
Oracle® Fusion Middleware
Administering HTTP Session Management
with Oracle Coherence*Web

15c (15.1.1.0.0)
G26645-01
October 2025

Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web, 15c (15.1.1.0.0)

G26645-01

Copyright © 2008, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documents i

Conventions ii

1 Introduction to Coherence*Web

Understanding Coherence*Web 1

Supported Web Containers 1

Supported Jakarta Servlet Version 3

Configuration and Deployment Road Map 3

Choose Your Cluster Node Isolation 3

Choose Your Locking Mode 3

Choose How to Scope Sessions and Session Attributes 3

Choose When to Clean Up Expired HTTP Sessions 3

Choose the Integration Method 4

2 Using Coherence*Web with WebLogic Server

Overview of Coherence*Web 1

Overview of Managed Coherence Servers 2

Configuring and Deploying Coherence*Web: Main Steps 3

Summary of Configuring and Deploying Coherence*Web 3

Installing WebLogic Server and Oracle Coherence 3

Configure Coherence*Web 3

Configure the Session Cookies 5

Start a Cache Server 8

Starting a Coherence Cache Server from WebLogic Remote Console 8

Starting a Coherence Cache Server from the Command Line 9

Configure Coherence*Web Storage Mode 10

Deploying Applications to WebLogic Server 10

Coherence MBean Attributes for Coherence*Web 11

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page i of iv

Enabling the Coherence Session Cache in WebLogic Remote Console 11

Using a Custom Session Cache Configuration File 12

Scoping the Session Cookie Path 13

Updating the Session ID 14

Sharing Coherence*Web Sessions with Other Application Servers 14

3 Using Coherence*Web on Other Application Servers

Integrating Coherence*Web Using the WebInstaller 1

General Instructions for Integrating Coherence*Web Session Management Module 1

Deploying and Running Applications In Process 3

Deploying and Running Applications Out-of-Process 3

Migrating to Out-of-Process Topology 4

Deploying and Running Applications Out-of-Process with Coherence*Extend 4

Enabling Sticky Sessions for Apache Tomcat Servers 5

Integrating with IBM WebSphere Liberty 5

Coherence*Web WebInstaller Ant Task 5

Using the Coherence*Web WebInstaller Ant Task 6

Configuring the WebInstaller Ant Task 7

WebInstaller Ant Task Examples 7

Testing HTTP Session Management 8

How the Coherence*Web WebInstaller Instruments a Jakarta EE Application 9

Integrating Coherence*Web with Applications Using Jakarta EE Security 10

Preventing Cross-Site Scripting Attacks 11

4 Tomcat Native Session Integration

Tomcat Configuration 1

Manager Configuration Options 1

5 Coherence*Web Session Management Features

Session Models 1

Overview of Session Models 1

Monolithic Model 2

Traditional Model 4

Split Model 6

Session Model Recommendations 7

Configuring a Session Model 8

Sharing Data in a Clustered Environment 8

Scalability and Performance 9

Session and Session Attribute Scoping 11

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ii of iv

Session Scoping 11

Preventing Web Applications from Sharing Session Data 11

Working with Multiple Cache Configurations 13

Keeping Session Cookies Separate 13

Session Attribute Scoping 13

Sharing Session Information Between Multiple Applications 14

Cluster Node Isolation 14

Application Server-Scoped Cluster Nodes 14

EAR-Scoped Cluster Nodes 16

WAR-Scoped Cluster Nodes 17

Session Locking Modes 20

Overview of Session Locking Modes 20

Optimistic Locking 21

Last-Write-Wins Locking 21

Member Locking 21

Application Locking 21

Thread Locking 21

Troubleshooting Locking in HTTP Sessions 22

Enabling Sticky Session Optimizations 22

Deployment Topologies 23

In-Process Topology 23

Out-of-Process Topology 23

Migrating from In-Process to Out-of-Process Topology 24

Out-of-Process with Coherence*Extend Topology 24

Configuring Coherence*Web with Coherence*Extend 25

Overview of Configuring Coherence*Web with Coherence*Extend 25

Configure the Cache for Proxy and Storage JVMs 26

Configure the Cache for Web Tier JVMs 27

Accessing Sessions with Lazy Acquisition 28

Overriding the Distribution of HTTP Sessions and Attributes 28

Overview of Overriding HTTP Session Distribution 28

Implementing a Session Distribution Controller 29

Registering a Session Distribution Controller Implementation 30

Detecting Changed Attribute Values 30

Saving Non-Serializable Attributes Locally 30

Securing Coherence*Web Deployments 30

Customizing the Name of the Session Cache Configuration File 31

Configuring Logging for Coherence*Web 31

Getting Concurrent Access to the Same Session Instance 32

Federated Session Caches 33

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page iii of iv

6 Monitoring Applications

Managing and Monitoring Applications with JMX 1

Managing and Monitoring Applications on WebLogic Server 4

Running Performance Reports 5

Web Session Cache Storage Report 5

Web Session Cache Overflow Report 7

Web Report 8

WebLogic Web Report 9

Web Service Report 10

7 Cleaning Up Expired HTTP Sessions

Understanding the Session Reaper 1

Tuning the Session Reaper 4

Getting Session Reaper Performance Statistics 4

Understanding Session Invalidation Exceptions for the Session Reaper 5

8 Working with JSF and MyFaces Applications

Configuring for all JSF and MyFaces Web Applications: 1

Configuring for Instrumented Applications that use MyFaces 1

Configuring for Instrumented Applications that use Mojarra 2

A Coherence*Web Context Parameters

B Capacity Planning

C Session Cache Configuration File

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page iv of iv

Preface

Administering HTTP Session Management with Oracle Coherence*Web describes how to
deploy Oracle Coherence*Web (Coherence*Web), an HTTP session management module to
WebLogic Server and other application servers. It also describes the different session
management features that you can configure.

This preface includes the following sections:

Audience
This guide is intended for application developers who want to be able to manage session state
in clustered environments.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
For more information, see the following in the Oracle Coherence documentation set:

• Installing Oracle Coherence

• Release Notes for Oracle Coherence

• Managing Oracle Coherence

• Developing Applications with Oracle Coherence

• Developing Oracle Coherence Applications for Oracle WebLogic Server

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

• Securing Oracle Coherence

• Integrating Oracle Coherence

• Administering HTTP Session Management with Oracle Coherence*Web

• Developing Remote Clients for Oracle Coherence

• Java API Reference for Oracle Coherence

• C++ API Reference for Oracle Coherence

• .NET API Reference for Oracle Coherence

• REST API for Managing Oracle Coherence

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ii of ii

1
Introduction to Coherence*Web

Learn the advantages of using Coherence*Web for managing session state in clustered
environments. Coherence*Web can be easily configured and used with many containers.
More detailed information on configuration, deployment, and features are provided in following
chapters.

This chapter includes the following sections:

Understanding Coherence*Web
Coherence*Web is an HTTP session management module dedicated to managing session
state in clustered environments.
Built on top of Oracle Coherence, Coherence*Web:

• Brings Coherence data grid's data scalability, availability, reliability, and performance to in-
memory session management and storage.

• Can configure fine-grained session and session attribute scoping by way of pluggable
policies. See Session and Session Attribute Scoping.

• Can be deployed to many mainstream application servers such as Oracle WebLogic
Server, IBM WebSphere, and Tomcat. See Supported Web Containers.

• Allows storage of session data outside of the Jakarta EE application server, freeing
application server heap space and enabling server restarts without session data loss. See
Deployment Topologies.

• Enables session sharing and management across different Web applications, domains and
heterogeneous application servers. See Session and Session Attribute Scoping.

• Can be used in advanced session models (that is, Monolithic, Traditional, and Split
Session) that define how the session state is serialized or deserialized in the cluster. See
Session Models.

Supported Web Containers
Coherence*Web is supported on many platforms like WebLogic Server, WebSphere Liberty,
Tomcat, Wildfly, and Jetty. In the recent releases of WebLogic Server, Coherence*Web is
integrated with it and does not require installation or special integration steps.
See Using Coherence*Web with WebLogic Server.

For third-party application servers, Coherence*Web provides a generic utility, the WebInstaller,
that transparently instruments your Web applications. Using Coherence*Web on Other
Application Servers , describes how to use the WebInstaller to integrate Coherence*Web with
these servers.

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 4

Note

When upgrading an existing application from Java EE to Jakarta EE 9.1, typically the
only changes necessary are updating the import statements, replacing javax with
jakarta. Oracle recommends that developers review the relevant specifications prior
to taking on the upgrade process.

Table 1-1 summarizes the Web containers supported by the Coherence*Web session
management module. It also provides links to the information required to integrate
Coherence*Web. Notice that all of the Web containers (except Oracle WebLogic Server) share
the same general instructions.

Note

The value in the Server Type Alias column is used only by the Coherence*Web
WebInstaller. The value is passed to the WebInstaller through the -server command-
line option.

Table 1-1 Web Containers which can use Coherence*Web

Application Server Server Type Alias See this Integration Section

Oracle WebLogic N/A Coherence*Web is integrated with WebLogic Server. No integration steps
are required. See Using Coherence*Web with WebLogic Server.

Note

WebLogic Server and Coherence must be on
the same versions when using
Coherence*Web.

Application Server:
Open Liberty 23.0.0.5

Server Type Alias:
Open Liberty 23.0.0.5

Liberty/Servlet5.0

Liberty/Servlet6.0

General Instructions for Integrating Coherence*Web Session
Management Module

Apache Tomcat 10.0.n Tomcat/Servlet5.0 General Instructions for Integrating Coherence*Web Session
Management Module and Enabling Sticky Sessions for Apache Tomcat
Servers

Apache Tomcat 10.1.n Tomcat/Servlet6.0 General Instructions for Integrating Coherence*Web Session
Management Module and Enabling Sticky Sessions for Apache Tomcat
Servers

Apache Tomcat 11.0.x Tomcat/Servlet6.1 General Instructions for Integrating Coherence*Web Session
Management Module and Enabling Sticky Sessions for Apache Tomcat
Servers

Jetty 12.n Jetty/Servlet5.0

Jetty/Servlet6.0

General Instructions for Integrating Coherence*Web Session
Management Module

Wildfly 33.0.x.Final/
Undertow

Wildfly/Servlet6.0 General Instructions for Integrating Coherence*Web Session
Management Module

Chapter 1
Supported Web Containers

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 4

Supported Jakarta Servlet Version
Coherence*Web supports only the APIs up to Jakarta Servlet 6.1.
Any API in later versions of Jakarta Servlet supported by Coherence*Web will be explicitly
documented.

Configuration and Deployment Road Map
Coherence*Web includes configuration options that might need to change depending on your
environment and session requirements.
This section includes the following topics:

Choose Your Cluster Node Isolation
Cluster node isolation refers to the scope of the Coherence nodes that are created within each
application server JVM. Several different isolation modes are supported.

For example: you might be deploying multiple applications to the container that require the use
of the same cluster (or one Coherence node); you might have multiple Web applications
packaged in a single EAR file that use a single cluster; or you might have Web applications
that must keep their session data separate and must be deployed to their own individual
Coherence cluster. These choices and the deployment descriptors and elements that must be
configured are described in Cluster Node Isolation.

Choose Your Locking Mode
Locking mode refers to the behavior of HTTP sessions when they are accessed concurrently
by multiple Web container threads. Coherence*Web offers several different session locking
options. For example, you can allow multiple nodes in a cluster to access an HTTP session
simultaneously, or allow only one thread at a time to access an HTTP session. You can also
allow multiple threads to access the same Web application instance while prohibiting
concurrent access by threads in different Web application instances. These choices, and the
deployment descriptors and elements that must be configured, are described in Session
Locking Modes.

Choose How to Scope Sessions and Session Attributes
Session and session attribute scoping refers to the fine-grained control over how both session
data and session attributes are scoped (or shared) across application boundaries.
Coherence*Web supports sharing sessions across Web applications and restricts which
session attributes are shared across the application boundaries. These choices, and the
deployment descriptors and elements that must be configured, are described in Session and
Session Attribute Scoping.

Choose When to Clean Up Expired HTTP Sessions
Coherence*Web provides a session reaper, which invalidates sessions that have expired.
Cleaning Up Expired HTTP Sessions , describes the session reaper.

Chapter 1
Supported Jakarta Servlet Version

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 4

Choose the Integration Method
The integration procedure that you follow depends on your application server.Supported Web
Containers provides a list of the application servers and the corresponding instructions for
integrating Coherence*Web.

If you are using a recent release of WebLogic Server, Coherence and Coherence*Web are
installed with the WebLogic Server product. No separate Coherence*Web integration is
necessary. See Using Coherence*Web with WebLogic Server.

For other application servers, use the generic Jakarta EE WebInstaller described in Using
Coherence*Web on Other Application Servers .

If using Apache Tomcat, developers may opt to forgo the installer and choose to use
Coherence*Web’s native session integration. Applications may be deployed as is. For more
information, see Tomcat Native Session Integration.

Chapter 1
Configuration and Deployment Road Map

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 4

2
Using Coherence*Web with WebLogic Server

The Coherence*Web module for WebLogic Server simplifies session state persistence
deployment, configuration, and management. This chapter provides an overview of Managed
Coherence Servers and the Grid Archive (GAR) format for packaging Coherence applications.
A detailed discussion of Managed Coherence Servers and the GAR format is beyond the
scope of this document. See Oracle Fusion Middleware Developing Oracle Coherence
Applications for Oracle WebLogic Server.
This chapter includes the following sections:

Overview of Coherence*Web
Coherence*Web provides session state persistence and management. It is a session
management module that uses Coherence caches for storing and managing session data.

Coherence*Web is an alternative to the WebLogic Server in-memory HTTP state replication
services. Consider using Coherence*Web if you are encountering any of these situations:

• Your application works with large HTTP session state objects

• You run into memory constraints, due to storing HTTP session object data

• You want to offload HTTP session storage to an existing Coherence cluster

• You want to share session state across enterprise applications and Web modules

The classes that define the Coherence*Web are contained in the coherence-web.jar file. To
use the functionality provided by Coherence*Web, the coherence.jar classes must also be
available to the Web application. Both of these libraries are on the WebLogic Server system
classpath and are automatically loaded at runtime. The coherence-web.jar loads application
classes with the appropriate classloader in WebLogic Server.

Note

WebLogic Server and Coherence must be on the same versions when using
Coherence*Web.

Coherence cache configurations and services used by Coherence*Web are defined in the
default-session-cache-config.xml file, which can be found in the coherence-web.jar file.
The default cache and services configuration defined in the default-session-cache-
config.xml file should satisfy most Web applications.

You can create your own custom session cache configuration by packaging a file named
session-cache-config.xml in your Web application. See Using a Custom Session Cache
Configuration File.

When Coherence*Web is started on WebLogic Server, it first looks for a file named session-
cache-config.xml. For example, the file can be placed in a WAR file's WEB-INF/classes
directory, or packaged in a JAR file and placed in an EAR file's APP-INF/lib directory. If no

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 15

custom session cache configuration XML resource is found, then it will use the default-
session-cache-config.xml file packaged in coherence-web.jar.

In Coherence*Web, the following default cache configurations are defined:

• Coherence*Web for WebLogic Server is configured with local-storage disabled. The server
will serve requests and will not be used to host data. This means a Coherence cache
server must be running in its own JVM, separate from the JVM running WebLogic Server.

• The timeout for requests to the cache server to respond is 30 seconds. If a request to the
cache server has not responded in 30 seconds, a
com.tangosol.net.RequestTimeoutException exception is thrown.

All Coherence*Web-enabled applications running on WebLogic Server have application server-
scope. In this configuration, all deployed applications become part of one Coherence node.
See Cluster Node Isolation.

Coherence*Web provides several session locking modes to control concurrent access of
sessions. Coherence*Web employs Last Write Wins locking by default. See Session Locking
Modes.

By itself, Coherence*Web does not require a load balancer to run in front of the WebLogic
Server tier. However, a load balancer will improve performance. It is required if the same
session will be used concurrently and locking is not enabled. The default load balancer
enforces HTTP session JVM affinity, however, other load balancing alternatives are available.
WebLogic Server ships with several different proxy plug-ins which enforce JVM session
stickiness. For information on configuring the WebLogic Server proxy plug-in, see Load
Balancing with a Proxy Plug-in in Administering Clusters for Oracle WebLogic Server.

Overview of Managed Coherence Servers
Oracle WebLogic Server and Coherence have defined Managed Coherence Servers which
provide Coherence applications with the same benefits as other Jakarta EE applications that
are hosted on WebLogic Server.
The following are the examples of Coherence applications functioning similar to Jakarta EE
applications:

• Coherence applications can be deployed in a manner similar to other Jakarta EE
applications.

• Coherence applications in the grid can be managed using the standard management tools
included with WebLogic Server.

• Coherence clusters can be configured by using WebLogic configuration.

• Coherence Grid Archives can be integrated into Enterprise Archives (EAR files).

• Coherence applications can integrate with existing Coherence-based functionality.

Note

Using multiple Coherence clusters in a single WebLogic Server domain is not
recommended.

For more information on Managed Coherence Servers, see Creating Coherence Applications
for WebLogic Server in Developing Oracle Coherence Applications for Oracle WebLogic
Server.

Chapter 2
Overview of Managed Coherence Servers

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 15

Configuring and Deploying Coherence*Web: Main Steps
You can configure and deploy Coherence*Web with applications running on WebLogic Server.

This section includes the following topics:

Summary of Configuring and Deploying Coherence*Web
The following steps summarize how to prepare your deployments to use Coherence*Web with
applications running on WebLogic Server:

1. Install WebLogic Server and Oracle Coherence. See Installing WebLogic Server and
Oracle Coherence.

2. (Optional) Modify the web.xml file in the deployment if your application requires advanced
configuration for Coherence*Web. Configure Coherence*Web describes the parameters
that can be configured for Web applications. The entire set of Coherence*Web parameters
are described in Coherence*Web Context Parameters.

3. (Optional) Configure the WebLogic-generated HTTP session cookie parameters in the
weblogic.xml or weblogic-application.xml file. See Configure the Session Cookies.

4. (Optional for testing; strongly suggested for production) Start a Cache Server Tier in a
separate JVM from the one running WebLogic Server. See Start a Cache Server.

5. Set the Coherence*Web storage mode. See Configure Coherence*Web Storage Mode.

6. Deploy the application to WebLogic Server. See Deploying Applications to WebLogic
Server.

Installing WebLogic Server and Oracle Coherence
WebLogic Server is installed by executing its installer. The installer provides the full installation
and allows you to individually select the components to install (bits, examples, Javadoc, and so
on). The installer supports both a graphical mode using the Oracle Universal Installer (OUI)
and a silent mode. Installing Coherence is an option in the WebLogic Server installer.

WebLogic Server is always installed to the ORACLE_HOME/wlserver directory; Coherence is
always installed to the ORACLE_HOME/coherence directory.

See Installing and Configuring Oracle WebLogic Server and Coherence.

Configure Coherence*Web
Coherence*Web provides a default configuration that should satisfy most Web applications.
Table 2-1 describes the context parameters configured by Coherence*Web. Table 2-2
describes the compatibility mode context parameter. For complete descriptions of all
Coherence*Web parameters, see Coherence*Web Context Parameters.

You can also configure the context parameters on the command line as system properties. The
system properties have the same name as the context parameters, but the dash (-) is replaced
with a period (.). For example, to declare a value for the context parameter coherence-
enable-sessioncontext on the command line, enter it like this:

-Dcoherence.enable.sessioncontext=true

Chapter 2
Configuring and Deploying Coherence*Web: Main Steps

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 15

If both a system property and the equivalent context parameter are configured, the value from
the system property is used.

Table 2-1 Context Parameters Configured by Coherence*Web

Parameter Name Description

coherence-application-name Coherence*Web uses the value of this parameter to determine the name of the
application that uses the ApplicationScopeController interface to scope
attributes. The value for this parameter should be provided in the following format:

application name + ! + Web module name

The application name is the name of the application that uses the
ApplicationScopeController interface and Web module name is the name of the
Web module in which it appears.

For example, if you have an EAR file named test.ear and a Web-module named
app1 defined in the EAR file, then the default value for the coherence-
application-name parameter would be test!app1.

If this parameter is not configured, then Coherence*Web uses the name of the class
loader instead. Also, if the parameter is not configured and the
ApplicationScopeController interface is configured, then a warning is logged
saying that the application name was not configured. See Session Attribute Scoping
for more information.

coherence-reaperdaemon-
assume-locality

This setting allows the session reaper to assume that the sessions that are stored on
this node (for example, by a distributed cache service) are the only sessions that this
node must check for expiration.

The default is false.

coherence-scopecontroller-
class

This value specifies the class name of the optional
com.tangosol.coherence.servlet.HttpSessionCollection$AttributeScop
eController interface implementation.

Valid values include:

• com.tangosol.coherence.servlet.AbstractHttpSessionCollection$Ap
plicationScopeController (default)

• com.tangosol.coherence.servlet.AbstractHttpSessionCollection$Gl
obalScopeController

The default set by Coherence*Web is
com.tangosol.coherence.servlet.AbstractHttpSessionCollection$Appli
cationScopeController.

Table 2-2 describes the coherence-session-weblogic-compatibility-mode context
parameter which is specifically provided by Coherence*Web.

Table 2-2 Context Parameter Provided by the Coherence*Web

Parameter Name Description

coherence-session-weblogic-
compatibility-mode

This parameter is provided by Coherence*Web. If its value is set to true, it
determines that a single session ID (with the cookie path set to "/") will map to a
unique Coherence*Web session instance in each Web application. If it is false, then
the standard behavior will apply: a single session ID will map to a single session
instance using Coherence*Web in WebLogic Server. All other session persistence
mechanisms in WebLogic use a single session ID in each Web application to refer to
different session instances.

This parameter defaults to true unless the global scope controller is specified. If this
controller is specified, then the parameter defaults to false.

Chapter 2
Configuring and Deploying Coherence*Web: Main Steps

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 15

Table 2-3 describes the coherence-factory-class context parameter. The default value,
which is set by Coherence*Web, should not be changed.

Table 2-3 Context Parameter Value that Should Not be Changed

Parameter Name Description

coherence-factory-class The fully qualified name of the class that implements the SessionHelper.Factory
factory class. Coherence*Web sets the default value to
weblogic.servlet.internal.session.WebLogicSPIFactory. This value should
not be changed.

Configure the Session Cookies
If you are using Coherence*Web, then WebLogic Server generates and parses the session
cookie. In this case, any native Coherence*Web session cookie configuration parameters will
be ignored. To configure the session cookies, use the WebLogic-generated HTTP session
cookie parameters in the weblogic.xml or weblogic-application.xml files. Table 2-4
describes these parameters.

In this table, Updatable? indicates whether the value of the parameter can be changed while
the server is running. Not applicable indicates that there is no corresponding Coherence
session cookie parameter.

Table 2-4 WebLogic-Generated HTTP Session Cookie Parameters

This Session Cookie
Parameter...

Replaces this
Coherence*Web
Cookie Parameter

Description

cookie-comment Not applicable Specifies the comment that identifies the session tracking cookie in the
cookie file.

The default is null.

Updatable? Yes

cookie-domain coherence-session-
cookie-domain

Specifies the domain for which the cookie is valid. For example, setting
cookie-domain to.example.com returns cookies to any server in the
*.example.com domain.

The domain name must have at least two components. Setting a name to
*.com or *.net is not valid.

If not set, this attribute defaults to the server that issued the cookie.

For more information, see Cookie.setDomain() in the Servlet
specification.

The default is null.

Updatable? Yes

cookie-max-age-
secs

coherence-session-
max-age

Sets the life span of the session cookie, in seconds, after which it expires
on the client. See Using Sessions and Session Persistence in Developing
Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

The default value is -1 (unlimited).

Updatable? Yes

cookie-name coherence-session-
cookie-name

Defines the session-tracking cookie name. Defaults to JSESSIONID if not
set. You can set this to a more specific name for your application.

The default is JSESSIONID.

Updatable? Yes

Chapter 2
Configuring and Deploying Coherence*Web: Main Steps

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 15

Table 2-4 (Cont.) WebLogic-Generated HTTP Session Cookie Parameters

This Session Cookie
Parameter...

Replaces this
Coherence*Web
Cookie Parameter

Description

cookie-path coherence-session-
cookie-path

Defines the session-tracking cookie path.

If not set, this attribute defaults to a slash ("/") where the browser sends
cookies to all URLs served by WebLogic Server. You can set the path to a
narrower mapping, to limit the request URLs to which the browser sends
cookies.

The default is null.

Updatable? Yes

cookie-secure coherence-session-
cookie-secure

Tells the browser that the cookie can be returned only over an HTTPS
connection. This ensures that the cookie ID is secure and should be used
only on Web sites that use HTTPS. Session cookies sent over HTTP will
not work if this feature is enabled.

