
Oracle® Fusion Middleware
Developing Remote Clients for Oracle
Coherence

15.1.1.0.0
G25096-01
October 2025

Oracle Fusion Middleware Developing Remote Clients for Oracle Coherence, 15.1.1.0.0

G25096-01

Copyright © 2008, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documents ii

Conventions ii

Part I Getting Started with Coherence*Extend

1 Introduction to Coherence*Extend

Overview of Coherence*Extend 1

Extend Clients 2

Extend Client APIs 3

POF Serialization 3

Understanding Extend Client Configuration Files 4

Non-Native Client Support 4

REST Client Support 5

Memcached Client Support 5

2 Building Your First Extend Application

Overview of the Extend Example 1

Step 1: Configure the Cluster Side 1

Step 2: Configure the Client Side 2

Step 3: Create the Sample Client 3

Step 4: Start the Cache Server Process 5

Step 5: Run the Application 5

3 Configuring Extend Proxies

Overview of Configuring Extend Proxies 1

Defining Extend Proxy Services 1

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page i of xii

Defining a Single Proxy Service Instance 1

Defining Multiple Proxy Service Instances 2

Defining Multiple Proxy Services 2

Explicitly Configuring Proxy Addresses 3

Disabling Cluster Service Proxies 4

Specifying Read-Only NamedCache Access 5

Defining Caches for Use By Extend Clients 5

Disabling Storage on a Proxy Server 8

Starting a Proxy Server 8

4 Configuring Extend Clients

Overview of Configuring Extend Clients 1

Defining a Remote Cache 1

Using a Remote Cache as a Back Cache 3

Defining Remote Invocation Schemes 4

Connecting to Specific Proxy Addresses 4

Detecting Connection Errors 6

Disabling TCMP Communication 7

5 Advanced Extend Configuration

Using Address Provider References for TCP Addresses 1

Using a Custom Address Provider for TCP Addresses 2

Load Balancing Connections 3

Using Proxy-Based Load Balancing 3

Understanding the Proxy-Based Load Balancing Default Algorithm 4

Implementing a Custom Proxy-Based Load Balancing Strategy 4

Using Client-Based Load Balancing 5

6 Best Practices for Coherence*Extend

Do Not Run a Near Cache on a Proxy Server 1

Configure Heap NIO Space to be Equal to the Max Heap Size 1

Configure Proxy Service Thread Pooling 1

Understanding Proxy Service Threading 1

Setting Proxy Service Thread Pooling Thresholds 2

Setting an Exact Number of Threads 2

Be Careful When Making InvocationService Calls 3

Be Careful When Placing Collection Classes in the Cache 3

Configure POF Serializers for Cache Servers 4

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ii of xii

Configuring Firewalls for Extend Clients 4

Part II Creating Java Extend Clients

Part III Creating C++ Extend Clients

7 Introduction to Coherence C++ Clients

Overview of Coherence for C++ 1

Setting Up C++ Application Builds 1

Setting up the Compiler for Coherence-Based Applications 1

Including Coherence Header Files 2

Linking the Coherence Library 2

Setting the run-time Library and Search Path 2

Deploying Coherence for C++ 3

8 Configuration and Usage for C++ Clients

General Instructions 1

Implement the C++ Application 1

Compile and Link the Application 1

Configure Paths 2

Obtaining a Cache Reference with C++ 2

Cleaning up Resources Associated with a Cache 3

Configuring and Using the Coherence for C++ Client Library 3

Setting the Configuration File Location with an Environment Variable 3

Setting the Configuration File Location Programmatically 3

Operational Configuration File (tangosol-coherence-override.xml) 4

Configuring a Logger 5

9 Using the Coherence C++ Object Model

Using the Object Model 1

Coherence Namespaces 1

Understanding the Base Object 1

Automatically Managed Memory 1

Referencing Managed Objects 2

Using handles 2

Managed Object Instantiation 3

Managed Strings 3

String Instantiation 3

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page iii of xii

Auto-Boxed Strings 4

Type Safe Casting 4

Down Casting 4

Managed Arrays 5

Collection Classes 5

Managed Exceptions 6

Object Immutability 6

Integrating Existing Classes into the Object Model 7

Writing New Managed Classes 7

Specification-Based Managed Class Definition 7

Equality, Hashing, Cloning, Immutability, and Serialization 10

Threading 11

Weak References 12

Virtual Constructors 13

Advanced Handle Types 14

Thread Safety 14

Synchronization and Notification 15

Thread Safe Handles 15

Escape Analysis 17

Thread-Local Allocator 18

Diagnostics and Troubleshooting 19

Thread-Local Allocator Logs 19

Thread Dumps 19

Memory Leak Detection 20

Memory Corruption Detection 20

Application Launcher - Sanka 21

Command line syntax 21

Built-in Executables 21

Sample Custom Executable Class 22

10

Using the Coherence for C++ Client API

CacheFactory 1

NamedCache 1

QueryMap 1

ObservableMap 2

InvocableMap 2

Filter 3

Value Extractors 4

Entry Processors 4

Entry Aggregators 5

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page iv of xii

11

Building Integration Objects (C++)

Overview of Building Integration Objects (C++) 1

POF Intrinsics 1

Serialization Options 2

Overview of Serialization Options 2

Managed<T> (Free-Function Serialization) 2

PortableObject (Self-Serialization) 5

PofSerializer (External Serialization) 7

Using POF Object References 9

Enabling POF Object References 9

Registering POF Object Identities for Circular and Nested Objects 10

Registering Custom C++ Types 12

Implementing a Java Version of a C++ Object 12

Understanding Serialization Performance 13

Using POF Annotations to Serialize Objects 13

Annotating Objects for POF Serialization 13

Registering POF Annotated Objects 14

Enabling Automatic Indexing 14

Providing a Custom Codec 15

12

Querying a Cache (C++)

Overview of Query Functionality 1

Performing Simple Queries 1

Understanding Query Concepts 3

Performing Queries Involving Multi-Value Attributes 4

Using a Chained Extractor in a Query 4

Using a Query Recorder 4

13

Performing Continuous Queries (C++)

Overview of Performing Continuous Queries (C++) 1

Understanding the Use Cases for Continuous Query Caching 1

Understanding the Continuous Query Caching Implementation 2

Defining a Continuous Query Cache 2

Cleaning up Continuous Query Cache Resources 3

Caching Only Keys Versus Keys and Values 3

CacheValues Property and Event Listeners 3

Using ReflectionExtractor with Continuous Query Caches 3

Listening to a Continuous Query Cache 3

Avoiding Unexpected Results 4

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page v of xii

Achieving a Stable Materialized View 4

Making a Continuous Query Cache Read-Only 5

14

Performing Remote Invocations (C++)

Overview of Performing Remote Invocations (C++) 1

Configuring and Using the Remote Invocation Service 1

Registering Invocable Implementation Classes 2

15

Using Cache Events (C++)

Overview of Map Events (C++) 1

Caches and Classes that Support Events 1

Signing Up for all Events 2

Using a Multiplexing Map Listener 3

Configuring a MapListener for a Cache 3

Signing Up for Events on Specific Identities 3

Filtering Events 4

Using Lite Events 5

Listening to Queries 5

Using Synthetic Events 7

Using Backing Map Events 8

Using Synchronous Event Listeners 9

16

Performing Transactions (C++)

Using the Transaction API within an Entry Processor 1

Creating a Stub Class for a Transactional Entry Processor 2

Registering a Transactional Entry Processor User Type 4

Configuring the Cluster-Side Transactional Caches 4

Configuring the Client-Side Remote Cache 5

Using a Transactional Entry Processor from a C++ Client 6

Part IV Creating .NET Extend Clients

17

Introduction to Coherence .NET Clients

Overview of Coherence for .NET 1

Configuration and Usage for .NET Clients 1

General Instructions 1

Configuring Coherence*Extend for .NET 1

Obtaining a Cache Reference with .NET 2

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page vi of xii

Cleaning Up Resources Associated with a Cache 2

18

Building Integration Objects (.NET)

Overview of Building Integration Objects (.NET) 1

Creating an IPortableObject Implementation 1

Implementing a Java Version of a .NET Object 2

Creating a PortableObject Implementation (Java) 3

Registering Custom Types on the .NET Client 4

Registering Custom Types in the Cluster 5

Evolvable Portable User Types 6

Making Types Portable Without Modification 9

Using POF Object References 11

Enabling POF Object References 11

Registering POF Object Identities for Circular and Nested Objects 12

Using POF Annotations to Serialize Objects 13

Annotating Objects for POF Serialization 13

Registering POF Annotated Objects 14

Enabling Automatic Indexing 14

Providing a Custom Codec 15

19

Using the Coherence .NET Client Library

Setting Up the Coherence .NET Client Library 1

Using the Coherence .NET APIs 2

IConfigurableCacheFactory 2

DefaultConfigurableCacheFactory 2

Logger 3

Using the Common.Logging Library 4

INamedCache 4

IQueryCache 5

QueryRecorder 5

IObservableCache 6

Responding to Cache Events 7

IInvocableCache 8

Filters 8

Value Extractors 9

Entry Processors 9

Entry Aggregators 10

Configuring .NET Clients Programmatically 11

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page vii of xii

20

Performing Continuous Queries (.NET)

Overview of Performing Continuous Queries (.NET) 1

Understanding Use Cases for Continuous Query Caching 1

Understanding the Continuous Query Caching Implementation 2

Constructing a Continuous Query Cache 2

Cleaning Up Continuous Query Cache Resources 3

Caching Only Keys Versus Keys and Values 3

Listening to a Continuous Query Cache 3

Achieving a Stable Materialized View 4

Support for Synchronous and Asynchronous Listeners 4

Making a Continuous Query Cache Read-Only 4

21

Performing Remote Invocations (.NET)

Overview of Performing Remote Invocations 1

Configuring and Using the Remote Invocation Service 1

22

Performing Transactions (.NET)

Using the Transaction API within an Entry Processor 1

Creating a Stub Class for a Transactional Entry Processor 2

Registering a Transactional Entry Processor User Type 3

Configuring the Cluster-Side Transactional Caches 4

Configuring the Client-Side Remote Cache 5

Using a Transactional Entry Processor from a .NET Client 5

23

Managing ASP.NET Session State

Overview of ASP.NET Session State 1

Setting Up Coherence ASP.NET Session Management 1

Configure Coherence Clusters for ASP.NET Session Management 1

Configure ASP.NET Applications 1

Selecting a Session Model 3

Overview of Session Models 3

Specify the Session Model 3

Sharing ASP.NET Session State Across Applications 4

Advanced Configuration 4

Registering the Event Interceptors 6

Part V Getting Started with gRPC

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page viii of xii

24

Introduction to gRPC

25

Using the Coherence gRPC Proxy Server

Setting Up the Coherence gRPC Proxy Server 1

Starting the Server 2

Configuring the Server 2

Configuring the Server Listen Address 2

Configuring the Server Listen Port 3

Configuring SSL/TLS 3

Configuring the Server Thread Pool 4

Setting the Minimum Thread Count 4

Setting the Maximum Thread Count 4

Disabling the gRPC Proxy Server 5

Deploying the Proxy Service with Helidon Microprofile gRPC Server 5

26

Using the Coherence Java gRPC Client

Setting Up the Coherence gRPC Client 1

Configuring the Coherence gRPC Client 2

Overview of Configuring gRPC Clients 2

Defining a Remote gRPC Cache 3

Configuring the NameService Endpoints 4

Configuring the Fixed Endpoints 5

Configuring SSL 5

Configuring the Client Thread Pool 6

Accessing Coherence Resources 7

Using a Remote gRPC Cache As a Back Cache 7

27

Using the JavaScript, Python, and Go gRPC Clients

Part VI Using Coherence REST

28

Introduction to Coherence REST

Overview of Coherence REST 1

Dependencies for Coherence REST 1

Overview of Configuration for Coherence REST 2

Understanding Data Format Support 2

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ix of xii

Using XML as the Data Format 2

Using JSON as the Data Format 4

Authenticating and Authorizing Coherence REST Clients 5

29

Building Your First Coherence REST Application

Overview of the Basic Coherence REST Example 1

Prerequisites 1

Step 1: Configure the Cluster Side 3

Step 2: Create a User Type 4

Step 3: Configure REST Services 5

Step 4: Start the Cache Server Process 5

Step 5: Access REST Services From a Client 6

30

Performing Grid Operations with REST

Specifying Key and Value Types 1

Performing Single-Object REST Operations 1

Performing Multi-Object REST Operations 3

Performing Partial-Object REST Operations 3

Performing Queries with REST 4

Using Direct Queries 4

Using Named Queries 4

Specifying a Query Sort Order 6

Limiting Query Result Size 6

Retrieving Only Keys 7

Using Custom Query Engines 7

Implementing Custom Query Engines 7

Enabling Custom Query Engines 9

Performing Aggregations with REST 10

Aggregation Syntax for REST 10

Listing of Pre-Defined Aggregators 10

Creating Custom Aggregators 11

Performing Entry Processing with REST 12

Entry Processor Syntax for REST 12

Listing of Pre-defined Entry Processors 12

Creating Custom Entry Processors 13

Understanding Concurrency Control 13

Specifying Cache Aliases 14

Using Server-Sent Events 14

Receiving Server-Sent Events 15

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page x of xii

31

Deploying Coherence REST

Deploying with the Embedded HTTP Server 1

Deploying to WebLogic Server 2

Task 1: Configure a WebLogic Server Domain for Coherence REST 2

Task 2: Package the Coherence REST Web Application 2

Task 3: Package the Coherence Application 3

Task 4: Package the Enterprise Application 3

Task 5: Deploy the Enterprise Application 4

Deploying to a Jakarta EE Server (Generic) 4

Packaging Coherence REST for Deployment 4

Deploying to a Servlet Container 6

Configuring REST Server Access to POF-Enabled Services 6

32

Modifying the Default REST Implementation

Using the Pass-Through Resource 1

Using Custom Providers and Resources 2

Changing the Embedded HTTP Server 3

Using Netty HTTP Server 4

A REST Configuration Elements

REST Configuration File A-1

REST Configuration Element Reference A-1

REST Configuration Element Index A-2

aggregator A-2

aggregators A-2

engine A-3

marshaller A-3

processor A-4

processors A-4

query A-5

query-engines A-5

resource A-6

resources A-7

rest A-7

B Integrating with F5 BIG-IP LTM

Basic Concepts B-1

Creating Nodes B-2

Configuring a Load Balancing Pool B-3

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page xi of xii

Creating a Load Balancing Pool B-4

Adding a Load Balancing Pool Member B-5

Configuring a Virtual Server B-6

Configuring Coherence*Extend to Use BIG-IP LTM B-8

Using Advanced Health Monitoring B-9

Creating a Custom Health Monitor to Ping Coherence B-9

Manually Creating a Custom Health Monitor to Ping Coherence B-11

Associating a Custom Health Monitor With a Load Balancing Pool B-12

Enabling HTTP/S Health Monitoring B-13

Using SSL Offloading B-14

Enabling SSL Offloading B-14

Import the Server's SSL Certificate and Key B-14

Create the Client SSL Profile B-15

Associate the Client SSL Profile B-16

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page xii of xii

Preface

Developing Remote Clients for Oracle Coherence describes how to configure
Coherence*Extend and how to develop remote clients in Java, C++, and .NET. This document
also includes instructions for developing remote clients using Coherence REST.

This preface includes the following sections:

Audience
Developing Remote Clients for Oracle Coherence is intended for the following audiences:

• Primary Audience – Application developers who want to write and deploy clients that use
C++, .NET, and REST to interact with remote caches that reside in a Coherence cluster.

• Secondary Audience – System architects who want to understand core Oracle
Coherence concepts and want to build data grid-based solutions that include remote
clients.

The audience must be familiar with the respective client technologies as well as Java to use
this guide. In addition, the examples in this guide require the installation and use of the Oracle
Coherence product. For details about installing Coherence for Java and the respective client
technologies, see Installing Oracle Coherence. The use of an IDE is not required to use this
guide, but is recommended to facilitate working through the examples.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Related Documents
For more information, see the following documents that are included in the Oracle Coherence
documentation set:

• Administering HTTP Session Management with Oracle Coherence*Web

• Administering Oracle Coherence

• Developing Applications with Oracle Coherence

• Developing Oracle Coherence Applications for Oracle WebLogic Server

• Installing Oracle Coherence

• Integrating Oracle Coherence

• Managing Oracle Coherence

• Securing Oracle Coherence

• Java API Reference for Oracle Coherence

• C++ API Reference for Oracle Coherence

• .NET API Reference for Oracle Coherence

• Release Notes for Oracle Coherence

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ii of ii

Part I
Getting Started with Coherence*Extend

Learn about Coherence*Extend proxies, clients, configuration, and best practices. Try creating
a simple Coherence*Extend application.

Part I contains the following chapters:

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 1

1
Introduction to Coherence*Extend

Coherence*Extend includes support for native Coherence clients (Java, C++, and .NET) and
non-native Coherence clients (REST and Memcached).
This chapter includes the following sections:

Overview of Coherence*Extend
Coherence*Extend "extends" the reach of the core Coherence TCMP cluster to a wider range
of consumers, including desktops, remote servers, and computers located across WAN
connections. Typical uses of Coherence*Extend include providing desktop applications with
access to Coherence caches (including support for Near Cache and Continuous Query) and
linking multiple Coherence clusters connected through a high-latency, unreliable WAN.
Coherence*Extend consists of two basic components: an extend client running outside the
cluster and an extend proxy service running in the cluster hosted by one or more cache
servers (DefaultCacheServer). The client APIs include implementations of both the
CacheService and InvocationService interfaces which route all requests to the proxy. The
proxy responds to client requests by delegating to an actual Coherence clustered services (for
example, a partitioned or replicated cache service or an invocation service).

Coherence*Extend uses the Extend-TCP transport binding (a low-level messaging protocol) to
communicate between the client and the cluster. The protocol is a high performance, scalable
TCP/IP-based communication layer. The transport binding is configuration-driven and is
completely transparent to the client application that uses Coherence*Extend.

Figure 1-1 provides a conceptual view of the Coherence*Extend components and shows an
extend client connecting to an extend proxy service using Extend-TCP.

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

Figure 1-1 Conceptual View of Coherence*Extend Components

Extend
Client

Extend Proxy
Service

Invocation
Service

Cache
Service

Extend TCP
TCP/IP

Like cache clients, an extend client retrieves Coherence clustered service using a cache
factory. After a service is obtained, a client uses the service in the same way as if it were part
of the Coherence cluster. The fact that operations are being sent to a remote cluster node is
invisible to the client application.

Extend Clients
Extend clients (also referred to as real-time clients) can be created for the Java, .NET, and C++
platforms and have access to the same API as the standard Coherence API without being full
data members of the cluster. Typically, client applications are granted only read access to
cluster data, although it is possible to enable direct read/write access.
Extend clients provide:

• Key-based cache access through the NamedCache interface

• Attribute-based cache access using filters

• Custom processing and aggregation of cluster side entries using the InvocableMap
interface

• In-Process caching through LocalCache

• Remote invocation of custom tasks in the cluster through the Invocation Service

• Event Notifications using the standard Coherence event model. Data changes that occur
within the cluster are visible to the client application. Only events that a client application
registers for are delivered over the wire. This model results in efficient use of network
bandwidth and client processing.

• Near Caching and Continuous Query Caching to maintain cache data locally. If the server
to which the client application is attached happens to fail, the connection is automatically

Chapter 1
Extend Clients

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

reestablished to another server, and any locally cached data is re-synchronized with the
cluster.

For a complete list of real-time client features, see Oracle Coherence Products in Oracle
Fusion Middleware Licensing Information User Manual.

Extend Client APIs
Java, C++, and .NET (C#) native libraries are available for building extend clients. Each API is
delivered in its own distribution and must be installed separately. Extend clients use their
respective APIs to perform cache operations such as access, modify, and query data that is in
a cluster.
The C++ and C# APIs follow the Java API as close as possible to provide a consistent
experience between platforms. As an example, a Java client gets a NamedCache instance using
the CacheFactory.getCache method as follows:

NamedCache cache = CacheFactory.getCache("dist-extend");

For C++, the API is as follows:

NamedCache::Handle hCache = CacheFactory::getCache("dist-extend");

For C#, the API is as follows:

INamedCache cache = CacheFactory.GetCache("dist-extend");

This and many other API features are discussed throughout this guide:

• Java – See Creating Java Extend Clients for details on using the API and refer to Java API
Reference for Oracle Coherence for detailed API documentation.

• C++ – See Creating C++ Extend Clients for details on using the API and refer to C++ API
Reference for Oracle Coherence for detailed API documentation.

• .NET – See Creating .NET Extend Clients for details on using the API and refer to .NET
API Reference for Oracle Coherence for detailed API documentation.

POF Serialization
Like cache clients, extend clients must serialize objects that are to be stored in the cluster. C++
and C# clients use Coherence's Portable Object Format (POF), which is a language agnostic
binary format. Java extend clients typically use POF for serialization as well; however, there
are several other options for serializing Java objects, such as Java native serialization and
custom serialization routines.
Clients that serialize objects into the cluster can perform get and put based operations on the
objects. However, features such as queries and entry processors require Java-based cache
servers to interact with the data object, rather then simply holding onto a serialized
representation of it. To interact with the object and access its properties, a Java version of the
object must be made available to the cache servers.

See Using Portable Object Format in Developing Applications with Oracle Coherence for
detailed information on using POF with Java. For more information on using POF with C++ and
C#, see Building Integration Objects (C++), and Building Integration Objects (.NET) ,
respectively.

Chapter 1
Extend Client APIs

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

Understanding Extend Client Configuration Files
Extend clients use many of the same cluster-side configuration files except they are packaged
and deployed with the client.
Extend client configuration files include:

• Cache Configuration Deployment Descriptor – This file is used to define client-side cache
services and invocation services and must provide the address and port of the cluster-side
extend proxy service to which the client connects. The schema for this file is the
coherence-cache-config.xsd file for Java and C++ clients and the cache-config.xsd file
for .NET clients. See Cache Configuration Elements in Developing Applications with
Oracle Coherence.

At run time, the first cache configuration file that is found on the classpath is used. The
coherence.cacheconfig system property can also be used to explicitly specify a cache
configuration file. The file can also be set programmatically. See Specifying a Cache
Configuration File in Developing Applications with Oracle Coherence.

• POF Configuration Deployment Descriptor – This file is used to specify custom data types
when using POF to serialize objects. The schema for this file is the coherence-pof-
config.xsd file for Java and C++ clients and the pof-config.xsd file for .NETclients. See
POF User Type Configuration Elements in Developing Applications with Oracle
Coherence.

At run time, the first POF configuration file that is found on the classpath is used. The
coherence.pof.config system property can also be used to explicitly specify a POF
configuration file. When using POF, a client application uses a Coherence-specific POF
configuration file and a POF configuration file that is specific to the user types used in the
client. See Specifying a POF Configuration File in Developing Applications with Oracle
Coherence.

• Operational Override File – This file is used to override the operational deployment
descriptor, which is used to specify the operational and run-time settings that are used to
create, configure and maintain clustering, communication, and data management services.
For extend clients, this file is typically used to override member identity, logging, security,
and licensing. The schema for this file is the coherence-operational-config.xsd file for
Java and C++ clients and the coherence.xsd file for .NET clients. See Operational
Configuration Elements in Developing Applications with Oracle Coherence.

At run time, the first operational override file (tangosol-coherence-override.xml) that is
found on the classpath is used. The coherence.override system property can also be
used to explicitly specify an operational override file. The file can also be set
programmatically. See Using the Default Operational Override File in Developing
Applications with Oracle Coherence.

Non-Native Client Support
Coherence provides remote access to caches from REST-based or Memcached-based clients.
As with Coherence*Extend clients, non-native clients use the resources of a cluster without
becoming cluster members.
REST and Memcached client APIs are available for many popular programming languages,
allowing Coherence to be used in heterogeneous environments. Non-native clients can also be
used to ease the migration to a Coherence solution that uses the native Coherence client APIs.

This section includes the following topics:

Chapter 1
Understanding Extend Client Configuration Files

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

REST Client Support
Coherence provides a REST implementation that provides access to cache operations over
the HTTP protocol. Any REST client API can use Coherence caching. REST support is
provided either through an embedded HTTP server that is configured as an extend-like
acceptor on a proxy server, or through deployment to any Jakarta EE-based application server.
See Using Coherence REST .

Memcached Client Support
Coherence can be used as a drop-in replacement for memcached servers. Any memcached
client API that supports the memcached binary protocol can use Coherence distributed
caching. Memcached support is provided through a memcached adaptor that is implemented
as an extend-like acceptor that runs on a proxy server. See Using Memcached Clients with
Oracle Coherence in Integrating Oracle Coherence.

Chapter 1
Non-Native Client Support

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

2
Building Your First Extend Application

Build and run a simple Coherence*Extend client that accesses and uses a Coherence cache.
The example client that is used in this chapter is a Java-based extend client; however, the
concepts that are demonstrated are common to both C++ and .NET extend clients. For
complete C++ and .NET examples, see the Coherence Examples that are distributed as part of
the Coherence for Java distribution.
This chapter includes the following sections:

Overview of the Extend Example
The Coherence*Extend example is organized into a set of steps that are used to create,
configure, and run a basic Coherence*Extend client. The steps demonstrate many
fundamental Coherence*Extend concepts, such as: configuring an extend proxy, configuring a
remote cache, configuring the remote invocation service, and using the Coherence API.
Coherence for Java must be installed to complete the steps. For simplicity and ease of
deployment, the client and cache server in this example are run on the same computer.
Typically, extend clients and cache servers are located on separate systems.

Step 1: Configure the Cluster Side
The example extend client requires a proxy and cache to be configured in the cluster's cache
configuration deployment descriptor. The extend proxy configured in this example is
automatically assigned a proxy port to listen for client TCP/IP communication. A distributed
cache named dist-extend is defined and is used to store client data in the cluster.
To configure the cluster side:

1. Create an XML file named example-config.xml.

2. Copy the following XML to the file.

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>extend</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>extend</scheme-name>
 <lease-granularity>member</lease-granularity>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

 </distributed-scheme>

 <proxy-scheme>
 <service-name>ExtendTcpCacheService</service-name>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

3. Save and close the file.

Step 2: Configure the Client Side
The example client queries a remote cache and also invokes a task which is run on a remote
cluster node. To complete these operations, the example extend client requires a remote cache
scheme and a remote invocation scheme. Invoking tasks is considered a more advanced use
case.
The remote cache scheme includes a service name that matches the service name of a proxy
service on the cluster to which the client connects. In addition, the cache name that is used in
the cluster must also be used as the name of the remote cache scheme. For this example
(based on Step 1), the remote cache scheme service name is ExtendTcpCacheService and the
cache name is dist-extend. Lastly, the remote cache scheme includes the address and port
of the cluster's name service, which is used to find a proxy. The name service runs on the
cluster port which is 7574 by default.

The example extend client invokes a task on the remote cache and therefore requires a remote
invocation scheme. The remote invocation scheme defines the ExtendTcpInvocationService
service, which allows the client to create an Invocable instance and send it to the cluster for
processing. The remote invocation scheme uses the name service to find a proxy and includes
the name of the proxy service to which it connects.

To configure the client side:

1. Create an XML file named example-client-config.xml.

2. Copy the following XML to the file.

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>remote</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>remote</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <name-service-addresses>
 <socket-address>
 <address>127.0.0.1</address>
 <port>7574</port>
 </socket-address>

Chapter 2
Step 2: Configure the Client Side

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

 </name-service-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>

 <remote-invocation-scheme>
 <scheme-name>extend-invocation</scheme-name>
 <service-name>ExtendTcpInvocationService</service-name>
 <proxy-service-name>ExtendTcpCacheService</proxy-service-name>
 <initiator-config>
 <tcp-initiator>
 <name-service-addresses>
 <socket-address>
 <address>127.0.0.1</address>
 <port>7574</port>
 </socket-address>
 </name-service-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-invocation-scheme>
 </caching-schemes>
</cache-config>

3. Save and close the file.

Step 3: Create the Sample Client
The client application for this example is a simple client that increments an Integer value in a
remote cache using the CacheService and then retrieves the value from the cache using the
InvocationService. The client writes the value to the system output before exiting.

Note

• The client class must be on the classpath for all cache servers in the cluster. The
TestClient$1 class is an anonymous inner class that is generated during
compilation. It is serialized and sent to the InvocationService running on a
cluster member. In this example, the client and cluster member run on a single
computer. Therefore, both Java invocations use the same classpath.

• This example could also be run on a Coherence node (that is, within the cluster)
as is. The fact that operations are being sent to a remote cluster node over TCP/IP
is completely transparent to the client application.

To create the sample application:

1. Create a text file.

2. Copy the following Java code to the file:

import com.tangosol.net.AbstractInvocable;
import com.tangosol.net.CacheFactory;

Chapter 2
Step 3: Create the Sample Client

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

import com.tangosol.net.InvocationService;
import com.tangosol.net.NamedCache;
import java.util.Map;

public class TestClient {
 public static void main(String[] asArgs)
 throws Throwable
 {
 NamedCache cache = CacheFactory.getCache("dist-extend");
 Integer IValue = (Integer) cache.get("key");
 if (IValue == null)
 {
 IValue = new Integer(1);
 }
 else
 {
 IValue = new Integer(IValue.intValue() + 1);
 }
 cache.put("key", IValue);

 InvocationService service = (InvocationService)
 CacheFactory.getConfigurableCacheFactory()
 .ensureService("ExtendTcpInvocationService");

 Map map = service.query(new AbstractInvocable()
 {
 public void run()
 {
 System.out.println("This has been run by
 ExtendTcpInvocationService on: " +
 CacheFactory.getCluster().getLocalMember());
 setResult(CacheFactory.getCache("dist-extend").get("key"));
 }
 }, null);

 Integer IValue1 = (Integer) map.get(service.getCluster().
 getLocalMember());
 System.out.print("The value of the key is " + IValue1);
 }
}

3. Save the file as TestClient.java and close the file.

4. Compile TestClient.java:

javac -cp .;COHERENCE_HOME\lib\coherence.jar TestClient.java

Coherence*Extend InvocationService

Since, by definition, a Coherence*Extend client has no direct knowledge of the cluster and the
members running within the cluster, the Coherence*Extend InvocationService only allows
Invocable tasks to be executed on the JVM to which the client is connected. Therefore, you
should always pass a null member set to the query() method. As a consequence, the single
result of the execution is keyed by the local Member, which is null if the client is not part of the
cluster. This Member can be retrieved by calling service.getCluster().getLocalMember().
Additionally, the Coherence*Extend InvocationService only supports synchronous task
execution (that is, the execute() method is not supported).

Chapter 2
Step 3: Create the Sample Client

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

Step 4: Start the Cache Server Process
Extend Proxies are started as part of a cache server process(DefaultCacheServer). The cache
server must be configured to use the cache configuration that was created in Step 1. In
addition, the cache server process must be able to find the TestClient application on the
classpath at run time.
The following command line starts a cache server process and explicitly names the cache
configuration file created in Step 1 by using the coherence.cacheconfig system property:

java -cp COHERENCE_HOME\lib\coherence.jar;PATH_TO_CLIENT -
Dcoherence.cacheconfig=PATH\example-config.xml com.tangosol.net.DefaultCacheServer

Check the console output to verify that the proxy service is started. The output message is
similar to the following:

(thread=Proxy:ExtendTcpProxyService:TcpAcceptor, member=1): TcpAcceptor now
 listening for connections on 192.168.1.5:7077

Step 5: Run the Application
The TestClient application is started using the java command and must be configured to use
the cache configuration file.
The following command line runs the application and assumes that the TestClient class is
located in the current directory. The cache configuration file is explicitly named using the
coherence.cacheconfig system property:

java -cp .;COHERENCE_HOME\lib\coherence.jar -Dcoherence.cacheconfig=PATH\example-client-
config.xml TestClient

The output displays (among other things) that the client successfully connected to the extend
proxy TCP address and the current value of the key in the cache. Run the client again to
increment the key's value.

Note

Check the cache server process output for the message confirming that the invocation
task was executed remotely using the ExtendTcpInvocationService service.

This has been run...

Chapter 2
Step 4: Start the Cache Server Process

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

3
Configuring Extend Proxies

Extend proxies must be configured to allow clients to access and use the caches that are
defined in a Coherence cluster. The instructions in this chapter provide basic setup and do not
represent a complete configuration reference.
This chapter includes the following sections:

Overview of Configuring Extend Proxies
Extend proxies are Coherence cluster members that host one or more proxy services. A proxy
service is the underlying cluster service that extend clients use to access caches in a cluster.
Proxies and caches must be configured before extend clients can retrieve and store data in a
cluster.
Extend proxies and cache servers run in the same cluster member process
(DefaultCacheServer process). Collocating extend proxies with cache servers simplifies
cluster setup and ensures that proxies automatically scale with the cluster. However, extend
proxies can also be configured as separate members of the cluster. In this case, the proxies
and cache servers are organized as separate tiers that can scale independently.

Extend proxy services are configured in a cache configuration deployment descriptor. This
deployment descriptor is often referred to as the cluster-side cache configuration file. It is the
same cache configuration file that is used to set up caches on the cluster. See Specifying a
Cache Configuration File in Developing Applications with Oracle Coherence.

Defining Extend Proxy Services
The extend proxy service (ProxyService) is a cluster service that allows extend clients to
access a Coherence cluster using TCP/IP. A proxy service proxies two types of cluster
services: the CacheService cluster service, which is used by clients to access caches; and, the
InvocationService cluster service, which is used by clients to execute Invocable objects on
the cluster.
This section includes the following topics:

Defining a Single Proxy Service Instance
Extend proxy services are configured within a <caching-schemes> node using the <proxy-
scheme> element. Example 3-1 defines a proxy service named ExtendTcpProxyService and
includes the <autostart> element that is set to true so that the service automatically starts at
a cluster node. See proxy-scheme in Developing Applications with Oracle Coherence.

As configured in Example 3-1, a proxy address and ephemeral port is automatically assigned
and registered with a cluster name service. Extend clients connect to the name service, which
then redirects the client to the address of the requested proxy. The use of the name service
allows proxies to run on ephemeral addresses, which simplifies port management and
configuration. See Explicitly Configuring Proxy Addresses .

Example 3-1 Extend Proxy Service Configuration

...
<caching-schemes>

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 8

 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

Defining Multiple Proxy Service Instances
Multiple extend proxy service instances can be defined in order to support an expected number
of client connections and to support fault tolerance and load balancing. Client connections are
automatically balanced across proxy service instances. The algorithm used to balance
connections depends on the load balancing strategy that is configured. See Load Balancing
Connections.

To define multiple proxy service instances, include a proxy service definition in multiple proxy
servers and use the same service name for each proxy service. Proxy services that share the
same service name are considered peers.

The following examples define two instances of the ExtendTcpProxyService proxy service.
The proxy service definition is included in each cache server's respective cache configuration
file within the <proxy-scheme> element. The same configuration can be used on all proxies
including proxies that are co-located on the same machine.

On proxy server 1:

...
<caching-schemes>
 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

On proxy server 2:

...
<caching-schemes>
 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

Defining Multiple Proxy Services
Multiple extend proxy services can be defined in order to provide different applications with
their own proxies. Extend clients for a particular application can be directed toward specific
proxies to provide a more predictable environment.

The following example defines two extend proxy services: ExtendTcpProxyService1 and
ExtendTcpProxyService2:

...
<caching-schemes>
 <proxy-scheme>
 <service-name>ExtendTcpProxyService1</service-name>
 <autostart>true</autostart>

Chapter 3
Defining Extend Proxy Services

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 8

 </proxy-scheme>
 <proxy-scheme>
 <service-name>ExtendTcpProxyService2</service-name>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

Explicitly Configuring Proxy Addresses
Older extend clients that predate the name service or clients that have specific firewall
constraints may require specific proxy addresses. In this case, the proxy can be explicitly
configured to listen on a specific address and port. See Configuring Firewalls for Extend
Clients.

The <tcp-acceptor> subelement includes the address (IP, or DNS name, and port) that an
extend proxy service listens to for TCP/IP client communication. The address can be explicitly
defined using the <address-provider> element, or the address can be defined within an
operational override configuration file and referenced using the <address-provider> element.
The latter approach decouples the address configuration from the proxy scheme definition and
allows the address to change at runtime without having to change the proxy definition. See
Using Address Provider References for TCP Addresses.

Example 3-2 defines a proxy service named ExtendTcpProxyService and is set up to listen for
client requests on a TCP/IP socket that is bound to 198.168.1.5 and port 7077.

Example 3-2 Explicitly Configured Proxy Service Address

...
<caching-schemes>
 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <address-provider>
 <local-address>
 <address>192.168.1.5</address>
 <port>7077</port>
 </local-address>
 </address-provider>
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

The specified port should be outside of the computer's ephemeral port range to ensure that it is
not automatically assigned to other applications. If the specified port is not available, then the
default behavior is to select the next available port. To disable automatic port adjustment, add
a <port-auto-adjust> element that includes the value false. Or, to specify a range of ports
from which the port is selected, include a port value that represents the upper limit of the port
range. The following example sets a port range from 7077 to 8000:

<acceptor-config>
 <tcp-acceptor>
 <address-provider>
 <local-address>
 <address>192.168.1.5</address>
 <port>7077</port>

Chapter 3
Defining Extend Proxy Services

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 8

 <port-auto-adjust>8000</port-auto-adjust>
 </local-address>
 </address-provider>
 </tcp-acceptor>
</acceptor-config>

The <address> element supports using CIDR notation as a subnet and mask (for example
192.168.1.0/24). CIDR simplifies configuration by allowing a single address configuration to
be shared across computers on the same sub-net. Each cluster member specifies the same
CIDR address block and a local NIC on each computer is automatically found that matches the
address pattern. The /24 prefix size matches up to 256 available addresses: from 192.168.1.0
to 192.168.1.255. The <address> element also supports external NAT addresses that route to
local addresses; however, both addresses must use the same port number.

For solutions that do not require a firewall, you can omit the IP and port values which causes
the proxy to use the same IP address and port as TCMP (7574 by default). The port can also
be configured with a listen port of 0, which causes the proxy to listen on a system assigned
ephemeral port. This configuration is the same as omitting the <acceptor-config> element as
shown in Defining a Single Proxy Service Instance. If the proxy is configured to use ephemeral
ports, then clients must use the cluster name service to locate the proxy.

Disabling Cluster Service Proxies
The cache service and invocation service proxies can be disabled within an extend proxy
service definition. Both of these proxies are enabled by default and can be explicitly disabled if
a client does not require a service.

Cluster service proxies are disabled by setting the <enabled> element to false within the
<cache-service-proxy> and <invocation-service-proxy> respectively.

The following example disables the inovcation service proxy so that extend clients cannot
execute Invocable objects within the cluster:

<proxy-scheme>
 ...
 <proxy-config>
 <invocation-service-proxy>
 <enabled>false</enabled>
 </invocation-service-proxy>
 </proxy-config>
 ...
</proxy-scheme>

Likewise, the following example disables the cache service proxy to restrict extend clients from
accessing caches within the cluster:

<proxy-scheme>
 ...
 <proxy-config>
 <cache-service-proxy>
 <enabled>false</enabled>
 </cache-service-proxy>
 </proxy-config>
 ...
</proxy-scheme>

Chapter 3
Defining Extend Proxy Services

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 8

Specifying Read-Only NamedCache Access
By default, extend clients are allowed to both read and write data to proxied NamedCache
instances. The <read-only> element can be specified within a <cache-service-proxy>
element to prohibit extend clients from modifying cached content on the cluster. For example:

<proxy-scheme>
 ...
 <proxy-config>
 <cache-service-proxy>
 <read-only>true</read-only>
 </cache-service-proxy>
 </proxy-config>
 ...
</proxy-scheme>

Defining Caches for Use By Extend Clients
Extend clients read and write data to a cache on the cluster. Any of the cache types can store
client data. For extend clients, the cache on the cluster must have the same name as the
cache that is being used on the client side. See Defining a Remote Cache. See also Using
Caches in Developing Applications with Oracle Coherence. This section provides basic
examples of three cache types that are commonly used be extend clients.

A Basic Partitioned (distributed) Cache

The following example defines a basic partitioned cache named dist-extend.

...
<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>dist-default</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <distributed-scheme>
 <scheme-name>dist-default</scheme-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
</caching-schemes>
...

A Basic Near Cache

A typical near cache is configured to use a local cache (thread safe, highly concurrent, size-
limited and possibly auto-expiring) as the front cache and a remote cache as a back cache. A
near ache is configured by using the near-scheme which has two child elements: a front-
scheme for configuring a local (front) cache and a back-scheme for defining a remote (back)
cache.

A Near Cache is configured by using the <near-scheme> element in the coherence-cache-
config file. This element has two required subelements: front-scheme for configuring a local
(front-tier) cache and a back-scheme for defining a remote (back-tier) cache. While a local

Chapter 3
Defining Caches for Use By Extend Clients

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 8

cache (<local-scheme>) is a typical choice for the front-tier, you can also use non-JVM heap
based caches, (<external-scheme> or <paged-external-scheme>) or schemes based on Java
objects (<class-scheme>).

The remote or back-tier cache is described by the <back-scheme> element. A back-tier cache
can be either a distributed cache (<distributed-scheme>) or a remote cache (<remote-
cache-scheme>). The <remote-cache-scheme> element enables you to use a clustered cache
from outside the current cluster.

Optional subelements of <near-scheme> include <invalidation-strategy> for specifying how
the front-tier and back-tier objects are kept synchronized and <listener> for specifying a
listener which is notified of events occurring on the cache.

Example 3-3 demonstrates a near cache configuration.

Example 3-3 Near Cache Configuration

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend-near</cache-name>
 <scheme-name>extend-near</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <near-scheme>
 <scheme-name>extend-near</scheme-name>
 <front-scheme>
 <local-scheme>
 <high-units>1000</high-units>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <remote-cache-scheme>
 <scheme-ref>extend-dist</scheme-ref>
 </remote-cache-scheme>
 </back-scheme>
 <invalidation-strategy>all</invalidation-strategy>
 </near-scheme>
 </caching-schemes>
</cache-config>

A Basic Local Cache

A local cache is a cache that is local to (completely contained within) a particular application.
There are several attributes of a local cache that are particularly interesting:

• A local cache implements the same interfaces that the remote caches implement, meaning
that there is no programming difference between using a local and a remote cache.

• A local cache can be size-limited. Size-limited means that the local cache can restrict the
number of entries that it caches, and automatically evict entries when the cache becomes
full. Furthermore, both the sizing of entries and the eviction policies can be customized, for
example allowing the cache to be size-limited based on the memory used by the cached
entries. The default eviction policy uses a combination of Most Frequently Used (MFU) and
Most Recently Used (MRU) information, scaled on a logarithmic curve, to determine what
cache items to evict. This algorithm is the best general-purpose eviction algorithm because

Chapter 3
Defining Caches for Use By Extend Clients

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 8

it works well for short duration and long duration caches, and it balances frequency versus
recentness to avoid cache thrashing. The pure LRU and pure LFU algorithms are also
supported, and the ability to plug in custom eviction policies.

• A local cache supports automatic expiration of cached entries, meaning that each cache
entry can be assigned a time-to-live value in the cache. Furthermore, the entire cache can
be configured to flush itself on a periodic basis or at a preset time.

• A local cache is thread safe and highly concurrent.

• A local cache provides cache "get" statistics. It maintains hit and miss statistics. These run-
time statistics accurately project the effectiveness of the cache and are used to adjust size-
limiting and auto-expiring settings accordingly while the cache is running.

The element for configuring a local cache is <local-scheme>. Local caches are generally
nested within other cache schemes, for instance as the front-tier of a near-scheme. The
<local-scheme> provides several optional subelements that let you define the characteristics
of the cache. For example, the <low-units> and <high-units> subelements allow you to limit
the cache in terms of size. When the cache reaches its maximum allowable size, it prunes
itself back to a specified smaller size, choosing which entries to evict according to a specified
eviction-policy (<eviction-policy>). The entries and size limitations are measured in terms of
units as calculated by the scheme's unit-calculator (<unit-calculator>).

You can also limit the cache in terms of time. The <expiry-delay> subelement specifies the
amount of time from last update that entries are kept by the cache before being marked as
expired. Any attempt to read an expired entry results in a reloading of the entry from the
configured cache store (<cachestore-scheme>). Expired values are periodically discarded from
the cache based on the flush-delay.

If a <cache-store-scheme> is not specified, then the cached data only resides in memory, and
only reflect operations performed on the cache itself. See <local-scheme> for a complete
description of all of the available subelements.

Example 3-4 demonstrates a local cache configuration.

Example 3-4 Local Cache Configuration

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>example-local-cache</cache-name>
 <scheme-name>example-local</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <local-scheme>
 <scheme-name>example-local</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>32000</high-units>
 <low-units>10</low-units>
 <unit-calculator>FIXED</unit-calculator>
 <expiry-delay>10ms</expiry-delay>
 <cachestore-scheme>
 <class-scheme>
 <class-name>ExampleCacheStore</class-name>
 </class-scheme>
 </cachestore-scheme>

Chapter 3
Defining Caches for Use By Extend Clients

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 8

 <pre-load>true</pre-load>
 </local-scheme>
 </caching-schemes>
</cache-config>

Disabling Storage on a Proxy Server
You must explicitly configure a proxy service to not store any data.

Consider disabling storage on a proxy only if you plan to run proxies and storage nodes in two
separate tiers and scale them independently; although, this is generally not necessary and
requires more careful planning. A best practice is to run proxy services on cluster members
that also store data in the cluster (cache servers) because scaling cache servers increases
both cluster storage capacity as well as aggregate proxy bandwidth.

Note

Storage-enabled proxies bypass the front cache of a near cache and operate directly
against the back cache if it is a partitioned cache.

To disable storage on a proxy server, use the coherence.distributed.localstorage Java
property set to false when starting the cluster member. For example:

-Dcoherence.distributed.localstorage=false

Storage can also be disabled in the cache configuration file as part of a distributed cache
definition by setting the <local-storage> element to false. See distributed-scheme in
Developing Applications with Oracle Coherence.

...
<distributed-scheme>
 <scheme-name>dist-default</scheme-name>
 <local-storage>false</local-storage>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>
...

Starting a Proxy Server
A proxy server can be started using the DefaultCacheServer class.

To start a proxy server:

1. Change the current directory to the Oracle Coherence library directory (%COHERENCE_HOME%
\lib on Windows and $COHERENCE_HOME/lib on UNIX).

2. Make sure that the paths are configured so that the Java command runs.

3. Run the DefaultCacheServer class and include the location of the cache configuration file
and the operational configuration file. For example:

java -cp path_to_configuration_files;coherence.jar
 com.tangosol.net.DefaultCacheServer

Chapter 3
Disabling Storage on a Proxy Server

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 8

4
Configuring Extend Clients

Coherence*Extend clients are configured to connect to a proxy service on the cluster and
access to Coherence caches. The instructions provide basic setup and do not represent a
complete configuration reference. In addition, refer to the platform-specific parts of this guide
for additional configuration instructions.
This chapter includes the following sections:

Overview of Configuring Extend Clients
Coherence*Extend requires configuration both on the client side and the cluster side. On the
client side, remote cache services and the remote invocation services are configured and used
by clients to access cluster data through the extend proxy service. On the cluster side, extend
proxy services are setup to accept client requests. Extend clients and extend proxy services
communicate using TCP/IP.
Extend clients are configured using a cache configuration deployment descriptor. This
deployment descriptor is deployed with the client and is often referred to as the client-side
cache configuration file. Extend proxy services are configured in a cache configuration
deployment descriptor. This deployment descriptor is often referred to as the cluster-side
cache configuration file. It is the same cache configuration file that is used to set up caches on
the cluster. See Specifying a Cache Configuration File in Developing Applications with Oracle
Coherence.

Extend clients use the remote cache service and the remote invocation service to interact with
a Coherence cluster. Both remote cache services and remote invocation services are
configured in a cache configuration deployment descriptor that must be found on the classpath
when an extend client application starts.

Defining a Remote Cache
A remote cache is specialized cache service that routes cache operations to a cache on the
Coherence cluster. The remote cache and the cache on the cluster must have the same cache
name. Extend clients use the NamedCache interface as normal to get an instance of the cache.
At run time, the cache operations are not executed locally but instead are sent using TCP/IP to
an extend proxy service on the cluster. The fact that the cache operations are delegated to a
cache on the cluster is transparent to the extend client.
A remote cache is defined within a <caching-schemes> node using the <remote-cache-
scheme> element. Example 4-1 creates a remote cache scheme that is named
ExtendTcpCacheService and connects to the name service, which then redirects the request to
the address of the requested proxy service. The use of the name service simplifies port
management and firewall configuration. See remote-cache-scheme in Developing Applications
with Oracle Coherence.

Example 4-1 Remote Cache Definition

...
<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 7

 <scheme-name>extend-dist</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <name-service-addresses>
 <socket-address>
 <address>198.168.1.5</address>
 <port>7574</port>
 </socket-address>
 </name-service-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
</caching-schemes>
...

If the <service-name> value is different than the proxy scheme <service-name> value on the
cluster, use the <proxy-service-name> element to enter the value of the <service-name>
element that is configured in the proxy scheme. For example:

 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <proxy-service-name>SomeOtherProxyService</proxy-service-name>
 ...

If the client is in a different cluster than the proxy server, use the <cluster-name> element to
specify the cluster name of the proxy server. For example:

<remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <cluster-name
system-property="cache.server.cluster">CacheCluster</cluster-name>
 ...

As configured in Example 4-1, the remote cache scheme uses the <name-service-addresses>
element to define the socket address (IP, or DNS name, and port) of the name service on the
cluster. The <address> element also supports external NAT addresses that route to local
addresses; however, both addresses must use the same port number. The name service
listens on the cluster port (7574) by default and is available on all machines running cluster
nodes. If the target cluster uses the default cluster port, then the port can be omitted from the
configuration. Moreover, extend clients by default use the cluster discovery addresses to find
the cluster and proxy. If the extend client is on the same network as the cluster, then no

Chapter 4
Defining a Remote Cache

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 7

specific configuration is required as long as the client uses a cache configuration file that
specifies the same cluster-side cluster name.

The <name-services-addresses> element also supports the use of the <address-provider>
element for referencing a socket address that is configured in the operational override
configuration file. See Using Address Provider References for TCP Addresses and Connecting
to Specific Proxy Addresses.

Note

Clients that are configured to use a name service can only connect to Coherence
versions that also support the name service. In addition, for previous Coherence
releases, the name service automatically listened on a member's unicast port instead
of the cluster port.

Using a Remote Cache as a Back Cache
Extend clients typically use remote caches as part of a near cache. In such scenarios, a local
cache is used as a front cache and the remote cache is used as the back cache.
The following example creates a near cache that uses a local cache and a remote cache.

...
<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend-near</cache-name>
 <scheme-name>extend-near</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <near-scheme>
 <scheme-name>extend-near</scheme-name>
 <front-scheme>
 <local-scheme>
 <high-units>1000</high-units>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <remote-cache-scheme>
 <scheme-ref>extend-dist</scheme-ref>
 </remote-cache-scheme>
 </back-scheme>
 <invalidation-strategy>all</invalidation-strategy>
 </near-scheme>

 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <name-service-addresses>
 <socket-address>
 <address>198.168.1.5</address>
 <port>7574</port>
 </socket-address>
 </name-service-addresses>
 </tcp-initiator>

Chapter 4
Using a Remote Cache as a Back Cache

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 7

 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
</caching-schemes>
...

Defining Remote Invocation Schemes
A remote invocation scheme defines an invocation service that is used by clients to execute
tasks on the remote Coherence cluster. Extend clients use the InvocationService interface as
normal. At run time, a TCP/IP connection is made to an extend proxy service and an
InvocationService implementation is returned that executes synchronous Invocable tasks
within the remote cluster JVM to which the client is connected.
Remote invocation schemes are defined within a <caching-schemes> node using the <remote-
invocation-scheme> element. Example 4-2 defines a remote invocation scheme that is called
ExtendTcpInvocationService and uses the <name-service-address> element to configure the
address that the name service is listening on. See remote-invocation-scheme in Developing
Applications with Oracle Coherence.

