Oracle® Qutside In Content Access
Developer's Guide

Release 8.5.4
F10998-01
November 2019

ORACLE"

Oracle Outside In Content Access Developer's Guide, Release 8.5.4
F10998-01

Copyright © 2010, 2019, Oracle and/or its affiliates. All rights reserved.
Primary Author: Nirmala Suryaprakasha

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience X
Documentation Accessibility X
Related Documents X
Conventions X
1 Introduction
1.1 What Does This Technology Do? 1-1
1.2 Architectural Overview 1-2
1.3 Definition of Terms 1-3
1.4 Directory Structure 1-3
1.5 How to Use Content Access 1-4
1.6 How to Use Text Access 1-5
2 Windows Implementation Details
2.1 Libraries and Structure 2-1
2.2 The Basics 2-2
2.2.1 What You Need in Your Source Code 2-3
2.2.2 Options and Information Storage 2-3
2.2.3 Structure Alignment 2-4
2.3 Character Sets 2-4
2.3.1 Default API Character Set 2-4
2.3.2 Double-Byte Character Set Mapping 2-4
2.4 Runtime Considerations 2-4
2.5 Changing Resources 2-4
3 UNIX Implementation Details
3.1 Installation 3-1
3.1.1 NSF Support 3-2
3.2 Libraries and Structure 3-2

ORACLE

3.3 The Basics 3-4

3.3.1 What You Need in Your Source Code 3-4
3.3.2 Options and Information Storage 3-4

3.4 Character Sets 3-5
3.4.1 Default API Character Set 3-5
3.4.2 Double-Byte Character Set Mapping 3-5

3.5 Runtime Considerations 3-5
3.5.1 Signal Handling 3-5
3.5.2 Runtime Search Path and $ORIGIN 3-6

3.6 Environment Variables 3-6
3.7 Changing Resources 3-7
3.8 HP-UX Compiling and Linking 3-7
3.9 IBM AIX Compiling and Linking 3-8
3.10 Linux Compiling and Linking 3-9
3.10.1 Library Compatibility 3-9
3.10.1.1 Motif Libraries 3-9
3.10.1.2 GLIBC and Compiler Versions 3-10
3.10.1.3 Other Libraries 3-10

3.10.2 Compiling and Linking 3-10
3.11 Oracle Solaris Compiling and Linking 3-11
3.11.1 Oracle Solaris SPARC 3-11
3.11.2 Oracle Solaris x86 3-12
3.12 FreeBSD Compiling and Linking 3-12

4 Data Access Common Functions

4.1 Deprecated Functions 4-2
4.2 DAInitEx 4-2
4.3 DADelnit 4-3
4.4 DAOpenDocument 4-3
4.4.1 |OSPECSUBOBJECT Structure 4-5
4.4.2 |OSPECLINKEDOBJECT Structure 4-5
4.4.3 |OSPECARCHIVEOBJECT Structure 4-5
4.4.4 SCCDAOBJECT Structure 4-6

4.5 DACloseDocument 4-6
4.6 DARetrieveDocHandle 4-6
4.7 DASetOption 4-7
4.8 DAGetOption 4-7
4.9 DAGetFileld 4-8
4.10 DAGetFileldEx 4-9
4,11 DAGetErrorString 4-10

ORACLE iv

4.12 DAGetObjectinfo 4-10
4.13 DAGetTreeCount 4-11
4.14 DAGetTreeRecord 4-12
4.14.1 SCCDATREENODE Structure 4-12
4,15 DAOpenTreeRecord 4-13
4.16 DAOpenRandomTreeRecord 4-14
4.16.1 DATREENODELOCATOR 4-14
4.16.2 SCCCA_TREENODELOCATOR: Tree Node Locator 4-15
4.17 DASavelnputObject 4-15
4.18 DASaveTreeRecord 4-16
4.19 DASaveRandomTreeRecord 4-17
4.19.1 DATREENODELOCATOR 4-18
4.19.2 SCCCA_TREENODELOCATOR: Tree Node Locator 4-18
4.20 DACloseTreeRecord 4-18
4.21 DASetStatCallback 4-19
4.22 DASetFileAccessCallback 4-20
4.23 DAOpenNextDocument 4-21
4.24 DAGetOptionltem 4-22
4.25 DARemoveOptionltem 4-23
4.26 DAAddOptionltem 4-23
4.27 DASetFileSpecOption 4-24
4.28 DAOpenSubdocumentByld 4-24
Text Access Functions
5.1 TAOpenText 5-1
5.2 TACloseText 5-2
5.3 TAReadFirst 5-2
5.4 TAReadNext 5-3
Content Access Functions
6.1 CAOpenContent 6-1
6.2 CACloseContent 6-2
6.3 CAReadFirst 6-2
6.4 CAReadNext 6-2
6.4.1 SCCCAGETCONTENT Structure 6-3
6.5 CAContentStatus 6-4
6.5.1 EXSUBDOCSTATUS Structure 6-5
6.6 CASeek 6-5
Y

ORACLE

6.7 CATell 6-6

7 Content Description
7.1 SCCCA BEGINTAG/SCCCA ENDTAG: Tagged Content 7-1
7.1.1 SCCCA_BEGINTAG Content Description 7-2
7.1.2 Tag Types 7-2
7.1.3 Document Property IDs 7-5
7.1.4 SCCCA_SUBDOCPROPERTY Document Properties 7-7
7.1.5 Mail Field IDs 7-8
7.2 SCCCA BREAK: Content Breaks 7-10
7.3 SCCCA_CELL: Cell Boundary 7-10
7.3.1 SCCCA_CELL Content Description 7-11
7.4 SCCCA_COMMENTREFERENCE 7-11
7.5 SCCCA_FILEPROPERTY: File Property Content 7-11
7.5.1 SCCCA_FILEPROPERTY Content Description 7-11
7.6 SCCCA_GENERATED: Generated Information 7-12
7.6.1 SCCCA_GENERATED Content Description 7-12
7.7 SCCCA_OBJECT: SubObjects 7-12
7.7.1 SCCCA_OBJECT Content Description 7-12
7.8 SCCCA_OBJECTALTSTRING: Alternate String 7-13
7.8.1 SCCCA_OBJECTALTSTRING Content Description 7-13
7.9 SCCCA _OBJECTNAME: Object Name 7-13
7.9.1 SCCCA_OBJECTNAME Content Description 7-13
7.10 SCCCA_RECORD: Archive Record 7-14
7.10.1 SCCCA_RECORD Content Description 7-14
7.11 SCCCA_REVISION_CELL: Revision Cell 7-14
7.11.1 SCCCA_REVISION_CELL Content Description 7-14
7.12 SCCCA _REVISION_ROW: Revision Row 7-15
7.12.1 SCCCA_REVISION_ROW Content Description 7-15
7.13 SCCCA_REVISION_COLUMN: Revision Column 7-15
7.13.1 SCCCA_REVISION_COLUMN Content Description 7-15
7.14 SCCCA_REVISION_SHEET: Revision Sheet 7-15
7.14.1 SCCCA_REVISION_SHEET Content Description 7-15
7.15 SCCCA_REVISION_SHEETNAME: Revision Sheet Name 7-16
7.15.1 SCCCA_REVISION_SHEETNAME Content Description 7-16
7.16 SCCCA_REVISION_USER: Revision User 7-16
7.16.1 SCCCA_REVISION_USER Content Description 7-16
7.17 SCCCA_SHEET: Sheet Names 7-17
7.17.1 SCCCA_SHEET Content Description 7-17
7.18 SCCCA _SLIDE: Presentation Slide 7-17

ORACLE vi

7.19 SCCCA_STYLECHANGE: Style Information 7-17

7.19.1 SCCCA_STYLECHANGE Content Description 7-17
7.20 SCCCA_TEXT: Text Content 7-18
7.20.1 SCCCA_TEXT Content Description 7-18
7.20.2 Special Text Character Substitutions 7-19
7.21 SCCCA TREENODELOCATOR: Tree Node Locator 7-20
7.21.1 SCCCA_TREENODELOCATOR Content Description 7-20

8 Redirected 10

8.1 Using Redirected IO 8-1
8.2 10Close 8-2
8.3 IORead 8-3
8.4 I0OWrite 8-3
8.5 10Seek 8-4
8.6 10Tell 8-5
8.7 10GetInfo 8-5

8.7.1 |IOGENSECONDARY and IOGENSECONDARYW Structures 8-8

8.7.2 File Types That Cause IOGETINFO_GENSECONDARY 8-9
8.8 IOSEEK64PROC /IOTELL64PROC 8-10

8.8.1 10Seek64 8-10

8.8.2 10Tell64 8-10

O Implementation Issues

9.1 Running in 24x7 Environments 9-1

10 Sample Applications

10.1 Building the Samples on a Windows System 10-1
10.2 Building the Samples on a UNIX System 10-1
10.3 An Overview of the Sample Applications 10-2
10.3.1 batch_process_ca 10-2
10.3.2 casample 10-2
10.3.3 extract_archive 10-2
10.3.4 extract_object 10-3
10.3.5 memoryio 10-3
10.3.6 parsepst 10-3
10.3.7 tademo (Windows Only) 10-3
10.3.8 taredir (UNIX Only) 10-3

ORACLE vii

10.3.9 textdemo (UNIX Only) 10-4
A Content Access Options

A.1 Character Mapping A-1
A.1.1 SCCOPT_DEFAULTINPUTCHARSET A-1
A.1l.2 SCCOPT_OUTPUTCHARACTERSET A-2
A.1l.3 SCCOPT_UNMAPPABLECHAR A-3
A.2 Input Handling A-4
A.2.1 SCCOPT_EXTRACTXMPMETADATA A-4
A.2.2 SCCOPT_FALLBACKFORMAT A-4
A.2.3 SCCOPT_FIFLAGS A-5
A.2.4 SCCOPT_SYSTEMFLAGS A-6
A.2.5 SCCOPT_IGNORE_PASSWORD A-6
A.2.6 SCCOPT_LOTUSNOTESDIRECTORY A-7
A.2.7 SCCOPT_PARSEXMPMETADATA A-7
A.2.8 SCCOPT_PDF_FILTER_REORDER_BIDI A-8
A.29 SCCOPT_PROCESS_OLE_EMBEDDINGS A-8
A.2.10 SCCOPT_TIMEZONE A-9
A.2.11 SCCOPT_HTML_COND_COMMENT_MODE A-10
A.2.12 SCCOPT_PDF_FILTER_DROPHYPHENS A-11
A.2.13 SCCOPT_ARCFULLPATH A-11
A.2.14 SCCOPT_NULLREPLACECHAR A-12
A.2.15 SCCOPT_EX_PERFORMANCEMODE A-12
A.2.16 SCCOPT_GENERATEEXCELREVISIONS A-13
A.2.17 SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS A-14
A.2.18 SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS A-14
A.2.19 SCCOPT_PDF _FILTER_WORD_DELIM_FRACTION A-15
A.3 Compression A-15
A.3.1 SCCOPT_FILTERJIPG A-15
A.3.2 SCCOPT_FILTERLZW A-16
A.4 Content Access Flags A-17
A4.1 SCCOPT_ENABLEALLSUBOBJECTS A-17
A.4.2 SCCOPT_CA FLAGS A-17
A.4.3 SCCOPT_FORMATFLAGS A-18
A.5 File System A-19
A5.1 SCCOPT_IO_BUFFERSIZE A-19
A5.1.1 SCCBUFFEROPTIONS Structure A-19
A5.2 SCCOPT_TEMPDIR A-20
A5.2.1 SCCUTTEMPDIRSPEC Structure A-21
A5.3 SCCOPT_DOCUMENTMEMORYMODE A-21

ORACLE

viii

A5.4 SCCOPT_REDIRECTTEMPFILE A-22

ORACLE" iX

Preface

Preface

This document describes the installation and usage of the Outside In Content Access
Software Developer's Kit (SDK).

Audience

This document is intended for developers who are integrating Outside In Content
Access into Original Equipment Manufacturer (OEM) applications.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at htt p: / / www. or acl e. conl pl s/t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. com pl s/t opi c/
| ookup?ct x=accé&i d=i nf o or visit htt p: // www. or acl e. con pl s/t opi ¢/ | ookup?
ctx=acc&i d=trs if you are hearing impaired.

Related Documents

The complete Oracle Outside In Technology documentation set is available from the
Oracle Help Center at http://www.oracle.com/pls/topic/lookup?
ctx=oitlatest&id=homepage.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE X

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage
http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage

Introduction

Content Access is part of Oracle's family of OEM products known as Outside In
Technology, a powerful document extraction, conversion and viewing technology that
can access the information in more than 600 file formats. Content Access is a server-
grade technology that provides developers with normalized access to content stored in
documents across multiple platforms.

There may be references to other Outside In Technology SDKs within this manual. To
obtain complete documentation for any other Outside In product, see Middleware
documentation page and click Outside In Technology link below.

Note:

For new functionality information, see What's New guide.

This chapter includes the following sections:

e What Does This Technology Do?
* Architectural Overview

« Definition of Terms

e Directory Structure

* How to Use Content Access

e How to Use Text Access

1.1 What Does This Technology Do?

ORACLE

Outside In Content Access provides a simple interface to extract text and metadata
from business documents. This technology is particularly useful for document indexing
applications. The product is comprised of two modules: Content Access and Text
Access. Benefits include:

* The ability to extract text from documents with automatic translation into a
particular character set, such as Unicode or ANSI.

* Access to numerous additional properties of documents that store information
such as author, keywords, typist, version notes, carbon copy, checked by, subject,
character and paragraph attributes, and so forth.

* A common interface to the content of diverse file formats including word
processing, spreadsheet, database, email, vector, and presentation formats.

* The Text Access module's specific functions have tight integration with Outside In
Technology, such that text generated by the text access functions is highlighted in
the Viewer.

1-1

https://docs.oracle.com/en/middleware/
https://docs.oracle.com/en/middleware/

Chapter 1
Architectural Overview

* Text Access and Content Access generate the same raw text. However, the
following points are important.

— rawtext and Text Access will extract some text as unmappable characters
because they cannot be annotated. This includes text that is not visible (for
example, document properties, hidden text, and so on.).

— rawtext and Text Access only operate on the top-most layer of the file, and will
not extract text from embedded documents. Thus, not all visible text will be
extractable via rawtext or Text Access.

— Content Access can be used to extract hidden text, like document properties;
and text from embedded documents.

— It should be noted that other Outside In products offer powerful text extraction
and tagging abilities, such as Search Export and XML Export.

1.2 Architectural Overview

The basic architecture of Content Access is the same across all supported platforms:

Filter/Module

Description

Input Filter

Chunker

Content Access

Text Access

Data Access

The input filters form the base of the architecture. Each one reads a
specific file format or set of related formats and sends the data to
the chunker module through a standard set of function calls. There
are more than 150 of these filters that read more than 600 distinct
file formats. Filters are loaded on demand by the data access
module.

The Chunker module is responsible for caching a certain amount of
data from the filter and returning this data to the Content Access
module.

The Content Access module reads data from the chunker and
repackages it in a way that is convenient for the developer. This
repackaging process includes mapping characters to a particular
character set and converting some data (such as paragraph and
cell breaks) into representative characters. CA outputs non-visible
text, provides a wealth of style information, provides the information
needed for the consumer to process sub-documents, and optionally
produces non-textual information such as numbers in
spreadsheets.

The Text Access module is similar to the Content Access module,
although it is restricted to text. For more information, see Text
Access Functions.

The Data Access module implements a generic API for access to
files. It understands how to identify and load the correct filter for all
the supported file formats. The module delivers to the developer a
generic handle to the requested file, which can then be used to run
more specialized processes. The Data Access module is
responsible for providing a document for the Content Access
module. Data Access conserves resources by creating only one file
handle and one chunker handle for each file, even if it is opened in
multiple Content Access instances. It also provides a unified
platform for several modules in addition to Content Access,
including Text Access and Remote Filter Access.

ORACLE

1-2

Chapter 1
Definition of Terms

1.3 Definition of Terms

The following table provides definitions of some common terms.

Term Definition

Developer Someone integrating this technology into another technology or
application. Most likely this is you, the reader.

Source File The file the developer wishes to extract content from.

Data Access Module The core of Outside In Data Access, in the SCCDA library.

Data Access Submodule This refers to any of the Outside In Data Access modules, including

(also referred to as SCCCA (Content Access) and SCCTA (Text Access), but excluding

"Submodule™) SCCDA (Data Access).

Document Handle (also A Document Handle is created when a file is opened using Data

referred to as "hDoc") Access (see Data Access Common Functions). Each Document

Handle may have any number of Subhandles.

Content Handle (also The handle created by a call to CAOpenContent or TAOpenText.
referred to as "hl t ent) Every Content Handle has a Document Handle associated with it.

The DASetOption and DAGetOption functions in the Data Access
Module may be called with any Content Handle or Document
Handle. The DARetrieveDocHandle function returns the Document
Handle associated with any Content Handle.

1.4 Directory Structure

Each Outside In product has an sdk directory, under which there is a subdirectory for
each platform on which the product ships (for example, ca/sdk/ca_win-x86-32_sdk).
Under each of these directories are the following two subdirectories:

redist: Contains only the files that the customer is allowed to redistribute. These
include all the compiled modules, filter support files, .xsd and .dtd files,
cmmap000.bin, and third-party libraries, like freetype.

sdk: Contains the other subdirectories that used to be at the root-level of an sdk
(common, lib (windows only), resource, samplefiles, and samplecode (previously
samples). In addition, one new subdirectory has been added, demo, that holds all
of the compiled sample apps and other files that are needed to demo the products.
These are files that the customer should not redistribute (.cfg files, exportmaps,
and so forth).

In the root platform directory (for example, ca/sdk/ca_win-x86-32_sdk), there are two
files:

ORACLE

README: Explains the contents of the sdk, and that makedemo must be run in
order to use the sample applications.

makedemo (either .bat or .sh — platform-based): This script will either copy (on
Windows) or Symlink (on UNIX) the contents of .../redist into .../sdk/demo, so that
sample applications can then be run out of the demo directory.

1-3

Chapter 1
How to Use Content Access

1.5 How to Use Content Access

Here's a step-by-step overview of how to obtain information from a source file using
Content Access.

1.

10.

11.

ORACLE

Call DAInitEX to initialize the Data Access technology. This function needs to be
called only once per application. If using threading, then pass in the correct
ThreadOption.

Set "Null" options: Certain options need to be set before the desired source file is
opened. These options are identified by requiring a NULL handle type. They
include, but aren't limited to:

- SCCOPT_FALLBACKFORMAT
- SCCOPT_FIFLAGS
- SCCOPT_TEMPDIR

Open the Source File: DAOpenDocument is called to create a document handle
that uniquely identifies the source file. This handle may be used in subsequent
calls to the CAOpenContent function or the open function of any other Data
Access Submodule, and will be used to close the file when access is complete.
This allows the file to be accessed from multiple Data Access Submodules without
reopening.

Set other Options: Once the source document has been opened, set any other
desired options. Most options will be set at this time and are identified by requiring
a VTHDOC handle type.

Open a Handle to Content Access: Using the document handle, CAOpenContent
is called to obtain a content handle that identifies the file to the Content Access
module. This handle will used in all subsequent calls to the Content Access
functions.

Retrieve the first Information from the File: Call CAReadFirst to read the first piece
of information from the file. Note: this step may be repeated to reread the file.

Retrieve other Information from the File: Repeatedly call CAReadNext, which will
iteratively read through and process the file.

Process sub-documents (Optional): When you encounter a sub-document, you
may process that sub-document by repeating steps 4-10. Sub-documents are
identified by either the SCCCA_OBJECT type or the SCCCA_LINKEDOBJECT
subtype of the SCCCA_BEGINTAG type. Note: the document handle and content
handle will be different for the parent and sub-document.

Close the Content Access Handle: Call CACloseContent to terminate the content
access for the file. After this function is called, the content handle will no longer be
valid, but the document handle may still be used.

Close the Source File: DACloseDocument is called to close the source file. After
calling this function, the document handle will no longer be valid.

De-initialize DA: DADelnit is called to de-initialize the Data Access technology.

1-4

Chapter 1
How to Use Text Access

1.6 How to Use Text Access

Here's a step-by-step overview of how to obtain information from a source file using
Text Access.

1. Call DAInitEX to initialize the Data Access technology. This function needs to be
called only once per application. If using threading, then pass in the correct
ThreadOption.

2. Set "Null" options: Certain options need to be set before the desired source file is
opened. These options are identified by requiring a NULL handle type. They
include, but aren't limited to:

« SCCOPT_FALLBACKFORMAT
- SCCOPT_FIFLAGS
- SCCOPT_TEMPDIR

3. Open the Source File: DAOpenDocument is called to create a document handle
that uniquely identifies the source file. This handle may be used in subsequent
calls to the TAOpenText function or the open function of any other Data Access
Submodule, and will be used to close the file when access is complete. This
allows the file to be accessed from multiple Data Access Submodules without
reopening.

4. Set other Options: Once the source document has been opened, set any other
desired options. Most options will be set at this time and are identified by requiring
a VTHDOC handle type.

5. Open a Handle to Text Access: Using the document handle, TAOpenContent is
called to obtain a content handle that identifies the file to the Text Access module.
This handle will used in all subsequent calls to the Text Access functions.

6. Retrieve the first Information from the File: Call TAReadFirst to read the first piece
of information from the file. Note: this step may be repeated to reread the file.

7. Retrieve other Information from the File: Repeatedly call TAReadNext, which will
iteratively read through and process the file.

8. Close the Text Access Handle: Call TACloseText to terminate the text access for
the file. After this function is called, the text handle will no longer be valid, but the
document handle may still be used.

9. Close the Source File: DACloseDocument is called to close the source file. After
calling this function, the document handle will no longer be valid.

10. De-initialize DA: DADelnit is called to de-initialize the Data Access technology.

ORACLE 1-5

Windows Implementation Details

This chapter describes the implementation of the Content Access SDK on the
Windows platform. Content Access is delivered as a set of DLLs.

For a list of the currently supported platforms, see Outside In Technology and click
links under Certified Platforms and Supported Formats from the Get Started page.

This chapter includes the following sections:

See Installation for information.

Libraries and Structure
The Basics

Character Sets

Runtime Considerations

Changing Resources

2.1 Libraries and Structure

Here is an overview of the files contained in the main installation directory for this
product:

API DLLs

These DLLs implement the API. They should be linked with the developer's
application. LIB files are included in the SDK.

File Description

sccca.dll Content Access module (provides organized chunker data for the
developer)

sccda.dll Data Access module

sccfi.dll File Identification module (identifies files based on their contents).
The File ID Specification may not be used directly by any
application or workflow without it being separately licensed
expressly for that purpose.

sccta.dll Text Access module (provides straight text data for the

developer)

Support DLLs

ORACLE

File Description

sccch.dll Chunker (provides caching of and access to filter data for the
display engine)

sccfa.dll Filter Access module

2-1

http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage

Chapter 2
The Basics

File Description

sccfmt.dll Formatting module (resolves numbers to formatted strings)

sccfut.dll Filter utility module

sccind.dll Indexing engine

scclo.dll Localization library (all strings, menus, dialogs and dialog
procedures reside here)

sccole.dll OLE rendering module

sccut.dll Utility functions (including 10 subsystem)

wvcore.dll The GDI Abstraction layer

Filter DLLs

File Description

vs*.dll Filters for specific file types (there are more than 150 of these
filters, covering more than 600 file formats)

oitnsf.id Support file for the vsnsf filter.

Premier Graphics Filters

File Description
i*2.dll Import filters for premier graphics formats
isgdi32.dll Interface to premier graphics filters

Additional Files

File

Description

adinit.dat
cmmap000.bin

cmmap000.shc

cmmap000.dbc

compreg.bin

Support file for the vsacad filter
Tables for character mapping (all character sets)

Tables for character mapping (single-byte character sets).
Located in the common directory.

Identical to cmmap000.Bin, but renamed for clarity (.dbc =
double-byte character). This file is located in the common
directory.

Outside In Component Registry

2.2 The Basics

All the steps outlined in this section are used in the sample applications provided with
the SDK. Looking at the code for the simple sample application is recommended for
those wishing to see a real-world example of this process.

ORACLE

For detailed information about all sample applications included with this product, see

Sample Applications.

2-2

Chapter 2
The Basics

2.2.1 What You Need in Your Source Code

Any source code that uses this product should #i ncl ude the file sccca.h (for Content
Access) and/or sccta.h (for Text Access) and #def i ne W NDOWS and W N32 or W N64.
For example, a Windows application might have a source file with the following lines:

#defi ne W NDOAS [* WII be automatically defined if your
conpi | er defines _WNDOAS */

#define WN32

#include <sccca. h> [* 1f using ContentAccess */

#include <sccta. h> [* If using Text Access */

The developer's application should be linked to the Content Access (and/or Text
Access) and Data Access DLLs through the provided libraries (sccta.lib, sccca.lib and
sccda.lib).

2.2.2 Options and Information Storage

ORACLE

One set of information is created by the technology, the default options. In the
Windows implementation, this is built by the technology as needed, usually the first
time the product is run. You do not need to ship this list with your application. The list
is automatically regenerated if corrupted or deleted.

The files used to store this information are stored in a .oit subdirectory in the following
location:

\Documents and Settings\user name\Application Data

If an .oit directory does not exist in the user's directory, the directory will be created
automatically by the technology. The files are automatically regenerated if corrupted or
deleted.

The file is:

*.d = Display engine lists

Note:

Some applications and services may run under a local system account for
which there is no user's "application data" folder. The technology first does a
check for an environment variable called OIT_DATA_PATH. Then it checks
for APPDATA, and then LOCALAPPDATA. If none of those exist, the options
files are put into the executable path of the UT module.

These file names are intended to be unique enough to avoid conflict for any
combination of machine name and install directory. This allows the user to run
products in separate directories without having to reload the files above. The file
names are built from an 11-character string derived from the directory the Outside In
technology resides in and the name of the machine it is being run on. The string is
generated by code derived from the RSA Data Security, Inc. MD5 Message-Digest
Algorithm.

2-3

Chapter 2
Character Sets

2.2.3 Structure Alignment

Outside In is built with 8-byte structure alignment. This is the default setting for most
Windows compilers. This and other compiler options that should be used are
demonstrated in the files provided with the sample applications in \sdk\samplefiles\win.

2.3 Character Sets

This section provides information about character sets.

2.3.1 Default API Character Set

The strings passed in the Windows API are ANSI1252 by default.

2.3.2 Double-Byte Character Set Mapping

Please note that to optimize performance on systems that do not require DBCS
support, a second character mapping bin file, that does not contain any of the DBCS
pages, is now included. The second bin file will give additional performance benefits
for English documents, but will not be able to handle DBCS documents. To use the
new bin file, replace the cmmap000.bin with the new bin file, cmmap000.sbc. For
clarity, a copy of the cmmap000.bin file named cmmap000.dbc has also been
included. Both the cmmap000.sbc and cmmap000.dbc files are located in the \sdk
\common directory of the technology.

2.4 Runtime Considerations

The files used by this product must be in the same directory as the developer's
executable.

2.5 Changing Resources

Outside In Content Access ships with the necessary files for OEMs to change any of
the strings in the technology as they see fit.

Strings are stored in the lodlgstr.h file found in the resource directory. The file can be
edited using any text editor.

< Note:

Do not directly edit the scclo.rc file. Strings are saved with their identifiers in
lodlgstr.h. If a new scclo.rc file is saved, it will contain numeric identifiers for
strings, instead of their #define'd names.