Disable the url-rewriting-enabled element if you intend to use this
feature.

WebLogic Server generates the session cookie.

The default is false.

Updatable? Yes

cookies-enabled coherence-session-
cookies-enabled

Enables use of session cookies by default and is recommended, but you
can disable them by setting this property to false. You might turn this
option off for testing purposes.

The default is true.

Updatable? Yes

debug-enabled Not applicable Enables the debugging feature for HTTP sessions. Support it by enabling
HttpSessionDebug logging and the WebLogic Server trace logger.

The default value is false.

Updatable? Yes

encode-session-id-
in-query-params

Not applicable Is set to true if the latest servlet specification requires containers to
encode the session ID in path parameters. Certain Web servers do not
work well with path parameters. In such cases, the encode-session-
id-in-query-params element should be set to true.

WebLogic Server generates the HTTP response.

The default value is false.

Updatable? Yes

http-proxy-
caching-of-cookies

Not applicable When set to false, WebLogic Server adds the following header and
response to indicate that the proxy caches are not caching the cookies:
“Cache-control: no-cache=set-cookie"

WebLogic Server generates the HTTP response.

The default value is true.

Updatable? Yes

Chapter 2
Configuring and Deploying Coherence*Web: Main Steps

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 15

Table 2-4 (Cont.) WebLogic-Generated HTTP Session Cookie Parameters

This Session Cookie
Parameter...

Replaces this
Coherence*Web
Cookie Parameter

Description

id-length coherence-session-
id-length

Sets the size of the session ID.

The minimum value is 8 bytes and the maximum value is
Integer.MAX_VALUE.

If you are writing a Wireless Application Protocol (WAP) application, you
must use URL rewriting because the WAP protocol does not support
cookies. Also, some WAP devices have a 128-character limit on URL
length (including attributes), which limits the amount of data that can be
transmitted using URL rewriting. To allow more space for attributes, use
this attribute to limit the size of the session ID that is randomly generated
by WebLogic Server.

You can also limit the length to a fixed 52 characters, and disallow special
characters, by setting the WAPEnabled attribute. See URL Rewriting and
Wireless Access Protocol in Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server

The default is 52.

Updatable? No

invalidation-
interval-secs

coherence-
reaperdaemon-
cycle-seconds

Sets the time, in seconds, that Coherence*Web waits between checks for
timed-out and invalid sessions, and deleting the old sessions and freeing
up memory. Use this element to tune WebLogic Server for best
performance on high traffic sites.

The default is 60.

Updatable? No

timeout-secs Not applicable Sets the time, in seconds, that Coherence*Web waits before timing out a
session.

On busy sites, you can tune your application by adjusting the timeout of
sessions. While you want to give a browser client every opportunity to
finish a session, you do not want to tie up the server needlessly if the user
has left the site or otherwise abandoned the session.

This element can be overridden by the session-timeout element
(defined in minutes) in web.xml.

The default is 3600 seconds.

Updatable? No

tracking-enabled Not applicable Enables session tracking between HTTP requests.

WebLogic Server generates the HTTP response.

The default is true.

Updatable? No

url-rewriting-
enabled

coherence-session-
urlencode-enabled

Enables URL rewriting, which encodes the session ID into the URL and
provides session tracking if cookies are disabled in the browser and the
encodeURL or encodeRedirectedURL methods are used when writing
out URLs. For more information, see:

http://www.jguru.com/faq/view.jsp?EID=1045

WebLogic Server generates the HTTP response.

The default is true.

Updatable? Yes

Chapter 2
Configuring and Deploying Coherence*Web: Main Steps

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 15

http://www.jguru.com/faq/view.jsp?EID=1045

Note

The default for WebLogic HTTP Session parameter invalidation-interval-secs of
60 seconds overrides the Coherence*Web Session Cookie parameter coherence-
reaperdaemon-cycle-seconds default of 5 minutes.

Start a Cache Server
A Coherence cache server is responsible for storing and managing all cached data. Coherence
is integrated within WebLogic Server as a container subsystem. The use of a container aligns
the lifecycle of a Coherence cluster member with the lifecycle of a managed server: starting or
stopping a managed server JVM starts and stops a Coherence cluster member. Managed
servers that are cluster members are referred to as managed Coherence servers.

Coherence clusters are different than WebLogic Server clusters. They use different clustering
protocols and are configured separately. Multiple WebLogic Server clusters can be associated
with a Coherence cluster and a WebLogic Server domain should only contain a single
Coherence cluster. Managed Coherence servers can be explicitly associated with a Coherence
cluster or they can be associated with a WebLogic Server cluster that is associated with a
Coherence cluster. WebLogic Server managed servers that are members of a Coherence
cluster and are storage-enabled, act as cache servers. See Configuring and Managing
Coherence Clusters in Administering Clusters for Oracle WebLogic Server.

You can start a Coherence cache server or cluster either from the WebLogic Remote Console
or from the command line, as described in the following sections.

Starting a Coherence Cache Server from WebLogic Remote Console
Using the WebLogic Remote Console, you can enable storage for each WebLogic Server that
is a member of a Coherence cluster. The Coherence session caches have a separate flag for
enabling storage. See Enabling the Coherence Session Cache in WebLogic Remote Console .

Note

If your managed server is a member of a Coherence cluster and is using
Coherence*Web, then you can enable session storage by adding the -
Dcoherence.session.localstorage=true system property to the startup command.

Coherence session caches automatically start with the WebLogic Server cluster.

The following steps summarize how to start a Coherence cluster in the WebLogic Remote
Console.

1. Configure the Coherence Cluster.

See Configuring and Managing Coherence Clusters in Administering Clusters for Oracle
WebLogic Server.

2. Configure WebLogic Servers and clusters that will be associated with the Coherence
cluster.

See Configuring and Managing Coherence Clusters in Administering Clusters for Oracle
WebLogic Server.

3. Enable Coherence*Web for the selected WebLogic Servers or clusters.

Chapter 2
Configuring and Deploying Coherence*Web: Main Steps

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 15

See Enabling the Coherence Session Cache in WebLogic Remote Console .

Starting a Coherence Cache Server from the Command Line
Instead of using the WebLogic Remote Console, there may be situations when you might need
to start a Coherence cache server or cluster from the command line. You can start the
Coherence cache server from the command line either in standalone mode, or as part of a
WebLogic Server instance.

This section includes the following topics:

To Start a Standalone Coherence Cache Server
Follow these steps to start a standalone Coherence cache server:

1. Create a script for starting a Coherence cache server. The following is a simple example of
a script that creates and starts a storage-enabled cache server. This example assumes
that you are using a Sun JVM. See JVM Tuning in Administering Oracle Coherence for
more information.

java -server -Xms512m -Xmx512m
-cp <Coherence installation dir>/lib/coherence-web.jar:<Coherence installation
dir>/lib/coherence.jar -Dcoherence.management.remote=true
-Dcoherence.cacheconfig=session_cache_configuration_file
-Dcoherence.session.localstorage=true -Dcoherence.cluster=Coherence_cluster_name
com.tangosol.net.DefaultCacheServer

You must include coherence-web.jar and coherence.jar on the classpath. The variable
session_cache_configuration_file represents the absolute path to the cache
configuration file on your file system. For Coherence*Web, the default session cache
configuration file is named default-session-cache-config.xml. Note that the cache
configuration defined for the cache server must match the cache configuration defined for
the application servers which run on the same Coherence cluster.

If your application uses additional Coherence caches, then you must merge the cache
configuration information with a customized session cache configuration file. This
customized session cache configuration file, typically named session-cache-config.xml,
should contain the contents of default-session-cache-config.xml file and the additional
caches used by your application.

The cache and session configuration must be consistent across WebLogic Server and
Coherence cache servers.

For more information on merging these files, see Merging Coherence Cache and Session
Information in Integrating Oracle Coherence.

The variable Coherence_cluster_name represents the name of the Coherence cluster. A
cluster name check has been added to 10.3.6 and later versions of WebLogic Server. The
coherence.cluster property must be added to the cache server because you are
declaring the cluster name in the WebLogic Server application. If the Coherence servers
are started in standalone mode, they must pass this property, otherwise the cluster will not
form between the WLS servers and the standalone cache server.

2. Start one or more Coherence cache servers using the script described in the previous
step.

Chapter 2
Configuring and Deploying Coherence*Web: Main Steps

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 15

To Start a Storage-Enabled or -Disabled WebLogic Server Instance
By default, a Coherence*Web-enabled WebLogic Server instance starts in storage-disabled
mode. To start the WebLogic Server instance in storage-enabled mode, follow these steps:

1. Create a script for starting a Coherence cache server. This can be similar to the script
described in the previous section.

2. Include the command-line property to enable local storage, -
Dcoherence.session.localstorage=true, in the server startup command. The WebLogic
Server instance will start with Coherence*Web-enabled and local storage enabled.

To start a Coherence*Web-enabled WebLogic Server instance, omit this system property.
Local storage will be disabled by default.

See weblogic.Server Command-Line Reference in Command Reference for Oracle WebLogic
Server.

Configure Coherence*Web Storage Mode
You can enable Coherence*Web session storage by specifying coherence-web as the value of
the persistent-store-type attribute in the weblogic.xml session configuration. This
configuration provides application server-level cluster node scoping for web applications
deployed on WebLogic Server. No shared libraries need to be deployed or depended upon.

Coherence*Web is initialized only when a web application that requires session persistence is
started in the WebLogic Server instance.

Example 2-1 illustrates a sample weblogic.xml file where coherence-web is the value of the
persistent-store-type attribute.

Example 2-1 Coherence Web Storage Mode in weblogic.xml

<weblogic-web-app>
 ...
<session-descriptor>
 <persistent-store-type>coherence-web</persistent-store-type>
</session-descriptor>
 ...
</weblogic-web-app>

Deploying Applications to WebLogic Server
If you are using the default session cache configuration file with your web application, then you
can package and deploy it like any other Jakarta EE application. However, if you are using a
custom session cache configuration file, then you must package and deploy the application in
a GAR file.

GAR files deploy like any other Jakarta EE application, except that you create a Coherence tier
and nodes belonging to the tier. You can configure and deploy a standalone GAR or an
embedded GAR.

See Deploying Coherence Applications to WebLogic Server in Administering Oracle
Coherence and Creating Coherence Applications for WebLogic Server in Developing Oracle
Coherence Applications for Oracle WebLogic Server.

Chapter 2
Configuring and Deploying Coherence*Web: Main Steps

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 15

Coherence MBean Attributes for Coherence*Web
WebLogic Server defines a cluster MBean
(weblogic.management.configuration.ClusterMBean) which represents a cluster in the
domain.
The cluster MBean defines a number of attributes, operations, and MBeans related to the
management of the cluster. Among the MBeans defined by the cluster MBean are the
CoherenceMemberConfigMBean and the CoherenceTierMBean MBeans.

The CoherenceMemberConfigMBean and the CoherenceTierMBean MBeans each define an
isCoherenceWebLocalStorageEnabled attribute that indicates whether a cluster or member is
acting as a storage tier for Coherence*Web. This attribute is defined in Table 2-5.

Table 2-5 Coherence MBean Attribute for Coherence*Web

Attribute Description

isCoherenceWebLocalStorageEnabled If this attribute is set to true in CoherenceTierMBean, it
indicates that a cluster is acting as a storage tier for
Coherence*Web. Coherence*Web cache services will start
with storage enabled when the server starts. When deploying
a Coherence*Web-enabled application, there must be a
running WebLogic cluster in the domain which has this
attribute enabled.

If this attribute is set to true in
CoherenceMemberConfigMBean, it indicates that this node
is acting as a storage node for Coherence*Web.
Coherence*Web cache services will start with storage
enabled when the server starts. When deploying a
Coherence*Web-enabled application, there must be a
running WebLogic cluster in the domain which has this
attribute enabled.

Default: false

Enabling the Coherence Session Cache in WebLogic Remote
Console

The Coherence Web Local Storage Enabled and Coherence Web Federated Storage
Enabled options in the WebLogic Remote Console can be used to indicate whether the cluster
is acting as a storage tier for Coherence*Web.
When selecting the federated storage option, the default federation topology which is
configured is used. See Configuring Cache Federation in Administering Clusters for Oracle
WebLogic Server and Federated Session Caches.

1. In the Edit Tree, go to Environment, then Clusters.

2. Select a cluster from the Clusters table.

3. Click the Coherence tab.

4. Enable or disable the Coherence Web Local Storage Enabled and Coherence Web
Federated Storage Enabled options as desired.

5. Click Save.

Chapter 2
Coherence MBean Attributes for Coherence*Web

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 15

Using a Custom Session Cache Configuration File
Custom session cache configuration files must be packaged in a GAR file for deployment.
The coherence-web.jar file contains a default-session-cache-config.xml cache
configuration file which should be sufficient for most applications. However, if you are working
with technologies such as Coherence*Extend or cluster Federation, or if you have WebLogic
Server nodes that are to act as storage-enabled cache servers with a custom session cache
configuration, then you must provide a custom session cache configuration file. Custom
session cache configuration files must be packaged in a GAR file for deployment.

To use a custom session cache configuration file on WebLogic Server and package it in a GAR
file, follow these steps for web applications and for the WebLogic Server nodes acting as
cache servers:

For web applications using Coherence*Web:

1. If you are using a custom session cache configuration file (which should be named
session-cache-config.xml), then package it in your web application:

• For a WAR file, place the session cache configuration file in the WEB-INF/classes
folder

• For an EAR file, package the session cache configuration file in a JAR file and place it
in the shared library (the APP-INF/lib folder) in an EAR file

Note that you can customize the session cache configuration file name, but then you must
provide the new file name as the value of the coherence-cache-configuration-path
context parameter in the web.xml file.

2. If you do not want the WebLogic Server cluster members running the Coherence*Web
application to act as a cache server, then ensure that the Coherence Web Local Storage
Enabled option is disabled. In the WebLogic Remote Console, go to the Edit Tree, then
Environment, then Clusters, then myCluster, then the Coherence tab. This will cause the
custom session cache configuration file to be read.

For WebLogic Server nodes acting as cache servers:

1. If you are using a custom session cache configuration file, then construct a GAR file
containing the file and a coherence-application.xml file. The GAR file has the following
structure:

my.gar
session-cache-config.xml
META-INF
 coherence-application.xml
 MANIFEST.MF

See Packaging Coherence Applications for WebLogic Server in Administering Oracle
Coherence and Creating Coherence Applications for Oracle WebLogic Server in
Developing Oracle Coherence Applications for Oracle WebLogic Server.

a. Create the custom session cache configuration file and name it session-cache-
config.xml.

If you are deploying a GAR file, set the local-storage parameter in the custom
session-cache-config.xml file to true, to configure all caches to start with storage
enabled, for example:

<local-storage>true</local-storage>

Chapter 2
Using a Custom Session Cache Configuration File

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 12 of 15

Note

The local-storage parameter specifies whether a cluster node contributes
storage to the cluster. In WebLogic Server, the local-storage parameter
does not enable storage in Coherence*Web for WebLogic Server members
that have a GAR file deployed to them.

b. Create a coherence-application.xml file. In the file, use the cache-configuration-
ref parameter to reference your custom session-cache-config.xml file, for example:

<?xml version="1.0"?>
<coherence-application>
 xmlns="http://xmlns.oracle.com/weblogic/coherence-application">
<cache-configuration-ref>session-cache-config.xml</cache-configuration-
ref>
</coherence-application>

2. Deploy the GAR file to the WebLogic Server cluster that is to act as the storage-enabled
Coherence cluster members.

Note that storage must be enabled in either of the following ways:

• Enable storage in the session-cache-config.xml file (see Step 1a).

• Enable storage in the server itself either by enabing the Coherence Web Local
Storage Enabled option. In the WebLogic Remote Console, go to the Edit Tree, then
Environment, then Clusters, then myCluster, then the Coherence tab. At the command
line, set the JVM argument coherence.session.localstorage to true.

See Deploying Coherence Applications To a WebLogic Server Domain in Administering
Oracle Coherence and Deploying Coherence Applications in WebLogic Server in
Developing Oracle Coherence Applications for Oracle WebLogic Server.

Scoping the Session Cookie Path
WebLogic Server and Coherence*Web handle session scoping and the session lifecycle in
different ways.This can impact your decision to implement a single sign-on (SSO) strategy for
your applications.
By default, WebLogic Server uses the same session ID in every Web application for a given
client, and sets the session cookie path to a forward slash (/). This is a requirement of the
WebLogic Server default thin SSO implementation, which is enabled by default. By generating
a session cookie with a path of "/", clients always return the same session ID in every request
to the server. In WebLogic Server, a single session ID can be mapped to multiple session
objects. Each Web application will have a different session object instance even though the
session ID is identical (unless session sharing is enabled).

In contrast, Coherence*Web maps a session ID to a single session instance. This means that
the behavior of having multiple session instances mapped to the same ID is not replicated by
default if an application uses Coherence*Web. Because the session cookie is mapped to "/" by
default, a single Coherence*Web session is shared across all Web applications. The default
configuration in Coherence*Web is that all session attributes are scoped to a Web application.
For most purposes, this single session approach is transparent. The major difference of having
a single session across all Web applications is the impact of session invalidation. If
Coherence*Web is enabled and you invalidate a session in one Web application, then you
invalidate that session in all Web applications that use that session instance. If your Web
applications do not use thin SSO, then you can avoid this issue by scoping the session cookie
to the Web application path.

Chapter 2
Scoping the Session Cookie Path

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 15

Therefore, you have the following options regarding SSO:

• Enable WebLogic Server session compatibly mode. This configuration is set with the
coherence-session-weblogic-compatibility-mode parameter and mirrors all of the
native WebLogic Server session persistence types: memory (single-server, non-
replicated), file system persistence, JDBC persistence, cookie-based session persistence,
and in-memory replication (across a cluster). By default, this mode is enabled. See Using
Sessions and Session Persistence in Developing Web Applications, Servlets, and JSPs for
Oracle WebLogic Server.

• Enable thin SSO functionality. Clients will use a single session across all Web applications.
This means that the session life cycle will be inconsistent with all other session persistence
types.

• Disable the thin SSO functionality by scoping the session cookie path to the Web
application context path. This will allow the session life cycle to be consistent with all other
session persistence types.

One advantage of enabling thin SSO with Coherence*Web is that it will work across all Web
applications that are using the same Coherence cluster for Coherence*Web. The Coherence
cluster is completely independent from the WebLogic Server cluster. The thin SSO functionality
can even span multiple domains by enabling cross-domain trust in the WebLogic Server
security layer.

Updating the Session ID
When a user successfully authenticates a protected resource, the session ID is changed for
security purposes.

In previous releases of WebLogic Server, a new session would be created, all of the session
attributes from the old session would be copied into the new session, and then the old session
would be invalidated. This would trigger the session listeners (if any were registered), so
session lifecycle and session attribute listeners would be executed.

The current release of WebLogic Server implements the
HttpServletRequest.changeSessionId method from the Java Servlet 3.1 Specification. The
implementation of the changeSessionId method allows the actual session ID to be updated.
This means that no session lifecycle events will be triggered and no listeners will be executed.
Most users should not notice any changes in the behavior of their applications.

For more information on the HttpServletRequest.changeSessionId method, see the Java
Servlet 3.1 Specification and Javadoc available from this URL:

http://jcp.org/en/jsr/detail?id=340

Sharing Coherence*Web Sessions with Other Application
Servers

If you are running Coherence*Web on WebLogic Server and on other application servers within
a single cluster, then the session cookies created by WebLogic Server will not be decoded
correctly by Coherence*Web on the other servers.This is because WebLogic Server adds a
session affinity suffix to the cookie which is not part of the session ID stored in
Coherence*Web. The other application servers must remove the WebLogic session affinity

Chapter 2
Updating the Session ID

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 14 of 15

http://jcp.org/en/jsr/detail?id=340

suffix from the session cookie value for Coherence*Web to be able to retrieve the session from
the Coherence cache.
To strip the WebLogic session affinity suffix from the session cookie, add the coherence-
session-affinity-token context parameter to the web.xml file used in the other application
servers. Set the parameter value to an exclamation point (!), as illustrated in Example 2-2. The
session affinity suffix will be removed from the session cookie when it is processed by the other
application server.

Example 2-2 Removing Session Affinity Suffix

...
<context-param>
 <param-name>coherence-session-affinity-token</param-name>
 <param-value>!</param-value>
</context-param>
...

See Coherence*Web Context Parameters for more information on the coherence-session-
affinity-token context parameter.

Chapter 2
Sharing Coherence*Web Sessions with Other Application Servers

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 15 of 15

3
Using Coherence*Web on Other Application
Servers

You can configure and deploy Coherence*Web, the session state persistence and
management module, for use with a variety of application servers. The functionality that allows
Coherence*Web to be used with these application servers is provided by running the
automated Coherence*Web WebInstaller.

Note

Consult Supported Web Containers to see if you must perform any application server-
specific integration steps.

This chapter includes the following sections:

Integrating Coherence*Web Using the WebInstaller
Coherence*Web can be enabled for Jakarta EE applications on several different Web
containers.
To enable the Coherence*Web, you must run the ready-to-deploy application through the
automated Coherence*Web WebInstaller before deploying it. This utility prepares the
application for deployment. It performs the integration process in two discrete steps: an
inspection step and an integration step. See How the Coherence*Web WebInstaller
Instruments a Jakarta EE Application.

WebInstaller can be run either from the Jakarta command line or from Ant tasks. The following
sections describe the Java command-line method. For an Ant task-based environment, see
Coherence*Web WebInstaller Ant Task.

This section includes the following topics:

General Instructions for Integrating Coherence*Web Session Management
Module

Complete the following steps to integrate Coherence*Web with a Jakarta EE application on any
of the Web containers listed under Supported Web Containers.

If you are integrating Coherence*Web with a Jakarta EE application on an Apache Tomcat
Server, see also Enabling Sticky Sessions for Apache Tomcat Servers for additional
instructions.

If you are integrating Coherence*Web with a Jakarta EE application on an IBM WebSphere
Server, see also Integrating with IBM WebSphere Liberty for additional instructions.

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 11

To integrate Coherence*Web for the Jakarta EE application you are deploying:

1. Ensure that the application directory and the EAR file or WAR file are not being used or
accessed by another process.

2. Change the current directory to the Coherence library directory (%COHERENCE_HOME%\lib on
Windows and $COHERENCE_HOME/lib on UNIX).

3. Ensure that the paths are configured so that Java commands will run.

4. Complete the application inspection step by running the following command. Specify the
full path to your application and the name of your server found in Table 1-1 (replacing the
<app-path> and <server-type> with them in the following command line):

java -jar webInstaller.jar <app-path> -inspect -server:<server-type>

The system will create (or update, if it already exists) the coherence-web.xml configuration
descriptor file for your Jakarta EE application in the directory where the application is
located. This configuration descriptor file contains the default Coherence*Web settings for
your application as recommended by the utility.

5. If necessary, review and modify the Coherence*Web settings based on your requirements.

You can modify the Coherence*Web settings by editing the coherence-web.xml descriptor
file. Coherence*Web Context Parameters, describes the Coherence*Web settings that can
be modified. Use the param-name and param-value subelements of the context-param
parameter to enable the features you want. Table 3-1 describes some examples of
different settings.

Table 3-1 Example Context Parameter Settings for Coherence*Web

Parameter Name Description

coherence-servletcontext-clustered true Clusters all ServletContext (global) attributes so that servers
in a cluster share the same values for those attributes, and also
receive the events specified by the Servlet Specification when
those attributes change.

Note

This property is not applicable for IBM WebSphere
Liberty.

coherence-enable-sessioncontext true Allows an application to enumerate all of the sessions that exist
within the application, or to obtain any one of those sessions to
examine or manipulate.

coherence-session-id-length 32 Enables you to increase the length of the HttpSession ID,
which is generated using a SecureRandom algorithm; the length
can be any value, although in practice it should be small enough
to fit into a cookie or a URL (depending on how session IDs are
maintained.) Increasing the length can decrease the chance of a
session being purposely hijacked.

coherence-session-urlencode-
enabled

true By default, the HttpSession ID is managed in a cookie. If the
application supports URL encoding, this option enables it.

6. Complete the Coherence*Web application integration step by running the following
command, replacing <app-path> with the full path to your application:

Chapter 3
Integrating Coherence*Web Using the WebInstaller

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 11

java -jar webInstaller.jar <app-path> -install

The coherence-web.jar file that gets added, includes the default-session-
cache-config.xml file that contains the session and cache configuration information.

7. Deploy the updated application and verify that everything functions as expected, using the
lightweight load balancer provided with the Coherence distribution. Remember that the
lightweight load balancer is not a production-ready utility, in contrast to the load balancer
provided by WebLogic Server.