Example 4-2 Remote Invocation Scheme Definition

...
<caching-schemes>
 <remote-invocation-scheme>
 <scheme-name>extend-invocation</scheme-name>
 <service-name>ExtendTcpInvocationService</service-name>
 <initiator-config>
 <tcp-initiator>
 <name-service-addresses>
 <socket-address>
 <address>198.168.1.5</address>
 <port>7574</port>
 </socket-address>
 </name-service-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-invocation-scheme>
</caching-schemes>
...

If the <service-name> value is different than the proxy scheme <service-name> value on the
cluster, then use the <proxy-service-name> element to enter the value of the <service-name>
element that is configured in the proxy scheme. For example:

 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpInvocationService</service-name>
 <proxy-service-name>SomeOtherProxyService</proxy-service-name>
 ...

Connecting to Specific Proxy Addresses
Clients can connect to specific proxy addresses if the client predates the name service feature
or if the client has specific firewall constraints. See Configuring Firewalls for Extend Clients.

Chapter 4
Defining Remote Invocation Schemes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 7

Example 4-1 uses the <socket-address> element to explicitly configure the address that an
extend proxy service is listening on (198.168.1.5 and port 7077). The <address> element also
supports external NAT addresses that route to local addresses; however, both addresses must
use the same port number. The address can also be defined within an operational override
configuration file and referenced using the <address-provider> element. The latter approach
decouples the address configuration from the remote cache definition and allows the address
to change at runtime without having to change the remote cache definition. See Using Address
Provider References for TCP Addresses.

Example 4-3 Remote Cache Definition with Explicit Address

...
<caching-scheme-mapping>
 <cache-mapping>
 che-name>dist-extend</cache-name>
 <scheme-name>extend-dist</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>198.168.1.5</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
</caching-schemes>
...

If multiple proxy service instances are configured, then a remote cache scheme or invocation
scheme can include each proxy service addresses to ensure a client can always connect to the
cluster. The algorithm used to balance connections depends on the load balancing strategy
that is configured. See Load Balancing Connections.

To configure multiple addresses, add additional <socket-address> child elements within the
<tcp-initiator> element of a <remote-cache-scheme> and <remote-invocation-scheme>
node as required. The following example defines two extend proxy addresses for a remote
cache scheme:

...
<caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>192.168.1.5</address>
 <port>7077</port>

Chapter 4
Connecting to Specific Proxy Addresses

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 7

 </socket-address>
 <socket-address>
 <address>192.168.1.6</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 </initiator-config>
 </remote-cache-scheme>
</caching-schemes>
...

While either an IP address or DNS name can be used, DNS names have an additional
advantage: any IP addresses that are associated with a DNS name are automatically resolved
at runtime. This allows the list of proxy addresses to be stored in a DNS server and centrally
managed and updated in real time. For example, if the proxy address list is going to be
192.168.1.1, 192.168.1.2, and 192.168.1.3, then a single DNS entry for hostname
ExtendTcpCacheService can contain those addresses and a single address named
ExtendTcpCacheService can be specified for the proxy address:

<tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>ExtendTcpCacheService</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
</tcp-initiator>

Detecting Connection Errors
Coherence*Extend can detect and notify clients when connection errors occur. Various
configuration options are available for controlling dropped connections.
When a Coherence*Extend service detects that the connection between the client and cluster
has been severed (for example, due to a network, software, or hardware failure), the
Coherence*Extend client service implementation (that is, CacheService or
InvocationService) dispatches a MemberEvent.MEMBER_LEFT event to all registered
MemberListeners and the service is stopped. For cases where the application calls
CacheFactory.shutdown(), the service implementation dispatches a
MemberEvent.MEMBER_LEAVING event followed by a MemberEvent.MEMBER_LEFT event. In both
cases, if the client application attempts to subsequently use the service, the service
automatically restarts itself and attempts to reconnect to the cluster. If the connection is
successful, the service dispatches a MemberEvent.MEMBER_JOINED event; otherwise, a
irrecoverable error exception is thrown to the client application.

A Coherence*Extend service has several mechanisms for detecting dropped connections.
Some mechanisms are inherit to the underlying protocol (such as TCP/IP in Extend-TCP),
whereas others are implemented by the service itself. The latter mechanisms are configured by
using the <outgoing-message-handler> element. See outgoing-message-handler in
Developing Applications with Oracle Coherence. In particular, the <request-timeout> value
controls the amount of time to wait for a response before abandoning the request. The
<heartbeat-interval> and <heartbeat-timeout> values control the amount of time to wait for
a response to a ping request before the connection is closed. As a best practice, the heartbeat
timeout should be less than the heartbeat interval to ensure other members are not
unnecessarily pinged and to not have multiple pings outstanding.

The following example is taken from Example 4-1 and demonstrates setting the request
timeout to 5 seconds.

Chapter 4
Detecting Connection Errors

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 7

...
<initiator-config>
 ...
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
</initiator-config>
...

The following example sets the heartbeat interval to 3 seconds and the heartbeat timeout to 2
seconds.

...
<initiator-config>
 ...
 <outgoing-message-handler>
 <heartbeat-interval>3s</heartbeat-interval>
 <heartbeat-timeout>2s</heartbeat-timeout>
 </outgoing-message-handler>
</initiator-config>
...

Disabling TCMP Communication
Java-based extend clients that are located within the network must disable TCMP
communication to exclusively connect to clustered services using extend proxies. If TCMP is
not disabled, Java-based extend clients may cluster with each other and may even join an
existing cluster. TCMP is disabled in the client-side tangosol-coherence-override.xml file.
To disable TCMP communication, set the <enabled> element within the <packet-publisher>
element to false. For example:

...
<cluster-config>
 <packet-publisher>
 <enabled system-property="coherence.tcmp.enabled">false
 </enabled>
 </packet-publisher>
</cluster-config>
...

The coherence.tcmp.enabled system property is used to specify whether TCMP is enabled
instead of using the operational override file. For example:

-Dcoherence.tcmp.enabled=false

Chapter 4
Disabling TCMP Communication

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 7

5
Advanced Extend Configuration

There are several advanced configuration options for extend clients and extend proxies that
are typically used to change operational defaults or to address specific use cases.
This chapter includes the following sections:

Using Address Provider References for TCP Addresses
Proxy service, remote cache, and remote invocation definitions can use the <address-
provider> element to reference a TCP socket address that is defined in an operational
override configuration file instead of explicitly defining an addresses in a cache configuration
file. Referencing socket address definitions allows network addresses to change without
having to update a cache configuration file.
To use address provider references for TCP addresses:

1. Edit the tangosol-coherence-override.xml file (both on the client side and cluster side)
and add a <socket-address> definition, within an <address-provider> element, that
includes the socket's address and port. Use the <address-provider> elements's id
attribute to define a unique ID for the socket address. See address-provider in Developing
Applications with Oracle Coherence. The following example defines an address with
proxy1 ID:

...
<cluster-config>
 <address-providers>
 <address-provider id="proxy1">
 <socket-address>
 <address>198.168.1.5</address>
 <port>7077</port>
 </socket-address>
 </address-provider>
 </address-providers>
</cluster-config>
...

2. Edit the cluster-side coherence-cache-config.xml and create, or update, a proxy service
definition and reference a socket address definition by providing the definition's ID as the
value of the <address-provider> element within the <tcp-acceptor> element. The
following example defines a proxy service that references the address that is defined in
step 1:

...
<caching-schemes>
 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <address-provider>proxy1</address-provider>
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 6

3. Edit the client-side coherence-cache-config.xml and create, or update, a remote cache
or remote invocation definition and reference a socket address definition by providing the
definition's ID as the value of the <address-provider> element within the <tcp-
initiator> element. The following example defines a remote cache that references the
address that is defined in step 1:

<remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <address-provider>proxy1</address-provider>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
</remote-cache-scheme>

Using a Custom Address Provider for TCP Addresses
Custom address providers dynamically assigns TCP address and port settings when binding to
a server socket. The address provider must be an implementation of the
com.tangosol.net.AddressProvider interface. Dynamically assigning addresses is typically
used to implement custom load balancing algorithms.
Address providers are defined using the <address-provider> element, which can be used
within the <tcp-acceptor> element for extend proxy schemes and within the <tcp-initiator>
element for remote cache and remote invocation schemes.

The following example demonstrates configuring an AddressProvider implementation called
MyAddressProvider for a TCP acceptor when configuring an extend proxy scheme.

...
<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <address-provider>
 <class-name>com.MyAddressProvider</class-name>
 </address-provider>
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>
...

The following example demonstrates configuring an AddressProvider implementation called
MyClientAddressProvider for a TCP initiator when configuring a remote cache scheme.

...
<remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <address-provider>
 <class-name>com.MyClientAddressProvider</class-name>

Chapter 5
Using a Custom Address Provider for TCP Addresses

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 6

 </address-provider>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
</remote-cache-scheme>
...

In addition, the <address-provider> element also supports the use of a <class-factory-
name> element to use a factory class that is responsible for creating AddressProvider
instances and a <method-name> element to specify the static factory method on the factory
class that performs object instantiation.

Load Balancing Connections
Extend client connections are load balanced across proxy service members. The default load
balancing strategy can be changed as required.
The default proxy-based strategy distributes client connections to proxy service members that
are being utilized the least. Custom proxy-based strategies can be created or the default
strategy can be modified as required. As an alternative, a client-based load balance strategy
can be implemented by creating a client-side address provider or by relying on randomized
client connections to proxy service members. The random approach provides minimal
balancing as compared to proxy-based load balancing.

Coherence*Extend can be used with F5 BIG-IP Local Traffic Manager (LTM), which provides
hardware-based load balancing. See Integrating with F5 BIG-IP LTM.

This section includes the following topics:

Using Proxy-Based Load Balancing
Proxy-based load balancing is the default strategy that is used to balance client connections
between two or more members of the same proxy service. The strategy is weighted by a
proxy's existing connection count, then by its daemon pool utilization, and lastly by its message
backlog.

The proxy-based load balancing strategy is configured within a <proxy-scheme> definition
using a <load-balancer> element that is set to proxy. For clarity, the following example
explicitly specifies the strategy. However, the strategy is used by default if no strategy is
specified and is not required in a proxy scheme definition.

...
<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <load-balancer>proxy</load-balancer>
 <autostart>true</autostart>
</proxy-scheme>
...

Note

If multiple proxy address are explicitly specified, clients are not required to list the full
set of proxy service members in their cache configuration. However, a minimum of two
proxy service members should always be configured for redundancy sake.

Chapter 5
Load Balancing Connections

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 6

Understanding the Proxy-Based Load Balancing Default Algorithm
The proxy-based load balancing algorithm distributes client connections equally across proxy
service members. The algorithm redirects clients to proxy service members that are being
utilized the least. The following factors are used to determine a proxy's utilization:

• Connection Utilization – this utilization is calculated by adding the current connection count
and pending connection count. If a proxy has a configured connection limit and the current
connection count plus pending connection count equals the connection limit, the utilization
is considered to be infinite.

• Daemon Pool Utilization – this utilization equals the current number of active daemon
threads. If all daemon threads are currently active, the utilization is considered to be
infinite.

• Message Backlog Utilization – this utilization is calculated by adding the current incoming
message backlog and the current outgoing message backlog.

Each proxy service maintains a list of all members of the proxy service ordered by their
utilization. The ordering is weighted first by connection utilization, then by daemon pool
utilization, and then by message backlog. The list is resorted whenever a proxy service
member's utilization changes. The proxy service members send each other their current
utilization whenever their connection count changes or every 10 seconds (whichever comes
first).

When a new connection attempt is made on a proxy, the proxy iterates the list as follows:

• If the current proxy has the lowest connection utilization, then the connection is accepted;
otherwise, the proxy redirects the new connection by replying to the connection attempt
with an ordered list of proxy service members that have a lower connection utilization. The
client then attempts to connect to a proxy service member in the order of the returned list.

• If the connection utilizations of the proxies are equal, the daemon pool utilization of the
proxies takes precedence. If the current proxy has the lowest daemon pool utilization, then
the connection is accepted; otherwise, the proxy redirects the new connection by replying
to the connection attempt with an ordered list of proxy service members that have a lower
daemon pool utilization. The client then attempts to connect to a proxy service member in
the order of the returned list.

• If the daemon pool utilization of the proxies are equal, the message backlog of the proxies
takes precedence. If the current proxy has the lowest message backlog utilization, then the
connection is accepted; otherwise, the proxy redirects the new connection by replying to
the connection attempt with an ordered list of proxy service members that have a lower
message backlog utilization. The client then attempts to connect to a proxy service
member in the order of the returned list.

• If all proxies have the same utilization, then the client remains connected to the current
proxy.

Implementing a Custom Proxy-Based Load Balancing Strategy
The com.tangosol.coherence.net.proxy package includes the APIs that are used to balance
client load across proxy service members.

A custom strategy must implement the ProxyServiceLoadBalancer interface. New strategies
can be created or the default strategy (DefaultProxyServiceLoadBalancer) can be extended
and modified as required. For example, to change which utilization factor takes precedence on
the list of proxy services, extend DefaultProxyServerLoadBalancer and pass a custom

Chapter 5
Load Balancing Connections

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 6

Comparator object in the constructor that imposes the desired ordering. Lastly, the client's
Member object (which uniquely defines each client) is passed to a strategy. The Member object
provides a means for implementing client-weighted strategies. See Specifying a Cluster
Member's Identity in Developing Applications with Oracle Coherence.

To enable a custom load balancing strategy, include an <instance> subelement within the
<load-balancer> element and provide the fully qualified name of a class that implements the
ProxyServiceLoadBalancer interface. The following example enables a custom proxy-based
load balancing strategy that is implemented in the MyProxyServiceLoadBalancer class:

...
<load-balancer>
 <instance>
 <class-name>package.MyProxyServiceLoadBalancer</class-name>
 </instance>
</load-balancer>
...

In addition, the <instance> element also supports the use of a <class-factory-name> element
to use a factory class that is responsible for creating ProxyServiceLoadBalancer instances,
and a <method-name> element to specify the static factory method on the factory class that
performs object instantiation. See instance in Developing Applications with Oracle Coherence.

Using Client-Based Load Balancing
The client-based load balancing strategy relies upon a client address provider implementation
to dictate the distribution of clients across proxy service members. If no client address provider
implementation is provided, the extend client tries each configured proxy service in a random
order until a connection is successful. See Using a Custom Address Provider for TCP
Addresses.

The client-based load balancing strategy is configured within a <proxy-scheme> definition using
a <load-balancer> element that is set to client. For example:

...
<proxy-scheme>
 <service-name>ExtendTcpProxyService1</service-name>
 <load-balancer>client</load-balancer>
 <autostart>true</autostart>
</proxy-scheme>
...

The above configuration sets the client strategy on a single proxy service and must be
repeated for all proxy services that are to use the client strategy. To set the client strategy as
the default strategy for all proxy services if no strategy is specified, override the load-balancer
parameter for the proxy service type in the operational override file. For example:

...
<cluster-config>
 <services>
 <service id="7">
 <init-params>
 <init-param id="12">
 <param-name>load-balancer</param-name>
 <param-value>client</param-value>
 </init-param>
 </init-params>
 </service>
 </services>

Chapter 5
Load Balancing Connections

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 6

</cluster-config>
...

Chapter 5
Load Balancing Connections

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 6

6
Best Practices for Coherence*Extend

There are best practices and guidelines to consider when configuring and running
Coherence*Extend.
This chapter includes the following sections:

Do Not Run a Near Cache on a Proxy Server
Running a near cache on a proxy server results in higher heap usage and more network traffic
on the proxy nodes with little to no benefit. By definition, a near cache provides local cache
access to both recently and often-used data. If a proxy server is configured with a near cache,
it locally caches data accessed by its remote clients. It is unlikely that these clients are
consistently accessing the same subset of data, thus resulting in a low hit ratio on the near
cache. For these reasons, it is recommended that a near cache not be used on a proxy server.
To ensure that the proxy server is not running a near cache, remove all near schemes from the
cache configuration being used for the proxy.

Configure Heap NIO Space to be Equal to the Max Heap Size
NIO memory is used for TCP connections into the proxy and for POF serialization and
deserialization. The amount of off-heap NIO space should be equal to the maximum heap
space.
On Oracle JVMs, NIO memory can be set manually if it is not already set:

-XX:MaxDirectMemorySize=MAX_HEAP_SIZE

Configure Proxy Service Thread Pooling
You can change the thread pool default settings to optimize client performance. Proxy services
use a dynamic thread pool for daemon (worker) threads. The thread pool automatically adds
and removes threads based on the number of client requests, total backlog of requests, and
the total number of idle threads. The thread pool helps ensure that there are enough threads to
meet the demand of extend clients and that resources are not waisted on idle threads.
This section includes the following topics:

Understanding Proxy Service Threading
Each application has different thread requirements based on the number of clients and the
amount of operations being performed. Performance should be closely monitored to ensure
that there are enough threads to service client requests without saturating clients with too
many threads. In addition, log messages are emitted when the thread pool is using its
maximum amount of threads, which may indicate additional threads are required.

Client applications are classified into two general categories: active applications and passive
applications. In active applications, the extend clients send many requests (put, get, and so on)
which are handled by the proxy service. The proxy service requires a large number of threads
to sufficiently handle these numerous tasks.

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 4

In passive applications, the client waits on events (such as map listeners) based on some
specified criteria. Events are handled by a distributed cache service. This service uses worker
threads to push events to the client. For these tasks, the thread pool configuration for the
distributed cache service should include enough worker threads. See distributed-scheme in
Developing Applications with Oracle Coherence.

Note

Near caches on extend clients use map listeners when performing invalidation
strategies of ALL, PRESENT, and AUTO. Applications that are write-heavy that use near
caches generate many map events.

Setting Proxy Service Thread Pooling Thresholds
To set thread pooling thresholds for a proxy service, add the <thread-count-max> and
<thread-count-min> elements within the <proxy-scheme> element. See proxy-scheme in
Developing Applications with Oracle Coherence. The following example changes the default
pool settings.

Note

• The thread pool is enabled by default and does not require configuration. The
default setup allows Coherence to automatically tune the thread count based on
the load at any given point in time. Consider explicitly configuring the thread pool
only if the automatic tuning proves insufficient.

• Setting a minimum and maximum thread count of zero forces the proxy service
thread to handle all requests; no worker threads are used. Using the proxy service
thread to handle client requests is not a best practice.

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <thread-count-max>75</thread-count-max>
 <thread-count-min>10</thread-count-min>
 <autostart>true</autostart>
</proxy-scheme>

The coherence.proxy.threads.max and coherence.proxy.threads.min system properties
specify the dynamic thread pooling thresholds instead of using the cache configuration file. For
example:

-Dcoherence.proxy.threads.max=75
-Dcoherence.proxy.threads.min=10

Setting an Exact Number of Threads
In most scenarios, dynamic thread pooling is the best way to ensure that a proxy service
always has enough threads to handle requests. In controlled applications where client usage is
known, an explicit number of threads can be specified by setting the <thread-count-min> and
<thread-count-max> element to the same value. The following example sets 10 threads for
use by a proxy service. Additional threads are not created automatically.

Chapter 6
Configure Proxy Service Thread Pooling

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 4

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <thread-count-min>10</thread-count-min>
 <thread-count-max>10</thread-count-max>
 <autostart>true</autostart>
</proxy-scheme>

Be Careful When Making InvocationService Calls
You cannot choose the particular node on which invocation code runs when sending the call
through a proxy. The InvocationService allows a service member to invoke arbitrary code on
any node in the cluster. On Coherence*Extend however, InvocationService calls are serviced
by the proxy that the client is connected to by default.

Be Careful When Placing Collection Classes in the Cache
Collection objects (such as an ArrayList, HashSet, HashMap, and so on) are deserialized as
immutable arrays when cached by Coherence*Extend clients. A ClassCastExceptions is
returned if the objects are extracted and cast to their original types.
As an alternative, use a Java interface object (such as a List, Set, Map, and so on) or
encapsulate the collection object in another object. Both of these techniques are illustrated in
the following example:

Example 6-1 Casting an ArrayList Object

public class ExtendExample
 {
 @SuppressWarnings({ "unchecked" })
 public static void main(String asArgs[])
 {
 System.setProperty("coherence.cacheconfig", "client-config.xml");
 NamedCache cache = CacheFactory.getCache("test");

 // Create a sample collection
 List list = new ArrayList();
 for (int i = 0; i < 5; i++)
 {
 list.add(String.valueOf(i));
 }
 cache.put("list", list);

 List listFromCache = (List) cache.get("list");

 System.out.println("Type of list put in cache: " + list.getClass());
 System.out.println("Type of list in cache: " + listFromCache.getClass());

 Map map = new TreeMap();
 for (Iterator i = list.iterator(); i.hasNext();)
 {
 Object o = i.next();
 map.put(o, o);
 }
 cache.put("map", map);

 Map mapFromCache = (Map) cache.get("map");

 System.out.println("Type of map put in cache: " + map.getClass());
 System.out.println("Type of map in cache: " + mapFromCache.getClass());

Chapter 6
Be Careful When Making InvocationService Calls

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 4

 }
 }

Configure POF Serializers for Cache Servers
Proxy servers are responsible for deserializing POF data into Java objects. If you run C++
or .NET applications and store data to the cache, then the conversion to Java objects could be
viewed as an unnecessary step.
Coherence provides the option of configuring a POF serializer for cache servers and has the
effect of storing POF format data directly in the cache.

This can have the following impact on your applications:

• .NET or C++ clients that only perform puts or gets do not require a Java version of the
object. Java versions are still required if deserializing on the server side (for entry
processors, cache stores, and so on).

• POF serializers remove the requirement to serialize/deserialze on the proxy, thus reducing
their memory and CPU requirements.

• Key manipulation within the proxy is discouraged. This could interfere with the Object
decoration used by the POF serializer causing the extend client to not recognize the key.

Example 6-2 illustrates a fragment from a cache configuration file, which configures the default
POF serializer that is defined in the operational deployment descriptor.

Example 6-2 Configuring a POFSerializer for a Distributed Cache

...
<distributed-scheme>
 <scheme-name>dist-default</scheme-name>
 <serializer>pof</serializer>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>
...

Configuring Firewalls for Extend Clients
Firewalls are often used between extend clients and cluster proxies. When using firewalls, the
recommended best practice is to configure the proxy to use a range of ports and then open
that range of ports in the firewall. In addition, the cluster port (7574 by default) must be opened
for TCP if the name service is used. Alternatively, a fixed (non-ephemeral, non-range) port can
be used. In this legacy configuration, only the specific fixed port needs to be opened in the
firewall, and clients need to be configured to connect directly to the proxy's IP and port.

Chapter 6
Configure POF Serializers for Cache Servers

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 4

Part II
Creating Java Extend Clients

Coherence for Java allows Java applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster. Typical
uses for Java extend clients include desktop and Web applications that require access to
Coherence caches.
The Coherence for Java library connects to a Coherence*Extend clustered service instance
running within the Coherence cluster using a high performance TCP/IP-based communication
layer. This library sends all client requests to the Coherence*Extend clustered service which, in
turn, responds to client requests by delegating to an actual Coherence clustered service (for
example, a partitioned or replicated cache service).

Like cache clients that are members of the cluster, Java extend clients use the
CacheFactory.getCache() API call to retrieve a NamedCache instance. After it is obtained, a
client accesses the NamedCache in the same way as it would if it were part of the Coherence
cluster. The fact that NamedCache operations are being sent to a remote cluster node (over
TCP/IP) is completely transparent to the client application.

Unlike the C++ and .NET distributions, Java does not have a separate client distribution. The
API that is delivered with Coherence for Java is used to create extend clients. See Performing
Data Grid Operations in Developing Applications with Oracle Coherence. For basic
Coherence*Extend setup, see Getting Started with Coherence*Extend.

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 1

Part III
Creating C++ Extend Clients

Learn how to use the Coherence*Extend C++ object model and API to create C++ clients that
access Coherence caches on the cluster.

Coherence for C++ contains the following chapters:

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 1

7
Introduction to Coherence C++ Clients

Learn about Coherence for C++ and how to set up Coherence C++ application builds.
This chapter includes the following sections:

Overview of Coherence for C++
Coherence for C++ allows C++ applications to access Coherence clustered services, including
data, data events, and data processing from outside the Coherence cluster. Typical uses of
Coherence for C++ include desktop and web applications that require access to Coherence
caches. See Installing the C++ Client Distribution in Installing Oracle Coherence.
Coherence for C++ consists of a native C++ library that connects to a Coherence*Extend
clustered service instance running within the Coherence cluster using a high performance
TCP/IP-based communication layer. This library sends all client requests to the
Coherence*Extend clustered service which, in turn, responds to client requests by delegating
to an actual Coherence clustered service (for example, a partitioned or replicated cache
service).

A NamedCache instance is retrieved by using the CacheFactory::getCache(...) API call. After it
is obtained, a client accesses the NamedCache in the same way as it would if it were part of the
Coherence cluster. The fact that NamedCache operations are being sent to a remote cluster
node (over TCP/IP) is completely transparent to the client application.

Note

The C++ client follows the interface and concepts of the Java client, and users familiar
with Coherence for Java should find migrating to Coherence for C++ straight forward.

Setting Up C++ Application Builds
Coherence C++ application builds require updating compiler settings, building header files,
library linking, and setting environment variables.

This section includes the following topics:

Setting up the Compiler for Coherence-Based Applications
When integrating Coherence for C++ into your application's build process, it is important that
certain compiler and linker settings be enabled. Some settings are optional, but still highly
recommended.

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 3

MSVC (Visual Studio)

Table 7-1 Compiler Settings for MSVC (Visual Studio)

Setting Build Type Required? Description

/EHsc All Yes Enables C++ exception support

/GR All Yes Enables C++ RTTI

/O2 Release No Enables speed optimizations

/MD Release Yes Link against multi-threaded DLLs

/MDd Debug Yes Link against multi-threaded debug DLLs

g++

Table 7-2 Compiler Settings for g++

Setting Build Type Required Description

-O3 Release No Enables speed optimizations

-m32 / -m64 All No Explicitly set compiler to 32 or 64 bit mode

Including Coherence Header Files
Coherence ships with a set of header files that uses the Coherence API and must be compiled
with your application. The header files are available under the installation's include directory.
The include directory must be part of your compiler's include search path.

Linking the Coherence Library
Coherence for C++ ships with a release version of the Coherence library. This library is also
suitable for linking with debug versions of application code. The library is located in the
installation's lib directory. During linking, this directory must be part of your linkers library path.

Table 7-3 Names of Linking Libraries for Release and Debug Versions

Operating System Library

Windows coherence.lib

Linux libcoherence.so

macOS libcoherence.dylib

Setting the run-time Library and Search Path
During execution of a Coherence enabled application the Coherence for C++ shared library
must be available from your application's library search path. This is achieved by adding the
directory which contains the shared library to an operating system dependent environment
variable. The installation includes libraries in its lib subdirectory.

Chapter 7
Setting Up C++ Application Builds

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 3

Table 7-4 Name of the Coherence for C++ Library and Environment Variables

Operating System Environment Variable

Windows PATH

Linux LD_LIBRARY_PATH

macOS DYLD_LIBRARY_PATH

For example, to set the PATH environment variable on Windows execute:

c:\coherence\coherence-cpp\examples> set PATH=%PATH%;c:\coherence\coherence-cpp\lib

As with the Java version of Coherence, the C++ version supports a concept of System
Properties to override configuration defaults. System Properties in C++ are set by using
standard operating system environment variables, and use the same names as their Java
counterparts. The coherence.cacheconfig system property specifies the location of the cache
configuration file. You may also set the configuration location programmatically
(CacheFactory::configure()) from application code, the examples however do not do this.

Table 7-5 Cache Configuration System Property Value for Various Operating Systems

Operating System System Property

Windows coherence.cacheconfig

Linux CoherenceCacheConfig

macOS CoherenceCacheConfig

Note

Some operating system shells, such as the UNIX bash shell, do not support
environment variables which include the '.' character. In this case, you may specify the
name in camel case, where the first letter, and every letter following a '.' is capitalized.
That is, "coherence.cacheconfig" becomes "CoherenceCacheConfig".

For example, to set the configuration location on Windows execute:

c:\coherence\coherence-cpp\examples> set coherence.cacheconfig=config\extend-cache-
config.xml

Deploying Coherence for C++
Coherence for C++ requires no specialized deployment configuration. Simply link your
application with the Coherence library. See the C++ examples included in the Coherence
Examples for sample build scripts and configuration. The examples are included as part of the
Coherence for Java distribution.

Chapter 7
Setting Up C++ Application Builds

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 3

8
Configuration and Usage for C++ Clients

Learn the main steps that are required to use Coherence C++ clients.
This chapter includes the following sections:

General Instructions
You can follow a basic set of steps for creating and using Coherence C++ clients.
The general steps include:

1. Implement the C++ Application

2. Compile and Link the Application

3. Configure Paths

4. Defining Extend Proxy Services

5. Defining Caches for Use By Extend Clients

6. Defining a Remote Cache

7. Building Integration Objects (C++)

8. Starting a Proxy Server

9. Launch the client application.

Implement the C++ Application
Coherence for C++ provides an API that allows C++ applications to access Coherence
clustered services, including data, data events, and data processing from outside the
Coherence cluster.
The Coherence for C++ API consists of:

• a set of C++ public header files

• version of static libraries build by all supported C++ compilers

• several samples

The library allows C++ applications to connect to a Coherence*Extend clustered service
instance running within the Coherence cluster using a high performance TCP/IP-based
communication layer. The library sends all client requests to the Coherence*Extend clustered
service which, in turn, responds to client requests by delegating to an actual Coherence
clustered service (for example, a Partitioned or Replicated cache service).

See Using the Coherence for C++ Client API.

Compile and Link the Application
Review a sample Windows build file that demonstrates how to compiles a C++ application.
For the list of platforms on which you can compile applications that employ Coherence for C++,
see Supported Environments for Coherence C++ Client in the Installing Oracle Coherence.

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

For example, the following build.cmd file for the Windows 32-bit platform builds, compiles, and
links the files for the Coherence for C++ demo.

@echo off
setlocal

set EXAMPLE=%1%

if "%EXAMPLE%"=="" (
 echo You must supply the name of an example to build.
 goto exit
)

set OPT=/c /nologo /EHsc /Zi /RTC1 /MD /GR /DWIN32
set LOPT=/NOLOGO /SUBSYSTEM:CONSOLE /INCREMENTAL:NO
set INC=/I%EXAMPLE% /Icommon /I..\include
set SRC=%EXAMPLE%*.cpp common*.cpp
set OUT=%EXAMPLE%\%EXAMPLE%.exe
set LIBPATH=..\lib
set LIBS=%LIBPATH%\coherence.lib

echo building %OUT% ...
cl %OPT% %INC% %SRC%
link %LOPT% %LIBS% *.obj /OUT:%OUT%

del *.obj

echo To run this example execute 'run %EXAMPLE%'

:exit

The variables in the file have the following meanings:

• OPT and LOPT point to compiler options

• INC points to the Coherence for C++ API files in the include directory

• SRC points to the C++ header and code files in the common directory

• OUT points to the file that the compiler/linker should generate when it is finished compiling
the code

• LIBPATH points to the library directory

• LIBS points to the Coherence for C++ shared library file

After setting these environment variables, the file compiles the C++ code and header files, the
API files and the OPT files, links the LOPT, the Coherence for C++ shared library, the generated
object files, and the OUT files. It finishes by deleting the object files.

Configure Paths
Set up the configuration path to the Coherence for C++ library. This involves setting an
environment variable to point to the library. The name of the environment variable and the file
name of the library are different depending on your platform environment. See Introduction to
Coherence C++ Clients.

Obtaining a Cache Reference with C++
You can obtained a reference to a configured cache by name using the
coherence::net::CacheFactory class.

Chapter 8
Configure Paths

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

For example:

NamedCache::Handle hCache = CacheFactory::getCache("cache_name");

Cleaning up Resources Associated with a Cache
NamedCache implementations should be explicitly released by calling the
NamedCache::release() method when they are no longer needed.
If the particular NamedCache is used for the duration of the application, then the resources are
cleaned up when the application is shut down or otherwise stops. However, if it is only used for
a period, the application should call its release() method when finished using it.

Configuring and Using the Coherence for C++ Client Library
To use the Coherence for C++ library in your applications, link the library to your application
and provide a cache configuration file. The location of the cache configuration file can be set
by an environment variable or programmatically.
This section includes the following topics:

Setting the Configuration File Location with an Environment Variable
The coherence.cacheconfig system property specifies the location of the cache configuration
file. See Setting the run-time Library and Search Path .

To set the configuration location on Windows execute:

c:\coherence_cpp\examples> set coherence.cacheconfig=config\extend-cache-config.xml

Setting the Configuration File Location Programmatically
You can set the location programmatically by using either
DefaultConfigurableCacheFactory::create or CacheFactory::configure (using the
CacheFactory::loadXmlFile helper method, if needed).

The create method of the DefaultConfigurableCacheFactory class creates a new Coherence
cache factory. The vsFile parameter specifies the name and location of the Coherence
configuration file to load. For example:

static Handle coherence::net::DefaultConfigurableCacheFactory::create (String::View
vsFile = String::NULL_STRING)

The configure method configures the CacheFactory and local member. The vXmlCache
parameter specifies an XML element corresponding to a coherence-cache-config.xsd and
vXmlCoherence specifies an XML element corresponding to coherence-operational-
config.xsd. For example:

static void coherence::net::CacheFactory::configure (XmlElement::View vXmlCache,
XmlElement::View vXmlCoherence = NULL)

The loadXmlFile method reads an XmlElement from the named file. This method does not
configure the CacheFactory, but obtains a configuration which can be supplied to the
configure method. The parameter vsFile specifies the name of the file to read from. For
example:

static XmlElement::Handle coherence::net::CacheFactory::loadXmlFile (String::View vsFile)

Chapter 8
Cleaning up Resources Associated with a Cache

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

The CacheFactory::configure method is used to set the location of the cache configuration
files for the server/cluster (coherence-extend-config.xml) and for the C++ client (tangosol-
operation-config.xml). For example:

...
// Configure the cache
CacheFactory::configure(CacheFactory::loadXmlFile(String::create(
 "C:\coherence-extend-config.xml")), CacheFactory::loadXmlFile(String::create(
 "C:\tangosol-operation-config.xml")));
...

Operational Configuration File (tangosol-coherence-override.xml)
The operational configuration override file (called tangosol-coherence-override.xml by
default), controls the operational and run-time settings used by Oracle Coherence to create,
configure and maintain its clustering, communication, and data management services. See
Using the Default Operational Override File in Developing Applications with Oracle Coherence.
For a C++ client, the file specifies or overrides general operations settings for a Coherence
application that are not specifically related to caching. For a C++ client, the key elements are
for logging, the Coherence product edition, and the location and role assignment of particular
cluster members.

The operational configuration can be configured either programmatically or in the tangosol-
coherence-override.xml file. To configure the operational configuration programmatically,
specify an XML file that follows the coherence-operational-config.xsd schema and contains
an element in the vXmlCoherence parameter of the CacheFactory::configure method
(coherence::net::CacheFactory::configure (View vXmlCache, View vXmlCoherence)):

• license-config—The license-config element contains subelements that allow you to
configure the edition and operational mode for Coherence. The edition-name subelement
specifies the product edition (such as Grid Edition, Enterprise Edition, Real Time Client,
and so on) that the member uses. This allows multiple product editions to be used within
the same cluster, with each member specifying the edition that it uses. Only the RTC (real
time client) and DC (data client) values are recognized for the Coherence for C++ client.
The license-config is an optional subelement of the coherence element, and defaults to
RTC.

• logging-config— The logging-config element contains subelements that allow you to
configure how messages are logged for your system. This element enables you to specify
destination of the log messages, the severity level for logged messages, and the log
message format. The logging-config is a required subelement of the coherence element.

• member-identity—The member-identity element specifies detailed identity information
that is useful for defining the location and role of the cluster member. You can use this
element to specify the name of the cluster, rack, site, computer name, role, and so on, to
which the member belongs. The member-identity is an optional subelement of the
cluster-config element.

The following example illustrates a sample tangosol-coherence.xml file.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-operational-config
 coherence-operational-config.xsd">
 <cluster-config>
 <member-identity>
 <site-name>extend site</site-name>

Chapter 8
Operational Configuration File (tangosol-coherence-override.xml)

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

 <rack-name>rack 1</rack-name>
 <machine-name>computer 1</machine-name>
 </member-identity>
 </cluster-config>

 <logging-config>
 <destination>stderr</destination>
 <severity-level>5</severity-level>
 <message-format>(thread={thread}): {text}</message-format>
 <character-limit>8192</character-limit>
 </logging-config>

 <license-config>
 <edition-name>RTC</edition-name>
 <license-mode>prod</license-mode>
 </license-config>
</coherence>

Configuring a Logger
The Coherence logger is configured using the logging-config element in the operational
configuration file. See Operational Configuration File (tangosol-coherence-override.xml) . The
element provides the following attributes that can record detailed information about logged
errors.

• destination—determines the type of LogOutput used by the Logger. Valid values are:

– stderr for Console.Error

– stdout for Console.Out

– file path if messages should be directed to a file

• severity-level—determines the log level that a message must meet or exceed to be
logged.

• message-format—determines the log message format.

• character-limit—determines the maximum number of characters that the logger daemon
processes from the message queue before discarding all remaining messages in the
queue.

The following example illustrates an operational configuration that contains a logging
configuration:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-operational-config
 coherence-operational-config.xsd">
 <logging-config>
 <destination>stderr</destination>
 <severity-level>5</severity-level>
 <message-format>(thread={thread}): {text}</message-format>
 <character-limit>8192</character-limit>
 </logging-config>
</coherence>

Chapter 8
Configuring a Logger

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

9
Using the Coherence C++ Object Model

Learn how to use the C++ object model on which Coherence for C++ is built.
This chapter includes the following sections:

Using the Object Model
Coherence C++ clients use the C++ object model which provides a standard approach to
building Coherence applications.

This section includes the following topics:

Coherence Namespaces
This coherence namespace contains the following general purpose namespaces:

• coherence::lang—the essential classes that comprise the object model

• coherence::util—utility code, including collections

• coherence::net—network and cache

• coherence::stl—C++ Standard Template Library integration

• coherence::io—serialization

Although each class is defined within its own header file, you can use namespace-wide header
files to facilitate the inclusion of related classes. As a best practice include, at a minimum,
coherence/lang.ns in code that uses this object model.

Understanding the Base Object
The coherence::lang::Object class is the root of the class hierarchy. This class provides the
common interface for abstractly working with Coherence class instances. Object is an
instantiable class that provides default implementations for the following functions.

• equals

• hashCode

• clone (optional)

• toStream (that is, writing an Object to an std::ostream)

See coherence::lang::Object in the C++ API for more information.

Automatically Managed Memory
In addition to its public interface, the Object class provides several features used internally. Of
these features, the reference counter is perhaps the most important. It provides automatic
memory management for the object. This automatic management eliminates many of the
problems associated with object reference validity and object deletion responsibility. This

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 22

management reduces the potential of programming errors which may lead to memory leaks or
corruption. This results in a stable platform for building complex systems.

The reference count, and other object "life-cycle" information, operates in an efficient and
thread-safe manner by using lock-free atomic compare-and-set operations. This allows objects
to be safely shared between threads without the risk of corrupting the count or of the object
being unexpectedly deleted due to the action of another thread.

This section includes the following topics:

Referencing Managed Objects
To track the number of references to a specific object, there must be a level of cooperation
between pointer assignments and a memory manager (in this case the object). Essentially the
memory manager must be informed each time a pointer is set to reference a managed object.
Using regular C++ pointers, the task of informing the memory manager would be left up to the
programmer as part of each pointer assignment. In addition to being quite burdensome, the
effects of forgetting to inform the memory manager would lead to memory leaks or corruption.
For this reason the task of informing the memory manager is removed from the application
developer, and placed on the object model, though the use of smart pointers. Smart pointers
offer a syntax similar to normal C++ pointers, but they do the bookkeeping automatically.

The Coherence C++ object model contains a variety of smart pointer types, the most
prominent being:

• View—A smart pointer that can call only const methods on the referenced object

• Handle—A smart pointer that can call both const and non-const methods on the
referenced object.

• Holder—A special type of handle that enables you to reference an object as either const
or non-const. The holder remembers how the object was initially assigned, and returns
only a compatible form.

Other specialized smart pointers are described later in this section, but the View, Handle, and
Holder smart pointers are used most commonly.

Note

In this documentation, the term handle (with a lowercase "h") refers to the various
object model smart pointers. The term Handle (with an uppercase "H") refers to the
specific Handle smart pointer.

Using handles
By convention each managed class has these nested-types corresponding to these handles.
For instance the managed coherence::lang::String class defines String::Handle,
String::View, String::Holder.

This section includes the following topics:

Assignment of handles

Assignment of handles follows normal inheritance assignment rules. That is, a Handle may be
assigned to a View, but a View may not be assigned to a Handle, just like a const pointer
cannot be assigned to a non-const pointer.

Chapter 9
Using the Object Model

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 22

Dereferencing handles

When dereferencing a handle that references NULL, the system throws a
coherence::lang::NullPointerException instead of triggering a traditional segmentation
fault.

For example, this code would throw a NullPointerException if hs == NULL:

String::Handle hs = getStringFromElsewhere();
cout << "length is " << hs->length() << end1;

Managed Object Instantiation
All managed objects are heap allocated. The reference count—not the stack—determines
when an object can be deleted. To prevent against accidental stack-based allocations, all
constructors are marked protected, and public factory methods are used to instantiate objects.

The factory method is named create and there is one create method for each constructor. The
create method returns a Handle rather than a raw pointer. For example, the following code
creates a new instance of a string:

String::Handle hs = String::create("hello world");

By comparison, these examples are incorrect and do not compile:

String str("hello world");
String* ps = new String("hello world");

Managed Strings
All objects within the model, including strings, are managed and extend from Object. Instead
of using char* or std::string, the object model uses its own managed
coherence::lang::String class. The String class supports ASCII and the full Unicode BML
character set.

This section includes the following topics:

String Instantiation
String objects can easily be constructed from char* or std::string strings. For example:

const char* pcstr = "hello world";
std:string stdstr(pcstr);
String::Handle hs = String::create(pcstr);
String::Handle hs2 = String::create(stdstr);

The managed string is a copy of the supplied string and contains no references or pointers to
the original. You can convert back, from a managed String to any other string type, by using
getCString() method. This returns a pointer to the original const char*. Strings can also be
created using the standard C++ << operator, when coupled with the COH_TO_STRING macro.

String::Handle hs = COH_TO_STRING("hello " << getName() << " it is currently " <<
getTime());

Chapter 9
Using the Object Model

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 22

Auto-Boxed Strings
To facilitate the use of quoted string literals, the String::Handle and String::View support
auto-boxing from const char*, and const std::string. Auto-boxing allows the code shown in
the prior samples to be rewritten:

String::Handle hs = "hello world";
String::Handle hs2 = stdstr;

Auto-boxing is also available for other types. See coherence::lang::BoxHandle for details.

Type Safe Casting
Handles are type safe, in the following example, the compiler does not allow you to assign an
Object::Handle to a String::Handle, because not all Objects are Strings.

Object::Handle ho = getObjectFromSomewhere();
String::Handel hs = ho; // does not compile

However, the following example does compile, as all Strings are Objects.

String::Handle hs = String::create("hello world");
Object::Handle ho = hs; // does compile

This section includes the following topics:

Down Casting
For situations in which you want to down-cast to a derived Object type, you must perform a
dynamic cast using the C++ RTTI (run-time type information) check and ensure that the cast is
valid. The Object model provides helper functions to ease the syntax.

• cast<H>(o)—attempt to transform the supplied handle o to type H, throwing an
ClassCastException on failure

• instanceof<H>(o)—test if a cast of o to H is allowable, returning true for success, or
false for failure

These functions are similar to the standard C++ dynamic_cast<T>, but do not require access
to the raw pointer.

The following example shows how to down cast a Object::Handle to a String::Handle:

Object::Handle ho = getObjectFromSomewhere();
String::Handle hs = cast<String::Handle>(ho);

The cast<H> function throws a coherence::lang::ClassCastException if the supplied object
was not of the expected type. The instanceof<H> function tests if an Object is of a particular
type without risking an exception being thrown. Such checks or generally only needed for
places where the actual type is in doubt. For example:

Object::Handle ho = getObjectFromSomewhere();

if (instanceof<String::Handle>(ho))
 {
 String::Handle hs = cast<String::Handle>(ho);
 }
else if (instanceof<Integer32::Handle>(ho))
 {

Chapter 9
Using the Object Model

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 22

 Integer32::Handle hn = cast<Integer32::Handle>(ho);
 }
else
 {
 ...
 }

Managed Arrays
Managed arrays are provided by using the coherence::lang::Array<T> template class. In
addition to being managed and adding safe and automatic memory management, this class
includes the overall length of the array, and bounds checked indexing.

You can index an array by using its Handle's subscript operator, as shown in this example:

Array<int32_t>::Handle harr = Array<int32_t>::create(10);

int32_t nTotal = 0;
for (size32_t i = 0, c = harr->length; i < c; ++i)
 {
 nTotal += harr[i];
 }

The object model supports arrays of C++ primitives and managed Objects. Arrays of derived
Object types are not supported, only arrays of Object, casting must be employed to retrieve
the derived handle type. Arrays of Objects are technically Array<MemberHolder<Object> >, and
defined to ObjectArray for easier readability.

Collection Classes
The coherence::util* namespace includes several collection classes and interfaces that may
be useful in your application. These include:

• coherence::util::Collection —interface

• coherence::util::List—interface

• coherence::util::Set—interface

• coherence::util::Queue—interface

• coherence::util::Map—interface

• coherence::util::Arrays—implementation

• coherence::util::LinkedList—implementation

• coherence::util::HashSet—implementation

• coherence::util::DualQueue—implementation

• coherence::util::HashMap—implementation

• coherence::util::SafeHashMap—implementation

• coherence::util::WeakHashMap—implementation

• coherence::util::IdentityHashMap—implementation

These classes also appear as part of the Coherence Extend API.

Similar to ObjectArray, Collections contain Object::Holders, allowing them to store any
managed object instance type. For example:

Chapter 9
Using the Object Model

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 22

Map::Handle hMap = HashMap::create();
String::View vKey = "hello world";

hMap->put(vKey, Integer32::create(123));

Integer32::Handle hValue = cast<Integer32::Handle>(hMap->get(vKey));

Managed Exceptions
In the object model, exceptions are also managed objects. Managed Exceptions allow caught
exceptions to be held as a local variable or data member without the risk of object slicing.

All Coherence exceptions are defined by using a throwable_spec and derive from the
coherence::lang::Exception class, which derives from Object. Managed exceptions are not
explicitly thrown by using the standard C++ throw statement, but rather by using a COH_THROW
macro. This macro sets stack information and then calls the exception's raise method, which
ultimately calls throw. The resulting thrown object may be caught an the corresponding
exceptions View type, or an inherited View type. Additionally these managed exceptions may
be caught as standard const std::exception classes. The following example shows a try/
catch block with managed exceptions:

try
 {
 Object::Handle h = NULL;
 h->hashCode(); // trigger an exception
 }
catch (NullPointerException::View e)
 {
 cerr << "caught" << e <<endl;
 COH_THROW(e); // rethrow
 }

Note

This exception could also have been caught as Exception::View or const
std::exception&.

Object Immutability
In C++ the information of how an object was declared (such as const) is not available from a
pointer or reference to an object. For instance a pointer of type const Foo*, only indicates that
the user of that pointer cannot change the objects state. It does not indicate if the referenced
object was actually declared const, and is guaranteed not to change. The object model adds a
run-time immutability feature to allow the identification of objects which can no longer change
state.

The Object class maintains two reference counters: one for Handles and one for Views. If an
object is referenced only from Views, then it is by definition immutable, as Views cannot
change the state, and Handles cannot be obtained from Views. The isImmutable() method
(included in the Object class) can test for this condition. The method is virtual, allowing
subclasses to alter the definition of immutable. For example, String contains no non-const
methods, and therefore has an isImmutable() method that always returns true.

Note that when immutable, an object cannot revert to being mutable. You cannot cast away
const-ness to turn a View into a Handle as this would violate the proved immutability.

Chapter 9
Using the Object Model

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 22

Immutability is important with caching. The Coherence NearCache and ContinuouQueryCache
can take advantage of the immutability to determine if a direct reference of an object can be
stored in the cache or if a copy must be created. Additionally, knowing that an object cannot
change allows safe multi-threaded interaction without synchronization.

Integrating Existing Classes into the Object Model
Frequently, existing classes must be integrated into the object model. A typical example would
be to store a data-object into a Coherence cache, which only supports storage of managed
objects. As it would not be reasonable to require that pre-existing classes be modified to
extend from coherence::lang::Object, the object model provides an adapter which
automatically converts a non-managed plain old C++ class instance into a managed class
instance at run time.

This is accomplished by using the coherence::lang::Managed<T> template class. This
template class extends from Object and from the supplied template parameter type T,
effectively producing a new class which is both an Object and a T. The new class can be
initialized from a T, and converted back to a T. The result is an easy to use, yet very powerful
bridge between managed and non-managed code.

See the API doc for coherence::lang::Managed for details and examples.

Writing New Managed Classes
You can write new managed classes, which are classes that extend the Object class.

The creation of new managed classes is required when you are creating new EventListeners,
EntryProcessors, or Filter types. They are not required when you are working with existing
C++ data objects or making use of the Coherence C++ API. See the previous section for
details on integration non-managed classes into the object model.

Note

For Microsoft Visual Studio 2017, Coherence managed classes cannot be declared in
an anonymous namespace. There are two helper macros for using pseudo
anonymous namespaces: COH_OPEN_NAMESPACE_ANON(NAME) and
COH_CLOSE_NAMESPACE_ANON. Further details on the macros are provided in
compatibility.hpp.

This section includes the following topics:

Specification-Based Managed Class Definition
Specification-based definitions (specs) enable you to quickly define managed classes in C++.

Specification-based definitions are helpful when you are writing your own implementation of
managed objects.

There are various forms of specs used to create different class types:

• class_spec—standard instantiatable class definitions

• cloneable_spec—cloneable class definitions

Chapter 9
Writing New Managed Classes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 22

• abstract_spec—non-instantiatable class definitions, with zero or more pure virtual
methods

• interface_spec—for defining interfaces (pure virtual, multiply inheritable classes)

• throwable_spec—managed classes capable of being thrown as exceptions

Specs automatically define these features on the class being spec'd:

• Handles, Views, Holders

• static create() methods which delegate to protected constructors

• virtual clone() method delegating to the copy constructor

• virtual sizeOf() method based on ::sizeof()

• super typedef for referencing the class from which the defined class derives

• inheritance from coherence::lang::Object, when no parent class is specified by using
extends<>

To define a class using specs, the class publicly inherits from the specs above. Each of these
specs are parametrized templates. The parameters are as follows:

• The name of the class being defined.

• The class to publicly inherit from, specified by using an extends<> statement, defaults to
extends<Object>

– This element is not supplied in interface_spec

– Except for extends<Object>, the parent class is not derived from virtually

• A list of interfaces implemented by the class, specified by using an implements<>
statement

– All interfaces are derived from using public virtual inheritance

Note that the extends<> parameter is note used in defining interfaces.

The following example illustrates using interface_spec to define a Comparable interface:

class Comparable
 : public interface_spec<Comparable>
 {
 public:
 virtual int32_t compareTo(Object::View v) const = 0;
 };

The following example illustrates using interface_spec to define a derived interface Number:

class Number
 : public interface_spec<Number,
 implements<Comparable> >
 {
 public:
 virtual int32_t getValue() const = 0;
 };

The following example uses cloneable_spec to produce an implementation.