Once the changes have been made, the updated scclo.dll file can be rebuilt using the
following steps:

1. Compile the .res file:

ORACLE 2.4

ORACLE

Chapter 2
Changing Resources

rc /fo ".\scclo.res" /i "<path to header (.h) files folder>" /d "NDEBUG' scclo.rc

2. Link the scclo.res file you've created with the scclo.obj file found in the resource
directory to create a new scclo.dll:

link /DLL /QUT:scclo.dll scclo.obj scclo.res

Note:

Developers should make sure they have set up their environment
variables to build the library for their specific architecture. For Windows
x86_32, when compiling with VS 2013, the solution is to run
vsvars32.bat (in a standard VS 2013 installation, this is found in C:
\Program Files\Microsoft Visual Studio X\Common7\Tools\). If this works
correctly, you will see the statement, "Setting environment for using
Microsoft Visual Studio 2013 tools." If you do not complete this step, you
may have conflicts that lead to unresolved symbols due to conflicts with
the Microsoft CRT.

3. Embed the manifest (which is created in the \resource directory during step 2) into
the new DLL:

m -mani fest scclo.dll.manifest -outputresource:scclo.dll;?2

If you are not using Microsoft Visual Studio, substitute the appropriate development
tools from your environment.

Note:

In previous versions of Outside In, it was possible to directly edit the
SCCLO.DLL using Microsoft Visual Studio. Outside In DLLs are now digitally
signed. Editing the signed DLL is not advisable.

2-5

UNIX Implementation Detalls

This chapter describes the UNIX implementation of the Content Access SDK on the
UNIX platform. The UNIX implementation of Content Access is delivered as a set of

shared libraries.

For a list of the currently supported platforms, see Outside In Technology and click
links under Certified Platforms and Supported Formats from the Get Started page.

This chapter includes the following sections:

e Installation

e Libraries and Structure

e The Basics

e Character Sets

* Runtime Considerations

e Environment Variables

* Changing Resources

e HP-UX Compiling and Linking
* IBM AIX Compiling and Linking

e Linux Compiling and Linking

* Oracle Solaris Compiling and Linking

* FreeBSD Compiling and Linking

3.1 Installation

To install the demo version of the SDK, copy the tgz file corresponding to your
platform (available on the web site) to a local directory of your choice. Decompress the
tgz file and then extract from the resulting tar file as follows:

ORACLE

gunzip tgzfile
tar xvf tarfile

The installation directory should contain the following directory structure:

Directory Description

Iredist Contains a working copy of the UNIX version of the technology.
/sdk/common Contains the C include files needed to build or rebuild the technology.
/sdk/demo Contains the compiled executables of the sample applications.
/sdk/resource Contains localization resource files. For more information, see

/sdk/samplecode

Changing Resources.

Contains a subdirectory holding the source code for a sample
application. For more information, see Sample Applications.

3-1

http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage

Chapter 3
Libraries and Structure

Directory Description

/sdk/samplefiles Contains sample files designed to exercise the technology.

3.1.1 NSF Support

Notes Storage Format (NSF) files are produced by the Lotus Notes Client or the Lotus
Domino server. The NSF filter is the only Outside In filter that requires the native
application to be present to filter the input documents. Due to integration with an
outside application, NSF support will not work with redirected 1/0 nor will it work when
an NSF file is embedded in another file. Lotus Domino version 8 must be installed on
the same machine as OIT. The NSF filter is currently only supported on the Win32,
Win x86-64, Linux x86-32, and Solaris Sparc 32 platforms.

SCCOPT_LOTUSNOTESDI RECTCRY is a Windows-only option and is ignored on Unix.

Additional steps must be taken to prepare the system. It is necessary to know the
name of the directory in which Lotus Domino has been installed. On Linux, this default
directory is / opt /i bni | ot us/ notes/ | atest/|inux..On Solaris, itis /opt/ibni | ot us/
not es/ | at est/ sunspa

* Inthe Lotus Domino directory, check for the existence of a file called "not es. i ni ".
If the file "not es. i ni " does not exist, create it in that directory and ensure that it
contains the following single line:

[Notes]
e Add the Lotus Domino directory to the $LD LI BRARY_PATH environment variable.

» Set the environment variable $Not es_ExecDi rect ory to the Lotus Domino
directory.

3.2 Libraries and Structure

ORACLE

On the UNIX platforms, Outside In technologies are delivered with a set of shared
libraries. All libraries should be installed to a single directory. Depending upon your
application, you may also need to add that directory to the system's runtime search
path. For more information, see Environment Variables.

The following is a brief description of the included libraries and support files. Note that
in instances where a file extension is listed as .*, the file extension will vary for each
UNIX platform (sl on HP/UX, so on Linux and Solaris).

API Libraries

These libraries implement the API. They should be linked with the developer's
application.

File Description

libsc_ca.* Content Access module (provides organized chunker data for the
developer)

libsc_da.* Data Access module

3-2

ORACLE

Chapter 3
Libraries and Structure

File Description

libsc_fi.* File Identification module (identifies files based on their contents).
The File ID Specification may not be used directly by any
application or workflow without it being separately licensed
expressly for that purpose.

libsc_ta.* Text Access module (provides straight text data for the

developer)

Support Libraries

File Description

libsc_ch.* Chunker (provides caching of and access to filter data for the
display engine)

libsc_fa.* Filter Access module

libsc_fmt.* Formatting module (resolves numbers to formatted strings)

libsc_fut.* Filter utility module

libsc_ind.* Indexing engine

libsc_lo.* Localization library (all strings, menus, dialogs and dialog
procedures reside here)

libsc_ut.* Utility functions, including 10 subsystem

libsc_xp.* XPrinter bridge

libwv_core.* The Abstraction layer

Filter Libraries

File

Description

libvs_*.*

Filters for specific file types (there are more than 150 of these
filters, covering more than 600 file formats)

Premier Graphics Filters

File Description
libi*.* These 30 files are the import filters for premier graphics formats.
libis_unx2.* Interface to premier graphics filters

Additional Files

File

Description

adinit.dat
cmmap000.bin

cmmap000.shc

cmmap000.dbc

Support file for the vsacad and vsacd? filters
Tables for character mapping (all character sets)

Tables for character mapping (single-byte character sets). This
file is located in the common directory.

Identical to cmmap000.Bin, but renamed for clarity (.dbc =
double-byte character). This file is located in the common
directory.

3-3

Chapter 3
The Basics

File Description

oitnsf.id Support file for the vsnsf filter.

3.3 The Basics

All the steps outlined in this section are used in the sample applications provided with
the SDK. Looking at the code for the casample sample application (see Sample
Applications) is recommended for a real world example of this process.

3.3.1 What You Need in Your Source Code

Any source code that uses this product should #i ncl ude the file sccca.h (for Content
Access) and/or sccta.h (for Text Access) and #defi ne UNI X. For example, a 32-bit
UNIX application might have a source file with the following lines:

#define UNIX
#include <sccca. h> [* 1f using ContentAccess */
#include <sccta. h> [* If using Text Access */

and a 64-bit UNIX application might have a source file with the following lines:

#define UNI X
#define UN X_64
#include <sccta. h>

3.3.2 Options and Information Storage

ORACLE

Three sets of information are created by the technology: the default options, a list of
available filters and a list of available display engines. In the UNIX implementations,
these lists are built as needed, usually the first time the product is run. You do not
need to ship these lists with your application.

These lists are stored in the SHOME!/.oit directory. If the $HOME environment variable
is not set, the files are placed in the same directory as the Outside In Technology. If

a .oit directory does not exist in the user's SHOME directory, the .oit directory will be
created automatically by the technology. The files are automatically regenerated if
corrupted or deleted.

The files are:

o *f: Filter lists
e *.d: Display engine list
e *.opt: Persistent options

The names of these option files end in *.opt, and are intended to be unique enough to
avoid conflict for any combination of machine name and install directory. This is
intended to prevent problems with version conflicts when multiple versions of the
Viewer Technology and/or other Viewer Technology-based products are installed on a
single system. The file names are built from an 11-character string derived from the
directory the Outside In technology resides in and the name of the machine it is being
run on. The string is generated by code derived from the RSA Data Security, Inc. MD5
Message-Digest Algorithm.

3-4

Chapter 3
Character Sets

3.4 Character Sets

This section provides information about character sets.

3.4.1 Default API Character Set

The strings passed in the UNIX API are 1ISO8859-1 by default.

3.4.2 Double-Byte Character Set Mapping

To optimize performance on systems that do not require DBCS support, a second
character mapping bin file not containing any of the DBCS pages is now included. The
second bin file gives additional performance benefits for English documents, but will
not be able to handle DBCS documents. To use the new bin file, replace the
cmmap000.bin with the new bin file, cmmap000.sbc. For clarity, a copy of the
¢cmmap000.bin file named cmmap000.dbc has also been included. Both the
cmmap000.sbc and cmmap000.dbc files are located in the /common directory of the
technology.

3.5 Runtime Considerations

This section provides information about runtime considerations.

3.5.1 Signal Handling

This product traps and handles the following signals:

SIGABRT
SIGBUS
SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM

To override the default handling of these signals you can set your own signal handlers.
This can be done after the developer's application has called DAInItEX().

ORACLE

3-5

Chapter 3
Environment Variables

< Note:

The Java Native Interface (JNI) allows Java code to call and be called by
native code (C/C++ in the case of OIT). You may run into problems if Java
isn't allowed to handle signals and forward them to OIT. If OIT catches the
signals and forwards them to Java, the JVMs will sometimes crash. OIT
installs signal handlers when DAInitEx() is called, so if you call OIT after the
JVM is created, you will need to use libjsig. Refer here for more information:

http://wwv. oracl e. com t echnet wor k/ j aval j avase/ i ndex- 137495. ht m

3.5.2 Runtime Search Path and $ORIGIN

Libraries and sample applications are all built with the $ORIGIN variable as part of the
binaries' runtime search path. This means that at runtime, OIT libraries will
automatically look in the directory they were loaded from to find their dependent
libraries. You don't necessarily need to include the technology directory in your
LD_LIBRARY_PATH or SHLIB_PATH.

As an example, an application that resides in the same directory as the OIT libraries
and includes $ORIGIN in its runtime search path will have its dependent OIT libraries
found automatically. You will still need to include the technology directory in your
linker's search path at link time using something like -L and possibly -rpath-link.

Another example is an application that loads OIT libraries from a known directory. The
loading of the first OIT library will locate the dependent libraries.

Note:

This feature does not work on AlX and FreeBSD.

3.6 Environment Variables

ORACLE

There are a number of environment variables the UNIX implementation of the
technology may use at run time. While described elsewhere, following is a short
summary of those variables and their usage.

Variable Description

$PATH Must be set to include the directory containing the .flt files. Only
applicable to AIX.

$LD_LIBRARY_PATH These variables help your system's dynamic loader locate objects

(FreeBSD, HP-UX Itanium at runtime. If you have problems with libraries failing to load, try

64, Linux, Solaris) adding the path to the Outside In libraries to the appropriate

$SHLIB_PATH (HP-UX PA- €nvironment variable. See your system’s manual for the dynamic

RISC 32) loader and its configuration for details.

$LIBPATH (AIX, iSeries) Note that for products that have a 64-bit PA-RISC, 64-bit Solaris
and Linux PPC/PPC64 distributable, they will also go
under $LD_LIBRARY_PATH.

3-6

http://www.oracle.com/technetwork/java/javase/index-137495.html

Chapter 3
Changing Resources

Variable Description

$HOME Must be set to allow the system to write the option, filter and
display engine lists. For more information, see Options and
Information Storage.

3.7 Changing Resources

All of the strings used in the UNIX versions of Outside In products are contained in a
file called lodIgstr.h. This file, located in the resource directory, can be modified for
internationalization and other purposes. Everything necessary to rebuild the resource
library to use the modified source file is included with the SDK.

Along with lodlgstr.h, an object file, scclo.o has been provided that is necessary for the
linking phase of the build. A makefile has also been provided for building the library.
The makefile allows building on all of the UNIX platforms supported by Outside In. It
may be necessary to make minor modifications to the makefile so that the system
header files and libraries can be found for compiling and linking. There are standard
INCLUDE and LIB make variables defined for each platform in the makefile. Edit these
variables to point to the header files and libraries on your particular system. Other
make variables are:

 TECHINCLUDE: May need to be edited to point to the location of the Outside In
common header files that are supplied with the SDK.

 BUILDDIR: May need to be edited to point to the location of the makefile,
lodlIgstr.h, and scclo.o (which should all be in the same directory).

After these make variables are set, change to the build directory and type make. The
resource library, libsc_lo, will be built and placed in the appropriate platform-specific
directory. To use this library, copy it into the directory where the Outside In product

resides, and the new, modified resource strings will then be used by the technology.

Menu constants are included in lomenu.h in the common directory.

All dialog boxes are created directly in the viewer code internally and are compiled and
linked in the normal compilation process. There are no separate resource files
corresponding to the .rc files in the Windows code.

Additional viewer resources are defined in xsccvw.h, which is included in the code for
the sample executables and the viewer.

3.8 HP-UX Compiling and Linking

ORACLE

In the following example, libsc_ca.sl and libsc_da.sl are the only libraries that need to
be linked with the casample. Not all applications that use the Content Access module
will require the use of these libraries. They can be loaded when the application starts
by linking them directly at compile time or they can be loaded dynamically by your
application using library load functions (for example, shl_load).

The following are example command lines used to compile the sample application
casample from the /sdk/samplecode/unix directory. The command lines are separated
into sections for HP/UX and HP/UX on Itanium (which requires GCC). Please note that
this command line is only an example. The actual command line required on the
developer's system may vary. The example assumes that the include and library file

3-7

Chapter 3
IBM AIX Compiling and Linking

search paths for the technology libraries and any required X libraries are set correctly.
If they are not set correctly, the search paths for the include and/or library files must be
explicitly specified via the -1 include file path and/or -L library file path options,
respectively, so that the compiler and linker can locate all required files.

HP-UX on RISC

cc -w -0 ../casanpl e/ uni x/ casanpl e ../casanpl e/ uni x/ casanpl e. ¢ +DAportabl e -Ae -
I/usr/include -1../../comon -L../../demo -L/usr/lib -Im-Isc_ca -Isc_da -DUNIX -W,
+s, b, $ORIG N

HP-UX on Itanium (64 bit)

cCc -w -0 ../casanpl e/ uni x/ casanpl e ../casanpl e/ uni x/ casanple.c +DD64 -I../../commn -
L../../deno -L/usr/lib/hpux64 -1sc_da -1sc_ca -DUNIX -DUNI X_64 -W, +s, +b, ' $ORIG N

3.9 IBM AIX Compiling and Linking

All libraries should be installed into a single directory and the directory must be
included in the system's shared library path ($LIBPATH) as well as the executable
path ($PATH).

Note:

$LIBPATH must be set and must point to the directory containing the Outside
In technology.

Outside In Technology has been updated to increase performance, at a cost of using
more memory. It is possible that this increased memory usage may cause a problem
on AlX systems, which can be very conservative in the amount of memory they grant
to processes. If your application experiences problems due to memory limitations with
Outside In, you may be able to fix this problem by using the "large page" memory
model. If you anticipate viewing or converting very large files with Outside In
technology, we recommend linking your applications with the -bmaxdata flag (for
example, ‘cc -o foo foo.c -bmaxdata:0x80000000"). If you are currently seeing illegal
instruction errors followed by immediate program exit, this is probably due to not using
the large data model.

The following is an example command line used to compile the sample application
casample from the /sdk/samplecode/unix directory. This command line is only an
example. The actual command line required on the developer's system may vary. The
example assumes that the include and library file search paths for the technology
libraries and any required X libraries are set correctly. If they are not set correctly, the
search paths for the include and/or library files must be explicitly specified via the -I
include file path and/or -L library file path options, respectively, so that the compiler
and linker can locate all required files. Developers need to pass -brtl to the linker to list
libraries in the link command as dependencies of their applications.

ORACLE 3-8

Chapter 3
Linux Compiling and Linking

< Note:
Developers may need to use the - gcpluscmt flag to allow C++ style
comments.
gcc -w -0 ../ casanpl e/ uni x/ casanpl e ../ casanpl e/ uni x/ casanple.c -I../../comon -

L../../demo -Isc_ca -lsc_da -DUNI X - DFUNCPROTO -W, - brtl

3.10 Linux Compiling and Linking

This section provides information about Linux compiling and linking.

3.10.1 Library Compatibility

This section provides information about library compatibility.

3.10.1.1 Motif Libraries

ORACLE

On some Linux installations, particularly newer ones, the Motif libraries that are
installed are not compatible with the libraries that are used to build the Outside In
technology. This is known to be the case with most of the SuSE installations, for
example. It is likely that you have a binary incompatibility if you try to build one of the
Xwindows-based sample applications included with this product and see an error at
compile time that looks like the following:

warning: |ibXmso.3, needed by ../../libsc_vw.so, may conflict with IibXm so.2

The proper solution to this problem is to install a compatible Motif library and use it to
build your application. Often, the installation discs for your particular Linux platform will
have the proper libraries. If your installation discs do not have the libraries, instructions
for downloading a binary rpm can be found at http: //rpnfind. net/linux/ RPM

If you are doing development, you will also need the proper header files, as well.

The following is a list of the Motif library versions used by Oracle when building and
testing the Outside In binaries:

* x86 Linux: OpenMotif v. 2.2.3
e zSeries Linux: OpenMotif v. 2.2.3
e Itanium Linux: OpenMotif v. 2.1.30.

" Note:

If a directory needs to be specified for the compiler to find the shared
libraries, it is recommended that the $LD_LIBRARY_PATH environment
variable be used. This will prevent the compiler from hard-coding the
library's current directory into the executable as the only directory to
search for the library at run time. Instead, the system will first search the
directories specified by $LD_LIBRARY_PATH for the library.

3-9

http://rpmfind.net/linux/RPM

Chapter 3
Linux Compiling and Linking

3.10.1.2 GLIBC and Compiler Versions

For each Linux platform supported by Outside In, the following table indicates the
compiler version used and the minimum required version of the GNU standard C
library upon which Outside In depends.

Distribution Compiler Version GLIBC Version

x86 Linux 3.3.2 libc.s0.6 (2.3.2 or newer)

Itanium Linux 3.3.2 libc.s0.6 (2.3.2 or newer)

zSeries Linux 3.3.6 libc.s0.6 (2.3.2 or newer)
3.10.1.3 Other Libraries

In addition to libc.so.6, Outside In is dependent upon the following libraries:

e libXm.s0.3 (in particular, libXm.s0.3.0.2 or newer, due to issues in OpenMotif
2.2.2)

e libstdc++.50.6
e libgcc_so.1
* libXt.s0.6

libgcc_s.so.1 was introduced with GCC 3.0, so any distribution based on a pre-GCC
3.0 compiler will not include libgcc_s.so.1.

3.10.2 Compiling and Linking

ORACLE

In the following example, the libsc_ca.so and libsc_da.so are the only libraries needing
to be linked with the casample. Not all applications that use the Content Access
module will require the use of all of these libraries. They can be loaded when the
application starts by linking them directly at compile time or they can be loaded
dynamically by your application using library load functions (for example, dlopen).

The following is an example command line used to compile the sample application
casample from the /sdk/samplecode/unix directory. Please note that this command
line is only an example. The actual command line required on the developer's system
may vary. The example assumes that the include and library file search paths for the
technology libraries and any required X libraries are set correctly. If they are not set
correctly, the search paths for the include and/or library files must be explicitly
specified via the -1 include file path and/or -L library file path options, respectively, so
the compiler and linker can locate all required files.

Linux 32-bit (includes Linux PPC)

gcc -w -0 ../ casanpl e/ uni x/ casanpl e ../ casanpl e/ uni x/ casanpl e.c -1/usr/local/include
-l../../comon -L../../demo -L/usr/local/lib -lsc_da -lsc_ca -DUNIX -W,-rpath,../../
demo -W,-rpath," ${ORIG N}’

Linux 64-bit

gcc -w -0 ../casanpl e/ unix/casanpl e ../casanpl e/ uni x/ casanple.c -1/usr/local/include
-I../../comon -L../../deno -L/usr/local/lib -lsc_da -lsc_ca -DUNIX -DUNI X 64 -W, -
rpath,../../dem -W,-rpath,' ${ORIG N

3-10

Chapter 3
Oracle Solaris Compiling and Linking

Linux zSeries

gcc -w -0 ../casanpl e/ uni x/ casanpl e ../casanpl e/ uni x/ casanple.c -1/usr/local/include
-1../../comon -L../../demo -L/usr/local/lib -Isc_da -Isc_ca -DUNNX -W,-rpath,../../
deno -W, -rpath,' ${ORIGA N}’

3.11 Oracle Solaris Compiling and Linking

All libraries should be installed into a single directory.

" Note:

This product does not support the old Solaris BSD mode.

In the following example, the libsc_ca.so and libsc_da.so are the only libraries that
need to be linked with the casample. Not all applications that use the Content Access
module will require the use of all of these libraries. They can be loaded when the
application starts by linking them directly at compile time or they can be loaded
dynamically by your application using library load functions (for example, dlopen).

The following is an example command line used to compile the sample application
casample from the /sdk/samplecode/unix directory. Please note that this command line
is only an example. The actual command line required on the developer's system may
vary. The example assumes that the include and library file search paths for the
technology libraries and any required X libraries are set correctly. If they are not set
correctly, the search paths for the include and/or library files must be explicitly
specified via the -l include file path and/or -L library file path options, respectively, so
that the compiler and linker can locate all required files.

Note:

Developers may need to use the -xcc flag to allow C++ style comments.

3.11.1 Oracle Solaris SPARC

ORACLE

cc -l1/usr/include -1/usr/dt/share/include -1../../comon -w -0 ../casanpl e/ unix/
casanpl e ../casanpl e/ uni x/ casanple.c -L../../deno -L/usr/lib -L/lib -lc -1dl -
Isc_ca -Isc_da -DUNIX -W,-R'"$ORIG N

Note: When running the 32-bit SPARC binaries on Solaris 9 systems, you may see the
following error:

Id.so.1: sinple: fatal: libmso.1: version "SUNW1.1.1" not found
(required by file ./libsc_vw. so)

This is due to a missing system patch. Please apply the following patch (or its
successor) to your system to correct.

* For Solaris 9 - Patch 111722-04

3-11

Chapter 3
FreeBSD Compiling and Linking

3.11.2 Oracle Solaris x86

< Note:

Your system will require Solaris patch 108436, which contains the C++
library libCstd.so.1.

cc -l1/usr/include -1/usr/dt/share/include -1../../comon -w -0 ../casanpl e/ unix/
casanpl e ../casanpl e/ uni x/ casanple.c -L../../demo -L/usr/lib -Isc_ca -lsc_da -DUNI X
-R"$ORIG@N + -DUNI X

3.12 FreeBSD Compiling and Linking

ORACLE

The following is an example command line used to compile the sample application
casample from the /sdk/samplecode/unix directory. Please note that this command line
is only an example. The actual command line required on the developer's system may
vary. The example assumes that the include and library file search paths for the
technology libraries and any required X libraries are set correctly. If they are not set
correctly, the search paths for the include and/or library files must be explicitly
specified via the -1 include file path and/or -L library file path options, respectively, so
the compiler and linker can locate all required files.

gcc -w -0 ../ casanpl e/ uni x/ casanpl e ../casanpl e/ uni x/ casanpl e.c -1/usr/local/include
-1../..Icomon -L../../demo -L/usr/local/lib -Isc_da -Isc_ca -DUNNX -W,-rpath,../../
deno

3-12

Data Access Common Functions

ORACLE

The Data Access module is common to all Outside In technologies. It provides a way

to open a generic handle to a source file. This handle can then be used in the
functions described in this chapter.
This chapter includes the following sections:

Deprecated Functions
DAInitEx

DADelnit
DAOpenDocument
DACloseDocument
DARetrieveDocHandle
DASetOption

DAGetOption

DAGetFileld
DAGetFileldEx
DAGetErrorString
DAGetObjectinfo
DAGetTreeCount
DAGetTreeRecord
DAOpenTreeRecord
DAOpenRandomTreeRecord
DASavelnputObject
DASaveTreeRecord
DASaveRandomTreeRecord
DACloseTreeRecord
DASetStatCallback
DASetFileAccessCallback
DAOpenNextDocument
DAGetOptionltem
DARemoveOptionltem
DAAddOptionltem
DASetFileSpecOption
DAOpenSubdocumentByld

4-1

Chapter 4
Deprecated Functions

4.1 Deprecated Functions

DAInit and DaThreadlnit have both been deprecated. DAInitEx now replaces these two
functions. All new implementations should use DAIntEX, although the other two
functions will continue to be supported.

4.2 DAInItEx

ORACLE

This function tells the Data Access module to perform any necessary initialization it
needs to prepare for document access. This function must be called before the first
time the application uses the module to retrieve data from any document. This function
supersedes the old DAInit and DAThreadInit functions.

" Note:

DAInitEx should only be called once per application, at application startup
time. Any number of documents can be opened for access between calls to
DAInitEx and DADelnit. If DAInitEx succeeds, DADelnit must be called
regardless of any other API calls.

If the ThreadOption parameter is set to something other than
DATHREAD_INIT_NOTHREADS, then this function's preparation includes setting up
mutex function pointers to prevent threads from clashing in critical sections of the
technology's code. The developer must actually code the threads after this function
has been called. DAInitEx should be called only once per process and should be
called before the developer's application begins the thread.

Note:

Multiple threads are supported for all Windows platforms, the 32-bit versions
of Linux x86 and Solaris SPARC, Linux x64 and Solaris SPARC 64. Failed
initialization of the threading function will not impair other API calls. If
threading isn't initialized or fails, stub functions are called instead of mutex
functions.

Prototype
DAERR DAI ni t Ex(VTSHORT ThreadOption, VTDWORD dwFl ags);

Parameters
e ThreadOption: can be one of the following values:
— DATHREAD_INIT_NOTHREADS: No thread support requested.
— DATHREAD_INIT_PTHREADS: Support for PTHREADS requested.

— DATHREAD_INIT_NATIVETHREADS: Support for native threading requested.
Supported only on Microsoft Windows platforms and Oracle Solaris.

4-2

Chapter 4
DADelnit

* dwFlags: can be one or more of the following flags OR-ed together
— OLINIT_DEFAULT: Options Load and Save are performed normally
— OL_INIT_NOSAVEOPTIONS: The options file will not be saved on exit
— OL_INIT_NOLOADOPTIONS: The options file will not be read during
initialization.
Return Values

« DAERR_OK: If the initialization was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.3 DADelnit

This function tells the Data Access module that it will not be asked to read additional
documents, so it should perform any cleanup tasks that may be necessary. This
function should be called at application shutdown time, and only if the module was
successfully initialized with a call to DAInitEx.

Prototype

DAERR DADel nit();

Return Values

 DAERR_OK: If the de-initialization was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.4 DAOpenDocument

ORACLE

Opens a source file to make it accessible by one or more of the data access
technologies. If DAOpenDocument succeeds, DACloseDocument must be called
regardless of any other API calls.

Prototype

DAERR DACpenDocunent (
VTLPHDOC phDoc,
VTDWORD dwSpecType,
VILPVO D pSpec,
VTDWORD dwFl ags) ;

Parameters

» IphDoc: Pointer to a handle that will be filled with a value that uniquely identifies
the document to data access. The developer will use this handle in subsequent
calls to data access to identify this particular source file.

This is not an operating system file handle.

» dwSpecType: Describes the contents of pSpec. Together, dwSpecType and
pSpec describe the location of the source file.

