
Oracle® Outside In PDF Export
Developer's Guide

Release 8.5.4
F10992-01
November 2019

Oracle Outside In PDF Export Developer's Guide, Release 8.5.4

F10992-01

Copyright © 2010, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Nirmala Suryaprakasha

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xv

Documentation Accessibility xv

Related Documents xv

Conventions xv

Part I Getting Started with PDF Export

1 Introduction

1.1 Architectural Overview 1-1

1.2 Definition of Terms 1-2

1.3 Directory Structure 1-2

1.3.1 Installing Multiple SDKs 1-3

1.4 How to Use PDF Export 1-3

2 Implementation Issues

2.1 Running in 24x7 Environments 2-1

2.2 Running in Multiple Threads or Processes 2-1

2.3 PDF Export Issues 2-1

3 Sample Applications

3.1 Building the Samples on a Windows System 3-1

3.2 An Overview of the Sample Applications 3-1

3.2.1 pxsample 3-2

3.2.2 export (Windows Only) 3-2

3.2.2.1 The export Main Window 3-2

3.2.3 exsimple 3-3

3.2.4 exredir 3-3

3.2.5 extract_archive 3-3

iii

3.2.6 pxanno 3-3

3.3 Accessing the SDK via a Java Wrapper 3-4

3.3.1 The ExJava Wrapper API 3-4

3.3.2 The C-Based Exporter Application 3-5

3.3.3 Compiling the Executables 3-5

3.3.4 The ExportTest Sample Application 3-5

3.3.5 An Example Conversion Using the ExJava Wrapper 3-6

Part II Using the C/C++ API

4 Windows Implementation Details

4.1 Installation 4-1

4.1.1 NSF Support 4-2

4.2 Libraries and Structure 4-2

4.2.1 API DLLs 4-2

4.2.2 Support DLLs 4-2

4.2.3 Engine Libraries 4-4

4.2.4 Filter and Export Filter Libraries 4-4

4.2.5 Premier Graphics Filters 4-5

4.2.6 Additional Files 4-5

4.3 The Basics 4-6

4.3.1 What You Need in Your Source Code 4-6

4.3.2 Options and Information Storage 4-7

4.3.3 Structure Alignment 4-7

4.3.4 Character Sets 4-7

4.3.5 Runtime Considerations 4-8

4.4 Default Font Aliases 4-8

4.5 Changing Resources 4-8

5 UNIX Implementation Details

5.1 Installation 5-1

5.1.1 NSF Support 5-2

5.2 Libraries and Structure 5-2

5.2.1 API Libraries 5-2

5.2.2 Support Libraries 5-3

5.2.3 Engine Libraries 5-4

5.2.4 Filter and Export Filter Libraries 5-4

5.2.5 Premier Graphics Filters 5-5

5.2.6 Additional Files 5-5

iv

5.3 The Basics 5-7

5.3.1 What You Need in Your Source Code 5-7

5.3.2 Information Storage 5-7

5.4 Character Sets 5-8

5.5 Runtime Considerations 5-8

5.5.1 OLE2 Objects 5-8

5.5.2 Signal Handling 5-8

5.5.3 Runtime Search Path and $ORIGIN 5-9

5.6 Environment Variables 5-9

5.7 Default Font Aliases 5-10

5.8 Changing Resources 5-12

5.9 HP-UX Compiling and Linking 5-12

5.9.1 HP-UX on RISC 5-13

5.9.2 HP-UX on Itanium (64 bit) 5-13

5.10 IBM AIX Compiling and Linking 5-13

5.10.1 IBM AIX (32-bit pSeries) 5-14

5.11 Oracle Solaris Compiling and Linking 5-14

5.11.1 Oracle Solaris SPARC 5-14

5.12 Linux Compiling and Linking 5-15

5.12.1 Library Compatibility 5-15

5.12.1.1 GLIBC and Compiler Versions 5-15

5.12.1.2 Other Libraries 5-15

5.12.2 Compiling and Linking 5-15

5.12.2.1 Linux 32-bit 5-15

5.12.2.2 Linux 64-bit 5-16

6 Data Access Common Functions

6.1 Deprecated Functions 6-1

6.2 DAInitEx 6-2

6.3 DADeInit 6-3

6.4 DAOpenDocument 6-3

6.4.1 IOSPECLINKEDOBJECT Structure 6-5

6.4.2 IOSPECARCHIVEOBJECT Structure 6-5

6.4.3 SCCDAOBJECT Structure 6-6

6.5 DAOpenSubdocumentById 6-6

6.6 DAOpenNextDocument 6-6

6.7 DACloseDocument 6-7

6.8 DARetrieveDocHandle 6-8

6.9 DASetOption 6-8

6.10 DASetFileSpecOption 6-9

v

6.11 DAGetOption 6-10

6.12 DAGetFileId 6-10

6.13 DAGetFileIdEx 6-11

6.14 DAGetErrorString 6-12

6.15 DAGetObjectInfo 6-12

6.16 DAGetTreeCount 6-13

6.17 DAGetTreeRecord 6-14

6.17.1 SCCDATREENODE Structure 6-14

6.18 DAOpenTreeRecord 6-15

6.19 DASaveInputObject 6-16

6.20 DASaveTreeRecord 6-16

6.21 DACloseTreeRecord 6-17

6.22 DASetStatCallback 6-18

6.23 DASetFileAccessCallback 6-19

7 Export Functions

7.1 General Functions 7-1

7.1.1 EXOpenExport 7-1

7.1.2 EXCALLBACKPROC 7-3

7.1.3 EXCloseExport 7-4

7.1.4 EXRunExport 7-4

7.1.5 EXExportStatus 7-4

7.2 Annotation Functions 7-6

7.2.1 EXHiliteText 7-7

7.2.2 EXInsertText 7-9

7.2.3 EXHideText 7-11

7.2.3.1 EXANNOHIDETEXT Structure 7-11

7.2.4 EXApplyHilites 7-11

7.2.5 EXRedactText 7-12

8 Redirected IO

8.1 Using Redirected IO 8-1

8.2 Opening Files 8-2

8.3 IOClose 8-3

8.4 IORead 8-3

8.5 IOWrite 8-4

8.6 IOSeek 8-4

8.7 IOTell 8-5

8.8 IOGetInfo 8-5

vi

8.8.1 IOGENSECONDARY and IOGENSECONDARYW Structures 8-8

8.8.2 File Types That Cause IOGETINFO_GENSECONDARY 8-9

8.9 IOSEEK64PROC / IOTELL64PROC 8-10

8.9.1 IOSeek64 8-10

8.9.2 IOTell64 8-10

9 Callbacks

9.1 EX_CALLBACK_ID_CREATENEWFILE 9-1

9.1.1 EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW
Structures 9-3

9.2 EX_CALLBACK_ID_NEWFILEINFO 9-3

9.3 EX_CALLBACK_ID_PAGECOUNT 9-4

9.4 EX_CALLBACK_ID_BEGINPAGE 9-4

10

PDF Export C/C++ Options

10.1 Character Mapping 10-1

10.1.1 SCCOPT_DEFAULTINPUTCHARSET 10-1

10.1.2 SCCOPT_UNMAPPABLECHAR 10-2

10.2 Input Handling 10-2

10.2.1 SCCOPT_FALLBACKFORMAT 10-3

10.2.2 SCCOPT_FIFLAGS 10-3

10.2.3 SCCOPT_FORMATFLAGS 10-4

10.2.4 SCCOPT_SYSTEMFLAGS 10-5

10.2.5 SCCOPT_IGNORE_PASSWORD 10-5

10.2.6 SCCOPT_LOTUSNOTESDIRECTORY 10-6

10.2.7 SCCOPT_PDF_FILTER_REORDER_BIDI 10-6

10.2.8 SCCOPT_PDF_FILTER_BIDI_LIFEBIT 10-7

10.2.9 SCCOPT_REORDERMETHOD 10-9

10.2.10 SCCOPT_TIMEZONE 10-9

10.2.11 SCCOPT_HTML_COND_COMMENT_MODE 10-10

10.2.12 SCCOPT_ARCFULLPATH 10-10

10.2.13 SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS 10-11

10.2.14 SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS 10-11

10.2.15 SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION 10-12

10.3 Compression 10-12

10.3.1 SCCOPT_APPLYFILTER 10-12

10.3.2 SCCOPT_FILTERJPG 10-13

10.3.3 SCCOPT_FILTERLZW 10-13

10.4 Graphics 10-14

10.4.1 SCCOPT_GRAPHIC_OUTPUTDPI 10-14

vii

10.4.2 SCCOPT_GRAPHIC_SIZEMETHOD 10-15

10.4.3 SCCOPT_IMAGE_PASSTHROUGH 10-16

10.4.4 SCCOPT_RENDER_ENABLEALPHABLENDING 10-16

10.5 Spreadsheet and Database File Rendering 10-17

10.5.1 SCCOPT_DBPRINTFITTOPAGE 10-17

10.5.2 SCCOPT_DBPRINTGRIDLINES 10-18

10.5.3 SCCOPT_DBPRINTHEADINGS 10-18

10.5.4 SCCOPT_MAXSSDBPAGEHEIGHT 10-18

10.5.5 SCCOPT_MAXSSDBPAGEWIDTH 10-20

10.5.6 SCCOPT_SSPRINTDIRECTION 10-21

10.5.7 SCCOPT_SSPRINTFITTOPAGE 10-21

10.5.8 SCCOPT_SSPRINTGRIDLINES 10-22

10.5.9 SCCOPT_SSPRINTHEADINGS 10-23

10.5.10 SCCOPT_SSPRINTSCALEPERCENT 10-23

10.5.11 SCCOPT_SSPRINTSCALEXHIGH 10-24

10.5.12 SCCOPT_SSPRINTSCALEXWIDE 10-24

10.5.13 SCCOPT_SSSHOWHIDDENCELLS 10-24

10.5.14 SCCOPT_EX_SHOWHIDDENSSDATA 10-25

10.5.15 SCCOPT_FILTERNOBLANK 10-25

10.6 Page Rendering 10-26

10.6.1 SCCOPT_DEFAULTPAGESIZE 10-26

10.6.1.1 DEFAULTPAGESIZE Structure 10-26

10.6.2 SCCOPT_DEFAULTPRINTMARGINS 10-27

10.6.2.1 SCCVWPRINTMARGINS Structure 10-27

10.6.3 SCCOPT_PRINTENDPAGE 10-28

10.6.4 SCCOPT_PRINTSTARTPAGE 10-28

10.6.5 SCCOPT_USEDOCPAGESETTINGS 10-29

10.6.6 SCCOPT_WHATTOPRINT 10-29

10.6.7 SCCOPT_NUMBERFORMAT 10-30

10.6.7.1 SCCVWNUMBERFORMAT775 and SCCVWNUMBERFORMAT
Structures 10-30

10.6.8 SCCOPT_DOLINEARIZATION 10-32

10.6.9 SCCOPT_WPEMAILHEADEROUTPUT 10-32

10.6.10 SCCOPT_MAILHEADERVISIBLE 10-33

10.6.11 SCCOPT_MAILHEADERHIDDEN 10-34

10.6.12 SCCOPT_EXPORTEMAILATTACHMENTS 10-35

10.6.13 SCCOPT_MARGIN_TEXT_FONT_NAME 10-35

10.6.14 SCCOPT_MARGIN_TEXT_FONT_SIZE 10-35

10.6.15 SCCOPT_MARGIN_TEXT_LINE 10-36

10.6.16 SCCOPT_REDACTION_COLOR 10-36

10.6.17 SCCOPT_REDACTION_LABEL_FONT_NAME 10-36

viii

10.6.18 SCCOPT_REDACTION_LABEL_FONT_SIZE 10-36

10.6.19 SCCOPT_REDACTIONS_ENABLED 10-37

10.6.20 SCCOPT_SHOW_REDACTION_LABELS 10-37

10.7 Font Rendering 10-37

10.7.1 SCCOPT_DEFAULTPRINTFONT 10-37

10.7.1.1 SCCVWFONTSPEC Structure 10-38

10.7.2 SCCOPT_EMBEDFONTS 10-38

10.7.3 SCCOPT_FONTDIRECTORY 10-39

10.7.4 SCCOPT_FONTFILTER 10-39

10.7.4.1 FONTFILTERLIST Structure 10-40

10.7.4.2 FONTNAMELIST Structure 10-40

10.7.5 SCCOPT_PRINTFONTALIAS 10-40

10.7.5.1 SCCVWFONTALIAS Structure 10-41

10.7.6 SCCOPT_FONTEMBEDPOLICY 10-42

10.7.7 SCCOPT_RENDER_EMBEDDED_FONTS 10-42

10.7.8 SCCOPT_STROKE_TEXT 10-43

10.8 Watermarks 10-43

10.8.1 SCCOPT_GRAPHIC_WATERMARK_OPACITY 10-44

10.8.2 SCCOPT_GRAPHIC_WATERMARK_SCALETYPE 10-44

10.8.3 SCCOPT_GRAPHIC_WATERMARK_SCALEPERCENT 10-45

10.9 Callbacks 10-45

10.9.1 SCCOPT_EX_CALLBACKS 10-45

10.9.2 SCCOPT_EX_UNICODECALLBACKSTR 10-46

10.10 File System 10-47

10.10.1 SCCOPT_IO_BUFFERSIZE 10-47

10.10.1.1 SCCBUFFEROPTIONS Structure 10-47

10.10.2 SCCOPT_TEMPDIR 10-49

10.10.2.1 SCCUTTEMPDIRSPEC Structure 10-49

10.10.3 SCCOPT_DOCUMENTMEMORYMODE 10-50

10.10.4 SCCOPT_REDIRECTTEMPFILE 10-51

Part III Using the Java API

11

Introduction to the Java API

11.1 Requirements 11-1

11.2 Getting Started 11-1

11.2.1 Configure the Environment 11-1

11.2.2 Generate Code 11-2

11.2.2.1 Create an Exporter Object 11-2

11.2.2.2 Configure the Output 11-2

ix

11.2.2.3 Set the Source and Primary Destination Files 11-2

11.2.2.4 Set the Output Type 11-3

11.2.2.5 Provide a Callback Handler 11-3

11.2.2.6 Run the Export 11-3

12

PDF Export Java Classes

12.1 Annotation Class 12-1

12.2 ArchiveNode Class 12-2

12.3 Callback Class 12-3

12.3.1 createNewFile 12-3

12.3.1.1 CreateNewFileResponse Class 12-3

12.3.2 newFileInfo 12-4

12.3.3 openFile 12-5

12.3.3.1 OpenFileResponse Class 12-5

12.3.4 createTempFile 12-5

12.3.4.1 CreateTempFileResponseClass 12-6

12.4 ColorInfo Class 12-6

12.5 Exporter Interface 12-6

12.5.1 Annotatable Interface 12-9

12.5.2 Document Interface 12-10

12.5.3 SeekableByteChannel6 Interface 12-12

12.5.4 OptionsCache Class 12-13

12.5.4.1 AppendEMailAttachments 12-15

12.5.4.2 ApplyZLIBCompression 12-15

12.5.4.3 BiDiReorderMethod 12-16

12.5.4.4 DefaultInputCharacterSet 12-16

12.5.4.5 DefaultPageSize 12-19

12.5.4.6 DefaultRenderFont 12-19

12.5.4.7 DefaultPageMargins 12-19

12.5.4.8 DocumentMemoryMode 12-20

12.5.4.9 EmailHeaders 12-20

12.5.4.10 EmbedFonts 12-21

12.5.4.11 EnableAlphaBlending 12-21

12.5.4.12 FallbackFormat 12-21

12.5.4.13 FitHeightToPages 12-22

12.5.4.14 FitWidthToPages 12-22

12.5.4.15 FontAliasList 12-22

12.5.4.16 FontDirectories 12-23

12.5.4.17 FontFilter 12-23

12.5.4.18 GraphicOutputDPI 12-23

x

12.5.4.19 GridMaxPageHeight 12-24

12.5.4.20 GridMaxPageWidth 12-24

12.5.4.21 IECondCommentMode 12-25

12.5.4.22 IgnorePassword 12-25

12.5.4.23 ImagePassthrough 12-25

12.5.4.24 ISODateTimes 12-26

12.5.4.25 JPEGQuality 12-26

12.5.4.26 LinearizePDFOutput 12-26

12.5.4.27 LotusNotesDirectory 12-27

12.5.4.28 MarginText 12-27

12.5.4.29 MarginTextFont 12-27

12.5.4.30 PageDirection 12-27

12.5.4.31 PageFitMode 12-28

12.5.4.32 PageRange 12-29

12.5.4.33 PageScalePercent 12-29

12.5.4.34 PDFInputMaxEmbeddedObjects 12-29

12.5.4.35 PDFInputMaxVectorPaths 12-30

12.5.4.36 PDFReorderBiDi 12-30

12.5.4.37 PDFWordSpacingFactor 12-30

12.5.4.38 PerformExtendedFI 12-31

12.5.4.39 RedactionColor 12-31

12.5.4.40 RedactionLabelFont 12-31

12.5.4.41 RedactionLabelsVisible 12-32

12.5.4.42 RedactionsEnabled 12-32

12.5.4.43 RenderEmbeddedFonts 12-32

12.5.4.44 RenderGridlines 12-32

12.5.4.45 RenderHeadings 12-33

12.5.4.46 ShowArchiveFullPath 12-33

12.5.4.47 ShowHiddenCells 12-33

12.5.4.48 ShowHiddenSpreadSheetData 12-34

12.5.4.49 StrictFile 12-34

12.5.4.50 TimeZoneOffset 12-34

12.5.4.51 UnmappableCharacter 12-35

12.5.4.52 UseDocumentPageSettings 12-35

12.6 ExportStatus Class 12-36

12.7 FileFormat Class 12-37

12.8 FontAliases Class 12-37

12.9 FontInfo Class 12-38

12.10 FontList Class 12-38

12.11 HighlightTextAnnotation Class 12-38

12.12 MailHeaders Class 12-40

xi

12.13 Margins Class 12-41

12.14 MarginText Class 12-42

12.15 Option Interface 12-43

12.16 OutsideIn Class 12-44

12.17 OutsideInVersion Class 12-45

12.18 OutsideInException Class 12-45

12.19 PageInfo Class 12-45

12.20 Watermark Class 12-46

12.21 PageRange Class 12-48

Part IV Using the .NET API

13

Introduction to the .NET API

13.1 Requirements 13-1

13.2 Getting Started 13-1

13.2.1 Configuring your Environment 13-1

13.2.2 Generate Code 13-1

13.2.2.1 Create an Exporter Object 13-2

13.2.2.2 Configure the Output 13-2

13.2.2.3 Set the Source and Primary Destination Files 13-2

13.2.2.4 Set the Output Type 13-3

13.2.2.5 Provide a Callback Handler 13-3

13.2.2.6 Run the Export 13-3

13.2.3 Redirected I/O Support in .NET 13-3

14

PDF Export .NET Classes

14.1 Annotation Class 14-1

14.2 ArchiveNode Class 14-2

14.3 Callback Class 14-2

14.3.1 OpenFile 14-3

14.3.1.1 OpenFileResponse Class 14-3

14.3.2 CreateNewFile 14-3

14.3.2.1 CreateNewFileResponse Class 14-4

14.3.3 NewFileInfo 14-4

14.3.4 CreateTempFile 14-5

14.3.4.1 CreateTempFileResponse Class 14-5

14.4 ColorInfo Class 14-5

14.5 Exporter Interface 14-6

14.5.1 lAnnotatable Interface 14-8

xii

14.5.2 Document Interface 14-10

14.5.3 OptionsCache Class 14-11

14.5.3.1 AppendEMailAttachments 14-13

14.5.3.2 ApplyZLIBCompression 14-14

14.5.3.3 BiDiReorderMethod 14-14

14.5.3.4 DefaultInputCharacterSet 14-15

14.5.3.5 DefaultPageSize 14-17

14.5.3.6 DefaultRenderFont 14-18

14.5.3.7 DefaultPageMargins 14-18

14.5.3.8 DocumentMemoryMode 14-18

14.5.3.9 EmailHeaders 14-19

14.5.3.10 EmbedFonts 14-19

14.5.3.11 FallbackFormat 14-19

14.5.3.12 FitHeightToPages 14-20

14.5.3.13 FitWidthToPages 14-20

14.5.3.14 FontAliasList 14-20

14.5.3.15 FontDirectories 14-21

14.5.3.16 FontFilter 14-21

14.5.3.17 GraphicOutputDPI 14-21

14.5.3.18 GridMaxPageHeight 14-22

14.5.3.19 GridMaxPageWidth 14-23

14.5.3.20 IECondCommentMode 14-23

14.5.3.21 IgnorePassword 14-23

14.5.3.22 ImagePassthrough 14-24

14.5.3.23 ISODateTimes 14-24

14.5.3.24 JPEGQuality 14-24

14.5.3.25 LinearizePDFOutput 14-24

14.5.3.26 LotusNotesDirectory 14-25

14.5.3.27 MarginText 14-25

14.5.3.28 MarginTextFont 14-25

14.5.3.29 PageDirection 14-25

14.5.3.30 PageFitMode 14-26

14.5.3.31 PageRange 14-27

14.5.3.32 PageScalePercent 14-27

14.5.3.33 PDFInputMaxEmbeddedObjects 14-27

14.5.3.34 PDFInputMaxVectorPaths 14-28

14.5.3.35 PDFReorderBiDi 14-28

14.5.3.36 PDFWordSpacingFactor 14-28

14.5.3.37 PerformExtendedFI 14-29

14.5.3.38 RedactionColor 14-29

14.5.3.39 RedactionLabelFont 14-29

xiii

14.5.3.40 RedactionLabelsVisible 14-30

14.5.3.41 RedactionsEnabled 14-30

14.5.3.42 RenderEmbeddedFonts 14-30

14.5.3.43 RenderGridlines 14-30

14.5.3.44 RenderHeadings 14-31

14.5.3.45 ShowArchiveFullPath 14-31

14.5.3.46 ShowHiddenCells 14-31

14.5.3.47 ShowHiddenSpreadSheetData 14-32

14.5.3.48 StrictFile 14-32

14.5.3.49 TimeZoneOffset 14-32

14.5.3.50 UnmappableCharacter 14-33

14.5.3.51 UseDocumentPageSettings 14-33

14.6 ExportStatus Class 14-34

14.7 FileFormat Class 14-35

14.8 FontAliases Class 14-35

14.9 FontInfo Class 14-35

14.10 FontList Class 14-36

14.11 HighlightTextAnnotation Class 14-36

14.12 MailHeaders Class 14-37

14.13 Margins Class 14-39

14.14 MarginText Class 14-40

14.15 Option Interface 14-41

14.16 OutsideIn Class 14-42

14.17 OutsideInVersion Class 14-42

14.18 OutsideInConfig Class 14-42

14.19 OutsideInException Class 14-43

14.19.1 OutsideInCastException Class 14-43

14.20 PageInfo Class 14-44

14.21 PageRange Class 14-44

14.22 Watermark Class 14-45

xiv

Preface

This document describes the installation and usage of the Outside In PDF Export
Software Developer's Kit (SDK).

Audience
This document is intended for developers who are integrating Outside In PDF Export
into Original Equipment Manufacturer (OEM) applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
The complete Oracle Outside In Technology documentation set is available from the
Oracle Help Center at http://www.oracle.com/pls/topic/lookup?
ctx=oitlatest&id=homepage.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage
http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage

Part I
Getting Started with PDF Export

This section provides an introduction to the SDK.

Part I contains the following chapters:

• Introduction

• Implementation Issues

• Sample Applications

1
Introduction

This chapter is an introduction to the PDF Export SDK. PDF Export allows an OEM to
convert almost any document, spreadsheet or presentation file into a PDF file.

Note:

For new functionality information, see What's New guide.

There may be references to other Outside In Technology SDKs within this manual. To
obtain complete documentation for any other Outside In product, see Middleware
documentation page and click Outside In Technology link below.

This chapter includes the following sections:

• Architectural Overview

• Definition of Terms

• Directory Structure

• How to Use PDF Export

1.1 Architectural Overview
The basic architecture of Oracle Outside In technologies is the same across all
supported platforms.

Filter/Module Description

Input Filter The input filters form the base of the architecture. Each one reads a
specific file format or set of related formats and sends the data to
OIT through a standard set of function calls. There are more than
150 of these filters that read more than 600 distinct file formats.
Filters are loaded on demand by the data access module.

Export Filter Architecturally similar to input filters, export filters know how to write
out a specific format based on information coming from the chunker
module. The export filter produces the page layout for PDF output.

Chunker The Chunker module is responsible for caching a certain amount of
data from the filter and returning this data to the export filter.

Export The Export module implements the export API and understands
how to load and run individual export filters.

Data Access The Data Access module implements a generic API for access to
files. It understands how to identify and load the correct filter for all
the supported file formats. The module delivers to the developer a
generic handle to the requested file, which can then be used to run
more specialized processes, such as the Export process.

1-1

https://docs.oracle.com/en/middleware/
https://docs.oracle.com/en/middleware/

1.2 Definition of Terms
The following terms are used in this documentation.

Term Definition

Developer Someone integrating this technology into another technology or
application. Most likely this is you, the reader.

Source File The file the developer wishes to export.

Output File The PDF file being written.

Data Access Module The core of Oracle Outside In Data Access, in the SCCDA library.

Data Access Submodule
(also referred to as
"Submodule")

This refers to any of the Oracle Outside In Data Access modules,
including SCCEX (Export), but excluding SCCDA (Data Access).

Document Handle (also
referred to as "hDoc")

A Document Handle is created when a file is opened using Data
Access (see Data Access Common Functions). Each Document
Handle may have any number of Subhandles.

Subhandle (also referred
to as "hItem")

Any of the handles created by a Submodule's Open function. Every
Subhandle has a Document Handle associated with it. For
example, the hExport returned by EXOpenExport is a Subhandle.
The DASetOption and DAGetOption functions in the Data Access
Module may be called with any Subhandle or Document Handle.
The DARetrieveDocHandle function returns the Document Handle
associated with any Subhandle.

1.3 Directory Structure
Each Oracle Outside In product has an sdk directory, under which there is a
subdirectory for each platform on which the product ships (for example, px/sdk/
px_win-x86-32_sdk). Under each of these directories are the following two
subdirectories:

• redist: Contains only the files that the customer is allowed to redistribute. These
include all the compiled modules, filter support files, .xsd and .dtd files,
cmmap000.bin, and third-party libraries.

• sdk: Contains the other subdirectories that used to be at the root-level of an sdk
(common, lib (windows only), resource, samplefiles, and samplecode (previously
samples). In addition, one new subdirectory has been added, demo, that holds all
of the compiled sample apps and other files that are needed to demo the products.
These are files that the customer should not redistribute (.cfg files, exportmaps,
etc.).

In the root platform directory (for example, px/sdk/px_win-x86-32_sdk), there are two
files:

• README: Explains the contents of the sdk, and that makedemo must be run in
order to use the sample applications.

• makedemo (either .bat or .sh – platform-based): This script will either copy (on
Windows) or Symlink (on Unix) the contents of …/redist into …/sdk/demo, so that
sample applications can then be run out of the demo directory.

Chapter 1
Definition of Terms

1-2

1.3.1 Installing Multiple SDKs
If you load more than one OIT SDK, you must copy files from the secondary
installations into the top-level OIT SDK directory as follows:

• redist – copy all binaries into this directory.

• sdk – this directory has several subdirectories: common, demo, lib, resource,
samplecode, samplefiles. In each case, copy all of the files from the secondary
installation into the top-level OIT SDK subdirectory of the same name. If the top-
level OIT SDK directory lacks any directories found in the directory being copied
from, just copy those directories over.

1.4 How to Use PDF Export
Here's a step-by-step overview of how to export a PDF file.

1. Call DAIniExt to initialize the Data Access technology. This function needs to be
called only once per application. If using threading, then pass in the correct
ThreadOption.

2. Set any options that require a NULL handle type (optional). Certain options need
to be set before the desired source file is opened. These options are identified by
requiring a NULL handle type. They include, but aren't limited to:

• SCCOPT_FALLBACKFORMAT

• SCCOPT_FIFLAGS

• SCCOPT_TEMPDIR

It is also necessary to set the SCCOPT_FONTDIRECTORY option before
exporting a document. Files will fail to export unless SCCOPT_FONTDIRECTORY
is defined.

3. Open the Source File. DAOpenDocument is called to create a document handle
that uniquely identifies the source file. This handle may be used in subsequent
calls to the EXOpenExport function or the open function of any other Data Access
Submodule, and will be used to close the file when access is complete. This
allows the file to be accessed from multiple Data Access Submodules without
reopening.

4. Set the Options. If you require option values other than the default settings, call
DASetOption to set options. Note that options listed in the Options Guide as
having "Handle Types" that accept VTHEXPORT may be set any time before
EXRunExport is called. For more information on options and how to set them, see
DASetOption.

5. Open a Handle to PDF Export. Using the document handle, EXOpenExport is
called to obtain an export handle that identifies the file to the specific export
product. This handle will be used in all subsequent calls to the specific export
functions. The dwOutputId parameter of this function is used to specify that the
output file type should be set to either FI_PDF (for generic PDF 1.5), FI_PDFA (for
PDF/A-1a compliance), or FI_PDFA_2 (for PDF/A-2a compliance).

6. Make Any Required Calls to Annotation Functions. This is the point at which any
calls to annotation functions (such as EXHiliteText, EXInsertText or EXHideText)
should be made.

Chapter 1
How to Use PDF Export

1-3

7. Export the File. EXRunExport is called to generate the output file(s) from the
source file.

8. Close the Handle to PDF Export. EXCloseExport is called to terminate the export
process for the file. After this function is called, the export handle will no longer be
valid, but the document handle may still be used.

9. Close the Source File. DACloseDocument is called to close the source file. After
calling this function, the document handle will no longer be valid.

10. Close PDF Export. DADeInit is called to de-initialize the Data Access technology.

Chapter 1
How to Use PDF Export

1-4

2
Implementation Issues

This chapter covers some issues specific to using the PDF Export SDK.
This chapter includes the following sections:

• Running in 24x7 Environments

• Running in Multiple Threads or Processes

• PDF Export Issues

2.1 Running in 24x7 Environments
To ensure robust 24x7 performance in server applications embedding the different
export products, it is strongly recommended that the technology be run in a process
separate from the server's primary process.

The file filtering technology underlying the technology represents almost a quarter of a
million lines of code. This code is expected to robustly deal with any stream of bytes,
of any length (any file), in all cases. Oracle has dedicated, and continues to dedicate,
significant effort into making this technology extremely robust. However, in real world
situations, expect that some small number of malformed files may force the filters into
unstable states. This generally results in either a memory exception (which can be
trapped and recovered from gracefully), infinite loop or a wild pointer that causes the
filter to write into memory that is part of the same process but does not belong to the
filter. In the latter situation, this wild pointer condition cannot be trapped.

On the desktop this is not a significant problem since the number of files being dealt
with is relatively small. In a 24x7 server environment, however, a wild pointer can be
extremely disruptive to the server process and produce serious problems. The best
solution for dealing with this problem is to run any application that reads complex file
formats in a separate process. This solution protects the application from the
susceptibility of filtering technology to the unknown quality of input files.

It must be stressed that files that lead to wild pointers or infinite loops occur very
infrequently, usually as a result of a third-party conversion process or beta versions of
applications. Oracle is committed to addressing these issues and to updating and
expanding its testing tools and corpus of documents to proactively minimize this
"garbage in-garbage out" problem.

2.2 Running in Multiple Threads or Processes
On certain platforms, export products may be run in a multi-threaded or multi-
processing application. The thing to remember when doing so is that each thread must
go through all the steps listed in Introduction.

2.3 PDF Export Issues
The following issues have been identified when using PDF Export:

2-1

• There is currently no method of specifying how wide a field in a database should
be. Occasionally this will lead to situations where information in a database field
will not be included in the output graphic, resulting in a loss of content.

• If multiple pages of garbage output occur when exporting images, it is possible
that the default setting of the SCCOPT_FALLBACKFORMAT
(FallbackFormatEnum on the server version) option (FI_ASCII-8) is forcing the
technology to attempt to read files that it cannot identify as text. Setting the
pertinent option to the value FI_NONE (FallbackFormat on the server version)
prevents the software from exporting unidentified binary files as though they were
text.