Chapter 9
Writing New Managed Classes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 22

Note

To support the auto-generated create methods, instantiatable classes must declare the
coherence::lang::factory<> template as a friend. By convention this is the first
statement within the class body.

class Integer
 : public cloneable_spec<Integer,
 extends<Object>,
 implements<Number> >
 {
 friend class factory<Integer>;

 protected:
 Integer(int32_t n)
 : super(), m_n(n)
 {
 }

 Integer(const Integer& that)
 : super(that), m_n(that.m_n)
 {
 }

 public:
 virtual int32_t getValue() const
 {
 return m_n;
 }

 virtual int32_t compareTo(Object::View v) const
 {
 return getValue() - cast<Integer::View>(v)->getValue();
 }

 virtual void toStream(std::ostream& out) const
 {
 out << getValue();
 }

 private:
 int32_t m_n;
 };

The class definition can also be defined without the use of specs. For example:

class Integer
 : public virtual Object, public virtual Number
 {
 public:
 typedef TypedHandle<const Integer> View; // was auto-generated
 typedef TypedHandle<Integer> Handle; // was auto-generated
 typedef TypedHolder<Integer> Holder; // was auto-generated
 typedef super Object; // was auto-generated

 // was auto-generated
 static Integer::Handle create(const int32_t& n)
 {
 return new Integer(n);

Chapter 9
Writing New Managed Classes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 22

 }

 protected:
 Integer(int32_t n)
 : super(), m_n(n)
 {
 }

 Integer(const Integer& that)
 : super(that), m_n(that.n)
 {
 }

 public:
 virtual int32_t getValue() const
 {
 return m_n;
 }

 virtual int32_t compareTo(Object::View v) const
 {
 return getValue() - cast<Integer::View>(v)->getValue();
 }

 virtual void toStream(std::ostream& out) const
 {
 out << getValue();
 }

 // was auto-generated
 virtual Object::Handle clone() const
 {
 return new Integer(*this);
 }

 // was auto-generated
 virtual size32_t sizeOf() const
 {
 return ::sizeof(Integer);
 }

 private:
 int32_t m_n;
 };

The following example illustrates using the spec'd class:

Integer::Handle hNum1 = Integer::create(123);
Integer::Handle hNum2 = Integer::create(456);

if (hNum1->compareTo(hNum2) > 0)
 {
 std::cout << hNum1 << " is greater then " << hNum2 << std::endl;
 }

Equality, Hashing, Cloning, Immutability, and Serialization
Equality, Hashing, Cloning, Immutability, and Serialization all identify the state of an object and
generally have similar implementation concerns. Simply put, all data members referenced in
one of these methods, are likely referenced in all of the methods. Conversely any data

Chapter 9
Writing New Managed Classes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 22

members which are not referenced by one, should likely not be referenced by any of these
methods.

Consider the simple case of a HashSet::Entry, which contains the well known key and value
data members. These are to be considered in the equals method and would likely be tested for
equality by using a call to their own equals method rather than through reference equality. If
Entry also contains, as part of the implementation of the HashSet, a handle to the next Entry
within the HashSet's bucket and perhaps also contains a handle back to the HashSet itself,
should these be considered in equals as well? Likely not, it would seem reasonable that
comparing two entries consisting of equal keys and values from two maps should be
considered equal. Following this line of thought the hashCode method on Entry would
completely ignore data members except for key and value, and hashCode would be computed
using the results of its key and value hashCode, rather then using their identity hashCode. that
is, a deep equality check in equals implies a deep hash in hashCode.

For clone, only the key and value (not all the data members) require cloning. To clone the
parent Map as part of clone, the Entry would make no sense and a similar argument can be
made for cloning the handle to the next Entry. This line of thinking can be extended to the
isImmutable method, and to serialization as well. While it is certainly not a hard and fast rule, it
is worth considering this approach when implementing any of these methods.

Threading
The object model includes managed threads, which allows for easy creation of platform
independent, multi-threaded, applications. The threading abstraction includes support for
creating, interrupting, and joining threads. Thread local storage is available from the
coherence::lang::ThreadLocalreference class. Thread dumps are also available for
diagnostic and troubleshooting purposes. The managed threads are ultimately wrappers
around the system's native thread type, such as POSIX or Windows Threads. This threading
abstraction is used internally by Coherence, but is available for the application, if necessary.

The following example illustrates how to create a Runnable instance and spawn a thread:

class HelloRunner
 : public class_spec<HelloRunner,
 extends<Object>,
 implements<Runnable> >
 {
 friend class factory<HelloRunner>;

 protected:
 HelloRunner(int cReps)
 : super(), m_cReps(cReps)
 {
 }

 public:
 virtual void run()
 {
 for (int i = 0; i < m_Reps; ++i)
 {
 Thread::sleep(1000);
 std::cout << "hello world" << std::endl;
 }
 }

 protected:
 int m_cReps;
 };

Chapter 9
Writing New Managed Classes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 22

...

Thread::Handle hThread = Thread::create(HelloRunner::create(10));
hThread->start();
hThread->join();

Refer to coherence::lang::Thread and coherence::lang::Runnable for more information.

Weak References
The primary functional limitation of a reference counting scheme is automatic cleanup of
cyclical object graphs. Consider the simple bi-directional relationship illustrated in Figure 9-1.

Figure 9-1 A Bi-Directional Relationship

A B

In this picture, both A and B have a reference count of one, which keeps them active. What
they do not realize is that they are the only things keeping each other active, and that no
external references to them exist. Reference counting alone is unable to handle these self
sustaining graphs and memory would be leaked.

The provided mechanism for dealing with graphs is weak references. A weak reference is one
which references an object, but not prevent it from being deleted. As illustrated in Figure 9-2,
the A->B->A issue could be resolved by changing it to the following.

Figure 9-2 Establishing a Weak Reference

A B

Where A now has a weak reference to B. If B were to reach a point where it was only
referenced weakly, it would clear all weak references to itself and then be deleted. In this
simple example that would also trigger the deletion of A, as B had held the only reference to A.

Weak references allow for construction of more complicated structures then this. But it
becomes necessary to adopt a convention for which references are weak and which are
strong. Consider a tree illustrated in Figure 9-3. The tree consists of nodes A, B, C; and two
external references to the tree X, and Y.

Chapter 9
Writing New Managed Classes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 12 of 22

Figure 9-3 Weak and Strong References to a Tree

X A

B CY

In this tree parent (A) use strong references to children (B, C), and children use weak
references to their parent. With the picture as it is, reference Y could navigate the entire tree,
starting at child B, and moving up to A, and then down to C. But what if reference X were to be
reset to NULL? This would leave A only being weakly referenced and it would clear all weak
references to itself, and be deleted. In deleting itself there would no longer be any references
to C, which would also be deleted. At this point reference Y, without having taken any action
would now refer to the situation illustrated in Figure 9-4.

Figure 9-4 Artifacts after Deleting the Weak References

BY

This is not necessarily a problem, just a possibility which must be considered when using weak
references. To work around this issue, the holder of Y would also likely maintain a reference to
A to ensure the tree did not dissolve away unexpectedly.

See the Javadoc for coherence::lang::WeakReference, WeakHandle, and WeakView for usage
details.

Virtual Constructors
As is typical in C++, referencing an object under construction can be dangerous. Specifically
references to this are to be avoided within a constructor, as the object initialization has not yet
completed. For managed objects, creating a handle to this from the constructor usually
causes the object to be destructed before it ever finishes being created. Instead, the object
model includes support for virtual constructors. The virtual constructor onInit is defined by
Object and can be overridden on derived classes. This method is called automatically by the
object model just after construction completes, and just before the new object is returned from
its static create method. Within the onInit method, it is safe to reference this to call virtual

Chapter 9
Writing New Managed Classes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 22

functions and to hand out references to the new object to other class instances. Any derived
implementation of onInit must include a call to super::onInit() to allow the parent class to
also initialize itself.

Advanced Handle Types
In addition to the Handle and View smart pointers (discussed previously), the object model
contains several other specialized variants that can be used. For the most part use of these
specialized smart pointers is limited to writing new managed classes, and they do not appear
in normal application code.

Table 9-1 Advanced Handle Types Supported by Coherence for C++

Type Thread-safe? View Notes

coherence:lang:TypedHandle<T> No Conditional on T The implementation of Handle and
View

coherence:lang:BoxHandle<T> No Conditional on T Allows automatic creating of
managed objects from primitive
types.

coherence:lang:TypedHolder<T> No May May act as a Handle or a View.
Basic types stored in collections

coherence:lang:Immutable<T> No Yes Ensures const-ness of referring
object.

coherence:lang:WeakHandle<T> Yes No Does not prevent destruction of
referring object.

coherence:lang:WeakView<T> Yes Yes Does not prevent destruction of
referring object.

coherence:lang:WeakHolder<T> Yes Yes Does not prevent destruction of
referring object.

coherence:lang:MemberHandle<T> Yes No Transfers const-ness of enclosing
object.

coherence:lang:MemberView<T> Yes Yes Thread-safe View.

coherence:lang:MemberHolder<T> Yes May May act a thread-safe Handle or
View.

coherence:lang:FinalHandle<T> Yes No Thread-safe const transferring read-
only Handle.

coherence:lang:FinalView<T> Yes Yes Thread-safe read-only View.

coherence:lang:FinalHolder<T> Yes May May act a thread-safe read-only
Handle or View.

Thread Safety
Although the base Object class is thread-safe, this cannot provide automatic thread safety for
the state of derived classes. As is typical it is up to each individual derived class
implementation to provide for higher level thread-safety. The object model provides some
facilities to aid in writing thread-safe code.

This section includes the following topics:

Chapter 9
Writing New Managed Classes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 14 of 22

Synchronization and Notification
Every Object in the object model can be a point of synchronization and notification. To
synchronize an object and acquire its internal monitor, use a COH_SYNCHRONIZED macro code
block. For example:

SomeClass::Handle h = getObjectFromSomewhere();

COH_SYNCHRONIZED (h)
 {
 // monitor of Object referenced by h has been acquired

 if (h->checkSomeState())
 {
 h->actOnThatState();
 }
 } // monitor is automatically released

The COH_SYNCHRONIZED block performs the monitor acquisition and release. You can safely exit
the block with return, throw, COH_THROW, break, continue, and goto statements.

The Object class includes wait(), wait(timed), notify(), and notifyAll() methods for
notification purposes. To call these methods, the caller must have acquired the Objects's
monitor. Refer to coherence::lang::Object for details.

Read-write locks are also provided, see coherence::util::ThreadGate for details.

Thread Safe Handles
The Handle, View, and Holder nested types defined on managed classes are intentionally not
thread-safe. That is it is not safe to have multiple threads share a single handle. There is an
important distinction here: thread-safety of the handle is being discussed not the object
referenced by the handle. It is safe to have multiple distinct handles that reference the same
object from different threads without additional synchronization.

This lack of thread-safety for these handle types offers a significant performance optimization
as the vast majority of handles are stack allocated. So long as references to these stack
allocated handles are not shared across threads, there is no thread-safety issue to be
concerned with.

Thread-safe handles are needed any time a single handle may be referenced by multiple
threads. Typical cases include:

• Global handles - using the standard handle types as global or static variable is not safe.

• Non-managed multi-threaded application code - Use of standard handles within data
structures which may be shared across threads is unsafe.

• Managed classes with handles as data members - It should be assumed that any instance
of a managed class may be shared by multiple threads, and thus using standard handles
as data members is unsafe. Note that while it may not be strictly true that all managed
classes may be shared across threads, if an instance is passed to code outside of your
explicit control (for instance put into a cache), there is no guarantee that the object is not
visible to other threads.

The use of standard handles should be replaced with thread-safe handles in such cases. The
object model includes the following set of thread-safe handles.

• coherence::lang::MemberHandle<T>—thread-safe version of T::Handle

Chapter 9
Writing New Managed Classes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 15 of 22

• coherence::lang::MemberView<T>—thread-safe version of T::View

• coherence::lang::MemberHolder<T>—thread-safe version of T::Holder

• coherence::lang::FinalHandle<T>—thread-safe final version of T::Handle

• coherence::lang::FinalView<T>—thread-safe final version of T::View

• coherence::lang::FinalHolder<T>—thread-safe final version of T::Holder

• coherence::lang::WeakHandle<T>—thread-safe weak handle to T

• coherence::lang::WeakView<T>—thread-safe weak view to T

• coherence::lang::WeakHolder<T>—thread-safe weak T::Holder

These handle types may be read and written from multiple thread without the need for
additional synchronization. They are primarily intended for use as the data-members of other
managed classes, each instance is provided with a reference to a guardian managed Object.
The guardian's internal thread-safe atomic state is used to provide thread-safety to the handle.
When using these handle types it is recommended that they be read into a normal stack based
handle if they are continually accessed within a code block. This assignment to a standard
stack based handle is thread-safe, and, after completed, allows for essentially free
dereferencing of the stack based handle. Note that when initializing thread-safe handles a
reference to a guardian Object must be supplied as the first parameter, this reference can be
obtained by calling self() on the enclosing object.

The following example demonstrates a thread-safe handle.

class Employee
 : public class_spec<Employee>
 {
 friend class factory<Employee>;

 protected:
 Employee(String::View vsName, int32_t nId)
 : super(), m_vsName(self(), vsName), m_nId(nId)
 {
 }

 public:
 String::View getName() const
 {
 return m_vsName; // read is automatically thread-safe
 }

 void setName(String::View vsName)
 {
 m_vsName = vsName; // write is automatically thread-safe
 }

 int32_t getId() const
 {
 return m_nId;
 }

 private:
 MemberView<String> m_vsName;
 const int32_t m_nId;
 };

The same basic technique can be applied to non-managed classes as well. Since non-
managed classes do not extend coherence::lang::Object, they cannot be used as the
guardian of thread-safe handles. It is possible to use another Object as the guardian.

Chapter 9
Writing New Managed Classes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 16 of 22

However, it is crucial to ensure that the guardian Object outlives the guarded thread-safe
handle. When using another object as the guardian, obtain a random immortal guardian from
coherence::lang::System through a call to System::common(). For example:

class Employee
 {
 public:
 Employee(String::View vsName, int32_t nId)
 : m_vsName(System::common(), vsName), m_nId(nId)
 {
 }

 public:
 String::View getName() const
 {
 return m_vsName;
 }

 void setName(String::View vsName)
 {
 m_vsName = vsName;
 }

 int32_t getId() const
 {
 return m_nId;
 }

 private:
 MemberView<String> m_vsName;
 const int32_t m_nId;
 };

When writing managed classes it is preferable to obtain a guardian through a call to self()
then to System::common().

Note

In the rare case that one of these handles is declared through the mutable keyword, it
must be informed of this fact by setting fMutable to true during construction.

Thread-safe handles can also be used in non-class shared data as well. For example, global
handles:

MemberView<NamedCache> MY_CACHE(System::common());

int main(int argc, char** argv)
 {
 MY_CACHE = CacheFactory::getCache(argv[0]);
 }

Escape Analysis
The object model includes escape analysis based optimizations. The escape analysis is used
to automatically identify when a managed object is only visible to a single thread and in such
cases optimize out unnecessary synchronizations. The following types of operations are
optimized for non-escaped objects.

Chapter 9
Writing New Managed Classes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 17 of 22

• reference count updates

• COH_SYNCHRONIZED acquisition and release

• reading/writing of thread-safe handles

• reading of thread-safe handles from immutables

Escape analysis is automatic and is completely safe so long as you follow the rules of using
the object model. Most specifically is that it is not safe to pass a managed object between
threads without using a provided thread-safe handle. Passing it by an external mechanism
does not allow escape analysis to identify the "escape" which could cause memory corruption
or other run-time errors.

This section includes the following topics:

Shared handles
Each managed class type includes nested definitions for a Handles, View, and Holder. These
handles are used extensively throughout the Coherence API, and is application code. They are
intended for use as stack based references to managed objects. They are not intended to be
made visible to multiple threads. That is a single handle should not be shared between two or
more threads, though it is safe to have a managed Object referenced from multiple threads, so
long as it is by distinct Handles, or a thread-safe MemberHandle/View/Holder.

It is important to remember that global handles to managed Objects should be considered to
be "shared", and therefore must be thread-safe, as demonstrated previously. The failure to use
thread-safe handles for globals causes escaped objects to not be properly identified leading to
memory corruption.

In 3.4 these non thread-safe handles could be shared across threads so long as external
synchronization was employed, or if the handles were read-only. In 3.5 and later this is no
longer true, even when used in a read-only mode or enclosed within external synchronization
these handles are not thread-safe. This is due to a fundamental change in implementation
which drastically reduces the cost of assigning one handle to another, which is an operation
which occurs constantly. Any code which was using handles in this fashion should be updated
to make use of thread-safe handles. See Thread Safe Handles.

Const Correctness
Coherence escape analysis, among other things, leverages the computed mutability of an
object to determine if state changes on data members are still possible. Namely, when an
object is only referenced from views, it is assumed that its data members do not undergo
further updates. The C++ language provides some mechanisms to bypass this const-only
access and allow mutation from const methods. For instance, the use of the mutable keyword
in a data member declaration, or the casting away of constness. The arguably cleaner and
supported approach for the object model is the mutable keyword. For the Coherence object
model, when a thread-safe data member handle is declared as mutable this information must
be communicated to the data member. All thread-safe data members support an optional third
parameter fMutable which should be set to true if the data member has been declared with the
mutable keyword. This informs the escape analysis routine to not consider the data member as
"const" when the enclosing object is only referenced using Views. Casting away of the
constness of managed object is not supported, and can lead to run time errors if the object
model believes that the object can no longer undergo state changes.

Thread-Local Allocator
Coherence for C++ includes a thread-local allocator to improve performance of dynamic
allocations which are heavily used within the API. By default, each thread grows a pool to

Chapter 9
Writing New Managed Classes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 18 of 22

contain up to 64KB of reusable memory blocks to satisfy the majority of dynamic object
allocations. The pool is configurable using the following system properties:

• coherence.heap.slot.size controls the maximum size of an object which is considered
for allocation from the pool, the default is 128 bytes. Larger objects call through to the
system's malloc routine to obtain the required memory.

• coherence.heap.slot.count controls the number of slots available to each thread for
handling allocations, the default is 512 slots. If there are no available slots, allocations fall
back on malloc.

• coherence.heap.slot.refill controls the rate at which slots misses trigger refilling the
pool. The default of 10000 causes 1/10000 pool misses to force an allocation which is
eligible for refilling the pool.

The pool allocator can be disabled by setting the size or count to 0.

Diagnostics and Troubleshooting
Learn how to diagnosing issues in applications that use the Coherence C++ object model.
This section includes the following topics:

Thread-Local Allocator Logs
Logs can be enabled to view the efficiency of the thread-local allocator pool. To enable the
logs, set the coherence.heap.logging system property to true.

The log entries indicate the memory location of the pool, the size of the pool, how many
allocation areas are in the pool and the fraction of successful hits on the pool (the rate of
finding a slot within the pool). The following example demonstrates a typical allocator log entry:

(thread=main): Allocator hit: pool=0x7f8e5ac039d0, size=128, slots=512, hit rate=0.62963

Thread Dumps
Thread dumps are available for diagnostic and troubleshooting purposes. These thread dumps
also include the stack trace. You can generate a thread dump by performing a CTRL+BREAK
(Windows) or a CTRL+BACKSLASH (UNIX). The following output illustrates a sample thread
dump:

Thread dump Oracle Coherence for C++ v3.4b397 (Pre-release) (Apple Mac OS X x86 debug)
pid=0xf853; spanning 190ms

"main" tid=0x101790 runnable: <native>
 at coherence::lang::Object::wait(long long) const
 at coherence::lang::Thread::dumpStacks(std::ostream&, long long)
 at main
 at start

"coherence::util::logging::Logger" tid=0x127eb0 runnable: Daemon{State=DAEMON_RUNNING,
Notification=false,
StartTimeStamp=1216390067197, WaitTime=0, ThreadName=coherence::util::logging::Logger}
 at coherence::lang::Object::wait(long long) const
 at coherence::component::util::Daemon::onWait()
 at coherence::component::util::Daemon::run()
 at coherence::lang::Thread::run()

Chapter 9
Diagnostics and Troubleshooting

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 19 of 22

Memory Leak Detection
While the managed object model reference counting helps prevent memory leaks they are still
possible. The most common way in which they are triggered is through cyclical object graphs.
The object model includes heap analysis support to help identify if leaks are occurring, by
tracking the number of live objects in the system. Comparing this value over time provides a
simple means of detecting if the object count is consistently increasing, and thereby likely
leaking. After a probable leak has been detected, the heap analyzer can help track it down as
well, by provided statistics on what types of objects appeared to have leaked.

Coherence provides a pluggable coherence::lang::HeapAnalyzer interface. The
HeapAnalyzer implementation can be specified by using the coherence.heap.analyzer
system property. The property can be set to the following values:

• none—No heap analysis is performed. This is the default.

• object—The coherence::lang::ObjectCountHeapAnalyzer is used. It provides simple
heap analysis based solely on the count of the number of live objects in the system.

• class—The coherence::lang::ClassBasedHeapAnalyzer is used. It provides heap
analysis at the class level, that is it tracks the number of live instances of each class, and
the associated byte level usage.

• alloc —Specialization of coherence::lang::ClassBasedHeapAnalyzer which additionally
tracks the allocation counts at the class level.

• custom—Lets you define your own analysis routines. You specify the name of a class
registered with the SystemClassLoader.

Heap information is returned when you perform a CTRL+BREAK (Windows) or CTRL+BACKSLASH
(UNIX).

The following output illustrates heap analysis information returned by the class-based analyzer.
It returns the heap analysis delta resulting from the insertion of a new entry into a Map.

Space Count Class
44 B 1 coherence::lang::Integer32
70 B 1 coherence::lang::String
132 B 1 coherence::util::SafeHashMap::Entry

Total: 246 B, 3 objects, 3 classes

Memory Corruption Detection
For all that the object model does to prevent memory corruption, it is typically used along side
non-managed code which could cause corruption. Therefore, the object model includes
memory corruption detection support. When enabled, the object model's memory allocator
pads the beginning and end of each object allocation by a configurable number of pad bytes.
This padding is encoded with a pattern which can later be validated to ensure that the pad has
not been touched. If memory corruption occurs, and affects a pad, subsequent validations
detect the corruption. Validation is performed when the object is destroyed.

The debug version of the Coherence C++ API has padding enabled by default, using a pad
size of 2*(word size), on each side of an object allocation. In a 32-bit build, this adds 16 bytes
per object. Increasing the size of the padding increases the chances of corruption affecting a
pad, and thus the chance of detecting corruption.

Chapter 9
Diagnostics and Troubleshooting

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 20 of 22

The size of the pad can be configured by using the coherence.heap.padding system property,
which can be set to the number of bytes for the pre/post pad. Setting this system property to a
nonzero value enables the feature, and is available even in release builds.

The following output illustrates the results from an instance of memory corruption detection:

Error during ~MemberHolder: coherence::lang::IllegalStateException: memory corruption
detected in 5B post-padding at offset 4 of memory allocated at 0x132095

Application Launcher - Sanka
Coherence uses an application launcher for invoking executable classes embedded within a
shared library. The launcher allows for a shared library to contain utility or test executables
without shipping individual standalone executable binaries.
This section includes the following topics:

Command line syntax
The launcher named sanka works similar to java, in that it is provided with one or more shared
libraries to load, and a fully qualified class name to execute.

ge: sanka [-options] <native class> [args...]

available options include:
 -l <native library list> dynamic libraries to load, separated by : or ;
 -D<property>=<value> set a system property
 -version print the Coherence version
 -? print this help message
 <native class> the fully qualified class. For example,
 coherence::net::CacheFactory

The specified libraries must either be accessible from the operating system library path (PATH,
LD_LIBRARY_PATH, DYLD_LIBRARY_PATH), or they may be specified with an absolute or relative
path. Library names may also leave off any operating specific prefix or suffix. For instance the
UNIX libfoo.so or Windows foo.dll can be specified simply as foo. The Coherence shared
library which the application was linked against must be accessible from the system's library
path as well.

Built-in Executables
Several utility executables classes are included in the Coherence shared library:

• coherence::net::CacheFactory runs the Coherence C++ console

• coherence::lang::SystemClassLoader prints out the registered managed classes

• coherence::io::pof::SystemPofContext prints out the registered POF types

The later two executables can be optionally supplied with shared libraries to inspect, in which
case they output the registration which exists in the supplied library rather then all registrations.

Note

The console which was formerly shipped as an example, is now shipped as a built-in
executable class.

Chapter 9
Application Launcher - Sanka

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 21 of 22

Sample Custom Executable Class
Applications can of course still be made executable in the traditional C++ means using a global
main function. If desired you can make your own classes executable using Sanka as well. The
following is a simple example of an executable class:

#include "coherence/lang.ns"

COH_OPEN_NAMESPACE2(my,test)

using namespace coherence::lang;

class Echo
 : public class_spec<Echo>
 {
 friend class factory<Echo>;

 public:
 static void main(ObjectArray::View vasArg)
 {
 for (size32_t i = 0, c = vasArg->length; i < c; ++i)
 {
 std::cout << vasArg[i] << std::endl;
 }
 }
 };
COH_REGISTER_EXECUTABLE_CLASS(Echo); // must appear in .cpp

COH_CLOSE_NAMESPACE2

As you can see the specified class must have been registered as an ExecutableClass and
have a main method matching the following signature:

static void main(ObjectArray::View)

The supplied ObjectArray parameter is an array of String::View objects corresponding to the
command-line arguments which followed the executable class name.

When linked into a shared library, for instance libecho.so or echo.dll, the Echo class can be
run as follows:

> sanka -l echo my::test::Echo Hello World
Hello
World

Chapter 9
Application Launcher - Sanka

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 22 of 22

10
Using the Coherence for C++ Client API

The Coherence for C++ API allows C++ applications to use Coherence clustered services from
outside the Coherence cluster.
Coherence for C++ API documentation is available at C++ API Reference for Oracle
Coherence and in the doc directory of the Coherence for C++ distribution.

This chapter includes the following sections:

CacheFactory
CacheFactory provides several static methods for retrieving and releasing NamedCache
instances.

• NamedCache::Handle getCache(String::View vsName)—retrieves a NamedCache
implementation that corresponds to the NamedCache with the specified name running within
the remote Coherence cluster.

• void releaseCache(NamedCache::Handle hCache)—releases all local resources
associated with the specified instance of the cache. After a cache is released, it can no
longer be used. The content of the cache, however, is not affected.

• void destroyCache(NamedCache::Handle hCache)—destroys the specified cache across
the Coherence cluster.

This section includes the following topics:

NamedCache
A NamedCache is a map of resources shared among members of a cluster. The NamedCache
provides methods used to retrieve the name of the cache and the service, and to release or
destroy the cache.

• String::View getCacheName()—returns the name of the cache as a String.

• CacheService::Handle getCacheService()—returns a handle to the CacheService that
this NamedCache is a part of.

• bool isActive()—specifies whether this NamedCache is active.

• void release()—releases the local resources associated with this instance of the
NamedCache. The cache is no longer usable, but the cache contents are not affected.

• void destroy()—releases and destroys this instance of the NamedCache.

NamedCache interface also extends the following interfaces: QueryMap, InvocableMap,
ConcurrentMap, CacheMap and ObservableMap.

QueryMap
A QueryMap can be thought of as an extension of the Map class with additional query features.
These features allow the ability to query a cache using various filters. See Filter .

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

• Set::View keySet(Filter::View vFilter)—returns a set of the keys contained in this
map for entries that satisfy the criteria expressed by the filter.

• Set::View entrySet(Filter::View vFilter)—returns a set of the entries contained in
this map that satisfy the criteria expressed by the filter. Each element in the returned set is
a Map::Entry object.

• Set::View entrySet(Filter::View vFilter, Comparator::View vComparator)—returns
a set of the entries contained in this map that satisfy the criteria expressed by the filter.
Each element in the returned set is a Map::Entry object. This version of entrySet further
guarantees that its iterator traverses the set in ascending order based on the entry values
which are sorted by the specified Comparator or according to the natural ordering.

Additionally, the QueryMap class includes the ability to add and remove indexes. Indexes are
used to correlate values stored in the cache to their corresponding keys and can dramatically
increase the performance of the keySet and entrySet methods.

• void addIndex(ValueExtractor::View vExtractor, boolean_t fOrdered,
Comparator::View vComparator)—adds an index to this QueryMap. The index correlates
values stored in this indexed Map (or attributes of those values) to the corresponding keys
in the indexed Map and increase the performance of keySet and entrySet methods.

• void removeIndex(ValueExtractor::View vExtractor)—removes an index from this
QueryMap.

See Querying a Cache (C++) and Performing Simple Queries.

ObservableMap
An ObservableMap provides an application with the ability to listen for cache changes.
Applications that implement ObservableMap can add key and filter listeners to receive events
from any cache, regardless of whether that cache is local, partitioned, near, replicated, using
read-through, write-through, write-behind, overflow, disk storage, and so on. ObservableMap
also provides methods to remove these listeners.

• void addKeyListener(MapListener::Handle hListener, Object::View vKey, bool
fLite)—adds a map listener for a specific key.

• void removeKeyListener(MapListener::Handle hListener, Object::View vKey)—
removes a map listener that previously signed up for events about a specific key.

• void addFilterListener(MapListener::Handle hListener, Filter::View vFilter =
NULL, bool fLite = false)—adds a map listener that receives events based on a filter
evaluation.

• void removeFilterListener(MapListener::Handle hListener, Filter::View vFilter
= NULL)—removes a map listener that previously signed up for events based on a filter
evaluation.

See Signing Up for all Events.

InvocableMap
An InvocableMap is a cache against which both entry-targeted processing and aggregating
operations can be invoked. The operations against the cache contents are executed by (and
thus within the localized context of) a cache. This is particularly efficient in a distributed
environment because it localizes processing: the processing of the cache contents are moved
to the location at which the entries-to-be-processed are being managed. See Entry Processors
and Entry Aggregators.

Chapter 10
ObservableMap

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

• Object::Holder invoke(Object::View vKey, EntryProcessor::Handle hAgent)—
invokes the passed processor (EntryProcessor) against the entry (Entry) specified by the
passed key, returning the result of the invocation.

• Map::View invokeAll(Collection::View vCollKeys, EntryProcessor::Handle hAgent)
—invokes the passed processor (EntryProcessor) against the entries (Entry objects)
specified by the passed keys, returning the result of the invocation for each.

• Map::View invokeAll(Filter::View vFilter, EntryProcessor::Handle hAgent)—
invokes the passed processor (EntryProcessor) against the entries (Entry objects) that
are selected by the given filter, returning the result of the invocation for each.

• Object::Holder aggregate(Collection::View vCollKeys, EntryAggregator::Handle
hAgent)—performs an aggregating operation against the entries specified by the passed
keys.

• Object::Holder aggregate(Filter::View vFilter, EntryAggregator::Handle hAgent)
—performs an aggregating operation against the entries that are selected by the given
filter.

Filter
The Filter API provides the ability to filter results and only return objects that meet a given set
of criteria. All filters must implement Filter. Filters are commonly used with the QueryMap API to
query the cache for entries that meet a given criteria. See QueryMap.

• bool evaluate(Object::View v)—applies a test to the specified object and returns true if
the test passes, false otherwise.

Coherence for C++ includes many concrete Filter implementations in the
coherence::util::filter namespace. Below are several commonly used filters:

• EqualsFilter is used to test for equality. The following example creates an EqualsFilter
to test that an object equals 5:

EqualsFilter::View vEqualsFilter =
EqualsFilter::create(IdentityExtractor::getInstance(), Integer32::valueOf(5));

• GreaterEqualsFilter is used to test a "Greater or Equals" condition. The following
example creates a GreaterEqualsFilter that tests that an objects value is >= 55:

GreaterEqualsFilter::View vGreaterEqualsFilter =
GreaterEqualsFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf(55));

• LikeFilter is used for pattern matching. The followiung example creates a LikeFilter
that tests that the string representation of an object begins with "Belg":

LikeFilter::View vLikeFilter = LikeFilter::create(IdentityExtractor::getInstance(),
"Belg%");

• Some filters combine two filters to create a compound condition. AndFilter is
used to combine two filters to create an "AND" condition. The following example creates an
AndFilter that tests that an objects value is greater than 10 and less than 20:

AndFilter::View vAndFilter = AndFilter::create(
 GreaterFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf(10)),
 LessFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf(20)));

• OrFilter is used to combine two filters to create an "OR" condition. The following example
create an OrFilter that tests that an object's value is less than 10 or greater than 20:

Chapter 10
Filter

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

OrFilter::View vOrFilter = OrFilter::create(
 LessFilter::create(IdentityExtractor::getInstance(), Integer32::valueOf(10)),
 GreaterFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf(20)));

Value Extractors
A value extractor is used to extract values from an object and to provide an identity for the
extraction.
All extractors must implement ValueExtractor.

Note

All concrete extractor implementations must also explicitly implement the hashCode
and equals functions in a way that is based solely on the object's serializable state.

• Object::Holder extract(Object::Holder ohTarget)—extracts the value from the
passed object.

• bool equals(Object::View v)—compares the ValueExtractor with another object to
determine equality. Two ValueExtractor objects, ve1 and ve2 are considered equal if and
only if ve1->extract(v) equals ve2->extract(v) for all values of v.

• size32_t hashCode()—determine a hash value for the ValueExtractor object according
to the general Object#hashCode() contract.

Coherence for C++ includes the following extractors:

• ChainedExtractor—is a composite ValueExtractor implementation based on an array of
extractors. The extractors in the array are applied sequentially left-to-right, so a result of a
previous extractor serves as a target object for a next one.

• ComparisonValueExtractor—returns a result of comparison between two values extracted
from the same target.

• IdentityExtractor—is a trivial implementation that does not actually extract anything
from the passed value, but returns the value itself.

• KeyExtractor—is a special purpose implementation that serves as an indicator that a
query should be run against the key objects rather than the values.

• MultiExtractor—is a composite ValueExtractor implementation based on an array of
extractors. All extractors in the array are applied to the same target object and the result of
the extraction is a List of extracted values.

• ReflectionExtractor—extracts a value from a specified object property.

See the C++ examples in Understanding Query Concepts.

Entry Processors
An entry processor is an agent that operates against the entry objects within a cache.

All entry processors must implement EntryProcessor.

• Object::Holder process(InvocableMap::Entry::Handle hEntry)—process the
specified entry.

Chapter 10
Value Extractors

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

• Map::View processAll(Set::View vSetEntries)—process a collection of entries.

Coherence for C++ includes several EntryProcessor implementations in the
coherence::util::processor namespace.

See the C++ examples that are part of the Coherence Java distribution.

Entry Aggregators
An entry aggregator represents processing that can be directed to occur against some subset
of the entries in an InvocableMap, resulting in an aggregated result. Common examples of
aggregation include functions such as minimum, maximum, sum, and average. However, the
concept of aggregation applies to any process that must evaluate a group of entries to come
up with a single answer. Aggregation is explicitly capable of being run in parallel, for example
in a distributed environment.
All aggregators must implement the EntryAggregator interface:

• Object::Holder aggregate(Collection::View vCollKeys)— processes a collection of
entries to produce an aggregate result.

Coherence for C++ includes several EntryAggregator implementations in the
coherence::util::aggregator namespace.

Note

Like cached value objects, all custom Filter, ValueExtractor, EntryProcessor, and
EntryAggregator implementation classes must be correctly registered in the POF
context of the C++ application and cluster-side node to which the client is connected.
As such, corresponding Java implementations of the custom C++ types must be
created, compiled, and deployed on the cluster-side node. Note that the actual
execution of these custom types is performed by the Java implementation and not the
C++ implementation. See Building Integration Objects (C++).

Chapter 10
Entry Aggregators

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

11
Building Integration Objects (C++)

You can use Portable Object Format (POF) serialization when creating C++ clients.

Note

This document assumes familiarity with the Coherence C++ Object Model, including
advanced concepts such as specification-based class definitions. See Using the
Coherence C++ Object Model.

This chapter includes the following sections:

Overview of Building Integration Objects (C++)
Enabling C++ clients to successfully store C++ based objects within a Coherence cluster relies
on a platform-independent serialization format known as POF (Portable Object Format). POF
allows value objects to be encoded into a binary stream in such a way that the platform and
language origin of the object is irrelevant. The stream can then be deserialized in an alternate
language using a similar POF-based class definition. See The PIF-POF Binary Format in
Developing Applications with Oracle Coherence.
While the Coherence C++ API includes several POF serializable classes, custom data types
require serialization support as described in this chapter.

POF Intrinsics
POF supports many internal types that do not require special handing.

POF intrinsic types include:

• String

• Integer16 .. Integer64

• Float32, Float64

• Array<> of primitives

• ObjectArray

• Boolean

• Octet

• Character16

Additionally, automatic POF serialization is provided for classes implementing these common
interfaces:

• Map

• Collection

• Exception

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 16

Serialization Options
While the Coherence C++ API offers a single serialization format (POF), it offers a variety of
APIs for making a class serializable. Ultimately whichever approach is used, the same binary
POF format is produced.
This section includes the following topics:

Overview of Serialization Options
The following approaches are available for making a class serializable:

• Use the Managed<T> adapter template, and add external free-function serializers. See
Managed<T> (Free-Function Serialization) .

• Modify the data object to extend Object, and implement the PortableObject interface, to
allow for object to self-serialize. See PortableObject (Self-Serialization) .

• Modify the data object to extend Object, and produce a PofSerializer class to perform
external serialization. See PofSerializer (External Serialization) .

Table 11-1lists some requirements and limitations of each approach.

Table 11-1 Requirements and Limitations of Serialization Options

Approach Coherence
headers in
data-object

Requires
derivation
from Object

Supports
const data-
members

External
serialization
routine

Requires
zero-arg
constructor

Managed<T> No No Yes Yes Yes

PortableObject Yes Yes No No Yes

PofSerializer Yes Yes Yes Yes No

All of these approaches share certain similarities:

• Serialization routines that allow the data items to be encoded to POF must be
implemented.

• The data object's fields are identified by using numeric indexes.

• The data object class and serialization mechanism must be registered with Coherence.

• Data objects used as cache keys must support equality comparisons and hashing.

Managed<T> (Free-Function Serialization)
For most pre-existing data object classes, the use of Managed<T> offers the easiest means of
integrating with Coherence for C++.

For a non-managed class to be compatible with Managed<T> it must have the following
characteristics:

• zero parameter constructor (public or protected): CustomType::CustomType()

• copy constructor (public or protected): CustomType::CustomType(const CustomType&)

• equality comparison operator: bool operator==(const CustomType&, const CustomType&)

• std::ostream output function: std::ostream& operator<<(std::ostream&, const
CustomType&)

Chapter 11
Serialization Options

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 16

• hash function: size_t hash_value(const CustomType&)

The following example presents a simple Address class, which has no direct knowledge of
Coherence, but is suitable for use with the Managed<T> template.

Note

In the interest of brevity, example class definitions are in-lined within the declaration.

Example 11-1 A Non-Managed Class

#include <iostream>
#include <string>
using namespace std;

class Address
 {
 public:
 Address(const std::string& sCity, const std::string& sState, int nZip)
 : m_sCity(sCity), m_sState(sState), m_nZip(nZip) {}

 Address(const Address& that) // required by Managed<T>
 : m_sCity(that.m_sCity), m_sState(that.m_sState), m_nZip(that.m_nZip) {}

 protected:
 Address() // required by Managed<T>
 : m_nZip(0) {}

 public:
 std::string getCity() const {return m_sCity;}
 std::string getState() const {return m_sState;}
 int getZip() const {return m_nZip;}

 private:
 const std::string m_sCity;
 const std::string m_sState;
 const int m_nZip;
 };

bool operator==(const Address& addra, const Address& addrb) // required by Managed<T>
 {
 return addra.getZip() == addrb.getZip() &&
 addra.getState() == addrb.getState() &&
 addra.getCity() == addrb.getCity();
 }

std::ostream& operator<<(std::ostream& out, const Address& addr) // required by
Managed<T>
 {
 out << addr.getCity() << ", " << addr.getState() << " " << addr.getZip();
 return out;
 }

size_t hash_value(const Address& addr) // required by Managed<T>
 {
 return (size_t) addr.getZip();
 }

Chapter 11
Serialization Options

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 16

When combined with Managed<T>, this simple class definition becomes a true "managed
object", and is usable by the Coherence C++ API. This definition has yet to address
serialization. Serialization support is added Example 11-2:

Example 11-2 Managed Class using Serialization

#include "coherence/io/pof/SystemPofContext.hpp"

#include "Address.hpp"

using namespace coherence::io::pof;

COH_REGISTER_MANAGED_CLASS(1234, Address); // type ID registration—this must
 // appear in the .cpp not the .hpp

template<> void serialize<Address>(PofWriter::Handle hOut, const Address& addr)
 {
 hOut->writeString(0, addr.getCity());
 hOut->writeString(1, addr.getState());
 hOut->writeInt32 (2, addr.getZip());
 }

template<> Address deserialize<Address>(PofReader::Handle hIn)
 {
 std::string sCity = hIn->readString(0);
 std::string sState = hIn->readString(1);
 int nZip = hIn->readInt32 (2);
 return Address(sCity, sState, nZip);
 }

Note

The serialization routines must have knowledge of Coherence. However, they are not
required as part of the class definition file. They can be placed in an independent
source file, and if they are linked into the final application, they take effect.

With the above pieces in place, Example 11-3 illustrates instances of the Address class
wrapped by using Managed<T> as Managed<Address>, and supplied to the Coherence APIs:

Example 11-3 Instances of a Class Wrapped with Managed<T>

// construct the non-managed version as usual
Address office("Redwood Shores", "CA", 94065);

// the managed version can be initialized from the non-managed version
// the result is a new object, which does not reference the original
Managed<Address>::View vOffice = Managed<Address>::create(office);
String::View vKey = "Oracle";

// the managed version is suitable for use with caches
hCache->put(vKey, vAddr);
vOffice = cast<Managed<Address>::View>(hCache->get(vKey));

// the non-managed class's public methods/fields remain accessible
assert(vOffice->getCity() == office.getCity());
assert(vOffice->getState() == office.getState());
assert(vOffice->getZip() == office.getZip());

// conversion back to the non-managed type may be performed using the

Chapter 11
Serialization Options

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 16

// non-managed class's copy constructor.
Address officeOut = *vOffice;

PortableObject (Self-Serialization)
The PortableObject interface is similar in concept to java.io.Externalizable, which allows
an object to control how it is serialized. Any class which extends from
coherence::lang::Object is free to implement the coherence::io::pof::PortableObject
interface to add serialization support. Note that the class must extend from Object, which then
dictates its life cycle.

In Example 11-4, the above Address example can be rewritten as a managed class, and
implement the PortableObject interface, which fully embraces the Coherence object model as
part of the definition of the class. For example, using coherence::lang::String rather then
std::string for data members.

Example 11-4 A Managed Class that Implements PortableObject

#include "coherence/lang.ns"

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"

#include "coherence/io/pof/SystemPofContext.hpp"

using namespace coherence::lang;

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;
using coherence::io::pof::PortableObject;

class Address
 : public cloneable_spec<Address,
 extends<Object>,
 implements<PortableObject> >
 {
 friend class factory<Address>;

 protected: // constructors
 Address(String::View vsCity, String::View vsState, int32_t nZip)
 : m_vsCity(self(), vsCity), m_vsState(self(), vsState), m_nZip(nZip) {}

 Address(const Address& that)
 : super(that), m_vsCity(self(), that.m_vsCity), m_vsState(self(),
 that.m_vsState), m_nZip(that.m_nZip) {}

 Address() // required by PortableObject
 : m_vsCity(self()),
 m_vsState(self()),
 m_nZip(0) {}

 public: // Address interface
 virtual String::View getCity() const {return m_vsCity;}
 virtual String::View getState() const {return m_vsState;}
 virtual int32_t getZip() const {return m_nZip;}

 public: // PortableObject interface virtual void writeExternal(PofWriter::Handle
hOut) const
 {
 hOut->writeString(0, getCity());

Chapter 11
Serialization Options

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 16

 hOut->writeString(1, getState());
 hOut->writeInt32 (2, getZip());
 }

 virtual void readExternal(PofReader::Handle hIn)
 {
 initialize(m_vsCity, hIn->readString(0));
 initialize(m_vsState, hIn->readString(1));
 m_nZip = hIn->readInt32 (2);
 }

 public: // Objectinterface virtual bool equals(Object::View that) const
 {
 if (instanceof<Address::View>(that))
 {
 Address::View vThat = cast<Address::View>(that);

 return getZip() == vThat->getZip() &&
 Object::equals(getState(), vThat->getState()) &&
 Object::equals(getCity(), vThat->getCity());
 }

 return false;
 }

 virtual size32_t hashCode() const
 {
 return (size32_t) m_nZip;
 }

 virtual void toStream(std::ostream& out) const
 {
 out << getCity() << ", " << getState() << " " << getZip();
 }

 private:
 FinalView<String> m_vsCity;
 FinalView<String> m_vsState;
 int32_t m_nZip;
 };
COH_REGISTER_PORTABLE_CLASS(1234, Address); // type ID registration—this must
 // appear in the .cpp not the .hpp

Example 11-5 illustrates a managed variant of the Address that does not require the use of the
Managed<T> adapter and can be used directly with the Coherence API:

Example 11-5 A Managed Class without Managed<T>

Address::View vAddr = Address::create("Redwood Shores", "CA", 94065);
String::View vKey = "Oracle";

hCache->put(vKey, vAddr);
Address::View vOffice = cast<Address::View>(hCache->get(vKey));

Serialization by using PortableObject is a good choice when the application has decided to
make use of the Coherence object model for representing its data objects. One drawback to
PortableObject is that it does not easily support const data members, as the readExternal
method is called after construction, and must assign these values.

Chapter 11
Serialization Options

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 16

PofSerializer (External Serialization)
The third serialization option is also the lowest level one. PofSerializers are classes that
provide the serialization logic for other classes. For example, an AddressSerializer is written
which can serialize a non-PortableObject version of the above managed Address class.
Under the covers the prior two approaches were delegating through PofSerializers, they
were just being created automatically rather then explicitly. Typically, it is not necessary to use
this approach, as either the Managed<T> or PortableObject approaches suffice. This approach
is primarily of interest when you have a managed object with const data members. Consider
Example 11-6, a non-PortableObject version of a managed Address.

Example 11-6 A non-PortableObject Version of a Managed Class

#include "coherence/lang.ns"

using namespace coherence::lang;

class Address
 : public cloneable_spec<Address> // extends<Object> is implied
 {
 friend class factory<Address>;

 protected: // constructors
 Address(String::View vsCity, String::View vsState, int32_t nZip)
 : m_vsCity(self(), vsCity), m_vsState(self(), vsState), m_nZip(nZip) {}

 Address(const Address& that)
 : super(that), m_vsCity(self(), that.getCity()), m_vsState(self(),
 that.getState()), m_nZip(that.getZip()) {}

 public: // Address interface
 virtual String::View getCity() const {return m_vsCity;}
 virtual String::View getState() const {return m_vsState;}
 virtual int32_t getZip() const {return m_nZip;}

 public: // Objectinterface
 virtual bool equals(Object::View that) const
 {
 if (instanceof<Address::View>(that))
 {
 Address::View vThat = cast<Address::View>(that);

 return getZip() == vThat->getZip() &&
 Object::equals(getState(), vThat->getState()) &&
 Object::equals(getCity(), vThat->getCity());
 }

 return false;
 }

 virtual size32_t hashCode() const
 {
 return (size32_t) m_nZip;
 }

 virtual void toStream(std::ostream& out) const
 {
 out << getCity() << ", " << getState() << " " << getZip();
 }

Chapter 11
Serialization Options

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 16

 private:
 const MemberView<String> m_vsCity;
 const MemberView<String> m_vsState;
 const int32_t m_nZip;
 };

Note that this version uses const data members, which makes it not well-suited for
PortableObject. Example 11-7 illustrates an external class, AddressSerializer, which is
registered as being responsible for serialization of Address instances.

Example 11-7 An External Class Responsible for Serialization

#include "coherence/lang.ns"

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"
#include "coherence/io/pof/PofSerializer.hpp"
#include "coherence/io/pof/SystemPofContext.hpp"

#include "Address.hpp"

using namespace coherence::lang;

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;
using coherence::io::pof::PofSerializer;

class AddressSerializer
 : public class_spec<AddressSerializer,
 extends<Object>,
 implements<PofSerializer> >
 {
 friend class factory<AddressSerializer>;

 protected:
 AddressSerializer();

 public: // PofSerializer interface virtual void serialize(PofWriter::Handle hOut,
Object::View v) const
 {
 Address::View vAddr = cast<Address::View>(v);
 hOut->writeString(0, vAddr->getCity());
 hOut->writeString(1, vAddr->getState());
 hOut->writeInt32 (2, vAddr->getZip());
 hOut->writeRemainder(NULL);
 }

 virtual Object::Holder deserialize(PofReader::Handle hIn) const
 {
 String::View vsCity = hIn->readString(0);
 String::View vsState = hIn->readString(1);
 int32_t nZip = hIn->readInt32 (2);
 hIn->readRemainder();

 return Address::create(vsCity, vsState, nZip);
 }
 };
COH_REGISTER_POF_SERIALIZER(1234,
TypedBarrenClass<Address>::create(),AddressSerializer::create()); // This must appear in
the .cpp not the .hpp

Chapter 11
Serialization Options

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 16

Usage of the Address remains unchanged:

Address::View vAddr = Address::create("Redwood Shores", "CA", 94065);
String::View vKey = "Oracle";

hCache->put(vKey, vAddr);
Address::View vOffice = cast<Address::View>(hCache->get(vKey));

Using POF Object References
POF supports the use of object identities and references for objects that occur more than once
in a POF stream. Objects are labeled with an identity and subsequent instances of a labeled
object within the same POF stream are referenced by its identity.
Using references avoids encoding the same object multiple times and helps reduce the data
size. References are typically used when a large number of sizeable objects are created
multiple times or when objects use nested or circular data structures. However, for applications
that contain large amounts of data but only few repeats, the use of object references provides
minimal benefits due to the overhead incurred in keeping track of object identities and
references.

The use of object identity and references has the following limitations:

• Object references are only supported for user defined object types.

• Object references are not supported for Evolvable objects.

• Object references are not supported for keys.

• Objects that have been written out with a POF context that does not support references
cannot be read by a POF context that supports references. The opposite is also true.

• POF objects that use object identity and references cannot be queried using POF
extractors. Instead, use the ValueExtractor API to query object values or disable object
references.

• The use of the PofNavigator and PofValue API has the following restrictions when using
object references:

– Only read operations are allowed. Write operations result in an
UnsupportedOperationException.

– User objects can be accessed in non-uniform collections but not in uniform collections.

– For read operations, if an object appears in the data stream multiple times, then the
object must be read where it first appears before it can be read in the subsequent part
of the data. Otherwise, an IOException: missing identity: <ID> may be thrown.
For example, if there are 3 lists that all contain the same person object, p. The p object
must be read in the first list before it can be read in the second or third list.

This section includes the following topics:

Enabling POF Object References
Object references are not enabled by default and must be enabled using
setReferenceEnabled when creating a POF context. For example:

SystemPofContext::Handle hCtx = SystemPofContext::getInstance();
hCtx->setReferenceEnabled(true);

Chapter 11
Using POF Object References

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 16

Registering POF Object Identities for Circular and Nested Objects
Circular or nested objects must manually register an identity when creating the object.
Otherwise, a child that references the parent will not find the identity of the parent in the
reference map. Object identities can be registered from a serializer during the deserialization
routine using the PofReader.registerIdentity method.

The following examples demonstrate two objects (Customer and Product) that contain a
circular reference and a serializer implementation that registers an identity on the Customer
object.