The application can be deployed and run in any of the deployment topologies supported by
Coherence: in-process, out-of-process, or out-of-process with Coherence*Extend. See the
following sections for information on deploying and running your applications under these
topologies. See Deployment Topologies.

Deploying and Running Applications In Process
Coherence*Web can be run in-process with the application server. This is where session data
is stored with the application server. See In-Process Topology for more information on this
topology.

For the application server:

1. Start the application server in storage-enabled mode. Add the system property
coherence.session.localstorage=true to the Java options of your application server
startup script.

2. Deploy the coherence.jar and coherence-web.jar files as shared libraries.

3. Deploy and run your application.

Deploying and Running Applications Out-of-Process
In the out-of-process deployment topology, a stand-alone cache server stores the session data
and the application server is configured as a cache client. See Out-of-Process Topology.

The cache server and the application server must use the same cache and session
configuration. This configuration is generated in the default-session-cache-config.xml file
by the Coherence*Web WebInstaller. The WebInstaller generates the file in the WEB-
INF\classes directory of the instrumented application.

For the cache server:

1. Add the coherence.cacheconfig system property to the cache server startup script to
locate the file configuration file. You must also include the system property
coherence.session.localstorage=true to enable storage for the cache server.

2. Add the coherence.jar and coherence-web.jar files to the classpath in the cache server
startup script.

Following is a sample startup script:

java -server -Xms512m -Xmx512m
-cp <Coherence installation dir>/lib/coherence.jar:<Coherence installation
dir>/lib/coherence-web.jar -Dcoherence.management.remote=true -
Dcoherence.cacheconfig=default-session-cache-config.xml
-Dcoherence.session.localstorage=true com.tangosol.net.DefaultCacheServer

Chapter 3
Integrating Coherence*Web Using the WebInstaller

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 11

For the application server (cache client):

1. Deploy the coherence.jar and coherence-web.jar files as shared libraries.

2. The default-session-cache-config.xml file should already be present in the WEB-
INF\classes directory of the instrumented application.

By default, the file should specify that local storage is disabled (if you are not sure, you can
either inspect the file to confirm that the local-storage element is set to false or add the
system property coherence.session.localstorage=false to the startup script).

3. Deploy the application to the server.

Migrating to Out-of-Process Topology
If you have been running and testing your application with Coherence*Web in-process, you
can easily migrate to the out-of-process topology. Simply set up your cache server and
application server as described in Deploying and Running Applications Out-of-Process.

Deploying and Running Applications Out-of-Process with
Coherence*Extend

The out-of-process with Coherence*Extend topology is similar to the out-of-process topology
except that the communication between the application server tier and the cache server tier is
over Coherence*Extend (TCP/IP). Coherence*Extend consists of two components: an extend
client (or proxy) running outside the cluster and an extend proxy service running in the cluster
hosted by one or more cache servers. See Out-of-Process with Coherence*Extend Topology.

In these deployments, there are three types of participants:

• Cache servers (storage servers), which are used to store the actual session data in
memory.

• Web (application) servers, which are the Extend clients in this topology. They are not
members of the cluster; instead, they connect to a proxy node in the cluster that will issue
requests to the cluster on their behalf.

• Proxy servers, which are storage-disabled members (nodes) of the cluster that accept and
manage TCP/IP connections from Extend clients. Requests that arrive from clients will be
sent into the cluster, and responses will be sent back through the TCP/IP connections.

For the cache server:

Follow the instructions for configuring the cache server in Deploying and Running Applications
Out-of-Process. Also, edit the cache server's copy of the default-session-cache-config.xml
file to add the system properties coherence.session.proxy=false and
coherence.session.localstorage=true.

See Configure the Cache for Proxy and Storage JVMs for more information and an example of
a default-session-cache-config.xml file with these context parameters.

For the Web tier (application) server:

Follow the instructions for configuring the application server in Deploying and Running
Applications Out-of-Process. Also, complete these steps:

1. Ensure that Coherence*Web is configured to use the Optimistic Locking mode. Optimistic
locking is the default locking mechanism for Coherence*Web (see Optimistic Locking).

Chapter 3
Integrating Coherence*Web Using the WebInstaller

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 11

2. Edit the application server's copy of the default-session-cache-config.xml file to add
the proxy JVM host names, IP addresses and ports. To do this, add a <remote-addresses>
section to the file. In most cases, you should include the host name and IP address, and
port of all proxy JVMs for load balancing and failover.

See Configure the Cache for Web Tier JVMs.

For the proxy server:

With a few changes, the proxy server can use the same cache and session configuration as
the application server and the cache server. Edit the default-session-cache-config.xml file
to add these system properties:

• coherence.session.localstorage=false to disable local storage.

• coherence.session.proxy=true to indicate that a proxy service is being used.

• coherence.session.proxy.localhost to indicate the host name or IP address of the NIC
to which the proxy will bind.

• coherence.session.proxy.localport to indicate a unique port number to which the proxy
will bind.

See Configure the Cache for Proxy and Storage JVMs.

Enabling Sticky Sessions for Apache Tomcat Servers
If you want to employ sticky sessions for the Apache Tomcat Server, you must configure the
jvmRoute attribute in the server's server.xml file. You can find more information on this
attribute at this URL:

http://tomcat.apache.org/connectors-doc/reference/workers.html

Integrating with IBM WebSphere Liberty
HTTP session affinity may need to be explicitly configured when integrating with WebSphere
Liberty. Coherence*Web needs to be passed the Clone ID of the Liberty server as well as the
affinity separator. If the Clone ID is defined by the user, as explained in the liberty
documentation at https://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/
com.ibm.websphere.wlp.doc/ae/twlp_admin_session_persistence.html, and if the affinity
separator is the colon character (:) character, then no additional configuration is required. If
that is not the case, then the following system properties can be used during server startup:

• coherence.web.liberty.suffix.separator – The affinity suffix separator. The default
value is :.

• coherence.web.liberty.suffix – The clone id of the server. The default value is the
value configured for the cloneId system property in the bootstrap.properties file as
explained in the WebSphere Liberty documentation cited above.

Coherence*Web WebInstaller Ant Task
The Coherence*Web WebInstaller Ant task enables you to run the utility from within your
existing Ant build files.
This section includes the following topics:

Chapter 3
Coherence*Web WebInstaller Ant Task

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 11

http://tomcat.apache.org/connectors-doc/reference/workers.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_admin_session_persistence.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_admin_session_persistence.html

Using the Coherence*Web WebInstaller Ant Task
To use the Coherence*Web WebInstaller Ant task, add the task import statement illustrated
below in to your Ant build file. In this example, ${coherence.home} refers to the root directory
of your Coherence installation.

<taskdef name="cwi" classname="com.tangosol.coherence.misc.CoherenceWebAntTask">
 <classpath>
 <pathelement location="${coherence.home}/lib/webInstaller.jar"/>
 </classpath>
</taskdef>

The following procedure describes the basic process of integrating Coherence*Web with a
Jakarta EE application from an Ant build:

1. Build your Jakarta EE application as you ordinarily would.

2. Run the Coherence*Web Ant task with the operations attribute set to inspect.

3. Make any necessary changes to the generated Coherence*Web XML descriptor file.

4. Run the Coherence*Web Ant task with the operations attribute set to install.

Performing Iterative Development

If you are performing iterative development on your application, such as modifying Jakarta
Server Pages (JSPs), Servlets, static resources, and so on, use the following integration
process:

1. Run the Coherence*Web Ant task with the operations attribute set to uninstall, the
failonerror attribute set to false, and the descriptor attribute set to the location of the
previously generated Coherence*Web XML descriptor file (from Step 2 of Using the
Coherence*Web WebInstaller Ant Task).

2. Build your Jakarta EE application as you ordinarily would.

3. Run the Coherence*Web Ant task with the operations attribute set to inspect, and the
install and descriptor attributes set to the location of the previously generated
Coherence*Web XML descriptor file (from Step 2 of Using the Coherence*Web
WebInstaller Ant Task).

Changing the Coherence*Web Configuration Settings of a Jakarta EE Application

If you must change the Coherence*Web configuration settings of a Jakarta EE application that
is using Coherence*Web, follow these steps:

1. Run the Coherence*Web Ant task with the operations attribute set to uninstall and the
descriptor attribute set to the location of the Coherence*Web XML descriptor file for the
Jakarta EE application.

2. Change the necessary configuration parameters in the Coherence*Web XML descriptor
file.

3. Run the Coherence*Web Ant task with the operations attribute set to install and the
descriptor attribute set to the location of the modified Coherence*Web XML descriptor file
(from Step 2 of Using the Coherence*Web WebInstaller Ant Task).

Chapter 3
Coherence*Web WebInstaller Ant Task

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 11

Configuring the WebInstaller Ant Task
Table 3-2 describes the attributes that can be used with the Coherence*Web WebInstaller Ant
task.

Table 3-2 Coherence*Web WebInstaller Ant Task Attributes

Attribute Description Required?

app Path to the target Jakarta EE application. This can be a path to a WAR
file, an EAR file, an expanded WAR directory, or an expanded EAR
directory.

Yes, if the operations
attribute is set to any
value other than
version.

backup Path to a directory that holds a backup of the original target Jakarta EE
application. This attribute defaults to the directory that contains the
Jakarta EE application.

No

descriptor Path to the Coherence*Web XML descriptor file. This attribute defaults to
the coherence-web.xml file in the directory that contains the target
Jakarta EE application.

No

failonerror Stops the Ant build if the Coherence*Web WebInstaller exits with a status
other than 0. The default is true.

No

nowarn Suppresses warning messages. This attribute can be either true or
false. The default is false.

No

operations A comma- or space-separated list of operations to perform; each
operation must be one of inspect, install, uninstall, or version.

Yes

server The alias of the target Jakarta EE application server. No

touch Touches JSPs and TLDs that are modified by the Coherence*Web
WebInstaller. This attribute can be either true, false, or M/d/y h:mm a'
The default is false.

No

verbose Displays verbose output. This attribute can be either true or false. The
default is false.

No

WebInstaller Ant Task Examples
The following list provides sample commands for the WebInstaller Ant task.

• Inspect the myWebApp.war Web application and generate a Coherence*Web XML
descriptor file called my-coherence-web.xml in the current working directory:

<cwi app="myWebApp.war" operations="inspect" descriptor="my-coherence-web.xml"/>

• Integrate Coherence*Web into the myWebApp.war Web application using the
Coherence*Web XML descriptor file called my-coherence-web.xml found in the current
working directory:

<cwi app="myWebApp.war" operations="install" descriptor="my-coherence-web.xml"/>

• Remove Coherence*Web from the myWebApp.war Web application:

<cwi app="myWebApp.war" operations="uninstall">

• Integrate Coherence*Web into the myWebApp.war Web application located in the /dev/
myWebApp/build directory using the Coherence*Web XML descriptor file called my-
coherence-web.xml found in the /dev/myWebApp/src directory, and place a backup of the
original Web application in the /dev/myWebApp/work directory:

Chapter 3
Coherence*Web WebInstaller Ant Task

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 11

<cwi app="/dev/myWebApp/build/myWebApp.war" operations="install" descriptor="/dev/
myWebApp/src/my-coherence-web.xml" backup="/dev/myWebApp/work"/>

• Integrate Coherence*Web into the myWebApp.war Web application located in the /dev/
myWebApp/build directory using the Coherence*Web XML descriptor file called coherence-
web.xml found in the /dev/myWebApp/build directory. If the Web application has not
already been inspected (that is, /dev/myWebApp/build/coherence-web.xml does not
exists); inspect the Web application before integrating Coherence*Web:

<cwi app="/dev/myWebApp/build/myWebApp.war" operations="inspect,install"/>

• Reintegrate Coherence*Web into the myWebApp.war Web application located in the /dev/
myWebApp/build directory, using the Coherence*Web XML descriptor file called my-
coherence-web.xml found in the /dev/myWebApp/src directory:

<cwi app="/dev/myWebApp/build/myWebApp.war" operations="uninstall,install"
descriptor="/dev/myWebApp/src/my-coherence-web.xml"/>

Testing HTTP Session Management
Coherence comes with a lightweight software load balancer intended only for testing purposes.
The load balancer is very easy to use and is very useful when testing functionality such as
session management.
Follow these steps to test HTTP session management with the lightweight load balancer:

1. Start multiple application server processes on one or more server machines, each running
your application on a unique IP address and port combination.

2. Open a command (or shell) window.

3. Change the current directory to the Coherence library directory (%COHERENCE_HOME%\lib on
Windows and $COHERENCE_HOME/lib on UNIX).

4. Ensure that paths are configured so that Java commands will run.

5. Start the software load balancer with the following command lines (each of these
command lines makes the application available on the default HTTP port 80).

For example, to test load balancing locally on one machine with two application server
instances on ports 7001 and 7002:

java -jar coherence-loadbalancer.jar localhost:80 localhost:7001 localhost:7002

To run the load balancer locally on a machine named server1 that load balances to port
7001 on server1, server2, and server3:

java -jar coherence-loadbalancer.jar server1:80 server1:7001 server2:7001
server3:7001

Assuming that you use the preceding command line, an application that previously was
accessed with the URL http://server1:7001/my.jsp would now be accessed with the
URL http://server1:80/my.jsp or just http://server1/my.jsp.

Note

Ensure that your application uses only relative redirections or the address of the
load balancer.

Table 3-3 describes the command-line options for the load balancer:

Chapter 3
Testing HTTP Session Management

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 11

Table 3-3 Load Balancer Command-Line Options

Option Description

backlog Sets the TCP/ IP accept backlog option to the specified value, for example: -
backlog=64.

random Specifies the use of a random load-balancing algorithm (default).

roundrobin Specifies the use of a round-robin load-balancing algorithm.

threads Uses the specified number of request or response thread pairs (so the total
number of additional daemon threads will be two times the specified value), for
example: -threads=64.

How the Coherence*Web WebInstaller Instruments a Jakarta EE
Application

Coherence*Web WebInstaller performs many tasks as a part of the inspection step.

The following are the tasks:

1. Generates a template coherence-web.xml configuration file that contains basic information
about the application and target Web container along with a set of default Coherence*Web
configuration context parameters appropriate for the target Web container. See
Coherence*Web Context Parameters.

The WebInstaller sets the servlet container to start in storage-disabled mode (that is, it sets
coherence.session.localstorage to false).

If an existing coherence-web.xml configuration file exists (for example, from a previous run
of the Coherence*Web WebInstaller), the context parameters in the existing file are
merged with those in the generated template.

2. Enumerates the JSP from each Web application in the target Jakarta EE application and
adds information about each JSP to the coherence-web.xml configuration file.

3. Enumerates the TLDs from each Web application in the target Jakarta EE application and
adds information about each TLD to the coherence-web.xml configuration file.

4. Scans the web application and all classes contained within, for annotations and generates
markup that is inserted into the appropriate web.xml or web-fragment.xml.

5. For each ServletContainerInitializer found, create a custom ServletContainerInitializer that
will invoke the application’s initializer when the context starts. This allows Coherence*Web
to enact properly on dynamically registered Servlet artifacts.

During the integration step, the Coherence*Web WebInstaller performs the following tasks:

1. Creates a backup of the original Jakarta EE application so that it can be restored during
the uninstallation step.

2. Adds the Coherence*Web configuration context parameters generated in Step 1 of the
inspection step to the web.xml descriptor file of each Web application contained in the
target Jakarta EE application.

3. Unregisters any application-specific ServletContextListener,
ServletContextAttributeListener, ServletRequestListener,
ServletRequestAttributeListener, HttpSessionListener, and
HttpSessionAttributeListener classes (including those registered by TLDs) from each
Web application.

Chapter 3
How the Coherence*Web WebInstaller Instruments a Jakarta EE Application

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 11

4. Registers a Coherence*Web ServletContextListener class in each web.xml descriptor
file. At run time, the Coherence*Web ServletContextListener class propagates each
ServletContextEvent event to each application-specific ServletContextListener listener.

5. Registers a Coherence*Web ServletContextAttributeListener listener in each web.xml
descriptor file. At run time, the Coherence*Web ServletContextAttributeListener
propagates each ServletContextAttributeEvent event to each application-specific
ServletContextAttributeListener listener.

6. Wraps each application-specific Servlet declared in each web.xml descriptor file with a
Coherence*Web SessionServlet. At run time, each Coherence*Web SessionServlet
delegates to the wrapped Servlet.

7. Adds the following directive to each JSP enumerated in Step 2 of the inspection step:

<%@ page extends="com.tangosol.coherence.servlet.api22.JspServlet" %>

Note

The presence of duplicate page extends in JSP may cause errors after
Coherence*Web is integrated with the Jakarta EE application. Therefore, remove the
replicated page extends. You do not need to add page extends explicitly because the
Coherence*Web WebInstaller utility adds page extends for the Coherence servlet
context by default.

During the uninstallation step, the Coherence*Web WebInstaller replaces the instrumented
Jakarta EE application with the backup of the original version created in Step (1) of the
integration process.

Integrating Coherence*Web with Applications Using Jakarta EE
Security

Coherence*Web can be integrated with applications that uses Jakarta EE security.

To integrate Coherence*Web with an application that uses Jakarta EE security, follow these
additional steps:

1. Enable Coherence*Web session cookies.

See the coherence-session-cookies-enabled configuration element in Table A-1 for
additional details.

2. Change the Coherence*Web session cookie name to a name that is different from the one
used by the target Web container.

By default, most containers use JSESSIONID for the session cookie name, so a good choice
for the Coherence*Web session cookie name is CSESSIONID. See the coherence-session-
cookie-name configuration element in Table A-1 for additional details.

3. Enable session replication for the target Web container.

If session replication is not enabled, or the container does not support a form of session
replication, then you will be forced to re-authenticate to the Web application during failover.
See your Web container's documentation for instructions on enabling session replication.

This configuration causes two sessions to be associated with a given authenticated user:

• A Coherence*Web session that contains all session data created by the Web application

Chapter 3
Integrating Coherence*Web with Applications Using Jakarta EE Security

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 11

• A session created by the Web container during authentication that stores only information
necessary to identify the user

Preventing Cross-Site Scripting Attacks
Use the coherence-session-cookie-httponly context parameter to append the HttpOnly
attribute to the session cookie.The HttpOnly attribute is used to help prevent attacks such as
cross-site scripting, since it does not allow the cookie to be accessed by a client-side script
such as JavaScript.
Note that not all browsers support this functionality. This context parameter is available for
instrumented applications only.

Chapter 3
Preventing Cross-Site Scripting Attacks

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 11

4
Tomcat Native Session Integration

If you are using Tomcat 10.0.x (Servlet 5.0), Tomcat 10.1.x (Servlet 6.0) or Tomcat 11.0.x
(Servlet 6.1) , then you may opt to use Coherence*Web’s native session integration instead of
using the installer, simplifying the development and deployment process of Coherence*Web
applications.

This chapter includes the following sections:

Tomcat Configuration
Before deploying a Coherence*Web application to Tomcat, first copy the coherence.jar and
coherence-web.jar files to CATALINA_HOME/lib on *nix or %TOMCAT_HOME%\lib on Windows.
The JARs must not be included with the web application.

Each web application that will be using Coherence*Web will need to include a Tomcat-specific
configuration file, META-INF/context.xml. The file must minimally include the following:

<Context>
 <Manager className="com.tangosol.coherence.web.tomcat.Manager"/>
 <Valve className="com.tangosol.coherence.web.tomcat.RequestValve"/>
</Context>

Those familiar with previous releases of Coherence*Web are familiar with configuring
Coherence*Web using context initialization parameters. When using the Tomcat native session
integration, these context attributes are not needed, and if present, will be ignored. Instead,
Coherence*Web is configured using attributes on the Manager element from the preceding
example. It should be noted that the available configuration options are a subset of those that
are available when using the installer, as the native session integration’s scope is much
narrower. For example, when using the installer, there are various options to configure how
sessions are handled, such as http-only cookies, the name of the session cookie, and such.
Those configuration options, in the native integration case, are configured and handled by
Tomcat and not by Coherence*Web.

Manager Configuration Options
In addition to the standard manager options documented by Tomcat, the following configuration
options are available when using the native session integration. See Table 4-1.

Table 4-1 Coherence Manager Configuration Options

Attribute Name Description

applicationName See coherence-application-name.

configurationConsistency See coherence-configuration-consistency.

collectionClass See coherence-sessioncollection-class.

coordinatedReaper See coherence-reaperdaemon-cluster-coordinated.

reaperSweepModulo See coherence-reaperdaemon-sweep-modulo.

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 2

Table 4-1 (Cont.) Coherence Manager Configuration Options

Attribute Name Description

reaperLocality See coherence-reaperdaemon-assume-locality.

reaperCycleSeconds See coherence-reaperdaemon-cycle-seconds.

reaperPriority See coherence-reaperdaemon-priority.

readInParallel See coherence-reaperdaemon-parallel.

reapThreadsMin See coherence-reaperdaemon-min-threads.

reapThreadsMax See coherence-reaperdaemon-max-threads.

reapMechanism See coherence-session-reaping-mechanism.

sessionCache See coherence-session-cachename.

managementCache See coherence-session-management-cachename.

sessionLocking See coherence-session-locking.

memberLocking See coherence-session-member-locking.

applicationLocking See coherence-session-app-locking.

threadLocking See coherence-session-thread-locking.

sessionGetLockTimeout See coherence-session-get-lock-timeout.

logThreads See coherence-session-log-threads-holding-lock.

logLevel See coherence-session-logger-level.

scopeControllerClass See coherence-scopecontroller-class.

overflowCache See coherence-session-overflow-cachename.

overflowThreshold See coherence-attribute-overflow-threshold.

suspectAttributes See coherence-enable-suspect-attributes.

distributionControllerClass See coherence-distributioncontroller-class.

preserveAttributes See coherence-preserve-attributes.

localSessionCache See coherence-local-session-cachename.

localAttributeCache See coherence-local-attribute-cachename.

configurationPath See coherence-cache-configuration-path.

federated See coherence-session-cache-federated.

logInvalidationExceptions See coherence-session-log-invalidation-
exceptions.

clusterOwned See coherence-cluster-owned.

shutdownDelaySeconds See coherence-shutdown-delay-seconds.

Chapter 4
Manager Configuration Options

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 2

5
Coherence*Web Session Management
Features

Coherence*Web includes many features such as session models, session scoping, session
locking, deployment topologies, and logging. You can configure these features to meet the
demands of your environment. Consequently, you might have to change some default
configuration options. This chapter provides an in-depth look at the features that
Coherence*Web supports so that you can make the appropriate configuration and deployment
decisions.
This chapter includes the following sections:

Session Models
A session model describes how Coherence*Web stores the session state in Coherence.

This section includes the following topics:

Overview of Session Models
Session data is managed by an HttpSessionModel object while the session collection in a Web
application is managed by an HttpSessionCollection object. You must configure only the
collection type in the web.xml file—the model is implicitly derived from the collection type.
Coherence*Web includes these different session model implementations:

• Monolithic Model, which stores all session state as a single entity, serializing and
deserializing all attributes as a single operation

• Traditional Model, which stores all session state as a single entity but serializes and
deserializes attributes individually

• Split Model, which extends the Traditional Model, but separates the larger session
attributes into independent physical entities

These sections provide additional information on session models:

• Session Model Recommendations, provides recommendations on which session model to
choose for your applications

• Configuring a Session Model, describes how to change the session model by using a
system property or a context parameter

• Sharing Data in a Clustered Environment, describes how data is shared between and
within JVMs

• Scalability and Performance. describes the impact of session models on scalability and
performance

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 34

Note

In general, Web applications that are part of the same Coherence cluster must use the
same session model type. Inconsistent configurations could result in deserialization
errors.

Figure 5-1 illustrates the three session models.

Figure 5-1 Traditional, Monolithic, and Split Session Models

Monolithic Traditional Split

A�ribute

A�ribute

A�ribute

Large A�ribute

Large A�ribute

A�ribute A�ribute

A�ribute A�ribute

A�ribute A�ribute

Large A�ribute

Large A�ribute Large A�ribute

Large A�ribute

Transferred and
serialized-deserialized

as a single entity

Transferred as a single
entity, but each

a!ribute is
independently

serialized-deserialized

Similar to Traditional
Model, but large

a!ributes are
individually stored in a

separate cache

Monolithic Model
The Monolithic model is represented by the MonolithicHttpSessionModel and
MonolithicHttpSessionCollection objects. These are similar to the Traditional model, except
that they solve the shared object issue by serializing and deserializing all attributes into a
single object stream. As a result, the Monolithic model often does not perform as well as the
Traditional model.

Figure 5-2 illustrates the relationship between the logical representation of data and its
physical representation in the session storage cache. In its logical representation session data
consists of metadata, and various attributes. In its physical representation in the session
storage cache, the metadata and attributes are serialized into a single stream. A session ID is
associated with the metadata and attributes.

