
Oracle® Outside In Content Access
Developer's Guide

Release 8.5.4
F10998-01
November 2019



Oracle Outside In Content Access Developer's Guide, Release 8.5.4

F10998-01

Copyright © 2010, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Nirmala Suryaprakasha

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience x

Documentation Accessibility x

Related Documents x

Conventions x

1   Introduction

1.1 What Does This Technology Do? 1-1

1.2 Architectural Overview 1-2

1.3 Definition of Terms 1-3

1.4 Directory Structure 1-3

1.5 How to Use Content Access 1-4

1.6 How to Use Text Access 1-5

2   Windows Implementation Details

2.1 Libraries and Structure 2-1

2.2 The Basics 2-2

2.2.1 What You Need in Your Source Code 2-3

2.2.2 Options and Information Storage 2-3

2.2.3 Structure Alignment 2-4

2.3 Character Sets 2-4

2.3.1 Default API Character Set 2-4

2.3.2 Double-Byte Character Set Mapping 2-4

2.4 Runtime Considerations 2-4

2.5 Changing Resources 2-4

3   UNIX Implementation Details

3.1 Installation 3-1

3.1.1 NSF Support 3-2

3.2 Libraries and Structure 3-2

iii



3.3 The Basics 3-4

3.3.1 What You Need in Your Source Code 3-4

3.3.2 Options and Information Storage 3-4

3.4 Character Sets 3-5

3.4.1 Default API Character Set 3-5

3.4.2 Double-Byte Character Set Mapping 3-5

3.5 Runtime Considerations 3-5

3.5.1 Signal Handling 3-5

3.5.2 Runtime Search Path and $ORIGIN 3-6

3.6 Environment Variables 3-6

3.7 Changing Resources 3-7

3.8 HP-UX Compiling and Linking 3-7

3.9 IBM AIX Compiling and Linking 3-8

3.10 Linux Compiling and Linking 3-9

3.10.1 Library Compatibility 3-9

3.10.1.1 Motif Libraries 3-9

3.10.1.2 GLIBC and Compiler Versions 3-10

3.10.1.3 Other Libraries 3-10

3.10.2 Compiling and Linking 3-10

3.11 Oracle Solaris Compiling and Linking 3-11

3.11.1 Oracle Solaris SPARC 3-11

3.11.2 Oracle Solaris x86 3-12

3.12 FreeBSD Compiling and Linking 3-12

4   Data Access Common Functions

4.1 Deprecated Functions 4-2

4.2 DAInitEx 4-2

4.3 DADeInit 4-3

4.4 DAOpenDocument 4-3

4.4.1 IOSPECSUBOBJECT Structure 4-5

4.4.2 IOSPECLINKEDOBJECT Structure 4-5

4.4.3 IOSPECARCHIVEOBJECT Structure 4-5

4.4.4 SCCDAOBJECT Structure 4-6

4.5 DACloseDocument 4-6

4.6 DARetrieveDocHandle 4-6

4.7 DASetOption 4-7

4.8 DAGetOption 4-7

4.9 DAGetFileId 4-8

4.10 DAGetFileIdEx 4-9

4.11 DAGetErrorString 4-10

iv



4.12 DAGetObjectInfo 4-10

4.13 DAGetTreeCount 4-11

4.14 DAGetTreeRecord 4-12

4.14.1 SCCDATREENODE Structure 4-12

4.15 DAOpenTreeRecord 4-13

4.16 DAOpenRandomTreeRecord 4-14

4.16.1 DATREENODELOCATOR 4-14

4.16.2 SCCCA_TREENODELOCATOR: Tree Node Locator 4-15

4.17 DASaveInputObject 4-15

4.18 DASaveTreeRecord 4-16

4.19 DASaveRandomTreeRecord 4-17

4.19.1 DATREENODELOCATOR 4-18

4.19.2 SCCCA_TREENODELOCATOR: Tree Node Locator 4-18

4.20 DACloseTreeRecord 4-18

4.21 DASetStatCallback 4-19

4.22 DASetFileAccessCallback 4-20

4.23 DAOpenNextDocument 4-21

4.24 DAGetOptionItem 4-22

4.25 DARemoveOptionItem 4-23

4.26 DAAddOptionItem 4-23

4.27 DASetFileSpecOption 4-24

4.28 DAOpenSubdocumentById 4-24

5   Text Access Functions

5.1 TAOpenText 5-1

5.2 TACloseText 5-2

5.3 TAReadFirst 5-2

5.4 TAReadNext 5-3

6   Content Access Functions

6.1 CAOpenContent 6-1

6.2 CACloseContent 6-2

6.3 CAReadFirst 6-2

6.4 CAReadNext 6-2

6.4.1 SCCCAGETCONTENT Structure 6-3

6.5 CAContentStatus 6-4

6.5.1 EXSUBDOCSTATUS Structure 6-5

6.6 CASeek 6-5

v



6.7 CATell 6-6

7   Content Description

7.1 SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content 7-1

7.1.1 SCCCA_BEGINTAG Content Description 7-2

7.1.2 Tag Types 7-2

7.1.3 Document Property IDs 7-5

7.1.4 SCCCA_SUBDOCPROPERTY Document Properties 7-7

7.1.5 Mail Field IDs 7-8

7.2 SCCCA_BREAK: Content Breaks 7-10

7.3 SCCCA_CELL: Cell Boundary 7-10

7.3.1 SCCCA_CELL Content Description 7-11

7.4 SCCCA_COMMENTREFERENCE 7-11

7.5 SCCCA_FILEPROPERTY: File Property Content 7-11

7.5.1 SCCCA_FILEPROPERTY Content Description 7-11

7.6 SCCCA_GENERATED: Generated Information 7-12

7.6.1 SCCCA_GENERATED Content Description 7-12

7.7 SCCCA_OBJECT: SubObjects 7-12

7.7.1 SCCCA_OBJECT Content Description 7-12

7.8 SCCCA_OBJECTALTSTRING: Alternate String 7-13

7.8.1 SCCCA_OBJECTALTSTRING Content Description 7-13

7.9 SCCCA_OBJECTNAME: Object Name 7-13

7.9.1 SCCCA_OBJECTNAME Content Description 7-13

7.10 SCCCA_RECORD: Archive Record 7-14

7.10.1 SCCCA_RECORD Content Description 7-14

7.11 SCCCA_REVISION_CELL: Revision Cell 7-14

7.11.1 SCCCA_REVISION_CELL Content Description 7-14

7.12 SCCCA_REVISION_ROW: Revision Row 7-15

7.12.1 SCCCA_REVISION_ROW Content Description 7-15

7.13 SCCCA_REVISION_COLUMN: Revision Column 7-15

7.13.1 SCCCA_REVISION_COLUMN Content Description 7-15

7.14 SCCCA_REVISION_SHEET: Revision Sheet 7-15

7.14.1 SCCCA_REVISION_SHEET Content Description 7-15

7.15 SCCCA_REVISION_SHEETNAME: Revision Sheet Name 7-16

7.15.1 SCCCA_REVISION_SHEETNAME Content Description 7-16

7.16 SCCCA_REVISION_USER: Revision User 7-16

7.16.1 SCCCA_REVISION_USER Content Description 7-16

7.17 SCCCA_SHEET: Sheet Names 7-17

7.17.1 SCCCA_SHEET Content Description 7-17

7.18 SCCCA_SLIDE: Presentation Slide 7-17

vi



7.19 SCCCA_STYLECHANGE: Style Information 7-17

7.19.1 SCCCA_STYLECHANGE Content Description 7-17

7.20 SCCCA_TEXT: Text Content 7-18

7.20.1 SCCCA_TEXT Content Description 7-18

7.20.2 Special Text Character Substitutions 7-19

7.21 SCCCA_TREENODELOCATOR: Tree Node Locator 7-20

7.21.1 SCCCA_TREENODELOCATOR Content Description 7-20

8   Redirected IO

8.1 Using Redirected IO 8-1

8.2 IOClose 8-2

8.3 IORead 8-3

8.4 IOWrite 8-3

8.5 IOSeek 8-4

8.6 IOTell 8-5

8.7 IOGetInfo 8-5

8.7.1 IOGENSECONDARY and IOGENSECONDARYW Structures 8-8

8.7.2 File Types That Cause IOGETINFO_GENSECONDARY 8-9

8.8 IOSEEK64PROC / IOTELL64PROC 8-10

8.8.1 IOSeek64 8-10

8.8.2 IOTell64 8-10

9   Implementation Issues

9.1 Running in 24x7 Environments 9-1

10  
 

Sample Applications

10.1 Building the Samples on a Windows System 10-1

10.2 Building the Samples on a UNIX System 10-1

10.3 An Overview of the Sample Applications 10-2

10.3.1 batch_process_ca 10-2

10.3.2 casample 10-2

10.3.3 extract_archive 10-2

10.3.4 extract_object 10-3

10.3.5 memoryio 10-3

10.3.6 parsepst 10-3

10.3.7 tademo (Windows Only) 10-3

10.3.8 taredir (UNIX Only) 10-3

vii



10.3.9 textdemo (UNIX Only) 10-4

A   Content Access Options

A.1 Character Mapping A-1

A.1.1 SCCOPT_DEFAULTINPUTCHARSET A-1

A.1.2 SCCOPT_OUTPUTCHARACTERSET A-2

A.1.3 SCCOPT_UNMAPPABLECHAR A-3

A.2 Input Handling A-4

A.2.1 SCCOPT_EXTRACTXMPMETADATA A-4

A.2.2 SCCOPT_FALLBACKFORMAT A-4

A.2.3 SCCOPT_FIFLAGS A-5

A.2.4 SCCOPT_SYSTEMFLAGS A-6

A.2.5 SCCOPT_IGNORE_PASSWORD A-6

A.2.6 SCCOPT_LOTUSNOTESDIRECTORY A-7

A.2.7 SCCOPT_PARSEXMPMETADATA A-7

A.2.8 SCCOPT_PDF_FILTER_REORDER_BIDI A-8

A.2.9 SCCOPT_PROCESS_OLE_EMBEDDINGS A-8

A.2.10 SCCOPT_TIMEZONE A-9

A.2.11 SCCOPT_HTML_COND_COMMENT_MODE A-10

A.2.12 SCCOPT_PDF_FILTER_DROPHYPHENS A-11

A.2.13 SCCOPT_ARCFULLPATH A-11

A.2.14 SCCOPT_NULLREPLACECHAR A-12

A.2.15 SCCOPT_EX_PERFORMANCEMODE A-12

A.2.16 SCCOPT_GENERATEEXCELREVISIONS A-13

A.2.17 SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS A-14

A.2.18 SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS A-14

A.2.19 SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION A-15

A.3 Compression A-15

A.3.1 SCCOPT_FILTERJPG A-15

A.3.2 SCCOPT_FILTERLZW A-16

A.4 Content Access Flags A-17

A.4.1 SCCOPT_ENABLEALLSUBOBJECTS A-17

A.4.2 SCCOPT_CA_FLAGS A-17

A.4.3 SCCOPT_FORMATFLAGS A-18

A.5 File System A-19

A.5.1 SCCOPT_IO_BUFFERSIZE A-19

A.5.1.1 SCCBUFFEROPTIONS Structure A-19

A.5.2 SCCOPT_TEMPDIR A-20

A.5.2.1 SCCUTTEMPDIRSPEC Structure A-21

A.5.3 SCCOPT_DOCUMENTMEMORYMODE A-21

viii



A.5.4 SCCOPT_REDIRECTTEMPFILE A-22

ix



Preface

This document describes the installation and usage of the Outside In Content Access
Software Developer's Kit (SDK).

Audience
This document is intended for developers who are integrating Outside In Content
Access into Original Equipment Manufacturer (OEM) applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
The complete Oracle Outside In Technology documentation set is available from the
Oracle Help Center at http://www.oracle.com/pls/topic/lookup?
ctx=oitlatest&id=homepage.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage
http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage


1
Introduction

Content Access is part of Oracle's family of OEM products known as Outside In
Technology, a powerful document extraction, conversion and viewing technology that
can access the information in more than 600 file formats. Content Access is a server-
grade technology that provides developers with normalized access to content stored in
documents across multiple platforms.

There may be references to other Outside In Technology SDKs within this manual. To
obtain complete documentation for any other Outside In product, see Middleware
documentation page and click Outside In Technology link below.

Note:

For new functionality information, see What's New guide.

This chapter includes the following sections:

• What Does This Technology Do?

• Architectural Overview

• Definition of Terms

• Directory Structure

• How to Use Content Access

• How to Use Text Access

1.1 What Does This Technology Do?
Outside In Content Access provides a simple interface to extract text and metadata
from business documents. This technology is particularly useful for document indexing
applications. The product is comprised of two modules: Content Access and Text
Access. Benefits include:

• The ability to extract text from documents with automatic translation into a
particular character set, such as Unicode or ANSI.

• Access to numerous additional properties of documents that store information
such as author, keywords, typist, version notes, carbon copy, checked by, subject,
character and paragraph attributes, and so forth.

• A common interface to the content of diverse file formats including word
processing, spreadsheet, database, email, vector, and presentation formats.

• The Text Access module's specific functions have tight integration with Outside In
Technology, such that text generated by the text access functions is highlighted in
the Viewer.

1-1

https://docs.oracle.com/en/middleware/
https://docs.oracle.com/en/middleware/


• Text Access and Content Access generate the same raw text. However, the
following points are important.

– rawtext and Text Access will extract some text as unmappable characters
because they cannot be annotated. This includes text that is not visible (for
example, document properties, hidden text, and so on.).

– rawtext and Text Access only operate on the top-most layer of the file, and will
not extract text from embedded documents. Thus, not all visible text will be
extractable via rawtext or Text Access.

– Content Access can be used to extract hidden text, like document properties;
and text from embedded documents.

– It should be noted that other Outside In products offer powerful text extraction
and tagging abilities, such as Search Export and XML Export.

1.2 Architectural Overview
The basic architecture of Content Access is the same across all supported platforms:

Filter/Module Description

Input Filter The input filters form the base of the architecture. Each one reads a
specific file format or set of related formats and sends the data to
the chunker module through a standard set of function calls. There
are more than 150 of these filters that read more than 600 distinct
file formats. Filters are loaded on demand by the data access
module.

Chunker The Chunker module is responsible for caching a certain amount of
data from the filter and returning this data to the Content Access
module.

Content Access The Content Access module reads data from the chunker and
repackages it in a way that is convenient for the developer. This
repackaging process includes mapping characters to a particular
character set and converting some data (such as paragraph and
cell breaks) into representative characters. CA outputs non-visible
text, provides a wealth of style information, provides the information
needed for the consumer to process sub-documents, and optionally
produces non-textual information such as numbers in
spreadsheets.

Text Access The Text Access module is similar to the Content Access module,
although it is restricted to text. For more information, see Text
Access Functions.

Data Access The Data Access module implements a generic API for access to
files. It understands how to identify and load the correct filter for all
the supported file formats. The module delivers to the developer a
generic handle to the requested file, which can then be used to run
more specialized processes. The Data Access module is
responsible for providing a document for the Content Access
module. Data Access conserves resources by creating only one file
handle and one chunker handle for each file, even if it is opened in
multiple Content Access instances. It also provides a unified
platform for several modules in addition to Content Access,
including Text Access and Remote Filter Access.

Chapter 1
Architectural Overview

1-2



1.3 Definition of Terms
The following table provides definitions of some common terms.

Term Definition

Developer Someone integrating this technology into another technology or
application. Most likely this is you, the reader.

Source File The file the developer wishes to extract content from.

Data Access Module The core of Outside In Data Access, in the SCCDA library.

Data Access Submodule
(also referred to as
"Submodule")

This refers to any of the Outside In Data Access modules, including
SCCCA (Content Access) and SCCTA (Text Access), but excluding
SCCDA (Data Access).

Document Handle (also
referred to as "hDoc")

A Document Handle is created when a file is opened using Data
Access (see Data Access Common Functions). Each Document
Handle may have any number of Subhandles.

Content Handle (also
referred to as "hItem")

The handle created by a call to CAOpenContent or TAOpenText.
Every Content Handle has a Document Handle associated with it.
The DASetOption and DAGetOption functions in the Data Access
Module may be called with any Content Handle or Document
Handle. The DARetrieveDocHandle function returns the Document
Handle associated with any Content Handle.

1.4 Directory Structure
Each Outside In product has an sdk directory, under which there is a subdirectory for
each platform on which the product ships (for example, ca/sdk/ca_win-x86-32_sdk).
Under each of these directories are the following two subdirectories:

• redist: Contains only the files that the customer is allowed to redistribute. These
include all the compiled modules, filter support files, .xsd and .dtd files,
cmmap000.bin, and third-party libraries, like freetype.

• sdk: Contains the other subdirectories that used to be at the root-level of an sdk
(common, lib (windows only), resource, samplefiles, and samplecode (previously
samples). In addition, one new subdirectory has been added, demo, that holds all
of the compiled sample apps and other files that are needed to demo the products.
These are files that the customer should not redistribute (.cfg files, exportmaps,
and so forth).

In the root platform directory (for example, ca/sdk/ca_win-x86-32_sdk), there are two
files:

• README: Explains the contents of the sdk, and that makedemo must be run in
order to use the sample applications.

• makedemo (either .bat or .sh – platform-based): This script will either copy (on
Windows) or Symlink (on UNIX) the contents of …/redist into …/sdk/demo, so that
sample applications can then be run out of the demo directory.

Chapter 1
Definition of Terms

1-3



1.5 How to Use Content Access
Here's a step-by-step overview of how to obtain information from a source file using
Content Access.

1. Call DAInitEx to initialize the Data Access technology. This function needs to be
called only once per application. If using threading, then pass in the correct
ThreadOption.

2. Set "Null" options: Certain options need to be set before the desired source file is
opened. These options are identified by requiring a NULL handle type. They
include, but aren't limited to:

• SCCOPT_FALLBACKFORMAT

• SCCOPT_FIFLAGS

• SCCOPT_TEMPDIR

3. Open the Source File: DAOpenDocument is called to create a document handle
that uniquely identifies the source file. This handle may be used in subsequent
calls to the CAOpenContent function or the open function of any other Data
Access Submodule, and will be used to close the file when access is complete.
This allows the file to be accessed from multiple Data Access Submodules without
reopening.

4. Set other Options: Once the source document has been opened, set any other
desired options. Most options will be set at this time and are identified by requiring
a VTHDOC handle type.

5. Open a Handle to Content Access: Using the document handle, CAOpenContent
is called to obtain a content handle that identifies the file to the Content Access
module. This handle will used in all subsequent calls to the Content Access
functions.

6. Retrieve the first Information from the File: Call CAReadFirst to read the first piece
of information from the file. Note: this step may be repeated to reread the file.

7. Retrieve other Information from the File: Repeatedly call CAReadNext, which will
iteratively read through and process the file.

8. Process sub-documents (Optional): When you encounter a sub-document, you
may process that sub-document by repeating steps 4-10. Sub-documents are
identified by either the SCCCA_OBJECT type or the SCCCA_LINKEDOBJECT
subtype of the SCCCA_BEGINTAG type. Note: the document handle and content
handle will be different for the parent and sub-document.

9. Close the Content Access Handle: Call CACloseContent to terminate the content
access for the file. After this function is called, the content handle will no longer be
valid, but the document handle may still be used.

10. Close the Source File: DACloseDocument is called to close the source file. After
calling this function, the document handle will no longer be valid.

11. De-initialize DA: DADeInit is called to de-initialize the Data Access technology.

Chapter 1
How to Use Content Access

1-4



1.6 How to Use Text Access
Here's a step-by-step overview of how to obtain information from a source file using
Text Access.

1. Call DAInitEx to initialize the Data Access technology. This function needs to be
called only once per application. If using threading, then pass in the correct
ThreadOption.

2. Set "Null" options: Certain options need to be set before the desired source file is
opened. These options are identified by requiring a NULL handle type. They
include, but aren't limited to:

• SCCOPT_FALLBACKFORMAT

• SCCOPT_FIFLAGS

• SCCOPT_TEMPDIR

3. Open the Source File: DAOpenDocument is called to create a document handle
that uniquely identifies the source file. This handle may be used in subsequent
calls to the TAOpenText function or the open function of any other Data Access
Submodule, and will be used to close the file when access is complete. This
allows the file to be accessed from multiple Data Access Submodules without
reopening.

4. Set other Options: Once the source document has been opened, set any other
desired options. Most options will be set at this time and are identified by requiring
a VTHDOC handle type.

5. Open a Handle to Text Access: Using the document handle, TAOpenContent is
called to obtain a content handle that identifies the file to the Text Access module.
This handle will used in all subsequent calls to the Text Access functions.

6. Retrieve the first Information from the File: Call TAReadFirst to read the first piece
of information from the file. Note: this step may be repeated to reread the file.

7. Retrieve other Information from the File: Repeatedly call TAReadNext, which will
iteratively read through and process the file.

8. Close the Text Access Handle: Call TACloseText to terminate the text access for
the file. After this function is called, the text handle will no longer be valid, but the
document handle may still be used.

9. Close the Source File: DACloseDocument is called to close the source file. After
calling this function, the document handle will no longer be valid.

10. De-initialize DA: DADeInit is called to de-initialize the Data Access technology.

Chapter 1
How to Use Text Access

1-5



2
Windows Implementation Details

This chapter describes the implementation of the Content Access SDK on the
Windows platform. Content Access is delivered as a set of DLLs.

For a list of the currently supported platforms, see Outside In Technology and click
links under Certified Platforms and Supported Formats from the Get Started page.

This chapter includes the following sections:

• See Installation for information.

• Libraries and Structure

• The Basics

• Character Sets

• Runtime Considerations

• Changing Resources

2.1 Libraries and Structure
Here is an overview of the files contained in the main installation directory for this
product:

API DLLs

These DLLs implement the API. They should be linked with the developer's
application. LIB files are included in the SDK.

File Description

sccca.dll Content Access module (provides organized chunker data for the
developer)

sccda.dll Data Access module

sccfi.dll File Identification module (identifies files based on their contents).
The File ID Specification may not be used directly by any
application or workflow without it being separately licensed
expressly for that purpose.

sccta.dll Text Access module (provides straight text data for the
developer)

Support DLLs

File Description

sccch.dll Chunker (provides caching of and access to filter data for the
display engine)

sccfa.dll Filter Access module

2-1

http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage


File Description

sccfmt.dll Formatting module (resolves numbers to formatted strings)

sccfut.dll Filter utility module

sccind.dll Indexing engine

scclo.dll Localization library (all strings, menus, dialogs and dialog
procedures reside here)

sccole.dll OLE rendering module

sccut.dll Utility functions (including IO subsystem)

wvcore.dll The GDI Abstraction layer

Filter DLLs

File Description

vs*.dll Filters for specific file types (there are more than 150 of these
filters, covering more than 600 file formats)

oitnsf.id Support file for the vsnsf filter.

Premier Graphics Filters

File Description

i*2.dll Import filters for premier graphics formats

isgdi32.dll Interface to premier graphics filters

Additional Files

File Description

adinit.dat Support file for the vsacad filter

cmmap000.bin Tables for character mapping (all character sets)

cmmap000.sbc Tables for character mapping (single-byte character sets).
Located in the common directory.

cmmap000.dbc Identical to cmmap000.Bin, but renamed for clarity (.dbc =
double-byte character). This file is located in the common
directory.

compreg.bin Outside In Component Registry

2.2 The Basics
All the steps outlined in this section are used in the sample applications provided with
the SDK. Looking at the code for the simple sample application is recommended for
those wishing to see a real-world example of this process.

For detailed information about all sample applications included with this product, see 
Sample Applications.

Chapter 2
The Basics

2-2



2.2.1 What You Need in Your Source Code
Any source code that uses this product should #include the file sccca.h (for Content
Access) and/or sccta.h (for Text Access) and #define WINDOWS and WIN32 or WIN64.
For example, a Windows application might have a source file with the following lines:

#define WINDOWS         /* Will be automatically defined if your
                           compiler defines _WINDOWS */
#define WIN32
#include <sccca.h>      /* If using ContentAccess */
#include <sccta.h>      /* If using Text Access */

The developer's application should be linked to the Content Access (and/or Text
Access) and Data Access DLLs through the provided libraries (sccta.lib, sccca.lib and
sccda.lib).

2.2.2 Options and Information Storage
One set of information is created by the technology, the default options. In the
Windows implementation, this is built by the technology as needed, usually the first
time the product is run. You do not need to ship this list with your application. The list
is automatically regenerated if corrupted or deleted.

The files used to store this information are stored in a .oit subdirectory in the following
location:

\Documents and Settings\user name\Application Data

If an .oit directory does not exist in the user's directory, the directory will be created
automatically by the technology. The files are automatically regenerated if corrupted or
deleted.

The file is:

*.d = Display engine lists

Note:

Some applications and services may run under a local system account for
which there is no user's "application data" folder. The technology first does a
check for an environment variable called OIT_DATA_PATH. Then it checks
for APPDATA, and then LOCALAPPDATA. If none of those exist, the options
files are put into the executable path of the UT module.

These file names are intended to be unique enough to avoid conflict for any
combination of machine name and install directory. This allows the user to run
products in separate directories without having to reload the files above. The file
names are built from an 11-character string derived from the directory the Outside In
technology resides in and the name of the machine it is being run on. The string is
generated by code derived from the RSA Data Security, Inc. MD5 Message-Digest
Algorithm.

Chapter 2
The Basics

2-3



2.2.3 Structure Alignment
Outside In is built with 8-byte structure alignment. This is the default setting for most
Windows compilers. This and other compiler options that should be used are
demonstrated in the files provided with the sample applications in \sdk\samplefiles\win.

2.3 Character Sets
This section provides information about character sets.

2.3.1 Default API Character Set
The strings passed in the Windows API are ANSI1252 by default.

2.3.2 Double-Byte Character Set Mapping
Please note that to optimize performance on systems that do not require DBCS
support, a second character mapping bin file, that does not contain any of the DBCS
pages, is now included. The second bin file will give additional performance benefits
for English documents, but will not be able to handle DBCS documents. To use the
new bin file, replace the cmmap000.bin with the new bin file, cmmap000.sbc. For
clarity, a copy of the cmmap000.bin file named cmmap000.dbc has also been
included. Both the cmmap000.sbc and cmmap000.dbc files are located in the \sdk
\common directory of the technology.

2.4 Runtime Considerations
The files used by this product must be in the same directory as the developer's
executable.

2.5 Changing Resources
Outside In Content Access ships with the necessary files for OEMs to change any of
the strings in the technology as they see fit.

Strings are stored in the lodlgstr.h file found in the resource directory. The file can be
edited using any text editor.

Note:

Do not directly edit the scclo.rc file. Strings are saved with their identifiers in
lodlgstr.h. If a new scclo.rc file is saved, it will contain numeric identifiers for
strings, instead of their #define'd names.