The Customer object is defined as follows:

class Customer
 : public class_spec<Customer,
 extends<Object> >
 {
 friend class factory<Customer>;

 protected:
 Customer()
 : m_vsName(self(), String::null_string),
 m_vProduct(self(), NULL)
 {
 }

 Customer(String::View vsName)
 : m_vsName(self(), vsName),
 m_vProduct(self(), NULL)
 {
 }

 Customer(String::View vsName, Product::View vProduct)
 : m_vsName(self(), vsName),
 m_vProduct(self(), vProduct)
 {
 }

 public:
 String::View getName() const
 {
 return m_vsName;
 }

 void setName(String::View vsName)
 {
 m_vsName = vsName;
 }

 Product::View getProduct() const
 {
 return m_vProduct;
 }

 void setProduct(Product::View vProduct)
 {
 m_vProduct = vProduct;
 }

 private:

Chapter 11
Using POF Object References

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 16

 MemberView<String> m_vsName;
 MemberView<Product> m_vProduct;
 };

The Product object is defined as follows:

class Product
 : public class_spec<Product,
 extends<Object> >
 {
 friend class factory<Product>;

 protected:
 Product()
 : m_vCustomer(self(), NULL)
 {
 }

 Product(Customer::View vCustomer)
 : m_vCustomer(self(), vCustomer)
 {
 }

 public:
 Customer::View getCustomer() const
 {
 return m_vCustomer;
 }

 void setCustomer(Customer::View vCustomer)
 {
 m_vCustomer= vCustomer;
 }

 private:
 MemberView<Customer> m_vCustomer;
 };

The serializer implementation registers an identity during deserialization and is defined as
follows:

class CustomerSerializer
 : public class_spec<CustomerSerializer,
 extends<Object>,
 implements<PofSerializer> >
 {
 friend class factory<CustomerSerializer>;

 public:
 void serialize(PofWriter::Handle hOut, Object::View v) const
 {
 Customer::View vCustomer = cast<Customer::View>(v);
 hOut->writeString(0, vCustomer->getName());
 hOut->writeObject(1, vCustomer->getProduct());
 hOut->writeRemainder(NULL);
 }

 Object::Holder deserialize(PofReader::Handle hIn) const
 {
 String::View vsName = cast<String::View>(hIn->readString(0));
 Customer::Holder ohCustomer = Customer::create(vsName);

Chapter 11
Using POF Object References

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 16

 hIn->registerIdentity(ohCustomer);
 ohCustomer->setProduct(cast<Product::View>(hIn->readObject(1)));
 hIn->readRemainder();
 return ohCustomer;
 }
 };

Registering Custom C++ Types
In addition to being made serializable, each class must also be associated with numeric type
IDs. These IDs are well-known across the cluster. Within the cluster, the ID-to-class mapping is
configured by using POF user type configuration elements; within C++, the mapping is
embedded within the class definition in the form of an ID registration, which is placed within the
class's .cpp source file.

The registration technique differs slightly with each serialization approach:

• COH_REGISTER_MANAGED_CLASS(ID, TYPE)—for use with Managed<T>

• COH_REGISTER_PORTABLE_CLASS(ID, TYPE)—for use with PortableObject

• COH_REGISTER_POF_SERIALIZER(ID, CLASS, SERIALIZER)—for use with PofSerializer

Examples of these registrations can be found in above examples.

Note

Registrations must appear only in the implementation (.cpp) files. A POF configuration
file is only needed on the nodes where objects are serialized and deserialize.

Implementing a Java Version of a C++ Object
A C++ object must have a parallel Java implementation on the cluster if direct access to the
deserialized object is required.
The use of POF allows key and value objects to be stored within the cluster without the need
for parallel Java implementations. This is ideal for performing basic get and put based
operations. In addition, the PofExtractor and PofUpdater APIs add flexibility in working with
non-primitive types in Coherence. For many extend client cases, a corresponding Java classes
in the grid is not required. Because POF extractors and POF updaters can navigate the binary,
the entire key and value does not have to be deserialized into object form. This implies that
indexing can be achieved by simply using POF extractors to pull a value to index on.

When to Include a Parallel Java Implementation

A parallel Java implementation is required whenever the Java-based cache servers must
directly interact with a data object rather then simply holding onto a serialized representation of
it. For example, a Java class is still required when using a cache store. In this case, the
deserialized version of the key and value is passed to the cache store to write to the back end.
In addition, queries, filters, entry processors, and aggregators require a Java implementation if
direct access to the object is desired.

If a Java implementation is required, then the implementation must be located on the cache
servers. The approach to making the Java version serializable over POF is similar to the above
examples, see PortableObject and PofSerializer for details. These APIs are compatible
with all three of the C++ approaches.

Chapter 11
Registering Custom C++ Types

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 12 of 16

Deferring the Key Association Check

Key classes do not require a cluster-side Java implementation even if the key class specifies
data affinity using KeyAssociation. Key classes are checked on the client side and a
decorated binary is created and used by the cluster. However, existing client implementations
that do rely on a Java key class for key association must set the defer-key-association-
check parameter in order to force the use of the Java key class. Existing client applications that
use key association but want to leverage client-side key binaries, must port the
getAssociatedKey() implementation from the existing Java class to the corresponding client
class.

To force key association processing to be done on the cluster side instead of by the extend
client, set the <defer-key-association-check> element, within a <remote-cache-scheme>
element, in the client-side cache configuration to true. For example:

<remote-cache-scheme>
 ...
 <defer-key-association-check>true</defer-key-association-check>
</remote-cache-scheme>

Note

If the parameter is set to true, a Java key class implementation must be found on the
cluster even if key association is no being used.

Understanding Serialization Performance
Both Managed<T> and PortableObject use PofSerializer to perform serialization. Each of
these approaches also adds some of its own overhead, for instance the Managed<T> approach
involves the creation of a temporary version of non-managed form of the data object during
deserialization. For PortableObject, the lack of support for const data members can have a
cost as it avoids optimizations which would have been allowed for const data members.
Overall the performance differences may be negligible, but if seeking to achieve the maximum
possible performance, direct utilization of PofSerializer may be worth consideration.

Using POF Annotations to Serialize Objects
POF annotations provide an automated way to implement the serialization and deserialization
routines for an object. POF annotations are serialized and deserialized using the
PofAnnotationSerializer class which is an implementation of the PofSerializer interface.
Annotations offer an alternative to using the Managed<T> adapter, PortableObject interface,
and PofSerializer interface and reduce the amount of time and code that is required to make
objects serializable.

This section includes the following topics:

Annotating Objects for POF Serialization
Two annotations are available to indicate that a class and its methods are POF serializable:

• Portable – Marks the class as POF serializable. The annotation is only permitted at the
class level and has no members.

Chapter 11
Understanding Serialization Performance

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 16

• PortableProperty – Marks a method accessor as a POF serialized property. Annotated
methods must conform to accessor notation (get, set, is). Members can be used to
specify POF indexes as well as custom codecs that are executed before or after
serialization or deserialization. Index values may be omitted and automatically assigned. If
a custom codec is not entered, the default codec is used.

The following example demonstrates annotating a class and method and also explicitly assigns
property index values. Note that the class must be registered with the system class loader
COH_REGISTER_CLASS.

class Person
 : public class_spec<Person>
 {
 friend class factory<Person>;

 Public:
 String::View getFirstName() const
 {
 return m_vsFirstName;
 }

 void setFirstName(String::View vsFirstName)
 {
 m_vsFirstName = vsFirstName;
 }

 private: String m_firstName;
 MemberView<String> m_vsFirstName;
 MemberView<String> m_vsLastName;
 int32_t m_nAge;

 public:
 static const int32_t FIRST_NAME = 0;
 static const int32_t LAST_NAME = 1;
 static const int32_t AGE = 2;
 };

COH_REGISTER_CLASS(TypedClass<Person>::create()
 ->annotate(Portable::create())
 ->declare(COH_PROPERTY(Person, FirstName, String::View)
 ->annotate(PortableProperty::create(Person::FIRST_NAME)))
 ->declare(COH_PROPERTY(Person, LastName, String::View)
 ->annotate(PortableProperty::create(Person::LAST_NAME)))
 ->declare(COH_PROPERTY(Person, Age, BoxHandle<const Integer32>)
 ->annotate(PortableProperty::create(Person::AGE)))
);

Registering POF Annotated Objects
POF annotated objects must be registered as a user type using the
COH_REGISTER_POF_ANNOTATED_CLASS macro. The following example registers a user type for
an annotated Person object:

COH_REGISTER_POF_ANNOTATED_CLASS(1001, Person);

Enabling Automatic Indexing
POF annotations support automatic indexing which alleviates the need to explicitly assign and
manage index values. The index value can be omitted whenever defining the
PortableProperty annotation. Any property that does assign an explicit index value is not

Chapter 11
Using POF Annotations to Serialize Objects

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 14 of 16

assigned an automatic index value. The automatic index algorithm can be described as
follows:

Name Explicit Index Determined Index

c 1 1

a omitted 0

b omitted 2

Note

Automatic indexing does not currently support evolvable classes.

To enable automatic indexing, use the COH_REGISTER_POF_ANNOTATED_CLASS_AI pre-processor
macro when registering the user type. The following example registers a user type for an
annotated Person object that uses automatic indexing:

COH_REGISTER_POF_ANNOTATED_CLASS_AI(1001, Person);

Providing a Custom Codec
Codecs allow code to be executed before or after serialization or deserialization. The codec
defines how to encode and decode a portable property using the PofWriter and PofReader
interfaces. Codecs are typically used for concrete implementations that could get lost when
being deserialized or to explicitly call a specific method on the PofWriter interface before
serializing an object.

To create a codec, create a class that implements the Codec interface. The following example
demonstrates a codec that defines the concrete implementation of a linked list type:

class LinkedListCodec
 : public class_spec<LinkedListCodec,
 extends<Object>,
 implements<Codec> >
 {
 friend class factory<LinkedListCodec>;

 public:
 void encode(PofWriter::Handle hOut, int32_t nIndex, Object::View ovValue)
 const
 {
 hOut->writeCollection(nIndex, cast<Collection::View>(ovValue));
 }

 Object::Holder decode(PofReader::Handle hIn, int32_t nIndex) const
 {
 LinkedList::Handle hLinkeList = LinkedList::create();
 return hIn->readCollection(nIndex, hLinkeList);
 }
 };
COH_REGISTER_TYPED_CLASS(LinkedListCodec);

To assign a codec to a property, enter the codec as a member of the PortableProperty
annotation. If a codec is not specified, a default codec (DefaultCodec) is used. The following
example demonstrates assigning the above LinkedListCodec codec:

Chapter 11
Using POF Annotations to Serialize Objects

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 15 of 16

COH_REGISTER_CLASS(TypedClass<Person>::create()
 ->annotate(Portable::create())
 ->declare(COH_PROPERTY(Person, FirstName, String::View)
 ->annotate(PortableProperty::create(Person::FIRST_NAME)))
 ->declare(COH_PROPERTY(Person, LastName, String::View)
 ->annotate(PortableProperty::create(Person::LAST_NAME)))
 ->declare(COH_PROPERTY(Person, Age, BoxHandle<const Integer32>)
 ->annotate(PortableProperty::create(Person::ALIASES,
SystemClassLoader::getInstance()->loadByType(typeid(LinkedListCodec)))))
);

Chapter 11
Using POF Annotations to Serialize Objects

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 16 of 16

12
Querying a Cache (C++)

You can query Coherence caches from C++ clients.
This chapter includes the following sections:

Overview of Query Functionality
Coherence can perform queries and indexes against currently cached data that meets a given
set of criteria. Queries and indexes can be simple, employing filters packaged with Coherence,
or they can be run against multi-value attributes such as collections and arrays. The result set
may be sorted if desired. Queries are evaluated with Read Committed isolation.
It should be noted that queries apply only to currently cached data (and do not use the
CacheLoader interface to retrieve additional data that may satisfy the query). Thus, the data set
should be loaded entirely into cache before queries are performed. In cases where the data set
is too large to fit into available memory, it may be possible to restrict the cache contents along
a specific dimension (for example, "date") and manually switch between cache queries and
database queries based on the structure of the query. For maintainability, this is usually best
implemented inside a cache-aware data access object (DAO).

Indexing requires the ability to extract attributes on each Partitioned cache node; For dedicated
CacheServer instances, this implies (usually) that application classes must be installed in the
CacheServer classpath.

For Local and Replicated caches, queries are evaluated locally against unindexed data. For
Partitioned caches, queries are performed in parallel across the cluster, using indexes if
available. Coherence includes a Cost-Based Optimizer (CBO). Access to unindexed attributes
requires object deserialization (though indexing on other attributes can reduce the number of
objects that must be evaluated).

Performing Simple Queries
You can use a value extractor and filter to query a cache.
The following example uses an a value extractor and filter to query a cache.

ValueExtractor::Handle hExtractor = ReflectionExtractor::create("getAge");
Filter::View vFilter = GreaterEqualsFilter::create(hExtractor, Integer32::valueOf(18));

for (Iterator::Handle hIter = hCache->entrySet(vFilter)->iterator(); hIter->hasNext();)
 {
 Map::Entry::Handle hEntry = cast<Map::Entry::Handle>(hIter->next());
 Integer32::View vKey = cast<Integer32::View>(hEntry->getKey());
 Person::Handle hPerson = cast<Person::Handle>(hEntry->getValue());
 std::cout << "key=" << vKey << " person=" << hPerson;
 }

Coherence provides a wide range of filters in the coherence::util::Filter package. A
LimitFilter may be used to limit the amount of data sent to the client, and also to provide
"paging" for users:

int32_t nPageSize = 25;
ValueExtractor::Handle hExtractor = ReflectionExtractor::create("getAge");
Filter::View vFilter = GreaterEqualsFilter::create(hExtractor,

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

Integer32::valueOf(18));

// get entries 1-25
LimitFilter::Handle hLimitFilter = LimitFilter::create(vFilter, nPageSize);
Set::View vEntries = hCache->entrySet(hLimitFilter);

// get entries 26-50
hLimitFilter->nextPage();
vEntries = hCache->entrySet(hLimitFilter);

Any queryable attribute may be indexed with the addIndex method of the QueryMap class:

// addIndex(ValueExtractor::View vExtractor, boolean_t fOrdered, Comparator::View
vComparator)
hCache->addIndex(hExtractor, true, NULL);

The fOrdered argument specifies whether the index structure is sorted. Sorted indexes are
useful for range queries, including "select all entries that fall between two dates" and "select all
employees whose family name begins with 'S'". For "equality" queries, an unordered index may
be used, which may have better efficiency in terms of space and time.

The comparator argument provides a custom java.util.Comparator for ordering the index.

Note

This method is only intended as a hint to the cache implementation, and as such it
may be ignored by the cache if indexes are not supported or if the desired index (or a
similar index) exists. It is expected that an application calls this method to suggest an
index even if the index exists, just so that the application is certain that index has been
suggested. For example, in a distributed environment each server likely suggests the
same set of indexes when it starts, and there is no downside to the application blindly
requesting those indexes regardless of whether another server has requested the
same indexes.

Note that queries can be combined by Coherence if necessary, and also that Coherence
includes a cost-based optimizer (CBO) to prioritize the usage of indexes. To take advantage of
an index, queries must use extractors that are equal ((Object->equals()) to the one used in
the query.

Querying Partitioned Caches

The Partitioned Cache implements the QueryMap interface using the Parallel Query feature
and results in high performance queries even for large data sets.

Querying Near Caches

Although queries can be executed through a near cache, the query does not use the front
portion of a near cache. If using a near cache with queries, the best approach is to use the
following sequence:

Set::View vSetKeys = hCache->keySet(vFilter);
Map::View vMapResult = hCache->getAll(vSetKeys);

Chapter 12
Performing Simple Queries

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

Understanding Query Concepts
The concept of querying is based on the ValueExtractor interface. A value extractor is used to
extract an attribute from a given object for querying (and similarly, indexing). Most developers
only need the ReflectionExtractor implementation of this interface. The ReflectionExtractor
uses reflection to extract an attribute from a value object by referring to a method name,
typically a "getter" method like getName().

ReflectionExtractor::Handle hExtractor = ReflectionExtractor::create("getName");

Any void argument method can be used, including Object methods like toString() (useful for
prototyping/debugging). Indexes may be either traditional field indexes (indexing fields of
objects) or function-based indexes (indexing virtual object attributes). For example, if a class
has field accessors getFirstName and getLastName, the class may define a function
getFullName which concatenates those names, and this function may be indexed.

To query a cache that contains objects with getName attributes, a Filter must be used. A filter
has a single method which determines whether a given object meets a criterion.

Filter::Handle hEqualsFilter = EqualsFilter::create(hExtractor, String::create("Bob
Smith"));

To select the entries of a cache that satisfy a particular filter:

for (Iterator::Handle hIter = hCache->entrySet(hEqualsFilter)->iterator(); hIter-
>hasNext();)
 {
 Map::Entry::Handle hEntry = cast<Map::Entry::Handle>(hIter->next());
 Integer32::View vKey = cast<Integer32::View>(hEntry->getKey());
 Person::Handle hPerson = cast<Person::Handle>(hEntry->getValue());
 std::cout << "key=" << vKey << " person=" << hPerson;
 }

To select and also sort the entries:

// entrySet(Filter::View vFilter, Comparator::View vComparator)
Iterator::Handle hIter = hCache->entrySet(hEqualsFilter, NULL)->iterator();

The additional NULL argument specifies that the result set should be sorted using the "natural
ordering" of Comparable objects within the cache. The client may explicitly specify the ordering
of the result set by providing an implementation of Comparator. Note that sorting places
significant restrictions on the optimizations that Coherence can apply, as sorting requires that
the entire result set be available before sorting.

Using the keySet form of the queries—combined with getAll()—may provide more control
over memory usage:

// keySet(Filter::View vFilter)
Set::View vSetKeys = hCache->keySet(vFilter);
Set::Handle hSetPageKeys = HashSet::create();
int32_t PAGE_SIZE = 100;
for (Iterator::Handle hIter = vSetKeys->iterator(); hIter->hasNext();)
 {
 hSetPageKeys->add(hIter->next());
 if (hSetPageKeys->size() == PAGE_SIZE || !hIter->hasNext())
 {
 // get a block of values
 Map::View vMapResult = hCache->getAll(hSetPageKeys);

Chapter 12
Understanding Query Concepts

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

 // process the block
 // ...

 hSetPageKeys->clear();
 }
 }

Performing Queries Involving Multi-Value Attributes
Coherence supports indexing and querying of multi-value attributes including collections and
arrays. When an object is indexed, Coherence verifies if it is a multi-value type, and then
indexes it as a collection rather than a singleton.
The ContainsAllFilter, ContainsAnyFilter, and ContainsFilter are used to query against
collections with multi-value attributes.

Set::Handle hSearchTerms = HashSet::create();
hSearchTerms->add(String::create("java"));
hSearchTerms->add(String::create("clustering"));
hSearchTerms->add(String::create("books"));

// The cache contains instances of a class "Document" which has a method
// "getWords" which returns a Collection<String> containing the set of
// words that appear in the document.
ValueExtractor::Handle hExtractor = ReflectionExtractor::create("getWords");
Filter::View vFilter = ContainsAllFilter::create(hExtractor, hSearchTerms);

Set::View vEntrySet = hCache->entrySet(vFilter);

// iterate through the search results
// ...

Using a Chained Extractor in a Query
The ChainedExtractor implementation allows chained invocation of zero-argument (accessor)
methods.
The following example extractor first uses reflection to call getName() on each cached Person
object, and then use reflection to call length() on the returned String. This extractor could be
passed into a query, allowing queries (for example) to select all people with names not
exceeding 10 letters.

ChainedExtractor::Handle hExtractor =
ChainedExtractor::create(ChainedExtractor::createExtractors("getName.length"));

Method invocations may be chained indefinitely, for example: getName.trim.length.

POF extractors and POF updaters offer the same functionality as ChainedExtractors through
the use of the SimplePofPath class. See Using POF Extractors and POF Updaters in
Developing Applications with Oracle Coherence.

Using a Query Recorder
The QueryRecorder class produces an explain or trace record for a given filter. The class is an
implementation of a parallel aggregator that is capable querying all nodes in a cluster and
aggregating the results. The class supports two record types: an QueryRecorder::explain
record that provides the estimated cost of evaluating a filter as part of a query operation and a
QueryRecorder::trace record that provides the actual cost of evaluating a filter as part of a

Chapter 12
Performing Queries Involving Multi-Value Attributes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

query operation. Both query records take into account whether or not an index can be used by
a filter. See Interpreting Query Records in Developing Applications with Oracle Coherence.
To create a query record, create a new QueryRecorder instance that specifies a RecordType
parameter. Include the instance and the filter to be tested as parameters of the Aggregate
method. The following example creates an explain record:

NamedCache::Handle hCache = CacheFactory::getCache("MyCache");

IdentityExtractor::View hExtract = IdentityExtractor::getInstance();
OrFilter::Handle hFilter = OrFilter::create(
 GreaterEqualsFilter::create(hExtract, Integer32::create(50)),
 LessEqualsFilter::create(hExtract, Integer32::create(20)));

QueryRecord::View vRecord = cast<QueryRecord::View>(hCache->aggregate(
 (Filter::View) hFilter, QueryRecorder::create(QueryRecorder::explain)));

cout << vRecord;

To create a trace record, change the RecordType parameter to trace:

QueryRecord::View vRecord = cast<QueryRecord::View>(hCache->aggregate(
 (Filter::View) hFilter, QueryRecorder::create(QueryRecorder::trace)));

Chapter 12
Using a Query Recorder

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

13
Performing Continuous Queries (C++)

You can use Continuous Query Caching in a C++ client to ensure that a query always retrieves
the latest results from a cache in real-time.
This chapter includes the following sections:

Overview of Performing Continuous Queries (C++)
Queries provide the ability to obtain a point in time query result from a Coherence cache and it
is possible to receive events that would change the result of that query. However, the
continuous query feature combines a query result with a continuous stream of related events to
maintain an up-to-date query result in a real-time fashion. This capability is called Continuous
Query, because it has the same effect as if the desired query had zero latency and the query
were being executed several times every millisecond.
A continuous query cache is similar to a materialized view in the Oracle database. A
materialized view copies data queried from the database tables into the view. If there are any
changes to the data in the database, then the data in the view is automatically updated.
Materialized views enable you to see changes to the result set. In continuous query, a local
copy of the cache is created on the client. Filters allow you to limit the size and content of the
cache. Combined with an event listener, the cache can be updated in real time.

For example, to monitor, in real time, all sales orders for several customers. You can create a
continuous query cache and set up an event listener that listens for any events pertaining to
the customers. Coherence queries for all of the data objects on the grid that pertain to a
particular customer and copies them to a local cache. The event listener on the query listens
for any inserts, updates, or deletes that take place on the grid for the customer. When an event
occurs, the local copy of the customer data is updated.

Understanding the Use Cases for Continuous Query Caching
Continuous Query Caching is ideal for many use cases, such as event processing and instant
access to up-to-date query results.
Consider using Continuous Query Caching in the following situations:

• A Continuous Query Cache is an ideal building block for Complex Event Processing (CEP)
systems and event correlation engines.

• A Continuous Query Cache is ideal for situations in which an application repeats a
particular query and would benefit from always having instant access to the up-to-date
result of that query.

• A Continuous Query Cache is analogous to a materialized view and is useful for accessing
and manipulating the results of a query using the standard NamedCache API, and receiving
an ongoing stream of events related to that query.

• A Continuous Query Cache can be used in a manner similar to a Near Cache because it
maintains an up-to-date set of data locally where it is being used, for example, on a
particular server node or on a client. Note that while a Near Cache is invalidation-based, a
Continuous Query Cache actually maintains its data in an up-to-date manner.

By combining the Coherence*Extend functionality with Continuous Query Caching, an
application can support literally tens of thousands of concurrent users.

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

Note

Continuous Query Caches are useful in almost every type of application, including
both client-based and server-based applications, because they provide the ability to
very easily and efficiently maintain an up-to-date local copy of a specified sub-set of a
much larger and potentially distributed cached data set.

Understanding the Continuous Query Caching Implementation
The Coherence implementation of Continuous Query is found in the ContinuousQueryCache
class. This class, like all Coherence caches, implements the standard NamedCache interface,
which includes the following capabilities:

• Cache access and manipulation using the Map interface: NamedCache extends the Map
interface, which is based on the Map interface from the Java Collections Framework.

• Events for all object modifications that occur within the cache: NamedCache extends the
ObservableMap interface.

• Querying the objects in the cache: NamedCache extends the QueryMap interface.

• Distributed Parallel Processing and Aggregation of objects in the cache: NamedCache
extends the InvocableMap interface.

Since the ContinuousQueryCache implements the NamedCache interface, which is the same API
provided by all Coherence caches, it is extremely simple to use, and it can be easily
substituted for another cache when its functionality is called for.

Defining a Continuous Query Cache
Continuous query caching requires an underlying cache and a query filter.
The underlying cache can be any Coherence cache, including another Continuous Query
Cache. The most straight-forward way of obtaining a cache is by using the CacheFactory
class. This class enables you to create a cache simply by specifying its name. It is created
automatically and its configuration is based on the application's cache configuration elements.
For example, the following line of code creates a cache named orders:

NamedCache::Handle hCache = CacheFactory::getCache("orders");

The query is the same type of query that would be used to query any other cache. The
following example illustrates how you can use code filters to find a given trader with a given
order status:

ValueExtractor::Handle hTraderExtractor = ReflectionExtractor::create("getTrader");
ValueExtractor::Handle hStatusExtractor = ReflectionExtractor::create("getStatus");

Filter::Handle hFilter = AndFilter::create(EqualsFilter::create(hTraderExtractor,
vTraderId),
 EqualsFilter::create(hStatusExtractor, vStatus));

Normally, to query a cache, you could use a method from the QueryMap class. For example, to
obtain a snap-shot of all open trades for this trader:

Set::View vSetOpenTrades = hCache->entrySet(hFilter);

In contrast, the Continuous Query Cache is constructed from the
ContinuousQueryCache::create method, passing the cache and the filter:

Chapter 13
Understanding the Continuous Query Caching Implementation

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

ContinuousQueryCache::Handle hCacheOpenTrades = ContinuousQueryCache::create(hCache,
hFilter);

Cleaning up Continuous Query Cache Resources
A Continuous Query Cache places one or more event listeners on its underlying cache. If a
Continuous Query Cache is used for the duration of the application, then the resources is
cleaned up when the node is shut down or otherwise stops. If a Continuous Query Cache is
only used for a period of time, then the application must call the release method.

Caching Only Keys Versus Keys and Values
When constructing a Continuous Query Cache, you can specify that the cache should only
keep track of the keys that result from the query and obtain the values from the underlying
cache only when they are asked for. This feature may be useful for creating a Continuous
Query Cache that represents a very large query result set or if the values are never or rarely
requested.
To specify that only the keys should be cached, pass false when creating the
ContinuousQueryCache; for example:

ContinuousQueryCache::Handle hCacheOpenTrades =
 ContinuousQueryCache::create(hCache, hFilter, false);

If necessary, the CacheValues property can be modified after the cache has been instantiated;
for example:

hCacheOpenTrades->setCacheValues(true);

CacheValues Property and Event Listeners
If the Continuous Query Cache has any standard (non-lite) event listeners, or if any of the
event listeners are filtered, then the CacheValues property is automatically set to true. This is
because the Continuous Query Cache uses the locally cached values to filter events and to
supply the old and new values for the events that it raises.

Using ReflectionExtractor with Continuous Query Caches
When the Continuous Query Cache is configured to cache values, the use of the
ReflectionExtractor is not supported. This is because the ReflectionExtractor does not
support reflection in C++. In this case, you must provide a custom extractor. When the
Continuous Query Cache is not caching values locally, the ReflectionExtractor can be used
since it does not perform the extraction on the client but instead passes the necessary
extraction information to the cluster to perform the query.

Listening to a Continuous Query Cache
A client can place one or more event listeners onto a Continuous Query Cache.
For example:

ContinuousQueryCache::Handle hCacheOpenTrades = ContinuousQueryCache::create(hCache,
hFilter);
hCacheOpenTrades->addFilterListener(hListener);

If your application has to perform some processing against every item that is in the cache and
every item added to the cache, then provide the listener during construction. The resulting

Chapter 13
Cleaning up Continuous Query Cache Resources

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

cache receives one event for each item that is in the Continuous Query Cache, whether it was
there to begin with (because it was in the query) or if it got added during or after the
construction of the cache. One form of the factory create method of ContinuousQueryCache
enables you to specify a cache, a filter, and a listener:

ContinuousQueryCache::Handle hCacheOpenTrades = ContinuousQueryCache::create(
 hRemoteCache, hFilter, true, hListener);

By default, listeners to the Continuous Query Cache have their events delivered
asynchronously. However, the ContinuousQueryCache implementation does respect the option
for synchronous events as provided by the SynchronousListener interface.

This section includes the following topics:

Avoiding Unexpected Results
There are two alternate approaches to processing the items in the Continuous Query Cache,
both of which could yield unexpected and unwanted results. First, if you perform the
processing and then add the listener to handle any later additions, then events that occur in the
split second after the iteration and before the listener is added are missed. For example:

ContinuousQueryCache::Handle hCacheOpenTrades = ContinuousQueryCache::create(hCache,
hFilter);

for (Iterator::Handle hIter = hCacheOpenTrades->entrySet()->iterator(); hIter-
>hasNext();)
 {
 Map::Entry::View vEntry = cast<Map::Entry::View>(hIter->next());
 // .. process the cache entry
 }
hCacheOpenTrades->addFilterListener(hListener);

The second approach is to add a listener first, so that no events are missed, and then do the
processing. Although, the same entry may appear in both an event and in the Iterator. The
events can be asynchronous, so the sequence of operations cannot be guaranteed.

ContinuousQueryCache::Handle hCacheOpenTrades =
 ContinuousQueryCache::create(hRemoteCache, hFilter);

hCacheOpenTrades->addFilterListener(hListener);
for (Iterator::Handle hIter = hCacheOpenTrades->entrySet()->iterator(); hIter-
>hasNext();)
 {
 Map::Entry::View vEntry = cast<Map::Entry::View>(hIter->next());
 // .. process the cache entry
 }

Achieving a Stable Materialized View
The Continuous Query Cache implementation faced the same challenge: How to assemble an
exact point-in-time snapshot of an underlying cache while receiving a stream of modification
events from that same cache. The solution has several parts. First, Coherence supports an
option for synchronous events, which provides a set of ordering guarantees. Secondly, the
Continuous Query Cache has a two-phase implementation of its initial population that allows it
to first query the underlying cache and then subsequently resolve all of the events that came in
during the first phase. Since achieving these guarantees of data visibility without any missing
or repeated events is fairly complex, the ContinuousQueryCache allows a developer to pass a
listener during construction, thus avoiding exposing these same complexities to the application
developer.

Chapter 13
Listening to a Continuous Query Cache

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

Making a Continuous Query Cache Read-Only
A Continuous Query Cache can be made into a read-only cache by using the boolean
setReadOnly method on the ContinuousQueryCache class.
For example:

hCacheOpenTrades->setReadOnly(true);

A read-only Continuous Query Cache does not allow objects to be added to, changed in,
removed from, or locked in the cache.

When a Continuous Query Cache has been set to read-only, it cannot be changed back to
read/write.

Chapter 13
Making a Continuous Query Cache Read-Only

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

14
Performing Remote Invocations (C++)

You can perform remote invocations on Coherence caches from C++ clients.
This chapter includes the following sections:

Overview of Performing Remote Invocations (C++)
An Invocable can execute any arbitrary action and can use any cluster-side services (cache
services, grid services, and so on) necessary to perform their work. The Invocable operations
can also be stateful, which means that their state is serialized and transmitted to the grid nodes
on which the Invocable is run.
Coherence for C++ provides a Remote Invocation Service which allows the execution of
Invocables within the cluster-side JVM to which the client is connected. In Java, Invocables
are simply runnable application classes that implement the com.tangosol.net.Invocable
interface. To employ an Invocable in Coherence for C++, you must deploy a compiled Java
implementation of the Invocable task on the cluster-side node, in addition to providing a C++
implementation of Invocable: coherence::net::Invocable. Since execution is server-side
(that is, Java), the C++ invocable need only be concerned with state; the methods themselves
can be no-operations.

Configuring and Using the Remote Invocation Service
A Remote Invocation Service is configured using the remote-invocation-scheme element in
the cache configuration descriptor.
The following example illustrates a remote invocation scheme configuration.

<remote-invocation-scheme>
 <scheme-name>example-invocation</scheme-name>
 <service-name>ExtendTcpInvocationService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>

 <outgoing-message-handler>
 <request-timeout>30s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
</remote-invocation-scheme>

A reference to a configured Remote Invocation Service can then be obtained by name by using
the coherence::net::CacheFactory class:

InvocationService::Handle hService = hService::getService("ExtendTcpInvocationService");

To execute an agent on the grid node to which the client is connected requires only one line
of code:

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 2

Map::View hResult = hService->query(myTask::create(), NULL);

The Map returned from query is keyed by the member on which the query is run. For Extend
clients, there is no concept of membership, so the result is keyed by the local member which
can be retrieved by calling
CacheFactory::getConfigurableCacheFactory()::GetLocalMember()

Registering Invocable Implementation Classes
Like cached value objects, all Invocable implementation classes must be correctly registered
in the POF context of the C++ application and cluster-side node to which the client is
connected. See PortableObject (Self-Serialization) . As such, a Java implementation of the
Invocable task (a com.tangosol.net.Invocable implementation) must be created, compiled,
and deployed on the cluster-side node. See Registering Custom C++ Types.

Chapter 14
Registering Invocable Implementation Classes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 2

15
Using Cache Events (C++)

You can use map event listeners to receive cache events and events from any class in
Coherence that implements the ObservableMap interface.
This chapter includes the following sections:

Overview of Map Events (C++)
The event model is comprised of an EventListener interface that all listeners must extend.
Coherence provides a MapListener interface, which allows application logic to receive events
when data in a Coherence cache is added, modified or removed.
An application object that implements the MapListener interface can sign up for events from
any Coherence cache or class that implements the ObservableMap interface, simply by passing
an instance of the application's MapListener implementation to an addMapListener() method.

The MapEvent object that is passed to the MapListener carries all of the necessary information
about the event that has occurred, including the source (ObservableMap) that raised the event,
the identity (key) that the event is related to, what the action was against that identity (insert,
update or delete), what the old value was and what the new value is.

Caches and Classes that Support Events
All Coherence caches implement the ObservableMap interface, which allows an application to
receive cache events. Any cache can receive events, regardless of whether that cache is local,
partitioned, near, replicated, using read-through, write-through, write-behind, overflow, disk
storage, and so on.

Note

Regardless of the cache topology and the number of servers, and even if the
modifications are being made by other servers, the events are delivered to the
application's listeners.

In addition to the Coherence caches (those objects obtained through a Coherence cache
factory), several other supporting classes in Coherence also implement the ObservableMap
interface:

• ObservableHashMap

• LocalCache

• OverflowMap

• NearCache

• ReadWriteBackingMap

• AbstractSerializationCache, SerializationCache, and SerializationPagedCache

• WrapperObservableMap, WrapperConcurrentMap, and WrapperNamedCache

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 9

For a full list of published implementing classes, see the Coherence API for ObservableMap.

Signing Up for all Events
To sign up for events, pass an object that implements the MapListener interface to an
addMapListener method on ObservableMap.
For example:

virtual void addKeyListener(MapListener::Handle hListener, Object::View vKey, bool
fLite) = 0;
virtual void removeKeyListener(MapListener::Handle hListener, Object::View vKey) = 0;
virtual void addFilterListener(MapListener::Handle hListener, Filter::View vFilter =
NULL, bool fLite = false) = 0;
virtual void removeFilterListener(MapListener::Handle hListener, Filter::View vFilter =
NULL) = 0;

Let's create an example MapListener implementation:

#include "coherence/util/MapEvent.hpp"
#include "coherence/util/MapListener.hpp"

#include <iostream>

using coherence::util::MapEvent;
using coherence::util::MapListener;
using namespace std;

/**
* A MapListener implementation that prints each event as it receives
* them.
*/
class EventPrinter
 : public class_spec<EventPrinter,
 extends<Object>,
 implements<MapListener> >
 {
 friend class factory<EventPrinter>;

 public:
 virtual void entryInserted(MapEventView vEvent)
 {
 cout << vEvent << endl;
 }

 virtual void entryUpdated(MapEventView vEvent)
 {
 cout << vEvent << endl;
 }

 virtual void entryDeleted(MapEventView vEvent)
 {
 cout << vEvent << endl;
 }
 };

Using this implementation simplifies printing all events from any given cache (since all caches
implement the ObservableMap interface):

NamedCache::Handle hCache;
...
hCache->addFilterListener(EventPrinter::create());

Chapter 15
Signing Up for all Events

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 9

Of course, to be able to later remove the listener, it is necessary to hold on to a reference to
the listener:

MapListener::Handle hListener = EventPrinter::create();
hCache->addFilterListener(hListener);
m_hListener = hListener; // store the listener in a member field

Later, to remove the listener:

MapListener::Handle hListener = m_hListener;
if (hListener != NULL)
 {
 hCache->removeFilterListener(hListener);
 m_hListener = NULL; // clean up the listener field
 }

Each add*Listener method on the ObservableMap interface has a corresponding
remove*Listener method. To remove a listener, use the remove*Listener method that
corresponds to the add*Listener method that was used to add the listener.

Using a Multiplexing Map Listener
The MultiplexingMapListener class routes all events to a single method for handling. The
following example illustrates a simple EventPrinter class:

#include "coherence/util/MultiplexingMapListener.hpp"

#include <iostream>

using coherence::util::MultiplexingMapListener;

class EventPrinter
 : public class_spec<EventPrinter,
 extends<MultiplexingMapListener> >
 {
 public:
 virtual void onMapEvent(MapEventView vEvent)
 {
 std::cout << vEvent << std::endl;
 }
 };

Configuring a MapListener for a Cache
You can register a listener on a cache using the <listener> element in the cache
configuration. If configured, then Coherence automatically adds the listener when it configures
the cache. Registering a listener in the configuration is useful when a listener should always be
on a particular cache.

Signing Up for Events on Specific Identities
You can sign up for events that occur against specific identities (keys). The following code in
prints all events that occur against the Integer key 5:

hCache->addKeyListener(EventPrinter::create(), Integer32::create(5), false);

The following code only triggers an event when the Integer key 5 is inserted or updated:

Chapter 15
Using a Multiplexing Map Listener

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 9

for (int32_t i = 0; i < 10; ++i)
 {
 Integer32::View vKey = Integer32::create(i);
 Integer32::View vValue = vKey;
 hCache->put(vKey, vValue);
 }

Filtering Events
You can use a filter to listen for specific events. In the following example, a listener is added to
the cache with a filter that allows the listener to only receive delete events.

// Filters used with partitioned caches must implement coherence::io::pof::PortableObject

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"
#include "coherence/util/Filter.hpp"
#include "coherence/util/MapEvent.hpp"

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;
using coherence::io::pof::PortableObject;
using coherence::util::Filter;
using coherence::util::MapEvent;

class DeletedFilter
 : public class_spec<DeletedFilter,
 extends<Object>,
 implements<Filter, PortableObject> >
 {
 public:
 // Filter interface virtual bool evaluate(Object::View v) const
 {
 MapEvent::View vEvt = cast<MapEvent::View>(v);
 return MapEvent::entry_deleted == vEvt->getId();
 }

 // PortableObject interface virtual void readExternal(PofReader::Handle
hIn)
 {
 }

 virtual void writeExternal(PofWriter::Handle hOut) const
 {
 }
 };

hCache->addFilterListener(EventPrinter::create(), DeletedFilter::create(), false);

For example, if the following sequence of calls were made:

cache::put(String::create("hello"), String::create("world"));
cache::put(String::create("hello"), String::create("again"));
cache::remove(String::create("hello"));

The result would be:

CacheEvent{LocalCache deleted: key=hello, value=again}

See Listening to Queries .

Chapter 15
Filtering Events

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 9

Filtering Events Versus Filtering Cached Data

When building a Filter for querying, the object that is passed to the evaluate method of the
Filter is a value from the cache, or, if the Filter implements the EntryFilter interface, the
entire Map::Entry from the cache. When building a Filter for filtering events for a
MapListener, the object that is passed to the evaluate method of the Filter is always of type
MapEvent.

Using Lite Events
You can save resources by using lite events if an application does not require the old and the
new value to be included in the event. By default, Coherence provides both the old and the
new value as part of an event. Consider the following example:

MapListener::Handle hListener = EventPrinter::create();
// add listener with the default"lite" value of falsehCache-
>addFilterListener(hListener);

// insert a 1KB value
String::View vKey = String::create("test");
hCache->put(vKey, Array<octet_t>::create(1024));

// update with a 2KB value
hCache->put(vKey, Array<octet_t>::create(2048));

// remove the value
hCache->remove(vKey);

When the above code is run, the insert event carries the new 1KB value, the update event
carries both the old 1KB value and the new 2KB value and the remove event carries the
removed 2KB value.

When adding a listener, you can request lite events by using either the addFilterListener or
the addKeyListener method that takes an additional boolean fLite parameter. In the above
example, the only change would be:

cache->addFilterListener(hListener, (Filter::View) NULL, true);

Note

A lite event's old value and new value may be NULL. However, even if you request lite
events, the old and the new value might be included if there is no additional cost to
generate and deliver the event. In other words, requesting that a MapListener receive
lite events is simply a hint to the system that the MapListener does not require
knowledge of the old and new values for the event.

Listening to Queries
Coherence caches support querying by any criteria. When an application queries for data from
a cache, the result is a point-in-time snapshot, either as a set of identities (keySet) or a set of
identity/value pairs (entrySet). The mechanism for determining the contents of the resulting
set is referred to as filtering, and it allows an application developer to construct queries of
arbitrary complexity using a rich set of out-of-the-box filters (for example, equals, less-than,
like, between, and so on), or to provide their own custom filters (for example, XPath).

Chapter 15
Using Lite Events

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 9

The same filters that are used to query a cache are used to listen to events from a cache. For
example, in a trading system it is possible to query for all open Order objects for a particular
trader.

Note

The following example uses the
coherence::util::extractor::ReflectionExtractor class. While the C++ client
does not support reflection, ReflectionExtractor can be used for queries which are
executed in the cluster. In this case, the ReflectionExtractor simply passes the
necessary extraction information to the cluster to perform the query. In cases where
the ReflectionExtractor would extract the data on the client, such as the
ContinuousQueryCache when caching values locally, the use of the
ReflectionExtractor is not supported. For these cases, you must provide a custom
extractor.

NamedCache::Handle hMapTrades = ...
Filter::Handle hFilter = AndFilter::create(
 EqualsFilter::create(ReflectionExtractor::create("getTrader"), vTraderId),
 EqualsFilter::create(ReflectionExtractor::create("getStatus"), Status::OPEN));
Set::View vSetOpenTrades = hMapTrades->entrySet(hFilter);

To receive notifications of new trades being opened for that trader, closed by that trader or
reassigned to or from another trader, the application can use the same filter:

// receive events for all trade IDs that this trader is interested in
hMapTrades->addFilterListener(hListener, MapEventFilter::create(hFilter), true);

The MapEventFilter converts a query filter into an event filter.

Note

Filtering events versus filtering cached data: When building a Filter for querying, the
object that is passed to the evaluate method of the Filter is a value from the cache, or,
if the Filter implements the EntryFilter interface, the entire Map::Entry from the
cache. When building a Filter for filtering events for a MapListener, the object that is
passed to the evaluate method of the Filter is always be of type MapEvent.

The MapEventFilter converts a Filter that is used to do a query into a Filter that is
used to filter events for a MapListener. In other words, the MapEventFilter is
constructed from a Filter that queries a cache, and the resulting MapEventFilter is a
filter that evaluates MapEvent objects by converting them into the objects that a query
Filter would expect.

The MapEventFilter has several very powerful options, allowing an application listener to
receive only the events that it is specifically interested in. More importantly for scalability and
performance, only the desired events have to be communicated over the network, and they are
communicated only to the servers and clients that have expressed interest in those specific
events. For example:

// receive all events for all trades that this trader is interested in
int32_t nMask = MapEventFilter::e_all;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter), true);

Chapter 15
Listening to Queries

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 9

// receive events for all this trader's trades that are closed or
// re-assigned to a different trader
nMask = MapEventFilter::e_updated_left | MapEventFilter::e_deleted;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter), true);

// receive events for all trades as they are assigned to this trader
nMask = MapEventFilter::e_inserted | MapEventFilter::e_updated_entered;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter), true);

// receive events only for new trades assigned to this trader
nMask = MapEventFilter::e_inserted;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter), true);

Using Synthetic Events
An application can listen for synthetic events, which originate from operations within a cache.
Synthetic events are different than client events.
Events usually reflect the changes being made to a cache. For example, one server is
modifying one entry in a cache; while, another server is adding several items to a cache; while,
a third server is removing an item from the same cache; while, fifty threads on each server in
the cluster is accessing data from the same cache. All the modifying actions produce events
that any server within the cluster can choose to receive. These actions are referred to as client
actions and the events as being dispatched to clients, even though the clients in this case are
actually servers. This is a natural concept in a true peer-to-peer architecture, such as a
Coherence cluster: Each and every peer is both a client and a server, both consuming services
from its peers and providing services to its peers. In a typical Java Enterprise application, a
peer is an application server instance that is acting as a container for the application, and the
client is that part of the application that is directly accessing and modifying the caches and
listening to events from the caches.

Some events originate from within a cache itself. There are many examples, but the most
common cases are:

• When entries automatically expire from a cache;

• When entries are evicted from a cache because the maximum size of the cache has been
reached;

• When entries are transparently added to a cache as the result of a Read-Through
operation;

• When entries in a cache are transparently updated as the result of a Read-Ahead or
Refresh-Ahead operation.

Each of these represents a modification, but the modifications represent natural (and typically
automatic) operations from within a cache. These events are referred to as synthetic events.

When necessary, an application can differentiate between client-induced and synthetic events
simply by asking the event if it is synthetic. This information is carried on a sub-class of the
MapEvent, called CacheEvent. Using the previous EventPrinter example, it is possible to print
only the synthetic events:

class EventPrinter
 : public class_spec<EventPrinter,
 extends<MultiplexingMapListener> >
 {
 friend class factory<EventPrinter>;

 public:
 void onMapEvent(MapEvent::View vEvt)

Chapter 15
Using Synthetic Events

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 9

 {
 if (instanceof<CacheEvent::View>(vEvt) &&
 (cast<CacheEvent::View>(vEvt)->isSynthetic()))
 {
 std::cout << vEvt;
 }
 }
 };

Note

Synthetic events will only be dispatched by near, view, or remote caches that are
backed by a cache service that supports the dispatching of synthetic events. These
caches must be backed in the Coherence cluster by a partitioned cache service or its
derivatives, such as a federated cache service. In all other cases, no event will be
dispatched for synthetic events such as expiry.

For more information on this feature, see the API documentation for CacheEvent.

Using Backing Map Events
For some advanced use cases, you can listen to events on the map behind a service.
Replication, partitioning and other approaches to managing data in a distributed environment
are all distribution services. The data structure that actually manages the data for a service is
called a backing map.
Backing maps are configurable. If all the data for a particular cache should be kept in object
form on the heap, then use an unlimited and non-expiring LocalCache (or a SafeHashMap if
statistics are not required). If only a small number of items should be kept in memory, use a
LocalCache. If data are to be read on demand from a database, then use a
ReadWriteBackingMap (which knows how to read and write through an application's DAO
implementation), and in turn give the ReadWriteBackingMap a backing map such as a
SafeHashMap or a LocalCache to store its data in.

Some backing maps are observable. The events coming from these backing maps are not
usually of direct interest to the application. Instead, Coherence translates them into actions that
must be taken (by Coherence) to keep data synchronized and properly backed up, and it also
translates them when appropriate into clustered events that are delivered throughout the
cluster as requested by application listeners. For example, if a partitioned cache has a
LocalCache as its backing map, and the local cache expires an entry, that event causes
Coherence to expire all of the backup copies of that entry. Furthermore, if any listeners have
been registered on the partitioned cache, and if the event matches their event filter(s), then
that event is delivered to those listeners on the servers where those listeners were registered.

In some advanced use cases, an application must process events on the server where the
data are being maintained, and it must do so on the structure (backing map) that is actually
managing the data. In these cases, if the backing map is an observable map, a listener can be
configured on the backing map or one can be programmatically added to the backing map. (If
the backing map is not observable, it can be made observable by wrapping it in an
WrapperObservableMap.)

Chapter 15
Using Backing Map Events

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 9

Using Synchronous Event Listeners
Some events are delivered asynchronously, so that application listeners do not disrupt the
cache services that are generating the events. In some rare scenarios, asynchronous delivery
can cause ambiguity of the ordering of events compared to the results of ongoing operations.
A MapListener implementation can use the SynchronousListener marker interface to
guarantee that the cache API operations and the events are ordered as if the local view of the
clustered system were single-threaded.

One example in Coherence itself that uses synchronous listeners is the Near Cache, which
can use events to invalidate locally cached data.

Chapter 15
Using Synchronous Event Listeners

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 9

16
Performing Transactions (C++)

You can use the Transaction Framework API to ensure cache operations are performed within
a transaction when using a C++ client.

The instructions do not provide detailed transaction API usage. See Using the Transaction
Framework API in Developing Applications with Oracle Coherence.

The following sections are included in this chapter and are required to perform transactions:

Using the Transaction API within an Entry Processor
C++ clients perform cache operations within a transaction by leveraging the Transaction
Framework API. The transaction API is not supported natively on C++ and must be used within
an entry processor. The entry processor is implemented in Java on the cluster and an entry
processor stub class is implemented in C++ on the client. Both classes use POF to serialize
between Java and C++.
Example 16-1 demonstrates an entry processor that performs a simple update operation within
a transaction using the transaction API. At run time, the class must be located on the classpath
of the extend proxy server.

Example 16-1 Entry Processor for Extend Client Transaction

package coherence.tests;

import com.tangosol.coherence.transaction.Connection;
import com.tangosol.coherence.transaction.ConnectionFactory;
import com.tangosol.coherence.transaction.DefaultConnectionFactory;
import com.tangosol.coherence.transaction.OptimisticNamedCache;
import
com.tangosol.coherence.transaction.exception.PredicateFailedException;
import com.tangosol.coherence.transaction.exception.RollbackException;
import
com.tangosol.coherence.transaction.exception.UnableToAcquireLockException;
import com.tangosol.util.Filter;
import com.tangosol.util.InvocableMap;
import com.tangosol.util.extractor.IdentityExtractor;
import com.tangosol.util.filter.EqualsFilter;
import com.tangosol.util.processor.AbstractProcessor;

public class MyTxProcessor extends AbstractProcessor implements PortableObject
 {
 public Object process(InvocableMap.Entry entry)
 {
 // obtain a connection and transaction cache
 ConnectionFactory connFactory = new DefaultConnectionFactory();
 Connection conn = connFactory.createConnection("TransactionalCache");
 OptimisticNamedCache cache = conn.getNamedCache("MyTxCache");

 conn.setAutoCommit(false);

 // get a value for an existing entry
 String sValue = (String) cache.get("existingEntry");

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 6

 // create predicate filter
 Filter predicate = new EqualsFilter(IdentityExtractor.INSTANCE, sValue);

 try
 {
 // update the previously obtained value
 cache.update("existingEntry", "newValue", predicate);
 }
 catch (PredicateFailedException e)
 {
 // value was updated after it was read
 conn.rollback();
 return false;
 }
 catch (UnableToAcquireLockException e)
 {
 // row is being updated by another tranaction
 conn.rollback();
 return false;
 }
 try
 {
 conn.commit();
 }
 catch (RollbackException e)
 {
 // transaction was rolled back
 return false;
 }
 return true;
 }

 public void readExternal(PofReader in)
 throws IOException
 {
 }

 public void writeExternal(PofWriter out)
 throws IOException
 {
 }
}

Creating a Stub Class for a Transactional Entry Processor
An entry processor stub class allows a client to use the transactional entry processor on the
cluster. The stub class is implemented in C++ and uses POF for serialization. POF allows an
entry processor to be serialized between C++ and Java. The entry processor stub class does
not require any transaction logic and is a skeleton of the transactional entry processor. See
Building Integration Objects (C++).
Example 16-2 and Example 16-3 demonstrate a stub class and associated header file for the
transactional entry processor created in Example 16-1. In the example, POF registration is
performed within the class.

