2.8 Testing the Pipeline Template 4-20

4.3 Related Documentation 4-21

5 Adding New Ordering Channels with Oracle Service Bus

5.1 Business Challenge 5-1

5.2 Business Solution 5-1

5.2.1 Adding a File-Based Proxy to the Oracle Service Bus Pipeline 5-2

5.2.2 Debugging Components with the Oracle Service Bus Debugger 5-6

5.2.3 Monitoring Oracle Service Bus in Oracle Enterprise Manager Fusion
Middleware Control 5-8

5.3 Related Documentation 5-9

6 Packing and Shipping Orders

6.1 Business Challenge 6-1

iv

6.2 Business Solution 6-1

6.2.1 Defining a Shipping Resource with a REST Service 6-3

6.2.2 Exposing a REST Service with a Packing BPEL Process 6-6

6.2.3 Testing REST Services with the HTTP Analyzer 6-8

6.2.4 Using Templates and Standalone Subprocesses to Update the Order Status in
the Database 6-11

6.2.5 Tracking the Shipping Provider with Composite Sensors 6-12

6.2.6 Sending Email Notifications to Indicate Order Shipments 6-13

6.3 Related Documentation 6-15

7 Fulfilling Orders

7.1 Business Challenge 7-1

7.2 Business Solution 7-1

7.2.1 Creating a Project from a SOA Template 7-2

7.2.2 Determining the Shipping Method with a Business Rule 7-5

7.2.3 Tracking the Order Number with Composite Sensors 7-9

7.2.4 Delivering the Order to the Packing Service with the REST Interface 7-11

7.2.5 Reading the Shipping Provider from Cache with the Coherence Adapter 7-13

7.2.6 Copying the Database Adapter Response into Coherence Cache 7-14

7.2.7 Deploying the Composite and Testing the Coherence Adapters 7-17

7.3 Related Documentation 7-18

8 Scheduling Composite Execution

8.1 Business Challenge 8-1

8.2 Business Solution 8-1

8.2.1 Creating a Web Service Job Definition 8-2

8.2.2 Submitting a Job Request on a Schedule 8-3

8.2.3 Applying Schedules to Adapters 8-5

8.3 Related Documentation 8-7

9 Managing File Transfers

9.1 Business Challenge 9-1

9.2 Business Solution 9-1

9.2.1 Creating Transfers, Sources, and Targets 9-2

9.2.2 Creating a SOA Composite Application with an MFT Service 9-3

9.2.3 Sending the Order File to a SOA Composite 9-4

9.2.4 Processing Payload Types 9-6

9.2.5 Invoking the ProcessOrder Composite with an Inline Payload 9-9

v

9.3 Related Documentation 9-10

10

Accepting B2B Orders

10.1 Business Challenge 10-1

10.2 Business Solution 10-1

10.2.1 Creating Trading Partners and Trading Partner Agreements with Oracle B2B 10-2

10.2.2 Integrating an Oracle MFT Target with Oracle B2B 10-5

10.2.3 Integrating Oracle Service Bus with Oracle B2B 10-6

10.2.4 Integrating the ProcessOrder Composite with Oracle B2B 10-7

10.3 Related Documentation 10-8

11

Adding Fraud Detection

11.1 Business Challenge 11-1

11.2 Business Solution 11-1

11.2.1 Creating an Oracle Event Processing Application 11-2

11.2.2 Sending Events to the Oracle Event Processing Application 11-5

11.2.3 Sending Event Data from Oracle Enterprise Manager Fusion Middleware
Control 11-6

11.3 Related Documentation 11-7

12

Gaining Business Insights with Oracle Business Activity Monitoring

12.1 Business Challenge 12-1

12.2 Business Solution 12-1

12.2.1 Adding Business Indicators and Measurements to a Composite 12-2

12.2.2 Gaining Business Insights with Oracle BAM Dashboards 12-4

12.3 Related Documentation 12-7

vi

Preface

Understanding Oracle SOA Suite provides a high-level introduction to Oracle SOA Suite
concepts and components, highlighting business challenges that can be addressed by Oracle
SOA Suite components.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Related Documents
Refer to the Oracle Fusion Middleware library on the Oracle Help Center for additional
information.

• For Oracle SOA Suite information, see Oracle SOA Suite.

• For adapters information, see On-Premises Integration Adapters.

• For Oracle BAM information, see Oracle Business Activity Monitoring.

• For Oracle B2B information, see Oracle B2B.

• For Oracle Business Process Management information, see Oracle Business Process
Management.

• For Oracle Enterprise Scheduler information, see Oracle Enterprise Scheduler.

• For Oracle Managed File Transfer information, see Oracle Managed File Transfer.

• For Oracle Service Bus information, see Oracle Service Bus.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/fusion-middleware/index.html

• For Oracle SOA Suite for healthcare integration information, see Oracle SOA Suite
for Healthcare Integration.

• For versions of platforms and related software for which Oracle products are
certified and supported, review the Certification Matrix on OTN.

• For cloud adapters information, see:

– Using Ariba Adapter

– Using Oracle Eloqua Cloud Adapter

– Using Oracle ERP Cloud Adapter

– Using the NetSuite Adapter

– Using Oracle RightNow Cloud Adapter

– Using Salesforce Adapter

– Using Oracle Sales Cloud Adapter

– Using ServiceNow Adapter

– Using SuccessFactors Adapter

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Part I
Introduction to Oracle SOA Suite

This part includes the following chapter:

• Overview of Oracle SOA Suite

1
Overview of Oracle SOA Suite

This chapter provides a high-level overview of Oracle SOA Suite architecture, including key
concepts, components, management tools and processes, and process flows.
For more information about:

• Oracle SOA Suite architecture and building applications, see Developing SOA
Applications with Oracle SOA Suite

• Oracle SOA Suite infrastructure and administration, see Administering Oracle SOA Suite
and Oracle Business Process Management Suite

This chapter includes the following sections:

• About Oracle SOA Suite

• Key Concepts

• Key Components

• Key Management Tools and Processes

• Overview of an Oracle SOA Suite Process Flow

1.1 About Oracle SOA Suite
Oracle SOA Suite is a comprehensive, hot-pluggable software suite that enables you to build,
deploy, and manage integrations using service-oriented architecture (SOA). Oracle SOA
Suite provide the following capabilities:

• Consistent tooling

• A single deployment and management model

• End-to-end security

• Unified metadata management

Oracle SOA Suite enables you to transform complex application integrations into agile and
reusable service-based applications to shorten the time to market, respond faster to business
requirements, and lower costs. Critical business services, such as customer, financial,
ordering information, and others that were previously accessible only in packaged application
user interfaces can now be rapidly modeled for mobile devices such as smart phones and
tablets.

Figure 1-1 provides an overview of Oracle SOA Suite architecture.

1-1

Figure 1-1 Oracle SOA Suite Architecture

1.2 Key Concepts
Oracle SOA Suite's hot-pluggable architecture enables businesses to reduce costs
through reuse of existing IT investments and assets, regardless of the operating
system on which they run or the technology on which they are built. Oracle SOA Suite
provides easy-to-use, reusable, and unified application development tooling and life
cycle management support to further reduce development and maintenance costs and
complexity. Businesses can improve efficiency and agility through rules-driven,
business process automation with Oracle SOA Suite. Oracle SOA Suite's ability to
deliver real-time trending and analysis, visualization, and life cycle visibility enables
businesses to anticipate and respond to change when it matters. Oracle SOA Suite
provides the following capabilities:

• Unifies cloud applications with on-premises applications to minimize complexity.

• Leverages existing functionality for rapid mobile enabling with representational
state transfer (REST) support.

• Designs SOA composite applications from disparate services and applications.

• Connects to virtually any data source technology (messaging, database, and so
on), application, or trading partner through a unified connectivity framework,
including adapters and B2B gateways, and preintegration with Oracle Data
Integration Suite.

• Routes, transforms, and virtualizes services through the highly scalable Oracle
Service Bus.

• Orchestrates and builds process automation with Oracle BPEL Process Manager.

• Builds agility by externalizing specific blocks of logic using Oracle Business Rules.

Chapter 1
Key Concepts

1-2

• Gains real-time visibility into operation and performance of business processes, including
the ability to respond to specific situations, through Oracle Business Activity Monitoring.

• Consistently and easily secures all services through a policy-driven integrated security
framework and the global policy manager in Oracle Enterprise Manager Fusion
Middleware Control.

• Executes SOA composite applications through a unified, optimized infrastructure. The
SOA service infrastructure is built on top of Oracle WebLogic Server, JRockit, and Oracle
Coherence.

• Manages and monitors the previously-mentioned components through a single console
natively integrated with Oracle Enterprise Manager Fusion Middleware Control.

1.3 Key Components
Oracle SOA Suite includes the following key components.

• Oracle Service Bus

Oracle Service Bus is a configuration-based, policy-driven enterprise service bus
designed for SOA life cycle management. Oracle Service Bus provides the following
capabilities:

– Service discovery and intermediation

– Rapid service provisioning and deployment

– Highly-scalable and reliable service-oriented integration, service management, and
traditional message brokering across heterogeneous IT environments

– Intelligent message brokering with routing and transformation of messages, along
with service monitoring and administration in a unified software product

For more information, see Developing Services with Oracle Service Bus and
Administering Oracle Service Bus.

• Oracle Business Process Execution Language (BPEL) Process Manager

Oracle BPEL Process Manager provides a comprehensive, standards-based, and easy-
to-use solution for assembling a set of discrete services into an end-to-end process flow
to reduce the cost and complexity of process integration. The BPEL process service
engine is a mature, scalable, and robust BPEL server. It executes standard BPEL
processes and provides dehydration capability. This enables the state of long-running
business flow instances to be automatically maintained in a database, enabling clustering
for both failover and scalability. Built-in human workflow services such as task,
notification, and worklist management are provided to enable the integration of people
and manual tasks into BPEL business flow instances. Oracle BPEL Process Manager
can integrate applications and legacy systems, composing coarse-grained services from
finer-grained services, building process-centric composite applications, and automating
business processes and workflow applications, including routing and escalation.

For more information, see Developing SOA Applications with Oracle SOA Suite and
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

• Oracle Business Activity Monitoring (BAM)

Oracle BAM monitors business processes in real time to enable you to make informed
tactical and strategic business decisions. Unlike traditional reporting systems, Oracle
BAM offers right-time operational intelligence for mission critical business processes.
Oracle BAM analyzes data before, during, and after business events.

Chapter 1
Key Components

1-3

For more information, see Monitoring Business Activity with Oracle BAM.

• Oracle Business Rules

Oracle Business Rules enable dynamic business decisions at runtime, enabling
you to automate policies, computations, and reasoning while separating rule logic
from underlying application code. This provides for agile rule maintenance and
enables business analysts to modify rule logic without programmer assistance and
without interrupting business processes.

For more information, see Designing Business Rules with Oracle Business
Process Management.

• Oracle Java EE Connector Architecture (JCA) adapters

Oracle JCA adapters enable connectivity to virtually any data source inside the
enterprise. Oracle JCA adapters are standards-based and support both web
services and JCA technologies. Oracle JCA Adapters are available for the
following:

– Packaged applications

– Legacy and mainframe applications, including Tuxedo, Virtual Storage Access
Method (VSAM), and Customer Information Control System (CICS)

– Cloud applications

– Technologies and protocols, including FTP, files, databases, AQ, JMS,
MQSeries, Coherence, LDAP, User Messaging Service, and Oracle E-
Business Suite

For more information, see Understanding Technology Adapters.

• Oracle B2B

Oracle B2B enables an enterprise to exchange information electronically with a
trading partners. Oracle B2B supports a set of industry standards, including
Electronic Data Interchange (EDI), UCCnet, RosettaNet, Chemical Industry Data
Exchange (CIDX), Petroleum Industry Data Exchange (PIDX), Voluntary
Interindustry Commerce Solutions (VICS), ebXML, and Universal Business
Language (UBL).

For more information, see Using Oracle B2B.

• Oracle SOA for Healthcare

Oracle SOA Suite for Healthcare enables you to design, create, and manage
applications that process health care data. Oracle SOA Suite for Healthcare
integration provides a web-based user interface in which to create and configure
health care integration applications, and monitor and manage the messages
processed through those applications. You can also use the Oracle Document
Editor to create and configure document definitions that define message
structures.

For more information, see Using Oracle SOA Suite for Healthcare Integration.

• Oracle Web Services Manager (OWSM)

OWSM provides the policy manager for securing web services, including
authentication and authorization. OWSM is installed by default when you install
Oracle Fusion Middleware Infrastructure. It is licensed only through Oracle SOA
Suite; a standalone license is not available.

For more information, see Enabling Security with Policies and Message Encryption
in Developing SOA Applications with Oracle SOA Suite.

Chapter 1
Key Components

1-4

Oracle SOA Suite can be integrated with the following additional components:

• Oracle Enterprise Scheduler

Enterprise applications require the ability to off-load large transactions to run at a future
time or automate the running of application maintenance work based on a defined
schedule. Oracle Enterprise Scheduler enables you to run different job types, including
Java, PL/SQL, binary scripts, web services, and Enterprise JavaBeans (EJBs) distributed
across the nodes in an Oracle WebLogic Server cluster. Oracle Enterprise Scheduler
runs jobs securely, with high availability, scalability, and load balancing. Oracle Enterprise
Scheduler runs are monitored and managed through Oracle Enterprise Manager Fusion
Middleware Control.

For more information, see Developing Applications for Oracle Enterprise Scheduler and
Administering Oracle Enterprise Scheduler.

• Oracle Managed File Transfer

Oracle Managed File Transfer is a high performance, standards-based, end-to-end
managed file gateway. It features design, deployment, and monitoring of file transfers
using a lightweight, web-based, design-time console that includes file encryption,
scheduling, and embedded FTP and sFTP servers.

For more information, see Using Oracle Managed File Transfer.

1.4 Key Management Tools and Processes
Oracle SOA Suite provides a number of development, monitoring, and management tools.

1.4.1 Oracle JDeveloper
Oracle JDeveloper is the integrated development environment used by Oracle SOA Suite for
building service-oriented applications with the latest industry standards for Java, XML, web
services, SQL, REST, and SCA. Oracle JDeveloper supports the complete development life
cycle with integrated features for modeling, coding, debugging, testing, profiling, tuning, and
deploying applications. Oracle JDeveloper features a SOA Composite Editor for quickly and
graphically assembling the various components and technologies used in a SOA project.
User friendly wizards are provided to simplify many common tasks such as connecting to IT
systems.

1.4.2 Oracle Enterprise Manager Fusion Middleware Control
Oracle Enterprise Manager Fusion Middleware Control is a web-based tool for managing and
monitoring SOA composite applications at runtime. Administrators perform tasks such as
tracking business flow instances, attaching security policies, identifying a specific message
by searching on specific data, identifying and repairing errors in the Error Hospital, and so on.
Oracle Enterprise Manager Fusion Middleware Control also provides visibility into the
execution of processes, showing a complete end-to-end graphical representation of the
business flow followed by a given message across all the components traversed.

1.4.3 Additional Design and Runtime Tools
Oracle SOA Suite provides additional design and runtime tools for some components, as
described in Table 1-1.

Chapter 1
Key Management Tools and Processes

1-5

Table 1-1 Additional Design and Runtime Tools

Runtime Tools Description

Oracle BAM Composer Provides a user interface for creating dashboards, alerts,
business views, key performance indicators (KPIs), alerts, and
parameters.

Oracle B2B Console Provides a user interface for creating B2B transactions, including
trading partners and trading partner agreements.

Oracle Managed File
Transfer Console

Provides a lightweight, web-based, design-time console for
defining the following artifacts:

• The origin of files to transfer (known as sources)
• The destination of files (known as targets)
• A transfer that associates a source with targets

Oracle Service Bus Console Provides configuration tools for creating service level agreement
alerts, pipeline alerts, messaging reporting actions, alert
destinations, and throttling groups for business service
endpoints. You can also update environmental values, either
individually or in bulk.

Oracle SOA Composer Provides a runtime environment for creating domain value maps,
approval management extensions, business rules, and
composite sensors in deployed composites.

Oracle Healthcare for
Healthcare Integration
Console

Provides support for messaging protocols and creating and
managing endpoints, managing documents, creating map sets,
and creating Java callouts.

1.5 Overview of an Oracle SOA Suite Process Flow
The remaining chapters of this guide provide an overview of how Oracle SOA Suite
components work together in a process flow from design time through runtime to
address the business challenges faced by a company.

For more information, see Business Challenges of Company X .

Chapter 1
Overview of an Oracle SOA Suite Process Flow

1-6

Part II
Business Challenges and Oracle SOA Suite

This part describes a business challenge and how the components of Oracle SOA Suite
address these challenges from design time through runtime.

• Business Challenges of Company X

• Creating a Credit Validation System

• Creating an Order Processing System

• Adding New Ordering Channels with Oracle Service Bus

• Packing and Shipping Orders

• Fulfilling Orders

• Scheduling Composite Execution

• Managing File Transfers

• Accepting B2B Orders

• Adding Fraud Detection

• Gaining Business Insights with Oracle Business Activity Monitoring

2
Business Challenges of Company X

This chapter describes the business challenges faced by Company X and how Oracle SOA
Suite provides a business solution for these challenges.
This chapter includes the following sections:

• Business Challenges of Company X

• Solutions

2.1 Business Challenges of Company X
Company X must improve their order processing system to accommodate multichannel
growth with online business partners. In addition, an aggressive store expansion is planned.
Overlapping systems must be consolidated to provide better end-to-end visibility from order
to fulfillment.

Requirements for improving the order processing system are as follows:

• The order processing system must be accessible through multiple protocols, data
formats, and client types, including mobile devices:

– Business trends indicate that Company X must launch a mobile application soon and
the new order processing service must support access through RESTful APIs.

– In addition to the existing online direct store, Company X plans to launch a service in
which orders are received through a different channel (as batch comma-separated
value (CSV) files over FTP). They must eventually be processed and fulfilled using
the same new order provisioning infrastructure.

– Company X must interface with trading partners and provide electronic data interface
(EDI) support.

• For large orders, a customer's credit history must be checked before sending the order
for fulfillment. Otherwise, the order is rejected. Initially, credit is checked by internal
departments, but later must be integrated with PayPal. Changing credit providers must
not disrupt order processing operations.

• The order processing system must provide direct integration with the packaging
department to ship orders with preferred shipping providers based on the type of shipping
service (2 day, 5-7 day shipping, and so on).

• The bulk fulfillment process must run according to a predefined pick-up schedule.

• Upon fulfillment processing and orders being sent to the packaging department, a
message must be communicated to the customer (either bulk or on-demand).

2.2 Solutions
The chapters of this guide describe how Company X uses the capabilities of Oracle SOA
Suite to address their business challenges. Table 2-1 provides an overview.