Chapter 5
Session Models

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 34

Figure 5-2 Monolithic Session Model

Logical

Physical

Session

Session Storage Cache

Cache Key Cache Value

Meta-Data

A ribute A

Session ID
Binary Meta-Data

A, B, C, D

A ribute B

A ribute C

A ribute D

 Large A�ributes

 Small A�ributes

Key:

 Session Meta-Data

Chapter 5
Session Models

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 34

Traditional Model
The Traditional model is represented by the TraditionalHttpSessionModel and
TraditionalHttpSessionCollection objects. The TraditionalHttpSessionCollection object
stores an HTTP session object in a single cache, but serializes each attribute independently.

This model is suggested for applications with relatively small HTTP session objects (10 KB or
less) that do not have issues with object sharing between session attributes. Object sharing
between session attributes occurs when multiple attributes of a session have references to the
same exact object, meaning that separate serialization and deserialization of those attributes
cause multiple instances of that shared object to exist when the HTTP session is later
deserialized.

Figure 5-3 illustrates the relationship between the logical representation of data and its
physical representation in the session storage cache. In its logical representation session data
consists of metadata, and various attributes. In its physical representation in the session
storage cache, the metadata and attributes are converted to binaries, and a session ID is
associated with them. Note that the attributes are serialized individually instead of as a single
binary BLOB (such as in the Monolithic case).

Chapter 5
Session Models

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 34

Figure 5-3 Traditional Session Model

Logical

Physical

Session

Session Storage Cache

Cache Key Cache Value

Binary Meta-Data

Session ID Binary A

Binary B

Binary C

Meta-Data

A!ribute A

A!ribute B

A!ribute C

A!ribute D

Binary D

 Large A�ributes

 Small A�ributes

Key:

 Session Meta-Data

Chapter 5
Session Models

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 34

Split Model
The Split model is represented by the SplitHttpSessionModel and
SplitHttpSessionCollection objects. SplitHttpSessionCollection is the default used by
Coherence*Web.

These models store the core HTTP session metadata and all of the small session attributes in
the same manner as the Traditional model, thus ensuring high performance by keeping that
block of binary session data small. All large attributes are split into separate cache entries to
be managed individually, thus supporting very large HTTP session objects without unduly
increasing the amount of data that must be accessed and updated within the cluster for each
request. In other words, only the large attributes that are modified within a particular request
incur any network overhead for their updates, and (because it uses near caching) the Split
model generally does not incur any network overhead for accessing either the core HTTP
session data or any of the session attributes.

Figure 5-4 illustrates the relationship between the logical representation of data and its
physical representation in the session storage cache. In this model, large objects are stored as
separate cache entries with their own session ID.

Chapter 5
Session Models

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 34

Figure 5-4 Split Session Model

Physical

Session Storage Cache Session Overflow Cache

Cache Key Cache KeyCache Value Cache Value

Binary Meta-Data

Session ID Session ID: C

Session ID: D

Binary A

Binary B

Binary C

Binary D

Logical

 Large A�ributes

 A�ribute Overflow Threshold

 Small A�ributes

Key:

 Session Meta-Data

Session

Meta-Data

A!ribute A

A!ribute B

A!ribute C

A!ribute D

A B
C D

Session Model Recommendations
The following are recommendations on which session model to choose for your applications:

• The Split model is the recommended session model for most applications.

• The Traditional model might be more optimal for applications that are known to have small
HTTP session objects.

• The Monolithic model is designed to solve a specific class of problems related to multiple
session attributes that have references to the same shared object, and that must maintain
that object as a shared object.

Chapter 5
Session Models

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 34

Note

See Coherence*Web Context Parameters for descriptions of the parameters used to
configure session models.

Configuring a Session Model
By default, Coherence*Web uses the split session model, where large attributes are split into
separate cache entries to be managed individually. You can change the session model used by
Coherence*Web by configuring the -Dcoherence.sessioncollection.class system property
or by setting the equivalent coherence-sessioncollection-class context parameter in the
Web application's web.xml file. As the value of the context parameter (or system property), use
the fully-qualified class name of the HttpSessionCollection implementation.

• com.tangosol.coherence.servlet.SplitHttpSessionCollection (default) configures the
Split model.

• com.tangosol.coherence.servlet.MonolithicHttpSessionCollection configures the
Monolithic model.

• com.tangosol.coherence.servlet.TraditionalHttpSessionCollection configures the
Traditional model.

Example 5-1 illustrates a web.xml entry to configure the Monolithic model.

Example 5-1 Configuring the Session Model

...
<context-param>
 <param-name>coherence-sessioncollection-class</param-name>
 <param-value>com.tangosol.coherence.servlet.MonolithicHttpSessionCollection</param-
value>
</context-param>
...

Sharing Data in a Clustered Environment
Clustering can boost scalability and availability for applications. Clustering solutions such as
Coherence*Web solve many problems for developers, but successful developers must be
aware of the limitations of the underlying technology, and how to manage those limitations.
Understanding what the platform provides, and what users require, gives developers the ability
to eliminate the gap between the two.

Session attributes must be serializable if they are to be processed across multiple JVMs, which
is a requirement for clustering. It is possible to make some fields of a session attribute non-
clustered by declaring those fields as transient. While this eliminates the requirement for all
fields of the session attributes to be serializable, it also means that these attributes are not fully
replicated to the backup server(s). Developers who follow this approach should be very careful
to ensure that their applications are capable of operating in a consistent manner even if these
attribute fields are lost. In most cases, this approach ends up being more difficult than simply
converting all session attributes to serializable objects. However, it can be a useful pattern
when very large amounts of user-specific data are cached in a session.

The Java EE Servlet specification (versions 2.2, 2.3, and 2.4) states that the servlet context
should not be shared across the cluster. Non-clustered applications that rely on the servlet
context as a singleton data structure have porting issues when moving to a clustered
environment.

Chapter 5
Session Models

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 34

A more subtle issue that arises in clustered environments is the issue of object sharing. In a
non-clustered application, if two session attributes reference a common object, changes to the
shared object are visible as part of both session attributes. However, this is not the case in
most clustered applications. To avoid unnecessary use of compute resources, most session
management implementations serialize and deserialize session attributes individually on
demand. Coherence*Web (Traditional and Split session models) normally operates in this
manner. If two session attributes that reference a common object are separately deserialized,
the shared common object is instantiated twice. For applications that depend on shared object
behavior and cannot be readily corrected, Coherence*Web provides the option of a Monolithic
session model, which serializes and deserializes the entire session object as a single
operation. This provides compatibility for applications that were not originally designed with
clustering in mind.

Many projects require sharing session data between different Web applications. The challenge
that arises is that each Web application typically has its own class loader. Consequently,
objects cannot readily be shared between separate Web applications. There are two general
methods used as a work around, each with its own set of trade-offs.

• Place common classes in the Java CLASSPATH, allowing multiple applications to share
instances of those classes at the expense of a slightly more complicated configuration.

• Use Coherence*Web to share session data across class loader boundaries. Each Web
application is treated as a separate cluster member, even if they run within the same JVM.
This approach provides looser coupling between Web applications (assuming serialized
classes share a common serial Version UID), but suffers from a performance impact
because objects must be serialized-deserialized for transfer between cluster members.

Scalability and Performance
Moving to a clustered environment makes session size a critical consideration. Memory usage
is a factor regardless of whether an application is clustered or not, but clustered applications
must also consider the increased CPU and network load that larger sessions introduce. While
non-clustered applications using in-memory sessions are not required to serialize-deserialize
session state, clustered applications must do this every time session state is updated.
Serializing session state and then transmitting it over the network becomes a critical factor in
application performance. For this reason and others, a server should generally limit session
size to no more than a few kilobytes.

While the Traditional and Monolithic session models for Coherence*Web have the same
limiting factor, the Split session model was explicitly designed to efficiently support large HTTP
sessions. Using a single clustered cache entry to contain all of the small session attributes
means that network traffic is minimized when accessing and updating the session or any of its
smaller attributes. Independently deserializing each attribute means that CPU usage is
minimized. By splitting out larger session attributes into separate clustered cache entries,
Coherence*Web ensures that the application only pays the cost for those attributes when they
are actually accessed or updated. Additionally, because Coherence*Web leverages the data
management features of Coherence, all of the underlying features are available for managing
session attributes, such as near caching, NIO buffer caching, and disk-based overflow.

Figure 5-5 illustrates performance as a function of session size. Each session consists of ten
10-character Strings and from zero to four 10,000-character Strings. Each HTTP request reads
a single small attribute and a single large attribute (for cases where there are any in the
session), and 50 percent of requests update those attributes. Tests were performed on a two-
server cluster. Note the similar performance between the Traditional and Monolithic models;
serializing-deserializing Strings consumes minimal CPU resources, so there is little
performance gain from deserializing only the attributes that are actually used. The performance
gain of the Split model increases to over 37:1 by the time session size reaches one megabyte

Chapter 5
Session Models

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 34

(100 large Strings). In a clustered environment, it is particularly true that application requests
that access only essential data have the opportunity to scale and perform better; this is part of
the reason that sessions should be kept to a reasonable size.

Figure 5-5 Performance as a Function of Session Size

Another optimization is the use of transient data members in session attribute classes.
Because Java serialization routines ignore transient fields, they provide a very convenient
means of controlling whether session attributes are clustered or isolated to a single cluster
member. These are useful in situations where data can be "lazy loaded" from other data
sources (and therefore recalculated during a server failover process), and also in scenarios
where absolute reliability is not critical. If an application can withstand the loss of a portion of
its session state with zero (or acceptably minimal) impact on the user, then the performance
benefit may be worth considering. In a similar vein, it is not uncommon for high-scale
applications to treat session loss as a session timeout, requiring the user to log back in to the
application (which has the implicit benefit of properly setting user expectations regarding the
state of their application session).

Sticky load balancing plays a critical role because session state is not globally visible across
the cluster. For high-scale clusters, user requests normally enter the application tier through a
set of stateless load balancers, which redistribute (more or less randomly) these requests
across a set of sticky load balancers, such as Microsoft IIS or Apache HTTP Server. These
sticky load balancers are responsible for the more computationally intense act of parsing the
HTTP headers to determine which server instance is processing the request (based on the
server ID specified by the session cookie). If requests are misrouted for any reason, session
integrity is lost. For example, some load balancers may not parse HTTP headers for requests
with large amounts of POST data (for example, more than 64KB), so these requests are not
routed to the appropriate server instance. Other causes of routing failure include corrupted or
malformed server IDs in the session cookie. Most of these issues can be handled with proper
selection of a load balancer and designing tolerance into the application whenever possible (for
example, ensuring that all large POST requests avoid accessing or modifying session state).

Sticky load balancing aids the performance of Coherence*Web but is not required. Because
Coherence*Web is built on the Coherence data management platform, all session data is
globally visible across the cluster. A typical Coherence*Web deployment places session data in
a near cache topology, which uses a partitioned cache to manage huge amounts of data in a
scalable and fault-tolerant manner, combined with local caches in each application server JVM
to provide instant access to commonly used session state. While a sticky load balancer is not
required when Coherence*Web is used, there are two key benefits to using one. Due to the
use of near cache technology, read access to session attributes is instant if user requests are
consistently routed to the same server, as using the local cache avoids the cost of

Chapter 5
Session Models

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 34

deserialization and network transfer of session attributes. Additionally, sticky load balancing
allows Coherence to manage concurrency locally, transferring session locks only when a user
request is rebalanced to another server.

Session and Session Attribute Scoping
Coherence*Web allows fine-grained control over how both session data and session attributes
are scoped (or shared) across application boundaries.
This section includes the following topics:

Session Scoping
Coherence*Web allows session data to be shared by different Web applications deployed in
the same or different Web containers. To do so, you must correctly configure the session
cookie context parameters and make the classes of objects stored in session attributes
available to each Web application.

If you are using cookies to store session IDs (that is, you are not using URL rewriting), you
must set the session cookie path to a common context path for all Web applications that share
session data. For example, to share session data between two Web applications registered
under the context paths /web/HRPortal and /web/InWeb, you should set the coherence-
session-cookie-path parameter to /web. On the other hand, if the two Web applications are
registered under the context paths /HRPortal and /InWeb, you should set the coherence-
session-cookie-path parameter to a slash (/).

If the Web applications that you would like to share session data are deployed on different Web
containers running on different machines (that are not behind a common load balancer), you
must also configure the session cookie domain to a domain shared by the machines. For
example, to share session data between two Web applications running on
server1.example.com and server2.example.com, you must set the coherence-session-
cookie-domain context parameter to .example.com.

To correctly serialize or deserialize objects stored in shared sessions, the classes of all objects
stored in session attributes must be available to Web applications that share session data.

Note

For advanced use cases where EAR cluster node-scoping or application server JVM
cluster scoping is employed and you do not want session data shared across
individual Web applications, see Preventing Web Applications from Sharing Session
Data .

This section includes the following topics:

Preventing Web Applications from Sharing Session Data
Sometimes you might want to explicitly prevent HTTP session data from being shared by
different Jakarta EE applications that participate in the same Coherence cluster. For example,
assume you have two applications, HRPortal and InWeb, that share cached data in their
Jakarta Enterprise Beans (EJB) tiers but use different session data. In this case, it is desirable
for both applications to be part of the same Coherence cluster, but undesirable for both
applications to use the same clustered service for session data. One way to do this is to use
the ApplicationScopeController interface to define the scope of an application's attributes.

Chapter 5
Session and Session Attribute Scoping

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 34

Session Attribute Scoping describes this technique. Another way is to specify a unique session
cache service name for each application.

Follow these steps to specify a unique session cache service name for each application:

1. Locate the <service-name/> elements in each default-session-cache-config.xml file
found in your application.

2. Set the elements to a unique value for each application.

This forces each application to use a separate clustered service for session data.

3. Include the modified default-session-cache-config.xml file with the application.

Example 5-2 illustrates a sample default-session-cache-config.xml file for an HRPortal
application. To prevent the HRPortal application from sharing session data with the InWeb
application, rename the <service-name> element for the view scheme to
ViewSessionMiscHRP. Rename the <service-name> element for the distributed schemes to
DistributedSessionsHRP and DistributedSessionsHeapOnlyHRP.

Example 5-2 Configuration to Prevent Applications from Sharing Session Data

<view-scheme>
 <scheme-name>view</scheme-name>
 <service-name>ViewSessionMisc</service-name> // rename this to ViewSessionMiscHRP
 <back-scheme>
 <distributed-scheme>
 <scheme-ref>session-distributed-heap-only</scheme-ref>
 </distributed-scheme>
 </back-scheme>
 <reconnect-interval>30s</reconnect-interval>
 <autostart>true</autostart>
</view-scheme>

<distributed-scheme>
 <scheme-name>session-distributed</scheme-name>
 <service-name>DistributedSessions</service-name> // rename this to
DistributedSessionsHRP
 <lease-granularity>member</lease-granularity>
 <local-storage system-property="coherence.session.localstorage">false</local-storage>
 <partition-count>257</partition-count>
 <backup-count>1</backup-count>
 <request-timeout>30s</request-timeout>
 <backing-map-scheme>
 <ramjournal-scheme>
 <high-units system-property="coherence.session.highunits"/>
 <unit-calculator>BINARY</unit-calculator>
 </ramjournal-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

<distributed-scheme>
 <scheme-name>session-distributed-heap-only</scheme-name>
 <service-name>DistributedSessionsHeapOnly</service-name> // rename this to
DistributedSessionsHeapOnlyHRP
 <lease-granularity>member</lease-granularity>
 <local-storage system-property="coherence.session.localstorage">false</local-storage>
 <partition-count>257</partition-count>
 <backup-count>1</backup-count>
 <request-timeout>30s</request-timeout>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>

Chapter 5
Session and Session Attribute Scoping

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 12 of 34

 <autostart>true</autostart>
</distributed-scheme>

Working with Multiple Cache Configurations
If you are working with two or more applications running under Coherence*Web, then they
could have multiple different cache configurations. In this case, the cache configuration on the
cache server must contain the union of these cache configurations regardless of whether you
run in storage-enabled or storage-disabled mode. This will allow the applications to be
supported in the same cache cluster.

Keeping Session Cookies Separate
If you are using cookies to store session IDs, you must ensure that session cookies created by
one application are not propagated to another application. To do this, you must set each
application's session cookie domain and path in their web.xml file. To prevent cookies from
being propagated, ensure that no two applications share the same context path.

For example, assume you have two Web applications registered under the context paths /web/
HRPortal and /web/InWeb. To prevent the Web applications from sharing session data through
cookies, set the cookie path to /web/HRPortal in one application, and set the cookie path
to /web/InWeb in the other application.

If your applications are deployed on different Web containers running on separate machines,
then you can configure the cookie domain to ensure that they are not in the same domain.

For example, assume you have two Web applications running on server1.example.com and
server2.example.com. To prevent session cookies from being shared between them, set the
cookie domain in one application to server1.example.com, and set the cookie domain in the
other application to server2.example.com.

Session Attribute Scoping
In the case where sessions are shared across Web applications there are many instances
where the application might scope individual session attributes so that they are either globally
visible (that is, all Web applications can see and modify these attributes) or scoped to an
individual Web application (that is, not visible to any instance of another application).

Coherence*Web provides the ability to control this behavior by using the
AttributeScopeController interface. This optional interface can selectively scope attributes in
cases when a session might be shared across multiple applications. This allows different
applications to potentially use the same attribute names for the application-scope state without
accidentally reading, updating, or removing other applications' attributes. In addition to having
application-scoped information in the session, this interface allows the session to contain
global (unscoped) information that can be read, updated, and removed by any of the
applications that shares the session.

Two implementations of the AttributeScopeController interface are available:
ApplicationScopeController and GlobalScopeController. The GlobalScopeController
implementation does not scope attributes, while ApplicationScopeController scopes all
attributes to the application by prefixing the name of the application to all attribute names.

Use the coherence-application-name context parameter to specify the name of the
application (and the Web module in which the application appears). The
ApplicationScopeController interface will use the name of the application to scope the
attributes. If you do not configure this parameter, then Coherence*Web uses the name of the

Chapter 5
Session and Session Attribute Scoping

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 34

class loader instead. For more information, see the description of coherence-application-
name in Table 2-1.

Note

After a configured AttributeScopeController implementation is created, it is
initialized with the name of the Web application, which it can use to qualify attribute
names. Use the coherence-application-name context parameter to configure the
name of your Web application.

This section includes the following topic:

Sharing Session Information Between Multiple Applications
Coherence*Web allows multiple applications to share the same session object. To do this, the
session attributes must be visible to all applications. You must also specify which URLs served
by WebLogic Server will be able to receive cookies.

To allow the applications to share and modify the session attributes, reference the
GlobalScopeController
(com.tangosol.coherence.servlet.AbstractHttpSessionCollection$GlobalScopeControll
er) interface as the value of the coherence-scopecontroller-class context parameter in the
web.xml file. GlobalScopeController is an implementation of the
com.tangosol.coherence.servlet.HttpSessionCollection$AttributeScopeController
interface that allows individual session attributes to be globally visible.

Example 5-3 illustrates the GlobalScopeController interface specified in the web.xml file.

Example 5-3 GlobalScopeController Specified in the web.xml File

<?xml version="1.0" encoding="UTF-8"?> <web-app> ...
 <context-param>
 <param-name>coherence-scopecontroller-class</param-name>
 <param-
value>com.tangosol.coherence.servlet.AbstractHttpSessionCollection$GlobalScopeController<
/param-value>
 </context-param>
 ...
 </web-app>

Cluster Node Isolation
Cluster node isolation considers the number of Coherence nodes that are created within an
application server JVM and where the Coherence library is deployed.
Applications can be application server-scoped, EAR-scoped, or WAR-scoped. This section
describes these considerations. For detailed information about the XML configuration for each
of these options, see Configure Coherence*Web Storage Mode.

This section includes the following topics:

Application Server-Scoped Cluster Nodes
With this configuration, all deployed applications in a container using Coherence*Web become
part of one Coherence node. This configuration produces the smallest number of Coherence
nodes in the cluster (one for each Web container JVM) and, because the Coherence library

Chapter 5
Cluster Node Isolation

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 14 of 34

(coherence.jar) is deployed in the container's class path, only one copy of the Coherence
classes is loaded into the JVM. This minimizes the use of resources. On the other hand,
because all applications are using the same cluster node, all applications are affected if one
application malfunctions.

Figure 5-6 illustrates an application server-scoped cluster with two cluster nodes (application
server instances). Because Coherence*Web has been deployed to each instance's class path,
each instance can be considered to be a Coherence node. Each node contains two EAR files;
each EAR file contains two WAR files. All of the application running in each instance share the
same Coherence library and classes.

Figure 5-6 Application Server-Scoped Cluster

Application Server Application Server

EAR EAR

EAR EAR

Key:

 Coherence Cluster Node

For WebLogic Server, all Coherence*Web-enabled applications have application server scope
by default. Configure Coherence*Web Storage Mode describes the XML configuration
requirements for application server-scoped cluster nodes for WebLogic Server.

Chapter 5
Cluster Node Isolation

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 15 of 34

Note

For platforms other than WebLogic Server, the use of application server-scoped
cluster configurations should be used with care. Do not use it in environments where
application interaction is unknown or unpredictable.

An example of such an environment might be a deployment where multiple application
teams are deploying applications written independently, without carefully coordinating
and enforcing their conventions and naming standards. With this configuration, all
applications are part of the same cluster—the likelihood of collisions between
namespaces for caches, services, and other configuration settings is quite high and
could lead to unexpected results.

For these reasons, the recommended best practice is to use EAR-scoped and WAR-
scoped cluster node configurations on platforms other than WebLogic Server. If you
are in doubt regarding which deployment topology to choose, or if this note applies to
your deployment, then do not choose the application server-scoped cluster node
configuration.

EAR-Scoped Cluster Nodes
With this configuration, all deployed applications within each EAR file become part of one
Coherence node. This configuration produces one Coherence node for each deployed EAR file
that uses Coherence*Web. Because the Coherence library (coherence.jar) is deployed in the
application's classpath, only one copy of the Coherence classes is loaded for each EAR file.
Since all Web applications in the EAR file use the same cluster node, all Web applications in
the EAR file are affected if one of the Web applications malfunctions.

Figure 5-7 illustrates four EAR-scoped cluster nodes. Since Coherence*Web has been
deployed to each EAR file, each EAR file becomes a cluster node. All applications running
inside each EAR file have access to the same Coherence libraries and classes.

Chapter 5
Cluster Node Isolation

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 16 of 34

Figure 5-7 EAR-Scoped Cluster

Application Server Application Server

EAREAR EAREAR

EAREAR EAREAR

Key:

 Coherence Cluster Node

EAR-scoped cluster nodes reduce the deployment effort because no changes to the
application server class path are required. This option is also ideal if you plan to deploy only
one EAR file to an application server.

Note

Applications running on the WebLogic Server platform should not use EAR-scoped
cluster nodes.

WAR-Scoped Cluster Nodes
With this configuration, each deployed Web application becomes its own Coherence node.
This configuration produces the largest number of Coherence nodes in the cluster (one for
each deployed WAR file that uses Coherence*Web) and because the Coherence library

Chapter 5
Cluster Node Isolation

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 17 of 34

(coherence.jar) is deployed in the Web application's class path, there will be as many copies
of the Coherence classes loaded as there are deployed WAR files. This results in the largest
resource utilization of the three options. However, because each deployed Web application is
its own cluster node, Web applications are completely isolated from other potentially
malfunctioning Web applications.

WAR -coped cluster nodes reduce the deployment effort because no changes to the
application server class path are required. This option is also ideal if you plan to deploy only
one WAR file to an application server.

Figure 5-8 illustrates two different configurations of WAR files in application servers. Because
each WAR file contains a copy of Coherence*Web (and Coherence), it can be considered a
cluster node.

Chapter 5
Cluster Node Isolation

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 18 of 34

Figure 5-8 WAR-Scoped Clusters

Application Server

Application Server Application Server

Application Server

Key:

 Coherence Cluster Node

OR

Note

Applications running on the WebLogic Server platform should not use WAR-scoped
cluster nodes.

Chapter 5
Cluster Node Isolation

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 19 of 34

Session Locking Modes
Oracle Coherence provides different configuration options for concurrent access to HTTP
sessions.

This section includes the following topics:

Overview of Session Locking Modes
The following are the configuration options for concurrent access to HTTP sessions:

• Optimistic Locking, which allows concurrent access to a session by multiple threads in a
single member or multiple members, while prohibiting concurrent modification.

• Last-Write-Wins Locking, which is a variation of Optimistic Locking. This allows concurrent
access to a session by multiple threads in a single member or multiple members. In this
case, the last write is saved. This is the default locking mode.