Example 16-2 Transaction Entry Processor C++ Stub Class

#include "coherence/tests/MyTxProcessor.hpp"
#include "coherence/io/pof/SystemPofContext.hpp"

COH_OPEN_NAMESPACE2(coherence,tests)
COH_REGISTER_PORTABLE_CLASS(1599, MyTxProcessor);

Chapter 16
Creating a Stub Class for a Transactional Entry Processor

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 6

MyTxProcessor::MyTxProcessor()
 {
 }

void MyTxProcessor::readExternal(PofReader::Handle hIn)
 {
 }

void MyTxProcessor::writeExternal(PofWriter::Handle hOut) const
 {
 }

Object::Holder MyTxProcessor::process(InvocableMap::Entry::Handle hEntry) const
 {
 return NULL;
 }

COH_CLOSE_NAMESPACE2

Example 16-3 Transaction Entry Processor C++ Stub Class Header File

#ifndef COH_TX_EP_HPP
#define COH_TX_EP_HPP

#include "coherence/lang.ns"
#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"
#include "coherence/util/InvocableMap.hpp"
#include "coherence/util/processor/AbstractProcessor.hpp";

COH_OPEN_NAMESPACE2(coherence,tests)

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;
using coherence::io::pof::PortableObject;
using coherence::util::InvocableMap;
using coherence::util::processor::AbstractProcessor;

class MyTxProcessor
 : public class_spec<MyTxProcessor,
 extends<AbstractProcessor>,
 implements<PortableObject> >

 {
 friend class factory<MyTxProcessor>;

 protected:
 MyTxProcessor();

 public:
 virtual Object::Holder process(InvocableMap::Entry::Handle hEntry) const;

 public:
 virtual void readExternal(PofReader::Handle hIn);
 virtual void writeExternal(PofWriter::Handle hOut) const;
 };

COH_CLOSE_NAMESPACE2
#endif // COH_TX_EP_HPP

Chapter 16
Creating a Stub Class for a Transactional Entry Processor

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 6

Registering a Transactional Entry Processor User Type
An entry processor class must be registered as a POF user type in the cluster-side POF
configuration file. The registration must use the same type ID that was used to register the stub
class on the client side.
The following example demonstrates registering the MyTxProcessor class that was created in
Example 16-1 and uses the same type ID that was registered in Example 16-2

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 <include>txn-pof-config.xml</include>
 <user-type>
 <type-id>1599</type-id>
 <class-name>coherence.tests.MyTxProcessor</class-name>
 </user-type>
 </user-type-list>
</pof-config>

Configuring the Cluster-Side Transactional Caches
Transactions require a transactional cache to be defined in the cluster-side cache configuration
file. Transactional caches are used by the Transaction Framework to provide transactional
guarantees. See Defining Transactional Caches in Developing Applications with Oracle
Coherence.
The following example creates a transactional cache that is named MyTxCache, which is the
cache name that was used by the entry processor in Example 16-1. The configuration also
includes a proxy scheme and a distributed cache scheme that are required to execute the
entry processor from a remote client. The proxy is configured to accept client TCP/IP
connections on localhost at port 7077. See Configuring Extend Proxies .

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <serializer>pof</serializer>
 </defaults>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>MyTxCache</cache-name>
 <scheme-name>example-transactional</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>dist-example</cache-name>
 <scheme-name>example-distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <transactional-scheme>

Chapter 16
Registering a Transactional Entry Processor User Type

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 6

 <scheme-name>example-transactional</scheme-name>
 <service-name>TransactionalCache</service-name>
 <thread-count-min>2</thread-count-min>
 <thread-count-max>10</thread-count-max>
 <high-units>15M</high-units>
 <task-timeout>0</task-timeout>
 <autostart>true</autostart>
 </transactional-scheme>

 <distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

Configuring the Client-Side Remote Cache
Remote clients require a remote cache to connect to the cluster's proxy and run a transactional
entry processor. The remote cache is defined in the client-side cache configuration file. See
Configuring Extend Proxies .
The following example configures a remote cache to connect to a proxy that is located on
localhost at port 7077. In addition, the name of the remote cache (dist-example) must match
the name of a cluster-side cache that is used when initiating the transactional entry processor.

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <serializer>pof</serializer>
 </defaults>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-example</cache-name>
 <scheme-name>extend</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>7077</port>
 </socket-address>

Chapter 16
Configuring the Client-Side Remote Cache

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 6

 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>30s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

Using a Transactional Entry Processor from a C++ Client
A client invokes an entry processor stub class the same way any entry processor is invoked.
However, at run time, the cluster-side entry processor is invoked. The client is unaware that the
invocation has been delegated to the Java class.
The following example demonstrates a client that uses the entry processor stub class and
results in an invocation of the transactional entry processor that was created in Example 16-1:

String::View vsCacheName = "dist-example";
String::View vsKey = "AnyKey";

// retrieve the named cache
NamedCache::Handle hCache = CacheFactory::getCache(vsCacheName);

// invoke the cache
Object::View oResult = hCache->invoke(vsKey, MyTxProcessor::create());
std::cout << "Result of extend transaction execution: " << oResult << std::endl;

Chapter 16
Using a Transactional Entry Processor from a C++ Client

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 6

Part IV
Creating .NET Extend Clients

Learn how to use the Coherence*Extend .NET client library to create .NET clients that access
Coherence caches on the cluster.

Coherence for .NET contains the following chapters:

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 1

17
Introduction to Coherence .NET Clients

Learn about Coherence for .NET and how to set up Coherence .NET applications.
This chapter includes the following sections:

Overview of Coherence for .NET
Coherence for .NET allows .NET applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster. Typical
uses of Coherence for .NET include desktop and web applications that require access to
Coherence caches. See Installing the .NET Client Distribution in Installing Oracle Coherence.
Coherence for .NET consists of a lightweight .NET library that connects to a
Coherence*Extend clustered service instance running within the Coherence cluster using a
high performance TCP/IP-based communication layer. This library sends all client requests to
the Coherence*Extend clustered service which, in turn, responds to client requests by
delegating to an actual Coherence clustered service (for example, a Partitioned or Replicated
cache service).

An INamedCache instance is retrieved by using the CacheFactory.GetCache(...) API call. After
it is obtained, a client accesses the INamedCache in the same way as it would if it were part of
the Coherence cluster. The fact that INamedCache operations are being sent to a remote cluster
node (over TCP/IP) is completely transparent to the client application.

Configuration and Usage for .NET Clients
Learn the main steps that are required to use Coherence .NET clients.
This section includes instructions for setting up .NET applications to use Coherence. This
section includes the following topics:

General Instructions
You can follow a basic set of steps for creating and using Coherence .NET clients. The general
steps include:

1. Configuring Coherence*Extend for .NET

2. Building Integration Objects (.NET)

3. Using the Coherence .NET APIs

4. Starting a Proxy Server

5. Launching the .NET client application

Configuring Coherence*Extend for .NET
Coherence for .NET clients use a specific XML schema for the Coherence cache configuration
file. Make sure the cache configuration file uses the following schema:

<cache-config xmlns="http://schemas.tangosol.com/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 2

 xsi:schemaLocation="http://schemas.tangosol.com/cache
 assembly://Coherence/Tangosol.Config/cache-config.xsd">
 ...

For general instructions on setting up and configuring Coherence*Extend, refer to:

• Defining Extend Proxy Services

• Defining Caches for Use By Extend Clients

• Defining a Remote Cache

Obtaining a Cache Reference with .NET
A reference to a configured cache can be obtained by name by using the CacheFactory class:

INamedCache cache = CacheFactory.GetCache("example-local-cache");

Cleaning Up Resources Associated with a Cache
INamedCache instances, including LocalCache, should be explicitly released by calling the
INamedCache.Release method when they are no longer needed. If the particular INamedCache
is used for the duration of the application, then the resources are cleaned up when the
application is shut down or otherwise stops. However, if the instance is only used for a period
of time, then the application should call its Release method when finished using it.

Alternatively, you can leverage the fact that INamedCache extends IDisposable and that all
cache implementations delegate a call to IDisposable.Dispose to INamedCache.Release. If
you want to obtain and release a cache instance within a single method, you can do so with a
using block:

using (INamedCache cache = CacheFactory.GetCache("my-cache"))
{
 // use cache as usual
}

After the using block terminates, IDisposable.Dispose is called on the INamedCache instance,
and all resources associated with it are released.

Chapter 17
Configuration and Usage for .NET Clients

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 2

18
Building Integration Objects (.NET)

You can use Portable Object Format (POF) serialization when creating .NET clients.
This chapter includes the following sections:

Overview of Building Integration Objects (.NET)
Coherence caches are used to cache value objects. .NET clients require a platform-
independent serialization format that allows both .NET clients and Coherence JVMs to properly
serialize and deserialize value objects that are stored in Coherence caches. The Coherence
for .NET client library and Coherence*Extend clustered service use a serialization format
known as Portable Object Format (POF). POF allows value objects to be encoded into a binary
stream in such a way that the platform and language origin of the object is irrelevant. See The
PIF-POF Binary Format in Developing Applications with Oracle Coherence.
POF supports all common .NET types out-of-the-box. Custom .NET classes can also be
serialized to a POF stream by completing the following steps:

1. Create a .NET class that implements the IPortableObject interface. See Creating an
IPortableObject Implementation.

2. Create a matching Java class that implements the PortableObject interface in the same
way. See Creating a PortableObject Implementation (Java).

3. Register your custom .NET class on the client. See Registering Custom Types on the .NET
Client.

4. Register your custom Java class on each of the servers running the Coherence*Extend
clustered service. See Registering Custom Types in the Cluster.

After these steps are complete, you can cache your custom .NET classes in a Coherence
cache in the same way as a built-in data type. Additionally, you can retrieve, manipulate, and
store these types from a Coherence or Coherence*Extend JVM using the matching Java
classes.

Creating an IPortableObject Implementation
Each class that implements IPortableObject can self-serialize and deserialize its state to and
from a POF data stream. This is achieved in the ReadExternal (deserialize) and
WriteExternal (serialize) methods. Conceptually, all user types are composed of zero or more
indexed values (properties) which are read from and written to a POF data stream one by one.
The only requirement for a portable class, other than the requirement to implement the
IPortableObject interface, is that it must have a default constructor which allows the POF
deserializer to create an instance of the class during deserialization.
Example 18-1 illustrates a user-defined portable class:

Example 18-1 A User-Defined Portable Class

public class ContactInfo : IPortableObject
{
 private string name;
 private string street;
 private string city;

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 16

 private string state;
 private string zip;
 public ContactInfo()
 {}

 public ContactInfo(string name, string street, string city, string state, string zip)
 {
 Name = name;
 Street = street;
 City = city;
 State = state;
 Zip = zip;
 }
 public void ReadExternal(IPofReader reader)
 {
 Name = reader.ReadString(0);
 Street = reader.ReadString(1);
 City = reader.ReadString(2);
 State = reader.ReadString(3);
 Zip = reader.ReadString(4);
 }
 public void WriteExternal(IPofWriter writer)
 {
 writer.WriteString(0, Name);
 writer.WriteString(1, Street);
 writer.WriteString(2, City);
 writer.WriteString(3, State);
 writer.WriteString(4, Zip);
 }
 // property definitions ommitted for brevity
}

Implementing a Java Version of a .NET Object
A .NET object must have a parallel Java implementation on the cluster if direct access to the
deserialized object is required.
The use of POF allows key and value objects to be stored within the cluster without the need
for parallel Java implementations. This is ideal for performing basic get and put based
operations. In addition, the PofExtractor and PofUpdater APIs add flexibility in working with
non-primitive types in Coherence. For many extend client cases, a corresponding Java classes
in the grid is not required. Because POF extractors and POF updaters can navigate the binary,
the entire key and value does not have to be deserialized into object form. This implies that
indexing can be achieved by simply using POF extractors to pull a value to index on.

When to Include a Parallel Java Implementation

A parallel Java implementation is required whenever the Java-based cache servers must
directly interact with a data object rather then simply holding onto a serialized representation of
it. For example, a Java class is still required when using a cache store. In this case, the
deserialized version of the key and value is passed to the cache store to write to the back end.
In addition, queries, filters, entry processors, and aggregators require a Java implementation if
direct access to the object is desired.

If a Java implementation is required, then the implementation must be located on the cache
servers. The approach to making the Java version serializable over POF is demonstrated in
Creating a PortableObject Implementation (Java).

Chapter 18
Implementing a Java Version of a .NET Object

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 16

Deferring the Key Association Check

Key classes do not require a cluster-side Java implementation even if the key class specifies
data affinity using the IKeyAssociation interface. Key classes are checked on the client side
and a decorated binary is created and used by the cluster. However, existing client
implementations that do rely on a Java key class for key association must set the defer-key-
association-check parameter in order to force the use of the Java key class. Existing client
applications that use key association but want to leverage client-side key binaries, must port
the getAssociatedKey() implementation from the existing Java class to the corresponding
client class (see IKeyAssociation.AssociatedKey.

To force key association processing to be done on the cluster side instead of by the extend
client, set the <defer-key-association-check> element, within a <remote-cache-scheme>
element, in the client-side cache configuration to true. For example:

<remote-cache-scheme>
 ...
 <defer-key-association-check>true</defer-key-association-check>
</remote-cache-scheme>

Note

If the parameter is set to true, a Java key class implementation must be found on the
cluster even if key association is no being used.

This section includes the following topic:

Creating a PortableObject Implementation (Java)
An implementation of the portable class in Java is very similar to the one in .NET.
Example 18-2 illustrates the Java version of the .NET class in Example 18-1.

Example 18-2 A User-Defined Class in Java

public class ContactInfo implements PortableObject
 { private String m_sName;

 private String m_sStreet;
 private String m_sCity;
 private String m_sState;
 private String m_sZip;
 public ContactInfo()
 {
 }
 public ContactInfo(String sName, String sStreet, String sCity, String sState, String
sZip)
 {
 setName(sName);
 setStreet(sStreet);
 setCity(sCity);
 setState(sState);
 setZip(sZip);
 }
 public void readExternal(PofReader reader)
 throws IOException
 {

Chapter 18
Implementing a Java Version of a .NET Object

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 16

 setName(reader.readString(0));
 setStreet(reader.readString(1));
 setCity(reader.readString(2));
 setState(reader.readString(3));
 setZip(reader.readString(4));
 }
 public void writeExternal(PofWriter writer)
 throws IOException
 {
 writer.writeString(0, getName());
 writer.writeString(1, getStreet());
 writer.writeString(2, getCity());
 writer.writeString(3, getState());
 writer.writeString(4, getZip());
 }
 // accessor methods omitted for brevity
}

Registering Custom Types on the .NET Client
Each POF user type is represented within the POF stream as an integer value. As such, POF
requires an external mechanism that allows a user type to be mapped to its encoded type
identifier (and the opposite is true as well). The POF XML configuration file maps user types to
a type identifier. See POF User Type Configuration Elements in Developing Applications with
Oracle Coherence.
The following example demonstrates a POF configuration file:

<?xml version="1.0"?>
<pof-config xmlns="http://schemas.tangosol.com/pof">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml
 </include>
 <!-- include all application POF user types -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>My.Example.ContactInfo, MyAssembly</class-name>
 </user-type>
 </user-type-list>
</pof-config>

There are few things to note:

• Type identifiers for your custom types should start from 1001 or higher, as the numbers
below 1000 are reserved for internal use. As shown in the above example, the <user-
type-list> includes the coherence-pof-config.xml file. This is where Coherence specific
user types are defined and should be included in all of your POF configuration files

• You need not specify a fully qualified type name within the class-name element. The type
and assembly name is enough.

After you have configured mappings between type identifiers and your custom types, you must
configure Coherence for .NET to use them by adding a serializer element to your cache
configuration descriptor. The following examples assumes that the user type mappings are
saved in the my-dotnet-pof-config.xml file:

<remote-cache-scheme>
 <scheme-name>extend-direct</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 ...

Chapter 18
Registering Custom Types on the .NET Client

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 16

 <serializer>
 <class-name>Tangosol.IO.Pof.ConfigurablePofContext, Coherence
 </class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>my-dotnet-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </serializer>
 </initiator-config>
</remote-cache-scheme>

If a serializer is not explicitly specified, the ConfigurablePofContext type is used for the POF
serializer and uses a default configuration file called pof-config.xml. The Coherence .Net
application looks for the default POF configuration file in both the folder where the application
is deployed and, for Web applications, in the root of the Web application. If a POF configuration
file is not found, it tries to located the file by the contents of the PofConfig element in the
Coherence for .NET application configuration file. For example:

appsettings.json
{
 "Coherence": {
 "PofConfig": "my-dotnet-pof-config.xml"
 }
}

Registering Custom Types in the Cluster
Each Coherence node running the TCP/IP Coherence*Extend clustered service requires a
similar POF configuration for the custom types to be able to send and receive objects of these
types. The cluster-side POF configuration file looks similar to the file created on the client. The
only difference is that instead of .NET class names, you must specify the fully qualified Java
class names within the class-name element.
The following illustrates a sample cluster-side POF configuration file called my-java-pof-
config.xml:

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>coherence-pof-config.xml</include>
 <!-- include all application POF user types -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>com.mycompany.example.ContactInfo</class-name>
 </user-type>
 </user-type-list>
</pof-config>

After your custom types have been added, you must configure the server to use your POF
configuration when serializing objects:

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <acceptor-config>

Chapter 18
Registering Custom Types in the Cluster

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 16

 ...
 <serializer>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>my-java-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </serializer>
 </acceptor-config>
 ...
</proxy-scheme>

Evolvable Portable User Types
POF includes native support for both forward- and backward-compatibility of the serialized
form of portable user types. In .NET, this is accomplished by making user types implement the
IEvolvablePortableObject interface instead of the IPortableObject interface.
The IEvolvablePortableObject interface is a marker interface that extends both the
IPortableObject and IEvolvable interfaces. The IEvolvable interface adds three properties
to support type versioning.An IEvolvable class has an integer version identifier n, where n >=
0. When the contents, or semantics, or both of the serialized form of the IEvolvable class
changes, the version identifier is increased. Two versions identifiers, n1 and n2, indicate the
same version if n1 == n2; the version indicated by n2 is newer than the version indicated by n1
if n2 > n1.

The IEvolvable interface is designed to support the evolution of types by the addition of data.
Removal of data cannot be safely accomplished if a previous version of the type exists that
relies on that data. Modifications to the structure or semantics of data from previous versions
likewise cannot be safely accomplished if a previous version of the type exists that relies on
the previous structure or semantics of the data.

When an IEvolvable object is deserialized, it retains any unknown data that has been added
to newer versions of the type, and the version identifier for that data format. When the
IEvolvable object is subsequently serialized, it includes both that version identifier and the
unknown future data.

When an IEvolvable object is deserialized from a data stream whose version identifier
indicates an older version, it must default and calculate the values for any data fields and
properties that have been added since that older version. When the IEvolvable object is
subsequently serialized, it includes its own version identifier and all of its data. Note that there
is no unknown future data in this case; future data can only exist when the version of the data
stream is newer than the version of the IEvolvable type.

Example 18-3 demonstrates how the ContactInfo .NET type can be modified to support class
evolution:

Example 18-3 Modifying a Class to Support Class Evolution

public class ContactInfo : IEvolvablePortableObject
{
 private string name;
 private string street;
 private string city;
 private string state;
 private string zip;
 // IEvolvable members
 private int version;

Chapter 18
Evolvable Portable User Types

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 16

 private byte[] data;
 public ContactInfo()
 {}
 public ContactInfo(string name, string street, string city, string state, string zip)
 {
 Name = name;
 Street = street;
 City = city;
 State = state;
 Zip = zip;
 }
 public void ReadExternal(IPofReader reader)
 {
 Name = reader.ReadString(0);
 Street = reader.ReadString(1);
 City = reader.ReadString(2);
 State = reader.ReadString(3);
 Zip = reader.ReadString(4);
 }
 public void WriteExternal(IPofWriter writer)
 {
 writer.WriteString(0, Name);
 writer.WriteString(1, Street);
 writer.WriteString(2, City);
 writer.WriteString(3, State);
 writer.WriteString(4, Zip);
 }
 public int DataVersion
 {
 get { return version; }
 set { version = value; }
 }
 public byte[] FutureData
 {
 get { return data; }
 set { data = value; }
 }
 public int ImplVersion
 {
 get { return 0; }
 }
 // property definitions ommitted for brevity
}

Likewise, the ContactInfo Java type can also be modified to support class evolution by
implementing the EvolvablePortableObject interface:

Example 18-4 Modifying a Java Type Class to Support Class Evolution

public class ContactInfo
 implements EvolvablePortableObject
 {
 private String m_sName;
 private String m_sStreet;
 private String m_sCity;
 private String m_sState;
 private String m_sZip;

 // Evolvable members
 private int m_nVersion;
 private byte[] m_abData;

Chapter 18
Evolvable Portable User Types

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 16

 public ContactInfo()
 {}

 public ContactInfo(String sName, String sStreet, String sCity,
 String sState, String sZip)
 {
 setName(sName);
 setStreet(sStreet);
 setCity(sCity);
 setState(sState);
 setZip(sZip);
 }

 public void readExternal(PofReader reader)
 throws IOException
 {
 setName(reader.readString(0));
 setStreet(reader.readString(1));
 setCity(reader.readString(2));
 setState(reader.readString(3));
 setZip(reader.readString(4));
 }

 public void writeExternal(PofWriter writer)
 throws IOException
 {
 writer.writeString(0, getName());
 writer.writeString(1, getStreet());
 writer.writeString(2, getCity());
 writer.writeString(3, getState());
 writer.writeString(4, getZip());
 }

 public int getDataVersion()
 {
 return m_nVersion;
 }

 public void setDataVersion(int nVersion) {
 m_nVersion = nVersion;
 }

 public Binary getFutureData()
 {
 return m_binData;
 }

 public void setFutureData(Binary binFuture)
 {
 m_binData = binFuture;
 }

 public int getImplVersion()
 {
 return 0;
 }

 // accessor methods omitted for brevity
 }

Chapter 18
Evolvable Portable User Types

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 16

Making Types Portable Without Modification
In some cases, it may be undesirable or impossible to modify an existing user type to make it
portable. You can externalize the portable serialization of a user type by creating an
IPofSerializer implementation.
Example 18-5 illustrates, an implementation of the IPofSerializer interface for the
ContactInfo type.

Example 18-5 An Implementation of IPofSerializer for the .NET Type

public class ContactInfoSerializer : IPofSerializer
{
 public object Deserialize(IPofReader reader)
 {
 string name = reader.ReadString(0);
 string street = reader.ReadString(1);
 string city = reader.ReadString(2);
 string state = reader.ReadString(3);
 string zip = reader.ReadString(4);

 ContactInfo info = new ContactInfo(name, street, city, state, zip);
 info.DataVersion = reader.VersionId;
 info.FutureData = reader.ReadRemainder();

 return info;
 }

 public void Serialize(IPofWriter writer, object o)
 {
 ContactInfo info = (ContactInfo) o;

 writer.VersionId = Math.Max(info.DataVersion, info.ImplVersion);
 writer.WriteString(0, info.Name);
 writer.WriteString(1, info.Street);
 writer.WriteString(2, info.City);
 writer.WriteString(3, info.State);
 writer.WriteString(4, info.Zip);
 writer.WriteRemainder(info.FutureData);
 }
}

An implementation of the PofSerializer interface for the ContactInfo Java type would look
similar:

Example 18-6 An Implementation of PofSerializer for the Java Type Class

public class ContactInfoSerializer
 implements PofSerializer
 {
 public Object deserialize(PofReader in)
 throws IOException
 {
 String sName = in.readString(0);
 String sStreet = in.readString(1);
 String sCity = in.readString(2);
 String sState = in.readString(3);
 String sZip = in.readString(4);

 ContactInfo info = new ContactInfo(sName, sStreet, sCity, sState, sZip);
 info.setDataVersion(in.getVersionId());

Chapter 18
Making Types Portable Without Modification

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 16

 info.setFutureData(in.readRemainder());

 return info;
 }

 public void serialize(PofWriter out, Object o)
 throws IOException
 {
 ContactInfo info = (ContactInfo) o;

 out.setVersionId(Math.max(info.getDataVersion(), info.getImplVersion()));
 out.writeString(0, info.getName());
 out.writeString(1, info.getStreet());
 out.writeString(2, info.getCity());
 out.writeString(3, info.getState());
 out.writeString(4, info.getZip());
 out.writeRemainder(info.getFutureData());
 }
 }

To register the IPofSerializer implementation for the ContactInfo .NET type, specify the
class name of the IPofSerializer within a serializer element under the user-type element for
the ContactInfo user type in the POF configuration file. For example:

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/pof
 assembly://Coherence/Tangosol.Config/pof-config.xsd">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml
 </include>
 <!-- include all application POF user types -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>My.Example.ContactInfo, MyAssembly</class-name>
 <serializer>
 <class-name>My.Example.ContactInfoSerializer, MyAssembly</class-name>
 </serializer>
 </user-type>
 </user-type-list>
</pof-config>

Similarly, you can register the PofSerializer implementation for the ContactInfo Java type:

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>example-pof-config.xml</include>
 <!-- include all application POF user types -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>com.mycompany.example.ContactInfo</class-name>
 <serializer>
 <class-name>com.mycompany.example.ContactInfoSerializer</class-name>

Chapter 18
Making Types Portable Without Modification

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 16

 </serializer>
 </user-type>
 </user-type-list>
</pof-config>

Using POF Object References
POF supports the use of object identities and references for objects that occur more than once
in a POF stream. Objects are labeled with an identity and subsequent instances of a labeled
object within the same POF stream are referenced by its identity.
Using references avoids encoding the same object multiple times and helps reduce the data
size. References are typically used when a large number of sizeable objects are created
multiple times or when objects use nested or circular data structures. However, for applications
that contain large amounts of data but only few repeats, the use of object references provides
minimal benefits due to the overhead incurred in keeping track of object identities and
references.

The use of object identity and references has the following limitations:

• Object references are only supported for user defined object types.

• Object references are not supported for IEvolvable objects.

• Object references are not supported for keys.

• Objects that have been written out with a POF context that does not support references
cannot be read by a POF context that supports references. The opposite is also true.

• POF objects that use object identity and references cannot be queried using POF
extractors. Instead, use the IValueExtractor API to query object values or disable object
references.

• The use of the IPofNavigator and IPofValue API has the following restrictions when
using object references:

– Only read operations are allowed. Write operations result in an
UnsupportedOperationException.

– User objects can be accessed in non-uniform collections but not in uniform collections.

– For read operations, if an object appears in the data stream multiple times, then the
object must be read where it first appears before it can be read in the subsequent part
of the data. Otherwise, an IOException: missing identity: <ID> may be thrown.
For example, if there are 3 lists that all contain the same person object, p. The p object
must be read in the first list before it can be read in the second or third list.

This section includes the following topics:

Enabling POF Object References
Object references are not enabled by default and must be enabled either within a pof-
config.xml configuration file or programmatically when using the SimplePofContext class.

To enable object references in the POF configuration file, include the <enable-references>
element, within the <pof-config> element, and set the value to true. For example:

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/pof

Chapter 18
Using POF Object References

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 16

 assembly://Coherence/Tangosol.Config/pof-config.xsd">
 ...
 <enable-references>true</enable-references>
</pof-config>

To enable object references when using the SimplePofContext class, call the
setReferenceEnabled method and set it to true. For example:

SimplePofContext ctx = new SimplePofContext();
ctx.IsReferenceEnabled = true;

Registering POF Object Identities for Circular and Nested Objects
Circular or nested objects must manually register an identity when creating the object.
Otherwise, a child that references the parent will not find the identity of the parent in the
reference map. Object identities can be registered from a serializer during the deserialization
routine using the Tangosol.IO.Pof.IPofReader.RegisterIdentity method.

The following examples demonstrate two objects (Customer and Product) that contain a
circular reference and a serializer implementation that registers an identity on the Customer
object.

The Customer object is defined as follows:

public class Customer
 {
 String m_name;
 Product m_product;

 public Customer(String name)
 {
 m_name = name;
 }

 public Customer(String name, Product product)
 {
 m_name = name;
 m_product = product;
 }

 public String getName()
 {
 return m_name;
 }

 public Product getProduct()
 {
 return m_product;
 }

 public void setProduct(Product product)
 {
 m_product = product;
 }
 }

The Product object is defined as follows:

public class Product
 {
 private Customer m_customer;

Chapter 18
Using POF Object References

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 12 of 16

 public Product(Customer customer)
 {
 m_customer = customer;
 }

 public Customer getCustomer()
 {
 return m_customer;
 }
 }

The serializer implementation registers an identity during deserialization and is defined as
follows:

public class CustomerSerializer : IPofSerializer
 {
 public void Serialize(IPofWriter pofWriter, object o)
 {
 var c = (Customer) o;
 pofWriter.WriteString(0, c.getName());
 pofWriter.WriteObject(1, c.getProduct());
 pofWriter.WriteRemainder(null);
 }

 public object Deserialize(IPofReader pofReader)
 {
 String name = pofReader.ReadString(0);
 var customer = new Customer(name);

 pofReader.RegisterIdentity(customer);
 customer.setProduct((Product) pofReader.ReadObject(1));
 pofReader.ReadRemainder();
 return customer;
 }
 }

Using POF Annotations to Serialize Objects
POF annotations provide an automated way to implement the serialization and deserialization
routines for an object. POF annotations are serialized and deserialized using the
PofAnnotationSerializer class which is an implementation of the IPofSerializer interface.
Annotations offer an alternative to using the IPortableObject and IPofSerializer interfaces
and reduce the amount of time and code that is required to make objects serializable.

This section includes the following topics:

Annotating Objects for POF Serialization
Two annotations are available to indicate that a class and its properties are POF serializable:

• [Portable] – Marks the class as POF serializable. The annotation is only permitted at the
class level and has no members.

• [PortableProperty] – Marks a property, accessor, or member variable as a POF
serialized property. Annotated methods must conform to accessor notation (Get, Set, Is).
Members can be used to specify POF indexes as well as custom codecs that are executed
before or after serialization or deserialization. Index values may be omitted and
automatically assigned. If a custom codec is not entered, the default codec is used.

Chapter 18
Using POF Annotations to Serialize Objects

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 16

The following example demonstrates annotating a class, property, and member variable. In
addition PortableProperty indexes are explicitly specified.

[Portable]
public class Person
{
 [PortableProperty(0)]
 public string GetFirstName()
 {
 return m_firstName;
 }

 private String m_firstName;

 [PortableProperty(1)]
 public string LastName;
 {
 get; set;
 }

 [PortableProperty(2)]
 private int m_age;
}

Registering POF Annotated Objects
POF annotated objects must be registered in a pof-config.xml file within a <user-type>
element. See POF User Type Configuration Elements in Developing Applications with Oracle
Coherence. POF annotated objects use the PofAnnotationSerializer serializer if an object
does not implement IPortableObject and is annotated as Portable; however, the serializer is
automatically assumed if an object is annotated and does not need to be included in the user
type definition. The following example registers a user type for an annotated Person object:

<?xml version='1.0'?>
<pof-config xmlns="http://schemas.tangosol.com/pof">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml
 <!-- User types must be above 1000 -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>My.Examples.Person, MyAssembly</class-name>
 </user-type>
 </user-type-list>
</pof-config>

Enabling Automatic Indexing
POF annotations support automatic indexing which alleviates the need to explicitly assign and
manage index values. Omit the index value when defining the [PortableProperty] annotation.
Index allocation is determined by the property name. Any property that does assign an explicit
index value is not assigned an automatic index value. The following table demonstrates the
ordering semantics of the automatic index algorithm. Notice that automatic indexing maintains
explicitly defined indexes (as shown for property c) and assigns an index value if an index is
omitted.

Name Explicit Index Determined Index

c 1 1

Chapter 18
Using POF Annotations to Serialize Objects

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 14 of 16

Name Explicit Index Determined Index

a omitted 0

b omitted 2

Note

Automatic indexing does not currently support evolvable classes.

To enable automatic indexing, the PofAnnotationSerializer serializer class must be explicitly
defined when registering the object as a user type in the POF configuration file. The autoIndex
boolean parameter in the constructor enables automatic indexing and must be set to true. For
example:

<user-type>
 <type-id>1001</type-id>
 <class-name>Examples.Person</class-name>
 <serializer>
 <class-name>Tangosol.IO.Pof.PofAnnotationSerializer, Coherence</class-name>
 <init-params>
 <init-param>
 <param-type>int</param-type>
 <param-value>{type-id}</param-value>
 </init-param>
 <init-param>
 <param-type>class</param-type>
 <param-value>{class}</param-value>
 </init-param>
 <init-param>
 <param-type>bool</param-type>
 <param-value>true</param-value>
 </init-param>
 </init-params>
 </serializer>
</user-type>

Providing a Custom Codec
Codecs allow code to be executed before or after serialization or deserialization. A codec
defines how to encode and decode a portable property using the IPofWriter and IPofReader
interfaces. Codecs are typically used for concrete implementations that could get lost when
being deserialized or to explicitly call a specific method on the IPofWriter interface before
serializing an object.

To create a codec, create a class that implements the ICodec interface. The following example
demonstrates a codec that defines the concrete implementation of a linked list type:

public class LinkedListCodec<T> : ICodec
{
 public object Decode(IPofReader reader, int index)
 {
 return reader.ReadCollection(index, (ICollection)new LinkedList<T>());
 }

 public void Encode(IPofWriter writer, int index, object value)
 {

Chapter 18
Using POF Annotations to Serialize Objects

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 15 of 16

 writer.WriteCollection(index, (ICollection)value);
 }
}

To assign a codec to a property, enter the codec as a member of the [PortableProperty]
attribute. If a codec is not specified, a default codec (DefaultCodec) is used. The following
example demonstrates assigning the above LinkedListCodec codec:

[PortableProperty(typeof(LinkedListCodec<string>))]

Chapter 18
Using POF Annotations to Serialize Objects

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 16 of 16

19
Using the Coherence .NET Client Library

Learn about the Coherence for .NET API and how to add the .NET client library to an
application. Coherence for .NET API documentation is available at .NET API Reference for
Oracle Coherence and in the doc directory of the Coherence for .NET distribution.
This chapter includes the following sections:

Setting Up the Coherence .NET Client Library
To use the Coherence for .NET library in your .NET applications, you must add a package
reference in a project file:

dotnet add package Coherence -v 14.1.2.0

The csproj file will contain a <PackageReference> element for Coherence:

<PackageReference Include="Coherence" Version="14.1.2.0" />

Create the necessary configuration files and specify their paths in the application configuration
settings. This is done by adding an application configuration file to your project (if one does not
already exist) and adding a Coherence for .NET configuration section to it.

Note

Starting with version 14.1.2.0, the configuration file name is appsettings.json instead
of app.config.

Note

If these configuration files are not specified in appsettings.json, then Coherence
looks for them in both the folder where the application is deployed or, for web
applications, in the root of the web application. You also can specify the cache
configuration file programmatically. See Configuring .NET Clients Programmatically.

appsettings.json
{
 "Coherence": {
 "CoherenceConfig": "my-coherence-config.xml",
 "CacheConfig": "my-cache-config.xml",
 "PofConfig": "my-pof-config.xml"
 }
}

Elements within the Coherence for .NET configuration section are:

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 11

• CoherenceConfig—Contains the path to an operational configuration descriptor used by
the CacheFactory to configure IConfigurableCacheFactory and Logger.

• CacheConfig—Contains the path to a cache configuration file, which contains the cache
configuration. The cache configuration descriptor is used by
DefaultConfigurableCacheFactory.

• PofConfig—Contains the path to the configuration descriptor used by the
ConfigurablePofContext to register custom types used by the application. See Using the
Coherence .NET Client Library.

Using the Coherence .NET APIs
The Coherence .NET API includes many classes that are used to interact with Coherence
caches within a .NET application.
This section includes the following topics:

IConfigurableCacheFactory
The IConfigurableCacheFactory implementation is specified by the contents of the
<configurable-cache-factory-config> element:

• class-name—specifies the implementation type by it's assembly qualified name.

• init-params—defines parameters used to instantiate the IConfigurableCacheFactory.
Each parameter is specified by using a corresponding param-type and param-value child
element.

<coherence>
 <configurable-cache-factory-config>
 <class-name>Tangosol.Net.DefaultConfigurableCacheFactory, Coherence</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>simple-cache-config.xml</param-value>
 </init-param>
 </init-params>
 </configurable-cache-factory-config>
</coherence>

If an IConfigurableCacheFactory implementation is not defined in the configuration, the
default implementation is used (DefaultConfigurableCacheFactory).

DefaultConfigurableCacheFactory
The DefaultConfigurableCacheFactory provides a facility to access caches declared in the
cache configuration descriptor. The default configuration file used by the
DefaultConfigurableCacheFactory is $AppRoot/coherence-cache-config.xml,
where $AppRoot is the working directory (for a Windows Forms application) or the root of the
application (for a Web application).

If you want to specify another cache configuration descriptor file, you can do so by adding a
cache-config element to the Coherence for .NET configuration section in the application
configuration file with its value set to the path of the configuration file. You can also specify the
cache configuration file programmatically. See Configuring .NET Clients Programmatically.

appsettings.json
{

Chapter 19
Using the Coherence .NET APIs

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 11

 "Coherence": {
 "CacheConfig": "my-cache-config.xml"
 }
}

Logger
The Logger is configured using the logging-config element:

• destination—determines the type of LogOutput used by the Logger. Valid values are:

– common-logger for Common.Logging

– stderr for Console.Error

– stdout for Console.Out

– file path if messages should be directed to a file

• severity-level—specifies the log level that a message must meet or exceed to be
logged.

• logger-name—specifies the name of the logger. The default value is Coherence.

• message-format—determines the log message format.

• character-limit—determines the maximum number of characters that the logger daemon
processes from the message queue before discarding all remaining messages in the
queue.

...
<logging-config>
 <destination>common-logger</destination>
 <logger-name>Coherence</logger-name>
 <severity-level>5</severity-level>
 <message-format>(thread={thread}): {text}</message-format>
 <character-limit>8192</character-limit>
</logging-config>
...

The CacheFactory provides several static methods for retrieving and releasing INamedCache
instances:

• GetCache(String cacheName)—retrieves an INamedCache implementation that
corresponds to the NamedCache with the specified cacheName running within the remote
Coherence cluster.

• ReleaseCache(INamedCache cache)—releases all local resources associated with the
specified instance of the cache. After a cache is release, it can no longer be used.

• DestroyCache(INamedCache cache)—destroys the specified cache across the Coherence
cluster.

Methods used to log messages and exceptions are:

• IsLogEnabled(int level)—determines if the Logger would log a message with the given
severity level.

• Log(Exception e, int severity)—logs an exception with the specified severity level.

• Log(String message, int severity)—logs a text message with the specified severity
level.

• Log(String message, Exception e, int severity)—logs a text message and an
exception with the specified severity level.

Chapter 19
Using the Coherence .NET APIs

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 11

Logging levels are defined by the values of the CacheFactory.LogLevel enum values (in
ascending order):

• Always

• Error

• Warn

• Info

• Debug—(default log level)

• Quiet

• Max

Using the Common.Logging Library
Common.Logging is an open source library that enables you to plug in various popular open
source logging libraries behind a well-defined set of interfaces. The libraries currently
supported are Log4Net (versions 1.2.9 and 1.2.10) and NLog. Common.Logging is currently
used by the Spring.NET framework and are likely to be used in the future releases of
IBatis.NET and NHibernate, so you might want to consider it if you are using one or more of
these frameworks in combination with Coherence for .NET, as it allows logging to be
consistently configured throughout the application layers.

Coherence for .NET does not include the Common.Logging library. To use the common-logger
Logger configuration, download the Common.Logging assembly and include a reference to it in
your project. You can download the Common.Logging assembly for .NET from the following
location:

http://netcommon.sourceforge.net/

The Coherence for .NET Common.Logging Logger implementation was compiled against the
signed release version of these assemblies.

INamedCache
The INamedCache interface extends IDictionary, so it can be manipulated in ways similar to a
dictionary. When obtained, INamedCache instances expose several properties:

• CacheName—the cache name.

• Count—the cache size.

• IsActive—determines if the cache is active (that is, it has not been released or
destroyed).

• Keys—collection of all keys in the cache mappings.

• Values—collection of all values in the cache mappings.

The value for the specified key can be retrieved by using cache[key]. Similarly, a new value
can be added, or an old value can be modified by setting this property to the new value:
cache[key] = value.

The collection of cache entries can be accessed by using GetEnumerator() which iterates over
the mappings in the cache.

The INamedCache interface provides several methods used to manipulate the contents of the
cache:

Chapter 19
Using the Coherence .NET APIs

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 11

http://netcommon.sourceforge.net/

• Clear()—removes all the mappings from the cache.

• Contains(Object key)—determines if the cache has a mapping for the specified key.

• GetAll(ICollection keys)—returns all values mapped to the specified keys collection.

• Insert(Object key, Object value)—places a new mapping into the cache. If a mapping
for the specified key exists, its value is overwritten by the specified value and the old value
is returned.

• Insert(Object key, Object value, long millis)—places a new mapping into the
cache, but with an expiry period specified by several milliseconds.

• InsertAll(IDictionary dictionary)—copies all the mappings from the specified
dictionary to the cache.

• Remove(Object key)—Removes the mapping for the specified key if it is present and
returns the value it was mapped to.

INamedCache interface also extends the following three interfaces: IQueryCache,
IObservableCache, and IInvocableCache.

IQueryCache
The IQueryCache interface exposes the ability to query a cache using various filters.

• GetKeys(IFilter filter)—returns a collection of the keys contained in this cache for
entries that satisfy the criteria expressed by the filter.

• GetEntries(IFilter filter)—returns a collection of the entries contained in this cache
that satisfy the criteria expressed by the filter.

• GetEntries(IFilter filter, IComparer comparer)—returns a collection of the entries
contained in this cache that satisfy the criteria expressed by the filter. It is guaranteed that
the enumerator traverses the collection in the order of ascending entry values, sorted by
the specified comparer or according to the natural ordering if the "comparer" is null.

Additionally, the IQueryCache interface includes the ability to add and remove indexes. Indexes
are used to correlate values stored in the cache to their corresponding keys and can
dramatically increase the performance of the GetKeys and GetEntries methods.

• AddIndex(IValueExtractor extractor, bool isOrdered, IComparer comparator)—
adds an index to this cache that correlates the values extracted by the given
IValueExtractor to the keys to the corresponding entries. Additionally, the index
information can be optionally ordered.

• RemoveIndex(IValueExtractor extractor)—removes an index from this cache.

The following example performs an efficient query of the keys of all entries that have an age
property value greater or equal to 55.

IValueExtractor extractor = new ReflectionExtractor("getAge");

cache.AddIndex(extractor, true, null);
ICollection keys = cache.GetKeys(new GreaterEqualsFilter(extractor, 55));

QueryRecorder
The QueryRecorder class produces an explain or trace record for a given filter. The class is an
implementation of a parallel aggregator that is capable querying all nodes in a cluster and
aggregating the results. The class supports two record types: an Explain record that provides
the estimated cost of evaluating a filter as part of a query operation and a Trace record that

Chapter 19
Using the Coherence .NET APIs

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 11

provides the actual cost of evaluating a filter as part of a query operation. Both query records
take into account whether or not an index can be used by a filter. See Interpreting Query
Records in Developing Applications with Oracle Coherence.

To create a query record, create a new QueryRecorder instance that specifies a RecordType
parameter. Include the instance and the filter to be tested as parameters of the Aggregate
method. The following example creates an explain record:

INamedCache cache = CacheFactory.GetCache(MyCache);

IFilter filter = new OrFilter(
 new GreaterFilter(IdentityExtractor.Instance, 100),
 new LessFilter(IdentityExtractor.Instance, 30));

QueryRecorder aggregator = new QueryRecorder(QueryRecorder.RecordType.Explain);
IQueryRecord record = (IQueryRecord) cache.Aggregate(filter, aggregator);

Console.WriteLine(record.ToString());

To create a trace record, change the RecordType parameter to Trace:

QueryRecorder aggregator = new QueryRecorder(QueryRecorder.RecordType.Trace);

IObservableCache
IObservableCache interface enables an application to receive events when the contents of a
cache changes. To register interest in change events, an application adds a Listener
implementation to the cache that receives events that include information about the event type
(inserted, updated, deleted), the key of the modified entry, and the old and new values of the
entry.

• AddCacheListener(ICacheListener listener)—adds a standard cache listener that
receives all events (inserts, updates, deletes) emitted from the cache, including their keys,
old, and new values.

• RemoveCacheListener(ICacheListener listener)—removes a standard cache listener
that was previously registered.

• AddCacheListener(ICacheListener listener, object key, bool isLite)—adds a
cache listener for a specific key. If isLite is true, the events may not contain the old and
new values.

• RemoveCacheListener(ICacheListener listener, object key)—removes a cache
listener that was previously registered using the specified key.

• AddCacheListener(ICacheListener listener, IFilter filter, bool isLite)—adds a
cache listener that receive events based on a filter evaluation. If isLite is true, the events
may not contain the old and new values.

• RemoveCacheListener(ICacheListener listener, IFilter filter)—removes a cache
listener that previously registered using the specified filter.

Listeners that are registered using the filter-based method receives all event types (inserted,
updated, and deleted). To further filter the events, wrap the filter in a CacheEventFilter using a
CacheEventMask enumeration value to specify which type of events should be monitored.

The following example filter evaluates to true if an Employee object is inserted into a cache
with an IsMarried property value set to true.

new CacheEventFilter(CacheEventMask.Inserted, new EqualsFilter("IsMarried", true));

Chapter 19
Using the Coherence .NET APIs

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 11

The following example filter evaluates to true if any object is removed from a cache.

new CacheEventFilter(CacheEventMask.Deleted);

The following example filter evaluates to true when an Employee object LastName property is
changed from Smith.

new CacheEventFilter(CacheEventMask.UpdatedLeft, new EqualsFilter("LastName", "Smith"));

This section includes the following topic:

Responding to Cache Events
A feature of the INamedCache interface is the ability to add cache listeners that receive events
emitted by a cache as its contents change. These events are sent from the server and
dispatched to registered listeners by a background thread.

The .NET Single-Threaded Apartment model prohibits windows form controls created by one
thread from being updated by another thread. If one or more controls should be updated
because of an event notification, you must ensure that any event handling code that must run
as a response to a cache event is executed on the UI thread. The
WindowsFormsCacheListener helper class allows end users to ignore this fact and to handle
Coherence cache events (which are always raised by a background thread) as if they were
raised by the UI thread. This class ensures that the call is properly marshalled and executed
on the UI thread.

Here is the sample of using this class:

public partial class ContactInfoForm : Form
{
 ...
 listener = new WindowsFormsCacheListener(this);
 listener.EntryInserted += new CacheEventHandler(AddRow);
 listener.EntryUpdated += new CacheEventHandler(UpdateRow);
 listener.EntryDeleted += new CacheEventHandler(DeleteRow);
 ...
 cache.AddCacheListener(listener);
 ...
}

The AddRow, UpdateRow and DeleteRow methods are called in response to a cache event:

private void AddRow(object sender, CacheEventArgs args)
{
...
}

private void UpdateRow(object sender, CacheEventArgs args)
{
...
}

private void DeleteRow(object sender, CacheEventArgs args)
{
...
}

The CacheEventArgs parameter encapsulates the IObservableCache instance that raised the
cache event; the CacheEventType that occurred; and the Key, NewValue and OldValue of the
cached entry.

Chapter 19
Using the Coherence .NET APIs

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 11

IInvocableCache
An IInvocableCache is a cache against which both entry-targeted processing and aggregating
operations can be invoked. The operations against the cache contents are executed by (and
thus within the localized context of) a cache. This is particularly useful in a distributed
environment, because it enables the processing to be moved to the location at which the
entries-to-be-processed are being managed, thus providing efficiency by localization of
processing.

• Invoke(object key, IEntryProcessor agent)—invokes the passed processor against
the entry specified by the passed key, returning the result of the invocation.

• InvokeAll(ICollection keys, IEntryProcessor agent)—invokes the passed processor
against the entries specified by the passed keys, returning the result of the invocation for
each.

• InvokeAll(IFilter filter, IEntryProcessor agent)—invokes the passed processor
against the entries that are selected by the given filter, returning the result of the invocation
for each.

• Aggregate(ICollection keys, IEntryAggregator agent)—performs an aggregating
operation against the entries specified by the passed keys.

• Aggregate(IFilter filter, IEntryAggregator agent)—performs an aggregating
operation against the entries that are selected by the given filter.

Filters
The IQueryCache interface provides the ability to search for cache entries that meet a given set
of criteria, expressed using a IFilter implementation.

All filters must implement the IFilter interface:

• Evaluate(object o)—apply a test to the specified object and return true if the test
passes, false otherwise.

Coherence for .NET includes several IFilter implementations in the Tangosol.Util.Filter
namespace.

The following example retrieves the keys of all entries that have a value equal to 5.

EqualsFilter equalsFilter = new EqualsFilter(IdentityExtractor.Instance, 5);
ICollection keys = cache.GetKeys(equalsFilter);

The following example retrieves all keys that have a value greater or equal to 55.

GreaterEqualsFilter greaterEquals = new GreaterEqualsFilter(IdentityExtractor.Instance,
55);
ICollection keys = cache.GetKeys(greaterEquals);

The following example retrieves all cache entries that have a value that begins with Belg.

LikeFilter likeFilter = new LikeFilter(IdentityExtractor.Instance, "Belg%", '\\', true);
ICollection entries = cache.GetEntries(likeFilter);

The following example retrieves all cache entries that have a value that ends with an (case
sensitive) or begins with An (case insensitive).

Chapter 19
Using the Coherence .NET APIs

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 11

OrFilter orFilter = new OrFilter(new LikeFilter(IdentityExtractor.Instance, "%an", '\
\', false), new LikeFilter(IdentityExtractor.Instance, "An%", '\\', true));
ICollection entries = cache.GetEntries(orFilter);

Value Extractors
Extractors are used to extract values from an object. All extractors must implement the
IValueExtractor interface:

• Extract(object target)—extract the value from the passed object.

Coherence for .NET includes the following extractors:

• IdentityExtractor is a trivial implementation that does not actually extract anything from
the passed value, but returns the value itself.

• KeyExtractor is a special purpose implementation that serves as an indicator that a query
should be run against the key objects rather than the values.

• ReflectionExtractor extracts a value from a specified object property.

• MultiExtractor is composite IValueExtractor implementation based on an array of
extractors. All extractors in the array are applied to the same target object and the result of
the extraction is a IList of extracted values.

• ChainedExtractor is composite IValueExtractor implementation based on an array of
extractors. The extractors in the array are applied sequentially left-to-right, so a result of a
previous extractor serves as a target object for a next one.

POF extractors and POF updaters offer the same functionality as ChainedExtractors
through the use of the SimplePofPath class. See Using POF Extractors and POF Updaters
in Developing Applications with Oracle Coherence.

The following example retrieves all cache entries with keys greater than 5:

IValueExtractor extractor = new KeyExtractor(IdentityExtractor.Instance);
IFilter filter = new GreaterFilter(extractor, 5);
ICollection entries = cache.GetEntries(filter);

The following example retrieves all cache entries with values containing a City property equal
to city1:

IValueExtractor extractor = new ReflectionExtractor("City");
IFilter filter = new EqualsFilter(extractor, "city1");
ICollection entries = cache.GetEntries(filter);

Entry Processors
An entry processor is an agent that operates against the entry objects within a cache. All entry
processors must implement the IEntryProcessor interface:

• Process(IInvocableCacheEntry entry)—process the specified entry.

• ProcessAll(ICollection entries)—process a collection of entries.

Coherence for .NET includes several IEntryProcessor implementations in the
Tangosol.Util.Processor namespace.

The following example demonstrates a conditional put. The value mapped to key1 is set to 680
only if the current mapped value is greater than 600.