• The SCCOPT_FONTDIRECTORY option must be set.

• Only TrueType fonts are supported in PDF Export at this time.

Chapter 2
PDF Export Issues

2-2

3
Sample Applications

This chapter describes sample applications shipped with the PDF Export SDK. Each of
the sample applications included in this SDK is designed to highlight a specific aspect
of the technology's functionality. We ship built versions of these sample applications.
The compiled executables should be in the root directory where the product is
installed.
This chapter includes the following sections:

• Building the Samples on a Windows System

• An Overview of the Sample Applications

• Accessing the SDK via a Java Wrapper

3.1 Building the Samples on a Windows System
Microsoft Visual Studio 2010 files are provided for building each of the sample
applications.

Because .vcxproj files may not pick up the right compiler on their own, you need to
make sure that you are building with the correct configuration in Visual Studio 2010 or
higher.

The project files for the sample applications can be found in the samplecode\win
subdirectory of the Oracle Outside In SDK.

For specific information about building the sample applications on your UNIX OS, see
UNIX Implementation Details.

3.2 An Overview of the Sample Applications
Here's a quick tour of the sample applications provided with this product. Not all of the
sample applications are provided for both the Windows and UNIX platforms. See the
heading of each application's subsection for clarification.

This section includes the following sample applications:

• pxsample

• export (Windows Only)

• exsimple

• exredir

• extract_archive

• pxanno

3-1

3.2.1 pxsample
The following is a basic implementation that uses the default settings for every option.
This sample is provided for instructional value rather than functionality. The fonts for
the export are assumed to be in $HOME/fonts for UNIX platforms, and C:\WINDOWS
\FONTS for Windows platforms; if the directory does not exist, the export will fail.

pxsample Inputfile Outputfile

3.2.2 export (Windows Only)
This application was designed to facilitate the testing of the software and should not be
assumed to be of commercial quality.

Note:

No default options are set at initial runtime. The time the software is used,
click the Options button and set the options. Failure to do this generates
export errors.

The application allows the user to run a single source file. The user can choose the
source file, an output file and set the various options.

3.2.2.1 The export Main Window
The Main Window is composed of several elements, discussed here.

• Output Format menu: This menu allows the user to select the type of output to
generate. An entry for the format(s) you license will appear in this drop-down
menu

• Options button: This opens up a new dialog with one or more tabs exposing the
options for the selected product.

• Source document field: This is the document to be exported. Use the Browse
button to pick the source file, or type in the path name.

• 'Export to' Field: This is the initial resulting output file. Type in a file name or use
the Browse button to choose a file. Other output files are named based on the one
chosen here.

• Delete button: Clicking this button deletes all files generated by the last export,
listed in the Status: field. This is useful when multiple output files are produced
because the default naming rules do not overwrite an existing file. If you run
Export over and over again with the same output file name, you can produce a
large number of files. Pressing Delete before each export solves this problem.

• 'After Export, view output file with default application' checkbox: If the export was
successful, checking this box launches the initial output file in the application
associated with the output flavor's default extension.

• Export button: Click this button to start the export process once you've determined
the export settings.

Chapter 3
An Overview of the Sample Applications

3-2

• Exit button: Close the Export application.

3.2.3 exsimple
This simple command line driven program allows the user to run a single source file
through the software. The user can choose the source file, an output file and set the
various options.

To run the program, type:

exsimple in_file out_file config_file

• in_file is the input file to be converted

• out_file is the output location

• config_file is the configuration file that sets the conversion options. If no
configuration file is specified, default.cfg in the current directory is used.

The configuration file is a text file used to set the conversion options. We recommend
reading through the configuration file for more information about valid options and their
values (use of invalid options results in exsimple not producing output).

Follow these instructions to set configurable options.

• Set the Output ID to either FI_PDF (for generic PDF 1.5), FI_PDFA (for PDF/A-1a
compliance), or FI_PDFA_2 (for PDF/A-2a compliance) before running the
software.

• It is also recommended that you set SCCOPT_FALLBACKFORMAT to FI_NONE.
This prevents the export of unidentified binary files as though they were text, which
could generate pages of garbage output.

• It is required that the "fontdirectory" section of the configuration file be set to point
to a valid font directory.

3.2.4 exredir
This sample application is based on the exsimple sample application. It is designed to
demonstrate how to use redirected IO and callbacks when using the software. It takes
the same arguments and command line structure as exsimple and the same
configuration files can be used. For more information, see exsimple.

3.2.5 extract_archive
extract_archive demonstrates using the DATree API to extract all nodes in an archive.

The application is executed from the command line and takes two parameters, the
name of the input file and the name of an output directory for the extracted files:

extract_archive input_file output_directory

3.2.6 pxanno
This sample application is provided more for the instructional value its sample code
offers than for the functionality it provides when executed. It primarily works as an
example of how to integrate Content Access with PDF Export. This particular
application does search hit highlighting. However, the general principles of how to get

Chapter 3
An Overview of the Sample Applications

3-3

ACC text positions from Content Access should be evident from perusing the source
code.

This command takes the following parameters:

• InputFile

• OutputFIle

• HiliteString

• Font Directory (PDF Export only): the location of system fonts.

The following sample command lines demonstrate this command:

pxanno InputFile OutputFile HiliteString FontDirectory

A license for Content Access or Search Export is required to enable use of any of the
annotation features supported by PDF Export. Contact your sales representative for
more information.

3.3 Accessing the SDK via a Java Wrapper
The ExJava Java wrapper, working in tandem with the exporter sample application,
provides a working example of one method of interfacing with Oracle's C-based SDK
products from a Java application. Export.jar is a Java API wrapper used by a Java
application to control the exporter executable and set conversion options. exporter is a
C-based executable which performs conversions using the modules in the Oracle
Outside In SDK.

The exporter executable should be placed in the root directory of the Oracle Outside In
SDK being used. If more than one Oracle Outside In SDK is being used, the contents
of each SDK should be unpacked to the same root directory. Export.jar should be
placed somewhere in your classpath.

On UNIX systems this sample application must be run from the directory containing
the Oracle Outside In technology Java version 1.6 or higher is required to run this
sample application.

This section includes the following topics:

• The ExJava Wrapper API

• The C-Based Exporter Application

• Compiling the Executables

• The ExportTest Sample Application

• An Example Conversion Using the ExJava Wrapper

3.3.1 The ExJava Wrapper API
The JavaDocs documentation for the Java API is provided in the /sdk/samplecode/
ExJava/docs directory. Conversion options are set using the ExportProperties.

Additionally, the appropriate .cfg file for the ExportTest sample application found in the
Examples/ExportTest directory may provide further insight as to what properties are
available and how they correspond to options and values for options.

Chapter 3
Accessing the SDK via a Java Wrapper

3-4

The Export.jar and its source code can be found in the Java API directory. Place
Export.jar somewhere in your classpath. In order to use the ExportTest sample
application (which demonstrates how a Java application can use the ExJava API)
without modifying your system configuration or the ExJava sample application, you
should place the Export.jar file in the root directory of the Oracle Outside In SDK
product you are using.

3.3.2 The C-Based Exporter Application
This is a standalone executable that runs out of process from the Java API. The Java
API controls the conversion through command line parameters that are passed to the
executable. After the conversion completes, the executable returns a conversion
status code to the Java API. The command line parameters are base-64 encoded to
allow for the use of Unicode encoded paths.

As the exporter executable is a C-based application, you will need to make sure the
Java API can find the version of exporter appropriate for the platform you are using.
Generally, and specifically for the purpose of using the ExportTest sample application,
the correct executable should be copied to the root directory of the Oracle export SDK
product you are using.

A compiled version of the C exporter program is included in the SDK with the rest of
the Oracle Outside In binaries. The source for exporter is located in the samples/
ExJava/exporter directory.

The current implementation of ExJava may not produce an error if it cannot find the
exporter application. This known issue may be corrected in a future version of ExJava.

3.3.3 Compiling the Executables
A Microsoft Visual Studio 6.0 project file and a UNIX makefile are provided in
Exporter/Win and Exporter/Unix, respectively, so that you can modify the Exporter
executable or compile it for a platform other than those for which compiled versions of
exporter are provided. If you unpacked the ExJava package into the root directory of
one of Oracle's export SDK products, you should be able to use the Visual Studio
Project and makefile as is. Otherwise, you will need to edit them in order to provide
paths to the Oracle export SDK include and library files.

If you are compiling ExJava for use on the Solaris platform, make sure your
LD_LIBRARY_PATH contains the Oracle Outside In SDK path before trying to build
the Exporter module.

3.3.4 The ExportTest Sample Application
ExportTest is an example of how a Java developer could use the ExJava wrapper to
use one of the Oracle Outside In SDKs. The following is a list of the components that
should be placed in the root directory of the Oracle Outside In SDK you are using in
order to run this sample application:

1. Export.jar (from the Java API directory)

2. Exporter module for the platform you wish to use (located in the /sdk/samplecode/
ExJava/Exporter/Win or /sdk/samplecode/ExJava/Exporter/Unix directory,
depending on which platform you are using)

3. px.cfg (also in Examples/ExportTest directory)

Chapter 3
Accessing the SDK via a Java Wrapper

3-5

4. If you are running ExportTest on a UNIX system, make sure to edit the .cfg file so
it reflects the correct name of the exporter module you renamed.

5. ExportTest.jar (also in Examples/ExportTest directory)

6. The appropriate batch file to run the ExportTest application (ExportTest.bat for
Windows and ExportTest.sh for UNIX, both located in the Examples/ExportTest
directory)

Once these files are properly copied, execute the batch file with the name/path of an
input file to convert, the name for the base output file and the name of the
configuration file to use for setting conversion options.

ExportTest.jar uses the contents of the configuration file to determine what option/
value pairs it should use when doing the conversion. It is not necessary to use a
configuration file when developing your own application if you so choose not to.

3.3.5 An Example Conversion Using the ExJava Wrapper
This is a simple outline of the steps for using the ExJava wrapper on a Windows
system to convert a Word document called MyWordDoc.Doc. If you are using a UNIX
system, for information about properly setting up your environment to use the Oracle
Outside In SDK, see UNIX Implementation Details.

1. Edit the .cfg file and make sure outputid is set to the FI* value appropriate for the
Oracle Outside In product you've licensed. Alter any other parameters in the .cfg
file as needed then save the file.

2. Execute the following command. The sample command below assumes HTML as
the export type. Change this type accordingly:

ExportTest.bat myworddoc.doc output.html hx.cfg

Chapter 3
Accessing the SDK via a Java Wrapper

3-6

Part II
Using the C/C++ API

This section provides details about using the SDK with the C/C++ API.

Part II contains the following chapters:

• Windows Implementation Details

• UNIX Implementation Details

• Data Access Common Functions

• Export Functions

• Redirected IO

• Callbacks

• PDF Export C/C++ Options

4
Windows Implementation Details

This chapter describes the implementation of the PDF Export SDK on the Windows
platform. The Windows implementation of this software is delivered as a set of DLLs.
For a list of the currently supported platforms, see Outside In Technology and click
links under Certified Platforms and Supported Formats from the Get Started page.

This chapter includes the following sections:

• Installation

• Libraries and Structure

• The Basics

• Default Font Aliases

• Changing Resources

4.1 Installation
To install the demo version of the SDK, copy the contents of the ZIP archive (available
on the web site) to a local directory of your choice.

This product requires the Visual C++ libraries included in the Visual C+
+ Redistributable Package available from Microsoft. There is a version of this package
for the appropriate platform (x86 or x64) version of Windows. This can be downloaded
from www.microsoft.com, by searching on the site for the following package:

• vcredist_x86.exe, or

• vcredist_x64.exe

The required download version is the "Visual C++ Redistributable Packages for Visual
Studio 2013."

Oracle Outside In requires the msvcr120.dll redistributable module.

The installation directory should contain the following directory structure.

Directory Description

\redist Contains a working copy of the Windows version of the technology.

\sdk\common Contains the C include files needed to build or rebuild the
technology.

\sdk\demo Contains the compiled executables of the sample applications.

\sdk\lib Contains the library (.lib) files needed for the products.

\sdk\resource Contains localization resource files.

\sdk\samplecode Contains a subdirectory holding the source code for a sample
application.

4-1

http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage

Directory Description

\sdk\samplefiles Contains sample input files authored in a variety of popular
graphics, word processor, compression, spreadsheet and
presentation applications.

\sdk\template Contains template files based on which html is created.

4.1.1 NSF Support
Notes Storage Format (NSF) files are produced by the Lotus Notes Client or the Lotus
Domino server. The NSF filter is the only Oracle Outside In filter that requires the
native application to be present to filter the input documents. Due to integration with an
outside application, NSF support will not work with redirected I/O, when an NSF file is
embedded in another file, or with IOTYPE_UNICODEPATH. Either Lotus Notes
version 8 or Lotus Domino version 8 must be installed on the same machine as OIT. A
32-bit version of the Lotus software must be used if you are using a 32-bit version of
OIT. A 64-bit version of the Lotus software must be used if you are using a 64-bit
version of OIT. On Windows, SCCOPT_LOTUSNOTESDIRECTORY should be set to
the directory containing the nnotes.dll. NSF support is only available on the Win32,
Win x86-64, Linux x86-32, and Solaris Sparc 32 platforms.

4.2 Libraries and Structure
The following is an overview of the files in the main installation directory for all five
Oracle Outside In export products.

4.2.1 API DLLs
These libraries implement the API. They should be linked with the developer's
application. Files with a .lib extension are included in the SDK.

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

sccda.dll Data Access module X X X X X X

sccex.dll Export module X X X X X X

sccfi.dll File Identification
module (identifies
files based on their
contents).

X X X X X X

The File ID Specification may not be used directly by any application or workflow
without it being separately licensed expressly for that purpose.

4.2.2 Support DLLs
The following libraries are used for support.

Chapter 4
Libraries and Structure

4-2

Library Description HTM
L
Expo
rt

Imag
eExp
ort

PDF
Expo
rt

Searc
h
Expor
t

XML
Expor
t

Web
View
Export

ccflex.dll A data model adapter that
converts from stream model
utilized by Oracle Outside In
filters to the FlexionDoc Tree
model used as a basis by XML
Export.

X

libexpatw.dll A third-part XML parser X

ocemul.dll Output component emulation
module

X X X X X X

oswin*.dll Interface to the native GDI
implementation

oswin32.dll is the 32-bit version,
oswin64.dll is the 64-bit version

X X X X X

sccanno.dll The annotation module X X X

sccca.dll Content Access module
(provides organized chunker
data for the developer)

X X X X

sccch.dll Chunker (provides caching of
and access to filter data for the
export engines)

X X X X X X

sccdu.dll Display Utilities module (includes
text formatting)

X X X X X X

sccexind.dll The core engine for all Search
Export formats: SearchText,
SearchHTML, SearchML and
PageML

X X

sccfmt.dll Formatting module (resolves
numbers to formatted strings)

X X X X X

sccfut.dll Filter utility module X X X X X X

sccind.dll Indexing engine. In Search
Export, it handles common
functionality.

X X X X X

scclo.dll Localization library (all strings,
menus, dialogs and dialog
procedures reside here)

X X X X X X

sccole2.dll OLE rendering module X X X X X X

sccsd.dll Schema Definition Module
Manager (brokers multiple
Schema Definition Modules)

X X

sccut.dll Utility functions, including IO
subsystem

X X X X X X

sccxt.dll XTree module X

Chapter 4
Libraries and Structure

4-3

Library Description HTM
L
Expo
rt

Imag
eExp
ort

PDF
Expo
rt

Searc
h
Expor
t

XML
Expor
t

Web
View
Export

sdflex.dll Schema Definition module
(handles conversion of XML
string names and attribute
values to compact binary
representations and vice versa)

X X

wvcore.dll The GDI Abstraction layer X X X X X

4.2.3 Engine Libraries
The following libraries are used for display purposes.

Library Description HTML
Expor
t

Image
Expor
t

PDF
Export

Searc
h
Expor
t

XML
Expor
t

Web
View
Export

debmp.dll Raster rendering engine
(TIFF, GIF, BMP, PNG,
PCX…)

X X

devect.dll Vector/Presentation
rendering engine
(PowerPoint, Impress,
Freelance…)

X X X X X

dess.dll Spreadsheet/Database
(Excel, Calc, Lotus 123…)

X X X

detree.dll Archive (ZIP, GZIP,
TAR…)

X X

dewp.dll Document (Word, Writer,
WordPerfect…)

X X X X

4.2.4 Filter and Export Filter Libraries
The following libraries are used for filtering.

Library Description HTM
L
Expo
rt

Imag
e
Expo
rt

PDF
Expo
rt

Sear
ch
Expo
rt

XML
Expo
rt

Web
View
Expo
rt

vs*.dll Filters for specific file types
(there are more than 150 of
these filters, covering more than
600 file formats)

X X X X X X

oitnsf.id Support file for the vsnsf filter. X X X X X X

exgdsf.dll Export filter for GIF, JPEG, and
PNG graphics files

X X X

eximg.dll Extended image conversion
module

X

Chapter 4
Libraries and Structure

4-4

Library Description HTM
L
Expo
rt

Imag
e
Expo
rt

PDF
Expo
rt

Sear
ch
Expo
rt

XML
Expo
rt

Web
View
Expo
rt

exh5.dll Export filter for HTML5 files X

exhtml.dll Export filter for HTML files X

exihtml.dll Export filter for SearchHTML X

exitext.dll Export filter for SearchText X

exixml.dll Export filters for XML files using
the SearchML schema

X

expage.dll Export filter for XML files using
the PageML schema

X

expagelayout.dll Page layout module X

exxml.dll XML Export module X

sccimg.dll Image conversion module X X X X X

4.2.5 Premier Graphics Filters
The following are graphics filters.

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

i*2.dll Import filters for
premier graphics
formats

X X X X X X

isgdi32.dll Interface to premier
graphics filters

X X X X X X

4.2.6 Additional Files
The following files are also used.

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

adinit.dat Support file for the
vsacad filter

X X X X X X

cmmap000.bin Tables for character
mapping (all character
sets)

X X X X X X

cmmap000.sbc Tables for character
mapping (single-byte
character sets). This
file is located in
the /sdk/common
directory.

X X X X X X

Chapter 4
Libraries and Structure

4-5

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

cmmap000.dbc Identical to
cmmap000.bin, but
renamed for clarity
(.dbc = double-byte
character). This file is
located in the /sdk/
common directory.

X X X X X X

exbf.dll Internal X

pageml.dtd The Document Type
Definition for the
PageML schema

X

pageml.xsd The Extensible
Schema Definition for
the PageML schema

X

searchml3.dtd The Document Type
Definitions for the
SearchML schema

X

searchml3.xsd The Extensible
Schema Definitions for
the SearchML schema

X

flexiondoc.dtd The DTD version of
the Flexiondoc
schema

X

flexiondoc.xsd The schema version of
the Flexiondoc
schema

X

4.3 The Basics
The following is a discussion of some basic usage and installation features.

All the steps outlined in this section are used in the sample applications provided with
the SDK. Looking at the code for the exsimple sample application is recommended for
those wishing to see a real-world example of this process.

4.3.1 What You Need in Your Source Code
Any source code that uses this product should #include the file sccex.h and #define
WINDOWS and WIN32 or WIN64. For example, a Windows application might have a source
file with the following lines:

#define WINDOWS /* Will be automatically defined if your
 compiler defines _WINDOWS */
#define WIN32
#include <sccex.h>

The developer's application should be linked to the product DLLs through the provided
libraries.

Chapter 4
The Basics

4-6

4.3.2 Options and Information Storage
When using the Export products, a list of available filters and a list of available display
engines are built by the technology, usually the first time the product runs. You do not
need to ship these lists with your application. The lists are automatically recreated if
corrupted or deleted.

The files used to store this information are stored in an .oit subdirectory in \Documents
and Settings\user name\Application Data.

If an .oit directory does not exist in the user's directory, the directory is created
automatically. The files are automatically regenerated if corrupted or deleted.

The files are:

• *.f = Filter lists

• *.d = Display Engine lists

• *.opt = Persistent options

Some applications and services may run under a local system account for which there
is no users "application data" folder. The technology first does a check for an
environment variable called OIT_DATA_PATH. Then it checks for APPDATA, and
then LOCALAPPDATA. If none of those exist, the options files are put into the
executable path of the UT module.

These file names are intended to be unique enough to avoid conflict for any
combination of machine name and install directory. This allows the user to run
products in separate directories without having to reload the files above. The file
names are built from an 11-character string derived from the directory the Oracle
Outside In technology resides in and the name of the machine it is being run on. The
string is generated by code derived from the RSA Data Security, Inc. MD5 Message-
Digest Algorithm.

The software still functions if these lists cannot be created for some reason. In that
situation, however, significant performance degradation should be expected.

4.3.3 Structure Alignment
Oracle Outside In is built with 8-byte structure alignment. This is the default setting for
most Windows compilers. This and other compiler options that should be used are
demonstrated in the files provided with the sample applications in samples\win.

4.3.4 Character Sets
The strings passed in the Windows API are Microsoft Code Page 1252 by default.

To optimize performance on systems that do not require DBCS support, a second
character mapping bin file, that does not contain any of the DBCS pages, is now
included. The second bin file gives additional performance benefits for English
documents, but cannot handle DBCS documents. To use the new bin file, replace the
cmmap000.bin with the new bin file, cmmap000.sbc. For clarity, a copy of the
cmmap000.bin file (cmmap000.dbc) is also included. Both cmmap000.sbc and
cmmap000.dbc are located in the \common directory of the technology.

Chapter 4
The Basics

4-7

Note:

All of the Search Export flavors produce most text in UTF-8 encoded
Unicode. Two exceptions to this are the characters in <unmapped> elements
and XMP metadata (which is passed through without character mapping
being applied).

4.3.5 Runtime Considerations
The files used by the product must be in the same directory as the developer's
executable.

4.4 Default Font Aliases
The technology includes the following default font alias map for Windows. The first
value is the original font, the second is the alias.

• Chicago = Arial

• Geneva = Arial

• New York = Times New Roman

• Helvetica = Arial

• Helv = Arial

• times = Times New Roman

• Times = Times New Roman

• Tms Roman = Times New Roman

• itc zapfdingbats = Zapfdinbats

• itc zapf dingbats = Zapfdinbats

4.5 Changing Resources
Oracle Outside In PDF Export ships with the necessary files for OEMs to change any
of the strings in the technology as they see fit.

Strings are stored in the lodlgstr.h file found in the resource directory. The file can be
edited using any text editor.

Note:

Do not directly edit the scclo.rc file. Strings are saved with their identifiers in
lodlgstr.h. If a new scclo.rc file is saved, it will contain numeric identifiers for
strings, instead of their #define'd names.

Once the changes have been made, the updated scclo.dll file can be rebuilt using the
following steps:

Chapter 4
Default Font Aliases

4-8

1. Compile the .res file:

rc /fo ".\scclo.res" /i "<path to header (.h) files folder>" /d "NDEBUG" scclo.rc

2. Link the scclo.res file you've created with the scclo.obj file found in the resource
directory to create a new scclo.dll:

link /DLL /OUT:scclo.dll scclo.obj scclo.res

Note:

Developers should make sure they have set up their environment
variables to build the library for their specific architecture. For Windows
x86_32, when compiling with VS 2005, the solution is to run
vsvars32.bat (in a standard VS 2005 installation, this is found in C:
\Program Files\Microsoft Visual Studio 8\Common7\Tools\). If this works
correctly, you will see the statement, "Setting environment for using
Microsoft Visual Studio 2005 x86 tools." If you do not complete this step,
you may have conflicts that lead to unresolved symbols due to conflicts
with the Microsoft CRT.

3. Embed the manifest (which is created in the \resource directory during step 2) into
the new DLL:

mt -manifest scclo.dll.manifest -outputresource:scclo.dll;2

If you are not using Microsoft Visual Studio, substitute the appropriate development
tools from your environment.

Note:

In previous versions of Oracle Outside In, it was possible to directly edit the
SCCLO.DLL using Microsoft Visual Studio. Oracle Outside In DLLs are now
digitally signed. Editing the signed DLL is not advisable.

Chapter 4
Changing Resources

4-9

5
UNIX Implementation Details

This chapter describes the implementation of the PDF Export SDK on the UNIX
platform. The UNIX implementation of the Export product set is delivered as a set of
shared libraries.
For a list of the currently supported platforms, see Outside In Technology and click
links under Certified Platforms and Supported Formats from the Get Started page.

This chapter includes the following sections:

• Installation

• Libraries and Structure

• The Basics

• Character Sets

• Runtime Considerations

• Environment Variables

• Default Font Aliases

• Changing Resources

• HP-UX Compiling and Linking

• IBM AIX Compiling and Linking

• Oracle Solaris Compiling and Linking

• Linux Compiling and Linking

5.1 Installation
To install the demo version of the SDK, copy the tgz file corresponding to your
platform (available on the web site) to a local directory of your choice. Decompress the
tgz file and then extract from the resulting tar file as follows:

gunzip tgzfile
tar xvf tarfile

The installation directory should contain the following directory structure.

Directory Description

/redist Contains a working copy of the UNIX version of the technology.

/sdk/common Contains the C include files needed to build or rebuild the
technology.

/sdk/demo Contains the compiled executables of the sample applications.

/sdk/resource Contains localization resource files. For more details, see Changing
Resources.

5-1

http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage

Directory Description

/sdk/samplecode Contains a subdirectory holding the source code for a sample
application. For more details, see Sample Applications.

/sdk/samplefiles Contains sample files designed to exercise the technology.

5.1.1 NSF Support
Notes Storage Format (NSF) files are produced by the Lotus Notes Client or the Lotus
Domino server. The NSF filter is the only Outside In filter that requires the native
application to be present to filter the input documents. Due to integration with an
outside application, NSF support will not work with redirected I/O nor will it work when
an NSF file is embedded in another file. Lotus Domino version 8 must be installed on
the same machine as OIT. The NSF filter is currently only supported on the Win32,
Win x86-64, Linux x86-32, and Solaris Sparc 32 platforms.
SCCOPT_LOTUSNOTESDIRECTORY is a Windows-only option and is ignored on
Unix.

Additional steps must be taken to prepare the system. It is necessary to know the
name of the directory in which Lotus Domino has been installed. On Linux, this default
directory is /opt/ibm/lotus/notes/latest/linux. On Solaris, it is /opt/ibm/lotus/notes/latest/
sunspa.

• In the Lotus Domino directory, check for the existence of a file called "notes.ini". If
the file "notes.ini" does not exist, create it in that directory and ensure that it
contains the following single line:

[Notes]

• Add the Lotus Domino directory to the $LD_LIBRARY_PATH environment
variable.

• Set the environment variable $Notes_ExecDirectory to the Lotus Domino directory.

5.2 Libraries and Structure
On UNIX platforms the Oracle Outside In products are delivered with a set of shared
libraries. All libraries should be installed to a single directory. Depending upon your
application, you may also need to add that directory to the system's runtime search
path. For more details, see Environment Variables.

The following is a brief description of the included libraries and support files. In
instances where a file extension is listed as .*, the file extension varies for each UNIX
platform (sl on HP-UX, so on Linux and Solaris).

5.2.1 API Libraries
These libraries implement the API. They should be linked with the developer's
application.

Chapter 5
Libraries and Structure

5-2

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

libsc_da.* Data Access module X X X X X X

libsc_ex.* Export module X X X X X X

libsc_fi.* File Identification
module (identifies files
based on their
contents).

X X X X X X

The File ID Specification may not be used directly by any application or workflow
without it being separately licensed expressly for that purpose.

5.2.2 Support Libraries
The following libraries are used for support.

Library Description HTM
L
Expo
rt

Imag
e
Expo
rt

PDF
Expo
rt

Searc
h
Expor
t

XML
Expor
t

Web
View
Expo
rt

libccflex.* A data model adapter that converts
from stream model utilized by
Outside In filters to the FlexionDoc
Tree model used as a basis by
XML Export.

X

libexpatw.* A third-party XML parser. X

liboc_emul.* Output component emulation
module

X X X X X X

libos_gd.* The internal rendering GDI
implementation. This library is only
supported on Linux (32- and 64-bit
Intel), Solaris (32-bit SPARC), HP-
UX (32-bit RISC), and AIX (32-bit
PPC).

X X X X

libos_pdf.* PDF generation module X

libos_xwin.* The native GDI implementation X X X X

libsc_anno.* The annotation module X X X X

libsc_ca.* Content Access module (provides
organized chunker data for the
developer)

X X X X

libsc_ch.* Chunker (provides caching of and
access to filter data for the export
engines)

X X X X X X

libsc_du.* Display Utilities module (includes
text formatting)

X X X X X X

libsc_fmt.* Formatting module (resolves
numbers to formatted strings)

X X X X X X

libsc_fut.* Filter utility module X X X X X X

Chapter 5
Libraries and Structure

5-3

Library Description HTM
L
Expo
rt

Imag
e
Expo
rt

PDF
Expo
rt

Searc
h
Expor
t

XML
Expor
t

Web
View
Expo
rt

libsc_ind.* Indexing engine. In Search Export,
it handles common functionality.

X X X X X

libsc_lo.* Localization library (all strings,
menus, dialogs and dialog
procedures reside here)

X X X X X X

libsc_sd.* Schema Definition Module
Manager (brokers multiple Schema
Definition Modules)

X

libsc_ut.* Utility functions, including IO
subsystem

X X X X X X

libsc_xp.* XPrinter bridge X X X X

libsdflex.* Schema Definition module
(handles conversion of XML string
names and attribute values to
compact binary representations
and vice versa)

X

libwv_core.* The Abstraction layer X X X X X X

libwv_gdlib.s
o

The GDI rendering module. This
library is only supported on Linux
(32- and 64-bit Intel), Solaris (32-
bit SPARC), HP-UX (32-bit RISC),
and AIX (32-bit PPC).

X X X X

5.2.3 Engine Libraries
The following libraries are used for display purposes.

Library Description HTM
L
Expo
rt

Imag
e
Expo
rt

PDF
Expo
rt

Searc
h
Expor
t

XML
Expor
t

Web
View
Expo
rt

libde_bmp.* Raster rendering engine (TIFF,
GIF, BMP, PNG, PCX…)

X X X

libde_vect.* Vector/Presentation rendering
engine (PowerPoint, Impress,
Freelance)

X X X X X

libde_ss.* Spreadsheet/Database (Excel,
Calc, Lotus 123)

X X X

libde_tree* Archive (ZIP, GZIP, TAR…) X X

libde_wp.* Document (Word, Writer,
WordPerfect)

X X X X

5.2.4 Filter and Export Filter Libraries
The following libraries are used for filtering.

Chapter 5
Libraries and Structure

5-4

libex_gdsf must be linked with libsc_img.* at compile time. This forces the filter to be
dependent on libsc_img.* at runtime, even though that module may not be used
directly. If you want to reduce your application's physical footprint, you can experiment
with unlinking libsc_img.*.

Library Description HTM
L
Expo
rt

Imag
e
Expo
rt

PDF
Expo
rt

Searc
h
Expor
t

XML
Expor
t

Web
View
Expo
rt

libvs_*.* Filters for specific file types (there
are more than 150 of these filters,
covering more than 600 file
formats)

X X X X X X

libex_gdsf.* Export filter for GIF, JPEG, and
PNG graphics files

X X X

libex_h5.* Export filter for HTML5 files X

libsc_img.* Image conversion module X X X X

libex_itext.* Export filter for SearchText X

libex_html.* Export filter for HTML files X

libex_img.* Extended image conversion
module

X

libex_xml.* Export filter for XML files using the
Flexiondoc schema

X

libex_page.* Export filter for XML files using the
PageML schema

X

libex_pagela
yout.*

Page Layout module X

libex_ixml.* Export filters for XML files using
the SearchML schema

X

libex_ihtml.* Export filter for SearchHTML X

5.2.5 Premier Graphics Filters
The following are graphics filters.

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

libi*.* These files are the
import filters for
premier graphics
formats.