Once the changes have been made, the updated scclo.dll file can be rebuilt using the
following steps:

1. Compile the .res file:

Chapter 2
Character Sets

2-4



rc /fo ".\scclo.res" /i "<path to header (.h) files folder>" /d "NDEBUG" scclo.rc

2. Link the scclo.res file you've created with the scclo.obj file found in the resource
directory to create a new scclo.dll:

link /DLL /OUT:scclo.dll scclo.obj scclo.res

Note:

Developers should make sure they have set up their environment
variables to build the library for their specific architecture. For Windows
x86_32, when compiling with VS 2013, the solution is to run
vsvars32.bat (in a standard VS 2013 installation, this is found in C:
\Program Files\Microsoft Visual Studio X\Common7\Tools\). If this works
correctly, you will see the statement, "Setting environment for using
Microsoft Visual Studio 2013 tools." If you do not complete this step, you
may have conflicts that lead to unresolved symbols due to conflicts with
the Microsoft CRT.

3. Embed the manifest (which is created in the \resource directory during step 2) into
the new DLL:

mt -manifest scclo.dll.manifest -outputresource:scclo.dll;2

If you are not using Microsoft Visual Studio, substitute the appropriate development
tools from your environment.

Note:

In previous versions of Outside In, it was possible to directly edit the
SCCLO.DLL using Microsoft Visual Studio. Outside In DLLs are now digitally
signed. Editing the signed DLL is not advisable.

Chapter 2
Changing Resources

2-5



3
UNIX Implementation Details

This chapter describes the UNIX implementation of the Content Access SDK on the
UNIX platform. The UNIX implementation of Content Access is delivered as a set of
shared libraries.
For a list of the currently supported platforms, see Outside In Technology and click
links under Certified Platforms and Supported Formats from the Get Started page.

This chapter includes the following sections:

• Installation

• Libraries and Structure

• The Basics

• Character Sets

• Runtime Considerations

• Environment Variables

• Changing Resources

• HP-UX Compiling and Linking

• IBM AIX Compiling and Linking

• Linux Compiling and Linking

• Oracle Solaris Compiling and Linking

• FreeBSD Compiling and Linking

3.1 Installation
To install the demo version of the SDK, copy the tgz file corresponding to your
platform (available on the web site) to a local directory of your choice. Decompress the
tgz file and then extract from the resulting tar file as follows:

gunzip tgzfile
tar xvf tarfile

The installation directory should contain the following directory structure:

Directory Description

/redist Contains a working copy of the UNIX version of the technology.

/sdk/common Contains the C include files needed to build or rebuild the technology.

/sdk/demo Contains the compiled executables of the sample applications.

/sdk/resource Contains localization resource files. For more information, see 
Changing Resources.

/sdk/samplecode Contains a subdirectory holding the source code for a sample
application. For more information, see Sample Applications.

3-1

http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage


Directory Description

/sdk/samplefiles Contains sample files designed to exercise the technology.

3.1.1 NSF Support
Notes Storage Format (NSF) files are produced by the Lotus Notes Client or the Lotus
Domino server. The NSF filter is the only Outside In filter that requires the native
application to be present to filter the input documents. Due to integration with an
outside application, NSF support will not work with redirected I/O nor will it work when
an NSF file is embedded in another file. Lotus Domino version 8 must be installed on
the same machine as OIT. The NSF filter is currently only supported on the Win32,
Win x86-64, Linux x86-32, and Solaris Sparc 32 platforms.
SCCOPT_LOTUSNOTESDIRECTORY is a Windows-only option and is ignored on Unix.

Additional steps must be taken to prepare the system. It is necessary to know the
name of the directory in which Lotus Domino has been installed. On Linux, this default
directory is /opt/ibm/lotus/notes/latest/linux.. On Solaris, it is /opt/ibm/lotus/
notes/latest/sunspa

• In the Lotus Domino directory, check for the existence of a file called "notes.ini".
If the file "notes.ini" does not exist, create it in that directory and ensure that it
contains the following single line:

[Notes]

• Add the Lotus Domino directory to the $LD_LIBRARY_PATH environment variable.

• Set the environment variable $Notes_ExecDirectory to the Lotus Domino
directory.

3.2 Libraries and Structure
On the UNIX platforms, Outside In technologies are delivered with a set of shared
libraries. All libraries should be installed to a single directory. Depending upon your
application, you may also need to add that directory to the system's runtime search
path. For more information, see Environment Variables.

The following is a brief description of the included libraries and support files. Note that
in instances where a file extension is listed as .*, the file extension will vary for each
UNIX platform (sl on HP/UX, so on Linux and Solaris).

API Libraries

These libraries implement the API. They should be linked with the developer's
application.

File Description

libsc_ca.* Content Access module (provides organized chunker data for the
developer)

libsc_da.* Data Access module

Chapter 3
Libraries and Structure

3-2



File Description

libsc_fi.* File Identification module (identifies files based on their contents).
The File ID Specification may not be used directly by any
application or workflow without it being separately licensed
expressly for that purpose.

libsc_ta.* Text Access module (provides straight text data for the
developer)

Support Libraries

File Description

libsc_ch.* Chunker (provides caching of and access to filter data for the
display engine)

libsc_fa.* Filter Access module

libsc_fmt.* Formatting module (resolves numbers to formatted strings)

libsc_fut.* Filter utility module

libsc_ind.* Indexing engine

libsc_lo.* Localization library (all strings, menus, dialogs and dialog
procedures reside here)

libsc_ut.* Utility functions, including IO subsystem

libsc_xp.* XPrinter bridge

libwv_core.* The Abstraction layer

Filter Libraries

File Description

libvs_*.* Filters for specific file types (there are more than 150 of these
filters, covering more than 600 file formats)

Premier Graphics Filters

File Description

libi*.* These 30 files are the import filters for premier graphics formats.

libis_unx2.* Interface to premier graphics filters

Additional Files

File Description

adinit.dat Support file for the vsacad and vsacd2 filters

cmmap000.bin Tables for character mapping (all character sets)

cmmap000.sbc Tables for character mapping (single-byte character sets). This
file is located in the common directory.

cmmap000.dbc Identical to cmmap000.Bin, but renamed for clarity (.dbc =
double-byte character). This file is located in the common
directory.

Chapter 3
Libraries and Structure

3-3



File Description

oitnsf.id Support file for the vsnsf filter.

3.3 The Basics
All the steps outlined in this section are used in the sample applications provided with
the SDK. Looking at the code for the casample sample application (see Sample
Applications) is recommended for a real world example of this process.

3.3.1 What You Need in Your Source Code
Any source code that uses this product should #include the file sccca.h (for Content
Access) and/or sccta.h (for Text Access) and #define UNIX. For example, a 32-bit
UNIX application might have a source file with the following lines:

#define UNIX
#include <sccca.h>      /* If using ContentAccess */
#include <sccta.h>      /* If using Text Access */

and a 64-bit UNIX application might have a source file with the following lines:

#define UNIX
#define UNIX_64
#include <sccta.h>

3.3.2 Options and Information Storage
Three sets of information are created by the technology: the default options, a list of
available filters and a list of available display engines. In the UNIX implementations,
these lists are built as needed, usually the first time the product is run. You do not
need to ship these lists with your application.

These lists are stored in the $HOME/.oit directory. If the $HOME environment variable
is not set, the files are placed in the same directory as the Outside In Technology. If
a .oit directory does not exist in the user's $HOME directory, the .oit directory will be
created automatically by the technology. The files are automatically regenerated if
corrupted or deleted.

The files are:

• *.f: Filter lists

• *.d: Display engine list

• *.opt: Persistent options

The names of these option files end in *.opt, and are intended to be unique enough to
avoid conflict for any combination of machine name and install directory. This is
intended to prevent problems with version conflicts when multiple versions of the
Viewer Technology and/or other Viewer Technology-based products are installed on a
single system. The file names are built from an 11-character string derived from the
directory the Outside In technology resides in and the name of the machine it is being
run on. The string is generated by code derived from the RSA Data Security, Inc. MD5
Message-Digest Algorithm.

Chapter 3
The Basics

3-4



3.4 Character Sets
This section provides information about character sets.

3.4.1 Default API Character Set
The strings passed in the UNIX API are ISO8859-1 by default.

3.4.2 Double-Byte Character Set Mapping
To optimize performance on systems that do not require DBCS support, a second
character mapping bin file not containing any of the DBCS pages is now included. The
second bin file gives additional performance benefits for English documents, but will
not be able to handle DBCS documents. To use the new bin file, replace the
cmmap000.bin with the new bin file, cmmap000.sbc. For clarity, a copy of the
cmmap000.bin file named cmmap000.dbc has also been included. Both the
cmmap000.sbc and cmmap000.dbc files are located in the /common directory of the
technology.

3.5 Runtime Considerations
This section provides information about runtime considerations.

3.5.1 Signal Handling
This product traps and handles the following signals:

• SIGABRT

• SIGBUS

• SIGFPE

• SIGILL

• SIGINT

• SIGSEGV

• SIGTERM

To override the default handling of these signals you can set your own signal handlers.
This can be done after the developer's application has called DAInitEx().

Chapter 3
Character Sets

3-5



Note:

The Java Native Interface (JNI) allows Java code to call and be called by
native code (C/C++ in the case of OIT). You may run into problems if Java
isn't allowed to handle signals and forward them to OIT. If OIT catches the
signals and forwards them to Java, the JVMs will sometimes crash. OIT
installs signal handlers when DAInitEx() is called, so if you call OIT after the
JVM is created, you will need to use libjsig. Refer here for more information:

http://www.oracle.com/technetwork/java/javase/index-137495.html

3.5.2 Runtime Search Path and $ORIGIN
Libraries and sample applications are all built with the $ORIGIN variable as part of the
binaries' runtime search path. This means that at runtime, OIT libraries will
automatically look in the directory they were loaded from to find their dependent
libraries. You don't necessarily need to include the technology directory in your
LD_LIBRARY_PATH or SHLIB_PATH.

As an example, an application that resides in the same directory as the OIT libraries
and includes $ORIGIN in its runtime search path will have its dependent OIT libraries
found automatically. You will still need to include the technology directory in your
linker's search path at link time using something like -L and possibly -rpath-link.

Another example is an application that loads OIT libraries from a known directory. The
loading of the first OIT library will locate the dependent libraries.

Note:

This feature does not work on AIX and FreeBSD.

3.6 Environment Variables
There are a number of environment variables the UNIX implementation of the
technology may use at run time. While described elsewhere, following is a short
summary of those variables and their usage.

Variable Description

$PATH Must be set to include the directory containing the .flt files. Only
applicable to AIX.

$LD_LIBRARY_PATH
(FreeBSD, HP-UX Itanium
64, Linux, Solaris)

$SHLIB_PATH (HP-UX PA-
RISC 32)

$LIBPATH (AIX, iSeries)

These variables help your system's dynamic loader locate objects
at runtime. If you have problems with libraries failing to load, try
adding the path to the Outside In libraries to the appropriate
environment variable. See your system's manual for the dynamic
loader and its configuration for details.

Note that for products that have a 64-bit PA-RISC, 64-bit Solaris
and Linux PPC/PPC64 distributable, they will also go
under $LD_LIBRARY_PATH.

Chapter 3
Environment Variables

3-6

http://www.oracle.com/technetwork/java/javase/index-137495.html


Variable Description

$HOME Must be set to allow the system to write the option, filter and
display engine lists. For more information, see Options and
Information Storage.

3.7 Changing Resources
All of the strings used in the UNIX versions of Outside In products are contained in a
file called lodlgstr.h. This file, located in the resource directory, can be modified for
internationalization and other purposes. Everything necessary to rebuild the resource
library to use the modified source file is included with the SDK.

Along with lodlgstr.h, an object file, scclo.o has been provided that is necessary for the
linking phase of the build. A makefile has also been provided for building the library.
The makefile allows building on all of the UNIX platforms supported by Outside In. It
may be necessary to make minor modifications to the makefile so that the system
header files and libraries can be found for compiling and linking. There are standard
INCLUDE and LIB make variables defined for each platform in the makefile. Edit these
variables to point to the header files and libraries on your particular system. Other
make variables are:

• TECHINCLUDE: May need to be edited to point to the location of the Outside In
common header files that are supplied with the SDK.

• BUILDDIR: May need to be edited to point to the location of the makefile,
lodlgstr.h, and scclo.o (which should all be in the same directory).

After these make variables are set, change to the build directory and type make. The
resource library, libsc_lo, will be built and placed in the appropriate platform-specific
directory. To use this library, copy it into the directory where the Outside In product
resides, and the new, modified resource strings will then be used by the technology.

Menu constants are included in lomenu.h in the common directory.

All dialog boxes are created directly in the viewer code internally and are compiled and
linked in the normal compilation process. There are no separate resource files
corresponding to the .rc files in the Windows code.

Additional viewer resources are defined in xsccvw.h, which is included in the code for
the sample executables and the viewer.

3.8 HP-UX Compiling and Linking
In the following example, libsc_ca.sl and libsc_da.sl are the only libraries that need to
be linked with the casample. Not all applications that use the Content Access module
will require the use of these libraries. They can be loaded when the application starts
by linking them directly at compile time or they can be loaded dynamically by your
application using library load functions (for example, shl_load).

The following are example command lines used to compile the sample application
casample from the /sdk/samplecode/unix directory. The command lines are separated
into sections for HP/UX and HP/UX on Itanium (which requires GCC). Please note that
this command line is only an example. The actual command line required on the
developer's system may vary. The example assumes that the include and library file

Chapter 3
Changing Resources

3-7



search paths for the technology libraries and any required X libraries are set correctly.
If they are not set correctly, the search paths for the include and/or library files must be
explicitly specified via the -I include file path and/or -L library file path options,
respectively, so that the compiler and linker can locate all required files.

HP-UX on RISC

cc -w -o ../casample/unix/casample ../casample/unix/casample.c +DAportable -Ae -
I/usr/include -I../../common -L../../demo -L/usr/lib -lm -lsc_ca -lsc_da -DUNIX -Wl,
+s,+b,'$ORIGIN'

HP-UX on Itanium (64 bit)

cc -w -o ../casample/unix/casample ../casample/unix/casample.c +DD64 -I../../common -
L../../demo -L/usr/lib/hpux64 -lsc_da -lsc_ca -DUNIX -DUNIX_64 -Wl,+s,+b,'$ORIGIN'

3.9 IBM AIX Compiling and Linking
All libraries should be installed into a single directory and the directory must be
included in the system's shared library path ($LIBPATH) as well as the executable
path ($PATH).

Note:

$LIBPATH must be set and must point to the directory containing the Outside
In technology.

Outside In Technology has been updated to increase performance, at a cost of using
more memory. It is possible that this increased memory usage may cause a problem
on AIX systems, which can be very conservative in the amount of memory they grant
to processes. If your application experiences problems due to memory limitations with
Outside In, you may be able to fix this problem by using the "large page" memory
model. If you anticipate viewing or converting very large files with Outside In
technology, we recommend linking your applications with the -bmaxdata flag (for
example, ‘cc -o foo foo.c -bmaxdata:0x80000000'). If you are currently seeing illegal
instruction errors followed by immediate program exit, this is probably due to not using
the large data model.

The following is an example command line used to compile the sample application
casample from the /sdk/samplecode/unix directory. This command line is only an
example. The actual command line required on the developer's system may vary. The
example assumes that the include and library file search paths for the technology
libraries and any required X libraries are set correctly. If they are not set correctly, the
search paths for the include and/or library files must be explicitly specified via the -I
include file path and/or -L library file path options, respectively, so that the compiler
and linker can locate all required files. Developers need to pass -brtl to the linker to list
libraries in the link command as dependencies of their applications.

Chapter 3
IBM AIX Compiling and Linking

3-8



Note:

Developers may need to use the -qcpluscmt flag to allow C++ style
comments.

gcc -w -o ../casample/unix/casample ../casample/unix/casample.c -I../../common -
L../../demo -lsc_ca -lsc_da -DUNIX -DFUNCPROTO -Wl,-brtl

3.10 Linux Compiling and Linking
This section provides information about Linux compiling and linking.

3.10.1 Library Compatibility
This section provides information about library compatibility.

3.10.1.1 Motif Libraries
On some Linux installations, particularly newer ones, the Motif libraries that are
installed are not compatible with the libraries that are used to build the Outside In
technology. This is known to be the case with most of the SuSE installations, for
example. It is likely that you have a binary incompatibility if you try to build one of the
Xwindows-based sample applications included with this product and see an error at
compile time that looks like the following:

warning: libXm.so.3, needed by ../../libsc_vw.so, may conflict with libXm.so.2

The proper solution to this problem is to install a compatible Motif library and use it to
build your application. Often, the installation discs for your particular Linux platform will
have the proper libraries. If your installation discs do not have the libraries, instructions
for downloading a binary rpm can be found at http://rpmfind.net/linux/RPM.

If you are doing development, you will also need the proper header files, as well.

The following is a list of the Motif library versions used by Oracle when building and
testing the Outside In binaries:

• x86 Linux: OpenMotif v. 2.2.3

• zSeries Linux: OpenMotif v. 2.2.3

• Itanium Linux: OpenMotif v. 2.1.30.

Note:

If a directory needs to be specified for the compiler to find the shared
libraries, it is recommended that the $LD_LIBRARY_PATH environment
variable be used. This will prevent the compiler from hard-coding the
library's current directory into the executable as the only directory to
search for the library at run time. Instead, the system will first search the
directories specified by $LD_LIBRARY_PATH for the library.

Chapter 3
Linux Compiling and Linking

3-9

http://rpmfind.net/linux/RPM


3.10.1.2 GLIBC and Compiler Versions
For each Linux platform supported by Outside In, the following table indicates the
compiler version used and the minimum required version of the GNU standard C
library upon which Outside In depends.

Distribution Compiler Version GLIBC Version

x86 Linux 3.3.2 libc.so.6 (2.3.2 or newer)

Itanium Linux 3.3.2 libc.so.6 (2.3.2 or newer)

zSeries Linux 3.3.6 libc.so.6 (2.3.2 or newer)

3.10.1.3 Other Libraries
In addition to libc.so.6, Outside In is dependent upon the following libraries:

• libXm.so.3 (in particular, libXm.so.3.0.2 or newer, due to issues in OpenMotif
2.2.2)

• libstdc++.so.6

• libgcc_so.1

• libXt.so.6

libgcc_s.so.1 was introduced with GCC 3.0, so any distribution based on a pre-GCC
3.0 compiler will not include libgcc_s.so.1.

3.10.2 Compiling and Linking
In the following example, the libsc_ca.so and libsc_da.so are the only libraries needing
to be linked with the casample. Not all applications that use the Content Access
module will require the use of all of these libraries. They can be loaded when the
application starts by linking them directly at compile time or they can be loaded
dynamically by your application using library load functions (for example, dlopen).

The following is an example command line used to compile the sample application
casample from the /sdk/samplecode/unix directory. Please note that this command
line is only an example. The actual command line required on the developer's system
may vary. The example assumes that the include and library file search paths for the
technology libraries and any required X libraries are set correctly. If they are not set
correctly, the search paths for the include and/or library files must be explicitly
specified via the -I include file path and/or -L library file path options, respectively, so
the compiler and linker can locate all required files.

Linux 32-bit (includes Linux PPC)

gcc -w -o ../casample/unix/casample ../casample/unix/casample.c -I/usr/local/include 
-I../../common -L../../demo -L/usr/local/lib -lsc_da -lsc_ca -DUNIX -Wl,-rpath,../../
demo -Wl,-rpath,'${ORIGIN}'

Linux 64-bit

gcc -w -o ../casample/unix/casample ../casample/unix/casample.c -I/usr/local/include 
-I../../common -L../../demo -L/usr/local/lib -lsc_da -lsc_ca -DUNIX -DUNIX_64 -Wl,-
rpath,../../demo -Wl,-rpath,'${ORIGIN}'

Chapter 3
Linux Compiling and Linking

3-10



Linux zSeries

gcc -w -o ../casample/unix/casample ../casample/unix/casample.c -I/usr/local/include 
-I../../common -L../../demo -L/usr/local/lib -lsc_da -lsc_ca -DUNIX -Wl,-rpath,../../
demo -Wl,-rpath,'${ORIGIN}'

3.11 Oracle Solaris Compiling and Linking
All libraries should be installed into a single directory.

Note:

This product does not support the old Solaris BSD mode.

In the following example, the libsc_ca.so and libsc_da.so are the only libraries that
need to be linked with the casample. Not all applications that use the Content Access
module will require the use of all of these libraries. They can be loaded when the
application starts by linking them directly at compile time or they can be loaded
dynamically by your application using library load functions (for example, dlopen).

The following is an example command line used to compile the sample application
casample from the /sdk/samplecode/unix directory. Please note that this command line
is only an example. The actual command line required on the developer's system may
vary. The example assumes that the include and library file search paths for the
technology libraries and any required X libraries are set correctly. If they are not set
correctly, the search paths for the include and/or library files must be explicitly
specified via the -I include file path and/or -L library file path options, respectively, so
that the compiler and linker can locate all required files.

Note:

Developers may need to use the -xcc flag to allow C++ style comments.

3.11.1 Oracle Solaris SPARC
cc -I/usr/include -I/usr/dt/share/include -I../../common -w -o ../casample/unix/
casample ../casample/unix/casample.c  -L../../demo -L/usr/lib -L/lib -lc -ldl -
lsc_ca -lsc_da -DUNIX -Wl,-R,'$ORIGIN'

Note: When running the 32-bit SPARC binaries on Solaris 9 systems, you may see the
following error:

ld.so.1: simple: fatal: libm.so.1: version `SUNW_1.1.1' not found
(required by file ./libsc_vw.so)

This is due to a missing system patch. Please apply the following patch (or its
successor) to your system to correct.

• For Solaris 9 - Patch 111722-04

Chapter 3
Oracle Solaris Compiling and Linking

3-11



3.11.2 Oracle Solaris x86

Note:

Your system will require Solaris patch 108436, which contains the C++
library libCstd.so.1.

cc -I/usr/include -I/usr/dt/share/include -I../../common -w -o ../casample/unix/
casample ../casample/unix/casample.c -L../../demo -L/usr/lib  -lsc_ca -lsc_da -DUNIX 
-R '$ORIGIN'+ -DUNIX

3.12 FreeBSD Compiling and Linking
The following is an example command line used to compile the sample application
casample from the /sdk/samplecode/unix directory. Please note that this command line
is only an example. The actual command line required on the developer's system may
vary. The example assumes that the include and library file search paths for the
technology libraries and any required X libraries are set correctly. If they are not set
correctly, the search paths for the include and/or library files must be explicitly
specified via the -I include file path and/or -L library file path options, respectively, so
the compiler and linker can locate all required files.

gcc -w -o ../casample/unix/casample ../casample/unix/casample.c -I/usr/local/include 
-I../../common -L../../demo -L/usr/local/lib -lsc_da -lsc_ca -DUNIX -Wl,-rpath,../../
demo

Chapter 3
FreeBSD Compiling and Linking

3-12



4
Data Access Common Functions

The Data Access module is common to all Outside In technologies. It provides a way
to open a generic handle to a source file. This handle can then be used in the
functions described in this chapter.
This chapter includes the following sections:

• Deprecated Functions

• DAInitEx

• DADeInit

• DAOpenDocument

• DACloseDocument

• DARetrieveDocHandle

• DASetOption

• DAGetOption

• DAGetFileId

• DAGetFileIdEx

• DAGetErrorString

• DAGetObjectInfo

• DAGetTreeCount

• DAGetTreeRecord

• DAOpenTreeRecord

• DAOpenRandomTreeRecord

• DASaveInputObject

• DASaveTreeRecord

• DASaveRandomTreeRecord

• DACloseTreeRecord

• DASetStatCallback

• DASetFileAccessCallback

• DAOpenNextDocument

• DAGetOptionItem

• DARemoveOptionItem

• DAAddOptionItem

• DASetFileSpecOption

• DAOpenSubdocumentById

4-1



4.1 Deprecated Functions
DAInit and DaThreadInit have both been deprecated. DAInitEx now replaces these two
functions. All new implementations should use DAInitEX, although the other two
functions will continue to be supported.

4.2 DAInitEx
This function tells the Data Access module to perform any necessary initialization it
needs to prepare for document access. This function must be called before the first
time the application uses the module to retrieve data from any document. This function
supersedes the old DAInit and DAThreadInit functions.

Note:

DAInitEx should only be called once per application, at application startup
time. Any number of documents can be opened for access between calls to
DAInitEx and DADeInit. If DAInitEx succeeds, DADeInit must be called
regardless of any other API calls.

If the ThreadOption parameter is set to something other than
DATHREAD_INIT_NOTHREADS, then this function's preparation includes setting up
mutex function pointers to prevent threads from clashing in critical sections of the
technology's code. The developer must actually code the threads after this function
has been called. DAInitEx should be called only once per process and should be
called before the developer's application begins the thread.

Note:

Multiple threads are supported for all Windows platforms, the 32-bit versions
of Linux x86 and Solaris SPARC, Linux x64 and Solaris SPARC 64. Failed
initialization of the threading function will not impair other API calls. If
threading isn't initialized or fails, stub functions are called instead of mutex
functions.

Prototype

DAERR DAInitEx(VTSHORT ThreadOption, VTDWORD dwFlags);

Parameters

• ThreadOption: can be one of the following values:

– DATHREAD_INIT_NOTHREADS: No thread support requested.

– DATHREAD_INIT_PTHREADS: Support for PTHREADS requested.

– DATHREAD_INIT_NATIVETHREADS: Support for native threading requested.
Supported only on Microsoft Windows platforms and Oracle Solaris.

Chapter 4
Deprecated Functions

4-2



• dwFlags: can be one or more of the following flags OR-ed together

– OI_INIT_DEFAULT: Options Load and Save are performed normally

– OI_INIT_NOSAVEOPTIONS: The options file will not be saved on exit

– OI_INIT_NOLOADOPTIONS: The options file will not be read during
initialization.

Return Values

• DAERR_OK: If the initialization was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.3 DADeInit
This function tells the Data Access module that it will not be asked to read additional
documents, so it should perform any cleanup tasks that may be necessary. This
function should be called at application shutdown time, and only if the module was
successfully initialized with a call to DAInitEx.

Prototype

DAERR DADeInit();

Return Values

• DAERR_OK: If the de-initialization was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.4 DAOpenDocument
Opens a source file to make it accessible by one or more of the data access
technologies. If DAOpenDocument succeeds, DACloseDocument must be called
regardless of any other API calls.

Prototype

DAERR DAOpenDocument(
   VTLPHDOC   phDoc,
   VTDWORD    dwSpecType,
   VTLPVOID   pSpec,
   VTDWORD    dwFlags);

Parameters

• lphDoc: Pointer to a handle that will be filled with a value that uniquely identifies
the document to data access. The developer will use this handle in subsequent
calls to data access to identify this particular source file.

This is not an operating system file handle.

• dwSpecType: Describes the contents of pSpec. Together, dwSpecType and
pSpec describe the location of the source file.

Chapter 4
DADeInit

4-3



Note:

The values used within IOTYPE_ARCHIVEOBJECT,
IOTYPE_LINKEDOBJECT, and IOTYPE_OBJECT may change if
different options are applied, with different versions of the technology, or
after patches are applied.