2-1

Table 2-1 Addressing Business Challenges

Challenge Addressed See...

Company X designs a credit card validation
composite to validate payments and return
payment status. If a payment is denied, an order
is not processed. Oracle Service Bus is
integrated with the composite to provide
registration and security benefits.

Creating a Credit Validation System

Company X designs a SOA composite
application to accept new purchase orders,
authorize or deny them, and forward the
authorized orders to an order fulfillment
composite designed in Fulfilling Orders . Oracle
Service Bus makes the order processing
composite available over many protocols and
data formats, and validates the order.

Creating an Order Processing System

Company X designs an Oracle Service Bus
pipeline to connect a proxy service to a file
ordering channel. The proxy handles incoming
customer orders by file.

Adding New Ordering Channels with

Company X designs a BPEL process that sets
the status of an order to shipped, notifies the
customer that the order has shipped, and
updates the order status in the database. This
process is connected to an inbound REST
interface service that defines a shipping
resource.

Packing and Shipping Orders

Company X designs an order fulfillment
composite to listen for orders to process, selects
a shipping provider, and invokes the packing and
shipping service designed in Packing and
Shipping Orders .

Fulfilling Orders

Company X designs a query inventory composite
to identify the total number of items for each
product ordered daily for a given category. Oracle
Enterprise Scheduler is used to define a web
service job for the query inventory composite and
then submit the job with a schedule to run at a
specified time.

Scheduling Composite Execution

Company X designs an Oracle Managed File
Transfer flow to receive files and write them to a
file system using the Managed File Transfer
embedded FTP server. Oracle Managed File
Transfer invokes a Managed File Transfer service
in a composite and dynamically decides based
on file size whether to pass the content inline or
by reference.

Managing File Transfers

Company X uses the Oracle B2B Console to
build a document flow that accepts an EDI XML
order from a remote trading partner.

Accepting B2B Orders

Chapter 2
Solutions

2-2

Table 2-1 (Cont.) Addressing Business Challenges

Challenge Addressed See...

Company X designs an Oracle Event Processing
application to provide real-time, time-based
analysis of orders (events) placed by customers
recognized specifically by an associated email
address. As each order (event) is passed to the
Oracle Event Processing server, it is dynamically
accessed for possible fraudulent activity by
observing event patterns with an aggregated
order dollar amount that exceeds $1000 in any 24
hour period.

Adding Fraud Detection

Company X designs BPEL process analytic
measurements and business indicators on
activities in a BPEL process. Oracle BAM
Composer is used to create a dashboard of these
analytics to gain business insights into customer
order requests.

Gaining Business Insights with Oracle
Business Activity Monitoring

Chapter 2
Solutions

2-3

3
Creating a Credit Validation System

This chapter describes how Oracle SOA Suite addresses the business challenge of creating
a credit validation system. Overviews of how key SOA composite application components are
created and address this challenge are provided, including BPEL process invoke, assign, and
transformation activities; database adapters; SOA templates; and composite sensors. The
role of Oracle Service Bus in this business solution is also described.
This chapter includes the following sections:

• Business Challenge

• Business Solution

• Related Documentation

3.1 Business Challenge
Company X has embarked upon a project to improve customer satisfaction. A key area for
improvement is the need to streamline the ordering process to provide better order tracking
visibility through the following parts of the ordering life cycle:

• Credit approvals

• Fulfillment

• Shipment

• Delivery

A key issue in their current system is that credit card payments are often denied for minor
reasons. Since the process to correct these issues varies across Company X's order entry
systems, there is no consistent follow-up and resolution to customers. Orders become lost
and delayed in the system, causing customer dissatisfaction.

Company X has determined that a new credit card fraud detection system must also be in
place at year's end to eliminate credit card abuses. A consistent fraud mechanism requires
the credit validation process to be consolidated across all order entry systems.

The first step is to provide a consistent interface for all order entry applications for credit
validation. The consolidated credit validation service is to be initially hosted in-house to
control quality. However, once the interface is stabilized, this service is to be outsourced to a
third party provider. In the future, when Company X decides to outsource credit validation to
an external provider, this can be accomplished without impacting existing applications.

3.2 Business Solution
To address this business challenge, Company X designs a business solution that uses the
components described in Table 3-1.

3-1

Table 3-1 Components That Provide the Business Solution

Component How This Component Addresses The
Business Challenge

Component Description

SOA composite
application

A SOA composite application is designed to
validate payments and return status. If
payment is denied, an order is not
processed. The composite consists of the
following components, each of which is
briefly described below:

• BPEL process service component
• Database adapter
• SOA template
• Composite sensor

SOA composite applications consist of the
following:

• Service binding components:

Provide the outside world with an entry
point to the SOA composite application.

• Service components

Implement the business logic or
processing rules of the application.

• Reference binding components:

Enable messages to be sent from the
SOA composite application to external
services in the outside world.

• BPEL process
service
component

The BPEL process (and its activities)
orchestrates the validation of credit card
payments and returns a payment status
(invokes a database adapter).

BPEL processes provide a comprehensive
and easy-to-use infrastructure for creating,
deploying, and managing business
processes. BPEL is the standard for
assembling discrete services into an end-to-
end process flow. BPEL processes
orchestrate and build process automation.

• Database
adapter

The database adapter stores and retrieves
credit card payment information from the
database, including payment type, card
number, expiration date, card name, and
daily limit. If the credit card number is not
available in the database, payment is denied.

The database adapter enables Oracle SOA
Suite and Oracle Fusion Middleware to
communicate with database endpoints. These
include Oracle database servers and any
relational databases that follow the ANSI SQL
standard and provide JDBC drivers.

• SOA template A BPEL scope activity template is imported
that includes a transformation activity that
determines the payment status (authorized
or denied) based on the daily limit and total
order amount.

A SOA template is a reusable part of an
Oracle SOA Suite project that you use to
create new projects. There are three types of
templates:

• SOA project
• Service component
• Custom BPEL scope activity

• Composite
sensor

The composite sensor tracks credit card
payment status.

Composite sensors provide a method for
implementing trackable fields on messages.

Oracle Service Bus Oracle Service Bus provides the following
composite registration and security benefits:

• A business service registers the
composite URI of the SOA composite
application.

• A pipeline validates the SOA composite
application before invocation.

• A proxy enables customers to invoke the
composite through a proxy instead of
connecting directly to the composite.

Oracle Service Bus is a configuration-based,
policy-driven enterprise service bus. It
provides highly scalable and reliable service-
oriented integration, service management,
and traditional message brokering across
heterogeneous IT environments.

Figure 3-1 provides an overview of how this business solution is implemented.

Chapter 3
Business Solution

3-2

Figure 3-1 Payment Validation Overview

Subsequent sections of this chapter provide more specific details about how the components
in Table 3-1 are used to address the credit validation business challenge.

• Creating a Credit Validation Composite

• Retrieving Credit Card Payment Information from the Database

• Invoking the Database Adapter from the BPEL Process

• Calculating Payment Status with XSLT Transformations

• Tracking Payment Status with Composite Sensors

• Deploying the validatePayment Composite

• Registering SOA Composite Applications with

• Deploying and Testing

3.2.1 Creating a Credit Validation Composite
The business solution is designed in a SOA composite application that validates a credit card
payment and returns a payment status. If the payment is denied, the order is not processed.
The implementation of this service uses a BPEL process to invoke a database adapter to
retrieve the credit card data from the database and perform the validation. The service
returns a payment status of either authorized or denied.

Figure 3-2 provides an overview of the credit validation composite. Customer requests come
through the validatepaymentprocess service. The SOA composite application (named
validatePayment) takes these requests and invokes a database adapter reference named
getPaymentInformation to retrieve credit card information from the database. The database
adapter is configured with the Adapter Configuration Wizard.

Chapter 3
Business Solution

3-3

Figure 3-2 Credit Validation Process

The following example shows the content of an inbound order message. The customer
provides their credit card number, expiration date, card type, and billing address.

<soas:Billing >
 <soas:CardPaymentType>1</soas:CardPaymentType>
 <soas:CardNum>1234123412341234</soas:CardNum>
 <soas:ExpireDate>0316</soas:ExpireDate>
 <soas:CardName>AMEX</soas:CardName>
 <soas:BillingAddress>
 <soas:FirstName>Joe</soas:FirstName>
 <soas:LastName>Smith</soas:LastName>
 <soas:AddressLine>555 Beverly Lane</soas:AddressLine>
 <soas:City>Hollywood</soas:City>
 <soas:State>CA</soas:State>
 <soas:ZipCode>12345</soas:ZipCode>
 <soas:PhoneNumber>5127691108</soas:PhoneNumber>
 </soas:BillingAddress>
</soas:Billing>

3.2.2 Retrieving Credit Card Payment Information from the Database
All available credit card details are stored in a database, including payment type, card
number, expiry date, card name, and daily limit. The database adapter retrieves credit
card payment information from the database, using the customer's credit card number
as the key.

The validation process includes three steps:

• The payment information is first retrieved from the database, using the credit card
number quoted in the order message as the key. If there is no data available with
this credit card number, payment is denied.

• If data for the credit card number is available, the expiration date in the database
record is compared to the expiration date in the order message. If they are not the
same, the payment is also denied.

• The last check compares if the total order amount is less than the daily limit on the
credit card in the database.

If all tests are successful, payment is authorized. Otherwise, payment is denied.

To invoke the Adapter Configuration wizard, the database adapter is dragged from the
Components window into the External References swimlane of the SOA Composite
Editor. This action invokes the Adapter Configuration Wizard for configuring the
database adapter.

Chapter 3
Business Solution

3-4

3.2.2.1 Configuring the Database Adapter with the Adapter Configuration Wizard
The following database adapter configuration tasks are performed during execution of the
Adapter Configuration Wizard.

• The option to create a connection to the database in which the credit card information is
stored is selected, as shown in Figure 3-3. This enables the database adapter to access
the database and retrieve the appropriate credit card information.

Figure 3-3 Database Connection

• The Select database option is chosen to create a database query, as shown in
Figure 3-4.

Figure 3-4 Database Operation Type

Chapter 3
Business Solution

3-5

• The appropriate credit card information table is imported from the database, as
shown in Figure 3-5.

Figure 3-5 Table with Credit Card Information Imported

• The appropriate credit card filtering information to use in creating the Select
operation database query is enabled, as shown in Figure 3-6.

– Expiration date

– Daily limit

– Current limit

Figure 3-6 Credit Card Filtering

• The appropriate credit card criteria for the Select operation is specified, as shown
in Figure 3-7. The ccnb parameter is provided for the customer's credit card
number that is specified in the inbound message (CardNum), as shown in Creating
a Credit Validation Composite. The database adapter retrieves credit card
payment information from the database, using the credit card number as the key.

Chapter 3
Business Solution

3-6

Figure 3-7 Define Selection Criteria

The database adapter processes the selections and generates a reference that
implements the operation specified. The SOA composite application now contains the
WSDL file to represent the database adapter reference: getPaymentInformation.wsdl.
The composite diagram shown in Figure 3-2 shows the getPaymentInformation
reference.

3.2.3 Invoking the Database Adapter from the BPEL Process
Company X creates a BPEL process service component in the SOA composite application.
The BPEL process orchestrates the logic of the business solution. An invoke activity in the
BPEL process invokes the database adapter as a partner link to retrieve credit card
information from the database. Figure 3-8 provides details.

Chapter 3
Business Solution

3-7

Figure 3-8 BPEL Process Invocation of the getPaymentInformation Reference

Within the BPEL process, the invoke activity calls the database adapter (named
getPaymentInformation), as shown in Figure 3-9. You can create and edit invoke
activities details from the Property Inspector below the designer or by double-clicking
the invoke activity.

• Name

• Partner link to invoke (for this example, the database adapter)

• Port type

• Operation to perform

• Input variable under the Input tab (contains the credit card number to send to the
database adapter)

• Output variable under the Output tab (returns the results from the database
adapter)

Chapter 3
Business Solution

3-8

Figure 3-9 Invoke Activity Invoking the Database Adapter

An assign activity is used to populate the input variable in the invoke activity. In the Copy
Rules tab of the assign activity (named setCreditCardNumber), the credit card number
passed into the BPEL process as CardNum is assigned to the ccnb parameter of the
getPaymentInformation database adapter. Figure 3-10 provides details.

Chapter 3
Business Solution

3-9

Figure 3-10 Credit Card Number Assigned to the Input Variable

An XSLT map determines if the payment is valid based on the information returned by
the database adapter.

3.2.4 Calculating Payment Status with XSLT Transformations
Company X requires a mechanism for determining if payment status is authorized or
denied. To address this requirement, an XSLT transform activity determines if the
payment is valid based on the following information returned by the database adapter.

• The daily limit (retrieved from the database)

• The total order amount (authorization amount in the order message, which has
been calculated in the process order project by multiplying the price and amount of
every order item and adding them). The total amount of the order must be smaller
than the daily limit on the credit card.

XSLT transformation design can be packaged in the following ways:

• Within an individual transform activity in a BPEL process

• As part of a template. Templates enable you to share common code between
applications, composites, and processes. You create a template once, then share
it as needed. The template can be reused multiple times. Three types of templates
are supported:

– Project templates that provide a complete project with all components and
resources.

– Service component templates such as a BPEL process with all references and
components.

– Custom activity templates that consist of a BPEL process scope activity.

Chapter 3
Business Solution

3-10

Company X decides to use a template. For this example, a custom activity template is
created and then imported that consists of a scope activity with a transform activity.

You create and design templates in Oracle JDeveloper. After creation, templates are
displayed in the Components window for selection and use, as shown in Figure 3-11. The
custom activity template can be dragged into a BPEL process, as needed.

Figure 3-11 Custom Activity Template

The custom scope activity consists of the transform activity. The transformation for this
example expects two input variables, as shown in the Sources section of Figure 3-12.

• An output variable of the database adapter, which includes the payment information
stored in the database.

• An input variable of the BPEL process, which includes the total order amount.

The output is in the status field of the output message, as shown in the Target Part section
of Figure 3-12. This field is either set to Denied or Authorized.

Figure 3-12 Transformation Variables

The mapping in the XSLT Map Editor is shown in Figure 3-13.

Chapter 3
Business Solution

3-11

Figure 3-13 Transformation in the XSLT Map Editor

3.2.5 Tracking Payment Status with Composite Sensors
Company X must be able to track the status of order payments (either authorized or
denied). To address this requirement, composite sensors are used. Composite
sensors provide a method for implementing trackable fields on messages. Composite
sensor data is persisted in the database during runtime, enabling you to search for all
authorized or denied payments.

Composite sensors enable you to perform the following tasks:

• Monitor incoming and outgoing messages.

• Locate particular instances by searching for specific sensor details in Oracle
Enterprise Manager Fusion Middleware Control.

• Publish JMS data computed from incoming and outgoing messages.

• Track composite instances initiated through business event subscriptions.

The composite sensor is defined on the inbound SOAP web service binding
component, as shown in Figure 3-14. You can also define composite sensors on
reference binding components and service components that have business event
subscriptions.

Chapter 3
Business Solution

3-12

Figure 3-14 Composite Sensor Definition on a SOAP Service Binding Component

The Create Composite Sensor dialog shown in Figure 3-15 shows that an XPath expression
is defined to track the payment status (authorized or denied). The Enterprise Manager
check box is also selected. This enables you to view composite sensor names and values
(for example, Status=Authorized) in the Flow Instances page of Oracle Enterprise Manager
Fusion Middleware Control.

Figure 3-15 Composite Sensors

The sensor is displayed as an icon on the validatepaymentprocess SOAP web service
binding component. When you place your cursor over the icon, the composite sensor
definition is displayed. Figure 3-16 provides details.

Chapter 3
Business Solution

3-13

Figure 3-16 Composite Sensor Details

3.2.6 Deploying the validatePayment Composite
Company X deploys the validatePayment composite in Oracle JDeveloper, as shown
in Figure 3-17.

Figure 3-17 validatePayment Composite Deployment

During the deployment process, the composite is deployed to the server on which an
application server connection was created in Configuring the Database Adapter with
the Adapter Configuration Wizard. Figure 3-18 provides details.

Figure 3-18 Deployment to the Application Server

If there are no compilation errors, the build is successful and deployment starts.
Figure 3-19 provides details.

Chapter 3
Business Solution

3-14

Figure 3-19 Deployment Success Message in Oracle JDeveloper Log Window

3.2.7 Registering SOA Composite Applications with Oracle Service Bus
Company X must be able to protect validatePayment composite users from routine changes
such as deployment location and implementation updates. To address this requirement,
Company X registers the validatePayment composite with Oracle Service Bus. Oracle
Service Bus scales the service to handle higher volumes of requests and provides resiliency
for the service if it is taken down for routine maintenance.

Company X begins by creating an Oracle Service Bus application in which to perform
registration. Figure 3-20 provides details. Company X can create proxies, pipelines, and
business services by dragging icons from the Components window on the right into the
designer. In the Components window, pipeline and split-join icons are displayed. In Release
12c, the pipeline is separated from the proxy to enable it to be a reusable component.
Adapters and transports are also displayed for building business services (in the External
References swimlane) and proxies (in the Exposed Services swimlane).

Chapter 3
Business Solution

3-15

Figure 3-20 Oracle Service Bus Application Ready for Design Registration

When design registration is complete, the business solution looks as shown in
Figure 3-21.

Figure 3-21 Oracle Service Bus Application Registration

The following sections provide an overview of Oracle Service Bus application
registration:

• Sharing Resources with Folders

• Registering the Composite URI of the SOA Composite Application

• Configuring Pipelines and Proxies

3.2.7.1 Sharing Resources with Folders
Company X creates folders into which resources such as XSD and WSDL files are
imported. This action is performed by right-clicking the Oracle Service Bus application
and selecting New > From Gallery > Folder to invoke the Create Folder wizard.

Oracle Service Bus folders categorize resources and are aligned with the default
Schema and WSDL folders that are displayed in the Applications window for the SOA

Chapter 3
Business Solution

3-16

composite application. Folders provide a way to share resources between Oracle Service
Bus and the SOA composite application.

After folder creation, Company X imports the artifacts from the file system for building
services by selecting File > Import > Service Bus Resources to invoke the Import Service
Bus Resources wizard. When artifact selection is complete, the wizard looks as shown in
Figure 3-22.

Figure 3-22 Import Service Bus Resources Wizard - Configuration Page

When wizard configuration is complete, Figure 3-23 shows the artifacts in the Applications
window.

Figure 3-23 Oracle Service Bus Imported WSDL and Schema File Resources

3.2.7.2 Registering the Composite URI of the SOA Composite Application
A business service (named ValidateBS in Figure 3-21) registers the composite URI of the
SOA composite application and provides a representation of the validatePayment
composite. Configuration is performed by dragging an HTTP icon from the Components
window into the External References swimlane of the Oracle Service Bus application, as
shown in Figure 3-24.