X X X X X X

libis_unx2.* Interface to premier
graphics filters

X X X X X X

5.2.6 Additional Files
The following files are also used.

Chapter 5
Libraries and Structure

5-5

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

adinit.dat Support file for the
vsacad and vsacd2
filters

X X X X X X

ccbf.so Internal X

cmmap000.bin Tables for character
mapping (all character
sets)

X X X X X X

cmmap000.sbc Tables for character
mapping (single-byte
character sets). This
file is located in the /
common directory.

X X X X X X

cmmap000.dbc Identical to
cmmap000.bin, but
renamed for clarity
(.dbc = double-byte
character). This file is
located in the
common directory.

X X X X X X

exbf.so Internal X

flexiondoc.dtd The DTD version of
the Flexiondoc
schema

X

flexiondoc.xsd The schema version
of the Flexiondoc
schema

X

libfreetype.so.6 TrueType font
rendering module for
the GD output
solution. 32-bit Linux
and Solaris Sparc
only.

X X X X X

oitnsf.id Support file for the
vsnsf filter.

X X X X X X

pageml.dtd The Document Type
Definition for the
PageML schema

X

pageml.xsd The Extensible
Schema Definition for
the PageML schema

X

searchml3.dtd The Document Type
Definitions for the
SearchML schema

X

searchml3.xsd The Extensible
Schema Definitions
for the SearchML
schema

X

Chapter 5
Libraries and Structure

5-6

5.3 The Basics
Sample applications are provided with the SDK. These applications demonstrate most
of the concepts described in this manual. For a complete description of the sample
applications, see Sample Applications.

5.3.1 What You Need in Your Source Code
Any source code that uses this product should #include the file sccex.h and #define
UNIX. For example, a 32-bit UNIX application might have a source file with the
following lines:

#define UNIX
#include <sccex.h>

and a 64-bit UNIX application might have a source file with the following lines:

#define UNIX
#define UNIX_64
#include <sccex.h>

5.3.2 Information Storage
This software is based on the Oracle Outside In Viewer Technology (or simply "Viewer
Technology"). A file of default options is always created, and a list of available filters
and a list of available display engines are also built by the technology, usually the first
time the product runs (for UNIX implementations). You do not need to ship these lists
with your application.

Lists are stored in the $HOME/.oit directory. If the $HOME environment variable is not
set, the files are put in the same directory as the Oracle Outside In Technology. If
a /.oit directory does not exist in the user's $HOME directory, the .oit directory is
created automatically by the technology. The files are automatically regenerated if
corrupted or deleted.

The files are:

• *.f: Filter lists

• *.d: Display engine list

• *.opt: Persistent options

The filenames are intended to be unique enough to avoid conflict for any combination
of machine name and install directory. This is intended to prevent problems with
version conflicts when multiple versions of the Oracle Outside In Technology and/or
other Oracle Outside In Technology-based products are installed on a single system.
The filenames are built from an 11-character string derived from the directory the
Oracle Outside In Technology resides in and the name of the machine it is being run
on. The string is generated by code derived from the RSA Data Security, Inc. MD5
Message-Digest Algorithm.

The products still function if these files cannot be created for some reason. In that
situation, however, significant performance degradation should be expected.

Chapter 5
The Basics

5-7

5.4 Character Sets
The strings passed in the UNIX API are ISO8859-1 by default.

To optimize performance on systems that do not require DBCS support, a second
character mapping bin file, that does not contain any of the DBCS pages, is included.
The second bin file gives additional performance benefits for English documents, but
cannot handle DBCS documents. To use the new bin file, replace the cmmap000.bin
with the new bin file, cmmap000.sbc. For clarity, a copy of the cmmap000.bin file
(cmmap000.dbc) is also included. Both cmmap000.sbc and cmmap000.dbc are
located in the /sdk/common directory of the technology.

5.5 Runtime Considerations
The following is information to consider during run-time.

5.5.1 OLE2 Objects
Some documents that the developer is attempting to convert may contain embedded
OLE2 objects. There are platform-dependent limits on what the technology can do with
OLE2 objects. However, Oracle Outside In attempts to take advantage of the fact that
some documents accompany an OLE2 embedding with a graphic "snapshot," in the
form of a Windows metafile.

On all platforms, when a metafile snapshot is available, the technology uses it to
convert the object. When a metafile snapshot is not available on UNIX platforms, the
technology is unable to convert the OLE2 object.

5.5.2 Signal Handling
These products trap and handle the following signals:

• SIGABRT

• SIGBUS

• SIGFPE

• SIGILL

• SIGINT

• SIGSEGV

• SIGTERM

Developers who wish to override our default handling of these signals should set up
their own signal handlers. This may be safely done after the developer's application
has called DAInitEx().

Chapter 5
Character Sets

5-8

Note:

The Java Native Interface (JNI) allows Java code to call and be called by
native code (C/C++ in the case of OIT). You may run into problems if Java
isn't allowed to handle signals and forward them to OIT. If OIT catches the
signals and forwards them to Java, the JVMs will sometimes crash. OIT
installs signal handlers when DAInitEx() is called, so if you call OIT after the
JVM is created, you will need to use libjsig. Refer here for more information:

http://www.oracle.com/technetwork/java/javase/index-137495.html

5.5.3 Runtime Search Path and $ORIGIN
Libraries and sample applications are all built with the $ORIGIN variable as part of the
binaries' runtime search path. This means that at runtime, OIT libraries will
automatically look in the directory they were loaded from to find their dependent
libraries. You don't necessarily need to include the technology directory in your
LD_LIBRARY_PATH or SHLIB_PATH.

As an example, an application that resides in the same directory as the OIT libraries
and includes $ORIGIN in its runtime search path will have its dependent OIT libraries
found automatically. You will still need to include the technology directory in your
linker's search path at link time using something like -L and possibly -rpath-link.

Another example is an application that loads OIT libraries from a known directory. The
loading of the first OIT library will locate the dependent libraries.

Note:

This feature does not work on AIX and FreeBSD.

5.6 Environment Variables
Several environment variables may be used at run time. Following is a short summary
of those variables and their usage.

Variable Description

$LD_LIBRARY_PATH (FreeBSD, HP-
UX Itanium 64, Linux, Solaris)

$SHLIB_PATH (HP-UX PA-RISC 32)

$LIBPATH (AIX, iSeries)

These variables help your system's dynamic loader
locate objects at runtime. If you have problems with
libraries failing to load, try adding the path to the
Oracle Outside In libraries to the appropriate
environment variable. See your system's manual for
the dynamic loader and its configuration for details.

Note that for products that have a 64-bit PA-RISC,
64-bit Solaris and Linux PPC/PPC64 distributable,
they will also go under $LD_LIBRARY_PATH.

$HOME Must be set to allow the system to write the option,
filter and display engine lists. For details, see
Information Storage.

Chapter 5
Environment Variables

5-9

http://www.oracle.com/technetwork/java/javase/index-137495.html

5.7 Default Font Aliases
Outside In Technology (OIT) will use the fonts installed on the host system. If a file
being converted with OIT uses fonts that are available on the host system, no
substitution should occur and the original font from the input file will be used. If the
original font used in the input file is not available on the host system, then OIT will first
check to see if an alias has been set for the font using the
SCCOPT_PRINTFONTALIAS option (see documentation for details on using this
option). If there is an alias available, and the alias font is available on the host system,
then OIT will use this font. If no alias is set or the alias font is not available on the host
system, then a substitution will occur. The first attempt at a substitution will use the
default font specified by the SCCOPT_DEFAULTPRINTFONT option. If this font has
the glyphs to be rendered, it will be used ahead of all other potential substitutions. In
some cases, the default font cannot be used because it does not contain the glyphs
required to render the text from the input file.

For example, a default font of Arial may not contain glyphs required to render certain
Asian languages. In these cases, OIT will pick another font that does have the glyphs,
if one exists. The mechanism for picking that other font is not very predictable, and
often leads to bad results (picking a serifed font for a non-serifed, variable width for a
fixed width, etc.). Therefore, the best solution for users is to have as many fonts
available to OIT as possible. This will avoid font substitutions and provide the most
accurate rendering of the original file.

Note that font substitutions can lead to different wrapping, which can lead to different
numbers of pages rendered by OIT versus the native application. This further
underscores the importance of a host system with as many fonts as possible.

The technology includes the following default font alias map for UNIX platforms. The
first value is the original font, and the second is the alias.

• 61 = Liberation Sans

• Andale Mono = Liberation Sans

• Courier = Liberation Sans

• Courier New = Liberation Sans

• Lucida Console = Liberation Sans

• MS Gothic = Liberation Sans

• MS Mincho = Liberation Sans

• OCR A Extended = Liberation Sans

• OCR B = Liberation Sans

• Agency FB = Liberation Sans

• Arial = Liberation Sans

• Arial Black = Liberation Sans

• Arial Narrow = Liberation Sans

• Arial Rounded MT = Liberation Sans

• Arial Unicode MS = Liberation Sans

• Berline Sans FB = Liberation Sans

Chapter 5
Default Font Aliases

5-10

• Calibri = Liberation Sans

• Frank Gothic Demi = Liberation Sans

• Frank Gothic Medium Cond = Liberation Sans

• Franklin Gothic Book = Liberation Sans

• Futura = Liberation Sans

• Geneva = Liberation Sans

• Gill Sans = Liberation Sans

• Gill Sans MT = Liberation Sans

• Lucida Sans Regular = Liberation Sans

• Lucida Sans Unicode = Liberation Sans

• Modern No. 20 = Liberation Sans

• Tahoma = Liberation Sans

• Trebuchet MS = Liberation Sans

• Tw Cen MT = Liberation Sans

• Verdana = Liberation Sans

• Albany = Liberation Sans

• Franklin Gothic = Liberation Sans

• Franklin Demi = Liberation Sans

• Franklin Demi Cond = Liberation Sans

• Franklin Gothic Heavy = Liberation Sans

• Algerian = Liberation Serif

• Baskerville = Liberation Serif

• Bell MT = Liberation Serif

• Bodoni MT = Liberation Serif

• Bodoni MT Black = Liberation Serif

• Book Antiqua = Liberation Serif

• Bookman Old Style = Liberation Serif

• Calisto MT = Liberation Serif

• Cambria = Liberation Serif

• Centaur = Liberation Serif

• Century = Liberation Serif

• Century Gothic = Liberation Serif

• Century Schoolbook = Liberation Serif

• Elephant = Liberation Serif

• Footlight MT Light = Liberation Serif

• Garamond = Liberation Serif

• Georgia = Liberation Serif

Chapter 5
Default Font Aliases

5-11

• Goudy Old Style = Liberation Serif

• Lucida Bright = Liberation Serif

• MS Serif = Liberation Serif

• New York = Liberation Serif

• Palatino = Liberation Serif

• Perpetua = Liberation Serif

• Times = Liberation Serif

• times = Liberation Serif

• Times New Roman = Liberation Serif

5.8 Changing Resources
All of the strings used in the UNIX versions of Oracle Outside In products are
contained in the lodlgstr.h file. This file, located in the resource directory, can be
modified for internationalization and other purposes. Everything necessary to rebuild
the resource library to use the modified source file is included with the SDK.

In addition to lodlgstr.h, the scclo.o object file is provided. This is necessary for the
linking phase of the build. A makefile has also been provided for building the library.
The makefile allows building on all of the UNIX platforms supported by Oracle Outside
In. It may be necessary to make minor modifications to the makefile so the system
header files and libraries can be found for compiling and linking.

Standard INCLUDE and LIB make variables are defined for each platform in the
makefile. Edit these variables to point to the header files and libraries on your
particular system. Other make variables are:

• TECHINCLUDE: May need to be edited to point to the location of the Oracle
Outside In /common header files supplied with the SDK.

• BUILDDIR: May need to be edited to point to the location of the makefile,
lodlgstr.h, and scclo.o (which should all be in the same directory).

After these variables are set, change to the build directory and type make. The libsc_lo
resource library is built and placed in the appropriate platform-specific directory. To
use this library, copy it into the directory where the Oracle Outside In product is stored
and the new, modified resource strings are used by the technology.

Menu constants are included in lomenu.h in the common directory.

5.9 HP-UX Compiling and Linking
The libsc_ex.sl and libsc_da.sl libraries are the only ones that must be linked with your
application. They can be loaded when your application starts by linking them directly at
compile time or they can be loaded dynamically by your application using library load
functions (for example, shl_load).

The following are example command lines used to compile the sample application
exsimple from the /sdk/samplecode directory. The command lines are separated into
sections for HP-UX and HP-UX on Itanium. This command line is only an example.
The actual command line required on the developer's system may vary. The example
assumes that the include and library file search paths for the technology libraries are

Chapter 5
Changing Resources

5-12

set correctly. If they are not set correctly, the search paths for the include and/or library
files must be explicitly specified via the -I include file path and/or -L library file path
options, respectively, so that the compiler and linker can locate all required files.

5.9.1 HP-UX on RISC
cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c +DAportable -Ae -
I/usr/include -I../../common -L../../demo -L/usr/lib -lsc_ex -lsc_da -Wl,+s,
+b,'$ORIGIN'

Note:

aCC, the native compiler for HP-UX PA-RISC, provides two compile time
options to specify one of two versions of the C++ runtime libraries to load. -
AP, the default option, indicates that the "classic" C++ runtime library should
be used; -AA indicates that the "standard" C++ runtime library should be
used. Outside In libraries are compiled with the default -AP option. HP warns
that using individual components that are compiled with differing options for
the C++ runtime libraries could potentially run into conflict when used
together. As such, we recommend that all source code be compiled with the
default option for the C++ runtime, or explicitly with -AP.

5.9.2 HP-UX on Itanium (64 bit)
cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c +DD64 -I../../common -
L../../demo -lsc_ex -lsc_da -DUNIX_64 -Wl,+s,+b,'$ORIGIN'

5.10 IBM AIX Compiling and Linking
All libraries should be installed into a single directory and the directory must be
included in the system's shared library path ($LIBPATH). $LIBPATH must be set and
must point to the directory containing the Oracle Outside In Technology.

Oracle Outside In technology has been updated to increase performance, at a cost of
using more memory. It is possible that this increased memory usage may cause a
problem on AIX systems, which can be very conservative in the amount of memory
they grant to processes. If your application experiences problems due to memory
limitations with Oracle Outside In, you may be able to fix this problem by using the
"large page" memory model.

If you anticipate viewing or converting very large files with Oracle Outside In
Technology, we recommend linking your applications with the -bmaxdata flag. For
example:

xlc -o foo foo.c -bmaxdata:0x80000000

If you are currently seeing "illegal instruction" errors followed by immediate program
exit, this is likely due to not using the large data model.

The following is an example command line used to compile the sample application
exsimple from the /sdk/samplecode directory. This command line is only an example.
The actual command line required on the developer's system may vary. The example
assumes that the include and library file search paths for the technology libraries are

Chapter 5
IBM AIX Compiling and Linking

5-13

set correctly. If they are not set correctly, the search paths for the include and/or library
files must be explicitly specified via the -I include file path and/or -Llibrary file path
options, respectively, so that the compiler and linker can locate all required files.
Developers need to pass -brtl to the linker to list libraries in the link command as
dependencies of their applications.

Developers may need to use the -qcpluscmt flag to allow C++ style comments.

5.10.1 IBM AIX (32-bit pSeries)
xlc -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -w -q32 -I../../common -
Wl,-bmaxdata:0x80000000 -Wl,-bnolibpath -Wl,-blibpath:/usr/lib:lib -L../../demo -
lsc_da -lsc_ex -Wl,-brtl

5.11 Oracle Solaris Compiling and Linking

Note:

These products do not support the "Solaris BSD" mode.

All libraries should be installed into a single directory. The libsc_ex.so, and libsc_da.so
libraries must be linked with your application. It can be loaded when your application
starts by linking them directly at compile time or they can be loaded dynamically by
your application using library load functions (for example, dlopen).

The command line below is used to compile the sample application exsimple from
the /sdk/samplecode directory. This command line is only an example. The actual
command line required on the developer's system may vary. The example assumes
that the include and library file search paths for the technology libraries are set
correctly. If they are not set correctly, the search paths for the include and/or library
files must be explicitly specified via the -I include file path> and/or -L library file path
options, respectively, so that the compiler and linker can locate all required files.

Developers may need to use the -xcc flag to allow C++ style comments.

5.11.1 Oracle Solaris SPARC
cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/include -
I/usr/dt/share/include -I../../common -L../../demo -L/usr/lib -L/lib -lsc_ex -lsc_da
-Wl,-R,../../demo -Wl,-R,'${ORIGIN}'

Note: When running the 32-bit SPARC binaries on Solaris 9 systems, you may see the
following error:

ld.so.1: simple: fatal: libm.so.1: version `SUNW_1.1.1' not found
(required by file ./libsc_vw.so)

This is due to a missing system patch. Please apply one of the following patches (or its
successor) to your system to correct.

• For Solaris 9: Patch 111722-04

Chapter 5
Oracle Solaris Compiling and Linking

5-14

5.12 Linux Compiling and Linking
This section discusses issues involving Linux compiling and linking.

5.12.1 Library Compatibility
This section discusses Linux compatibility issues when using libraries.

5.12.1.1 GLIBC and Compiler Versions
The following table indicates the compiler version used and the minimum required
version of the GNU standard C library needed for Oracle Outside In operation.

Distribution Compiler Version GLIBC Version

x86 Linux 3.3.2 libc.so.6 (2.3.2 or newer)

5.12.1.2 Other Libraries
In addition to libc.so.6, Oracle Outside In is dependent upon the following libraries:

• libstdc++.so.6

• libgcc_so.1

libgcc_s.so.1 was introduced with GCC 3.0, so any distribution based on a pre-GCC
3.0 compiler does not include libgcc_s.so.1.

5.12.2 Compiling and Linking
The libsc_ex.so and libsc_da.so are the only libraries that must be linked with your
applications. They can be loaded when your application starts by linking them directly
at compile time or they can be loaded dynamically by your application using library
load functions (for example, dlopen).

To use PDF Export annotation functions, you must also link to libsc_ca.so, requiring a
separate license to Oracle Outside In Content Access or Search Export. Contact your
sales representative for more information.

The following are example command lines used to compile the sample application
exsimple from the /sdk/samplecode directory. This command line is only an example.
The actual command line required on the developer's system may vary.

The example assumes that the include and library file search paths for the technology
libraries are set correctly. If they are not set correctly, the search paths for the include
and/or library files must be explicitly specified via the -I include file path and/or -L
library file path options, respectively, so the compiler and linker can locate all required
files.

5.12.2.1 Linux 32-bit
gcc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/local/include
-I../../common -L../../demo -L/usr/local/lib -lsc_ex -lsc_da -Wl,-rpath,../../demo -
Wl,-rpath,'${ORIGIN}'

Chapter 5
Linux Compiling and Linking

5-15

5.12.2.2 Linux 64-bit
gcc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/local/include
-I../../common -L../../demo -L/usr/local/lib -lsc_ex -lsc_da -DUNIX_64 -Wl,-
rpath,../../demo -Wl,-rpath,'${ORIGIN}'

Chapter 5
Linux Compiling and Linking

5-16

6
Data Access Common Functions

This chapter describes common Data Access functions. The Data Access module is
common to all Oracle Outside In SDKs. It provides a way to open a generic handle to
a source file. This handle can then be used in the functions described in this chapter.
This chapter includes the following sections:

• Deprecated Functions

• DAInitEx

• DADeInit

• DAOpenDocument

• DAOpenSubdocumentById

• DAOpenNextDocument

• DACloseDocument

• DARetrieveDocHandle

• DASetOption

• DASetFileSpecOption

• DAGetOption

• DAGetFileId

• DAGetFileIdEx

• DAGetErrorString

• DAGetObjectInfo

• DAGetTreeCount

• DAGetTreeRecord

• DAOpenTreeRecord

• DASaveInputObject

• DASaveTreeRecord

• DACloseTreeRecord

• DASetStatCallback

• DASetFileAccessCallback

6.1 Deprecated Functions
DAInit and DaThreadInit have both been deprecated. DAInitEx now replaces these two
functions. All new implementations should use DAInitEX, although the other two
functions will continue to be supported.

6-1

6.2 DAInitEx
This function tells the Data Access module to perform any necessary initialization it
needs to prepare for document access. This function must be called before the first
time the application uses the module to retrieve data from any document. This function
supersedes the old DAInit and DAThreadInit functions.

Note:

DAInitEx should only be called once per application, at application startup
time. Any number of documents can be opened for access between calls to
DAInitEx and DADeInit. If DAInitEx succeeds, DADeInit must be called
regardless of any other API calls.

If the ThreadOption parameter is set to something other than
DATHREAD_INIT_NOTHREADS, then this function's preparation includes setting up
mutex function pointers to prevent threads from clashing in critical sections of the
technology's code. The developer must actually code the threads after this function
has been called. DAInitEx should be called only once per process and should be
called before the developer's application begins the thread.

Note:

Multiple threads are supported for all Windows platforms, the 32-bit versions
of Linux x86 and Solaris SPARC, Linux x64 and Solaris SPARC 64. Failed
initialization of the threading function will not impair other API calls. If
threading isn't initialized or fails, stub functions are called instead of mutex
functions.

Prototype

DAERR DAInitEx(VTSHORT ThreadOption, VTDWORD dwFlags);

Parameters

• ThreadOption: can be one of the following values:

– DATHREAD_INIT_NOTHREADS: No thread support requested.

– DATHREAD_INIT_PTHREADS: Support for PTHREADS requested.

– DATHREAD_INIT_NATIVETHREADS: Support for native threading requested.
Supported only on Microsoft Windows platforms and Oracle Solaris.

• dwFlags: can be one or more of the following flags OR-ed together

– OI_INIT_DEFAULT: Options Load and Save are performed normally

– OI_INIT_NOSAVEOPTIONS: The options file will not be saved on exit

– OI_INIT_NOLOADOPTIONS: The options file will not be read during
initialization.

Chapter 6
DAInitEx

6-2

Return Values

• DAERR_OK: If the initialization was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.3 DADeInit
This function tells the Data Access module that it will not be asked to read additional
documents, so it should perform any cleanup tasks that may be necessary. This
function should be called at application shutdown time, and only if the module was
successfully initialized with a call to DAInitEx.

Prototype

DAERR DADeInit();

Return Values

• DAERR_OK: If the de-initialization was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.4 DAOpenDocument
Opens a source file to make it accessible by one or more of the data access
technologies. If DAOpenDocument succeeds, DACloseDocument must be called
regardless of any other API calls.

The software now allows you to specify a file within an archive as the source for a
conversion. A "subdocument specification" has been defined that allows the caller to
identify the item within the archive that they wish to convert. The subdocument
specification has the form item.number, where number identifies a particular item
within the archive (item numbers must be non-zero, positive integers and the
enumeration of items in the archive starts with "1"). Nested archives are supported,
meaning that if the archived item is itself also an archive, you can specify an item
within it as the "true" target file. This is accomplished by appending another number to
the subdocument specification, delimited by another dot. For example, to specify item
number 3 within an archive, the subdocument specification is item.3. If item number 3
is an archive file itself, and you wish to specify the fourth item within it, the
subdocument specification is item.3.4. Any level of nesting is supported, up to the
maximum length of a subdocument specification, which is DA_MAXSUBDOCSPEC.

For IO types other than IOTYPE_REDIRECT, the subdocument specification may be
specified as part of the file's path. This is accomplished by appending a question mark
delimiter to the path, followed by the subdocument specification. For example, to
specify the third item within the file c:\docs\file.zip, specify the path c:\docs\file.zip?
item.3 in the call to DAOpenDocument. DAOpenDocument always attempts to open
the specification as a file first. In the unlikely event there is a file with the same name
(including the question mark) as a file plus the subdocument specification, that file is
opened instead of the archive item.

To take advantage of this feature when providing access to the input file using
redirected IO, a subdocument specification must be provided via a response to an
IOGetInfo message, IOGETINFO_SUBDOC_SPEC. To specify an item in an archive,
first follow the standard redirected IO methods to provide a BASEIO pointer to the
archive file itself. To specify an item within the archive, a redirected IO object must

Chapter 6
DADeInit

6-3

respond to the IOGETINFO_SUBDOC_SPEC message by copying to the supplied
buffer the subdocument specification of the archive item to be opened. This message
is received during the processing of DAOpenDocument.

Prototype

DAERR DAOpenDocument(
 VTLPHDOC lphDoc,
 VTDWORD dwSpecType,
 VTLPVOID pSpec,
 VTDWORD dwFlags);

Parameters

• lphDoc: Pointer to a handle that will be filled with a value uniquely identifying the
document to data access. The developer uses this handle in subsequent calls to
data access to identify this particular source file. This is not an operating system
file handle.

• dwSpecType: Describes the contents of pSpec. Together, dwSpecType and
pSpec describe the location of the source file.

Note:

The values used within IOTYPE_ARCHIVEOBJECT,
IOTYPE_LINKEDOBJECT, and IOTYPE_OBJECT may change if
different options are applied, with different versions of the technology, or
after patches are applied.

Must be one of the following values:

– IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32
and Win64) file name conventions.

– IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS (Win32 and Win64)
file name conventions.

– IOTYPE_UNIXPATH: UNIX platforms only. pSpec points to a NULL-
terminated full path name using the system default character set and UNIX
path conventions. Unicode paths can be accessed on UNIX platforms by using
a UTF-8 encoded path with IOTYPE_UNIXPATH.

– IOTYPE_REDIRECT: All platforms. pSpec points to a developer-defined struct
that allows the developer to redirect the IO routines used to read the file. For
more information, see Redirected IO.

– IOTYPE_ARCHIVEOBJECT: All platforms. Opens an embedded archive
object for data access. pSpec points to a structure IOSPECARCHIVEOBJECT
(see IOSPECARCHIVEOBJECT Structure for details) that has been filled with
values returned in a SCCCA_OBJECT content entry from Content Access.

– IOTYPE_LINKEDOBJECT: All platforms. Opens an object specified by a
linked object for data access. pSpec points to a structure
IOSPECLINKEDOBJECT (see IOSPECLINKEDOBJECT Structure) that has
been filled with values returned in an SCCCA_BEGINTAG or

Chapter 6
DAOpenDocument

6-4

SCCCA_ENDTAG with a subtype of SCCCA_LINKEDOBJECT content entry
from Content Access.

– IOTYPE_OBJECT: All platforms. Opens an object (archive, embedded, or
linked) for data access. pSpec points to a structure SCCDAOBJECT (see
"SCCDAOBJECT Structure") that has been filled with values from Content
Access (SCCCA_OBJECT or SCCCA_BEGINTAG with a subtype of
SCCCA_LINKEDOBJECT) or from the <document> element in the SearchML
flavor of Search Export.

• pSpec: File location specification.

• dwFlags: The low WORD is the file ID for the document (0 by default). If you set
the file ID incorrectly, the technology fails. If set to 0, the file identification
technology determines the input file type automatically. The high WORD should be
set to 0.

When using Search Export, it may also be set to
DAOPENDOCUMENT_CONTINUEONFAILURE. Some embeddings may have
both an OLE representation and an alternate graphic. When this flag is set for
IOTYPE_OBJECT, the technology first tries to access the OLE representation. If
there are errors, it then attempts to access the alternate graphic.

Return Values

• DAERR_OK: Returned if the open was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.4.1 IOSPECLINKEDOBJECT Structure
Structure used by DAOpenDocument.

Prototype

typedef struct IOSPECLINKEDOBJECTtag
 {
 VTDWORD dwStructSize;
 VTSYSPARAM hDoc;
 VTDWORD dwObjectId; /* Object identifier. */
 VTDWORD dwType; /* Linked Object type */
 /* (SO_LOCATORTYPE_*) */
 VTDWORD dwParam1; /* parameter for DoSpecial call */
 VTDWORD dwParam2; /* parameter for DoSpecial call */
 VTDWORD dwReserved1; /* Reserved. */
 VTDWORD dwReserved2; /* Reserved. */
} IOSPECLINKEDOBJECT, * PIOSPECLINKEDOBJECT;

6.4.2 IOSPECARCHIVEOBJECT Structure
Structure used by DAOpenDocument.

Prototype

typedef struct IOSPECARCHIVEOBJECTtag
 {
 VTDWORD dwStructSize;
 VTDWORD hDoc; /* Parent Doc hDoc */
 VTDWORD dwNodeId; /* Node ID */
 VTDWORD dwStreamId;

Chapter 6
DAOpenDocument

6-5

 VTDWORD dwReserved1; /* Must always be 0 */
 VTDWORD dwReserved2; /* Must always be 0 */
} IOSPECARCHIVEOBJECT, * PIOSPECARCHIVEOBJECT;

6.4.3 SCCDAOBJECT Structure
Structure used by DAOpenDocument.

Prototype

typedef struct SCCDAOBJECTtag
{
 VTDWORD dwSize; /* sizeof(SCCDAOBJECT) */
 VTHDOC hDoc; /* DA handle for the document
 containing the object */
 VTDWORD dwObjectType; /* SCCCA_EMBEDDEDOBJECT,
 SCCCA_LINKEDOBJECT,
 SCCCA_COMPRESSEDFILE or
 SCCCA_ATTACHMENT */
 VTDWORD dwData1; /* Data identifying the object */
 VTDWORD dwData2; /* Data identifying the object */
 VTDWORD dwData3; /* Data identifying the object */
 VTDWORD dwData4; /* Data identifying the object */
} SCCDAOBJECT, VTFAR* PSCCDAOBJECT;

6.5 DAOpenSubdocumentById
Allows an embedding to be opened using the integer value of the object_id attribute
from the locator element.

Prototype

DAERR DAOpenSubdocumentById(
 VTHDOC hDoc,
 VTLPHDOC lphDoc,
 VTDWORD pSpec,
 VTDWORD dwFlags);

Parameters

• hDoc: The document handle for the document containing the locator.

• lphDoc: Receives the document handle for the embedding.

• dwSubdocumentId: The integer value of the object_id attribute from the locator.

• dwFlags: Must be set to 0.

6.6 DAOpenNextDocument
Allows an existing Export or Data Access document handle to be used or reused when
opening a new document, enabling options to be preserved across multiple exports, or
allowing multiple documents to be exported to the same output destination.

This function uses an existing "reference" handle as a starting point for opening
another document. The reference handle may be either a document handle (obtained
through DAOpenDocument) or an export handle (obtained via a call to
EXOpenExport). The difference between using these two handle types is that certain

Chapter 6
DAOpenSubdocumentById

6-6

document specification types (subdocuments of the original document) will not be
successfully opened when a document handle is used as the reference handle. If an
Export handle is used as the reference handle, subdocument specifications are
allowed.

Since the same handle is used multiple times, only a single call to DACloseDocument
is needed. Each document is actually closed when the next document is opened;
successive calls to DAOpenNextDocument free the resources used in previous calls.

Using this function allows developers to make multiple calls to the EX functions,
without having to re-set options every time. Options can be set once for the original
document, and retained for each subsequent document.

Additionally, some export libraries allow exporting multiple source documents to a
single output document. Currently, this is supported for PDF and multi-page TIFF
output only. To do this, a developer would export the first document normally, then call
DAOpenNextDocument to open the subsequent source documents, followed by a call
to EXRunExport. EXOpenExport and EXCloseExport should only be called once each
for this type of export.

Prototype

DAERR DAOpenNextDocument(
 VTHANDLE hReference,
 VTDWORD dwSpecType,
 VTLPVOID pSpec,
 VTDWORD dwFlags);

Parameters

• hReference: this VTHANDLE value may be either an hDoc, the VTHDOC
document handle obtained through a prior call to DAOpenDocument; or an
hExport, the VTHEXPORT handle obtained from a prior call to EXOpenExport.
This is not an operating system file handle.

• dwSpecType: Describes the contents of pSpec. The dwSpecType values allowed
by DAOpenDocument for this parameter are acceptable, with the exceptions that
IOTYPE_ARCHIVEOBJECT and IOTYPE_LINKEDOBJECT are only allowed
when hReference is an Export handle, obtained via a call to EXOpenExport.

• pSpec: File location specification.

