Oracle® Fusion Middleware
Integrating Oracle Coherence

15.1.1.0.0
(G25896-01
October 2025

ORACLE"

Oracle Fusion Middleware Integrating Oracle Coherence, 15.1.1.0.0
G25896-01

Copyright © 2008, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience

Documentation Accessibility
Diversity and Inclusion
Related Documents
Conventions

1 Using JPA with Coherence

Overview of the JPA CacheStore and CachelLoader Implementations
Obtaining a JPA Provider Implementation
Configuring a Coherence JPA Cache Store

Mapping the Persistent Classes

Configuring JPA

Configuring a Coherence Cache for JPA

Configuring the Persistence Unit

2 Integrating with Oracle Coherence GoldenGate HotCache

g W W W N N -

About Oracle Coherence GoldenGate HotCache
How Does HotCache Work
Overview of How HotCache Works
How the GoldenGate Java Delivery Adapter Uses JPA Mapping Metadata
Supported Database Operations
JPA Relationship Support
Prerequisites
Configuring GoldenGate
Monitor Table Changes
Filter Changes Made by the Current User
Configuring HotCache
Create a Properties File with GoldenGate for Java Properties
Add JVM Boot Options to the Properties File
Java Classpath Files
HotCache-related Properties

Integrating Oracle Coherence
G25896-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

© © 0 N N O o O 0o W W N

e
[SN SN

October 6, 2025
Page i of iii

Coherence-related Properties 12
Logging Properties 12
Provide Coherence*Extend Connection Information 12
Configuring the GoldenGate Big Data Java Delivery Adapter 13
Edit the HotCache Replicat Parameter File 13
Configuring the Coherence Cache Servers 14
Using Portable Object Format with HotCache 14
Configuring HotCache JPA Properties 15
EnableUpsert Property 16
HonorRedundantinsert Property 16
SyntheticEvent Property 17
eclipselink.cache.shared.default Property 17
Warming Caches with HotCache 17
Create and Run an Initial Load Extract 18
Create and Run a Cache Warmer Replicat 18
Capturing Changed Data While Warming Caches 19
Implementing High Availability for HotCache 20
Support for Oracle Data Types 20
Support for SDO_GEOMETRY 21
Support for XMLType 22
Configuring Multi-Threading in HotCache 22
Managing HotCache 24
CoherenceAdapterMXBean 24
Understanding the HotCache Report 25
Monitoring HotCache Using the Coherence VisualVM Plug-In 27
3 Integrating Hibernate and Coherence
4 Integrating Coherence Applications with Coherence*Web
Merging Coherence Cache and Session Information 1
5 Using Memcached Clients with Oracle Coherence
Overview of the Oracle Coherence Memcached Adapter 1
Setting Up the Memcached Adapter 2
Define the Memcached Adapter Socket Address 2
Define Memcached Adapter Proxy Service 2
Connecting to the Memcached Adapter 3
Securing Memcached Client Communication 4
Performing Memcached Client Authentication 4

Integrating Oracle Coherence
G25896-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of iii

Performing Memcached Client Authorization

Sharing Data Between Memcached and Coherence Clients
Configuring POF for Memcached Clients
Create a Memcached Client that Uses POF

o o1 o1 O

6 Integrating Spring with Coherence

7 Integrating Micronaut with Coherence

8 Using Kubernetes with Coherence

O Using Coherence MicroProfile Configuration

Enabling the Use of Coherence MicroProfile Configuration
Configuring Coherence Using MP Configuration
Using Coherence Cache as a Configuration Source

AW R R

Examples Using Helidon MicroProfile with Coherence

10 Using Coherence MicroProfile Health

Enabling the Use of Coherence MP Health 1

11 Using Coherence MicroProfile Metrics

Enabling the Use of Coherence MP Metrics
Coherence Global Tags

12 Enabling ECID in Coherence Logs

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page iii of iii

ORACLE’

Preface

Audience

Integrating Oracle Coherence describes how to integrate Oracle Coherence with
Coherence*Web, EclipseLink JPA, Hibernate, Spring, memcached adapters, and Coherence
GoldenGate HotCache.

This preface includes the following sections:

This guide is for software developers and architects who will be integrating Coherence with
TopLink-Grid, JPA, Hibernate, Spring, memcached adapters, and Coherence GoldenGate
HotCache.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at ht t ps: // www. oracl e. conf corporat e/ accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit htt ps: // support . oracl e. coni portal / or visit Oracl e
Accessibility Learning and Support if you are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents

For more information about Oracle Coherence, see the following:
e Installing Oracle Coherence

* Release Notes for Oracle Coherence

* Managing Oracle Coherence

* Developing Applications with Oracle Coherence

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page i of ii

https://www.oracle.com/corporate/accessibility/
https://support.oracle.com/portal/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

ORACLE’

Preface

» Developing Oracle Coherence Applications for Oracle WebLogic Server

e Securing Oracle Coherence

* Integrating Oracle Coherence

* Administering HTTP Session Management with Oracle Coherence*Web

» Developing Remote Clients for Oracle Coherence

e Java API Reference for Oracle Coherence

* C++ API Reference for Oracle Coherence

* .NET API Reference for Oracle Coherence

* REST API for Managing Oracle Coherence

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in

examples, text that appears on the screen, or text that you enter.

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page ii of ii

Using JPA with Coherence

Coherence provides native, entity-based implementations of the CacheSt or e and CachelLoader
interfaces that use the Jakarta Persistence (JPA) to load and store objects to a database.
Before using JPA with Coherence, you should be familiar with the CacheSt or e and
CachelLoader interfaces. These interfaces are used to cache data sources. See Caching Data
Sources.

® Note

Only resource-local and bootstrapped entity managers can be used with Coherence
and JPA. Container-managed entity managers and those that use Jakarta
Transactions (JTA) are not currently supported.

@® Note

Coherence 15.1.1.0 requires Jakarta Persistence (JPA) 3 or later. All APIs are moved
from the j avax. * package to the j akart a. * package. All properties containing j avax
as part of the name, are renamed the way that j avax is replaced with j akart a. See
the Jakarta Persistence Specification 3 for details.

This chapter includes the following sections:

Overview of the JPA CacheStore and CacheLoader
Implementations

Oracle Coherence provides two implementations of the CacheSt or e and CacheLoader
interfaces which can be used with JPA: a generic JPA implementation and an EclipseLink-
specific implementation. For both implementations, the entities must be mapped to the data
store and a JPA persistence unit configuration must exist. A JPA persistence unit is defined as
a logical grouping of user-defined entity classes that can be persisted and their settings. The
JPA run-time configuration file, per si st ence. xnl , and the default JPA Object-Relational
mapping file, orm xm , are typically provided as part of a JPA solution.

@® Note

As of Coherence 15.1.1.0, classes JpaCacheSt or e and JpaCachelLoader are moved
from the package com oracl e. t opl i nk. j pa to com or acl e. coher ence. j pa.

Table 1-1 describes the JPA implementations provided by Coherence.

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE’

Chapter 1
Obtaining a JPA Provider Implementation

Table 1-1 JPA-Related CacheStore and CacheLoader API Included with Coherence
]

Class Name Location

Description

JpaCacheStore COHERENCE_HOME\ | i b\ cohe

rence-jpa.jar

JpaCachelLoader

A JPA implementation of the Coherence CachesSt or e
interface. Use this class as a full load and store
implementation. It can use any JPA implementation to load
and store entities to and from a data store.

Note: The persistence unit is assumed to be set to use
RESOURCE_LOCAL transactions.

A JPA implementation of the Coherence CachelLoader
interface. Use this class as a load-only implementation. It can
use any JPA implementation to load entities from a data
store.

Use the JpaCacheSt or e class for a full load and store
implementation.

Ecl i pseLi nkJPACacheSt or ORACLE HOVE\ or acl e_comm
e on\ nodul es\ oracl e. topli
nk\toplink-grid.jar

Ecl i pseLi nkJPACachelLoad
er

An EclipseLink specific JPA implementation of the
Coherence CacheSt or e interface. This implementation is
intended to be used where the application uses Coherence
directly and the cache store and loader is used behind the
scene to persist and load data.

Note: To use this implementation, make sure no cache
interceptors or query redirectors from the EclipseLink-
Coherence integration are set within the persistence unit for
the specific class.

An EclipseLink specific JPA implementation of the
Coherence CachelLoader interface.

Note: To use this implementation, make sure no cache
interceptors or query redirectors from the EclipseLink-
Coherence integration are set within the persistence unit for
the specific class.

Obtaining a JPA Provider Implementation

A JPA provider allows you to work directly with Java objects, rather then with SQL statements.
You map, store, update and retrieve data, and the provider performs the translation between

database entities and Java objects.

Oracle recommends using EclipseLink JPA— the reference implementation for the JPA 3
specification and also the JPA provider used in Oracle TopLink. EclipseLink provides a high-
performance JPA implementation with many advanced features for caching, threading, and

overall performance.

The EclipseLink JAR files (ecl i psel i nk. j ar) is included in the Coherence installation and can
be found in the ORACLE_HOVE\ or acl e_common\ modul es\ or acl e. t opl i nk folder.

Configuring a Coherence JPA Cache Store

Using JPA with Coherence requires configuring persistence properties and defining a cache
that uses the JpaCacheSt or e implementation.

This section includes the following topics:

Integrating Oracle Coherence
G25896-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 5

ORACLE Chapter 1
Configuring a Coherence JPA Cache Store

Mapping the Persistent Classes

Map the entity classes to the database. This will allow you to load and store objects through
the JPA cache store. JPA mappings are standard, and can be specified in the same way for all
JPA providers.

You can map entities either by annotating the entity classes or by adding an orm xnl or other
XML mapping file. See the JPA provider documentation for more information about how to map
JPA entities.

Configuring JPA

Edit the persi stence. xm file to create the JPA configuration. This file contains the properties
that dictate run-time operation.

Set the transaction type to RESOURCE_LOCAL and provide the required JDBC properties for your
JPA provider (such as dri ver, url, user, and passwor d) with the appropriate values for
connecting and logging into your database. List the classes that are mapped using JPA
annotations in <cl ass> elements. Example 1-1 illustrates a sample per si st ence. xn file with
the typical properties that you can set.

Example 1-1 Sample persistence.xml File for JPA

<persi stence xm ns:xsi="http://wwmv w3. org/ 2001/ XM_Schemai nst ance" version="1.0"
xm ns="http://java. sun. com xn / ns/ persi stence" >
<persi stence-unit name="EnpUnit" transaction-type="RESOURCE_LOCAL" >
<provi der >
org. eclipse. persi stence. | pa. Persi stenceProvi der
</ provi der >
<cl ass>com or acl e. coher ence. handson. Enpl oyee</ cl ass>
<properties>
<property name="eclipselink.jdbc.driver"
val ue="oracl e.jdbc. Oracl eDriver"/>
<property nanme="eclipselink.jdbc.url"
val ue="j dbc: oracl e: thi n;: @ocal host: 1521: XE"/ >
<property name="eclipselink.jdbc.user" value="scott"/>
<property name="eclipselink.|dbc. password" val ue="tiger"/>
</ properties>
</ persi st ence- uni t>
</ persi st ence>

Configuring a Coherence Cache for JPA

Create a coher ence- cache-confi g. xn file to override the default Coherence settings and
define a caching scheme. The caching scheme includes a <cachest or e- scheme> element that
lists the JPA implementation class and includes the following parameters.

* The entity name of the entity being stored. Unless it is explicitly overridden in JPA, this is
the unqualified name of the entity class. Example 1-2 uses the built-in Coherence macro
{cache-nane} that translates to the name of the cache that is constructing and using the
cache store. This works because a separate cache must be used for each type of
persistent entity and Coherence ensures that the name of each cache is set to the name of
the entity that is being stored in it.

e The fully qualified name of the entity class. If the classes are all in the same package and
use the default JPA entity names, then you can again use the { cache- nane} macro for the

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE

Chapter 1
Configuring a Coherence JPA Cache Store

part that is variable across the different entity types. In this way, the same caching scheme
can be used for all of the entities that are cached within the same persistence unit.

The persistence unit name. This should be the same as the name specified in the
per si stence. xn file.

The various named caches are then directed to use the JPA caching scheme. Example 1-2 is a
sample coher ence- cache-config. xn file that defines a cache named Enpl oyee that caches
instances of the Enpl oyee class. The cache is configured to use the JpaCacheSt ore
implementation. To define additional entity caches for more classes, add more <cache-

mappi ng> elements to the file.