Must be one of the following values:

– IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32
and Win64) file name conventions.

– IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS (Win32 and Win64)
file name conventions.

– IOTYPE_UNIXPATH: X Windows on UNIX platforms only. pSpec points to a
NULL-terminated full path name using the system default character set and
UNIX path conventions. Unicode paths can be accessed on UNIX platforms by
using a UTF-8 encoded path with IOTYPE_UNIXPATH.

– IOTYPE_SUBOBJECT: All platforms. Opens an embedded object for data
access. pSpec points to a structure IOSPECSUBOBJECT (see 
IOSPECSUBOBJECT Structure) that has been filled with values returned in a
SCCCA_OBJECT content entry from Content Access.

– IOTYPE_REDIRECT: All platforms. pSpec points to a developer-defined struct
that allows the developer to redirect the IO routines used to read the file.

– IOTYPE_ARCHIVEOBJECT: All platforms. Opens an embedded archive
object for data access. pSpec points to a structure IOSPECARCHIVEOBJECT
(see IOSPECARCHIVEOBJECT Structure) that has been filled with values
returned in a SCCCA_OBJECT content entry from Content Access.

– IOTYPE_LINKEDOBJECT: All platforms. Opens an object specified by a
linked object for data access. pSpec points to a structure
IOSPECLINKEDOBJECT (see IOSPECLINKEDOBJECT Structure) that has
been filled with values returned in an SCCCA_BEGINTAG or
SCCCA_ENDTAG with a subtype of SCCCA_LINKEDOBJECT content entry
from Content Access.

– IOTYPE_OBJECT: All platforms. Opens an object (archive, embedded, or
linked) for data access. pSpec points to a structure SCCDAOBJECT (see 
SCCDAOBJECT Structure) that has been filled with values from Content
Access (SCCCA_OBJECT or SCCCA_BEGINTAG with a subtype of
SCCCA_LINKEDOBJECT) or from the <document> element in the SearchML
flavor of Search Export.

• pSpec: File location specification.

• dwFlags: The low WORD is the file ID for the document (0 by default). If you set
the file ID incorrectly, the technology will fail. If set to 0, the file identification
technology will determine the input file type automatically. The high WORD should
be set to 0. It may also be set to the following flags:

Chapter 4
DAOpenDocument

4-4



– DAOPENDOCUMENT_ARCHIVEONLYMODE: This flag may only be used
with archive files. It opens the archive in a special mode that is only usable
with DASaveRandomTreeRecord and DAOpenRandomTreeRecord.

– DAOPENDOCUMENT_CONTINUEONFAILURE: Some embeddings may
have both an OLE representation and an alternate graphic. When this flag is
set for IOTYPE_OBJECT, the technology will first try to access the OLE
representation. If there are errors, it will then attempt to access the alternate
graphic.

Return Values

• DAERR_OK: Returned if the open was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.4.1 IOSPECSUBOBJECT Structure
typedef struct IOSPECSUBOBJECTtag
      {
      VTDWORD      dwStructSize;
      VTSYSPARAM   hDoc;           /* Parent Doc hDoc */
      VTDWORD      dwObjectId;     /* Object Identifier */
      VTDWORD      dwStreamId;     /* Stream Identifier */
      VTDWORD      dwReserved1;    /* Must always be 0 */
      VTDWORD      dwReserved2;    /* Must always be 0 */
      } IOSPECSUBOBJECT, * PIOSPECSUBOBJECT;

4.4.2 IOSPECLINKEDOBJECT Structure
typedef struct IOSPECLINKEDOBJECTtag
   {
   VTDWORD    dwStructSize;
   VTSYSPARAM hDoc;
   VTDWORD    dwObjectId;  /* Object identifier. */
   VTDWORD    dwType;      /* Linked Object type */
                           /* (SO_LOCATORTYPE_*) */
   VTDWORD    dwParam1;    /* parameter for DoSpecial call */
   VTDWORD    dwParam2;    /* parameter for DoSpecial call */
   VTDWORD    dwReserved1; /* Reserved. */
   VTDWORD    dwReserved2; /* Reserved. */
} IOSPECLINKEDOBJECT, * PIOSPECLINKEDOBJECT;

4.4.3 IOSPECARCHIVEOBJECT Structure
typedef struct IOSPECARCHIVEOBJECTtag
   {
   VTDWORD dwStructSize;
   VTDWORD hDoc;        /* Parent Doc hDoc */
   VTDWORD dwNodeId;    /* Node ID */
   VTDWORD dwStreamId; 
   VTDWORD dwReserved1; /* Reserved  */
   VTDWORD dwReserved2; /* Reserved  */
} IOSPECARCHIVEOBJECT, * PIOSPECARCHIVEOBJECT;

Chapter 4
DAOpenDocument

4-5



4.4.4 SCCDAOBJECT Structure
typedef struct SCCDAOBJECTtag
{
   VTDWORD   dwSize;         /* sizeof(SCCDAOBJECT) */
   VTHDOC    hDoc;           /* DA handle for the document 
                                containing the object */
   VTDWORD   dwObjectType;   /* SCCCA_EMBEDDEDOBJECT, 
                                SCCCA_LINKEDOBJECT, 
                                SCCCA_COMPRESSEDFILE or 
                                SCCCA_ATTACHMENT */
   VTDWORD   dwData1;        /* Data identifying the object */
   VTDWORD   dwData2;        /* Data identifying the object */
   VTDWORD   dwData3;        /* Data identifying the object */
   VTDWORD   dwData4;        /* Data identifying the object */
} SCCDAOBJECT, * PSCCDAOBJECT;

4.5 DACloseDocument
This function is called to close a file opened by the reader that has not encountered a
fatal error.

Prototype

DAERR DACloseDocument(
   VTHDOC hDoc);

Parameters

• hDoc: Identifier of open document. Must be a handle returned by the
DAOpenDocument function.

• DAERR_OK: Returned if close succeeded. Otherwise, one of the other DAERR_
values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.6 DARetrieveDocHandle
This function returns the document handle associated with any type of Data Access
handle. This allows the developer to only keep the value of hItem, instead of both
hItem and hDoc.

Prototype

DAERR DARetrieveDocHandle(
   VTHDOC     hItem,
   VTLPHDOC   phDoc);

Parameters

• hItem: Identifier of open document. May be the subhandle returned by the
DAOpenDocument or DAOpenTreeRecord functions in the data access
submodule. Passing in an hDoc created by DAOpenDocument for this parameter
will result in an error.

• phDoc: Pointer to a handle that will be filled with the document handle associated
with the passed subhandle.

Chapter 4
DACloseDocument

4-6



Return Value

• DAERR_OK: Returned if the handle in phDoc is valid. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.7 DASetOption
This function is called to set the value of a data access option.

Prototype

DAERR DASetOption(
   VTHDOC      hDoc,
   VTDWORD     dwOptionId,
   VTLPVOID    pValue,
   VTDWORD     dwValueSize);

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, and so forth).
Setting an option for a VTHDOC will affect all subhandles opened under it, while
setting an option for a subhandle will only affect that handle.

If this parameter is NULL, then setting the option will affect all documents opened
thereafter. Once an option is set using the NULL handle, this option becomes the
default option thereafter. Note that this parameter should only be set to NULL if the
option being set can take that value.

• dwOptionId: The identifier of the option to be set.

• pValue: Pointer to a buffer containing the value of the option.

• dwValueSize: The size in bytes of the data pointed to by pValue. For a string
value, the NULL terminator should be included when calculating dwValueSize.

Return Value

• DAERR_OK: Returned if DASetOption succeeded. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.8 DAGetOption
This function is called to retrieve the value of a data access option. Note that the
results of a call to this option are only valid if DASetOption has already been called on
the option.

Prototype

DAERR DAGetOption(
   VTHDOC    hItem,
   VTDWORD   dwOptionId,
   VTLPVOID  pValue,
   VTLPDWORD pSize);

Chapter 4
DASetOption

4-7



Parameters

• hItem: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, and so forth).
Getting an option for a VTHDOC will get the value of that option for that handle,
which may be different than the subhandle's value.

• dwOptionId: The identifier of the option to be returned. For a list of option IDs with
descriptions, see Content Description.

• pValue: Pointer to a buffer containing the value of the option.

• pSize: This VTDWORD should be initialized by the caller to the size of the buffer
pointed to by pValue. If this size is sufficient, the option value will be copied into
pValue and pSize will be set to the actual size of the option value. If the size is not
sufficient, pSize will be set to the size of the buffer needed for the option and an
error will be returned.

Return Value

• DAERR_OK: Returned if DAGetOption was successful. Otherwise, one of the
other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned.

4.9 DAGetFileId
This function allows the developer to retrieve the format of the file based on the
technology's content-based file identification process. This can be used to make
intelligent decisions about how to process the file and to give the user feedback about
the format of the file they are working with.

Note: in cases where File ID returns a value of FI_UNKNOWN, then this function will
apply the Fallback Format before returning a result.

Prototype

DAERR DAGetFileId(
   VTHDOC      hDoc,
   VTLPDWORD   pdwFileId);

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, a VTHEXPORT returned by the EXOpenExport
function, or the subhandle returned by the DAOpenDocument or
DAOpenTreeRecord functions (VTHEXPORT, VTHCONTENT, VTHTEXT, and so
forth).

• pdwFileId: Pointer to a DWORD that receives a file identification number for the
file. These numbers are defined in sccfi.h.

Return Value

• DAERR_OK: Returned if DAGetFileId was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

Chapter 4
DAGetFileId

4-8



4.10 DAGetFileIdEx
This function allows the developer to retrieve the format of the file based on the
technology's content-based file identification process. This can be used to make
intelligent decisions about how to process the file and to give the user feedback about
the format of the file they are working with. This function has all the functionality of
DAGetFileID and adds the ability to return the raw FI value; in other words, the value
returned by normal FI, without applying the FallbackFI setting.

Prototype

DAERR DAGetFileIdEx(
   VTHDOC      hDoc,
   VTLPDWORD   pdwFileId,
   VTDWORD     dwFlags);

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHEXPORT, VTHCONTENT, VTHTEXT, and
so forth).

• pdwFileId: Pointer to a DWORD that receives a file identification number for the
file. These numbers are defined in sccfi.h.

• dwFlags: DWORD that allows user to request specific behavior.

– DA_FILEINFO_RAWFI: This flag tells DAGetFileIdEx() to return the result of
the File Identification operation before Extended File Ident. is performed and
without applying the FallbackFI value.

Return Value

• DAERR_OK: Returned if DAGetFileIdEx was successful. Otherwise, one of the
other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned. See the following tables for examples of expected output depending on
the value of various options.

Values with RAWFI turned off

Input file type ExtendedFI FallbackID DAGetFileId DAGetFileIdEx

true binary off fallback value fallback value fallback value

true binary on fallback value fallback value fallback value

true text off fallback value fallback value fallback value

true text on fallback value 40XX 40XX

Values with RAWFI turned on

Input file type ExtendedFI FallbackID DAGetFileId DAGetFileIdEx

true binary off fallback value fallback value 1999

true binary on fallback value fallback value 1999

Chapter 4
DAGetFileIdEx

4-9



Input file type ExtendedFI FallbackID DAGetFileId DAGetFileIdEx

true text off fallback value fallback value 1999

true text on fallback value 40XX 1999

4.11 DAGetErrorString
This function returns to the developer a string describing the input error code. If the
error string returned does not fit the buffer provided, it is truncated.

VTVOID DAGetErrorString(
   DAERR       deError,
   VTLPVOID    pBuffer,
   VTDWORD     dwBufSize);

Parameters

• Error: Error code passed in by the developer for which an error message is to be
returned.

• pBuffer: This buffer is allocated by the caller and is filled in with the error message
by this routine. The error message will be a NULL-terminated string.

• dwBufSize: Size of what pBuffer points to in bytes.

Return Value

• none

4.12 DAGetObjectInfo
This function returns information about the document or object pointed to by hDoc. The
object may be an embedded object, a linked object, or a compressed file.

DAERR DAGetObjectInfo(
   VTHDOC     hDoc,
   VTDWORD    dwInfoId,
   VTLPVOID   pInfo);

Parameters

• hDoc: The handle returned by DAOpenDocument.

• dwInfoId

The identifier of the requested information. Can be any of the following values:

– DAOBJECT_NAME_A: Retrieves the name of the object, in 8-bit characters.
pInfo points to a buffer of size DA_PATHSIZE.

– DAOBJECT_NAME_W: Retrieves the name of the object in Unicode
characters. pInfo points to a buffer of 16 bit characters of size DA_PATHSIZE.

– DAOBJECT_FORMATID: Retrieves the file ID of the object. pInfo points to a
VTDWORD value.

Chapter 4
DAGetErrorString

4-10



– DAOBJECT_COMPRESSIONTYPE: Retrieves an identifier of the type of
compression used to store the object, if known. pInfo points to a VTDWORD
value.

– DAOBJECT_FLAGS: Retrieves a bitfield of flags indicating additional
attributes of the object. pInfo points to a VTDWORD value. Possible flag
values include DAOBJECTFLAG_PARTIALFILE (would not normally exist
outside the source document), DAOBJECTFLAG_PROTECTEDFILE
(encrypted or password protected), DAOBJECTFLAG_LINKTOFILE (indicates
that an OLE object is linked to the file and a corresponding file is not found on
the host machine), DAOBJECTFLAG_UNIDENTIFIEDFILE (indicates that an
object could not be identified), and DAOBJECTFLAG_UNSUPPORTEDCOMP
(compressed with an unsupported compression), and
DAOBJECTFLAG_ARCKNOWNENCRYPT (see note below).

– DAOBJECT_ALTSTRING_A: Retrieves the alternate string describing the
object, in 8-bit characters. pInfo points to a buffer of size DA_PATHSIZE.

– DAOBJECT_ALTSTRING_W: Retrieves the alternate string describing the
object, in 16-bit Unicode characters. pInfo points to a buffer of size
DA_PATHSIZE.

• pInfo: Destination of the requested information. The possible types are described
in the preceding section about dwInfoId.

Note:

DAOBJECTFLAG_ARCKNOWNENCRYPT indicates that the object is
protected by a known encryption. It can be accessed after the correct
credentials (password and/or Lotus Notes id file) are provided through the
File Access Callback. For more information, see DASetFileAccessCallback.

Return Values

• DAERR_OK: Returned if the save was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.13 DAGetTreeCount
This function is called to retrieve the number of records in an archive file.

DAERR DAGetTreeCount(
      VTHDOC      hDoc,
      VTLPDWORD   lpRecordCount);

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by any of the
DAOpenDocument or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT,
and so forth).

• lpRecordCount: A pointer to a VTLPDWORD that will be filled with the number of
stored archive records.

Chapter 4
DAGetTreeCount

4-11



Return Value

• DAERR_OK: DAGetTreeCount was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_BADPARAM: The selected file does not contain an archive section, or the
requested record does not exist.

4.14 DAGetTreeRecord
This function is called to retrieve information about a record in an archive file.

DAERR DAGetTreeRecord(
      VTHDOC         hDoc,
      PSCCDATREENODE pTreeNode);

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle by any of the DAOpenDocument or
DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, and so forth).

• pTreeNode: A pointer to a PSCCDATREENODE structure that will be filled with
information about the selected record.

Return Values

• DAERR_OK: DAGetTreeRecord was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_BADPARAM: The selected file does not contain an archive section, or the
requested record does not exist.

• DAERR_EMPTYFILE: Empty file.

• DAERR_PROTECTEDFILE: Password protected or encrypted file.

• DAERR_SUPFILEOPENFAILS: Supplementary file open failed.

• DAERR_FILTERNOTAVAIL: The file's type is known, but the appropriate filter is
not available.

• DAERR_FILTERLOADFAILED: An error occurred during the initialization of the
appropriate filter.

4.14.1 SCCDATREENODE Structure
This structure is passed by the OEM through the DAGetTreeRecord function. The
structure is defined in sccda as follows:

typedef struct SCCDATREENODEtag{
   VTDWORD   dwSize;
   VTDWORD   dwNode;
   VTBYTE    szName[1024];
   VTDWORD   dwFileSize;
   VTDWORD   dwTime;
   VTDWORD   dwFlags;
   VTDWORD   dwCharSet;
   } SCCDATREENODE, *PSCCDATREENODE;

Chapter 4
DAGetTreeRecord

4-12



Parameters

• dwSize: Must be set by the OEM to sizeof(SCCDATREENODE).

• dwNode: The number of the record to retrieve information about. The first node is
node 0.

• szName: A buffer to hold the name of the record.

• dwFileSize: Returns the file size, in bytes, of the requested record.

• dwTime: Returns the timestamp of the requested record, in MS‐DOS time.

• dwFlags: Returns additional information about the node. It can be a combination of
the following:

– SCCDA_TREENODEFLAG_FOLDER: Indicating that the selected node is a
folder and not a file.

– SCCDA_TREENODEFLAG_SELECTED: Indicating that the node is selected.

– SCCDA_TREENODEFLAG_FOCUS: Indicating that the node has focus.

– SCCDA_TREENODEFLAG_ENCRYPT: Indicating that the node is encrypted
and can not be decrypted.

– SCCDA_TREENODEFLAG_ARCKNOWNENCRYPT: indicating that the node
is encrypted with an unknown encryption and can not be decrypted.

– SCCDA_TREENODEFLAG_BUFFEROVERFLOW: the name of the node was
too long for the szName field.

• dwCharSet: Returns the SO_* (charsets.h) character set of the characters in
szName. The output character set is either the default native environment
character set or Unicode if the SCCOPT_SYSTEMFLAGS option is set to
SCCVW_SYSTEM_UNICODE.

4.15 DAOpenTreeRecord
This function is called to open a record within an archive file and make it accessible by
one or more of the data access technologies.

DAERR DAOpenTreeRecord(
      VTHDOC      hDoc,
      VTLPHDOC    lphDoc,
      VTDWORD     dwRecord);

lphDoc is not a file handle.

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, and so forth).

• lphDoc: Pointer to a handle that will be filled with a value that uniquely identifies
the document to data access. The developer will use this handle in subsequent
calls to data access to identify this particular document.

• dwRecord: The record in the archive file to be opened.

Chapter 4
DAOpenTreeRecord

4-13



Return Value

• DAERR_OK: Returned if DAOpenTreeRecord was successful. Otherwise, one of
the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned.

4.16 DAOpenRandomTreeRecord
This function is called to open a record within an archive file and make it accessible by
one or more of the data access technologies. It is similar to DAOpenTreeRecord,
except that instead of reading the data for all nodes in the archive in a sequential
order, this function will only read the data for the requested nodes from the archive. To
use this function, you must first process the archive with Content Access or Search
Export and save the Node Locator data for later use in this function.

DAERR DAOpenRandomTreeRecord(
      VTHDOC      hDoc,
      VTLPHDOC    lphDoc,
      SOTREENODELOCATOR sTreeNodeLocator )

lphDoc is not a file handle.

Parameters

• hDoc: Identifier of open document. This hDoc must come from an archive
document opened with DAOpenDocument with the flag
DAOPENDOCUMENT_ARCHIVEONLYMODE set.

• lphDoc: Pointer to a handle that will be filled with a value that uniquely identifies
the document to data access. The developer will use this handle in subsequent
calls to data access to identify this particular document.

• sTreeNodeLocator: An SOTREENODELOCATOR structure which contains data
identifying the desired node. This data should come from a previous conversion of
the archive document using Content Access or Search Export.

Return Value

• DAERR_OK: Returned if DAOpenRandomTreeRecord was successful. Otherwise,
one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in
sccerr.h is returned.

4.16.1 DATREENODELOCATOR
typedef struct DATREENODELOCATORtag
{
    VTDWORD dwSize;        /* size of this structure */
    VTDWORD dwSpecialFlag;    /* special flags coming from CA or SX */
    VTDWORD dwData1;        /* dwData1 coming from CA or SX */
    VTDWORD dwData2;        /* dwData2 coming from CA or SX */
}SCCDATREENODELOCATOR, *PSCCDATREENODELOCATOR;

Chapter 4
DAOpenRandomTreeRecord

4-14



4.16.2 SCCCA_TREENODELOCATOR: Tree Node Locator
This content type contains information to be used in the SOTREENODELOCATOR
structure, which is used by DAOpenRandomTreeRecord and 
DASaveRandomTreeRecord.

SCCCA_TREENODELOCATOR Content Description

• dwType: SCCCA_TREENODELOCATOR

• dwSubType: Reserved

• dwData1: SOTREENODELOCATOR.dwSpecialFlags

• dwData2: SOTREENODELOCATOR.dwData1

• dwData3: SOTREENODELOCATOR.dwData2

• dwData4: Reserved

• pDataBuf: Not used

4.17 DASaveInputObject
This function saves a copy of the document or object pointed to by hDoc. The object
may be an embedded object, a linked object or a compressed file.

Note:

Some file formats store only partial files as embedded objects. Outside In will
not be able to create readable files from these objects. It is recommended
that you use DAGetObjectInfo with dwInfoId set to DAOBJECT_FLAGS to
discern which objects Outside In will be able to successfully extract.

DAERR DASaveInputObject(
   VTHDOC     hDoc,
   VTDWORD    dwSpecType,
   VTLPVOID   pSpec,
   VTDWORD    dwFlags);

Parameters

• hDoc: The handle returned by DAOpenDocument.

• dwSpecType: Describes the contents of pSpec. Together, dwSpecType and
pSpec describe the location of the source file to which the file will be extracted.
Must be one of the following values:

– IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32
and Win64) filename conventions.

– IOTYPE_REDIRECT: Specifies that redirected I/O will be used to save the file.

Chapter 4
DASaveInputObject

4-15



– IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS (Win32 and Win64)
file name conventions.

– IOTYPE_UNIXPATH: X Windows on UNIX platforms only. pSpec points to a
NULL-terminated full path name using the system default character set and
UNIX path conventions. Unicode paths can be accessed on UNIX platforms by
using a UTF-8 encoded path with IOTYPE_UNIXPATH.

• pSpec: File location specification.

• dwFlags: Currently not used. Should be set to 0.

Return Values

• DAERR_OK: Returned if the save was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

4.18 DASaveTreeRecord
This function is called to extract a record in an archive file to disk.

DAERR DASaveTreeRecord(
      VTHDOC      hDoc,
      VTDWORD     dwRecord,
      VTDWORD     dwSpecType,
      VTLPVOID    pSpec,
      VTDWORD     dwFlags);

Parameters

• hDoc: Handle that uniquely identifies the document to data access. NOTE: This is
not an operating system file handle.

• dwRecord: The record in the archive file to be extracted.

• dwSpecType: Describes the contents of pSpec. Together, dwSpecType and
pSpec describe the location of the source file to which the file will be extracted.
Must be one of the following values:

– IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32
and Win64) filename conventions.

– IOTYPE_REDIRECT: Specifies that redirected I/O will be used to save the file.

– IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS (Win32 and Win64)
file name conventions.

– IOTYPE_UNIXPATH: X Windows on UNIX platforms only. pSpec points to a
NULL-terminated full path name using the system default character set and
UNIX path conventions. Unicode paths can be accessed on UNIX platforms by
using a UTF-8 encoded path with IOTYPE_UNIXPATH.

• pSpec: File location specification.

• dwFlags: Currently not used. Should be set to 0.

Chapter 4
DASaveTreeRecord

4-16



Return Values

• DAERR_OK: Returned if the save was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_UNSUPPORTEDCOMP: Unsupported Compression Encountered.

• DAERR_PROTECTEDFILE: The file is encrypted.

• DAERR_BADPARAM: The request option is invalid. The record is possibly a
directory.

Otherwise, one of the other DAERR_ values in sccda.h is returned.

Note:

Currently, only extracting a single file is supported. There is a known
limitation where files in a Microsoft Binder file cannot be extracted.

4.19 DASaveRandomTreeRecord
This function is called to extract a record in an archive file to disk. It is similar to
DASaveTreeRecord, except that instead of reading the data for all nodes in the
archive in a sequential order, this function will only read the data for the requested
nodes from the archive. To use this function, you must first process the archive with
Content Access or Search Export and save the Node Locator data for later use in this
function.

DAERR DASaveRandomTreeRecord(
      VTHDOC            hDoc, 
      SOTREENODELOCATOR sTreeNodeLocator, 
      VTDWORD           dwSpecType, 
      VTLPVOID          pSpec, 
      VTDWORD           dwFlags)

Parameters

• hDoc: Identifier of open document. This hDoc must come from an archive
document opened with DAOpenDocument with the flag
DAOPENDOCUMENT_ARCHIVEONLYMODE set.

• sTreeNodeLocator: An SOTREENODELOCATOR structure which contains data
identifying the desired node. This data should come from a previous conversion of
the archive document using Content Access or Search Export.

• dwSpecType: Describes the contents of pSpec. Together, dwSpecType and
pSpec describe the location of the source file to which the file will be extracted.
Must be one of the following values:

– IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32
and Win64) filename conventions.

– IOTYPE_REDIRECT: Specifies that redirected I/O will be used to save the file.

Chapter 4
DASaveRandomTreeRecord

4-17



– IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS (Win32 and Win64)
file name conventions.

– IOTYPE_UNIXPATH: X Windows on UNIX platforms only. pSpec points to a
NULL-terminated full path name using the system default character set and
UNIX path conventions. Unicode paths can be accessed on UNIX platforms by
using a UTF-8 encoded path with IOTYPE_UNIXPATH.

• pSpec: File location specification

• dwFlags: Currently not used. Should be set to 0.

Return Value

• DAERR_OK: Returned if DASaveTreeRecord was successful. Otherwise, one of
the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned.

4.19.1 DATREENODELOCATOR
typedef struct DATREENODELOCATORtag
{
    VTDWORD dwSize;        /* size of this structure */
    VTDWORD dwSpecialFlag;    /* special flags coming from CA or SX */
    VTDWORD dwData1;        /* dwData1 coming from CA or SX */
    VTDWORD dwData2;        /* dwData2 coming from CA or SX */
}SCCDATREENODELOCATOR, *PSCCDATREENODELOCATOR;

4.19.2 SCCCA_TREENODELOCATOR: Tree Node Locator
This content type contains information to be used in the SOTREENODELOCATOR
structure, which is used by DAOpenRandomTreeRecord and 
DASaveRandomTreeRecord.

SCCCA_TREENODELOCATOR Content Description

• dwType: SCCCA_TREENODELOCATOR

• dwSubType: Reserved

• dwData1: SOTREENODELOCATOR.dwSpecialFlags

• dwData2: SOTREENODELOCATOR.dwData1

• dwData3: SOTREENODELOCATOR.dwData2

• dwData4: Reserved

• pDataBuf: Not used

4.20 DACloseTreeRecord
This function is called to close an open record file handle.

DAERR DACloseTreeRecord(
      VTHDOC      hDoc);

Chapter 4
DACloseTreeRecord

4-18



Parameters

• hDoc: Identifier of open record document.

Return Value

• DAERR_OK: Returned if DACloseTreeRecord was successful. Otherwise, one of
the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned.