• dwFlags: The low WORD is the file ID for the document (0 by default). If you set
the file ID incorrectly, the technology fails. If set to 0, the file identification
technology determines the input file type automatically. The high WORD should be
set to 0.

Return Values

• DAERR_OK: Returned if the open was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_FEATURENOTAVAIL: Returned if the value specified by dwSpecType is
not one of the supported spec types for this operation.

6.7 DACloseDocument
This function is called to close a file opened by the reader that has not encountered a
fatal error.

Chapter 6
DACloseDocument

6-7

Prototype

DAERR DACloseDocument(
 VTHDOC hDoc);

Parameters

• hDoc: Identifier of open document. Must be a handle returned by the
DAOpenDocument function.

Return Value

• DAERR_OK: Returned if close succeeded. Otherwise, one of the other DAERR_
values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.8 DARetrieveDocHandle
This function returns the document handle associated with any type of Data Access
handle. This allows the developer to only keep the value of hItem, instead of both
hItem and hDoc.

Prototype

DAERR DARetrieveDocHandle(
 VTHDOC hItem,
 VTLPHDOC phDoc);

Parameters

• hItem: Identifier of open document. May be the subhandle returned by the
DAOpenDocument or DAOpenTreeRecord functions in the data access
submodule. Passing in an hDoc created by DAOpenDocument for this parameter
results in an error.

• phDoc: Pointer to a handle to be filled with the document handle associated with
the passed subhandle.

Return Value

• DAERR_OK: Returned if the handle in phDoc is valid. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.9 DASetOption
This function is called to set the value of a data access option.

Prototype

DAERR DASetOption(
 VTHDOC hDoc,
 VTDWORD dwOptionId,
 VTLPVOID pValue,
 VTDWORD dwValueSize);

Chapter 6
DARetrieveDocHandle

6-8

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Setting an
option for a VTHDOC affects all subhandles opened under it, while setting an
option for a subhandle affects only that handle.

If this parameter is NULL, then setting the option affects all documents opened
thereafter. Once an option is set using the NULL handle, this option becomes the
default option thereafter. This parameter should only be set to NULL if the option
being set can take that value.

• dwOptionId: The identifier of the option to be set.

• pValue: Pointer to a buffer containing the value of the option.

• dwValueSize: The size in bytes of the data pointed to by pValue. For a string
value, the NULL terminator should be included when calculating dwValueSize.

Return Value

• DAERR_OK: Returned if DASetOption succeeded. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.10 DASetFileSpecOption
This function is called to set the value of an option that takes a spec and spec type as
parameters. It is currently only implemented for use in setting the template option in
HTML Export. This function only needs to be used if the developer wishes to use
Redirected IO on the template files. It may be used to set the template option even if
the developer does not wish to use redirected IO, although DASetOption may also be
used in this situation.

Prototype

DAERR DASetFileSpecOption(
 VTHDOC hDoc,
 VTDWORD dwOptionId,
 VTDWORD dwSpecType,
 VTLPVOID pSpec);

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Setting an
option for a VTHDOC affects all subhandles opened under it, while setting an
option for a subhandle affects only that handle.

• dwOptionId: The identifier of the option to be set. Currently only implemented for
the option SCCOPT_EX_TEMPLATE.

• dwSpecType: The spec type of the file. Should be set to one of the valid spec
types.

• pSpec: File location specification.

Chapter 6
DASetFileSpecOption

6-9

Return Value

• DAERR_OK: Returned if DASetFileSpecOption succeeded. Otherwise, one of the
other DAERR_ values in sccda.h is returned.

6.11 DAGetOption
This function is called to retrieve the value of a data access option. The results of a
call to this option are only valid if DASetOption has already been called on the option.

Prototype

DAERR DAGetOption(
 VTHDOC hItem,
 VTDWORD dwOptionId,
 VTLPVOID pValue,
 VTLPDWORD pSize);

Parameters

• hItem: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Getting an
option for a VTHDOC gets the value of that option for that handle, which may be
different than the subhandle's value.

• dwOptionId: The identifier of the option to be returned.

• pValue: Pointer to a buffer containing the value of the option.

• pSize: This VTDWORD should be initialized by the caller to the size of the buffer
pointed to by pValue. If this size is sufficient, the option value is copied into pValue
and pSize is set to the actual size of the option value. If the size is not sufficient,
pSize is set to the size of the buffer needed for the option and an error is returned.

Return Value

• DAERR_OK: Returned if DAGetOption was successful. Otherwise, one of the
other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned.

6.12 DAGetFileId
This function allows the developer to retrieve the format of the file based on the
technology's content-based file identification process. This can be used to make
intelligent decisions about how to process the file and to give the user feedback about
the format of the file they are working with.

Note: In cases where File ID returns a value of FI_UNKNOWN, this function will apply
the Fallback Format before returning a result.

Prototype

DAERR DAGetFileId(
 VTHDOC hDoc,
 VTLPDWORD pdwFileId);

Chapter 6
DAGetOption

6-10

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, a VTHEXPORT returned by the EXOpenExport
function, or the subhandle returned by the DAOpenDocument or
DAOpenTreeRecord functions (VTHEXPORT, VTHCONTENT, VTHTEXT, etc.).

• pdwFileId: Pointer to a DWORD that receives a file identification number for the
file. These numbers are defined in sccfi.h.

Return Value

• DAERR_OK: Returned if DAGetFileId was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.13 DAGetFileIdEx
This function allows the developer to retrieve the format of the file based on the
technology's content-based file identification process. This can be used to make
intelligent decisions about how to process the file and to give the user feedback about
the format of the file they are working with. This function has all the functionality of
DAGetFileID and adds the ability to return the raw FI value; in other words, the value
returned by normal FI, without applying the FallbackFI setting.

Prototype

DAERR DAGetFileIdEx(
 VTHDOC hDoc,
 VTLPDWORD pdwFileId,
 VTDWORD dwFlags);

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHEXPORT, VTHCONTENT, VTHTEXT, etc.).

• pdwFileId: Pointer to a DWORD that receives a file identification number for the
file. These numbers are defined in sccfi.h.

• dwFlags: DWORD that allows user to request specific behavior.

– DA_FILEINFO_RAWFI: This flag tells DAGetFileIdEx() to return the result of
the File Identification operation before Extended File Ident. is performed and
without applying the FallbackFI value.

Return Value

• DAERR_OK: Returned if DAGetFileIdEx was successful. Otherwise, one of the
other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned. See the following tables for examples of expected output depending on
the value of various options.

Chapter 6
DAGetFileIdEx

6-11

Values with RAWFI turned off

Input file type ExtendedFI FallbackID DAGetFileId DAGetFileIdEx

true binary off fallback value fallback value fallback value

true binary on fallback value fallback value fallback value

true text off fallback value fallback value fallback value

true text on fallback value 40XX 40XX

Values with RAWFI turned on

Input file type ExtendedFI FallbackID DAGetFileId DAGetFileIdEx

true binary off fallback value fallback value 1999

true binary on fallback value fallback value 1999

true text off fallback value fallback value 1999

true text on fallback value 40XX 1999

6.14 DAGetErrorString
This function returns to the developer a string describing the input error code. If the
error string returned does not fit the buffer provided, it is truncated.

VTVOID DAGetErrorString(
 DAERR deError,
 VTLPVOID pBuffer,
 VTDWORD dwBufSize);

Parameters

• Error: Error code passed in by the developer for which an error message is to be
returned.

• pBuffer: This buffer is allocated by the caller and is filled in with the error message
by this routine. The error message will be a NULL-terminated string.

• dwBufSize: Size of what pBuffer points to in bytes.

Return Value

• none

6.15 DAGetObjectInfo
This function returns information about the document or object pointed to by hDoc.
The object may be an embedded object, a linked object, or a compressed file.

DAERR DAGetObjectInfo(
 VTHDOC hDoc,
 VTDWORD dwInfoId,
 VTLPVOID pInfo);

Chapter 6
DAGetErrorString

6-12

Parameters

• hDoc: The handle returned by DAOpenDocument.

• dwInfoId: The identifier of the requested information. Can be any of the following
values:

– DAOBJECT_NAME_A: Retrieves the name of the object, in 8-bit characters.
pInfo points to a buffer of size DA_PATHSIZE.

– DAOBJECT_NAME_W: Retrieves the name of the object in Unicode
characters. pInfo points to a buffer of 16 bit characters of size DA_PATHSIZE.

– DAOBJECT_FORMATID: Retrieves the file ID of the object. pInfo points to a
VTDWORD value.

– DAOBJECT_COMPRESSIONTYPE: Retrieves an identifier of the type of
compression used to store the object, if known. pInfo points to a VTDWORD
value.

– DAOBJECT_FLAGS: Retrieves a bitfield of flags indicating additional
attributes of the object. pInfo points to a VTDWORD value. Possible flag
values include DAOBJECTFLAG_PARTIALFILE (would not normally exist
outside the source document), DAOBJECTFLAG_PROTECTEDFILE
(encrypted or password protected), DAOBJECTFLAG_LINKTOFILE (indicates
that an OLE object is linked to the file and a corresponding file is not found on
the host machine), DAOBJECTFLAG_UNIDENTIFIEDFILE (indicates that an
object could not be identified), and DAOBJECTFLAG_UNSUPPORTEDCOMP
(compressed with an unsupported compression).

• pInfo: Destination of the requested information. The possible types are described
in the preceding section about dwInfoId.

Return Values

• DAERR_OK: Returned if the save was successful. Otherwise, one of the other
DAERR_ values in sccda.h is returned.

6.16 DAGetTreeCount
This function is called to retrieve the number of records in an archive file.

DAERR DAGetTreeCount(
 VTHDOC hDoc,
 VTLPDWORD lpRecordCount);

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by any of the
DAOpenDocument or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT,
etc.).

• lpRecordCount: A pointer to a VTLPDWORD that is filled with the number of
stored archive records.

Chapter 6
DAGetTreeCount

6-13

Return Value

• DAERR_OK: DAGetTreeCount was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_BADPARAM: The selected file does not contain an archive section, or the
requested record does not exist.

6.17 DAGetTreeRecord
This function is called to retrieve information about a record in an archive file.

DAERR DAGetTreeRecord(
 VTHDOC hDoc,
 PSCCDATREENODE pTreeNode);

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle by any of the DAOpenDocument or
DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.).

• pTreeNode: A pointer to a PSCCDATREENODE structure that is filled with
information about the selected record.

Return Values

• DAERR_OK: DAGetTreeRecord was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_BADPARAM: The selected file does not contain an archive section, or the
requested record does not exist.

• DAERR_EMPTYFILE: Empty file.

• DAERR_PROTECTEDFILE: Password protected or encrypted file.

• DAERR_SUPFILEOPENFAILS: Supplementary file open failed.

• DAERR_FILTERNOTAVAIL: The file's type is known, but the appropriate filter is
not available.

• DAERR_FILTERLOADFAILED: An error occurred during the initialization of the
appropriate filter.

6.17.1 SCCDATREENODE Structure
This structure is passed by the OEM through the DAGetTreeRecord function. The
structure is defined in sccda as follows:

typedef struct SCCDATREENODEtag{
 VTDWORD dwSize;
 VTDWORD dwNode;
 VTBYTE szName[1024];
 VTDWORD dwFileSize;
 VTDWORD dwTime;
 VTDWORD dwFlags;
 VTDWORD dwCharSet;
 } SCCDATREENODE, *PSCCDATREENODE;

Chapter 6
DAGetTreeRecord

6-14

Parameters

• dwSize: Must be set by the OEM to sizeof(SCCDATREENODE).

• dwNode: The number of the record for which information is being retrieved. The
first node is node 0.

• szName: A buffer to hold the name of the record.

• dwFileSize: Returns the file size, in bytes, of the requested record.

• dwTime: Returns the timestamp of the requested record, in MS‐DOS time.

• dwFlags: Returns additional information about the node. It can be a combination of
the following:

– SCCDA_TREENODEFLAG_FOLDER: Indicating that the selected node is a
folder and not a file.

– SCCDA_TREENODEFLAG_SELECTED: Indicating that the node is selected.

– SCCDA_TREENODEFLAG_FOCUS: Indicating that the node has focus.

– SCCDA_TREENODEFLAG_ENCRYPT: Indicating that the node is encrypted
and can not be decrypted.

– SCCDA_TREENODEFLAG_ARCKNOWNENCRYPT: indicating that the node
is encrypted with an unknown encryption and can not be decrypted.

– SCCDA_TREENODEFLAG_BUFFEROVERFLOW: the name of the node was
too long for the szName field.

• dwCharSet: Returns the SO_* (charsets.h) character set of the characters in
szName. The output character set is either the default native environment
character set or Unicode if the SCCOPT_SYSTEMFLAGS option is set to
SCCVW_SYSTEM_UNICODE.

6.18 DAOpenTreeRecord
This function is called to open a record within an archive file and make it accessible by
one or more of the data access technologies.

Search Export Only: Search Export's default behavior is to automatically open and
process the contents of an archive. Use DAOpenTreeRecord and
SCCOPT_XML_SEARCHML_FLAGS to change the default behavior if discrete
processing of each document in an archive is desired.

DAERR DAOpenTreeRecord(
 VTHDOC hDoc,
 VTLPHDOC lphDoc,
 VTDWORD dwRecord);

lphDoc is not a file handle.

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.).

Chapter 6
DAOpenTreeRecord

6-15

• lphDoc: Pointer to a handle that is filled with a value uniquely identifying the
document to data access. The developer uses this handle in subsequent calls to
data access to identify this particular document.

• dwRecord: The record in the archive file to be opened.

Return Value

• DAERR_OK: Returned if DAOpenTreeRecord was successful. Otherwise, one of
the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned.

6.19 DASaveInputObject
This function saves a copy of the document or object pointed to by hDoc. The object
may be an embedded object, a linked object or a compressed file.

Some file formats store only partial files as embedded objects. Outside In is not able to
create readable files from these objects. You should use use DAGetObjectInfo with
dwInfoId set to DAOBJECT_FLAGS to discern which objects Outside In can
successfully extract.

DAERR DASaveInputObject(
 VTHDOC hDoc,
 VTDWORD dwSpecType,
 VTLPVOID pSpec,
 VTDWORD dwFlags);

Parameters

• hDoc: The handle returned by DAOpenDocument.

• dwSpecType: IOTYPE of data pointed to by pSpec.

• pSpec: File location specification.

• dwFlags: Currently not used. Should be set to 0.

Return Values

• DAERR_OK: Returned if the save was successful. Otherwise, one of the other
DAERR_ values in sccda.h is returned.

6.20 DASaveTreeRecord
This function is called to extract a record in an archive file to disk.

DAERR DASaveTreeRecord(
 VTHDOC hDoc,
 VTDWORD dwRecord,
 VTDWORD dwSpecType,
 VTLPVOID pSpec,
 VTDWORD dwFlags);

Parameters

• hDoc: Handle that uniquely identifies the document to data access. This is not an
operating system file handle.

• dwRecord: The record in the archive file to be extracted.

Chapter 6
DASaveInputObject

6-16

• dwSpecType: Describes the contents of pSpec. Together, dwSpecType and
pSpec describe the location of the source file to which the file will be extracted.
Must be one of the following values:

– IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32
and Win64) filename conventions.

– IOTYPE_REDIRECT: Specifies that redirected I/O will be used to save the file.

– IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS (Win32 and Win64)
file name conventions.

– IOTYPE_UNIXPATH: UNIX platforms only. pSpec points to a NULL-
terminated full path name using the system default character set and UNIX
path conventions. Unicode paths can be accessed on UNIX platforms by using
a UTF-8 encoded path with IOTYPE_UNIXPATH.

• pSpec: File location specification. See the descriptions for individual dwSpecType
values.

• dwFlags: Currently not used. Should be set to 0.

Return Values

• DAERR_OK: Returned if the save was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_UNSUPPORTEDCOMP: Unsupported Compression Encountered.

• DAERR_PROTECTEDFILE: The file is encrypted.

• DAERR_BADPARAM: The request option is invalid. The record is possibly a
directory.

Currently, only extracting a single file is supported. There is a known limitation where
files in a Microsoft Binder file cannot be extracted.

6.21 DACloseTreeRecord
This function is called to close an open record file handle.

Search Export Only: Search Export's default behavior is to automatically open and
process the contents of an archive. Use DACloseTreeRecord and
SCCOPT_XML_SEARCHML_FLAGS to change the default behavior if discrete
processing of each document in an archive is desired.

DAERR DACloseTreeRecord(
 VTHDOC hDoc);

Parameters

• hDoc: Identifier of open record document.

Return Value

• DAERR_OK: Returned if DACloseTreeRecord was successful. Otherwise, one of
the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned.

Chapter 6
DACloseTreeRecord

6-17

6.22 DASetStatCallback
This function sets up a callback that the technology periodically calls to verify the file is
still being processed. The customer can use this with a monitoring process to help
identify files that may be hung. Because this function is called more frequently than
other callbacks, it is implemented as a separate function.

Use of the Status Callback Function

An application's status callback function will be called periodically by Oracle Outside In
to provide a status message. Currently, the only status message defined is
OIT_STATUS_WORKING, which provides a "sign of life" that can be used during
unusually long processing operations to verify that Oracle Outside In has not stopped
working. If the application decides that it would not like to continue processing the
current document, it may use the return value from this function to tell Oracle Outside
In to abort.

The status callback function has two return values defined:

• OIT_STATUS_CONTINUE: Tells Oracle Outside In to continue processing the
current document.

• OIT_STATUS_ABORT: Tells Oracle Outside In to stop processing the current
document.

The following is an example of a minimal status callback function.

VTDWORD MyStatusCallback(VTHANDLE hUnique, VTDWORD dwID, VTSYSVAL
pCallbackData, VTSYSVAL pAppData)
{
 if(dwID == OIT_STATUS_WORKING)
 {
 if(checkNeedToAbort(pAppData))
 return (OIT_STATUS_ABORT);
 }

 return (OIT_STATUS_CONTINUE);
}

Prototype

DAERR DASetStatCallback(DASTATCALLBACKFN pCallback,
 VTHANDLE hUnique,
 VTLPVOID pAppData)

Parameters

• pCallback: Pointer to the callback function.

• hUnique: Handle that may either be an hDoc or an hExport.

• pAppData: User-defined data. Oracle Outside In never uses this value other than
to provide it to the callback function.

The callback function should be of type DASTATCALLBACKFN. This function has the
following signature:

(VTHANDLE hUnique, VTDWORD dwID, VTSYSVAL pCallbackData, VTSYSVAL pAppData)

• hUnique: Handle that may either be an hDoc or an hExport

Chapter 6
DASetStatCallback

6-18

• dwID: Handle that indicates the callback status.

– OIT_STATUS_WORKING

– OIT_STATUS_CONTINUE

– OIT_STATUS_CANCEL

– OIT_STATUS_ABORT

• pCallbackData: Currently always NULL

• pAppData: User-defined data provided to DASetStatCallback

Return Values

• DAERR_OK: If successful. Otherwise, one of the other DAERR_ values in sccda.h
or one of the SCCERR_ values in sccerr.h is returned.

6.23 DASetFileAccessCallback
This function sets up a callback that the technology will call into to request information
required to open an input file. This information may be the password of the file or a
support file location.

Use of the File Access Callback

When the technology encounters a file that requires additional information to access
its contents, the application's callback function will be called for this information.
Currently, only two different forms of information will be requested: the password of a
document, or the file used by Lotus Notes to authenticate the user information.

The status callback function has two return values defined:

• SCCERR_OK: Tells Oracle Outside In that the requested information is provided.

• SCCERR_CANCEL: Tells Oracle Outside In that the requested information is not
available.

This function will be repeatedly called if the information provided is not valid (such as
the wrong password). It is the responsibility of the application to provide the correct
information or return SCCERR_CANCEL.

Prototype

DAERR DASetFileAccessCallback (DAFILEACCESSCALLBACKFN pCallback);

Parameters

• pCallback: Pointer to the callback function.

Return Values

• DAERR_OK: If successful. Otherwise, one of the other DAERR_ values defined in
sccda.h or one of the SCCERR_ values in sccerr.h is returned.

The callback function should be of type DAFILEACCESSCALLBACKFN. This function
has the following signature:

typedef VTDWORD (* DAFILEACCESSCALLBACKFN)(VTDWORD dwID, VTSYSVAL pRequestData,
VTSYSVAL pReturnData, VTDWORD dwReturnDataSize);

Chapter 6
DASetFileAccessCallback

6-19

• dwID: ID of information requested:

– OIT_FILEACCESS_PASSWORD: Requesting the password of the file

– OIT_FILEACCESS_NOTESID: Requesting the Notes ID file location

• pRequestData: Information about the file.

typedef struct {
 VTDWORD dwSize; /* size of this structure */
 VTWORD wFIId; /* FI id of reference file */
 VTDWORD dwSpecType; /* file spec type */
 VTVOID *pSpec; /* pointer to a file spec */
 VTDWORD dwRootSpecType; /* root file spec type */
 VTVOID *pRootSpec; /* pointer to the root file spec */
 VTDWORD dwAttemptNumber; /* The number of times the callback has */
 /* already been called for the currently */
 /* requested item of information */
} IOREQUESTDATA, * PIOREQUESTDATA;

• pReturnData: Pointer to the buffer to hold the requested information – for
OIT_FILEACCESS_PASSWORD and OIT_FILEACCESS_NOTESID, the buffer is
an array of WORD characters.

• dwReturnDataSize: Size of the return buffer.

Note:

Not all formats that use passwords are
supported. DASetFileAccessCallback applies to filters that support password
protected files. Check filter for any or all calls to UTGetFileAccess in filters
and core modules.

Only Microsoft Office binary (97-2003), Microsoft Office 2010-2013, Microsoft
Outlook PST 97-2016, Lotus NSF, PDF (with RC4 encryption), and 7zip (with
AES 128 & 256 bit, ZipCrypto) are currently supported.

Passwords for PST/OST files must be in the Windows single-byte character
set. For example, Cyrillic characters should use the 1252 character set. For
PST/OST files, Unicode password characters are not supported.

Chapter 6
DASetFileAccessCallback

6-20

7
Export Functions

This chapter outlines the basic functions used to initiate the conversion of documents
using the product API.
This chapter covers the following types of functions:

• General Functions

• Annotation Functions

7.1 General Functions
The following functions are general functions used in most export products.

This section includes the following functions:

7.1.1 EXOpenExport
This function is used to initiate the export process for a file that has been opened by
DAOpenDocument. If EXOpenExport succeeds, EXCloseExport must be called
regardless of any other API calls.

Note:

SCCOPT_GRAPHIC_TYPE = FI_NONE must be set (via DASetOption)
before the call to EXOpenExport. Otherwise, the
SCCUT_FILTEROPTIMIZEDFORTEXT speed enhancement for the PDF
filter is not set. This will result in slower exports of PDFs when graphic output
is not required.

Prototype

SCCERR EXOpenExport(
 VTHDOC hDoc,
 VTDWORD dwOutputId,
 VTDWORD dwSpecType,
 VTLPVOID pSpec,
 VTDWORD dwFlags,
 VTSYSPARAM dwReserved,
 VTLPVOID pCallbackFunc,
 VTSYSPARAM dwCallbackData,
 VTLPHEXPORT phExport);

Parameters

• hDoc: A handle that identifies the source file, created by DAOpenDocument.
Knowledge of this should only affect OEMs under the most unusual of
circumstances.

7-1

• dwOutputId: File ID of the desired format of the output file. This value must be set
to either FI_PDF (for generic PDF 1.5), FI_PDFA (for PDF/A-1a compliance), or
FI_PDFA_2 (for PDF/A-2a compliance).

Note:

For FI_PDFA exports, raster images with transparency will not be
produced as transparent due to the explicit exclusion of transparency in
the ISO PDF/A-1a specification document.

• dwSpecType: Describes the contents of pSpec. Together, dwSpecType and
pSpec describe the location of the initial output file. Must be one of the following
values:

– IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32
and Win64) file name conventions.

– IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS file name
conventions.

Note:

If you are using IOTYPE_UNICODEPATH as a file spec type, if the
calling application is providing an export callback function, you
should set the option SCCOPT_EX_UNICODECALLBACKSTR to
TRUE. Refer to the documentation on callbacks such as
EX_CALLBACK_ID_CREATENEWFILE and the
EXURLFILEIOCALLBACKDATAW structure for details

– IOTYPE_UNIXPATH: UNIX platforms only. pSpec points to a NULL-
terminated full path name using the system default character set and UNIX
path conventions. Unicode paths can be accessed on UNIX platforms by using
a UTF-8 encoded path with IOTYPE_UNIXPATH.

– IOTYPE_REDIRECT: All platforms. pSpec may be NULL, and all file
information specified in the callback routine. This allows the developer to
redirect the IO routines used to write the files. For more information, see
Redirected IO.

• pSpec: Initial output file location specification. This is either a pointer to a buffer or
NULL.

If the pointer is not NULL, the file referred to by the pSpec is assumed to be
already open and the buffer's contents are based on the value of the dwSpecType
parameter. See the descriptions for individual dwSpecType values in the
preceding list.

Passing NULL indicates the developer will use the
EX_CALLBACK_ID_CREATENEWFILE callback to specify the initial output file
instead of specifying it here. When this parameter is NULL, the developer must
handle the EX_CALLBACK_ID_CREATENEWFILE callback or EXOpenExport
returns an error.

Chapter 7
General Functions

7-2

• dwFlags: Must be set by developer to 0.

• dwReserved: Reserved. Must be set by developer to 0.

• pCallbackFunc: Pointer to a function of the type EXCALLBACKPROC. This
function is used to give the developer control of certain aspects of the export
process as they occur. For more details, see the definition for
EXCALLBACKPROC in EXCALLBACKPROC. This parameter may be set to
NULL if the developer does not wish to handle callbacks.

• dwCallbackData: This parameter is passed transparently to the function specified
by pCallbackFunc. The developer may use this value for any purpose, including
passing context information into the callback function.

• phExport: Pointer to a handle that receives a value uniquely identifying the
document to the product routines. If the function fails, this value is set to
VTHDOC_INVALID. phExport is not a file handle.

Return Values

• SCCERR_OK: If the open was successful. Otherwise, one of the other SCCERR_
values in sccerr.h is returned.

7.1.2 EXCALLBACKPROC
Type definition for the developer's callback function.

Prototype

DAERR (DA_ENTRYMODPTR EXCALLBACKPROC)(
 VTHEXPORT hExport,
 VTSYSPARAM dwCallbackData,
 VTDWORD dwCommandOrInfoId,
 VTLPVOID pCommandOrInfoData);

Parameters

• hExport: Export handle for the document. Must be a handle returned by the
EXOpenExport function.

• dwCallbackData: This value is passed to EXOpenExport in the dwCallbackData
parameter.

• dwCommandOrInfoId: Indicates the type of callback. For information about
supported callbacks, see Callbacks.

• pCommandOrInfoData: Data associated with dwCommandOrInfoId. For
information about supported callbacks, see Callbacks.

Return Values

• SCCERR_OK: Command was handled by the callback function.

• SCCERR_BADPARAM: One of the function parameters was invalid.

• SCCERR_NOTHANDLED: Callback function did not handle the command. This
return value must be the default for all values of dwCommandOrInfoId the
developer does not handle.

Chapter 7
General Functions

7-3

7.1.3 EXCloseExport
This function is called to terminate the export process for a file.

Prototype

SCCERR EXCloseExport(
 VTHEXPORT hExport);

Parameters

• hExport: Export handle for the document. Must be a handle returned by the
EXOpenExport function.

Return Values

• SCCERR_OK: Returned if the close was successful. Otherwise, one of the other
SCCERR_ values in sccerr.h is returned.

7.1.4 EXRunExport
This function is called to run the export process.

Prototype

SCCERR EXRunExport(
 VTHEXPORT hExport);

Parameters

• hExport: Export handle for the document. Must be a handle returned by the
EXOpenExport function.

Return Values

• SCCERR_OK: Returned if the export was successful. Otherwise, one of the other
SCCERR_ values in sccerr.h is returned.

7.1.5 EXExportStatus
This function is used to determine if there were conversion problems during an export.
It returns a structure that describes areas of a conversion that may not have high
fidelity with the original document.

Prototype

SCCERR EXExportStatus(VTHEXPORT hExport, VTDWORD dwStatusType, VTLPVOID pStatus)

Parameters

• hExport: Export handle for the document.

• dwStatusType: Specifies which status information should be filled in pStatus.

– EXSTATUS_SUBDOC – fills in the EXSUBDOCSTATUS structure (only
implemented in Search Export and XML Export)

Chapter 7
General Functions

7-4

– EXSTATUS_INFORMATION - fills in the EXSTATUSINFORMATION
structure.

• pStatus: Either a pointer to a EXSUBDOCSTATUS or EXSTATUSINFORMATION
data structure depending on the value of dwStatusType.

Return Values

SCCERR_OK: Returned if there were no problems. Otherwise, one of the other
SCCERR_ values in sccerr.h is returned.

EXSUBDOCSTATUS Structure

The EXSUBDOCSTATUS structure is defined as follows:

typedef struct EXSUBDOCSTATUStag
{
VTDWORD dwSize; /* size of this structure */
VTDWORD dwSucceeded; /* number of sub documents that were converted */
VTDWORD dwFailed; /* number of sub documents that were not converted */
} EXSUBDOCSTATUS;

EXSTATUSINFORMATION Structure

The EXSTATUSINFORMATION structure is defined as follows:

typedef struct EXSTATUSINFORMATIONtag
{
VTDWORD dwVersion; /* version of this structure */
VTBOOL bMissingMap; /* a PDF text run was missing the toUnicode table */
VTBOOL bVerticalText; /* a vertical text run was present */
VTBOOL bTextEffects; /* unsupported text effects applied (i.e.Word Art)*/
VTBOOL bUnsupportedCompression; /* a graphic had an unsupported compression */
VTBOOL bUnsupportedColorSpace; /* a graphic had an unsupported color space */
VTBOOL bForms; /* a sub documents had forms */
VTBOOL bRightToLeftTables; /* a table had right to left columns */
VTBOOL bEquations; /* a file had equations*/
VTBOOL bAliasedFont; /* A font was missing, but a font alias was used */
VTBOOL bMissingFont; /* The desired font wasn't present on the system */
VTBOOL bSubDocFailed; /* a sub document was not converted */
VTBOOL bTypeThreeFont; /* a Type 3 Font was encountered */
VTBOOL bUnsupportedShading; /* an unsupported shading pattern was encountered
*/
VTBOOL bInvalidHTML; /* An HTML parse error, as defined by the W3C,
was encountered. */
VTBOOL bInvalidAnnotationNotApplied; /* Unsupported annotation/redaction wasn't
rendered */
VTBOOL bVectorObjectLimit; /* This flag does not apply to PDF Export */
VTBOOL bInvalidAnnotationNotApplied; /* Unsupported annotation/redaction wasn't
rendered */
} EXSTATUSINFORMATION;

#define EXSTATUSVERSION1 0X0001

#define EXSTATUSVERSION2 0X0002

Chapter 7
General Functions

7-5

Note:

When processing the main document, Search Export, HTML Export, and
XML Export never use fonts, so bAliasedFont and bMissingFont will never
report TRUE; however, when doing graphics conversions XML Export and
HTML Export may use fonts, so bAliasedFont and bMissingFont may report
TRUE.

bVectorObjectLimit applies only to WebView Export, and
bInvalidAnnotationNotApplied applies only to Image Export, PDF Export, and
Web View Export.

7.2 Annotation Functions
Annotations are a way to highlight, insert, or delete text in product output, without
modifying the original document. Examples of ways annotations can be used by
developers include:

• highlighting search hits

• inserting notes to comment on text in the original document

• deleting sensitive information not intended for viewing

Other Oracle Outside In products are required to ascertain the proper character
positions where the developer wishes to make annotations. Currently, only Content
Access and the SearchML output format (available in Search Export) can be used to
get these positions. Although the Content Access module is included with the product,
license to use the Content Access API is not automatically granted with the purchase
of the Export software.

A separate license for Content Access or Search Export is required to enable use of
any of the annotation features that are supported by PDF Export. Contact your sales
representative for more information.