Example 1-2 Assighing Named Caches to a JPA Caching Scheme

<cache-confi g>
<cachi ng- scheme- mappi ng>

<cache- mappi ng>
<I-- Set the name of the cache to be the entity name. -->
<cache- name>Enpl oyee</ cache- nane>
<l-- Configure this cache to use the foll owi ng defined scheme. -->
<scheme- nane>j pa- di stri but ed</ schene- nanme>
</ cache- mappi ng>

</ cachi ng- schene- mappi ng>
<cachi ng- schemes>

<di st ri but ed- schene>
<scheme- nane>j pa- di stri but ed</ schene- name>
<servi ce-name>Jpabi stri but edCache</ servi ce- name>
<backi ng- map- schene>
<read-write-backi ng- map- schene>
<i nternal - cache- schene>
<l ocal - schene/ >
</internal - cache- schene>
<I'- Define the cache schene. -->
<cachest or e- scheme>
<cl ass-schenme>
<cl ass- name>
com t angosol . coher ence. j pa. JpaCacheSt or e
</ cl ass- nane>
<init-paranms>

<I-- This paramis the entity name. -->
<init-paranp
<paramtype>j ava. | ang. String</ paramtype>
<par am val ue>{ cache- nane} </ par am val ue>
<linit-paranp

<I-- This paramis the fully qualified entity class. -->
<init-paranp

<paramtype>j ava. | ang. String</ paramtype>

<param val ue>com acne. { cache- nane} </ par am val ue>
<linit-paranr

<l-- This param should match the value of the -->

<l-- persistence unit name in persistence.xm. -->

<init-paranp
<paramtype>j ava. | ang. String</ paramtype>
<par am val ue>EnpUni t </ par am val ue>

<linit-paranr

</init-parans>
</ cl ass-scheme>
</ cachest or e- scheme>
</read-write-backi ng- map- scheme>

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE Chapter 1
Configuring a Coherence JPA Cache Store

</ backi ng- map- schene>
</ di stri but ed- scheme>
</ cachi ng- schenes>
</ cache-confi g>

Configuring the Persistence Unit

When using a JPA cache store or loader implementation, configure the persistence unit to
ensure that no changes are made to entities when they are inserted or updated. Any changes
made to entities by the JPA provider are not reflected in the Coherence cache. This means that
the entity in the cache will not match the database contents. In particular, entities should not
use ID generation, for example, @sener at edVal ue, to obtain an ID. IDs should be assigned in
application code before an object is put into Coherence. The ID is typically the key under which
the entity is stored in Coherence.

Optimistic locking (for example, @/er si on) should not be used because it might lead to the
failure of a database transaction commit transaction.

When using a JPA cache store or loader implementation, L2 (shared) caching should be
disabled in your persistence unit. See the documentation for your provider. In EclipseLink, this
can be specified on an individual entity with @ache(shar ed=f al se) or as the default in the
per si stence. xnl file with the following property:

<property name="eclipselink.cache. shared. default" val ue="fal se"/>

Integrating Oracle Coherence
G25896-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 5 of 5

Integrating with Oracle Coherence
GoldenGate HotCache

Applications that use Coherence caches can leverage the Oracle Coherence GoldenGate
HotCache (HotCache) integration to allow external changes to a database to be propagated to
objects in Coherence caches.

A detailed description of Oracle GoldenGate is beyond the scope of this documentation. If you
are new to GoldenGate, install the appropriate Oracle GoldenGate for your database
environment. See the GoldenGate documentation library at Oracle GoldenGate for Big Data
21c.

In addition, see the following documents:

e Preparing the Database for Oracle GoldenGate in Using Oracle GoldenGate with Oracle
Database.

e Installing Oracle GoldenGate Classic for Big Data in Installing and Upgrading Oracle
GoldenGate for Big Data.

e Oracle GoldenGate Java Delivery in Administering Oracle GoldenGate for Big Data.

e Configuring Java Delivery in Oracle GoldenGate for Big Data 21c.

@® Note

To use HotCache, you must have licenses for Oracle GoldenGate and Coherence Grid
Edition. A HotCache Extend Client can be used with Oracle GoldenGate for Big Data
12c¢/19c and run with Java 8. For a HotCache client running as a cluster member, the
cluster member must run with Java 17 or higher. The minimum release of Oracle
GoldenGate for Big Data that is certified to run with Java 17 is 21.11.0.0.0. Oracle
recommends that you use the latest available patch. Examples of configuring Oracle
GoldenGate scripts and properties in this chapter refer to Oracle GoldenGate for
Oracle Database and Oracle GoldenGate for Big Data 21c.

@ Note
e Coherence 15.1.1.0.0 minimally requires Jakarta Persistence (JPA) 3.
» All JPA references in this chapter refer to Jakarta Persistence.

e All APIs are moved from the j avax. * package to the j akart a. * package. All
properties containing j avax as part of the name, are renamed the way that j avax
is replaced with j akart a. See the Jakarta Persistence Specification 3 for details.

» All EclipseLink references in this chapter refer to the EclipseLink version that is a
Jakarta Persistence 3 provider.

This chapter includes the following sections:

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 28

https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/index.html
https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/index.html
https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/gbdin/configuring-java-delivery.html#GUID-237540A3-2A05-47D8-99BB-7EA93A0D005D

ORACLE’

Chapter 2
About Oracle Coherence GoldenGate HotCache

About Oracle Coherence GoldenGate HotCache

Third-party updates to the database can cause Coherence applications to work with data which
could be stale and out-of-date. HotCache solves this problem by monitoring the database and
pushing any changes into the Coherence cache. HotCache employs an efficient push model
which processes only stale data. Low latency is assured because the data is pushed when the
change occurs in the database.

HotCache can be added to any Coherence application. Standard Jakarta Persistence (JPA) is
used to capture the mappings from database data to Java objects. The configuration can be
captured in XML exclusively or in XML with annotations.

The following scenario describes how HotCache could be used to work with the database and
with applications that use Coherence caches. Figure 2-1 illustrates the scenario.

1.

Start GoldenGate Extract, also referred to as Capture. GoldenGate monitors the
transaction log for changes of interest. These changes will be placed into a "trail file". See
GoldenGate Extract in the Oracle GoldenGate Microservices Documentation.

Start the Coherence cache server and warm the cache, if required.

Start HotCache so that it can propagate changes in the trail file into the cache. If changes
occur during cache warming, then they will be applied to the cache once HotCache is
started so no changes are lost.

Start an application client. As part of its operation, assume that the application performs
repeated queries on the cache.

A third-party application performs a direct database update.

GoldenGate detects the database change which is then propagated to the Coherence
cache by HotCache.

The application client detects the change in cache.

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 2 of 28

ORACLE Chapter 2
How Does HotCache Work

Figure 2-1 How HotCache Propagates Database Changes to the Cache

(7 ©
=

L —

D
&
ol ad o
< —0— Query — @ Put I::

pu - Y
Application Coherence Coherence
Client T GoldenGate
Put HotCache

e 6

3rd Party Cache GoldenGate
Application Warmer Java Client
Query Event
|

| o

‘l |
y
Insert — @ <— Monitor — n

Database GoldenGate

How Does HotCache Work

Before implementing a HotCache solution, take some time to understand HotCache
fundamentals and supported features.
This section includes the following topics:

Overview of How HotCache Works

HotCache processes database change events delivered by GoldenGate and maps those
changes onto the affected objects in the Coherence cache. It is able to do this through the use
of Jakarta Persistence (JPA) mapping metadata. JPA is the Java standard for object-relational
mapping in Java and it defines a set of annotations (and corresponding XML) that describe
how Java objects are mapped to relational tables. As Example 2-1 illustrates, instances of an
Enpl oyee class could be mapped to rows in an EMPLOYEE table with the following annotations.

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 3 of 28

ORACLE

Chapter 2
How Does HotCache Work

@® Note

The Jakarta Persistence annotations, referenced in the following Example 2-1 and 2-2,
are from the package j akart a. persi st ence.

Example 2-1 Mapping Instances of Employee Class to Rows with Java Code

@ntity
@abl e(name="EMPLOYEE")
Public class Enpl oyee {
@d
@ol um(name="1D")
private int id;
@ol um(nanme=""Fl RSTNAME")
private String firstNaneg;

The @ntity annotation marks the Enpl oyee class as being persistent and the @ d annotation
identifies the i d field as containing its primary key. In the case of Coherence cached objects,
the @d field must also be the key under which the object is cached. The @abl e and @ol um
annotations associate the class with a named table and a field with a named column,
respectively.

For simplification, JPA assumes a number of default mappings such as t abl e name=cl ass
name and col um nane=fi el d nane so many mappings need only be specified when the
defaults are not correct. In Example 2-1, both the table and field names match the Java names
so the @abl e and @ol umm can be removed to make the code more compact, as illustrated in

Example 2-2.

Example 2-2 Simplified Java Code for Mapping Instances of Employee Class to Rows

@ntity
Public class Enployee {
@d
private int id;
private String firstNang;

Note that the Java code in the previous examples can also be expressed as XML. Example 2-3
illustrates the XML equivalent of the Java code in Example 2-1.

Example 2-3 Mapping Instances of Employee Class to Rows with XML

<entity class="Enpl oyee">
<t abl e nanme="EMPLOYEE"/ >
<attributes>

<id name="id">
<col um nane="1D"/>

<[id>

<basi ¢ name="first Name"/>
<col um name="Fl RSTNAME" / >

</ basi c>

</attributes>
<lentity>

Similarly, Example 2-4 illustrates the XML equivalent for the simplified Java code in
Example 2-2.

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 4 of 28

ORACLE

Chapter 2
How Does HotCache Work

Example 2-4 Simplified XML for Mapping Instances of Employee Class to Rows

<entity class="Enpl oyee">
<attributes>
<id name="id"/>
<basi ¢ nane="firstName"/>

</attributes>
<lentity>

How the GoldenGate Java Delivery Adapter Uses JPA Mapping Metadata

JPA mapping metadata provides mappings from object to relational; however, it also provides
the inverse relational to object mappings which HotCache can use. Given the Enpl oyee
example, consider an update to the FI RSTNAME column of a row in the EMPLOYEE table.

Figure 2-2 illustrates the EMPLOYEE table before the update, where the first name John is
associated with employee ID 1, and the EMPLOYEE table after the update where first name Bob
is associated with employee ID 1.

Figure 2-2 EMPLOYEE Table Before and After an Update

Before:

ID FIRSTNAME ..

1 | lohn

After:

ID FIRSTNAME ..

With GoldenGate monitoring changes to the EMPLOYEE table and HotCache configured on the
appropriate trail file, the adapter processes an event indicating the FI RSTNAVE column of the
EMPLOYEE row with primary key 1 has been changed to Bob. The adapter will use the JPA
mapping metadata to first identify the class associated with the EMPLOYEE table, Enpl oyee, and
then determine the column associated with an Enpl oyee's ID field, | D. With this information, the
adapter can extract the ID column value from the change event and update the fi r st Nane field
(associated with the FI RSTNAME column) of the Enpl oyee cached under the | D column value.

Supported Database Operations

Database | NSERT, UPDATE, and DELETE operations are supported by the GoldenGate Java
Delivery Adapter. | NSERT operations into a mapped table result in the addition of a new

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 5 of 28

ORACLE

Chapter 2
Prerequisites

instance of the associated class populated with the data from the newly inserted row. Changes
applied through an UPDATE operation are propagated to the corresponding cached object. If the
cache does not contain an object corresponding to the updated row, then the cache is
unchanged by default. To change the default behavior, see EnableUpsert Property. A DELETE
operation results in the removal of the corresponding object from the cache, if one exists.

JPA Relationship Support

HotCache does not support the JPA relationship mappings one-to-one, one-to-many, many-to-
one, and many-to-many. However HotCache does support JPA embeddable classes and JPA
element collections. Embeddable classes and element collections can be used with HotCache
to model relationships between domain objects. Domain objects used with HotCache may also
refer to each other by an identifier (analogous to foreign keys in a relational database).

As a performance optimization, when using JPA element collections with HotCache, it is
suggested to configure GoldenGate with an ADD TRANDATA command specifying the column in
the element collection table that is the foreign key to the parent table. The optimization allows
HotCache to efficiently find the cache entry to update when a row in the element collection
table changes.

Prerequisites

Ensure that you complete the prerequisites prior to using Oracle Coherence GoldenGate
HotCache. The instructions assume that you have set up your database to work with
GoldenGate.

Setting up a database includes:

e creating a database and tables
e granting user permissions

e enabling logging

e provisioning the tables with data

Example 2-5 illustrates a list of sample commands for the Oracle Database that creates a user
named csdenp and grants user permissions to the database.

Note the ALTER DATABASE ADD SUPPLEMENTAL LOG DATA command. When supplemental logging
is enabled, all columns are specified for extra logging. At the very least, minimal database-level
supplemental logging must be enabled for any change data capture source database. If the
values of primary key columns in a database table can change, it is important to include the
following commands for Oracle Database: ALTER DATABASE ADD SUPPLEMENTAL LOG DATA

(PRI MARY KEY) COLUMNS; and ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNI QUE)
COLUWNS; .

Example 2-5 Sample Commands to Create a User, Grant Permissions, and Enable
Logging

CREATE USER csdenp | DENTI FI ED BY csdenp;
GRANT DBA TO csdenp;

grant alter session to csdeno;

grant create session to csdeno;

grant flashback any table to csdeno;
grant select any dictionary to csdeno;
grant select any table to csdeno;

grant select any transaction to csdeno;
grant unlinited tabl espace to csdenv;

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 6 of 28

ORACLE

Chapter 2
Configuring GoldenGate

ALTER SYSTEM SET ENABLE_GOLDENGATE_REPLI CATI ON=TRUE;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

The instructions also assume that you have installed Oracle GoldenGate and started the
manager. This includes the following tasks:

e downloading and installing Oracle GoldenGate

e running ggsci to create the GoldenGate subdirectories

e creating a manager parameter (ngr. prnj file, specifying the listener port

e adding JVM libraries to the libraries path

e starting the manager

A detailed description of these tasks is beyond the scope of this documentation. See:

e Installing Oracle GoldenGate in the Oracle GoldenGate Microservices Documentation.

e Installing Oracle GoldenGate for Big Data in Installing and Upgrading Oracle GoldenGate
for Big Data.

e Configuring Oracle GoldenGate for Oracle Database in the Oracle GoldenGate
Microservices Documentation.

e Oracle GoldenGate Java Delivery in Administering Oracle GoldenGate for Big Data.

Configuring GoldenGate

Updating a cache from a GoldenGate trail file requires configuring GoldenGate and HotCache.
You then enable HotCache by configuring the GoldenGate Java Delivery.

@® Note

The sample scripts provided in this section are intended only to be introductory. For a
comprehensive list of configuration tasks, see Configuring Oracle GoldenGate for
Oracle in the Oracle GoldenGate Microservices Documentation and Getting Started
with Oracle GoldenGate (Classic) for Big Data in Using Oracle GoldenGate for Big
Data.