4-3

ORACLE

Chapter 4
DAOpenDocument

< Note:

The values used within IOTYPE_ARCHIVEOBJECT,
IOTYPE_LINKEDOBJECT, and IOTYPE_OBJECT may change if
different options are applied, with different versions of the technology, or
after patches are applied.

Must be one of the following values:

IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Winl16) or NTFS (Win32
and Win64) file name conventions.

IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS (Win32 and Win64)
file name conventions.

IOTYPE_UNIXPATH: X Windows on UNIX platforms only. pSpec points to a
NULL-terminated full path name using the system default character set and
UNIX path conventions. Unicode paths can be accessed on UNIX platforms by
using a UTF-8 encoded path with IOTYPE_UNIXPATH.

IOTYPE_SUBOBJECT: All platforms. Opens an embedded object for data
access. pSpec points to a structure IOSPECSUBOBJECT (see
IOSPECSUBOBJECT Structure) that has been filled with values returned in a
SCCCA_OBJECT content entry from Content Access.

IOTYPE_REDIRECT: All platforms. pSpec points to a developer-defined struct
that allows the developer to redirect the 10 routines used to read the file.

IOTYPE_ARCHIVEOBJECT: All platforms. Opens an embedded archive
object for data access. pSpec points to a structure IOSPECARCHIVEOBJECT
(see IOSPECARCHIVEOBJECT Structure) that has been filled with values
returned in a SCCCA_OBJECT content entry from Content Access.

IOTYPE_LINKEDOBJECT: All platforms. Opens an object specified by a
linked object for data access. pSpec points to a structure
IOSPECLINKEDOBJECT (see IOSPECLINKEDOBJECT Structure) that has
been filled with values returned in an SCCCA_BEGINTAG or
SCCCA_ENDTAG with a subtype of SCCCA_LINKEDOBJECT content entry
from Content Access.

IOTYPE_OBJECT: All platforms. Opens an object (archive, embedded, or
linked) for data access. pSpec points to a structure SCCDAOBJECT (see
SCCDAOBJECT Structure) that has been filled with values from Content
Access (SCCCA_OBJECT or SCCCA_BEGINTAG with a subtype of
SCCCA_LINKEDOBJECT) or from the <document> element in the SearchML
flavor of Search Export.

pSpec: File location specification.

dwFlags: The low WORD is the file ID for the document (0 by default). If you set
the file ID incorrectly, the technology will fail. If set to O, the file identification
technology will determine the input file type automatically. The high WORD should
be set to 0. It may also be set to the following flags:

4-4

Chapter 4
DAOpenDocument

— DAOPENDOCUMENT_ARCHIVEONLYMODE: This flag may only be used
with archive files. It opens the archive in a special mode that is only usable
with DASaveRandomTreeRecord and DAOpenRandomTreeRecord.

— DAOPENDOCUMENT_CONTINUEONFAILURE: Some embeddings may
have both an OLE representation and an alternate graphic. When this flag is
set for | OTYPE_OBJECT, the technology will first try to access the OLE
representation. If there are errors, it will then attempt to access the alternate
graphic.

Return Values

« DAERR_OK: Returned if the open was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.4.1 I0SPECSUBOBJECT Structure

typedef struct | OSPECSUBOBJECTt ag
{

VTDWORD dwsSt ruct Si ze;

VTSYSPARAM hDoc; [* Parent Doc hDoc */
VTDWORD dwbj ect | d; /* (oject Identifier */
VTDWORD dwSt rean d; [* Stream | dentifier */
VTDWORD dwReser vedl; /* Mist always be 0 */
VTDWORD dwReser ved2; /* Mist always be 0 */

} | OSPECSUBOBJECT, * PI OSPECSUBOBJECT;

4.4.2 IOSPECLINKEDOBJECT Structure

typedef struct | OSPECLI NKEDOBJECTt ag
{
VTDWORD dwstruct Si ze;
VTSYSPARAM hDoc;
VTDWORD dwnjectld;, /* Object identifier. */
VTDWORD dwType; /* Linked Object type */
/* (SO_LOCATORTYPE_*) */
VTDWORD dwPar ant; /* paranmeter for DoSpecial call */
VTDWORD dwPar an®; /* paranmeter for DoSpecial call */
VTDWORD dwReservedl; /* Reserved. */
VTDWORD dwReserved2; /* Reserved. */
} 1 OSPECLI NKEDOBJECT, * Pl OSPECLI NKEDOBJECT;

4.4.3 IOSPECARCHIVEOBJECT Structure

typedef struct | OSPECARCH VEOBJECTt ag
{
VTDWORD dwStruct Si ze;
VTDWORD hDoc; /* Parent Doc hDoc */
VTDWORD dwhNodel d; /* Node ID */
VTDWORD dwSt rean d;
VTDWORD dwReservedl; /* Reserved */
VTDWORD dwReserved2; /* Reserved */
} | OSPECARCH VEOBJECT, * PlI OSPECARCH VEOBJECT;

ORACLE 4-5

Chapter 4
DACloseDocument

4.4.4 SCCDAOBJECT Structure

typedef struct SCCDAOBJECTt ag
{
VIDWORD dwSi ze; /* sizeof (SCCDAOBJECT) */
VTHDOC hDoc; /* DA handl e for the docunent
containing the object */
VIDWORD dwOhj ect Type; /* SCCCA_EMBEDDEDOBJECT,
SCCCA_LI NKEDOBJECT,
SCCCA_COVPRESSEDFI LE or
SCCCA_ATTACHVENT */

VIDWORD dwDat al; /* Data identifying the object */
VIDWORD dwDat a2; /* Data identifying the object */
VIDWORD dwDat a3; /* Data identifying the object */
VIDWORD dwDat a4; /* Data identifying the object */

} SCCDACBJECT, * PSCCDAOBJECT;

4.5 DACloseDocument

This function is called to close a file opened by the reader that has not encountered a
fatal error.
Prototype

DAERR DAC oseDocunent (
VTHDOC hDoc) ;

Parameters

* hDoc: Identifier of open document. Must be a handle returned by the
DAOpenDocument function.

 DAERR_OK: Returned if close succeeded. Otherwise, one of the other DAERR _
values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.6 DARetrieveDocHandle

ORACLE

This function returns the document handle associated with any type of Data Access
handle. This allows the developer to only keep the value of hitem, instead of both
hitem and hDoc.

Prototype

DAERR DARet ri eveDocHandl e(
VTHDOC hltem
VTLPHDOC phDoc);

Parameters

» hltem: Identifier of open document. May be the subhandle returned by the
DAOpenDocument or DAOpenTreeRecord functions in the data access
submodule. Passing in an hDoc created by DAOpenDocument for this parameter
will result in an error.

* phDoc: Pointer to a handle that will be filled with the document handle associated
with the passed subhandle.

4-6

Chapter 4
DASetOption

Return Value

DAERR_OK: Returned if the handle in phDoc is valid. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.7 DASetOption

This function is called to set the value of a data access option.

Prototype

DAERR DASet Opti on(

VTHDOC hDoc,
VTDWORD dwOpt i onl d,
VTLPVO D pVal ue,
VTDWORD dwval ueSi ze);

Parameters

hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, and so forth).
Setting an option for a VTHDOC will affect all subhandles opened under it, while
setting an option for a subhandle will only affect that handle.

If this parameter is NULL, then setting the option will affect all documents opened
thereafter. Once an option is set using the NULL handle, this option becomes the
default option thereafter. Note that this parameter should only be set to NULL if the
option being set can take that value.

dwOptionld: The identifier of the option to be set.
pValue: Pointer to a buffer containing the value of the option.

dwValueSize: The size in bytes of the data pointed to by pValue. For a string
value, the NULL terminator should be included when calculating dwValueSize.

Return Value

DAERR_OK: Returned if DASetOption succeeded. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.8 DAGetOption

ORACLE

This function is called to retrieve the value of a data access option. Note that the

results of a call to this option are only valid if DASetOption has already been called on

the option.

Prototype

DAERR DAGet Opt i on(

VTHDCC hl tem
VIDWORD dwOpt i onl d,
VTLPVO D pVal ue,
VTLPDWORD pSi ze) ;

4-7

Chapter 4
DAGetFileld

Parameters

* hitem: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, and so forth).
Getting an option for a VTHDOC will get the value of that option for that handle,
which may be different than the subhandle's value.

* dwOptionld: The identifier of the option to be returned. For a list of option IDs with
descriptions, see Content Description.

* pValue: Pointer to a buffer containing the value of the option.

* pSize: This VTDWORD should be initialized by the caller to the size of the buffer
pointed to by pValue. If this size is sufficient, the option value will be copied into
pValue and pSize will be set to the actual size of the option value. If the size is not
sufficient, pSize will be set to the size of the buffer needed for the option and an
error will be returned.

Return Value

 DAERR_OK: Returned if DAGetOption was successful. Otherwise, one of the
other DAERR _ values in sccda.h or one of the SCCERR _ values in sccerr.h is
returned.

4.9 DAGetFileld

ORACLE

This function allows the developer to retrieve the format of the file based on the
technology's content-based file identification process. This can be used to make
intelligent decisions about how to process the file and to give the user feedback about
the format of the file they are working with.

Note: in cases where File ID returns a value of FI_UNKNOWN, then this function will
apply the Fallback Format before returning a result.

Prototype

DAERR DAGet Fi | el d(
VTHDOC hDoc,
VILPDAORD pduFi | el d) ;

Parameters

e hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, a VTHEXPORT returned by the EXOpenExport
function, or the subhandle returned by the DAOpenDocument or
DAOpenTreeRecord functions (VTHEXPORT, VTHCONTENT, VTHTEXT, and so
forth).

e pdwFileld: Pointer to a DWORD that receives a file identification number for the
file. These numbers are defined in sccfi.h.

Return Value

« DAERR_OK: Returned if DAGetFileld was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4-8

Chapter 4
DAGetFileldEx

4.10 DAGetFileldEx

This function allows the developer to retrieve the format of the file based on the
technology's content-based file identification process. This can be used to make
intelligent decisions about how to process the file and to give the user feedback about
the format of the file they are working with. This function has all the functionality of
DAGetFilelD and adds the ability to return the raw FI value; in other words, the value
returned by normal Fl, without applying the FallbackFI setting.

Prototype

DAERR DAGet Fi | el dEx(
VTHDCC hDoc,
VTLPDAWORD padwfFi | el d,
VTDWORD dwFl ags) ;

Parameters

* hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHEXPORT, VTHCONTENT, VTHTEXT, and
so forth).

* pdwFileld: Pointer to a DWORD that receives a file identification number for the
file. These numbers are defined in sccfi.h.

* dwFlags: DWORD that allows user to request specific behavior.

— DA_FILEINFO_RAWEFI: This flag tells DAGetFileldEXx() to return the result of
the File Identification operation before Extended File Ident. is performed and
without applying the FallbackFI value.

Return Value

 DAERR_OK: Returned if DAGetFileldEx was successful. Otherwise, one of the
other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned. See the following tables for examples of expected output depending on
the value of various options.

Values with RAWFI turned off

ORACLE

Input file type ExtendedFl FallbackIiD DAGetFileld DAGetFileldEx
true binary off fallback value fallback value fallback value
true binary on fallback value fallback value fallback value
true text off fallback value fallback value fallback value
true text on fallback value 40XX 40XX

Values with RAWFI turned on

Input file type ExtendedFl FallbackID DAGetFileld DAGetFileldEx
true binary off fallback value fallback value 1999
true binary on fallback value fallback value 1999

4-9

Chapter 4

DAGetErrorString
Input file type ExtendedFl FallbackID DAGetFileld DAGetFileldEx
true text off fallback value fallback value 1999
true text on fallback value 40XX 1999

4.11 DAGetErrorString

This function returns to the developer a string describing the input error code. If the
error string returned does not fit the buffer provided, it is truncated.

VTVO D DAGet Error String(
DAERR deError,
VTLPVA D pBuf fer,
VTDWORD dwBuf Si ze) ;

Parameters

« Error: Error code passed in by the developer for which an error message is to be
returned.

« pBuffer: This buffer is allocated by the caller and is filled in with the error message
by this routine. The error message will be a NULL-terminated string.

* dwBufSize: Size of what pBuffer points to in bytes.

Return Value

e none

4.12 DAGetObjectinfo

ORACLE

This function returns information about the document or object pointed to by hDoc. The
object may be an embedded object, a linked object, or a compressed file.

DAERR DAGet Obj ect I nf o(
VTHDOC hDoc,
VTDWORD dwi nfol d,
VILPVO D plnfo);

Parameters

* hDoc: The handle returned by DACpenDocunent .
* dwinfold
The identifier of the requested information. Can be any of the following values:

— DAOBJECT_NAME_A: Retrieves the name of the object, in 8-bit characters.
pInfo points to a buffer of size DA_PATHSIZE.

— DAOBJECT_NAME_W: Retrieves the name of the object in Unicode
characters. pInfo points to a buffer of 16 bit characters of size DA_PATHSIZE.

— DAOBJECT_FORMATID: Retrieves the file ID of the object. pInfo points to a
VTDWORD value.

4-10

ORACLE

Chapter 4
DAGetTreeCount

DAOBJECT_COMPRESSIONTYPE: Retrieves an identifier of the type of
compression used to store the object, if known. plnfo points to a VTDWORD
value.

DAOBJECT_FLAGS: Retrieves a bitfield of flags indicating additional
attributes of the object. pinfo points to a VTDWORD value. Possible flag
values include DAOBJECTFLAG_PARTIALFILE (would not normally exist
outside the source document), DAOBJECTFLAG_PROTECTEDFILE
(encrypted or password protected), DAOBJECTFLAG_LINKTOFILE (indicates
that an OLE object is linked to the file and a corresponding file is not found on
the host machine), DAOBJECTFLAG_UNIDENTIFIEDFILE (indicates that an
object could not be identified), and DAOBJECTFLAG_UNSUPPORTEDCOMP
(compressed with an unsupported compression), and
DAOBJECTFLAG_ARCKNOWNENCRYPT (see note below).

DAOBJECT_ALTSTRING_A: Retrieves the alternate string describing the
object, in 8-bit characters. pInfo points to a buffer of size DA_PATHSIZE.

DAOBJECT_ALTSTRING_W: Retrieves the alternate string describing the
object, in 16-bit Unicode characters. pinfo points to a buffer of size
DA_PATHSIZE.

pinfo: Destination of the requested information. The possible types are described
in the preceding section about dwinfold.

Note:

DAOBJECTFLAG_ARCKNOWNENCRYPT indicates that the object is
protected by a known encryption. It can be accessed after the correct
credentials (password and/or Lotus Notes id file) are provided through the
File Access Callback. For more information, see DASetFileAccessCallback.

Return Values

DAERR_OK: Returned if the save was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.13 DAGetTreeCount

This function is called to retrieve the number of records in an archive file.

DAERR DACet Tr eeCount (

VTHDOC hDoc,
VTLPDWORD | pRecor dCount) ;

Parameters

hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by any of the
DAOpenDocument or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT,
and so forth).

IpRecordCount: A pointer to a VTLPDWORD that will be filled with the number of
stored archive records.

4-11

Chapter 4
DAGetTreeRecord

Return Value

DAERR_OK: DAGetTreeCount was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DAERR_BADPARAM: The selected file does not contain an archive section, or the
requested record does not exist.

4.14 DAGetTreeRecord

This function is called to retrieve information about a record in an archive file.

DAERR DAGet Tr eeRecor d(

VTHDCC hDoc,
PSCCDATREENCDE pTr eeNode) ;

Parameters

hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle by any of the DAOpenDocument or
DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, and so forth).

pTreeNode: A pointer to a PSCCDATREENODE structure that will be filled with
information about the selected record.

Return Values

DAERR_OK: DAGetTreeRecord was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR _ values in sccerr.h is returned.

DAERR_BADPARAM: The selected file does not contain an archive section, or the
requested record does not exist.

DAERR_EMPTYFILE: Empty file.
DAERR_PROTECTEDFILE: Password protected or encrypted file.
DAERR_SUPFILEOPENFAILS: Supplementary file open failed.

DAERR_FILTERNOTAVAIL: The file's type is known, but the appropriate filter is
not available.

DAERR_FILTERLOADFAILED: An error occurred during the initialization of the
appropriate filter.

4.14.1 SCCDATREENODE Structure

This structure is passed by the OEM through the DAGetTreeRecord function. The
structure is defined in sccda as follows:

ORACLE

typedef struct SCCDATREENCDEt ag{

VIDWORD dwSi ze;

VIDWORD dwhode;

VIBYTE szName[1024];

VIDWORD dwFi | eSi ze;

VIDWORD dwTi ne;

VIDWORD dwFl ags;

VIDWORD dwChar Set ;

} SCCDATREENCDE, * PSCCDATREENCDE;

4-12

Chapter 4
DAOpenTreeRecord

Parameters

* dwSize: Must be set by the OEM to sizeof(SCCDATREENODE).

 dwNode: The number of the record to retrieve information about. The first node is
node 0.

» szName: A buffer to hold the name of the record.
» dwkFileSize: Returns the file size, in bytes, of the requested record.
* dwTime: Returns the timestamp of the requested record, in MS-DOS time.

* dwFlags: Returns additional information about the node. It can be a combination of
the following:

— SCCDA_TREENODEFLAG_FOLDER: Indicating that the selected node is a
folder and not a file.

— SCCDA_TREENODEFLAG_SELECTED: Indicating that the node is selected.
— SCCDA_TREENODEFLAG_FOCUS: Indicating that the node has focus.

— SCCDA_TREENODEFLAG_ENCRYPT: Indicating that the node is encrypted
and can not be decrypted.

— SCCDA_TREENODEFLAG_ARCKNOWNENCRYPT: indicating that the node
is encrypted with an unknown encryption and can not be decrypted.

— SCCDA_TREENODEFLAG_BUFFEROVERFLOW: the name of the node was
too long for the szName field.

* dwCharSet: Returns the SO_* (charsets.h) character set of the characters in
szName. The output character set is either the default native environment
character set or Unicode if the SCCOPT_SYSTEMFLAGS option is set to
SCCVW_SYSTEM_UNICODE.

4.15 DAOpenTreeRecord

ORACLE

This function is called to open a record within an archive file and make it accessible by
one or more of the data access technologies.

DAERR DAOpenTr eeRecor d(
VTHDCC hDoc,
VTLPHDOC | phDoc,
VTDWORD dwRecord) ;

| phDoc is not a file handle.

Parameters

* hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, and so forth).

* IphDoc: Pointer to a handle that will be filled with a value that uniquely identifies
the document to data access. The developer will use this handle in subsequent
calls to data access to identify this particular document.

* dwRecord: The record in the archive file to be opened.

4-13

Chapter 4
DAOpenRandomTreeRecord

Return Value

DAERR_OK: Returned if DAOpenTreeRecord was successful. Otherwise, one of
the other DAERR _ values in sccda.h or one of the SCCERR _ values in sccerr.h is
returned.

4.16 DAOpenRandomTreeRecord

This function is called to open a record within an archive file and make it accessible by
one or more of the data access technologies. It is similar to DAOpenTreeRecord,
except that instead of reading the data for all nodes in the archive in a sequential
order, this function will only read the data for the requested nodes from the archive. To
use this function, you must first process the archive with Content Access or Search
Export and save the Node Locator data for later use in this function.

DAERR DACpenRandonr eeRecor d(
VTHDCC hDoc,
VTLPHDOC | phDoc,
SOTREENODELOCATOR sTr eeNodeLocat or)

IphDoc is not a file handle.

Parameters

* hDoc: Identifier of open document. This hDoc must come from an archive
document opened with DAOpenDocument with the flag
DAOPENDOCUMENT_ARCHIVEONLYMODE set.

» IphDoc: Pointer to a handle that will be filled with a value that uniquely identifies
the document to data access. The developer will use this handle in subsequent
calls to data access to identify this particular document.

* sTreeNodelLocator: An SOTREENODELOCATOR structure which contains data
identifying the desired node. This data should come from a previous conversion of
the archive document using Content Access or Search Export.

Return Value

e DAERR_OK: Returned if DAOpenRandomTreeRecord was successful. Otherwise,
one of the other DAERR _ values in sccda.h or one of the SCCERR_ values in
sccerr.h is returned.

4.16.1 DATREENODELOCATOR

typedef struct DATREENODELOCATOR! ag
{

VTDWORD dwSi ze; /* size of this structure */

VTDWORD dwSpeci al Fl ag; /* special flags comng fromCA or SX */
VTDWORD dwDat al; /* dwDatal coming from CA or SX */
VTDWORD dwDat a2; /* dwDat a2 coming from CA or SX */

} SCCDATREENODELOCATOR, * PSCCDATREENCDEL OCATCR;

ORACLE 4-14

Chapter 4
DASavelnputObject

4.16.2 SCCCA TREENODELOCATOR: Tree Node Locator

This content type contains information to be used in the SOTREENODELOCATOR
structure, which is used by DAOpenRandomTreeRecord and
DASaveRandomTreeRecord.

SCCCA_TREENODELOCATOR Content Description

* dwType: SCCCA_TREENODELOCATOR

* dwSubType: Reserved

* dwbDatal: SOTREENODELOCATOR.dwSpecialFlags
* dwbData2: SOTREENODELOCATOR.dwDatal

* dwbData3: SOTREENODELOCATOR.dwData2

* dwbData4: Reserved

o pDataBuf: Not used

4.17 DASavelnputObject

ORACLE

This function saves a copy of the document or object pointed to by hDoc. The object
may be an embedded object, a linked object or a compressed file.

Note:

Some file formats store only partial files as embedded objects. Outside In will
not be able to create readable files from these objects. It is recommended
that you use DAGetObjectinfo with dwinfold set to DAOBJECT_FLAGS to
discern which objects Outside In will be able to successfully extract.

DAERR DASavel nput Qbj ect (
VTHDOC hDoc,
VTDWORD dwSpecType,
VTLPVO D pSpec,
VTDWORD dwFl ags) ;

Parameters

* hDoc: The handle returned by DAOpenDocument.

» dwSpecType: Describes the contents of pSpec. Together, dwSpecType and
pSpec describe the location of the source file to which the file will be extracted.
Must be one of the following values:

— IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Winl16) or NTFS (Win32
and Win64) filename conventions.

— |OTYPE_REDIRECT: Specifies that redirected 1/0 will be used to save the file.

4-15

Chapter 4
DASaveTreeRecord

IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS (Win32 and Win64)
file name conventions.

IOTYPE_UNIXPATH: X Windows on UNIX platforms only. pSpec points to a
NULL-terminated full path name using the system default character set and
UNIX path conventions. Unicode paths can be accessed on UNIX platforms by
using a UTF-8 encoded path with IOTYPE_UNIXPATH.

pSpec: File location specification.

dwFlags: Currently not used. Should be set to 0.

Return Values

DAERR_OK: Returned if the save was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.18 DASaveTreeRecord

This function is called to extract a record in an archive file to disk.

DAERR DASaveTr eeRecor d(

VTHDOC hDoc,
VTDWORD dwRecord,
VTDWORD dwSpecType,
VTLPVO D pSpec,
VTDWORD dwHl ags);

Parameters

ORACLE

hDoc: Handle that uniquely identifies the document to data access. NOTE: This is
not an operating system file handle.

dwRecord: The record in the archive file to be extracted.

dwSpecType: Describes the contents of pSpec. Together, dwSpecType and
pSpec describe the location of the source file to which the file will be extracted.
Must be one of the following values:

IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Winl16) or NTFS (Win32
and Win64) filename conventions.

IOTYPE_REDIRECT: Specifies that redirected 1/0 will be used to save the file.

IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS (Win32 and Win64)
file name conventions.

IOTYPE_UNIXPATH: X Windows on UNIX platforms only. pSpec points to a
NULL-terminated full path name using the system default character set and
UNIX path conventions. Unicode paths can be accessed on UNIX platforms by
using a UTF-8 encoded path with IOTYPE_UNIXPATH.

pSpec: File location specification.

dwFlags: Currently not used. Should be set to 0.

4-16

Chapter 4
DASaveRandomTreeRecord

Return Values

 DAERR_OK: Returned if the save was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

* DAERR_UNSUPPORTEDCOMP: Unsupported Compression Encountered.
* DAERR_PROTECTEDFILE: The file is encrypted.

« DAERR_BADPARAM: The request option is invalid. The record is possibly a
directory.

Otherwise, one of the other DAERR _ values in sccda.h is returned.

Note:

Currently, only extracting a single file is supported. There is a known
limitation where files in a Microsoft Binder file cannot be extracted.

4.19 DASaveRandomTreeRecord

ORACLE

This function is called to extract a record in an archive file to disk. It is similar to
DASaveTreeRecord, except that instead of reading the data for all nodes in the
archive in a sequential order, this function will only read the data for the requested
nodes from the archive. To use this function, you must first process the archive with
Content Access or Search Export and save the Node Locator data for later use in this
function.

DAERR DASaveRandonir eeRecor d(

VTHDCC hDoc,

SOTREENODELQOCATOR sTr eeNodeLocat or,

VTDWORD dwSpecType,

VTLPVO D pSpec,

VTDWORD dwFl ags)
Parameters

e hDoc: Identifier of open document. This hDoc must come from an archive
document opened with DAOpenDocument with the flag
DAOPENDOCUMENT_ARCHIVEONLYMODE set.

* sTreeNodelLocator: An SOTREENODELOCATOR structure which contains data
identifying the desired node. This data should come from a previous conversion of
the archive document using Content Access or Search Export.

e dwSpecType: Describes the contents of pSpec. Together, dwSpecType and
pSpec describe the location of the source file to which the file will be extracted.
Must be one of the following values:

— IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Winl16) or NTFS (Win32
and Win64) filename conventions.

— IOTYPE_REDIRECT: Specifies that redirected 1/0 will be used to save the file.

4-17

Chapter 4
DACloseTreeRecord

— IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS (Win32 and Win64)
file name conventions.

— 1OTYPE_UNIXPATH: X Windows on UNIX platforms only. pSpec points to a
NULL-terminated full path name using the system default character set and
UNIX path conventions. Unicode paths can be accessed on UNIX platforms by
using a UTF-8 encoded path with IOTYPE_UNIXPATH.

* pSpec: File location specification

* dwFlags: Currently not used. Should be set to 0.

Return Value

« DAERR_OK: Returned if DASaveTreeRecord was successful. Otherwise, one of
the other DAERR _ values in sccda.h or one of the SCCERR _ values in sccerr.h is
returned.

4.19.1 DATREENODELOCATOR

typedef struct DATREENODELOCATORt ag
{

VTDWORD dwSi ze; /* size of this structure */

VTDWORD dwSpeci al Fl ag; /* special flags comng fromCA or SX */
VTDWORD dwDat al; [* dwDatal coming from CA or SX */
VTDWORD dwDat a2; [* dwData2 coming from CA or SX */

} SCCDATREENCDELCCATOR, * PSCCDATREENCDEL OCATOR,;

4.19.2 SCCCA_TREENODELOCATOR: Tree Node Locator

This content type contains information to be used in the SOTREENODELOCATOR
structure, which is used by DAOpenRandomTreeRecord and
DASaveRandomTreeRecord.

SCCCA_TREENODELOCATOR Content Description

* dwType: SCCCA_TREENODELOCATOR

* dwSubType: Reserved

* dwbDatal: SOTREENODELOCATOR.dwSpecialFlags
* dwbData2: SOTREENODELOCATOR.dwDatal

* dwbData3: SOTREENODELOCATOR.dwData2

« dwbData4: Reserved

» pDataBuf: Not used

4.20 DACloseTreeRecord

This function is called to close an open record file handle.