The following notes should be considered when using annotations:

• Processing annotations slows down the conversion process to some extent.

• While other products in the Oracle Outside In family support annotations, not all
products support all types of annotations.

• The ACC acronym (Actual Character Count) is used in the following function
descriptions. ACCs represent the location of text in the source document data
stream. They represent a marker just before the location of text, and this marker is
zero-based.

startACC parameters should be set to an ACC value that represents the position
just prior to the first character and endACC parameters should be set to an ACC
value that represents the position just past the last character in the range. For this
reason, users should make sure endACC values are 1 greater than the ACC of the
last character in the desired range of annotation.

• Calling EXCloseExport causes all annotations set so far to be cleared.

This section includes the following functions:

Chapter 7
Annotation Functions

7-6

7.2.1 EXHiliteText
This function allows the developer to change foreground and background colors of a
range of characters from the input document.

The colors set by this option can be overridden by the equivalent settings in the
ExInsertText function.

Prototype

DAERR EXHiliteText(
VTHEXPORT hExport,
PEXANNOHILITETEXT pHiliteText);

Parameters

• hExport: Export handle for the document. Must be the handle returned by the
EXOpenExport() function.

• pHiliteText: Pointer to a structure containing the information on what to highlight
and how to highlight it.

Structure

A C data structure defined in sccex.h as follows:

typedef struct EXANNOHILITETEXTtag
{
 VTDWORD dwSize;
 VTDWORD dwStartACC;
 VTDWORD dwEndACC; /* Last char to highlight +1 */
 VTDWORD dwOptions;
 SCCVWCOLORREF sForeground;
 SCCVWCOLORREF sBackground;
 VTWORD wCharAttr;
 VTWORD wCharAttrMask;
} EXANNOHILITETEXT;

• dwSize: Must be set by the developer to sizeof(EXANNOHILITETEXT).

• dwStartACC: The ACC of the first character to be highlighted.

• dwEndACC: ACC of the last character to be highlighted +1. Ranges for
annotations have their end point set one past the ACC of the last character in the
range. For example, to highlight a single character at ACC position 5, dwStartACC
would be set to 5, and dwEndACC would be set to 5+1=6.

• dwOptions: Flags that provide highlight options. The default is all flags set to off.
The valid flags are:

– SCCVW_USEFOREGROUND: Indicates that sForeground defines the
foreground text color to apply to highlights.

– SCCVW_USEBACKGROUND: Indicates that sBackground defines the
background text color to apply to highlights.

– SCCVW_USECHARATTR: Indicates that wCharAttr defines the character
attributes to apply to highlights.

– sForeground: Defines the foreground text color to be used if the
SCCVW_USEFOREGROUND flag is set in dwOptions. Set this value with the

Chapter 7
Annotation Functions

7-7

SCCANNORGB(red, green, blue) macro. The red, green and blue values are
percentages of the color from 0-255 (with 255 being 100%). There is no
default value for this parameter -- if it is set, the color must be specified.

– sBackground: Defines the background text color to be used if the
SCCVW_USEBACKGROUND flag is set in dwOptions. Set this value with the
SCCANNORGB(red, green, blue) macro. The red, green and blue values are
percentages of the color from 0-255 (with 255 being 100%). There is no
default value for this parameter. If it is set, the color must be specified.

– wCharAttr: Defines the character attributes to use if SCCVW_USECHARATTR
is set in dwOptions. Only bits with the corresponding bits set in wCharAttrMask
are affected. To turn off all character attributes, set this to
SCCVW_CHARATTR_NORMAL (the default) and set wCharAttrMask to -1.
Otherwise, set this to any of the following character attributes OR-ed together:

* SCCVW_CHARATTR_UNDERLINE

* SCCVW_CHARATTR_ITALIC

* SCCVW_CHARATTR_BOLD

* SCCVW_CHARATTR_STRIKEOUT

* SCCVW_CHARATTR_SMALLCAPS: Not supported in PDF Export.

* SCCVW_CHARATTR_OUTLINE: Not currently supported.

* SCCVW_CHARATTR_SHADOW: Not currently supported.

* SCCVW_CHARATTR_CAPS: Not currently supported.

* SCCVW_CHARATTR_SUBSCRIPT

* SCCVW_CHARATTR_SUPERSCRIPT

* SCCVW_CHARATTR_DUNDERLINE

* SCCVW_CHARATTR_WORDUNDERLINE

* SCCVW_CHARATTR_DOTUNDERLINE: Currently supported as single
underline.

• wCharAttrMask: Defines which character attributes to change based on the
settings of the bits in wCharAttr. Uses the same bit flags defined above for
wCharAttr. Only attributes whose flag is set in this mask are modified to match the
state specified by wCharAttr. This mask provides a way to distinguish between bits
being set in wCharAttr because the developer wants to force a change to the
character attributes and bits in wCharAttr that the developer would rather set to
"inherit from the source document." The following are real-world examples of these
interactions (all examples assume that SCCVW_USECHARATTR is set in
dwOptions):

– Example 1: wCharAttr is set to SCCVW_CHARATTR_BOLD and
wCharAttrMask is set to SCCVW_CHARATTR_BOLD. This results in bold
being forced on in the annotation.

– Example 2: wCharAttr is set to SCCVW_CHARATTR_BOLD and
wCharAttrMask is set to 0. This results in bold being left the way it was in the
source document in the annotation.

– Example 3: wCharAttr is set to 0 and wCharAttrMask is set to
SCCVW_CHARATTR_BOLD. This results in bold being forced off in the
annotation.

Chapter 7
Annotation Functions

7-8

The default value for this is 0, meaning that all the flags in wCharAttr are
ignored.

Return Values

• DAERR_OK: Returned if the annotation was successfully added. Otherwise, one
of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h
is returned.

7.2.2 EXInsertText
This function inserts a text string at a specified point in the document. The developer
may also change character attributes or foreground or background colors. These
settings override any provided by ExHiliteText.

Prototype

DAERR EXInsertText(
VTHEXPORT hExport,
PEXANNOINSERTTEXT pInsertText);

Parameters

• hExport: Export handle for the document. Must be the handle returned by the
EXOpenExport() function.

• pInsertText: Pointer to a structure containing the information on the text to insert.

Structure

A C data structure defined in sccex.h as follows:

typedef struct EXANNOINSERTTEXTtag
{
 VTDWORD dwSize;
 VTDWORD dwTextACC;
 VTLPWORD pText;
 VTDWORD dwOptions;
 SCCVWCOLORREF sForeground;
 SCCVWCOLORREF sBackground;
 VTWORD wCharAttr;
 VTWORD wCharAttrMask;
} EXANNOINSERTTEXT;

• dwSize: Must be set by the OEM to sizeof(EXANNOINSERTTEXT).

• dwTextACC: Place to insert the string pointed to by pText. The string is inserted
before the character normally at this ACC position. By default, the inserted string
inherits the text attributes of the character at this position in the input document.

• pText: The text to be inserted. Specified as a Unicode string.

• dwOptions: This parameter sets flags that provide highlight options. The default is
all flags off. The flags are:

– SCCVW_USEFOREGROUND: Indicates that sForeground defines the
foreground text color to apply to highlights.

– SCCVW_USEBACKGROUND: Indicates that sBackground defines the
background text color to apply to highlights.

Chapter 7
Annotation Functions

7-9

– SCCVW_USECHARATTR: Indicates that wCharAttr defines the character
attributes to apply to highlights.

• sForeground: Defines the foreground text color to be used if the
SCCVW_USEFOREGROUND flag is set in dwOptions. Set this value with the
SCCANNORGB(red, green, blue) macro. The red, green and blue values are
percentages of the color from 0-255 (with 255 being 100%). There is no default
value for this parameter -- if it is set, the color must be specified.

• sBackground: Defines the background text color to be used if the
SCCVW_USEBACKGROUND flag is set in dwOptions. Set this value with the
SCCANNORGB(red, green, blue) macro. The red, green and blue values are
percentages of the color from 0-255 (with 255 being 100%). There is no default
value for this parameter. If it is set, the color must be specified.

• wCharAttr: Defines the character attributes to use if SCCVW_USECHARATTR is
set in dwOptions. Only bits with the corresponding bits set in wCharAttrMask are
affected. To turn off all character attributes, set this to
SCCVW_CHARATTR_NORMAL (the default) and set wCharAttrMask to -1.
Otherwise, set this to any of the following character attributes OR-ed together:

– SCCVW_CHARATTR_UNDERLINE

– SCCVW_CHARATTR_ITALIC

– SCCVW_CHARATTR_BOLD

– SCCVW_CHARATTR_STRIKEOUT

– SCCVW_CHARATTR_SMALLCAPS: Not currently supported in PDF Export.

– SCCVW_CHARATTR_OUTLINE: Not currently supported.

– SCCVW_CHARATTR_SHADOW: Not currently supported.

– SCCVW_CHARATTR_CAPS: Not currently supported.

– SCCVW_CHARATTR_SUBSCRIPT: SCCVW_CHARATTR_SUPERSCRIPT

– SCCVW_CHARATTR_DUNDERLINE: Currently supported as single
underline.

– SCCVW_CHARATTR_WORDUNDERLINE:
SCCVW_CHARATTR_DOTUNDERLINE

• wCharAttrMask: Defines which character attributes to change based on the
settings of the bits in wCharAttr. Uses the same bit flags defined above for
wCharAttr. Only attributes whose flag is set in this mask are modified to match the
state specified by wCharAttr. This mask provides a way to distinguish between bits
being set in wCharAttr because the developer wants to force a change to the
character attributes, and bits in wCharAttr that the developer would rather set to
"inherit from the source document." The following are real-world examples of these
interactions (all examples assume that SCCVW_USECHARATTR is set in
dwOptions):

– Example 1: wCharAttr is set to SCCVW_CHARATTR_BOLD and
wCharAttrMask is set to SCCVW_CHARATTR_BOLD. This results in bold
being forced on in the annotation.

– Example 2: wCharAttr is set to SCCVW_CHARATTR_BOLD and
wCharAttrMask is set to 0. This results in bold being left the way it was in the
source document in the annotation.

Chapter 7
Annotation Functions

7-10

– Example 3: wCharAttr is set to 0 and wCharAttrMask is set to
SCCVW_CHARATTR_BOLD. This results in bold being forced off in the
annotation.

The default value for this is 0, meaning that all the flags in wCharAttr are ignored.

Return Values

• DAERR_OK: The annotation was successfully added. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

7.2.3 EXHideText
This function removes the selected range of characters in the input document from the
output.

The hidden text does not appear in any form in the final converted document.

Prototype

SCCERR EXHideText(
VTHEXPORT hExport,
PEXANNOHIDETEXT pHideText)

Parameters

• hExportL Export handle for the document. Must be the handle returned by the
EXOpenExport() function.

• pHideText: Pointer to an EXANNOHIDETEXT structure containing the information
on the section of text to hide.

7.2.3.1 EXANNOHIDETEXT Structure
A C data structure defined in sccex.h as follows:

typedef struct EXANNOHIDETEXTtag
{
 VTDWORD dwSize;
 VTDWORD dwStartACC;
 VTDWORD dwEndACC; /* Last char to hide +1 */
 VTLPCHAR pBookmark; /* HTML Export Only */
} EXANNOHIDETEXT;

• dwSize: Must be set by the OEM to sizeof(EXANNOHIDETEXT).

• dwStartACC: Position of the first character to be hidden.

• dwEndACC: Position of the last character to be hidden, plus one.

Return Values

• SCCERR_OK: Returned if the annotation was successfully added. Otherwise, one
of the other SCCERR_* values in sccerr.h is returned.

7.2.4 EXApplyHilites
DAERR EXApplyHilites(HEXPORT hExport, const VTBYTE * pHilites);

Chapter 7
Annotation Functions

7-11

This function applies a set of highlights from a JSON-encoded text stream previously
generated from the Web View Export Javascript library. This function may be called
multiple times with different sets of highlights.

• hExport: Export handle

• pHilites: Buffer containing a stream of highlight (and comment) information that
was obtained via the Web View Export Javascript API function
OIT.highlights.serialize.

7.2.5 EXRedactText
This is an API call to redact text.

Prototype

EXRedactTest
DAERR EXRedactText(VTHEXPORT hExport,
 PEXAANNOREDACTTEXT pRedaction)

Similar to EXHiliteText, this accepts a data structure that defines the redaction.

typedef struct EXANNOREDACTTEXTtag
{
 VTDWORD dwSize;
 VTDWORD dwStartACC;
 VTDWORD dwEndACC; /* Last char to highlight +1 */
 VTWCHAR dwLabel[EXANNO_MAXLABEL];
} EXANNOREDACTTEXT;

Chapter 7
Annotation Functions

7-12

8
Redirected IO

This chapter describes the use of Redirected IO. Anywhere a file specification
(dwSpecType and pSpec parameters) is passed to a function in the product, the
developer may use Redirected IO to completely take over responsibility for the low
level IO calls of that particular file. The source file and all output files can be redirected
in this way.
Redirected IO allows the developer great flexibility in the storage of, and access to,
converted documents. For example, documents may be stored on file systems not
supported natively by the software, or in a unique directory tree structure determined
by the type of file.

When using PDF Export, redirected IO can also be used in conjunction with callbacks
(discussed in Callbacks).

This chapter includes the following sections:

• Using Redirected IO

• Opening Files

• IOClose

• IORead

• IOWrite

• IOSeek

• IOTell

• IOGetInfo

• IOSEEK64PROC / IOTELL64PROC

8.1 Using Redirected IO
A developer can redirect the IO for an input or output file by providing a data structure
that contains pointers to custom IO routines for reading and writing. This data structure
is passed in place of a typical file specification. The developer must set the
dwSpecType parameter of the DAOpenDocument call to IOTYPE_REDIRECT when
the DAOpenDocument call is sent.

When dwSpecType is set this way, the pSpec element must contain a pointer to a
developer-defined data structure that begins with a BASEIO structure (defined in
baseIO.H). The BASEIO structure contains pointers to the basic IO functions for the IO
system such as Read, Seek, Tell, etc. The developer must initialize these function
pointers to their own functions that perform IO tasks. Beyond the BASEIO element, the
developer may place any data he or she likes.

For instance, a developer's structure may be similar to the following:

typedef struct MYFILEtag
{
 BASEIO sBaseIO; /* must be the first element */

8-1

 VTDWORD dwMyInfo1;
 VTDWORD dwMyInfo2;
 .
 .
 .
} MYFILE;

Because the pSpec passed is essentially the "file handle" used by the software, the
developer can redirect the IO on a file-by-file basis while still exporting "regular" disk-
based files.

The BASEIO structure is defined as follows:

typedef struct BASEIOtag
{
 IOCLOSEPROC pClose;
 IOREADPROC pRead;
 IOWRITEPROC pWrite;
 IOSEEKPROC pSeek;
 IOTELLPROC pTell;
 IOGETINFOPROC pGetInfo;
 IOOPENPROC pOpen; /* pOpen *MUST* be set to NULL. */
#ifndef NLM
 IOSEEK64PROC pSeek64;
 IOTELL64PROC pTell64;
#endif
 VTVOID *aDummy[3];
} BASEIO, * PBASEIO;

The developer must implement the Close, Read, Write, Seek, Tell and GetInfo
routines. The Open routine must be set to NULL. The first parameter to each of these
routines is called hFile and is of the type HIOFILE. HIOFILE is simply the VTLPVOID
to your data structure that was passed in the pSpec parameter of the
DAOpenDocument call.

The sample source code for a simple implementation of Redirected IO is in the
samples directory. This sample redirects the technology's IO through the fopen, fgetc,
fseek, ftell and fclose run-time library routines.

Note:

Redirected IO does not cache the whole file. Seeks can occur throughout the
file during the course of conversion. If the developer is implementing
redirected IO on a slow or sequential link, it is the developer's responsibility
to cache the file locally.

8.2 Opening Files
The developer does not see a call to pOpen when using redirected IO. When
IOTYPE_REDIRECT is used, the structure passed in pSpec is defined to represent a
file that is already open. The software can immediately call the pRead, pSeek, pTell
and pWrite functions.

Files specified as using redirected IO must be open by the time they are handed off to
the software.

Chapter 8
Opening Files

8-2

8.3 IOClose
Closes the file identified by hFile and cleans up all memory associated with the file.

If you dynamically allocate your own file structures (MYFILE in the preceding
discussion) it is required that the memory allocated be freed inside the call to IOClose
or sometime thereafter.

Prototype

IOERR IOClose(
 HIOFILE hFile);

Parameters

• hFile: Identifies the file to be closed. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

Return Values

• IOERR_OK: Close was successful.

• IOERR_UNKNOWN: Some error occurred on close.

8.4 IORead
Reads data from the current file position forward and resets the position to the byte
after the last byte read.

Prototype

IOERR IORead(
 HIOFILE hFile,
 VTBYTE * pData,
 VTDWORD dwSize,
 VTDWORD * pCount);

Parameters

• hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

• pData: Points to the buffer into which the bytes should be read. Will be at least
dwSize bytes big.

• dwSize: Number of bytes to read.

• pCount: Points to the number of bytes actually read by the function. This value is
only valid if the return value is IOERR_OK.

Return Values

• IOERR_OK: Read was successful. pCount contains the number of bytes read and
pData contains the bytes themselves.

• IOERR_EOF: Read failed because the file pointer was beyond the end of the file
at the time of the read.

• IOERR_UNKNOWN: Read failed for some other reason.

Chapter 8
IOClose

8-3

8.5 IOWrite
Writes data from the current file position forward and resets the position to the byte
after the last byte written.

Prototype

IOERR IOWrite(
 HIOFILE hFile,
 VTBYTE * pData,
 VTDWORD dwSize,
 VTDWORD * pCount);

Parameters

• hFile: Identifies the file where the data is to be written. Should be cast into a
pointer to your data structure (MYFILE in the preceding discussion).

• pData: Points to the buffer from which the bytes should be written. It must be at
least dwSize bytes big. It is good practice to treat the data passed in by pData as
"read only." This helps prevent unexpected behavior elsewhere in the system.

• dwSize: Number of bytes to write.

• pCount: Points to the number of bytes actually written by the function. This value is
only valid if the return value is IOERR_OK.

Return Values

• IOERR_OK: Write was successful, pCount contains the number of bytes written.

• IOERR_UNKNOWN: Write failed for some reason.

8.6 IOSeek
Moves the current file position.

Prototype

IOERR IOSeek(
 HIOFILE hFile,
 VTWORD wFrom,
 VTLONG lOffset);

Parameters

• hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

• wFrom: One of the following values:

– IOSEEK_TOP: Move the file position lOffset bytes from the top (beginning) of
the file.

– IOSEEK_BOTTOM: Move the file position lOffset bytes from the bottom (end)
of the file.

– IOSEEK_CURRENT: Move the file position lOffset bytes from the current file
position.

Chapter 8
IOWrite

8-4

• lOffset: Number of bytes to move the file pointer. A positive value moves the file
pointer forward in the file and a negative value moves it backward. If a requested
seek value would move the file pointer before the beginning of the file, the file
pointer should remain unchanged and IOERR_UNKNOWN should be returned.
Seeking past EOF is allowed. In that case IOERR_OK should be returned. IOTell
would return the requested seek position and IORead should return IOERR_EOF
and 0 bytes read.

Return Values

• IOERR_OK: Seek was successful.

• IOERR_UNKNOWN: Seek failed for some reason.

8.7 IOTell
Returns the current file position.

Prototype

IOERR IOTell(
 HIOFILE hFile,
 VTDWORD * pOffset);

Parameters

• hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

• pOffset: Points to the current file position returned by the function.

Return Values

• IOERR_OK: Tell was successful.

• IOERR_UNKNOWN: Tell failed for some reason.

8.8 IOGetInfo
Returns information about an open file.

Prototype

IOERR IOGetInfo(
 HIOFILE hFile,
 VTDWORD dwInfoId,
 VTVOID * pInfo);

Parameters

• hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the previous discussion).

• dwInfoId: One of the following values:

– IOGETINFO_FILENAME: pInfo points to a string that should be filled with the
base file name (no path) of the open file (for example TEST.DOC). If you do
not know the file name, return IOERR_UNKNOWN. Certain file types (such as
DataEase) must know the original file name in order to open secondary files

Chapter 8
IOTell

8-5

required to correctly view the original file. If you return IOERR_UNKNOWN,
these file types do not convert. For more information, see
IOGENSECONDARY and IOGENSECONDARYW Structures.

– IOGETINFO_PATHNAME: pInfo points to a string that should be filled with the
fully qualified path name (including the file name) of the open file. For
example, C:\MYDIR\TEST.DOC. If you do not know the path name, return
IOERR_UNKNOWN.

– IOGETINFO_PATHTYPE: pInfo points to a DWORD that should be filled with
the IOTYPE of the path returned by IOGETINFO_PATHNAME. For instance, if
you return a DOS path name in the Unicode character set, you should return
IOTYPE_UNICODEPATH. Even if redirected IO is in use, this should not be
set to IOTYPE_REDIRECT. The value should reflect the style of path to be
returned or any other values detailed in EXOpenExport.

– IOGETINFO_ISOLE2STORAGE: Must return IOERR_FALSE. pInfo is not
used.

– IOGETINFO_GENSECONDARY: pInfo points to a structure of type
IOGENSECONDARY. Some file types require supporting files to be opened.
These supporting files may contain formatting information or extra data. When
using HTML Export, templates may link to other templates, and the paths to
those templates must be resolved. Correct handling of
IOGETINFO_GENSECONDARY is critical to the operation of the Oracle
Outside In technology. For a list of these file types, see File Types That Cause
IOGETINFO_GENSECONDARY.

Because the developer is in total control of the IO for the primary file, the
technology does not know how to generate a path to these secondary files or
even if the secondary files are accessible through the regular file system. The
IOGETINFO_GENSECONDARY call gives the developer a chance to resolve
this problem by generating a new IO specification for the secondary file in
question. The developer gets just the base file name (often embedded in the
original document or generated from the primary file's name) of the secondary
file.

The developer may either use one of the standard Oracle Outside In IO types
or totally redirect the IO for the secondary file, as well. For more details, see
IOGENSECONDARY and IOGENSECONDARYW Structures.

– IOGETINFO_SUBDOC_SPEC: This message should be handled only if the
currently open file is an archive and a particular item within the archive is
intended to be specified as the input file in a call to DAOpenDocument. In this
case, pInfo points to a single-byte character string that should be filled with the
subdocument specification of an item within the open file. For example, item.2
specifies item 2 within the archive file. When specifying a subdocument
specification, return IOERR_OK. Any other return values cause the results of
this message to be ignored.

– IOGETINFO_64BITIO: For redirected I/O that wishes to use 64-bit seek/tell
functions, your IOGetInfo function must respond IOERR_TRUE to this
dwInfoId. In addition, the pSeek64/pTell64 items in the baseio structure must
be valid pointers to the proper function types.

– IOGETINFO_DPATHNAME: pInfo points to a structure of type DPATHNAME,
which should be filled with the fully qualified path name (including the file
name) of the open file, for example, C:\MYDIR\TEST.DOC. If you do not know
the path name, return IOERR_UNKNOWN. The dwPathLen element contains
the size of the buffer pointed to by the pPath element. If the buffer size is too

Chapter 8
IOGetInfo

8-6

small to contain the full path, modify dwPathLen to be the correct size of the
buffer required to hold the path name in its IOTYPE character width including
the NULL terminator and return IOERR_INSUFFICIENTBUFFER.

The following is a C data structure defined in SCCIO.H:

typedef struct DPATHNAMEtag
{
 VTDWORD dwPathLen;
 VTVOID *pPath;
} DPATHNAME, * PDPATHNAME;

Parameters

dwPathLen: Will be set to the number of bytes in the buffer pointed to by
pPath. If the size of the buffer is insufficient, reset this element to the number
of bytes required and return IOERR_INSUFFICIENTBUFFER.

pPath: Points to the buffer to be filled with the path name.

– IOGETINFO_GENSECONDARYDP: pInfo points to a structure of type
IOGENSECONDARYDP. The dwSpecLen element contains the size of the
buffer pointed to by the pSpec element. If the buffer size is too small to contain
the spec, modify dwSpecLen to be the correct size of the buffer required to
hold the path in its IOTYPE character width including the NULL terminator and
return IOERR_INSUFFICIENTBUFFER.

The following is a C data structure defined in SCCIO.H:

typedef struct IOGENSECONDARYDPtag
{
 VTDWORD dwSize;
 VTVOID * pFileName;
 VTDWORD dwSpecType;
 VTVOID * pSpec;
 VTDWORD dwSpecLen;
 VTDWORD dwOpenFlags;
} IOGENSECONDARYDP, * PIOGENSECONDARYDP;

Parameters

dwSize: Will be set to sizeof (IOGENSECONDARYDP)

pFileName: A pointer to a string representing the file name of the secondary
file that the technology requires. It is usually a name stored in the primary file
(such as MYSTYLE.STY for a Word for DOS file) or a name generated from
the primary file name. The primary file for a DataEase database has a .dba
extension. The secondary name is the same file name but with a .dbm
extension.

dwSpecType: The developer must fill this with the IOSPEC for the secondary
file.

pSpec: On entry, this pointer points to an array of bytes or may be NULL (see
dwSpecLen below). If the dwSpecType is set a regular IOTYPE such as
IOTYPE_ANSIPATH, the developer may fill this array with the path name or
structure required for that IOTYPE. If the developer is redirecting access to the
secondary file, then dwSpecType will be IOTYPE_REDIRECT and the
developer should replace pSpec with a pointer to a developer-defined
structure that begins with the BASEIO structure (see Using Redirected IO).

Chapter 8
IOGetInfo

8-7

The file is supposed to be opened by the OEM's redirected IO code by the
time they return the BASEIO struct. This is because the pOpen routine in the
BASEIO struct is supposed to be NULL.

dwSpecLen: On entry, this is set to the size of the pSpec buffer. If the size of
the buffer is insufficient, replace the value with the number of bytes required
and return IOERR_INSUFFICIENTBUFFER.

dwOpenFlags: Set by the technology. A set of bit flags describing how the
secondary file should be opened. Multiple flags may be used by bitwise OR-
ing them together. The following flags are currently used:

- IOOPEN_READ: The secondary file should be opened for read.

- IOOPEN_WRITE: The secondary file should be opened for write. If the
specified file already exists, its contents are erased when this flag is set.

- IOOPEN_CREATE: The secondary file should be created (if it does not
already exist) and opened for write.

Any other value should return IOERR_BADINFOID.

• pInfo: The size of the pInfo buffer depends on the dwInfoId selected. For
IOGETINFO_FILENAME and IOGETINFO_PATHNAME, the buffer is of size
MAX_PATH characters (each character is either one byte or two, depending on
PATHTYPE). The IOGETINFO_PATHTYPE buffer is the size of a VTDWORD.

Return Values

• IOERR_OK: GetInfo was successful.

• IOERR_TRUE: Affirmative response from a true or false GetInfo.

• IOERR_FALSE: Negative response from a true or false GetInfo.

• IOERR_BADINFOID: dwInfoId can not be handled by this file type.

• IOERR_INVALIDSPEC: The file spec is bad for this type.

• IOERR_UNKNOWN: GetInfo failed for some other reason.

8.8.1 IOGENSECONDARY and IOGENSECONDARYW Structures
These structures are passed to the developer through the IOGetInfo function. They
allow the developer to tell the technology where a secondary file, needed by the
conversion process, is located.

The SpecType of the original file determines which of these two structures is used. If
the SpecType is IOTYPE_UNICODEPATH, IOGENSECONDARYW is used.
pFileName points to a Unicode string terminated with a NULL WORD. For all other
SpecTypes, IOGENSECONDARY is used and pFileName points to a string terminated
with a NULL BYTE.

When using HTML Export, consider the situation where the software must access a
secondary template file. In that case, the SpecType of the original template specified
by the option SCCOPT_EX_TEMPLATE determines which of the two structures is
used.

The following is a C data structure defined in SCCIO.H:

typedef struct
{
 VTDWORD dwSize;

Chapter 8
IOGetInfo

8-8

 VTLPBYTE pFileName;
 VTDWORD dwSpecType;
 VTLPVOID pSpec;
 VTDWORD dwOpenFlags
} IOGENSECONDARY, * PIOGENSECONDARY;

typedef struct
{
 VTDWORD dwSize;
 VTLPWORD pFileName;
 VTDWORD dwSpecType;
 VTLPVOID pSpec;
 VTDWORD dwOpenFlags
} IOGENSECONDARYW, * PIOGENSECONDARYW;

Parameters

• dwSize: Will be set to sizeof (IOGENSECONDARY) or
sizeof (IOGENSECONDARYW) (both of these values are the same).

• pFileName: A pointer to a string representing the file name of the secondary file
that the technology requires. It is usually a name stored in the primary file (such as
MYSTYLE.STY for a Word for DOS file) or a name generated from the primary file
name. The primary file for a DataEase database has a .dba extension. The
secondary name is the same file name but with a .dbm extension.

• dwSpecType: The developer must fill this with the IOSPEC for the secondary file.

• pSpec: On entry, this pointer points to an array of 1024 bytes. If the dwSpecType
is set a regular IOTYPE such as IOTYPE_ANSIPATH, the developer may fill this
array with the path name or structure required for that IOTYPE. If the developer is
redirecting access to the secondary file, then dwSpecType will be
IOTYPE_REDIRECT and the developer should replace pSpec with a pointer to a
developer-defined structure that begins with the BASEIO structure (see Using
Redirected IO).

The file is supposed to be opened by the OEM's redirected IO code by the time
they return the BASEIO struct. This is because the pOpen routine in the BASEIO
struct is supposed to be NULL.

• dwOpenFlags: Set by the technology. A set of bit flags describing how the
secondary file should be opened. Multiple flags may be used by bitwise OR-ing
them together. The following flags are currently used:

– IOOPEN_READ: The secondary file should be opened for read.

– IOOPEN_WRITE: The secondary file should be opened for write. If the
specified file already exists, its contents are erased when this flag is set.

– IOOPEN_CREATE: The secondary file should be created (if it does not
already exist) and opened for write.

8.8.2 File Types That Cause IOGETINFO_GENSECONDARY
The following file types cause IOGETINFO_GENSECONDARY:

• Microsoft Word for DOS Versions 4, 5 and 6: Used to open and read the style
sheet file associated with the document. The filter degrades if the style sheet is not
present.

Chapter 8
IOGetInfo

8-9

• Harvard Graphics DOS 3.x: Used to open and read the individual slides within
ScreenShow and palette files. Files with the extension .ch3 are individual graphics
or slides that can be opened using no secondary files. Files with the
extension .sy3 are ScreenShows that reference a list of .ch3 files via the
secondary file mechanism. There is also an optional palette file that can be
referenced from a .ch3 file, but the filter degrades if the palette file is not present.

• R:Base: Used to open and read required schema file. The R:Base data files are
named ????2.rbf but the data is useless without the schema file named ????1.rbf.
There is also a ????3.rbf file associated with each database, but it is not used.

• Paradox 4.0 and Above: Used to open and read memo field data file. Paradox
uses a separate file for all memo field data larger than 32 bytes.

• DataEase: Used to open and read the data file. DataEase databases include
a .dba file that contains the schema (the file that the technology can identify as
DataEase) and a .dbm file that contains the actual data.

• Templates (HTML Export): Any template that contains a {## link} will need to
open the linked files. Additionally, when the root template is opened using
redirected IO, each {## copy} macro in the template will result in a
IOGETINFO_GENSECONDARY call, as well.

8.9 IOSEEK64PROC / IOTELL64PROC
These functions are for seek/tell using 64-bit offsets. These functions are not used by
default. Rather, they are used if the IOGETINFO_64BITIO message returns
IOERR_TRUE. This is so redirected I/O using strictly 32-bit I/O is unaffected.

8.9.1 IOSeek64
Moves the current file position.

Prototype

IOERR IOSeek64(
HIOFILE hFile,
VTWORD wFrom,
VTOFF_T offset);

Parameters

The parameter information is the same as for IOSeek(). However, the size of the
VTOFF_T offset for IOSeek64() is 64-bit unlike the 32-bit offset in IOSeek().