4.21 DASetStatCallback
This function sets up a callback that the technology will periodically call into to verify
that the file is still being processed. The customer can use this with a monitoring
process to help identify files that may be hung. Since this function will be called more
frequently than other callbacks, it is implemented as a separate function.

Use of the Status Callback Function

An application's status callback function will be called periodically by Outside In to
provide a status message. Currently, the only status message defined is
OIT_STATUS_WORKING, which provides a "sign of life" that can be used during
unusually long processing operations to verify that Outside In has not stopped
working. If the application decides that it would not like to continue processing the
current document, it may use the return value from this function to tell Outside In to
abort.

The status callback function has two return values defined:

• OIT_STATUS_CONTINUE: Tells Outside In to continue processing the current
document.

• OIT_STATUS_ABORT: Tells Outside In to stop processing the current document.

The following is an example of a minimal status callback function.

VTDWORD MyStatusCallback( VTHANDLE hUnique, VTDWORD dwID, VTSYSVAL
pCallbackData, VTSYSVAL pAppData)
{
    if(dwID == OIT_STATUS_WORKING)
    {
        if( checkNeedToAbort( pAppData ) )
            return (OIT_STATUS_ABORT);
    }
  
    return (OIT_STATUS_CONTINUE);
}

Prototype

DAERR DASetStatCallback(DASTATCALLBACKFN pCallback,
   VTHANDLE hUnique, 
   VTLPVOID pAppData)

Parameters

• pCallback: Pointer to the callback function.

• dwID: Handle that indicates the callback status.

Chapter 4
DASetStatCallback

4-19



– OIT_STATUS_WORKING

– OIT_STATUS_CONTINUE

– OIT_STATUS_ABORT

• pCallbackData: Currently always NULL

Return Values

• DAERR_OK: If successful. Otherwise, one of the other DAERR_ values in sccda.h
or one of the SCCERR_ values in sccerr.h is returned.

4.22 DASetFileAccessCallback
This function sets up a callback that the technology will call into to request information
required to open an input file. This information may be the password of the file or a
support file location.

Use of the File Access Callback

When the technology encounters a file that requires additional information to access
its contents, the application's callback function will be called for this information.
Currently, only two different forms of information will be requested: the password of a
document, or the file used by Lotus Notes to authenticate the user information.

The status callback function has two return values defined:

• SCCERR_OK: Tells Outside In that the requested information is provided.

• SCCERR_CANCEL: Tells Outside In that the requested information is not
available.

This function will be repeatedly called if the information provided is not valid (such as
the wrong password). It is the responsibility of the application to provide the correct
information or return SCCERR_CANCEL.

Prototype

DAERR DASetFileAccessCallback (DAFILEACCESSCALLBACKFN pCallback);

Parameters

• pCallback: Pointer to the callback function.

Return Values

• DAERR_OK: If successful. Otherwise, one of the other DAERR_ values in sccda.h
or one of the SCCERR_ values in sccerr.h is returned.

The callback function should be of type DAFILEACCESSCALLBACKFN. This function
has the following signature:

typedef VTDWORD (* DAFILEACCESSCALLBACKFN)(VTDWORD dwID, VTSYSVAL pRequestData, 
VTSYSVAL pReturnData, VTDWORD dwReturnDataSize);

• dwID – ID of information requested:

– OIT_FILEACCESS_PASSWORD – Requesting the password of the file

– OIT_FILEACCESS_NOTESID – Requesting the Notes ID file location

Chapter 4
DASetFileAccessCallback

4-20



• pRequestData – Information about the file.

typedef struct {
      VTDWORD   dwSize;           /* size of this structure */
      VTWORD    wFIId;            /* FI id of reference file */
      VTDWORD   dwSpecType;       /* file spec type */
      VTVOID   *pSpec;            /* pointer to a file spec */
      VTDWORD   dwRootSpecType;   /* root file spec type */
      VTVOID   *pRootSpec;        /* pointer to the root file spec */
      VTDWORD   dwAttemptNumber;  /* The number of times the callback has */
                                  /* already been called for the currently */
                                  /* requested item of information */
} IOREQUESTDATA, * PIOREQUESTDATA;

• pReturnData – Pointer to the buffer to hold the requested information – for
OIT_FILEACCESS_PASSWORD and OIT_FILEACCESS_NOTESID, the buffer is
an array of WORD characters.

• dwReturnDataSize – Size of the return buffer.

Note:

Not all formats that use passwords are
supported. DASetFileAccessCallback applies to filters that support password
protected files. Check filter for any or all calls to UTGetFileAccess in filters
and core modules. 

Only Microsoft Office binary (97-2003), Microsoft Office 2010-2013, Microsoft
Outlook PST 97-2016, Lotus NSF, PDF (with RC4 encryption), and 7zip (with
AES 128 & 256 bit, ZipCrypto) are currently supported.

Passwords for PST/OST files must be in the Windows single-byte character
set. For example, Cyrillic characters should use the 1252 character set. For
PST/OST files, Unicode password characters are not supported.

4.23 DAOpenNextDocument
Allows an existing Export or Data Access document handle to be used or reused when
opening a new document, enabling options to be preserved across multiple exports, or
allowing multiple documents to be exported to the same output destination.

This function uses an existing "reference" handle as a starting point for opening
another document. The reference handle may be either a document handle (obtained
through DAOpenDocument) or an export handle (obtained via a call to
EXOpenExport). The difference between using these two handle types is that certain
document specification types (subdocuments of the original document) will not be
successfully opened when a document handle is used as the reference handle. If an
Export handle is used as the reference handle, subdocument specifications are
allowed.

Since the same handle is used multiple times, only a single call to DACloseDocument
is needed. Each document is actually closed when the next document is opened;
successive calls to DAOpenNextDocument free the resources used in previous calls.

Chapter 4
DAOpenNextDocument

4-21



Using this function allows developers to make multiple calls to the EX functions,
without having to re-set options every time. Options can be set once for the original
document, and retained for each subsequent document.

Additionally, some export libraries allow exporting multiple source documents to a
single output document. Currently, this is supported for PDF and multi-page TIFF
output only. To do this, a developer would export the first document normally, then call
DAOpenNextDocument to open the subsequent source documents, followed by a call
to EXRunExport. EXOpenExport and EXCloseExport should only be called once each
for this type of export.

Prototype

DAERR DAOpenNextDocument(
     VTHANDLE hReference,
     VTDWORD  dwSpecType,
     VTLPVOID pSpec,
     VTDWORD  dwFlags );

Parameters

• hReference: this VTHANDLE value may be either an hDoc, the VTHDOC
document handle obtained through a prior call to DAOpenDocument; or an
hExport, the VTHEXPORT handle obtained from a prior call to EXOpenExport.
This is not an operating system file handle.

• dwSpecType: Describes the contents of pSpec. The dwSpecType values allowed
by DAOpenDocument for this parameter are acceptable, with the exceptions that
IOTYPE_ARCHIVEOBJECT and IOTYPE_LINKEDOBJECT are only allowed
when hReference is an Export handle, obtained via a call to EXOpenExport.

• pSpec: File location specification.

• dwFlags: The low WORD is the file ID for the document (0 by default). If you set
the file ID incorrectly, the technology fails. If set to 0, the file identification
technology determines the input file type automatically. The high WORD should be
set to 0.

Return Values

• DAERR_OK: Returned if the open was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_FEATURENOTAVAIL: Returned if the value specified by dwSpecType is
not one of the supported spec types for this operation.

4.24 DAGetOptionItem
The item id value provided by this function is the same one provided by
DAAddOptionItem when the item was first added. This function should not be called
simultaneously for the same hDoc from two different threads.

SCCERR DAGetOptionItem( VTHDOC hDoc, DWORD dwOptionId, DWORD dwWhichItem,          
VTLPVOID pValue, VTLPDWORD pSize, VTLPDWORD pItemId )

• hDoc: Handle to current document, as described in documentation of
DAGetOption.

• dwOptionId: The option id of an option whose item values are being requested.

Chapter 4
DAGetOptionItem

4-22



• dwWhichItem: Must be one of the following:

– SCCOPT_FIRSTITEM - which retrieves the first item in the specified list.

– SCCOPT_NEXTITEM - which retrieves the next item in the specified list.

– SCCOPT_ITEMSIZE - which does not retrieve an item, but sets *pSize to the
necessary buffer size for an item of the specified list. (If the list items vary in
size, it will indicate the size of the largest item.)

– .SCCOPT_LISTSIZE - which does not retrieve an item, but sets *pSize to the
count of all items in the specified list

• pValue: Pointer to a buffer that will receive the requested item's value.

• pSize: Size of the buffer pointed to by pValue. If this size isn't sufficient to receive
the requested data, the function will set the value pointed to by pSize to the size
required to hold the item's data, return SCCERR_INSUFFICIENTBUFFER.

• pItemId: Points to a DWORD that will receive the value of an internal identifier of
the item. This identifer may be used in subsequent calls to DARemoveOptionItem.
This parameter may be NULL if the caller is not interested in the id.

4.25 DARemoveOptionItem
This function should not be called simultaneously for the same hDoc from two different
threads.

SCCERR DARemoveOptionItem( VTHDOC hDoc, DWORD dwOptionsId, DWORD dwItemId )

• hDoc: Handle to current document, as described in documentation of
DASetOption.

• dwOptionsId: The option id of an option that requires a list of values.

• dwItemId: An identifier to an option id, provided by either DAAddOptionItem or
DAGetOptionItem, or SCCOPT_ALLITEMS. If SCCOPT_ALLITEMS is specified,
all of the items associated with the specified option id will be removed.

Note:

This function should not be called simultaneously for the same hDoc from
two different threads.

4.26 DAAddOptionItem
This function adds a new item to the end of the list of items associated with a mult-
value option. The value of the item id is determined internally by the Outside In code,
and will not change for the lifetime of the option item.If the caller is not interested in the
value of the itemId, calling DASetOption multiple times is equivalent to calling
DAAddOptionItem with the pItemId set to NULL. (This only applies to options whose
values may be set through DAAddOptionItem).

SCCERR DAAddOptionItem (VTHDOC hDoc, DWORD dwOptionId, VTLPVOID pValue,          
VTDWORD dwSize, VTLPDWORD pItemId )

Chapter 4
DARemoveOptionItem

4-23



• hDoc: Handle to current document, as described in documentation of
DASetOption.

• dwOptionId: The option id of an option that requires a list of values.

• pValue: Pointer to the value of the option item being added.

• dwSize: Size of the data pointed to by pValue.

• pItemId: Points to a DWORD that will receive the value of an internal identifier of
the item. This identifer may be used in subsequent calls to DARemoveOptionItem.
This parameter may be NULL if the caller is not interested in the id.

4.27 DASetFileSpecOption
This function is called to set the value of an option that takes a spec and spec type as
parameters. It is currently only implemented for use in setting the template option in
HTML Export. This function only needs to be used if the developer wishes to use
Redirected IO on the template files. It may be used to set the template option even if
the developer does not wish to use redirected IO, although DASetOption may also be
used in this situation.

Prototype

DAERR DASetFileSpecOption(
   VTHDOC     hDoc,
   VTDWORD    dwOptionId,
   VTDWORD    dwSpecType,
   VTLPVOID   pSpec);

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Setting an
option for a VTHDOC affects all subhandles opened under it, while setting an
option for a subhandle affects only that handle.

• dwOptionId: The identifier of the option to be set. Currently only implemented for
the option SCCOPT_EX_TEMPLATE.

• dwSpecType: The spec type of the file. Should be set to one of the valid spec
types.

• pSpec: File location specification.

Return Value

• DAERR_OK: Returned if DASetFileSpecOption succeeded. Otherwise, one of the
other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned.

4.28 DAOpenSubdocumentById
Allows an embedding to be opened using the integer value of the object_id attribute
from the locator element.

Chapter 4
DASetFileSpecOption

4-24



Prototype

DAERR DAOpenSubdocumentById(
   VTHDOC     hDoc,
   VTLPHDOC   lphDoc,
   VTDWORD    pSpec,
   VTDWORD    dwFlags);

Parameters

• hDoc: The document handle for the document containing the locator.

• lphDoc: Receives the document handle for the embedding.

• dwSubdocumentId: The integer value of the object_id attribute from the locator.

• dwFlags: Must be set to 0.

Chapter 4
DAOpenSubdocumentById

4-25



5
Text Access Functions

The Text Access module is required to use these functions.
This chapter includes the following sections:

• TAOpenText

• TACloseText

• TAReadFirst

• TAReadNext

5.1 TAOpenText
TAOpenText is used to initiate text access for a file that has been opened by
DAOpenDocument.

Prototype

DAERR TAOpenText(
   VTHDOC     hDoc,
   VTLPHTEXT  phText )

phContent is not a file handle.

Parameters

• hDoc: A handle that identifies the document, created by DAOpenDocument.

• phText: Pointer to a handle that will receive a value uniquely identifying the
document to the Text Access routines. If the function fails, this value will be set to
VTHDOC_INVALID.

Return Values

• DAERR_OK: Open was successful. Otherwise, one of the other DAERR_ values
in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_BADPARAM: One of the function parameters was invalid.

• DAERR_EMPTYFILE: Empty file.

• DAERR_PROTECTEDFILE: Password protected or encrypted file.

• DAERR_SUPFILEOPENFAILS: Supplementary file open failed.

• DAERR_FILTERNOTAVAIL: The file's type is known, but the appropriate filter is
not available.

• DAERR_FILTERLOADFAILED: An error occurred during the initialization of the
appropriate filter.

5-1



5.2 TACloseText
TACloseText is called to terminate text access for a file.

Prototype

DAERR TACloseText(
   VTHTEXT   hText )

Parameters

• hText: Text Access handle for the document. Must be a handle returned by the
TAOpenText function.

Return Values

• DAERR_OK: Close was successful. Otherwise, one of the other DAERR_ values
in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_BADPARAM: One of the function parameters was invalid.

5.3 TAReadFirst
This function is called to set the read pointer to the beginning of the document and to
retrieve the first block of text.

Prototype

DAERR TAReadFirst(
   VTHTEXT    hText,
   VTLPBYTE   pTextBuf,
   VTDWORD    dwBufSize,
   VTLPDWORD  pBufCount )

Each piece of content has a type and a subtype. Based on the type and subtype, the
content is described by using up to four VTDWORDs and a data buffer provided by the
caller. The hText, pTextBuf, dwBufSize, and pBufCount elements of this structure
should be filled by the caller before calling TAReadNext or TAReadFirst.

Parameters

• hText: Text Access handle for the document. Must be a handle returned by the
TAOpenText function.

• pTextBuf: Pointer to a buffer to receive the first block of text. NULL characters are
included in the text buffer to act as fillers for text which was in the original file but is
not part of the document body (revision deletions and document properties).
Special characters are manufactured by the technology due to special formatting
attributes. For more information, see TAReadNext.

• dwBufSize: Size of the buffer pointed to by pTextBuf.

• pBufCount: Pointer to a DWORD that will receive the actual size of the data copied
into pTextBuf. Note that for DBCS and Unicode character sets, this will not
necessarily be the character count.

Chapter 5
TACloseText

5-2



Return Values

• DAERR_OK: The read was successful. Otherwise, one of the other DAERR_
values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_BADPARAM: One of the function parameters was invalid.

5.4 TAReadNext
TAReadNext is called to retrieve the next block of text from the file, beginning at the
location where the last call to TAReadNext or TAReadFirst ended.

Prototype

DAERR TAReadNext(
   VTHTEXT    hText,
   VTLPBYTE   pTextBuf,
   VTDWORD    dwBufSize,
   VTLPDWORD  pBufCount )

Each piece of content has a type and a subtype. Based on the type and subtype, the
content is described by using up to four VTDWORDs and a data buffer provided by the
caller. The hText, pTextBuf, dwBufSize, and pBufCount elements of this structure
should be filled by the caller before calling TAReadNext or TAReadFirst.

Parameters

• hText: Text Access handle for the document. Must be a handle returned by the
TAOpenText function.

• pTextBuf: Pointer to a buffer to receive the block of text. NULL characters are
included in the text buffer to act as fillers for text which was in the original file but is
not part of the document body (revision deletions and document properties).
Special characters are manufactured by the technology due to special formatting
attributes.

• dwBufSize: This is the size of the buffer pointed to by pTextBuf.

• pBufCount: Pointer to a DWORD that will receive the actual size of the data copied
into pTextBuf. Note that for DBCS and Unicode character sets, this will not
necessarily be the character count.

Return Values

• DAERR_OK: The read was successful. Otherwise, one of the other DAERR_
values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_EOF: Read was successful, and the end of the file was encountered.

• DAERR_ABORT: A fatal error has occurred, read process was aborted.

Special Text Character Substitutions

• Email Delimiter: 0x09

• End of Database Record: 0x0A

• End of File: 0x0D

• End of Paragraph: 0x0D

Chapter 5
TAReadNext

5-3



• End of Table Cell: 0x0D

• End of Table Row: 0x0D

• Hard Hyphen: 0x2D

• Hard Line Break: 0x0A

• Hard Page Break: 0x0C

• Hard Space: 0x20

• Section Separator: 0x0D

• Syllable Hyphen: 0x2D

• Tab: 0x09

• Word Delimiter: 0x20

Chapter 5
TAReadNext

5-4



6
Content Access Functions

The Content Access module is required to use these functions.
This chapter includes the following sections:

• CAOpenContent

• CACloseContent

• CAReadFirst

• CAReadNext

• CAContentStatus

• CASeek

• CATell

6.1 CAOpenContent
CAOpenContent is used to initiate content access for a file that has been opened by
DAOpenDocument.

Prototype

DAERR CAOpenContent(
   VTHDOC         hDoc;
   VTLPHCONTENT   phContent;
)

phContent is not a file handle.

Parameters

• hDoc: A handle that identifies the document, created by DAOpenDocument.

• phContent: Pointer to a handle that will receive a value uniquely identifying the
document to the Content Access routines. If the function fails, this value will be set
to VTHDOC_INVALID.

Return Values

• DAERR_OK: Open was successful. Otherwise, one of the other DAERR_ values
in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_BADPARAM: One of the function parameters was invalid.

• DAERR_EMPTYFILE: Empty file.

• DAERR_PROTECTEDFILE: Password protected or encrypted file.

• DAERR_SUPFILEOPENFAILS: Supplementary file open failed.

• DAERR_FILTERNOTAVAIL: The file's type is known, but the appropriate filter is
not available.

6-1



• DAERR_FILTERLOADFAILED: An error occurred during the initialization of the
appropriate filter.

6.2 CACloseContent
CACloseContent is called to terminate content access for a file.

Prototype

DAERR CACloseContent(
   VTHCONTENT   hContent;
)

Parameters

• hContent: Content Access handle for the document. Must be a handle returned by
the CAOpenContent function.

Return Values

• DAERR_OK: Close was successful. Otherwise, one of the other DAERR_ values
in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_BADPARAM: One of the function parameters was invalid.

6.3 CAReadFirst
This function is called to set the read pointer to the beginning of the document content
and to obtain the file identification property for the document.

Prototype

DAERR CAReadFirst(
   VTHCONTENT         hContent;
   PSCCCAGETCONTENT   pGetContent;
)

Parameters

• hContent: Content Access handle for the document. Must be a handle returned by
the CAOpenContent function.

• pGetContent: Pointer to a structure of type SCCCAGETCONTENT (see 
SCCCAGETCONTENT Structure). CAReadFirst will always fill this structure with
the file identification property.

Return Values

• DAERR_OK: Read was successful. Otherwise, one of the other DAERR_ values
in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_BADPARAM: One of the function parameters was invalid.

6.4 CAReadNext
CAReadNext is called to retrieve text and properties from a file, beginning at the
location where the last content was provided.

Chapter 6
CACloseContent

6-2



Prototype

DAERR CAReadNext(
   VTHCONTENT         hContent;
   PSCCCAGETCONTENT   pGetContent;
)

Parameters

• hContent: Content Access handle for the document. Must be a handle returned by
the CAOpenContent function.

• pGetContent: Pointer to a structure of type SCCCAGETCONTENT (see 
SCCCAGETCONTENT Structure).

Return Values

• DAERR_OK: Read was successful. Otherwise, one of the other DAERR_ values
in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_EOF: Read was successful, and the end of the file was encountered.

• DAERR_ABORT: A fatal error has occurred, read process was aborted.

6.4.1 SCCCAGETCONTENT Structure
typedef struct SCCCAGETCONTENTtag
   {
   VTDWORD         dwStructSize;
   VTDWORD         dwFlags;
   VTDWORD         dwMaxBufSize;
   VTVOID       *  pDataBuf;
   VTDWORD         dwType;
   VTDWORD         dwSubType;
   VTDWORD         dwData1;
   VTDWORD         dwData2;
   VTDWORD         dwData3;
   VTDWORD         dwData4;
   VTDWORD         dwDataBufSize;
   } SCCCAGETCONTENT, * PSCCCAGETCONTENT;

Each piece of content has a type and a subtype. Based on the type and subtype, the
content is described by using up to four VTDWORDs and a data buffer provided by the
caller. The dwStructSize, dwFlags, pDataBuf and dwMaxBufSize elements of this
structure should be filled by the caller before calling CAReadNext or CAReadFirst.

• dwStructSize: Initialized by caller to sizeof(SCCCAGETCONTENT).

• dwFlags: Set by caller. Currently undefined, must be set to 0.

• dwMaxBufSize: Initialized by caller to the size of the buffer pointed to by pDataBuf.

• pDataBuf: This pointer must be set by the caller to a buffer at least 1K in size and
must be properly byte-aligned (4 bytes). This buffer will be filled with content
information based on dwType.

• dwType: Returns one of the following values (For detailed descriptions of the
content types, see Content Description):

– SCCCA_ANNOTATION: Marks the location of an annotation or sub-document.

Chapter 6
CAReadNext

6-3



– SCCCA_BEGINTAG: Marks the beginning of a tagged section of the
document

– SCCCA_BREAK: Signals the end of document properties

– SCCCA_ENDTAG: Marks the end of a tagged section of the document

– SCCCA_FILEPROPERTY: File identification information

– SCCCA_GENERATED: Text generated from non-character data

– SCCCA_OBJECT: Embedded object information

– SCCCA_SHEET: The name of a sheet in a spreadsheet or presentation

– SCCCA_STYLECHANGE: Indicates a change in style information

– SCCCA_TEXT: Normal stream text

– SCCCA_TREENODELOCATOR: Used by DAOpenRandomTreeRecord and 
DASaveRandomTreeRecord.

• dwSubType Returns additional information based on dwType. Here are some valid
subtypes:

– SCCCA_ANNOTATION: Subtype are values like
SCCCA_ANNOTATION_FOOTNOTE or SCCCA_ANNOTATION_ENDNOTE.
dwData1 links to the corresponding SCCCA_BEGINTAG.

– SCCCA_HIDDEN: A valid subtype for the SCCCA_TEXT type representing
hidden text.

– SCCCA_FRAME_EX: A valid subtype for the SCCCA_BEGINTAG and
SCCCA_ENDTAG types representing extended frames.

– SCCCA_LINKEDOBJECT: A valid subtype for the SCCCA_BEGINTAG and
SCCCA_ENDTAG types representing an object accessible via a link. When
dwSubType equals SCCCA_LINKEDOBJECT, dwData1, dwData2, dwData3
and dwData4 will contain values that are used to locate the object.

– SCCCA_OCE: A valid subtype for the SCCCA_STYLECHANGE type,
indicating a change in the character set in the original document. dwData1
returns the new character set.

• dwDatan: Return additional information based on dwType and dwSubType.
Several examples are shown above.

• dwDataBufSize: Returns the actual size of the data placed in the buffer pointed to
by pDataBuf.

6.5 CAContentStatus
This function is used to determine if there were conversion problems during a
conversion. It will return a structure that describes areas of a conversion that may not
have high fidelity with the original document.

Prototype

DA_ENTRYSC DAERR DA_ENTRYMOD CAContentStatus(VTHCONTENT hContent, VTDWORD 
dwStatusType, VTLPVOID pStatus);

Parameters

• hContent: Content handle for the document.

Chapter 6
CAContentStatus

6-4



• dwStatusType: Specifies which status information should be filled in pStatus.

– SCCCA_STATUS_INFORMATION - fills in the
SCCCASTATUSINFORMATION structure.

• pStatus: A pointer to a SCCCASTATUSINFORMATION data structure

Return Values

SCCERR_OK: Returned if there were no problems. Otherwise, one of the other
SCCERR_ values in sccerr.h is returned.

6.5.1 EXSUBDOCSTATUS Structure
The SCCCASTATUSINFORMATION is defined to be the same as
EXSTATUSINFORMATION, which is defined as follows:

typedef struct EXSTATUSINFORMATIONtag
{
    VTDWORD dwVersion; /* version of this structure */
    VTBOOL bMissingMap; /* a PDF text run was missing the toUnicode table */
    VTBOOL bVerticalText; /* a vertical text run was present */
    VTBOOL bTextEffects; /* a run that had unsupported text effects applied. One 
example is Word Art*/
    VTBOOL bUnsupportedCompression; /* a graphic had an unsupported compression */
    VTBOOL bUnsupportedColorSpace; /* a graphic had an unsupported color space */
    VTBOOL bForms; /* a sub documents had forms */
    VTBOOL bRightToLeftTables; /* a table had right to left columns */
    VTBOOL bEquations; /* a file had equations*/
    VTBOOL bAliasedFont; /* The desired font was missing, but a font alias was used*/
    VTBOOL bMissingFont; /* The desired font wasn't present on the system */
    VTBOOL bSubDocFailed; /* a sub document was not converted */
    VTBOOL bTypeThreeFont; /* a PDF Type 3 embedded font was encountered */
    VTBOOL bUnsupportedShading; /* a PDF input file had an unsupported shading type 
*/
    VTBOOL bInvalidHTML; /* invalid HTML was encountered */
    VTBOOL bVectorObjectLimit; /* The vector object limit was reached */
    VTBOOL bInvalidAnnotationNotApplied; /* Annotation/Redaction wasn't displayed */
    VTBOOL bInlineImageFound; /* An inline image was found and may not have been 
rendered */
} EXSTATUSINFORMATION;

Note:

When processing a document, Content Access never uses fonts, so
bAliasedFont and bMissingFont will never report TRUE.

bVectorObjectLimit applies only to WebView Export, and
bInvalidAnnotationNotApplied applies only to Image Export, PDF Export, and
Web View Export.

6.6 CASeek
Move to a position in CA.

Chapter 6
CASeek

6-5



Prototype

DA_ENTRYSC DAERR DA_ENTRYMOD CASeek( VTHCONTENT hContent,  PSCCDAPOS pPos )

Parameters

• hContent: CA Content returned from CAOpenContent.

• pPos: Pointer to be filled with our position information.

Return Values

DAERR_BADPARAM SCCERR_OK: One of the function parameters was invalid.

6.7 CATell
Get position of CA.

Prototype

DA_ENTRYSC DAERR DA_ENTRYMOD CATell ( VTHCONTENT hContent,  PSCCDAPOS pPos )

Parameters

• hContent: CA Content returned from CAOpenContent.