DAERR DACI oseTr eeRecor d(
VTHDCC hDoc) ;

ORACLE 4-18

Chapter 4
DASetStatCallback

Parameters

* hDoc: Identifier of open record document.

Return Value

 DAERR_OK: Returned if DACloseTreeRecord was successful. Otherwise, one of
the other DAERR _ values in sccda.h or one of the SCCERR _ values in sccerr.h is
returned.

4.21 DASetStatCallback

ORACLE

This function sets up a callback that the technology will periodically call into to verify
that the file is still being processed. The customer can use this with a monitoring
process to help identify files that may be hung. Since this function will be called more
frequently than other callbacks, it is implemented as a separate function.

Use of the Status Callback Function

An application's status callback function will be called periodically by Outside In to
provide a status message. Currently, the only status message defined is
OIT_STATUS_WORKING, which provides a "sign of life" that can be used during
unusually long processing operations to verify that Outside In has not stopped
working. If the application decides that it would not like to continue processing the
current document, it may use the return value from this function to tell Outside In to
abort.

The status callback function has two return values defined:

* OIT_STATUS_CONTINUE: Tells Outside In to continue processing the current
document.

* OIT_STATUS_ABORT: Tells Outside In to stop processing the current document.
The following is an example of a minimal status callback function.

VTDWORD MySt at usCal | back(VTHANDLE hUni que, VTDWORD dwi D, VTSYSVAL
pCal | backData, VTSYSVAL pAppDat a)

{
i f(dw D == O T_STATUS WORKI NG)
{
i f(checkNeedToAbort(pAppData))
return (O T_STATUS_ABORT);
}
return (O T_STATUS_CONTI NUE) ;
}
Prototype

DAERR DASet St at Cal | back(DASTATCALLBACKFN pCal | back,
VTHANDLE hUni que,
VTLPVQO D pAppDat a)

Parameters

» pCallback: Pointer to the callback function.

 dwlD: Handle that indicates the callback status.

4-19

Chapter 4
DASetFileAccessCallback

— OIT_STATUS_WORKING
— OIT_STATUS_CONTINUE
— OIT_STATUS_ABORT
» pCallbackData: Currently always NULL

Return Values

 DAERR_OK: If successful. Otherwise, one of the other DAERR _ values in sccda.h
or one of the SCCERR__ values in sccerr.h is returned.

4.22 DASetFileAccessCallback

ORACLE

This function sets up a callback that the technology will call into to request information
required to open an input file. This information may be the password of the file or a
support file location.

Use of the File Access Callback

When the technology encounters a file that requires additional information to access
its contents, the application's callback function will be called for this information.
Currently, only two different forms of information will be requested: the password of a
document, or the file used by Lotus Notes to authenticate the user information.

The status callback function has two return values defined:

e SCCERR_OK: Tells Outside In that the requested information is provided.

e SCCERR_CANCEL: Tells Outside In that the requested information is not
available.

This function will be repeatedly called if the information provided is not valid (such as
the wrong password). It is the responsibility of the application to provide the correct
information or return SCCERR_CANCEL.

Prototype

DAERR DASet Fi | eAccessCal | back (DAFI LEACCESSCALLBACKFN pCal | back);

Parameters

» pCallback: Pointer to the callback function.

Return Values

« DAERR_OK: If successful. Otherwise, one of the other DAERR _ values in sccda.h
or one of the SCCERR__ values in sccerr.h is returned.

The callback function should be of type DAFILEACCESSCALLBACKFN. This function
has the following signature:

typedef VIDWORD (* DAFI LEACCESSCALLBACKFN) (VTDWORD dwi D, VTSYSVAL pRequest Dat a,
VTSYSVAL pReturnData, VTDWORD dwRet ur nDat aSi ze);

* dwlID - ID of information requested:
— OIT_FILEACCESS_PASSWORD - Requesting the password of the file
— OIT_FILEACCESS_NOTESID — Requesting the Notes ID file location

4-20

Chapter 4

DAOpenNextDocument
* pRequestData — Information about the file.
typedef struct {
VIDWORD dwSi ze; I* size of this structure */
VTWORD wWHl 1 d; I* FlI id of reference file */
VIDWORD dwSpecType; /* file spec type */
VIVO D *pSpec; I* pointer to a file spec */
VIDWORD dwRoot SpecType; /* root file spec type */
VIVO D *pRoot Spec; /* pointer to the root file spec */

VTDWORD dwAttenpt Nunber; /* The nunber of tines the callback has */
/* already been called for the currently */
/* requested itemof information */
} | OREQUESTDATA, * Pl OREQUESTDATA,

* pReturnData — Pointer to the buffer to hold the requested information — for
OIT_FILEACCESS_PASSWORD and OIT_FILEACCESS_NOTESID, the buffer is
an array of WORD characters.

 dwReturnDataSize — Size of the return buffer.

Note:

Not all formats that use passwords are

supported. DASetFileAccessCallback applies to filters that support password
protected files. Check filter for any or all calls to UTGetFileAccess in filters
and core modules.

Only Microsoft Office binary (97-2003), Microsoft Office 2010-2013, Microsoft
Outlook PST 97-2016, Lotus NSF, PDF (with RC4 encryption), and 7zip (with
AES 128 & 256 hit, ZipCrypto) are currently supported.

Passwords for PST/OST files must be in the Windows single-byte character
set. For example, Cyrillic characters should use the 1252 character set. For
PST/OST files, Unicode password characters are not supported.

4.23 DAOpenNextDocument

ORACLE

Allows an existing Export or Data Access document handle to be used or reused when
opening a new document, enabling options to be preserved across multiple exports, or
allowing multiple documents to be exported to the same output destination.

This function uses an existing "reference" handle as a starting point for opening
another document. The reference handle may be either a document handle (obtained
through DAOpenDocument) or an export handle (obtained via a call to
EXOpenExport). The difference between using these two handle types is that certain
document specification types (subdocuments of the original document) will not be
successfully opened when a document handle is used as the reference handle. If an
Export handle is used as the reference handle, subdocument specifications are
allowed.

Since the same handle is used multiple times, only a single call to DACloseDocument
is needed. Each document is actually closed when the next document is opened;
successive calls to DAOpenNextDocument free the resources used in previous calls.

4-21

Chapter 4
DAGetOptionltem

Using this function allows developers to make multiple calls to the EX functions,
without having to re-set options every time. Options can be set once for the original
document, and retained for each subsequent document.

Additionally, some export libraries allow exporting multiple source documents to a
single output document. Currently, this is supported for PDF and multi-page TIFF
output only. To do this, a developer would export the first document normally, then call
DAOpenNextDocument to open the subsequent source documents, followed by a call
to EXRunExport. EXOpenExport and EXCloseExport should only be called once each
for this type of export.

Prototype

DAERR DACpenNext Document (
VTHANDLE hRef erence,
VIDWORD dwSpecType,
VTLPVA D pSpec,
VIDWORD dwFl ags);

Parameters

» hReference: this VTHANDLE value may be either an hDoc, the VTHDOC
document handle obtained through a prior call to DAOpenDocument; or an
hExport, the VTHEXPORT handle obtained from a prior call to EXOpenExport.
This is not an operating system file handle.

» dwSpecType: Describes the contents of pSpec. The dwSpecType values allowed
by DAOpenDocument for this parameter are acceptable, with the exceptions that
IOTYPE_ARCHIVEOBJECT and IOTYPE_LINKEDOBJECT are only allowed
when hReference is an Export handle, obtained via a call to EXOpenExport.

e pSpec: File location specification.

* dwFlags: The low WORD is the file ID for the document (0 by default). If you set
the file ID incorrectly, the technology fails. If set to 0, the file identification
technology determines the input file type automatically. The high WORD should be
setto O.

Return Values

« DAERR_OK: Returned if the open was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

e DAERR_FEATURENOTAVAIL: Returned if the value specified by dwSpecType is
not one of the supported spec types for this operation.

4.24 DAGetOptionltem

ORACLE

The item id value provided by this function is the same one provided by
DAAddOptionltem when the item was first added. This function should not be called
simultaneously for the same hDoc from two different threads.

SCCERR DAGet Optionlten(VTHDOC hDoc, DWORD dwOptionld, DWORD dwwhi chltem
VTLPVQ D pVal ue, VTLPDWORD pSize, VTLPDWORD pltemd)

« hDoc: Handle to current document, as described in documentation of
DAGetOption.

* dwOptionld: The option id of an option whose item values are being requested.

4-22

Chapter 4
DARemoveOptionltem

e dwWhichltem: Must be one of the following:
— SCCOPT_FIRSTITEM - which retrieves the first item in the specified list.
— SCCOPT_NEXTITEM - which retrieves the next item in the specified list.

— SCCOPT_ITEMSIZE - which does not retrieve an item, but sets *pSize to the
necessary buffer size for an item of the specified list. (If the list items vary in
size, it will indicate the size of the largest item.)

— .SCCOPT_LISTSIZE - which does not retrieve an item, but sets *pSize to the
count of all items in the specified list

* pValue: Pointer to a buffer that will receive the requested item's value.

* pSize: Size of the buffer pointed to by pValue. If this size isn't sufficient to receive
the requested data, the function will set the value pointed to by pSize to the size
required to hold the item's data, return SCCERR_INSUFFICIENTBUFFER.

e pltemld: Points to a DWORD that will receive the value of an internal identifier of
the item. This identifer may be used in subsequent calls to DARemoveOptionltem.
This parameter may be NULL if the caller is not interested in the id.

4.25 DARemoveOptionltem

This function should not be called simultaneously for the same hDoc from two different
threads.

SCCERR DARenoveOpti onlten(VTHDOC hDoc, DWORD dw(ptionsld, DWORD dwitenmld)

» hDoc: Handle to current document, as described in documentation of
DASetOption.

» dwOptionsld: The option id of an option that requires a list of values.

* dwltemld: An identifier to an option id, provided by either DAAddOptionltem or
DAGetOptionltem, or SCCOPT_ALLITEMS. If SCCOPT_ALLITEMS is specified,
all of the items associated with the specified option id will be removed.

" Note:

This function should not be called simultaneously for the same hDoc from
two different threads.

4.26 DAAddOptionltem

ORACLE

This function adds a new item to the end of the list of items associated with a mult-
value option. The value of the item id is determined internally by the Outside In code,
and will not change for the lifetime of the option item.If the caller is not interested in the
value of the itemld, calling DASetOption multiple times is equivalent to calling
DAAddOptionltem with the pltemld set to NULL. (This only applies to options whose
values may be set through DAAddOptionltem).

SCCERR DAAddOpti onltem (VTHDOC hDoc, DWORD dwOptionld, VTLPVO D pVal ue,
VTDWORD dwSi ze, VTLPDWORD pltemd)

4-23

Chapter 4
DASetFileSpecOption

hDoc: Handle to current document, as described in documentation of
DASetOption.

dwOptionld: The option id of an option that requires a list of values.
pValue: Pointer to the value of the option item being added.
dwSize: Size of the data pointed to by pValue.

pltemld: Points to a DWORD that will receive the value of an internal identifier of
the item. This identifer may be used in subsequent calls to DARemoveOptionltem.
This parameter may be NULL if the caller is not interested in the id.

4.27 DASetFileSpecOption

This function is called to set the value of an option that takes a spec and spec type as
parameters. It is currently only implemented for use in setting the template option in
HTML Export. This function only needs to be used if the developer wishes to use
Redirected 10 on the template files. It may be used to set the template option even if
the developer does not wish to use redirected 10, although DASetOption may also be
used in this situation.

Prototype

DAERR DASet Fi | eSpecOpt i on(

VTHDOC hDoc,
VTDWORD dwOpt i onl d,
VTDWORD dwSpecType,
VTLPVO D pSpec);

Parameters

hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Setting an
option for a VTHDOC affects all subhandles opened under it, while setting an
option for a subhandle affects only that handle.

dwOptionld: The identifier of the option to be set. Currently only implemented for
the option SCCOPT_EX_TEMPLATE.

dwSpecType: The spec type of the file. Should be set to one of the valid spec
types.

pSpec: File location specification.

Return Value

DAERR_OK: Returned if DASetFileSpecOption succeeded. Otherwise, one of the
other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned.

4.28 DAOpenSubdocumentByld

Allows an embedding to be opened using the integer value of the object_id attribute
from the locator element.

ORACLE

4-24

Chapter 4
DAOpenSubdocumentByld

Prototype

DAERR DAQpenSubdocurment Byl d(
VTHDOC hDoc,
VTLPHDOC | phDoc,
VTDWORD pSpec,
VTDWORD dwFl ags) ;

Parameters

* hDoc: The document handle for the document containing the locator.
* IphDoc: Receives the document handle for the embedding.
» dwSubdocumentld: The integer value of the object_id attribute from the locator.

* dwFlags: Must be set to 0.

ORACLE 4-25

Text Access Functions

The Text Access module is required to use these functions.
This chapter includes the following sections:

* TAOpenText
* TACloseText
* TAReadFirst
TAReadNext

5.1 TAOpenText

ORACLE

TAOpenText is used to initiate text access for a file that has been opened by
DAOpenDocument.
Prototype

DAERR TAQpenText (
VTHDCC hDoc,
VTLPHTEXT phText)

phContent is not a file handle.

Parameters

e hDoc: A handle that identifies the document, created by DAOpenDocument.

e phText: Pointer to a handle that will receive a value uniquely identifying the
document to the Text Access routines. If the function fails, this value will be set to
VTHDOC_INVALID.

Return Values

e DAERR_OK: Open was successful. Otherwise, one of the other DAERR _ values
in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

¢ DAERR_BADPARAM: One of the function parameters was invalid.
« DAERR_EMPTYFILE: Empty file.

e DAERR_PROTECTEDFILE: Password protected or encrypted file.
e DAERR_SUPFILEOPENFAILS: Supplementary file open failed.

e DAERR_FILTERNOTAVAIL: The file's type is known, but the appropriate filter is
not available.

e DAERR_FILTERLOADFAILED: An error occurred during the initialization of the
appropriate filter.

5-1

Chapter 5
TACloseText

5.2 TACloseText

TACIloseText is called to terminate text access for a file.

Prototype

DAERR TAC oseText (
VTHTEXT ~ hText)

Parameters

» hText: Text Access handle for the document. Must be a handle returned by the
TAOpenText function.

Return Values

 DAERR_OK: Close was successful. Otherwise, one of the other DAERR__ values
in sccda.h or one of the SCCERR _ values in sccerr.h is returned.

+ DAERR_BADPARAM: One of the function parameters was invalid.

5.3 TAReadFirst

ORACLE

This function is called to set the read pointer to the beginning of the document and to
retrieve the first block of text.

Prototype

DAERR TAReadFi r st (
VTHTEXT hText,
VILPBYTE pText Buf,
VTDWORD dwBuf Si ze,
VTLPDWORD pBuf Count)

Each piece of content has a type and a subtype. Based on the type and subtype, the
content is described by using up to four VTDWORDSs and a data buffer provided by the
caller. The hText, pTextBuf, dwBufSize, and pBufCount elements of this structure
should be filled by the caller before calling TAReadNext or TAReadFirst.

Parameters

e hText: Text Access handle for the document. Must be a handle returned by the
TAOpenText function.

» pTextBuf: Pointer to a buffer to receive the first block of text. NULL characters are
included in the text buffer to act as fillers for text which was in the original file but is
not part of the document body (revision deletions and document properties).
Special characters are manufactured by the technology due to special formatting
attributes. For more information, see TAReadNext.

» dwBufSize: Size of the buffer pointed to by pTextBuf.

* pBufCount: Pointer to a DWORD that will receive the actual size of the data copied
into pTextBuf. Note that for DBCS and Unicode character sets, this will not
necessarily be the character count.

5-2

Chapter 5
TAReadNext

Return Values

« DAERR_OK: The read was successful. Otherwise, one of the other DAERR _
values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

» DAERR_BADPARAM: One of the function parameters was invalid.

5.4 TAReadNext

ORACLE

TAReadNext is called to retrieve the next block of text from the file, beginning at the
location where the last call to TAReadNext or TAReadFirst ended.
Prototype

DAERR TAReadNext (
VTHTEXT hText,
VTLPBYTE pText Buf,
VTDWORD dwBuf Si ze,
VTLPDWORD pBuf Count)

Each piece of content has a type and a subtype. Based on the type and subtype, the
content is described by using up to four VTDWORDSs and a data buffer provided by the
caller. The hText, pTextBuf, dwBufSize, and pBufCount elements of this structure
should be filled by the caller before calling TAReadNext or TAReadFirst.

Parameters

» hText: Text Access handle for the document. Must be a handle returned by the
TAOpenText function.

» pTextBuf: Pointer to a buffer to receive the block of text. NULL characters are
included in the text buffer to act as fillers for text which was in the original file but is
not part of the document body (revision deletions and document properties).
Special characters are manufactured by the technology due to special formatting
attributes.

» dwBufSize: This is the size of the buffer pointed to by pTextBuf.

e pBufCount: Pointer to a DWORD that will receive the actual size of the data copied
into pTextBuf. Note that for DBCS and Unicode character sets, this will not
necessarily be the character count.

Return Values

 DAERR_OK: The read was successful. Otherwise, one of the other DAERR_
values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

 DAERR_EOF: Read was successful, and the end of the file was encountered.

 DAERR_ABORT: A fatal error has occurred, read process was aborted.

Special Text Character Substitutions
e Email Delimiter: 0x09

* End of Database Record: Ox0A

* End of File: 0xOD

* End of Paragraph: 0xOD

5-3

ORACLE

End of Table Cell: 0xOD
End of Table Row: 0xOD
Hard Hyphen: 0x2D
Hard Line Break: OX0A
Hard Page Break: 0xO0C
Hard Space: 0x20
Section Separator: 0x0D
Syllable Hyphen: 0x2D
Tab: 0x09

Word Delimiter: 0x20

Chapter 5
TAReadNext

5-4

Content Access Functions

The Content Access module is required to use these functions.
This chapter includes the following sections:

* CAOpenContent

* CACloseContent
* CAReadFirst

* CAReadNext

* CAContentStatus
* CASeek

o CATell

6.1 CAOpenContent

ORACLE

CAOpenContent is used to initiate content access for a file that has been opened by
DAOpenDocument.
Prototype

DAERR CAQpenCont ent (
VTHDCC hDoc;
VTLPHCONTENT phCont ent ;

)

phCont ent is not a file handle.

Parameters

» hDoc: A handle that identifies the document, created by DAOpenDocument.

» phContent: Pointer to a handle that will receive a value uniquely identifying the
document to the Content Access routines. If the function fails, this value will be set
to VTHDOC _INVALID.

Return Values

 DAERR_OK: Open was successful. Otherwise, one of the other DAERR_ values
in sccda.h or one of the SCCERR _ values in sccerr.h is returned.

 DAERR_BADPARAM: One of the function parameters was invalid.
« DAERR_EMPTYFILE: Empty file.

« DAERR_PROTECTEDFILE: Password protected or encrypted file.
 DAERR_SUPFILEOPENFAILS: Supplementary file open failed.

 DAERR_FILTERNOTAVAIL: The file's type is known, but the appropriate filter is
not available.

6-1

Chapter 6
CACloseContent

* DAERR_FILTERLOADFAILED: An error occurred during the initialization of the
appropriate filter.

6.2 CACloseContent

CACloseContent is called to terminate content access for a file.

Prototype

DAERR CAC oseCont ent (
VTHCONTENT ~ hCont ent ;

)

Parameters

» hContent: Content Access handle for the document. Must be a handle returned by
the CAOpenContent function.

Return Values

 DAERR_OK: Close was successful. Otherwise, one of the other DAERR__ values
in sccda.h or one of the SCCERR _ values in sccerr.h is returned.

+ DAERR_BADPARAM: One of the function parameters was invalid.

6.3 CAReadFirst

This function is called to set the read pointer to the beginning of the document content
and to obtain the file identification property for the document.
Prototype

DAERR CAReadFi r st (
VTHCONTENT hCont ent ;
PSCCCAGETCONTENT ~ pGet Cont ent ;

)

Parameters

» hContent: Content Access handle for the document. Must be a handle returned by
the CAOpenContent function.

» pGetContent: Pointer to a structure of type SCCCAGETCONTENT (see
SCCCAGETCONTENT Structure). CAReadFirst will always fill this structure with
the file identification property.

Return Values

 DAERR_OK: Read was successful. Otherwise, one of the other DAERR_ values
in sccda.h or one of the SCCERR _ values in sccerr.h is returned.

» DAERR_BADPARAM: One of the function parameters was invalid.

6.4 CAReadNext

CAReadNext is called to retrieve text and properties from a file, beginning at the
location where the last content was provided.

ORACLE 6-2

Chapter 6
CAReadNext

Prototype
DAERR CAReadNext (
VTHCONTENT hCont ent ;
PSCCCAGETCONTENT pGCet Content ;
)
Parameters

» hContent: Content Access handle for the document. Must be a handle returned by
the CAOpenContent function.

» pGetContent: Pointer to a structure of type SCCCAGETCONTENT (see
SCCCAGETCONTENT Structure).

Return Values

« DAERR_OK: Read was successful. Otherwise, one of the other DAERR_ values
in sccda.h or one of the SCCERR _ values in sccerr.h is returned.

- DAERR_EOF: Read was successful, and the end of the file was encountered.

- DAERR_ABORT: A fatal error has occurred, read process was aborted.

6.4.1 SCCCAGETCONTENT Structure

ORACLE

typedef struct SCCCAGETCONTENTt ag
{

VTDWORD dwSt ruct Si ze;
VTDWORD dwFl ags;
VTDWORD dwiaxBuf Si ze;
VTVO D * pDat aBuf ;
VTDWORD dwType;
VTDWORD dwSubType;
VTDWORD dwDat al;
VTDWORD dwbat a2;
VTDWORD dwbat a3;
VTDWORD dwDat a4;
VTDWORD dwDat aBuf Si ze;

} SCCCAGETCONTENT, * PSCCCAGETCONTENT;

Each piece of content has a type and a subtype. Based on the type and subtype, the
content is described by using up to four VTDWORDSs and a data buffer provided by the
caller. The dwStructSize, dwFlags, pDataBuf and dwMaxBufSize elements of this
structure should be filled by the caller before calling CAReadNext or CAReadFirst.

e dwsStructSize: Initialized by caller to sizeof(SCCCAGETCONTENT).
e dwFlags: Set by caller. Currently undefined, must be set to 0.
e dwMaxBufSize: Initialized by caller to the size of the buffer pointed to by pDataBuf.

- pDataBuf: This pointer must be set by the caller to a buffer at least 1K in size and
must be properly byte-aligned (4 bytes). This buffer will be filled with content
information based on dwType.

e dwType: Returns one of the following values (For detailed descriptions of the
content types, see Content Description):

— SCCCA_ANNOTATION: Marks the location of an annotation or sub-document.

6-3

ORACLE

Chapter 6
CAContentStatus

SCCCA_BEGINTAG: Marks the beginning of a tagged section of the
document

SCCCA_BREAK: Signals the end of document properties
SCCCA_ENDTAG: Marks the end of a tagged section of the document
SCCCA _FILEPROPERTY: File identification information
SCCCA_GENERATED: Text generated from non-character data
SCCCA_OBJECT: Embedded object information

SCCCA_SHEET: The name of a sheet in a spreadsheet or presentation
SCCCA_STYLECHANGE: Indicates a change in style information
SCCCA_TEXT: Normal stream text

SCCCA_TREENODELOCATOR: Used by DAOpenRandomTreeRecord and
DASaveRandomTreeRecord.

* dwSubType Returns additional information based on dwType. Here are some valid
subtypes:

SCCCA_ANNOTATION: Subtype are values like
SCCCA_ANNOTATION_FOOTNOTE or SCCCA_ANNOTATION_ENDNOTE.
dwDatal links to the corresponding SCCCA_BEGINTAG.

SCCCA_HIDDEN: A valid subtype for the SCCCA_TEXT type representing
hidden text.

SCCCA_FRAME_EX: A valid subtype for the SCCCA_BEGINTAG and
SCCCA_ENDTAG types representing extended frames.

SCCCA_LINKEDOBJECT: A valid subtype for the SCCCA_BEGINTAG and
SCCCA_ENDTAG types representing an object accessible via a link. When
dwSubType equals SCCCA_LINKEDOBJECT, dwDatal, dwData2, dwData3
and dwData4 will contain values that are used to locate the object.

SCCCA_OCE: A valid subtype for the SCCCA_STYLECHANGE type,
indicating a change in the character set in the original document. dwDatal
returns the new character set.

e dwDatan: Return additional information based on dwType and dwSubType.
Several examples are shown above.

» dwDataBufSize: Returns the actual size of the data placed in the buffer pointed to
by pDataBuf.

6.5 CAContentStatus

This function is used to determine if there were conversion problems during a
conversion. It will return a structure that describes areas of a conversion that may not
have high fidelity with the original document.

Prototype

DA_ENTRYSC DAERR DA_ENTRYMOD CACont ent St at us(VTHCONTENT hCont ent, VTDWORD
dwst at usType, VTLPVO D pSt at us);

Parameters

» hContent: Content handle for the document.

6-4

Chapter 6
CASeek

* dwsStatusType: Specifies which status information should be filled in pStatus.

— SCCCA_STATUS_INFORMATION - fills in the
SCCCASTATUSINFORMATION structure.

e pStatus: A pointer to a SCCCASTATUSINFORMATION data structure

Return Values

SCCERR_OK: Returned if there were no problems. Otherwise, one of the other

SCCERR_

values in sccerr.h is returned.

6.5.1 EXSUBDOCSTATUS Structure

The SCCCASTATUSINFORMATION is defined to be the same as
EXSTATUSINFORMATION, which is defined as follows:

typedef struct EXSTATUSI NFORVATI ONt ag

VTDWORD dwVersion; /* version of this structure */

{
VTBOOL
VTBOOL
VTBOOL
example is

VTBOOL
VTBOOL
VTBOOL
VTBOOL
VTBOOL
VTBOOL
VTBOOL
VTBOOL
VTBOOL
VTBOOL
*|
VTBOOL
VTBOOL
VTBOOL
VTBOOL

rendered */

bM ssingMap; /* a PDF text run was missing the toUnicode table */
bVertical Text; /* a vertical text run was present */

bTextEffects; /* a run that had unsupported text effects applied. One
Vord Art*/

bUnsuppor t edConpression; /* a graphic had an unsupported conpression */
bUnsupport edCol or Space; /* a graphic had an unsupported col or space */
bForms; /* a sub docunents had forns */

bRi ght ToLeft Tables; /* a table had right to left colums */

bEquations; /* a file had equations*/

bAl i asedFont; /* The desired font was missing, but a font alias was used*/
bM ssi ngFont; /* The desired font wasn't present on the system*/
bSubDocFai l ed; /* a sub docunment was not converted */

bTypeThreeFont; /* a PDF Type 3 enbedded font was encountered */
bUnsupport edShading; /* a PDF input file had an unsupported shadi ng type

bl nval i dHTM.; /* invalid HTM. was encountered */

bVectorObjectLinit; /* The vector object limt was reached */

bl nval i dAnnot at i onNot Appl i ed; /* Annotation/Redaction wasn't displayed */
bl nl'i nel mgeFound; /* An inline imge was found and may not have been

} EXSTATUSI NFORMATI ON,

6.6 CASeek

Note:

When processing a document, Content Access never uses fonts, so
bAliasedFont and bMissingFont will never report TRUE.

bVectorObjectLimit applies only to WebView Export, and
binvalidAnnotationNotApplied applies only to Image Export, PDF Export, and
Web View Export.