8.9.2 IOTell64
Returns the current file position.

Prototype

IOERR IOTell64(
HIOFILE hFile,
VTOFF_T * pOffset);

Chapter 8
IOSEEK64PROC / IOTELL64PROC

8-10

Parameters

The parameter information is the same as for IOTell(). The only change is the use of a
pointer to a 64-bit parameter for returning the offset.

Chapter 8
IOSEEK64PROC / IOTELL64PROC

8-11

9
Callbacks

This chapter describes the use of callbacks in PDF Export. Callbacks allow the
developer to intervene at critical points in the export process.
Read more about the callback procedure and the EXOpenExport function call in
EXOpenExport. Each heading in this chapter is a possible value for the
dwCommandOrInfoId parameter passed to the developer's callback.

The new SCCOPT_EX_CALLBACKS option allows developers to enable or disable
some or all of these callbacks. See the Options documentation for details.

This section describes callbacks set in EXOpenExport. A second callback function,
DASetStartCallback, can provide information about the progress of a file conversion.
For more details, see Data Access Common Functions.

This chapter includes the following callbacks:

• EX_CALLBACK_ID_CREATENEWFILE

• EX_CALLBACK_ID_NEWFILEINFO

• EX_CALLBACK_ID_PAGECOUNT

• EX_CALLBACK_ID_BEGINPAGE

9.1 EX_CALLBACK_ID_CREATENEWFILE
This callback is made any time a new output file needs to be generated. This gives the
developer the chance to execute routines before each new file is created.

It allows the developer to override the standard naming for a file or to redirect entirely
the IO calls for a file. This callback is made for all output files that are created. It does
not include the already open initial file passed to EXOpen Export, unless of course
redirected IO is in use with a pSpec of NULL.

If redirected IO is being used on output files, this callback must be implemented.

For this callback, the pCommandOrInfoData parameter points to a structure of type
EXFILEIOCALLBACKDATA:

typedef struct EXFILEIOCALLBACKDATAtag
{
 HIOFILE hParentFile;
 VTDWORD dwParentOutputId;
 VTDWORD dwAssociation;
 VTDWORD dwOutputId;
 VTDWORD dwFlags;
 VTDWORD dwSpecType;
 VTLPVOID pSpec;
 VTLPVOID pExportData;
 VTLPVOID pTemplateName;
} EXFILEIOCALLBACKDATA;

9-1

• hParentFile: Handle to the initial output file with which the new file is associated.
The dwAssociation describes the relationship. This handle is not intended for use
by the developer. Set by caller.

• dwParentOutputId: Set by caller. The type of the parent file. This value is either
FI_PDF (for generic PDF 1.5), FI_PDFA (for PDF/A-1a compliance), or
FI_PDFA_2 (for PDF/A-2a compliance).

• dwAssociation: One of the following values:

– CU_ROOT: For the initial output file.

– CU_SIBLING: For new files that are not somehow owned by the parent file.

• dwOutputId: The type of the new file. This value is either FI_PDF (for generic PDF
1.4), FI_PDFA (for PDF/A-1a compliance), or FI_PDFA_2 (for PDF/A-2a
compliance).

• dwFlags: Reserved

• dwSpecType: IO specification type. For details about IO specifications, see
DAOpenDocument.

This member in conjunction with pSpec allows the developer to choose any
location for the new file or even redirect its IO calls entirely. For more details, see
Redirected IO. When the developer receives this callback, the value of this
element is undefined. Must be set by developer if this callback returns
SCCERR_OK.

• pSpec: This field holds the IO specification of the output file to be created. pSpec
points to a buffer that is 1024 bytes in size. If your application needs to set the
specification of the output file, it may do so by either writing new data into this
buffer, or by changing the value of pSpec to point to memory owned by your
application. If pSpec is set to a new value, then your application must ensure that
this memory stays valid for an appropriate length of time, at least until the next
callback message is received, or EXRunExport returns.

If the current export operation is using redirected IO, your application must create
a redirected IO data structure for the new file and set pSpec to point to it. This
pointer must stay valid until the structure's pClose function is called.

If your application sets dwSpecType to IOTYPE_UNICODEPATH, the
specification must contain UCS-2 encoded Unicode characters.

When your application receives this callback, the contents of the buffer pointed to
by pSpec are undefined. A specification must be defined by your application if this
callback returns SCCERR_OK.

• pExportData: Pointer to data specific to the individual export. In this case, always a
pointer to either an EXURLFILEIOCALLBACKDATA structure or an
EXURLFILEIOCALLBACKDATAW structure. The
EXURLFILEIOCALLBACKDATAW struct is only used when the
SCCOPT_UNICODECALLBACKSTR option is set to TRUE. These two structures
are defined in EXURLFILEIOCALLBACKDATA /
EXURLFILEIOCALLBACKDATAW Structures. Set by caller.

• pTemplateName: NULL

Chapter 9
EX_CALLBACK_ID_CREATENEWFILE

9-2

9.1.1 EXURLFILEIOCALLBACKDATA /
EXURLFILEIOCALLBACKDATAW Structures

The EXURLFILEIOCALLBACKDATA and EXURLFILEIOCALLBACKDATAW
structures are defined as follows:

typedef struct EXURLFILEIOCALLBACKDATAtag
{
 VTDWORD dwSize;
 VTBYTE szURLString[VT_MAX_URL];
 VTDWORD dwFileID;
} EXURLFILEIOCALLBACKDATA;

typedef struct EXURLFILEIOCALLBACKDATAWtag
{
 VTDWORD dwSize;
 VTWORD wzURLString[VT_MAX_URL];
 VTDWORD dwFileID;
} EXURLFILEIOCALLBACKDATAW;

• dwSize: Set to sizeof(EXURLFILEIOCALLBACKDATA) or
sizeof(EXURLFILEIOCALLBACKDATAW).

• szURLString / wzURLString: This parameter can be set by the developer to a new
URL that references the newly created file. This parameter is optional unless the
pSpec provided by the developer points to something that cannot be used as a
URL (as when using redirected IO, for example). In that case, this parameter must
be set.

This string is written into any output file that needs to reference the newly created
file, with appropriate conversions between single and double byte output. Because
this parameter is a URL, it is assumed to be URL encoded. When used in
conjunction with dwSpecType and pSpec, this parameter can be used to generate
almost any structure or location for the output files, including things like writing the
output files into a database and then using a CGI mechanism to retrieve them.

The current size limitation is 2048 characters. If the size exceeds this limit, the
URL will be truncated and rendered useless.

• dwFileID: Set by the product. This is used as a unique identifier for each output file
generated. It may be used for an OEM-specific purpose.

Return Value

• SCCERR_OK: dwSpecType, pSpec and szURLString (or wzURLString) have
been populated with valid values.

• SCCERR_NOTHANDLED: Default naming should be used.

• SCCERR_FILEOPENFAILED: Some error was encountered creating a new
output.

9.2 EX_CALLBACK_ID_NEWFILEINFO
This informational callback is made just after each new file has been created. Like the
EX_CALLBACK_ID_CREATENEWFILE callback, the pExportData parameter points to
an EXURLFILEIOCALLBACKDATA or an EXURLFILEIOCALLBACKDATW structure,

Chapter 9
EX_CALLBACK_ID_NEWFILEINFO

9-3

but in this case the structure should be treated as read-only and the dwSpecType,
pSpec and szURLString (or wzURLString) will be filled in.

This callback occurs for every new file. If the developer has used the
EX_CALLBACK_ID_CREATENEWFILE notification to change the location of (or to set
up redirected IO for) the new file, the data structure echoes back the information set by
the developer during the EX_CALLBACK_ID_CREATENEWFILE callback.

Return Value

Must be either SCCERR_OK or SCCERR_NOTHANDLED. Return value is currently
ignored.

9.3 EX_CALLBACK_ID_PAGECOUNT
PDF Export uses this callback message to return a count of all of the output pages
produced during an export operation. This count reflects the number of pages created
by Oracle Outside In's processing of the input document, which in some cases may
differ slightly from the number of pages as seen in the document's original application.

This callback occurs during the execution of EXRunExport.

Data Type

VTDWORD

9.4 EX_CALLBACK_ID_BEGINPAGE
This callback message allows the margin text to be supplied for each page. This
callback indicates that a new page of output is about to be created. Within the scope of
this callback, the host application is able to set margin text to new values for the
current page. For this callback, the pCommandOrInfoData parameter points to a zero-
based count of the page about to be created.

Data Type

VTDWORD

Return Value

Must be either SCCERR_OK or SCCERR_NOTHANDLED

Chapter 9
EX_CALLBACK_ID_PAGECOUNT

9-4

10
PDF Export C/C++ Options

Options are parameters affecting the behavior of an export or transformation. This
chapter presents the C/C++ options relevant to the PDF Export product.
Options are set using the DASetOption call. It is recommended that developers
familiarize themselves with all of the options available.

Options may be Local, in which case they only affect the handle for which they are set,
or Global, in which case they automatically affect all handles associated with the hDoc
and must be set before the call to DAOpenDocument.

While default values are provided, users are encouraged to set all options for a
number of reasons. In some cases, the default values were chosen to provide
backwards compatibility. In other cases, the default values were chosen arbitrarily
from a range of possibilities.

This chapter covers the following types of options:

• Character Mapping

• Input Handling

• Compression

• Graphics

• Spreadsheet and Database File Rendering

• Page Rendering

• Font Rendering

• Watermarks

• Callbacks

• File System

10.1 Character Mapping
This section discusses character mapping options.

10.1.1 SCCOPT_DEFAULTINPUTCHARSET
This option is used in cases where Oracle Outside In cannot determine the character
set used to encode the text of an input file. When all other means of determining the
file's character set are exhausted, Oracle Outside In will assume that an input
document is encoded in the character set specified by this option. This is most often
used when reading plain-text files, but may also be used when reading HTML or PDF
files. The possible character sets are listed in charsets.h.

When "extended test for text" is enabled (see SCCOPT_FIFLAGS), this option will still
apply to plain-text input files that are not identified as EBCDIC or Unicode.

10-1

This option supersedes the SCCOPT_FALLBACKFORMAT option for selecting the
character set assumed for plain-text files. For backwards compatibility, use of
deprecated character-set -related values is still currently supported for
SCCOPT_FALLBACKFORMAT, though internally such values will be translated into
equivalent values for the SCCOPT_DEFAULTINPUTCHARSET. As a result, if an
application were to set both options, the last such value set for either option will be the
value that takes effect.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTDWORD

Default

• Windows Code Page 1252 on Windows and ISO 8859-1 (Latin 1) on UNIX

Data

The data types are listed in charsets.h.

10.1.2 SCCOPT_UNMAPPABLECHAR
This option selects the character used when a character cannot be found in the output
character set. This option takes the Unicode value for the replacement character.

Handle Types

VTHDOC

Scope

Local

Data Type

VTWORD

Data

The Unicode value for the character to use.

Default

• 0x002a = "*"

10.2 Input Handling
This section discusses input handling options.

Chapter 10
Input Handling

10-2

10.2.1 SCCOPT_FALLBACKFORMAT
This option controls how files are handled when their specific application type cannot
be determined. This normally affects all plain-text files, because plain-text files are
generally identified by process of elimination, for example, when a file isn't identified as
having been created by a known application, it is treated as a plain-text file.

It is recommended that FI_NONE be set to prevent PDF Export from exporting
unidentified binary files as though they were text, which could generate many pages of
"garbage" output.

This option must be set for an hDoc before any subhandle has been created for that
hDoc.

A number of values that were formerly allowed for this option have been deprecated.
Specifically, the values that selected specific plain-text character sets are no longer to
be used. Instead, applications should use the SCCOPT_DEFAULTINPUTCHARSET
option for such functionality.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTDWORD

Data

The high VTWORD of this value is reserved and should be set to 0, and the low
VTWORD must have one of the following values:

• FI_TEXT: Unidentified file types will be treated as text files.

• FI_NONE: Oracle Outside In will not attempt to process files whose type cannot be
identified. This will include text files. When this option is selected, an attempt to
process a file of unidentified type will cause Oracle Outside In to return an error
value of DAERR_FILTERNOTAVAIL (or SCCERR_NOFILTER).

Default

• FI_TEXT

10.2.2 SCCOPT_FIFLAGS
This option affects how an input file's internal format (application type) is identified
when the file is first opened by the Oracle Outside In technology. When the extended
test flag is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC,
or Unicode, the file's contents will be interpreted as such by the export process.

The extended test is optional because it requires extra processing and cannot
guarantee complete accuracy (which would require the inspection of every single byte
in a file to eliminate false positives.)

Chapter 10
Input Handling

10-3

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTDWORD

Data

One of the following values:

• SCCUT_FI_NORMAL: This is the default value. When this is set, standard file
identification behavior occurs.

• SCCUT_FI_EXTENDEDTEST: If set, the File Identification code will run an
extended test on all files that are not identified.

Default

• SCCUT_FI_EXTENDEDTEST: The technology will attempt an extra test after the
file is first opened to see if it is 7-bit text or EBCDIC.

10.2.3 SCCOPT_FORMATFLAGS
This option allows the developer to set flags that enable options that span multiple
export products.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

• SCCOPT_FLAGS_ISODATETIMES: When this flag is set, all Date and Time
values are converted to the ISO 8601 standard. This conversion can only be
performed using dates that are stored as numeric data within the original file.

• SCCOPT_FLAGS_STRICTFILEACCESS: When an embedded file or URL can't
be opened with the full path, OIT will sometimes try and open the referenced file
from other locations, including the current directory. When this flag is set, it will
prevent OIT from trying to open the file from any location other than the fully
qualified path or URL.

Chapter 10
Input Handling

10-4

Default

0: All flags turned off

10.2.4 SCCOPT_SYSTEMFLAGS
This option controls a number of miscellaneous interactions between the developer
and the Outside In Technology.

Handle Type

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

• SCCVW_SYSTEM_UNICODE: This flag causes the strings in
SCCDATREENODE to be returned in Unicode.

Default

0

10.2.5 SCCOPT_IGNORE_PASSWORD
This option can disable the password verification of files where the contents can be
processed without validation of the password. If this option is not set, the filter should
prompt for a password if it handles password-protected files.

As of Release 8.4.0, only the PST and MDB Filters support this option.

Scope

Global

Data Type

VTBOOL

Data

• TRUE: Ignore validation of the password

• FALSE: Prompt for the password

Default

FALSE

Chapter 10
Input Handling

10-5

10.2.6 SCCOPT_LOTUSNOTESDIRECTORY
This option allows the developer to specify the location of a Lotus Notes or Domino
installation for use by the NSF filter. A valid Lotus installation directory must contain
the file nnotes.dll.

Note:

Please see section 2.1.1 for NSF support on Win x86-32 or Win x86-64 or
section 3.1.1 for NSF support on Linux x86-32 or Solaris Sparc 32.

Handle Types

NULL

Scope

Global

Data Type

VTLPBYTE

Data

A path to the Lotus Notes directory.

Default

If this option isn't set, then OIT will first attempt to load the Lotus library according to
the operating system's PATH environment variable, and then attempt to find and load
the Lotus library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

10.2.7 SCCOPT_PDF_FILTER_REORDER_BIDI
This option controls whether or not the PDF filter will attempt to reorder bidirectional
text runs so that the output is in standard logical order as used by the Unicode 2.0 and
later specification. This additional processing will result in slower filter performance
according to the amount of bidirectional data in the file.

Handle Types

VTHDOC, NULL

Scope

Global

Data Type

VTDWORD

Chapter 10
Input Handling

10-6

Data

• SCCUT_FILTER_STANDARD_BIDI

• SCCUT_FILTER_REORDERED_BIDI

Default

SCCUT_FILTER_STANDARD_BIDI

10.2.8 SCCOPT_PDF_FILTER_BIDI_LIFEBIT
When the “SCCOPT_PDF_FILTER_BIDI_LIFEBIT” option is set to TRUE, it ensures
BIDI file scanning and the preexisting flag SCCOPT_PDF_FILTER_REORDER_BIDI
will turn to TRUE. In this case, PDF filter performs BIDI scan using existing code-flow.

Setting the option “SCCOPT_PDF_FILTER_BIDI_LIFEBIT” to FALSE will perform
Internal scanning for BIDI information in the file. When the BIDI information is
complete, the scanning stops.

BIDI Status Information handling in .NET Application.

SetPDFDetectBiDiBit (Options.PDFBiDiDetectValue PDFDetectValue) to set the
option
 SCCOPT_PDF_FILTER_BIDI_LIFEBIT to True (PDFBiDiDetectValue.DETECT)
or False
 (PDFBiDiDetectValue.STANDARD).

The default value for the Option PDFBiDiDetectValue can be set as
PDFBiDiDetectValue.STANDARD (FALSE).

Calling the function setPDFDetectBiDiBit with required option (STANDARD/ DETECT)
as per the user's choice.

1. LIFEBIT functionality will only work when the option is set as STANDARD.

2. If the option is set to DETECT, then the old option
SCCOPT_PDF_FILTER_REORDER_BIDI is set to TRUE.

3. In both the cases (STANDARD/DETECT), bidi info can be fetched.

4. You need to execute the following code to fetch :

bidi info:bool isbidi =
exporter.GetExportStatus().StatusFlags.HasFlag(ExportStatusFlags.IsBid
i);

Note:

The files that contains uni-directional as well as bi-directional characters is
called Heterogenous Files. The Heterogenous Files will be treated as BIDI
file. The default value for SCCOPT_PDF_FILTER_BIDI_LIFEBIT is False.
The LIFEBIT scan will perform only if the
SCCOPT_PDF_FILTER_REORDER_BIDI option is FALSE.

Chapter 10
Input Handling

10-7

To Fetch the values from Java Application:

 EnumSet<ExportStatusFlags>
 expstatus =
exporter.getExportStatus().getStatusFlags();
 boolean hasbidi =
expstatus.contains(ExportStatusFlags.ISBIDI);
 boolean hasMissingMap =
expstatus.contains(ExportStatusFlags.MISSINGMAP);
 boolean hasunsupportedcolor =
expstatus.contains(ExportStatusFlags.UNSUPPORTEDCOLORSPACE);
 boolean hasUnsupportedFont =
expstatus.contains(ExportStatusFlags.UNSUPPORTEDFONT);

The below values are provided in the EXSTATUSINFORMATIONtag structure:

Status Information
Flags

Supporte
d

Not Supported

bUnsupportedFont 0 1

bMissingMap 0 1

bUnsupportedColorSpace 0 1

bIsBidi 0 1

Note:

bUnSupportedFont shall be “1” (True) if any of the unsupported font (CID
Type 0, CID Type 2, Type 1 or Type 3) is found. bUnsupportedFont and
bIsBidi flags are currently meant to provide functionality only for CEC
Customers.

Handle Types

VTHDOC, NULL

Scope

Global

Data Type

VTDWORD

Data

• True

• False

Default

True

Chapter 10
Input Handling

10-8

10.2.9 SCCOPT_REORDERMETHOD
This option controls how the technology reorders bidirectional text.

Data Type

VTDWORD

Data

One of the following values:

• SCCUT_REORDER_UNICODE_OFF: This disables any processing for
bidirectional characters. This option is the default.

• SCCUT_REORDER_UNICODE_LTOR: Characters displayed using the Unicode
bidirectional algorithm assuming a base left-to-right order. Use this option to
enable bidirectional rendering.

• SCCUT_REORDER_UNICODE_RTOL: Characters displayed using the Unicode
bidirectional algorithm assuming a base right-to-left order. Use this option to force
starting bidirectional rendering in the right-to-left order.

10.2.10 SCCOPT_TIMEZONE
This option allows the user to define an offset to GMT that will be applied during date
formatting, allowing date values to be displayed in a selectable time zone. This option
affects the formatting of numbers that have been defined as date values. This option
will not affect dates that are stored as text.

Note:

Daylight savings is not supported. The sent time in msg files when viewed in
Outlook can be an hour different from the time sent when an image of the
msg file is created.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTLONG

Data

Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query
the operating system for the time zone set on the machine, specify
SCC_TIMEZONE_USENATIVE.

Chapter 10
Input Handling

10-9

Default

• 0: GMT time

10.2.11 SCCOPT_HTML_COND_COMMENT_MODE
Some HTML includes a special type of comment that will be read by particular
versions of browsers or other products. This option allows you to control which of
those comments are included in the output.

Handle Type

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

• One or more of the following values OR-ed together:

• HTML_COND_COMMENT_NONE: Don't output any conditional comments. Note:
setting any other flag will negate this.

• HTML_COND_COMMENT_IE5: include the IE 5 comments

• HTML_COND_COMMENT_IE6: include the IE 6 comments

• HTML_COND_COMMENT_IE7: include the IE 7 comments

• HTML_COND_COMMENT_IE8: include the IE 8 comments

• HTML_COND_COMMENT_IE9: include the IE 9 comments

• HTML_COND_COMMENT_ALL: include all conditional comments including the
versions listed above and any other versions that might be in the HTML.

Default

HTML_COND_COMMENT_NONE

10.2.12 SCCOPT_ARCFULLPATH
In the Viewer and rendering products, this option tells the archive display engine to
show the full path to a node in the szNode field in response to a
SCCVW_GETTREENODE message. It also causes the name fields in
DAGetTreeRecord and DAGetObjectInfo to contain the full path instead of just the
archive node name.

Data Type

VTBOOL

Chapter 10
Input Handling

10-10

Data

• TRUE: Display the full path.

• FALSE: Do not display the path.

Default

FALSE

10.2.13 SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS
PDF files sometimes have a very large number of embedded objects. This option
allows the user to limit the number of embedded objects that are produced in a PDF
file. Setting this option to 0 produces an unlimited number of embedded objects.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

The maximum number of embedded objects to produce in PDF output.

Default

0

10.2.14 SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS
PDF files sometimes have a very large number of vector paths. This option allows the
user to limit the number of vector paths that are produced in a PDF file. Setting this
option to 0 produces an unlimited amount of vector paths.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

The maximum number of vector paths to produce in PDF output.

Chapter 10
Input Handling

10-11

Default

0

10.2.15 SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION
This option controls the spacing threshold in PDF input documents. Most PDF
documents do not have an explicit character denoting a word break. The PDF filter
calculates the distance between two characters to determine if they are part of the
same word or if there should be a word break inserted. The space between characters
is compared to the length of the space character in the current font multiplied by this
fraction. If the space between characters is larger, then a word break character is
inserted into the text stream. Otherwise, the characters are considered to be part of
the same word and no word break is inserted.

Handle Types

NULL, VTHDOC

Scope

Local

Data Type

VTFLOAT

Data

A fraction representing the percentage of the space character used to trigger a word
break. Valid values are 0<value<=2.

Default

0.85

10.3 Compression
This section discusses compression options.

10.3.1 SCCOPT_APPLYFILTER
This option determines if ZLIB compression will be applied to all object streams when
generating the PDF output file.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Chapter 10
Compression

10-12

Data

• TRUE: ZLIB compression is applied to all output streams.

• FALSE: ZLIB compression is not applied to any output stream.

Default

TRUE

10.3.2 SCCOPT_FILTERJPG
This option can disable access to any files using JPEG compression, such as JPG
graphic files or TIFF files using JPEG compression, or files with embedded JPEG
graphics. Attempts to read or write such files when this option is enabled will fail and
return the error SCCERR_UNSUPPORTEDCOMPRESSION if the entire file is JPEG
compressed, and grey boxes for embedded JPEG-compressed graphics.

The following is a list of file types affected when this option is disabled:

• JPG files

• Postscript files containing JPG images

• PDFs containing JPEG images

Handle Types

VTHDOC, HEXPORT

Scope

Global

Data Type

VTDWORD

Data

• SCCVW_FILTER_JPG_ENABLED: Allow access to files that use JPEG
compression

• SCCVW_FILTER_JPG_DISABLED: Do not allow access to files that use JPEG
compression

Default

SCCVW_FILTER_JPG_ENABLED

10.3.3 SCCOPT_FILTERLZW
This option can disable access to any files using Lempel-Ziv-Welch (LZW)
compression, such as .GIF files, .ZIP files or self-extracting archive (.EXE) files
containing "shrunk" files. Attempts to read or write such files when this option is
enabled will fail and return the error SCCERR_UNSUPPORTEDCOMPRESSION.

The following is a list of file types affected when this option is disabled:

Chapter 10
Compression

10-13

• GIF files

• TIF files using LZW compression

• PDF files that use internal LZW compression

• ZIP and self-extracting archive (.EXE) files containing "shrunk" files

• Postscript files using LZW compression

PDF Export will not be affected by this option when processing formats that compress
subfile contents but not subfile names, such as TAR and ZIP.

Although this option can disable access to files in ZIP or EXE archives stored using
LZW compression, any files in such archives that were stored using any other form of
compression will still be accessible.

Handle Types

VTHDOC, HEXPORT

Scope

Global

Data Type

VTDWORD

Data

• SCCVW_FILTER_LZW_ENABLED: LZW compressed files will be read normally.

• SCCVW_FILTER_LZW_DISABLED: LZW compressed files will not be read.

Default

SCCVW_FILTER_LZW_ENABLED

10.4 Graphics
This section discusses graphics options.

10.4.1 SCCOPT_GRAPHIC_OUTPUTDPI
This option allows the user to specify the output graphics device's resolution in DPI
and only applies to images embedded in a PDF whose size is specified in physical
units (in/cm). For example, consider a 1" square, 100 DPI graphic that is to be
rendered on a 50 DPI device (SCCOPT_GRAPHIC_OUTPUTDPI is set to 50). In this
case, the size of the resulting PDF will be 50 x 50 pixels.

In addition, the special #define of SCCGRAPHIC_MAINTAIN_IMAGE_DPI, which is
defined as 0, can be used to suppress any dimensional changes to an image. In other
words, a 1" square, 100 DPI graphic will be converted to an image that is 100 x 100
pixels in size. This value indicates that the DPI of the output device is not important. It
extracts the maximum resolution from the input image with the smallest exported
image size.

Setting this option to SCCGRAPHIC_MAINTAIN_IMAGE_DPI may result in the
creation of extremely large images. Be aware that there may be limitations in the

Chapter 10
Graphics

10-14

system running this technology that could result in undesirably large bandwidth
consumption or an error message. Additionally, an out of memory error message will
be generated if system memory is insufficient to handle a particularly large image.

Also note that the SCCGRAPHIC_MAINTAIN_IMAGE_DPI setting will force the
technology to use the DPI settings already present in raster images, but for all other
content the resolution used internally by PDF Export will be in effect.

For some output graphic types, there may be a discrepancy between the value set by
this option and the DPI value reported by some graphics applications. The discrepancy
occurs when the output format uses metric units (DPM, or dots per meter) instead of
English units (DPI, or dots per inch). Depending on how the graphics application
performs rounding on meters to inches conversions, the DPI value reported may be 1
unit more than expected.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

The DPI to use when exporting graphic images. The maximum value allowed is
SCCGRAPHIC_MAX_SANE_BITMAP_DPI, which is currently defined to be 2400 DPI.

Default

• SCCGRAPHIC_DEFAULT_OUTPUT_DPI: Currently defined to be 72 dots per
inch.

10.4.2 SCCOPT_GRAPHIC_SIZEMETHOD
This option determines the method used to size graphics. The developer can choose
among three methods, each of which involves some degree of trade off between the
quality of the resulting image and speed of conversion.

Using the quick sizing option results in the fastest conversion of color graphics, though
the quality of the converted graphic will be somewhat degraded. The smooth sizing
option results in a more accurate representation of the original graphic, as it uses anti-
aliasing. Antialiased images may appear smoother and can be easier to read, but
rendering when this option is set will require additional processing time. The grayscale
only option also uses antialiasing, but only for grayscale graphics, and the quick sizing
option for any color graphics.

The smooth sizing option does not work on images which have a width or height of
more than 4096 pixels.

Handle Types

VTHDOC, VTHEXPORT

Chapter 10
Graphics

10-15

Scope

Local

Data Type

VTDWORD

Data

One of the following values:

• SCCGRAPHIC_QUICKSIZING: Resize without antialiasing

• SCCGRAPHIC_SMOOTHSIZING: Resize using antialiasing

• SCCGRAPHIC_SMOOTHGRAYSCALESIZING: Resize using antialiasing for
grayscale graphics only (no antialiasing for color graphics)

Default

SCCGRAPHIC_SMOOTHSIZING

10.4.3 SCCOPT_IMAGE_PASSTHROUGH
This feature is used to allow certain input files to circumvent the normal filtering
process and to be 'wrapped' in a PDF output file directly. This allows for much faster
exporting of the supported file formats, which for release 8.4 are JPEG, JPEG2000,
and TIFF.

Data Type

VTBOOL

Default

TRUE

10.4.4 SCCOPT_RENDER_ENABLEALPHABLENDING
This option allows the user to enable alpha-channel blending (transparency) in
rendering vector images when using an X-Windows output solution. This may improve
fidelity on documents that use these transparent images, but will result in performance
degradation. his option does not affect Microsoft Windows or Unix implementations
where SCCOPT_RENDERING_PREFER_OIT is set to TRUE.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Chapter 10
Graphics

10-16

Default

False

10.5 Spreadsheet and Database File Rendering
This section discusses spreadsheet and database options.

10.5.1 SCCOPT_DBPRINTFITTOPAGE
This option scales a spreadsheet file to a certain percent or to a page width or height.
However, in an effort to preserve readability after scaling, PDF Export will not shrink a
database document to under approximately one-third of its original size.

It should be noted that when this option is set to
SCCVW_DBPRINTFITMODE_NOMAP, the pages of the database file are printed
down first and then across.

Please note that any margins applied as a result of settings for the
SCCOPT_DEFAULTPRINTMARGINS option will be included in any scaling that is
applied to the output image as a result of settings for this option.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

One of the following values:

• SCCVW_DBPRINTFITMODE_NOMAP: This will not do any scaling of the
database image. It will render in its original size onto as many pages as are
required to fit the data.

• SCCVW_DBPRINTFITMODE_FITTOPAGES: This will fit the database to one
page, scaling to the image width or height depending on the page size and
database size.

• SCCVW_DBPRINTFITMODE_FITTOWIDTH: This will scale the database on the
rendered image so it is no larger than one page wide.

• SCCVW_DBPRINTFITMODE_FITTOHEIGHT: This will scale the database on the
rendered image so it is no larger than one page high.

Default

SCCVW_DBPRINTFITMODE_FITTOPAGES

Chapter 10
Spreadsheet and Database File Rendering

10-17

10.5.2 SCCOPT_DBPRINTGRIDLINES
If this option is TRUE, lines are generated between cells in the rendered images.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

TRUE

10.5.3 SCCOPT_DBPRINTHEADINGS
If this option is TRUE, field headings will be generated along with the data.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

TRUE

10.5.4 SCCOPT_MAXSSDBPAGEHEIGHT
Normally, the size of pages generated from spreadsheet worksheets and database
tables is limited to the size of the page defined by the input document's page size
information and how the SCCOPT_USEDOCPAGESETTINGS option is set. If, after
scaling is factored in, the resulting image is too large to fit on a single page, it is split
up into multiple pages.

The SCCOPT_MAXSSDBPAGEWIDTH and SCCOPT_MAXSSDBPAGEHEIGHT
options are used to change the size of a page to match the scaled size of the page
being rendered - within limits. The key reason for those limits is that rendering very
large pages can easily overwhelm the memory available on the system. When using
this feature, a calculation should be made to be sure that the values passed in work
within said memory limits. The values for these two options will override the current
page dimensions if necessary.

Chapter 10
Spreadsheet and Database File Rendering

10-18

The memory needed may be calculated based on the following:

memory = [max. worksheet/table height (in inches)] x [max. worksheet/table width
(in inches)] x [dpi setting]2 x 3 bytes/pixel + a bit extra for the needs of
the rest of the conversion

By default, these options are set to the current page dimensions. Users may choose to
set only one of the two options if desired. If, for example, only the
SCCOPT_MAXSSDBPAGEWIDTH is set, then the height of the page will be based on
the normal page height.

When a worksheet or table is larger than the maximum values specified by these
options, then the file is rendered on multiple pages, with the requested (larger) page
dimensions.

These new options grow the page size (if needed) to match the size of the worksheet
or table.