This section includes the following topics:

Monitor Table Changes

Indicate the table that you want to monitor for changes by using the ADD TRANDATA command.
The ADD TRANDATA command can be used on the command line or as part of a ggsci script. For
example, to monitor changes to tables in the csdenmo schema, use the following command:

ADD TRANDATA csdenm. *

Sample GoldenGate Capture ggsci Script to Monitor Table Changes illustrates a sample ggsci
script named cs- cap. ggsci .

e The script starts the manager and logs into the database. It stops and deletes any running
extract named cs- cap.

« The ADD TRANDATA command instructs the extract that tables named csdenmp* should be
monitored for changes.

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 7 of 28

ORACLE

Chapter 2
Configuring GoldenGate

e The SHELL command deletes all trail files in the di r dat directory to ensure that if the
extract is being recreated, there will be no old trail files. Note that the rm -f command is
platform-specific. An extract named cs- cap is created using parameters from the
di rprm cs- cap. pr mfile. A trail is added at di r dat/ cs from the extract cs- cap file.

e The start command starts the cs- cap. ggsci script.

e The ADD EXTRACT command automatically uses the cs- cap. pr mfile as the source of
parameters, so a PARANS di r prni cs- cap. pr m statement is not necessary.

Example 2-6 Sample GoldenGate Capture ggsci Script to Monitor Table Changes

VERS| ONS

Start nmgr

- Assunes previously ADDed USER and PASSWORD to CREDENTI ALSTORE with alias |ocal gguser
DBLOG N USERI DALI AS | ocal gguser

STOP EXTRACT cs-cap

DELETE EXTRACT cs-cap

ADD TRANDATA csdeno. *

ADD EXTRACT cs-cap, integrated tranlog, begin now
SHELL rm -f dirdat/cs*

ADD EXTTRAIL dirdat/cs, EXTRACT cs-cap

start EXTRACT cs-cap

Filter Changes Made by the Current User

Configure GoldenGate to ignore changes made by the user that the Coherence CacheStores
are logged in as. This avoids GoldenGate processing any changes made to the database by
Coherence that are already in the cache.

The TranLogOpt i ons excl udeUSER command can be used on the command line or in a ggsci
script. For example, the following command instructs GoldenGate extract process to ignore
changes to the database tables made by the Coherence CacheStore user logged in as csdeno.

TranLogOpti ons excl udeUser csdeno

Sample Extract .prm File for the GoldenGate Capture illustrates a sample extract . pr mfile
named cs- cap. prm The user that the Coherence CacheStore is logged in as is csdenn. The
EXTRAI L parameter identifies the trail as di r dat / cs. The BR BROFF parameter controls the
Bounded Recovery (BR) feature. The BROFF value turns off Bounded Recovery for the run and
for recovery. The GETUPDATEBEFORES parameter indicates that the before images of updated
columns are included in the records that are processed by Oracle GoldenGate. The TABLE
parameter identifies csdeno. * as the tables that should be monitored for changes. The
TranLogOpt i ons excl udeUSER parameter indicates that GoldenGate should ignore changes to
the tables made by the Coherence CacheStore user logged in as csdeno.

@ Note
The Qverwr i t eMbde option is not applicable in Oracle GoldenGate for Big Data.

Example 2-7 Sample Extract . pr mFile for the GoldenGate Capture

EXTRACT cs-cap

-- Assunes previously ADDed USER and PASSWORD to CREDENTI ALSTORE with alias
| ocal gguser

USERI DALI AS | ocal gguser

LOGALLSUPCOLS

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 8 of 28

ORACLE

Chapter 2
Configuring HotCache

UPDATERECORDFORMAT COMPACT

EXTTRAIL dirdat/cs

BR BROFF

get Updat eBef or es

TABLE csdenp. *;

TranLogOpti ons excl udeUser csdem --ignore changes nade by csuser

For details on available configuration options for capture, see Extract in the Oracle GoldenGate
Microservices Documentation.

Configuring HotCache

HotCache is configured with system properties, EclipseLink JPA mapping metadata, and a
Jakarta Persistence (JPA) persi stence. xnl file. See How Does HotCache Work. The
connection from HotCache to the Coherence cluster can be made by using Coherence*Extend
(TCP), or the HotCache JVM can join the Coherence cluster as a member.

The following sections describe the properties needed to configure HotCache and provide
details about connecting with Coherence*Extend:

Create a Properties File with GoldenGate for Java Properties

Create a text file with the filename extension . properti es. In the file, enter the configuration
for HotCache. A minimal configuration should contain the list of event handlers and the fully-
qualified Java class of the event handler.

@® Note

The path to the . properti es file must be set in the HotCache replicat TARGETDB
parameter in a . pr mfile, for example:

TARGETDB LI BFI LE |ibggj ava. so SET property=/hone/ oracl e/ gg/ hot cache. properties

See Edit the HotCache Replicat Parameter File.

Example 2-8 illustrates a . properti es file that contains the minimal configuration for a
HotCache project. The following properties are used in the file:

* gg. handl erli st=hot cache

The gg. handl erl i st property specifies a comma-separated list of active handlers. This
example defines the logical name hot cache as database change event handler. The name
of a handler can be defined by the user, but it must match the name used in the

gg. handl er. { name} .type property in the following bullet.

e gg. handl er. hot cache. type=[oracl e. t opl i nk. gol dengat e. Coher enceAdapt er |
oracl e. toplink. gol dengat e. Coher enceAdapt er 1220]

The gg. handl er. { nane} . t ype property defines the handler for HotCache. The { nane} field
should be replaced with the name of an event handler listed in the gg. handl er | i st
property. The only handlers that can be set for HotCache are

oracl e.toplink. gol dengat e. Coher enceAdapt er or

oracl e. toplink. gol dengat e. Coher enceAdapt er 1220. Use

oracl e.toplink. gol dengat e. Coher enceAdapt er 1220 with GoldenGate Application

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 9 of 28

ORACLE

Chapter 2
Configuring HotCache

Adapters release 12.2.0 or later. Use or acl e. t opl i nk. gol dengat e. Coher enceAdapt er
with GoldenGate Application Adapters releases earlier than 12.2.0.

* gg.classpath files
The following is a list of directories and JAR files for gg.handler(s) and their dependencies.

— coherence-hot cache. j ar - contains the Oracle Coherence GoldenGate HotCache
libraries.

— jakarta.persistence.jakarta.persistence-api.jar - contains the Jakarta
persistence libraries.

— eclipselink.jar - contains the EclipseLink libraries
— jakarta.xnl.bind-api.jar - contains the JAXB API
— jaxb-inpl.jar - contains the JAXB implementation

— jaxb-xjc.jar - contains the JAXB Binding Compiler
— jaxb-core.jar - contains the old JAXB Core module

— 0jdbcll.jar - contains the com oracl e. dat abase. j dbc module for an Oracle
database

For non-Oracle databases, use the equivalent JDK 11 certified JDBC driver . j ar for
your chosen database.

— toplink-grid.jar —contains the Oracle TopLink libraries required by HotCache.

— Domain classes — the JAR file or directory containing the user classes cached in
Coherence that are mapped with JPA for use in HotCache. Also, the Coherence
configuration files, per si st ence. xnl file, and any orm xni file.

There are many other properties that can be used to control the behavior of the GoldenGate
Java Delivery. See Java Delivery Properties in Administering Oracle GoldenGate for Big Data.

Example 2-8 .properties File for a HotCache Project

#
List of active event handlers
#
gg. handl erli st =hot cache

#
Hot Cache event handl er
#
gg. handl er. hot cache. t ype=or acl e. t opl i nk. gol dengat e. Coher enceAdapt er 1220

#
Hot Cache handl er dependency jars
#
Set gg.classpath with fol | owi ng:

persistence unit nanme, application jar(s), directory containing coherence
configuration files,

$GEBD _HOVE/ dirprm coherence.jar, coherence-hotcache, jar, eclipselink.jar,

jakarta. persistence.jakarta. persistence-api.jar, and toplink-grid.jar froma
Coher ence

installation, as well as a JDBC driver jar for your database.

gg. cl asspath=<list of jars and directories separated by OS specific classpath separator>

#
Options for HotCache JWM
#
j vm boot opti ons=- [j ava. cl ass. pat h=di r pr m ggj ava/ ggj ava. j ar - Xmx512M - Xms32M -

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 10 of 28

ORACLE

Chapter 2
Configuring HotCache

Dt opl i nk. gol dengat e. per si st ence- uni t =enpl oyee - Dcoherence. di stributed. | ocal storage=fal se
- Dcoher ence. cacheconfi g=/ hone/ or acl e/ cgga/ wor kspace/ CacheSt or eDeno/ cl i ent - cache-
config. xm

Note that if you are using a windows machine, you need to replace the : with a ; for
both gg.classpath and java. cl ass. path.

Add JVM Boot Options to the Properties File

This section describes the properties that must appear in the JVM boot options section of
the . properti es file. These options are defined by using the j vm boot opt i ons property. A
sample j vm boot opt i ons listing is illustrated in JVM boot opti ons section of Example 2-8.

This section includes the following topics:

Java Classpath Files

The following is a list of directories and JAR files that should be included in the
j ava. cl ass. pat h property.

e ggjava.jar — contains the GoldenGate Java Delivery Adapter libraries

e dirprm-the GoldenGate di r pr mdirectory

@ Note

The di r pr mdirectory is included here since it could include custom logging
properties file required for logging initialization that occurs before gg. cl asspat h is
added to classloader. This directory can be moved to gg. cl asspat h if it does not
include any logging property or jar files. See Configuring Java Delivery.

HotCache-related Properties

The t opl i nk. gol dengat e. per si st ence- uni t property is required as it identifies the
persistence unit defined in per si st ence. xn file that HotCache should load. The persistence
unit contains information such as the list of participating domain classes, configuration options,
and optionally, database connection information.

@® Note

Validate property names in the Jakarta Persistence 3 persistence file. When upgrading
a HotCache application to Coherence 15.1.1, the property names containing j avax are
renamed replacing the j avax with either j akart a or the JPA provider name that is

ecl i psel i nk in this case. See the JPA provider documentation for details.

The t opl i nk. gol dengat e. on-error property is optional. It controls how the adapter responds
to errors while processing a change event. This response applies to both expected optimistic
lock exceptions and to unexpected exceptions. This property is optional, as its value defaults to
"Refresh". Refresh causes the adapter to attempt to read the latest data for a given row from
the database and update the corresponding object in the cache. Refresh requires a database
connection to be specified in the per si st ence. xn file. This connection will be established
during initialization of HotCache. If a connection cannot be made, then an exception is thrown
and HotCache will fail to start.

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 11 of 28

ORACLE Chapter 2
Configuring HotCache

The other on-error strategies do not require a database connection. They are:

e | gnore—Log the exception only. The cache may be left with stale data. Depending on
application requirements and cache eviction policies this may be acceptable.

e Evict—Log a warning and evict the object corresponding to the change database row
from the cache

e Fai | —Throw an exception and exit HotCache

Coherence-related Properties

Any Coherence property can be passed as a system property in the Java boot options. The
coherence. di stributed. | ocal st orage system property with a value of f al se is the only
Coherence property that is required to be passed in the Java boot options. Like all Coherence
properties, precede the property name with the - D prefix in the j vm boot opt i ons statement, for
example:

- Dcoherence. di stributed. | ocal st orage=fal se

Logging Properties

To configure Java Delivery logging for Oracle GoldenGate for Big Data, see Logging Properties
in Administering Oracle GoldenGate for Big Data . In the Oracle GoldenGate for Big Data
installation directory, examples of logging properties files are available for j dk, | ogback, and

| og4j 2 under the Adapt er Exanpl es/ j ava- del i very/ sanpl e- di r pr mdirectory.

Provide Coherence*Extend Connection Information

The connection between HotCache and the Coherence cluster can be made with
Coherence*Extend. For more information on Coherence*Extend, see Developing Remote
Clients for Oracle Coherence.

The Coherence configuration files must be in a directory referenced by the gg. cl asspat h entry
in the . properti es file. For an example, see the gg. cl asspat h files.

Example 2-9 illustrates the section of a client cache configuration file that uses
Coherence*Extend to connect to the Coherence cluster. In the client cache configuration file,
Coherence*Extend is configured in the <r enot e- cache- schene> section. For additional options
for configuring a remote-cache-scheme, see Overview of Configuring Extend Clients in
Developing Remote Clients for Oracle Coherence.

Example 2-9 Coherence*Extend Section of a Client Cache Configuration File

<cache- confi g>

<cachi ng- schemes>
<r enot e- cache- schene>
<schene- nanme>Cust onRenot eCacheSchenme</ schene- name>
<servi ce- name>Cust onExt endTcpCacheSer vi ce</ servi ce- nane>
<initiator-config>
<tcp-initiator>
<renot e- addr esses>
<socket - addr ess>
<addr ess>l ocal host </ addr ess>
<port >9099</ port >
</ socket - addr ess>
</ renot e- addr esses>
</tcp-initiator>
<out goi ng- nessage- handl er >

Integrating Oracle Coherence
G25896-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 12 of 28

ORACLE’

Chapter 2
Configuring the GoldenGate Big Data Java Delivery Adapter

</ out goi ng- message- handl er >
</initiator-config>
</ renot e- cache- schene>

</ cache-confi g>

Example 2-10 illustrates the section of a server cache configuration file that listens for
Coherence*Extend connections. In the server cache configuration file, Coherence*Extend is
configured in the <pr oxy- scheme> section. By default, the listener port for Coherence*Extend is
9099.