Chapter 19
Using the Coherence .NET APIs

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 11

IFilter greaterThen600 = new GreaterFilter(IdentityExtractor.Instance, 600);
IEntryProcessor processor = new ConditionalPut(greaterThen600, 680);
cache.Invoke("key1", processor);

The following example uses the UpdaterProcessor to update the value of the Degree property
on a Temperature object with key BGD to the new value 26.

cache.Insert("BGD", new Temperature(25, 'c', 12));
IValueUpdater updater = new ReflectionUpdater("setDegree");
IEntryProcessor processor = new UpdaterProcessor(updater, 26);
object result = cache.Invoke("BGD", processor);

Entry Aggregators
An entry aggregator represents processing that can be directed to occur against some subset
of the entries in an IInvocableCache, resulting in an aggregated result. Common examples of
aggregation include functions such as minimum, maximum, sum and average. However, the
concept of aggregation applies to any process that must evaluate a group of entries to come
up with a single answer. Aggregation is explicitly capable of being run in parallel, for example
in a distributed environment.

All aggregators must implement the IEntryAggregator interface:

• Aggregate(ICollection entries)—process a collection of entries to produce an
aggregate result.

Coherence for .NET includes several IEntryAggregator implementations in the
Tangosol.Util.Aggregator namespace.

The following example returns the size of the cache:

IEntryAggregator aggregator = new Count();
object result = cache.Aggregate(cache.Keys, aggregator);

The following example returns an IDictionary with keys equal to the unique values in the
cache and values equal to the number of instances of the corresponding value in the cache:

IEntryAggregator aggregator = GroupAggregator.CreateInstance(IdentityExtractor.Instance,
new Count());
object result = cache.Aggregate(cache.Keys, aggregator);

Note

The above examples are simple examples and not practical for passing a large
amount of keys or keys that are themselves very large. In such scenarios, use the
GroupAggregator.CreateInstance(String, IEntryAggregator, IFilter) method
and pass an AlwaysFilter object.

Like cached value objects, all custom IFilter, IExtractor, IProcessor and IAggregator
implementation classes must be correctly registered in the POF context of the .NET application
and cluster-side node to which the client is connected. As such, corresponding Java
implementations of the custom .NET types must be created, compiled, and deployed on the
cluster-side node. Note that the actual execution of these custom types is performed by the
Java implementation and not the .NET implementation. See Building Integration Objects
(.NET) .

Chapter 19
Using the Coherence .NET APIs

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 11

Configuring .NET Clients Programmatically
Clients can load Coherence configuration files programmatically at runtime. The configuration
files overwrite any configuration files that are specified in the application configuration file. See
Setting Up the Coherence .NET Client Library.
The following example loads the pofConfig.xml, cacheConfig.xml, and coherenceConfig.xml
files.

using System;
using System.IO;
using Tangosol.IO.Pof;
using Tangosol.Net;
using Tangosol.Run.Xml;

namespace configExample
{
 internal class TestPofContext : ConfigurablePofContext
 {
 public TestPofContext()

 : base("config/pofConfig.xml")
 {
 }
 }

 internal class TestClient
 {
 private static void Main(string[] args)
 {
 try
 {
 CacheFactory.Configure("config/cacheConfig.xml",
 "config/coherenceConfig.xml");
 var cache = CacheFactory.GetCache("dist-test");
 cache["key"] = new TestValue(1, "Test");
 Console.Out.WriteLine("key=" + cache["key"]);
 }
 catch (Exception e)
 {
 Console.WriteLine(e);
 }
 Console.ReadLine();
 }
 }
}

Chapter 19
Configuring .NET Clients Programmatically

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 11

20
Performing Continuous Queries (.NET)

You can use Continuous Query Caching in a .NET client to ensure that a query always
retrieves the latest results from a cache in real-time.
This chapter includes the following sections:

Overview of Performing Continuous Queries (.NET)
Queries provide the ability to obtain a point in time query result from a Coherence cache and it
is possible to receive events that would change the result of that query. However, the
continuous query feature combines a query result with a continuous stream of related events to
maintain an up-to-date query result in a real-time fashion. This capability is called Continuous
Query, because it has the same effect as if the desired query had zero latency and the query
were being executed several times every millisecond.
Coherence for .NET implements the Continuous Query functionality by materializing the results
of the query into a Continuous Query Cache, and then keeping that cache up-to-date in real-
time using event listeners on the query. In other words, a Coherence for .NET Continuous
Query is a cached query result that never gets out-of-date.

Understanding Use Cases for Continuous Query Caching
Continuous Query Caching is ideal for many use cases, such as event processing and instant
access to up-to-date query results.
Consider using Continuous Query Caching in the following situations:

• A Continuous Query Cache is an ideal building block for Complex Event Processing (CEP)
systems and event correlation engines.

• A Continuous Query Cache is ideal for situations in which an application repeats a
particular query, and would benefit from always having instant access to the up-to-date
result of that query.

• A Continuous Query Cache is analogous to a materialized view, and is useful for
accessing and manipulating the results of a query using the standard INamedCache API,
and receiving an ongoing stream of events related to that query.

• A Continuous Query Cache can be used in a manner similar to a near cache, because it
maintains an up-to-date set of data locally where it is being used, for example on a
particular server node or on a client desktop; note that a Near Cache is invalidation-based,
but the Continuous Query Cache actually maintains its data in an up-to-date manner.

An example use case is a trading system desktop in which a trader's open orders and all
related information must always be maintained in an up-to-date manner. By combining the
Coherence*Extend functionality with Continuous Query Caching, an application can support
literally tens of thousands of concurrent users.

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

Note

Continuous Query Caches are useful in almost every type of application, including
both client-based and server-based applications, because they provide the ability to
very easily and efficiently maintain an up-to-date local copy of a specified sub-set of a
much larger and potentially distributed cached data set.

Understanding the Continuous Query Caching Implementation
The Coherence for .NET implementation of Continuous Query is found in the
Tangosol.Net.Cache.ContinuousQueryCache class. This class, like all Coherence for .NET
caches, implements the standard INamedCache interface, which includes the following
capabilities:

• Cache access and manipulation using the IDictionary interface: INamedCache extends the
standard IDictionary interface from the .NET Collections Framework, which is the same
interface implemented by the .NET Hashtable class.

• Events for all objects modifications that occur within the cache: INamedCache extends the
IObservableCache interface.

• Querying the objects in the cache: INamedCache extends the IQueryCache interface.

• Distributed Parallel Processing and Aggregation of objects in the cache: INamedCache
extends the IInvocableCache interface.

Since the ContinuousQueryCache class implements the INamedCache interface, which is the
same API provided by all Coherence for .NET caches, it is extremely simple to use, and it can
be easily substituted for another cache when its functionality is called for.

Constructing a Continuous Query Cache
The ContinuousQueryCache class is used for continuous query caching and requires an
underlying cache and a query filter.
The underlying cache is any Coherence for .NET cache, including another Continuous Query
Cache. A cache is usually obtained from a CacheFactory, which allows the developer to simply
specify the name of the cache and have it automatically configured based on the application's
cache configuration information; for example:

INamedCache cache = CacheFactory.GetCache("orders");

The query is the same type of query that would be used to query any other cache; for example:

Filter filter = new AndFilter(new EqualsFilter("getTrader", traderid),
 new EqualsFilter("getStatus", Status.OPEN));

Normally, to query a cache, a method from the IQueryCache is used; for examples, to obtain a
snap-shot of all open trades for this trader:

ICollection setOpenTrades = cache.GetEntries(filter);

Similarly, the Continuous Query Cache is constructed from those same two pieces:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);

Chapter 20
Understanding the Continuous Query Caching Implementation

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

Cleaning Up Continuous Query Cache Resources
Instances of all INamedCache implementations, including ContinuousQueryCache, should be
explicitly released by calling the INamedCache.Release() method when they are no longer
needed, to free up any resources they might hold.
If the particular INamedCache is used for the duration of the application, then the resources is
cleaned up when the application is shut down or otherwise stops. However, if it is only used for
a period, the application should call its Release() method when finished using it.

Alternatively, you can leverage the fact that INamedCache extends IDisposable and that all
cache implementations delegate a call to IDisposable.Dispose() to INamedCache.Release().
If you want to obtain and release a cache instance within a single method, you can do so by
using a using block:

using (INamedCache cache = CacheFactory.GetCache("my-cache"))
{
 // use cache as usual
}

After the using block terminates, IDisposable.Dispose() is called on the INamedCache
instance, and all resources associated with it are released.

Caching Only Keys Versus Keys and Values
When constructing a Continuous Query Cache, it is possible to specify that the cache should
only keep track of the keys that result from the query, and obtain the values from the underlying
cache only when they are asked for. This feature may be useful for creating a Continuous
Query Cache that represents a very large query result set, or if the values are never or rarely
requested.
To specify that only the keys should be cached, use the constructor that allows the
IsCacheValues property to be configured; for example:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter, false);

If necessary, the IsCacheValues property can also be modified after the cache has been
instantiated; for example:

cacheOpenTrades.IsCacheValues = true;

IsCacheValues Property and Event Listeners

If the Continuous Query Cache has any standard (non-lite) event listeners, or if any of the
event listeners are filtered, then the IsCacheValues property is automatically set to true,
because the Continuous Query Cache uses the locally cached values to filter events and to
supply the old and new values for the events that it raises.

This section includes the following topics:

Listening to a Continuous Query Cache
A client can place one or more event listeners onto a Continuous Query Cache.
For example:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
cacheOpenTrades.AddCacheListener(listener);

Chapter 20
Cleaning Up Continuous Query Cache Resources

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

Assuming some processing has to occur against every item that is in the cache and every item
added to the cache, there are two approaches. First, the processing could occur then a listener
could be added to handle any later additions:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
foreach (ICacheEntry entry in cacheOpenTrades.Entries)
 {
 // .. process the cache entry
 }
cacheOpenTrades.AddCacheListener(listener);

However, that code is incorrect because it allows events that occur in the split second after
the iteration and before the listener is added to be missed! The alternative is to add a listener
first, so no events are missed, and then do the processing:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
cacheOpenTrades.AddCacheListener(listener);
foreach (ICacheEntry entry in cacheOpenTrades.Entries)
 {
 // .. process the cache entry
 }

However, the same entry may appear in both an event an in the IEnumerator, and the events
can be asynchronous, so the sequence of operations cannot be guaranteed.

The solution is to provide the listener during construction, and it receives one event for each
item that is in the Continuous Query Cache, whether it was there to begin with (because it was
in the query) or if it was added during or after the construction of the cache:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter, listener);

This section includes the following topics:

Achieving a Stable Materialized View
The Continuous Query Cache implementation faced the same challenge: How to assemble an
exact point-in-time snapshot of an underlying cache while receiving a stream of modification
events from that same cache. The solution has several parts. First, Coherence for .NET
supports an option for synchronous events, which provides a set of ordering guarantees.
Secondly, the Continuous Query Cache has a two-phase implementation of its initial population
that allows it to first query the underlying cache and then subsequently resolve all of the events
that came in during the first phase. Since achieving these guarantees of data visibility without
any missing or repeated events is fairly complex, the Continuous Query Cache allows a
developer to pass a listener during construction, thus avoiding exposing these same
complexities to the application developer.

Support for Synchronous and Asynchronous Listeners
By default, listeners to the Continuous Query Cache have their events delivered
asynchronously. However, the Continuous Query Cache does respect the option for
synchronous events as provided by the CacheListenerSupport.ISynchronousListener
interface.

Making a Continuous Query Cache Read-Only
A Continuous Query Cache can be made into a read-only cache.
For example:

Chapter 20
Making a Continuous Query Cache Read-Only

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

cacheOpenTrades.IsReadOnly = true;

A read-only Continuous Query Cache does not allow objects to be added to, changed in,
removed from or locked in the cache.

When a Continuous Query Cache has been set to read-only, it cannot be changed back to
read/write.

Chapter 20
Making a Continuous Query Cache Read-Only

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

21
Performing Remote Invocations (.NET)

You can perform remote invocations on Coherence caches from .NET clients.
This chapter includes the following sections:

Overview of Performing Remote Invocations
Coherence for .NET provides a Remote Invocation Service which allows execution of single-
pass agents (called IInvocable objects) within the cluster-side JVM to which the client is
connected. Agents are simply runnable application classes that implement the IInvocable
interface. Agents can execute any arbitrary action and can use any cluster-side services
(cache services, grid services, and so on) necessary to perform their work. The agent
operations can also be stateful, which means that their state is serialized and transmitted to the
grid nodes on which the agent is run.

Configuring and Using the Remote Invocation Service
A Remote Invocation Service is configured using the <remote-invocation-scheme> element in
the cache configuration descriptor.
For example:

...
<remote-invocation-scheme>
 <scheme-name>example-invocation</scheme-name>
 <service-name>ExtendTcpInvocationService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>30s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
</remote-invocation-scheme>
...

A reference to a configured Remote Invocation Service can then be obtained by name by using
the CacheFactory class:

IInvocationService service = (IInvocationService)
CacheFactory.GetService("ExtendTcpInvocationService");

To execute an agent on the grid node to which the client is connected requires only one line of
code:

IDictionary result = service.Query(new MyTask(), null);

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 2

The single result of the execution are keyed by the local Member, which can be retrieved by
calling CacheFactory.ConfigurableCacheFactory.LocalMember.

Note

Like cached value objects, all IInvocable implementation classes must be correctly
registered in the POF context of the .NET application and cluster-side node to which
the client is connected. As such, a Java implementation of the IInvocable task (a
com.tangosol.net.Invocable implementation) must be created, compiled, and
deployed on the cluster-side node. Note that the actual execution of the task is
performed by the Java Invocable implementation and not the .NET IInvocable
implementation. See Introduction to Coherence .NET Clients.

Chapter 21
Configuring and Using the Remote Invocation Service

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 2

22
Performing Transactions (.NET)

You can use the Transaction Framework API to ensure cache operations are performed within
a transaction when using a .NET client.

The instructions do not provide detailed transaction API usage. See Using the Transaction
Framework API in Developing Applications with Oracle Coherence.

The following sections are included in this chapter and are required to perform transactions:

Using the Transaction API within an Entry Processor
.NET clients perform cache operations within a transaction by leveraging the Transaction
Framework API. The transaction API is not supported natively on .NET and must be used
within an entry processor. The entry processor is implemented in Java on the cluster and an
entry processor stub class is implemented in C# on the client. Both classes use POF to
serialize between Java and C#.
Example 22-1 demonstrates an entry processor that performs a simple update operation within
a transaction using the transaction API. At run time, the class must be located on the classpath
of the Coherence proxy server.

Example 22-1 Entry Processor for Extend Client Transaction

package coherence.tests;

import com.tangosol.coherence.transaction.Connection;
import com.tangosol.coherence.transaction.ConnectionFactory;
import com.tangosol.coherence.transaction.DefaultConnectionFactory;
import com.tangosol.coherence.transaction.OptimisticNamedCache;
import
com.tangosol.coherence.transaction.exception.PredicateFailedException;
import com.tangosol.coherence.transaction.exception.RollbackException;
import
com.tangosol.coherence.transaction.exception.UnableToAcquireLockException;
import com.tangosol.util.Filter;
import com.tangosol.util.InvocableMap;
import com.tangosol.util.extractor.IdentityExtractor;
import com.tangosol.util.filter.EqualsFilter;
import com.tangosol.util.processor.AbstractProcessor;

public class MyTxProcessor extends AbstractProcessor implements PortableObject
 {
 public Object process(InvocableMap.Entry entry)
 {
 // obtain a connection and transaction cache
 ConnectionFactory connFactory = new DefaultConnectionFactory();
 Connection conn = connFactory.createConnection("TransactionalCache");
 OptimisticNamedCache cache = conn.getNamedCache("MyTxCache");

 conn.setAutoCommit(false);

 // get a value for an existing entry
 String sValue = (String) cache.get("existingEntry");

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

 // create predicate filter
 Filter predicate = new EqualsFilter(IdentityExtractor.INSTANCE, sValue);

 try
 {
 // update the previously obtained value
 cache.update("existingEntry", "newValue", predicate);
 }
 catch (PredicateFailedException e)
 {
 // value was updated after it was read
 conn.rollback();
 return false;
 }
 catch (UnableToAcquireLockException e)
 {
 // row is being updated by another tranaction
 conn.rollback();
 return false;
 }
 try
 {
 conn.commit();
 }
 catch (RollbackException e)
 {
 // transaction was rolled back
 return false;
 }
 return true;
 }

 public void readExternal(PofReader in)
 throws IOException
 {
 }

 public void writeExternal(PofWriter out)
 throws IOException
 {
 }
}

Creating a Stub Class for a Transactional Entry Processor
An entry processor stub class allows a client to use the transactional entry processor on the
cluster. The stub class is implemented in C# and uses POF for serialization. POF allows an
entry processor to be serialized between C# and Java. The entry processor stub class does
not required any transaction logic and is a skeleton of the transactional entry processor. See
Building Integration Objects (.NET) .
Example 22-2 demonstrate an entry processor stub class for the transactional entry processor
created in Example 22-1.

Example 22-2 Transaction Entry Processor .NET Stub Class

using Tangosol.IO.Pof;
using Tangosol.Net.Cache;
using Tangosol.Util.Processor;

namespace Coherence.Tests{
 public class MyTxProcessor : AbstractProcessor, IPortableObject

Chapter 22
Creating a Stub Class for a Transactional Entry Processor

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

 {
 public MyTxProcessor()
 {
 }

 public override object Process(IInvocableCacheEntry entry)
 {
 return null;
 }

 public void ReadExternal(IPofReader reader)
 {
 }

 public void WriteExternal(IPofWriter writer)
 {
 }
 }
}

Registering a Transactional Entry Processor User Type
Custom user types must be registered for the Java transactional entry processor in the cluster-
side POF configuration file and for the client stub in the client-side POF configuration file. Both
registrations must use the same type ID. The following example demonstrates registering both
the MyTxProcessor class that was created in Example 22-1 and the client stub class that was
created in Example 22-2, respectively.
Cluster-side POF configuration:

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 <include>txn-pof-config.xml</include>
 <user-type>
 <type-id>1599</type-id>
 <class-name>coherence.tests.MyTxProcessor</class-name>
 </user-type>
 </user-type-list>
</pof-config>

Client-side POF configuration:

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/pof
 assembly://Coherence/Tangosol.Config/pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 <user-type>
 <type-id>1599</type-id>
 <class-name>Coherence.Tests.MyTxProcessor</class-name>
 </user-type>
 </user-type-list>
</pof-config>

Chapter 22
Registering a Transactional Entry Processor User Type

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

Configuring the Cluster-Side Transactional Caches
Transactions require a transactional cache to be defined in the cluster-side cache configuration
file. Transactional caches are used by the Transaction Framework to provide transactional
guarantees. See Defining Transactional Caches in Developing Applications with Oracle
Coherence.
The following example creates a transactional cache that is named MyTxCache, which is the
cache name that was used by the entry processor in Example 22-1. The configuration also
includes a proxy scheme and a distributed cache scheme that are required to execute the
entry processor from a remote client. The proxy is configured to accept client TCP/IP
connections on localhost at port 7077. See Configuring Extend Proxies .

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>MyTxCache</cache-name>
 <scheme-name>example-transactional</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>dist-example</cache-name>
 <scheme-name>example-distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <transactional-scheme>
 <scheme-name>example-transactional</scheme-name>
 <service-name>TransactionalCache</service-name>
 <thread-count-min>2</thread-count-min>
 <thread-count-max>10</thread-count-max>
 <high-units>15M</high-units>
 <task-timeout>0</task-timeout>
 <autostart>true</autostart>
 </transactional-scheme>

 <distributed-scheme>
 <scheme-name>example-distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

Chapter 22
Configuring the Cluster-Side Transactional Caches

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

Configuring the Client-Side Remote Cache
Remote clients require a remote cache to connect to the cluster's proxy and run a transactional
entry processor. The remote cache is defined in the client-side cache configuration file. See
Configuring Extend Proxies .

The following example configures a remote cache to connect to a proxy that is located on
localhost at port 7077. In addition, the name of the remote cache (dist-example) must match
the name of a cluster-side cache that is used when initiating the transactional entry processor.

<?xml version='1.0'?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/cache
 assembly://Coherence/Tangosol.Config/cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-example</cache-name>
 <scheme-name>extend</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>30s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

Using a Transactional Entry Processor from a .NET Client
A client invokes an entry processor stub class the same way any entry processor is invoked.
However, at run time, the cluster-side entry processor is invoked on the cluster. The client is
unaware that the invocation has been delegated to the Java class.
The following example demonstrates a client that uses the entry processor stub class and
results in an invocation of the transactional entry processor that was created in Example 22-1:

INamedCache cache = CacheFactory.GetCache("dist-example");
object result = cache.Invoke("AnyKey", new MyTxProcessor());

Console.Out.WriteLine("Result of extend transaction execution: " + result);

Chapter 22
Configuring the Client-Side Remote Cache

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

23
Managing ASP.NET Session State

You can manage ASP.NET session state in a Coherence cluster by using a Coherence session
provider. The Coherence session store uses the Coherence .NET extend client to store
ASP.NET sessions in Coherence caches.

This chapter includes the following sections:

Overview of ASP.NET Session State
Coherence for .NET allows ASP.NET session state to be stored and managed in a Coherence
cluster, which has some benefits as compared to the out-of-the-box options offered by
Microsoft.

• Session state is stored in a highly available Coherence cluster, making sessions resilient to
Web server failures.

• Sessions are stored in memory which allows for much faster access than when they are
serialized to disk using SQL Server session provider.

• Unlike relational databases, Coherence cluster is easy to scale out to support additional
load.

• In some cases, session data can be accessed at in-process speed by leveraging
Coherence near caching features.

• Session state can be shared across multiple ASP.NET applications.

Setting Up Coherence ASP.NET Session Management
To manage ASP .NET sessions, you must enable a Coherence session provider and configure
ASP session caches.
This section includes the following topics:

Configure Coherence Clusters for ASP.NET Session Management
For cluster-side support, add coherence-aspnet-session.jar in the classpath.

This will configure two distributed caches that are used for session storage and session
attribute overflow, and start an Extend Proxy that an ASP.NET application can connect to. You
can configure the address and port of the proxy service by using the
coherence.aspnet.extend.address and coherence.aspnet.extend.port system properties.

Configure ASP.NET Applications
The Coherence session provider requires an extend client's cache configuration file to include
remote cache schemes for the session storage and session overflow caches. As with any
remote cache, the cache name on the server and the client must be same name. The out of
the box configuration is ready to be used with the default server-side configuration.

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 6

After adding Coherence.dll to the solution, you have to enable the session middleware. To do
so, Program.cs must contain:

• A call to configure Coherence ASP.NET session support

• A call to AddSession to add services required for application session state

• A call to UseSession to automatically enable session state for the application

You can configure Coherence ASP.NET session support either by specifying configuration
options in the CoherenceSession section of the appsettings.json file or by directly specifying
configuration options in the UseCoherenceSession call.

appsettings.json example

{
 "AllowedHosts": "*",
 "CoherenceSession": {
 "ApplicationId": "demo-app",
 "Model": "split",
 "MinOverflowAttributeSize": 10240
 }
}

Program.cs example

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddControllers();

// configure Coherence session support based on Coherence configuration specified in
appsettings.json:
builder.Services.UseCoherenceSession(builder.Configuration.GetSection(CoherenceSessionOpt
ions.CONFIG));

// or configure Coherence session support directly in the code:
builder.Services.UseCoherenceSession(options =>
 {
 options.ApplicationId = "demo-app";
 options.Model = CoherenceSessionOptions.SessionModel.Split;
 options.MinOverflowAttributeSize = 10240;
 }
);
// uncomment when using .NET 8:
/*
builder.Services.AddDataProtection()
 .PersistKeysToFileSystem(new DirectoryInfo(@"/tmp"))
 .SetApplicationName("DemoApp");
*/
builder.Services.AddSession(options =>
 {
 options.IdleTimeout = TimeSpan.FromSeconds(900);
 options.Cookie.Name = ".DemoApp.Session";
 options.Cookie.HttpOnly = true;
 options.Cookie.IsEssential = true;
 }
);

var app = builder.Build();

// Adds the SessionMiddleware automatically enable session state for the application
app.UseSession();

Chapter 23
Setting Up Coherence ASP.NET Session Management

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 6

app.MapControllers();
app.Run();

Configuration options:

• Model

– Monolithic - Stores all session state as a single entity, serializing and deserializing all
attributes as a single operation.

– Split - Separates the larger session attributes into independent physical entities, one
cache entry per attribute, and stores them in separate caches.

• MinOverflowAttributeSize - Defines the minimum size of the attributes that will be stored
separately (applicable only for the Split session model).

• CoherenceConfig - Path to the Coherence configuration file (by default, set to assembly://
Coherence/Tangosol.Config/coherence-config.xml).

• CacheConfig - Path to the Coherence cache configuration file (by default, set to
assembly://Coherence.SessionStore/Tangosol.Config/coherence-aspnet-cache-
config.xml).

• ApplicationId - Application ID that is used as a part of a session key. If not set, then the
IHostEnvironment.ApplicationName value will be used instead.

If needed, you can provide the custom configuration, which has to be in sync with the server-
side configuration, by overriding the default CoherenceConfig and CacheConfig files.

Selecting a Session Model
You can configure a Coherence session provider to store session state using different models
depending on an application’s requirements.
This section includes the following topics:

Overview of Session Models
A session model describes how the Coherence session provider physically represents and
stores session state in the cluster. The provider includes two different session model
implementations out of the box:

• Monolithic Model – Stores all session state as a single entity, serializing and deserializing
all attributes as a single operation.

• Split Model – Stores smaller session attributes in a single entity, just like the monolithic
model, but separates the larger session attributes into independent physical entities, one
entry per attribute, stored in a separate cache.

The monolithic model is the default.

Specify the Session Model
You configure the session model by setting the Model configuration option either in Program.cs
or in the CoherenceSession section of appsettings.json file. When using the split model, you
can configure the minimum size of the attributes that will be stored separately by setting the
MinOverflowAttributeSize option to the minimum size (by default, it is set to 1024).

Chapter 23
Selecting a Session Model

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 6

Sharing ASP.NET Session State Across Applications
In some cases, it is beneficial to share sessions across ASP.NET applications. By default, a
session key is determined by combining the application identifier (as returned by the
IHostEnvironment.ApplicationName property) with the session identifier. This effectively
prevents session sharing.
In order to share sessions, applications must have the same application ID. You can configure
Coherence to use a specific application identifier by setting the applicationId option of the
CoherenceSessionOptions instance or by specifying CoherenceSession.ApplicationId in the
appsettings.json.

Advanced Configuration
When defining custom session storage and session overflow caches, the cache names must
be aspnet-session-storage and aspnet-session-overflow, respectively. In addition, the
storage cache must be configured to use the ConfigurablePofContext class as the serializer.

Default cluster cache configuration coherence-aspnet-config.xml file

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-
config coherence-cache-config.xsd"
 xml-override="{coherence.aspnet.cacheconfig.override}">

 <defaults>
 <scope-name system-property="coherence.aspnet.scope">AspNet</scope-name>
 <serializer>pof</serializer>
 </defaults>

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>aspnet-session-storage</cache-name>
 <scheme-name>aspnet-session-storage</scheme-name>
 <interceptors>
 <interceptor>
 <name>session-cleanup-interceptor</name>
 <instance>
 <class-
name>com.oracle.coherence.aspnet.session.internal.SessionCleanupInterceptor</class-name>
 </instance>
 </interceptor>
 </interceptors>
 </cache-mapping>

 <cache-mapping>
 <cache-name>aspnet-session-overflow</cache-name>
 <scheme-name>aspnet-session-overflow</scheme-name>
 <interceptors>
 <interceptor>
 <name>index-interceptor</name>
 <instance>
 <class-name>com.oracle.coherence.aspnet.session.internal.IndexInterceptor</
class-name>
 </instance>
 </interceptor>
 </interceptors>
 </cache-mapping>

Chapter 23
Sharing ASP.NET Session State Across Applications

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 6

 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>aspnet-session-storage</scheme-name>
 <service-name>Sessions</service-name>
 <backing-map-scheme>
 <local-scheme>
 <unit-calculator>BINARY</unit-calculator>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <distributed-scheme>
 <scheme-name>aspnet-session-overflow</scheme-name>
 <service-name>Sessions</service-name>
 <backing-map-scheme>
 <local-scheme>
 <unit-calculator>BINARY</unit-calculator>
 </local-scheme>
 </backing-map-scheme>
 </distributed-scheme>

 <proxy-scheme>
 <scheme-name>aspnet-proxy</scheme-name>
 <service-name>SessionProxy</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <local-address>
 <address system-property="coherence.aspnet.extend.address"/>
 <port system-property="coherence.aspnet.extend.port"/>
 </local-address>
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

Default .NET client cache configuration coherence-aspnet-cache-config.xml file

<cache-config xmlns="http://schemas.tangosol.com/cache">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>aspnet-session-storage</cache-name>
 <scheme-name>aspnet-session-remote</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>aspnet-session-overflow</cache-name>
 <scheme-name>aspnet-session-remote</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>aspnet-session-remote</scheme-name>
 <service-name>AspNet:SessionProxy</service-name>

 <initiator-config>
 <tcp-initiator>
 <name-service-addresses>

Chapter 23
Advanced Configuration

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 6

 <socket-address>
 <address system-property="coherence.ns.address">127.0.0.1</address>
 <port system-property="coherence.ns.port">7574</port>
 </socket-address>
 </name-service-addresses>
 </tcp-initiator>
 <serializer>
 <class-name>Tangosol.IO.Pof.ConfigurablePofContext, Coherence</class-name>
 <init-params>
 <init-param>
 <param-type>string</param-type>
 <param-value>assembly://Coherence.SessionStore/Tangosol.Config/coherence-
aspnet-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </serializer>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

Registering the Event Interceptors
Session attributes are stored in two caches when utilizing the split session model. Small HTTP
session attributes are managed within one cache and large attributes are split out into another
cache. This allows support for very large HTTP session objects without incurring overhead for
frequently accessed small attributes. Therefore; the event listener
(com.oracle.coherence.aspnet.session.internal.SessionCleanupInterceptor) is
recommended to keep both caches synchronized. This ensures that if a session is terminated
explicitly by the user and removed by eviction or expiry, that both the removal of the small and
large segments of the session are coherently removed from the two caches.

To speed up access to the cached data, it is recommended that you create an index on the
overflow cache. The com.oracle.coherence.aspnet.session.internal.IndexInterceptor
interceptor will create an index aftert the overflow cache is created.

The default configuration is preconfigured with both interceptors.

Chapter 23
Advanced Configuration

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 6

Part V
Getting Started with gRPC

Learn how to use the Coherence gRPC library to interact with a Coherence data management
services using Java, JavaScript, Python, and Go clients.

This part contains the following chapters:

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 1

24
Introduction to gRPC

Coherence provides the ability for clients in various languages to connect to a cluster using
gRPC (https://grpc.io/) as the network transport.

For Java clients, connecting using gRPC provides an alternative to Coherence*Extend
connections and can be advantageous when you need to connect through a load balancer as
gRPC uses HTTP/2 under the covers and is more load balancer friendly.

If you want to connect to Coherence from JavaScript, Python, or Go clients, then gRPC is the
only protocol supported.

For any of the language options, from a cluster perspective, you must include the coherence-
grpc-proxy module, with which the server-side gRPC proxy will accept the gRPC connections
and carry out work on behalf of the clients.

See Using the Coherence gRPC Proxy Server for setting up a gRPC Proxy server.

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 1

25
Using the Coherence gRPC Proxy Server

The Coherence gRPC proxy is the server-side implementation of the gRPC services defined
within the Coherence gRPC module. The gRPC proxy uses standard gRPC Java libraries to
provide Coherence APIs over gRPC to the Java, JavaScript, Python, and Go gRPC clients.

This chapter includes the following sections:

Setting Up the Coherence gRPC Proxy Server
To set up and start using the Coherence gRPC Server, you should declare it as a dependency
of your project.

For example:

If using Maven, declare the server as follows:

pom.xml

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>${coherence.group.id}</groupId>
 <artifactId>coherence-bom</artifactId>
 <version>${coherence.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>${coherence.groupId}</groupId>
 <artifactId>coherence</artifactId>
 </dependency>
 <dependency>
 <groupId>${coherence.groupId}</groupId>
 <artifactId>coherence-grpc-proxy</artifactId>
 </dependency>
<dependencies>

In the pom.xml file, coherence.version property is the version of Coherence being used, and
coherence.groupId property is either the Coherence commercial group id,
com.oracle.coherence, or the CE group id, com.oracle.coherence.ce.

If using Gradle, declare the server as follows:

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

build.gradle

dependencies {
 implementation platform("${coherenceGroupId}:coherence-bom:$
{coherenceVersion}")

 implementation "${coherenceGroupId}:coherence"
 implementation "${coherenceGroupId}:coherence-grpc-proxy"
}

In the build.gradle file, coherenceVersion property is the version of Coherence being used,
and coherenceGroupId property is either the Coherence commercial group id,
com.oracle.coherence or the CE group id, com.oracle.coherence.ce.

This section includes the following topic:

Starting the Server
The gRPC server starts automatically when you run com.tangosol.net.Coherence (or
com.tangosol.net.DefaultCacheServer). Typically, com.tangosol.net.Coherence class
should be used as the application’s main class. Alternatively, you can start an instance of
com.tangosol.net.Coherence by using the Bootstrap API.

By default, the gRPC server listens on all local addresses using an ephemeral port. Like
Coherence*Extend, the endpoints that the gRPC server is bound to can be discovered by a
client using the Coherence NameService. So, using ephemeral ports allows the gRPC server
to start without any port clashes.

When reviewing the log output, the two log messages appear as follows:

In-Process GrpcAcceptor is now listening for connections using name "default"
GrpcAcceptor now listening for connections on 0.0.0.0:55550

The service is ready to process requests from one of the Coherence gRPC client
implementations.

Configuring the Server
Configuring the gRPC server includes configuring the server listen address and port, SSL/TLS,
and server thread pool.

The Coherence gRPC proxy is configured using an internal default cache configuration file
named grpc-proxy-cache-config.xml that contains only a single <proxy-scheme>
configuration for the gRPC proxy. You need not override the configuration file as the server can
be configured with system properties and environment variables.

This section includes the following topics:

Configuring the Server Listen Address
At runtime, you can configure the address that the gRPC server binds to by setting the
coherence.grpc.server.address system property or COHERENCE_GRPC_SERVER_ADDRESS
environment variable.

By default, the server binds to the address 0.0.0.0 which equates to all the local host’s
network interfaces.

Chapter 25
Configuring the Server

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

For example, if the host had a local IP address 192.168.0.25, you can configure the server to
bind to this specific address as follows:

Using system properties:

-Dcoherence.grpc.server.address=192.168.0.25

Using environment variables:

export COHERENCE_GRPC_SERVER_ADDRESS=192.168.0.25

Configuring the Server Listen Port
At runtime, you can configure the port that the gRPC server binds to by setting the
coherence.grpc.server.port system property or COHERENCE_GRPC_SERVER_PORT environment
variable .

For example, to configure the server to listen on port 1408:

Using system properties:

-Dcoherence.grpc.server.port=1408

Using environment variables:

export COHERENCE_GRPC_SERVER_PORT=1408

Configuring SSL/TLS
Like other Coherence services, you can configure the Coherence gRPC server to use SSL by
specifying the name of a socket provider.

Named socket providers are configured in the Coherence operational configuration file
(override file), tangosol-coherence-override.xml.

tangosol-coherence-override.xml file looks similar to:

<socket-providers>
 <socket-providerid="tls">
 <ssl>
 <identity-manager>
 <keysystem-property="coherence.security.key">server.key</key>
 <certsystem-property="coherence.security.cert">server.cert</cert>
 </identity-manager>
 <trust-manager>
 <certsystem-property="coherence.security.ca.cert">server-ca.cert</
cert>
 </trust-manager>
 </ssl>
 </socket-provider>
 </socket-providers>

Chapter 25
Configuring the Server

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

After the named socket provider has been configured, you can configure the gRPC server to
use that provider by setting the coherence.grpc.server.socketprovider system property or
COHERENCE_GRPC_SERVER_SOCKETPROVIDER environment variable.

For example, if a socket provider named tls has been configured in the operational
configuration file, tangosol-coherence-override.xml, you can configure the gRPC server to
use tls as follows:

Using system properties:

-Dcoherence.grpc.server.socketprovider=tls

Using environment variables:

export COHERENCE_GRPC_SERVER_SOCKETPROVIDER=tls

For more information about socket providers and how to configure them, see Using SSL to
Secure Communication in Securing Oracle Coherence.

Configuring the Server Thread Pool
Like other Coherence services, the gRPC server uses a dynamically sized thread pool to
process requests. If the dynamic sizing algorithm proves to not be optimal, you can configure
the thread pool size by adjusting the minimum thread count and the maximum thread count.

This section includes the following topics:

Setting the Minimum Thread Count
Adjusting the minimum number of threads can be useful to deal with bursts in load.

At times, when the dynamic pool quickly deals with an increase in load, it takes some time to
increase the thread count to a suitable number. Setting the minimum size ensures that there
are always a certain number of threads to service load.

You can set the minimum number of threads in the pool by using the
coherence.grpc.server.threads.min system property, or the
COHERENCE_GRPC_SERVER_THREADS_MIN environment variable.

For example, you can set the minimum thread count to 10 as follows:

Using system properties:

-Dcoherence.grpc.server.threads.min=10

Using environment variables:

export COHERENCE_GRPC_SERVER_THREADS_MIN=10

Setting the Maximum Thread Count
Adjusting the maximum number of threads can be useful to stop the dynamic pool going too
high and consuming too much CPU resource.

Chapter 25
Configuring the Server

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

You can set the maximum number of threads in the pool by using the
coherence.grpc.server.threads.max system property, or the
COHERENCE_GRPC_SERVER_THREADS_MAX environment variable.

Note

When you specify both maximum and minimum thread counts, you must set the
maximum thread count at a higher value than the minimum thread count.

For example, you can set the maximum thread count to 20 as follows:

Using system properties:

Dcoherence.grpc.server.threads.max=20

Using environment variables:

export COHERENCE_GRPC_SERVER_THREADS_MAX=20

Disabling the gRPC Proxy Server
The Coherence gRPC server starts automatically if the coherence-grpc-proxy module is on
the class path (or module path). However, you can disable the server by setting the
coherence.grpc.enabled system property to false.

Deploying the Proxy Service with Helidon Microprofile gRPC
Server

If you use the Helidon Microprofile server with the microprofile gRPC server enabled, you can
deploy the Coherence gRPC proxy into the Helidon gRPC server instead of the Coherence
default gRPC server.

For this behavior to happen automatically, set the coherence.grpc.enabled system property to
false, which disables the built-in server. A built-in GrpcMpExtension implementation then
deploys the proxy services to the Helidon gRPC server.

For more information about Helidon, see the Helidon Documentation.

Note

When using the Helidon MP gRPC server, if you have not set the
coherence.grpc.enabled system property to false, then both the Helidon gRPC
server and the Coherence default gRPC server will start. This event can cause port
binding issues unless you have configured both the servers to use different ports.

Chapter 25
Disabling the gRPC Proxy Server

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

https://helidon.io/docs/v2/#/about/01_overview

26
Using the Coherence Java gRPC Client

The Coherence gRPC Java client allows Java applications to access Coherence clustered
services, including data, data events, and data processing from outside the Coherence cluster.
Typical uses for Java gRPC clients include desktop and web applications that require access
to remote Coherence resources.

This provides an alternative to using Coherence*Extend when writing client applications.

Note

The Coherence gRPC client and Coherence*Extend client feature sets do not match
exactly; some functionality in Coherence gRPC is not available in Coherence*Extend
and vice versa.

Like cache clients that are members of the cluster, Java gRPC clients use the Session API call
to retrieve resources, such as NamedMap, NamedCache, and such. After it is obtained, a
client accesses these resources in the same way as it would if it were part of the Coherence
cluster. The fact that operations on Coherence resources are being sent to a remote cluster
node (over gRPC) is completely transparent to the client application. For the Java gRPC client,
you need to include the coherence-java-client module. For more information, see the topics
in the following sections.

This chapter includes the following sections:

Setting Up the Coherence gRPC Client
To set up and start using the Coherence gRPC Java client, you should declare it as a
dependency of your project. The gRPC client is provided in the coherence-java-client
module.

For example:

If using Maven, declare the server as follows:

pom.xml

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>${coherence.group.id}</groupId>
 <artifactId>coherence-bom</artifactId>
 <version>${coherence.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 8

<dependencies>
 <dependency>
 <groupId>${coherence.groupId}</groupId>
 <artifactId>coherence</artifactId>
 </dependency>
 <dependency>
 <groupId>${coherence.groupId}</groupId>
 <artifactId>coherence-java-client</artifactId>
 </dependency>
<dependencies>

In the pom.xml file, coherence.version property is the version of Coherence being used, and
coherence.groupId property is either the Coherence commercial group id,
com.oracle.coherence, or the CE group id, com.oracle.coherence.ce.

If using Gradle, declare the server as follows:

build.gradle

dependencies {
 implementation platform("${coherenceGroupId}:coherence-bom:$
{coherenceVersion}")

 implementation "${coherenceGroupId}:coherence"
 implementation "${coherenceGroupId}:coherence-java-client"
}

In the build.gradle file, coherenceVersion property is the version of Coherence being used,
and coherenceGroupId property is either the Coherence commercial group id,
com.oracle.coherence or the CE group id, com.oracle.coherence.ce.

Configuring the Coherence gRPC Client
Like Coherence*Extend, a Coherence gRPC client accesses remote clustered resources by
configuring remote schemes in the applications cache configuration file.

This section includes the following topics:

Overview of Configuring gRPC Clients
You can configure a gRPC client using the following two approaches:

• NameService - The simplest configuration in which the gRPC client uses the Coherence
NameService to discover the gRPC endpoints in the cluster. In this configuration,
Coherence discovers all the endpoints in the cluster that the gRPC proxy is listening on
and the gRPC Java library’s standard client-side load balancer is used to load balance
connections from the client to those proxy endpoints.

• Fixed Endpoints - In this configuration, a fixed set of gRPC endpoints can be supplied via a
custom AddressProvider configuration or the endpoints can be included in the software
code. If multiple endpoints are provided, the gRPC Java library’s standard client-side load
balancer is used to load balance connections from the client to those proxy endpoints.

These approaches work only in some deployment environments. For example, the
NameService configurations works if both clients and cluster are inside the same containerized
environment. In containerized environments such as Kubernetes, NameService configuration

Chapter 26
Configuring the Coherence gRPC Client

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 8

is typically configured with a single ingress point which load balances connections to the
Coherence cluster Pods. The address of this ingress point is then used as a single fixed
address in the remote gRPC cache configuration. But, the NameService configuration does not
work in containerized environments where the cluster is inside a containerized environment,
such as Kubernetes, and the client is external to the containerized environment.

Defining a Remote gRPC Cache
A remote cache is specialized cache service that routes cache operations to a cache on the
Coherence cluster. The remote cache and the cache on the cluster must have the same cache
name. Coherence gRPC clients use the NamedMap or NamedCache interface as normal to get an
instance of the cache. At runtime, the cache operations are not executed locally but instead
are sent using gRPC to a gRPC proxy service on the cluster. The fact that the cache
operations are delegated to a cache on the cluster is transparent to the client.

A remote cache is defined within a <caching-schemes> node using the <remote-grpc-cache-
scheme> element.

In the case of a minimal NameService configuration (simplest configuration), the gRPC client
uses the NameService to locate the gRPC proxy endpoints, but without adding any address or
port information in the <remote-grpc-cache-scheme> in the configuration file. As this
configuration uses Coherence’s default cluster discovery mechanism to locate the Coherence
cluster’s NameService and look up the gRPC endpoints, you must configure the client with the
same cluster name and well-known address list (or multicast configuration) as the cluster being
connected to.

The following example shows an absolute minimum, required configuration, in which a
<remote-grpc-cache-scheme> is configured with <scheme-name> and <service-name>
elements:

coherence-cache-config.xml

<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>remote-grpc</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <remote-grpc-cache-scheme>
 <scheme-name>remote-grpc</scheme-name>
 <service-name>RemoteGrpcCache</service-name>
 </remote-grpc-cache-scheme>
</caching-schemes>

In the case of minimal NameService configuration with different cluster name, wherein, the
client is configured with a different cluster name to the cluster being connected to (that is, the
client is in a different Coherence cluster), you can configure the <remote-grpc-cache-scheme>
with a cluster name.

The following example shows <remote-grpc-cache-scheme> configured with <cluster-
name>test-cluster</cluster-name>, so Coherence uses the NameService to discover the
gRPC endpoints in the Coherence cluster named test-cluster:

Chapter 26
Configuring the Coherence gRPC Client

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 8

coherence-cache-config.xml

<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>remote-grpc</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <remote-grpc-cache-scheme>
 <scheme-name>remote-grpc</scheme-name>
 <service-name>RemoteGrpcCache</service-name>
 <cluster-name>test-cluster</cluster-name>
 </remote-grpc-cache-scheme>
</caching-schemes>

Configuring the NameService Endpoints
If the client cannot use the standard Coherence cluster discovery mechanism to look up the
target cluster, you can specify the NameService endpoints in the <grpc-channel> node of the
<remote-grpc-cache-scheme> configuration.

The following example shows how to create a remote cache scheme that is named
RemoteGrpcCache, which connects to the Coherence NameService on 198.168.1.5:7574, and
then redirects the request to the address of the gRPC proxy service:

coherence-cache-config.xml

<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>remote-grpc</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <remote-grpc-cache-scheme>
 <scheme-name>remote-grpc</scheme-name>
 <service-name>RemoteGrpcCache</service-name>
 <grpc-channel>
 <name-service-addresses>
 <socket-address>
 <address>198.168.1.5</address>
 <port>7574</port>
 </socket-address>
 </name-service-addresses>
 </grpc-channel>
 </remote-grpc-cache-scheme>
</caching-schemes>

Chapter 26
Configuring the Coherence gRPC Client

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 8

Configuring the Fixed Endpoints
If the NameService cannot be used to discover the gRPC endpoints, you can configure a fixed
set of addresses by specifying a <remote-addresses> element containing one or more
<socket-address> elements in the <grpc-channel> node.

The following example shows the client configuration that connects to a gRPC proxy listening
on the endpoint test-cluster.svc:1408:

coherence-cache-config.xml

<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>remote-grpc</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <remote-grpc-cache-scheme>
 <scheme-name>remote-grpc</scheme-name>
 <service-name>RemoteGrpcCache</service-name>
 <grpc-channel>
 <remote-addresses>
 <socket-address>
 <address>test-cluster.svc</address>
 <port>1408</port>
 </socket-address>
 </remote-addresses>
 </grpc-channel>
 </remote-grpc-cache-scheme>
</caching-schemes>

Configuring SSL
Like other Coherence services, to configure the client to use SSL, configure the socket
provider in the <grpc-channel> node of the <remote-grpc-cache-scheme> configuration . The
<socket-provider> element can either contain the name of a socket provider configured in the
operational override file, or can be configured with an inline socket provider configuration.

The following example shows the configuration of <remote-grpc-cache-scheme> with a
reference to the socket provider named ssl that is configured in the operational override file:

coherence-cache-config.xml

<remote-grpc-cache-scheme>
 <scheme-name>remote-grpc</scheme-name>
 <service-name>RemoteGrpcCache</service-name>
 <grpc-channel>
 <remote-addresses>
 <socket-address>
 <address>test-cluster.svc</address>
 <port>1408</port>
 </socket-address>

Chapter 26
Configuring the Coherence gRPC Client

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 8

 </remote-addresses>
 <socket-provider>ssl</socket-provider>
 </grpc-channel>
</remote-grpc-cache-scheme>

The following example shows the configuration of <remote-grpc-cache-scheme> with an inline
socket provider:

coherence-cache-config.xml

<remote-grpc-cache-scheme>
 <scheme-name>remote-grpc</scheme-name>
 <service-name>RemoteGrpcCache</service-name>
 <grpc-channel>
 <remote-addresses>
 <socket-address>
 <address>test-cluster.svc</address>
 <port>1408</port>
 </socket-address>
 </remote-addresses>
 <socket-provider>
 <ssl>
 <identity-manager>
 <key>server.key</key>
 <cert>server.cert</cert>
 </identity-manager>
 <trust-manager>
 <cert>server-ca.cert</cert>
 </trust-manager>
 </ssl>
 </socket-provider>
 </grpc-channel>
</remote-grpc-cache-scheme>

For more information about socket providers and how to configure them, see Using SSL to
Secure Communication in Securing Oracle Coherence.

Configuring the Client Thread Pool
Unlike an Extend client, the gRPC client is built on top of a gRPC asynchronous client that is
configured with a thread pool to allow the client to process multiple parallel requests and
responses. The gRPC client uses a standard Coherence dynamically sized thread pool where
the number of threads automatically adjust depending on the load. Sometimes if Coherence
does not adjust the thread pool optimally for an application use case, you can configure the
pool size by adjusting the minimum thread count and the maximum thread count. The thread
count must be greater than or equal to the minimum count, and less than or equal to the
maximum count, and the maximum count must be greater than or equal to the minimum count.

If you want to configure a fixed size pool, set the minimum and maximum to the same value.

The following example shows how to configure all three thread counts, fixed, minimum, and
maximum. The pool starts with 10 threads and is automatically sized between 5 and 15
threads depending on load.

Chapter 26
Configuring the Coherence gRPC Client

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 8

coherence-cache-config.xml

<remote-grpc-cache-scheme>
 <scheme-name>remote-grpc</scheme-name>
 <service-name>RemoteGrpcCache</service-name>
 <grpc-channel>
 <remote-addresses>
 <socket-address>
 <address>test-cluster.svc</address>
 <port>1408</port>
 </socket-address>
 </remote-addresses>
 </grpc-channel>
 <thread-count>10</thread-count>
 <thread-count-max>15</thread-count-max>
 <thread-count-min>5</thread-count-min>
</remote-grpc-cache-scheme>

Accessing Coherence Resources
As the gRPC client is configured as a remote scheme in the cache configuration file, you can
access the Coherence resources using the same Coherence APIs as used on cluster
members or Extend clients.

If you started the client using the Coherence Bootstrap API, running a
com.tangosol.net.Coherence instance, you can access a Session and NamedMap as shown
below:

Sessionsession = Coherence.getInstance().getSession();
NamedMap<String, String> map = session.getMap("test-cache");

This section includes the following topic:

Using a Remote gRPC Cache As a Back Cache
The gRPC client uses remote gRPC cache as a back cache of a near cache or a view cache in
the same way as other types of caches.

The following example shows the configuration of a near cache that uses a <remote-grpc-
cache-scheme> as the back cache:

coherence-cache-config.xml

<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>near</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <near-scheme>
 <scheme-name>near</scheme-name>
 <front-scheme>

Chapter 26
Accessing Coherence Resources

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 8

 <local-scheme>
 <high-units>10000</high-units>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <remote-grpc-cache-scheme>
 <scheme-ref>remote-grpc</scheme-ref>
 </remote-grpc-cache-scheme>
 </back-scheme>
 </near-scheme>

 <remote-grpc-cache-scheme>
 <scheme-name>remote-grpc</scheme-name>
 <service-name>RemoteGrpcCache</service-name>
 </remote-grpc-cache-scheme>
</caching-schemes>

Chapter 26
Accessing Coherence Resources

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 8

27
Using the JavaScript, Python, and Go gRPC
Clients

To connect to Coherence from other clients which use gRPC, such as JavaScript, Python, and
Go, you should refer to the relevant open source repositories for details and examples.

• JavaScript: https://github.com/oracle/coherence-js-client

• Python: https://github.com/oracle/coherence-py-client

• Go: https://github.com/oracle/coherence-go-client

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 1

https://github.com/oracle/coherence-js-client
https://github.com/oracle/coherence-py-client
https://github.com/oracle/coherence-go-client

Part VI
Using Coherence REST

Learn how to use Coherence REST to allow applications written in any programming language
to interact with cached data. Try creating a simple Coherence REST application.
Part V contains the following chapters:

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 1

28
Introduction to Coherence REST

Before using Coherence REST, take some time learn how Coherence REST is implemented.
Users should be familiar with Web services and JAX-RS to use Coherence REST.
This chapter includes the following sections:

Overview of Coherence REST
Coherence REST provides easy access to Coherence caches and cache entries over the
HTTP protocol. It is similar to Coherence*Extend, as it allows remote clients to access data
stored in Coherence without being members of the cluster themselves. However, unlike
Coherence*Extend, which is a proprietary protocol, Coherence REST uses HTTP as the
underlying protocol and can marshal data in both JSON and XML representation formats.The
benefit of Coherence REST is that it allows applications written in others languages, such as
Ruby and Python (that are not natively supported by Coherence), to interact with cached data.