• pPos: Pointer to be filled with our position information.

Return Values

DAERR_BADPARAM SCCERR_OK: One of the function parameters was invalid.

Chapter 6
CATell

6-6



7
Content Description

This chapter discusses tagged content and other content topics.
This chapter includes the following sections:

• SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content

• SCCCA_BREAK: Content Breaks

• SCCCA_CELL: Cell Boundary

• SCCCA_COMMENTREFERENCE

• SCCCA_FILEPROPERTY: File Property Content

• SCCCA_GENERATED: Generated Information

• SCCCA_OBJECT: SubObjects

• SCCCA_OBJECTALTSTRING: Alternate String

• SCCCA_OBJECTNAME: Object Name

• SCCCA_RECORD: Archive Record

• SCCCA_REVISION_CELL: Revision Cell

• SCCCA_REVISION_ROW: Revision Row

• SCCCA_REVISION_COLUMN: Revision Column

• SCCCA_REVISION_SHEET: Revision Sheet

• SCCCA_REVISION_SHEETNAME: Revision Sheet Name

• SCCCA_REVISION_USER: Revision User

• SCCCA_SHEET: Sheet Names

• SCCCA_SLIDE: Presentation Slide

• SCCCA_STYLECHANGE: Style Information

• SCCCA_TEXT: Text Content

• SCCCA_TREENODELOCATOR: Tree Node Locator

7.1 SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged
Content

The SCCCA_BEGINTAG and SCCCA_ENDTAG content types are used to tag or
delimit other content for a particular purpose. This can be especially useful when
searching for specific document property values like the author or title of a document.
It can also be used to separate subdocument text like headers, footers, and footnotes
from the main document text. Tagged text may be nested inside other tagged text, and
tags may overlap each other.

7-1



Though most tag types are not particularly useful to developers, the Data Access
technology provides all of the tag types rather than make a judgment as to usability.
Each is briefly described below.

7.1.1 SCCCA_BEGINTAG Content Description
This section lists the applicable parameters and corresponding values.

• dwType

– SCCCA_BEGINTAG: Beginning of tagged content

– SCCCA_ENDTAG: End of tagged content

• dwSubType: Tag type - see Tag Types

• dwData1: Additional ID - see Tag Types for more information.

• dwData2: Not used

• dwData3: Reserved

• dwData4: Reserved

• pDataBuf: Not used

7.1.2 Tag Types
This section lists the applicable values and corresponding descriptions.

• SCCCA_ALTFONTDATA: Reserved

• SCCCA_ANNOTATIONREFERENCE: Tags content that references an annotation

• SCCCA_BOOKMARK: Delimits content tagged as a bookmark

• SCCCA_CAPTIONTEXT: Tags content that is used as a caption on objects such
as tables, equations and figures

• SCCCA_CHARACTER: Reserved

• SCCCA_COMPILEDFIELD: Tags content resulting from an application compiling a
field code such as a date. The lack of consistent support by applications for this
field makes it unreliable as a search property.

• SCCCA_CONDITIONALSTYLE: Reserved

• SCCCA_COUNTERFORMAT: Reserved

• SCCCA_CUSTOMDATAFORMAT: Reserved

• SCCCA_DATEDEFINITION: Reserved

• SCCCA_DIAGRAM: Reserved

• SCCCA_DIAGRAM_*: Reserved

• SCCCA_DOCUMENTPROPERTY: Tags document property content - see 
Document Property IDs

• SCCCA_DOCUMENTPROPERTYNAME: Name of a user-defined document
property (SCCCA_USERDEFINEDPROP)

• SCCCA_EMAILFIELD: Tags fields associated with email formats - see Mail Field
IDs

Chapter 7
SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content

7-2



• SCCCA_EMAILFIELDNAME: Tags the name of a non-standard email field.

• SCCCA_EMAILTABLE: Table of email fields

• SCCCA_ENDNOTEREFERENCE: Tags content that references an endnote

• SCCCA_FONTANDGLYPHDATA: Tags content that references font or glyph data

• SCCCA_FOOTER: Delimits content tagged as footer

• SCCCA_FOOTNOTEREFERENCE: Tags content that references a footnote

• SCCCA_FRAME: Tags content stored within a frame

• SCCCA_FRAME_EX: Tags content that references extended frames

• SCCCA_GENERATEDFIELD: Reserved

• SCCCA_GENERATOR: Reserved

• SCCCA_HEADER: Delimits content tagged as header

• SCCCA_HYPERLINK: Delimits content tagged as a hypertext link

• SCCCA_INDEX: Reserved

• SCCCA_INDEXENTRY: Delimits content that should be placed in the index

• SCCCA_INLINEDATAFORMAT: Reserved

• SCCCA_LINKEDOBJECT: Tags content referencing a linked object. These values
may change if different options are applied, with different versions of the
technology, or after patches are applied.

• SCCCA_LISTENTRY: Reserved

• SCCCA_MERGEENTRY: Reserved

• SCCCA_NAMEDCELLRANGE: Reserved

• SCCCA_REFERENCEDTEXT: Tags text for later reference

• SCCCA_SLIDENOTES: Tags content stored in speaker/slide notes in a
presentation document

• SCCCA_SSHEADERFOOTER: Tags content that references headers or footers in
spreadsheet files

• SCCCA_STYLE: Delimits a style definition. Styles may contain text, but typically
do not. dwData1 is a flag field for SCCCA_STYLE with the value of
SCCCA_STYLEFLAG_INLINE_NUMBERING when the style is an inline
numbering style.

• SCCCA_SUBDOCPROPERTY: Tags metadata associated with a subdocument,
such as a comment. See SCCCA_SUBDOCPROPERTY Document Properties for
more information.

• SCCCA_SUBDOCTEXT: Delimits content stored in subdocuments like headers,
footers, frames and notes.

• SCCCA_TOA: Reserved

• SCCCA_TOAENTRY: Reserved

• SCCCA_TOC: Reserved

• SCCCA_TOCENTRY: Reserved

• SCCCA_TOF: Reserved

Chapter 7
SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content

7-3



• SCCCA_VECTORSAVETAG: Reserved

• SCCCA_XMPDATA: Document properties parsed out of the XMP data

• SCCCA_XREF: Reserved

• In the following tag types, an asterisk (*) denotes tags that contain revision data
which has a sequence ID in dwData1, a User ID in dwData2, and the time (stored
as a DOS Date/Time) in dwData3

SCCCA_SS_REVISIONS container for all of the tracked changes.

SCCCA_SS_USERNAMES user ID table containing SCCCA_SS_USERNAME
tags.

SCCCA_SS_USERNAME has a user ID and contains SCCCA_REVISION_USER.

SCCCA_SS_SHEETNAMES sheet table containing SCCCA_SS_SHEETNAME
tags.

SCCCA_SS_SHEETNAME has a sheet ID and contains
SCCCA_REVISION_SHEETNAME and text for the name.

SCCCA_SS_REV_RENAMESHEET * contains a SCCCA_REVISION_SHEET,
which contain the new and old sheet ID's.

SCCCA_SS_REV_CREATE * empty tag used to output User ID and Date/Time of
file creation.

SCCCA_SS_REV_SAVE * empty tag used to output User ID and Date/Time of a
save.

SCCCA_SS_REV_MODIFYCELL *describes a cell that was changed. It contains
SCCCA_REVISION_CELL describing the location of the modified cell, a
SCCCA_SS_REV_OLDCELLCONTENT tag, and a
SCCCA_SS_REV_NEWCELLCONTENT tag.

SCCCA_SS_REV_MOVECELLS * describes a cell that was moved and contains a
SCCCA_SS_REV_OLDCELLLOCATION tag and a
SCCCA_SS_REV_NEWCELLLOCATION tag.

SCCCA_SS_REV_OLDCELLLOCATION describes the original cell location and
contains two SCCCA_REVISION_CELL tags indicating the upper left and lower
right coordinates.

SCCCA_SS_REV_NEWCELLLOCATION describes the new cell location and
contains two SCCCA_REVISION_CELL tags indicating the upper left and lower
right coordinates.

SCCCA_SS_REV_ADDROW * contains SCCCA_REVISION_ROW denoting
row(s) added.

SCCCA_SS_REV_DELETEROW * contains SCCCA_REVISION_ROW denoting
row(s) deleted. May Contain SCCCA_SS_REV_NEWCELL, which contains the
cell information deleted within the row.

SCCCA_SS_REV_INSERTCOL * contains SCCCA_REVISION_COLUMN
denoting column(s) added.

SCCCA_SS_REV_DELETECOL * contains SCCCA_REVISION_COLUMN
denoting column(s) deleted. It may optionally contain new cell and formatting
records.

Chapter 7
SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content

7-4



SCCCA_SS_REV_NEWCELL * contains SCCCA_REVISION_CELL denoting new
cell location. It may optionally contain formatting records, numeric information, or
string information.

SCCCA_SS_REV_CLEARCELL * contains SCCCA_REVISION_CELL denoting
old cell location. It may optionally contain numeric information or string information.

SCCCA_SS_REV_OLDCELLCONTENT may contain numeric information or string
information.

SCCCA_SS_REV_NEWCELLCONTENT may contain numeric information or
string information.

SCCCA_SS_REV_ADDSHEET * contains a SCCCA_REVISION_SHEET.

SCCCA_SS_REV_FORMAT * contains formatting information.

When dwSubType is SCCCA_DOCUMENTPROPERTY, dwData1 will be one of the
values listed in the header file sccca.h. The following section, Document Property IDs,
lists many of the common document property types. Any content generated between
the begin and end tag defines the value of the document property.

When dwSubType is SCCCA_EMAILFIELD, dwData1 will be one of the values in Mail
Field IDs, and any content generated between the begin and end tag defines the value
of the email field.

7.1.3 Document Property IDs
The following is a partial list of document property IDs.

• SCCCA_ABSTRACT

• SCCCA_ACCOUNT

• SCCCA_ADDRESS

• SCCCA_APPVERSION

• SCCCA_ATTACHMENTS

• SCCCA_AUTHORIZATION

• SCCCA_BACKUPDATE

• SCCCA_BASEFILELOCATION

• SCCCA_BILLTO

• SCCCA_BLINDCOPY

• SCCCA_CARBONCOPY

• SCCCA_CATEGORY

• SCCCA_CHECKEDBY

• SCCCA_CLIENT

• SCCCA_COMPANY

• SCCCA_COMPLETEDDATE

• SCCCA_COUNTBYTES

• SCCCA_COUNTCHARS

• SCCCA_COUNTCHARSWITHSPACES

Chapter 7
SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content

7-5



• SCCCA_COUNTLINES

• SCCCA_COUNTMMCLIPS

• SCCCA_COUNTNOTES

• SCCCA_COUNTPAGES

• SCCCA_COUNTPARAS

• SCCCA_COUNTSLIDES

• SCCCA_COUNTSLIDESHIDDEN

• SCCCA_COUNTWORDS

• SCCCA_CREATIONDATE

• SCCCA_DEPARTMENT

• SCCCA_DESTINATION

• SCCCA_DISPOSITION

• SCCCA_DIVISION

• SCCCA_DOCCOMMENT

• SCCCA_DOCNUMBER

• SCCCA_DOCTYPE

• SCCCA_EDITMINUTES

• SCCCA_EDITOR

• SCCCA_FORWARDTO

• SCCCA_GROUP

• SCCCA_HEADINGPAIRS

• SCCCA_KEYWORD

• SCCCA_LANGUAGE

• SCCCA_LASTPRINTDATE

• SCCCA_LASTSAVEDATE

• SCCCA_LASTSAVEDBY

• SCCCA_LINKSDIRTY

• SCCCA_MAILSTOP

• SCCCA_MANAGER

• SCCCA_MATTER

• SCCCA_OFFICE

• SCCCA_OPERATOR

• SCCCA_OWNER

• SCCCA_PRESENTATIONFORMAT

• SCCCA_PRIMARYAUTHOR

• SCCCA_PROJECT

• SCCCA_PUBLISHER

Chapter 7
SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content

7-6



• SCCCA_PURPOSE

• SCCCA_RECEIVEDFROM

• SCCCA_RECORDEDBY

• SCCCA_RECORDEDDATE

• SCCCA_REFERENCE

• SCCCA_REVISIONDATE

• SCCCA_REVISIONNOTES

• SCCCA_REVISIONNUMBER

• SCCCA_SCALECROP

• SCCCA_SECONDARYAUTHOR

• SCCCA_SECTION

• SCCCA_SECURITY

• SCCCA_SOURCE

• SCCCA_STATUS

• SCCCA_SYSTEM_FILECREATED

• SCCCA_SYSTEM_FILEMODIFIED

• SCCCA_SYSTEM_FILESIZE

• SCCCA_SUBJECT

• SCCCA_TITLE

• SCCCA_TITLEOFPARTS

• SCCCA_TYPIST

• SCCCA_USERDEFINEDPROP

• SCCCA_VERSIONDATE

• SCCCA_VERSIONNOTES

• SCCCA_VERSIONNUMBER

Note:

Document Properties with IDs of SCCCA_USERDEFINEDPROP or
above are user-defined properties.

7.1.4 SCCCA_SUBDOCPROPERTY Document Properties
The following values are properties of SCCCA_SUBDOCPROPERTY:

• SCCCA_SUBDOC_AUTHOR

• SCCCA_SUBDOC_CREATEDATE

• SCCCA_SUBDOC_LASTSAVEDATE

• SCCCA_SUBDOC_TITLE

Chapter 7
SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content

7-7



• SCCCA_SUBDOC_NOTES

• SCCCA_SUBDOC_AUTHORSHORT

7.1.5 Mail Field IDs
This is a partial list of fields found in mail documents and archives.

• SCCCA_MAIL_ALTERNATE_RECIPIENT_ALLOWED

• SCCCA_MAIL_ATTACHMENT

• SCCCA_MAIL_ATTENDEES

• SCCCA_MAIL_ATTR_HIDDEN

• SCCCA_MAIL_ATTR_READONLY

• SCCCA_MAIL_ATTR_SYSTEM

• SCCCA_MAIL_AUTO_FORWARDED

• SCCCA_MAIL_BCC

• SCCCA_MAIL_CATEGORIES

• SCCCA_MAIL_CC

• SCCCA_MAIL_CCME

• SCCCA_MAIL_CLIENT_SUBMIT_TIME

• SCCCA_MAIL_COMPANY

• SCCCA_MAIL_CONVERSATION_INDEX

• SCCCA_MAIL_CONVERSATION_TOPIC

• SCCCA_MAIL_CREATION_TIME

• SCCCA_MAIL_CREATOR_ENTRYID

• SCCCA_MAIL_CREATOR_NAME

• SCCCA_MAIL_DEFERRED_DELIVERY_TIME

• SCCCA_MAIL_DELETE_AFTER_SUBMIT

• SCCCA_MAIL_EMAIL

• SCCCA_MAIL_ENTRYID

• SCCCA_MAIL_EXPIRES

• SCCCA_MAIL_EXPIRY_TIME

• SCCCA_MAIL_FLAGSTS

• SCCCA_MAIL_FROM

• SCCCA_MAIL_FULLNAME

• SCCCA_MAIL_HOMEPHONE

• SCCCA_MAIL_IMPORTANCE

• SCCCA_MAIL_INET_MAIL_OVERRIDE_FORMAT

• SCCCA_MAIL_INTERNET_ARTICLE_NUMBER

• SCCCA_MAIL_INTERNET_CPID

Chapter 7
SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content

7-8



• SCCCA_MAIL_INTERNET_MESSAGE_ID

• SCCCA_MAIL_JOBTITLE

• SCCCA_MAIL_LASTMODIFIED

• SCCCA_MAIL_LAST_MODIFIER_ENTRYID

• SCCCA_MAIL_LAST_MODIFIER_NAME

• SCCCA_MAIL_LATEST_DELIVERY_TIME

• SCCCA_MAIL_LOCATION

• SCCCA_MAIL_MESSAGE_CLASS

• SCCCA_MAIL_MESSAGE_CODEPAGE

• SCCCA_MAIL_MESSAGE_LOCALE_ID

• SCCCA_MAIL_MESSAGE_SUBMISSION_ID

• SCCCA_MAIL_MSGFLAG

• SCCCA_MAIL_MSG_EDITOR_FORMAT

• SCCCA_MAIL_NEWSGROUPS

• SCCCA_MAIL_NORMALIZED_SUBJECT

• SCCCA_MAIL_NT_SECURITY_DESCRIPTOR

• SCCCA_MAIL_ORIGINATOR_DELIVERY_REPORT_REQUESTED

• SCCCA_MAIL_PRIORITY

• SCCCA_MAIL_PROFILE_CONNECT_FLAGS

• SCCCA_MAIL_RCVD_BY_FLAGS

• SCCCA_MAIL_RCVD_REPRESENTING_ADDRTYPE

• SCCCA_MAIL_RCVD_REPRESENTING_EMAIL_ADDRESS

• SCCCA_MAIL_RCVD_REPRESENTING_ENTRYID

• SCCCA_MAIL_RCVD_REPRESENTING_FLAGS

• SCCCA_MAIL_RCVD_REPRESENTING_NAME

• SCCCA_MAIL_RCVD_REPRESENTING_SEARCH_KEY

• SCCCA_MAIL_READ_RECEIPT_REQUESTED

• SCCCA_MAIL_RECEIVED

• SCCCA_MAIL_RECEIVED_BY_ADDRTYPE

• SCCCA_MAIL_RECEIVED_BY_EMAIL_ADDRESS

• SCCCA_MAIL_RECEIVED_BY_ENTRYID

• SCCCA_MAIL_RECEIVED_BY_NAME

• SCCCA_MAIL_RECEIVED_BY_SEARCH_KEY

• SCCCA_MAIL_RECIPIENT_REASSIGNMENT_PROHIBITED

• SCCCA_MAIL_REPLY_REQUESTED

• SCCCA_MAIL_REPLY_TIME

• SCCCA_MAIL_REPORT_TAG

Chapter 7
SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content

7-9



• SCCCA_MAIL_RESPONSE_REQUESTED

• SCCCA_MAIL_RTFBODY

• SCCCA_MAIL_RTF_IN_SYNC

• SCCCA_MAIL_RTF_SYNC_BODY_COUNT

• SCCCA_MAIL_RTF_SYNC_BODY_CRC

• SCCCA_MAIL_RTF_SYNC_BODY_TAG

• SCCCA_MAIL_RTF_SYNC_PREFIX_COUNT

• SCCCA_MAIL_RTF_SYNC_TRAILING_COUNT

• SCCCA_MAIL_SEARCH_KEY

• SCCCA_MAIL_SENDER_ADDRTYPE

• SCCCA_MAIL_SENDER_EMAIL_ADDRESS

• SCCCA_MAIL_SENDER_ENTRYID

• SCCCA_MAIL_SENDER_FLAGS

• SCCCA_MAIL_SENDER_NAME

• SCCCA_MAIL_SENDER_SEARCH_KEY

• SCCCA_MAIL_SENSITIVITY

• SCCCA_MAIL_SENT_REPRESENTING_ADDRTYPE

• SCCCA_MAIL_SENT_REPRESENTING_EMAIL_ADDRESS

• SCCCA_MAIL_SENT_REPRESENTING_ENTRYID

• SCCCA_MAIL_SENT_REPRESENTING_FLAGS

• SCCCA_MAIL_SENT_REPRESENTING_NAME

• SCCCA_MAIL_SENT_REPRESENTING_SEARCH_KEY

• SCCCA_MAIL_SIZE

• SCCCA_MAIL_SUBJECT

• SCCCA_MAIL_SUBMITTIME

• SCCCA_MAIL_TO

• SCCCA_MAIL_TRANSPORT_MESSAGE_HEADERS

• SCCCA_MAIL_TRUST_SENDER

• SCCCA_MAIL_WEBPAGE

• SCCCA_MAIL_WORKPHONE

7.2 SCCCA_BREAK: Content Breaks
This content type is used internally, and may be ignored.

7.3 SCCCA_CELL: Cell Boundary
SCCCA_CELL will appear before the contents of a cell in a spreadsheet or database
and will contain coordinates that indicate the starting and ending position of the cell. If

Chapter 7
SCCCA_BREAK: Content Breaks

7-10



the cell isn't merged, then the starting and ending positions will be the same. The
content contained by the cell is assumed to end when the next SCCCA_CELL or
SCCCA_SHEET is output.

7.3.1 SCCCA_CELL Content Description
• dwType: SCCCA_CELL

• dwSubType: Either SCCCA_HIDDEN if the hidden attribute is set on either the row
or column for the cell, or 0 if the cell isn't hidden.

• dwData1: The starting row in a numeric format that is 0 based

• dwData2: The starting column in a numeric format that is 0 based

• dwData3: The ending row in a numeric format that is 0 based

• dwData4: The ending column in a numeric format that is 0 based

• pDataBuf: Not used

7.4 SCCCA_COMMENTREFERENCE
A SCCCA_COMMENTREFERENCE is placed in the actual location of the comment.
The body of the comment may appear elsewhere and will be tagged with a
SCCCA_BEGINTAG of type SCCCA_SUBDOCTEXT and will have the same Id as the
SCCCA_COMMENTREFERENCE.

• dwType: SCCCA_COMMENTREFERENCE

• dwSubType: None

• dwData1: Type of the comment reference anchor.
SCCCA_COMMENT_PARAGRAPH, SCCCA_COMMENT_CELL,
SCCCA_COMMENT_SLIDE, or SCCCA_COMMENT_VECTORPAGE.

• dwData2: id of the associated subdoc

• dwData3: Reserved

• dwData4: Reserved

• pDataBuf: Not used

7.5 SCCCA_FILEPROPERTY: File Property Content
Returns the file identification information for a document. This property is generated by
the CAReadFirst function.

7.5.1 SCCCA_FILEPROPERTY Content Description
This section lists the applicable parameters and corresponding values.

• dwType: SCCCA_FILEPROPERTY

• dwSubType: SCCCA_FILEID

• dwData1: One of the file identifier values (FI_*) defined in sccfi.h

• dwData2: The input file's initial character set

Chapter 7
SCCCA_COMMENTREFERENCE

7-11



• dwData3: Reserved

• dwData4: Reserved

• pDataBuf: Not used

7.6 SCCCA_GENERATED: Generated Information
Identical to SCCCA_TEXT, except that the characters come not from the original
document, but from some other non-character data (numbers in spreadsheets, dates,
and so forth). Because the text is not from the original document, the characters do not
contribute toward character counts.

7.6.1 SCCCA_GENERATED Content Description
This section lists the applicable parameters and corresponding values.

• dwType: SCCCA_GENERATED

• dwSubType: Possible values include the following:

– SCCCA_BOOKMARKTEXT: Text for the internal name of the bookmark.

– SCCCA_DOCUMENTTEXT: Regular document text is returned with this
subtype.

– SCCCA_REVISIONDELETE: Will be OR-ed with either
SCCCA_DOCUMENTTEXT or SCCCA_SPECIALTEXT when text has been
deleted from the final version of a document as a result of a revision.

– SCCCA_URLTEXT: Text for the Link Location part of a URL.

– SCCCA_XMPMETADATA: Text from embedded XMP metadata.

• dwData1: Number of characters provided in pDataBuf

• dwData2: Original character set of the text in pDataBuf

• dwData3: Reserved

• dwData4: Reserved

• pDataBuf: Text buffer. Filled with one or more single- or double-byte characters.

7.7 SCCCA_OBJECT: SubObjects
This content type is provided to allow the developer to access the content of
SubObjects, like embedded graphics or objects in an archive. The SubObject can then
be opened by DAOpenDocument, filling the IOSPECSUBOBJECT or the
IOSPECARCHIVEOBJECT parameter with one of the following values:

7.7.1 SCCCA_OBJECT Content Description
These values may change if different options are applied, with different versions of the
technology, or after patches are applied.

• dwType: SCCCA_OBJECT

Chapter 7
SCCCA_GENERATED: Generated Information

7-12



• dwSubType: Set to SCCCA_EMBEDDEDOBJECT (0) if the sub-object is an
embedding or is set to the type of node if the object is from an archive. Possible
values include the following:

– SCCCA_EMBEDDEDOBJECT

– SCCCA_ARCHIVEITEMCONTAINER

– SCCCA_COMPRESSEDFILE

– SCCCA_MESSAGE

– SCCCA_CONTACT

– SCCCA_CALENDARENTRY

– SCCCA_NOTE

– SCCCA_TASK

– SCCCA_JOURNALENTRY

– SCCCA_ATTACHMENT

• dwData1: The internal SubObject identifier or a node identifier.

• dwData2: Stream identifier for an alternate graphic.

• dwData3: Stream identifier for an OLE object if one exists. Otherwise, it is
CA_INVALIDITEM.

• dwData4: Object Flags. Currently, 0 or SCCCA_ENDRECORD

• pDataBuf: Not used

7.8 SCCCA_OBJECTALTSTRING: Alternate String
This content type provides an alternate string to identify an embedded object.

7.8.1 SCCCA_OBJECTALTSTRING Content Description
• dwType: SCCCA_OBJECTALTSTRING

• dwSubType: Not used

• dwData1: Number of characters provided in pDataBuf

• dwData2: Original character set of the text in pDataBuf

• dwData3: Not used

• dwData4: Not used

• pDataBuf: Text buffer containing the alternate string. Filled with one or more
single- or double-byte characters.

7.9 SCCCA_OBJECTNAME: Object Name
This content type is provided to identify the name of an embedded object.

7.9.1 SCCCA_OBJECTNAME Content Description
• dwType: SCCCA_OBJECTNAME

Chapter 7
SCCCA_OBJECTALTSTRING: Alternate String

7-13



• dwSubType: Not used

• dwData1: Number of characters provided in pDataBuf

• dwData2: Original character set of the text in pDataBuf

• dwData3: Not used

• dwData4: Not used

• pDataBuf: Text buffer containing the name. Filled with one or more single- or
double-byte characters.

7.10 SCCCA_RECORD: Archive Record
This content is output to allow the customer to easily group fields that appear in an
archive or in an email archive. The record is considered to be open until a
SCCCA_OBJECT is encountered with the flag SCCCA_ENDRECORD set.