Example 2-10 Coherence*Extend Section of a Server Cache Configuration File

<cache-confi g>
<cachi ng- schemes>

<proxy- schene>
<scheme- nane>Cust onPr oxyScheme</ scheme- nane>
<servi ce- name>Cust onPr oxySer vi ce</ servi ce- nane>
<t hr ead- count >2</ t hr ead- count >
<acceptor-confi g>
<t cp-accept or >
<l ocal - addr ess>
<addr ess>l| ocal host </ addr ess>
<port >9099</ port >
</l ocal - address>
</tcp-acceptor>
</ acceptor-config>
<l oad- bal ancer >pr oxy</ | oad- bal ancer >
<autostart>true</autostart>
</ proxy- schene>

</ cachi ng- schenes>
</ cache-confi g>

Configuring the GoldenGate Big Data Java Delivery Adapter

The GoldenGate Java Delivery Adapter provides a way to process GoldenGate data change
events in Java by configuring an event handler class.The configuration for the GoldenGate
Java Delivery Adapter allows it to monitor an a trail file and to pass data change events to
HotCache. The configuration is provided in a replicat parameter and is described in this
section.

This section includes the following topic:

Edit the HotCache Replicat Parameter File

This section describes the parameters that can be defined in the replicat . pr mfile for a
GoldenGate Big Data Java Delivery adapter. The parameters that are illustrated in
Example 2-11 constitute a minimal configuration for a HotCache project.

For details on creating a replicat parameter file, see Basic Parameters for Different Replicat
Modes in the Oracle GoldenGate Microservices Documentation.

e TARGETDB LIBFILE |ibggjava.so SET property=/hone/ oracl e/ gg/ hot cache. properties
e CGROUPTRANSCPS 1

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 13 of 28

ORACLE’

Chapter 2
Configuring the Coherence Cache Servers

The GROUPTRANSOPS parameter controls transaction grouping by the GoldenGate replicat
process. A value of 1 tells the GoldenGate replicat process to honor source database
transaction boundaries in the trail file. A value greater than 1 tells the GoldenGate replicat
process to group operations from multiple source database transactions into a single target
transaction. See GROUPTRANSOPS in Reference for Oracle GoldenGate for Windows
and UNIX.

e MP scott.*, TARGET scott.*;

The MAP parameter tells the GoldenGate replicat process how to map source database
tables to the replication target. The parameter syntax assumes the replication target is a
relational database. For HotCache it is appropriate to specify an identical mapping. See
TABLE and MAP Options in Reference for Oracle GoldenGate.

Sample .prm Parameter File for a GoldenGate Big Data Java Delivery adapter illustrates a
sample . pr mfile for a GoldenGate Big Data Java Delivery adapter.

Example 2-11 Sample .prm Parameter File for a GoldenGate Big Data Java Delivery
adapter

REPLI CAT hot cache

TARGETDB LI BFI LE |ibggj ava. so SET property=/hone/ user/ proj ect/hot cache. properties
GROUPTRANSOPS 1

Cet Updat eBef or es

MAP scott.*, TARGET scott.*,

Configuring the Coherence Cache Servers

You must modify the classpaths of all Coherence cache server JVMs that contain caches that
are refreshed by HotCache. Place the following JAR files, included in the Coherence
installation, on each cache server classpath:

e coherence-hot cache. j ar — contains the Oracle Coherence GoldenGate HotCache
libraries.

e jakarta.persistence.jakarta. persistence-api.jar — contains the Jakarta persistence
libraries.

e eclipselink.jar — contains the EclipseLink libraries.

e jakarta.xnl.bind-api.jar -contains the JAXB API.

e jaxb-inpl.jar -contains the JAXB implementation.

e jaxb-xjc.jar -contains the JAXB Binding Compiler.

* jaxb-core.jar - contains the old JAXB Core module.

e toplink-grid.jar —contains the Oracle TopLink libraries required by HotCache.

e domain classes — the JAR file or directory containing the user classes cached in
Coherence that are mapped with JPA for use in HotCache.

Using Portable Object Format with HotCache

Serialization is the process of encoding an object into a binary format. It is a critical component
to working with Coherence as data must be moved around the network. Portable Object
Format (also known as POF) is a language-agnostic binary format. POF was designed to be
very efficient in both space and time and has become a cornerstone element in working with
Coherence. POF serialization can be used with HotCache but requires a small update to the

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 14 of 28

ORACLE

Chapter 2
Configuring HotCache JPA Properties

POF configuration file (pof - confi g. xm) to allow for HotCache and TopLink Grid framework
classes to be registered.

The pof - confi g. xn file must include the coher ence- hot cache- pof - confi g. xm file and must
register the TopLi nkG i dPort abl e(hj ect user type and TopLi nkGri dSeri al i zer as the
serializer. The <t ype-i d> for each class must be unique and must match across all cluster
instances. See Registering POF Objects in Developing Applications with Oracle Coherence.

The <al | owi nt er f aces> element must be set to t r ue to allow you to register a single class for
all implementors of the TopLi nkG i dPort abl eCbj ect interface.

Example 2-12 illustrates a sample pof - confi g. xnl file for HotCache. The value
i nt eger _val ue represents a unique integer value greater than 1000.

Example 2-12 Sample POF Configuration File for HotCache

<?xm version="1.0"?>

<pof-config xm ns: xsi="http://ww.w3. org/ 2001/ XM.Schena- i nst ance"
xm ns="http://xm ns. oracl e. com coher ence/ coher ence- pof - confi g"
xsi:schenalLocation="http://xnl ns. oracl e. conf coher ence/ coher ence- pof-config
coherence- pof -config. xsd">
<user-type-list>
<i ncl ude>coher ence- hot cache- pof - confi g. xm </ i ncl ude>
<I'-- User types nust be above 1000 -->

<user-type>
<type-i d><i nt eger _val ue></type-id>
<cl ass-
nanme>or acl e. ecl i psel i nk. coherence. i nt egrat ed. cache. TopLi nkG i dPor t abl eQbj ect </ cl ass- name>
<serializer>
<cl ass-
name>or acl e. ecl i psel i nk. coherence. i nt egrat ed. cache. TopLi nkGri dSeri al i zer </ cl ass- name>
</serializer>
</ user-type>

</ user-type-list>
<allowinterfaces>true</allowinterfaces>

</ pof - confi g>

Configuring HotCache JPA Properties

You can customize HotCache using a humber of custom JPA properties that can be configured
per JPA entity type. These properties can be configured either by an @ operty annotation on
the JPA entity class or by a <property> element in the persi st ence. xn file. The latter takes
precedence in the event of conflicting configuration.

@® Note

Consult the Jakarta Persistence 3 documentation and the provider documentation for
the persi stence. xn file.

This section includes the following topics:

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 15 of 28

ORACLE

Chapter 2
Configuring HotCache JPA Properties

EnableUpsert Property

EnableUpsert

The Enabl eUpsert property controls whether HotCache inserts a cache entry when an update
operation is received in the GoldenGate trail file but no corresponding cache entry is present in
cache at the entity key. By default, HotCache ignores updates to absent entities. Set this
property to t r ue if you want HotCache to insert missing entities into the cache when update
operations are received in the trail file. The default value of this property is f al se.

Setting this property to t r ue can facilitate warming caches in an event-driven manner if it is
likely that entities will be accessed from the cache after their corresponding records are
updated in the underlying database.

® Note
There are risks to consider when using this property:

* The entity to insert is read from the database, as the trail file may not contain
values for all fields of the entity to be inserted. This can reduce the throughput of
the HotCache process by waiting on database reads.

» Cache capacity can be exhausted if more rows in the DB are updated than the
number of entities in the cache for which capacity was provisioned.

Entity Class Annotation

@roperty(name = "Enabl eUpsert”, value = "fal se", val ueType = bool ean. cl ass)

Persistence XML Property

<property name="[fully qualified entity class name].Enabl eUpsert" val ue="[true|false]"/>

HonorRedundantinsert Property

HonorRedundantinsert

The Honor Redundant | nsert property controls whether HotCache honors an insert operation in
the GoldenGate trail file when a cache entry at that key is already present. By default,
HotCache ignores a redundant insert operation. However, when a JPA entity is mapped to a
complex materialized view in Oracle Database and a row is updated in a table underlying that
materialized view (thus updating one or more rows of the materialized view), Oracle Database
inserts a new row into the materialized view with the same PK as an existing row but with a
new rowid and deletes the existing row. Therefore, HotCache sees a redundant insert
operation that really represents an update to the cached JPA entity. Users in this situation
should also consider suppressing replication of delete operations on that materialized view
through the use of GoldenGate configuration; otherwise, the cached entity is deleted by
HotCache. The default value of this property is f al se.

Entity Class Annotation

@roperty(name = "Honor RedundantInsert”, value = "fal se", val ueType = bool ean. cl ass)

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 16 of 28

ORACLE Chapter 2
Warming Caches with HotCache

Persistence XML Property

<property name="[fully qualified entity class nanme].Honor Redundant | nsert" val ue="[true|
false]"/>

SyntheticEvent Property

SyntheticEvent

The Synt heti cEvent property controls whether cache writes by HotCache are synthetic or not.
Synthetic writes to Coherence caches do not trigger events in Coherence; they do not engage
Federated Caching; and they do not call Coherence CacheSt or e implementations. Set this
property to f al se for a JPA entity class if you want cache writes by HotCache for that class to
be non-synthetic so that events are triggered, Federated Caching is engaged, and CacheSt ore
implementations are called (if any of those are configured for the entity class cache). The
default value of this property is t r ue for every entity class.

@ Note

There is a risk of infinite replication loops if the Synt het i cEvent is set to t rue for an
entity class and a CacheSt or e implementation is configured on that entity class cache
and writing to the same database HotCache is replicating to Coherence. This risk can
be mitigated by filtering transactions by database user. See Filter Changes Made by
the Current User.

Entity Class Annotation

@roperty(name = "SyntheticEvent", value = "[true|false]", valueType = bool ean. cl ass)

Persistence XML Property

<property name="[fully qualified entity class name].SyntheticEvent" val ue="[true|
false]"/>

eclipselink.cache.shared.default Property

eclipselink.cache.shared.default

The ecl i pselink. cache. shared. def aul t property is used to enable the EclipseLink internal
shared cache. It is important to disable the internal shared cache in the HotCache JVM by
setting the property to f al se in the persi stence. xn file.

Persistence XML Property

<property nanme=" eclipselink.cache.shared. default" value="fal se"/>

Warming Caches with HotCache

HotCache can be used to warm caches by loading an initial dataset. This approach eliminates
the need to write custom cache warming programs because it leverages GoldenGate and
HotCache for initial cache warming.

This section includes the following topics:

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 17 of 28

ORACLE

Chapter 2
Warming Caches with HotCache

Create and Run an Initial Load Extract

To create and run and initial load extract:

1.

Create a GoldenGate extract parameter file named i ni t | oad. pr mas shown below and
save it to GG_HOME/ di r pr m Note that the extract files cannot have filenames longer
than eight characters. A GoldenGate extract process that is run with this parameter file
selects records from the source database (as opposed to capturing changes from the
database’s transaction log) and writes them to a trail file in canonical format.

- This is an initial |oad extract initload

- SOURCEI STABLE paraneter indicates source is a table, not redo |ogs
SOURCEI STABLE

USERI D <user>, PASSWORD <passwor d>

- EXTFILE paraneter indicates path and prefix of data files

- Note: set MEGABYTES paraneter to a maxinumfile size relative

- to the anount of source data being extracted

EXTFI LE GG HOWE/ dirdat/1L, maxfiles 9999, MEGABYTES 5, PURCE

TABLE <schema>. *

Using the above extract parameters file, run a GoldenGate initial load extract process
directly from the command line as shown in the following example.

cd GG_HOMVE
extract paranfile GG HOWE/ dirprminitload. prmreportfile GG HOVE/ dirrpt/initload.rpt

After running the extract process, there will be one or more trail files named | L0001, | L0002,
etc... in the GG_HOME]/ di r dat directory. If no files are generated, then review the
GG_HOME/ dirrpt/initload.rpt file.

Create and Run a Cache Warmer Replicat

To create and run a cache warmer replicat:

1.

Create a GoldenGate replicat parameter file named war ntach. pr mas shown in the
example below. A GoldenGate replicat process that is run with this parameter file reads the
initial load dataset from the trail files. See Create and Run an Initial Load Extract.

REPLI CAT war ntach

TARCGETDB LI BFI LE |ibggj ava. so SET property=/hone/ user/ project/
war ncach. properties

MAP <schema>. *, TABLE <schema>. *

Since the replicat parameter file uses the GoldenGate Java Delivery Adapter, create a
corresponding war ncach. properti es file in GGBD_HOME/ di r pr mas shown in the
example below.

List of active event handlers
gg. handl erl i st =hot cache

Hot Cache handl er
gg. handl er. hot cache. t ype=or acl e. t opl i nk. gol dengat e. Coher enceAdapt er 1220

Options for the Hot Cache gg.classpath.

gg. cl asspat h=

Cbviously the persistence unit nane, classpath, and other

options will vary between users and environments. The gg.classpath
nust include $GGBD_HOVE/ di r prm

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 18 of 28

ORACLE

Chapter 2
Warming Caches with HotCache

coherence.jar, coherence-hotcache, jar, eclipselink.jar,

jakarta. persistence.jakarta.persistence-api.jar, and toplink-grid.jar froma
Coherence

installation, as well as a JDBC driver jar for your database, the JAXB jars listed
in the Create a Properties File with GoldenGate for Java Properties section, and jar(s) with your
cache key and val ue classes in them

and a jar with your cache key and value classes init.