Chapter 3
Business Solution

3-17

Figure 3-24 ValidateBS Business Service

This action invokes the Create Business Service wizard for configuring the following:

• HTTP as the transport type

• WSDL as the service type

• The WSDL file

• The endpoint URI is set to the validatePayment composite. The endpoint URI
format is based on the transport protocol you selected (HTTP). For example:

http://localhost:7101/soainfra/services/default/ValidatePayment/
validatepaymentprocess_client_ep

Company X double-clicks the ValidateBS business service to review the general,
transport, performance (result caching), and security policy settings.

3.2.7.3 Configuring Pipelines and Proxies
A pipeline (named ValidatePP in Figure 3-21) contains actions performed on the
service bus such as error handling reporting, data transformation, and validation
before invoking the composite.

Users invoke the validatePayment composite through a proxy (named ValidatePS in
Figure 3-21) rather then connecting directly to the composite. This provides for more
agility and flexibility in managing changes. The proxy is the interface to the service
from external consumers.

Pipeline and proxy configuration is performed by dragging a Pipeline icon from the
Components window into the Components section of the Oracle Service Bus
application. This action invokes the Create Pipeline Service wizard for pipeline and
proxy configuration. During configuration, Company X selects the WSDL file, as shown
in Figure 3-25.

Figure 3-25 WSDL Selection for Proxy

Chapter 3
Business Solution

3-18

The Expose as Proxy Service check box is also selected on subsequent pages of the
wizard. Figure 3-26 provides details.

Figure 3-26 Expose as a Proxy Service Check Box

Figure 3-27 shows the ValidatePP pipeline in the Components section and the ValidatePS
proxy in the Exposed Services swimlane.

Figure 3-27 Proxy and Pipeline Configuration in the Components Section

3.2.8 Deploying and Testing
After application design is complete, Company X deploys and tests the application end-to-
end by right-clicking the ValidatePS proxy and selecting Run. Figure 3-28 provides details.

Figure 3-28 Application Invocation

Chapter 3
Business Solution

3-19

The Test Console is displayed from which you can select a payload for testing. A
sample payload is generated for you. Figure 3-29 provides details.

Figure 3-29 Test Console

Company X tests with a sample authorize payment file, as shown in the following
example:

<ns1:PaymentInfo xmlns:ns1="http://www.oracle.com/soasample">
 <ns1:CardPaymentType>0</ns1:CardPaymentType>
 <ns1:CardNum>1234123412341234</ns1:CardNum>
 <ns1:ExpireDate>0316</ns1:ExpireDate>
 <ns1:CardName>AMEX</ns1:CardName>
 <ns1:BillingAddress>
 <ns1:FirstName>Joe</ns1:FirstName>
 <ns1:LastName>Smith</ns1:LastName>
 <ns1:AddressLine>555 Beverly Lane</ns1:AddressLine>
 <ns1:City>Hollywood</ns1:City>
 <ns1:State>CA</ns1:State>
 <ns1:ZipCode>12345</ns1:ZipCode>
 <ns1:PhoneNumber>5127691108</ns1:PhoneNumber>
 </ns1:BillingAddress>
 <ns1:AuthorizationAmount>100</ns1:AuthorizationAmount>
</ns1:PaymentInfo>

After importing the sample file, Company X clicks Execute.

Credit validation design and testing is now complete.

3.3 Related Documentation
Table 3-2 provides references to documentation that more specifically describes the
components and features described in this chapter.

Chapter 3
Related Documentation

3-20

Table 3-2 Related Topics

For Information About... See...

Creating a SOA composite application "Creating a SOA Application" of Developing SOA Applications
with Oracle SOA Suite

Creating a database connection "Creating an Application Server Connection for Oracle JCA
Adapters" of Developing SOA Applications with Oracle SOA
Suite

Configuring a database adapter with
the Adapter Configuration wizard

"Defining an Oracle Database Adapter" of Understanding
Technology Adapters.

Designing transformations with the
XSLT Map Editor

"Creating Transformations with the XSLT Map Editor" of
Developing SOA Applications with Oracle SOA Suite

Creating composite sensors "Defining Composite Sensors" of Developing SOA
Applications with Oracle SOA Suite

Creating Oracle SOA Suite templates "Oracle SOA Suite Templates and Reusable Subprocesses" of
Developing SOA Applications with Oracle SOA Suite

Creating a business service in Oracle
Service Bus

"How to Create a Business Service" of Developing Services
with Oracle Service Bus

• Create folders
• Import resources
• Add business services
• Create pipelines and proxies

Adding a pipeline "How to Add a Pipeline" of Developing Services with Oracle
Service Bus

Creating a proxy "How to Create a Proxy Service" of Developing Services with
Oracle Service Bus

Chapter 3
Related Documentation

3-21

4
Creating an Order Processing System

This chapter describes how Oracle SOA Suite addresses the business challenge of creating
an order processing system. Overviews of how key SOA composite application components
are created and address this challenge are provided, including SOA composite templates,
inline BPEL subprocesses, composite sensors, and Oracle Service Bus proxy services,
pipelines, and business services.
This chapter includes the following sections:

• Business Challenge

• Business Solution

• Related Documentation

4.1 Business Challenge
Company X must design an order processing system that addresses the following business
challenges:

• Many different types of clients access the system over different protocols and in different
data formats, including mobile devices.

• The new order processing system must support access through REST interfaces (to
prepare for a transition to an in-development mobile application).

• Existing systems must be able to place orders using XML and comma-separated value
(CSV) files. These must be processed and fulfilled using the same new order provisioning
system.

• The system must interface with trading partners and provide electronic data interchange
(EDI) support.

4.2 Business Solution
To address these business challenges, Company X designs a business solution that uses the
components described in Table 4-1.

4-1

Table 4-1 Components That Provide the Business Solution

Component How This Component Addresses The
Business Challenge

Component Description

SOA composite
application

A SOA composite application is designed to
accept new purchase orders, authorize or deny
them, and forward the authorized orders to an
order fulfillment system. The composite
consists of the following components, each of
which is briefly described below:

• SOA project template
• Inline BPEL subprocess
• Composite sensor

See Table 3-1 for a description of SOA
composite applications.

SOA project
template

A SOA project template is imported. The
template is used to create the SOA composite
application. The predefined components in the
composite implement the basic scenario:

• Receive an order from a web service call
• Create an order number and status
• Calculate the amount
• Save the order in the database
• Return an acknowledgement and order

number to the customer
The following occurs:

• If the payment is denied, the order status
is set to Denied and processing is
stopped.

• If the payment is authorized, the order
status is set to Authorized and the order
is sent to an order fulfillment system for
processing. (Described in Fulfilling
Orders .). When processing is finished,
the order status is set to ReadyForShip.

See Table 3-1 for a description of SOA
project templates.

Inline BPEL
subprocess

The inline BPEL process (through use of a call
activity) invokes the payment validation system
in Creating a Credit Validation System to
update the order status in the database based
on the outcome of the payment validation.

A subprocess is a fragment of BPEL code
that can be reused within a composite by
separate processes. The subprocess
extension provides the following benefits:

• BPEL process code reusability, which
reduces the need to create the same
activities multiple times to perform the
same tasks.

• Code modularity.
• Code maintenance (changes are

propagated, which eliminates the need
to implement updates in multiple places
every time a change is necessary).

• Memory footprint reduction, which can
be considerable in a complex process.

Composite sensor A composite sensor tracks the order number. See Table 3-1 for a description of SOA
composite sensors.

Oracle Service Bus
proxy service,
pipeline, and
business service

An Oracle Service Bus makes the order
processing composite available over many
protocols and data formats, and validates the
order.

See Table 3-1 for a description of Oracle
Service Bus.

Chapter 4
Business Solution

4-2

Figure 4-1 provides an overview of how this business solution is implemented.

Figure 4-1 Order Process Overview

Subsequent sections of this chapter provide more specific details about how the components
in Table 4-1 are used to address the order processing business challenge.

• Creating a SOA Composite Application From a SOA Project Template

• Customizing the Contents of the SOA Project Template

• Updating Order Status with an Inline BPEL Subprocess

• Tracking the Order Number with Composite Sensors

• Updating Order Status After Payment Authorization

• Deploying and Testing in

• Registering the ProcessOrder Composite on

• Testing the Pipeline Template

4.2.1 Creating a SOA Composite Application From a SOA Project Template
As described in Calculating Payment Status with XSLT Transformations, templates enable
you to reuse existing composites, service components, and custom activities. Company X
frequently has business requirements for designing SOA composite applications that accept
new purchase orders, approve them, and forward them to an order fulfillment system. For this
reason, Company X created a project template named ProcessOrderTemplate with these
capabilities that can be imported into multiple applications in Oracle JDeveloper, as
necessary. The template can then be customized for the business requirements of that
specific project. Changes made to that specific imported template are not propagated to
projects previously created using this template.

The ProcessOrderTemplate project template is registered in Oracle JDeveloper by selecting
Tools > Preferences > SOA > Templates, and specifying the template storage location. The

Chapter 4
Business Solution

4-3

template is provided as a JAR file. This makes the template visible for selection in
Oracle JDeveloper.

The project template consists of a number of predefined components and provides the
following functionality:

• Receives an order from a SOAP web service.

• Creates an order number, sets the order date to the current date, and sets the
order status to a value of New.

• Calculates the total order amount.

• Saves the order in the database with a status value of New.

• Returns an acknowledgement to the client with the order number.

Company X invokes the Create SOA Project wizard to create a new SOA project.
While running the wizard, Company X selects to create a project based on a template.
The project template is imported into the new application by selecting SOA Template
in the Create SOA Project wizard, which refreshes the dialog to display existing
templates for selection. ProcessOrderTemplate is selected, then the project name is
shortened to ProcessOrder. Figure 4-2 provides details.

Figure 4-2 Selection of SOA Composite Template in the Create SOA Project
Dialog

When imported, the project and its predefined components looks as shown in
Figure 4-3.

• The receiveOrder_client service receives an order from a customer.

• The receiveOrder BPEL process service component sets an order number (which
is provided back to the client) and order date, and calls the
validateAndProcessOrder BPEL process service component.

• The validateAndProcessOrder BPEL process service component assigns an
order to a variable and calculates the total amount of the order used to validate the
payment. It invokes three partner links as part of validating and processing the
order.

– The writeOrderToFile file adapter reference writes the order to a file using a
file adapter.

– The writeOrderToDatabase reference writes the order to the database using
a database adapter.

– The updateOrderStatus reference updates the order status to Denied or
Authorized in the database according to the value returned.

Chapter 4
Business Solution

4-4

Figure 4-3 Imported Template of a SOA Composite Application

4.2.2 Customizing the Contents of the SOA Project Template
The validateAndProcessOrder BPEL process of the template assigns the order to a
variable and calculates the total order amount used to validate the payment. The activities in
the process shown in Figure 4-4 perform the following tasks:

• An XSLT transform activity calculates the total order amount.

• An assign activity adds the total order amount to the order message.

• A scope activity (collapsed below) includes all activities involved in updating the order
status in the database and in a file.

Figure 4-4 Key Activities of the validateAndProcessOrder BPEL Process

– If the payment is denied, the order is cancelled and the order status is updated in the
database.

– If the payment is authorized, the order status is updated in the database and file, and
the order is processed. When processing is complete, the status is updated to
ReadyForShip.

Chapter 4
Business Solution

4-5

An order only requires processing if payment has first been validated. The
ProcessOrder composite does not include this functionality. However, Company X
created the validatePayment composite in Creating a Credit Validation System.
Company X customizes the imported composite template to invoke the
validatePayment composite to validate the payment. If the payment is authorized, the
ProcessOrder composite then processes the order. This customization to the
imported template is not propagated to users of this template in other projects.

Company X customizes the ProcessOrder composite by dragging a SOAP web
service into the External References swimlane to invoke the Create Web Service
dialog. From this dialog, Oracle SOA Suite enables you to browse services deployed
in an Oracle SOA Suite or Oracle Service Bus project on the integrated server in
Oracle JDeveloper or on a remote application server. You can browse for the following:

• Select WSDL URLs.

• Read WSDLs from a file system, Oracle Metadata Services Repository (MDS
Repository), UDDI registry, or web services inspection language (WSIL) file.

The Oracle Service Bus proxy service for validatePayment is selected by clicking the
icon to the right of the WSDL URL field. Selecting this icon enables you to browse for
services. The ValidatePS proxy service created in Registering SOA Composite
Applications with is selected, as shown in Figure 4-5.

Figure 4-5 Selection of ValidatePS Proxy in the WSDL Chooser Dialog

The new web service (named validatePaymentService) invokes the
validatePayment proxy service defined in Registering SOA Composite Applications
with . The port type is automatically added. Figure 4-6 provides details.

Chapter 4
Business Solution

4-6

Figure 4-6 Call of validatePayment Proxy WSDL File

The validateAndProcessOrder BPEL process is then wired to the new
validatePaymentService SOAP web service in the SOA Composite Editor, as shown in
Figure 4-7.

Figure 4-7 Invocation of validatePaymentService SOAP Web Service

Chapter 4
Business Solution

4-7

Company X further customizes the validateAndProcessOrder BPEL process by
adding the following:

• An invoke activity (named validatePayment) to invoke the
validatePaymentService partner link.

• An assign activity before the validatePayment invoke activity for assigning the
correct values to the input variable for the web service call.

• An assign activity after the invoke activity to assign the payment status reply from
the web service call to the order message. Figure 4-8 provides details.

Figure 4-8 Customizations to the validateAndProcessOrder BPEL Process
of the Composite Template

The completed composite is shown in Figure 4-9.

Figure 4-9 Completed Composite

Chapter 4
Business Solution

4-8

4.2.3 Updating Order Status with an Inline BPEL Subprocess
Company X has a requirement to use the order status update part of the
validateAndProcessOrder BPEL process at least once more in the same BPEL process.
One method is to create the same assign and invoke activities already used. However, this is
an error prone process and every time a change is necessary, it must be made in all those
places. To avoid this, Company X uses a BPEL subprocesses. There are two types:

• Standalone: A fragment of a BPEL process, which includes a number of activities to
reuse. Standalone subprocess do not have an interface and are only called from another
BPEL process. A standalone process can have partner links across a number of other
BPEL processes.

• Inline: For groups of activities that are reused within a single BPEL process. An inline
process is part of the parent BPEL process code and is not visible in the composite view.
You use a call activity for inline subprocesses.

The inline subprocess is ideal for Company X's business requirements.

Within the validateAndProcessOrder BPEL process, the scope activity responsible for
updating the order status, named updateOrderStatusScope, is right-clicked, and Convert
to a Subprocess is selected. This invokes the Create Inline Subprocess dialog. Company X
renames the subprocess and selects to automatically replace the scope activity with a
subprocess call activity. Figure 4-10 provides details.

Figure 4-10 Create Inline Subprocess

This converts the scope activity into a call activity. A call activity executes referenced
subprocess code in standalone and inline subprocesses. The call activity is also added to the
Subprocesses part of the Components window. You can drag and drop this call activity as
needed into other locations in the BPEL process. Figure 4-11 provides details.

Figure 4-11 Call Activity in the BPEL Process and in the Components Window

Chapter 4
Business Solution

4-9

4.2.4 Tracking the Order Number with Composite Sensors
Company X added a composite sensor for tracking the status of order payments in
Tracking Payment Status with Composite Sensors.

Company X now has an additional requirement for a composite sensor to track the
order number. The SOAP web service receiveorder_client included in the imported
composite template shown in Figure 4-3 returns the orderNumber in the order
acknowledgement message. Company X defines a composite sensor on this service
that includes an XPath expression to track the order number, as shown in the Create
Composite Sensor dialog in Figure 4-12.

Figure 4-12 Expression Defined on Composite Sensor

The Enterprise Manager check box of the Create Composite Sensor dialog is also
selected, as shown in Figure 4-13. This enables you to track composite sensor names
and values (for example, OrderNumber=1234) on the Flow Instances page or the
Flow Trace page for a specific business flow instance in Oracle Enterprise Manager
Fusion Middleware Control. Oracle Enterprise Manager Fusion Middleware Control is
a web browser-based, graphical user interface that you use to monitor and administer
your deployed composites.

Figure 4-13 Enterprise Manager Check Box for Composite Sensors

The composite sensor definition is displayed by placing the cursor over the icon on the
receiveorder_client SOAP web service binding component. Figure 4-14 provides
details.

Chapter 4
Business Solution

4-10

Figure 4-14 Composite Sensor Definition

4.2.5 Updating Order Status After Payment Authorization
If the payment is valid, the order status is set to ReadyForShip in the database. This status
update triggers the order fulfillment process described in Fulfilling Orders .

Company X further customizes the validateAndProcessOrder BPEL process by adding an if
activity. An if activity defines conditional behavior for specific activities to decide between the
execution of two or more branches. Only one activity is selected for execution from a set of
branches. The if activity for this business scenario consists of the following branches:

• If the payment is authorized, the order continues. An assign activity in the if branch
updates the order status to ReadyForShip in the database.

• If the payment is denied, processing ends and an email is sent to the customer informing
them about the unauthorized payment.

Figure 4-15 provides details. The if activity is added below the updateOrderStatusSP call
activity that was created in Updating Order Status with an Inline BPEL Subprocess.

Figure 4-15 If Activity

Chapter 4
Business Solution

4-11

An expression is defined on the if branch if the payment is authorized, as shown in
Figure 4-16.

Figure 4-16 If Branch Authorizes Payment

If payment is authorized, the processing of the order is complete. An assign activity is
added to the if branch to update the order status to ReadyForShip in the database.
The contents of the copy rule in the assign activity are shown in Figure 4-17.

Figure 4-17 Assign Activity

The XPath expression contents in the copy rule assign activity are shown in
Figure 4-18.

Chapter 4
Business Solution

4-12

Figure 4-18 ReadyForShip Expression

An else branch is not necessary and is deleted because order processing stops if the
payment has been denied.

4.2.6 Deploying and Testing in Oracle Enterprise Manager Fusion
Middleware Control

Company X deploys and creates a business flow instance of the project. In the Flow Trace
page in Oracle Enterprise Manager Fusion Middleware Control, the two composite sensor
names and values are displayed. Payment has been authorized, and the project is sent to the
order fulfillment system. Figure 4-19 provides details.

Figure 4-19 Composite Sensor Names and Values on Flow Trace Page

The audit trail indicates that the order is marked as Authorized and ReadyForShip.
Figure 4-20 provides details.

Chapter 4
Business Solution

4-13

Figure 4-20 Flow of Business Flow Instance

4.2.7 Registering the ProcessOrder Composite on Oracle Service Bus
As with the validatePayment composite in Creating a Credit Validation System,
Company X uses Oracle Service Bus to register the ProcessOrder composite to
make it available to external customers.