Move to a position in CA.

ORACLE

6-5

Chapter 6
CATell

Prototype
DA _ENTRYSC DAERR DA_ENTRYMOD CASeek(VTHCONTENT hContent, PSCCDAPCS pPos)

Parameters

* hContent: CA Content returned from CAOpenContent.
» pPos: Pointer to be filled with our position information.
Return Values

DAERR_BADPARAM SCCERR_OK: One of the function parameters was invalid.

6.7 CATell

ORACLE

Get position of CA.

Prototype
DA_ENTRYSC DAERR DA ENTRYMOD CATel| (VTHCONTENT hContent, PSCCDAPOS pPos)

Parameters

* hContent: CA Content returned from CAOpenContent.

» pPos: Pointer to be filled with our position information.

Return Values

DAERR_BADPARAM SCCERR_OK: One of the function parameters was invalid.

6-6

Content Description

This chapter discusses tagged content and other content topics.
This chapter includes the following sections:

SCCCA BEGINTAG/SCCCA _ENDTAG: Tagged Content
SCCCA BREAK: Content Breaks

SCCCA_CELL: Cell Boundary
SCCCA_COMMENTREFERENCE

SCCCA _FILEPROPERTY: File Property Content
SCCCA_GENERATED: Generated Information
SCCCA_OBJECT: SubObijects
SCCCA_OBJECTALTSTRING: Alternate String
SCCCA_OBJECTNAME: Object Name
SCCCA_RECORD: Archive Record

SCCCA _REVISION_CELL: Revision Cell
SCCCA_REVISION_ROW: Revision Row
SCCCA_REVISION_COLUMN: Revision Column
SCCCA_REVISION_SHEET: Revision Sheet
SCCCA _REVISION_SHEETNAME: Revision Sheet Name
SCCCA_REVISION_USER: Revision User
SCCCA_SHEET: Sheet Names

SCCCA_SLIDE: Presentation Slide
SCCCA_STYLECHANGE: Style Information
SCCCA_TEXT: Text Content
SCCCA_TREENODELOCATOR: Tree Node Locator

7.1 SCCCA BEGINTAG/SCCCA ENDTAG: Tagged

Content

ORACLE

The SCCCA_BEGINTAG and SCCCA_ENDTAG content types are used to tag or
delimit other content for a particular purpose. This can be especially useful when
searching for specific document property values like the author or title of a document.
It can also be used to separate subdocument text like headers, footers, and footnotes
from the main document text. Tagged text may be nested inside other tagged text, and
tags may overlap each other.

7-1

Chapter 7
SCCCA _BEGINTAG/SCCCA _ENDTAG: Tagged Content

Though most tag types are not particularly useful to developers, the Data Access
technology provides all of the tag types rather than make a judgment as to usability.
Each is briefly described below.

7.1.1 SCCCA_BEGINTAG Content Description

This section lists the applicable parameters and corresponding values.

dwType

— SCCCA_BEGINTAG: Beginning of tagged content

— SCCCA_ENDTAG: End of tagged content

dwSubType: Tag type - see Tag Types

dwDatal: Additional ID - see Tag Types for more information.
dwData2: Not used

dwData3: Reserved

dwData4: Reserved

pDataBuf: Not used

7.1.2 Tag Types

This section lists the applicable values and corresponding descriptions.

ORACLE

SCCCA_ALTFONTDATA: Reserved
SCCCA_ANNOTATIONREFERENCE: Tags content that references an annotation
SCCCA_BOOKMARK: Delimits content tagged as a bookmark

SCCCA_CAPTIONTEXT: Tags content that is used as a caption on objects such
as tables, equations and figures

SCCCA_CHARACTER: Reserved

SCCCA_COMPILEDFIELD: Tags content resulting from an application compiling a
field code such as a date. The lack of consistent support by applications for this
field makes it unreliable as a search property.

SCCCA_CONDITIONALSTYLE: Reserved
SCCCA_COUNTERFORMAT: Reserved
SCCCA_CUSTOMDATAFORMAT: Reserved
SCCCA_DATEDEFINITION: Reserved
SCCCA_DIAGRAM: Reserved
SCCCA_DIAGRAM_*: Reserved

SCCCA_DOCUMENTPROPERTY: Tags document property content - see
Document Property IDs

SCCCA DOCUMENTPROPERTYNAME: Name of a user-defined document
property (SCCCA_USERDEFINEDPROP)

SCCCA_EMAILFIELD: Tags fields associated with email formats - see Mail Field
IDs

7-2

ORACLE

Chapter 7
SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content

SCCCA_EMAILFIELDNAME: Tags the name of a non-standard email field.
SCCCA_EMAILTABLE: Table of email fields
SCCCA_ENDNOTEREFERENCE: Tags content that references an endnote
SCCCA_FONTANDGLYPHDATA: Tags content that references font or glyph data
SCCCA_FOOTER: Delimits content tagged as footer
SCCCA_FOOTNOTEREFERENCE: Tags content that references a footnote
SCCCA_FRAME: Tags content stored within a frame

SCCCA_FRAME_EX: Tags content that references extended frames
SCCCA_GENERATEDFIELD: Reserved

SCCCA_GENERATOR: Reserved

SCCCA_HEADER: Delimits content tagged as header
SCCCA_HYPERLINK: Delimits content tagged as a hypertext link

SCCCA _INDEX: Reserved

SCCCA_INDEXENTRY: Delimits content that should be placed in the index
SCCCA_INLINEDATAFORMAT: Reserved

SCCCA_LINKEDOBJECT: Tags content referencing a linked object. These values
may change if different options are applied, with different versions of the
technology, or after patches are applied.

SCCCA LISTENTRY: Reserved

SCCCA_MERGEENTRY: Reserved
SCCCA_NAMEDCELLRANGE: Reserved
SCCCA_REFERENCEDTEXT: Tags text for later reference

SCCCA_SLIDENOTES: Tags content stored in speaker/slide notes in a
presentation document

SCCCA_SSHEADERFOOTER: Tags content that references headers or footers in
spreadsheet files

SCCCA_STYLE: Delimits a style definition. Styles may contain text, but typically
do not. dwDatal is a flag field for SCCCA_STYLE with the value of
SCCCA_STYLEFLAG_INLINE_NUMBERING when the style is an inline
numbering style.

SCCCA_SUBDOCPROPERTY: Tags metadata associated with a subdocument,
such as a comment. See SCCCA_SUBDOCPROPERTY Document Properties for
more information.

SCCCA _SUBDOCTEXT: Delimits content stored in subdocuments like headers,
footers, frames and notes.

SCCCA _TOA: Reserved
SCCCA _TOAENTRY: Reserved
SCCCA _TOC: Reserved
SCCCA _TOCENTRY: Reserved
SCCCA _TOF: Reserved

7-3

ORACLE

Chapter 7
SCCCA _BEGINTAG/SCCCA _ENDTAG: Tagged Content

SCCCA_VECTORSAVETAG: Reserved
SCCCA_XMPDATA: Document properties parsed out of the XMP data
SCCCA XREF: Reserved

In the following tag types, an asterisk (*) denotes tags that contain revision data
which has a sequence ID in dwDatal, a User ID in dwData2, and the time (stored
as a DOS Date/Time) in dwData3

SCCCA_SS_REVISIONS container for all of the tracked changes.

SCCCA_SS USERNAMES user ID table containing SCCCA_SS_USERNAME
tags.

SCCCA_SS_USERNAME has a user ID and contains SCCCA_REVISION_USER.

SCCCA_SS SHEETNAMES sheet table containing SCCCA_SS_SHEETNAME
tags.

SCCCA_SS _SHEETNAME has a sheet ID and contains
SCCCA _REVISION_SHEETNAME and text for the name.

SCCCA_SS REV_RENAMESHEET * contains a SCCCA_REVISION_SHEET,
which contain the new and old sheet ID's.

SCCCA_SS REV_CREATE * empty tag used to output User ID and Date/Time of
file creation.

SCCCA_SS REV_SAVE * empty tag used to output User ID and Date/Time of a
save.

SCCCA_SS REV_MODIFYCELL *describes a cell that was changed. It contains
SCCCA_REVISION_CELL describing the location of the modified cell, a
SCCCA_SS REV_OLDCELLCONTENT tag, and a

SCCCA_SS REV_NEWCELLCONTENT tag.

SCCCA_SS _REV_MOVECELLS * describes a cell that was moved and contains a
SCCCA_SS REV_OLDCELLLOCATION tag and a
SCCCA_SS_REV_NEWCELLLOCATION tag.

SCCCA_SS REV_OLDCELLLOCATION describes the original cell location and
contains two SCCCA_REVISION_CELL tags indicating the upper left and lower
right coordinates.

SCCCA_SS REV_NEWCELLLOCATION describes the new cell location and
contains two SCCCA_REVISION_CELL tags indicating the upper left and lower
right coordinates.

SCCCA_SS_REV_ADDROW * contains SCCCA_REVISION_ROW denoting
row(s) added.

SCCCA_SS_REV_DELETEROW * contains SCCCA_REVISION_ROW denoting
row(s) deleted. May Contain SCCCA_SS REV_NEWCELL, which contains the
cell information deleted within the row.

SCCCA_SS_REV_INSERTCOL * contains SCCCA_REVISION_COLUMN
denoting column(s) added.

SCCCA_SS_REV_DELETECOL * contains SCCCA_REVISION_COLUMN
denoting column(s) deleted. It may optionally contain new cell and formatting
records.

7-4

Chapter 7
SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content

SCCCA_SS REV_NEWCELL * contains SCCCA_REVISION_CELL denoting new
cell location. It may optionally contain formatting records, numeric information, or
string information.

SCCCA_SS_REV_CLEARCELL * contains SCCCA_REVISION_CELL denoting
old cell location. It may optionally contain numeric information or string information.

SCCCA_SS REV_OLDCELLCONTENT may contain numeric information or string
information.

SCCCA_SS REV_NEWCELLCONTENT may contain numeric information or
string information.

SCCCA_SS _REV_ADDSHEET * contains a SCCCA_REVISION_SHEET.
SCCCA_SS REV_FORMAT * contains formatting information.

When dwSubType is SCCCA_DOCUMENTPROPERTY, dwDatal will be one of the
values listed in the header file sccca.h. The following section, Document Property IDs,
lists many of the common document property types. Any content generated between
the begin and end tag defines the value of the document property.

When dwSubType is SCCCA_EMAILFIELD, dwDatal will be one of the values in Mail
Field IDs, and any content generated between the begin and end tag defines the value
of the email field.

7.1.3 Document Property IDs

The following is a partial list of document property IDs.

ORACLE

SCCCA_ABSTRACT
SCCCA_ACCOUNT
SCCCA_ADDRESS
SCCCA_APPVERSION
SCCCA_ATTACHMENTS
SCCCA_AUTHORIZATION
SCCCA_BACKUPDATE
SCCCA_BASEFILELOCATION
SCCCA_BILLTO
SCCCA_BLINDCOPY
SCCCA_CARBONCOPY
SCCCA_CATEGORY
SCCCA_CHECKEDBY
SCCCA_CLIENT
SCCCA_COMPANY
SCCCA_COMPLETEDDATE
SCCCA_COUNTBYTES
SCCCA_COUNTCHARS
SCCCA_COUNTCHARSWITHSPACES

7-5

Chapter 7
SCCCA _BEGINTAG/SCCCA _ENDTAG: Tagged Content

* SCCCA_COUNTLINES

« SCCCA_COUNTMMCLIPS
* SCCCA_COUNTNOTES

* SCCCA_COUNTPAGES

» SCCCA_COUNTPARAS

* SCCCA_COUNTSLIDES

* SCCCA_COUNTSLIDESHIDDEN
* SCCCA_COUNTWORDS

« SCCCA_CREATIONDATE
» SCCCA_DEPARTMENT

* SCCCA_DESTINATION

« SCCCA_DISPOSITION

« SCCCA_DIVISION

» SCCCA_DOCCOMMENT

« SCCCA_DOCNUMBER

« SCCCA_DOCTYPE

* SCCCA_EDITMINUTES

» SCCCA_EDITOR

» SCCCA_FORWARDTO

« SCCCA_GROUP

« SCCCA_HEADINGPAIRS

« SCCCA_KEYWORD

» SCCCA_LANGUAGE

* SCCCA_LASTPRINTDATE
« SCCCA_LASTSAVEDATE
* SCCCA_LASTSAVEDBY

* SCCCA_LINKSDIRTY

« SCCCA_MAILSTOP

« SCCCA_MANAGER

« SCCCA_MATTER

« SCCCA_OFFICE

» SCCCA_OPERATOR

« SCCCA_OWNER

» SCCCA_PRESENTATIONFORMAT
« SCCCA_PRIMARYAUTHOR
* SCCCA_PROJECT

» SCCCA_PUBLISHER

ORACLE 7-6

SCCCA_PURPOSE
SCCCA_RECEIVEDFROM
SCCCA_RECORDEDBY
SCCCA_RECORDEDDATE
SCCCA_REFERENCE
SCCCA_REVISIONDATE
SCCCA_REVISIONNOTES
SCCCA_REVISIONNUMBER
SCCCA_SCALECROP
SCCCA_SECONDARYAUTHOR
SCCCA_SECTION
SCCCA_SECURITY
SCCCA_SOURCE
SCCCA_STATUS
SCCCA_SYSTEM_FILECREATED
SCCCA_SYSTEM_FILEMODIFIED
SCCCA_SYSTEM_FILESIZE
SCCCA_SUBJECT
SCCCA_TITLE
SCCCA_TITLEOFPARTS
SCCCA_TYPIST
SCCCA_USERDEFINEDPROP
SCCCA_VERSIONDATE
SCCCA_VERSIONNOTES
SCCCA_VERSIONNUMBER

Note:

above are user-defined prop

Chapter 7
SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content

Document Properties with IDs of SCCCA_USERDEFINEDPROP or

erties.

7.1.4 SCCCA_SUBDOCPROPERTY Document Properties

The following values are properties of SCCCA_SUBDOCPROPERTY:

ORACLE

SCCCA_SUBDOC_AUTHOR
SCCCA_SUBDOC_CREATEDATE

SCCCA_SUBDOC_LASTSAVEDATE

SCCCA_SUBDOC_TITLE

7-7

Chapter 7
SCCCA _BEGINTAG/SCCCA _ENDTAG: Tagged Content

« SCCCA_SUBDOC_NOTES
« SCCCA_SUBDOC_AUTHORSHORT

7.1.5 Mail Field IDs

This is a partial list of fields found in mail documents and archives.

- SCCCA_MAIL_ALTERNATE_RECIPIENT_ALLOWED
- SCCCA_MAIL_ATTACHMENT

- SCCCA_MAIL_ATTENDEES

- SCCCA_MAIL_ATTR_HIDDEN

- SCCCA_MAIL_ATTR_READONLY

- SCCCA_MAIL_ATTR_SYSTEM

- SCCCA_MAIL_AUTO_FORWARDED

- SCCCA_MAIL_BCC

- SCCCA_MAIL_CATEGORIES

- SCCCA_MAIL_CC

- SCCCA_MAIL_CCME

- SCCCA_MAIL_CLIENT_SUBMIT_TIME

- SCCCA_MAIL_COMPANY

- SCCCA_MAIL_CONVERSATION_INDEX

- SCCCA_MAIL_CONVERSATION_TOPIC

- SCCCA_MAIL_CREATION_TIME

- SCCCA_MAIL_CREATOR_ENTRYID

- SCCCA_MAIL_CREATOR_NAME

- SCCCA_MAIL_DEFERRED_DELIVERY_TIME
- SCCCA_MAIL_DELETE_AFTER_SUBMIT

- SCCCA_MAIL_EMAIL

- SCCCA_MAIL_ENTRYID

- SCCCA_MAIL_EXPIRES

- SCCCA_MAIL_EXPIRY_TIME

- SCCCA_MAIL_FLAGSTS

- SCCCA_MAIL_FROM

- SCCCA_MAIL_FULLNAME

- SCCCA_MAIL_HOMEPHONE

- SCCCA_MAIL_IMPORTANCE

- SCCCA_MAIL_INET_MAIL_OVERRIDE_FORMAT
- SCCCA_MAIL_INTERNET_ARTICLE_NUMBER
- SCCCA_MAIL_INTERNET_CPID

ORACLE 7-8

ORACLE

Chapter 7
SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content

SCCCA_MAIL_INTERNET_MESSAGE_ID
SCCCA_MAIL_JOBTITLE

SCCCA_MAIL_LASTMODIFIED

SCCCA_MAIL_LAST MODIFIER_ENTRYID
SCCCA_MAIL_LAST_MODIFIER_NAME
SCCCA_MAIL_LATEST_DELIVERY_TIME
SCCCA_MAIL_LOCATION
SCCCA_MAIL_MESSAGE_CLASS
SCCCA_MAIL_MESSAGE_CODEPAGE
SCCCA_MAIL_MESSAGE_LOCALE_ID
SCCCA_MAIL_MESSAGE_SUBMISSION_ID
SCCCA_MAIL_MSGFLAG
SCCCA_MAIL_MSG_EDITOR_FORMAT
SCCCA_MAIL_NEWSGROUPS
SCCCA_MAIL_NORMALIZED_SUBJECT
SCCCA_MAIL_NT_SECURITY_DESCRIPTOR
SCCCA_MAIL_ORIGINATOR_DELIVERY_REPORT REQUESTED
SCCCA_MAIL_PRIORITY
SCCCA_MAIL_PROFILE_CONNECT_FLAGS
SCCCA_MAIL_RCVD_BY_ FLAGS
SCCCA_MAIL_RCVD_REPRESENTING_ADDRTYPE
SCCCA_MAIL_RCVD_REPRESENTING_EMAIL_ADDRESS
SCCCA_MAIL_RCVD_REPRESENTING_ENTRYID
SCCCA_MAIL_RCVD_REPRESENTING_FLAGS
SCCCA_MAIL_RCVD_REPRESENTING_NAME
SCCCA_MAIL_RCVD_REPRESENTING_SEARCH_KEY
SCCCA_MAIL_READ_RECEIPT_REQUESTED
SCCCA_MAIL_RECEIVED
SCCCA_MAIL_RECEIVED_BY_ADDRTYPE
SCCCA_MAIL_RECEIVED_BY_EMAIL_ADDRESS
SCCCA_MAIL_RECEIVED_BY_ENTRYID
SCCCA_MAIL_RECEIVED_BY_NAME
SCCCA_MAIL_RECEIVED_BY_SEARCH_KEY
SCCCA_MAIL_RECIPIENT_REASSIGNMENT_PROHIBITED
SCCCA_MAIL_REPLY_REQUESTED
SCCCA_MAIL_REPLY_TIME

SCCCA_MAIL_REPORT_TAG

7-9

Chapter 7

SCCCA _BREAK: Content Breaks

SCCCA_MAIL_RESPONSE_REQUESTED
SCCCA_MAIL_RTFBODY
SCCCA_MAIL_RTF_IN_SYNC
SCCCA_MAIL_RTF_SYNC_BODY_COUNT
SCCCA_MAIL_RTF_SYNC_BODY_CRC
SCCCA_MAIL_RTF_SYNC_BODY_TAG
SCCCA_MAIL_RTF_SYNC_PREFIX_COUNT
SCCCA_MAIL_RTF_SYNC_TRAILING_COUNT
SCCCA_MAIL_SEARCH_KEY
SCCCA_MAIL_SENDER_ADDRTYPE
SCCCA_MAIL_SENDER_EMAIL_ADDRESS
SCCCA_MAIL_SENDER_ENTRYID
SCCCA_MAIL_SENDER_FLAGS
SCCCA_MAIL_SENDER_NAME
SCCCA_MAIL_SENDER_SEARCH_KEY
SCCCA_MAIL_SENSITIVITY
SCCCA_MAIL_SENT_REPRESENTING_ADDRTYPE
SCCCA_MAIL_SENT_REPRESENTING_EMAIL_ADDRESS
SCCCA_MAIL_SENT_REPRESENTING_ENTRYID
SCCCA_MAIL_SENT_REPRESENTING_FLAGS
SCCCA_MAIL_SENT_REPRESENTING_NAME
SCCCA_MAIL_SENT_REPRESENTING_SEARCH_KEY
SCCCA_MAIL_SIZE

SCCCA_MAIL_SUBJECT

SCCCA_MAIL_SUBMITTIME

SCCCA_MAIL_TO
SCCCA_MAIL_TRANSPORT_MESSAGE_HEADERS
SCCCA_MAIL_TRUST_SENDER
SCCCA_MAIL_WEBPAGE
SCCCA_MAIL_WORKPHONE

7.2 SCCCA_BREAK: Content Breaks

This content type is used internally, and may be ignored.

7.3 SCCCA_CELL: Cell Boundary

ORACLE

SCCCA_CELL will appear before the contents of a cell in a spreadsheet or database
and will contain coordinates that indicate the starting and ending position of the cell. If

7-10

Chapter 7
SCCCA_COMMENTREFERENCE

the cell isn't merged, then the starting and ending positions will be the same. The
content contained by the cell is assumed to end when the next SCCCA_CELL or
SCCCA_SHEET is output.

7.3.1 SCCCA_CELL Content Description

* dwType: SCCCA_CELL

* dwSubType: Either SCCCA_HIDDEN if the hidden attribute is set on either the row
or column for the cell, or O if the cell isn't hidden.

* dwDatal: The starting row in a numeric format that is 0 based
» dwbData2: The starting column in a numeric format that is O based
* dwbData3: The ending row in a numeric format that is 0 based
* dwData4: The ending column in a numeric format that is O based

» pDataBuf: Not used

7.4 SCCCA_COMMENTREFERENCE

A SCCCA_COMMENTREFERENCE is placed in the actual location of the comment.
The body of the comment may appear elsewhere and will be tagged with a

SCCCA _BEGINTAG of type SCCCA_SUBDOCTEXT and will have the same Id as the
SCCCA_COMMENTREFERENCE.

e dwType: SCCCA_COMMENTREFERENCE
e dwSubType: None

e dwDatal: Type of the comment reference anchor.
SCCCA_COMMENT_PARAGRAPH, SCCCA_COMMENT_CELL,
SCCCA_COMMENT_SLIDE, or SCCCA_COMMENT_VECTORPAGE.

» dwData2: id of the associated subdoc
 dwbData3: Reserved
 dwbData4: Reserved

o pDataBuf: Not used

7.5 SCCCA _FILEPROPERTY: File Property Content

Returns the file identification information for a document. This property is generated by
the CAReadFirst function.

7.5.1 SCCCA_FILEPROPERTY Content Description

ORACLE

This section lists the applicable parameters and corresponding values.
* dwType: SCCCA_FILEPROPERTY

* dwSubType: SCCCA_FILEID

* dwbDatal: One of the file identifier values (FI_*) defined in sccfi.h

* dwbData2: The input file's initial character set

7-11

Chapter 7
SCCCA_GENERATED: Generated Information

 dwbData3: Reserved
 dwbData4: Reserved

* pDataBuf: Not used

7.6 SCCCA_GENERATED: Generated Information

Identical to SCCCA_TEXT, except that the characters come not from the original
document, but from some other non-character data (numbers in spreadsheets, dates,
and so forth). Because the text is not from the original document, the characters do not
contribute toward character counts.

7.6.1 SCCCA_GENERATED Content Description

This section lists the applicable parameters and corresponding values.
 dwType: SCCCA_GENERATED
* dwSubType: Possible values include the following:

— SCCCA_BOOKMARKTEXT: Text for the internal name of the bookmark.

— SCCCA_DOCUMENTTEXT: Regular document text is returned with this
subtype.

— SCCCA_REVISIONDELETE: Will be OR-ed with either
SCCCA_DOCUMENTTEXT or SCCCA_SPECIALTEXT when text has been
deleted from the final version of a document as a result of a revision.

— SCCCA_URLTEXT: Text for the Link Location part of a URL.
— SCCCA_XMPMETADATA: Text from embedded XMP metadata.
o dwbDatal: Number of characters provided in pDataBuf
» dwbData2: Original character set of the text in pDataBuf
* dwbData3: Reserved
* dwbData4: Reserved

- pDataBuf: Text buffer. Filled with one or more single- or double-byte characters.

7.7 SCCCA_OBJECT: SubObjects

This content type is provided to allow the developer to access the content of
SubObijects, like embedded graphics or objects in an archive. The SubObject can then
be opened by DAOpenDocument, filling the IOSPECSUBOBJECT or the
IOSPECARCHIVEOBJECT parameter with one of the following values:

7.7.1 SCCCA_OBJECT Content Description

These values may change if different options are applied, with different versions of the
technology, or after patches are applied.

« dwType: SCCCA_OBJECT

ORACLE 7-12

Chapter 7
SCCCA_OBJECTALTSTRING: Alternate String

dwSubType: Set to SCCCA_EMBEDDEDOBJECT (0) if the sub-object is an
embedding or is set to the type of node if the object is from an archive. Possible
values include the following:

— SCCCA_EMBEDDEDOBJECT

— SCCCA_ARCHIVEITEMCONTAINER

— SCCCA_COMPRESSEDFILE

— SCCCA_MESSAGE

— SCCCA_CONTACT

— SCCCA_CALENDARENTRY

— SCCCA_NOTE

— SCCCA_TASK

— SCCCA_JOURNALENTRY

— SCCCA_ATTACHMENT

dwDatal: The internal SubObiject identifier or a node identifier.
dwData?2: Stream identifier for an alternate graphic.

dwData3: Stream identifier for an OLE object if one exists. Otherwise, it is
CA_INVALIDITEM.

dwData4: Object Flags. Currently, 0 or SCCCA_ENDRECORD
pDataBuf: Not used

7.8 SCCCA_OBJECTALTSTRING: Alternate String

This content type provides an alternate string to identify an embedded object.

7.8.1 SCCCA_OBJECTALTSTRING Content Description

dwType: SCCCA_OBJECTALTSTRING

dwSubType: Not used

dwDatal: Number of characters provided in pDataBuf
dwData2: Original character set of the text in pDataBuf
dwData3: Not used

dwData4: Not used

pDataBuf: Text buffer containing the alternate string. Filled with one or more
single- or double-byte characters.

7.9 SCCCA_OBJECTNAME: Object Name

This content type is provided to identify the name of an embedded object.

7.9.1 SCCCA_OBJECTNAME Content Description

ORACLE

dwType: SCCCA_OBJECTNAME

7-13

Chapter 7
SCCCA_RECORD: Archive Record

dwSubType: Not used

dwDatal: Number of characters provided in pDataBuf
dwData?2: Original character set of the text in pDataBuf
dwData3: Not used

dwData4: Not used

pDataBuf: Text buffer containing the name. Filled with one or more single- or
double-byte characters.

7.10 SCCCA_RECORD: Archive Record

This content is output to allow the customer to easily group fields that appear in an
archive or in an email archive. The record is considered to be open until a
SCCCA_OBJECT is encountered with the flag SCCCA_ENDRECORD set.

7.10.1 SCCCA_RECORD Content Description

This section lists the applicable parameters and corresponding values.

dwType: SCCCA_RECORD
dwSubType: Reserved
dwDatal: Reserved
dwData2: Reserved
dwData3: Reserved
dwData4: Reserved

pDataBuf: not used

7.11 SCCCA_REVISION_CELL: Revision Cell

The location of a cell within a track changes block.

7.11.1 SCCCA_REVISION_CELL Content Description

This section lists the applicable parameters and corresponding values.