Options for the HotCache JVM

Qther system properties may override Coherence operational

configuration el ements for cluster addresses and nanes,

paths to configuration files, etc. You may also wish to provide

non-default JVM heap sizes, |ogging configuration, etc.

j vm boot opt i ons=- Dj ava. cl ass. pat h=di r pr m ggj ava/ ggj ava. jar - Xmx512M - Xns32M -
Dt opl i nk. gol dengat e. per si st ence- uni t =pu_nane -

Dcoher ence. di stri but ed. | ocal st orage=f al se

Register the war ntach replicat process with the GoldenGate installation using the
GoldenGate GGSCI command-line interface as shown in the following example.

cd $GEBD_HOVE
.1 ggsci
add replicat warncach, exttrail GGEBD HOW/ dirrpt/IL

The replicat parameter file and properties file above are used by the GoldenGate war ntach
process that reads the trail files created by the initial load extract process.

Run the GoldenGate war ntach replicat process by issuing the following commands through
the GoldenGate GGSCI command-line interface.

cd $GGBD_HOME

.1 ggsci

start nogr

start replicat warntach

After the war ntach replicat process has finished running, the contents of the initial load trail
files will have been transformed into JPA entities and put into Coherence caches.

Stop and unregister the war ntach replicat, using the following GGSCI commands.

stop replicat warntach
del ete replicat warntach

Capturing Changed Data While Warming Caches

HotCache was developed to refresh Coherence caches as underlying database transactions

occur. Using HotCache for initial cache warming is an added benefit. It is possible to capture

changed data in the database while initial cache warming takes place and refresh Coherence
caches with that changed data by following a carefully sequenced procedure. The necessary
sequence of operations is as follows:

1.

Start the normal source extract process that captures change data from the database’s
redo logs, but do not start the normal HotCache replicat process that refreshes Coherence
caches with that change data.

Start the initial load extract process to select the initial data set from the database.

Run the cache warming replicat process to warm Coherence caches with the initial data
set.

Verify that the initial load has completed correctly by comparing the number of rows
extracted from the database by GoldenGate (see i ni t| oad. r pt) with the number of

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 19 of 28

ORACLE

Chapter 2
Implementing High Availability for HotCache

entries in the target Coherence caches according to Coherence MBeans or command-line
interface commands.

5. Start the normal HotCache replicat process to refresh Coherence caches with change
data.

Implementing High Availability for HotCache

HotCache is a client of Coherence cache services and invokes the services to insert, update,
or evict cache entries in response to transactions in an underlying database. As a cache client,
HotCache can be configured either as a Coherence cluster member or as a Coherence*Extend
client connecting to a Coherence proxy service in the cluster.

In best-practice deployments, Coherence cache services and proxy services are already highly
available due to redundancy of service members (for example, multiple cache server
processes and multiple proxy server processes) and due to built-in automatic failover
capabilities within Coherence. For example, if a proxy server should fail, then
Coherence*Extend clients that are using the proxy server automatically fail over to another
proxy server. Likewise, if a cache server should fail then another cache server assumes
responsibility for its data and client interactions with that data automatically redirect to the new
cache server owning the data.

Making the HotCache client itself highly available relies on standard GoldenGate HA
techniques since the HotCache JVM runs embedded in a GoldenGate process.

GoldenGate implements “single server” HA through AUTOSTART and AUTORESTART
parameters enforced by the Manager process in a GoldenGate installation. The Manager
process automatically starts registered GoldenGate processes configured with AUTOSTART. It
also detects the death of (and automatically restarts), registered GoldenGate processes
configured with AUTORESTART.

To protect against failure of the Manager process itself or the host on which it runs or the
network connecting that host, GoldenGate relies on Oracle Clusterware to detect the death of
the active GoldenGate installation and fail over to a passive GoldenGate installation.

Support for Oracle Data Types

HotCache uses EclipseLink as its Jakarta Persistence (JPA) provider. It is reasonable to expect
HotCache to support Oracle-specific data types supported by EclipseLink. For example,
EclipseLink supports data types specific to Oracle Database, such as SDO_GEOVETRY from the
Oracle Spatial and Graph option for Oracle Database and XM.Type in all Oracle Database
editions.

It is important to understand that data is presented to EclipseLink differently when used in
HotCache than when used in the typical JPA scenario. In the typical JPA scenario, EclipseLink
interacts with the database through a JDBC connection and EclipseLink consumes data as
presented by the JDBC API and driver-specific extensions (for example an SDO_GEOVETRY
column is represented as an instance of j ava. sql . Struct). Whereas in HotCache, data is
read from a GoldenGate trail file; there is no JDBC connection involved. Therefore EclipseLink
consumes the GoldenGate representation of data as opposed to the JDBC representation of
data. For example, GoldenGate represents an SDO_GEOVETRY column as an XML document and
not as an instance of j ava. sql . Struct.

These differences in data representation may necessitate the use of HotCache-specific
EclipseLink converters when using EclipseLink within HotCache that take the place of standard
EclipseLink converters used in typical JPA scenarios. See @Converter in Jakarta Persistence
(JPA) Extensions Reference for EclipseLink. The following sections describe HotCache support

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 20 of 28

https://www.eclipse.org/eclipselink/documentation/2.6/jpa/extensions/annotations_ref.htm#CHDEHJEB

ORACLE Chapter 2
Support for Oracle Data Types

for specific Oracle Database data types supported by EclipseLink and how to configure
EclipseLink within HotCache to use those data types.

Support for SDO_GEOMETRY

EclipseLink supports the Oracle Spatial and Graph option of Oracle Database by mapping
SDO_GEOVETRY columns to instances of or acl e. spati al . geonetry. JGeonet ry (the Java class
shipped with the Oracle Spatial and Graph option). See Using Oracle Spatial and Graph in
Solutions Guide for EclipseLink.

Therefore, HotCache supports mapping columns of type SDO_GEOVETRY to instances of
oracl e. spatial . geormet ry. JGeonet ry bound to fields of JPA entities. This support requires
configuring a HotCache-specific EclipseLink Converter of class

oracl e.toplink. gol dengate. spati al . Gol denGat eJGeonet ryConvert er as shown in the
following example.

inport jakarta.persistence. Access;

i nport jakarta. persistence. AccessType;
inport jakarta. persistence. Convert;

i nport jakarta. persistence. Converter;
inport jakarta.persistence. Entity;

i nport oracle.spatial.geonetry.JGeonetry;

i nport oracle.toplink.gol dengate. spati al . Col denGat eJGeonet ryConverter;

@ntity

@onverter(name="JCGeonetry”, converterd ass=
Gol denGat eJGeonet ryConverter. cl ass)

public class Spatial Entity {

private JGeonetry geonetry;

@\ccess(AccessType. PROPERTY)

@onvert (“JCGeometry”)

public JGeonetry get Geonetry() {
return geonetry;

}

This converter converts the GoldenGate XML representation of an SDO_GEOVETRY column into
an instance of oracl e. spati al . geonet ry. JGeonet ry bound to a field of a JPA entity. The

Col denGat eJCGeonet ryConverter class is contained in coher ence- hot cache. j ar which should
already be on the classpath of the HotCache JVM and Coherence cache server JVMs used in
HotCache deployments (along with the ecl i psel i nk. j ar file on which it depends). However
the JGeonet ry class is contained in sdoapi . j ar from an installation of Oracle Spatial and
Graph option. The sdoapi . j ar file must be on the classpath of the HotCache JVM, and any
other JVM where the JPA entity containing a JGeonet ry field will be deserialized.

The oracl e. spati al . geonetry. JGeonet ry class implements j ava. i 0. Seri al i zabl e, so JPA
entities with JGeonet ry fields cached in Coherence can be serialized with

java.io. Serializabl e without any additional configuration. To use Coherence’s Portable
Object Format (POF) to serialize a JPA entity with a JGeonret ry field, the JGeonet rySeri al i zer

Integrating Oracle Coherence
G25896-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 21 of 28

http://www.eclipse.org/eclipselink/documentation/2.6/solutions/oracledb002.htm#CHDJBFIJ

ORACLE

Chapter 2
Configuring Multi-Threading in HotCache

must be added to the POF configuration file used in the Coherence deployment, as in the
following example.

<user-type>

<type-id>1001</type-id><!—dse a type-id val ue above 1000 that doesn't
conflict with other POF type-ids-->

<cl ass-nane>or acl e. spati al . geonet ry. JGeonet ry</ cl ass- nane>

<serializer>

<cl ass- nane>or acl e. spati al . geonret ry. JGeonet r yPof Seri al i zer </ cl ass- nane>

</serializer>

</user-type>

The oracl e. spati al . geonetry. JGeonet r yPof Seri al i zer class is contained in coher ence-
hot cache. j ar, which must be on the classpath of any JVM that will serialize or deserialize a
JPA entity with a JGeonet ry field using POF.

Support for XMLType

EclipseLink supports the Oracle Database XM.Type data type by mapping XM.Type columns to
instances of j ava. | ang. String or org. w3c. dom Docunment (depending on the type of the
mapped field in the JPA entity). See DirectToXMLTypeMapping in EclipseLink APl Reference
and Mapping XMLTYPE in the On Persistence blog.

Therefore, HotCache supports mapping columns of type XM.Type to instances of
java.lang. String ororg.w3c. dom Docurment bound to fields of JPA entities. This support
requires configuring a standard EclipseLink Di r ect TOXM_TypeMappi ng .

GoldenGate must be configured to use integrated capture mode for support of XMLType
columns. See Details of Support for Oracle Data Types and Objects in Using Oracle
GoldenGate with Oracle Database.

Configuring Multi-Threading in HotCache

HotCache can use multiple threads to apply trail file operations to Coherence caches. Multiple
threads can increase the throughput of a HotCache process as compared to using a single
thread to apply trail file operations. Before configuring multi-threading, evaluate whether
concurrently applying trail file operations poses data correctness risks in the Coherence
caches and the system using HotCache.

Transactions and their operations appear in the trail file in the order in which they were
committed in the source database. By default, HotCache applies operations one at a time on a
single thread to ensure the operations are applied to the cache in the exact same order in
which they were applied to the source database. When using multi-threading, operations can
be applied in a different order than that in which they were applied to the source database
tables and can result in correctness risks.

When determining the potential risk, consider the following examples:

* If one database transaction inserts a row in a table and the next database transaction
deletes that row, then applying operations out of order can leave an object in the cache
whose corresponding database row is deleted.

« If one database transaction updates a column to an older value and the next database
transaction updates that column to a newer value, then applying operations out of order
can leave the older value in the cached object instead of the newer value. (You can use
the JPA optimistic locking features, which are supported by HotCache, to mitigate this
particular update risk).

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 22 of 28

https://www.eclipse.org/eclipselink/api/2.6/org/eclipse/persistence/mappings/xdb/DirectToXMLTypeMapping.html
http://onpersistence.blogspot.in/2011/08/mapping-xmltype.html

ORACLE

Chapter 2
Configuring Multi-Threading in HotCache

If you determine that using multiple threads to apply trail file operations to Coherence caches
poses no data correctness risks in the system using HotCache, then HotCache can be
configured to use multi-threading as follows:

1. Edit the GoldenGate Java Delivery Adapter properties file and configure the HotCache
event handler to use transaction mode:

gg. handl erl i st =hot cache

gol dengat e. handl er. hot cache. t ype=or acl e. t opl i nk. gol dengat e. Coher enceAdapt er
1220

gol dengat e. handl er. hot cache. node=t x

By default, GoldenGate Java Delivery Adapter event handlers use operation mode. In
operation mode (op), event handlers process operations one at a time. In transaction mode
(tx), event handlers process all operations in a transaction at a time.

2. Edit the GoldenGate Java Delivery Adapter properties file and set the
coherence. hot cache. concur rency system property on the HotCache JVM with a value
between one and eight times the number of cores on the JVM host, inclusive (as reported
by java. |l ang. Runti ne. get Avai | abl eProcessors()). For example:

j vm boot opt i ons=- Dcoher ence. hot cache. concurrency=16 ...

The value of this property determines the number of threads HotCache uses to
concurrently apply trail file operations to Coherence caches.

3. Edit the HotCache replicat . pr mfile and set the GROUPTRANCOPS property. A value of 1
causes source database transaction boundaries to be honored. A value greater than 1
causes transaction grouping within the GoldenGate replicat. The default value is 1000.

Summary of Hot Cache Thread Behavior

Assuming HotCache is run in a GoldenGate replicat process as recommended, the risks
stemming from conflicting source database transactions only materialize if the GROUPTRANOPS
property is configured to a value other than one 1. A value of 1 causes the source database
transaction boundaries and sequencing to be honored by the HotCache replicat. Therefore, the
operations in one transaction are applied in parallel followed by the operations in the next
transaction and so on. The GROUPTRANCPS property default is 1000, which groups trail file
operations from multiple successive source database transactions into one target transaction
of at least 1,000 operations. The likelihood of data correctness risks materializing when the
GROUPTRANCPS parameter is set to greater than one is equivalent to the likelihood of conflicting
operations within the grouped source database transactions, given the magnitude of the
GROUPTRANOPS property value and the write rate and volume of the source database. See
GROUPTRANSOPS in Reference for Oracle GoldenGate for Windows and UNIX.

The following table summarizes the HotCache thread behavior depending on the values of the
GoldenGate Java Delivery Adapter node property and the coher ence. hot cache. concurrency

property.