Oracle Service Bus makes the ProcessOrder composite available over different
protocols and data formats without disrupting the core business logic in the composite.
Oracle Service Bus also validates the order data and performs auditing.

Company X updates the Oracle Service Bus application created in Registering SOA
Composite Applications with to include additional projects. These projects use a
pipeline template.

Pipeline templates are used to design prototype message flows for proxy services. A
pipeline template defines the general shape or pattern of the message flow. Concrete
pipelines can then be generated out of the pipeline template. All concrete pipelines
use the message flow defined by the pipeline template with designated places where
custom logic can be inserted.

Chapter 4
Business Solution

4-14

Company X imports the template by right-clicking the Oracle Service Bus application,
selecting Import, and selecting Service Bus Resources. Figure 4-21 provides details.

Figure 4-21 Oracle Service Bus Resources Selection

This invokes the Import Service Bus Resources dialog for selecting the pipeline template to
use. When complete, the imported template is displayed in the Applications window, as
shown in Figure 4-22.

Figure 4-22 Imported Oracle Service Bus Pipeline Template in Applications Window

4.2.7.1 Registering the ProcessOrder Composite as a Business Service
Company X registers the composite as a business service by right-clicking in the External
References column and selecting Insert Transports > HTTP, as shown in Figure 4-23.

Chapter 4
Business Solution

4-15

Figure 4-23 Business Service Creation

This action invokes the Create Business Service wizard in which Company X sets the
following:

• HTTP as the transport type

• ProcessOrder concrete WSDL as the service type

• The WSDL file

• The composite as the endpoint URI. Oracle Service Bus also enables you to have
multiple endpoints for your business service to support application load balancing
and failover.

4.2.7.2 Creating a New Pipeline with a Proxy Using the Pipeline Template
Company X then creates a pipeline template (SharedSB) by dragging a Pipeline icon
from the Component window into the Components section of Oracle JDeveloper, as
shown in Figure 4-24.

Figure 4-24 Pipeline Template

Chapter 4
Business Solution

4-16

This invokes the Create Pipeline Service dialog for selecting the imported pipeline template to
use. During configuration, you select the template for WSDL-based services, the specific
WSDL to use for the pipeline (shown in Figure 4-25), and to expose the pipeline as a proxy
service.

Figure 4-25 Select WSDL Dialog

When configuration is complete, the Create Pipeline Service dialog looks as shown in
Figure 4-26.

Chapter 4
Business Solution

4-17

Figure 4-26 Completed Create Pipeline Service Dialog

The pipeline is displayed in the application, as shown in Figure 4-27. The yellow icon
in the pipeline indicates that it requires additional configuration before it is fully
implemented.

Figure 4-27 Pipeline in Application

Double-clicking ProcessPP displays it for editing, and includes some features partially
preconfigured (for example, data validation, routing, reporting, error condition alerts,
and error handling). Red flags indicate areas that require additional configuration. The
Your Request Stages message indicates areas in which the pipeline provides
placeholder information for Company X to customize (such as transformations and
message enrichment). Figure 4-28 provides details.

Chapter 4
Business Solution

4-18

Figure 4-28 Preconfigured Pipeline Template

The template also enables you to define an error handler for pipelines, as shown in
Figure 4-29. The predefined error handler reports error back to the caller with details and
send an alert to Oracle Enterprise Manager Fusion Middleware Control indicating that
something is wrong with processing.

Figure 4-29 Error Handling in the Pipelines Template

Company X configures data validation by opening the Data Validation stage and selecting
the Validate action. This part enables Company X to validate the incoming payload against
the Order schema element type expected by the ProcessOrder composite. Validating in
Oracle Service Bus saves resources in the back end that are processing good orders.
Company X only needs to select the Order type against which to validate, since all other
details are preconfigured.

Company X configures the Report action in the Auditing stage of the response flow shown
in Figure 4-28 to report on the Order number returned from the composite, as shown in
Figure 4-30. The template already saves a copy of the incoming order in case of an error and
reports it to Oracle Enterprise Manager Fusion Middleware Control.

Chapter 4
Business Solution

4-19

Figure 4-30 OrderNumber Selection

Company X also configures the routing node by double-clicking the Routing icon in
the template in Figure 4-28, selecting the Routing tab in the Property Inspector, and
selecting the ProcessBS business service. Figure 4-31 provides details.

Figure 4-31 Business Service Selection

When configuration is complete, the Oracle Service Bus application looks as shown in
Figure 4-32.

Figure 4-32 Oracle Service Bus Application

4.2.8 Testing the Pipeline Template
Company X tests by right-clicking the ProcessPS service in the left swim lane and
selecting Run, as shown in Figure 4-33. Good and bad orders are sent during the test
phase.

Chapter 4
Business Solution

4-20

Figure 4-33 Testing the Pipeline Template

4.3 Related Documentation
Table 4-2 provides references to documentation that more specifically describes the
components and features described in this chapter.

Table 4-2 Related Documentation

For Information About... See...

Creating a SOA composite
application

"Creating a SOA Application" of Developing SOA Applications with
Oracle SOA Suite

Creating and using composite
templates and inline
subprocesses

"Oracle SOA Suite Templates and Reusable Subprocesses" of
Developing SOA Applications with Oracle SOA Suite

Creating composite sensors "Defining Composite Sensors" of Developing SOA Applications with
Oracle SOA Suite

Creating a business service in
Oracle Service Bus

"Creating and Configuring Business Services" of Developing Services
with Oracle Service Bus

Using pipeline templates "Working with Pipeline Templates" of Developing Services with Oracle
Service Bus

Chapter 4
Related Documentation

4-21

5
Adding New Ordering Channels with Oracle
Service Bus

This chapter describes how Oracle SOA Suite addresses the business challenge of adding
new ordering channels. Overviews of how key components are used to address this
challenge are provided, including file-based proxies in Oracle Service Bus, the Native Format
Builder Wizard, Oracle Enterprise Manager Fusion Middleware Control, and the Oracle
Service Bus debugger.
This chapter includes the following sections:

• Business Challenge

• Business Solution

• Related Documentation

5.1 Business Challenge
Company X has a requirement for legacy systems to place orders in common delimited
formats.without impacting the back end application. Protocol and data translation must be
provided to minimize disruptions to the back end business logic of the ProcessOrder
composite designed in Creating an Order Processing System.

5.2 Business Solution
To address these business challenges, Company X designs a business solution that uses the
components described in Table 5-1.

Table 5-1 Components That Provide the Business Solution

Component How This Component Addresses The
Business Challenge

Component Description

Oracle Service
Bus file-based
proxy

An Oracle Service Bus pipeline connects
a proxy service to a file ordering channel.
The proxy handles incoming customer
orders by file.

A pipeline validates the application
before invocation. A proxy enables
customers to invoke the composite
through a proxy instead of connecting
directly to the composite.

Native Format
Builder Wizard

The file adapter transforms a comma-
delimited order to an XML schema file for
the order processing composite to use.

The Native Format Builder Wizard
enables you to create a native schema
file from a variety of file formats, such as
delimited, fixed-length, complex type,
data type description (DTD), and Cobol
Copybook.

Oracle Service
Bus Debugger

A breakpoint debugger set on the Oracle
Service Bus pipeline tests and debugs
the end-to-end application.

The Oracle Service Bus debugger
enables you to set breakpoints directly
in Oracle JDeveloper for troubleshooting
on pipelines and split-joins.

5-1

Table 5-1 (Cont.) Components That Provide the Business Solution

Component How This Component Addresses The
Business Challenge

Component Description

Oracle Enterprise
Manager Fusion
Middleware
Control

Oracle Enterprise Manager enables you
to monitor and administer an Oracle
Service Bus application.

Oracle Enterprise Manager Fusion
Middleware Control provides a web
browser-based, graphical user interface
for monitoring and administering
deployed applications.

Figure 5-1 provides an overview of how this business solution is implemented.

Figure 5-1 Ordering Channels

Subsequent sections of this chapter provide more specific details about how the
components in Table 5-1 are used to address the new order channel business
challenge.

• Adding a File-Based Proxy to the Pipeline

• Debugging Components with the Debugger

• Monitoring in

5.2.1 Adding a File-Based Proxy to the Oracle Service Bus Pipeline
Company X's customer base includes legacy companies that are unable to submit
their orders in XML format. They instead use a comma-delimited format. Company X
must be able to transform these comma-delimited orders into a valid XML format.

Oracle SOA Suite includes an Adapter Configuration Wizard that guides you through
integrating applications with file systems, database tables, database queues, FTP
servers, Java Message Services (JMS), IBM WebSphere MQ, and other systems. In
12c, the Adapter Configuration Wizard is available in both Oracle SOA Suite and
Oracle Service Bus.

Chapter 5
Business Solution

5-2

Company X opens the ProcessOrder project in the Oracle Service Bus application in the
Applications window in Oracle JDeveloper. Figure 5-2 provides details.

Figure 5-2 File Adapter Icon in Components Window

Company X then drags a File icon from the Components window to the Exposed Services
swimlane. This invokes the Adapter Configuration Wizard for adding a new file-based proxy
for the ProcessOrder composite.

The file adapter lets Oracle Service Bus business and proxy services exchange (read and
write) files on local file systems. The file contents can be in both XML and non-XML data
formats. For this scenario, the file adapter is configured to read comma-separated value
(.csv) files from a specified directory that is polled every minute. On the last page of the
wizard, Company X selects the option to create a valid XML schema file from the native
comma-delimited format submitted by customers. This selection invokes the Native Format
Builder Wizard. Figure 5-3 provides details.

The Native Format Builder Wizard enables you to create a native schema file from a variety
of file formats, such as delimited, fixed-length, complex type, data type description (DTD),
and Cobol Copybook. Native schema is an XML schema definition with annotations and
additional attributes that can be used to translate native format files to XML, and vice versa.
This native schema enables the Adapter Configuration Wizard to create a WSDL file for the
adapter to communicate with the application.

Figure 5-3 Selection of Option to Define a Schema for a Native Format

For this scenario, Company X configures the Native Format Builder Wizard pages as follows:

Chapter 5
Business Solution

5-3

• Selects Complex Type (Contains records whose fields may themselves be
records having multiple delimiter types) as the native message format from
which to create a schema.

• Specifies the native format file and the root element (Order).

• Specifies the complex types for data corresponding to address, billing, shipping,
and item.

• Specifies the delimiter for data (comma).

• Specifies the schema elements corresponding to the fields in the data file.

• Renames the automatically generated elements C1,C2.....C7 to element names
that are expected in the generated XML file.

Figure 5-4 shows the complex type AddressType with defined schema elements for
FirstName, LastName, AddressLine, City, State, ZipCode, and PhoneNumber.
The comma-delimited file is shown on the right side of the page.

Figure 5-4 Designing of Complex Types in the Schema File

The configuration process is repeated for all required complex types, as shown in
Figure 5-5.

Chapter 5
Business Solution

5-4

Figure 5-5 Completion of Design of Complex Types in the Schema File

When complete, a schema file is created. Figure 5-6 provides details.

Figure 5-6 Schema File and Schema Element Creation

Company X then wires the newly created ProcessPS_File proxy to the ProcessPP pipeline.
Figure 5-7 provides details.

Chapter 5
Business Solution

5-5

Figure 5-7 File Proxy Wired to ProcessPP Pipeline

5.2.2 Debugging Components with the Oracle Service Bus Debugger
Oracle JDeveloper provides a comprehensive debugger for assessing and repairing
Oracle Service Bus project components. The debugger reduces the development
cycle by providing a troubleshooting environment directly in Oracle JDeveloper. This
means you do not need to build an Oracle Service Bus application in Oracle
JDeveloper, run it, launch a console to test or view audit trails and flow traces, and
then return to Oracle JDeveloper to fix any issues and repeat these steps. Instead, you
can set breakpoints directly in Oracle JDeveloper for troubleshooting on pipelines and
split-joins.

Company X navigates to the validatePayment pipeline to debug the pipeline in Oracle
JDeveloper. Company X selects the Reporting action in the pipeline editor and right-
clicks and selects Toggle Breakpoint from the menu.

Figure 5-8 provides details.

Figure 5-8 Set Breakpoints

Chapter 5
Business Solution

5-6

With a breakpoint set, Company X invokes the debugger by right-clicking the proxy and
selecting Run. Figure 5-9 provides details.

Figure 5-9 Start Debugging of the Oracle Service Bus Proxy

This enables Company X to enter sample data in the test console, review the variables, step
through the pipeline in debug mode, and change data, as necessary. Figure 5-10 provides
details.

Figure 5-10 Debug of Oracle Service Bus Pipeline

Chapter 5
Business Solution

5-7

5.2.3 Monitoring Oracle Service Bus in Oracle Enterprise Manager
Fusion Middleware Control

Company X deploys the Oracle Service Bus application, as shown in Figure 5-11.

Figure 5-11 Deployment of Oracle Service Bus Application

Company X monitors Oracle Service Bus from Oracle Enterprise Manager Fusion
Middleware Control. Oracle Enterprise Manager Fusion Middleware Control is a web
browser-based, graphical user interface that you use to monitor and administer
deployed applications.

Starting with 12c, the administration of Oracle Service Bus and Oracle SOA Suite is
performed from a single, unified Oracle Enterprise Manager Fusion Middleware
Control.

Services are not displayed by default to optimize performance. Therefore, Company X
selects ProcessOrderSB in the navigator, clicks the Operations tab, and clicks
Search to display all the services in ProcessOrderSB. Figure 5-12 provides details.

Figure 5-12 ProcessOrderSB Search

Chapter 5
Business Solution

5-8

The Type list enables you to filter the display of details, as shown in Figure 5-13.

Figure 5-13 Filter Display of Details

Company X uses the Oracle Service Bus home page to monitor additional details under each
of the tabs displayed at the top of the page. Figure 5-14 provides details of the Global
Settings tab.

Figure 5-14 Oracle Service Bus Home Page

5.3 Related Documentation
Table 5-2 provides references to documentation that more specifically describes the
components and features described in this chapter.

Chapter 5
Related Documentation

5-9

Table 5-2 Related Documentation

For Information About... See...

Configuring the file adapter
with the Adapter
Configuration Wizard

"Oracle JCA Adapter for Files/FTP" of Understanding
Technology Adapters

Creating the native schema
file with the Native Format
Builder Wizard

"Native Format Builder Wizard" of Understanding Technology
Adapters

Monitoring Oracle Service
Bus in Oracle Enterprise
Manager Fusion Middleware
Control

"Getting Started with Oracle Service Bus Administration" of
Administering Oracle Service Bus

Debugging Oracle Service
Bus applications in Oracle
JDeveloper

"Debugging Oracle Service Bus Applications" of Developing
Services with Oracle Service Bus

Chapter 5
Related Documentation

5-10

6
Packing and Shipping Orders

This chapter describes how Oracle SOA Suite addresses the business challenge of packing
and shipping orders. Overviews of how key SOA composite application components address
this challenge are provided, including a REST service, BPEL process, HTTP Analyzer, BPEL
process component template, standalone BPEL subprocess, composite sensor, and Oracle
User Messaging Service adapter.
This chapter includes the following sections:

• Business Challenge

• Business Solution

• Related Documentation

6.1 Business Challenge
Company X has a requirement for assigning preferred shipping providers to a specific
shipping method. This method is calculated based on the shipping speed the customer
selected when placing the order and the shipping state (in the address). Once the order has
been shipped, a notification must be sent to the customer confirming the shipping provider.
The order status must also be updated to shipped.

6.2 Business Solution
To address this business challenge, Company X designs a business solution that uses the
components described in Table 6-1.

Table 6-1 Components That Provide the Business Solution

Component How This Component Addresses the
Business Challenge

Component Description

REST service An inbound REST adapter service defines
a shipping resource.

REST is an architecture for designing network
applications. RESTful applications use HTTP
requests to post data (create and update), get
data (for example, make queries), update data,
and delete data.

BPEL process A BPEL process sets the status of the
order to shipped, notifies the customer
that the order has shipped, and updates
the order status in the database. This
process is connected to the REST
interface, which is exposed as a service.

BPEL processes provide process orchestration
and storage of a synchronous or an
asynchronous process. You design a business
process that integrates a series of business
activities and services into an end-to-end process
flow.

HTTP Analyzer The HTTP Analyzer tests the Web
Application Description Language (WADL)
URL of the REST service to ensure that
the service is working properly.

The HTTP Analyzer enables you to examine the
content of HTTP request/response package pairs.
You can edit the content of a request package,
resend it, and observe the response packet
returned.

6-1

Table 6-1 (Cont.) Components That Provide the Business Solution

Component How This Component Addresses the
Business Challenge

Component Description

BPEL process
component
template

The component template includes an
invoke activity and an assign activity that
takes an order number and an order
status and assigns it to the input variable
of the database adapter.

See Table 3-1 for a description of Oracle SOA
Suite templates.

Standalone BPEL
subprocess

A standalone BPEL process calls a
database adapter reference to update the
order status.

A standalone BPEL subprocess is a fragment of a
BPEL process, which includes a number of
activities to reuse. Standalone subprocess do not
have an interface and are only called from
another BPEL process.

Composite sensor A composite sensor tracks all orders of a
specific shipping provider.

See Table 3-1 for a description of composite
sensors.

Oracle Enterprise
Manager Fusion
Middleware Control

Oracle Enterprise Manager Fusion
Middleware Control monitors the
composite sensor in the instance and
provides access to a WADL URL used for
testing.

Oracle Enterprise Manager Fusion Middleware
Control is a web browser-based, graphical user
interface that you use to monitor and administer
your deployed composites.

Oracle User
Messaging Service
(UMS) adapter

A UMS adapter sends an email
notification to a customer indicating the
order was shipped.

UMS is an Oracle Fusion Middleware component
that enables communication between users and
applications. UMS supports various messaging
channels such as email, SMS, and instant
messaging (IM). UMS consists of servers, drivers,
and applications.

Figure 6-1 provides an overview of how this business solution is implemented.

Figure 6-1 Packing and Shipping Process Overview

Subsequent sections of this chapter provide more specific details about how the
components in Table 6-1 are used to address the packing and shipping business
challenge.

• Defining a Shipping Resource with a REST Service

• Exposing a REST Service with a Packing BPEL Process

• Testing REST Services with the HTTP Analyzer

Chapter 6
Business Solution

6-2

• Using Templates and Standalone Subprocesses to Update the Order Status in the
Database

• Tracking the Shipping Provider with Composite Sensors

• Sending Email Notifications to Indicate Order Shipments

6.2.1 Defining a Shipping Resource with a REST Service
Company X creates a SOA composite application named PackAndShipService to address
this business challenge. As an alternative to using a web service, Company X uses a REST
service in the composite to define a shipping resource.