Coherence REST Example

The Coherence distribution includes an end-to-end example of a REST application. See
Coherence REST Examples in Installing Oracle Coherence.

Dependencies for Coherence REST
The Coherence REST implementation is packaged in the COHERENCE_HOME/lib/coherence-
rest.jar library and depends on the coherence.jar library. In addition, the Coherence REST
implementation has other library dependencies and supports the Netty HTTP server
implementation. To manage these dependencies, Oracle strongly recommends that
applications use Maven. If you are new to Maven, see: https://maven.apache.org/.
To use Coherence REST with the Netty HTTP server, add the following dependencies in the
Maven pom.xml file:

Note

When copying pom.xml for your use, update all <coherence.version> elements and
<coherence.groupId> elements to match the edition and Coherence version you are
using.

<dependencies>
 <dependency>
 <groupId>${coherence.groupId}</groupId>
 <artifactId>coherence</artifactId>
 <version>${coherence.version}</version>
 </dependency>
 <dependency>
 <groupId>${coherence.groupId}</groupId>
 <artifactId>coherence-rest</artifactId>
 <version>${coherence.version}</version>
 </dependency>
 <dependency>

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

https://maven.apache.org/

 <groupId>${coherence.groupId}</groupId>
 <artifactId>coherence-http-netty</artifactId>
 <version>${coherence.version}</version>
 </dependency>
</dependencies>

All the required libraries are automatically downloaded. To see the complete list of libraries, run
the following Maven command:

mvn dependency:list

Refer to the Coherence REST examples for a complete pom.xml file.

Overview of Configuration for Coherence REST
Coherence REST is configured using the cache configuration file and the REST configuration
file.

Note

When deploying Coherence REST to a Jakarta EE server, configuration of the
web.xml file is also required. See Deploying to a Jakarta EE Server (Generic).

• Cache Configuration Deployment Descriptor – This file is used to define client-side cache
services and the HTTP acceptor which accepts connections from remote REST clients
over HTTP. The acceptor includes the address and port of the cluster-side HTTP server to
which clients connects. The schema for this file is the coherence-cache-config.xsd file.
See http-acceptor in Developing Applications with Oracle Coherence.

At run time, the first cache configuration file that is found on the classpath is used. The
coherence.cacheconfig system property can also be used to explicitly specify a cache
configuration file. The file can also be set programmatically. See Specifying a Cache
Configuration File in Developing Applications with Oracle Coherence.

• REST Configuration Deployment Descriptor – This file is used to configure the Jersey
resource configuration class as well as custom aggregators and custom entry processors.
The default name of the descriptor is coherence-rest-config.xml and the schema is
defined in the coherence-rest-config.xsd file. The file must be found on the classpath
and the name can be overridden using the coherence.rest.config system property. See
REST Configuration Elements.

Understanding Data Format Support
Coherence REST supports both XML and JSON formats as input and output. To use these
formats, the correct bindings are required when creating a user type. Both formats are
demonstrated in this section.
This section includes the following topics:

Using XML as the Data Format
Objects that are represented in XML must have the appropriate JAXB bindings defined in order
to be stored in a cache. The following example creates an object that uses annotations to add
JAXB bindings:

Chapter 28
Overview of Configuration for Coherence REST

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

@XmlRootElement(name="Address")
@XmlAccessorType(XmlAccessType.PROPERTY)
public class Address implements Serializable{
 private String street;
 private String city;
 private String country;

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getCountry() {
 return country;
 }

 public void setCountry(String country) {
 this.country = country;
 }
}

@XmlRootElement(name="Person")
@XmlAccessorType(XmlAccessType.PROPERTY)
public class Person implements Serializable {
 private Long id;
 private String name;
 private Address address;
 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @XmlElement(name = "address")
 public Address getAddr() {
 return address;
 }

 public void setAddr(Address addr) {
 this.addr = addr;

Chapter 28
Understanding Data Format Support

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

 }
}

Using JSON as the Data Format
Objects that are represented in JSON must have the appropriate Jackson bindings or JAXB
bindings defined in order to be stored in a cache. The default Coherence REST JSON
marshaller gives priority to Jackson bindings. If Jackson bindings are not found, JAXB bindings
are used instead. Using Jackson annotations gives user more power on controlling the output
JSON format. However, in case when both XML and JSON formats are needed, JAXB
annotations can be enough for both formats.

The following example creates an object that uses annotations to add Jackson bindings:

@JsonTypeInfo(use=JsonTypeInfo.Id.CLASS, include= JsonTypeInfo.As.PROPERTY,
 property="@type")
public class Address implements Serializable {
 private String street;
 private String city;
 private String country;

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getCountry() {
 return country;
 }

 public void setCountry(String country) {
 this.country = country;
 }
}

@JsonTypeInfo(use=JsonTypeInfo.Id.CLASS, include= JsonTypeInfo.As.PROPERTY,
 property="@type")
public class Person implements Serializable {
 private Long id;
 private String name;
 private Address address;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

Chapter 28
Understanding Data Format Support

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @JsonProperty("address")
 public Address getAddr() {
 return address;
 }

 public void setAddr(Address addr) {
 this.addr = addr;
 }
}

Authenticating and Authorizing Coherence REST Clients
Coherence REST provides both authentication and authorization to restrict access to cluster
resources. Authentication support includes both HTTP basic authentication and SSL
authentication. Authorization is implemented using Coherence*Extend-styled authorization,
which relies on interceptor classes that provide fine-grained access for named cache and
invocation service operations. See Securing Oracle Coherence REST in Securing Oracle
Coherence.

Chapter 28
Authenticating and Authorizing Coherence REST Clients

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

29
Building Your First Coherence REST
Application

Build and run a simple Coherence REST application that accesses and uses a Coherence
cache.
The Coherence examples that ship with the distribution also include an end-to-end example of
a REST application. See Coherence REST Examples in Installing Oracle Coherence.

This chapter includes the following sections:

Overview of the Basic Coherence REST Example
The Coherence REST example is organized into a set of steps that are used to configure and
run a basic Coherence REST application. The steps demonstrate fundamental concepts, such
as: configuring a proxy server responsible for handling HTTP request, configuring a remote
cache, and using the Coherence REST API.
The example in this chapter uses an embedded HTTP server in order to deploy a standalone
application that does not require an application server. Additional deployment options are
available. See Deploying Coherence REST .

Coherence for Java must be installed to complete the steps in this chapter. In addition, the
following user-defined variables are used in this example:

• DEV_ROOT - The path to root folder where user is performing all of the listed steps, or in
other words all of the following folders are relative to DEV_ROOT.

• COHERENCE_HOME - This variable must be a full path to the coherence directory of your
Coherence installation.

Prerequisites
To build this example, you will need to have the following installed.

Required Software

• JDK 17 or 21

• Maven 3.8.5+

• Coherence 14.1.2.0.0 (for installation instructions, see Installing the Oracle WebLogic
Server and Coherence Software.

Dependencies

Install the following Coherence dependencies into your local Maven repository. Use the
following commands, based on your operating system.

Windows

mvn install:install-file -Dfile=%COHERENCE_HOME%\lib\coherence.jar -
DpomFile=%COHERENCE_HOME%
\plugins\maven\com\oracle\coherence\coherence\14.1.2\coherence.14.1.2.pom

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 9

mvn install:install-file -Dfile=%COHERENCE_HOME%\lib\coherence-rest.jar -
DpomFile=%COHERENCE_HOME%\plugins\maven\com\oracle\coherence\coherence-
rest\14.1.2\coherence-rest.14.1.2.pom
mvn install:install-file -Dfile=%COHERENCE_HOME%\lib\coherence-http-netty.jar -
DpomFile=%COHERENCE_HOME%\plugins\maven\com\oracle\coherence\coherence-http-
netty\14.1.2\coherence-http-netty.14.1.2.pom

Mac/Linux

mvn install:install-file -Dfile=$COHERENCE_HOME/lib/coherence.jar -
DpomFile=$COHERENCE_HOME/plugins/maven/com/oracle/coherence/coherence/14.1.2/
coherence.14.1.2.pom
mvn install:install-file -Dfile=$COHERENCE_HOME/lib/coherence-rest.jar -
DpomFile=$COHERENCE_HOME/plugins/maven/com/oracle/coherence/coherence-rest/14.1.2/
coherence-rest.14.1.2.pom
mvn install:install-file -Dfile=$COHERENCE_HOME/lib/coherence-http-netty.jar -
DpomFile=$COHERENCE_HOME/plugins/maven/com/oracle/coherence/coherence-http-netty/14.1.2/
coherence-http-netty.14.1.2.pom

Generate the Classpath

Generate the classpath based on the previous dependencies. Create a file called pom.xml in
DEV_ROOT with the following contents:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <artifactId>com.oracle.coherence.rest.example</artifactId>
 <groupId>rest</groupId>
 <version>1.0.0</version>
 <name>Coherence REST dependencies</name>
 <packaging>pom</packaging>

 <properties>
 <coherence.groupId>com.oracle.coherence</coherence.groupId>
 <coherence.version>14.1.2-0-0</coherence.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>${coherence.groupId}</groupId>
 <artifactId>coherence-rest</artifactId>
 <version>${coherence.version}</version>
 </dependency>
 <dependency>
 <groupId>${coherence.groupId}</groupId>
 <artifactId>coherence</artifactId>
 <version>${coherence.version}</version>
 </dependency>
 <dependency>
 <groupId>${coherence.groupId}</groupId>
 <artifactId>coherence-http-netty</artifactId>
 <version>${coherence.version}</version>
 </dependency>
 <dependency>
 <groupId>org.glassfish.jersey.inject</groupId>
 <artifactId>jersey-hk2</artifactId>
 <version>2.41</version>
 </dependency>

Chapter 29
Prerequisites

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 9

 <dependency>
 <groupId>jakarta.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
 <version>2.3.1</version>
 </dependency>
 <dependency>
 <groupId>org.glassfish.jaxb</groupId>
 <artifactId>jaxb-runtime</artifactId>
 <version>2.3.1</version>
 </dependency>
 </dependencies>
</project>

Run the following command to generate the classpath to a file called cp.txt:

mvn -q dependency:build-classpath -Dmdep.outputFile=cp.txt

Step 1: Configure the Cluster Side
Coherence REST requires both a cache and a proxy scheme. The proxy scheme must define
an HTTP acceptor to handle an incoming HTTP request.
The cluster-side cache configuration deployment descriptor configures a cache and proxy. For
this example, the proxy is configured to accept client HTTP requests on localhost and port
8080. A distributed cache named dist-http-example is defined and is used to store client data
in the cluster.

To configure the cluster side:

1. Create an XML file named example-server-config.xml in the DEV_ROOT\config folder.

2. Copy the following XML to the file:

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-http-example</cache-name>
 <scheme-name>dist-http</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>dist-http</scheme-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <proxy-scheme>
 <service-name>ExtendHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 <class-name>com.tangosol.coherence.http.netty.NettyHttpServer</class-
name>
 <local-address>

Chapter 29
Step 1: Configure the Cluster Side

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 9

 <address>127.0.0.1</address>
 <port>8080</port>
 </local-address>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

3. Save and close the file.

Step 2: Create a User Type
Create the Person user type, which is stored in the cache and used to demonstrate basic
REST operations.

To create the Person object:

1. Create a text file in a DEV_ROOT\example folder.

2. Copy the following Java code to the file:

package example;
import java.io.Serializable;
import jakarta.xml.bind.annotation.XmlAccessType;
import jakarta.xml.bind.annotation.XmlAccessorType;
import jakarta.xml.bind.annotation.XmlRootElement;

@XmlRootElement(name="person")
@XmlAccessorType(XmlAccessType.PROPERTY)
public class Person implements Serializable {

 public Person() {}

 public Person(String name, int age)
 {
 m_name = name;
 m_age = age;
 }

 public String getName() { return m_name; }

 public void setName(String name) { m_name = name; }

 public int getAge() { return m_age; }

 public void setAge(int age) { m_age = age; }

 protected String m_name;
 protected int m_age;
}

3. Save the file as Person.java and close the file.

4. Compile Person.java:

Windows

for /f %i in (cp.txt) do set CP=%i
SET CLASSPATH=%CP%;%DEV_ROOT%\config;%DEV_ROOT%
java -Dcoherence.wka=127.0.0.1 -Dcoherence.cacheconfig=%DEV_ROOT%\config\example-
server-config.xml com.tangosol.net.Coherence

Chapter 29
Step 2: Create a User Type

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 9

Mac/Linux

javac -cp `cat cp.txt` example/Person.java

Step 3: Configure REST Services
The Coherence REST services require metadata about the cache that it exposes. The
metadata includes the cache entry's key and value types as well as key converters and value
marshallers. The key and value types are required in order for Coherence to be able to use
built-in converters and marshallers (XML and JSON supported).
To configure the REST services:

1. Create an XML file named coherence-rest-config.xml in DEV_ROOT\config folder.

2. Copy the following XML to the file:

<?xml version="1.0"?>
<rest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-rest-config"
xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-rest-config
 coherence-rest-config.xsd">
 <resources>
 <resource>
 <cache-name>dist-http-example</cache-name>
 <key-class>java.lang.String</key-class>
 <value-class>example.Person</value-class>
 <direct-query enabled="true"/>
 </resource>
 </resources>
</rest>

Note

The <key-class> and <value-class> element can either be defined within the
<resource> element or within the <cache-mapping> element in the cache
configuration file.

3. Save and close the file

Step 4: Start the Cache Server Process
REST services are exposed as part of a cache server process (DefaultCacheServer). The
cache server's classpath must be configured to find all the configuration files that were created
in the previous steps, as well as the Person.class. The classpath must also contain the
required dependency libraries. See Dependencies for Coherence REST. For the sake of
brevity, all of the dependencies are placed in the DEV_ROOT\libs folder and are not individually
listed.
The DEV_ROOT folder should appear as follows:

\
\config
\config\example-server-config.xml
\config\coherence-rest-config.xml
\example
\example\Person.class

Chapter 29
Step 3: Configure REST Services

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 9

\libs
\libs*

The following command line starts a cache server process and explicitly names the cache
configuration file created in Step 1 by using the coherence.cacheconfig system property. In
addition, it uses the classpath created in Prerequisites.

Windows

set DEV_ROOT=%cd%

java -Dcoherence.wka=127.0.0.1 -cp %DEV_ROOT%\config;%DEV_ROOT%;"$(type cp.txt)" -
Dcoherence.cacheconfig=%DEV_ROOT%\config\example-server-config.xml
com.tangosol.net.Coherence

Mac/Linux

export DEV_ROOT=`pwd`

java -Dcoherence.wka=127.0.0.1 -cp ${DEV_ROOT}/config:${DEV_ROOT}:`cat cp.txt` -
Dcoherence.cacheconfig=${DEV_ROOT}/config/example-server-config.xml
com.tangosol.net.Coherence

Check the console output to verify that the proxy service has started. The output message
should include the following:

ProxyService{Name=ExtendHttpProxyService, State=(SERVICE_STARTED), Id=…,
OldestMemberId=1, Serializer=java}

Step 5: Access REST Services From a Client
Client applications use Coherence REST services to perform cache operations. There are
many application platforms that provide client libraries to build HTTP-based clients. For
example, the Jersey project provides Java support for client-side communication with HTTP-
based REST Web services.
The following sections demonstrate the semantics for PUT, GET, and Post operations that a
client would use to access the dist-http-example cache. An example Java client built using
Jersey follows and requires the Jersey-client-2.12.jar library. See Performing Grid
Operations with REST .

See the following example operations using the curl command.

Put Operations

PUT http://localhost:8080/api/dist-http-example/1
Content-Type=application/json
Request Body: {"name":"chris","age":30}

PUT http://localhost:8080/api/dist-http-example/2
Content-Type=application/json
Request Body: {"name":"adam","age":26}

GET Operations

GET http://localhost:8080/api/dist-http-example/1.json

GET http://localhost:8080/api/dist-http-example/1.xml

GET http://localhost:8080/api/dist-http-example/entries?q=name is 'chris'

Chapter 29
Step 5: Access REST Services From a Client

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 9

GET http://localhost:8080/api/dist-http-example/1.json;p=name

GET http://localhost:8080/api/dist-http-example/count()

GET http://localhost:8080/api/dist-http-example/double-average(age)

Post Operation

POST http://localhost:8080/api/dist-http-example/increment(age,1)

Sample curl Commands

The following are the curl commands to run the previous REST requests.

PUT Operations

curl -v -H 'Content-Type: application/json' -X PUT http://localhost:8080/api/dist-http-
example/1 -d '{"name":"chris","age":30}'

curl -v -H 'Content-Type: application/json' -X PUT http://localhost:8080/api/dist-http-
example/2 -d '{"name":"adam","age":26}'

GET Operations

curl -X GET http://localhost:8080/api/dist-http-example/1.json

curl -X GET http://localhost:8080/api/dist-http-example/1.xml

curl -X GET http://localhost:8080/api/dist-http-example/entries?q=name%20is%20%27adam%27

curl -X GET "http://localhost:8080/api/dist-http-example/1.json;p=name"

curl -X GET "http://localhost:8080/api/dist-http-example/count()"

curl -X GET "http://localhost:8080/api/dist-http-example/double-average(age)"

POST Operations

curl -X POST "http://localhost:8080/api/dist-http-example/increment(age,1)"

Sample Jersey REST Client

Create a file in the example directory called RestExampe.java and add the following contents.
Compile using the same method as used previously for Person.java and run using:

Windows

SET CLASSPATH=%CP%;%DEV_ROOT%\config;%DEV_ROOT%
java example.RestExample

Mac/Linux

java -cp `cat cp.txt`:. example.RestExample

package example;

import java.io.IOException;

import java.net.MalformedURLException;

Chapter 29
Step 5: Access REST Services From a Client

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 9

import java.net.URISyntaxException;

import jakarta.ws.rs.client.Client;
import jakarta.ws.rs.client.ClientBuilder;
import jakarta.ws.rs.client.Entity;
import jakarta.ws.rs.client.WebTarget;

import jakarta.ws.rs.core.MediaType;
import jakarta.ws.rs.core.Response;

public class RestExample {
 public static void PUT(String url, MediaType mediaType, String data) {
 process(url, "put", mediaType, data);
 }

 public static void GET(String url, MediaType mediaType) {
 process(url, "get", mediaType, null);
 }

 public static void POST(String url, MediaType mediaType, String data) {
 process(url, "post", mediaType, data);
 }

 public static void DELETE(String url, MediaType mediaType) {
 process(url, "delete", mediaType, null);
 }

 public static void process(String sUrl, String action,
 MediaType mediaType,
 String data) {
 Client client = ClientBuilder.newClient();
 Response response = null;

 WebTarget webTarget = client.target(sUrl);
 String responseType = MediaType.APPLICATION_XML;
 if (mediaType == MediaType.APPLICATION_JSON_TYPE) {
 responseType = MediaType.APPLICATION_JSON;
 }

 if (action.equalsIgnoreCase("get")) {
 response = webTarget.request(responseType).get();
 } else if (action.equalsIgnoreCase("post")) {
 Entity<String> person = Entity.entity(data, responseType);
 response = webTarget.request(responseType).post(person);
 } else if (action.equalsIgnoreCase("put")) {
 Entity<String> person = Entity.entity(data, responseType);
 response = webTarget.request(responseType).put(person);
 } else if (action.equalsIgnoreCase("delete")) {
 Entity<String> person = Entity.entity(data, responseType);
 response = webTarget.request(responseType).delete();
 }
 System.out.println(response.readEntity(String.class));
 }

 public static void main(String[] args) throws URISyntaxException,
 MalformedURLException, IOException {
 PUT("http://localhost:8080/api/dist-http-example/1",
 MediaType.APPLICATION_JSON_TYPE,
 "{\"name\":\"chris\",\"age\":32}");
 PUT("http://localhost:8080/api/dist-http-example/2",
 MediaType.APPLICATION_JSON_TYPE,
 "{\"name\":\"\ufeff\u30b8\u30e7\u30f3A\",\"age\":66}");

Chapter 29
Step 5: Access REST Services From a Client

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 9

 PUT("http://localhost:8080/api/dist-http-example/3",
 MediaType.APPLICATION_JSON_TYPE,
 "{\"name\":\"adm\",\"age\":88}");
 POST("http://localhost:8080/api/dist-http-example/increment(age,1)",
 MediaType.APPLICATION_XML_TYPE, null);
 GET("http://localhost:8080/api/dist-http-example/1",
 MediaType.APPLICATION_JSON_TYPE);
 GET("http://localhost:8080/api/dist-http-example/1",
 MediaType.APPLICATION_XML_TYPE);
 GET("http://localhost:8080/api/dist-http-example/count()",
 MediaType.APPLICATION_XML_TYPE);
 }
}

Chapter 29
Step 5: Access REST Services From a Client

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 9

30
Performing Grid Operations with REST

You can perform grid operations using the Coherence REST API. The Coherence REST API
pre-defines many operations that can be used to interact with a cache. In addition, custom
operations such aggregators and entry processors can be created as required.
This chapter includes the following sections:

Specifying Key and Value Types
The Coherence REST services require metadata about the cache that they expose. The
metadata includes the cache entry's key and value types as well as key converters and value
marshallers. The key and value types are required in order for Coherence to be able to use
built-in converters and marshallers (both XML and JSON are supported).
To define the key and value types for a cache entry, edit the coherence-rest-config.xml file
and include the <key-class> and the <value-class> elements within the <resource> element
whose values are set to key and value types, respectively. See resource.

Note

The <key-class> and <value-class> element can either be defined within the
<resource> element or within the <cache-mapping> element in the cache configuration
file.

The following example defines a String key class and a value class for a Person user type:

<resources>
 <resource>
 <cache-name>person</cache-name>
 <key-class>java.lang.String</key-class>
 <value-class>example.Person</value-class>
 </resource>
</resources>

Performing Single-Object REST Operations
The REST API includes support for performing GET, PUT, and DELETE operations on a single
object in a cache.

GET Operation

GET http://host:port/cacheName/key

Returns a single object from the cache based on a key. A 404 (Not Found) status code
returns if the object with the specified key does not exist. The get operation supports partial
results. See Performing Partial-Object REST Operations. Conditional gets are supported if an
object implements the com.tangosol.util.Versionsable interface. The version is added to
the response and used to determine if a client has the latest version of an object. If a client
already has the latest version of an object, a 304 (Not Modified) status code returns.

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 16

The following sample output demonstrates the response of a GET operation:

* Client out-bound request
> GET http://127.0.0.1:8080/dist-http-example/1
> Accept: application/xml

* Client in-bound response
< 200
< Content-Length: 212
< Content-Type: application/xml
<
<?xml version="1.0" encoding="UTF-8" standalone="yes"?><Person><id>1</id><name>
Mark</name><address><street>500 Oracle Parkway</street><city>Redwood Shores</city>
<country>United States</country></address></Person>

* Client out-bound request
> GET http://127.0.0.1:8080/dist-http-example/1
> Accept: application/json

* Client in-bound response
< 200
< Content-Type: application/json
<
{"@type":"rest.Person","address":{"@type":"rest.Address","city":"Redwood Shores",
"country":"United States","street":"500 Oracle Parkway"},"id":1,"name":"Mark"}

PUT Operations

PUT http://host:port/cacheName/key

Creates or updates a single object in the cache. A 200 (OK) status code returns if the object
was updated. If optimistic concurrency check fails, a 409 (Conflict) status code returns with
the current object as an entity. See Understanding Concurrency Control.

The following sample output demonstrates the response of a PUT operation:

* Client out-bound request
> PUT http://127.0.0.1:8080/dist-test-sepx/1
> Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?><Person><id>1</id><name>
Mark</name><address><street>500 Oracle Parkway</street><city>Redwood Shores</city>
<country>United States</country></address></Person>

* Client in-bound response
< 200
< Content-Length: 0
<

* Client out-bound request
> PUT http://127.0.0.1:8080/dist-test-sepj/1
> Content-Type: application/json
{"@type":"rest.Person","id":1,"name":"Mark","address":{"@type":"rest.Address","str
eet":"500 Oracle Parkway","city":"Redwood Shores","country":"United States"}}

* Client in-bound response
< 200
< Content-Length: 0
<

Delete Operation

DELETE http://host:port/cacheName/key

Chapter 30
Performing Single-Object REST Operations

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 16

Deletes a single object from the cache based on a key. A 200 (OK) status code returns if the
object is successfully deleted, or a 404 (Not Found) status code returns if the object with the
specified key does not exist.

Performing Multi-Object REST Operations
Multi-object operations allow users to retrieve or delete multiple objects in a single network
request and can significantly reduce the network usage and improve network performance.

Note

PUT operations are not supported as it may produce tainted data. Specifically, it would
require that individual objects (in serialized form) within the entity body to be in the
same order as the corresponding keys in the URL. In addition, since updates result in
a replacement, an entire object serialized form must be provided which can lead to
overhead.

GET Operations

GET http://host:port/cacheName/(key1, key2, ...)

Returns a set of objects from the cache based on the specified keys. The ordering of returned
objects is undefined and does not need to match the key order in the URL. Missing objects are
silently omitted from the results. A 200 (OK) status code always returns. An empty result set is
returned if there are no objects in the result set. The get operation supports partial results. See
Performing Partial-Object REST Operations.

DELETE Operations

DELETE http://host:port/cacheName/(key1, key2, ...)

Deletes multiple objects from the cache based on the specified keys. A 200 (OK) status code
always returns even if no objects for the specified keys were present in the cache.

Performing Partial-Object REST Operations
You can specify which object attributes to retrieve when performing GET operations. An
application may not want (or need) to retrieve a whole object. For example, in order to populate
a drop down with a list of options, the application may only need two properties of a potentially
large object with many other properties. In order to support this use case, each read operation
should accept a list of object properties that the user is interested in as a matrix parameter p.
The following example performs a get operation that retrieves just the id and name attributes
for a person:

GET http://localhost:8080/people/123;p=id,name

To include a country attribute of the address as well, the request URL is as follows:

GET http://localhost:8080/people/123;p=id,name,address:(country)

This approach allows an application to selectively retrieve only the properties that are required
using a simple, URL-friendly notation.

The following sample output demonstrates the response of a GET operation:

Chapter 30
Performing Multi-Object REST Operations

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 16

* Client out-bound request
> GET http://127.0.0.1:8080/dist-test-sepj/1;p=name
> Accept: application/json

* Client in-bound response
< 200
< Transfer-Encoding: chunked
< Content-Type: application/json
<
{"name":"Mark"}

Performing Queries with REST
Coherence REST allows users to query a cache. CohQL is the default query syntax; however,
additional query syntaxes can be created and used as required.
The section includes the following topics:

Using Direct Queries
Direct queries are query expression that are submitted as the value of the parameter q in a
REST URL. By default, the query expression must be specified as a URL-encoded CohQL
expression (the predicate part of CohQL). See Filtering Entries in a Result Set in Developing
Applications with Oracle Coherence. The syntax of a direct query is as follows:

GET http://host:port/cacheName?q=query

For example, to query the person cache for person objects where age is less than 18:

GET http://host:port/person?q=age%3C18

Direct queries are disabled by default. To enabled direct queries, edit the coherence-rest-
config.xml file and add a <direct-query> element for each resource to be queried and set
the enabled attribute to true. For example:

<resource>
 <cache-name>persons</cache-name>
 <key-class>java.lang.Integer</key-class>
 <value-class>example.Person</value-class>
 <direct-query enabled="true"/>
</resource>

A 403 (Forbidden) response code is returned if a query is performed on a resource that does
not have direct queries enabled.

Using Named Queries
Named queries are query expression that are configured for a resource in the coherence-
rest-config.xml file. By default, the query expression must be specified as a CohQL
expression (the predicate part of CohQL). Since this expression is configured in an XML file,
any special characters (such as < and >) must be escaped using the corresponding entity. See
Filtering Entries in a Result Set in Developing Applications with Oracle Coherence. In addition,
named queries can include context values as required. The syntax of a named query is as
follows:

GET http://host:port/cacheName/namedQuery?param1=value1,param2=value2...

To specify named queries, add any number of <query> elements, within a <resource> element,
that each contain a query expression and name binding. See query. For example:

Chapter 30
Performing Queries with REST

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 16

<resource>
 <cache-name>persons</cache-name>
 <key-class>java.lang.Integer</key-class>
 <value-class>example.Person</value-class>
 <query>
 <name>minors</name>
 <expression>age < 18</expression>
 </query>
 <query>
 <name>first-name</name>
 <expression>name is :name</expression>
 </query>
</resource>

To use a named query, enter the name of the query within the REST URL. The following
example uses the minors named query that is defined in the above example.

GET http://host:port/persons/minors

Parameters provide flexibility by allowing context values to be replaced in the query
expression. The following example uses the :name parameter that is defined in the first-name
query expression above to only query entries whose name property is Mark.

http://host:port/persons/first-name?name=Mark

Parameter names must be prefixed by a colon character (:paramName). Parameter bindings do
not have access to type information, so it's possible to get a false where a true is expected on
the comparison operators. To avoid such behavior, specify type hints as part of a query
parameter (:paramName;int). Table 30-1 lists the supported type hints.

Table 30-1 Parameter Type Hints

Hint Type

i, int java.lang.Integer

s, short java.lang.Short

l, long java.lang.Long

f, float java.lang.Float

d, double java.lang.Double

I java.math.BigInteger

D java.math.BigDecimal

date java.util.Date

uuid com.tagosol.util.UUID

uid com.tangosol.util.UID

package.MyClass package.MyClass

Named queries can also be used in conjunction with aggregation and entry processing. See
Performing Aggregations with REST and Performing Entry Processing with REST, respectively.
For example:

http://host:port/persons/first-name?name=Mark/long-max(age)

http://host:port/persons/first-name?name=Mark/increment(age,1)

Chapter 30
Performing Queries with REST

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 16

Specifying a Query Sort Order
The sort matrix parameter is an optional parameter used within a REST URL that provides the
ability to order the returned results of a query. The sort parameter is available for both direct
queries and named queries. The value of the sort parameters is a comma-separated list of
properties to sort on, each of which can have an optional :asc (default) or :desc qualifier that
determines the order of the sort. For example, to sort a list of people by last name with family
members sorted from the oldest to the youngest, the sort parameter is defined as follows:

GET http://host:port/persons/minors;sort=lastName,age:desc

The following example uses the sort parameter as part of a direct query.

GET http://host:port/persons;sort=lastName,age:desc?q=age%3C18

Limiting Query Result Size
Queries against large caches can potentially return large result sets that may cause out-of-
memory errors. You should always use keys when querying large caches even though the use
of keys in queries is optional. If keys are omitted, then the query may return all cache entries.

There are two ways to limit the number of results that are returned to a client: the start and
count matrix parameters and the max-results attribute. Both ways are supported for direct
and named queries.

The start and count parameters are optional integer arguments that determine the subset of
the results to return. The following example uses the parameters as part of a named query and
returns the first 10 entries sorted by name.

http://host:port/persons/minors;start=0;count=10;order=name:asc

The following example uses the parameters as part of a direct query.

GET http://host:port/persons;start=0;count=10?q=age%3C18

The max-results attribute is used within the coherence-rest-config.xml file and explicitly
limits how many results are returned to the client. Note that this attribute does not limit the
number of entries that are returned from a cache. The following example sets the max-results
attribute:

<resource max-results="50">
 <cache-name>persons</cache-name>
 <key-class>java.lang.Integer</key-class>
 <value-class>example.Person</value-class>
 <direct-query enabled="true" max-results="25">
 <query max-results="25">
 <name>minors</name>
 <expression>age < 18</expression>
 </query>
</resource>

The max-results value for a direct or named query overrides the resource's max-results
value if both are specified. If a query includes a count parameter and a max-results element
is also specified, the lesser value is used.

Chapter 30
Performing Queries with REST

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 16

Retrieving Only Keys
It is possible to retrieve just keys of entries stored in cache. Key operations do not support
paging and sorting, therefore those query parameters, if submitted, are ignored. The following
key retrieval operations are supported:

GET http://host:port/cacheName/keys

Returns the keys of all entries in the cache.

GET http://host:port/cacheName/keys?q=query

Returns the keys of all entries satisfying the direct query criteria.

GET http://host:port/cacheName/namedQuery/keys

Returns the keys of all entries that satisfy the named query criteria.

Using Custom Query Engines
A query engine executes queries for both direct and named queries. The default query engine
executes queries that are expressed using a CohQL syntax (the predicate part of CohQL).

Note

The default query engine for Coherence REST uses MvelExtractor. Coherence REST
users who use the default query engine should use the MvelExtractor to create cache
index.

Implementing a custom query engine allows the use of different query expression syntaxes or
the ability to execute queries against data sources other than Coherence (for example, to
query a database for entries that are not present in a cache).

This section includes the following topics:

Implementing Custom Query Engines
Custom query engines must implement the
com.tangosol.coherence.rest.query.QueryEngine and
com.tangosol.coherence.rest.query.Query interfaces. Custom implementations can also
extend the com.tangosol.coherence.rest.query.AbstractQueryEngine base class which
provides convenience methods for parsing query expression and handling parameter bindings.
The base class also supports parameter replacement at execution time and type hints that are
submitted as part of the query parameter value. Both parameter names and type hints follow
the CohQL specification and can be used for other query engine implementations. See Using
Named Queries.

The following example is a simple query engine implementation that executes SQL queries
directly against a database and forces cache read-through. In reality, a query engine
implementation would probably support runtime parameter binding, which is not shown in the
example.

public class SqlQueryEngine
 extends AbstractQueryEngine
 {

Chapter 30
Performing Queries with REST

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 16

 protected Connection m_con;
 private static final String DB_DRIVER = "oracle.jdbc.OracleDriver";
 private static final String DB_URL = "jdbc:oracle:thin:@localhost:1521:orcl";
 private static final String DB_USERNAME = "username";
 private static final String DB_PASSWORD = "password";

 public SqlQueryEngine()
 {
 configureConnection();
 }

 @Override
 public Query prepareQuery(String sQuery, Map<String, Object> mapParams)
 {
 ParsedQuery parsedQuery = parseQueryString(sQuery);
 String sSQL = createSelectPKQuery(parsedQuery.getQuery());
 return new SqlQuery(sSQL);
 }

 protected void configureConnection()
 {
 try
 {
 Class.forName(DB_DRIVER);
 m_con = DriverManager.getConnection(DB_URL, DB_USERNAME, DB_PASSWORD);
 m_con.setAutoCommit(true);
 }
 catch (Exception e)
 {
 throw new RuntimeException(e);
 }
 }

 protected String createSelectPKQuery(String sSQL)
 {
 return "SELECT id,name,age FROM " +
 sSQL.substring(sSQL.toUpperCase().indexOf("FROM") + 4);
 }

 private class SqlQuery
 implements Query
 {
 protected String m_sql;

 public SqlQuery(String sql)
 {
 m_sql = sql;
 }

 @Override
 public Collection values(NamedCache cache, String sOrder, int nStart,
 int cResults)
 {
 // force read through
 Set setKeys = keySet(cache);
 return cache.getAll(setKeys).values();
 }

 @Override
 public Set keySet(NamedCache cache)
 {
 Set setKeys = new HashSet();

Chapter 30
Performing Queries with REST

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 16

 try
 {
 PreparedStatement stmt = m_con.prepareStatement(m_sql);
 ResultSet result = stmt.executeQuery();
 while (result.next())
 {
 Object oKey = result.getLong(1);
 setKeys.add(oKey);
 Person person = new Person(result.getString("name"),
 result.getInt("age"));
 cache.put(oKey, person);
 }
 stmt.close();
 }
 catch (SQLException e)
 {
 throw new RuntimeException(e);
 }
 return setKeys;
 }
 }
}

Enabling Custom Query Engines
Custom query engines are enabled in the coherence-rest-config.xml file. To enable a
custom query engine, first register the implementation by adding an <engine> element, within
the <query-engines> element, that includes a name for the query engine and the fully qualified
name of the implementation class. See engine. For example:

<query-engines>
 <engine>
 <name>SQL-ENGINE</name>
 <class-name>package.SqlQueryEngine</class-name>
 </engine>
</query-engines>

To explicitly specify a custom query engine for a named query or a direct query, add the engine
attribute, within a <direct-query> element or a <query> element, that refers to the custom
query engine's registered name. For example:

<resource>
 <cache-name>persons</cache-name>
 <key-class>java.lang.Integer</key-class>
 <value-class>example.Person</value-class>
 <query engine="SQL-ENGINE">
 <name>less-than-1000</name>
 <expression>select * from PERSONS where id < 1000</expression>
 </query>
 <direct-query enabled="true" engine="SQL-ENGINE"/>
 </resource>

To make a custom query engine the default query engine, use DEFAULT (uppercase mandatory)
as the registered name. The following definition overrides the default CohQL-based query
engine and is automatically used whenever an engine attribute is not specified.

<query-engines>
 <engine>
 <name>DEFAULT</name>
 <class-name>package.SqlQueryEngine</class-name>

Chapter 30
Performing Queries with REST

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 16

 </engine>
</query-engines>

Performing Aggregations with REST
Aggregations can be performed on data in a cache. Coherence REST includes a set of pre-
defined aggergators and custom aggregators can be created as required.

This section includes the following topics:

Aggregation Syntax for REST
The following examples demonstrate how to perform aggregations using REST. If the
aggregation succeeds, a 200 (OK) status code returns with the aggregation result as an entity.

• Aggregates all entries in the cache.

GET http://host:port/cacheName/aggregator(args, ...)

• Aggregates query results. The query must be specified as a URL-encoded CohQL
expression (the predicate part of CohQL).

GET http://host:port/cacheName/aggregator(args, ...)?q=query

GET http://host:port/cacheName/namedQuery/aggregator(args, ...)?param1=value1

• Aggregates specified entries.

GET http://host:port/cacheName/(key1, key2, ...)/aggregator(args, ...)

Coherence REST provides a simple strategy for aggregator creation (out of aggregator related
URL segments). Out-of-box, Coherence REST can resolve any registered (either built-in or
user registered) aggregator with a constructor that accepts a single parameter of type
com.tangosol.util.ValueExtractor (such as LongMax, DoubleMax, and so on). If an
aggregator call within a URL doesn't contain any parameters, the aggregator is created using
com.tangosol.util.extractor.IdentityExtractor.

If an aggregator segment within the URL doesn't contain any parameters nor a constructor
accepting a single ValueExtractor exists, Coherence REST tries to instantiate the aggregator
using a default constructor which is the desired behavior for some built-in aggregators (such as
count).

The following example retrieves the oldest person in a cache:

GET http://host:port/people/long-max(age)

The following example calculates the max number in a cache containing only numbers:

GET http://host:port/numbers/comparable-max()

The following example calculates the size of the people cache:

GET http://host:port/people/count()

Listing of Pre-Defined Aggregators
The following pre-defined aggregators are supported:

Chapter 30
Performing Aggregations with REST

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 16

Aggregator Name Aggregator

big-decimal-average BigDecimalAverage.class

big-decimal-max BigDecimalMax.class

big-decimal-min BigDecimalMin.class

big-decimal-sum BigDecimalSum.class

double-average DoubleAverage.class

double-max DoubleMax.class

double-min DoubleMin.class

double-sum DoubleSum.class

long-max LongMax.class

long-min LongMin.class

long-sum LongSum.class

comparable-max ComparableMax.class

comparable-min ComparableMin.class

distinct-values DistinctValues.class

count Count.class

Creating Custom Aggregators
Custom aggregator types can be defined by specifying a name to be used in the REST URL
and a class implementing either the com.tangosol.util.InvocableMap.EntryAggregator
interface or the com.tangosol.coherence.rest.util.aggregator.AggregatorFactory
interface.

An EntryAggregator implementation is used for simple scenarios when aggregation is either
performed on single property or on cache value itself (as most of the pre-defined aggregators
do).

The AggregatorFactory interface is used when a more complex creation strategy is required.
The implementation must be able to resolve the URL segment containing aggregator
parameters and use the parameters to create the appropriate aggregator.

Custom aggregators are configured in the coherence-rest-config.xml file within the
<aggregators> elements. See aggregator. The following example configures both a custom
EntryAggregator implementation and a custom AggregatorFactory implementation:

<aggregators>
 <aggregator>
 <name>my-simple-aggr</name>
 <class-name>com.foo.MySimpleAggregator</class-name>
 </aggregator>
 <aggregator>
 <name>my-complex-aggr</name>
 <class-name>com.foo.MyAggreagatorFactory</class-name>
 </aggregator>
</aggregators>

Chapter 30
Performing Aggregations with REST

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 16

Performing Entry Processing with REST
Entry Processors can be invoked on one or more objects in a cache. Coherence REST
includes a set of pre-defined entry processors and custom entry processors can be created as
required.
This section includes the following topics:

Entry Processor Syntax for REST
The following examples demonstrate how to perform entry processing using REST. If the
processing succeeds, a 200 (OK) status code returns with the processing result as an entity.

• Process all entries in the cache.

POST http://host:port/cacheName/processor(args, ...)

• Process query results.

POST http://host:port/cacheName/processor(args, ...)?q=query

POST http://host:port/cacheName/namedQuery?param1=value1/processor(args, ...)

• Process specified entries.

POST http://host:port/cacheName/(key1, key2, ...)/processor (args, ...)

Unlike aggregators, processors (even the pre-defined processors) have more diverse creation
patterns, so Coherence REST does not assume anything about processor creation. Instead,
for each entry processor implementation, there needs to be an implementation of the
com.tangosol.coherence.rest.util.processor.ProcessorFactory interface that can handle
an input string from a URL section and instantiate the processor instance. Out-of-box,
Coherence REST provides two such factories for NumberIncrementor and NumberMultiplier.

The following example increments each person's age in a cache by 5:

POST http://localhost:8080/people/increment(age, 5)

The following example multiplies each number in a cache containing only numbers by the
factor 10:

POST http://localhost:8080/numbers/multiply(10)

Listing of Pre-defined Entry Processors
The following pre-defined processors are supported:

Processor Name Processor

increment A NumberIncrementor instance that always returns the new (incremented) value

post-increment A NumberIncrementor instance that always returns the old (not incremented)
value

multiply A NumberMultiplier instance that always returns the new (multiplied) value

post-multiply A NumberMultiplier instance that always returns the old (not multiplied) value

Chapter 30
Performing Entry Processing with REST

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 12 of 16

Creating Custom Entry Processors
Custom entry processors can be defined by specifying a name to be used in a REST URL and
a class that implements the
com.tangosol.coherence.rest.util.processor.ProcessorFactory interface.

Custom entry processors are configured in the coherence-rest-config.xml file within the
<processors> elements. See processors. The following example configures a custom
ProcesorFactory implementation:

<processors>
 <processor>
 <name>my-processor</name>
 <class-name>com.foo.MyProcessorFactory</class-name>
 </processor>
</processors>

Understanding Concurrency Control
Coherence REST supports optimistic concurrency only as it maps cleanly to the HTTP
protocol. When an application submits a GET request for an object that implements the
com.tangosol.util.Versionable interface, the current version identifier is returned in an
HTTP ETag (as well as in the representation of the object, assuming the version identifier is
included in the JSON/XML serialized form). If the application then submits the same GET
request for the resource, but this time with an If-None-Match header with the same ETag
value, Coherence REST returns a status of 304, indicating that the application has the latest
version of the resource.
Likewise, when an application submits a PUT request to update an object that implements the
com.tangosol.util.Versionable interface, Coherence REST performs an update only if the
existing and new object versions match; otherwise a 409 Conflict status is returned along
with the current object so that the client can reapply the changes and retry.

The following example illustrates these concepts:

import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.ClientResponse;
import com.sun.jersey.api.client.WebResource;
import jakarta.ws.rs.core.MediaType;
import org.codehaus.jettison.json.JSONObject;

public class ConcurrencyTests
 {
 public static void main(String[] asArg)
 throws Exception
 {
 Client client = Client.create();
 String url = "http://localhost:" + getPort() + "/dist-test1/2";
 WebResource webResource = client.resource(url);

 // perform a GET of a server-side resource that implements Versionable
 ClientResponse response = webResource
 .accept(MediaType.APPLICATION_JSON).get(ClientResponse.class);
 assert 200 == response.getStatus(); /* OK */

 // verify that the current version of the resource is 1
 JSONObject json = new JSONObject(response.getEntity(String.class));
 String version = json.getString("versionIndicator");
 assert "1".equals(version);

Chapter 30
Understanding Concurrency Control

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 16

 assert new EntityTag("1").equals(response.getEntityTag());

 // perform a conditional GET of the same resource and verify that we
 // get a response status of 304: Not Modified
 response = webResource
 .accept(MediaType.APPLICATION_JSON)
 .header ("If-None-Match", '"' + version + '"').get(ClientResponse.class);
 assert 304 == response.getStatus(); /* Not Modified */

 // simulate a version change on the server-side by rolling back the
 // version indicator on our representation of the resource
 json.put("versionIndicator", String.valueOf(0));

 // perform a conditional PUT of the same resource and verify that we
 // get a response status of 409: Conflict
 response = webResource
 .accept(MediaType.APPLICATION_JSON)
 .put(ClientResponse.class, json);
 assert 409 == response.getStatus(); /* Conflict */

 // retry again with the returned value and verify that we now get a
 // response status of 200: OK
 json = new JSONObject(response.getEntity(String.class));
 response = webResource
 .accept(MediaType.APPLICATION_JSON)
 .put(ClientResponse.class, json);
 assert 200 == response.getStatus(); /* OK */
 }
 }

Specifying Cache Aliases
Cache aliases are used to specify simplified cache names that are used when a cache name is
not ideal for the REST URL path segment. The simplified names are mapped to the real cache
names.
To define a cache alias, edit the coherence-rest-config.xml file and include the <name>
attribute within the <resource> element whose value is set to a simplified cache name.

The following example creates a cache alias named people for a cache with the name dist-
extend-not-ideal-name-for-a-cache*:

<resources>
 <resource name="people">
 <cache-name>dist-extend-not-ideal-name-for-a-cache*</cache-name>
 ...
 </resource>
</resources>

Using Server-Sent Events
Server-sent events allow Coherence REST applications to automatically receive cache events
from the Coherence cluster. For example, events can be received when cache entries are
inserted or deleted. For a complete example of using server-sent events, see the Coherence
REST examples in Coherence REST Examples in Installing Oracle Coherence.
Server-sent events require the use of an HTTP server. You can use the default HTTP server or
the Netty HTTP server. See Using Netty HTTP Server. In addition, server-sent events must be
supported by your web browser. Refer to your browser documentation for support details.

This section includes the following topic:

Chapter 30
Specifying Cache Aliases

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 14 of 16

Receiving Server-Sent Events
Web pages use the EventSource object to receive server-sent events. The EventSource object
connects to a specified URI where events are generated and custom EventListeners are
added to listen and process the incoming server-sent events. The following code from the
Coherence REST example uses JavaScript to create a new EventSource object that listens to
the /cache/contacts URI and adds event listeners for insert, update, delete, and error
events.

$scope.startListeningContacts = function() {
 $scope.contacts.listening = true;
 $scope.contacts.started = true;

 if ($scope.contacts.filter == 'all') {
 query = '';
 }
 else if ($scope.contacts.filter == '>=45') {
 query = '?q=age%20>=%2045';
 $scope.contacts.filter = 'age >= 45';
 }
 else {
 query = '?q=age%20<%2045';
 $scope.contacts.filter = 'age < 45';
 }

 $scope.contacts.status = 'Listening: ' + $scope.contacts.filter;
 var eventSourceContacts = new EventSource('/cache/contacts' + query);

 eventSourceContacts.addEventListener('insert', function(event) {
 $scope.contacts.insertCount++;
 $scope.contacts.allCount++;
 $scope.updateContactEvent(JSON.parse(event.data), 'insert');
 $scope.$apply();
 });

 eventSourceContacts.addEventListener('update', function(event) {
 $scope.contacts.updateCount++;
 $scope.contacts.allCount++;
 $scope.updateContactEvent(JSON.parse(event.data), 'update');
 $scope.$apply();
 });

 eventSourceContacts.addEventListener('delete', function(event) {
 $scope.contacts.deleteCount++;
 $scope.contacts.allCount++;
 $scope.updateContactEvent(JSON.parse(event.data), 'delete');
 $scope.$apply();
 });

 eventSourceContacts.addEventListener('error', function(event) {
 var eventData = JSON.parse(event.data);
 alert('error');
 });
};

When an event is received, an application can choose take some meaningful action based on
the event. For example:

$scope.updateContactEvent = function(eventData, eventType) {
 $scope.contacts.eventType = eventType;

Chapter 30
Using Server-Sent Events

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 15 of 16

 $scope.contacts.eventKey = eventData.key.firstName + ' ' +
 eventData.key.lastName;

 $scope.contacts.eventNewValue = 'N/A';
 $scope.contacts.eventOldValue = 'N/A';

 if (eventType == 'insert' || eventType == 'update') {
 $scope.contacts.eventNewValue = $scope.getContactString(eventData.newValue);
 }
 if (eventType == 'delete' || eventType == 'update') {
 $scope.contacts.eventOldValue = $scope.getContactString(eventData.oldValue);
 }
};

Chapter 30
Using Server-Sent Events

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 16 of 16

31
Deploying Coherence REST

You can deploy Coherence REST to an embedded HTTP server, WebLogic Server, and any
generic servlet container.
This chapter includes the following sections:

Deploying with the Embedded HTTP Server
Coherence provides a Netty embedded HTTP server implementation that can be used to host
RESTful Web services. See Changing the Embedded HTTP Server.

• DefaultHttpServer (backed by Oracle's lightweight HTTP server)

• NettyHttpServer (backed by Netty HTTP server and recommended for production)

The HTTP server must be enabled on a Coherence proxy server. To enable the HTTP server,
edit the proxy's cache configuration file and add an <http-acceptor> element, within the
<proxy-scheme> element, and include the host and port for the HTTP server. The <address>
element also supports external NAT addresses that route to local addresses; however, both
addresses must use the same port number.

The following example configures the HTTP server to accept requests on localhost 127.0.0.1
and port 8080. The example explicitly defines the HTTP server class and Jersey resource
configuration class and uses / as the context path for the Coherence REST application.
However; these are default values and need not be included. The context path can be changed
as required and additional Coherence REST applications can be defined with different context
paths. See http-acceptor in Developing Applications with Oracle Coherence.

<proxy-scheme>
 <service-name>ExtendHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 <class-name>com.tangosol.coherence.http.netty.NettyHttpServer</class-name>
 <local-address>
 <address>127.0.0.1</address>
 <port>8080</port>
 </local-address>
 <resource-config>
 <context-path>/</context-path>
 <instance>
 <class-name>
 com.tangosol.coherence.rest.server.DefaultResourceConfig
 </class-name>
 </instance>
 </resource-config>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

If you are using POF, make sure that the pof-config.xml file includes the location of the REST
POF types. See Configuring REST Server Access to POF-Enabled Services.

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 6

Deploying to WebLogic Server
WebLogic Server includes a Coherence integration that standardizes the way Coherence
applications are packaged, deployed, and managed within a WebLogic Server domain.
Coherence REST must follow the integration standards. See Configuring and Managing
Coherence Clusters in Administering Clusters for Oracle WebLogic Server. In addition,
Coherence applications must be packaged as a Grid ARchive (GAR). See Packaging
Coherence Applications in Developing Applications with Oracle Coherence.
This section includes the following topics:

Task 1: Configure a WebLogic Server Domain for Coherence REST
Create a managed Coherence server in your WebLogic Server domain that will host
Coherence REST. The server should be configured as a storage disabled member of a
Coherence cluster. If more than one managed Coherence server is required for a Coherence
REST solution, then the servers should be managed as a tier in a WebLogic Server cluster.
See Setting Up a Coherence Cluster in Administering Clusters for Oracle WebLogic Server.