• Member Locking, which allows concurrent access and modification of a session by multiple
threads in the same member, while prohibiting concurrent access by threads in different
members.

• Application Locking , which allows concurrent access and modification of a session by
multiple threads in the same Web application instance, while prohibiting concurrent access
by threads in different Web application instances.

• Thread Locking, which prohibits concurrent access and modification of a session by
multiple threads in a single member.

Note

Generally, Web applications that are part of the same cluster must use the same
locking mode and sticky session optimizations setting. Inconsistent configurations
could result in deadlock.

You can specify the session locking mode used by your Web applications by setting the
coherence-session-locking-mode context parameter. Table 5-1 lists the context parameter
values and the corresponding session locking modes they specify. For more information about
the coherence-session-locking-mode context parameter, see the following sections and
Coherence*Web Context Parameters.

Table 5-1 Summary of coherence-session-locking-mode Context Parameter Values

Locking Mode coherence-session-locking-mode Values

Optimistic Locking optimistic

Last-Write-Wins Locking none

Member Locking member

Application Locking app

Thread Locking thread

Chapter 5
Session Locking Modes

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 20 of 34

Optimistic Locking
Optimistic Locking mode allows multiple Web container threads in one or more members to
access the same session concurrently. This setting does not use explicit locking; rather an
optimistic approach is used to detect and prevent concurrent updates upon completion of an
HTTP request that modifies the session. The exception ConcurrentModificationException is
thrown when the session is flushed to the cache, which is after the Servlet request has finished
processing. To view the exception, set the weblogic.debug.DebugHttpSessions system
property to true in the container's startup script (for example: -
Dweblogic.debug.DebugHttpSessions=true).

The Optimistic Locking mode can be configured by setting the coherence-session-locking-
mode parameter to optimistic.

Last-Write-Wins Locking
Coherence*Web is configured with Last-Write Wins Locking by default. Last-Write-Wins
Locking mode is a variation on the Optimistic Locking mode. It allows multiple Web container
threads in one or more members to access the same session concurrently. This setting does
not use explicit locking; it does not prevent concurrent updates upon completion of an HTTP
request that modifies the session. Instead, the last write, that is, the last modification made, is
allowed to modify the session.

The Last-Write-Wins Locking mode can be configured by setting the coherence-session-
locking-mode parameter to none. This value will allow concurrent modification to sessions with
the last update being applied.

Member Locking
The Member Locking mode allows multiple Web container threads in the same cluster node to
access and modify the same session concurrently, but prohibits concurrent access by threads
in different members. This is accomplished by acquiring a member-level lock for an HTTP
session when the session is acquired. The lock is released on completion of the of the HTTP
request. See <lease-granularity> in Developing Applications with Oracle Coherence.

The Member Locking mode can be configured by setting the coherence-session-locking-
mode parameter to member.

Application Locking
The Application Locking mode restricts session access (and modification) to threads in a single
Web application instance at a time. This is accomplished by acquiring both a member-level and
application-level lock for an HTTP session when the session is acquired, and releasing both
locks upon completion of the HTTP request. See <lease-granularity> in Developing
Applications with Oracle Coherence.

The Application Locking mode can be configured by setting the coherence-session-locking-
mode parameter to app.

Thread Locking
Thread Locking mode restricts session access (and modification) to a single thread in a single
member at a time. This is accomplished by acquiring both a member level, application-level,
and thread-level lock for an HTTP session when the session is acquired, and releasing all

Chapter 5
Session Locking Modes

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 21 of 34

three locks upon completion of the request. See <lease-granularity> in the distributed-
scheme section of the Developing Applications with Oracle Coherence.

The Thread Locking mode can be configured by setting the coherence-session-locking-mode
parameter to thread.

Troubleshooting Locking in HTTP Sessions
Enabling Member, Application, or Thread Locking for HTTP session access indicates that
Coherence*Web will acquire a clusterwide lock for every HTTP request that requires access to
a session. By default, threads that attempt to access a locked session (locked by a thread in a
different member) block access until the lock can be acquired. If you want to enable a timeout
for lock acquisition, configure it with the coherence-session-get-lock-timeout context
parameter, for example:

...
<context-param>
 <param-name>coherence-session-get-lock-timeout</param-name>
 <param-value>30</param-value>
 </context-param>
...

Many Web applications do not have such a strict concurrency requirement. For these
applications, using the Optimistic Locking mode has the following advantages:

• The overhead of obtaining and releasing clusterwide locks for every HTTP request is
eliminated.

• Requests can be load-balanced away from failing or unresponsive members to active
members without requiring the unresponsive member to release the clusterwide lock on
the session.

Coherence*Web provides a diagnostic invocation service that is executed when a member
cannot acquire the cluster lock for a session. You can control if this service is enabled by
setting the coherence-session-log-threads-holding-lock context parameter. If this context
parameter is set to true (default), then the invocation service will cause the member that has
ownership of the session to log the stack trace of the threads that are currently holding the
lock.

Note that the coherence-session-log-threads-holding-lock context parameter is available
only when the coherence-sticky-sessions context parameter is set to true. This requirement
exists because Coherence Web will acquire a cluster-wide lock for every session access
request unless sticky session optimization is enabled. By enabling sticky session optimization,
frequent lock-holding, and the subsequent production of numerous log files, can be avoided.

Like all Coherence*Web messages, the Coherence logging-config operational configuration
element controls how the message is logged. See logging-config in Developing Applications
with Oracle Coherence.

Enabling Sticky Session Optimizations
If Member, Application, or Thread Locking is a requirement for a Web application that resides
behind a sticky load balancer, Coherence*Web provides an optimization for obtaining the
clusterwide lock required for HTTP session access. By definition, a sticky load balancer
attempts to route each request for a given session to the same application server JVM that it
previously routed requests to for that same session. This should be the same application
server JVM that created the session. The sticky session optimization takes advantage of this
behavior by retaining the clusterwide lock for a session until the session expires or until it is

Chapter 5
Session Locking Modes

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 22 of 34

asked to release it. If, for whatever reason, the sticky load balancer sends a request for the
same session to another application server JVM, that JVM will ask the JVM that owns the lock
on the session to release the lock as soon as possible. For more information, see the
SessionOwnership entry in Table C-2.

Sticky session optimization can be enabled by setting the coherence-sticky-sessions context
parameter to true. This setting requires that Member, Application, or Thread Locking is
enabled.

Deployment Topologies
Coherence*Web supports most of the same deployment topologies that Coherence does
including in-process, out-of-process (that is, client/server deployment), and bridging clients and
servers over Coherence*Extend.
The major supported deployment topologies are described in the following topics:

In-Process Topology
The in-process topology is not recommended for production use and is supported mainly for
development and testing. By storing the session data in-process with the application server,
this topology is very easy to get up and running quickly for smoke tests, developing and
testing. In this topology, local storage is enabled (that is,
coherence.distributed.localstorage=true).

Figure 5-9 illustrates the in-process topology. All of the application servers communicate with
the same session data cache.

Figure 5-9 In-Process Deployment Topology

Application Server Application ServerApplication Server Application Server

Application ApplicationApplication Application

Session Data Cache

Out-of-Process Topology
For the out-of-process deployment topology, the application servers (that is, application server
tier) are configured as cache clients (that is, coherence.distributed.localstorage=false)
and there are dedicated JVMs running as cache servers, physically storing and managing the
clustered data.

This approach has these benefits:

• Session data storage is offloaded from the application server tier to the cache server tier.
This reduces heap usage, garbage collection times, and so on.

• The application and cache server tiers can be scaled independently. If more application
processing power is needed, just start more application servers. If more session storage
capacity is needed, just start more cache servers.

Chapter 5
Deployment Topologies

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 23 of 34

The Out-of-Process topology is the default recommendation of Oracle Coherence due to its
flexibility. Figure 5-10 illustrates the out-of-process topology. Each of the servers in the
application tier maintain their own near cache. These near caches communicate with the
session data cache which runs in a separate cache server tier.

Figure 5-10 Out-of-Process Deployment Topology

Application Server

Cache Server

Application Server

Cache Server

Application

Application Server

Cache Server

Application Server

Near Cache

Session Data Cache

Application Application Application

Near Cache Near Cache Near Cache

Migrating from In-Process to Out-of-Process Topology
You can easily migrate your application from an in-process to an out of process topology. To do
this, you must run a cache server in addition to the application server. Start the cache server in
storage-enabled mode and ensure that it references the same session and cache configuration
file (default-session-cache-config.xml) that the application server uses. Start the
application server in storage-disabled mode. See Migrating to Out-of-Process Topology.

Out-of-Process with Coherence*Extend Topology
Coherence*Extend consists of two components: an extend client (or proxy) running outside the
cluster and an extend proxy service running in the cluster hosted by one or more cache
servers. The out-of-process with Coherence*Extend topology is similar to the out-of-process
topology except that the communication between the application server tier and the cache
server tier is over Coherence*Extend (TCP/IP). See Configuring Coherence*Web with
Coherence*Extend.

This approach has the same benefits as the out-of-process topology and the ability to divide
the deployment of application servers and cache servers into segments. This is ideal in an
environment where application servers are on a network that does not support UDP. The cache
servers can be set up in a separate dedicated network, with the application servers connecting
to the cluster by using TCP.

Figure 5-11 illustrates the out-of-process with Coherence*Extend topology. Near caches in the
servers in the application server tier use an extend proxy to communicate with the session data
cache in the cache server tier.

Chapter 5
Deployment Topologies

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 24 of 34

Figure 5-11 Out-of-Process with Coherence*Extend Deployment Topology

Application Server

Cache Server

Application Server

Cache Server

Application

Application Server

Cache Server

Application Server

Near Cache

Session Data Cache

Extend Proxy

Application Application Application

Near Cache Near Cache Near Cache

Configuring Coherence*Web with Coherence*Extend
This section includes the following topics:

Overview of Configuring Coherence*Web with Coherence*Extend
One of the deployment options for Coherence*Web is to use Coherence*Extend to connect
Web container JVMs to the cluster by using TCP/IP. This configuration should be considered if
any of the following situations applies:

• The Web tier JVMs are in a DMZ while the Coherence cluster is behind a firewall.

• The Web tier is in an environment that does not support UDP.

• Web tier JVMs experience long or frequent garbage collection (GC) pauses.

• Web tier JVMs are restarted frequently.

In these deployments, there are three types of participants:

• Web tier JVMs, which are the Extend clients in this topology. They are not members of the
cluster; instead, they connect to a proxy node in the cluster that will issue requests to the
cluster on their behalf.

• Proxy JVMs, which are storage-disabled members (nodes) of the cluster that accept and
manage TCP/IP connections from Extend clients. Requests that arrive from clients will be
sent into the cluster, and responses will be sent back through the TCP/IP connections.

• Storage JVMs, which are used to store the actual session data in memory.

To Configure Coherence*Web to Use Coherence*Extend

1. Configure Coherence*Web to use the Optimistic Locking mode. See Optimistic Locking.

2. Configure a cache configuration file for the proxy and storage JVM. See Configure the
Cache for Proxy and Storage JVMs.

3. Modify the Web tier cache configuration file to point to one or more of the proxy JVMs. See
Configure the Cache for Web Tier JVMs.

Chapter 5
Deployment Topologies

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 25 of 34

Configure the Cache for Proxy and Storage JVMs
The session cache configuration file (WEB-INF/classes/default-session-cache-config.xml)
is an example Coherence*Web session cache configuration file that uses Coherence*Extend.
Use this file for the proxy and storage JVMs.

To configure a cache Proxy and storage JVMs, use the <proxy-scheme> element and use a
<tcp-acceptor> element to define the host and port to which the web tier extend client
connects. The following example configures a proxy to listen on the local host at port 9099.

<proxy-scheme>
 <service-name>SessionProxy</service-name>
 <acceptor-config>
 <serializer>
 <instance>
 <class-name>com.tangosol.io.DefaultSerializer</class-name>
 </instance>
 </serializer>
 <tcp-acceptor>
 <local-address>
 <address system-
property="coherence.session.proxy.localhost">localhost</address>
 <port system-property="coherence.session.proxy.localport">9099</
port>
 </local-address>
 </tcp-acceptor>
 </acceptor-config>
 <autostart system-property="coherence.session.proxy">true</autostart>
</proxy-scheme>

The above example defines system property overrides that allow the same file to be used for
both proxy and storage JVMs.

When used by a proxy JVM, the system properties described in Table 5-2 should be specified.

Note

If you are writing applications for the WebLogic Server platform and you are using a
customized session cache configuration file, then the file must be packaged in a GAR
file for deployment. See Using a Custom Session Cache Configuration File.

For more information on the packaging requirements for a GAR file, see also
Packaging Coherence Applications for WebLogic Server in Administering Oracle
Coherence and Creating Coherence Applications for Oracle WebLogic Server in
Developing Oracle Coherence Applications for Oracle WebLogic Server.

Table 5-2 System Property Values for Proxy JVMs

System Property Name Value

coherence.session.localstorage false

coherence.session.proxy true

Chapter 5
Deployment Topologies

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 26 of 34

Table 5-2 (Cont.) System Property Values for Proxy JVMs

System Property Name Value

coherence.session.proxy.localhost The host name or IP address of the NIC to which
the proxy will bind.

coherence.session.proxy.localport A unique port number to which the proxy will bind.

When used by a cache server, specify the system properties described in Table 5-3.

Table 5-3 System Property Values for Storage JVMs

System Property Name Value

coherence.session.localstorage true

coherence.session.proxy false

Configure the Cache for Web Tier JVMs
Coherence*Extend clients must also include a session cache configuration file. The file can be
based on the default-session-cache-config.xml file that is found in the coherence-web.jar
file.

To Install the Session Cache Configuration File for the Web Tier:

1. Extract the default-session-cache-config.xml file from the coherence-web.jar file.

2. Modify the session-storage cache mapping definition and rename the <scheme-name>
value from session-distributed to session-remote.

<cache-mapping>
 <cache-name>session-storage</cache-name>
 <scheme-name>session-remote</scheme-name>
</cache-mapping>

3. Define the session-remote caching scheme using the <remote-cache-scheme> element
and add a proxy address (host and port) within the <remote-addresses> element. In most
cases, you should include the IP address and port of all proxy JVMs to ensure load
balancing and failover. The following example configures the web tier to connect to a proxy
that is running the on the local host at port 9099. Change the address as required for your
proxy.

<remote-cache-scheme>
 <scheme-name>session-remote</scheme-name>
 <initiator-config>
 <serializer>
 <instance>
 <class-name>com.tangosol.io.DefaultSerializer</class-name>
 </instance>
 </serializer>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>

Chapter 5
Deployment Topologies

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 27 of 34

 <port>9099</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 </initiator-config>
</remote-cache-scheme>

Note

The <remote-addresses> element contains the proxy server(s) to which the Web
container connects. By default, the Web container will pick an address at random
(if there is more than one address in the configuration). If the connection between
the Web container and the proxy is broken, the container connects to another
proxy in the list.

4. Rename the file to default-session-cache-config-web-tier.xml.

5. Place the file in the WEB-INF/classes directory of your Web application. If you used the
WebInstaller to integrate Coherence*Web, replace the existing file that was added by the
WebInstaller.

Accessing Sessions with Lazy Acquisition
Lazy acquisition can be enabled to avoid unnecessary acquiring of a session whenever a
servlet or filter is called.

By default, Web applications instrumented with the WebInstaller will always acquire a session
whenever a servlet or filter is called. The session is acquired regardless of whether the servlet
or filter actually needs a session. This can be expensive in terms of time and processing power
if you run many servlets or filters that do not require a session.

To avoid this behavior, enable lazy acquisition by setting the coherence-session-lazy-access
context parameter to true in the web.xml file. The session will be acquired only when the
servlet or filter attempts to access it.

Overriding the Distribution of HTTP Sessions and Attributes
The HttpSessionCollection.SessionDistributionController interface can be used to
override the default distribution of HTTP sessions and attributes in a Web application.
This section includes the following topics:

Overview of Overriding HTTP Session Distribution
You override the default distribution by setting the coherence-distributioncontroller-class
context parameter (see Registering a Session Distribution Controller Implementation). The
value of the context parameter indicates an implementation of the
SessionDistributionController interface.

An implementation of the SessionDistributionController interface can identify sessions or
attributes in any of the following ways:

• Distributed, where a distributed session or attribute is stored within the Coherence data
grid, and thus, accessible to other server JVMs. All sessions (and their attributes) are
managed in a distributed manner. This is the default behavior and is provided by the

Chapter 5
Accessing Sessions with Lazy Acquisition

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 28 of 34

com.tangosol.coherence.servlet.AbstractHttpSessionCollection$DistributedContro
ller implementation of the SessionDistributionController interface.

• Local, where a local session or attribute is stored on the originating server's heap, and
thus, only accessible by that server. The
com.tangosol.coherence.servlet.AbstractHttpSessionCollection$LocalController
class provides this behavior. This option is not recommended for production purposes, but
it can be useful for testing the difference in scalable performance between local-only and
fully distributed implementations.

• Hybrid, which is similar to distributed in that all sessions and serializable attributes are
managed in a distributed manner. However, unlike distributed, session attributes that do
not implement the Serializable interface will be kept local. The
com.tangosol.coherence.servlet.AbstractHttpSessionCollection$HybridController
class provides this behavior.

At any point during the life of a session, the session or attributes for that session can change
from local or distributed. However, when a session or attribute is distributed it cannot change
back to local.

You can use the Session Distribution Controller in any of the following ways:

• You can allow new sessions to remain local until you add an attribute (for example, when
you add the first item to an online shopping cart); the idea is that a session must be fault-
tolerant only when it contains valuable data.

• Some Web frameworks use session attributes to store the UI rendering state. Often, this
data cannot be distributed because it is not serializable. Using the Session Distribution
Controller, these attributes can be kept local while allowing the rest of the session
attributes to be distributed.

• The Session Distribution Controller can assist in the conversion from nondistributed to
distributed systems, especially when the cost of distributing all sessions and all attributes is
a consideration.

Implementing a Session Distribution Controller
Example 5-4 illustrates a sample implementation of the
HttpSessionCollection.SessionDistributionController interface. In the sample, sessions
are tested to see if they have a shopping cart attached (only these sessions will be distributed).
Next, the session is tested whether it contains a certain attribute. If the attribute is found, then it
is not distributed.

Example 5-4 Sample Session Distribution Controller Implementation

import com.tangosol.coherence.servlet.HttpSessionCollection;
import com.tangosol.coherence.servlet.HttpSessionModel;

/**
* Sample implementation of SessionDistributionController
*/
public class CustomSessionDistributionController
 implements HttpSessionCollection.SessionDistributionController
 {
 public void init(HttpSessionCollection collection)
 {
 }

 /**
 * Only distribute sessions that have a shopping cart.
 *

Chapter 5
Overriding the Distribution of HTTP Sessions and Attributes

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 29 of 34

 * @param model Coherence representation of the HTTP session
 *
 * @return true if the session should be distributed
 */
 public boolean isSessionDistributed(HttpSessionModel model)
 {
 return model.getAttribute("shopping-cart") != null;
 }

 /**
 * If a session is "distributed", then distribute all attributes with the
 * exception of the "ui-rendering" attribute.
 *
 * @param model Coherence representation of the HTTP session
 * @param sName name of the attribute to check
 *
 * @return true if the attribute should be distributed
 */
 public boolean isSessionAttributeDistributed(HttpSessionModel model,
 String sName)
 {
 return !"ui-rendering".equals(sName);
 }
 }

Registering a Session Distribution Controller Implementation
After you have written your SessionDistributionController implementation, you can register
it with your application by using the coherence-distributioncontroller-class context
parameter. See Coherence*Web Context Parameters.

Detecting Changed Attribute Values
Coherence*Web tracks if attributes retrieved from the session have changed during the course
of processing a request. This is done by caching the initial serialized binary form of the
attribute when it is retrieved from the session. At the end of processing a request,
Coherence*Web compares the current binary value of the attribute with the old version of the
binary. If the values do not match, then the current value is written to the cache. If your
application does not mutate session attributes without doing a corresponding set, then you
should set the coherence-enable-suspect-attributes context parameter to false. This
improves memory use and optimizes near-caching.

Saving Non-Serializable Attributes Locally
Coherence*Web attempts to serialize all session attributes using java.io.Serializable.
Coherence*Web does not support the use of Coherence’s Portable Object Format (POF) to
serialize session attributes. If you are working with session attributes that are not serializable,
then store them locally by setting the coherence-preserve-attributes parameter to true.
This parameter requires a load balancer to retrieve non-serializable attributes for a session.
Note that an application must be able to recover if the client (application server) fails and the
attributes are lost. See Coherence*Web Context Parameters.

Securing Coherence*Web Deployments
Coherence provides a Secure Socket Layer (SSL) implementation to prevent unauthorized
Coherence TCMP cluster members from accessing HTTP session cache servers.

Chapter 5
Detecting Changed Attribute Values

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 30 of 34

This implementation can be used to secure TCMP communication between cluster nodes and
TCP communication between Coherence*Extend clients and proxies. Coherence allows you to
use the Transport Layer Security (TLS) 1.0 protocol which is the next version of the SSL 3.0
protocol; however, the term SSL is used since it is the more widely recognized term.

This section provides only an overview of using SSL in a Coherence environment. See Using
SSL to Secure Communication in Securing Oracle Coherence.

Using SSL to Secure TCMP Communications

A Coherence cluster can be configured to use SSL with TCMP. Coherence allows you to use
both one-way and two-way authentication. Two-Way authentication is typically used more often
than one-way authentication, which has fewer use cases in a cluster environment. In addition,
it is important to realize that TCMP is a peer-to-peer protocol that generally runs in trusted
environments where many cluster nodes are expected to remain connected with each other.
The implications of SSL on administration and performance should be carefully considered.

In this configuration, you can use the pre-defined, out-of-the-box SSL socket provider that
allows for two-way communication SSL connections based on peer trust, or you can define
your own SSL socket provider.

Using SSL to Secure Extend Client Communication

Communication between extend clients and extend proxies can be secured using SSL. SSL
requires configuration on both the client side as well as the cluster side. On the cluster side,
you configure SSL in the cluster-side cache configuration file by defining a SSL socket provider
for a proxy service. You can define the SSL socket provider either for all proxy services or for
individual proxy services.

On the client side, you configure SSL in the client-side cache configuration file by defining a
SSL socket provider for a remote cache scheme and, if required, for a remote invocation
scheme. Like the cluster side, you can define the SSL socket provider either for all remote
services or for individual remote services.

Customizing the Name of the Session Cache Configuration File
Coherence*Web uses the default-session-cache-config.xml file to configure session
caches. You can specify a different file using the coherence-cache-configuration-path
context parameter in the web.xml file.
The following example configures Coherence*Web to use the my-default-session-cache-
config-name.xml file for session cache configuration:

...
<context-param>
 <param-name>coherence-cache-configuration-path</param-name>
 <param-value>my-default-session-cache-config-name.xml</param-value>
</context-param>
...

Configuring Logging for Coherence*Web
Coherence*Web uses the logging framework provided by Coherence. Coherence has its own
logging framework and also supports the use of Log4j2, SLF4J, and Java logging to provide a
common logging environment for an application.
Logging in Coherence occurs on a dedicated and low-priority thread to reduce the impact of
logging on the critical portions of the system. Logging is pre-configured and the default settings

Chapter 5
Customizing the Name of the Session Cache Configuration File

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 31 of 34

should be changed as required. See Configuring Logging in Developing Applications with
Oracle Coherence.

The Coherence*Web logging level can also be set using the context parameter/system
property coherence-session-logger-level. This is an alternative way to set the logging level
for Coherence*Web (as opposed to using JDK logging). See Coherence*Web Context
Parameters for more information on this parameter.

Warning

Applications that use the JDK logging framework can configure Coherence to use JDK
logging as well. Note, however, that setting the log level to FINEST can expose
session IDs in the log file.

Getting Concurrent Access to the Same Session Instance
A cache delegator is used for applications that require concurrent access to the same session
instance.

A cache delegator class is a class that is responsible for manipulating (getting, putting, or
deleting) any data in the distributed cache. Use the <coherence-cache-delegator-class>
context parameter in the web.xml file to specify the name of the class responsible for the data
manipulation.

One of the possible values for the context parameter is the
com.tangosol.coherence.servlet.LocalSessionCacheDelegator class. This class indicates
that the local cache should be used for storing and retrieving the session instance before
attempting to use the distributed cache. This delegator is useful for applications that require
concurrent access to the same session instance.

Note

This feature must be enabled when working with PeopleSoft applications.

To enable the LocalSessionCacheDelegator cache delegator, the following items must be
configured in web.xml:

• The coherence-cache-delegator-class context parameter with the value set to
com.tangosol.coherence.servlet.LocalSessionCacheDelegator.