REST is an architecture for designing network applications. RESTful applications use HTTP
requests to post data (create and update), get data (for example, make queries), update data,
and delete data.

Oracle SOA Suite provides the following REST support:

• Support in SOA composite applications:

– Enable REST support in new or existing services.

– Integrate with external REST APIs.

– Orchestrate a set of RESTful state transitions (RPC/Hypermedia as the Engine of
Application State (HATEOAS) approach).

– Support for XML, JavaScript Object Notation (JSON) (with automatic translation to
and from XML), URI sample, and URL-encoded GET/POST data.

– Generation of sample URI for REST service operations.

– Support for WADL services. The WADL can be provided by a deployed Oracle SOA
Suite or Oracle Service Bus service or a non-Oracle SOA Suite or Oracle Service
Bus service such as a Jersey REST service.

• Ease of development:

– Oracle JDeveloper provides a wizard for modeling REST interfaces and WSDL
operation bindings.

– Readable API is provided that publishes each method used upon deployment.

– Ability to browse and consume Oracle REST endpoints (including Oracle Service
Bus) from within Oracle JDeveloper.

• Oracle Web Service Manager (OWSM) policy support for REST security.

Company X drags a REST binding adapter from the Components window into the Exposed
Services swimlane in Oracle JDeveloper. The packing service expects a shipping resource
that includes all necessary information to pack and ship an order. It returns a shipping
resource with an updated order status.

Company X defines the following REST service details:

• Creates a REST inbound interface.

• Creates a shipping REST resource.

• Creates a packandShip operation binding with:

– A POST HTTP verb.

– A sample request XML payload, as shown in Figure 6-2.

Chapter 6
Business Solution

6-3

Figure 6-2 Sample XML Payload

– A request schema file selected from the ProcessOrder project created in
Creating a SOA Composite Application From a SOA Project Template. The
schema file includes the Shipping element, as shown in Figure 6-3.

Chapter 6
Business Solution

6-4

Figure 6-3 Shipping Element in Schema File

– A response schema file selected from the ProcessOrder project. The schema file is
the same as selected for the request and also includes the Shipping element shown
in Figure 6-3.

When design is complete, the Create REST Binding dialog looks as shown in Figure 6-4.

Chapter 6
Business Solution

6-5

Figure 6-4 Create REST Binding Dialog - Design Complete

This creates a REST service binding component in the Exposed Services swimlane,
as shown in Figure 6-5.

Figure 6-5 REST Service in Exposed Services Swimlane in Oracle JDeveloper

6.2.2 Exposing a REST Service with a Packing BPEL Process
Company X exposes the REST service by connecting it to a BPEL process, as shown
in Figure 6-6.

Chapter 6
Business Solution

6-6

Figure 6-6 REST Service Connected to BPEL Process

This service initiates the packing and shipping based on shipping provider and shipping
method, which are both determined by the order fulfillment service in Fulfilling Orders . The
BPEL process consists of the following activities:

• A receive activity receives a call from the REST service.

• An empty activity simulates the packing and shipping. After this activity is processed, the
order status is updated to Shipped.

• An assign activity assigns the order number and status to two variables:

– orderNumber is set from the input variable

– orderStatus is set to Shipped

• An assign activity assigns the value of the input variable (with updated status) to the
output variable.

• A reply activity returns information to the REST service.

The complete design of the BPEL process is shown in Figure 6-7.

Chapter 6
Business Solution

6-7

Figure 6-7 REST Service Integration with the BPEL Process

6.2.3 Testing REST Services with the HTTP Analyzer
To ensure that the REST service is working properly, Company X first deploys the SOA
composite application for testing with the HTTP Analyzer.

Deployment is performed by right-clicking the PackAndShipService in the
Applications window, selecting Deploy, and going through the pages of the Deploy
wizard. Deployment is performed to the IntegratedWebLogicServer, an embedded,
local server in Oracle JDeveloper.

The HTTP Analyzer enables you to examine the content of HTTP request/response
package pairs. You can edit the content of a request package, resend it, and observe
the response packet returned.

To test the service, Company X first copies the WADL file URL from the home page of
the PackAndShipService SOA composite application in Oracle Enterprise Manager
Fusion Middleware Control, as shown in Figure 6-8.

REST services in Oracle SOA Suite expose WADL files instead of WSDL files to
define their interface. WADL provides a readable XML description of HTTP-based web
applications (typically REST web services). WADL simplifies the reuse of web services
based on the existing HTTP architecture of the web.

Chapter 6
Business Solution

6-8

Figure 6-8 WADL URL Location in Oracle Enterprise Manager Fusion Middleware Control

Company X then opens the HTTP Analyzer in Oracle JDeveloper by selecting Tools > HTTP
Analyzer. Company X clicks Open URL and enters the WADL URL copied from Oracle
Enterprise Manager Fusion Middleware Control, when prompted. Figure 6-9 provides details.

Figure 6-9 HTTP Analyzer

The Service dialog shown in Figure 6-10 displays details about the REST service. Company
X clicks Test.

Chapter 6
Business Solution

6-9

Figure 6-10 Service Dialog

Company X copies and pastes the sample request XML payload specified in
Figure 6-2 into the Request HTTP Headers section and clicks Send Request, as
shown in Figure 6-11.

Figure 6-11 Request XML Payload Input to HTTP Analyzer

Chapter 6
Business Solution

6-10

6.2.4 Using Templates and Standalone Subprocesses to Update the Order
Status in the Database

In addition to updating the order status in the shipping message, Company X also updates it
in the database. Because this is a common task, Company X creates a component template
named updateOrderStatusSP for reuse as needed in multiple projects. Company X used
templates for similar common tasks in Calculating Payment Status with XSLT
Transformations and Customizing the Contents of the SOA Project Template.

Figure 6-12 shows the component template contents.

Figure 6-12 BPEL Process Component Template Contents

Company X drags the template from the Component Templates section of the Components
window into the SOA composite application. When fully expanded, the composite looks as
shown in Figure 6-13.

Figure 6-13 SOA Composite Application with Expanded Template

The component template includes an invoke activity and an assign activity that takes an order
number and an order status and assigns it to the input variable of the database adapter.

The packAndShipOrder BPEL process must be connected with the updateOrderStatusSP
component template. To address this task, Company X uses a standalone BPEL subprocess
to call a database adapter reference to update the order status. Subprocesses are similar to
templates in that they enable you to reuse functionality in multiple projects. A standalone
BPEL subprocess is a fragment of a BPEL process, which includes a number of activities to
reuse. Standalone subprocesses do not have an interface and are only called from another
BPEL process. A standalone process can have partner links across a number of other BPEL
processes.

Company X opens the packAndShipOrder BPEL process and drags a standalone BPEL
process from the Standalone section of the Components window into the process.

The standalone BPEL process is displayed as a call activity, which calls the
updateOrderStatusSP template. It provides the following:

Chapter 6
Business Solution

6-11

• Order number

• Order status

Figure 6-14 shows the contents of the call activity. A call activity enables you to
execute referenced subprocess code in standalone and inline subprocesses.

Figure 6-14 Contents of Call Activity

6.2.5 Tracking the Shipping Provider with Composite Sensors
Company X added a composite sensor for tracking the status of order payments in
Tracking Payment Status with Composite Sensors and tracking the order number in
Tracking the Order Number with Composite Sensors.

Company X now has an additional requirement for a composite sensor to track the
shipping provider. This enables Company X to search for all orders that have been
shipped with a specific shipping provider.

Company X defines the composite sensor on the REST service. The definition
includes an XPath expression to track the shipping provider, as shown in the
Composite Sensor dialog in Figure 6-15.

Figure 6-15 Composite Sensor for Tracking the Shipping Order

The Enterprise Manager check box of the Composite Sensor dialog is also selected.
This enables you to track composite sensor names and values on the Flow Instances
page or the Flow Trace page for a specific business flow instance in Oracle Enterprise
Manager Fusion Middleware Control. Figure 6-16 provides details.

Chapter 6
Business Solution

6-12

Figure 6-16 Composite Sensor Name and Value in Flow Trace Page

6.2.6 Sending Email Notifications to Indicate Order Shipments
Company X must be able to notify customers by email that an order has shipped. To address
this task, Company X configures a UMS adapter to send an email notification to customers.

UMS is an Oracle Fusion Middleware component that enables communication between users
and applications. UMS supports various messaging channels such as email, SMS, and
instant messaging (IM). UMS consists of the following components:

• A UMS server that orchestrates message flows between applications and users.

• UMS drivers that connect UMS to the messaging gateways, adapting content to the
various protocols supported by UMS.

• UMS client applications that implement the business logic of sending and receiving
messages.

The UMS adapter is dragged from the Technology section of the Components window to the
External References swimlane. Company X configures the UMS adapter to perform the
following tasks:

• Send an outbound notification

• Uses email as the notification channel

• Add an email subject of Your Order Has Been Shipped

• Configure the From and To email addresses

Figure 6-17 provides details.

Chapter 6
Business Solution

6-13

Figure 6-17 UMS Adapter Configuration Wizard

When UMS configuration is complete, the packAndShipOrder BPEL process is
connected to the NotifyUser UMS adapter reference. Figure 6-18 provides details.

Figure 6-18 BPEL Process Connected to the UMS Adapter

To complete configuration, Company X adds the appropriate activities to the
packAndShipOrder BPEL process:

• An invoke activity to invoke the UMS adapter (with an input variable)

• An assign activity to populate the payload of the input variable of the invoke
activity

Figure 6-19 provides an overview of how this completed business solution appears in
the SOA Composite Editor.

Chapter 6
Business Solution

6-14

Figure 6-19 Completed SOA Composite Application

6.3 Related Documentation
Table 6-2 provides references to documentation that more specifically describes the
components and features described in this chapter.

Table 6-2 Related Documentation

For Information About... See...

Integrating a REST operation Integrating REST Operations in SOA Composite Applications in
Developing SOA Applications with Oracle SOA Suite

Creating and designing a
BPEL process

Getting Started with Oracle BPEL Process Manager in Developing
SOA Applications with Oracle SOA Suite

Using the HTTP Analyzer Monitoring HTTP Using the HTTP Analyzer in Developing Applications
with Oracle JDeveloper

Creating Oracle SOA Suite
templates and standalone
BPEL subprocesses

Oracle SOA Suite Templates and Reusable Subprocesses in
Developing SOA Applications with Oracle SOA Suite

Creating composite sensors Defining Composite Sensors in Developing SOA Applications with
Oracle SOA Suite

Configuring the UMS Adapter Oracle JCA Adapter for UMS in Understanding Technology Adapters

Developing Applications with Oracle User Messaging Service

Using the Integrated WebLogic
Server

Introducing the Quick Start Distributions in Installing SOA Suite and
Business Process Management Suite Quick Start for Developers

Chapter 6
Related Documentation

6-15

7
Fulfilling Orders

This chapter describes how Oracle SOA Suite addresses the business challenge of creating
an order fulfillment system. Overviews of how key SOA composite application components
are used to address this challenge are provided, including project templates, business rules,
composite sensors, REST binding references, and Coherence adapters.
This chapter includes the following sections:

• Business Challenge

• Business Solution

• Related Documentation

7.1 Business Challenge
Company X has a requirement to create a system that listens for orders to be processed,
selects a shipping provider (for example, the United States Postal Service (USPS) or UPS),
and invokes a packing and shipping service. In this scenario, the packing and shipping
service to invoke is the PackAndShipService composite that was designed in Packing and
Shipping Orders .

7.2 Business Solution
To address this business challenge, Company X designs a business solution that uses the
components described in Table 7-1.

Table 7-1 Components That Provide the Business Solution

Component How This Component Addresses The
Business Challenge

Component Description

SOA composite
application that
includes a project
template

An order fulfillment composite created
from a project template listens for orders
to be processed, selects a shipping
provider, and invokes the packing and
shipping service (PackAndShipService)
created in Packing and Shipping Orders .
The order fulfillment composite is
triggered when an order is updated as
ReadyForShip in the database. It then
locates the shipping speed in the order
message, determines the shipping
method based on the shipping speed and
shipping state, reads the preferred
shipping provider from the database or
Coherence cache, and calls the packing
and shipping REST service.

See Table 3-1 for a description of
templates.

7-1

Table 7-1 (Cont.) Components That Provide the Business Solution

Component How This Component Addresses The
Business Challenge

Component Description

Business rule A business rule (decision table) decides
the shipping method based on speed and
shipping state. Based on the shipping
method, the preferred shipping provider
is retrieved from the database.

Business rules enable dynamic
decisions at runtime that allow you
to automate policies, computations,
and reasoning while separating rule
logic from underlying application
code. This enables more agile rule
maintenance and empowers
business analysts with the ability to
modify rule logic without
programmer assistance and without
interrupting business processes.

Composite sensor A composite sensor tracks the order
number.

See Table 3-1 for a description of
composite sensors.

REST reference The outbound REST reference delivers
the order to the packing and shipping
service.

See Table 6-1 for a description of
REST bindings.

Coherence adapter A Coherence adapter initially reads the
correct shipping provider from the
database, and from Coherence cache for
subsequent read operations.

An additional Coherence adapter copies
the database adapter response into
Coherence cache so that the shipping
provider is available in cache the next
time it is looked up.

A Coherence cache is a collection of
data objects that serves as an
intermediary between the database
and the client applications.
Database data can be loaded into a
cache and made available to
different applications. Coherence
cache reduces load on the database
and provides faster access to
database data.

Subsequent sections of this chapter provide more specific details about how the
components in Table 7-1 are used to address the order fulfillment business challenge.

• Creating a Project from a SOA Template

• Determining the Shipping Method with a Business Rule

• Tracking the Order Number with Composite Sensors

• Delivering the Order to the Packing Service with the REST Interface

• Reading the Shipping Provider from Cache with the Coherence Adapter

• Copying the Database Adapter Response into Coherence Cache

• Deploying the Composite and Testing the Coherence Adapters

7.2.1 Creating a Project from a SOA Template
Company X frequently has business requirements for designing SOA composite
applications that listen for orders to be processed, select a shipping provider, and
invoke a packing and shipping service. To address this challenge, Company X created
a project template named FulfillOrderTemplate with these capabilities that can be
imported into multiple applications in Oracle JDeveloper, as necessary. The template
can then be customized for the business requirements of that specific project.

Chapter 7
Business Solution

7-2

Changes made to that specific imported template are not propagated to projects previously
created using this template.

As with previous templates, the FulfillOrderTemplate project template is first registered in
Oracle JDeveloper by selecting Tools > Preferences > SOA > Templates, and specifying
the template storage location.

Company X invokes the Create SOA Project wizard to create a new SOA project, and selects
to create one based on a template. The project template is imported into the new application
by selecting SOA Template in the Create SOA Project wizard, which refreshes the dialog to
display existing templates for selection. FulfillOrderTemplate is selected, then the project
name is shortened to FulfillOrder, as shown in Figure 7-1.

Figure 7-1 Project Template Selection

When creation is complete, the composite looks as shown in Figure 7-2 with the imported
project template.

Figure 7-2 Contents of the SOA Composite Application

The imported project template consists of the following components:

• The first database adapter (ReceiveOrdersReadyForShipment) listens for orders with a
status of ReadyForShip, reads the record out of the database, and triggers a new BPEL
process for each order. To prevent the order from being read again, it changes the status
to ReadyForPack.

• The second database adapter (getShippingProvider) reads the shipping provider from
the database, using the shipping method ID as a primary key. A list of preferred shipping
providers per shipping method is maintained in the database. For example, USPS is used
for USAFirstClass shipment (shipping method ID =1), UPS is used for USAPriority
shipment (shipping method ID =2), and so on.

• The receiveOrderToShip BPEL process is open and displayed in Figure 7-3. This
process is invoked by the ReceiveOrdersReadyForShipment database adapter service.
An XSLT map transforms the message into a canonical order message. The fulfillOrder
BPEL process is invoked with the canonical order message as input.

Chapter 7
Business Solution

7-3

Figure 7-3 receiveOrderToShip BPEL Process Contents

• The fulfillment BPEL process is shown in Figure 7-4. The incoming order
message includes the shipping speed selected by the customer:

– One-day shipping

– Two-day shipping

– Standard shipping: 3-5 business days

– Shipping speed does not matter

A business rule determines the shipping method based on shipping speed and
shipping address. The shipping method ID is used as input to the database call to
retrieve the shipping provider.

Chapter 7
Business Solution

7-4

Figure 7-4 fulfillment BPEL Process Contents

7.2.2 Determining the Shipping Method with a Business Rule
Business rules enable dynamic decisions to be made at runtime. This enables you to
automate policies, computations, and reasoning while separating rule logic from underlying
application code.

Company X adds a business rule to determine the shipping method ID. The rule takes as
input the shipping state and the requested shipping speed and returns the shipping method
ID. For example, USPS is used for USAFirstClass shipment (shipping method ID =1), UPS is
used for USAPriority shipment (shipping method ID =2), and so on.

Company X drags a Business Rule icon from the Components section of the Components
window into the SOA composite application. After configuration is complete, the Create
Business Rules dialog looks as shown in Figure 7-5.

Chapter 7
Business Solution

7-5

Figure 7-5 Input and Output Facts of Defined Business Rule

Both the input and output facts shown in Figure 7-5 are defined with the Shipping
element type in the schema file, as shown in Figure 7-6. Facts are the objects on
which rules reason. Each fact is an instance of a fact type.

Figure 7-6 Shipping Element Type

After business rule creation, the business rule service component in the composite is
clicked to access the Rules Editor. Within the Rules Editor, a decision table is defined,
as shown in Figure 7-7. A decision table is an alternative business rule format that is
more compact and intuitive when many rules are needed to analyze many
combinations of property values. You can use a decision table to create a set of rules
that covers all combinations or where no two combinations conflict.

The following rule conditions are defined for speed of delivery. A rule condition
represents the IF part of a statement. A rule condition is like a query over the available
facts in the Rules Engine, and for every row returned from the query, the rule is
activated. The rule condition activates the rule whenever a combination of facts makes
the conditional expression true.

Chapter 7
Business Solution

7-6

• One-day shipping

• Two-day shipping

• Standard shipping: 3-5 business days

• Do not care (shipping speed does not matter). For this delivery method, a state condition
of TX (for Texas) is set. No other rule conditions have a state set; delivery speed is the
only requirement.

The following shipping method ID rule actions are defined for each rule condition. A rule
action represents the THEN part of a statement. The THEN part contains the actions that are
executed when the rule is fired. A rule is fired after it is activated and selected among the
other rule activations using conflict resolution mechanisms such as priority.