Please see Figure 10-1 for a diagram which clarifies the interactions of all of the
options mentioned in this discussion.

If text in cells ends up extending past the edge of the cell and beyond the edge of the
page, PDF Export writes one or more additional pages for the overflow text.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

The maximum page height (including margins) specified in twips (1440 twips are in 1
inch). If the value specified is smaller than the page height, then this option will be
ignored.

Default

• 0: Use the page height defined by the input document's page size information and
by the SCCOPT_USEDOCPAGESETTINGS.

Chapter 10
Spreadsheet and Database File Rendering

10-19

Figure 10-1 Logic Flow for Determining the Page Size of Spreadsheet and
Database Pages

10.5.5 SCCOPT_MAXSSDBPAGEWIDTH
See the documentation for SCCOPT_MAXSSDBPAGEHEIGHT for a full discussion of
how this option works and interacts with other options affecting the page size of
images generated from spreadsheet and database pages.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Chapter 10
Spreadsheet and Database File Rendering

10-20

Data Size

VTDWORD

Data

The maximum page width (including margins) specified in twips (1440 twips are in 1
inch). If the value specified is smaller than the page width, then this option will be
ignored.

Default

• 0: Use the page width defined by the input document's page size information and
by the SCCOPT_USEDOCPAGESETTINGS option.

10.5.6 SCCOPT_SSPRINTDIRECTION
This option controls the pattern in which the pages are rendered, either across first
and then down, or down first and then across.

This option is overridden when the SCCOPT_USEDOCPAGESETTINGS option is set
to TRUE and print direction is specified in the input document.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

One of the following values:

• SCCVW_SSPRINTDIRECTION_ACROSS: Will specify that pages are printed
across first and then down.

• SCCVW_SSPRINTDIRECTION_DOWN: Will specify that pages are printed down
first and then across.

Default

SCCVW_SSPRINTDIRECTION_DOWN

10.5.7 SCCOPT_SSPRINTFITTOPAGE
This option requests that the spreadsheet file be fit to one page.

Please note that any margins applied as a result of settings for the
SCCOPT_DEFAULTPRINTMARGINS option will be included in any scaling that is
applied to the output image as a result of settings for this option.

Chapter 10
Spreadsheet and Database File Rendering

10-21

This option is overridden when the SCCOPT_USEDOCPAGESETTINGS option is set
to TRUE and fitting the page to the printer's image limits is specified in the input
document.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

One of the following values:

• SCCVW_SSPRINTFITMODE_NOMAP: No scaling is performed on the
spreadsheet image. It will render in its original size onto as many pages as are
required to fit the data.

• SCCVW_SSPRINTFITMODE_FITTOPAGES: Will scale the spreadsheet in the
rendered image to fit to the number of pages specified in the
SCCOPT_SSPRINTSCALEXHIGH and SCCOPT_SSPRINTSCALEXWIDE
options. Since aspect ratio is maintained, the lesser of the two dimensions (width
or height) will determine the scale factor. Note that if either
SCCOPT_SSPRINTSCALEXHIGH or SCCOPT_SSPRINTSCALEXWIDE is set to
0, the value in the other option will be nullified.

• SCCVW_SSPRINTFITMODE_FITTOWIDTH: Will scale the spreadsheet in the
rendered image so it is no larger than one page wide.

• SCCVW_SSPRINTFITMODE_FITTOHEIGHT: Will scale the spreadsheet in the
rendered image so it is no larger than one page high.

• SCCVW_SSPRINTFITMODE_SCALE: Will scale the spreadsheet in the rendered
image using the scale value stored in the SCCOPT_SSPRINTSCALEPERCENT
option.

Default

• SCCVW_SSPRINTFITMODE_SCALE: Scales the rendered image of the
spreadsheet using the scale value stored in the
SCCOPT_SSPRINTSCALEPERCENT option (which is 100 by default).

10.5.8 SCCOPT_SSPRINTGRIDLINES
If this option is TRUE, a line is generated between cells in the rendered images.

This option is overridden when the SCCOPT_USEDOCPAGESETTINGS option is set
to TRUE and printing grid lines between cells is specified in the input document.

Handle Types

VTHDOC, VTHEXPORT

Chapter 10
Spreadsheet and Database File Rendering

10-22

Scope

Local

Data Type

VTBOOL

Default

TRUE

10.5.9 SCCOPT_SSPRINTHEADINGS
If this option is TRUE, row and column headings will be rendered along with the data.

This option is overridden when the SCCOPT_USEDOCPAGESETTINGS option is set
to TRUE and printing column and row headers is specified in the input document.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

FALSE

10.5.10 SCCOPT_SSPRINTSCALEPERCENT
This option will scale spreadsheet pages by the percentage specified. The option has
no effect unless the SCCOPT_SSPRINTFITTOPAGE option is set to
SCCVW_SSPRINTFITMODE_SCALE.

This option must take a value between 1 and 100. If any value outside of this range is
used, the option will be ignored.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Chapter 10
Spreadsheet and Database File Rendering

10-23

Default

100

10.5.11 SCCOPT_SSPRINTSCALEXHIGH
This option will fit the spreadsheet image to the number of vertical pages specified.
The setting for this option will have no effect unless the
SCCOPT_SSPRINTFITTOPAGE option is set to
SCCVW_SSPRINTFITMODE_FITTOPAGES.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Default

1

10.5.12 SCCOPT_SSPRINTSCALEXWIDE
This option will fit the spreadsheet image to the number of horizontal pages specified.
The setting for this option will have no effect unless the
SCCOPT_SSPRINTFITTOPAGE option is set to
SCCVW_SSPRINTFITMODE_FITTOPAGES.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Default

1

10.5.13 SCCOPT_SSSHOWHIDDENCELLS
This option lets you determine whether or not to show hidden rows or columns when
rendering spreadsheets. It is used to expand the widths of cells that are hidden by
virtue of having their row height or column width reduced to 0. This is a BOOLEAN
option that will leave the data hidden when it is FALSE, and show all hidden rows and

Chapter 10
Spreadsheet and Database File Rendering

10-24

columns when it is TRUE, displayed using the default row width or default column
height.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Data

• TRUE: Displays hidden cells.

• FALSE: Does not display hidden cells.

Default

FALSE

10.5.14 SCCOPT_EX_SHOWHIDDENSSDATA
The setting for this option determines whether or not hidden sheets in a spreadsheet
will be included in the output. When set to FALSE (the default), the hidden elements
are not written. When set to TRUE, they are placed in the output in the same manner
as regular spreadsheet data.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Data

• TRUE: Allow hidden data to be placed in the output.

• FALSE: Prevent hidden data from being placed in the output.

Default

FALSE

10.5.15 SCCOPT_FILTERNOBLANK

If this option is TRUE, blank spreadsheet pages will not be produced when printing a
file or rendering it.

Chapter 10
Spreadsheet and Database File Rendering

10-25

Data Type

VTBOOL

Default

False

10.6 Page Rendering
This section discusses page rendering options.

10.6.1 SCCOPT_DEFAULTPAGESIZE
This option allows the developer to specify the size of each page in the generated PDF
output file. The size may be specified in inches, points, centimeters or picas. This
option is only valid when SCCOPT_USEDOCPAGESETTINGS is set to FALSE.

1 inch = 6 picas = 72 points = ~ 2.54 cm

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

DEFAULTPAGESIZE Structure

Data

Structure containing the height and width of the page, and a field indicating the units
used.

Default

8.5 inches by 11 inches

Limitation

In below three conditions, OIT will not support upscaling but display the original size of
the image. So SCCOPT_DEFAULTPAGESIZE/SCCOPT_GRAPHIC_OUTPUTDPI
does not work in below conditions. This is limitation of the product.

1. if ((colorscale == grayscale) && ((CompressionType==CCITT_GRP4) ||
(CompressionType==CCITT_GRP3_1D) || (CompressionType==CCITT_GRP3_2D)))

2. if ((CompressionType == COMP_JPEG) && (ColorSpace == CS_RGB))

3. if () (CompressionType == COMP_JPEG2000) && (ColorSpace == CS_RGB ||
dwColorSpace == CS_GRAYSCALE))

10.6.1.1 DEFAULTPAGESIZE Structure

Chapter 10
Page Rendering

10-26

typedef struct DEFAULTPAGESIZEtag
{
 VTFLOAT fHeight;
 VTFLOAT fWidth;
 VTDWORD wUnits;
}DEFAULTPAGESIZE, *LPDEFAULTPAGESIZE;

Parameters

Note: You must define a value for both fHeight and fWidth in wUnits. If you define only
height or only width, the image is not scaled.

• fHeight: Height of the page. Default is 11 inches.

• fWidth: Width of the page. Default is 8.5 inches.

• wUnits: One of the following (SCCGRAPHIC_INCHES is the default):

– SCCGRAPHIC_INCHES

– SCCGRAPHIC_POINTS

– SCCGRAPHIC_CENTIMETERS

– SCCGRAPHIC_PICAS

10.6.2 SCCOPT_DEFAULTPRINTMARGINS
This option specifies the top, left, bottom and right margins in twips from the edges of
the page. For instance, setting all the values to 1440 creates a 1-inch margin on all
sides. Page margins will only be applied when formatting word processing, database
and spreadsheet files.

Please note all margins are applied before scaling with the
SCCOPT_DBPRINTFITTOPAGE or SCCOPT_SSPRINTFITTOPAGE options.

This option is overridden when the SCCOPT_USEDOCPAGESETTINGS option is set
to TRUE and print margins are specified in the input document.

This option does not affect the output of bitmap, presentation, vector or archive files.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

The SCCVWPRINTMARGINS structure.

10.6.2.1 SCCVWPRINTMARGINS Structure
This structure is used by the SCCOPT_DEFAULTPRINTMARGINS option to specify
margin settings.

SCCVWPRINTMARGINS is a C data structure defined in sccvw.h as follows:

typedef struct SCCVWPRINTMARGINStag
 {

Chapter 10
Page Rendering

10-27

 VTDWORD dwTop;
 VTDWORD dwBottom;
 VTDWORD dwLeft;
 VTDWORD dwRight;
} SCCVWPRINTMARGINS, * PSCCVWPRINTMARGINS;

Parameters

• dwTop: Margin from the top edge of the page (in twips). Default is 1 inch.

• dwBottom: Margin from the bottom edge of the page (in twips). Default is 1 inch.

• dwLeft: Margin from the left edge of the page (in twips). Default is 1 inch.

• dwRight: Margin from the right edge of the page (in twips). Default is 1 inch.

10.6.3 SCCOPT_PRINTENDPAGE
This option indicates the page that rendering should end on. It is only valid if the option
SCCOPT_WHATTOPRINT has the value SCCVW_PRINT_PAGERANGE.

Note that page range settings are one-based and inclusive. Therefore, specifying a
range with SCCOPT_PRINTENDPAGE equal to 5 and SCCOPT_PRINTSTARTPAGE
equal to 3 would export any of the three pages that follow, if they exist: 3, 4 and 5.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Default

• 0: The last page at the end of the document.

10.6.4 SCCOPT_PRINTSTARTPAGE
This option indicates the page rendering should start on. It is only valid if the option
SCCOPT_WHATTOPRINT has the value SCCVW_PRINT_PAGERANGE.

Note that page range settings are one-based and inclusive. Therefore, specifying a
range with SCCOPT_PRINTENDPAGE equal to 5 and SCCOPT_PRINTSTARTPAGE
equal to 3 would export any of the three pages that follow, if they exist: 3, 4 and 5.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Chapter 10
Page Rendering

10-28

Data Type

VTDWORD

Default

• 0: Printing will begin with the first page of the document.

10.6.5 SCCOPT_USEDOCPAGESETTINGS
This option is used to select the document's page layout information when rendering.

If TRUE, the document's native (or author selected) page margins, paper size, page
scaling and page orientation are used when available from the filter.

The values of the SCCOPT_DEFAULTPAGESIZE,
SCCOPT_DEFAULTPRINTMARGINS,
SCCOPT_SSPRINTGRIDLINES,SCCOPT_SSPRINTHEADINGS,
SCCOPT_SSPRINTHEADINGS, SCCOPT_SSPRINTDIRECTION, and
SCCOPT_SSPRINTFITTOPAGE options are overridden if this option is set to TRUE
and the properties associated with those options are specified in the input document.
Additionally, print area and page breaks in spreadsheet documents are ignored unless
this option is set to TRUE.

If FALSE, the page margins, size, orientation and scaling are set to specific values
rather than those in the native document. The page size is forced to 8 1/2" x 11" in
portrait orientation, but this may be changed by setting the
SCCOPT_DEFAULTPAGESIZE option. The margins are forced 1" all around, but may
be changed by setting the SCCOPT_DEFAULTPRINTMARGINS option. The scaling
for the document will be set to 100%, although this may be changed by setting any of
the various scaling options.

It should be noted that this option also affects page orientation for both input
spreadsheets and word processing documents.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

TRUE

10.6.6 SCCOPT_WHATTOPRINT
This option indicates whether the whole file or a selected range of pages should be
rendered.

Chapter 10
Page Rendering

10-29

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

One of the following values:

• SCCVW_PRINT_PAGERANGE: The pages in the one-based, inclusive range
from SCCOPT_PRINTSTARTPAGE to SCCOPT_PRINTENDPAGE will be
printed.

• SCCVW_PRINT_ALLPAGES: The entire document will be printed.

Default

SCCVW_PRINT_ALLPAGES

10.6.7 SCCOPT_NUMBERFORMAT
This option is used to control the formatting of numbers. It is useful for setting
environment dependent variables related to international support. The default values
are retrieved from the operating system for the Windows platform, and are set to
logical U.S. defaults on all other platforms.

Data Type

SCCVWNUMBERFORMAT and SCCVWNUMBERFORMAT775 structures

10.6.7.1 SCCVWNUMBERFORMAT775 and SCCVWNUMBERFORMAT
Structures

These structures are used to set the SCCID_NUMBERFORMAT option. The fields of
the structures allow the developer to control variables related to international support.
Please note that the SCCVWNUMBERFORMAT775 structure always assumes 2-digit
year data, whereas the SCCVWNUMBERFORMAT structure allows for both 2- and 4-
digit year data.

These are C data structures defined in sccvw.h as follows:

typedef struct SCCVWNUMBERFORMAT775tag
 {
 VTTCHAR cDecimalSep;
 VTTCHAR cThousandSep;
 VTTCHAR cDateSep;
 VTTCHAR cTimeSep;
 VTTCHAR szCurrencySymbol[8];
 VTTCHAR szAM[8];
 VTTCHAR szPM[8];

Chapter 10
Page Rendering

10-30

 VTDWORD dwNumBytesAM;
 VTDWORD dwNumBytesPM;
 VTWORD wCurrencyPosition;
 VTWORD wShortDateOrder;
 } SCCVWNUMBERFORMAT775, * PSCCVWNUMBERFORMAT775;

typedef struct SCCVWNUMBERFORMATtag
 {
 VTTCHAR cDecimalSep;
 VTTCHAR cThousandSep;
 VTTCHAR cDateSep;
 VTTCHAR cTimeSep;
 VTTCHAR szCurrencySymbol[8];
 VTTCHAR szAM[8];
 VTTCHAR szPM[8];
 VTDWORD dwNumBytesAM
 VTDWORD dwNumBytesPM;
 VTWORD wCurrencyPosition
 VTWORD wShortDateOrder;
 VTWORD wShortDateYearDigits;
 VTWORD wShortDateMonthDigits;
 VTWORD wShortDateDayDigits;
 VTWORD wShortDateFlags;
 } SCCVWNUMBERFORMAT, * PSCCVWNUMBERFORMAT;

Parameters

• cDecimalSep: The character used for the decimal separator when formatting
currency.

• cThousandSep: The character used for the thousands separator when formatting
currency.

• cDateSep: The character used to separate years, months, and days when
formatting dates. This option only works on variable formats. For example, only
one of the several date formats in Microsoft Excel is variable.

• cTimeSep: The character used to separate hours, minutes, and seconds when
formatting times. This option only works on variable formats. For example, only
one of the several time formats in Microsoft Excel is variable.

• szCurrencySymbol: The string used for the currency symbol when formatting
currency.

• szAM: The string used to indicate "AM" when formatting times.

• szPM: The string used to indicate "PM" when formatting times.

• dwNumBytesAM: Number of bytes of the string stored in szAM.

• dwNumBytesPM: Number of bytes of the string stored in szPM.

• wCurrencyPosition: Flags that indicate the positioning of the currency symbol
when formatting currency. Only six specific filters are supported: SOC6, WG2,
WK4, WK6, WPW, and VISO.

– SCCVW_CURRENCY_LEADS: The currency symbol is placed before the
amount.

– SCCVW_CURRENCY_TRAILS: The currency symbol is placed after the
amount.

– SCCVW_CURRENCY_SPACE: A space is placed between the currency and
the amount.

Chapter 10
Page Rendering

10-31

– SCCVW_CURRENCY_NOSPACE: A space is not placed between the
currency and the amount.

• wShortDateOrder: Indicates the order used when formatting short dates (numeric
dates). This option only works on variable formats. For example, only one of the
several date formats in Microsoft Excel is variable. One of the following:

– SCCVW_DATEORDER_MDY: Month, Day, Year

– SCCVW_DATEORDER_DMY: Day, Month, Year

– SCCVW_DATEORDER_YMD: Year, Month, Date

• wShortDateYearDigits: This parameter is specific to the
SCCVWNUMBERFORMAT structure. This is the number of digits in the year as
specified by the Windows registry entry sShortDate. This option only works on
variable formats. For example, only one of the several date formats in Microsoft
Excel is variable.

• wShortDateMonthDigits: This parameter is specific to the
SCCVWNUMBERFORMAT structure. This is the number of digits in the month as
specified by the Windows registry entry sShortDate.

• wShortDateDayDigits: This parameter is specific to the
SCCVWNUMBERFORMAT structure. This is the number of digits in the day as
specified by the Windows registry entry sShortDate.

• wShortDateFlags: This parameter is specific to the SCCVWNUMBERFORMAT
structure. It is reserved for internal use.

10.6.8 SCCOPT_DOLINEARIZATION
Linearization is a method by which PDF renderers are able to render pages of the PDF
file before the entire document is loaded. Linearized output is both larger and takes
longer to produce; this option allows you to produce non-linearized PDF so that the
export process will be quicker and result in a smaller output file.

Type

VTBOOL

Default

FALSE

10.6.9 SCCOPT_WPEMAILHEADEROUTPUT
The former option SCCOPT_WPMIMEHEADEROUTPUT has been deprecated. This
option controls rendering of email headers.

Scope

Global

Data Type

VTDWORD

Chapter 10
Page Rendering

10-32

Data

One of these values:

• SCCUT_WP_EMAILHEADERSTANDARD: Displays "To," "From," "Subject," "CC,"
"BCC," "Date Sent," and "Attachments" header fields only. The filter outputs any
fields not listed above as hidden fields, so they will not display.

• SCCUT_WP_EMAILHEADERNONE: Displays no email header fields.

• SCCUT_WP_EMAILHEADERALL: Displays all available email headers.

Default

SCCUT_WP_EMAILHEADERSTANDARD

10.6.10 SCCOPT_MAILHEADERVISIBLE
Along with SCCOPT_MAILHEADERHIDDEN, these options exist to allow the
developer fine-grained control over what email headers are rendered. These options
modify which email headers are displayed, and are based on the most recent setting
of SCCOPT_WPEMAILHEADEROUTPUT. To implement a fully customized set of
email headers for display, your code should first set the
SCCOPT_WPEMAILHEADEROUTPUT option to select a baseline set of headers,
then use these options to selectively add or remove headers from that set.

Setting a header to be visible means that it will be rendered when that header is found
in a document of the appropriate type. Selected headers that are not present in the
input file will not have any corresponding output created for them (no 'empty' headers
will be created). Setting a header to be hidden means that it will not be rendered for
the document types specified.

Scope

Global

Data Type

SCCUTEMAILHEADERINFO structure

SCCUTEMAILHEADERINFO structure

This structure is used by the SCCOPT_WPMAILHEADERVISIBLE/
SCCOPT_WPMAILHEADERHIDDEN options to specify the headers to show or hide.

typedef struct SCCUTEMAILHEADERINFOtag
{
 VTDWORD dwHeaderID;
 VTDWORD dwSubtypeID;
 VTWORD wsMimeHeaderName[SCCUT_MAIL_NAMELENGTH];
 VTWORD wsMimeHeaderLabel[SCCUT_MAIL_NAMELENGTH];
} SCCUTEMAILHEADERINFO, *PSCCUTEMAILHEADERINFO;

Parameters:

• dwHeaderID

Either the ID of a predefined email header field, found in sccca.h (for example
SCCCA_MAIL_TO), or an identifer between

Chapter 10
Page Rendering

10-33

NONSTANDARD_HEADER_ID_BASE and NONSTANDARD_HEADER_ID_TOP
for tracking a user-defined header.

• dwSubTypeID

The type(s) of documents in which to either show or hide this header. These can
be joined with a bitwise OR operator. Available subtypes are:

SCCUT_MAILTYPE_EMAIL

SCCUT_MAILTYPE_JOURNAL

SCCUT_MAILTYPE_CONTACT

SCCUT_MAILTYPE_NOTE

SCCUT_MAILTYPE_APPOINTMENT

SCCUT_MAILTYPE_TASK

SCCUT_MAILTYPE_POST

SCCUT_MAILTYPE_DISTROLIST

• wsMimeHeaderName

A Unicode string containing the value of a user-specified MIME header name. This
value is only used when the dwHeaderId field contains a user-defined ID value
between NONSTANDARD_HEADER_ID_BASE and
NONSTANDARD_HEADER_ID_TOP.

• wsMimeHeaderLabel

Unicode string that will be used as the label for a user-defined MIME header. This
value is only used for user-defined headers.

Note:

Support for user-defined MIME headers is intended to allow Outside In to
selectively display MIME headers that are not included in the predefined set
of email headers known to Outside In. It is likely that most developers using
Outside In will not need to specify user-defined MIME headers. Knowledge of
the particular MIME headers present in the input email files is necessary in
order to take advantage of this capability.

Default

Not used

10.6.11 SCCOPT_MAILHEADERHIDDEN
Along with SCCOPT_MAILHEADERVISIBLE, these options exist to allow the
developer fine-grained control over what email headers are rendered. These options
modify which email headers are displayed, and are based on the most recent setting
of SCCOPT_WPEMAILHEADEROUTPUT. To implement a fully customized set of
email headers for display, your code should first set the
SCCOPT_WPEMAILHEADEROUTPUT option to select a baseline set of headers,
then use these options to selectively add or remove headers from that set.

Chapter 10
Page Rendering

10-34

Setting a header to be visible means that it will be rendered when that header is found
in a document of the appropriate type. Selected headers that are not present in the
input file will not have any corresponding output created for them (no 'empty' headers
will be created). Setting a header to be hidden means that it will not be rendered for
the document types specified.

Scope

Global

Data Type

See SCCUTEMAILHEADERINFO structure under SCCOPT_MAILHEADERVISIBLE.

Default

Not used

10.6.12 SCCOPT_EXPORTEMAILATTACHMENTS
This option toggles whether or not email attachments will be output as PDF. For input
files in all OIT-supported email formats that contain attachments, this option instructs
the PDF Export process to export the contents of the attachments to PDF. The
contents of the export are attached to the end of the email message so that only one
PDF output file is produced. In addition, hyperlinks are provided that link to bookmarks
marking the beginning of each attachment in the resulting PDF.

Data Type

VTBOOL

Data

• TRUE: Email attachments are output as PDF.

• FALSE: Email attachments are not included in the PDF.

Default

FALSE

10.6.13 SCCOPT_MARGIN_TEXT_FONT_NAME
This option lets you set the font to use for margin text.

Data Type

VTCWSTR (string for any valid CSS font name)

Default

Arial

10.6.14 SCCOPT_MARGIN_TEXT_FONT_SIZE
This option lets you set the font size to use for margin text.

Chapter 10
Page Rendering

10-35

Data Type

VTDWORD (increments of one-half point)

Default

9 pt.

10.6.15 SCCOPT_MARGIN_TEXT_LINE
This option lets you specify a text string to use for margin text.

Data Type

SCCEX_MARGINTEXTLINE

Default

None

10.6.16 SCCOPT_REDACTION_COLOR
This option provides the ability to specify the color used for a redaction rectangle
(black or white) as well as the color used (black or white) for the redaction code. When
the colors match, the redaction code will effectively be invisible. Settings should
default to Black redactions with White codes if not explicitly set. The values may be set
on each redaction individually, both in the UI and in the rendered output.

Data Type

SCCVWCOLORREF

Data

Any valid CSS color

10.6.17 SCCOPT_REDACTION_LABEL_FONT_NAME
This option sets the font name to be used for the redaction label.

Data Type

VTCWSTR (string for any valid CSS font name)

Default

Default display font

10.6.18 SCCOPT_REDACTION_LABEL_FONT_SIZE
This option lets you set the size of font to use for redaction labels. The font size may
be reduced to allow text to fit within a redaction rectangle.

Chapter 10
Page Rendering

10-36

Data Type

DWORD (size in half points)

Default

9 pts.

10.6.19 SCCOPT_REDACTIONS_ENABLED
This option tells the export to format the output to be redaction-capable. In practical
terms what this means is that all embeddings will be rasterized (routed through
sccimg) so that a rectangle in an embedding is consistent across all output formats.

Data Type

Boolean

Default

False

10.6.20 SCCOPT_SHOW_REDACTION_LABELS
This option allows you to display redaction labels in your output.

Data Type

VTBOOL

Default

False (no labels)

10.7 Font Rendering
This section discusses font rendering options.

10.7.1 SCCOPT_DEFAULTPRINTFONT
This is an advanced option that casual users of PDF Export may ignore.

This option sets the font to use when the chunker-specified font is either excluded by
SCCOPT_FONTFILTER or is not available on the system. It is also the font used
when the font in the source file is not available on the system performing the
conversion.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Chapter 10
Font Rendering

10-37

Data Type

SCCVWFONTSPECstructure

10.7.1.1 SCCVWFONTSPEC Structure
This structure is used by various options to specify a font.

SCCVWFONTSPEC is a C data structure defined in sccvw.h as follows:

typedef struct
 {
 VTTCHAR szFace[40];
 VTWORD wHeight;
 VTWORD wAttr;
 VTWORD wType;
 } SCCVWFONTSPEC, * LPSCCVWFONTSPEC;

Parameters

• szFace: The name of the font. For example, "Helvetica Compressed." The default
is "Arial", however this default is constrained by the fonts available on the system.

• wHeight: Size of the font in half points. For example, a value of 24 will produce a
12-point font. This size is only applied when the font size is not known. The default
is 10-point, however this default is constrained by the font sizes available on the
system.

• wAttr: The attributes of the font. This parameter is used primarily by the Oracle
Outside In Viewer Technology and is currently ignored by PDF Export.

• wType: Should be set to 0.

10.7.2 SCCOPT_EMBEDFONTS
This option allows the developer to specify whether or not fonts should be embedded
in the file. In order to comply with the PDF/A-1a spec, this option is forced to a value of
TRUE when FI_PDFA is selected for the output type.

Handle Type

VTHDOC, VTHEXPORT

Scope

local

Data Type

VTBOOL

Data

A Boolean value indicating if fonts should be embedded.

Default Value

TRUE

Chapter 10
Font Rendering

10-38

10.7.3 SCCOPT_FONTDIRECTORY
This option allows the developer to specify one or more font directories where fonts
are located for use by PDF Export. If multiple font directories are specified, they should
be delimited by a colon on Linux and UNIX systems and a semi-colon on Windows
systems.

This option must be set prior to performing any exports. Please note that PDF Export
supports single TrueType fonts (*.ttf, *.TTF) and TrueType collections (*.ttc, *.TTC),
not Windows bitmap fonts (*.fon, *.FON), or any other type of font. Also, PDF Export
does not require case-sensitive font filenames on UNIX systems.

Note:

Please note that the maximum path size is 256 characters - paths longer
than this will be truncated and will result in fonts not being discovered by
PDF Export.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTLPBYTE

Data

A path to the fonts.

Default

NONE - the option must be set.

10.7.4 SCCOPT_FONTFILTER
This option allows the developer to specify a list of fonts to be included or excluded
during the export process.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

FONTFILTERLIST Structure

Chapter 10
Font Rendering

10-39

Data

A structure containing the list of fonts and an attribute indicating whether the list is an
inclusion list or exclusion list.

Default

All fonts included during the export process.

10.7.4.1 FONTFILTERLIST Structure

typedef struct FONTFILTERLISTtag
{
 BOOL bExclude;
 PFONTNAMELIST pFontList;
}FONTFILTERLIST;

Parameters

• bExclude: If true, then the accompanying font list is an exclusion list. If false, the
list is an inclusion list.

• pFontList: Pointer to a FONTNAMELIST structure (see FONTNAMELIST
Structure) that contains the names of the fonts to include or exclude.

10.7.4.2 FONTNAMELIST Structure

typedef struct FONTNAMELISTtag *PFONTNAMELIST;
typedef struct FONTNAMELISTtag
{
 BYTE szFontName[SCCUT_FILENAMEMAX];
 PFONTNAMELIST pNextFont;
}FONTNAMELIST;

Parameters

• szFontName: Name of font to include or exclude.

• pNextFont: Pointer to a FONTNAMELIST structure that contains the name of the
next font to include or exclude. The pointer in the final structure in this linked list
should point to NULL.

10.7.5 SCCOPT_PRINTFONTALIAS
This option sets or gets printer font aliases according to the SCCVWFONTALIAS
structure.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Chapter 10
Font Rendering

10-40

Data Type

The SCCVWFONTALIAS structure.

10.7.5.1 SCCVWFONTALIAS Structure
This structure is used in the SCCOPT_PRINTFONTALIAS option.

SCCVWFONTALIAS is a C data structure defined in sccvw.h as follows:

typedef struct SCCVWFONTALIAStag
{
 VTDWORD dwSize;
 VTDWORD dwAliasID;
 VTDWORD dwFlags;
 VTWORD szwOriginal[SCCVW_FONTNAMEMAX];
 VTWORD szwAlias[SCCVW_FONTNAMEMAX * SCCVW_MAXALIASES]
} SCCVWFONTALIAS, * PSCCVWFONTALIAS;

Parameters

• dwSize: Must be set by the developer to sizeof(SCCVWFONTALIAS).

• dwAliasID: ID of the aliasing in the current list of aliases. In PDF Export, the
default is that no alias is applied.

• dwFlags: The usage of these flags depends on whether this structure is being
used with the DASetOption or DAGetOption message. It should be set to one of
the following:

– SCCVW_FONTALIAS_COUNT (DAGetOption): dwAliasID will be filled with
the count of current font aliases for that device.

– SCCVW_FONTALIAS_ALIASNAME (DASetOption): The alias of szwAlias for
szwOriginal will be used when szwOriginal is not available on the device.
When a font alias is added to the list, this can affect the alias count. If an alias
already exists for szwOriginal, the new szwAlias will replace it.

– SCCVW_FONTALIAS_ALIASNAME (DAGetOption): szwAlias will be filled if
there is an alias in the alias list for the font in szwOriginal on that device.

– SCCVW_FONTALIAS_GETALIASBYID (DAGetOption): szwAlias and
szwOriginal will be filled by the technology for the alias in the numbered slot
identified by the ID.

– SCCVW_FONTALIAS_GETALIASID (DAGetOption): dwAliasID will be set for
the font in szwOriginal. If none exists, the dwAliasID will be 0xFFFFFFF.

– SCCVW_FONTALIAS_REMOVEALIASBYID (DASetOption): The alias in that
slot will be removed if one exists. When a font alias is removed from the list,
this can affect the other alias IDs.

– SCCVW_FONTALIAS_REMOVEALIASBYNAME (DASetOption): The alias for
the font szwOriginal will be removed from the alias list if one exists. When a
font alias is removed from the list, this can affect the other alias IDs.

– SCCVW_FONTALIAS_REMOVEALL (DASetOption): The alias list will be
cleared out and the count will be zero.