ORACLE

dwType: SCCCA_REVISION_CELL
dwSubType: Reserved

dwDatal: Sheet

dwData2: Column

dwData3: Row

dwData4: Reserved

pDataBuf: Reserved

7-14

Chapter 7
SCCCA_REVISION_ROW: Revision Row

7.12 SCCCA_REVISION_ROW: Revision Row

This describes a series of rows within a track changes block.

7.12.1 SCCCA_REVISION_ROW Content Description

This section lists the applicable parameters and corresponding values.

dwType: SCCCA_REVISION_ROW

dwSubType: Reserved

dwDatal: Sheet

dwData2: Start Row

dwData3: End Row (will be the same as Start Row if a single row is selected)
dwData4: Reserved

pDataBuf: Reserved

7.13 SCCCA_REVISION_COLUMN: Revision Column

This describes a series of columns within a track changes block.

7.13.1 SCCCA_REVISION_COLUMN Content Description

This section lists the applicable parameters and corresponding values.

dwType: SCCCA_REVISION_COLUMN
dwSubType: Reserved

dwDatal: Sheet

dwData2: Start Column

dwData3: End Column (will be the same as Start Column if a single column is
selected)

dwData4: Reserved

pDataBuf: Reserved

7.14 SCCCA_REVISION_SHEET: Revision Sheet

This describes the new and old sheet names within a track changes block. The
numbers will relate to names output with SCCCA_REVISION_SHEETNAME tags.

7.14.1 SCCCA_REVISION_SHEET Content Description

This section lists the applicable parameters and corresponding values.

ORACLE

dwType: SCCCA_REVISION_SHEET
dwSubType: Reserved

7-15

Chapter 7
SCCCA_REVISION_SHEETNAME: Revision Sheet Name

e dwbDatal: Sheet Number
* dwbData2: New Name

* dwbData3: Old Name

* dwbData4: Reserved

» pDataBuf: Reserved

7.15 SCCCA_REVISION_SHEETNAME: Revision Sheet

Name

Provides the name and number of a sheet within a track changes block.

7.15.1 SCCCA_REVISION_SHEETNAME Content Description

This section lists the applicable parameters and corresponding values.

 dwType: SCCCA_REVISION_SHEETNAME
* dwSubType: Reserved

* dwbDatal: Sheet Number

» dwbData2: Reserved

» dwbData3: Reserved

* dwbData4: Reserved

* pDataBuf: Name

7.16 SCCCA_REVISION_USER: Revision User

This describes the name associated with a user ID.

7.16.1 SCCCA_REVISION_USER Content Description

ORACLE

This section lists the applicable parameters and corresponding values.

« dwType: SCCCA_SHEET
* dwSubType: Reserved

* dwbDatal: User ID

* dwbData2: Reserved

* dwbData3: Reserved

* dwbData4: Reserved

* pDataBuf: User Name

7-16

Chapter 7
SCCCA_SHEET: Sheet Names

7.17 SCCCA_SHEET: Sheet Names

This content type contains only the sheet name (worksheet in a spreadsheet, slide in
presentation, and so forth). This content is not optional. It is always created if the
information is present. Of course, the client can ignore this text when it is returned.

7.17.1 SCCCA_SHEET Content Description

This section lists the applicable parameters and corresponding values.

dwType: SCCCA_SHEET

dwSubType: Reserved

dwDatal: The length of the name in pDataBuf in characters.
dwData2: The original character set of the name in pDataBuf.
dwData3: Reserved

dwData4: Reserved

pDataBuf: Points to the sheet name in whatever output character set has been
requested.

7.18 SCCCA_SLIDE: Presentation Slide

SCCCA_SLIDE appears before the contents of a slide in a presentation document.
The content contained by the slide is assumed to end when the next SCCCA_SLIDE is
output, or the end of the document is reached.

dwType: SCCCA_SLIDE
dwSubType: Reserved

dwDatal: Identifies if the slide is hidden (SCCCA_SLIDEHIDDEN) or not
(SCCCA_SLIDENORMAL)

dwData2: Reserved
dwData3: Reserved
dwData4: Reserved

pDataBuf: Reserved

7.19 SCCCA _STYLECHANGE: Style Information

The SCCCA_STYLECHANGE content type is used to indicate changes in style
information. This style information can be used to delimit particularly interesting
content.

7.19.1 SCCCA_STYLECHANGE Content Description

This section lists the applicable parameters and corresponding values.

ORACLE

dwType: SCCCA_STYLECHANGE

7-17

Chapter 7
SCCCA_TEXT: Text Content

* dwSubType: Possible values include the following:
— SCCCA_PARASTYLE: pDataBuf indicates the name of the style.

— SCCCA_HEIGHTANDSPACING: When dwSubType is
SCCCA_HEIGHTANDSPACING, dwDatal can be SCCCA_HEIGHT
(dwData2 represents the new character height), SCCCA_SPACING (dwData3
represents the new line spacing) or both of these values OR-ed together.

— SCCCA_INDENTS: When dwSubType is SCCCA_INDENTS, dwDatal can be
SCCCA_LEFTINDENT (dwData2 represents the left indent),
SCCCA_RIGHTINDENT (dwData3 represents the right indent),
SCCCA_FIRSTINDENT (dwData4 represents the first line indent), or any of
these values OR-ed together.

— SCCCA_OCE: This content type provides information about the original
charsets of the characters that follow. dwDatal represents the charset as
defined in vtchars.h.

* dwDatal: Depends on the value of dwSubType.
* dwData2: Depends on the value of dwSubType.
» dwData3: Depends on the value of dwSubType.
* dwData4: Depends on the value of dwSubType.
» pDataBuf: Text buffer. Filled with one or more single- or double-byte characters.

* dwDataBufSize: Size of pDataBuf, in bytes.

7.20 SCCCA_TEXT: Text Content

This content type denotes document text, including special characters such as page
breaks and tabs.

The technology guarantees that the text generated by the Content Access technology
is identical to the text generated by the Outside In Viewer technology raw-text feature.
This allows character counts generated at indexing time using Content Access to be
directly mapped to viewer positions at viewing time for search-hit highlighting.
However, Content Access has abilities beyond the raw-text feature of the Viewer, such
as the ability to retrieve non-visible text such as document properties and hidden text,
and the ability to retrieve text from embedded documents.

When the output character is DBCS or Unicode, the character count will not be the
same as the buffer byte count because these character sets may generate more than
one byte per character. The byte ordering used for multi-byte character sets such as
these will be system-dependent; on a computer using an Intel processor, the low byte
will be first.

It is important to note that generated numeric data fields, such as date, time, and
spreadsheet numbers, are not included in the content returned by SCCCA_TEXT. For
information on how such text can be returned by Content Access, see
SCCCA_GENERATED: Generated Information.

7.20.1 SCCCA_TEXT Content Description

This section lists the applicable parameters and corresponding values.

* dwType: SCCCA_TEXT

ORACLE 7-18

Chapter 7
SCCCA _TEXT: Text Content

dwSubType: One of the following values:

— SCCCA_DOCUMENTTEXT: Regular document text is returned with this
subtype.

— SCCCA _SPECIALTEXT: Used to return text elements that are manufactured
by the technology due to special formatting attributes.

SCCCA_DOCUMENTTEXT or SCCCA_SPECIALTEXT can be optionally OR-ed
with any of the following to specify the type of text to be returned:

— SCCCA_ALLCAPS

— SCCCA_BOLD

— SCCCA_DUNDERLINE
— SCCCA_HIDDEN

— SCCCA_ITALIC

— SCCCA_OUTLINE

— SCCCA _REVISIONDELETE: Text that has been deleted from the final version
of a document as a result of a revision.

— SCCCA _REVISIONADD: Text that has been added to the final version of a
document as a result of a revision.

— SCCCA_SMALLCAPS
— SCCCA_STRIKEOUT
— SCCCA_UNDERLINE

— SCCCA_UNKNOWNMAP: This flag is set when PDF files don't contain a
ToUnicode map. This indicates that the mappings may or may not be correct.

dwDatal: Number of characters provided in pDataBuf
dwData?2: Original character set of the text in pDataBuf
dwData3: Reserved

dwData4: Reserved

pDataBuf: Text buffer. Filled with one or more single- or double-byte characters.

7.20.2 Special Text Character Substitutions

ORACLE

Context Change: 0x0D

Email Delimiter: 0x09

End of Database Record: 0x0A
End of File: 0xOD

End of Paragraph: 0xOD

End of Table Cell: 0xOD

End of Table Row: 0xOD

Hard Hyphen: 0x2D

Hard Line Break: OX0A

Hard Page Break: 0x0C

7-19

Chapter 7
SCCCA_TREENODELOCATOR: Tree Node Locator

Hard Space: 0x20
Implied Space: 0x20
Section Separator: 0x0D
Syllable Hyphen: 0x2D
Tab: 0x09

7.21 SCCCA_TREENODELOCATOR: Tree Node Locator

This content type contains information to be used in the SOTREENODELOCATOR
structure, which is used by DAOpenRandomTreeRecord and
DASaveRandomTreeRecord. These values may change if different options are
applied, with different versions of the technology, or after patches are applied.

7.21.1 SCCCA_TREENODELOCATOR Content Description

ORACLE

dwType: SCCCA_TREENODELOCATOR
dwSubType: Reserved

dwDatal: SOTREENODELOCATOR.dwSpecialFlags
dwData2: SOTREENODELOCATOR.dwDatal
dwData3: SOTREENODELOCATOR.dwData2
dwData4: Reserved

pDataBuf: Not used

7-20

Redirected IO

8.1 Using

ORACLE

This chapter addresses how developers have total control over access to a file via
Outside In's redirected 10 mechanism.

Many developers using the earlier versions of this technology expressed a need to
read file data from non-file system based sources. For instance, the developer might
want to read the file from a database on a server. Perhaps the developer is
downloading the file over a slow link, and wants to see the first screen of a document
before the download is completed, or only wants to download enough to view the first
screen.

This chapter includes the following sections:

e Using Redirected 10

* 10Close

* IORead

* IOWrite

* 10Seek

* |OTell

* 10GetInfo

* |OSEEKG64PROC / IOTELL64PROC

Redirected 10

A developer can redirect the 10 for an input or output file by providing a data structure
that contains pointers to custom IO routines for reading and writing. This data structure
is passed in place of a typical file specification. The developer must set the
dwSpecType parameter of the DAOpenDocument call to IOTYPE_REDIRECT when
the DAOpenDocument call is sent.

When dwSpecType is set this way, the pSpec element must contain a pointer to a
developer-defined data structure that begins with a BASEIO structure (defined in
baselO.H). The BASEIO structure contains pointers to the basic 10 functions for the
view window's 10 system such as Read, Seek, Tell, and so forth. The developer must
initialize these function pointers to their own functions that perform IO tasks. Beyond
the BASEIO element, the developer may place any data he or she likes. For instance,
a developer's structure may be similar to the following:

typedef struct MYFILEtag

BASEI O sBasel G, [* must be the first element */
VIDWORD dwMyl nf 01;
VIDWORD dwMyl nf 02;

} WYFILE;

8-1

Chapter 8
IOClose

Because the pSpec passed is essentially the file handle that the view window uses,
the developer can redirect the 10 on a file-by-file basis while still viewing regular disk-
based files.

The BASEIO structure is defined as follows:

typedef struct BASEI Ot ag

{
| OCLOSEPROC pd ose;

| OREADPRCC pRead;

| OARI TEPRCC pWite;

| OSEEKPRCC pSeek;

| OTELLPRCC pTel | ;

| OGETI NFOPRCC pCet I nf o;

| COPENPRCC pQpen; /* pOpen *MUST* be set to NULL. */
#i fndef NLM

| OSEEK64PROC pSeek64;

| OTELL64PROC pTel | 64;
#endi f

VTVO D *abumy[3] ;
} BASEIO * PBASEIQ

The developer must implement the Close, Read, Seek, Tell and GetInfo routines. The
Write routine can be a dummy routine and the Open routine must be set to NULL. The
first parameter to each of these routines is called hFile and is of the type HIOFILE.
HIOFILE is simply the VTLPVOID to your data structure that was passed in the pSpec
parameter of the DAOpenDocument call.

The sample source code for a simple implementation of Redirected 10 is in the
directory samples/taredir. This sample redirects the technology's 10 through the fopen,
fgetc, fseek, ftell and fclose run-time library routines.

¢ Note:

Redirected 10 does not cache the whole file. Seeks can and will occur
throughout the file during the course of viewing. If the developer is
implementing redirected 10 on a slow or sequential link, it is the developer's
responsibility to cache the file locally.

8.2 I0Close

ORACLE

Closes the file identified by hFile and cleans up all memory associated with the file.

Prototype

I CERR | OCl ose(
H OFILE hFile);

Parameters

» hFile: Identifies the file to be closed. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

8-2

Chapter 8
IORead

Return Values

8.3 IORead

IOERR_OK: Close was successful.
IOERR_UNKNOWN: Some error occurred on close.

Reads data from the current file position forward and resets the position to the byte
after the last byte read.

Prototype

| CERR | ORead(
H OFI LE hFi l e,
VTBYTE * pData,
VTDWORD dwsi ze,
VTDWORD * pCount);

Parameters

hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

pData: Points to the buffer into which the bytes should be read. Will be at least
dwSize bytes big.

dwsSize: Number of bytes to read.

pCount: Points to the number of bytes actually read by the function. This value is
only valid if the return value is IOERR_OK.

Return Values

8.4 [OWrite

IOERR_OK: Read was successful. pCount contains the number of bytes read and
pData contains the bytes themselves.

IOERR_EOF: Read failed because the file pointer was beyond the end of the file
at the time of the read.

IOERR_UNKNOWN: Read failed for some other reason.

Writes data from the current file position forward and resets the position to the byte
after the last byte written.

ORACLE

" Note:

This function has been fully documented only for completeness. OEMs who
use redirected IO do not need to implement writing and the IOWrite function
should do nothing but return IOERR_UNKNOWN.

8-3

Chapter 8
|0Seek

Prototype

| OERR | OWi t e(
H OFI LE hFile,
VTBYTE * pDat a,
VTDWORD dwsi ze,
VTDWORD * pCount);

Parameters

* hFile: Identifies the file where the data is to be written. Should be cast into a
pointer to your data structure (MYFILE in the preceding discussion).

» pData: Points to the buffer from which the bytes should be written. It must be at
least dwSize bytes big.

e dwSize: Number of bytes to write.
* pCount: Points to the number of bytes actually written by the function. This value is
only valid if the return value is IOERR_OK.

Return Values

* |OERR_OK: Write was successful, pCount contains the number of bytes written.

¢ |OERR_UNKNOWN: Write failed for some reason.

8.5 10Seek

ORACLE

Moves the current file position.

Prototype

| OERR | OSeek(
H OFILE hFile,
VTWORD WFr om
VTLONG | OFfset);

Parameters

» hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

* wFrom: One of the following values:

— IOSEEK_TOP: Move the file position I0ffset bytes from the top (beginning) of

the file.

— IOSEEK_BOTTOM: Move the file position |0ffset bytes from the bottom (end)
of the file.

— IOSEEK_CURRENT: Move the file position 10ffset bytes from the current file
position.

» |Offset: Number of bytes to move the file pointer. A positive value moves the file
pointer forward in the file and a negative value moves it backward. If a requested
seek value would move the file pointer before the beginning of the file, the file
pointer should remain unchanged and IOERR_UNKNOWN should be returned.
Seeking past EOF is allowed. In that case IOERR_OK should be returned. IOTell

8-4

8.6 10Tell

Chapter 8
|OTell

would return the requested seek position and IORead should return IOERR_EOF
and 0 bytes read.

Return Values

* |OERR_OK: Seek was successful.
* |OERR_UNKNOWN: Seek failed for some reason.

Returns the current file position.

Prototype
| CERR | OTel | (
H OFI LE hFi | e,
VTDWORD * pOfset);
Parameters

» hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

» pOffset: Points to the current file position returned by the function.

Return Values

* |OERR_OK: Tell was successful.
* IOERR_UNKNOWN: Tell failed for some reason.

8.7 I0GetInfo

ORACLE

Returns information about an open file.

Prototype

[CERR I OGet I nf o
H OFI LE hFile,
VTDWORD dw nf ol d,
VTVO D * plnfo);

Parameters

» hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the previous discussion).

» dwinfold: One of the following values:

— |OGETINFO_FILENAME: pInfo points to a string that should be filled with the
base file name (no path) of the open file (for example TEST.DOC). If you do
not know the file name, return IOERR_UNKNOWN. Certain file types (such as
DataEase) must know the original file name in order to open secondary files
required to correctly view the original file. If you return IOERR_UNKNOWN,
these file types will not convert. See the description of
IOGETINFO_GENSECONDARY in IOGENSECONDARY and
IOGENSECONDARYW Structures.

8-5

ORACLE

Chapter 8
|0GetInfo

IOGETINFO_PATHNAME: pinfo points to a string that should be filled with the
fully qualified path name (including the file name) of the open file. For
example, C:\MYDIR\TEST.DOC. If you do not know the path name, return
IOERR_UNKNOWN.

IOGETINFO_PATHTYPE: pinfo points to a DWORD that should be filled with
the IOTYPE of the path returned by IOGETINFO_PATHNAME. For instance, if
you return a DOS path name in the Unicode character set, you should return
IOTYPE_UNICODEPATH.

IOGETINFO_ISOLE2STORAGE: Must return IOERR_FALSE. pinfo is not
used.

IOGETINFO_GENSECONDARY: pInfo points to a structure of type
IOGENSECONDARY. Some file types require supporting files to be opened.
These supporting files may contain formatting information or extra data.
Correct handling of IOGETINFO_GENSECONDARY is critical to the operation
of the Outside In technology. For a list of these file types, see File Types That
Cause IOGETINFO_GENSECONDARY.

Because the developer is in total control of the 10 for the primary file, the
technology does not know how to generate a path to these secondary files or
even if the secondary files are accessible through the regular file system. The
IOGETINFO_GENSECONDARY call gives the developer a chance to resolve
this problem by generating a new 10 specification for the secondary file in
guestion. The developer gets just the base file name (often embedded in the
original document or generated from the primary file's name) of the secondary
file.

The developer may either use one of the standard Outside In 10 types or
totally redirect the 10 for the secondary file, as well. For more details, see
IOGENSECONDARY and IOGENSECONDARYW Structures.

IOGETINFO_64BITIO: For redirected I/O that wishes to use 64-bit seeki/tell
functions, your IOGetInfo function must respond IOERR_TRUE to this
dwinfold. In addition, the pSeek64/pTell64 items in the baseio structure must
be valid pointers to the proper function types.

IOGETINFO_DPATHNAME: pinfo points to a structure of type DPATHNAME,
which should be filled with the fully qualified path name (including the file
name) of the open file, for example, C:\MYDIR\TEST.DOC. If you do not know
the path name, return IOERR_UNKNOWN. The dwPathLen element contains
the size of the buffer pointed to by the pPath element. If the buffer size is too
small to contain the full path, modify dwPathLen to be the correct size of the
buffer required to hold the path name in its IOTYPE character width including
the NULL terminator and return IOERR_INSUFFICIENTBUFFER.

The following is a C data structure defined in SCCIO.H:

typedef struct DPATHNAMEt ag

{
VIDWORD dwPat hLen;

VIVO D *pPath;
} DPATHNAME, * PDPATHNAME;

Parameters

dwPathLen: Will be set to the number of bytes in the buffer pointed to by
pPath. If the size of the buffer is insufficient, reset this element to the number
of bytes required and return IOERR_INSUFFICIENTBUFFER.

8-6

ORACLE

Chapter 8
|OGetlnfo

pPath: Points to the buffer to be filled with the path name.

IOGETINFO_GENSECONDARYDP: pinfo points to a structure of type
IOGENSECONDARYDP. The dwSpecLen element contains the size of the
buffer pointed to by the pSpec element. If the buffer size is too small to contain
the spec, modify dwSpecLen to be the correct size of the buffer required to
hold the path in its IOTYPE character width including the NULL terminator and
return IOERR_INSUFFICIENTBUFFER.

The following is a C data structure defined in SCCIO.H:

typedef struct | OGENSECONDARYDPt ag
{

VTDWORD dwsi ze;
VvIva D * pFi | eNane;
VTDWORD dwSpecType;
VIVA D * pSpec;
VTDWORD dwSpecLen;
VTDWORD dwOpenFl ags;

} | OGENSECONDARYDP, * Pl OGENSECONDARYDP;

Parameters
dwSize: Will be set to sizeof IOGENSECONDARYDP)

pFileName: A pointer to a string representing the file name of the secondary
file that the technology requires. It is usually a name stored in the primary file
(such as MYSTYLE.STY for a Word for DOS file) or a name generated from
the primary file name. The primary file for a DataEase database has a .dba
extension. The secondary name is the same file name but with a .dbm
extension.

dwSpecType: The developer must fill this with the IOSPEC for the secondary
file.

pSpec: On entry, this pointer points to an array of bytes or may be NULL (see
dwSpecLen below). If the dwSpecType is set a regular IOTYPE such as
IOTYPE_ANSIPATH, the developer may fill this array with the path name or
structure required for that IOTYPE. If the developer is redirecting access to the
secondary file, then dwSpecType will be IOTYPE_REDIRECT and the
developer should replace pSpec with a pointer to a developer-defined
structure that begins with the BASEIO structure (see Using Redirected 10).

The file is supposed to be opened by the OEM's redirected |10 code by the
time they return the BASEIO struct. This is because the pOpen routine in the
BASEIO struct is supposed to be NULL.

dwSpecLen: On entry, this is set to the size of the pSpec buffer. If the size of
the buffer is insufficient, replace the value with the number of bytes required
and return IOERR_INSUFFICIENTBUFFER.

dwOpenFlags: Set by the technology. A set of bit flags describing how the
secondary file should be opened. Multiple flags may be used by bitwise OR-
ing them together. The following flags are currently used:

- IOOPEN_READ: The secondary file should be opened for read.

- IOOPEN_WRITE: The secondary file should be opened for write. If the
specified file already exists, its contents are erased when this flag is set.

- IOOPEN_CREATE: The secondary file should be created (if it does not
already exist) and opened for write.

8-7

Chapter 8
|0GetInfo

Any other value should return IOERR_BADINFOID.

* plinfo: The size of the pinfo buffer depends on the dwinfold selected. For
IOGETINFO_FILENAME and IOGETINFO_PATHNAME, the buffer is of size
MAX_PATH characters (each character is either one byte or two, depending on
PATHTYPE). The IOGETINFO_PATHTYPE buffer is the size of a VTDWORD.

Return Values

* |OERR_OK: GetInfo was successful.

* IOERR_TRUE: Affirmative response from a true or false Getinfo.

* IOERR_FALSE: Negative response from a true or false Getinfo.

* |OERR_BADINFOID: dwinfold can not be handled by this file type.
* |OERR_INVALIDSPEC: The file spec is bad for this type.

* |OERR_UNKNOWN: Getinfo failed for some other reason.

8.7.1 IOGENSECONDARY and IOGENSECONDARYW Structures

ORACLE

These structures are passed to the developer through the I0GetInfo function. They
allow the developer to tell the technology where a secondary file, needed to view the
primary file, is located.

The SpecType of the original file determines which of these two structures is used. If
the SpecType is IOTYPE_UNICODEPATH, IOGENSECONDARYW is used.
pFileName will point to a Unicode string terminated with a NULL WORD. For all other
SpecTypes, IOGENSECONDARY is used and pFileName will point to a string
terminated with a NULL BYTE.

The following is a C data structure defined in SCCIO.H:

typedef struct
{
VTDWORD dwsSi ze;
VTLPBYTE pFi | eNane;
VTDWORD dwSpecType;
VTLPVO D pSpec;
VTDWORD dwOpenFl ags
} | OGENSECONDARY, * Pl OGENSECONDARY;

typedef struct

{
VTDWORD dwsSi ze;

VTLPWORD pFi | eNane;
VTDWORD dwSpecType;
VTLPVO D pSpec;
VTDWORD dwOpenFl ags
} | OGENSECONDARYW * Pl OGENSECONDARYW

* dwSize: Will be set to sizeof IOGENSECONDARY) or
sizeof IOGENSECONDARYW) (both of these values are the same).

» pFileName: A pointer to a string representing the file name of the secondary file
that the technology requires. It will generally be a name that is stored in the
primary file somewhere (such as MYSTYLE.STY for a Word for DOS file) or a
name generated from the primary file name (the primary file for a DataEase

8-8

Chapter 8
|OGetlnfo

database will always have a .dba extension, the secondary name would be the
same file name but with a .dbm extension).

dwSpecType: The developer must fill this with the IOSPEC for the secondary file.

pSpec: On entry, this pointer points to an array of 1024 bytes. If the dwSpecType
is set a regular IOTYPE such as IOTYPE_ANSIPATH, the developer may fill this
array with the path name or structure required for that IOTYPE. If the developer is
redirecting access to the secondary file, then dwSpecType will be
IOTYPE_REDIRECT and the developer should replace pSpec with a pointer to a
developer-defined structure that begins with the BASEIO structure (see Using
Redirected 10).

Note the file is supposed to be opened by the OEM's redirected 10 code by the
time they return the BASEIO struct. This is because the pOpen routine in the
BASEIO struct is supposed to be NULL.

dwOpenFlags: Set by the technology. A set of bit flags describing how the
secondary file should be opened. Multiple flags may be used by bitwise OR-ing
them together. The following flags are currently used:

— IOOPEN_READ: The secondary file should be opened for read.

— IOOPEN_WRITE: The secondary file should be opened for write. Please note
that if the specified file already exists, it's contents will be erased when this
flag is set.

— IOOPEN_CREATE: The secondary file should be created (if it does not
already exist) and opened for write.

8.7.2 File Types That Cause IOGETINFO_GENSECONDARY

The following details concern specific file types.

ORACLE

Microsoft Word for DOS Versions 4, 5 and 6: Used to open and read the style
sheet file associated with the document. The filter will successfully degrade if the
style sheet is not present.

Harvard Graphics DOS 3.x: Used to open and read the individual slides within
ScreenShow and palette files. Files with the extension .ch3 are individual graphics
or slides that can be opened using no secondary files. Files with the

extension .sy3 are ScreenShows that reference a list of .ch3 files via the
secondary file mechanism. There is also an optional palette file that can be
referenced from a .ch3 file, but the filter will successfully degrade if the palette file
is not present.

R:Base: Used to open and read required schema file. The R:Base data files are
named xxxx2.rbf but the data is useless without the schema file named xxxx1.rbf.
There is also a xxxx3.rbf file associated with each database, but it is not used.

Paradox 4.0 and Above: Used to open and read memo field data file. Paradox
uses a separate file for all memo field data larger than 32 bytes.

DataEase: Used to open and read the data file. DataEase databases include
a .dba file that contains the schema (the file that the technology can identify as
DataEase) and a .dbm file that contains the actual data.

8-9

Chapter 8
IOSEEK64PROC / IOTELL64PROC

8.8 IOSEEK64PROC / IOTELL64PROC

These functions are for seek/tell using 64-bit offsets. These functions are not used by
default. Rather, they are used if the IOGETINFO_64BITIO message returns
IOERR_TRUE. This is so redirected 1/O using strictly 32-bit I/O is unaffected.

8.8.1 10Seeko64

Moves the current file position.

Prototype

| OERR | OSeek64(
H OFI LE hFil e,
VTWORD wFr om
VTOFF_T of fset);

Parameters

The parameter information is the same as for I0Seek(). However, the size of the
VTOFF_T offset for IOSeek64() is 64-bit unlike the 32-bit offset in 10Seek().