• 1 - USPS is used for USAFirstClass shipping

• 2 - UPS for USAPriority shipping

• 3 - USA free mail

• 4 - UPS next day air

Figure 7-7 Decision Table in Rules Editor

The business rule is integrated by dragging a Business Rule icon from the SOA
Components section of the Components window into the fulfillment process, as shown in
Figure 7-8.

Chapter 7
Business Solution

7-7

Figure 7-8 Business Rule Integrated into fulfillment BPEL Process

Company X selects the dictionary invoked by this activity. The input and output facts
are also defined. For the input copy rule, ShippingType is copied from the process
inputVariable to the dsIn (input fact) variable of the business rule. Figure 7-9 provides
details.

Figure 7-9 Input Copy Rule

For the output copy rule, ShippingMethod is copied from the dsOut (output fact)
variable of the business rule to the shippingMethodID process variable. Figure 7-10
provides details.

Chapter 7
Business Solution

7-8

Figure 7-10 Output Copy Rule

When design is complete, the fulFillment process looks as shown in Figure 7-11.

Figure 7-11 Invocation of Rules Dictionary

7.2.3 Tracking the Order Number with Composite Sensors
As performed in previous chapters, Company X adds a composite sensor for tracking fields
on messages. For this scenario, the status of the order number is tracked. The sensor is set
on the ReceiveOrderReadyForShipment database adapter service. Figure 7-12 provides
details.

Chapter 7
Business Solution

7-9

Figure 7-12 Composite Sensor

The definition includes an XPath expression to track the order number, as shown in
the Composite Sensor dialog in Figure 7-13.

Figure 7-13 Composite Sensor Dialog

The Enterprise Manager check box of the Create Composite Sensor dialog is also
selected. This enables you to track composite sensor names and values on the Flow
Instances page or the Flow Trace page for a specific business flow instance in Oracle
Enterprise Manager Fusion Middleware Control. Figure 7-14 provides details.

Figure 7-14 Composite Sensor Name and Value on Flow Trace Page

Chapter 7
Business Solution

7-10

7.2.4 Delivering the Order to the Packing Service with the REST Interface
A REST service was used as an alternative to web services in Exposing a REST Service with
a Packing BPEL Process. REST uses HTTP requests to post data (create and update), get
data (for example, make queries), update data, and delete data.

For this business scenario, Company X uses a REST reference to call the PackAndShip
service created in Packing and Shipping Orders . Company X drags a REST binding into the
External References swimlane of the composite and defines the following details:

• A REST outbound interface.

• A shipping REST resource.

• A packandShip operation binding based on a WADL file with a POST HTTP verb. WADL
provides a readable XML description of HTTP-based web applications (typically REST
web services). WADL simplifies the reuse of web services based on the existing HTTP
architecture of the web. When you select a WADL file, all operation binding details are
automatically populated in the Create REST Binding dialog. Figure 7-15 provides details.

Figure 7-15 REST Binding

When configuration is complete, Company X connects the fulfillOrder BPEL process to the
REST reference, as shown in Figure 7-16.

Chapter 7
Business Solution

7-11

Figure 7-16 BPEL Process Connected to REST Reference

To complete configuration, Company X adds the necessary activities to the
fulfillOrder process:

• An invoke activity invokes the PackAndShipOrder partner link and defines the
necessary input and output variables.

• An assign activity maps the shipping element in the input variable to the shipping
element in the input variable for the REST reference.

Because the BPEL process is one-way, there is no need to assign the return value of
the REST service.

Figure 7-17 provides details.

Figure 7-17 fulFillment BPEL Process Contents

Chapter 7
Business Solution

7-12

7.2.5 Reading the Shipping Provider from Cache with the Coherence
Adapter

The database adapters used in this composite regularly access the database. To reduce load
on the database and to provide faster access to database data, Company X integrates a
Coherence adapter into the composite. The Coherence adapter initially puts the data into the
cache after it reads from the database the first time.

A Coherence cache is a collection of data objects that serves as an intermediary between the
database and client applications. Database data can be loaded into a cache and made
available to different applications. The Coherence adapter enables you to perform useful
Coherence operations such as adding an item to Coherence cache, obtaining an item,
removing an item, and querying items.

Company X drags a Coherence icon from the Technology section of the Components
window into the External References swimlane of the composite. The Adapter Configuration
Wizard guides you through configuring the following Coherence adapter details.

• The JNDI name of the Coherence connection.

• The operation to perform. In this case, a get operation is selected to get data from
Coherence cache.

• The cache type (XML).

• The cache name.

• The key type (string) (Populated later with the jca.coherence.Key property in an invoke
activity.).

• The database lookup response schema file (Stores the response from the database
lookup directly in Coherence cache.).

When adapter configuration is complete, the fulfillOrder BPEL process is connected to the
Coherence adapter, as shown in Figure 7-18.

Figure 7-18 fulfillOrder BPEL Process Connected to Coherence Adapter

Chapter 7
Business Solution

7-13

To complete configuration, Company X adds and configures the necessary activities in
the fulfillOrder process:

• An invoke activity is configured as follows:

– Invokes the QueryCoherence partner link.

– Defines input and output variables.

– Assigns the jca.coherence.Key property to the shippingMethodID value
(under the Properties tab). This value is sent as the input variable upon
invocation of the adapter and eliminates the need to create an assign activity
statement in which an input value is assigned to the Coherence query
invocation.

• An if activity is configured as follows:

– The if part assigns the shipping provider name from the Coherence query
output variable to the shipping provider name in the process input variable (in
the shipping element). This is used later for the PackAndShipService
designed in Packing and Shipping Orders .

– An else part includes the getShippingProvider database adapter invocation
and its two assign activities.

When complete, configuration looks as shown in Figure 7-19.

Figure 7-19 If Statement

7.2.6 Copying the Database Adapter Response into Coherence Cache
Company X adds another Coherence adapter to the External References swimlane
of the composite. This adapter copies the database adapter response into Coherence
cache so that the shipping provider is available in cache the next time it is looked up.

The Coherence adapter is configured as follows:

Chapter 7
Business Solution

7-14

• The JNDI name of the Coherence connection.

• The operation to perform. In this case, a put operation is selected to put an item into
cache.

• The cache type (XML).

• The cache name.

• The key type (string).

• The key value of shippingMethodKey.

• The database lookup response schema file.

To complete configuration, Company X connects the fulfillment process to the new
Coherence adapter, as shown in Figure 7-20.

Figure 7-20 BPEL Process Connected to Second Coherence Adapter

To complete configuration, Company X adds the necessary activities to the fulfillOrder
process:

• An invoke activity is configured as follows:

– Invokes the putIntoCoherence partner link.

– Defines input and output variables.

– Assigns the jca.coherence.Key property to the shippingMethodID value (under the
Properties tab). This value is sent as the input variable upon invocation of the
adapter and eliminates the need to create an assign activity statement in which an
input value is assigned to the Coherence query invocation.

• An assign activity populates the input variable of the Coherence adapter with the output
variable of the database call.

When configuration is complete, the fulfillment process looks as shown in Figure 7-21.

Chapter 7
Business Solution

7-15

Figure 7-21 fulfillment BPEL Process Contents

Figure 7-22 shows how this completed business solution appears in the SOA
Composite Editor.

Figure 7-22 Completed SOA Composite Application

Chapter 7
Business Solution

7-16

7.2.7 Deploying the Composite and Testing the Coherence Adapters
Initially both Coherence adapters are executed. The queryCoherence reference returns an
empty variable because nothing has been put into Coherence cache yet. The putCoherence
reference then puts the content into Coherence cache. Figure 7-23 provides details.

Figure 7-23 Flow Trace

Once the message has been put into Coherence cache, the audit trail changes. Figure 7-24
provides details.

Figure 7-24 Flow Trace with Changes

The queryCoherence reference returns the shipping method variable and the database does
not need to be queried again. Figure 7-25 provides details.

Chapter 7
Business Solution

7-17

Figure 7-25 Shipping Method Variable Returned

7.3 Related Documentation
Table 7-2 provides references to documentation that more specifically describes the
components and features described in this chapter.

Table 7-2 Related Documentation

For Information About... See...

Adding a project template "Oracle SOA Suite Templates and Reusable Subprocesses" of
Developing SOA Applications with Oracle SOA Suite

Designing a business rule "Overview of Oracle Business Rules" of Designing Business
Rules with Oracle Business Process Management

"Getting Started with Oracle Business Rules" of Developing SOA
Applications with Oracle SOA Suite

"Working with Decision Tables" of Designing Business Rules with
Oracle Business Process Management

Creating a composite sensor "Defining Composite Sensors" of Developing SOA Applications
with Oracle SOA Suite

Adding a REST reference "Integrating REST Operations in SOA Composite Applications"
of Developing SOA Applications with Oracle SOA Suite

Configuring Coherence
adapters

"Oracle JCA Adapter for Coherence" of Understanding
Technology Adapters

Chapter 7
Related Documentation

7-18

8
Scheduling Composite Execution

This chapter describes how Oracle SOA Suite addresses the business challenge of
maintaining sufficient inventory levels. Overviews of how key SOA composite application
components are created and address this challenge are provided, including Oracle Enterprise
Scheduler.
This chapter includes the following sections:

• Business Challenge

• Business Solution

• Related Documentation

8.1 Business Challenge
Company X faces the business challenge of maintaining sufficient inventory. As orders are
processed, the stock of items in the warehouse is reduced and inventory must be restocked.
For each category of products ordered, Company X has a different supplier. At the end of
each day, a separate report must be run for each supplier to identify the number of items for
each product to be ordered to return the inventory to its original level.

8.2 Business Solution
To address these business challenges, Company X designs a business solution that uses the
components described in Table 8-1.

Table 8-1 Components That Provide the Business Solution

Component How This Component Addresses
The Business Challenge

Component Description

SOA composite
application

A query inventory composite
identifies the total number of items
of each product ordered for the day
for a given category. This query
identifies how much inventory has
been reduced during the day.

See Table 3-1 for a description of SOA
composite applications.

Oracle Enterprise
Scheduler job

Oracle Enterprise Scheduler is
used to define a web service job for
the query inventory composite and
then submit the job with a schedule
to run at a specified time.

Oracle Enterprise Scheduler enables
you to manage job requests, define
metadata, and schedule jobs in Oracle
Enterprise Manager Fusion Middleware
Control.

Oracle Enterprise
Scheduler adapter
activation and
deactivation

Oracle Enterprise Scheduler
activates and deactivates the
database adapter in the fulfillment
service created in Fulfilling Orders
using recurring schedules for the
activation and deactivation.

Oracle Enterprise Scheduler enables
you to schedule adapters in composites
to activate and deactivate at specified
times.

8-1

Subsequent sections of this chapter provide more specific details about how the
components in Table 8-1 are used to address the credit validation business challenge.

• Creating a Web Service Job Definition

• Submitting a Job Request on a Schedule

• Applying Schedules to Adapters

8.2.1 Creating a Web Service Job Definition
To address the requirement for identifying and maintaining sufficient inventory levels,
Company X uses Oracle Enterprise Scheduler.

Oracle Enterprise Scheduler enables you to defer larger transactions to run as jobs at
a later time or automate the running of application maintenance work based on a
defined schedule. Oracle Enterprise Scheduler enables you to run different job types
such as Java, PL/SQL, binary scripts, web services, and EJBs distributed across the
nodes in an Oracle WebLogic Server cluster. Oracle Enterprise Scheduler runs jobs
securely, providing for high availability, scalability, and load balancing. Oracle
Enterprise Scheduler provides monitoring and management through Oracle Enterprise
Manager Fusion Middleware Control.

Company X creates a job definition for the queryInventory composite that queries
their inventory. The composite includes a synchronous BPEL process and a web
service as the service binding component. You associate request-specific metadata as
job definitions.

Company X creates the job definition by selecting ESSAPP in the Oracle Enterprise
Manager Fusion Middleware Control navigator, then selecting Job Metadata > Job
Definitions from the Scheduling Service menu. Figure 8-1 provides details.

Figure 8-1 Job Definition Creation

Company X configures a job definition with the following details:

• Job name and display name of QueryInventory

Chapter 8
Business Solution

8-2

• Package value of soa

• Job type of syncWebServiceJobType

When complete, configuration looks as shown in Figure 8-2.

Figure 8-2 Job Definition Configuration

8.2.2 Submitting a Job Request on a Schedule
Company X creates a schedule for running the job definition created in Creating a Web
Service Job Definition. A schedule determines when the job runs.

From the Scheduling Services menu in the Oracle Enterprise Manager Fusion Middleware
Control navigator, Company X selects Job Requests > Submit Job Request. Company X
selects the QueryInventory job definition and defines a schedule for running the job.
Figure 8-3 provides details.

Chapter 8
Business Solution

8-3

Figure 8-3 Job Request Submittal

After the job runs, you can review the output. Company X selects Job Requests >
Search Job Request from the Scheduling Services menu and navigates to the
Request Details page. In the Log and Output section at the bottom of the page,
details about the web service response are available in an XML file. Figure 8-4
provides details.

Chapter 8
Business Solution

8-4

Figure 8-4 Output Results of Web Service Response

8.2.3 Applying Schedules to Adapters
Oracle Enterprise Scheduler also enables you to schedule adapters in composites to be
activated and deactivated at specified times. You can schedule to activate an adapter during
periods when load on the system is minimal. The fulfillment composite designed in Fulfilling
Orders includes a database adapter as a service input.

Company X uses Oracle Enterprise Scheduler to activate and deactivate the database
adapter using recurring schedules. Company X selects Job Requests > Define Schedules
from the Scheduling Services list. Company X configures activation and deactivation job
definitions for the database adapter with the details shown in Table 8-2. The database
adapter is configured to active every ten minutes, and then deactivate every ten minutes.

Table 8-2 Configuration of Activation and Deactivation of Adapters

Element Activation of Adapter Deactivation of Adapter

Name activateSched deactivateSched

Display Name activateSched deactivateSched

Package soa soa

Frequency Hourly/Minute Hourly/Minute

Chapter 8
Business Solution

8-5

Table 8-2 (Cont.) Configuration of Activation and Deactivation of Adapters

Element Activation of Adapter Deactivation of Adapter

Every 10 minutes 10 minutes

Deactivation occurs at 5 minutes,
15 minutes, 25 minutes, and so
on. Activation occurs at 10
minutes, 20 minutes, 30 minutes,
and so on.

Start Date Ten minutes from now Five minutes from now

Use End Date Unchecked Unchecked

When complete, adapter activation and deactivation configuration looks as shown in
Figure 8-5.

Figure 8-5 Activate and Deactivate Adapter Jobs

Company X goes to the home page of the database adapter in Oracle Enterprise
Manager Fusion Middleware Control and selects to activate and deactivate the
database adapter. Figure 8-6 provides details.

Figure 8-6 Database Adapter Activation and Deactivation on Database Adapter
Home Page

Company X selects to activate and deactivate the database adapter at the specified
times. Figure 8-7 provides details.

Chapter 8
Business Solution

8-6

Figure 8-7 Adapter Activation Schedule

8.3 Related Documentation
Table 8-3 provides references to documentation that more specifically describes the
components and features described in this chapter.

Table 8-3 Related Documentation

For Information About... See...

Creating a job definition and
schedule

"Managing Oracle Enterprise Scheduler Requests" of Administering
Oracle Enterprise Scheduler

Activating and deactivating
adapters

"Scheduling JCA Adapter Endpoint Activation and Deactivation using
Oracle Enterprise Scheduler" of Administering Oracle SOA Suite and
Oracle Business Process Management Suite

Chapter 8
Related Documentation

8-7

9
Managing File Transfers

This chapter describes Oracle Managed File Transfer (MFT) usage and provides an overview
of how Company X integrates its SOA composite applications with Oracle MFT.
This chapter includes the following sections:

• Business Challenge

• Business Solution

• Related Documentation

9.1 Business Challenge
Company X has a requirement for its composites to interact with different endpoint types,
amongst them file- and FTP-based endpoint types. For example, Company X must be able to
use an FTP server to write files to a file system.

9.2 Business Solution
To address these business challenges, Company X designs a business solution that uses the
components described in Table 9-1.

Table 9-1 Components That Provide the Business Solution

Component How This Component Addresses The
Business Challenge

Component Description

Oracle MFT transfer • An Oracle MFT transfer receives files
and writes them to the file system using
the MFT embedded FTP server.

• Oracle MFT invokes an MFT service in a
SOA composite application and
dynamically decides based on file size
whether to pass the content inline or by
reference.

Oracle MFT is a high performance,
standards-based, end-to-end managed
file gateway. Oracle MFT provides design,
deployment, and monitoring of file
transfers using a lightweight web-based,
design-time console that includes file
encryption, scheduling, and embedded
FTP and sFTP servers.

Subsequent sections of this chapter provide more specific details about how the components
in Table 9-1 are used to address the file transfer business challenge.

• Creating Transfers_ Sources_ and Targets

• Creating a SOA Composite Application with an MFT Service

• Sending the Order File to a SOA Composite

• Processing Payload Types

• Invoking the ProcessOrder Composite with an Inline Payload

9-1

9.2.1 Creating Transfers, Sources, and Targets
The file delivery structure of Oracle MFT consists of the following types of artifacts:

• Sources define the origin of files.

• Targets define the destination of files.

• Transfers associate a source with one or more targets.

You create these artifacts on the designer page of the Oracle Managed File Transfer
Console.

Company X creates a transfer named OrdersTransfer, as shown in Figure 9-1. The
page includes options for creating sources and targets.

Figure 9-1 Transfer Creation

Company X creates the following source and target artifacts:

• A source named CreateSource in which files are placed in the /orders directory.
The FTP embedded server is selected for transferring the file. Figure 9-2 provides
details. The source location is further defined to process files that adhere to the
pattern of Order*.xml.

Figure 9-2 Source Location

Chapter 9
Business Solution

9-2

• A target named OrdersFileTarget in which transferred files are placed in the /tmp/
orders directory. File targets can be reused by overriding the location with a subdirectory
such as /tmp/orders/output. The target is further defined to select a compression level.
Figure 9-3 provides details.

Figure 9-3 Target Location

After deployment, files that adhere to the pattern of Orders*.xml in /orders are written
to /tmp/orders in compressed format. The Oracle Managed File Transfer Console in
Figure 9-4 shows the transfer results.

Figure 9-4 Transfer Results

9.2.2 Creating a SOA Composite Application with an MFT Service
Company X creates a SOA composite named MFTProcessor and an empty BPEL process
by selecting Define Service Later in the Create BPEL Process dialog. In the SOA Composite
Editor, Company X creates an Oracle MFT service by dragging an MFT icon from the
Technology section of the Components window into the Exposed Services swimlane of the
composite. The Oracle MFT service is designed to dynamically decide based on file size
whether to pass file content inline or by reference. After configuration is complete, the service
is wired to the composite, as shown in Figure 9-5.