• The coherence-preserve-attributes context parameter set to true to allow
nonserializable objects to be stored in the session object.

• The coherence-distributioncontroller-class context parameter with the value set to
com.tangosol.coherence.servlet.AbstractHttpSessionCollection$HybridController.
This value forces all sessions and serializable attributes to be managed in a distributed
manner. All session attributes that do not implement the Serializable interface will be
kept local. Note that the use of this context parameter also requires coherence-sticky-
sessions optimization to be enabled.

Example 5-5 illustrates a sample configuration for the cache delegator in the web.xml file.

Chapter 5
Getting Concurrent Access to the Same Session Instance

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 32 of 34

Example 5-5 Configuring Cache Delegator in the web.xml File

...
 <context-param>
 <param-name>coherence-cache-delegator-class</param-name>
 <param-value>com.tangosol.coherence.servlet.LocalSessionCacheDelegator
</param-value>
 </context-param>
 <context-param>
 <param-name>coherence-preserve-attributes</param-name>
 <param-value>true</param-value>
 </context-param>
 <context-param>
 <param-name>coherence-distributioncontroller-class</param-name>
 <param-
value>com.tangosol.coherence.servlet.AbstractHttpSessionCollection$HybridController</
param-value>
 </context-param>
...

Federated Session Caches
The Coherence federated caching feature replicates cache data asynchronously across
multiple geographically dispersed clusters.
Coherence*Web can take advantage of federated caching to provide redundancy, off-site
backup, and multiple points of access for application users that are in different geographical
locations. For details about Federated caching, see Administering Oracle Coherence.

To use federated caching for HTTP session caches:

1. Define federation cluster participants and a federation topology. See Configuring Cache
Federation.

2. Enable federated caching for HTTP session management. See Enabling the Coherence
Session Cache in WebLogic Remote Console .

3. Configure Coherence*Web to use a federated cache scheme. A default session cache
configuration file is included in the coherence-web.jar library and is called default-
federated-session-cache-config.xml session cache configuration file. To use the default
federated session cache configuration file, use the coherence-session-cache-federated
context parameter with the value set to true.

4. (Optional) The default federated topology that is configured is automatically used if no
topology is configured, to explicitly specify a topology, update or override the default-
federated-session-cache-config.xml session cache configuration file and associate the
default federated caching scheme (session-distributed) with a federation topology. See
Associating a Federated Cache with a Federation Topology in Administering Oracle
Coherence. For example:

<federated-scheme>
 <scheme-name>session-distributed</scheme-name>
 <service-name>FederatedDistributedSessions</service-name>
 <thread-count system-property="coherence.session.threads">4
 </thread-count>
 <lease-granularity>member</lease-granularity>
 <local-storage system-property="coherence.session.localstorage">
 false</local-storage>
 <partition-count>257</partition-count>
 <backup-count>1</backup-count>
 <request-timeout>30s</request-timeout>
 <backing-map-scheme>

Chapter 5
Federated Session Caches

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 33 of 34

 <ramjournal-scheme>
 <high-units system-property="coherence.session.highunits"/>
 <unit-calculator>BINARY</unit-calculator>
 </ramjournal-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 <topologies>
 <topology>
 <name>MyTopology</name>
 <cache-name>fed-remote</cache-name>
 </topology>
 </topologies>
</federated-scheme>

Chapter 5
Federated Session Caches

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 34 of 34

6
Monitoring Applications

You can use JMX MBeans to monitor the health and performance of Coherence*Web on your
system. Coherence*Web management includes support for the Coherence Reporter—a JMX-
based reporting utility that provides several preconfigured reports that help administrators and
developers manage capacity and troubleshoot problems.

Note

To enable Coherence*Web JMX Management and Monitoring, this section assumes
that you have first set up the Coherence Clustered JMX Framework. See Using JMX
to Manage Coherence in Managing Oracle Coherence.

This chapter includes the following sections:

Managing and Monitoring Applications with JMX
The management attributes and operations for Web applications that use Coherence*Web are
visible through the HttpSessionManagerMBean MBean. During startup, each Coherence*Web
Web application registers a single instance of the HttpSessionManager class. You can use a
monitoring tool, such as JConsole, to view the values of the MBean attributes. The MBean is
unregistered when the Web application shuts down.
Table 6-1 describes the object name that the MBean uses for registration.

Table 6-1 Object Name for HttpSessionManagerMBean

Managed Bean Object Name

HttpSessionMana
ger

type=HttpSessionManager, nodeId=cluster node id, appId=web
application id

Table 6-2 describes the information that HttpSessionManager provides. All of the names
represent attributes, except resetStatistics, which is an operation.

Several of the MBean attributes use the following prefixes:

• LocalSession, which indicates a session that is not distributed to all members of the
cluster. The session remains local to the originating server until a later point in the life of
the session.

• LocalAttribute, which indicates a session attribute that is not distributed to all members
of the cluster.

• Overflow, a cache which stores the large session attributes when the Split Session model
is used.

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 11

Table 6-2 Information Returned by the HttpSessionManager

Attribute Name Data Type Description

AverageReapDuration long The average reap duration (the time it takes to complete a reap cycle)
in milliseconds, since the statistic was reset. See Getting Session
Reaper Performance Statistics.

CollectionClassName String The fully qualified class name of the HttpSessionCollection
implementation in use. The HttpSessionCollection interface is an
abstract model for a collection of HttpSessionModel objects. The
interface is not at all affected by how the sessions communicate
between the clients and the servers.

FactoryClassName String The fully-qualified class name of the Factory implementation being
used. The SessionHelper.Factory class is used by the
SessionHelper class to obtain objects that implement various
important parts of the servlet specification. The Factory
implementation can be placed in front of the application instead of the
application server's own objects. This changes the apparent
implementation of the application server itself (for example, adding
clustering.)

LastReapDuration long The amount of time, in milliseconds, it took for the last reap cycle to
finish. See Getting Session Reaper Performance Statistics.

LocalAttributeCacheName String The name of the local cache that stores non-distributed session
attributes. If the attribute displays null then local session attribute
storage is disabled.

LocalAttributeCount Integer The number of non-distributed session attributes stored in the local
session attribute cache. If the attribute displays -1, then local session
attribute storage is disabled.

LocalSessionCacheName String The name of the local cache that stores nondistributed sessions. If the
attribute displays a null value, then local session storage is disabled.

LocalSessionCount Integer The number of nondistributed sessions stored in the local session
cache. If the attribute displays a -1 value, then local session storage is
disabled.

MaxReapedSessions long The maximum number of sessions reaped in a reap cycle since the
statistic was reset. See Getting Session Reaper Performance
Statistics.

NextReapCycle java.lang.Date The time, expressed as a java.lang.Date data type, for the next
reap cycle. See Getting Session Reaper Performance Statistics.

OverflowAverageSize Integer The average size (in bytes) of the session attributes stored in the
overflow clustered cache since the last time statistics were reset. If the
attribute displays -1, then a SplitHttpSessionCollection model is
not in use.

OverflowCacheName String The name of the clustered cache that stores the large attributes that
exceed a certain size and thus are determined to be more efficiently
managed as separate cache entries and not as part of the serialized
session object itself. A null value is displayed if a
SplitHttpSessionCollection model is not in use.

OverflowMaxSize Integer The maximum size (in bytes) of a session attribute stored in the
overflow clustered cache since the last time statistics were reset. The
attribute displays a -1 value if a SplitHttpSessionCollection
model is not in use.

Chapter 6
Managing and Monitoring Applications with JMX

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 11

Table 6-2 (Cont.) Information Returned by the HttpSessionManager

Attribute Name Data Type Description

OverflowThreshold Integer The minimum length (in bytes) that the serialized form of an attribute
value must be stored in the separate overflow cache that is reserved for
large attributes. The attribute displays a -1 value if a
SplitHttpSessionCollection model is not in use.

OverflowUpdates Integer The number of updates to session attributes stored in the overflow
clustered cache since the last time statistics were reset. The attribute
displays a -1 value if a SplitHttpSessionCollection model is not
in use.

ReapedSessions long The number of sessions reaped during the last cycle. See Getting
Session Reaper Performance Statistics.

ReapedSessionsTotal long The number of expired sessions that have been reaped since the
statistic was reset. See Getting Session Reaper Performance
Statistics.

ServletContextCacheName String The name of the clustered cache that stores
jakarta.servlet.ServletContext attributes. The attribute
displays null if ServletContext is not clustered.

ServletContextName String The name of the Web application ServletContext.

SessionAverageLifetime Integer The average lifetime (in seconds) of session objects invalidated (either
due to expiration or to an explicit invalidation) since the last time
statistics were reset.

SessionAverageSize Integer The average size (in bytes) of session objects placed in the session
storage clustered cache since the last time statistics were reset.

SessionCacheName String The name of the clustered cache that stores serialized session objects.

SessionDebugLogging Boolean A flag to indicate whether the Coherence*Web session debug logging
is enabled (true) or not (false). Set the attribute to true to enabled
session debug logging or false to disable it.

SessionIdLength Integer The length (in characters) of generated session IDs.

SessionMaxSize Integer The maximum size (in bytes) of a session object placed in the session
storage clustered cache since the last time statistics were reset.

SessionMinSize Integer The minimum size (in bytes) of a session object placed in the session
storage clustered cache since the last time statistics were reset.

SessionStickyCount Integer The number of session objects that belong to this instance of the Web
application. The attribute displays -1 if sticky session optimizations are
disabled.

SessionTimeout Integer The session expiration time (in seconds). The attribute displays -1 if
sessions never expire.

SessionUpdates Integer The number of updates of session object stored in the session storage
clustered cache since the last time statistics were reset.

resetStatistics (operation) void Reset the session management statistics.

Figure 6-1 illustrates the attributes of the HttpSessionManager MBean displayed in the
JConsole monitoring tool.

Chapter 6
Managing and Monitoring Applications with JMX

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 11

Figure 6-1 HttpSessionManager Displayed in the JConsole Monitoring Tool

Managing and Monitoring Applications on WebLogic Server
For WebLogic Server, management attributes and operations for Web applications that use
Coherence*Web are visible through the WebLogicHttpSessionManagerMBean MBean.
Table 6-3 describes the object name that the MBean uses for registration.

Table 6-3 Object Name for WebLogicHttpSessionManagerMBean

Managed Bean Object Name

WebLogicHttpSessionManager type=WebLogicHttpSessionManager, nodeId=cluster
node id, appId=web application id

The WebLogicHttpSessionManager class extends the HttpSessionManager class. In addition to
the information described in Table 6-2, the WebLogicHttpSessionManager class also returns the
information listed in Table 6-4. Enterprise Manager uses this information to correlate the
Coherence*Web instances to the server.

Table 6-4 Information Returned by the WebLogicHttpSessionManager MBean

Attribute Name Data Type Description

ApplicationId String The WebLogic Web application ID.

ApplicationName String The name of this Web application.

ApplicationVersion String The version of this Web application.

DomainName String The WebLogic domain name on which the application is deployed.

IsEar Boolean Displays true if this Web application is a module of an EAR file.

IsListenAddressEnabled Boolean Displays true if a HTTP port is available on this server.

Chapter 6
Managing and Monitoring Applications on WebLogic Server

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 11

Table 6-4 (Cont.) Information Returned by the WebLogicHttpSessionManager MBean

Attribute Name Data Type Description

IsSSLListenPortEnabled Boolean Displays true if a HTTPS port is available on this server.

ListenAddress String The address on which the server is listening.

ListenPort Integer The port on which this server listens for HTTP requests.

ServerName String The WebLogic Server name on which the application is deployed.

SSLListenPort Integer The port on which this server is listening for HTTPS requests.

Running Performance Reports
You can monitor session management performance using performance reports such as the
Web Session report, Storage report, Web Session Overflow report, Web report, WebLogic Web
report, and Web Service report.
For information about configuring the JMX reporting for Coherence*Web performance
reporting, see Using Oracle Coherence Reporting in Managing Oracle Coherence.

This section includes the following topics:

Web Session Cache Storage Report
The Web Session Storage report records statistics on the activity between the cluster and the
cache where session objects and data are stored. The statistics include information about the
number of put, get, and prune operations performed on the session storage cache, and the
amount of time spent on these operations.

The report is a tab-delimited file that is prefixed with the date in YYYYMMDDHH format and
appended with cache-session-storage.txt. For example 2010013113-cache-session-
storage.txt would be created on January 31, 2010 1:00 pm. Table 6-5 describes the contents
of the Web Session Storage report.

Table 6-5 Contents of the Web Session Cache Storage Report

Column Title Data Type Description

Batch Counter long A sequential counter to help integrate information
between related files. This value resets when the
reporter restarts and is not consistent across
nodes. However, it is helpful when trying to
integrate files.

Cache Name String Always session-storage. It is used to maintain
consistency with the Cache Utilization report.

Evictions long The total number of sessions that have been
evicted for the cache across the cluster since the
last time the report was created.

Report Time Date The system time when the report was created.

Service String The service name of the session cache.

Tier String The value can be either front or back. Describes
whether the cache resides in the front tier (local
cache) or back tier (remote cache).

Chapter 6
Running Performance Reports

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 11

Table 6-5 (Cont.) Contents of the Web Session Cache Storage Report

Column Title Data Type Description

NodeId String The numeric cluster member identifier.

Eviction Count Long The total number of evictions for the cache across
the cluster since the last report refresh.

Total Failures long The total number of session storage write failures
for the cache across the cluster since the last time
the report was created.

Total Gets long The total number of session get operations across
the cluster since the last time the report was
created.

GetsMillis long The total number of milliseconds spent for each
get() invocation (GetsMillis) to get the
sessions across the cluster since the last time the
report was created.

Hits long The total number of session hits across the cluster
since the last time the report was created.

HitsMillis long The total number of milliseconds spent for each
get() invocation that is a hit (HitsMillis) for the
session storage across the cluster since the last
time the report was created.

Misses long The total number of sessions get operations that
returned misses for the cache across the cluster
since the last time the report was created.

MissesMillis long The total number of milliseconds spent for each
get() invocation that is a miss (MissesMillis)
for the session storage across the cluster since the
last time the report was created.

Cache Prunes long The total number of times the session storage
cache has been pruned across the cluster since
the last time the report was created.

Cache Prunes Millis long The total number of milliseconds spent for the
prune operation (PrunesMillis) to prune the
session storage cache across the cluster since the
last time the report was created.

Puts long The total number of session updates (put
operations) across the cluster since the last time
the report was created.

PutsMillis long The total number of milliseconds spent for each
put() invocation (PutsMillis) to update
sessions across the cluster since the last time the
report was created.

Total Queue long The sum of the queue links for the session storage
cache across the cluster.

Total Writes long The total number of sessions written to an external
cache storage for the cache across the cluster
since the last time the report was created.

Chapter 6
Running Performance Reports

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 11

Table 6-5 (Cont.) Contents of the Web Session Cache Storage Report

Column Title Data Type Description

Total Writes Millis long The total number of milliseconds spent for each
write operation (WritesMillis) to update an
external cache storage across the cluster since the
last time the report was created.

Web Session Cache Overflow Report
The Web Session Overflow report records statistics on the activity between the cluster and the
cache where the overflow of session objects and data is stored. The statistics include
information about the number of put, get, and prune operations performed on the session
overflow cache, and the amount of time spent on these operations.

The report is a tab-delimited file that is prefixed with the date in YYYYMMDDHH format and
appended with cache-session-overflow.txt. For example 2010013113-cache-session-
overflow.txt would be created on January 31, 2010 1:00 pm. Table 6-6 describes the
contents of the Web Session Overflow report.

Table 6-6 Contents of the Web Session Overflow Report

Column Title Data Type Description

Batch Counter long A sequential counter to help integrate information
between related files. This value does reset when
the Reporter restarts and is not consistent across
nodes. However, it is helpful when trying to
integrate files.

Cache Name String Always session-overflow. It is used to maintain
consistency with the Cache Utilization report.

Evictions long The total number of session overflows that have
been evicted for the cache across the cluster since
the last time the report was created.

Report Time Date The system time when the report executed.

Service String The service name of the session cache.

NodeId String The numeric cluster member identifier.

Eviction Count Long The total number of evictions for the cache across
the cluster since the last report refresh.

Tier String The value can be either front or back. Describes
whether the cache resides in the front-tier (local
cache) or back tier (remote cache).

Total Failures long The total number of session overflows storage write
failures for the cache across the cluster since the
last time the report was created.

Total Gets long The total number of session overflows get
operations across the cluster since the last time the
report was created.

GetsMillis long The total number of milliseconds spent for each
get() invocation (GetsMillis) to get the session
overflows across the cluster since the last time the
report was created.

Chapter 6
Running Performance Reports

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 11

Table 6-6 (Cont.) Contents of the Web Session Overflow Report

Column Title Data Type Description

Hits long The total number of session overflow hits across
the cluster since the last time the report was
created.

HitsMillis long The total number of milliseconds spent for each
get() invocation that is a hit (HitsMillis) for the
session overflow across the cluster since the last
time the report was created.

Misses long The total number of session overflow get
operations that returned misses for the cache
across the cluster since the last time the report was
created.

MissesMillis long The total number of milliseconds spent for each
get() invocation that is a miss (MissesMillis)
for the session overflow across the cluster since
the last time the report was created.

Cache Prunes long The total number of times the session overflow
cache has been pruned across the cluster since
the last time the report was created.

Cache Prunes Millis long The total number of milliseconds spent for the
prune operations (PrunesMillis) to prune the
session overflow cache across the cluster since the
last time the report was created.

Puts long The total number of session overflows (put
operations) across the cluster since the last time
the report was created.

PutsMillis long The total number of milliseconds spent per put()
invocation (PutsMillis) to update session
overflows across the cluster since the last time the
report was created.

Total Queue long The sum of the queue link size for the session
overflow cache across the cluster.

Total Writes long The total number of session overflows written to an
external cache storage for the cache across the
cluster since the last time the report was created.

Total Writes Millis long The total number of milliseconds spent for each
write operation (WritesMillis) to update an
external session overflow storage across the
cluster since the last time the report was created.

Web Report
The Web Report (report-web.xml) provides information about Coherence*Web activity for the
cluster. The report is a tab-delimited file that is prefixed with the date and hour in YYYYMMDDHH
format and appended with -web.txt. For example 2009013102-web.txt would be created on
January 1, 2009 at 2:00 am. Table 6-7 describes the contents of the Web Report.

Chapter 6
Running Performance Reports

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 11

Table 6-7 Contents of the Web Report

Column Data Type Description

Application String The application name.

Batch Counter long A sequential counter to help integrate information
between related files. This value does reset when
the Reporter restarts and is not consistent across
nodes. However, it is helpful when trying to
integrate files.

Current Overflow Updates long The number of overflow updates since the last time
the report was created.

Current Session Updates long The number of session updates since the last time
the report was created.

LocalAttributeCount long The attribute count on the node.

LocalSessionCount long The session count on the node.

Node Id integer The node identifier.

OverflowAvgSize float The average size for attribute overflows.

OverflowMaxSize long The maximum size for an attribute overflow.

OverflowUpdates long The total number of attribute overflow updates
since the last time statistics were reset.

Report Time Date The system time when the report was created.

SessionAverageLifetime float The average number of seconds a session is
active.

SessionAverageSize float The average size for a session.

SessionMaxSize long The maximum size for a session.

SessionMinSize long The minimum size for a session.

SessionStickyCount long The number of sticky sessions on the node.

SessionUpdateCount long The number of session updates since the last time
statistics were reset.

WebLogic Web Report
The Weblogic Web Report (report-web-weblogic.xml) provides information on
Coherence*Web activity when it is being used in WebLogic Server environments. This report
provides the same information as provided by the Web Report with additional columns for the
WebLogic Server name and domain name. The report is a tab-delimited file that is prefixed
with the date and hour in YYYYMMDDHH format and appended with -web-weblogic.txt. For
example 2009013102-web-weblogic.txt would be created on January 1, 2009 at 2:00 am.

Table 6-8 Contents of the WebLogic Web Report

Column Data Type Description

Application String The application name.

Chapter 6
Running Performance Reports

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 11

Table 6-8 (Cont.) Contents of the WebLogic Web Report

Column Data Type Description

Batch Counter long A sequential counter to help integrate information
between related files. This value does reset when
the Reporter restarts and is not consistent across
nodes. However, it is helpful when trying to
integrate files.

Current Overflow Updates long The number of overflow updates since the last time
the report was created.

Current Session Updates long The number of session updates since the last time
the report was created.

DomainName String The name of the WebLogic Server domain in which
Coherence*Web is running.

LocalAttributeCount long The attribute count on the node.

LocalSessionCount long The session count on the node.

Node Id integer The node identifier.

OverflowAvgSize float The average size for attribute overflows.

OverflowMaxSize long The maximum size for an attribute overflow.

OverflowUpdates long The total number of attribute overflow updates
since the last time statistics were reset.

Report Time Date The system time when the report was created.

ServerName String The name of the WebLogic Server on which
Coherence*Web is running.

SessionAverageLifetime float The average number of seconds a session is
active.

SessionAverageSize float The average size for a session.

SessionMaxSize long The maximum size for a session.

SessionMinSize long The minimum size for a session.

SessionStickyCount long The number of sticky sessions on the node.

SessionUpdateCount long The number of session updates since the last time
statistics were reset.

Web Service Report
The Web Service report provides information about the service running the Coherence*Web
application. The report records the requests processed, request failures, and request backlog,
tasks processed, task failures, and task backlog. Request Count and Task Count are useful to
determine performance and throughput of the service. RequestPendingCount and Task
Backlog are useful in determining capacity issues or blocked processes. Task Hung Count,
Task Timeout Count, Thread Abandoned Count, Request Timeout Count are the number of
unsuccessful executions that have occurred in the system.

The report is a tab-delimited file that is prefixed with the date and hour in YYYYMMDDHH format
and appended with -web-session-service.txt. For example 2009013102-web-session-
service.txt would be created on January 1, 2009 at 2:00 am. Table 6-9 describes the
contents of the Web Service Report.

Chapter 6
Running Performance Reports

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 11

Table 6-9 Contents of the Web Service Report

Column Title Data Type Description

Batch Counter Long A sequential counter to help integrate information
between related files. This value does reset when
the Reporter restarts and is not consistent across
nodes. However, it is helpful when trying to
integrate files.

Node Id String The numeric node identifier.

Refresh Time Date The system time when the service information was
updated from a remote node.

Request Count Long The number of requests by the Coherence*Web
application since the last report was created.

RequestPendingCount Long The number of pending requests by the
Coherence*Web application at the time of the
report.

RequestPendingDuration Long The duration for the pending requests of the
Coherence*Web application at the time of the
report.

Request Timeout Count Long The number of request timeouts by the
Coherence*Web application since the last report
was created.

Report Time Date The system time when the report executed.

Service String A static value (DistributedSessions) used as
the service name if merging the information with
the service file.

Task Backlog Long The task backlog of the Coherence*Web
application at the time of the report was created.

Task Count Long The number of tasks executed by the
Coherence*Web application since the last report
was created.

Task Hung Count Long The number of tasks that were hung by the
Coherence*Web application since the last report
was created.

Task Timeout Count Long The number of task timeouts by the
Coherence*Web application since the last report
was created.

Thread Abandoned Count Long The number of threads abandoned by the
Coherence*Web application since the last report
was created.

Chapter 6
Running Performance Reports

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 11

7
Cleaning Up Expired HTTP Sessions

The Coherence*Web Session Management Module includes a Session Reaper that is
responsible for removing HTTP sessions that have expired.You should monitor the Session
Reaper and ensure that it is properly configured based on your application and deployment
environment. Properly managing the Session Reaper can help minimize resource usage and
can help increase performance.
Each HTTP session contains two pieces of information that determine when it has timed out.
The first is the LastAccessedTime property of the session, which is the time stamp of the most
recent activity involving the session. The second is the MaxInactiveInterval property of the
session, which specifies how long the session is kept active without any activity; a typical value
for this property is 30 minutes. The MaxInactiveInterval property defaults to the value
configured for Coherence*Web, but it can be modified on a session-by-session basis.

Each time that an HTTP request is received by the server, if there is an HTTP session
associated with that request, then the LastAccessedTime property of the session is
automatically updated to the current time. As long as requests continue to arrive related to that
session, it is kept active, but when a period of inactivity occurs longer than that specified by the
MaxInactiveInterval property, then the session expires. Session expiration is passive—
occurring only due to the passing of time. The Coherence*Web Session Reaper scans for
sessions that have expired, and when it finds expired sessions it destroys them.

This chapter includes the following sections:

Understanding the Session Reaper
The Session Reaper configuration addresses basic questions such as how frequently will the
reaper run, on which servers will the reaper run, and on which servers will it look for expired
sessions.