7.10.1 SCCCA_RECORD Content Description
This section lists the applicable parameters and corresponding values.

• dwType: SCCCA_RECORD

• dwSubType: Reserved

• dwData1: Reserved

• dwData2: Reserved

• dwData3: Reserved

• dwData4: Reserved

• pDataBuf: not used

7.11 SCCCA_REVISION_CELL: Revision Cell
The location of a cell within a track changes block.

7.11.1 SCCCA_REVISION_CELL Content Description
This section lists the applicable parameters and corresponding values.

• dwType: SCCCA_REVISION_CELL

• dwSubType: Reserved

• dwData1: Sheet

• dwData2: Column

• dwData3: Row

• dwData4: Reserved

• pDataBuf: Reserved

Chapter 7
SCCCA_RECORD: Archive Record

7-14



7.12 SCCCA_REVISION_ROW: Revision Row
This describes a series of rows within a track changes block.

7.12.1 SCCCA_REVISION_ROW Content Description
This section lists the applicable parameters and corresponding values.

• dwType: SCCCA_REVISION_ROW

• dwSubType: Reserved

• dwData1: Sheet

• dwData2: Start Row

• dwData3: End Row (will be the same as Start Row if a single row is selected)

• dwData4: Reserved

• pDataBuf: Reserved

7.13 SCCCA_REVISION_COLUMN: Revision Column
This describes a series of columns within a track changes block.

7.13.1 SCCCA_REVISION_COLUMN Content Description
This section lists the applicable parameters and corresponding values.

• dwType: SCCCA_REVISION_COLUMN

• dwSubType: Reserved

• dwData1: Sheet

• dwData2: Start Column

• dwData3: End Column (will be the same as Start Column if a single column is
selected)

• dwData4: Reserved

• pDataBuf: Reserved

7.14 SCCCA_REVISION_SHEET: Revision Sheet
This describes the new and old sheet names within a track changes block. The
numbers will relate to names output with SCCCA_REVISION_SHEETNAME tags.

7.14.1 SCCCA_REVISION_SHEET Content Description
This section lists the applicable parameters and corresponding values.

• dwType: SCCCA_REVISION_SHEET

• dwSubType: Reserved

Chapter 7
SCCCA_REVISION_ROW: Revision Row

7-15



• dwData1: Sheet Number

• dwData2: New Name

• dwData3: Old Name

• dwData4: Reserved

• pDataBuf: Reserved

7.15 SCCCA_REVISION_SHEETNAME: Revision Sheet
Name

Provides the name and number of a sheet within a track changes block.

7.15.1 SCCCA_REVISION_SHEETNAME Content Description
This section lists the applicable parameters and corresponding values.

• dwType: SCCCA_REVISION_SHEETNAME

• dwSubType: Reserved

• dwData1: Sheet Number

• dwData2: Reserved

• dwData3: Reserved

• dwData4: Reserved

• pDataBuf: Name

7.16 SCCCA_REVISION_USER: Revision User
This describes the name associated with a user ID.

7.16.1 SCCCA_REVISION_USER Content Description
This section lists the applicable parameters and corresponding values.

• dwType: SCCCA_SHEET

• dwSubType: Reserved

• dwData1: User ID

• dwData2: Reserved

• dwData3: Reserved

• dwData4: Reserved

• pDataBuf: User Name

Chapter 7
SCCCA_REVISION_SHEETNAME: Revision Sheet Name

7-16



7.17 SCCCA_SHEET: Sheet Names
This content type contains only the sheet name (worksheet in a spreadsheet, slide in
presentation, and so forth). This content is not optional. It is always created if the
information is present. Of course, the client can ignore this text when it is returned.

7.17.1 SCCCA_SHEET Content Description
This section lists the applicable parameters and corresponding values.

• dwType: SCCCA_SHEET

• dwSubType: Reserved

• dwData1: The length of the name in pDataBuf in characters.

• dwData2: The original character set of the name in pDataBuf.

• dwData3: Reserved

• dwData4: Reserved

• pDataBuf: Points to the sheet name in whatever output character set has been
requested.

7.18 SCCCA_SLIDE: Presentation Slide
SCCCA_SLIDE appears before the contents of a slide in a presentation document.
The content contained by the slide is assumed to end when the next SCCCA_SLIDE is
output, or the end of the document is reached.

• dwType: SCCCA_SLIDE

• dwSubType: Reserved

• dwData1: Identifies if the slide is hidden (SCCCA_SLIDEHIDDEN) or not
(SCCCA_SLIDENORMAL)

• dwData2: Reserved

• dwData3: Reserved

• dwData4: Reserved

• pDataBuf: Reserved

7.19 SCCCA_STYLECHANGE: Style Information
The SCCCA_STYLECHANGE content type is used to indicate changes in style
information. This style information can be used to delimit particularly interesting
content.

7.19.1 SCCCA_STYLECHANGE Content Description
This section lists the applicable parameters and corresponding values.

• dwType: SCCCA_STYLECHANGE

Chapter 7
SCCCA_SHEET: Sheet Names

7-17



• dwSubType: Possible values include the following:

– SCCCA_PARASTYLE: pDataBuf indicates the name of the style.

– SCCCA_HEIGHTANDSPACING: When dwSubType is
SCCCA_HEIGHTANDSPACING, dwData1 can be SCCCA_HEIGHT
(dwData2 represents the new character height), SCCCA_SPACING (dwData3
represents the new line spacing) or both of these values OR-ed together.

– SCCCA_INDENTS: When dwSubType is SCCCA_INDENTS, dwData1 can be
SCCCA_LEFTINDENT (dwData2 represents the left indent),
SCCCA_RIGHTINDENT (dwData3 represents the right indent),
SCCCA_FIRSTINDENT (dwData4 represents the first line indent), or any of
these values OR-ed together.

– SCCCA_OCE: This content type provides information about the original
charsets of the characters that follow. dwData1 represents the charset as
defined in vtchars.h.

• dwData1: Depends on the value of dwSubType.

• dwData2: Depends on the value of dwSubType.

• dwData3: Depends on the value of dwSubType.

• dwData4: Depends on the value of dwSubType.

• pDataBuf: Text buffer. Filled with one or more single- or double-byte characters.

• dwDataBufSize: Size of pDataBuf, in bytes.

7.20 SCCCA_TEXT: Text Content
This content type denotes document text, including special characters such as page
breaks and tabs.

The technology guarantees that the text generated by the Content Access technology
is identical to the text generated by the Outside In Viewer technology raw-text feature.
This allows character counts generated at indexing time using Content Access to be
directly mapped to viewer positions at viewing time for search-hit highlighting.
However, Content Access has abilities beyond the raw-text feature of the Viewer, such
as the ability to retrieve non-visible text such as document properties and hidden text,
and the ability to retrieve text from embedded documents.

When the output character is DBCS or Unicode, the character count will not be the
same as the buffer byte count because these character sets may generate more than
one byte per character. The byte ordering used for multi-byte character sets such as
these will be system-dependent; on a computer using an Intel processor, the low byte
will be first.

It is important to note that generated numeric data fields, such as date, time, and
spreadsheet numbers, are not included in the content returned by SCCCA_TEXT. For
information on how such text can be returned by Content Access, see 
SCCCA_GENERATED: Generated Information.

7.20.1 SCCCA_TEXT Content Description
This section lists the applicable parameters and corresponding values.

• dwType: SCCCA_TEXT

Chapter 7
SCCCA_TEXT: Text Content

7-18



• dwSubType: One of the following values:

– SCCCA_DOCUMENTTEXT: Regular document text is returned with this
subtype.

– SCCCA_SPECIALTEXT: Used to return text elements that are manufactured
by the technology due to special formatting attributes.

SCCCA_DOCUMENTTEXT or SCCCA_SPECIALTEXT can be optionally OR-ed
with any of the following to specify the type of text to be returned:

– SCCCA_ALLCAPS

– SCCCA_BOLD

– SCCCA_DUNDERLINE

– SCCCA_HIDDEN

– SCCCA_ITALIC

– SCCCA_OUTLINE

– SCCCA_REVISIONDELETE: Text that has been deleted from the final version
of a document as a result of a revision.

– SCCCA_REVISIONADD: Text that has been added to the final version of a
document as a result of a revision.

– SCCCA_SMALLCAPS

– SCCCA_STRIKEOUT

– SCCCA_UNDERLINE

– SCCCA_UNKNOWNMAP: This flag is set when PDF files don't contain a
ToUnicode map. This indicates that the mappings may or may not be correct.

• dwData1: Number of characters provided in pDataBuf

• dwData2: Original character set of the text in pDataBuf

• dwData3: Reserved

• dwData4: Reserved

• pDataBuf: Text buffer. Filled with one or more single- or double-byte characters.

7.20.2 Special Text Character Substitutions
• Context Change: 0x0D

• Email Delimiter: 0x09

• End of Database Record: 0x0A

• End of File: 0x0D

• End of Paragraph: 0x0D

• End of Table Cell: 0x0D

• End of Table Row: 0x0D

• Hard Hyphen: 0x2D

• Hard Line Break: 0x0A

• Hard Page Break: 0x0C

Chapter 7
SCCCA_TEXT: Text Content

7-19



• Hard Space: 0x20

• Implied Space: 0x20

• Section Separator: 0x0D

• Syllable Hyphen: 0x2D

• Tab: 0x09

7.21 SCCCA_TREENODELOCATOR: Tree Node Locator
This content type contains information to be used in the SOTREENODELOCATOR
structure, which is used by DAOpenRandomTreeRecord and 
DASaveRandomTreeRecord. These values may change if different options are
applied, with different versions of the technology, or after patches are applied.

7.21.1 SCCCA_TREENODELOCATOR Content Description
• dwType: SCCCA_TREENODELOCATOR

• dwSubType: Reserved

• dwData1: SOTREENODELOCATOR.dwSpecialFlags

• dwData2: SOTREENODELOCATOR.dwData1

• dwData3: SOTREENODELOCATOR.dwData2

• dwData4: Reserved

• pDataBuf: Not used

Chapter 7
SCCCA_TREENODELOCATOR: Tree Node Locator

7-20



8
Redirected IO

This chapter addresses how developers have total control over access to a file via
Outside In's redirected IO mechanism.
Many developers using the earlier versions of this technology expressed a need to
read file data from non-file system based sources. For instance, the developer might
want to read the file from a database on a server. Perhaps the developer is
downloading the file over a slow link, and wants to see the first screen of a document
before the download is completed, or only wants to download enough to view the first
screen.

This chapter includes the following sections:

• Using Redirected IO

• IOClose

• IORead

• IOWrite

• IOSeek

• IOTell

• IOGetInfo

• IOSEEK64PROC / IOTELL64PROC

8.1 Using Redirected IO
A developer can redirect the IO for an input or output file by providing a data structure
that contains pointers to custom IO routines for reading and writing. This data structure
is passed in place of a typical file specification. The developer must set the
dwSpecType parameter of the DAOpenDocument call to IOTYPE_REDIRECT when
the DAOpenDocument call is sent.

When dwSpecType is set this way, the pSpec element must contain a pointer to a
developer-defined data structure that begins with a BASEIO structure (defined in
baseIO.H). The BASEIO structure contains pointers to the basic IO functions for the
view window's IO system such as Read, Seek, Tell, and so forth. The developer must
initialize these function pointers to their own functions that perform IO tasks. Beyond
the BASEIO element, the developer may place any data he or she likes. For instance,
a developer's structure may be similar to the following:

typedef struct MYFILEtag
{
   BASEIO    sBaseIO;       /* must be the first element */
   VTDWORD   dwMyInfo1;
   VTDWORD   dwMyInfo2;
   .
   .
   .
} MYFILE;

8-1



Because the pSpec passed is essentially the file handle that the view window uses,
the developer can redirect the IO on a file-by-file basis while still viewing regular disk-
based files.

The BASEIO structure is defined as follows:

typedef struct BASEIOtag
{
    IOCLOSEPROC pClose;
    IOREADPROC pRead;
    IOWRITEPROC pWrite;
    IOSEEKPROC pSeek;
    IOTELLPROC pTell;
    IOGETINFOPROC pGetInfo;
    IOOPENPROC pOpen; /* pOpen *MUST* be set to NULL. */
#ifndef NLM
    IOSEEK64PROC pSeek64;
    IOTELL64PROC pTell64;
#endif
    VTVOID *aDummy[3];
} BASEIO, * PBASEIO;

The developer must implement the Close, Read, Seek, Tell and GetInfo routines. The
Write routine can be a dummy routine and the Open routine must be set to NULL. The
first parameter to each of these routines is called hFile and is of the type HIOFILE.
HIOFILE is simply the VTLPVOID to your data structure that was passed in the pSpec
parameter of the DAOpenDocument call.

The sample source code for a simple implementation of Redirected IO is in the
directory samples/taredir. This sample redirects the technology's IO through the fopen,
fgetc, fseek, ftell and fclose run-time library routines.

Note:

Redirected IO does not cache the whole file. Seeks can and will occur
throughout the file during the course of viewing. If the developer is
implementing redirected IO on a slow or sequential link, it is the developer's
responsibility to cache the file locally.

8.2 IOClose
Closes the file identified by hFile and cleans up all memory associated with the file.

Prototype

IOERR IOClose(
   HIOFILE   hFile);

Parameters

• hFile: Identifies the file to be closed. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

Chapter 8
IOClose

8-2



Return Values

• IOERR_OK: Close was successful.

• IOERR_UNKNOWN: Some error occurred on close.

8.3 IORead
Reads data from the current file position forward and resets the position to the byte
after the last byte read.

Prototype

IOERR IORead(
   HIOFILE         hFile,
   VTBYTE       *  pData,
   VTDWORD         dwSize,
   VTDWORD       * pCount);

Parameters

• hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

• pData: Points to the buffer into which the bytes should be read. Will be at least
dwSize bytes big.

• dwSize: Number of bytes to read.

• pCount: Points to the number of bytes actually read by the function. This value is
only valid if the return value is IOERR_OK.

Return Values

• IOERR_OK: Read was successful. pCount contains the number of bytes read and
pData contains the bytes themselves.

• IOERR_EOF: Read failed because the file pointer was beyond the end of the file
at the time of the read.

• IOERR_UNKNOWN: Read failed for some other reason.

8.4 IOWrite
Writes data from the current file position forward and resets the position to the byte
after the last byte written.

Note:

This function has been fully documented only for completeness. OEMs who
use redirected IO do not need to implement writing and the IOWrite function
should do nothing but return IOERR_UNKNOWN.

Chapter 8
IORead

8-3



Prototype

IOERR IOWrite(
   HIOFILE         hFile,
   VTBYTE       *  pData,
   VTDWORD         dwSize,
   VTDWORD       * pCount);

Parameters

• hFile: Identifies the file where the data is to be written. Should be cast into a
pointer to your data structure (MYFILE in the preceding discussion).

• pData: Points to the buffer from which the bytes should be written. It must be at
least dwSize bytes big.

• dwSize: Number of bytes to write.

• pCount: Points to the number of bytes actually written by the function. This value is
only valid if the return value is IOERR_OK.

Return Values

• IOERR_OK: Write was successful, pCount contains the number of bytes written.

• IOERR_UNKNOWN: Write failed for some reason.

8.5 IOSeek
Moves the current file position.

Prototype

IOERR IOSeek(
   HIOFILE   hFile,
   VTWORD    wFrom,
   VTLONG    lOffset);

Parameters

• hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

• wFrom: One of the following values:

– IOSEEK_TOP: Move the file position lOffset bytes from the top (beginning) of
the file.

– IOSEEK_BOTTOM: Move the file position lOffset bytes from the bottom (end)
of the file.

– IOSEEK_CURRENT: Move the file position lOffset bytes from the current file
position.

• lOffset: Number of bytes to move the file pointer. A positive value moves the file
pointer forward in the file and a negative value moves it backward. If a requested
seek value would move the file pointer before the beginning of the file, the file
pointer should remain unchanged and IOERR_UNKNOWN should be returned.
Seeking past EOF is allowed. In that case IOERR_OK should be returned. IOTell

Chapter 8
IOSeek

8-4



would return the requested seek position and IORead should return IOERR_EOF
and 0 bytes read.

Return Values

• IOERR_OK: Seek was successful.

• IOERR_UNKNOWN: Seek failed for some reason.

8.6 IOTell
Returns the current file position.

Prototype

IOERR IOTell(
   HIOFILE         hFile,
   VTDWORD       * pOffset);

Parameters

• hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

• pOffset: Points to the current file position returned by the function.

Return Values

• IOERR_OK: Tell was successful.

• IOERR_UNKNOWN: Tell failed for some reason.

8.7 IOGetInfo
Returns information about an open file.

Prototype

IOERR IOGetInfo(
   HIOFILE         hFile,
   VTDWORD        dwInfoId,
   VTVOID       * pInfo);

Parameters

• hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the previous discussion).

• dwInfoId: One of the following values:

– IOGETINFO_FILENAME: pInfo points to a string that should be filled with the
base file name (no path) of the open file (for example TEST.DOC). If you do
not know the file name, return IOERR_UNKNOWN. Certain file types (such as
DataEase) must know the original file name in order to open secondary files
required to correctly view the original file. If you return IOERR_UNKNOWN,
these file types will not convert. See the description of
IOGETINFO_GENSECONDARY in IOGENSECONDARY and
IOGENSECONDARYW Structures.

Chapter 8
IOTell

8-5



– IOGETINFO_PATHNAME: pInfo points to a string that should be filled with the
fully qualified path name (including the file name) of the open file. For
example, C:\MYDIR\TEST.DOC. If you do not know the path name, return
IOERR_UNKNOWN.

– IOGETINFO_PATHTYPE: pInfo points to a DWORD that should be filled with
the IOTYPE of the path returned by IOGETINFO_PATHNAME. For instance, if
you return a DOS path name in the Unicode character set, you should return
IOTYPE_UNICODEPATH.

– IOGETINFO_ISOLE2STORAGE: Must return IOERR_FALSE. pInfo is not
used.

– IOGETINFO_GENSECONDARY: pInfo points to a structure of type
IOGENSECONDARY. Some file types require supporting files to be opened.
These supporting files may contain formatting information or extra data.
Correct handling of IOGETINFO_GENSECONDARY is critical to the operation
of the Outside In technology. For a list of these file types, see File Types That
Cause IOGETINFO_GENSECONDARY.

Because the developer is in total control of the IO for the primary file, the
technology does not know how to generate a path to these secondary files or
even if the secondary files are accessible through the regular file system. The
IOGETINFO_GENSECONDARY call gives the developer a chance to resolve
this problem by generating a new IO specification for the secondary file in
question. The developer gets just the base file name (often embedded in the
original document or generated from the primary file's name) of the secondary
file.

The developer may either use one of the standard Outside In IO types or
totally redirect the IO for the secondary file, as well. For more details, see 
IOGENSECONDARY and IOGENSECONDARYW Structures.

– IOGETINFO_64BITIO: For redirected I/O that wishes to use 64-bit seek/tell
functions, your IOGetInfo function must respond IOERR_TRUE to this
dwInfoId. In addition, the pSeek64/pTell64 items in the baseio structure must
be valid pointers to the proper function types.

– IOGETINFO_DPATHNAME: pInfo points to a structure of type DPATHNAME,
which should be filled with the fully qualified path name (including the file
name) of the open file, for example, C:\MYDIR\TEST.DOC. If you do not know
the path name, return IOERR_UNKNOWN. The dwPathLen element contains
the size of the buffer pointed to by the pPath element. If the buffer size is too
small to contain the full path, modify dwPathLen to be the correct size of the
buffer required to hold the path name in its IOTYPE character width including
the NULL terminator and return IOERR_INSUFFICIENTBUFFER.

The following is a C data structure defined in SCCIO.H:

typedef struct DPATHNAMEtag
{
    VTDWORD  dwPathLen;
    VTVOID  *pPath;
} DPATHNAME, * PDPATHNAME;

Parameters

dwPathLen: Will be set to the number of bytes in the buffer pointed to by
pPath. If the size of the buffer is insufficient, reset this element to the number
of bytes required and return IOERR_INSUFFICIENTBUFFER.

Chapter 8
IOGetInfo

8-6



pPath: Points to the buffer to be filled with the path name.

– IOGETINFO_GENSECONDARYDP: pInfo points to a structure of type
IOGENSECONDARYDP. The dwSpecLen element contains the size of the
buffer pointed to by the pSpec element. If the buffer size is too small to contain
the spec, modify dwSpecLen to be the correct size of the buffer required to
hold the path in its IOTYPE character width including the NULL terminator and
return IOERR_INSUFFICIENTBUFFER.

The following is a C data structure defined in SCCIO.H:

typedef struct IOGENSECONDARYDPtag
{
    VTDWORD         dwSize;
    VTVOID *        pFileName;
    VTDWORD         dwSpecType;
    VTVOID *        pSpec;
    VTDWORD         dwSpecLen;
    VTDWORD         dwOpenFlags;
} IOGENSECONDARYDP, * PIOGENSECONDARYDP;

Parameters

dwSize: Will be set to sizeof (IOGENSECONDARYDP)

pFileName: A pointer to a string representing the file name of the secondary
file that the technology requires. It is usually a name stored in the primary file
(such as MYSTYLE.STY for a Word for DOS file) or a name generated from
the primary file name. The primary file for a DataEase database has a .dba
extension. The secondary name is the same file name but with a .dbm
extension.

dwSpecType: The developer must fill this with the IOSPEC for the secondary
file.

pSpec: On entry, this pointer points to an array of bytes or may be NULL (see
dwSpecLen below). If the dwSpecType is set a regular IOTYPE such as
IOTYPE_ANSIPATH, the developer may fill this array with the path name or
structure required for that IOTYPE. If the developer is redirecting access to the
secondary file, then dwSpecType will be IOTYPE_REDIRECT and the
developer should replace pSpec with a pointer to a developer-defined
structure that begins with the BASEIO structure (see Using Redirected IO).

The file is supposed to be opened by the OEM's redirected IO code by the
time they return the BASEIO struct. This is because the pOpen routine in the
BASEIO struct is supposed to be NULL.

dwSpecLen: On entry, this is set to the size of the pSpec buffer. If the size of
the buffer is insufficient, replace the value with the number of bytes required
and return IOERR_INSUFFICIENTBUFFER.

dwOpenFlags: Set by the technology. A set of bit flags describing how the
secondary file should be opened. Multiple flags may be used by bitwise OR-
ing them together. The following flags are currently used:

- IOOPEN_READ: The secondary file should be opened for read.

- IOOPEN_WRITE: The secondary file should be opened for write. If the
specified file already exists, its contents are erased when this flag is set.

- IOOPEN_CREATE: The secondary file should be created (if it does not
already exist) and opened for write.

Chapter 8
IOGetInfo

8-7



Any other value should return IOERR_BADINFOID.

• pInfo: The size of the pInfo buffer depends on the dwInfoId selected. For
IOGETINFO_FILENAME and IOGETINFO_PATHNAME, the buffer is of size
MAX_PATH characters (each character is either one byte or two, depending on
PATHTYPE). The IOGETINFO_PATHTYPE buffer is the size of a VTDWORD.

Return Values

• IOERR_OK: GetInfo was successful.

• IOERR_TRUE: Affirmative response from a true or false GetInfo.

• IOERR_FALSE: Negative response from a true or false GetInfo.

• IOERR_BADINFOID: dwInfoId can not be handled by this file type.

• IOERR_INVALIDSPEC: The file spec is bad for this type.

• IOERR_UNKNOWN: GetInfo failed for some other reason.

8.7.1 IOGENSECONDARY and IOGENSECONDARYW Structures
These structures are passed to the developer through the IOGetInfo function. They
allow the developer to tell the technology where a secondary file, needed to view the
primary file, is located.

The SpecType of the original file determines which of these two structures is used. If
the SpecType is IOTYPE_UNICODEPATH, IOGENSECONDARYW is used.
pFileName will point to a Unicode string terminated with a NULL WORD. For all other
SpecTypes, IOGENSECONDARY is used and pFileName will point to a string
terminated with a NULL BYTE.

The following is a C data structure defined in SCCIO.H:

typedef struct
{
   VTDWORD     dwSize;
   VTLPBYTE    pFileName;
   VTDWORD     dwSpecType;
   VTLPVOID    pSpec;
   VTDWORD     dwOpenFlags
} IOGENSECONDARY, * PIOGENSECONDARY;

typedef struct
{
   VTDWORD     dwSize;
   VTLPWORD    pFileName;
   VTDWORD     dwSpecType;
   VTLPVOID    pSpec;
   VTDWORD     dwOpenFlags
} IOGENSECONDARYW, * PIOGENSECONDARYW;

• dwSize: Will be set to sizeof (IOGENSECONDARY) or
sizeof (IOGENSECONDARYW) (both of these values are the same).

• pFileName: A pointer to a string representing the file name of the secondary file
that the technology requires. It will generally be a name that is stored in the
primary file somewhere (such as MYSTYLE.STY for a Word for DOS file) or a
name generated from the primary file name (the primary file for a DataEase

Chapter 8
IOGetInfo

8-8



database will always have a .dba extension, the secondary name would be the
same file name but with a .dbm extension).

• dwSpecType: The developer must fill this with the IOSPEC for the secondary file.

• pSpec: On entry, this pointer points to an array of 1024 bytes. If the dwSpecType
is set a regular IOTYPE such as IOTYPE_ANSIPATH, the developer may fill this
array with the path name or structure required for that IOTYPE. If the developer is
redirecting access to the secondary file, then dwSpecType will be
IOTYPE_REDIRECT and the developer should replace pSpec with a pointer to a
developer-defined structure that begins with the BASEIO structure (see Using
Redirected IO).

Note the file is supposed to be opened by the OEM's redirected IO code by the
time they return the BASEIO struct. This is because the pOpen routine in the
BASEIO struct is supposed to be NULL.

• dwOpenFlags: Set by the technology. A set of bit flags describing how the
secondary file should be opened. Multiple flags may be used by bitwise OR-ing
them together. The following flags are currently used:

– IOOPEN_READ: The secondary file should be opened for read.

– IOOPEN_WRITE: The secondary file should be opened for write. Please note
that if the specified file already exists, it's contents will be erased when this
flag is set.

– IOOPEN_CREATE: The secondary file should be created (if it does not
already exist) and opened for write.

8.7.2 File Types That Cause IOGETINFO_GENSECONDARY
The following details concern specific file types.

• Microsoft Word for DOS Versions 4, 5 and 6: Used to open and read the style
sheet file associated with the document. The filter will successfully degrade if the
style sheet is not present.

• Harvard Graphics DOS 3.x: Used to open and read the individual slides within
ScreenShow and palette files. Files with the extension .ch3 are individual graphics
or slides that can be opened using no secondary files. Files with the
extension .sy3 are ScreenShows that reference a list of .ch3 files via the
secondary file mechanism. There is also an optional palette file that can be
referenced from a .ch3 file, but the filter will successfully degrade if the palette file
is not present.

• R:Base: Used to open and read required schema file. The R:Base data files are
named xxxx2.rbf but the data is useless without the schema file named xxxx1.rbf.
There is also a xxxx3.rbf file associated with each database, but it is not used.

• Paradox 4.0 and Above: Used to open and read memo field data file. Paradox
uses a separate file for all memo field data larger than 32 bytes.

• DataEase: Used to open and read the data file. DataEase databases include
a .dba file that contains the schema (the file that the technology can identify as
DataEase) and a .dbm file that contains the actual data.

Chapter 8
IOGetInfo

8-9



8.8 IOSEEK64PROC / IOTELL64PROC
These functions are for seek/tell using 64-bit offsets. These functions are not used by
default. Rather, they are used if the IOGETINFO_64BITIO message returns
IOERR_TRUE. This is so redirected I/O using strictly 32-bit I/O is unaffected.