Chapter 9
Business Solution

9-3

Figure 9-5 Oracle MFT Service Connected to a BPEL Process

To complete configuration, Company X adds and configures the necessary activities in
the MFTBPELProcess BPEL process:

• A receive activity is invoked by the Oracle MFT service and is configured with an
input variable.

• An assign activity sends the payload type as a response.

• A reply activity returns an output variable to the Oracle MFT service.

When complete, BPEL process design looks as shown in Figure 9-6.

Figure 9-6 BPEL Process with MFT Service

The composite is deployed and verified in Oracle Enterprise Manager Fusion
Middleware Control.

9.2.3 Sending the Order File to a SOA Composite
Company X creates an additional Oracle MFT target to invoke the deployed
MFTProcessor composite. Company X copies the endpoint URL of the
MFTProcessor composite from the Test Web Service page in Oracle Enterprise
Manager Fusion Middleware Control. Figure 9-7 provides details.

Chapter 9
Business Solution

9-4

Figure 9-7 Copy of Endpoint URL of the Deployed Composite

In the Oracle Managed File Transfer Console, Company X creates an OrdersSOATarget
target with the URL of the composite copied from the Test Web Service page and selects
inline attachment as the file delivery method. Figure 9-8 provides details.

Figure 9-8 MFT Target

After redeployment, files that adhere to the pattern of Orders*.xml in the /orders directory
are transferred to the /tmp/orders directory. The Oracle Managed File Transfer Console
shows the transfer results in Figure 9-9. The OrdersSOATarget target is displayed along with
the previously created source OrdersFileTarget.

Chapter 9
Business Solution

9-5

Figure 9-9 Output Results

The View Payload link in the audit trail of the business flow instance of the composite
in Oracle Enterprise Manager Fusion Middleware Control shows that the file was sent
as an FTP reference pointing back to the Oracle MFT embedded FTP server.
Figure 9-10 provides details.

Figure 9-10 Audit Trail

9.2.4 Processing Payload Types
Company X adds an if activity to the BPEL process of the MFTProcessor composite.
Each if activity branch defines an XPath expression for processing a different type of
payload that Oracle MFT sends to a SOA composite and implements inline processing

Chapter 9
Business Solution

9-6

to call the ProcessOrder service created in Creating an Order Processing System.
Figure 9-11 provides details.

Figure 9-11 If Activity Branches

The branches are defined as follows:

• FtpRefFile: Passes a file by reference. The file is transferred using FTP. This branch
uses an XPath expression of xp20:compare($PayloadType,'FtpRefFile') = 0.

• FtpRefDir: Passes a directory of files by reference. The directory of files is transferred
using FTP. This branch uses an XPath expression of
xp20:compare($PayloadType,'FtpRefDir') = 0.

• FileRefFile: Passes a file by reference. The file is passed requiring special handling
using a file adapter. This branch uses an XPath expression of
xp20:compare($PayloadType,'FileRefFile') = 0.

• FileRefDir: Passes a directory of files by reference. A directory of files is passed
requiring special handling using a file adapter. This branch uses an XPath expression of
xp20:compare($PayloadType,'FileRefDir') = 0.

• InlineBinary: Passes a binary file inline. This branch uses an XPath expression of
xp20:compare($PayloadType,'InlineBinary') = 0.

• InlineXML: Passes an XML file inline. Because this is the else branch, no expression is
required.

After redeployment, the audit trail of the business flow instance shows two order files
(OrderSample.xml and OrderSampleLarge.xml). Each file takes a different path in the SOA
BPEL process based on the XPath expression in the if branch. Figure 9-12 provides details.

Chapter 9
Business Solution

9-7

Figure 9-12 Audit Trail

In the Trace table of the Flow Trace page, there is a link next to the Managed File
Transfer name that takes you to the Oracle Managed File Transfer Console.
Figure 9-13 provides details.

Figure 9-13 Link to Oracle Managed File Transfer Console

Chapter 9
Business Solution

9-8

9.2.5 Invoking the ProcessOrder Composite with an Inline Payload
Company X drags a SOAP icon from the Technology section of the Components window
into the External References swimlane of the MFTProcessor composite. The SOAP service
reference is configured to invoke the ProcessOrder endpoint. Figure 9-14 provides details.

Figure 9-14 SOAP Reference

After SOAP configuration is complete, Company X adds and configures the necessary
activities in the BPEL process:

• An invoke activity is added to the else part of the if activity to invoke the web service.
Input and output variables are created.

• An assign activity maps the MFT service input payload to the ProcessOrder input
variable.

After redeployment, the OrdersSample.xml file is placed in /orders and transferred to /tmp/
orders. The Oracle Managed File Transfer Console shows the transfer results in Figure 9-15.

Figure 9-15 Output File

The audit trail shows the ProcessOrder composite was invoked and the order was
processed. Figure 9-16 provides details.

Chapter 9
Business Solution

9-9

Figure 9-16 Audit Trail

9.3 Related Documentation
Table 9-2 provides references to documentation that more specifically describes the
features described in this chapter.

Table 9-2 Related Documentation

For Information About... See...

Key Oracle MFT concepts "Understanding Oracle Managed File Transfer" of Using Oracle
Managed File Transfer

Oracle MFT transfers,
targets, and sources

"Designing Artifacts: Transfers, Sources, and Targets" of Using
Oracle Managed File Transfer

Chapter 9
Related Documentation

9-10

10
Accepting B2B Orders

This chapter describes how Oracle SOA Suite addresses the business challenge of accepting
orders that follow B2B standards such as the Electronic Data Interchange (EDI) document
protocol. Overviews of how key SOA composite application components address this
challenge are provided, including Oracle B2B, Oracle Managed File Transfer (MFT), and
Oracle Service Bus.
This chapter includes the following sections:

• Business Challenge

• Business Solution

• Related Documentation

10.1 Business Challenge
Company X has a requirement for the order processing system to accept EDI XML document
orders sent through several different input channels.

10.2 Business Solution
To address this business challenge, Company X designs a business solution that uses the
components described in Table 10-1.

Table 10-1 Components That Provide the Business Solution

Component How This Component Addresses The
Business Challenge

Component Description

Oracle B2B The Oracle B2B Console is used to build a
document flow that accepts an EDI XML
order from a remote trading partner.

Oracle B2B enables you to securely and
reliably exchange documents between
businesses (for example, retailer, supplier,
and manufacturer). B2B e-commerce
represents mature business documents,
classic business processes, and industry-
specific messaging services. B2B e-
commerce requires an architecture to
manage the complete end-to-end business
process. Oracle B2B provides an
architecture enabling a unified business
process platform, end-to-end instance
tracking, visibility, auditing, process
intelligence, governance, and security.

Oracle MFT Oracle MFT is integrated with Oracle B2B,
which enables an EDI XML order to be sent
by the embedded FTP server to Oracle B2B.

See Table 9-1 for a description of Oracle
MFT.

10-1

Table 10-1 (Cont.) Components That Provide the Business Solution

Component How This Component Addresses The
Business Challenge

Component Description

Oracle Service Bus Oracle Service Bus is integrated with Oracle
B2B. This enables Oracle Service Bus to
read orders from the queue and transform
them from EDI XML format into canonical
order messages for submittal to the
ProcessOrder composite.

See Table 3-1 for a description of Oracle
Service Bus.

Figure 10-1 provides an overview of how this business solution is implemented.

Figure 10-1 Overview

Subsequent sections of this chapter provide more specific details about how the
components in Table 10-1 are used to address the EDI XML document order business
challenge.

• Creating Trading Partners and Trading Partner Agreements with Oracle B2B

• Integrating an Oracle MFT Target with Oracle B2B

• Integrating with Oracle B2B

• Integrating the ProcessOrder Composite with Oracle B2B

10.2.1 Creating Trading Partners and Trading Partner Agreements
with Oracle B2B

To address the business challenge of the order processing system being able to
accept orders in EDI XML format, Company X uses Oracle B2B. Oracle B2B enables
you to create trading partner agreements between Company X and any trading
partners that submit orders in EDI XML format. A trading partner agreement consists

Chapter 10
Business Solution

10-2

of two trading partners: the host trading partner and remote trading partner. The trading
partner agreement defines the terms that enable these two trading partners, one acting as
the initiator and the other acting as the responder, to exchange business documents.

Company X performs the following administrative tasks in the Oracle B2B Console:

• Sets the queueing delivery method to JMS.

• Creates a document type named EDI_XML_850.

• Creates a document definition named X12_4010_850_XML_Def for an inbound EDI XML
850 file and a creates a root node name. The document definition defines the transaction
structure processed at runtime and includes key identification configurations. When the
B2B Gateway finds an XML file with this root node, it matches this document definition,
which leads it to the trading partner agreement.

• Imports a WSDL file.

• Creates a web service listening channel.

Company X then creates the following trading partner and trading partner agreement to
accept new XML document transactions from the trading partner. A trading partner
agreement is similar to a legal contract that specifies which document is traded between
which partners, in which direction, and in which protocol, including security parameters such
as digital signatures, message encryption, and whether or not an acknowledgement is
expected.

• Creates a trading partner named Partner1 and selects the X12_4010_850_XML_Def
document definition created previously. This informs Oracle B2B that Partner1 is allowed
to trade with the host trading partner Company X (referred to as MyCompany in the
Oracle B2B Console) using this document definition.

• Creates a trading partner agreement that associates Partner1 with the host trading
partner (Company X). The agreement specifies the document, message direction,
delivery channel, and other settings.

In Figure 10-2, the document definition created previously along with the direction
(remote Partner1 sending an inbound EDI XML order to the host Company X, and
referred to as MyCompany in the Oracle B2B Console) is selected.

Figure 10-2 Document Definition and Direction Selection

Chapter 10
Business Solution

10-3

After deployment, Company X tests the configuration by submitting an XML payload to
the web service listening channel. The Oracle B2B Console Reports tab shown in
Figure 10-3 provides details.

Figure 10-3 Reports Tab

Navigating further into the Details column link shows that the message was written to
the JMS queue jms/b2b/B2B_IN_QUEUE. Figure 10-4 provides details.

Figure 10-4 Report Results

Chapter 10
Business Solution

10-4

10.2.2 Integrating an Oracle MFT Target with Oracle B2B
Company X also has a requirement to accept EDI XML orders sent by FTP servers.
Company X configures Oracle B2B to work with Oracle MFT, which was described in
Managing File Transfers. This enables Partner1 to send EDI XML orders to Company X
through the following channels:

• Web services (as previously described)

• FTP servers using Oracle MFT

Company X first configures Oracle MFT with a connection to the Oracle B2B server on the
Administration tab of the Oracle Managed File Transfer Console. Figure 10-5 provides
details.

Figure 10-5 Oracle MFT Configuration to the Oracle B2B Server

Company X then creates a target named B2B_Orders of type B2B. The target defines the
destination of files. The domain alias created on the Administration tab is selected.
Figure 10-6 provides details.

Figure 10-6 B2B_Orders Target

A transfer associates a source with one or more targets. Company X creates a new transfer
named Orders2B2BTransfer, then configures it as follows:

Chapter 10
Business Solution

10-5

• Selects the existing OrdersFTPEmbeddedSource source created in Creating
Transfers_ Sources_ and Targets. The source defines the origin of files.
OrdersFTPEmbeddedSource is configured to transfer files in the /orders
directory using the FTP embedded server.

• Selects the B2B_Orders target.

• Enters EDI_XML_850 as the filtering pattern.

• Selects Inline as the delivery method.

• Enters 1000000 in the Max Inline Size (bytes) field.

Figure 10-7 provides details.

Figure 10-7 Oracle MFT Transfer with Transfer, Source, and Target Defined

After deployment and the placement of an EDI XML file that adheres to the pattern of
EDI_XML_850 in the /orders directory, the Reports page in Oracle B2B Console
shows that the message was delivered.

10.2.3 Integrating Oracle Service Bus with Oracle B2B
Company X creates an Oracle Service Bus project named B2B_SB_ReceiveOrder in
Oracle JDeveloper to integrate with Oracle B2B. Company X's overall intent is for an
Oracle Service Bus project to read messages from the queue and transform them from
EDI XML into canonical order messages for submittal to the ProcessOrder composite
created in Creating an Order Processing System.

The Oracle Service Bus project is created within the existing Oracle Service Bus
application created in Registering SOA Composite Applications with . This project
retrieves Oracle B2B messages from the JMS queue, transforms them to canonical
XML format, and writes them to a file. Figure 10-8 provides details. Once

Chapter 10
Business Solution

10-6

implemented, Company X extends the Oracle Service Bus process to call the ValidatePS
process order proxy service created in Registering SOA Composite Applications with .

Figure 10-8 B2B_SB_ReceiveOrder Project in Oracle Service Bus Application

The components in the project perform the following tasks:

• JMSReceiveOrder_ProxyService.proxy: Retrieves Oracle B2B messages (orders) from
the B2B_IN_QUEUE.JMS queue. The JMS URL port points to the SOA server on which
Oracle B2B is running.

• MapEDI850ToCanonicalOrder.pipeline: Transforms Oracle B2B messages to canonical
order XML format.

• WriteCanonicalToFile.bix: Writes the canonical order XML format to a file in
the /tmp/b2b/osbfiles directory.

After deployment, the orders are retrieved through the web service and Oracle MFT
channels, transformed, and written to the directory. The Message Reports section in Oracle
Enterprise Manager Fusion Middleware Control shows that the messages were processed by
Oracle Service Bus. Figure 10-9 provides details.

Figure 10-9 Message Report Details

10.2.4 Integrating the ProcessOrder Composite with Oracle B2B
Company X further integrates Oracle B2B with the ProcessOrder composite created in
Creating an Order Processing System.

Chapter 10
Business Solution

10-7

Company X performs the following tasks and tests to ensure that Oracle B2B invokes
the ProcessOrder composite to receive and process orders.

• Edits the MapEDI850ToCanonicalOrder pipeline and changes the route node
destination business service to the ProcessBS business service created in
Registering the ProcessOrder Composite as a Business Service.

• Redeploys and tests the web service and Oracle MFT channels.

• Tracks the order in the Oracle B2B Console Reports tab and the Oracle Service
Bus Message Reports page in Oracle Enterprise Manager Fusion Middleware
Control.

• Checks the ProcessOrder composite business flow instance in Oracle Enterprise
Manager Fusion Middleware Control to verify that the order was received and
processed successfully.

10.3 Related Documentation
Table 10-2 provides references to documentation that more specifically describes the
components and features described in this chapter.

Table 10-2 Related Documentation

For Information About... See...

Understanding Oracle B2B "Introduction to Oracle B2B" of Using Oracle B2B

Creating a trading partner
and a trading partner
agreement in Oracle B2B

"Configuring Trading Partners" of Using Oracle B2B

"Creating and Deploying Trading Partner Agreements" of Using
Oracle B2B

Creating Oracle MFT
transfers, targets, and
sources

"Designing Artifacts: Transfers, Sources, and Targets" of Using
Oracle Managed File Transfer

Adding a pipeline with
Oracle Service Bus

"How to Add a Pipeline" of Developing Services with Oracle
Service Bus

Creating a proxy with Oracle
Service Bus

"How to Create a Proxy Service" of Developing Services with
Oracle Service Bus

Transforming data with
Oracle Service Bus

"Transforming Data" of Developing Services with Oracle Service
Bus

Chapter 10
Related Documentation

10-8

11
Adding Fraud Detection

This chapter describes how Oracle SOA Suite addresses the business challenge of creating
a fraud detection system. Overviews of how key components are created and used to
address this challenge are provided, including Oracle Event Processing and the Event
Delivery Network (EDN).
This chapter includes the following sections:

• Business Challenge

• Business Solution

• Related Documentation

11.1 Business Challenge
Company X has a requirement that a new credit card fraud detection system be implemented
to eliminate potential credit card abuses.

11.2 Business Solution
To address this business challenge, Company X designs a business solution that uses the
components described in Table 11-1.

Table 11-1 Components That Provide the Business Solution

Component How This Component Addresses The
Business Challenge

Component Description

Oracle Event
Processing
application

An Oracle Event Processing application
provides real-time, time-based analysis of
orders (events) placed by customers
recognized specifically by an associated email
address. As each order (event) is passed to the
Oracle Event Processing server, it is
dynamically accessed for possible fraudulent
activity by observing event patterns with an
aggregated order dollar amount that
exceeds $1000 in any 24 hour period.

Oracle Event Processing is a high
throughput and low latency platform for
developing, administering, and managing
applications that monitor real-time
streaming events. Oracle Event
Processing processes event data in real
time.

Business events and
the Event Delivery
Network (EDN)

The Oracle Event Processing application
receives events arriving from a composite that
publishes an event (named
FraudCheckRequest) and subscribes to an
event (named FraudCheckResponse) on the
EDN.

Business events are raised when a
situation of interest occurs. For example,
in a loan flow scenario, a BPEL process
service component executing a loan
process can raise a loan completed event
at the completion of the process. Business
events are published to the EDN.

11-1

Table 11-1 (Cont.) Components That Provide the Business Solution

Component How This Component Addresses The
Business Challenge

Component Description

SOA composite
application

A SOA composite application is used to test
the Oracle Event Processing application by
publishing an order event to the Oracle Event
Processing application and subscribing to the
resulting event that includes an analysis of the
results.

See Table 3-1 for a description of SOA
composite applications.

Subsequent sections of this chapter provide more specific details about how the
components in Table 11-1 are used to address the fraud detection system business
challenge.

• Creating an Application

• Sending Events to the Application

• Sending Event Data from

11.2.1 Creating an Oracle Event Processing Application
To address the credit card fraud detection challenge, Company X uses Oracle Event
Processing to dynamically access each inbound order (event) and observe the event
patterns for possible fraudulent activity.

Company X creates an Oracle Event Processing application named
FraudOEPApplication in Oracle JDeveloper. This application receives events arriving
from a composite that publishes an event (named FraudCheckRequest) and
subscribes to an event (named FraudCheckResponse) on the EDN. The definitions
for these events are provided in an event definition language (EDL) file with a related
schema file. An EDL file is a schema used to build business event definitions.

The EDN is based on a standard JMS messaging infrastructure. Company X uses a
JMS implementation with the Oracle Event Processing application by creating a JMS
topic within the SOAJMSModule in Oracle WebLogic Server Administration Console.
Figure 11-1 provides details.