Understanding Where the Session Reaper Runs

Every application server running Coherence*Web runs the Session Reaper. That means that if
Coherence is configured to provide a separate cache tier (made up of cache servers), then the
Session Reaper does not run on those cache servers.

By default, the Session Reaper runs concurrently on all of the application servers, so that all of
the servers share the workload of identifying and cleaning up expired sessions. The
coherence-reaperdaemon-cluster-coordinated context parameter causes the cluster to
coordinate reaping so that only one server at a time performs the actual reaping; the use of this
option is not suggested, and it cannot be used with the Coherence*Web over
Coherence*Extend topology.

The coherence-reaperdaemon-cluster-coordinated context parameter should not be used if
sticky optimization (coherence-sticky-sessions) is also enabled. Because only one server at
a time performs the reaping, sessions owned by other nodes cannot be reaped. This means
that it will take longer for sessions to be reaped as more nodes are added to the cluster. Also,
the reaping ownership does not circulate over the nodes in the cluster in a controlled way; one
node can be the reaping node for a long time before it is taken over by another node. During
this time, only its own sessions are reaped.

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

Understanding How Frequently the Session Reaper Runs

The Session Reaper is configured to scan the entire set of sessions over a certain period,
called a reaping cycle, which defaults to five minutes. This length of the reaping cycle is
specified by the coherence-reaperdaemon-cycle-seconds context parameter. This setting
indicates to the Session Reaper how aggressively it must work. If the cycle length is configured
too short, the Session Reaper uses additional resources without providing additional benefit. If
the cycle length is configured too long, then expired sessions will use heap space in the
Coherence caches unnecessarily. In most situations, it is far preferable to reduce resource
usage than to ensure that sessions are cleaned up quickly after they expire. Consequently, the
default cycle of five minutes is a good balance between promptness of cleanup and minimal
resource usage.

During the reaping cycle, the Session Reaper scans for expired sessions. In most cases, the
Session Reaper takes responsibility for scanning all of the HTTP sessions across the entire
cluster, but there is an optimization available for the single tier topology. In the single tier
topology, when all of the sessions are being managed by storage-enabled Coherence cluster
members that are also running the application server, the session storage is colocated with the
application server. Consequently, it is possible for the Session Reaper on each application
server to scan only the sessions that are stored locally. This behavior can be enabled by
setting the coherence-reaperdaemon-assume-locality configuration option to true.

Regardless of whether the Session Reaper scans only colocated sessions or all sessions, it
does so in a very efficient manner by using these advanced capabilities of the Coherence data
grid:

• The Session Reaper delegates the search for expired sessions to the data grid using a
custom ValueExtractor implementation. This ValueExtractor takes advantage of the
BinaryEntry interface so that it can determine if the session has expired without even
deserializing the session. As a result, the selection of expired sessions can be delegated to
the data grid just like any other parallel query, and can be executed by storage-enabled
Coherence members in a very efficient manner.

• The Session Reaper uses the com.tangosol.net.partition.PartitionedIterator class
to automatically query on a member-by-member basis, and in a random order that avoids
harmonics in large-scale clusters.

Each storage-enabled member can very efficiently scan for any expired sessions, and it has to
scan only one time per application server per reaper cycle. The result is a default Session
Reaper configuration that works well for application server clusters with one or multiple
servers.

Understanding How the Session Reaper Runs

Coherence*Web uses a work manager to retrieve threads to execute the parallel reaping.
WebLogic Server defines a default work manager, wm/CoherenceWorkManager, which it will
attempt to use. If no work manager is defined with that name, it will use the default work
manager implemented in Coherence.

The default Coherence work manager implementation uses the
java.util.concurrent.ThreadPoolExecutor Java API to process the submitted tasks using
one of the many threads in the pool. A blocking queue such as LinkedBlockingQueue, is used
to schedule the waiting tasks in the order of first-in-first out (FIFO).

Chapter 7
Understanding the Session Reaper

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

To use the default WebLogic Server work manager, use the WebLogic Remote Console to
create a work manager that is named wm/CoherenceWorkManager. Also, add the following
resource-ref element in the application web.xml file:

<resource-ref>
 <res-ref-name>wm/CoherenceWorkManager</res-ref-name>
 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

To ensure that the Session Reaper does not impact the smooth operation of the application
server, it breaks up its work into chunks and schedules that work in a manner that spreads the
work across the entire reaping cycle. Because the Session Reaper has to know how much
work it must schedule, it maintains statistics on the amount of work that it performed in
previous cycles, and uses statistical weighting to ensure that statistics from recent reaping
cycles count more heavily. There are several reasons why the Session Reaper breaks up the
work in this manner:

• If the Session Reaper consumed a large number of CPU cycles simultaneously, it could
cause the application to be less responsive to users. By doing a small portion of the work
at a time, the application remains responsive.

• One of the key performance enablers for Coherence*Web is the near-caching feature of
Coherence; because the sessions that are expired are accessed through that same near
cache to clean them, expiring too many sessions too quickly could cause the cache to evict
sessions that are being used on that application server, leading to performance loss.

The Session Reaper performs its job efficiently, even with the default configuration by:

• Delegating as much work as possible to the data grid.

• Delegating work to only one member at a time.

• Enabling the data grid to find expired sessions without deserializing them.

• Restricting the usage of CPU cycles.

• Avoiding cache-thrashing of the near caches that Coherence*Web relies on for
performance.

Understanding How the Session Reaper Removes Sessions

The Session Reaper can invalidate sessions either in parallel or serially. By default, it
invalidates sessions serially, which may be useful if the application server JVM has a high
system load due to a large number of concurrent threads. To invalidate sessions in parallel, set
the coherence-reaperdaemon-parallel context parameter to true.

The Session Reaper deletes sessions that have timed-out. The default behavior is to remove
the session after fetching it from the local JVM and calling the invalidate method on the
HTTP session. However, the session reaper can also be configured to delete sessions
remotely using a Coherence entry processor. In this case, the invalidate method of the HTTP
session and the session listeners are not invoked. Deleting sessions remotely is much faster
than the default mechanism but should only be used in applications that do not use session
listeners. To configure the reaper to delete sessions remotely, set the coherence-session-
reaping-mechanism context parameter to RemoteDelete.

Chapter 7
Understanding the Session Reaper

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

Tuning the Session Reaper
There are several Session Reaper configuration properties that can be changed based on how
your application is implemented and deployed.
To tune the default Session Reaper configuration:

• If the application is deployed with the in-process topology, then set the coherence-
reaperdaemon-assume-locality configuration option to true.

• Because all of the application servers are responsible for scanning for expired sessions, it
is reasonable to increase the coherence-reaperdaemon-cycle-seconds configuration
option if the cluster is larger than 10 application servers. The larger the number of
application servers, the longer the cycle can be; for example, with 200 servers, it would be
reasonable to set the length of the reaper cycle as high as 30 minutes (that is, setting the
coherence-reaperdaemon-cycle-seconds configuration option to 1800).

• If the application does not use session listeners, then set the coherence-session-
reaping-mechanism context parameter to RemoteDelete.

• If you want to set the queue size of the Session Reaper work manager, use the
coherence-reaperdaemon-queue-size configuration option. If not set, the queue size is
unlimited. This option is used only when parallel reaping is enabled and is not applicable
for Service Provider Interface (SPI).

• If you want to set the maximum number of threads for the Session Reaper daemon, use
the coherence-reaperdaemon-max-threads configuration option. The default value for this
option is 5.

• If you want to set the Configuration parameter for minimum number of threads for the
Session Reaper daemon, use the coherence-reaperdaemon-min-threads configuration
option. The default value for this option is 1.

Getting Session Reaper Performance Statistics
The HttpSessionManagerMBeanWeb provides performance statistics for monitoring the average
time duration for a reap cycle, the number of sessions reaped, and the time until the next reap
cycle.
The following performance statistics are available for the Session Reaper:

• AverageReapDuration, which is the average reap duration (the time it takes to complete a
reap cycle), in milliseconds, since the statistic was reset

• LastReapDuration, which is the time in milliseconds it took for the last reap cycle to finish

• MaxReapedSessions, which is the maximum number of sessions reaped in a reap cycle
since the statistic was reset

• NextReapCycle, which is the time (as a java.lang.Date data type) for the next reap cycle

• ReapedSessions, which is the number of sessions reaped during the last cycle

• ReapedSessionsTotal, which is the number of expired sessions that have been reaped
since the statistic was reset

See Managing and Monitoring Applications with JMX.

You can access these attributes in a monitoring tool such as JConsole. However, you must set
up the Coherence Clustered JMX Framework before you can access them. See Using JMX to
Manage Coherence in Managing Oracle Coherence.

Chapter 7
Tuning the Session Reaper

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

Understanding Session Invalidation Exceptions for the Session
Reaper

Each Coherence*Web instance has a session reaper that periodically iterates through all of the
sessions in the session cache and checks for expired sessions. If multiple Web applications
are using a Coherence*Web instance, then a reaper from one Web application can invalidate
sessions used in a different application.
Session attribute listeners are registered with the Web application that is reaping expired
sessions. The listeners attempt to retrieve the session attribute values during invalidation. If the
session attributes are dependent on classes that exist only in the original Web application, then
a class not found exception is thrown and logged in the Session Reaper. These exceptions will
not cause any disruption in the Web application or the application server.

Coherence*Web provides a context parameter, coherence-session-log-invalidation-
exceptions, to control whether these exceptions are logged. The default value, true, allows
the exceptions to be logged. If you want to suppress the logging of these exceptions, set this
context parameter to false.

Chapter 7
Understanding Session Invalidation Exceptions for the Session Reaper

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

8
Working with JSF and MyFaces Applications

Coherence*Web provides support for Jakarta Server Faces (JSF) and MyFaces applications.
JSF is a framework that enables you to build user interfaces for Web applications. MyFaces,
from the Apache Software Foundation, provides JSF components that extend the JSF
specification. MyFaces components are completely compatible with the JSF 1.1 Reference
Implementation or any other compatible implementation.
This chapter includes the following sections:

Configuring for all JSF and MyFaces Web Applications:
JSF and MyFaces attempts to cache the state of the view in the session object.
This state data should be serializable by default, but there could be situations where this would
not be the case. For example:

• If Coherence*Web reports IllegalStateException due to a non-serializable class, and all
the attributes placed in the session by your Web-application are serializable, then you must
configure JSF/MyFaces to store the state of the view in a hidden field on the rendered
page.

• If the Web application puts non-serializable objects in the session object, you must set the
coherence-preserve-attributes context parameter to true.

The JSF parameter jakarta.faces.STATE_SAVING_METHOD identifies where the state of the
view is stored between requests. By default, the state is saved in the servlet session. Set the
STATE_SAVING_METHOD parameter to client in the context-param stanza of the web.xml file, so
that JSF stores the state of the entire view in a hidden field on the rendered page. If you do
not, then JSF may attempt to cache that state, which is not serializable, in the session object.

Example 8-1 illustrates setting the STATE_SAVING_METHOD parameter in the web.xml file.

Example 8-1 Setting STATE_SAVING_METHOD in the web.xml File

...
<context-param>
 <param-name>jakarta.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
</context-param>
...

Configuring for Instrumented Applications that use MyFaces
If you are deploying the MyFaces application with the Coherence*Web WebInstaller (that is, an
instrumented application), then you might have to complete an additional step based on the
version of MyFaces.

• If you are using Coherence*Web WebInstaller to deploy a Web-application built with a
pre-1.1.n version of MyFaces, then nothing more needs to be done.

• If you are using Coherence*Web WebInstaller to deploy a Web-application built with a
1.2.x version of MyFaces, then add the context parameter
org.apache.myfaces.DELEGATE_FACES_SERVLET to the web.xml file. This parameter allows

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 2

http://java.sun.com/javaee/javaserverfaces/
https://myfaces.apache.org/#/
https://myfaces.apache.org/#/

you to specify a custom servlet instead of the default
jakarta.faces.webapp.FacesServlet.

Example 8-2 illustrates setting the DELEGATE_FACES_SERVLET context parameter in the
web.xml file.

Example 8-2 Setting DELEGATE_FACES_SERVLET in the web.xml File

...
<context-param>
 <param-name>org.apache.myfaces.DELEGATE_FACES_SERVLET</param-name>
 <param-value>com.tangosol.coherence.servlet.api23.ServletWrapper</param-value>
</context-param>
...

Configuring for Instrumented Applications that use Mojarra
If you are using Coherence*Web WebInstaller to deploy a Web application based on the JSF
Reference Implementation (Mojarra), then you must declare the FacesServlet class in the
servlet stanza of the web.xml file.

Example 8-3 Declaring the Faces Servlet in the web.xml File

...
<servlet>
 <servlet-name>Faces Servlet (for loading config)</servlet-name>
 <servlet-class>jakarta.faces.webapp.FacesServlet</servlet-class>
 </servlet>
...

Chapter 8
Configuring for Instrumented Applications that use Mojarra

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 2

A
Coherence*Web Context Parameters

Coherence*Web includes many context parameters that can be configured in the web.xml file
or they can also be entered on the command line as system properties.The system properties
have the same name as the context parameters, but the dash (-) is replaced with a period (.).
For example, the context parameter coherence-enable-sessioncontext can be declared on
the command line by:

-Dcoherence.enable.sessioncontext=true

If both a system property and the equivalent context parameter are configured, the value from
the system property is honored.

Table A-1 describes the context parameters for Coherence*Web.

Table A-1 Context Parameters for Coherence*Web

Parameter Name Description

coherence-application-name Coherence*Web uses the value of this parameter to determine the name
of the application that uses the ApplicationScopeController
interface to scope attributes. The value for this parameter should be
provided in the following format:

application name + ! + Web module name

The application name is the name of the application that uses the
ApplicationScopeController interface and Web module name is the
name of the Web module in which it appears.

For example, if you have an EAR file named test.ear and a Web-
module named app1 defined in the EAR file, then the default value for the
coherence-application-name parameter would be test!app1.

If this parameter is not configured, then Coherence*Web uses the name
of the class loader instead. Also, if the parameter is not configured and
the ApplicationScopeController interface is configured, then a
warning is logged saying that the application name was not configured.
See Session Attribute Scoping.

coherence-attribute-overflow-
threshold

For the Split Model, described in Session Models, this value specifies the
minimum length (in bytes) that the serialized form of an attribute value
must be for it to be stored in the separate overflow cache that is reserved
for large attributes.

If unspecified, this parameter defaults to 1024.

coherence-cache-configuration-path Specifies the name of the file that Coherence*Web should use to obtain
session cache information, instead of using the default default-
session-cache-config.xml file. See Customizing the Name of the
Session Cache Configuration File.

coherence-cache-delegator-class Specifies a cache delegator class that is responsible for manipulating
(getting, putting, or deleting) data in the distributed cache. Valid value is:

• com.tangosol.coherence.servlet.LocalSessionCacheDeleg
ator—This class indicates that the local cache should be used for
storing and retrieving the session instance before attempting to use
the distributed cache. See Getting Concurrent Access to the Same
Session Instance.

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-1 of A-11

Table A-1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

coherence-cluster-owned If true, Coherence*Web automatically shuts down the Coherence node
when the Web application shuts down. You must use the WAR-scoped
cluster node deployment model in this case. See WAR-Scoped Cluster
Nodes.

If false, the Web application is responsible for shutting down the
Coherence node (see
com.tangosol.net.CacheFactory.shutdown() in the Javadoc). You
must carefully consider a cluster node-scoping deployment model in this
case and the circumstances under which the application shuts down the
Coherence node and the side effects of doing so. See Cluster Node
Isolation.

Note: When using the WebInstaller, a value of true instructs the
WebInstaller to place the Coherence library in the WEB-INF/lib directory
of each Web application found in your Jakarta EE application.

If unspecified, this parameter defaults to false.

coherence-configuration-consistency If true, Coherence*Web runs a configuration check at startup to
determine whether all nodes in the Web tier have the same
Coherence*Web configuration. If the configuration of a particular node is
not consistent, then it will fail to start (which, in turn, prevents the
application from starting).

If false, (there is no checking) and the configurations are not consistent,
then the cluster members might exhibit inconsistent behavior in managing
the session data.

If unspecified, this parameter defaults to false.

coherence-contextless-session-retain-
millis

Specifies the number of milliseconds that a server holds a lock on a
session while accessing it without the session being implied by the
current request context. A session is implied by the current request
context if and only if the current thread is processing a servlet request,
and the request is associated with that session. All other access to a
session object is out of context. For example, if a reference to an arbitrary
session is obtained from a SessionContext object (if that option is
enabled), or if the application has code that holds on to session object
references to manage sessions directly. Because session access requires
session ownership, out of context access to the session object
automatically obtains ownership on behalf of the caller; that ownership
will be retained for the number of milliseconds specified by this option so
that repeated calls to the session do not individually obtain and release
ownership, which is potentially an expensive operation. The valid range is
10 to 10000 (from 1/100th of a second up to 10 seconds).

If unspecified, this parameter defaults to 200.

Appendix A

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-2 of A-11

Table A-1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

coherence-distributioncontroller-
class

This value specifies a class name of the
com.tangosol.coherence.servlet.HttpSessionCollection$Sess
ionDistributionController interface implementation.

Valid values include:

• com.tangosol.coherence.servlet.AbstractHttpSessionCol
lection$DistributedController an implementation of the
SessionDistributionController interface that forces all
sessions (and thus their attributes) to be managed in a distributed
manner. This is the default behavior, but by having an implementation
that forces this, the raw overhead of using a
HttpSessionController can be measured.

• com.tangosol.coherence.servlet.AbstractHttpSessionCol
lection$HybridController an implementation of the
SessionDistributionController interface that forces all
sessions and serializable attributes to be managed in a distributed
manner. All session attributes that do not implement the
Serializable interface will be kept local.

• com.tangosol.coherence.servlet.AbstractHttpSessionCol
lection$LocalController an implementation of the
SessionDistributionController interface that forces all
sessions (and thus their attributes) to be managed locally. This might
not be useful for production purposes, but it can be useful for testing
the difference in scalable performance between local-only and fully-
distributed implementations.

coherence-enable-sessioncontext When set to true, this parameter allows the application to iterate
sessions from the session context, thus disobeying the deprecation in the
servlet specification.

If unspecified, this parameter defaults to false.

coherence-eventlisteners This is the comma-delimited list of names of application classes that want
to receive events from the Web container. This list comes from the
application listeners declared in the listener elements of the web.xml
file.

coherence-enable-suspect-attributes If set to true, Coherence*Web attempts to detect whether the value of
any session-related attributes have changed. Attributes that can be
changed (determined with a simple check) and that can be accessed by a
get method are deemed to be suspect. Changeable objects might have
been changed by application code and must be re-serialized back into the
cache. See Detecting Changed Attribute Values.

If unspecified, this parameter defaults to true.

coherence-factory-class This is the fully qualified name of the class that implements the
SessionHelper.Factory factory class.

This parameter defaults to
com.tangosol.coherence.servlet.apinn.DefaultFactory where
nn is 50, 60, or 61 for Servlet 5.0, 6.0, or 6.1 containers, respectively. Use
6.1 if your Servlet container is later than 6.1.

coherence-local-session-cachename This name overrides the name of the local cache that stores
nondistributed sessions when the coherence-
distributioncontroller-class parameter is specified.

If unspecified, this parameter defaults to local-session-storage. See
Session Cache Configuration File.

Appendix A

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-3 of A-11

Table A-1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

coherence-local-attribute-cachename This name overrides the name of the local cache that stores non-
distributed sessions when either the coherence-
sessiondistributioncontroller-class parameter is specified or
the coherence-preserve-attributes parameter is true.

If unspecified, this parameter defaults to local-attribute-storage.
See Session Cache Configuration File.

coherence-preserve-attributes This value, if set to true, specifies that non-serializable attributes should
be preserved as local ones. This parameter requires a load balancer to
be present to retrieve non-serializable attributes for a session.

These attributes will be lost if the client (application server) fails. The
application would need to be able to recover from this.

If unspecified, this parameter defaults to false.

coherence-reaperdaemon-assume-
locality

This setting allows the Session Reaper to assume that the sessions that
are stored on this node (for example, by a distributed cache service) are
the only sessions that this node must check for expiration. This value
must be set to false if the session storage cache is being managed by
nodes that are not running a reaper, for example if cache servers are
being used to manage the session storage cache.

If cache servers are being used, select the Split Model and run the
session overflow storage in a separate distributed cache service that is
managed entirely by the cache servers. Leave the session storage cache
itself in a distributed cache service that is managed entirely by the
application server JVMs so they can take advantage of this assume
locality feature. See Cleaning Up Expired HTTP Sessions .

If unspecified, this parameter defaults to true.

coherence-reaperdaemon-cluster-
coordinated

If true, the Session Reaper coordinates reaping in the cluster such that
only one server will perform reaping within a given reaping cycle, and it
will be responsible for checking all of the sessions that are being
managed in the cluster. See Cleaning Up Expired HTTP Sessions .

This option should not be used if sticky optimization (coherence-
sticky-sessions) is also enabled. See Understanding the Session
Reaper.

If unspecified, this parameter defaults to false.

coherence-reaperdaemon-cycle-seconds This is the number of seconds that the daemon rests between reaping.
For production clusters with long session timeout intervals, this can safely
be set higher. For testing, particularly with short session timeout intervals,
it can be set much lower. Setting it too low can cause more network traffic
and use more processing cycles, and has benefit only if the application
requires the sessions to be invalidated quickly when they have expired.
See Cleaning Up Expired HTTP Sessions .

If unspecified, this parameter defaults to 300.

coherence-reaperdaemon-parallel If set to true, the Session Reaper will invalidate expired sessions in
parallel. When set to false, expired sessions will be invalidated serially.
See Understanding the Session Reaper.

The default is false.

coherence-reaperdaemon-min-threads Configuration parameter for setting the minimum number of threads for
the session reaper daemon.

If unspecified, this parameter defaults to 1.

Appendix A

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-4 of A-11

Table A-1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

coherence-reaperdaemon-max-threads Configuration parameter for setting the maximum number of threads for
the session reaper daemon.

If unspecified, this parameter defaults to 5.

coherence-reaperdaemon-priority This is the priority for the Session Reaper daemon. See Cleaning Up
Expired HTTP Sessions and the source for the java.lang.Thread
class.

If unspecified, this parameter defaults to 5.

coherence-reaperdaemon-sweep-modulo The number of times that the reaper reaps the sessions that are being
used locally before it will check sessions that may be orphaned or expired
elsewhere in the cluster.

If unspecified, this parameter defaults to 4.

coherence-session-reaping-mechanism This property indicates the mechanism that is used by the session reaper
to delete timed-out sessions. Valid values are Default and
RemoteDelete. See Cleaning Up Expired HTTP Sessions .

The default is Default

coherence-scopecontroller-class This value specifies a class name of the optional
com.tangosol.coherence.servlet.HttpSessionCollection$Attr
ibuteScopeController interface implementation. See Session
Attribute Scoping.

Valid values include:

• com.tangosol.coherence.servlet.AbstractHttpSessionCol
lection$ApplicationScopeController

• com.tangosol.coherence.servlet.AbstractHttpSessionCol
lection$GlobalScopeController

The default value for Coherence*Web is
com.tangosol.coherence.servlet.AbstractHttpSessionCollect
ion$ApplicationScopeController

For Coherence*Web WebInstaller, there is no declared default value.

coherence-servletcontext-clustered This value is either true or false to indicate whether the attributes of
the ServletContext will be clustered. If true, then all serializable
ServletContext attribute values will be shared among all cluster nodes.

If unspecified, this parameter defaults to false, primarily because the
servlet specification indicates that the ServletContext attributes are
local to a JVM and should not be clustered.

coherence-servletcontext-cachename This specifies the name of the Coherence cache to be used to hold the
servlet context data if the servlet context is clustered.

If unspecified, this parameter defaults to servletcontext-storage.
SeeSession Cache Configuration File.

Appendix A

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-5 of A-11

Table A-1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

coherence-session-affinity-token Configures the session affinity suffix token with a given value. For
example, to set the session affinity suffix to abcd, add the following code
to the Web application's web.xml file:

<context-param>
 <param-name>coherence-session-affinity-token</param-name>
 <param-value>abcd</param-value>
</context-param>

To strip the session affinity suffix from the token, enter an exclamation
point (!) as the parameter value. See Sharing Coherence*Web Sessions
with Other Application Servers.

coherence-session-app-locking This value, if set to true, will prevent two threads in different applications
from processing a request for the same session at the same time. If set to
true the value of the coherence-session-member-locking
parameter will be ignored, because application locking implies member
locking. A value of false is incompatible with thread locking.

If unspecified, this parameter defaults to false.

See also coherence-session-member-locking, coherence-session-locking,
and coherence-session-app-locking parameter descriptions in this table
and Session Locking Modes.

coherence-session-cachename This name overrides the name of the clustered cache that stores the
sessions.