8.8.1 IOSeek64
Moves the current file position.

Prototype

IOERR IOSeek64(
HIOFILE hFile,
VTWORD wFrom,
VTOFF_T offset);

Parameters

The parameter information is the same as for IOSeek(). However, the size of the
VTOFF_T offset for IOSeek64() is 64-bit unlike the 32-bit offset in IOSeek().

8.8.2 IOTell64
Returns the current file position.

Prototype

IOERR IOTell64(
HIOFILE hFile,
VTOFF_T * pOffset);

Parameters

The parameter information is the same as for IOTell(). The only change is the use of a
pointer to a 64-bit parameter for returning the offset.

Chapter 8
IOSEEK64PROC / IOTELL64PROC

8-10



9
Implementation Issues

This chapter discusses potential issues in using Content Access.

9.1 Running in 24x7 Environments
To ensure robust 24x7 performance in server applications embedding this product, it is
strongly recommended that the technology be run in a process separate from the
server's primary process.

The file filtering technology underlying the software represents almost a quarter of a
million lines of code. This code is expected to robustly deal with any stream of bytes,
of any length (any file), in all cases. Oracle has dedicated, and continues to dedicate,
significant effort into making this technology extremely robust. However, in real world
situations, expect that some small number of malformed files may force the filters into
unstable states. This generally results in either a memory exception (which can be
trapped and recovered from gracefully), infinite loop or a wild pointer that causes the
filter to write into memory that is part of the same process but does not belong to the
filter. In the latter situation, this wild pointer condition cannot be trapped.

On the desktop this is not a significant problem since the number of files being dealt
with is relatively small. In a 24x7 server environment, however, a wild pointer can be
extremely disruptive to the server process and produce serious problems. The best
solution for dealing with this problem is to run any application that reads complex file
formats, including Content Access, in a separate process. This solution protects the
application from the susceptibility of filtering technology to the unknown quality of input
files.

It must be stressed that files that lead to wild pointers or infinite loops occur very
infrequently, usually as a result of a third-party conversion process or beta versions of
applications. Oracle is committed to addressing these issues and to updating and
expanding its testing tools and corpus of documents to proactively minimize this
garbage in-garbage out problem.

9-1



10
Sample Applications

This chapter describes sample applications shipped with the Content Access SDK.
Each of the sample applications included in this SDK is designed to highlight a specific
aspect of the technology's functionality. We ship built versions of these sample
applications. The compiled executables should be in the root directory where the
product is installed.

This chapter includes the following sections:

• Building the Samples on a Windows System

• Building the Samples on a UNIX System

• An Overview of the Sample Applications

10.1 Building the Samples on a Windows System
Microsoft Visual Studio project files are provided for building each of the sample
applications. For 32-bit versions of Windows, versions of the project files are provided
for Visual Studio 2013 (.dsp files) and Visual Studio 2013 (.vcproj files).

Note:

Because .vcproj files may not pick up the right compiler on their own, you
need to make sure that you are building with the Win64 configuration in
Visual Studio 2013. For 64-bit versions of Windows, only the Visual Studio
2013 versions are available.

The project files for the sample applications can be found in the \sdk\samplecode\win
subdirectory of the Outside In SDK.

10.2 Building the Samples on a UNIX System
See the following sections for specific information about building the sample
applications on your flavor of UNIX:

• HP-UX Compiling and Linking

• IBM AIX Compiling and Linking

• Linux Compiling and Linking

• Oracle Solaris Compiling and Linking

• FreeBSD Compiling and Linking

10-1



10.3 An Overview of the Sample Applications
This section describes the following sample applications.

Note:

Please note that not all of the sample applications are provided for both the
Windows and UNIX platforms. See the heading of each application's
subsection for clarification.

10.3.1 batch_process_ca
batch_process_ca demonstrates running Content Access in a separate process on
multiple input files. It also allows the timing of each run.

The application is executed from the command line and takes several possible
parameters:

batch_process_ca -f inputfile -o outputfile or [-d inputdir -o outputdir] 
[-i iterations] [-q[2]] [-b]

• -f specifies the name of a single input file.

• -d specifies the name of an input directory of files.

• -o specifies the name of an output file if -f is being used, or the name of an output
directory if -d is being used.

• -i is an optional parameter specifying the number of iterations to perform.

• -q and -q2 diminish the output to the screen.

• -b increases the amount of content in the output including processing tags and
sub-documents.

10.3.2 casample
An example of a typical usage of the Outside In Content Access API is casample.
Because this is intended as a simple template or reference for common Content
Access usage, it creates only rudimentary output. However, it does initialize, exercise
and cleanup Content Access output. Content Access requires the usage of the
Outside In Data Access module. Therefore, this application also demonstrates usage
of a portion of Data Access.

The application is executed from the command line and has one required parameter,
the name of the input file. It will optionally take two other parameters: '-u' and an output
file name.

casample input_file [-u outputfile]

10.3.3 extract_archive
extract_archive demonstrates using the DATree API to extract all nodes in an archive.

Chapter 10
An Overview of the Sample Applications

10-2



The application is executed from the command line and takes two parameters, the
name of the input file and the name of an output directory for the extracted files:

extract_archive input_file output_directory

10.3.4 extract_object
extract_object demonstrates using Content Access to parse an input file and then
using the DAObject API to extract all embedded objects.

The application is executed from the command line and takes two parameters, the
name of the input file and the name of an output directory for the extracted objects:

extract_object input_file output_directory

10.3.5 memoryio
memoryio demonstrates how to use the redirected I/O and Content Access APIs to
process an in-memory file.

The application is executed from the command line and takes only one parameter, the
name of the input file:

memoryio input_file

10.3.6 parsepst
parsepst demonstrates how to parse email messages from a PST file using the CA
API. It searches for messages received between two hard coded dates.

The application is executed from the command line and takes only one parameter, the
name of the input file:

parsepst input_file

10.3.7 tademo (Windows Only)
The tademo sample application included with this product provides a simple
demonstration of text access. The text from a file is read a block at a time and
displayed in the tademo window. The TAReadFirst and TAReadNext functions are
directly tied to menu options, and the block size may be set by the user. An option is
also provided to save the text to a file.

10.3.8 taredir (UNIX Only)
This sample provides a means of using the API presented in this guide without the
need for Motif libraries. All extracted text is output to the standard output device, or
can be redirected to a file or another device.

The application is executed from the command line and takes only one parameter, the
name of the input file:

taredir input_file

Chapter 10
An Overview of the Sample Applications

10-3



10.3.9 textdemo (UNIX Only)
The sample code in the textdemo files shows how to use the API presented in this
guide. This application is essentially identical to the Windows-only application tademo,
which is discussed at length in tademo (Windows Only).

Chapter 10
An Overview of the Sample Applications

10-4



A
Content Access Options

Options are parameters affecting the behavior of the Outside In Technology. These
options are available to the developer when using Content Access. They are set using
the DASetOption call. It is recommended that developers familiarize themselves with
all of the options available.

Options may be Local, in which case they only affect the handle for which they are set,
or Global, in which case they automatically affect all handles associated with the hDoc.

While default values are provided, users are encouraged to set all options for a
number of reasons. In some cases, the default values were chosen to provide
backwards compatibility. In other cases, the default values were chosen arbitrarily
from a range of possibilities.

The following types of options are covered:

• Character Mapping

• Input Handling

• Compression

• Content Access Flags

• File System

A.1 Character Mapping
This section discusses character mapping.

A.1.1 SCCOPT_DEFAULTINPUTCHARSET
This option is used in cases where Outside In cannot determine the character set used
to encode the text of an input file. When all other means of determining the file's
character set are exhausted, Outside In will assume that an input document is
encoded in the character set specified by this option. This is most often used when
reading plain-text files, but may also be used when reading HTML or PDF files. The
possible character sets are listed in charsets.h.

When "extended test for text" is enabled (see SCCOPT_FIFLAGS), this option will still
apply to plain-text input files that are not identified as EBCDIC or Unicode.

This option supersedes the SCCOPT_FALLBACKFORMAT option for selecting the
character set assumed for plain-text files. For backwards compatibility, use of
deprecated character-set -related values is still currently supported for
SCCOPT_FALLBACKFORMAT, though internally such values will be translated into
equivalent values for the SCCOPT_DEFAULTINPUTCHARSET. As a result, if an
application were to set both options, the last such value set for either option will be the
value that takes effect.

A-1



Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTDWORD

Default

• CS_SYSTEMDEFAULT: Query the operating system.

Data

The data types are listed in charsets.h.

A.1.2 SCCOPT_OUTPUTCHARACTERSET
Any text returned by Content Access or Text Access will be in the specified character
set.

Handle Types

VTHDOC, VTHCONTENT, VTHTEXT

Scope

Local

Data Type

VTDWORD

Default

If the option is not set, Content Access will use SO_ANSI1252 on all non-Windows
platforms. The current ANSI code page will be retrieved on Windows using GetACP()
with the result being mapped to match an Outside In Technology character set.

Data

One of the following values:

Value Description

CS_DOS_437 U.S.

CS_DOS_737 Greek

CS_DOS_850 Latin-1

CS_DOS_852 Latin-2

CS_DOS_855 Cyrillic

CS_DOS_857 Turkish

Appendix A
Character Mapping

A-2



Value Description

CS_DOS_860 Portuguese

CS_DOS_863 French Canada

CS_DOS_865 Denmark, Norway-DAT

CS_DOS_866 Cyrillic

CS_DOS_869 Greece

CS_WINDOWS_874 Thailand

CS_WINDOWS_932 Japanese

CS_WINDOWS_936 Chinese GB

CS_WINDOWS_949 Korea (Wansung)

CS_WINDOWS_950 Hong Kong, Taiwan

CS_WINDOWS_1250 Windows Latin 2 (Central Europe)

CS_WINDOWS_1251 Windows Cyrillic (Slavic)

CS_WINDOWS_1252 Windows Latin 1 (ANSI)

CS_WINDOWS_1253 Windows Greek

CS_WINDOWS_1254 Windows Latin 5 (Turkish)

CS_WINDOWS_1255 Windows Hebrew

CS_WINDOWS_1256 Windows Arabic

CS_WINDOWS_1257 Windows Baltic

CS_UNICODE Unicode

CS_ISO8859_1 Latin-1 - this is a subset of Windows 1252

CS_ISO8859_2 Latin-2

CS_ISO8859_3 Latin-3

CS_ISO8859_4 Latin-4

CS_ISO8859_5 Cyrillic

CS_ISO8859_6 Arabic

CS_ISO8859_7 Greek

CS_ISO8859_8 Hebrew

CS_ISO8859_9 Turkish

A.1.3 SCCOPT_UNMAPPABLECHAR
This option selects the character used when a character cannot be found in the output
character set. This option takes the Unicode value for the replacement character. It is
left to the user to make sure that the selected replacement character is available in the
output character set.

Handle Types

VTHDOC

Scope

Local

Appendix A
Character Mapping

A-3



Data Type

VTWORD

Data

The Unicode value for the character to use.

Default

• 0x002a = "*"

A.2 Input Handling
This section discusses input handling.

A.2.1 SCCOPT_EXTRACTXMPMETADATA
Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
the XMP feature, which does not interpret the XMP metadata, but passes it straight
through without any interpretation. This option is independent of the other two
"metadata" options. This option will be ignored if the
SCCOPT_PARSEXMPMETADATA option is enabled.

• SCCEX_IND_SUPPRESSPROPERTIES will not affect XMP, so if you turn XMP
on, but also set SuppressProperties, you will still get the XMP.

• SCCEX_METADATAONLY will not guarantee that XMP is produced.

Handle Types

VTHDOC

Scope

Local (was Global prior to release 8.2.2)

Data Type

VTBOOL

Data

• TRUE: This setting enables XMP extraction.

• FALSE: This setting disables XMP extraction.

Default

• FALSE

A.2.2 SCCOPT_FALLBACKFORMAT
This option controls how files are handled when their specific application type cannot
be determined. This normally affects all plain-text files, because plain-text files are

Appendix A
Input Handling

A-4



generally identified by process of elimination, for example, when a file isn't identified as
having been created by a known application, it is treated as a plain-text file.

A number of values that were formerly allowed for this option have been deprecated.
Specifically, the values that selected specific plain-text character sets are no longer to
be used. For such functionality, applications should instead use the option 
SCCOPT_DEFAULTINPUTCHARSET.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTDWORD

Data

The high VTWORD of this value is reserved and should be set to 0, and the low
VTWORD must have one of the following values:

• FI_TEXT: Unidentified file types will be treated as text files.

• FI_NONE: Outside In will not attempt to process files whose type cannot be
identified. This will include text files. When this option is selected, an attempt to
process a file of unidentified type will cause Outside In to return an error value of
DAERR_FILTERNOTAVAIL (or SCCERR_NOFILTER).

Default

• FI_TEXT

A.2.3 SCCOPT_FIFLAGS
This option affects how an input file's internal format (application type) is identified
when the file is first opened by the Outside In technology. When the extended test flag
is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC, or
Unicode, the file's contents will be interpreted as such by the viewing process.

The extended test is optional because it requires extra processing and cannot
guarantee complete accuracy (which would require the inspection of every single byte
in a file to eliminate false positives.)

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTDWORD

Appendix A
Input Handling

A-5



Data

One of the following values:

• SCCUT_FI_NORMAL: This is the default value. When this is set, standard file
identification behavior occurs.

• SCCUT_FI_EXTENDEDTEST: If set, the File Identification code will run an
extended test on all files that are not identified.

Default

• SCCUT_FI_NORMAL

A.2.4 SCCOPT_SYSTEMFLAGS
This option controls a number of miscellaneous interactions between the developer
and the Outside In Technology.

Handle Type

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

• SCCVW_SYSTEM_UNICODE: This flag causes the strings in
SCCDATREENODE to be returned in Unicode.

Default

0

A.2.5 SCCOPT_IGNORE_PASSWORD
This option can disable the password verification of files where the contents can be
processed without validation of the password. If this option is not set, the filter should
prompt for a password if it handles password-protected files.

As of Release 8.4.0, only the PST and MDB Filters support this option.

Scope

Global

Data Type

VTBOOL

Appendix A
Input Handling

A-6



Data

• TRUE: Ignore validation of the password

• FALSE: Prompt for the password

Default

FALSE

A.2.6 SCCOPT_LOTUSNOTESDIRECTORY
This option allows the developer to specify the location of a Lotus Notes or Domino
installation for use by the NSF filter. A valid Lotus installation directory must contain
the file nnotes.dll.

Note:

Please see section 2.1.1 for NSF support on Win x86-32 or Win x86-64 or
section 3.1.1 for NSF support on Linux x86-32 or Solaris Sparc 32.

Handle Types

NULL

Scope

Global

Data Type

VTLPBYTE

Data

A path to the Lotus Notes directory.

Default

If this option isn't set, then OIT will first attempt to load the Lotus library according to
the operating system's PATH environment variable, and then attempt to find and load
the Lotus library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

A.2.7 SCCOPT_PARSEXMPMETADATA
Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
parsing of the XMP data into normal OIT document properties. Enabling this option
may cause the loss of some regular data in premium graphics filters (such as
Postscript), but won't affect most formats (such as PDF).

Handle Types

VTHDOC

Appendix A
Input Handling

A-7



Scope

Local

Data Type

VTBOOL

Data

• TRUE: This setting enables parsing XMP.

• FALSE: This setting disables parsing XMP.

Default

FALSE

A.2.8 SCCOPT_PDF_FILTER_REORDER_BIDI
This option controls whether or not the PDF filter will attempt to reorder bidirectional
text runs so that the output is in standard logical order as used by the Unicode 2.0 and
later specification. This additional processing will result in slower filter performance
according to the amount of bidirectional data in the file.

Handle Types

VTHDOC, NULL

Scope

Global

Data Type

VTDWORD

Data

• SCCUT_FILTER_STANDARD_BIDI

• SCCUT_FILTER_REORDERED_BIDI

Default

SCCUT_FILTER_STANDARD_BIDI

A.2.9 SCCOPT_PROCESS_OLE_EMBEDDINGS
Microsoft Powerpoint versions from 1997 through 2003 had the capability to embed
OLE documents in the Powerpoint files. This option controls which embeddings are to
be processed as native (OLE) documents and which are processed using the alternate
graphic.

Appendix A
Input Handling

A-8



Note:

The Microsoft Powerpoint application sometimes does embed known
Microsoft OLE embeddings (such as Visio, Project) as an "Unknown" type.
To process these embeddings, the SCCOPT_PROCESS_OLEEMBED_ALL
option is required. Post Office-2003 products such as Office 2007
embeddings also fall into this category.

Handle Types

VTHDOC, NULL

Scope

Global

Data Type

VTWORD

Data

• SCCOPT_PROCESS_OLEEMBED_ALL : Process all embeddings in the file

• SCCOPT_PROCESS_OLEEMBED_NONE : Process none of the embeddings in
the file

• SCCOPT_PROCESS_OLEEMBED_STANDARD (default) : Process embeddings
that are known standard embeddings. These include Office 2003 versions of
Word, Excel, Visio etc.

Default

SCCOPT_PROCESS_OLEEMBED_STANDARD

A.2.10 SCCOPT_TIMEZONE
This option allows the user to define an offset to GMT that will be applied during date
formatting, allowing date values to be displayed in a selectable time zone. This option
affects the formatting of numbers that have been defined as date values. This option
will not affect dates that are stored as text.

Note:

Daylight savings is not supported. The sent time in msg files when viewed in
Outlook can be an hour different from the time sent when an image of the
msg file is created.

Handle Types

NULL, VTHDOC

Appendix A
Input Handling

A-9



Scope

Global

Data Type

VTLONG

Data

Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query
the operating system for the time zone set on the machine, specify
SCC_TIMEZONE_USENATIVE.

Default

• 0: GMT time

A.2.11 SCCOPT_HTML_COND_COMMENT_MODE
Some HTML includes a special type of comment that will be read by particular
versions of browsers or other products. This option allows you to control which of
those comments are included in the output.

Handle Type

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

• One or more of the following values OR-ed together:

• HTML_COND_COMMENT_NONE: Don't output any conditional comments. Note:
setting any other flag will negate this.

• HTML_COND_COMMENT_IE5: include the IE 5 comments

• HTML_COND_COMMENT_IE6: include the IE 6 comments

• HTML_COND_COMMENT_IE7: include the IE 7 comments

• HTML_COND_COMMENT_IE8: include the IE 8 comments

• HTML_COND_COMMENT_IE9: include the IE 9 comments

• HTML_COND_COMMENT_ALL: include all conditional comments including the
versions listed above and any other versions that might be in the HTML.

Default

HTML_COND_COMMENT_NONE

Appendix A
Input Handling

A-10



A.2.12 SCCOPT_PDF_FILTER_DROPHYPHENS
This option controls whether or not the PDF filter will drop hyphens at the end of a line.
Since most PDF-generating tools create them as generic dashes, it's impossible for
Outside In to know if the hyphen is a syllable hyphen or part of a hyphenated word.
When this option is set to TRUE, all hyphens at the end of lines will be dropped from
the extracted text.

Note:

When this option is TRUE, the character counts for the extracted text may
not match the counts used for rendering where the hyphens are required for
rendering. This will affect annotations in rendering APIs.

Handle Types

VTHDOC

Scope

Global

Data Type

VTBOOL

Data

• TRUE: This setting drops hyphens from the end of all lines.

• FALSE: This setting retains hyphens at the end of all lines.

Default

FALSE

A.2.13 SCCOPT_ARCFULLPATH
In the Viewer and rendering products, this option tells the archive display engine to
show the full path to a node in the szNode field in response to a
SCCVW_GETTREENODE message. It also causes the name fields in
DAGetTreeRecord and DAGetObjectInfo to contain the full path instead of just the
archive node name.

Data Type

VTBOOL

Data

• TRUE: Display the full path.

• FALSE: Do not display the path.

Appendix A
Input Handling

A-11



Default

FALSE

A.2.14 SCCOPT_NULLREPLACECHAR
This option specifies a two-byte Unicode character that will be used to replace null
characters if null path separators are being used. This option defaults to '/' and is valid
for SearchML 3.x, SearchHTML, SearchText, Content Access and the DA APIs.

Note:

This is identical to SCCOPT_XML_NULLREPLACECHAR.

Handle Types

VTHDOC

Scope

Local

Data Type

VTWORD

Data

A two-byte Unicode character that will be used to replace null characters if null path

separators are being used.

Default

0x002f = "/"

A.2.15 SCCOPT_EX_PERFORMANCEMODE
When possible, skip the processing of some or all style information. This should result
in better performance, but certain output will no longer be available.

• SCCEX_PERFORMANCE_TEXTONLY - When this flag is set, no style
information is processed in optimized filters.  The following output won't be
available even if they have been requested: character attributes, paragraph
attributes, font names, and PDF Map Problem warnings. Not all input filters are
optimized to work with this performance mode, but Microsoft Office, PDF, RTF,
MSG, Mime, and HTML are included in the optimized list. If this flag is set and an
input document for a non-optimized filter is encountered, this option will default
back to SCCEX_PERFORMANCE_TEXTANDFONTS. Characters in symbol fonts
use the font name as part of the character mapping process. Since the font name
is not tracked, there may be minor mapping differences in these characters, but
character counts should still be accurate.

Appendix A
Input Handling

A-12



• SCCEX_PERFORMANCE_TEXTANDFONTS - When this flag is set, minimal style
information is tracked including character sets and font names. That information
corrects the mapping differences in symbol characters, but doesn't give as much
performance benefit as SCCEX_PERFORMANCE_TEXTONLY. This flag also
works with all input filters.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

One of the following:

• SCCEX_PERFORMANCE_NORMAL - Process the style information normally.

• SCCEX_PERFORMANCE_TEXTANDFONTS - Process only the font and
character set information within a style.

• SCCEX_PERFORMANCE_TEXTONLY - Skip processing all style information.

Default

SCCEX_PERFORMANCE_NORMAL

Note:

This option is only supported in Search Export and Content Access.
Attempting to use it with other products will lead to unpredictable results.

A.2.16 SCCOPT_GENERATEEXCELREVISIONS
This option enables you to extract tracked changes from Excel. Extracted content shall
include location (worksheet, row, column), author, date, and time. Please note that
Excel has an option to display the changes inline or on a different sheet. Either case
should be extracted along with where the comments are displayed in the Excel file
(inline or separate sheet).

Handle Types

VTHDOC

Scope

Global

Appendix A
Input Handling

A-13



Data Type

VTBOOL

Data

• TRUE: The setting enables generating Excel revision data

• FALSE: This setting disables generating Excel revision data

Default

FALSE

A.2.17 SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS
PDF files sometimes have a very large number of embedded objects. This option
allows the user to limit the number of embedded objects that are produced in a PDF
file. Setting this option to 0 produces an unlimited number of embedded objects.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

The maximum number of embedded objects to produce in PDF output.

Default

0

A.2.18 SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS
PDF files sometimes have a very large number of vector paths. This option allows the
user to limit the number of vector paths that are produced in a PDF file. Setting this
option to 0 produces an unlimited amount of vector paths.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Appendix A
Input Handling

A-14



Data

The maximum number of vector paths to produce in PDF output.

Default

0

A.2.19 SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION
This option controls the spacing threshold in PDF input documents. Most PDF
documents do not have an explicit character denoting a word break. The PDF filter
calculates the distance between two characters to determine if they are part of the
same word or if there should be a word break inserted. The space between characters
is compared to the length of the space character in the current font multiplied by this
fraction. If the space between characters is larger, then a word break character is
inserted into the text stream. Otherwise, the characters are considered to be part of
the same word and no word break is inserted.

Handle Types

NULL, VTHDOC

Scope

Local

Data Type

VTFLOAT

Data

A fraction representing the percentage of the space character used to trigger a word
break. Valid values are 0<value<=2.

Default

0.85

A.3 Compression
This section discusses compression.

A.3.1 SCCOPT_FILTERJPG
This option can disable access to any files using JPEG compression, such as JPG
graphic files or TIFF files using JPEG compression, or files with embedded JPEG
graphics. Attempts to read or write such files when this option is enabled will fail and
return the error SCCERR_UNSUPPORTEDCOMPRESSION if the entire file is JPEG
compressed, and grey boxes for embedded JPEG-compressed graphics.

The following is a list of file types affected when this option is disabled:

• JPG files

Appendix A
Compression

A-15



• Postscript files containing JPG images

• PDFs containing JPEG images

Note that the setting for this option overrides the requested output graphic format
when there is a conflict.

Handle Types

VTHDOC, HEXPORT

Scope

Global

Data Type

VTDWORD

Data

• SCCVW_FILTER_JPG_ENABLED: Allow access to files that use JPEG
compression

• SCCVW_FILTER_JPG_DISABLED: Do not allow access to files that use JPEG
compression

Default

SCCVW_FILTER_JPG_ENABLED

A.3.2 SCCOPT_FILTERLZW
This option can disable access to any files using Lempel-Ziv-Welch (LZW)
compression, such as .GIF files, .ZIP files or self-extracting archive (.EXE) files
containing "shrunk" files. Attempts to read such files when this option is enabled will
fail and return the error SCCERR_UNSUPPORTEDCOMPRESSION. Unlike many
other options, this option must be set programmatically, as it is not stored or read on
startup.

The following is a list of file types affected when this option is disabled:

• GIF files

• TIF files using LZW compression

• PDF files that use internal LZW compression

• TAZ and TAR archives containing files that are identified as FI_UNIXCOMP

• ZIP and self-extracting archive (.EXE) files containing "shrunk" files

• Postscript files using LZW compression

Although this option can disable access to files in ZIP or EXE archives stored using
LZW compression, any files in such archives that were stored using any other form of
compression will still be accessible.

Handle Types

VTHDOC

Appendix A
Compression

A-16



Scope

Global

Data

• SCCVW_FILTER_LZW_ENABLED: LZW compressed files will be read normally.

• SCCVW_FILTER_LZW_DISABLED: LZW compressed files will not be read.

Default

SCCVW_FILTER_LZW_ENABLED

A.4 Content Access Flags
The following section discusses content access flags.

A.4.1 SCCOPT_ENABLEALLSUBOBJECTS
Outside In has an internal flag that is used to optimize several of the input filters for
searching. One of the side effects of this optimization is that many embedded bitmaps,
including Progressive JPEG, aren't output by the filter.
SCCOPT_ENABLEALLSUBOBJECTS can override this internal optimization.

Handle Types

VTHDOC

Scope

Global

Data Type

VTDWORD

Data

One of the following values:

• SCCUT_FILTER_ENABLEALLSUBOBJECTS: Override the optimizations.

• SCCUT_FILTER_NORMALSUBOBJECTS: Allow the optimizations.

Default

SCCUT_FILTER_NORMALSUBOBJECTS

A.4.2 SCCOPT_CA_FLAGS
This option allows the developer to set a flag to enable an option unique to Content
Access.

Handle Types

VTHDOC

Appendix A
Content Access Flags

A-17



Scope

Local

Data Type

DWORD

Data

• SCCEX_IND_GENERATED: Includes data not originally stored as text in the input
document. This can be important content the user would see when viewing the
document in the original application (time and size information in archives,
numbers in spreadsheets/databases, and so forth).