Chapter 11
Business Solution

11-2

Figure 11-1 JMS Topic Configuration

Company X designs the Oracle Event Processing application with the following components
that are dragged from the Components window and configured:

• An EDN Inbound Adapter named edn-inbound-adapter configured with the following
artifacts:

– An EDL file (FraudCheckEvent.edl) that contains the EDN event type names used
by the application:

<?xml version = '1.0' encoding = 'UTF-8'?>
<ns0:definitions xmlns:ns0="http://schemas.oracle.com/events/edl"
 targetNamespace="http://xmlns.oracle.com/Application2/Project1/
 FraudCheckEvent">
 <ns0:schema-import location="../Schemas/FraudCheckType.xsd"
 namespace="http://www.oracle.com/oep"/>
 <ns0:event-definition name="FraudCheckRequest">
 <ns0:content xmlns:ns1="http://www.oracle.com/oep"
 element="ns1:FraudCheckRequest"/>
 </ns0:event-definition>
 <ns0:event-definition name="FraudCheckResponse">
 <ns0:content xmlns:ns2="http://www.oracle.com/oep"
 element="ns2:FraudCheckResponse"/>
 </ns0:event-definition>
</ns0:definitions>

– An event type named FraudCheckRequest.

– A schema file associated with the EDL file.

• An event Channel named ednInputChannel associated with a FraudCheckRequest
event type that is selected in the Context Properties section, as shown in Figure 11-2.
This associates the event type with the channel.

Chapter 11
Business Solution

11-3

Figure 11-2 Event Type Associated with Inbound Channel

• A Processor named ednProcessor that is populated with a Complex Query
Language (CQL) rule to be applied to the streaming event data. The required CQL
relates to fraud detection, as shown in Figure 11-3. For requests of $1000 and
over, the threshold is exceeded.

Figure 11-3 Fraud Detection CQL in Processor

• A second event Channel named ednOutputChannel associated with a
FraudCheckResponse event type that is selected in the Context Properties
section, as shown in Figure 11-4. This associates the event type with the channel.

Chapter 11
Business Solution

11-4

Figure 11-4 Event Type Associated with Outbound Channel

• An EDN Outbound Adapter named edn-outbound-adapter is configured with the
following artifacts:

– The EDL file (FraudCheckEvent.edl) that contains the EDN event type names used
by the application.

– An event type of FraudCheckResponse.

Note:

A schema file is not required.

These components are wired together in the following order in the designer.

edn-inbound-adapter > ednInputChannel > ednProcessor > ednOutputChannel > edn-
outbound-adapter

11.2.2 Sending Events to the Oracle Event Processing Application
To test the Oracle Event Processing application, Company X first creates a connection to the
Oracle Event Processing server, then deploys the application. Once deployed, the application
can wait for events to arrive for analyzing.

Company X has a test composite (EDNOEPv2Proj) that can send EDN events to the Oracle
Event Processing application. The resulting EDN events are then sent back to the test
composite, which uses a file adapter to write the information to a file for review and analysis.
Figure 11-5 provides details. The test application consists of two Oracle Mediator service
components. Oracle Mediator enables you to route events between different components.

• The first Oracle Mediator publishes the FraudCheckRequest event sent to the Oracle
Event Processing application.

• The second Oracle Mediator subscribes to the FraudCheckResponse event returned to
the test composite.

Chapter 11
Business Solution

11-5

Figure 11-5 Test Composite for Sending and Receiving Events

The Subscriptions tab of the Business Events page in Oracle Enterprise Manager
Fusion Middleware Control displays both event types. The test composite uses the
Oracle WebLogic Server JMS topic mapping for the FraudCheckRequest and
FraudCheckResponse event types shown on this page. Figure 11-6 provides details.

Figure 11-6 Business Events

11.2.3 Sending Event Data from Oracle Enterprise Manager Fusion
Middleware Control

Company X uses the Test Web Service page in Oracle Enterprise Manager Fusion
Middleware Control to send event data to the SOA composite to test its integration
with the Oracle Event Processing application. This is the email address used by the
CQL Group By clause to identify each collection of related orders and the dollar
amount value. Figure 11-7 provides details.

Chapter 11
Business Solution

11-6

Figure 11-7 Test Web Service Page

Once the composite executes with the specified data, a message indicates that the request
was successfully processed by the Oracle Event Processing application. The EDN event is
successfully published and received by the application, and its payload is analyzed. The
results are provided in the output file. If a value of $1000 or more is specified, the output file
indicates that the threshold is exceeded. This may be a potential indicator of credit card fraud
by an unauthorized user. The status is determined by the CQL statements specified in the
Oracle Event Processing application in Creating an Application. Figure 11-8 provides details.

Figure 11-8 Output File

After testing is complete, Company X can integrate the Oracle Event Processing application
with the business solution described in the previous chapters.

11.3 Related Documentation
Table 11-2 provides references to documentation that more specifically describes the
components and features described in this chapter.

Chapter 11
Related Documentation

11-7

Table 11-2 Related Documentation

For Information About... See...

Developing Oracle Event
Processing applications

"Introduction to Application Development" of Developing
Event Processing Applications for Oracle Stream
Analytics

Administering Oracle Event
Processing

"Introduction to Server Administration" of Administering
Oracle Stream Analytics

Creating and managing business
events and using the EDN

"Using Business Events and the Event Delivery Network"
of Developing SOA Applications with Oracle SOA Suite

"Managing Business Events" of Administering Oracle
SOA Suite and Oracle Business Process Management
Suite

Using Oracle Mediator to publish
and subscribe to business events

"Using the Oracle Mediator Service Component" of
Developing SOA Applications with Oracle SOA Suite

Creating test instances in Oracle
Enterprise Manager Fusion
Middleware Control

"Initiating a Test Instance of a Business Flow" of
Administering Oracle SOA Suite and Oracle Business
Process Management Suite

Chapter 11
Related Documentation

11-8

12
Gaining Business Insights with Oracle
Business Activity Monitoring

This chapter describes how Oracle SOA Suite addresses the business challenge of gaining
business insights into customer order requests. Overviews of how key SOA composite
application components address this challenge are provided, including process analytics and
Oracle Business Activity Monitoring (BAM).
This chapter includes the following sections:

• Business Challenge

• Business Solution

• Related Documentation

12.1 Business Challenge
Company X has a requirement to gain business insights into the customer ordering system to
identify the following trends:

• The number of orders approved, received, or rejected.

• The reasons for rejections, such as insufficient income, credit, or age.

• The number of automatic or manual credit card approvals per state.

12.2 Business Solution
To address this business challenge, Company X designs a business solution that uses the
components described in Table 12-1.

Table 12-1 Components That Provide the Business Solution

Component How This Component Addresses The
Business Challenge

Component Description

Process analytics Process analytic measurements and
business indicators are defined on
activities in a BPEL process.

Process analytics provide a uniform measurement
mechanism for collecting disparate data in BPEL
processes.

Oracle BAM When a SOA composite is configured with
analytics measurements and business
indicators, composite-specific physical
and logical data objects are automatically
created in Oracle BAM upon the
composite's deployment. Oracle BAM
Composer is used to create a dashboard
of these analytics to gain business
insights into customer order requests.

Oracle BAM monitors business processes in real
time to help you make informed tactical and
strategic business decisions.

12-1

Subsequent sections of this chapter provide more specific details about how the
components in Table 12-1 are used to address the business insight challenge.

• Adding Business Indicators and Measurements to a Composite

• Gaining Business Insights with Oracle BAM Dashboards

12.2.1 Adding Business Indicators and Measurements to a Composite
Oracle SOA Suite provides a uniform process schema across components such as
BPEL processes, Oracle BPM, and human workflow. Oracle BAM models this schema
as data objects that are persisted in the Oracle BAM server. These data objects are
preseeded and populated by the processes automatically.

Oracle SOA Suite provides a feature called process analytics. This feature enables
Company X to specify user metrics such as business indicators and measurements on
activities in a BPEL process. When the composite is deployed, corresponding, custom,
derived data objects are created and updated in Oracle BAM.

Company X opens a BPEL process in Oracle JDeveloper (for this scenario, named
CCComposite) in which to specify user metrics and clicks the Change to Analytics
view icon, as shown in Figure 12-1. This opens the process in analytics view.
Analytics view enables you to define business indicators and measurements in the
BPEL process.

Figure 12-1 Analytics View in a BPEL Process

• Business indicators are defined in the Structure window, and consist of the
following:

– Counters: Track the number of times a process instance completes a marked
element such as a BPEL activity.

– Dimensions: Label group or filter measures.

– Measures: Store the values of a variable such as a sales amount, an
employee salary, and so on.

Figure 12-2 shows defined business indicators in the Structure window.

Chapter 12
Business Solution

12-2

Figure 12-2 Business Indicators Defined in the Structure Window

• Measurements are displayed in the Components window, and are dragged and dropped
onto activities for configuration. The following types are available:

– Counter mark: The BPEL activity on which the counter mark is taken. In this BPEL
process, Company X defines counter marks for tracking the number of manual
approvals, automatic approvals, and rejected orders.

– Interval start: The BPEL activity on which the interval starts.

– Interval stop: The BPEL activity on which the interval ends.

– Single mark: The BPEL activity on which the single mark is taken.

Figure 12-3 provides details. Measurements that have been dragged from the
Components window onto appropriate BEPL activities and configured are indicated by
text annotations. The defined business indicators are displayed in the Structure window.

Figure 12-3 BPEL Process with Defined Business Indicators and Measurement Analytics

Chapter 12
Business Solution

12-3

When a SOA composite is configured with analytics measurements and business
indicators, composite-specific physical and logical data objects are automatically
created in Oracle BAM upon the composite's deployment. These composite-specific
data objects have the columns for business indicators and are populated with analytics
information corresponding to processes in that composite.

12.2.2 Gaining Business Insights with Oracle BAM Dashboards
Company X deploys the composite, which begins processing order requests.

When Company X specifies business indicators and measurements in a SOA
composite application, corresponding, custom, derived data objects are created and
updated in Oracle BAM when the composite is deployed. Oracle BAM data objects are
populated with appropriate analytics as per the measurements defined in the
composite.

Company X logs in to Oracle BAM Composer and creates a new project named Credit
Card Processing in Oracle BAM Composer. During creation, Company X adds the
activity data object corresponding to the deployed CCComposite composite into the
project, as shown in Figure 12-4. These composite-specific data objects have the
columns for business indicators and are populated with analytics information
corresponding to processes in that SOA composite.

Figure 12-4 Activity Data Object Selection

Company X then creates a dashboard with a display name of Credit Card
Processing in the project. Oracle BAM provides a rich set of ready-to-use dashboards
for all major components of Oracle BPM Suite and Oracle SOA Suite. These
dashboards include metrics such as task queue depth and bottleneck analysis of
business processes.

Company X designs a bar graph with three different counters for displaying the
approved, received, and rejected applications by month.

• A display name of APPLICATIONS STATUS BY MONTH.

• A business view query modeled with measurements and dimensions that
Company X designed in the CCComposite composite in Oracle JDeveloper.

– A data object of /oracle/processanalytics/CCComposite Activity.

– A counter for APPROVE_COUNTER BI (Display name is changed to
APPROVED).

Chapter 12
Business Solution

12-4

– A counter for RCV_COUNTER BI (Display name is changed to RECEIVED).

– A counter for REJECT_COUNTER BI (Display name is changed to REJECTED).

– A time dimension of one month.

Figure 12-5 provides details.

Figure 12-5 Bar Graph for Displaying the Approved, Received, and Rejected
Applications by Month

Company X designs a second bar graph for tracking the number of manual and automatic
approvals by state.

• A display name of APPROVALS BY STATE.

• A business view query modeled with measurements and dimensions that Company X
created in the CCComposite composite in Oracle JDeveloper.

– A data object of oracle/processanalytics/CCComposite Activity.

– A counter for AUTOMATIC_COUNTER BI (Display name is changed to
AUTOMATIC).

– A counter for MANUAL_COUNTER BI (Display name is changed to MANUAL).

– A dimension based on state.

Figure 12-6 provides details.

Figure 12-6 Second Bar Graph for Tracking the Number of Manual and Automatic
Approvals by State

Company X designs a pie graph to the right of the APPLICATIONS STATUS BY MONTH
graph to track the number of rejected applications due to different reasons.

• A display name of REJECTED APPLICATIONS BY REASON.

Chapter 12
Business Solution

12-5

• A business view query modeled with measurements and dimensions that
Company X created in the CCComposite composite in Oracle JDeveloper.

– A data object of oracle/processanalytics/CCComposite Activity.

– A counter for (REJECT_COUNTER BI) (Display name is changed to
REJECTED).

– A dimension set to BY REJECT REASON (due to insufficient age, credit, or
income).

– A Text Type set to Text and Percentage for the pie slice.

Figure 12-7 provides details.

Figure 12-7 Pie Graph to Track the Number of Rejected Applications Due to
Different Reasons

When complete, the entire dashboard looks as shown in Figure 12-8.

Figure 12-8 Oracle BAM Dashboard

Chapter 12
Business Solution

12-6

12.3 Related Documentation
Table 12-2 provides references to documentation that more specifically describes the
features described in this chapter.

Table 12-2 Related Documentation

For Information About... See...

Creating process analytics "Configuring BPEL Process Analytics" of Developing SOA
Applications with Oracle SOA Suite

Designing Oracle BAM
dashboards

"Planning and Creating Projects" of Monitoring Business Activity with
Oracle BAM

"Creating Dashboards" of Monitoring Business Activity with Oracle
BAM

"Creating Business Queries" of Monitoring Business Activity with
Oracle BAM

Chapter 12
Related Documentation

12-7

	Contents
	Preface
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	Part I Introduction to Oracle SOA Suite
	1 Overview of Oracle SOA Suite
	1.1 About Oracle SOA Suite
	1.2 Key Concepts
	1.3 Key Components
	1.4 Key Management Tools and Processes
	1.4.1 Oracle JDeveloper
	1.4.2 Oracle Enterprise Manager Fusion Middleware Control
	1.4.3 Additional Design and Runtime Tools

	1.5 Overview of an Oracle SOA Suite Process Flow

	Part II Business Challenges and Oracle SOA Suite
	2 Business Challenges of Company X
	2.1 Business Challenges of Company X
	2.2 Solutions

	3 Creating a Credit Validation System
	3.1 Business Challenge
	3.2 Business Solution
	3.2.1 Creating a Credit Validation Composite
	3.2.2 Retrieving Credit Card Payment Information from the Database
	3.2.2.1 Configuring the Database Adapter with the Adapter Configuration Wizard

	3.2.3 Invoking the Database Adapter from the BPEL Process
	3.2.4 Calculating Payment Status with XSLT Transformations
	3.2.5 Tracking Payment Status with Composite Sensors
	3.2.6 Deploying the validatePayment Composite
	3.2.7 Registering SOA Composite Applications with Oracle Service Bus
	3.2.7.1 Sharing Resources with Folders
	3.2.7.2 Registering the Composite URI of the SOA Composite Application
	3.2.7.3 Configuring Pipelines and Proxies

	3.2.8 Deploying and Testing

	3.3 Related Documentation

	4 Creating an Order Processing System
	4.1 Business Challenge
	4.2 Business Solution
	4.2.1 Creating a SOA Composite Application From a SOA Project Template
	4.2.2 Customizing the Contents of the SOA Project Template
	4.2.3 Updating Order Status with an Inline BPEL Subprocess
	4.2.4 Tracking the Order Number with Composite Sensors
	4.2.5 Updating Order Status After Payment Authorization
	4.2.6 Deploying and Testing in Oracle Enterprise Manager Fusion Middleware Control
	4.2.7 Registering the ProcessOrder Composite on Oracle Service Bus
	4.2.7.1 Registering the ProcessOrder Composite as a Business Service
	4.2.7.2 Creating a New Pipeline with a Proxy Using the Pipeline Template

	4.2.8 Testing the Pipeline Template

	4.3 Related Documentation

	5 Adding New Ordering Channels with Oracle Service Bus
	5.1 Business Challenge
	5.2 Business Solution
	5.2.1 Adding a File-Based Proxy to the Oracle Service Bus Pipeline
	5.2.2 Debugging Components with the Oracle Service Bus Debugger
	5.2.3 Monitoring Oracle Service Bus in Oracle Enterprise Manager Fusion Middleware Control

	5.3 Related Documentation

	6 Packing and Shipping Orders
	6.1 Business Challenge
	6.2 Business Solution
	6.2.1 Defining a Shipping Resource with a REST Service
	6.2.2 Exposing a REST Service with a Packing BPEL Process
	6.2.3 Testing REST Services with the HTTP Analyzer
	6.2.4 Using Templates and Standalone Subprocesses to Update the Order Status in the Database
	6.2.5 Tracking the Shipping Provider with Composite Sensors
	6.2.6 Sending Email Notifications to Indicate Order Shipments

	6.3 Related Documentation

	7 Fulfilling Orders
	7.1 Business Challenge
	7.2 Business Solution
	7.2.1 Creating a Project from a SOA Template
	7.2.2 Determining the Shipping Method with a Business Rule
	7.2.3 Tracking the Order Number with Composite Sensors
	7.2.4 Delivering the Order to the Packing Service with the REST Interface
	7.2.5 Reading the Shipping Provider from Cache with the Coherence Adapter
	7.2.6 Copying the Database Adapter Response into Coherence Cache
	7.2.7 Deploying the Composite and Testing the Coherence Adapters

	7.3 Related Documentation

	8 Scheduling Composite Execution
	8.1 Business Challenge
	8.2 Business Solution
	8.2.1 Creating a Web Service Job Definition
	8.2.2 Submitting a Job Request on a Schedule
	8.2.3 Applying Schedules to Adapters

	8.3 Related Documentation

	9 Managing File Transfers
	9.1 Business Challenge
	9.2 Business Solution
	9.2.1 Creating Transfers, Sources, and Targets
	9.2.2 Creating a SOA Composite Application with an MFT Service
	9.2.3 Sending the Order File to a SOA Composite
	9.2.4 Processing Payload Types
	9.2.5 Invoking the ProcessOrder Composite with an Inline Payload

	9.3 Related Documentation

	10 Accepting B2B Orders
	10.1 Business Challenge
	10.2 Business Solution
	10.2.1 Creating Trading Partners and Trading Partner Agreements with Oracle B2B
	10.2.2 Integrating an Oracle MFT Target with Oracle B2B
	10.2.3 Integrating Oracle Service Bus with Oracle B2B
	10.2.4 Integrating the ProcessOrder Composite with Oracle B2B

	10.3 Related Documentation

	11 Adding Fraud Detection
	11.1 Business Challenge
	11.2 Business Solution
	11.2.1 Creating an Oracle Event Processing Application
	11.2.2 Sending Events to the Oracle Event Processing Application
	11.2.3 Sending Event Data from Oracle Enterprise Manager Fusion Middleware Control

	11.3 Related Documentation

	12 Gaining Business Insights with Oracle Business Activity Monitoring
	12.1 Business Challenge
	12.2 Business Solution
	12.2.1 Adding Business Indicators and Measurements to a Composite
	12.2.2 Gaining Business Insights with Oracle BAM Dashboards

	12.3 Related Documentation