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 23 of 28

ORACLE

Chapter 2
Managing HotCache

Table 2-1 Hot Cache Thread Behavior

. __|
Mode Concurrency Behavior

op N/A In op mode, HotCache applies trail file operations one at a time on a
single thread (the GoldenGate Java Delivery Adapter thread) as each
operation is read from the trail file. This is the HotCache default
behavior. The value of the concurrency property is not considered in
operation mode.

tx 1 In t X mode with a concurrency property value of 1, HotCache iterates
and applies a transaction worth of trail file operations on a single thread
(the GoldenGate Java Delivery Adapter thread). The group of operations
comprising the transaction is determined by the value of the GoldenGate
replicat GROUPTRANOPS property. The default value of the concurrency
property is 1. This configuration may exhibit greater throughput than the
operation mode configuration, even though it is still single-threaded and
therefore poses no data correctness risks.

tx >1 In t X mode with a concurrency property value greater than 1, HotCache
applies a transaction worth of operations in parallel on multiple
HotCache threads. The group of operations comprising the transaction is
determined by the value of the GoldenGate replicat GROUPTRANOPS
property. This configuration should exhibit greater throughput than
single-threaded configurations and throughput generally increases with
the number of threads configured to a maximum of eight times the
number of cores on the HotCache host.

Managing HotCache

You can manage HotCache to ensure that cache update operations are performed within
acceptable time limits. HotCache uses JMX to collect management data, which is viewed using
either a IMX browser, a Coherence report, or the Coherence-Java VisualVM plug-in.
Management data includes statistics for the GoldenGate HotCache adapter as a whole in
addition to statistics for specific caches and operation types.

This section includes the following topics:

CoherenceAdapterMXBean

The Coher enceAdapt er MXBean MBean represents a Golden Gate HotCache adapter and
provides operational and performance statistics. Zero or more instances of this managed bean
are created: one managed bean instance for each adapter instance.

The object name of the MBean is:

Type=Coher enceAdapt er, nane=repl i cat nane, menber =nenber nane

To view the Coher enceAdapt er MXBean MBean from an MBean browser, you must enable
Coherence management. If you are new to Coherence JMX management, see Using JMX to
Manage Oracle Coherence.

Attributes

Table 2-2 describes the attributes for CacheMBean.

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 24 of 28

ORACLE

Table 2-2 CoherenceAdapterMXBean

Chapter 2
Managing HotCache

Attribute Type Access Description
CacheNanes String[] read-only The names of the caches that were refreshed by
the CoherenceAdapter
Execut i onTi nePer QperationStatistics LongSumm read-only Summary statistics about the execution time for
aryStati each operation in nanoseconds since the
stics statistics were last reset
ExecutionTi mePer TransactionStatistics LongSunm read-only Summary statistics about the execution time for
aryStati each transaction in nanoseconds since the
stics statistics were last reset
I nvocati onsPer QperationStatistics I nt Summa read-only Summary statistics about the number of
ryStatis invocations for each operation since the
tics statistics were last reset
Last Executi onTi mePer OperationStatisti LongSunm read-only Summary statistics about the execution time for
cs arystati each operation in nanoseconds since this
stics method was last called
Last OperationReplicationLagStatistics LongSumm read-only Summary statistics about operation replication
arystati lag in milliseconds since this method was last
stics called
Nunber Of Oper at i onsProcessed Long read-only The aggregate number of operations processed
since the statistics were last reset
Oper ationReplicationlLagStatistics LongSumm read-only =~ Summary statistics about operation replication
arystati lag in milliseconds since the statistics were last
stics reset
Oper ati onsPer TransactionStatistics I nt Summa read-only Summary statistics about the number of
ryStatis operations for each transaction since the
tics statistics were last reset
Per CacheSt ati stics Map read-only Execution time summary statistics in
nanoseconds for each cache for each operation
type
StartTime Dat e read-only The time at which the CoherenceAdapter was
started
Trail Fi | eName String read-only The name of the trail file currently being read
Trail FilePosition String read-only The position in the trail file of the last

successfully-processed operation

Operations

The Coher enceAdapt er MXBean MBean includes areset Stati sti cs operation that resets all

cache statistics.

Understanding the HotCache Report

The HotCache report includes operational settings and performance statistics. The statistical
data is collected from the Coher enceAdapt er MXBean MBean and presented over time making it
ideal for discovering performance trends and troubleshooting potential performance issues.
The name of the HotCache report is t i nest anp- hot cache. t xt where the timestamp is in
YYYYMMDDHH format. For example, a file named 2009013101- hot cache. t xt represents a

HotCache report for January 31, 2009 at 1:00 a.m.

Integrating Oracle Coherence
G25896-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 25 of 28

ORACLE

Chapter 2
Managing HotCache

To view the HotCache report, you must enable Coherence reporting and you must configure
the report-all report group. If you are new to Coherence reporting, see Using Oracle

Coherence Reporting.

Table 2-3 describes the contents of the HotCache report.

Table 2-3 Contents of the HotCache Report
]

Column Data Type Description

Bat ch Count er Long A sequential counter to help integrate information
between related files. This value resets when the
reporter restarts, and is not consistent across
members. However, it is helpful when trying to
integrate files.

Report Tine Dat e A timestamp for each report refresh

Handl er Name String The user-given name of the HotCache event
handler from the GoldenGate HotCache
properties file

Menber Nane String The Coherence member name where the
HotCache adapter runs

Start Time Dat e The time when the Coherence HotCache adapter
started

Operations Processed Long The number of transaction operations processed

Trail File Nane String The name of the Golden Gate trail file that
contains transaction operations

Trail File Position String The position in the trail file of the last

Oper ations per
Transaction Average

Qperations per
Transaction Maxi mum

Operations per
Transaction M ni mum

I nvocations per
Operation Average

I nvocations per
Operation Maxi mum

I nvocations per
Qperation M ninum

Last Execution Tine per
Operation Average (ns)

Execution
Qperation

Ti me per
Average (ns)

Execution
Qper ation

Ti me per

Maxi mum (ns)
Execution
Oper ation

Ti me per

M ni mum (ns)
Execution Time per
Transaction Average

(ns)

Integrating Oracle Coherence
G25896-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

I nt SummaryStatis
tics

I nt SummarysStatis
tics

I nt SummarysStatis
tics

I nt SummaryStatis
tics

I nt SummarysStatis
tics

I nt SummaryStatis
tics
LongSumarySt ati
stics

LongSumarySt at i
stics

LongSumarySt at i
stics

LongSumarySt at i
stics

LongSunmarySt at i
stics

successfully-processed operation

The average number of operations processed for
each transaction

The maximum number of operations processed
for each transaction

The minimum number of operations processed for
each transaction

The average number of entry processor
invocations that are performed for each operation

The maximum number of entry processor
invocations that are performed for each operation

The minimum number of entry processor
invocations that are performed for each operation

The average execution time for each operation
since the last sample in nanoseconds

The average execution time for each operation in
nanoseconds

The maximum execution time for each operation
in nanoseconds

The minimum execution time for each operation
in nanoseconds

The average execution time for each transaction
in nanoseconds

October 6, 2025
Page 26 of 28

ORACLE

Chapter 2
Managing HotCache

Table 2-3 (Cont.) Contents of the HotCache Report
]

Column Data Type Description

Execution Tine per LongSunmaryStati The maximum execution time for each transaction

Transaction Maxi num stics in nanoseconds

(ns)

Execution Tine per LongSunmaryStati The maximum execution time for each transaction

Transaction M ninum stics in nanoseconds

(ns)

Last Qperation LongSummaryStati The average time in milliseconds between the

Replication Lag Average stics commit of the database transaction and the

(ms) processing of the last operation by the HotCache
adapter

Operation Replication LongSummaryStati The average time in milliseconds between the

Lag Average (ns) stics commit of the database transaction and the

processing of the operation by the HotCache
adapter

Operation Replication LongSummaryStati The average time in milliseconds between the

Lag Maxi mum (ms) stics commit of the database transaction and the

processing of the operation by the HotCache
adapter since the last sample

Qperation Replication LongSumaryStati The minimum time in milliseconds between the

Lag M ni mum (ns) stics commit of the database transaction and the

processing of the operation by the HotCache
adapter

Monitoring HotCache Using the Coherence VisualVM Plug-In

The HotCache tab in the Coherence VisualVM Plug-In provides a graphical view of HotCache
performance statistics. If you are new to the Coherence VisualVM plug-in, see Using the
Coherence VisualVM Plug-In.

The HotCache statistical data is collected from the Coher enceAdapt er MBean and presented
over time in both tabular and graph form. The tab displays statistics for each GoldenGate
HotCache member including detail about specific caches refreshed by that HotCache member.
To view data for a specific member, select the member on the member table. To view data for a
specific cache, select the cache on the cache table.

Use the HotCache tab to get a detailed view of performance statistics and to identify potential
performance issues with cache update operations. The HotCache tab includes:

The minimum, maximum, and average time it takes to update a cache for each operation.

The minimum, maximum, and average time it takes to update a cache for all the operations
in a transaction.

The total number of entry processor invocations that are performed for each operation.
The minimum, maximum, and average time for the last operation.

The minimum, maximum, and average operation replication lag time for the last operation
since this MBean attribute value was last sampled. Replication lag is the amount of time
between the commit of the database transaction and the processing of the operation by the
HotCache adapter.

The minimum, maximum, and average operation replication lag time since the statistics
were last reset.

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 27 of 28

ORACLE Chapter 2

Managing HotCache

The minimum, maximum, and average number of operations for each transaction.

The minimum, maximum, and average time for each operation type for each cache.
Operations include: EVI CT, | NSERT, PK_CHANGE, READ FROM DB, REDUNDANT | NSERT,
REFRESH, UPDATE, and UPSERT.

Integrating Oracle Coherence
G25896-01

October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates.

Page 28 of 28

Integrating Hibernate and Coherence

Oracle Coherence can be integrated with Hibernate, an object-relational mapping tool for Java
environments. The functionality in Oracle Coherence and Hibernate can be combined such
that Hibernate can act as the Coherence cache store or Coherence can act as the Hibernate
L2 cache.

If you are interested in using Coherence with Hibernate, see the Coherence Hibernate
Integration project that is part of the Coherence Community. Coherence Community projects
provide example implementations for commonly used design patterns based on Oracle
Coherence.

Integrating Oracle Coherence
G25896-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 1

https://github.com/coherence-community/coherence-hibernate
https://github.com/coherence-community/coherence-hibernate

Integrating Coherence Applications with
Coherence*Web

You can configure applications running under Coherence*Web so that they can share
Coherence cache and session information.

If you are new to Coherence*Web, see Understanding Coherence*Web in Administering HTTP
Session Management with Oracle Coherence*Web.

This chapter includes the following section:

Merging Coherence Cache and Session Information

In Coherence, the cache configuration deployment descriptor provides detailed information
about the various caches that can be used by applications within a cluster. Coherence provides
a sample cache configuration deployment descriptor, named coher ence- cache-confi g. xn , in
the root of the coherence. j ar library. In Coherence*Web, the session cache configuration
deployment descriptor provides detailed information about the caches, services, and attributes
used by HTTP session management. Coherence*Web provides a sample session cache
configuration deployment descriptor, named def aul t - sessi on- cache-confi g. xnl , in the
coherence-web. j ar library. You can use this file as the basis for any custom session cache
configuration file you may need to write.

At run time, Coherence uses the first coher ence- cache- confi g. xm file that is found in the
classpath, and it must precede the coherence. j ar library; otherwise, the sample coher ence-
cache-config.xnl file in the coherence. j ar file is used.

In the case of Coherence*Web, it first looks for a custom session cache configuration XML file
in the classloader that was used to start Coherence*Web. If no custom session cache
configuration XML resource is found, then it will use the def aul t - sessi on- cache- confi g. xni
file packaged in coherence-web. jar.

If your Coherence applications are using Coherence*Web for HTTP session management, the
start-up script for the application server and the Coherence cache servers must reference the
session cache configuration file—not the cache configuration file. In this case, you must
complete these steps:

1. Extract the session cache configuration file from the coher ence- web. j ar library.

2. Merge the cache information from the Coherence cache configuration file into the session
cache configuration file.

Note that in the cache scheme mappings in this file, you cannot use wildcards to specify
cache names. You must provide, at least, a common prefix for application cache names.

3. Ensure that modified session cache configuration file is used by the Coherence members
in the cluster.

The cache and session configuration must be consistent across WebLogic Servers and
Coherence cache servers.

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 1

Using Memcached Clients with Oracle
Coherence

You can configure an memcached adapter to allow Coherence to be used as a distributed
cache for memcached clients. A simple hello world client that is written using the
spymemcached API is provided for demonstration purposes; howver any existing memcached
client can be used to connect to Coherence.

@® Note

The memcached adapter is deprecated as of release 14.1.2.

This chapter includes the following sections:

Overview of the Oracle Coherence Memcached Adapter

The memcached adapter provides access to Coherence caches over the memcached binary
protocol and allows Coherence to be used as a drop-in replacement for a memcached server.
The adapter supports any memcached client API that supports the memcached binary
protocol. This allows memcached clients that are written in many different programming
languages to use Coherence.

The memcached adapter is located on a Coherence proxy server and is implemented as a
Coherence*Extend-styled acceptor. Memcached clients connect to the acceptor, which
manages the distributed cache operations on the cluster. The cache operations are performed
as entry processor operations. The acceptor must first be enabled within a proxy service in
order to interact with Coherence cached data. Additional features for securing memcached
client communication and for sharing data with native Coherence clients are provided and can
be configured as required.

Figure 5-1 shows a conceptual view of a memcached client connecting to the memcached
acceptor located on a Coherence proxy server in order to use a distributed cache.

Figure 5-1 Conceptual View of a Memcached Client Connection

Coherence Proxy Server

Memcached Acceptor

Memcached Client — J

Distributed Cache

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE’

Chapter 5
Setting Up the Memcached Adapter

Setting Up the Memcached Adapter

Memcached adapters are configured within a proxy service using a specific memcached
acceptor. The acceptor configuration defines the socket address and the distributed cache for
use by memcached clients.