• SCCEX_IND_GENERATESYSTEMMETADATA: When this flag is set, system
metadata will be generated. This text is "generated," so it will be affected by
SCCEX_IND_GENERATED. This information is gathered through system calls
and may adversely affect performance.

Default

• 0: The flag is turned off.

A.4.3 SCCOPT_FORMATFLAGS
This option allows the developer to set flags that enable options that span multiple
export products.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

• SCCOPT_FLAGS_ISODATETIMES: When this flag is set, all Date and Time
values are converted to the ISO 8601 standard. This conversion can only be
performed using dates that are stored as numeric data within the original file.

• SCCOPT_FLAGS_STRICTFILEACCESS: When an embedded file or URL can't
be opened with the full path, OIT will sometimes try and open the referenced file
from other locations, including the current directory. When this flag is set, it will
prevent OIT from trying to open the file from any location other than the fully
qualified path or URL.

Default

0: All flags turned off

Appendix A
Content Access Flags

A-18



A.5 File System
This section discusses file systems.

A.5.1 SCCOPT_IO_BUFFERSIZE
This provides three options that allow the user to adjust buffer sizes to take advantage
of faster computers/more memory. This is an advanced option that casual users of
Content Access may ignore. This option allows the users to tune Content Access
memory usage to a particular target machine. The number specified will be in
kilobytes.

Handle Type

NULL, VTHDOC

Scope

Global

Data Type

SCCBUFFEROPTIONS Structure

Data

A buffer options structure

A.5.1.1 SCCBUFFEROPTIONS Structure
typedef struct SCCBUFFEROPTIONStag
{
   VTDWORD dwReadBufferSize;    /* size of the I/O Read buffer 
                                in KB */
   VTDWORD dwMMapBufferSize;    /* maximum size for the I/O   
                                Memory Map buffer in KB */
   VTDWORD dwTempBufferSize;    /* maximum size for the memory-
                                mapped temp files in KB */
   VTDWORD dwFlags;              /* use flags */
} SCCBUFFEROPTIONS, *PSCCBUFFEROPTIONS;

Parameters

• dwReadBufferSize: Used to define the number of bytes that will read from disk into
memory at any given time. Once the buffer has data, further file reads will proceed
within the buffer until the end of the buffer is reached, at which point the buffer will
again be filled from the disk. This can lead to performance improvements in many
file formats, regardless of the size of the document.

• dwMMapBufferSize: Used to define a maximum size that a document can be and
use a memory-mapped I/O model. In this situation, the entire file is read from disk
into memory and all further I/O is performed on the data in memory. This can lead
to significantly improved performance, but note that either the entire file can be
read into memory, or it cannot. If both of these buffers are set, then if the file is
smaller than the dwMMapBufferSize, the entire file will be read into memory; if not,
it will be read in blocks defined by the dwReadBufferSize.

Appendix A
File System

A-19



• dwTempBufferSize: The maximum size that a temporary file can occupy in
memory before being written to disk as a physical file. Storing temporary files in
memory can boost performance on archives, files that have embedded objects or
attachments. If set to 0, all temporary files will be written to disk.

• dwFlags

– SCCBUFOPT_SET_READBUFSIZE 1

– SCCBUFOPT_SET_MMAPBUFSIZE 2

– SCCBUFOPT_SET_TEMPBUFSIZE 4

To set any of the three buffer sizes, set the corresponding flag while calling
dwSetOption.

Default

The default settings for these options are:

• #define SCCBUFOPT_DEFAULT_READBUFSIZE 2: A 2KB read buffer.

• #define SCCBUFOPT_DEFAULT_MMAPBUFSIZE 8192: An 8MB memory-map
size.

• #define SCCBUFOPT_DEFAULT_TEMPBUFSIZE 2048: A 2MB temp-file limit.

Minimum and maximum sizes for each are:

• SCCBUFOPT_MIN_READBUFSIZE 1: Read one Kbyte at a time.

• SCCBUFOPT_MIN_MMAPBUFSIZE 0: Don't use memory-mapped input.

• SCCBUFOPT_MIN_TEMPBUFSIZE 0: Don't use memory temp files

• SCCBUFOPT_MAX_READBUFSIZE 0x003fffff,
SCCBUFOPT_MAX_MMAPBUFSIZE 0x003fffff,
SCCBUFOPT_MAX_TEMPBUFSIZE 0x003fffff: These maximums correspond to
the largest file size possible under the 4GB DWORD limit.

A.5.2 SCCOPT_TEMPDIR
From time to time, the technology needs to create one or more temporary files. This
option sets the directory to be used for those files.

It is recommended that this option be set as part of a system to clean up temporary
files left behind in the event of abnormal program termination. By using this option with
code to delete files older than a predefined time limit, the OEM can help to ensure that
the number of temporary files does not grow without limit.

Note:

This option will be ignored if SCCOPT_REDIRECTTEMPFILE is set.

Handle Types

NULL, VTHDOC

Appendix A
File System

A-20



Scope

Global

Data Type

SCCUTTEMPDIRSPEC structure

A.5.2.1 SCCUTTEMPDIRSPEC Structure
This structure is used in the SCCOPT_TEMPDIR option.

SCCUTTEMPDIRSPEC is a C data structure defined in sccvw.h as follows:

typedef struct SCCUTTEMPDIRSPEC
{
   VTDWORD   dwSize;
   VTDWORD   dwSpecType;
   VTBYTE    szTempDirName[SCCUT_FILENAMEMAX];
} SCCUTTEMPDIRSPEC,   * LPSCCUTTEMPDIRSPEC;

There is a limitation in the current release. dwSpecType describes the contents of
szTempDirName. Together, dwSpecType and szTempDirName describe the location
of the source file. The only dwSpecType values supported at this time are:

• IOTYPE_ANSIPATH: Windows only. szTempDirName points to a NULL-
terminated full path name using the ANSI character set and FAT 8.3 (Win16) or
NTFS (Win32 and Win64) file name conventions.

• IOTYPE_UNICODEPATH: Windows only. szTempDirName points to a NULL-
terminated full path name using the Unicode character set and NTFS file name
conventions. Note that the length of the path name is limited to
SCCUT_FILENAMEMAX bytes, or (SCCUT_FILENAMEMAX / 2) double-byte
Unicode characters.

• IOTYPE_UNIXPATH: X Windows on UNIX platforms only. szTempDirName points
to a NULL-terminated full path name using the system default character set and
UNIX path conventions.

Specifically not supported at this time is IOTYPE_REDIRECT.

Parameters

• dwSize: Set to sizeof(SCCUTTEMPDIRSPEC).

• dwSpecType: IOTYPE_ANSIPATH, IOTYPE_UNICODE or IOTYPE_UNIXPATH

• szTempDirName: The path to the directory to use for the temporary files. Note that
if all SCCUT_FILENAMEMAX bytes in the buffer are filled, there will not be space
left for file names.

A.5.3 SCCOPT_DOCUMENTMEMORYMODE
This option determines the maximum amount of memory that the chunker may use to
store the document's data, from 4 MB to 1 GB. The more memory the chunker has
available to it, the less often it needs to re-read data from the document.

Appendix A
File System

A-21



Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTDWORD

Parameters

• SCCDOCUMENTMEMORYMODE_SMALLEST (4MB)

• SCCDOCUMENTMEMORYMODE_SMALL 2 (16MB)

• SCCDOCUMENTMEMORYMODE_MEDIUM 3 (64MB)

• SCCDOCUMENTMEMORYMODE_LARGE (256MB)

• SCCDOCUMENTMEMORYMODE_LARGEST (1 GB)

Default

SCCDOCUMENTMEMORYMODE_LARGE (256MB)

A.5.4 SCCOPT_REDIRECTTEMPFILE
This option is set when the developer wants to use redirected IO to completely take
over responsibility for the low level IO calls of the temp file.

Handle Types

NULL, VTHDOC

Scope

Global (not persistent)

Data Type

VTLPVOID: pCallbackFunc

Function pointer of the redirect IO callback.

Redirect call back function:

typedef
{
     VTDWORD (* REDIRECTTEMPFILECALLBACKPROC)
     (HIOFILE *phFile, 
     VTVOID *pSpec, 
     VTDWORD dwFileFlags);

There is another option to handle the temp directory, SCCOPT_TEMPDIR. Only one
of these two can be set by the developer. The SCCOPT_TEMPDIR option will be
ignored if SCCOPT_REDIRECTTEMPFILE is set. These files may be safely deleted
when the Close function is called.

Appendix A
File System

A-22



Index

Symbols
$HOME, 3-7
$LD_LIBRARY_PATH, 3-6
$LIBPATH, 3-6
$ORIGIN, 3-6
$PATH, 3-6
$SHLIB_PATH, 3-6

A
Architectural Overview, 1-2
Archive Record, 7-14

B
batch_process_ca, 10-2

C
CACloseContent, 6-2
CAOpenContent, 6-1
CAReadFirst, 6-2
CAReadNext, 6-2
casample, 10-2
CASeek, 6-5, 6-6
Character Mapping, A-1
Compression, A-15
Content Access Flags, A-17
Content Access Functions, 6-1
Content Access Options, A-1
Content Breaks, 7-10
Content Description, 7-1

D
DAAddOptionItem, 4-23
DACloseDocument, 4-6
DACloseTreeRecord, 4-18
DADeInit, 4-3
DAGetErrorString, 4-10
DAGetFileId, 4-8
DAGetFileIdEx, 4-9
DAGetObjectInfo, 4-10

DAGetOption, 4-7
DAGetOptionItem, 4-22
DAGetTreeCount, 4-11
DAGetTreeRecord, 4-12
DAInitEx, 4-2
DAOpenDocument, 4-3
DAOpenNextDocument, 4-21
DAOpenRandomTreeRecord, 4-14
DAOpenSubdocumentById, 4-24
DAOpenTreeRecord, 4-13
DARemoveOptionItem, 4-23
DARetrieveDocHandle, 4-6
DASaveInputObject, 4-15
DASaveRandomTreeRecord, 4-17
DASaveTreeRecord, 4-16
DASetFileAccessCallback, 4-20
DASetFileSpecOption, 4-24
DASetOption, 4-7
DASetStatCallback, 4-19
Data Access Common Functions, 4-1
DATREENODELOCATOR, 4-14, 4-18
Definition of Terms, 1-3
Deprecated Functions, 4-2
Directory Structure, 1-3
Document Property IDs, 7-5

E
environment variables, 3-6

$HOME, 3-7
$LD_LIBRARY_PATH, 3-6
$LIBPATH, 3-6
$PATH, 3-6
$SHLIB_PATH, 3-6

extract_archive, 10-2
extract_object, 10-3

F
File Property Content, 7-11
File System, A-19

G
Generated Information, 7-12

Index-1



H
How to Use Content Access, 1-4
How to Use Text Access, 1-5

I
Implementation Issues, 9-1
Input Handling, A-4
IOClose, 8-2
IOGENSECONDARY and

IOGENSECONDARYW Structures, 8-8
IOGetInfo, 8-5
IOGETINFO_GENSECONDARY, 8-9
IORead, 8-3
IOSeek, 8-4
IOSPECARCHIVEOBJECT Structure, 4-5
IOSPECLINKEDOBJECT Structure, 4-5
IOSPECSUBOBJECT Structure, 4-5
IOTell, 8-5
IOWrite, 8-3

L
Linux

Compiling and Linking, 3-10
GLIBC and Compiler Versions, 3-10
Library Compatibility, 3-9
Motif Libraries, 3-9
Other Libraries, 3-10

Linux 64-bit, 3-10
Linux Compiling and Linking, 3-9
Linux zSeries, 3-10

M
Mail Field IDs, 7-8
memoryio, 10-3

N
NSF Support, 3-2

O
Oracle Solaris SPARC, 3-11
Oracle Solaris x86, 3-12

P
parsepst, 10-3

R
Redirected IO, 8-1
Running in 24x7 Environments, 9-1
Runtime Search Path, 3-6

S
Sample Applications, 10-1
Samples

UNIX, 10-1
Windows, 10-1

SCCBUFFEROPTIONS Structure, A-19
SCCCA_BEGINTAG, 7-2
SCCCA_BEGINTAG/SCCCA_ENDTAG, 7-1
SCCCA_BREAK, 7-10
SCCCA_COMMENTREFERENCE, 7-11
SCCCA_FILEPROPERTY, 7-11
SCCCA_GENERATED, 7-12
SCCCA_OBJECT, 7-12
SCCCA_OBJECTALTSTRING, 7-13
SCCCA_OBJECTNAME, 7-13
SCCCA_RECORD, 7-14
SCCCA_RECORD Content Description, 7-14
SCCCA_REVISION_CELL

Revision Cell, 7-14
SCCCA_REVISION_CELL Content Description,

7-14
SCCCA_REVISION_COLUMN

Revision Column, 7-15
SCCCA_REVISION_COLUMN Content

Description, 7-15
SCCCA_REVISION_ROW

Revision Row, 7-15
SCCCA_REVISION_ROW Content Description,

7-15
SCCCA_REVISION_SHEET

Revision Sheet, 7-15
SCCCA_REVISION_SHEET Content

Description, 7-15
SCCCA_REVISION_SHEETNAME

Revision Sheet Name, 7-16
SCCCA_REVISION_SHEETNAME Content

Description, 7-16
SCCCA_REVISION_USER

Revision User, 7-16
SCCCA_REVISION_USER Content Description,

7-16
SCCCA_SHEET, 7-17
SCCCA_SLIDE, 7-17
SCCCA_STYLECHANGE, 7-17
SCCCA_SUBDOCPROPERTY, 7-7
SCCCA_TEXT, 7-18
SCCCA_TREENODELOCATOR, 4-15, 4-18,

7-20

Index

Index-2



SCCCAGETCONTENT Structure, 6-3
SCCDAOBJECT Structure, 4-6
SCCDATREENODE Structure, 4-12
SCCOPT_ARCFULLPATH, A-11
SCCOPT_CA_FLAGS, A-17
SCCOPT_DEFAULTINPUTCHARSET, A-1
SCCOPT_DOCUMENTMEMORYMODE, A-21
SCCOPT_ENABLEALLSUBOBJECTS, A-17
SCCOPT_EX_PERFORMANCEMODE, A-12
SCCOPT_EXTRACTXMPMETADATA, A-4
SCCOPT_FALLBACKFORMAT, A-4
SCCOPT_FIFLAGS, A-5
SCCOPT_FILTERJPG, A-15
SCCOPT_FILTERLZW, A-16
SCCOPT_FORMATFLAGS, A-18
SCCOPT_GENERATEEXCELREVISIONS, A-13
SCCOPT_HTML_COND_COMMENT_MODE,

A-10
SCCOPT_IGNORE_PASSWORD, A-6
SCCOPT_IO_BUFFERSIZE, A-19
SCCOPT_LOTUSNOTESDIRECTORY, A-7
SCCOPT_OUTPUTCHARACTERSET, A-2
SCCOPT_PARSEXMPMETADATA, A-7
SCCOPT_PDF_FILTER_DROPHYPHENS, A-11
SCCOPT_PDF_FILTER_MAX_EMBEDDED_OB

JECTS, A-14
SCCOPT_PDF_FILTER_MAX_VECTOR_PATH

S, A-14
SCCOPT_PDF_FILTER_REORDER_BIDI, A-8
SCCOPT_PDF_FILTER_WORD_DELIM_FRAC

TION, A-15
SCCOPT_PROCESS_OLE_EMBEDDINGS, A-8
SCCOPT_REDIRECTTEMPFILE, A-22
SCCOPT_SYSTEMFLAGS, A-6
SCCOPT_TEMPDIR, A-20
SCCOPT_TIMEZONE, A-9
SCCOPT_UNMAPPABLECHAR, A-3
SCCUTTEMPDIRSPEC Structure, A-21
Sheet Names, 7-17
Signal Handling, 3-5
Status Callback Function, 4-19
Style Information, 7-17
SubObjects, 7-12

T
TACloseText, 5-2
tademo, 10-3
Tag Types, 7-2

Tagged Content, 7-1
TAOpenText, 5-1
TAReadFirst, 5-2
TAReadNext, 5-3
taredir, 10-3
Text Access Functions, 5-1
Text Content, 7-18
textdemo, 10-4
Tree Node Locator, 4-15, 4-18, 7-20

U
UNIX

API Libraries, 3-2
Changing Resources, 3-7
Character Sets, 3-5
Double-Byte Character Set Mapping, 3-5
Environment Variables, 3-6
Filter Libraries, 3-2
FreeBSD Compiling and Linking, 3-12
HP-UX Compiling and Linking, 3-7
HP-UX on Itanium, 3-7
HP-UX on RISC, 3-7
IBM AIX Compiling and Linking, 3-8
Installation, 3-1
Libraries and Structure, 3-2
Options and Information Storage, 3-4
Oracle Solaris Compiling and Linking, 3-11
Premier Graphics Filters, 3-2
Runtime Considerations, 3-5
Support Libraries, 3-2

UNIX Implementation Details, 3-1

W
Windows

API DLLs, 2-1
Changing Resources, 2-4
Character Sets, 2-4
Double-Byte Character Set Mapping, 2-4
Filter DLLs, 2-1
Libraries and Structure, 2-1
Options and Information Storage, 2-3
Premier Graphics Filters, 2-1
Runtime Considerations, 2-4
Structure Alignment, 2-4
Support DLLs, 2-1

Index

3


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	1.1 What Does This Technology Do?
	1.2 Architectural Overview
	1.3 Definition of Terms
	1.4 Directory Structure
	1.5 How to Use Content Access
	1.6 How to Use Text Access

	2 Windows Implementation Details
	2.1 Libraries and Structure
	2.2 The Basics
	2.2.1 What You Need in Your Source Code
	2.2.2 Options and Information Storage
	2.2.3 Structure Alignment

	2.3 Character Sets
	2.3.1 Default API Character Set
	2.3.2 Double-Byte Character Set Mapping

	2.4 Runtime Considerations
	2.5 Changing Resources

	3 UNIX Implementation Details
	3.1 Installation
	3.1.1 NSF Support

	3.2 Libraries and Structure
	3.3 The Basics
	3.3.1 What You Need in Your Source Code
	3.3.2 Options and Information Storage

	3.4 Character Sets
	3.4.1 Default API Character Set
	3.4.2 Double-Byte Character Set Mapping

	3.5 Runtime Considerations
	3.5.1 Signal Handling
	3.5.2 Runtime Search Path and ⁠$ORIGIN

	3.6 Environment Variables
	3.7 Changing Resources
	3.8 HP-UX Compiling and Linking
	3.9 IBM AIX Compiling and Linking
	3.10 Linux Compiling and Linking
	3.10.1 Library Compatibility
	3.10.1.1 Motif Libraries
	3.10.1.2 GLIBC and Compiler Versions
	3.10.1.3 Other Libraries

	3.10.2 Compiling and Linking

	3.11 Oracle Solaris Compiling and Linking
	3.11.1 Oracle Solaris SPARC
	3.11.2 Oracle Solaris x86

	3.12 FreeBSD Compiling and Linking

	4 Data Access Common Functions
	4.1 Deprecated Functions
	4.2 DAInitEx
	4.3 DADeInit
	4.4 DAOpenDocument
	4.4.1 IOSPECSUBOBJECT Structure
	4.4.2 IOSPECLINKEDOBJECT Structure
	4.4.3 IOSPECARCHIVEOBJECT Structure
	4.4.4 SCCDAOBJECT Structure

	4.5 DACloseDocument
	4.6 DARetrieveDocHandle
	4.7 DASetOption
	4.8 DAGetOption
	4.9 DAGetFileId
	4.10 DAGetFileIdEx
	4.11 DAGetErrorString
	4.12 DAGetObjectInfo
	4.13 DAGetTreeCount
	4.14 DAGetTreeRecord
	4.14.1 SCCDATREENODE Structure

	4.15 DAOpenTreeRecord
	4.16 DAOpenRandomTreeRecord
	4.16.1 DATREENODELOCATOR
	4.16.2 SCCCA_TREENODELOCATOR: Tree Node Locator

	4.17 DASaveInputObject
	4.18 DASaveTreeRecord
	4.19 DASaveRandomTreeRecord
	4.19.1 DATREENODELOCATOR
	4.19.2 SCCCA_TREENODELOCATOR: Tree Node Locator

	4.20 DACloseTreeRecord
	4.21 DASetStatCallback
	4.22 DASetFileAccessCallback
	4.23 DAOpenNextDocument
	4.24 DAGetOptionItem
	4.25 DARemoveOptionItem
	4.26 DAAddOptionItem
	4.27 DASetFileSpecOption
	4.28 DAOpenSubdocumentById

	5 Text Access Functions
	5.1 TAOpenText
	5.2 TACloseText
	5.3 TAReadFirst
	5.4 TAReadNext

	6 Content Access Functions
	6.1 CAOpenContent
	6.2 CACloseContent
	6.3 CAReadFirst
	6.4 CAReadNext
	6.4.1 SCCCAGETCONTENT Structure

	6.5 CAContentStatus
	6.5.1 EXSUBDOCSTATUS Structure

	6.6 CASeek
	6.7 CATell

	7 Content Description
	7.1 SCCCA_BEGINTAG/SCCCA_ENDTAG: Tagged Content
	7.1.1 SCCCA_BEGINTAG Content Description
	7.1.2 Tag Types
	7.1.3 Document Property IDs
	7.1.4 SCCCA_SUBDOCPROPERTY Document Properties
	7.1.5 Mail Field IDs

	7.2 SCCCA_BREAK: Content Breaks
	7.3 SCCCA_CELL: Cell Boundary
	7.3.1 SCCCA_CELL Content Description

	7.4 SCCCA_COMMENTREFERENCE
	7.5 SCCCA_FILEPROPERTY: File Property Content
	7.5.1 SCCCA_FILEPROPERTY Content Description

	7.6 SCCCA_GENERATED: Generated Information
	7.6.1 SCCCA_GENERATED Content Description

	7.7 SCCCA_OBJECT: SubObjects
	7.7.1 SCCCA_OBJECT Content Description

	7.8 SCCCA_OBJECTALTSTRING: Alternate String
	7.8.1 SCCCA_OBJECTALTSTRING Content Description

	7.9 SCCCA_OBJECTNAME: Object Name
	7.9.1 SCCCA_OBJECTNAME Content Description

	7.10 SCCCA_RECORD: Archive Record
	7.10.1 SCCCA_RECORD Content Description

	7.11 SCCCA_REVISION_CELL: Revision Cell
	7.11.1 SCCCA_REVISION_CELL Content Description

	7.12 SCCCA_REVISION_ROW: Revision Row
	7.12.1 SCCCA_REVISION_ROW Content Description

	7.13 SCCCA_REVISION_COLUMN: Revision Column
	7.13.1 SCCCA_REVISION_COLUMN Content Description

	7.14 SCCCA_REVISION_SHEET: Revision Sheet
	7.14.1 SCCCA_REVISION_SHEET Content Description

	7.15 SCCCA_REVISION_SHEETNAME: Revision Sheet Name
	7.15.1 SCCCA_REVISION_SHEETNAME Content Description

	7.16 SCCCA_REVISION_USER: Revision User
	7.16.1 SCCCA_REVISION_USER Content Description

	7.17 SCCCA_SHEET: Sheet Names
	7.17.1 SCCCA_SHEET Content Description

	7.18 SCCCA_SLIDE: Presentation Slide
	7.19 SCCCA_STYLECHANGE: Style Information
	7.19.1 SCCCA_STYLECHANGE Content Description

	7.20 SCCCA_TEXT: Text Content
	7.20.1 SCCCA_TEXT Content Description
	7.20.2 Special Text Character Substitutions

	7.21 SCCCA_TREENODELOCATOR: Tree Node Locator
	7.21.1 SCCCA_TREENODELOCATOR Content Description


	8 Redirected IO
	8.1 Using Redirected IO
	8.2 IOClose
	8.3 IORead
	8.4 IOWrite
	8.5 IOSeek
	8.6 IOTell
	8.7 IOGetInfo
	8.7.1 IOGENSECONDARY and IOGENSECONDARYW Structures
	8.7.2 File Types That Cause IOGETINFO_GENSECONDARY

	8.8 IOSEEK64PROC / IOTELL64PROC
	8.8.1 IOSeek64
	8.8.2 IOTell64


	9 Implementation Issues
	9.1 Running in 24x7 Environments

	10 Sample Applications
	10.1 Building the Samples on a Windows System
	10.2 Building the Samples on a UNIX System
	10.3 An Overview of the Sample Applications
	10.3.1 batch_process_ca
	10.3.2 casample
	10.3.3 extract_archive
	10.3.4 extract_object
	10.3.5 memoryio
	10.3.6 parsepst
	10.3.7 tademo (Windows Only)
	10.3.8 taredir (UNIX Only)
	10.3.9 textdemo (UNIX Only)


	A Content Access Options
	A.1 Character Mapping
	A.1.1 SCCOPT_DEFAULTINPUTCHARSET
	A.1.2 SCCOPT_OUTPUTCHARACTERSET
	A.1.3 SCCOPT_UNMAPPABLECHAR

	A.2 Input Handling
	A.2.1 SCCOPT_EXTRACTXMPMETADATA
	A.2.2 SCCOPT_FALLBACKFORMAT
	A.2.3 SCCOPT_FIFLAGS
	A.2.4 SCCOPT_SYSTEMFLAGS
	A.2.5 SCCOPT_IGNORE_PASSWORD
	A.2.6 SCCOPT_LOTUSNOTESDIRECTORY
	A.2.7 SCCOPT_PARSEXMPMETADATA
	A.2.8 SCCOPT_PDF_FILTER_REORDER_BIDI
	A.2.9 SCCOPT_PROCESS_OLE_EMBEDDINGS
	A.2.10 SCCOPT_TIMEZONE
	A.2.11 SCCOPT_HTML_COND_COMMENT_MODE
	A.2.12 SCCOPT_PDF_FILTER_DROPHYPHENS
	A.2.13 SCCOPT_ARCFULLPATH
	A.2.14 SCCOPT_NULLREPLACECHAR
	A.2.15 SCCOPT_EX_PERFORMANCEMODE
	A.2.16 SCCOPT_GENERATEEXCELREVISIONS
	A.2.17 SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS
	A.2.18 SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS
	A.2.19 SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION

	A.3 Compression
	A.3.1 SCCOPT_FILTERJPG
	A.3.2 SCCOPT_FILTERLZW

	A.4 Content Access Flags
	A.4.1 SCCOPT_ENABLEALLSUBOBJECTS
	A.4.2 SCCOPT_CA_FLAGS
	A.4.3 SCCOPT_FORMATFLAGS

	A.5 File System
	A.5.1 SCCOPT_IO_BUFFERSIZE
	A.5.1.1 SCCBUFFEROPTIONS Structure

	A.5.2 SCCOPT_TEMPDIR
	A.5.2.1 SCCUTTEMPDIRSPEC Structure

	A.5.3 SCCOPT_DOCUMENTMEMORYMODE
	A.5.4 SCCOPT_REDIRECTTEMPFILE