8.8.2 10Tell64

ORACLE

Returns the current file position.

Prototype

| CERR | OTel | 64(
H OFI LE hFi | e,
VTOFF_T * pOffset);

Parameters

The parameter information is the same as for IOTell(). The only change is the use of a
pointer to a 64-bit parameter for returning the offset.

8-10

Implementation Issues

This chapter discusses potential issues in using Content Access.

9.1 Running in 24x7 Environments

ORACLE

To ensure robust 24x7 performance in server applications embedding this product, it is
strongly recommended that the technology be run in a process separate from the
server's primary process.

The file filtering technology underlying the software represents almost a quarter of a
million lines of code. This code is expected to robustly deal with any stream of bytes,
of any length (any file), in all cases. Oracle has dedicated, and continues to dedicate,
significant effort into making this technology extremely robust. However, in real world
situations, expect that some small number of malformed files may force the filters into
unstable states. This generally results in either a memory exception (which can be
trapped and recovered from gracefully), infinite loop or a wild pointer that causes the
filter to write into memory that is part of the same process but does not belong to the
filter. In the latter situation, this wild pointer condition cannot be trapped.

On the desktop this is not a significant problem since the number of files being dealt
with is relatively small. In a 24x7 server environment, however, a wild pointer can be
extremely disruptive to the server process and produce serious problems. The best
solution for dealing with this problem is to run any application that reads complex file
formats, including Content Access, in a separate process. This solution protects the
application from the susceptibility of filtering technology to the unknown quality of input
files.

It must be stressed that files that lead to wild pointers or infinite loops occur very
infrequently, usually as a result of a third-party conversion process or beta versions of
applications. Oracle is committed to addressing these issues and to updating and
expanding its testing tools and corpus of documents to proactively minimize this
garbage in-garbage out problem.

9-1

Sample Applications

This chapter describes sample applications shipped with the Content Access SDK.
Each of the sample applications included in this SDK is designed to highlight a specific
aspect of the technology's functionality. We ship built versions of these sample
applications. The compiled executables should be in the root directory where the
product is installed.

This chapter includes the following sections:

e Building the Samples on a Windows System
e Building the Samples on a UNIX System

e An Overview of the Sample Applications

10.1 Building the Samples on a Windows System

Microsoft Visual Studio project files are provided for building each of the sample
applications. For 32-bit versions of Windows, versions of the project files are provided
for Visual Studio 2013 (.dsp files) and Visual Studio 2013 (.vcproj files).

¢ Note:

Because .vcproj files may not pick up the right compiler on their own, you
need to make sure that you are building with the Win64 configuration in
Visual Studio 2013. For 64-bit versions of Windows, only the Visual Studio
2013 versions are available.

The project files for the sample applications can be found in the \sdk\samplecode\win
subdirectory of the Outside In SDK.

10.2 Building the Samples on a UNIX System

ORACLE

See the following sections for specific information about building the sample
applications on your flavor of UNIX:

e HP-UX Compiling and Linking

* IBM AIX Compiling and Linking

e Linux Compiling and Linking

* Oracle Solaris Compiling and Linking

* FreeBSD Compiling and Linking

10-1

Chapter 10
An Overview of the Sample Applications

10.3 An QOverview of the Sample Applications

This section describes the following sample applications.

Note:

Please note that not all of the sample applications are provided for both the
Windows and UNIX platforms. See the heading of each application's
subsection for clarification.

10.3.1 batch_process ca

batch_process_ca demonstrates running Content Access in a separate process on
multiple input files. It also allows the timing of each run.

The application is executed from the command line and takes several possible
parameters:

batch_process_ca -f inputfile -o outputfile or [-d inputdir -0 outputdir]
[-i iterations] [-q[2]] [-D]

» -f specifies the name of a single input file.

» -d specifies the name of an input directory of files.

» -0 specifies the name of an output file if -f is being used, or the name of an output
directory if -d is being used.

* -iis an optional parameter specifying the number of iterations to perform.
* -g and -g2 diminish the output to the screen.

* -bincreases the amount of content in the output including processing tags and
sub-documents.

10.3.2 casample

An example of a typical usage of the Outside In Content Access API is casample.
Because this is intended as a simple template or reference for common Content
Access usage, it creates only rudimentary output. However, it does initialize, exercise
and cleanup Content Access output. Content Access requires the usage of the
Outside In Data Access module. Therefore, this application also demonstrates usage
of a portion of Data Access.

The application is executed from the command line and has one required parameter,
the name of the input file. It will optionally take two other parameters: '-u' and an output
file name.

casanple input_file [-u outputfile]

10.3.3 extract_archive

extract_archive demonstrates using the DATree API to extract all nodes in an archive.

ORACLE 10-2

Chapter 10
An Overview of the Sample Applications

The application is executed from the command line and takes two parameters, the
name of the input file and the name of an output directory for the extracted files:

extract _archive input_file output_directory

10.3.4 extract_object

extract_object demonstrates using Content Access to parse an input file and then
using the DAObject API to extract all embedded objects.

The application is executed from the command line and takes two parameters, the
name of the input file and the name of an output directory for the extracted objects:

extract _object input_file output_directory

10.3.5 memoryio

memoryio demonstrates how to use the redirected I/O and Content Access APIs to
process an in-memory file.

The application is executed from the command line and takes only one parameter, the
name of the input file:

menoryi o input_file

10.3.6 parsepst

parsepst demonstrates how to parse email messages from a PST file using the CA
API. It searches for messages received between two hard coded dates.

The application is executed from the command line and takes only one parameter, the
name of the input file:

parsepst input _file

10.3.7 tademo (Windows Only)

The tademo sample application included with this product provides a simple
demonstration of text access. The text from a file is read a block at a time and
displayed in the tademo window. The TAReadFirst and TAReadNext functions are
directly tied to menu options, and the block size may be set by the user. An option is
also provided to save the text to a file.

10.3.8 taredir (UNIX Only)

ORACLE

This sample provides a means of using the API presented in this guide without the
need for Motif libraries. All extracted text is output to the standard output device, or
can be redirected to a file or another device.

The application is executed from the command line and takes only one parameter, the
name of the input file:

taredir input_file

10-3

Chapter 10
An Overview of the Sample Applications

10.3.9 textdemo (UNIX Only)

The sample code in the textdemo files shows how to use the API presented in this
guide. This application is essentially identical to the Windows-only application tademo,
which is discussed at length in tademo (Windows Only).

ORACLE 10-4

Content Access Options

Options are parameters affecting the behavior of the Outside In Technology. These
options are available to the developer when using Content Access. They are set using
the DASetOption call. It is recommended that developers familiarize themselves with
all of the options available.

Options may be Local, in which case they only affect the handle for which they are set,
or Global, in which case they automatically affect all handles associated with the hDoc.

While default values are provided, users are encouraged to set all options for a
number of reasons. In some cases, the default values were chosen to provide
backwards compatibility. In other cases, the default values were chosen arbitrarily
from a range of possibilities.

The following types of options are covered:
* Character Mapping

* Input Handling

e Compression

e Content Access Flags

* File System

A.1 Character Mapping

This section discusses character mapping.

A.1.1 SCCOPT_DEFAULTINPUTCHARSET

ORACLE

This option is used in cases where Outside In cannot determine the character set used
to encode the text of an input file. When all other means of determining the file's
character set are exhausted, Outside In will assume that an input document is
encoded in the character set specified by this option. This is most often used when
reading plain-text files, but may also be used when reading HTML or PDF files. The
possible character sets are listed in charsets.h.

When "extended test for text" is enabled (see SCCOPT_FIFLAGS), this option will still
apply to plain-text input files that are not identified as EBCDIC or Unicode.

This option supersedes the SCCOPT_FALLBACKFORMAT option for selecting the
character set assumed for plain-text files. For backwards compatibility, use of
deprecated character-set -related values is still currently supported for
SCCOPT_FALLBACKFORMAT, though internally such values will be translated into
equivalent values for the SCCOPT_DEFAULTINPUTCHARSET. As a result, if an
application were to set both options, the last such value set for either option will be the
value that takes effect.

A-1

Appendix A
Character Mapping

Handle Types
NULL, VTHDOC

Scope
Global
Data Type
VTDWORD
Default

e CS_SYSTEMDEFAULT: Query the operating system.

Data

The data types are listed in charsets.h.

A.1.2 SCCOPT_OUTPUTCHARACTERSET

ORACLE

Any text returned by Content Access or Text Access will be in the specified character
set.

Handle Types
VTHDOC, VTHCONTENT, VTHTEXT

Scope

Local

Data Type
VTDWORD

Default

If the option is not set, Content Access will use SO_ANSI1252 on all non-Windows
platforms. The current ANSI code page will be retrieved on Windows using GetACP()
with the result being mapped to match an Outside In Technology character set.

Data

One of the following values:

Value Description
CS_DOS_437 uU.S.

CS _DOS_737 Greek
CS_DOS_850 Latin-1
CS_DOS_852 Latin-2
CS_DOS_855 Cyrillic
CS_DOS_857 Turkish

A-2

Appendix A
Character Mapping

Value Description

CS_DOS _860 Portuguese
CS_DOS_863 French Canada
CS_DOS_865 Denmark, Norway-DAT
CS_DOS_866 Cyrillic

CS _DOS 869 Greece
CS_WINDOWS_874 Thailand
CS_WINDOWS_932 Japanese
CS_WINDOWS_936 Chinese GB

CS_WINDOWS_949
CS_WINDOWS_950
CS_WINDOWS_1250
CS_WINDOWS_1251
CS_WINDOWS_1252
CS_WINDOWS_1253
CS_WINDOWS_1254
CS_WINDOWS_1255
CS_WINDOWS_1256
CS_WINDOWS_1257
CS_UNICODE
CS_1S08859_1
CS_1S08859_2
CS_1S08859_3
CS_1S08859 4
CS_1S08859 5
CS_1S08859_6
CS_1S08859_7
CS_1S08859_8
CS_1S08859 9

Korea (Wansung)

Hong Kong, Taiwan

Windows Latin 2 (Central Europe)
Windows Cyrillic (Slavic)
Windows Latin 1 (ANSI)
Windows Greek

Windows Latin 5 (Turkish)
Windows Hebrew

Windows Arabic

Windows Baltic

Unicode

Latin-1 - this is a subset of Windows 1252
Latin-2

Latin-3

Latin-4

Cyrillic

Arabic

Greek

Hebrew

Turkish

A.1.3 SCCOPT_UNMAPPABLECHAR

This option selects the character used when a character cannot be found in the output
character set. This option takes the Unicode value for the replacement character. It is
left to the user to make sure that the selected replacement character is available in the

ORACLE

output character set.

Handle Types
VTHDOC
Scope

Local

A-3

Appendix A
Input Handling

Data Type
VTWORD

Data

The Unicode value for the character to use.

Default

e 0x002a = "*"

A.2 Input Handling

This section discusses input handling.

A.2.1 SCCOPT_EXTRACTXMPMETADATA

Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
the XMP feature, which does not interpret the XMP metadata, but passes it straight
through without any interpretation. This option is independent of the other two
"metadata" options. This option will be ignored if the
SCCOPT_PARSEXMPMETADATA option is enabled.

e SCCEX_IND_SUPPRESSPROPERTIES will not affect XMP, so if you turn XMP
on, but also set SuppressProperties, you will still get the XMP.

e SCCEX_METADATAONLY will not guarantee that XMP is produced.

Handle Types
VTHDOC

Scope

Local (was Global prior to release 8.2.2)

Data Type
VTBOOL

Data

e TRUE: This setting enables XMP extraction.
e FALSE: This setting disables XMP extraction.

Default
« FALSE

A.2.2 SCCOPT_FALLBACKFORMAT

This option controls how files are handled when their specific application type cannot
be determined. This normally affects all plain-text files, because plain-text files are

ORACLE A-4

Appendix A
Input Handling

generally identified by process of elimination, for example, when a file isn't identified as
having been created by a known application, it is treated as a plain-text file.

A number of values that were formerly allowed for this option have been deprecated.
Specifically, the values that selected specific plain-text character sets are no longer to
be used. For such functionality, applications should instead use the option
SCCOPT_DEFAULTINPUTCHARSET.

Handle Types
NULL, VTHDOC

Scope

Global

Data Type
VTDWORD

Data

The high VTWORD of this value is reserved and should be set to 0, and the low
VTWORD must have one of the following values:

e FI_TEXT: Unidentified file types will be treated as text files.

* FI_NONE: Outside In will not attempt to process files whose type cannot be
identified. This will include text files. When this option is selected, an attempt to
process a file of unidentified type will cause Outside In to return an error value of
DAERR_FILTERNOTAVAIL (or SCCERR_NOFILTER).

Default
e FLTEXT

A.2.3 SCCOPT_FIFLAGS

ORACLE

This option affects how an input file's internal format (application type) is identified
when the file is first opened by the Outside In technology. When the extended test flag
is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC, or
Unicode, the file's contents will be interpreted as such by the viewing process.

The extended test is optional because it requires extra processing and cannot
guarantee complete accuracy (which would require the inspection of every single byte
in a file to eliminate false positives.)

Handle Types
NULL, VTHDOC

Scope

Global

Data Type
VTDWORD

A-5

Appendix A
Input Handling

Data
One of the following values:

e SCCUT_FI_NORMAL: This is the default value. When this is set, standard file
identification behavior occurs.

e SCCUT_FI_EXTENDEDTEST: If set, the File Identification code will run an
extended test on all files that are not identified.

Default

* SCCUT_FI_NORMAL

A.2.4 SCCOPT_SYSTEMFLAGS

This option controls a number of miscellaneous interactions between the developer
and the Outside In Technology.

Handle Type
VTHDOC

Scope

Local

Data Type
VTDWORD

Data

e SCCVW_SYSTEM_UNICODE: This flag causes the strings in
SCCDATREENODE to be returned in Unicode.

Default
0

A.2.5 SCCOPT_IGNORE_PASSWORD

ORACLE

This option can disable the password verification of files where the contents can be
processed without validation of the password. If this option is not set, the filter should
prompt for a password if it handles password-protected files.

As of Release 8.4.0, only the PST and MDB Filters support this option.

Scope

Global

Data Type
VTBOOL

A-6

Appendix A
Input Handling

Data

* TRUE: Ignore validation of the password
* FALSE: Prompt for the password
Default

FALSE

A.2.6 SCCOPT_LOTUSNOTESDIRECTORY

This option allows the developer to specify the location of a Lotus Notes or Domino
installation for use by the NSF filter. A valid Lotus installation directory must contain
the file nnotes.dll.

" Note:

Please see section 2.1.1 for NSF support on Win x86-32 or Win x86-64 or
section 3.1.1 for NSF support on Linux x86-32 or Solaris Sparc 32.

Handle Types
NULL

Scope
Global

Data Type
VTLPBYTE

Data

A path to the Lotus Notes directory.

Default

If this option isn't set, then OIT will first attempt to load the Lotus library according to
the operating system's PATH environment variable, and then attempt to find and load
the Lotus library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

A.2.7 SCCOPT_PARSEXMPMETADATA

ORACLE

Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
parsing of the XMP data into normal OIT document properties. Enabling this option
may cause the loss of some regular data in premium graphics filters (such as
Postscript), but won't affect most formats (such as PDF).

Handle Types
VTHDOC

A-7

Appendix A
Input Handling

Scope

Local

Data Type
VTBOOL

Data

* TRUE: This setting enables parsing XMP.
* FALSE: This setting disables parsing XMP.
Default

FALSE

A.2.8 SCCOPT_PDF_FILTER_REORDER_BIDI

This option controls whether or not the PDF filter will attempt to reorder bidirectional
text runs so that the output is in standard logical order as used by the Unicode 2.0 and
later specification. This additional processing will result in slower filter performance
according to the amount of bidirectional data in the file.

Handle Types
VTHDOC, NULL

Scope
Global
Data Type
VTDWORD

Data

* SCCUT_FILTER_STANDARD_BIDI
« SCCUT_FILTER_REORDERED_BIDI

Default
SCCUT_FILTER_STANDARD_BIDI

A.2.9 SCCOPT_PROCESS_OLE_EMBEDDINGS

Microsoft Powerpoint versions from 1997 through 2003 had the capability to embed
OLE documents in the Powerpoint files. This option controls which embeddings are to
be processed as native (OLE) documents and which are processed using the alternate
graphic.

ORACLE A-8

Appendix A
Input Handling

< Note:

The Microsoft Powerpoint application sometimes does embed known
Microsoft OLE embeddings (such as Visio, Project) as an "Unknown" type.
To process these embeddings, the SCCOPT_PROCESS_OLEEMBED_ALL
option is required. Post Office-2003 products such as Office 2007
embeddings also fall into this category.

Handle Types
VTHDOC, NULL

Scope

Global

Data Type
VTWORD

Data

e SCCOPT_PROCESS_OLEEMBED_ALL : Process all embeddings in the file

e SCCOPT_PROCESS_OLEEMBED_NONE : Process none of the embeddings in
the file

e SCCOPT_PROCESS_OLEEMBED_STANDARD (default) : Process embeddings
that are known standard embeddings. These include Office 2003 versions of
Word, Excel, Visio etc.

Default
SCCOPT_PROCESS OLEEMBED_STANDARD

A.2.10 SCCOPT_TIMEZONE

This option allows the user to define an offset to GMT that will be applied during date
formatting, allowing date values to be displayed in a selectable time zone. This option
affects the formatting of numbers that have been defined as date values. This option

will not affect dates that are stored as text.

" Note:

Daylight savings is not supported. The sent time in msgq files when viewed in
Outlook can be an hour different from the time sent when an image of the
msg file is created.

Handle Types
NULL, VTHDOC

ORACLE A-9

Appendix A
Input Handling

Scope

Global

Data Type
VTLONG

Data

Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query
the operating system for the time zone set on the machine, specify
SCC_TIMEZONE_USENATIVE.

Default

e 0: GMT time

A.2.11 SCCOPT_HTML_COND_COMMENT MODE

ORACLE

Some HTML includes a special type of comment that will be read by particular
versions of browsers or other products. This option allows you to control which of
those comments are included in the output.

Handle Type
VTHDOC

Scope

Local

Data Type
VTDWORD

Data

« One or more of the following values OR-ed together:

e HTML_COND_COMMENT_NONE: Don't output any conditional comments. Note:
setting any other flag will negate this.

e HTML_COND_COMMENT _IE5: include the IE 5 comments

e HTML_COND_COMMENT _IEG6: include the IE 6 comments

e HTML_COND_COMMENT _IE7: include the IE 7 comments

e HTML_COND_COMMENT _IES8: include the IE 8 comments

e HTML_COND_COMMENT _IE9: include the IE 9 comments

e HTML_COND_COMMENT_ALL: include all conditional comments including the
versions listed above and any other versions that might be in the HTML.

Default
HTML_COND_COMMENT_NONE

A-10

Appendix A
Input Handling

A.2.12 SCCOPT_PDF_FILTER_DROPHYPHENS

This option controls whether or not the PDF filter will drop hyphens at the end of a line.
Since most PDF-generating tools create them as generic dashes, it's impossible for
Outside In to know if the hyphen is a syllable hyphen or part of a hyphenated word.
When this option is set to TRUE, all hyphens at the end of lines will be dropped from
the extracted text.

Note:

When this option is TRUE, the character counts for the extracted text may
not match the counts used for rendering where the hyphens are required for
rendering. This will affect annotations in rendering APIs.

Handle Types
VTHDOC

Scope
Global

Data Type
VTBOOL

Data

e TRUE: This setting drops hyphens from the end of all lines.
e FALSE: This setting retains hyphens at the end of all lines.

Default
FALSE

A.2.13 SCCOPT_ARCFULLPATH

ORACLE

In the Viewer and rendering products, this option tells the archive display engine to
show the full path to a node in the szNode field in response to a
SCCVW_GETTREENODE message. It also causes the name fields in
DAGetTreeRecord and DAGetObjectinfo to contain the full path instead of just the
archive node name.

Data Type
VTBOOL

Data

e TRUE: Display the full path.
e FALSE: Do not display the path.

A-11

Appendix A
Input Handling

Default
FALSE

A.2.14 SCCOPT_NULLREPLACECHAR

This option specifies a two-byte Unicode character that will be used to replace null
characters if null path separators are being used. This option defaults to '/ and is valid
for SearchML 3.x, SearchHTML, SearchText, Content Access and the DA APIs.

" Note:
This is identical to SCCOPT_XML_NULLREPLACECHAR.

Handle Types
VTHDOC

Scope

Local

Data Type
VTWORD

Data
A two-byte Unicode character that will be used to replace null characters if null path

separators are being used.

Default
0x002f ="/"

A.2.15 SCCOPT_EX PERFORMANCEMODE

ORACLE

When possible, skip the processing of some or all style information. This should result
in better performance, but certain output will no longer be available.

* SCCEX_PERFORMANCE_TEXTONLY - When this flag is set, no style
information is processed in optimized filters. The following output won't be
available even if they have been requested: character attributes, paragraph
attributes, font names, and PDF Map Problem warnings. Not all input filters are
optimized to work with this performance mode, but Microsoft Office, PDF, RTF,
MSG, Mime, and HTML are included in the optimized list. If this flag is set and an
input document for a non-optimized filter is encountered, this option will default
back to SCCEX_PERFORMANCE_TEXTANDFONTS. Characters in symbol fonts
use the font name as part of the character mapping process. Since the font name
is not tracked, there may be minor mapping differences in these characters, but
character counts should still be accurate.

A-12

Appendix A
Input Handling

* SCCEX_PERFORMANCE_TEXTANDFONTS - When this flag is set, minimal style
information is tracked including character sets and font names. That information
corrects the mapping differences in symbol characters, but doesn't give as much
performance benefit as SCCEX_PERFORMANCE_TEXTONLY. This flag also
works with all input filters.

Handle Types
VTHDOC

Scope

Local

Data Type
VTDWORD

Data
One of the following:

e SCCEX_PERFORMANCE_NORMAL - Process the style information normally.

e SCCEX_PERFORMANCE_TEXTANDFONTS - Process only the font and
character set information within a style.

e SCCEX_PERFORMANCE_TEXTONLY - Skip processing all style information.

Default
SCCEX_PERFORMANCE_NORMAL

Note:

This option is only supported in Search Export and Content Access.
Attempting to use it with other products will lead to unpredictable results.

A.2.16 SCCOPT_GENERATEEXCELREVISIONS

ORACLE

This option enables you to extract tracked changes from Excel. Extracted content shall
include location (worksheet, row, column), author, date, and time. Please note that
Excel has an option to display the changes inline or on a different sheet. Either case
should be extracted along with where the comments are displayed in the Excel file
(inline or separate sheet).

Handle Types
VTHDOC

Scope

Global

A-13

Appendix A
Input Handling

Data Type
VTBOOL

Data

* TRUE: The setting enables generating Excel revision data

* FALSE: This setting disables generating Excel revision data
Default

FALSE

A.2.17 SCCOPT PDF FILTER_MAX_EMBEDDED OBJECTS

PDF files sometimes have a very large number of embedded objects. This option
allows the user to limit the number of embedded objects that are produced in a PDF
file. Setting this option to O produces an unlimited number of embedded objects.

Handle Types
VTHDOC
Scope

Local

Data Type
VTDWORD

Data

The maximum number of embedded objects to produce in PDF output.

Default
0

A.2.18 SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS

ORACLE

PDF files sometimes have a very large number of vector paths. This option allows the
user to limit the number of vector paths that are produced in a PDF file. Setting this
option to 0 produces an unlimited amount of vector paths.

Handle Types
VTHDOC

Scope

Local

Data Type
VTDWORD

A-14

Appendix A
Compression

Data

The maximum number of vector paths to produce in PDF output.

Default
0

A.2.19 SCCOPT PDF FILTER_WORD DELIM_FRACTION

This option controls the spacing threshold in PDF input documents. Most PDF
documents do not have an explicit character denoting a word break. The PDF filter
calculates the distance between two characters to determine if they are part of the
same word or if there should be a word break inserted. The space between characters
is compared to the length of the space character in the current font multiplied by this
fraction. If the space between characters is larger, then a word break character is
inserted into the text stream. Otherwise, the characters are considered to be part of
the same word and no word break is inserted.

Handle Types
NULL, VTHDOC

Scope
Local

Data Type
VTFLOAT

Data

A fraction representing the percentage of the space character used to trigger a word
break. Valid values are O<value<=2.

Default

0.85

A.3 Compression

This section discusses compression.

A.3.1 SCCOPT_FILTERJPG

ORACLE

This option can disable access to any files using JPEG compression, such as JPG
graphic files or TIFF files using JPEG compression, or files with embedded JPEG
graphics. Attempts to read or write such files when this option is enabled will fail and
return the error SCCERR_UNSUPPORTEDCOMPRESSION if the entire file is JPEG
compressed, and grey boxes for embedded JPEG-compressed graphics.

The following is a list of file types affected when this option is disabled:

« JPG files

A-15

Appendix A
Compression

* Postscript files containing JPG images
* PDFs containing JPEG images

Note that the setting for this option overrides the requested output graphic format
when there is a conflict.

Handle Types
VTHDOC, HEXPORT

Scope

Global

Data Type
VTDWORD

Data

e SCCVW_FILTER _JPG_ENABLED: Allow access to files that use JPEG
compression

e SCCVW_FILTER JPG_DISABLED: Do not allow access to files that use JPEG
compression

Default

SCCVW_FILTER_JPG_ENABLED

A.3.2 SCCOPT_FILTERLZW

ORACLE

This option can disable access to any files using Lempel-Ziv-Welch (LZW)
compression, such as .GIF files, .ZIP files or self-extracting archive (.EXE) files
containing "shrunk" files. Attempts to read such files when this option is enabled will
fail and return the error SCCERR_UNSUPPORTEDCOMPRESSION. Unlike many
other options, this option must be set programmatically, as it is not stored or read on
startup.

The following is a list of file types affected when this option is disabled:

* GIFfiles

e TIF files using LZW compression

* PDFfiles that use internal LZW compression

* TAZ and TAR archives containing files that are identified as FI_UNIXCOMP
* ZIP and self-extracting archive (.EXE) files containing "shrunk" files

» Postscript files using LZW compression

Although this option can disable access to files in ZIP or EXE archives stored using
LZW compression, any files in such archives that were stored using any other form of
compression will still be accessible.

Handle Types
VTHDOC

A-16

Appendix A
Content Access Flags

Scope
Global

Data

e SCCVW_FILTER_LZW_ENABLED: LZW compressed files will be read normally.
e SCCVW_FILTER LZW_DISABLED: LZW compressed files will not be read.

Default
SCCVW_FILTER_LZW_ ENABLED

A.4 Content Access Flags

The following section discusses content access flags.

A.4.1 SCCOPT_ENABLEALLSUBOBJECTS

Outside In has an internal flag that is used to optimize several of the input filters for
searching. One of the side effects of this optimization is that many embedded bitmaps,
including Progressive JPEG, aren't output by the filter.
SCCOPT_ENABLEALLSUBOBJECTS can override this internal optimization.

Handle Types
VTHDOC
Scope

Global

Data Type
VTDWORD

Data
One of the following values:

* SCCUT_FILTER_ENABLEALLSUBOBJECTS: Override the optimizations.
¢ SCCUT_FILTER_NORMALSUBOBJECTS: Allow the optimizations.

Default
SCCUT_FILTER_NORMALSUBOBJECTS

A.4.2 SCCOPT CA FLAGS

This option allows the developer to set a flag to enable an option unique to Content
Access.