This section includes the following topics:

Define the Memcached Adapter Socket Address

The memcached adapter uses a socket address (IP, or DNS name, and port) for clients to
connect to. The socket address is configured in an operational override configuration file using
the <addr ess- pr ovi der > element. The address is then referenced from a proxy service
definition using the configured i d attribute. See address-provider in Developing Applications
with Oracle Coherence.

The following example configures a socket address and uses 198. 168. 1. 5 for the IP address,
9099 for the port, and mentached for the ID.

<cl uster-config>
<addr ess- provi der s>
<addr ess- provi der id="nentached">
<socket - addr ess>
<address>198. 168. 1. 5</ addr ess>
<por t >9099</ port >
</ socket - addr ess>
</ addr ess- provi der>
</ addr ess- provi der s>
</cluster-config>

Define Memcached Adapter Proxy Service

A proxy service allows remote clients to interact with the caching services of a Coherence
cluster without becoming cluster members. A proxy service for the memcached adapter
includes a specific memcached acceptor that accepts memcached client requests on a defined
socket address and then delegates the requests to a distributed cache.

@® Note

The memcached adapter can only use a distributed cache.

To create a proxy service for memcached clients, edit the cache configuration file and add a
<pr oxy- schenme> element and include the <nentached- accept or > element within the

<accept or - conf i g> element. The <mentached- accept or > element must include the name of
the cache to use and a reference to an address provider definition that defines the socket
address to listen to for memcached client communication. See memcached-acceptor in
Developing Applications with Oracle Coherence.

The following example creates a proxy service and defines a memcached acceptor. The
example references the address provider that was defined in Define the Memcached Adapter

Socket Address.

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE Chapter 5
Connecting to the Memcached Adapter

<cachi ng- schemes>
<proxy- schene>
<servi ce- name>MentachedPr oxySer vi ce</ servi ce- nane>
<acceptor-confi g>
<nmentached- accept or >
<cache- name>hel | o- exanpl e</ cache- nane>
<addr ess- provi der >nentached</ addr ess- pr ovi der >
</ mentached- accept or >
</ acceptor-config>
<autostart>true</autostart>
</ proxy- schene>
</ cachi ng- schenes>

The cache name refers to the hel | o- exanpl e cache. The cache hame must resolve to a
distributed cache. The following example shows the definition of the hel | o- exanpl e cache and
the distributed scheme to which it maps.

<?xm version="1.0"?>
<cache-config xm ns: xsi ="http:// ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache-confi g"
xsi : schenmalLocat i on=
“http://xm ns. oracl e. com coherence/ coher ence- cache-config
coher ence- cache-confi g. xsd">

<cachi ng- scheme- mappi ng>
<cache- mappi ng>
<cache- nane>hel | o- exanpl e</ cache- name>
<scheme- name>di st ri but ed</ schene- name>
</ cache- mappi ng>
</ cachi ng- schene- nappi ng>

<cachi ng- schenmes>

<di stri but ed- schene>
<schene- nane>di st ri but ed</ schene- nane>
<servi ce- name>MentachedTest </ servi ce- nang>
<backi ng- map- schene>

<l ocal - schene/ >

</ backi ng- map- scheme>
<autostart>true</autostart>

</ di stri but ed- schene>

<proxy- schenme>
<servi ce- name>MenctachedPr oxySer vi ce</ servi ce- nane>
<acceptor-confi g>
<nentached- accept or >
<cache- nane>hel | o- exanpl e</ cache- nane>
<addr ess- provi der >nentached</ addr ess- pr ovi der >
</ mentached- accept or >
</ acceptor-config>
<autostart>true</autostart>
</ proxy- schene>
</ cachi ng- schenes>
</ cache-confi g>

Connecting to the Memcached Adapter

Memcached clients must specify the address and port of a proxy service for the memcached
adapter. The proxy service address is used in place of the memcached server address. Refer

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE

Chapter 5
Securing Memcached Client Communication

to your memcached client documentation for details on how to specify the address of a
memcached server.

The following example shows a simple hello world client that uses the spymemcached client
API to connect to the proxy service for the memcached adapter that was defined in Setting Up
the Memcached Adapter.

i mport net.spy. mencached. Addr Uti | ;
i mport net.spy. mencached. Bi naryConnect i onFact ory;
i mport net.spy. mencached. Mentachedd i ent;

public class MentachedExanpl e {
public static void main(String[] args) throws Exception {
String key = "k1";
String value = "Hello Wrld!";

Mencachedd ient ¢ = new Menctachedd i ent (
new Bi nar yConnecti onFactory(),
Addr Uti | . get Addresses("198. 168. 1. 5:9099"));

c.add(key, 0, value);

Systemout. println((String)c.get(key));
c. shutdown();

}

Securing Memcached Client Communication

The memcached adapter can use both authentication and authorization to restrict access to
cluster resources. Authentication support is provided for the SASL (Simple Authentication and
Security Layer) plain authentication. Authorization is implemented using Oracle
Coherence*Extend-styled authorization, which relies on interceptor classes that provide fine-
grained access for cache service operations. The memcached adapter authentication and
authorization features reuses much of the existing security capabilities of Oracle Coherence:
references are provided to existing content where applicable.

This section includes the following topics:

Performing Memcached Client Authentication

Memcached clients can use SASL plain authentication to provide a username and password
when connecting to the memcached adapter. To use SASL plain authentication, you must
create an | denti t yAssert er implementation on the proxy. The memcached adapter calls the
| dentityAsserter implementation and passes the

com tangosol . net. security. User nameAndPasswor d object as a token. See Using ldentity
Tokens to Restrict Client Connections in Securing Oracle Coherence. Refer to your
memcached client documentation for details on establishing a SASL plain connection.

In addition to an | dent i t yAssert er implementation, authentication must be enabled on a
memcached adapter to use SASL plain authentication. To enable authentication, edit the proxy
service definition in the cache configuration file and add a <nentached- aut h- met hod> element,
within the <mentached- accept or > element, and set it to pl ai n.

<cachi ng- schemes>
<proxy- schenme>
<servi ce- name>MentachedPr oxySer vi ce</ servi ce- nane>
<acceptor-confi g>
<mencached- accept or >
<cache- name>hel | 0- exanpl e</ cache- nane>

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE Chapter 5
Sharing Data Between Memcached and Coherence Clients

<nmentached- aut h- net hod>pl ai n</ nentached- aut h- met hod>
<addr ess- provi der >nentached</ addr ess- pr ovi der >
</ mentached- accept or >
</ acceptor-config>
<autostart>true</autostart>
</ proxy- schene>
</ cachi ng- schenes>

Performing Memcached Client Authorization

The memcached adapter relies on the Oracle Coherence*Extend authorization framework to
restrict which operations a memcached client performs on a cluster. See Implementing Extend
Client Authorization in Securing Oracle Coherence.

Sharing Data Between Memcached and Coherence Clients

The memcached adapter stores entries in a cache using a binary format. If you intend to share
the data with Coherence clients, then memcached clients must use a serialization format that
Coherence clients also support. Coherence clients typically use Portable Object Format (POF),
which is highlighted in this section. See Using Portable Object Format in Developing
Applications with Oracle Coherence.

This section includes the following topics:

Configuring POF for Memcached Clients

To configure POF for Memcached clients:

1. Edit the proxy service definition in the cache configuration file and add an <i nt er op-
enabl ed> element, within the <nentached- accept or > element, and setittotrue.

<proxy- schenme>
<servi ce- name>MenctachedPr oxySer vi ce</ servi ce- nane>
<acceptor-confi g>
<mencached- accept or >
<cache- name>hel | o- exanpl e</ cache- name>
<i nt er op- enabl ed>t r ue</ i nt er op- enabl ed>
<addr ess- provi der >menctached</ addr ess- pr ovi der >
</ mentached- accept or >
</ acceptor-config>
<autostart>true</autostart>
</ proxy- scheme>

2. Enable POF on the distributed cache that is used by the memcached acceptor.

<di stri but ed- schenme>
<scheme- nane>di st ri but ed</ schene- name>
<servi ce- name>MentachedTest </ servi ce- nane>
<serializer>
<i nstance>
<cl ass- name>com t angosol . i 0. pof. Confi gur abl ePof Cont ext </ cl ass- name>
<init-params>
<init-paranp
<paramtype>String</ paramtype>
<par am val ue>mentached- pof - confi g. xm </ par am val ue>
</init-paranp

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE Chapter 5
Sharing Data Between Memcached and Coherence Clients

</init-parans>
</instance>
</serializer>
<backi ng- map- schene>
<l ocal - schene/ >
</ backi ng- map- schene>
<aut ostart>true</autostart>
</ di stribut ed- schene>

3. Register POF types in the defined POF configuration file. For the above example, the POF
configuration file is named mentached- pof - confi g. xm . The file must be found on the
classpath before the coher ence. j ar file. The following example defines a POF user type
for the Pof User object:

<?xm version='1.0"?>

<pof-config xmns: xsi="http://ww.w3. org/ 2001/ XM.Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- pof - confi g"
xsi : schemaLocation="http://xm ns. oracl e. coni coher ence/ coher ence- pof - confi g
coherence- pof -config. xsd">
<user-type-list>
<i ncl ude>coher ence- pof - confi g. xm </ i ncl ude>

<I'-- User types nust be above 1000 -->
<user-type>

<type-i d>1001</type-i d>

<cl ass- name>nentached. Pof User </ ¢l ass- name>
</ user-type>

</user-type-list>
</ pof - confi g>

Create a Memcached Client that Uses POF

Many memcached client libraries include the ability to plug in custom serializers. Refer to your
memcached client documentation for details on how to plug in custom serializers. The
following excerpt shows a spymemcached client that adds the Pof User object that was
registered in step 3 and uses a spymemcached transcoder to plug in the POF serializer.

MencachedCd ient client = mclient;

String key = "pofKey";

Pof User user = new Pof User (" nmenctached", 1);

Pof Tr anscoder <Pof User > t ¢ = new Pof Transcoder (" nentached- pof -config. xm ");

if ('client.set(key, 0, user, tc).get())
{

}

t hrow new Exception("failed to set value");

The POF transcoder plug-in is defined as follows:

i mport com tangosol . i o. pof. Confi gurabl ePof Cont ext ;
i mport comtangosol.util.Binary;
i mport comtangosol.util.Externalizabl eHel per;

i mport net.spy. mencached. CachedDat a;
i mport net.spy. mencached. conpat . SpyQhj ect ;
i mport net.spy. menctached. transcoders. Transcoder;

public class Pof Transcoder <T> ext ends SpyChject inplenents Transcoder <T>

{

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE’

Chapter 5
Sharing Data Between Memcached and Coherence Clients

public Pof Transcoder (String sLocator)

{

m ctx = new Confi gur abl ePof Cont ext (sLocator);

}

@verride
public bool ean asyncDecode(CachedData arg0)

{
return Bool ean. FALSE;

}

@verride
public T decode(CachedData cachedDat a)

{

int nFlag = cachedDat a. get Fl ags() ;

Bi nary bin = new Binary(cachedDat a. getData());

return (T) Externalizabl eHel per.fronBinary(bin, mctx);

}

@verride
public CachedData encode(Chject obj)

{

byte[] oVal ue = Externalizabl eHel per.toByteArray(obj, mctx);
return new CachedDat a(FLAG oVal ue, CachedData. MAX_SI ZE) ;
}

@verride
public int getMaxSize()

{
return CachedDat a. MAX_SI ZE;
}
protected Confi gurabl ePof Context mctx;

protected static final int FLAG = 4;

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 7 of 7

Integrating Spring with Coherence

Oracle Coherence can be integrated with Spring, which is a platform for building and running
Java-based enterprise applications.

If you are interested in using Coherence with Spring, see the Coherence Spring Integration
project that is part of the Coherence Community. Coherence Community projects provide
example implementations for commonly used design patterns based on Oracle Coherence.

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 1

https://github.com/coherence-community/coherence-spring

Integrating Micronaut with Coherence

Oracle Coherence can be integrated with Micronaut, which is an open source framework for
building lightweight modular applications and microservices.

If you are interested in using Coherence with Micronaut see the Micronaut Coherence project.

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 1

https://github.com/micronaut-projects/micronaut-coherence

Using Kubernetes with Coherence

Oracle provides an open source Coherence Operator, which implements features to assist with
deploying and managing Coherence clusters in a Kubernetes environment.

If you are interested in using Coherence with Kubernetes, see the Coherence Operator project.

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 1

https://github.com/oracle/coherence-operator

Using Coherence MicroProfile Configuration

Coherence MicroProfile (MP) Configuration provides support for Eclipse MicroProfile
Configuration within Coherence cluster members. See Eclipse MicroProfile Configuration.
Coherence MP Configuration enables you to configure various Coherence parameters from the
values specified in any of the supported configuration sources, and to use Coherence cache as
another, mutable configuration source.

This chapter includes the following topics:

Enabling the Use of Coherence MicroProfile Configuration

To use Coherence MP Configuration, you should first declare it as a dependency in the
pom xni file.

You can declare Coherence MP Configuration as follows:

<dependency>
<groupl d>${ coher ence. groupl d} </ gr oupl d>
<artifact!|d>coherence-np-config</artifactld>
<ver si on>${ coher ence. ver si on} </ ver si on>

</ dependency>

You will also need an implementation of the Eclipse MP Configuration specification as a
dependency. For example, if you are using Helidon, add the following to the pom xm file:

<dependency>
<groupl d>i 0. hel i don. m croprofile.config</groupld>
<artifact!ld>helidon-nicroprofile-config</artifactld>
<versi on>2. 5. 0</ ver si on>

</ dependency>

<I-- optional: add it if you want YAM. config file support -->
<dependency>
<groupl d>i 0. hel i don. confi g</ groupl d>
<artifact!ld>helidon-config-yan </artifactld>
<versi on>2. 5. 0</ ver si on>
</ dependency>

Configuring Coherence Using MP Configuration

Coherence provides a number of configuration properties that you can use to define certain
attributes or to customize cluster member behavior at runtime.