If unspecified, this parameter defaults to session-storage. SeeSession
Cache Configuration File.

coherence-session-cache-federated This specifies whether the session cache is federated among cluster
participants. Valid values are true and false. If set to true, the
default-federated-session-cache-config.xml session cache
configuration file is used and results in the session cache being
federated. See Federated Session Caches.

The default is false

coherence-session-cookie-domain This specifies the domain of the session cookie as defined by Request for
Comments 2109: HTTP State Management Mechanism (RFC 2109). By
default, no domain is set explicitly by the session management
implementation. See Session and Session Attribute Scoping.

coherence-session-cookie-httponly Appends the HttpOnly attribute to the session cookie. Note that not all
browsers support this functionality. This context parameter can be used
only with instrumented applications. See Preventing Cross-Site Scripting
Attacks.

coherence-session-cookie-name This specifies the name of the session cookie.

If unspecified, this parameter defaults to JSESSIONID.

coherence-session-cookie-path This specifies the path of the session cookie as defined by RFC 2109. By
default, no path is set explicitly by the session management
implementation. See Session and Session Attribute Scoping.

coherence-session-cookie-max-age This specifies the maximum age in seconds of the session cookie as
defined by RFC 2109. A value of -1 indicates that the cookie will not
persist on the client; a positive value gives the maximum age that the
cookie will be persistent for the client. Zero is not permitted.

If unspecified, this parameter defaults to -1.

Appendix A

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-6 of A-11

http://www.ietf.org/rfc/rfc2109.txt
http://www.ietf.org/rfc/rfc2109.txt
http://www.ietf.org/rfc/rfc2109.txt
http://www.ietf.org/rfc/rfc2109.txt

Table A-1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

coherence-session-cookie-secure If true, this value ensures that the session cookie will be sent only from a
Web client over a Secure Socket Layer (SSL) connection. If unspecified,
the default is false.

coherence-session-cookies-enabled If unspecified, this parameter defaults to true to enable session cookies.

coherence-session-expire-seconds This value overrides the session expiration time, and is expressed in
seconds. Setting it to -1 causes sessions to never expire. See Cleaning
Up Expired HTTP Sessions .

If unspecified, this parameter defaults to 1800.

coherence-session-get-lock-timeout This value configures a timeout for lock acquisition for Coherence*Web.
See Troubleshooting Locking in HTTP Sessions.

coherence-session-id-length This is the length, in characters, of generated session IDs. The suggested
absolute minimum length is 8.

If unspecified, this parameter defaults to 12.

coherence-session-lazy-access This value enables lazy acquisition of sessions. A session will be acquired
only when the servlet or filter attempts to access it. This is relevant only
for instrumented Web applications. See Accessing Sessions with Lazy
Acquisition.

If unspecified, this parameter defaults to false.

coherence-session-locking If false, concurrent modification to sessions, with the last update being
saved, will be allowed. If coherence-session-app-locking,
coherence-session-member-locking, or coherence-session-
thread-locking are set to true, then this value is ignored (being
logically true). See Optimistic Locking and Last-Write-Wins Locking.

If unspecified, this parameter defaults to false.

See also coherence-session-app-locking , coherence-session-member-
locking, and coherence-session-thread-locking in this table.

Appendix A

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-7 of A-11

Table A-1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

coherence-session-locking-mode The value of this context parameter determines the locking mode that will
govern concurrent access to HTTP sessions.

• none—This value allows concurrent access to a session by multiple
threads in a single member or multiple members. In this case, the
last write is saved. This is the default locking mode. See Last-Write-
Wins Locking.

• optimistic—This value allows multiple web container threads in
one or more members to access the same session concurrently. See
Optimistic Locking.

• app—This value prevent two threads in different applications from
processing a request for the same session at the same time. If this
parameter is set to app, then the value of the coherence-session-
member-locking parameter will be ignored, because application
locking implies member locking. A value of false is incompatible
with thread locking. See Application Locking .

• member—This value allows multiple web container threads in the
same cluster node to access and modify the same session
concurrently, but prohibits concurrent access by threads in different
members. See Member Locking.

• thread—This value prevents two threads in the same JVM from
processing a request for the same session at the same time. If set to
true, the value of the coherence-session-member-locking
parameter is ignored, because thread locking implies member
locking. See Thread Locking.

For example, to set the coherence-session-locking-mode context
parameter to application locking in web.xml:

<context-param>
 <param-name>coherence-session-locking-mode</param-name>
 <param-value>app</param-value>
</context-param>

coherence-session-log-invalidation-
exceptions

During session invalidation, many class not found exceptions might be
thrown and logged in the session reaper. If this context parameter is set
to false, then the exceptions will be suppressed. If set to true, then the
exceptions will be logged.

If unspecified, this parameter defaults to true. See Understanding
Session Invalidation Exceptions for the Session Reaper.

coherence-session-log-threads-
holding-lock

If true, this value specifies if a diagnostic invocation service is executed
when a member cannot acquire the cluster lock for a session. The
invocation service will cause the member that has ownership of the
session to log the stack trace of the threads that are currently holding the
lock. The coherence-session-log-threads-holding-lock context
parameter is available only when the coherence-sticky-sessions
context parameter is set to true.

If unspecified, this parameter defaults to true.

See Troubleshooting Locking in HTTP Sessions.

Appendix A

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-8 of A-11

Table A-1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

coherence-session-logger-level An alternative way to set the logging level for Coherence*Web (as
opposed to JDK logging). The valid values for this parameter are the
same as for JDK logging: SEVERE, WARNING, INFO, CONFIG, FINE, FINER
(default), and FINEST. See Configuring Logging for Coherence*Web.

See java.util.logging Level class in the Java SE and JDK API
Specification.

coherence-session-management-
cachename

This name overrides the name of the clustered cache that stores the
management and configuration information for the session management
implementation.

If unspecified, this parameter defaults to session-management. See
Session Cache Configuration File.

coherence-session-member-locking If true, this value prevents two threads in different members from
processing a request for the same session at the same time.

If unspecified, this parameter defaults to false.

See also coherence-session-thread-locking, coherence-session-locking,
and coherence-session-app-locking in this table.

coherence.session.optimizeModifiedSes
sions

This JVM system property, if set to true, enables near cache
optimizations which can improve performance with applications that use
Last-Write-Wins locking.

If unspecified, this value defaults to false.

This parameter can be set only on the command line as a system
property.

coherence-session-overflow-cachename For the Split Model, this value overrides the name of the clustered cache
that stores the large attributes that exceed a certain size and thus are
determined to be more efficiently managed as separate cache entries and
not as part of the serialized session object itself.

If unspecified, this parameter defaults to session-overflow.
SeeSession Cache Configuration File.

coherence-session-strict-spec If false, then the implementation will not be required to adhere to the
servlet specification. The implementation will ignore certain types of
exceptions and the application will not terminate. Setting, getting, and
removing attributes, or invalidating sessions will not generate any
callbacks to session listeners. Any ClassNotFound exceptions will not be
propagated back to the caller if an attribute cannot be deserialized
because the class does not exist in the invoking application.

If true, then the implementation strictly adheres to the servlet
specification. ClassNotFound exceptions must be handled by the
application, and session listener events will be sent, even if retrieving the
attribute value fails.

If unspecified, this parameter defaults to true.

coherence-session-thread-locking If true, this value prevents two threads in the same JVM from processing
a request for the same session at the same time. If set to true, the value
of the coherence-session-member-locking parameter is ignored,
because thread locking implies member locking.

If unspecified, this parameter defaults to false.

See also coherence-session-app-locking, coherence-session-locking, and
coherence-session-member-locking parameter descriptions in this table
and Session Locking Modes.

Appendix A

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-9 of A-11

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

Table A-1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

coherence-session-urldecode-
bycontainer

If true, this value uses the container's decoding of the URL session ID. If
coherence-session-urlencode-name has been overridden, this must
be set to false. Setting this to false will not work in some containers.

If unspecified, this parameter defaults to true.

coherence-session-urlencode-
bycontainer

If true, this value uses the container's encoding of the URL session ID.
Setting this to true could conflict with the setting for coherence-
session-urlencode-name if it has been specified.

If unspecified, this parameter defaults to false.

coherence-session-urlencode-enabled If true, this value enables URL encoding of session IDs.

If unspecified, this parameter defaults to true.

coherence-session-urlencode-name This is the parameter name to encode the session ID into the URL. On
some containers, this value cannot be overridden.

If unspecified, this parameter defaults to jsessionid.

coherence-session-weblogic-
compatibility-mode

If true, a single session ID (with the cookie path set to "/") will map to a
unique Coherence*Web session instance in each Web application. If
false, then the standard behavior will apply: that is, a single session ID
will map to a single session instance. All other session persistence
mechanisms in WebLogic Server use a single session ID in each Web
application to refer to different session instances.

If unspecified, this parameter defaults to true. An exception is when the
application is configured to use the global scope controller. In this case,
the default is false.

See Scoping the Session Cookie Path.

coherence-sessioncollection-class This is the fully-qualified class name of the HttpSessionCollection
implementation to use. Possible values include:

• com.tangosol.coherence.servlet.MonolithicHttpSessionC
ollection

• com.tangosol.coherence.servlet.SplitHttpSessionCollec
tion (default)

• com.tangosol.coherence.servlet.TraditionalHttpSession
Collection

A value must be specified for this parameter. See Configuring a Session
Model.

coherence-shutdown-delay-seconds This value determines how long the session management implementation
waits before shutting down after receiving the last indication that the
application has been stopped, either from ServletContextListener
events (Servlet 2.3 or later) or by the destruction of Servlet and Filter
objects. This value is expressed in seconds. A value of zero indicates
synchronous shutdown; any positive value indicates asynchronous
shutdown.

If unspecified, this parameter defaults to 0, because some servers are not
capable of asynchronous shutdown.

Appendix A

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-10 of A-11

Table A-1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

coherence-sticky-sessions If true, this value specifies whether sticky session optimizations will be
used. This should be enabled only if a sticky load balancer is being used.
This feature requires member, application or thread locking to be enabled.
See Enabling Sticky Session Optimizations .

See also coherence-session-thread-locking, coherence-session-member-
locking, and coherence-session-app-locking in this table.

If unspecified, this parameter defaults to false.

Appendix A

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-11 of A-11

B
Capacity Planning

You should estimate the number of cache servers that an application requires before you
deploy Coherence*Web.These equations will help you only to arrive at a reasonable estimate;
they do not account for the effects of cache indexes, non application objects that might reside
on the cache server heap, failover headroom, and so on.
To find the number of cache servers that you will need, you must first calculate the application's
heap requirements and the cache server's available tenured generation.

1. Calculate your application's total heap requirements.

When trying to determine the number of cache servers that you will need for your
application, a good starting point is to determine your application's total heap
requirements. The total heap requirement can be calculated as the number of sessions
that you will run, multiplied by the average number of cached objects per session,
multiplied by average number of bytes per cached object. Because you typically make one
backup copy per cache entry, multiply the total by 2. Written as an equation, this becomes:

Total_Heap_Requirement = 2 * (Number_of_Sessions) *
(Average_Number_of_Cached_Objects per Session) * (Average_Number_of_Bytes per
Cached_Object)

The units of measure for Total_Heap_Requirement are bytes. The
Average_Number_of_Bytes per Cached_Object, means the number of bytes in the
serialized byte stream of primary copies only. Note that this equation does not address
unserialized object size. Space requirements for backup copies are accounted for
separately.

2. Calculate the available tenured generation in a cache server JVM.

The available tenured generation is a function of the maximum heap size allocation and
other user-specified JVM heap-sizing parameters. Another factor in the available tenured
generation is the percentage of the heap that is available for storage. Typically, 66% is
used as the maximum percentage of the heap available for storage, but this figure might
be too low for your system. Make it a variable:

Percent_of_Heap_Available_for_Storage = 0.66

Available_Tenured_Generation = (Maximum_Heap_Size) *
(Percent_of_Heap_Available_for_Storage)

3. Calculate the number of cache servers that will be needed.

To calculate the number of cache servers that will be needed, divide the total heap
requirement by the available tenured generation.

Number_of_Cache_Servers = (Total_Heap_Requirement / Available_Tenured_Generation)

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-1 of B-1

C
Session Cache Configuration File

Coherence*Web uses the session cache configuration file, default-session-cache-
config.xml, to define the caches and services that implement HTTP session management.
This file is deployed in the WEB-INF/classes directory.
Table C-1 describes the default cache-related values used in the default-session-cache-
config.xml file.

Table C-1 Cache-Related Values Used in default-session-cache-config.xml

Value Description

local-attribute-storage This local cache is used to store attributes that are not distributed. This can happen
under these conditions:

• A coherence-distributioncontroller-class is configured. Attributes for
local sessions will be stored in this cache.

• A non-serializable attribute is set on a distributed session. If coherence-
preserve-attributes is set to true, then non-serializable attributes will be
placed in the cache. See Table A-1.

local-session-storage This local cache is used to store session models that are considered to be local by the
configured (if any) coherence-distributioncontroller-class parameter. See
Table A-1.

servletcontext-storage If ServletContext attribute clustering (see the coherence-servletcontext-
clustered parameter in Table A-1) is enabled (it is disabled by default), this cache is
used to store ServletContext attributes. This cache is expected to contain a few
read-mostly attributes.

session-management This cache is used to store internal configuration and management information for the
session management implementation. This information is updated infrequently.

session-storage This value is the default clustered cache used to store the session attributes. To use a
different cache, use the coherence-session-cachename context parameter to
specify the cache name.

session-overflow If the coherence-sessioncollection-class parameter (described in Table A-1) is
set to com.tangosol.coherence.servlet.SplitHttpSessionCollection, then
this cache will hold large session attributes. By default, session attributes larger than 1
K will be stored in this cache. This is configured as a distributed cache.

session-storage-heap-only This clustered (non-elastic) cache is used to store the session attributes. This value
can be put to use with the coherence-session-cachename context parameter.

session-overflow-heap-only This clustered (non-elastic) cache is used to store the "overflowing" (split-out due to
size) session attributes. It is used only for the "Split" model and can be put to use with
the coherence-session-overflow-cachename context parameter.

Table C-2 describes the services-related values used in the default-session-cache-
config.xml file.

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix C-1 of C-5

Table C-2 Services-Related Values Used in default-session-cache-config.xml

Value Description

DistributedSessions This distributed service uses the RAM journal backing map (elastic data) and is used
by the following caches:

• session-storage
• session-overflow
The coherence.session.localstorage system property controls if a JVM stores
and manages data for these caches. Under most circumstances, this should be set to
false for Web container JVMs. See Deployment Topologies.

ViewSessionsMisc This view cache service.

SessionOwnership This invocation service is used by the sticky session optimization feature (if
coherence-sticky-sessions is set to true).

DistributedSessionsHeapOnly This distributed service is used by the following caches:
• session-storage-heap-only
• session-overflow-heap-only

Example C-1 illustrates the contents of the default-session-cache-config.xml file. The
cache- and services-related values described in Table C-1 and Table C-2 appear in bold.

Example C-1 Contents of the default-session-cache-config.xml File

<?xml version="1.0"?>
<!-- -->
<!-- -->
<!-- Cache configuration descriptor for Coherence*Web -->
<!-- -->
<!-- --
>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-
cache-config coherence-cache-config.xsd">

 <scope-name>oracle.coherence.web</scope-name>

 <caching-scheme-mapping>
 <!--
 The clustered cache used to store Session management data.
 -->
 <cache-mapping>
 <cache-name>session-management</cache-name>
 <scheme-name>view</scheme-name>
 </cache-mapping>

 <!--
 The clustered cache used to store ServletContext attributes.
 -->
 <cache-mapping>
 <cache-name>servletcontext-storage</cache-name>
 <scheme-name>view</scheme-name>
 </cache-mapping>

Appendix C

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix C-2 of C-5

 <!--
 The clustered cache used to store Session attributes.
 -->
 <cache-mapping>
 <cache-name>session-storage</cache-name>
 <scheme-name>session-distributed</scheme-name>
 </cache-mapping>

 <!--
 The clustered (non-elastic) cache used to store Session attributes.
 -->
 <cache-mapping>
 <cache-name>session-storage-heap-only</cache-name>
 <scheme-name>session-distributed-heap-only</scheme-name>
 </cache-mapping>

 <!--
 The clustered cache used to store the "overflowing" (split-out due to
size)
 Session attributes. Only used for the "Split" model.
 -->
 <cache-mapping>
 <cache-name>session-overflow</cache-name>
 <scheme-name>session-distributed</scheme-name>
 </cache-mapping>

 <!--
 The clustered (non-elastic) cache used to store the "overflowing" (split-
out due to size)
 Session attributes. Only used for the "Split" model.
 -->
 <cache-mapping>
 <cache-name>session-overflow-heap-only</cache-name>
 <scheme-name>session-distributed-heap-only</scheme-name>
 </cache-mapping>

 <!--
 The local cache used to store Sessions that are not yet distributed (if
 there is a distribution controller).
 -->
 <cache-mapping>
 <cache-name>local-session-storage</cache-name>
 <scheme-name>unlimited-local</scheme-name>
 </cache-mapping>

 <!--
 The local cache used to store Session attributes that are not distributed
 (if there is a distribution controller or attributes are allowed to become
 local when serialization fails).
 -->
 <cache-mapping>
 <cache-name>local-attribute-storage</cache-name>
 <scheme-name>unlimited-local</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

Appendix C

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix C-3 of C-5

 <caching-schemes>
 <!--
 View caching scheme used by the Session management and ServletContext
 attribute caches.
 -->
 <view-scheme>
 <scheme-name>view</scheme-name>
 <service-name>ViewSessionMisc</service-name>
 <back-scheme>
 <distributed-scheme>
 <scheme-ref>session-distributed-heap-only</scheme-ref>
 </distributed-scheme>
 </back-scheme>
 <reconnect-interval>30s</reconnect-interval>
 <autostart>true</autostart>
 </view-scheme>

 <local-scheme>
 <scheme-name>session-front</scheme-name>
 <eviction-policy>HYBRID</eviction-policy>
 <high-units>1000</high-units>
 <low-units>750</low-units>
 </local-scheme>

 <distributed-scheme>
 <scheme-name>session-distributed</scheme-name>
 <service-name>DistributedSessions</service-name>
 <lease-granularity>member</lease-granularity>
 <local-storage system-property="coherence.session.localstorage">false</
local-storage>
 <partition-count>257</partition-count>
 <backup-count>1</backup-count>
 <request-timeout>30s</request-timeout>
 <backing-map-scheme>
 <ramjournal-scheme>
 <high-units system-property="coherence.session.highunits"/>
 <unit-calculator>BINARY</unit-calculator>
 </ramjournal-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <distributed-scheme>
 <scheme-name>session-distributed-heap-only</scheme-name>
 <service-name>DistributedSessionsHeapOnly</service-name>
 <lease-granularity>member</lease-granularity>
 <local-storage system-property="coherence.session.localstorage">false</
local-storage>
 <partition-count>257</partition-count>
 <backup-count>1</backup-count>
 <request-timeout>30s</request-timeout>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>

Appendix C

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix C-4 of C-5

 </distributed-scheme>

 <!--
 Local caching scheme definition used by all caches that do not require an
 eviction policy.
 -->
 <local-scheme>
 <scheme-name>unlimited-local</scheme-name>
 <service-name>LocalSessionCache</service-name>
 </local-scheme>

 <!--
 Clustered invocation service that manages sticky session ownership.
 -->
 <invocation-scheme>
 <service-name>SessionOwnership</service-name>
 <request-timeout>30s</request-timeout>
 </invocation-scheme>
 </caching-schemes>
</cache-config>

Appendix C

Administering HTTP Session Management with Oracle Coherence*Web
G26645-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix C-5 of C-5

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Introduction to Coherence*Web
	Understanding Coherence*Web
	Supported Web Containers
	Supported Jakarta Servlet Version
	Configuration and Deployment Road Map
	Choose Your Cluster Node Isolation
	Choose Your Locking Mode
	Choose How to Scope Sessions and Session Attributes
	Choose When to Clean Up Expired HTTP Sessions
	Choose the Integration Method

	2 Using Coherence*Web with WebLogic Server
	Overview of Coherence*Web
	Overview of Managed Coherence Servers
	Configuring and Deploying Coherence*Web: Main Steps
	Summary of Configuring and Deploying Coherence*Web
	Installing WebLogic Server and Oracle Coherence
	Configure Coherence*Web
	Configure the Session Cookies
	Start a Cache Server
	Starting a Coherence Cache Server from WebLogic Remote Console
	Starting a Coherence Cache Server from the Command Line
	To Start a Standalone Coherence Cache Server
	To Start a Storage-Enabled or -Disabled WebLogic Server Instance

	Configure Coherence*Web Storage Mode
	Deploying Applications to WebLogic Server

	Coherence MBean Attributes for Coherence*Web
	Enabling the Coherence Session Cache in WebLogic Remote Console
	Using a Custom Session Cache Configuration File
	Scoping the Session Cookie Path
	Updating the Session ID
	Sharing Coherence*Web Sessions with Other Application Servers

	3 Using Coherence*Web on Other Application Servers
	Integrating Coherence*Web Using the WebInstaller
	General Instructions for Integrating Coherence*Web Session Management Module
	Deploying and Running Applications In Process
	Deploying and Running Applications Out-of-Process
	Migrating to Out-of-Process Topology
	Deploying and Running Applications Out-of-Process with Coherence*Extend
	Enabling Sticky Sessions for Apache Tomcat Servers
	Integrating with IBM WebSphere Liberty

	Coherence*Web WebInstaller Ant Task
	Using the Coherence*Web WebInstaller Ant Task
	Configuring the WebInstaller Ant Task
	WebInstaller Ant Task Examples

	Testing HTTP Session Management
	How the Coherence*Web WebInstaller Instruments a Jakarta EE Application
	Integrating Coherence*Web with Applications Using Jakarta EE Security
	Preventing Cross-Site Scripting Attacks

	4 Tomcat Native Session Integration
	Tomcat Configuration
	Manager Configuration Options

	5 Coherence*Web Session Management Features
	Session Models
	Overview of Session Models
	Monolithic Model
	Traditional Model
	Split Model
	Session Model Recommendations
	Configuring a Session Model
	Sharing Data in a Clustered Environment
	Scalability and Performance

	Session and Session Attribute Scoping
	Session Scoping
	Preventing Web Applications from Sharing Session Data
	Working with Multiple Cache Configurations
	Keeping Session Cookies Separate

	Session Attribute Scoping
	Sharing Session Information Between Multiple Applications

	Cluster Node Isolation
	Application Server-Scoped Cluster Nodes
	EAR-Scoped Cluster Nodes
	WAR-Scoped Cluster Nodes

	Session Locking Modes
	Overview of Session Locking Modes
	Optimistic Locking
	Last-Write-Wins Locking
	Member Locking
	Application Locking
	Thread Locking
	Troubleshooting Locking in HTTP Sessions
	Enabling Sticky Session Optimizations

	Deployment Topologies
	In-Process Topology
	Out-of-Process Topology
	Migrating from In-Process to Out-of-Process Topology

	Out-of-Process with Coherence*Extend Topology
	Configuring Coherence*Web with Coherence*Extend
	Overview of Configuring Coherence*Web with Coherence*Extend
	Configure the Cache for Proxy and Storage JVMs
	Configure the Cache for Web Tier JVMs

	Accessing Sessions with Lazy Acquisition
	Overriding the Distribution of HTTP Sessions and Attributes
	Overview of Overriding HTTP Session Distribution
	Implementing a Session Distribution Controller
	Registering a Session Distribution Controller Implementation

	Detecting Changed Attribute Values
	Saving Non-Serializable Attributes Locally
	Securing Coherence*Web Deployments
	Customizing the Name of the Session Cache Configuration File
	Configuring Logging for Coherence*Web
	Getting Concurrent Access to the Same Session Instance
	Federated Session Caches

	6 Monitoring Applications
	Managing and Monitoring Applications with JMX
	Managing and Monitoring Applications on WebLogic Server
	Running Performance Reports
	Web Session Cache Storage Report
	Web Session Cache Overflow Report
	Web Report
	WebLogic Web Report
	Web Service Report

	7 Cleaning Up Expired HTTP Sessions
	Understanding the Session Reaper
	Tuning the Session Reaper
	Getting Session Reaper Performance Statistics
	Understanding Session Invalidation Exceptions for the Session Reaper

	8 Working with JSF and MyFaces Applications
	Configuring for all JSF and MyFaces Web Applications:
	Configuring for Instrumented Applications that use MyFaces
	Configuring for Instrumented Applications that use Mojarra

	A Coherence*Web Context Parameters
	B Capacity Planning
	C Session Cache Configuration File