Handle Types
VTHDOC

ORACLE A-17

Appendix A
Content Access Flags

Scope

Local

Data Type
DWORD

Data

* SCCEX_IND_GENERATED: Includes data not originally stored as text in the input
document. This can be important content the user would see when viewing the
document in the original application (time and size information in archives,
numbers in spreadsheets/databases, and so forth).

e SCCEX_IND_GENERATESYSTEMMETADATA: When this flag is set, system
metadata will be generated. This text is "generated," so it will be affected by
SCCEX_IND_GENERATED. This information is gathered through system calls
and may adversely affect performance.

Default

e 0: The flag is turned off.

A.4.3 SCCOPT_FORMATFLAGS

ORACLE

This option allows the developer to set flags that enable options that span multiple
export products.

Handle Types
VTHDOC

Scope

Local

Data Type
VTDWORD

Data

e SCCOPT_FLAGS ISODATETIMES: When this flag is set, all Date and Time
values are converted to the 1ISO 8601 standard. This conversion can only be
performed using dates that are stored as numeric data within the original file.

e SCCOPT_FLAGS_STRICTFILEACCESS: When an embedded file or URL can't
be opened with the full path, OIT will sometimes try and open the referenced file
from other locations, including the current directory. When this flag is set, it will
prevent OIT from trying to open the file from any location other than the fully
qualified path or URL.

Default

0: All flags turned off

A-18

Appendix A
File System

A.5 File System

This section discusses file systems.

A.5.1 SCCOPT_IO_BUFFERSIZE

This provides three options that allow the user to adjust buffer sizes to take advantage
of faster computers/more memory. This is an advanced option that casual users of
Content Access may ignore. This option allows the users to tune Content Access
memory usage to a particular target machine. The number specified will be in
kilobytes.

ORACLE

Handle Type

NULL, VTHDOC

Scope

Global

Data Type

SCCBUFFEROPTIONS Structure

Data

A buffer options structure

A5.1.1 SCCBUFFEROPTIONS Structure

typedef struct SCCBUFFEROPTI ONSt ag

{

VTDWORD dwReadBuf f er Si ze; [* size of the |/0 Read buffer
in KB */

VTDWORD dwiMMapBuUf f er Si ze; [* maximumsize for the I/0
Memory Map buffer in KB */

VTDWORD dwTenpBuf f er Si ze; /* maxi mum si ze for the menory-
mapped temp files in KB */

VTDWORD dwFl ags; I* use flags */

} SCCBUFFEROPTI ONS, *PSCCBUFFERCPTI ONS;

Parameters

dwReadBufferSize: Used to define the number of bytes that will read from disk into
memory at any given time. Once the buffer has data, further file reads will proceed
within the buffer until the end of the buffer is reached, at which point the buffer will

again be filled from the disk. This can lead to performance improvements in many

file formats, regardless of the size of the document.

dwMMapBufferSize: Used to define a maximum size that a document can be and
use a memory-mapped 1/O model. In this situation, the entire file is read from disk
into memory and all further I/O is performed on the data in memory. This can lead
to significantly improved performance, but note that either the entire file can be
read into memory, or it cannot. If both of these buffers are set, then if the file is
smaller than the dwMMapBufferSize, the entire file will be read into memory; if not,
it will be read in blocks defined by the dwReadBufferSize.

A-19

Appendix A
File System

* dwTempBufferSize: The maximum size that a temporary file can occupy in
memory before being written to disk as a physical file. Storing temporary files in
memory can boost performance on archives, files that have embedded objects or
attachments. If set to 0, all temporary files will be written to disk.

* dwFlags
— SCCBUFOPT_SET_READBUFSIZE 1
— SCCBUFOPT_SET_MMAPBUFSIZE 2
— SCCBUFOPT_SET_TEMPBUFSIZE 4
To set any of the three buffer sizes, set the corresponding flag while calling

dwSetOption.

Default
The default settings for these options are:

» #define SCCBUFOPT_DEFAULT_READBUFSIZE 2: A 2KB read buffer.

o #define SCCBUFOPT_DEFAULT_MMAPBUFSIZE 8192: An 8MB memory-map
size.

* #define SCCBUFOPT_DEFAULT_TEMPBUFSIZE 2048: A 2MB temp-file limit.

Minimum and maximum sizes for each are:

+ SCCBUFOPT_MIN_READBUFSIZE 1: Read one Kbyte at a time.
e SCCBUFOPT_MIN_MMAPBUFSIZE 0: Don't use memory-mapped input.
e SCCBUFOPT_MIN_TEMPBUFSIZE 0: Don't use memory temp files

¢ SCCBUFOPT_MAX_READBUFSIZE 0x003fffff,
SCCBUFOPT_MAX_MMAPBUFSIZE 0x003fffff,
SCCBUFOPT_MAX_TEMPBUFSIZE 0x003fffff: These maximums correspond to
the largest file size possible under the 4GB DWORD limit.

A.5.2 SCCOPT_TEMPDIR

ORACLE

From time to time, the technology needs to create one or more temporary files. This
option sets the directory to be used for those files.

It is recommended that this option be set as part of a system to clean up temporary
files left behind in the event of abnormal program termination. By using this option with
code to delete files older than a predefined time limit, the OEM can help to ensure that
the number of temporary files does not grow without limit.

Note:
This option will be ignored if SCCOPT_REDIRECTTEMPFILE is set.

Handle Types
NULL, VTHDOC

A-20

Appendix A
File System

Scope

Global

Data Type
SCCUTTEMPDIRSPEC structure

A.5.2.1 SCCUTTEMPDIRSPEC Structure

This structure is used in the SCCOPT_TEMPDIR option.

SCCUTTEMPDIRSPEC is a C data structure defined in sccvw.h as follows:

typedef struct SCCUTTEMPDI RSPEC

{
VIDWORD dwSi ze;

VIDWORD dwSpecType;
VTBYTE szTenpDi r Nane[SCCUT_FI LENAMEMAX] ;
} SCCUTTEMPDI RSPEC, * LPSCCUTTEMPDI RSPEC;

There is a limitation in the current release. dwSpecType describes the contents of
szTempDirName. Together, dwSpecType and szTempDirName describe the location
of the source file. The only dwSpecType values supported at this time are:

* IOTYPE_ANSIPATH: Windows only. szTempDirName points to a NULL-
terminated full path name using the ANSI character set and FAT 8.3 (Win16) or
NTFS (Win32 and Win64) file name conventions.

* IOTYPE_UNICODEPATH: Windows only. szTempDirName points to a NULL-
terminated full path name using the Unicode character set and NTFS file name
conventions. Note that the length of the path name is limited to
SCCUT_FILENAMEMAX bytes, or (SCCUT_FILENAMEMAX / 2) double-byte
Unicode characters.

* IOTYPE_UNIXPATH: X Windows on UNIX platforms only. szTempDirName points
to a NULL-terminated full path name using the system default character set and
UNIX path conventions.

Specifically not supported at this time is IOTYPE_REDIRECT.

Parameters
* dwSize: Set to sizeof(SCCUTTEMPDIRSPEC).
e dwSpecType: IOTYPE_ANSIPATH, IOTYPE_UNICODE or IOTYPE_UNIXPATH

» szTempDirName: The path to the directory to use for the temporary files. Note that
if all SCCUT_FILENAMEMAX bytes in the buffer are filled, there will not be space
left for file names.

A.5.3 SCCOPT_DOCUMENTMEMORYMODE

This option determines the maximum amount of memory that the chunker may use to
store the document's data, from 4 MB to 1 GB. The more memory the chunker has
available to it, the less often it needs to re-read data from the document.

ORACLE A-21

Appendix A
File System

Handle Types
NULL, VTHDOC

Scope

Global

Data Type
VTDWORD

Parameters

« SCCDOCUMENTMEMORYMODE_SMALLEST (4MB)
« SCCDOCUMENTMEMORYMODE_SMALL 2 (16MB)

« SCCDOCUMENTMEMORYMODE_MEDIUM 3 (64MB)
« SCCDOCUMENTMEMORYMODE_LARGE (256MB)

« SCCDOCUMENTMEMORYMODE_LARGEST (1 GB)

Default

SCCDOCUMENTMEMORYMODE_LARGE (256MB)

A.5.4 SCCOPT_REDIRECTTEMPFILE

ORACLE

This option is set when the developer wants to use redirected 10 to completely take
over responsibility for the low level 10 calls of the temp file.

Handle Types
NULL, VTHDOC

Scope

Global (not persistent)

Data Type

VTLPVOID: pCallbackFunc

Function pointer of the redirect 10 callback.
Redirect call back function:

t ypedef

{
VTDWORD (* REDI RECTTEMPFI LECALLBACKPROC)

(H OFI LE *phFile,
VTVA D *pSpec,
VTIDWORD dwFi | eFl ags) ;

There is another option to handle the temp directory, SCCOPT_TEMPDIR. Only one
of these two can be set by the developer. The SCCOPT_TEMPDIR option will be
ignored if SCCOPT_REDIRECTTEMPFILE is set. These files may be safely deleted
when the Close function is called.

A-22

Index

Symbols

$HOME, 3-7
$LD_LIBRARY_PATH, 3-6
$LIBPATH, 3-6

$ORIGIN, 3-6

$PATH, 3-6
$SHLIB_PATH, 3-6

A

Architectural Overview, 1-2
Archive Record, 7-14

B

batch_process_ca, 10-2

C

CACloseContent, 6-2
CAOpenContent, 6-1
CAReadFirst, 6-2
CAReadNext, 6-2

casample, 10-2

CASeek, 6-5, 6-6

Character Mapping, A-1
Compression, A-15

Content Access Flags, A-17
Content Access Functions, 6-1
Content Access Options, A-1
Content Breaks, 7-10
Content Description, 7-1

D

DAGetOption, 4-7
DAGetOptionltem, 4-22
DAGetTreeCount, 4-11
DAGetTreeRecord, 4-12

DAInitEx, 4-2

DAOpenDocument, 4-3
DAOpenNextDocument, 4-21
DAOpenRandomTreeRecord, 4-14
DAOpenSubdocumentByld, 4-24
DAOpenTreeRecord, 4-13
DARemoveOptionltem, 4-23
DARetrieveDocHandle, 4-6
DASavelnputObject, 4-15
DASaveRandomTreeRecord, 4-17
DASaveTreeRecord, 4-16
DASetFileAccessCallback, 4-20
DASetFileSpecOption, 4-24
DASetOption, 4-7
DASetStatCallback, 4-19

Data Access Common Functions, 4-1
DATREENODELOCATOR, 4-14, 4-18
Definition of Terms, 1-3
Deprecated Functions, 4-2
Directory Structure, 1-3

Document Property IDs, 7-5

E

DAAddOptionltem, 4-23
DACloseDocument, 4-6
DACloseTreeRecord, 4-18
DADelnit, 4-3
DAGetErrorString, 4-10
DAGetFileld, 4-8
DAGetFileldEx, 4-9
DAGetObjectinfo, 4-10

ORACLE

environment variables, 3-6
$HOME, 3-7
$LD_LIBRARY_PATH, 3-6
$LIBPATH, 3-6
$PATH, 3-6
$SHLIB_PATH, 3-6

extract_archive, 10-2

extract_object, 10-3

F

File Property Content, 7-11
File System, A-19

G

Generated Information, 7-12

Index-1

H

Index

R

How to Use Content Access, 1-4
How to Use Text Access, 1-5

Redirected 10, 8-1
Running in 24x7 Environments, 9-1
Runtime Search Path, 3-6

S

Implementation Issues, 9-1

Input Handling, A-4

IOClose, 8-2

IOGENSECONDARY and
IOGENSECONDARYW Structures, 8-8

I0GetlInfo, 8-5

IOGETINFO_GENSECONDARY, 8-9

IORead, 8-3

I0Seek, 8-4

IOSPECARCHIVEOBJECT Structure, 4-5

IOSPECLINKEDOBJECT Structure, 4-5

IOSPECSUBOBJECT Structure, 4-5

IOTell, 8-5

IOWrite, 8-3

L

Linux
Compiling and Linking, 3-10
GLIBC and Compiler Versions, 3-10
Library Compatibility, 3-9
Motif Libraries, 3-9
Other Libraries, 3-10
Linux 64-bit, 3-10
Linux Compiling and Linking, 3-9
Linux zSeries, 3-10

M

Mail Field IDs, 7-8
memoryio, 10-3

N

NSF Support, 3-2

O

Oracle Solaris SPARC, 3-11
Oracle Solaris x86, 3-12

P

parsepst, 10-3

ORACLE

Sample Applications, 10-1
Samples
UNIX, 10-1
Windows, 10-1
SCCBUFFEROPTIONS Structure, A-19
SCCCA_BEGINTAG, 7-2
SCCCA_BEGINTAG/SCCCA_ENDTAG, 7-1
SCCCA_BREAK, 7-10
SCCCA_COMMENTREFERENCE, 7-11
SCCCA_FILEPROPERTY, 7-11
SCCCA_GENERATED, 7-12
SCCCA OBJECT, 7-12
SCCCA _OBJECTALTSTRING, 7-13
SCCCA_OBJECTNAME, 7-13
SCCCA_RECORD, 7-14
SCCCA_RECORD Content Description, 7-14
SCCCA_REVISION_CELL
Revision Cell, 7-14
SCCCA_REVISION_CELL Content Description,
7-14
SCCCA_REVISION_COLUMN
Revision Column, 7-15
SCCCA_REVISION_COLUMN Content
Description, 7-15
SCCCA_REVISION_ROW
Revision Row, 7-15
SCCCA_REVISION_ROW Content Description,
7-15
SCCCA_REVISION_SHEET
Revision Sheet, 7-15
SCCCA_REVISION_SHEET Content
Description, 7-15
SCCCA_REVISION_SHEETNAME
Revision Sheet Name, 7-16
SCCCA_REVISION_SHEETNAME Content
Description, 7-16
SCCCA_REVISION_USER
Revision User, 7-16
SCCCA _REVISION_USER Content Description,
7-16
SCCCA_SHEET, 7-17
SCCCA_SLIDE, 7-17
SCCCA_STYLECHANGE, 7-17
SCCCA_SUBDOCPROPERTY, 7-7
SCCCA_TEXT, 7-18
SCCCA_TREENODELOCATOR, 4-15, 4-18,
7-20

Index-2

SCCCAGETCONTENT Structure, 6-3
SCCDAOBJECT Structure, 4-6
SCCDATREENODE Structure, 4-12
SCCOPT_ARCFULLPATH, A-11
SCCOPT_CA FLAGS, A-17
SCCOPT_DEFAULTINPUTCHARSET, A-1
SCCOPT_DOCUMENTMEMORYMODE, A-21
SCCOPT_ENABLEALLSUBOBJECTS, A-17
SCCOPT_EX_PERFORMANCEMODE, A-12
SCCOPT_EXTRACTXMPMETADATA, A-4
SCCOPT_FALLBACKFORMAT, A-4
SCCOPT_FIFLAGS, A-5
SCCOPT_FILTERJPG, A-15
SCCOPT_FILTERLZW, A-16
SCCOPT_FORMATFLAGS, A-18
SCCOPT_GENERATEEXCELREVISIONS, A-13
SCCOPT_HTML_COND_COMMENT_MODE,
A-10
SCCOPT_IGNORE_PASSWORD, A-6
SCCOPT_IO_BUFFERSIZE, A-19
SCCOPT_LOTUSNOTESDIRECTORY, A-7
SCCOPT_OUTPUTCHARACTERSET, A-2
SCCOPT_PARSEXMPMETADATA, A-7
SCCOPT_PDF_FILTER_DROPHYPHENS, A-11
SCCOPT_PDF_FILTER_MAX EMBEDDED_ OB
JECTS, A-14
SCCOPT_PDF_FILTER_MAX VECTOR_PATH
S, A-14
SCCOPT_PDF_FILTER_REORDER_BIDI, A-8
SCCOPT_PDF_FILTER_WORD_DELIM_FRAC
TION, A-15
SCCOPT_PROCESS_OLE_EMBEDDINGS, A-8
SCCOPT_REDIRECTTEMPFILE, A-22
SCCOPT_SYSTEMFLAGS, A-6
SCCOPT_TEMPDIR, A-20
SCCOPT_TIMEZONE, A-9
SCCOPT_UNMAPPABLECHAR, A-3
SCCUTTEMPDIRSPEC Structure, A-21
Sheet Names, 7-17
Signal Handling, 3-5
Status Callback Function, 4-19
Style Information, 7-17
SubObijects, 7-12

T

TACloseText, 5-2
tademo, 10-3
Tag Types, 7-2

ORACLE

Index

Tagged Content, 7-1

TAOpenText, 5-1

TAReadFirst, 5-2

TAReadNext, 5-3

taredir, 10-3

Text Access Functions, 5-1

Text Content, 7-18

textdemo, 10-4

Tree Node Locator, 4-15, 4-18, 7-20

U

UNIX
API Libraries, 3-2
Changing Resources, 3-7
Character Sets, 3-5
Double-Byte Character Set Mapping, 3-5
Environment Variables, 3-6
Filter Libraries, 3-2
FreeBSD Compiling and Linking, 3-12
HP-UX Compiling and Linking, 3-7
HP-UX on Itanium, 3-7
HP-UX on RISC, 3-7
IBM AIX Compiling and Linking, 3-8
Installation, 3-1
Libraries and Structure, 3-2
Options and Information Storage, 3-4
Oracle Solaris Compiling and Linking, 3-11
Premier Graphics Filters, 3-2
Runtime Considerations, 3-5
Support Libraries, 3-2

UNIX Implementation Details, 3-1

W

Windows
API DLLs, 2-1
Changing Resources, 2-4
Character Sets, 2-4
Double-Byte Character Set Mapping, 2-4
Filter DLLs, 2-1
Libraries and Structure, 2-1
Options and Information Storage, 2-3
Premier Graphics Filters, 2-1
Runtime Considerations, 2-4
Structure Alignment, 2-4
Support DLLs, 2-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	1.1 What Does This Technology Do?
	1.2 Architectural Overview
	1.3 Definition of Terms
	1.4 Directory Structure
	1.5 How to Use Content Access
	1.6 How to Use Text Access

	2 Windows Implementation Details
	2.1 Libraries and Structure
	2.2 The Basics
	2.2.1 What You Need in Your Source Code
	2.2.2 Options and Information Storage
	2.2.3 Structure Alignment

	2.3 Character Sets
	2.3.1 Default API Character Set
	2.3.2 Double-Byte Character Set Mapping

	2.4 Runtime Considerations
	2.5 Changing Resources

	3 UNIX Implementation Details
	3.1 Installation
	3.1.1 NSF Support

	3.2 Libraries and Structure
	3.3 The Basics
	3.3.1 What You Need in Your Source Code
	3.3.2 Options and Information Storage

	3.4 Character Sets
	3.4.1 Default API Character Set
	3.4.2 Double-Byte Character Set Mapping

	3.5 Runtime Considerations
	3.5.1 Signal Handling
	3.5.2 Runtime Search Path and ⁠$ORIGIN

	3.6 Environment Variables
	3.7 Changing Resources
	3.8 HP-UX Compiling and Linking
	3.9 IBM AIX Compiling and Linking
	3.10 Linux Compiling and Linking
	3.10.1 Library Compatibility
	3.10.1.1 Motif Libraries
	3.10.1.2 GLIBC and Compiler Versions
	3.10.1.3 Other Libraries

	3.10.2 Compiling and Linking

	3.11 Oracle Solaris Compiling and Linking
	3.11.1 Oracle Solaris SPARC
	3.11.2 Oracle Solaris x86

	3.12 FreeBSD Compiling and Linking

	4 Data Access Common Functions
	4.1 Deprecated Functions
	4.2 DAInitEx
	4.3 DADeInit
	4.4 DAOpenDocument
	4.4.1 IOSPECSUBOBJECT Structure
	4.4.2 IOSPECLINKEDOBJECT Structure
	4.4.3 IOSPECARCHIVEOBJECT Structure
	4.4.4 SCCDAOBJECT Structure

	4.5 DACloseDocument
	4.6 DARetrieveDocHandle
	4.7 DASetOption
	4.8 DAGetOption
	4.9 DAGetFileId
	4.10 DAGetFileIdEx
	4.11 DAGetErrorString
	4.12 DAGetObjectInfo
	4.13 DAGetTreeCount
	4.14 DAGetTreeRecord
	4.14.1 SCCDATREENODE Structure

	4.15 DAOpenTreeRecord
	4.16 DAOpenRandomTreeRecord
	4.16.1 DATREENODELOCATOR
	4.16.2 SCCCA_TREENODELOCATOR: Tree Node Locator

	4.17 DASaveInputObject
	4.18 DASaveTreeRecord
	4.19 DASaveRandomTreeRecord
	4.19.1 DATREENODELOCATOR
	4.19.2 SCCCA_TREENODELOCATOR: Tree Node Locator

	4.20 DACloseTreeRecord
	4.21 DASetStatCallback
	4.22 DASetFileAccessCallback
	4.23 DAOpenNextDocument
	4.24 DAGetOptionItem
	4.25 DARemoveOptionItem
	4.26 DAAddOptionItem
	4.27 DASetFileSpecOption
	4.28 DAOpenSubdocumentById

	5 Text Access Functions
	5.1 TAOpenText
	5.2 TACloseText
	5.3 TAReadFirst
	5.4 TAReadNext

	6 Content Access Functions
	6.1 CAOpenContent
	6.2 CACloseContent
	6.3 CAReadFirst
	6.4 CAReadNext
	6.4.1 SCCCAGETCONTENT Structure

	6.5 CAContentStatus
	6.5.1 EXSUBDOCSTATUS Structure

	6.6 CASeek
	6.7 CATell

	7 Content Description
	7.1 SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content
	7.1.1 SCCCA_BEGINTAG Content Description
	7.1.2 Tag Types
	7.1.3 Document Property IDs
	7.1.4 SCCCA_SUBDOCPROPERTY Document Properties
	7.1.5 Mail Field IDs

	7.2 SCCCA_BREAK: Content Breaks
	7.3 SCCCA_CELL: Cell Boundary
	7.3.1 SCCCA_CELL Content Description

	7.4 SCCCA_COMMENTREFERENCE
	7.5 SCCCA_FILEPROPERTY: File Property Content
	7.5.1 SCCCA_FILEPROPERTY Content Description

	7.6 SCCCA_GENERATED: Generated Information
	7.6.1 SCCCA_GENERATED Content Description

	7.7 SCCCA_OBJECT: SubObjects
	7.7.1 SCCCA_OBJECT Content Description

	7.8 SCCCA_OBJECTALTSTRING: Alternate String
	7.8.1 SCCCA_OBJECTALTSTRING Content Description

	7.9 SCCCA_OBJECTNAME: Object Name
	7.9.1 SCCCA_OBJECTNAME Content Description

	7.10 SCCCA_RECORD: Archive Record
	7.10.1 SCCCA_RECORD Content Description

	7.11 SCCCA_REVISION_CELL: Revision Cell
	7.11.1 SCCCA_REVISION_CELL Content Description

	7.12 SCCCA_REVISION_ROW: Revision Row
	7.12.1 SCCCA_REVISION_ROW Content Description

	7.13 SCCCA_REVISION_COLUMN: Revision Column
	7.13.1 SCCCA_REVISION_COLUMN Content Description

	7.14 SCCCA_REVISION_SHEET: Revision Sheet
	7.14.1 SCCCA_REVISION_SHEET Content Description

	7.15 SCCCA_REVISION_SHEETNAME: Revision Sheet Name
	7.15.1 SCCCA_REVISION_SHEETNAME Content Description

	7.16 SCCCA_REVISION_USER: Revision User
	7.16.1 SCCCA_REVISION_USER Content Description

	7.17 SCCCA_SHEET: Sheet Names
	7.17.1 SCCCA_SHEET Content Description

	7.18 SCCCA_SLIDE: Presentation Slide
	7.19 SCCCA_STYLECHANGE: Style Information
	7.19.1 SCCCA_STYLECHANGE Content Description

	7.20 SCCCA_TEXT: Text Content
	7.20.1 SCCCA_TEXT Content Description
	7.20.2 Special Text Character Substitutions

	7.21 SCCCA_TREENODELOCATOR: Tree Node Locator
	7.21.1 SCCCA_TREENODELOCATOR Content Description

	8 Redirected IO
	8.1 Using Redirected IO
	8.2 IOClose
	8.3 IORead
	8.4 IOWrite
	8.5 IOSeek
	8.6 IOTell
	8.7 IOGetInfo
	8.7.1 IOGENSECONDARY and IOGENSECONDARYW Structures
	8.7.2 File Types That Cause IOGETINFO_GENSECONDARY

	8.8 IOSEEK64PROC / IOTELL64PROC
	8.8.1 IOSeek64
	8.8.2 IOTell64

	9 Implementation Issues
	9.1 Running in 24x7 Environments

	10 Sample Applications
	10.1 Building the Samples on a Windows System
	10.2 Building the Samples on a UNIX System
	10.3 An Overview of the Sample Applications
	10.3.1 batch_process_ca
	10.3.2 casample
	10.3.3 extract_archive
	10.3.4 extract_object
	10.3.5 memoryio
	10.3.6 parsepst
	10.3.7 tademo (Windows Only)
	10.3.8 taredir (UNIX Only)
	10.3.9 textdemo (UNIX Only)

	A Content Access Options
	A.1 Character Mapping
	A.1.1 SCCOPT_DEFAULTINPUTCHARSET
	A.1.2 SCCOPT_OUTPUTCHARACTERSET
	A.1.3 SCCOPT_UNMAPPABLECHAR

	A.2 Input Handling
	A.2.1 SCCOPT_EXTRACTXMPMETADATA
	A.2.2 SCCOPT_FALLBACKFORMAT
	A.2.3 SCCOPT_FIFLAGS
	A.2.4 SCCOPT_SYSTEMFLAGS
	A.2.5 SCCOPT_IGNORE_PASSWORD
	A.2.6 SCCOPT_LOTUSNOTESDIRECTORY
	A.2.7 SCCOPT_PARSEXMPMETADATA
	A.2.8 SCCOPT_PDF_FILTER_REORDER_BIDI
	A.2.9 SCCOPT_PROCESS_OLE_EMBEDDINGS
	A.2.10 SCCOPT_TIMEZONE
	A.2.11 SCCOPT_HTML_COND_COMMENT_MODE
	A.2.12 SCCOPT_PDF_FILTER_DROPHYPHENS
	A.2.13 SCCOPT_ARCFULLPATH
	A.2.14 SCCOPT_NULLREPLACECHAR
	A.2.15 SCCOPT_EX_PERFORMANCEMODE
	A.2.16 SCCOPT_GENERATEEXCELREVISIONS
	A.2.17 SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS
	A.2.18 SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS
	A.2.19 SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION

	A.3 Compression
	A.3.1 SCCOPT_FILTERJPG
	A.3.2 SCCOPT_FILTERLZW

	A.4 Content Access Flags
	A.4.1 SCCOPT_ENABLEALLSUBOBJECTS
	A.4.2 SCCOPT_CA_FLAGS
	A.4.3 SCCOPT_FORMATFLAGS

	A.5 File System
	A.5.1 SCCOPT_IO_BUFFERSIZE
	A.5.1.1 SCCBUFFEROPTIONS Structure

	A.5.2 SCCOPT_TEMPDIR
	A.5.2.1 SCCUTTEMPDIRSPEC Structure

	A.5.3 SCCOPT_DOCUMENTMEMORYMODE
	A.5.4 SCCOPT_REDIRECTTEMPFILE