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 4

https://microprofile.io/project/eclipse/microprofile-config

ORACLE

Chapter 9
Configuring Coherence Using MP Configuration

For example, you can define attributes such as cluster and role name, as well as define
whether a cluster member should or should not store data, through the use of system
properties:

- Dcoher ence. cl ust er =W d ust er - Dcoherence. rol e=Proxy -
Dcoherence. di stribut ed. | ocal st orage=fal se

You can also define most of these attributes within the operational or cache configuration file.
For example, you could define first two attributes, cluster name and role, within the operational
configuration override file:

<cl uster-config>
<menber-identity>
<cl ust er-name>MyCl ust er </ cl ust er - name>
<r ol e- name>Pr oxy</r ol e- name>
</ menber-identity>
</cluster-config>

While these two options are more than enough in most cases, there are some issues with them
being the only way to configure Coherence:

* When you are using one of the Eclipse MicroProfile implementations, such as Helidon (see
Helidon as the foundation of your application, Oracle recommends that you define some of
Coherence configuration parameters along with the other configuration parameters, and
not in a separate file or through system properties.

* In some environments, such as Kubernetes, Java system properties are cumbersome to
use, and environment variables are a preferred way of passing configuration properties to
containers.

Unfortunately, neither of the two use cases above is supported out-of-the-box. Coherence MP
Configuration is designed to fill this gap.

As long as you have coher ence- np- confi g and an implementation of Eclipse MP
Configuration specification to your class path, Coherence will use any of the standard or
custom configuration sources to resolve various configuration options it understands.

Standard configuration sources in MP Configuration include the META- | NF/ mi cr opr of i | e-
confi g. properti es file, if present in the class path; environment variables; and system
properties (in that order, with the properties in the latter overriding the ones from the former).
These configuration sources directly address the second use case mentioned above, and allow
you to specify Coherence configuration options through environment variables within the
Kubernetes YAML files. For example:

cont ai ners:
- name: ny-app
i mage: ny-conpany/ nmy-app:1.0.0
env:

- name: COHERENCE_CLUSTER
val ue: "Myduster"

- name: COHERENCE RCLE
val ue: "Proxy"

- name: COHERENCE_DI STRI BUTED_LOCALSTORAGE
val ue: "fal se"

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 2 of 4

https://helidon.io/

ORACLE

Chapter 9
Using Coherence Cache as a Configuration Source

The above is just an example. If you are running the Coherence cluster in Kubernetes, you
should really be using Coherence Operator instead, as it will make both the configuration and
the operation of the Coherence cluster much easier.

You can also specify the Coherence configuration properties along with the other configuration
properties of your application, which will enable you to keep everything in one place, and not
scattered across many files. For example, if you are writing a Helidon application, you can
simply add the coher ence section to the appl i cati on. yanl file:

coher ence:
cluster: MyCuster
role: Proxy
di stributed:
| ocal storage: false

Using Coherence Cache as a Configuration Source

Coherence MP Configuration also provides an implementation of the Eclipse MP Configuration
Confi gSour ce interface, which enables you to store configuration parameters in a Coherence
cache.

This feature has several benefits:

< Unlike pretty much all of the default configuration sources, which are static, configuration
options stored in a Coherence cache can be modified without forcing you to rebuild your
application JARs or Docker images.

e You can change the value in one place, and it will automatically be visible and up to date
on all the members.

While the features above give you incredible amount of flexibility, it may not always be
desirable. Therefore, this feature is disabled by default.

If you want to enable it, you should do so explicitly by registering Coher enceConf i gSour ce as a
global interceptor in the cache configuration file:

<cache-config xm ns: xsi="http://ww:.w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://xn ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi:schemalLocation="http://xm ns. oracl e. conf coher ence/ coher ence-
cache-config coherence-cache-config.xsd">

<i nterceptors>
<interceptor>

<instance>

<cl ass- nanme>com or acl e. coher ence. np. confi g. Coher enceConf i gSour ce</
cl ass- name>

</instance>
</interceptor>
</interceptors>

<I'-- your cache mappings and schenes... -->

</ cache-confi g>

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 3 of 4

ORACLE Chapter 9
Examples Using Helidon MicroProfile with Coherence

After you enable the feature, Coher enceConf i gSour ce is activated as soon as the cache factory
is initialized, and injected into the list of available config sources for your application to use
through the standard MP Configuration APIs.

By default, it will be configured with a priority (ordinal) of 500, making it of a higher priority than
all the standard configuration sources, thus allowing you to override the values provided
through configuration files, environment variables, and system properties. However, you have
full control over that behavior and can specify a different ordinal through the

coher ence. np. confi g. sour ce. ordi nal configuration property.

Examples Using Helidon MicroProfile with Coherence

There are a number of open source example applications that demonstrate using Coherence
MicroProfile integration with Helidon.

For more information about example applications, see the following items:

* Helidon Sock Shop

This project is an implementation of a stateful, microservices based application that uses
Oracle Coherence Community Edition as a scalable embedded data store, and Helidon
MP as an application framework

If you are interested in using this, see the Coherence Helidon Sock Shop sample.

* Todo List Example

This repository contains a set of simple task management examples written in various
languages to showcase Coherence Community Edition.

In particular, the Java directory showcases how to integrate Coherence with Helidon
MicroProfile.

If you are interested in using this, see the Todo List example.

Integrating Oracle Coherence
G25896-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 4 of 4

https://github.com/oracle/coherence-helidon-sockshop-sample
https://github.com/coherence-community/todo-list-example

Using Coherence MicroProfile Health

Coherence MicroProfile (MP) Health provides support for Eclipse MicroProfile Health within the
Coherence cluster members.

For more information about MicroProfile Health, see the following documentation:
e Using the Health Check API in Managing Oracle Coherence
* MicroProfile Health

Coherence MP Health is a very simple module that enables you to publish Coherence health
checks into the MicroProfile Health Check Registries available at runtime.

This chapter includes the following topic:

Enabling the Use of Coherence MP Health

To use Coherence MP Health, you should first declare it as a dependency in the project’s
pom xmi file.

You can declare Coherence MP Health as follows:

<dependency>
<groupl d>${ coher ence. groupl d} </ gr oupl d>
<artifact!|d>coherence-np-health</artifactld>
<ver si on>${ coher ence. versi on} </ ver si on>

</ dependency>

Where:

« ${coherence. groupl d} is the Maven group ID for the Coherence edition being used:
com or acl e. coher ence for the commercial edition or com or acl e. coher ence. ce for the
community edition.

* ${coherence. version} is the version of Coherence you are using.

After the module becomes available in the class path, the Coherence Heal t hCheck producer
CDI bean is automatically discovered and registered as a MicroProfile health check provider.
The Coherence health checks then become available through any health endpoints served by
the application and is included in started, readiness, and liveness checks.

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 1

https://microprofile.io/project/eclipse/microprofile-health

Using Coherence MicroProfile Metrics

Coherence MicroProfile (MP) Metrics provides support for Eclipse MicroProfile Metrics within
the Coherence cluster members. See MicroProfile Metrics. Coherence MP Metrics is a very
simple module that enables you to publish Coherence metrics into the MicroProfile Metric
Registries available at runtime, and adds Coherence-specific tags to all the metrics published
within the process, to distinguish them on the monitoring server, such as Prometheus.

This chapter includes the following topics:

Enabling the Use of Coherence MP Metrics

To use Coherence MP Metrics, you should first declare it as a dependency in the pom xmi file.

You can declare Coherence MP Metrics as follows:

<dependency>
<groupl d>${ coher ence. groupl d} </ gr oupl d>
<artifactld>coherence-np-netrics</artifactld>
<ver si on>${ coher ence. ver si on} </ ver si on>

</ dependency>

After the module becomes available in the class path, Coherence will discover the

MoMet ri cRegi st ryAdapt er service it provides, and use it to publish all standard Coherence
metrics to the vendor registry, and any user-defined application metrics to the application
registry.

All the metrics will be published as gauges, because they represent point-in-time values of
various MBean attributes.

Coherence Global Tags

There could be hundreds of members in a Coherence cluster, with each member publishing
potentially the same set of metrics. There could also be many Coherence clusters in the
environment, possibly publishing to the same monitoring server instance. To help distinguish
metrics coming from different clusters, as well as from different members of the same cluster,
Coherence MP Metrics automatically adds several tags to all the metrics published within the
process.

Table 11-1 Tags Used by Coherence MP Metrics
|

Tag Name Tag Value

cl uster The name of the cluster.

site The site to which the member belongs (if set).

machi ne The machine on which the member is present (if
set).

menber The name of the member (if set).

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 2

https://microprofile.io/project/eclipse/microprofile-metrics

ORACLE Chapter 11
Coherence Global Tags

Table 11-1 (Cont.) Tags Used by Coherence MP Metrics
]

Tag Name Tag Value
node_id The node ID of the member.
role The member’s role.

Tagging ensures that the metrics published by one member do not collide with and overwrite
the metrics published by other members. Tagging also helps you query and aggregate metrics
based on the values of the tags above, if required.

Integrating Oracle Coherence
G25896-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 2 of 2

Enabling ECID in Coherence Logs

Oracle Coherence can use an Execution Context ID (ECID). This globally unique ID can be
attached to requests between Oracle components. The ECID allows you to track log messages
pertaining to the same request when multiple requests are processed in parallel.

Coherence logs will include ECID only if the client already has an activated ECID prior to
calling Coherence operations. The ECID may be passed from another component or obtained
in the client code. To activate the context, use the get and act i vat e methods on the

oracl e. dms. cont ext . Execut i onCont ext interface in the Coherence client code. The ECID will
be attached to the executing thread. Use the deact i vat e method to release the context, for
example:

Example 12-1 Using a DMS Context in Coherence Client Code

/1 Get the context associated with this thread
ExecutionContext ctx = ExecutionContext.get();
ctx.activate();

set additional execution context values (optional)
perform sone cache operations

/'l Rel ease the context
ctx. deactivate();

ECID logging will occur only on the node where the client is running. If a client request is
processed on some other node and an exception is thrown by Coherence, then the remote
error will be returned to the originating node and it will be logged on the Coherence client. The
log message will contain the ECID of the request. Messages logged on the remote node will
not contain the ECID.

To include the ECID in a Coherence log message, see Changing the Log Message Format in
Developing Applications with Oracle Coherence.

Integrating Oracle Coherence

G25896-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Using JPA with Coherence
	Overview of the JPA CacheStore and CacheLoader Implementations
	Obtaining a JPA Provider Implementation
	Configuring a Coherence JPA Cache Store
	Mapping the Persistent Classes
	Configuring JPA
	Configuring a Coherence Cache for JPA
	Configuring the Persistence Unit

	2 Integrating with Oracle Coherence GoldenGate HotCache
	About Oracle Coherence GoldenGate HotCache
	How Does HotCache Work
	Overview of How HotCache Works
	How the GoldenGate Java Delivery Adapter Uses JPA Mapping Metadata
	Supported Database Operations
	JPA Relationship Support

	Prerequisites
	Configuring GoldenGate
	Monitor Table Changes
	Filter Changes Made by the Current User

	Configuring HotCache
	Create a Properties File with GoldenGate for Java Properties
	Add JVM Boot Options to the Properties File
	Java Classpath Files
	HotCache-related Properties
	Coherence-related Properties
	Logging Properties

	Provide Coherence*Extend Connection Information

	Configuring the GoldenGate Big Data Java Delivery Adapter
	Edit the HotCache Replicat Parameter File

	Configuring the Coherence Cache Servers
	Using Portable Object Format with HotCache
	Configuring HotCache JPA Properties
	EnableUpsert Property
	HonorRedundantInsert Property
	SyntheticEvent Property
	eclipselink.cache.shared.default Property

	Warming Caches with HotCache
	Create and Run an Initial Load Extract
	Create and Run a Cache Warmer Replicat
	Capturing Changed Data While Warming Caches

	Implementing High Availability for HotCache
	Support for Oracle Data Types
	Support for SDO_GEOMETRY
	Support for XMLType

	Configuring Multi-Threading in HotCache
	Managing HotCache
	CoherenceAdapterMXBean
	Understanding the HotCache Report
	Monitoring HotCache Using the Coherence VisualVM Plug-In

	3 Integrating Hibernate and Coherence
	4 Integrating Coherence Applications with Coherence*Web
	Merging Coherence Cache and Session Information

	5 Using Memcached Clients with Oracle Coherence
	Overview of the Oracle Coherence Memcached Adapter
	Setting Up the Memcached Adapter
	Define the Memcached Adapter Socket Address
	Define Memcached Adapter Proxy Service

	Connecting to the Memcached Adapter
	Securing Memcached Client Communication
	Performing Memcached Client Authentication
	Performing Memcached Client Authorization

	Sharing Data Between Memcached and Coherence Clients
	Configuring POF for Memcached Clients
	Create a Memcached Client that Uses POF

	6 Integrating Spring with Coherence
	7 Integrating Micronaut with Coherence
	8 Using Kubernetes with Coherence
	9 Using Coherence MicroProfile Configuration
	Enabling the Use of Coherence MicroProfile Configuration
	Configuring Coherence Using MP Configuration
	Using Coherence Cache as a Configuration Source
	Examples Using Helidon MicroProfile with Coherence

	10 Using Coherence MicroProfile Health
	Enabling the Use of Coherence MP Health

	11 Using Coherence MicroProfile Metrics
	Enabling the Use of Coherence MP Metrics
	Coherence Global Tags

	12 Enabling ECID in Coherence Logs