Task 2: Package the Coherence REST Web Application
To package the Coherence REST Web application:

1. Create a Web application directory structure as follows:

/
/WEB-INF/
/WEB-INF/classes/
/WEB-INF/lib/

2. Create a Web application deployment descriptor (web.xml) and include a servlet definition
for the REST application as follows:

Note

The WebLogic Server classpath contains the coherence-rest.jar library which
includes a default servlet context listener that shuts down the cluster member
during the REST application shutdown. The listener is registered as shown below.
If the cluster member is not shut down, a variety of exceptions are thrown post
shutdown.

<web-app>
 ...
 <listener>
 <listener-class>
 com.tangosol.coherence.rest.servlet.DefaultServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <servlet-name>Coherence REST</servlet-name>
 <servlet-class>org.glassfish.jersey.servlet.ServletContainer
 </servlet-class>
 <init-param>
 <param-name>jakarta.ws.rs.Application</param-name>
 <param-value>

Chapter 31
Deploying to WebLogic Server

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 6

 com.tangosol.coherence.rest.server.ContainerResourceConfig
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Coherence REST</servlet-name>
 <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>
 ...
</web-app>

3. Save the web.xml file to the /WEB-INF/ directory.

4. Create a WAR file using the jar utility. For example, issue the following command from a
command prompt at the root of the Web application directory:

jar -cvf coherence_rest.war *

Task 3: Package the Coherence Application
To package the Coherence application:

1. Copy the coherence-rest-config.xml file to the root of your Coherence application. The
structure should be as follows:

/
/com/myco/MyClass.class
/lib/
/META-INF/
/META-INF/coherence-application.xml
/META-INF/coherence-cache-config.xml
/META-INF/pof-config.xml
coherence-rest-config.xml

2. Edit the pof-config.xml file to include the coherence-rest-pof-config.xml POF
configuration file that contains the Coherence REST default user types. See Configuring
REST Server Access to POF-Enabled Services.

3. Create a GAR file using the jar utility. For example, issue the following command from a
command prompt at the root of the GAR directory:

jar -cvf MyCohApp.gar *

Task 4: Package the Enterprise Application
To package the enterprise application:

1. Create an enterprise application directory structure and copy the Coherence REST WAR
file and the Coherence application GAR file to the root of the EAR. For example:

/
/META-INF/
/META-INF/application.xml
/META-INF/weblogic-application.xml
/coherence_rest.war
/MyCohApp.gar

2. Edit the application.xml file and add a module definition for the Coherence REST Web
application. For example:

<application>
 <module>

Chapter 31
Deploying to WebLogic Server

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 6

 <web>
 <web-uri>coherence_rest.war</web-uri>
 <context-root>/</context-root>
 </web>
 </module>
</application>

3. Edit the weblogic-application.xml file and add a module reference for the Coherence
application GAR file. For example:

<weblogic-application>
 <module>
 <name>person</name>
 <type>GAR</type>
 <path>MyCohApp.gar</path>
 </module>
</weblogic-application>

4. Create the EAR file using the jar utility. For example, issue the following command from a
command prompt at the root of the EAR directory:

jar -cvf MyCohRestApp.ear *

Task 5: Deploy the Enterprise Application
To deploy the Enterprise application:

1. Use the WebLogic Remote Console or WLST tool to deploy the EAR to the managed
Coherence server created in Task 1.

2. From a browser, verify the deployment by navigating to the managed Coherence server's
listening port and include the cache name as part of the URL. For example: http://
host:port/rest/{cacheName}.

Deploying to a Jakarta EE Server (Generic)
Coherence REST can be deployed to any standard Jakarta EE environment.
This section includes the following topics:

Packaging Coherence REST for Deployment
To package a Coherence REST application:

1. Create a basic Web application directory structure as follows:

/
/WEB-INF
/WEB-INF/classes
/WEB-INF/lib

2. Copy the coherence.jar and coherence-rest.jar libraries from the COHERENCE_HOME/lib
directory to the /WEB-INF/lib directory.

3. Copy the Coherence REST dependencies from the ORACLE_HOME/oracle_common/
modules/ directory to the /WEB-INF/lib directory. See Dependencies for Coherence
REST.

4. Create a Web application deployment descriptor (web.xml) and include a servlet definition
for the REST application as follows:

Chapter 31
Deploying to a Jakarta EE Server (Generic)

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 6

Note

A default servlet context listener is included in the coherence-rest.jar that shuts
down the cluster member during the REST application shutdown. The listener is
registered as shown below. If the cluster member is not shut down, a variety of
exceptions are thrown post shutdown.

<web-app>
 ...
 <listener>
 <listener-class>
 com.tangosol.coherence.rest.servlet.DefaultServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <servlet-name>Coherence REST</servlet-name>
 <servlet-class>org.glassfish.jersey.servlet.ServletContainer
 </servlet-class>
 <init-param>
 <param-name>jakarta.ws.rs.Application</param-name>
 <param-value>
 com.tangosol.coherence.rest.server.ContainerResourceConfig
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Coherence REST</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
 ...
</web-app>

5. Save the web.xml file to the /WEB-INF/ directory.

6. Copy the coherence-rest-config.xml file to the WEB-INF/classes directory.

7. Copy your coherence-cache-config.xml file and tangosol-coherence-override.xml file
to the WEB-INF/classes directory.

8. If you are using POF, copy the pof-config.xml file to the WEB-INF/classes directory.
Make sure that the pof-config.xml file includes the location of the REST POF types. See
Configuring REST Server Access to POF-Enabled Services.

9. Create a Web ARchive file (WAR) using the jar utility. For example, issue the following
command from a command prompt at the root of the Web application directory:

jar -cvf coherence_rest.war *

The archive should contain the following files:

/WEB-INF/web.xml
/WEB-INF/classes/coherence-rest-config.xml
/WEB-INF/classes/tangosol-coherence-override.xml
/WEB-INF/classes/coherence-cache-config.xml
/WEB-INF/lib/coherence.jar
/WEB-INF/lib/coherence-rest.jar
/WEB-INF/lib/coherence_dependencies

Chapter 31
Deploying to a Jakarta EE Server (Generic)

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 6

Deploying to a Servlet Container
Coherence REST can be deployed to any servlet container by packaging Coherence REST as
a WAR file. See Packaging Coherence REST for Deployment. Refer to your vendors
documentation for details on deploying WAR files. In addition, See the Jersey user guide for
additional servlet container deployment options:

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.0/index.html

Configuring REST Server Access to POF-Enabled Services
POF-enabled services must include the defined Coherence REST POF user types. The user
types are defined in the coherence-rest-pof-config.xml file that is located in the coherence-
rest.jar library and is automatically loaded at runtime.
To configure the REST default user types, edit the pof-config.xml file to include the
coherence-rest-pof-config.xml POF configuration file. For example:

<pof-config>
 <user-type-list>
 <include>coherence-pof-config.xml</include>
 <include>coherence-rest-pof-config.xml</include>
 ...
 </user-type-list>
</pof-config>

Chapter 31
Configuring REST Server Access to POF-Enabled Services

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 6

https://eclipse-ee4j.github.io/jersey.github.io/documentation/3.0.0/index.html

32
Modifying the Default REST Implementation

You can change the default behavior of the Coherence REST implementation.
This chapter includes the following sections:

Using the Pass-Through Resource
Coherence REST includes a resource implementation that enables pass-through access to
caches. The resource allows static binaries such as graphics to be cached. The resource is
implemented in the PassThroughRootResource class and is registered using the
PassThroughResourceConfig class.
To use the pass-through resource in an application, modify the proxy service definition in the
cache configuration file and add the fully qualified name of the PassThroughResourceConfig
class within the <resource-config> element. The resource is mapped to a specific context
path or the default path (/) if no context is defined. The following example registers the
resource and uses /cache as the context path. Any cache resources that are defined in the
coherence-rest-config.xml configuration file are prefixed with /cache/ in the URL.

<proxy-scheme>
 <service-name>HttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 ...
 <resource-config>
 <context-path>/cache</context-path>
 <instance>
 <class-
name>com.tangosol.coherence.rest.server.PassThroughResourceConfig</class-name>
 </instance>
 </resource-config>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Likewise, the ContainerPassThroughResourceConfig class, which is an extension of the
PassThroughResourceConfig class, is used for container deployments of Coherence REST
when pass-through is required. The resource is configured in the Web application deployment
descriptor included in the Coherence REST application.

<web-app>
 ...
 <listener>
 <listener-class>
 com.tangosol.coherence.rest.servlet.DefaultServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <servlet-name>Coherence REST</servlet-name>
 <servlet-class>org.glassfish.jersey.servlet.ServletContainer

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 4

 </servlet-class>
 <init-param>
 <param-name>jakarta.ws.rs.Application</param-name>
 <param-value>
 com.tangosol.coherence.rest.server.ContainerPassThroughResourceConfig
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Coherence REST</servlet-name>
 <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>
 ...
</web-app>

Using Custom Providers and Resources
Custom providers and resources can be created as required. This section demonstrates how
to register custom providers, and how to override Coherence's default root resource.
The com.tangosol.coherence.rest.server.DefaultResourceConfig class supports package
scanning, which can be used to register custom providers or resources. The following example
demonstrates registering a custom provider and resource using package scanning:

public class MyResourceConfig extends DefaultResourceConfig
 {
 public MyResourceConfig()
 {
 super("com.my.providers;com.my.resources");
 }
 }

As an alternative, the following example demonstrates how to override one or more of the
register methods defined in the DefaultResourceConfig class in order to use custom
providers, a custom root resource, or to add filters and filter factories.

Note

Never override (unregister) Coherence default Providers without overriding the root
resource class as well (the DefaultRootResource class depends on the default
providers to provide the necessary dependencies and configuration).

public class MyResourceConfig extends DefaultResourceConfig
 {
 protected void registerRootResource()
 {
 // remove if you don't want Coherence defaults to be registered
 super.registerRootResource();
 getClasses().add(MyRootResource.class);
 }

 protected void registerProviders()
 {
 // remove if you don't want Coherence defaults to be registered
 super.registerProviders();
 getSingletons().add(new MyProvider());
 }

Chapter 32
Using Custom Providers and Resources

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 4

 protected void registerContainerRequestFilters()
 {
 // remove if you don't want Coherencedefaults to be registered
 super.registerContainerRequestFilters();
 getContainerRequestFilters().add(new MyRequestFilter());
 }

 protected void registerContainerResponseFilters()
 {
 // remove if you don't want Coherence defaults to be registered
 super.registerContainerResponseFilters();
 getContainerResponseFilters().add(new MyResponseFilter());
 }

 protected void registerResourceFilterFactories()
 {
 // remove if you don't want Coherence defaults to be registered
 super.registerResourceFilterFactories();
 getResourceFilterFactories().add(new MyResourceFilterFactory());
 }
 }

Custom resource configuration classes are enabled in the cache configuration file by adding
the fully qualified name of the class using the <resource-config> element within an HTTP
acceptor configuration. The class is mapped to a specific context path or the default context
path (/) if no context path is defined. Multiple resource configuration class definitions can be
added and mapped to different context paths. The following example registers a custom
resource called MyResourceConfig and maps it to the /MyApplication context path.

<proxy-scheme>
 <service-name>ExtendHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 ...
 <resource-config>
 <context-path>/MyApplication</context-path>
 <instance>
 <class-name>package.MyResourceConfig</class-name>
 </instance>
 </resource-config>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Changing the Embedded HTTP Server
Coherence REST uses Oracle's lightweight HTTP server by default to handle requests.
However, the implementation is not recommended for production environments and is typically
used during development and testing.

For production environments, Coherence includes an implementation for the Netty HTTP
server.

The Netty HTTP server is supported in Jersey. Refer to the Jersey documentation for
instructions on integrating additional HTTP servers, which are beyond the scope of this
documentation.
http://jersey.java.net/

Chapter 32
Changing the Embedded HTTP Server

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 4

http://jersey.java.net/

This section includes the following topics:

Using Netty HTTP Server
Coherence REST provides a Netty HTTP server implementation
(com.tangosol.coherence.http.netty.NettyHttpServer) that can be used instead of the
default HTTP server. For more information on the Netty HTTP server, see:

https://netty.io/

The Netty server is enabled in the cache configuration file by adding the fully qualified name of
the implementation as a value of the <class-name> element within an HTTP acceptor
configuration. For example:

<proxy-scheme>
 <service-name>ExtendHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 <class-name>com.tangosol.coherence.http.netty.NettyHttpServer</class-
name>
 ...
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Chapter 32
Changing the Embedded HTTP Server

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 4

https://netty.io/

A
REST Configuration Elements

The Coherence REST configuration reference provides a detailed description of the REST
configuration deployment descriptor.
This appendix includes the following sections:

REST Configuration File
The Coherence REST configuration deployment descriptor specifies the configuration for the
REST implementation. The default name of the descriptor is coherence-rest-config.xml and
must be found on the classpath. The name can be overridden using the
coherence.rest.config system property. For example:

-Dcoherence.rest.config=MyConfig.xml

The REST configuration deployment descriptor schema is defined in the coherence-rest-
config.xsd file. The XSD file is located in the root of the coherence.jar library and at the
following Web URL:

http://xmlns.oracle.com/coherence/coherence-rest-config/1.2/coherence-rest-config.xsd

The <rest> element is the root element of the configuration file and includes the XSD and
namespace declarations. For example:

<?xml version='1.0'?>

<rest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-rest-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-rest-config
 coherence-rest-config.xsd">

Note

• The schema located in the coherence.jar library is always used at run time even
if the xsi:schemaLocation attribute references the Web URL.

• The xsi:schemaLocation attribute can be omitted to disable schema validation.

• When deploying Coherence into environments where the default character set is
EBCDIC rather than ASCII, ensure that the deployment descriptor file is in ASCII
format and is deployed into its run-time environment in the binary format.

REST Configuration Element Reference
The Coherence REST configuration element reference includes all non-terminal report file
configuration elements. Each section includes instructions on how to use the element and also
includes descriptions for all valid subelements.

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-1 of A-8

http://xmlns.oracle.com/coherence/coherence-rest-config/1.2/coherence-rest-config.xsd

REST Configuration Element Index
Table A-1 lists all non-terminal REST configuration elements.

Table A-1 REST Configuration Elements

Element Used In

aggregator aggregators

aggregators rest

engine query-engines

marshaller resource

processor processors

processors rest

query resource

query-engines rest

resource resources

resources rest

rest root element

aggregator
Used in: aggregators

Description

The aggregator element is used to define custom aggregators that are used to aggregate data
in a cache. Each aggregator element must contain a single binding between a name and an
aggregator class or aggregator factory class.

Elements

Table A-2 describes the subelements of the aggregator element.

Table A-2 aggregator Subelements

Element Required/ Optional Description

<name> Required Specifies a name to be used in a REST URL that is bound to an
aggregator class or aggregator factory class.

<class> Required Specifies the fully qualified name of a custom aggregator class or custom
aggregator factory class that is bound to a name. The class must
implement the com.tangosol.util.EntryAggregator or
com.tangosol.coherence.rest.util.aggregator.AggregatorFac
tory interfaces, respectively.

aggregators
Used in: rest

Appendix A
REST Configuration Element Reference

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-2 of A-8

Description

The aggregators element contains any number of custom aggregator definitions.

Elements

Table A-3 describes the subelements of the aggregators element.

Table A-3 aggregators Subelements

Element Required/ Optional Description

<aggregator> Required Specifies a single binding between a name and an aggregator class or
aggregator factory class.

engine
Used in: query-engines

Description

The engines element contains a single binding between a name and a query engine
implementation class. Custom query engines must implement the
com.tangosol.coherence.rest.query.QueryEngine and
com.tangosol.coherence.rest.query.Query interfaces. Custom implementations can also
extend the com.tangosol.coherence.rest.query.AbstractQueryEngine base class which
provides useful methods for parsing query expressions and handling parameter bindings.

Elements

Table A-4 describes the subelements of the engine element.

Table A-4 engine Subelements

Element Required/ Optional Description

<name> Required Specifies a name for the query engine.

<class-name> Required Specifies the fully qualified name of the query engine implementation
class.

marshaller
Used in: resource

Description

The marshaller element contains bindings between cache entry key/value classes and a
marshaller class that is used to marshall and unmarshall instances of those classes.

Elements

Table A-5 describes the subelements of the marshaller element.

Appendix A
REST Configuration Element Reference

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-3 of A-8

Table A-5 marshaller Subelements

Element Required/ Optional Description

<media-type> Required Specifies the name of the medium that is used to for marshalling.
Coherence provides default implementations for XML and JSON data
output.

<class-name> Required Specifies the fully qualified name of a custom class that implements the
com.tangosol.coherence.rest.io.Marshaller interface. The
implementation is used to marshall/unmarshall cache entry values that
are stored in the cache. Marshallers are configured for each object type
and media type.

processor
Used in: processors

Description

The processor element is used to define custom entry processors that are used to process
data in a cache. Each processor element must contain a single binding between a name and
the processor factory class.

Elements

Table A-6 describes the subelements of the processor element.

Table A-6 processor Subelements

Element Required/ Optional Description

<name> Required Specifies a name to be used in a REST URL that is bound to a processor
factory class.

<class-name> Required Specifies the fully qualified name of a custom processor factory class that
is bound to a name. The class must implement the
com.tangosol.coherence.rest.util.processor.ProcessorFacto
ry interface.

processors
Used in: rest

Description

The processors element contains any number of custom processor definitions.

Elements

Table A-7 describes the subelements of the processors element.

Table A-7 processors Subelements

Element Required/ Optional Description

<processor> Required Specifies a single binding between a name and a processor factory class.

Appendix A
REST Configuration Element Reference

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-4 of A-8

query
Used in: resources

Description

The query element defines a named query for a resource. Named queries allow configured
query expressions to be executed by name in the REST URL.

GET http://host:port/cacheName/namedQuery?param1=value1,param2=value2...

A named query definition consists of a binding between a query name and the query
expression to execute. Multiple named queries can be configured for a resource. The query
element supports the following attributes:

• max-results – Specifies how many results are returned to the client. Note that this
attribute does not limit the number of entries that are returned from a cache. This value
overrides the max-results attribute that is set on the <resource> element.

• engine – Specifies a query engine implementation that is responsible for executing query
expressions against a cache. The default value if the attribute is not specified is DEFAULT,
which indicates a query expression must be specified as a URL-encoded CohQL
expression (the predicate part of CohQL). See query-engines.

Elements

Table A-8 describes the subelements of the query element.

Table A-8 query Subelements

Element Required/ Optional Description

<name> Required Specifies a name for the query.

<expression> Required Specifies a query expression that is bound to the query name.

query-engines
Used in: rest

Description

The query-engines element contains any number of custom query engine definitions. A query
engine executes query expressions against a cache. Direct queries and named queries rely on
an underlying query engine to perform their queries. A default query engine is provided for
executing query expression that are specified as a URL-encoded CohQL expression (the
predicate part of CohQL). However, custom query engines can be defined as required.

Elements

Table A-9 describes the subelements of the query-engines element.

Appendix A
REST Configuration Element Reference

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-5 of A-8

Table A-9 query-engines Subelements

Element Required/ Optional Description

<engine> Required Specifies a single binding between a name and a query engine
implementation class.

resource
Used in: resources

Description

The resource element provides the metadata that is used to marshall and unmarshall cache
entries. The metadata includes a single binding between a cache name and cache entry key
and value classes.

The following attributes are available:

• name – Specifies an alias for the <cache-name> element when the name is not ideal for the
REST URL path segment. The value defaults to the value of the <cache-name> element if a
value is not specified.

• max-results – Specifies how many results are returned to the client. Note that this
attribute does not limit the number of entries that are returned from a cache. This value is
overridden if a max-results attribute is also defined within the <query> or <direct-query>
element.

Elements

Table A-10 describes the subelements of the resource element.

Table A-10 resource Subelements

Element Required/ Optional Description

<cache-name> Required Specifies the name of the cache exposed by this resource. The cache
must be defined in the cache configuration file.

<key-class> Optional Specifies the type of the entry keys stored in this cache.

<value-class> Optional Specifies the type of the entry values stored in this cache.

<key-converter> Optional Specifies the fully qualified name of a class that implements the
com.tangosol.coherence.rest.KeyConverter interface. The class
is used to convert cache entry keys to string and string representations of
the keys that are used in the REST URL into an appropriate object
instance that can be used to access cache entries. The
com.tangosol.coherence.rest.DefaultKeyConverter class is
used by default if no value is provided. The default class offers reasonable
to string and from string conversions for Java primitives, dates, and
UUIDs.

<marshaller> Optional Specifies the fully qualified name of a class that implements the
com.tangosol.coherence.rest.io.Marshaller interface. The class
is used to marshall/unmarshall cache entry values that are stored in a
cache. Coherence provides default implementations for XML and JSON
data output.

Appendix A
REST Configuration Element Reference

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-6 of A-8

Table A-10 (Cont.) resource Subelements

Element Required/ Optional Description

<query> Optional Specifies the configuration information for named queries, which allow
configured query expressions to be executed by name in the REST URL.

<direct-query> Optional Specifies the configuration information for direct queries, which allow
query expressions to be included in the REST URL as the value of the
parameter q.

GET http://host:port/cacheName?q=query

The following attributes are available:

• enabled – Specifies whether a resource supports direct queries.
Valid values are true and false. The default value is false.

• max-results – Specifies how many results are returned to the
client. Note that this attribute does not limit the number of entries that
are returned from a cache. This value overrides the <resource>
element's max-results attribute.

• engine – Specifies a query engine implementation that is
responsible for executing query expressions against a cache. The
default value if the attribute is not specified is DEFAULT, which
indicates a query expression must be specified as a URL-encoded
CohQL expression (the predicate part of CohQL). See query-engines.

resources
Used in: rest

Description

The resources element contains any number of resource definitions. A resource definition
provides the metadata that is used to marshall and unmarshall cache entries.

Elements

Table A-11 describes the subelements of the resources element.

Table A-11 resources Subelements

Element Required/ Optional Description

<resource> Required Specifies a single binding between a cache name and cache entry key
and value classes.

rest
root element

Description

The rest element is the root element of the coherence-rest-config.xml file which is used to
configure the Coherence REST implementation. The implementation uses REST Web services
to allow remote clients to access data in the cluster over HTTP and does not require the use of
POF serialization.

Appendix A
REST Configuration Element Reference

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-7 of A-8

Elements

Table A-12 describes the subelements of each rest element.

Table A-12 rest Subelements

Element Required/ Optional Description

<resources> Optional Specifies any number of resource definitions that provide the metadata
that is used to marshall and unmarshall cache entries.

<processors> Optional Specifies any number of custom processor definitions that are used to
process data in a cache.

<aggregators> Optional Specifies any number of custom aggregator definitions that are used to
aggregate data in a cache.

<query-engines> Optional Specifies any number of custom query engine definitions. A query engine
is responsible for executing queries.

Appendix A
REST Configuration Element Reference

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-8 of A-8

B
Integrating with F5 BIG-IP LTM

You can use the F5 BIG-IP Local Traffic Manager (LTM) hardware load balancer to balance
Coherence*Extend client connections. Instructions are also included to use the BIG-IP system
to off load SSL processing.
The instructions are specific to using the BIG-IP Configuration Utility as it pertains to
Coherence*Extend setup. Refer to the Help included with the utility for complete usage
instructions. In addition, the instructions were created based on BIG-IP LTM 10.2.1 and may
not be accurate for future releases of BIG-IP LTM.

This appendix includes the following sections:

Basic Concepts
The F5 BIG-IP LTM is a hardware device that sits between one or more computers running
Coherence*Extend clients (client tier) and one or more computers running Coherence*Extend
proxy servers (proxy tier). The LTM spreads client connections across multiple clustered proxy
servers using a broad range of techniques to secure, optimize, and load balance application
traffic.
Figure B-1 shows a conceptual view of the BIG-IP system that is setup between external
network clients and internal network servers.

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-1 of B-17

Figure B-1 Conceptual View of F5 BIG-IP LTM

Laptop Laptop Laptop

External
Network

BIG-IP LTM
Load Balancer

Server Server

Internal
Network

Creating Nodes
A node is a logical object on the BIG-IP system that identifies the IP address of a physical
resource on the network. For Coherence*Extend, configure a node for each computer on the
internal network that hosts one or more proxy servers.
To create a node:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click Nodes.

3. In the upper-right corner of the screen, click Create. The New Node screen displays.

4. For the Address setting, type the IP address of the node.

5. Specify, retain, or change each of the other settings.

6. Click Finished.

Figure B-2 shows an example node configuration.

Appendix B
Creating Nodes

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-2 of B-17

Figure B-2 Example Node Configuration

Configuring a Load Balancing Pool
A load balancing pool is a group of logical devices, such as proxy servers, that receive and
process traffic. Instead of sending client traffic to the destination IP address specified in the
client request, the BIG-IP system sends the request to any of the servers that are members of
that pool. This helps efficiently distribute the load on your server resources.
When you create a pool, you assign pool members to the pool. A pool member is a logical
object that represents a server endpoint on the network. For Coherence*Extend, create a pool
member for each proxy server JVM running on your proxy tier computers.

The specific pool member to which the BIG-IP system chooses to send the request is
determined by the load balancing method that you have assigned to that pool. A load
balancing method is an algorithm that the BIG-IP system uses to select a pool member for
processing a request. For example, the default load balancing method is Round Robin, which
causes the BIG-IP system to send each incoming request to the next available member of the
pool, thereby distributing requests evenly across the servers in the pool.

This section includes the following topics:

Appendix B
Configuring a Load Balancing Pool

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-3 of B-17

Creating a Load Balancing Pool
To create a load balancing pool:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click Pools. The
Pools screen displays.

3. In the upper-right corner of the screen, click Create. The New Pool screen displays.

4. From the Configuration list, select Advanced.

5. For the Name setting, type a name for the pool.

6. Specify, retain, or change each of the other settings.

7. Click Finished.

Figure B-3 demonstrates an example pool configuration.

Figure B-3 Example Pool Configuration

Appendix B
Configuring a Load Balancing Pool

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-4 of B-17

Adding a Load Balancing Pool Member
To add pool members to load balancing pool:

1. From the Members tab, click the number shown. This lists the existing members of the
pool.

2. In the right side of the screen, click Add. The New Pool Member screen displays.

3. In the Address box, select Node List and select an IP address.

4. In the Service Port box, type the port number on which the corresponding proxy server is
listening.

5. Retain or change each of the other settings.

6. Click Finished.

Figure B-4 shows an example pool configuration. It shows two proxy server pool members
running on the previously created node and listening on ports 7100 and 7077, respectively.
Additionally, the pool is configured to use a Least Connections load balancing policy.

Figure B-4 Example Pool Members

Appendix B
Configuring a Load Balancing Pool

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-5 of B-17

Configuring a Virtual Server
A virtual server is a traffic-management object on the BIG-IP system that is represented by an
IP address and port. Clients on an external network can send application traffic to a virtual
server, which then directs the traffic according to your configuration instructions. The main
purpose of a virtual server is often to balance traffic load across a pool of servers on an internal
network. Virtual servers increase the availability of resources for processing client requests.
For Coherence*Extend, you should configure a virtual server that directs traffic to the pool of
proxy servers that you configured earlier.
To create a virtual server:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation screen, expand Local Traffic and click Virtual
Servers. The Virtual Servers screen displays.

3. From the upper right portion of the screen, click Create. The New Virtual Server screen
displays.

4. In the Name box, type a name for the virtual server.

5. In the Destination box, assign an external IP address on the BIG-IP device and in the
Service Port box, specify a listen port. This is the IP address and port to which
Coherence*Extend clients connect.

6. From the SNAT Pool list, select Automap.

7. Select the pool created earlier in the Default Pool drop-down box.

8. Retain or change each of the other settings.

9. Click Finished.

Figure B-5 shows an example virtual configuration that listens for TCP/IP connections on
10.196.21.3:7077.

Appendix B
Configuring a Virtual Server

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-6 of B-17

Figure B-5 Example Virtual Server

Additionally, this virtual server directs traffic to the configured pool as shown in Figure B-6.

Appendix B
Configuring a Virtual Server

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-7 of B-17

Figure B-6 Example Virtual Server Using a Configured Pool

Configuring Coherence*Extend to Use BIG-IP LTM
Coherence*Extend must be configured to use a BIG-IP LTM virtual server. The configuration
must be completed both on the cluster side and the client side cache configuration files.
To configure Coherence*Extend to use BIG-IP LTM:

1. Open the proxy server's cache configuration file.

2. Edit the proxy scheme definition and specify a client load balancing strategy by entering
client within the <load-balancer> element. For example:

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <load-balancer>client</load-balancer>
 <autostart>true</autostart>
</proxy-scheme>

3. Save and close the proxy server's cache configuration file. Repeat step 2 for additional
proxy servers.

4. Open the client's cache configuration file.

5. In the <remote-cache-scheme> element, list the IP address and port of the BIG-IP virtual
server. See Configuring a Virtual Server. In addition, specify a <heartbeat-interval>

Appendix B
Configuring Coherence*Extend to Use BIG-IP LTM

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-8 of B-17

element within the <outgoing-message-handler> element. This causes the client to
periodically send a heartbeat message over its TCP/IP connection at the configured time
interval. This is required to prevent the BIG-IP device from disconnecting idle clients. For
example:

<remote-cache-scheme>
 <scheme-name>extend-direct</scheme-name>
 <service-name>ExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>10.196.21.3</address>
 <port>7077</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 <heartbeat-interval>5s</heartbeat-interval>
 </outgoing-message-handler>
 </initiator-config>
</remote-cache-scheme>

6. Save and close the client's cache configuration file.

Using Advanced Health Monitoring
A health monitor helps ensure that a server is in an operational state and able to receive traffic.
The BIG-IP system contains many different preconfigured health monitors that you can
associate with pools, depending on the type of traffic you want to monitor.
For Coherence*Extend, you can use a TCP health monitor to monitor a pool of proxy servers.
This type of monitor marks a proxy server up if the BIG-IP device can establish a TCP/IP
connection with the proxy server. While this is a fairly decent indication that a proxy server is
functional, it does not guarantee that the proxy server can actually process client traffic. For
more detailed monitoring, BIG-IP enables you to create custom health monitors that send a
Coherence*Extend ping request to a proxy server and validate that an appropriate response is
returned. This ensures that the proxy server is up and able to process client traffic.

Note

BIG-IP LTM monitors do not support SSL over TCP. Health monitoring checks, such as
ping, are sent as clear text. To ensure all communication with a proxy server is secure,
use SSL offloading. For more information about these settings, see Enabling SSL
Offloading. You can also use HTTP/S health checks as described in Enabling HTTP/S
Health Monitoring.

This section includes the following topics:

Creating a Custom Health Monitor to Ping Coherence
To create a custom Coherence*Extend health monitor that sends a Coherence*Extend ping
request to a proxy server to ensure that it is operational:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click Monitors. The
Monitors screen displays.

Appendix B
Using Advanced Health Monitoring

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-9 of B-17

3. In the upper-right corner of the screen, click Create. The New Monitor screen displays.

4. Enter a name for the monitor in the Name box.

5. Select TCP in the Type drop-down box.

6. Enter the following in the Send String box:

\x07\x00\x03\x00\x00\x42\x00\x40

7. Enter the following in the Receive String box:

\x09\x00\x04\x03\x00\x42\x00\x03\x64\x40

8. Click Finished.

Figure B-7 shows an example custom Coherence*Extend health monitor configuration.

Figure B-7 Example Coherence*Extend Ping Health Monitor

Appendix B
Using Advanced Health Monitoring

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-10 of B-17

Manually Creating a Custom Health Monitor to Ping Coherence
Solutions that use BIG-IP versions prior 10.2.1 must manually configure an external health
monitor. To do so, create an executable shell script called extend_ping in the /usr/bin/
monitors directory of the BIG-IP device with the following contents:

#! /bin/bash
###
EXTERNAL MONITOR FOR COHERENCE*EXTEND
INPUTS:
$1 The IPV6 formatted IP address of the pool member to test
$2 The port number of the pool member to test
$3+ White space delimited parms as listed in the monitor "args"
OUTPUTS:
If null is returned, the member is "down"
If any string of one or more characters is returned, the member is "up"
###

IP=${1:-"127.0.0.1"}
IP=${IP##*:} # This removes the leading ::ffff:
PORT=${2:-"80"}
TIMEOUT=${3:-1}
SLEEP=${4:-1}

PID_FILE="/var/run/extend_ping.$IP.$PORT.pid"
HEX_REQUEST="0700030000420040"
HEX_RESPONSE="09000403004200036440"

###
Terminate existing process, if any
###
if [-f $PID_FILE]
then
 kill -9 `cat $PID_FILE` > /dev/null 2>&1
fi
echo "$$" > $PID_FILE

###
Ping the server and return a user friendly result
###
RESULT=`/bin/echo "$HEX_REQUEST" | /usr/bin/xxd -r -p | /usr/bin/nc -i \
 $SLEEP -w $TIMEOUT $IP $PORT | /usr/bin/xxd -p | /bin/grep \
 "$HEX_RESPONSE" 2> /dev/null`

if ["$RESULT" != ""] ; then
 /bin/echo "$IP:$PORT is \"UP\""
fi

rm -f $PID_FILE

To configure BIG-IP to use the extend_ping script:

1. From the Main tab of the navigation pane, expand Local Traffic and click Monitors. The
Monitors screen displays.

2. In the upper-right corner of the screen, click Create. The New Monitor screen displays.

3. Enter a name for the monitor in the Name box.

4. Select External in the Type drop-down box.

5. Enter the following in the External Program box:

Appendix B
Using Advanced Health Monitoring

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-11 of B-17

/usr/bin/monitors/extend_ping

6. Click Finished.

Figure B-8 shows an example external Coherence*Extend health monitor configuration.

Figure B-8 Example Coherence*Extend Health Monitor Implemented in a Shell Script

Associating a Custom Health Monitor With a Load Balancing Pool
Custom health monitors must be associated with a load balancing pool. After creating a
custom Coherence*Extend monitor, associate it with the Coherence*Extend load balancing
pool.

To associate a custom health monitor with a load balancing pool:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click Pools. The
Pools screen displays.

3. Click the name of your Coherence*Extend pool. The Pool screen displays.

4. Select the name of your custom Coherence*Extend health monitor in the Health Monitors
box.

Appendix B
Using Advanced Health Monitoring

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-12 of B-17

5. Click Update.

Figure B-9 shows a Coherence*Extend pool that uses a custom health monitor.

Figure B-9 Associating a Coherence*Extend Pool With a Custom Health Monitor

Enabling HTTP/S Health Monitoring
In certain circumstances, such as when using SSL, it is not possible to use the custom health
monitoring as described in the sections above. This is because the BIG-IP LTM monitors do
not support SSL over TCP. In this case, you can use the HTTP/S health checks as described in
Enabling HTTP Health Checks to check the health of a proxy member endpoint.

To enable the HTTP/S health monitoring on your proxy server:

1. Change the start-up class for proxy from com.tangosol.net.DefaultCacheServer to
com.tangosol.net.Coherence.

2. Choose a port for each proxy server to be the health check port. For example, port 6676.

3. Set the system properties to -Dcoherence.health.http.port=6676 (or chosen port) on
each proxy.

As the health check port does not contain any content, it is safe to use HTTP. However, if
you have enabled SSL then you must also set -

Appendix B
Using Advanced Health Monitoring

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-13 of B-17

Dcoherence.health.http.provider=sslSockerProvider to point to a SSL socket provider
in your override file.

4. Start the proxy server.

A message showing the health proxy status is displayed.
<Info> (thread=Proxy:$SYS:HealthHttpProxy:HttpAcceptor, member=1):
HttpAcceptor now listening for connections on 0:0:0:0:0:0:0:0:6676

You can then add a Monitor for HTTP/S on your F5 BIG-IP, which will use the URL http://
hostname:6676/live to check the health of each proxy server. This endpoint will return HTTP
code 200 if the endpoint is live and ready or HTTP code 503 if not.

Using SSL Offloading
Coherence*Extend can be configured to use SSL to secure communication between client and
proxy server processes. However, this confidentially comes at a price. Specifically, enabling
SSL dramatically increases CPU utilization in the proxy tier and increases the latency of each
request. BIG-IP SSL Acceleration frees up proxy servers from the difficult task of encrypting
and decrypting data secured for privacy reasons. CPU-intensive decryption is migrated onto a
high-performance device designed to handle SSL transactions more efficiently. This approach
is known as SSL offloading.
This section includes the following topics:

Enabling SSL Offloading
The following steps are required to enable SSL offloading and should be completed in the
order presented:

1. Enable SSL in the Coherence*Extend client cache configuration file. See Using SSL to
Secure Extend Client Communication in Securing Oracle Coherence.

2. Import the Server's SSL Certificate and Key

3. Create the Client SSL Profile

4. Associate the Client SSL Profile

Import the Server's SSL Certificate and Key
To import the server's SSL certificate and key to the BIG-IP system:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and hover over SSL
Certificates then select Import. The SSL Certificate screen displays.

3. From the Import Type drop-down box, select PKCS12.

4. Enter a name for the certificate in the Certificate Name box.

5. Click Choose File and browse to the server's PKCS12 file.

6. Enter the password for the PKCS12 file.

7. Click Import.

Figure B-10 shows an example server SSL certificate configuration:

Appendix B
Using SSL Offloading

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-14 of B-17

Figure B-10 Example SSL Certificate Configuration in BIG-IP System

Create the Client SSL Profile
To create the client SSL profile:

1. From the Main tab of the navigation pane, expand Local Traffic and hover over Profiles
then SSL and select Client. The Client SSL Profiles screen displays

2. In the upper-right corner of the screen, click Create. The New Client SSL profile screen
displays.

3. Enter a name for the client SSL profile in the Name box.

4. Click the Custom check box on the right.

5. Select the name of the server certificate that you imported earlier in both the Certificate
and Key drop-down boxes.

6. Click Finished.

Figure B-11 shows an example client SSL profile configuration:

Appendix B
Using SSL Offloading

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-15 of B-17

Figure B-11 Example SSL Profile Configuration

Associate the Client SSL Profile
To modify the Coherence*Extend virtual server configuration to use the client SSL profile:

1. From the Main tab of the navigation screen, expand Local Traffic and click Virtual
Servers. The Virtual Servers screen displays.

2. Click the name of the virtual server.

3. Select the name of the client SSL profile in the SSL Profile (Client) drop-down box.

4. Click Update.

Figure B-12 shows an example virtual server configuration that uses a client SSL profile:

Appendix B
Using SSL Offloading

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-16 of B-17

Figure B-12 Example Virtual Server Configuration That Includes a Client SSL Profile

Appendix B
Using SSL Offloading

Developing Remote Clients for Oracle Coherence
G25096-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix B-17 of B-17

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	Part I Getting Started with Coherence*Extend
	1 Introduction to Coherence*Extend
	Overview of Coherence*Extend
	Extend Clients
	Extend Client APIs
	POF Serialization
	Understanding Extend Client Configuration Files
	Non-Native Client Support
	REST Client Support
	Memcached Client Support

	2 Building Your First Extend Application
	Overview of the Extend Example
	Step 1: Configure the Cluster Side
	Step 2: Configure the Client Side
	Step 3: Create the Sample Client
	Step 4: Start the Cache Server Process
	Step 5: Run the Application

	3 Configuring Extend Proxies
	Overview of Configuring Extend Proxies
	Defining Extend Proxy Services
	Defining a Single Proxy Service Instance
	Defining Multiple Proxy Service Instances
	Defining Multiple Proxy Services
	Explicitly Configuring Proxy Addresses
	Disabling Cluster Service Proxies
	Specifying Read-Only NamedCache Access

	Defining Caches for Use By Extend Clients
	Disabling Storage on a Proxy Server
	Starting a Proxy Server

	4 Configuring Extend Clients
	Overview of Configuring Extend Clients
	Defining a Remote Cache
	Using a Remote Cache as a Back Cache
	Defining Remote Invocation Schemes
	Connecting to Specific Proxy Addresses
	Detecting Connection Errors
	Disabling TCMP Communication

	5 Advanced Extend Configuration
	Using Address Provider References for TCP Addresses
	Using a Custom Address Provider for TCP Addresses
	Load Balancing Connections
	Using Proxy-Based Load Balancing
	Understanding the Proxy-Based Load Balancing Default Algorithm
	Implementing a Custom Proxy-Based Load Balancing Strategy
	Using Client-Based Load Balancing

	6 Best Practices for Coherence*Extend
	Do Not Run a Near Cache on a Proxy Server
	Configure Heap NIO Space to be Equal to the Max Heap Size
	Configure Proxy Service Thread Pooling
	Understanding Proxy Service Threading
	Setting Proxy Service Thread Pooling Thresholds
	Setting an Exact Number of Threads

	Be Careful When Making InvocationService Calls
	Be Careful When Placing Collection Classes in the Cache
	Configure POF Serializers for Cache Servers
	Configuring Firewalls for Extend Clients

	Part II Creating Java Extend Clients
	Part III Creating C++ Extend Clients
	7 Introduction to Coherence C++ Clients
	Overview of Coherence for C++
	Setting Up C++ Application Builds
	Setting up the Compiler for Coherence-Based Applications
	Including Coherence Header Files
	Linking the Coherence Library
	Setting the run-time Library and Search Path
	Deploying Coherence for C++

	8 Configuration and Usage for C++ Clients
	General Instructions
	Implement the C++ Application
	Compile and Link the Application
	Configure Paths
	Obtaining a Cache Reference with C++
	Cleaning up Resources Associated with a Cache
	Configuring and Using the Coherence for C++ Client Library
	Setting the Configuration File Location with an Environment Variable
	Setting the Configuration File Location Programmatically

	Operational Configuration File (tangosol-coherence-override.xml)
	Configuring a Logger

	9 Using the Coherence C++ Object Model
	Using the Object Model
	Coherence Namespaces
	Understanding the Base Object
	Automatically Managed Memory
	Referencing Managed Objects
	Using handles
	Managed Object Instantiation

	Managed Strings
	String Instantiation
	Auto-Boxed Strings

	Type Safe Casting
	Down Casting

	Managed Arrays
	Collection Classes
	Managed Exceptions
	Object Immutability
	Integrating Existing Classes into the Object Model

	Writing New Managed Classes
	Specification-Based Managed Class Definition
	Equality, Hashing, Cloning, Immutability, and Serialization
	Threading
	Weak References
	Virtual Constructors
	Advanced Handle Types
	Thread Safety
	Synchronization and Notification
	Thread Safe Handles
	Escape Analysis
	Shared handles
	Const Correctness

	Thread-Local Allocator

	Diagnostics and Troubleshooting
	Thread-Local Allocator Logs
	Thread Dumps
	Memory Leak Detection
	Memory Corruption Detection

	Application Launcher - Sanka
	Command line syntax
	Built-in Executables
	Sample Custom Executable Class

	10 Using the Coherence for C++ Client API
	CacheFactory
	NamedCache
	QueryMap
	ObservableMap
	InvocableMap
	Filter
	Value Extractors
	Entry Processors
	Entry Aggregators

	11 Building Integration Objects (C++)
	Overview of Building Integration Objects (C++)
	POF Intrinsics
	Serialization Options
	Overview of Serialization Options
	Managed<T> (Free-Function Serialization)
	PortableObject (Self-Serialization)
	PofSerializer (External Serialization)

	Using POF Object References
	Enabling POF Object References
	Registering POF Object Identities for Circular and Nested Objects

	Registering Custom C++ Types
	Implementing a Java Version of a C++ Object
	Understanding Serialization Performance
	Using POF Annotations to Serialize Objects
	Annotating Objects for POF Serialization
	Registering POF Annotated Objects
	Enabling Automatic Indexing
	Providing a Custom Codec

	12 Querying a Cache (C++)
	Overview of Query Functionality
	Performing Simple Queries
	Understanding Query Concepts
	Performing Queries Involving Multi-Value Attributes
	Using a Chained Extractor in a Query
	Using a Query Recorder

	13 Performing Continuous Queries (C++)
	Overview of Performing Continuous Queries (C++)
	Understanding the Use Cases for Continuous Query Caching
	Understanding the Continuous Query Caching Implementation
	Defining a Continuous Query Cache
	Cleaning up Continuous Query Cache Resources
	Caching Only Keys Versus Keys and Values
	CacheValues Property and Event Listeners
	Using ReflectionExtractor with Continuous Query Caches

	Listening to a Continuous Query Cache
	Avoiding Unexpected Results
	Achieving a Stable Materialized View

	Making a Continuous Query Cache Read-Only

	14 Performing Remote Invocations (C++)
	Overview of Performing Remote Invocations (C++)
	Configuring and Using the Remote Invocation Service
	Registering Invocable Implementation Classes

	15 Using Cache Events (C++)
	Overview of Map Events (C++)
	Caches and Classes that Support Events
	Signing Up for all Events
	Using a Multiplexing Map Listener
	Configuring a MapListener for a Cache
	Signing Up for Events on Specific Identities
	Filtering Events
	Using Lite Events
	Listening to Queries
	Using Synthetic Events
	Using Backing Map Events
	Using Synchronous Event Listeners

	16 Performing Transactions (C++)
	Using the Transaction API within an Entry Processor
	Creating a Stub Class for a Transactional Entry Processor
	Registering a Transactional Entry Processor User Type
	Configuring the Cluster-Side Transactional Caches
	Configuring the Client-Side Remote Cache
	Using a Transactional Entry Processor from a C++ Client

	Part IV Creating .NET Extend Clients
	17 Introduction to Coherence .NET Clients
	Overview of Coherence for .NET
	Configuration and Usage for .NET Clients
	General Instructions
	Configuring Coherence*Extend for .NET
	Obtaining a Cache Reference with .NET
	Cleaning Up Resources Associated with a Cache

	18 Building Integration Objects (.NET)
	Overview of Building Integration Objects (.NET)
	Creating an IPortableObject Implementation
	Implementing a Java Version of a .NET Object
	Creating a PortableObject Implementation (Java)

	Registering Custom Types on the .NET Client
	Registering Custom Types in the Cluster
	Evolvable Portable User Types
	Making Types Portable Without Modification
	Using POF Object References
	Enabling POF Object References
	Registering POF Object Identities for Circular and Nested Objects

	Using POF Annotations to Serialize Objects
	Annotating Objects for POF Serialization
	Registering POF Annotated Objects
	Enabling Automatic Indexing
	Providing a Custom Codec

	19 Using the Coherence .NET Client Library
	Setting Up the Coherence .NET Client Library
	Using the Coherence .NET APIs
	IConfigurableCacheFactory
	DefaultConfigurableCacheFactory
	Logger
	Using the Common.Logging Library
	INamedCache
	IQueryCache
	QueryRecorder
	IObservableCache
	Responding to Cache Events

	IInvocableCache
	Filters
	Value Extractors
	Entry Processors
	Entry Aggregators

	Configuring .NET Clients Programmatically

	20 Performing Continuous Queries (.NET)
	Overview of Performing Continuous Queries (.NET)
	Understanding Use Cases for Continuous Query Caching
	Understanding the Continuous Query Caching Implementation
	Constructing a Continuous Query Cache
	Cleaning Up Continuous Query Cache Resources
	Caching Only Keys Versus Keys and Values
	Listening to a Continuous Query Cache
	Achieving a Stable Materialized View
	Support for Synchronous and Asynchronous Listeners

	Making a Continuous Query Cache Read-Only

	21 Performing Remote Invocations (.NET)
	Overview of Performing Remote Invocations
	Configuring and Using the Remote Invocation Service

	22 Performing Transactions (.NET)
	Using the Transaction API within an Entry Processor
	Creating a Stub Class for a Transactional Entry Processor
	Registering a Transactional Entry Processor User Type
	Configuring the Cluster-Side Transactional Caches
	Configuring the Client-Side Remote Cache
	Using a Transactional Entry Processor from a .NET Client

	23 Managing ASP.NET Session State
	Overview of ASP.NET Session State
	Setting Up Coherence ASP.NET Session Management
	Configure Coherence Clusters for ASP.NET Session Management
	Configure ASP.NET Applications

	Selecting a Session Model
	Overview of Session Models
	Specify the Session Model

	Sharing ASP.NET Session State Across Applications
	Advanced Configuration
	Registering the Event Interceptors

	Part V Getting Started with gRPC
	24 Introduction to gRPC
	25 Using the Coherence gRPC Proxy Server
	Setting Up the Coherence gRPC Proxy Server
	Starting the Server

	Configuring the Server
	Configuring the Server Listen Address
	Configuring the Server Listen Port
	Configuring SSL/TLS
	Configuring the Server Thread Pool
	Setting the Minimum Thread Count
	Setting the Maximum Thread Count

	Disabling the gRPC Proxy Server
	Deploying the Proxy Service with Helidon Microprofile gRPC Server

	26 Using the Coherence Java gRPC Client
	Setting Up the Coherence gRPC Client
	Configuring the Coherence gRPC Client
	Overview of Configuring gRPC Clients
	Defining a Remote gRPC Cache
	Configuring the NameService Endpoints
	Configuring the Fixed Endpoints
	Configuring SSL
	Configuring the Client Thread Pool

	Accessing Coherence Resources
	Using a Remote gRPC Cache As a Back Cache

	27 Using the JavaScript, Python, and Go gRPC Clients

	Part VI Using Coherence REST
	28 Introduction to Coherence REST
	Overview of Coherence REST
	Dependencies for Coherence REST
	Overview of Configuration for Coherence REST
	Understanding Data Format Support
	Using XML as the Data Format
	Using JSON as the Data Format

	Authenticating and Authorizing Coherence REST Clients

	29 Building Your First Coherence REST Application
	Overview of the Basic Coherence REST Example
	Prerequisites
	Step 1: Configure the Cluster Side
	Step 2: Create a User Type
	Step 3: Configure REST Services
	Step 4: Start the Cache Server Process
	Step 5: Access REST Services From a Client

	30 Performing Grid Operations with REST
	Specifying Key and Value Types
	Performing Single-Object REST Operations
	Performing Multi-Object REST Operations
	Performing Partial-Object REST Operations
	Performing Queries with REST
	Using Direct Queries
	Using Named Queries
	Specifying a Query Sort Order
	Limiting Query Result Size
	Retrieving Only Keys
	Using Custom Query Engines
	Implementing Custom Query Engines
	Enabling Custom Query Engines

	Performing Aggregations with REST
	Aggregation Syntax for REST
	Listing of Pre-Defined Aggregators
	Creating Custom Aggregators

	Performing Entry Processing with REST
	Entry Processor Syntax for REST
	Listing of Pre-defined Entry Processors
	Creating Custom Entry Processors

	Understanding Concurrency Control
	Specifying Cache Aliases
	Using Server-Sent Events
	Receiving Server-Sent Events

	31 Deploying Coherence REST
	Deploying with the Embedded HTTP Server
	Deploying to WebLogic Server
	Task 1: Configure a WebLogic Server Domain for Coherence REST
	Task 2: Package the Coherence REST Web Application
	Task 3: Package the Coherence Application
	Task 4: Package the Enterprise Application
	Task 5: Deploy the Enterprise Application

	Deploying to a Jakarta EE Server (Generic)
	Packaging Coherence REST for Deployment
	Deploying to a Servlet Container

	Configuring REST Server Access to POF-Enabled Services

	32 Modifying the Default REST Implementation
	Using the Pass-Through Resource
	Using Custom Providers and Resources
	Changing the Embedded HTTP Server
	Using Netty HTTP Server

	A REST Configuration Elements
	REST Configuration File
	REST Configuration Element Reference
	REST Configuration Element Index
	aggregator
	aggregators
	engine
	marshaller
	processor
	processors
	query
	query-engines
	resource
	resources
	rest

	B Integrating with F5 BIG-IP LTM
	Basic Concepts
	Creating Nodes
	Configuring a Load Balancing Pool
	Creating a Load Balancing Pool
	Adding a Load Balancing Pool Member

	Configuring a Virtual Server
	Configuring Coherence*Extend to Use BIG-IP LTM
	Using Advanced Health Monitoring
	Creating a Custom Health Monitor to Ping Coherence
	Manually Creating a Custom Health Monitor to Ping Coherence
	Associating a Custom Health Monitor With a Load Balancing Pool
	Enabling HTTP/S Health Monitoring

	Using SSL Offloading
	Enabling SSL Offloading
	Import the Server's SSL Certificate and Key
	Create the Client SSL Profile
	Associate the Client SSL Profile