Chapter 10
Font Rendering

10-41

– SCCVW_FONTALIAS_USEDEFAULTS (DASetOption): This clears the
existing alias list and sets it to a list of default aliases that is variable by
platform.

• szwOriginal: This represents the original name of a font that will be mapped when
this font is not available. This name should be a Unicode string.

• szwAlias: This represents the new name of a font that will be used as a
replacement for the unmapped font named in szwOriginal. This name should be a
Unicode string.

Data

A structure containing the font aliasing information.

Defaults

10.7.6 SCCOPT_FONTEMBEDPOLICY
This option determines whether or not to automatically embed Adobe Standard Base
14 fonts.

Handle Type

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

Value indicating which embedding policy to use. Must be one of the following:

• SCCFONTS_REDUCESIZE: do not embed Adobe Standard 14 fonts

• SCCFONTS_EMBEDALL: embed all fonts, including Adobe Standard 14 fonts

Default Value

SCCFONTS_REDUCESIZE

10.7.7 SCCOPT_RENDER_EMBEDDED_FONTS
This option allows you to disable the use of embedded fonts in PDF input files. If the
option is set to TRUE, the embedded fonts in the PDF input will be used to render text;
if the option is set to FALSE, the embedded fonts will not be used and the fallback is to
use fonts available to Outside In to render text.

Handle Type

VTHDOC, VTHEXPORT

Chapter 10
Font Rendering

10-42

Scope

local

Data Type

VTBOOL

Data

A Boolean value indicating if embedded fonts should be rendered.

Default Value

TRUE

10.7.8 SCCOPT_STROKE_TEXT
This option is used to stroke out (display as graphical primitives) text in an AutoCAD
file. Setting this option to FALSE would improve performance, but the visual fidelity
may be compromised.

• If the export for the conversion is text only, text is never stroked out.

• If the export is not text only, and the drawing is perspective, text will always be
stroked out (regardless of this option). This is due to the fact that in non-text only
situations visual fidelity is of importance, and handling of textual objects in
perspective drawings is more accurate with stroked out text. If the conversion is
non-text only and the drawing is not perspective, this option determines if text
should be stroked.

Note that when this option is TRUE, some special characters appear as asterisks or
question marks due to limited support of characters for stroking out text.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

TRUE

10.8 Watermarks
This section discusses watermark options.

You can use any raster formats supported by OIT as watermarks. By default, the
watermark image is centered in the middle of the target image.

Chapter 10
Watermarks

10-43

10.8.1 SCCOPT_GRAPHIC_WATERMARK_OPACITY
This option must be set and defined to turn on watermarking support. A value of 0 is
default and turns watermarking off. Values (1 to 255) specify a level of transparency.
255 is fully opaque. 1 is very transparent.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

A value between 1 and 255. The value of 0 turns watermarking off.

Default

0

10.8.2 SCCOPT_GRAPHIC_WATERMARK_SCALETYPE
Indicates whether to scale the watermark image or not. A value of
SCCGRAPHIC_WATERMARK_SCALETYPE_NONE means that we blend the
watermark onto the original graphic with the original watermark height and width. This
is the default value. A value of
SCCGRAPHIC_WATERMARK_SCALETYPE_PERCENT means that we will scale the
watermark to be a certain percentage of the output page size.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

• SCCGRAPHIC_WATERMARK_SCALETYPE_NONE: When set means no scaling
of the watermark image is to be done.

• SCCGRAPHIC_WATERMARK_SCALETYPE_PERCENT: When set means that
the watermark image is to be scaled to a percentage of its size. The percentage
that is used is set by the SCCOPT_GRAPHIC_WATERMARK_SCALEPERCENT
option.

Chapter 10
Watermarks

10-44

Default

SCCGRAPHIC_WATERMARK_SCALETYPE_NONE

10.8.3 SCCOPT_GRAPHIC_WATERMARK_SCALEPERCENT
Active when SCCOPT_GRAPHIC_WATERMARK_SCALETYPE is set to
SCCGRAPHIC_WATERMARK_SCALETYPE_PERCENT. Values (1 to 100) scale the
watermark to be a specified percent of its original size. A value of 100 (default)
overlays the target image with the watermark image at its original size; e.g., if the
original graphic watermark is 4x4 and the target image is 6x8, the graphic watermark
will be scaled to 4x4 to overlay the target image.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

Values of 1 to 100 scale the watermark image to a percentage of the watermark
image's size.

Default

100

10.9 Callbacks
This section discusses callback options.

10.9.1 SCCOPT_EX_CALLBACKS
This is an advanced option that casual users of PDF Export may ignore.

This option is used to disable callbacks being made from PDF Export. Callbacks that
are disabled will behave as if they were made and the developer had returned
SCCERR_NOTHANDLED.

The option takes a VTDWORD field of flags. When the flag is set, the callback is
enabled. By default, all callbacks are enabled. You can activate multiple callbacks by
bitwise OR-ing them together. You can also disable multiple callbacks by bitwise &-ing
the SCCEX_CALLBACKFLAG_ALLENABLED value with the one's complement of the
corresponding callback flags. The following #defines are to be used for enabling the
various callbacks:

In addition, the following two special values are available:

Chapter 10
Callbacks

10-45

• SCCEX_CALLBACKFLAG_ALLDISABLED: Disables the receipt of all callbacks.
Additionally, bitwise OR-ing this value with one or more flags enables the
corresponding callbacks. For example, SCCEX_CALLBACKFLAG_ALTLINK |
SCCEX_CALLBACKFLAG_CREATENEWFILE enables the ALTLINK and
CREATENEWFILE callbacks, but disables all others.

• SCCEX_CALLBACKFLAG_ALLENABLED: Enables the receipt of all callbacks.
Additionally, bitwise &-ing this value with the one's complement of one or more
flags disables the corresponding callbacks. For example,
SCCEX_CALLBACKFLAG_ALLENABLED& (~SCCEX_CALLBACKALTLINK &
~SCCEX_CALLBACKFLAG_CREATENEWFILE) disables the ALTLINK and
CREATENEWFILE callbacks, but enables all others.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

One or more of the valid flags, bitwise OR-ed together

Default

• SCCEX_CALLBACKFLAG_ALLENABLED: All callbacks are available to the
developer.

10.9.2 SCCOPT_EX_UNICODECALLBACKSTR
This option determines the format of strings used in the callback functions. For those
structures that contain a field of type BYTE or LPBYTE, a comparable structure has
been added which has a similar field of type WORD or LPWORD. These structures will
have the same name as the original structure, with the addition of a "W" at the end.

When this option is set to TRUE, any time a callback uses a structure with a string, it
will use the new structure. Also, any strings that the callback function returns will be
expected to follow the same guidelines. If the option is set to FALSE, all callbacks will
use single-byte character strings.

For example, if this option is set to TRUE, and the
EX_CALLBACK_ID_CREATENEWFILE callback is called, the pExportData parameter
to the callback will point to an EXURLFILEIOCALLBACKDATAW structure. If the
option is set to FALSE, the pCommandOrInfoData parameter will point to an
EXURLFILEIOCALLBACKDATA structure.

This option should be set before EXOpenExport is called.

Handle Types

VTHDOC

Chapter 10
Callbacks

10-46

Scope

Local

Data Type

VTBOOL

Data

One of the following values:

• TRUE: Use Unicode strings in callbacks.

• FALSE: Do not use Unicode strings in callbacks.

Default

FALSE

10.10 File System
This section discusses file system options.

10.10.1 SCCOPT_IO_BUFFERSIZE
This set of three options allows the user to adjust buffer sizes to tailor memory usage
to the machine's ability. The numbers specified in these options are in kilobytes. These
are advanced options that casual users of PDF Export may ignore.

Handle Type

NULL, VTHDOC

Scope

Global

Data Type

SCCBUFFEROPTIONS Structure

Data

A buffer options structure

10.10.1.1 SCCBUFFEROPTIONS Structure

typedef struct SCCBUFFEROPTIONStag
{
 VTDWORD dwReadBufferSize; /* size of the I/O Read buffer
 in KB */
 VTDWORD dwMMapBufferSize; /* maximum size for the I/O
 Memory Map buffer in KB */
 VTDWORD dwTempBufferSize; /* maximum size for the memory-
 mapped temp files in KB */

Chapter 10
File System

10-47

 VTDWORD dwFlags; /* use flags */
} SCCBUFFEROPTIONS, *PSCCBUFFEROPTIONS;

Parameters

• dwReadBufferSize: Used to define the number of bytes that will read from disk into
memory at any given time. Once the buffer has data, further file reads will proceed
within the buffer until the end of the buffer is reached, at which point the buffer will
again be filled from the disk. This can lead to performance improvements in many
file formats, regardless of the size of the document.

• dwMMapBufferSize: Used to define a maximum size that a document can be and
use a memory-mapped I/O model. In this situation, the entire file is read from disk
into memory and all further I/O is performed on the data in memory. This can lead
to significantly improved performance, but note that either the entire file can be
read into memory, or it cannot. If both of these buffers are set, then if the file is
smaller than the dwMMapBufferSize, the entire file will be read into memory; if not,
it will be read in blocks defined by the dwReadBufferSize.

• dwTempBufferSize: The maximum size that a temporary file can occupy in
memory before being written to disk as a physical file. Storing temporary files in
memory can boost performance on archives, files that have embedded objects or
attachments. If set to 0, all temporary files will be written to disk.

• dwFlags

– SCCBUFOPT_SET_READBUFSIZE 1

– SCCBUFOPT_SET_MMAPBUFSIZE 2

– SCCBUFOPT_SET_TEMPBUFSIZE 4

To set any of the three buffer sizes, set the corresponding flag while calling
dwSetOption.

Default

The default settings for these options are:

• #define SCCBUFOPT_DEFAULT_READBUFSIZE 2: A 2KB read buffer.

• #define SCCBUFOPT_DEFAULT_MMAPBUFSIZE 8192: An 8MB memory-map
size.

• #define SCCBUFOPT_DEFAULT_TEMPBUFSIZE 2048: A 2MB temp-file limit.

Minimum and maximum sizes for each are:

• SCCBUFOPT_MIN_READBUFSIZE 1: Read one Kbyte at a time.

• SCCBUFOPT_MIN_MMAPBUFSIZE 0: Don't use memory-mapped input.

• SCCBUFOPT_MIN_TEMPBUFSIZE 0: Don't use memory temp files

• SCCBUFOPT_MAX_READBUFSIZE 0x003fffff:
SCCBUFOPT_MAX_MMAPBUFSIZE 0x003fffff

• SCCBUFOPT_MAX_TEMPBUFSIZE 0x003fffff: These maximums correspond to
the largest file size possible under the 4GB DWORD limit.

Chapter 10
File System

10-48

10.10.2 SCCOPT_TEMPDIR
From time to time, the technology needs to create one or more temporary files. This
option sets the directory to be used for those files.

It is recommended that this option be set as part of a system to clean up temporary
files left behind in the event of abnormal program termination. By using this option with
code to delete files older than a predefined time limit, the OEM can help to ensure that
the number of temporary files does not grow without limit.

Note:

This option will be ignored if SCCOPT_REDIRECTTEMPFILE is set.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

SCCUTTEMPDIRSPEC structure

10.10.2.1 SCCUTTEMPDIRSPEC Structure
This structure is used in the SCCOPT_TEMPDIR option.

SCCUTTEMPDIRSPEC is a C data structure defined in sccvw.h as follows:

typedef struct SCCUTTEMPDIRSPEC
{
 VTDWORD dwSize;
 VTDWORD dwSpecType;
 VTBYTE szTempDirName[SCCUT_FILENAMEMAX];
} SCCUTTEMPDIRSPEC, * LPSCCUTTEMPDIRSPEC;

There is currently a limitation. dwSpecType describes the contents of
szTempDirName. Together, dwSpecType and szTempDirName describe the location
of the source file. The only dwSpecType values supported at this time are:

• IOTYPE_ANSIPATH: Windows only. szTempDirName points to a NULL-
terminated full path name using the ANSI character set and FAT 8.3 (Win16) or
NTFS (Win32 and Win64) file name conventions.

• IOTYPE_UNICODEPATH: Windows only. szTempDirName points to a NULL-
terminated full path name using the Unicode character set and NTFS file name
conventions. Note that the length of the path name is limited to
SCCUT_FILENAMEMAX bytes, or (SCCUT_FILENAMEMAX / 2) double-byte
Unicode characters.

Chapter 10
File System

10-49

• IOTYPE_UNIXPATH: UNIX platforms only. szTempDirName points to a NULL-
terminated full path name using the system default character set and UNIX path
conventions.

Specifically not supported at this time is IOTYPE_REDIRECT.

Users should also note that temporary files created by the technology are not subject
to callbacks (such as EX_CALLBACK_ID_CREATENEWFILE) normally made when
files are created.

Parameters

• dwSize: Set to sizeof(SCCUTTEMPDIRSPEC).

• dwSpecType: IOTYPE_ANSIPATH, IOTYPE_UNICODEPATH, or
IOTYPE_UNIXPATH

• szTempDirName: The path to the directory to use for the temporary files. Note that
if all SCCUT_FILENAMEMAX bytes in the buffer are filled, there will not be space
left for file names.

Default

The system default directory for temporary files. On UNIX systems, this is the value of
environment variable $TMP. On Windows systems, it is the value of environment
variable %TMP%.

10.10.3 SCCOPT_DOCUMENTMEMORYMODE
This option determines the maximum amount of memory that the chunker may use to
store the document's data, from 4 MB to 1 GB. The more memory the chunker has
available to it, the less often it needs to re-read data from the document.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTDWORD

Parameters

• SCCDOCUMENTMEMORYMODE_SMALLEST (4MB)

• SCCDOCUMENTMEMORYMODE_SMALL (16MB)

• SCCDOCUMENTMEMORYMODE_MEDIUM (64MB)

• SCCDOCUMENTMEMORYMODE_LARGE (256MB)

• SCCDOCUMENTMEMORYMODE_LARGEST (1 GB)

Default

SCCDOCUMENTMEMORYMODE_LARGE (256MB)

Chapter 10
File System

10-50

10.10.4 SCCOPT_REDIRECTTEMPFILE
This option is set when the developer wants to use redirected IO to completely take
over responsibility for the low level IO calls of the temp file.

Handle Types

NULL, VTHDOC

Scope

Global (not persistent)

Data Type

VTLPVOID: pCallbackFunc

Function pointer of the redirect IO callback.

Redirect call back function:

typedef
{
 VTDWORD (* REDIRECTTEMPFILECALLBACKPROC)
 (HIOFILE *phFile,
 VTVOID *pSpec,
 VTDWORD dwFileFlags);

There is another option to handle the temp directory, SCCOPT_TEMPDIR. Only one
of these two can be set by the developer. The SCCOPT_TEMPDIR option will be
ignored if SCCOPT_REDIRECTTEMPFILE is set. These files may be safely deleted
when the Close function is called.

Chapter 10
File System

10-51

Part III
Using the Java API

This section provides details about using the SDK with the Java API.

Part III contains the following chapters:

• Introduction to the Java API

• PDF Export Java Classes

11
Introduction to the Java API

This chapter provides an introduction to the Java API for PDF Export.
The Java API is an add-on to the Outside In Export SDKs that enables developers to
use Java to create applications using Outside In Technology.

This chapter covers the following topics:

• Requirements

• Getting Started

11.1 Requirements
To use the API, the following set of modules and tools are required:

• Java JDK 6 or later

• The Outside In developer's redistributable modules for your product(s)

• The API libraries:

– oilink.jar - The Java library to access the Outside In technologies

– oilink (on Unix)/oilink.exe (on Windows) - The bridge modules between Java
and the C-APIs.

All of the Outside In modules should be in the same directory as oilink.jar.

The SDK includes sample source code to demonstrate how such web applications
may be written. These sample applications are written as simply and generically as
possible, and will not fill all of the needs of your particular application. They are
intended for instructional purposes only.

11.2 Getting Started
There are two steps in developing applications using the APIs. In the first step, you
configure the environment to create your application (typical programming tasks not
directly related to these APIs); and in the second step, you generate code to utilize the
functionality of these libraries.

11.2.1 Configure the Environment
To set up the environment to create a Java application, you need to add the oilink.jar
library to your project. (This can be done in Eclipse in the Project Properties dialog by
selecting Java Build Path properties > Libraries tab > Add external JARs > browse to
oilink.jar.)

11-1

11.2.2 Generate Code
Sample application code included with the SDK, OITSample, is a minimal
demonstration of how to use this API.

All the functionality required to perform a conversion is provided in an Exporter object.
The basic process of exporting a file involves the following tasks:

1. Create an Exporter object.

2. Configure the export.

3. Set the source and primary destination files.

4. Set the output type.

5. (Optional) Provide a callback handler.

6. Run the export.

Tasks 2 through 5 can be done in any order between the first and last task.

11.2.2.1 Create an Exporter Object
To obtain access to the Outside In functionality, you should call the utility function in
the "OutsideIn" class. This will provide you an instance of an Exporter Object.

Exporter exporter = OutsideIn.newLocalExporter();

11.2.2.2 Configure the Output
The Outside In API is highly configurable, and presents numerous options to fine-tune
the way a document is exported. Each option has a "set" and "get" method to set or
retrieve the currently set value.

exporter.setPerformExtendedFI(true);
int timezoneOffset = exporter.getTimeZoneOffset();

11.2.2.3 Set the Source and Primary Destination Files
You are required to specify the source file and the destination file. This is done
similarly to setting options using "set" methods.

exporter.setSourceFile(inputFile);
exporter.setDestinationFile(outputFile);

There are other options that can be set at this time to specify the way to handle the
input file, such as providing a SourceFormat to provide a mechanism to handle the
input file in a different format than that which it is identified as.

The API also supports opening certain types of embedded documents from within an
input file. For example, a .zip file may contain a number of embedded documents; and
an email message saved as a .msg file may contain attachments. The API provides
the means of opening these types of embedded documents. This can be done by
opening the parent document and then the embedded document can be opened
through this exporter object.

// subdocId is the sequential number of the node in the archive file
Exporter exporterNode = exporter.newArchiveNodeExporter(subdocId);

Chapter 11
Getting Started

11-2

11.2.2.4 Set the Output Type
In this step, you specify the output format.

exporter.setDestinationFormat(FileFormat.FI_PDF);

11.2.2.5 Provide a Callback Handler
Outside In Technology provides callbacks that allow the developer to intervene at
critical points in the export process. To respond to these callbacks, you have to
subscribe to any messages that you are interested in by overriding the message
handlers from the Callback class. After creating an object of this class, set the callback
option to this object and the messages will be passed to your object.

class CallbackHandler extends Callback
{
 … // implementation of messages to handle - described in the API documentation
}
CallbackHandler callback = new CallbackHandler();
exporter.setCallbackHandler(callback);

11.2.2.6 Run the Export
After all the previous steps are completed, you can produce the desired output.

exporter.export();

Chapter 11
Getting Started

11-3

12
PDF Export Java Classes

This chapter describes the PDF Export Java classes.
The following classes are covered:

• Annotation Class

• ArchiveNode Class

• Callback Class

• ColorInfo Class

• Exporter Interface

• ExportStatus Class

• FileFormat Class

• FontAliases Class

• FontInfo Class

• FontList Class

• HighlightTextAnnotation Class

• MailHeaders Class

• Margins Class

• MarginText Class

• Option Interface

• OutsideIn

• OutsideInException Class

• PageInfo Class

• PageRange Class

12.1 Annotation Class
Annotation is an abstract base class for the Annotation objects.

Namespace

com.oracle.outsidein.annotations

Accessors

• Height (long) Height of area in coordinates or rows

void setHeight(long)
long getHeight()

• Left (long) Leftmost coordinate or column

12-1

void setLeft(long)
long getLeft()

• Opacity (float) Opacity of the annotation. Range 0.0 - 1.0; setting opacity to 0
makes the annotation invisible

void setOpacity(float) throws OutsideInException
float getOpacity()

• SectionIndex (long) 0-based page/sheet/image/slide index

void setSectionIndex(long)
long getSectionIndex()

• Top (long) Top coordinate or row

void setTop(long)
long getTop()

• Units (Annotation.UnitTypeValue) Unit type

void setUnits(Annotation.UnitTypeValue)
Annotation.UnitTypeValue getUnits()

• UserId (long) User Data

void setUserId(long)
long getUserId()

• Width (long) Width of area in coordinates or columns

void setWidth(long)
long getWidth()

Annotation.UnitTypeValue Enumeration

The UnitTypeValue is an enumeration of the various unit types that annotation
positions can be described in.

• Pixels: Units specified in Pixels

• Twips: Units specified in Twips (1/1440th of an inch)

• Cells: Units specified in cell positions

12.2 ArchiveNode Class
ArchiveNode provides information about an archive node. This is a read-only class
where the technology fills in all the values.

Namespace

com.oracle.outsidein

Accessors

• boolean isFolder() - A value of true indicates that the record is an archive node.

• int getFileSize() - File size of the archive node

• java.util.Date getTime() - Time the archive node was created

• int getNodeNum() - Serial number of the archive node in the archive

• String getNodeName() - The name of the archive node

Chapter 12
ArchiveNode Class

12-2

12.3 Callback Class
Callback messages are notifications that come from Outside In during the export
process, providing information and sometimes the opportunity to customize the
generated output.

Namespace

com.oracle.outsidein

To access callback messages, your code must create an object that inherits from
Callback and pass it through the API's SetCallbackHandler method. Your object can
implement methods that override the default behavior for whichever methods your
application is interested in.

Callback has two methods that you can override: createNewFile and newFileInfo.

12.3.1 createNewFile
CreateNewFileResponse createNewFile(FileFormat parentOutputId, FileFormat outputId,
 AssociationValue association, String path) throws IOException

This callback is made any time a new output file needs to be generated. This gives the
developer the chance to affect where the new output file is created, how it is named,
and the URL (if any) used to reference the file.

Parameters

• parentOutputId: File format identifier of the parent file

• outputId: File format identifier of the file created

• association: An AssociationValue that describes relationship between the primary
output file and the new file.

• path: Full path of the file to be created

Return Value

To take action in response to this notification, return a CreateNewFileResponse object
with the new file information. If you wish to accept the defaults for the path and URL,
you may return null.

12.3.1.1 CreateNewFileResponse Class
This is a class to define a new output file location in response to a CreateNewFile
callback. If you do not wish to change the path to the new output file, you may use the
path as received. If you do not wish to specify the URL for the new file, you many
specify it as null.

Constructor

CreateNewFileResponse(File file, String url) throws IOException

• file: File object containing the full path to the new file

Chapter 12
Callback Class

12-3

• url: A new URL that references the newly created file. This parameter can be null.

CreateNewFileResponse(SeekableByteChannel6 redirect, String url) throws IOException

• redirect: Object that will be written to as the destination of the transform

• url: A new URL that references the newly created file.This parameter can be null.

AssociationValue Enumeration

This enumeration defines, for a new file created by an export process, the different
possible associations between the new file and the primary output file. Its value may
be one of the following:

• ROOT - indicates the primary output file

• CHILD - a new file linked (directly or indirectly) from the primary output file

• SIBLING - indicates new files not linked from the primary output file

• COPY - the file was copied as a part of a template macro operation.

• REQUIREDNAME - not used

Note that some of these relationships will not be possible in all Outside In Export
SDKs.

12.3.2 newFileInfo
void newFileInfo(FileFormat parentOutputId, FileFormat outputId,
 AssociationValue association, String path, String url) throws IOException

This informational callback is made just after each new file has been created.

Parameters

• parentOutputId: File format identifier of the parent file

• outputId: File format identifier of the file created

• association: An AssociationValue that describes relationship between the primary
output file and the new file.

• path: Full path of the file created

• url: URL that references the newly created file

Example

Here is a basic callback handler that notifies an application that it has received
newFileInfo notifications.

 public static class CallbackHandler extends Callback
 {
 myApplication m_theApp;

 public CallbackHandler(myApplication app)
 {
 m_theApp = app;
 }

 public void newFileInfo(FileFormat parentOutputId,
 FileFormat outputId, AssociationValue association,

Chapter 12
Callback Class

12-4

 String path, String url) throws IOException
 {
 if(association == AssociationValue.ROOT)
 m_theApp.primaryOutputIsReady(true);

 m_theApp.newOutputFile(path);
 }
 }

12.3.3 openFile
OpenFileResponse openFile(FileTypeFalue fileType, String fileName) throws
IOException

This callback is made any time a new file needs to be opened.

Parameters

• fileType: Type of file being requested to be opened

• fileName: Name of the file to be opened

Return Value

To take action in response to this method, return an OpenFileResponse object.

FileTypeValue Enumeration

This enumeration defines the type of file being requested to be opened. Its value may
be one of the following:

• INPUT: File to be opened (path unknown)

• TEMPLATE: Template file to be opened

• PATH: Full file name of the file to be opened

• OTHER: Not used

12.3.3.1 OpenFileResponse Class
This is a class to define a new file or redirected I/O object in response to an openFile()
callback.

Constructors

OpenFileResponse(File file)

• file: File object with full path to the new file

OpenFileResponse(SeekableByteChannel6 redirect)

• redirect: A redirected I/O object to which the file data will be written

12.3.4 createTempFile
CreateTempFileResponse createTempFile() throws IOException

This callback is made any time a new temporary file needs to be generated. This gives
the developer the chance to handle the reading and writing of the temporary file.

Chapter 12
Callback Class

12-5

Return Value

To take action in response to this notification, return a CreateTempFileResponse
object with the temporary file information.

12.3.4.1 CreateTempFileResponseClass
This is a class to define a new redirected I/O object in response to a createTempFile()
callback.

Constructors

CreateTempFileResponse(SeekableByteChannel6 redirect)

• redirect: A redirected I/O object to which the file data will be written and read from

12.4 ColorInfo Class
ColorInfo is a class to define a color or to use a default color in appropriate cases.

Namespace

com.oracle.outsidein

Constructors

ColorInfo()

Initializes a ColorInfo object to use the default color.

public ColorInfo(byte red,
 byte green,
 byte blue)

Initializes a ColorInfo object with the specified RGB values.

Accessors

• byte getBlue() - Blue component of the color

• byte getGreen() - Green component of the color

• byte getRed() - Red component of the color

• boolean isDefaultColor() - Returns true if the default color is used

12.5 Exporter Interface
This section describes the properties and methods of Exporter.

All of Outside In's Exporter functionality can be accessed through the Exporter
Interface. The object returned by OutsideIn class is an implementation of this interface.
This class derives from the Document Interface, which in turn is derived from the
OptionsCache Interface.

Chapter 12
ColorInfo Class

12-6

Namespace

com.oracle.outsidein

Methods

• getExportStatus

ExportStatus getExportStatus()

This function is used to determine if there were conversion problems during an
export. The ExportStatus object returned may have information about sub-
document failures, areas of a conversion that may not have high fidelity with the
original document. When applicable the number of pages in the output is also
provided.

• newSubDocumentExporter

Exporter newSubDocumentExporter(
 int SubDocId,
 SubDocumentIdentifierTypeValue idType
) throws OutsideInException

Create a new Exporter for a subdocument.

SubDocId: Identifier of the subdocument

idType: Type of subdocument

SubDocumentIdentifierTypeValue: This is an enumeration for the type of
subdocument being opened.

– XMLEXPORTLOCATOR: Subdocument to be opened is based on output of
XML Export (SubdocId is the value of the object_id attribute of a locator
element.)

– ATTACHMENTLOCATOR: Subdocument to be opened is based on the
locator value provided by the one of the Export SDKs.

– EMAILATTACHMENTINDEX: Subdocument to be opened is based on the
index of the attachment from an email message. (SubdocId is the zero-based
index of the attachment from an email message file. The first attachment
presented by OutsideIn has the index value 0, the second has the index value
1, etc.)

Returns: A new Exporter object for the subdocument

• newSubObjectExporter

Exporter newSubObjectExporter(
 SubObjectTypeValue objType,
 int data1,
 int data2,
 int data3,
 int data4
) throws OutsideInException

Create a new Exporter for a subobject.

objType: Type of subobject

data1: Data identifying the subobject from SearchML

Chapter 12
Exporter Interface

12-7

data2: Data identifying the subobject from SearchML

data3: Data identifying the subobject from SearchML

data4: Data identifying the subobject from SearchML

Returns: A new Exporter object for the subobject

SubObjectTypeValue: An enumeration to describe the type of SubObject to open.

– LinkedObject

– EmbeddedObject

– CompressedFile

– Attachment

• newArchiveNodeExporter

Exporter newArchiveNodeExporter(
 int dwRecordNum
) throws OutsideInException

Create a new Exporter for an archive node. You may get the number of nodes in
an archive using getArchiveNodeCount. The nodes are numbered from 0 to
getArchiveNodeCount -1.

dwRecordNum: The number of the record to retrieve information about. The first
node is node 0 and the total number of nodes may be obtained from
getArchiveNodeCount.

Returns: A new Exporter object for the archive node

• newArchiveNodeExporter with Search Export Data

Exporter newArchiveNodeExporter(
 int flags,
 int params1,
 int params2
) throws OutsideInException

Create a new Exporter for an archive node. To use this function, you must first
process the archive with Search Export and save the Node data for later use in
this function.

Flags: Special flags value from Search Export

Params1: Data1 from Search Export

Params2: Data2 from Search Export

Returns: A new Exporter object for the archive node

• export

void export() throws OutsideInException

Perform the conversion and close the export process keeping the source
document open.

void export(boolean bLeaveSourceOpen) throws OutsideInException

Perform the conversion and keep the source document open or close it based on
the value of bLeaveSourceOpen.

Chapter 12
Exporter Interface

12-8

bLeaveSourceOpen: If set to true, keeps the source document open for next
export process.

Note:

Before Release 8.5.3, calling Export() with no parameters, would leave
the source document open. The default behavior starting with Release
8.5.3 is to close the document after exporting the file. If you would like to
keep the file open for other conversions, use this method with
"bLeaveSourceOpen" set to true.

setDestinationFile

OptionsCache setDestinationFile(
 String filename
) throws OutsideInException

Set the location of the destination file

filename: Full path to the destination file

Returns: The updated options object

• setExportTimeout

OptionsCache setExportTimeout(int millisecondsTimeout)

This method sets the time that the export process should wait for a response from
the Outside In export engine to complete the export of a document, setting an
upper limit on the time that will elapse during a call to export(). If the specified
length of time is reached before the export has completed, the export operation
will be terminated and an OutsideInException will be thrown. If this option is not
set, the default timeout is 5 minutes.

• newLocalExporter

static Exporter newLocalExporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the
source Exporter. All the options of source are copied to the new Exporter. The
source and destination file information will not be copied.

12.5.1 Annotatable Interface
All of the Outside In annotation-related methods are accessed through the Annotatable
Interface.

NameSpace

com.oracle.outsidein.annotations

Methods

• addTextHighlight

Chapter 12
Exporter Interface

12-9

void addTextHighlight(
 HighlightTextAnnotation textanno
)

Highlight text in a document.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

• addTextHighlight and Add Annotation Properties

void addTextHighlight(
 HighlightTextAnnotation textanno,
 Map<String, String> Properties
)

Highlight text in a document and associate properties with the annotation.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

Properties: Key value pairs of name/value of properties associated with this
annotation

• addTextHighlight and Associate a Comment

void addTextHighlight(
 HighlightTextAnnotation textanno,
 String Comment
)

Highlight text in a document and associate a comment with the highlight.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

Comment: Comment text to associate with the annotation

• addTextHighlight with Comment and Properties to Annotation

void addTextHighlight(
 HighlightTextAnnotation textanno,
 String Comment,
 Map<String, String> Properties
)

Highlight text in a document and provide comment text and properties to be
associated with the annotation.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

Comment: Comment text to associate with the annotation

Properties: Key value pairs of name/value of properties associated with this
annotation

12.5.2 Document Interface
All of the Outside In document-related methods are accessed through the Document
Interface.

Chapter 12
Exporter Interface

12-10

Namespace

com.oracle.outsidein

Methods

• close

void close()

Closes the currently open document.

• getArchiveNodeCount

int getArchiveNodeCount() throws OutsideInException

Retrieves the number of nodes in an archive file.

Returns the number of nodes in the archive file or 0 if the file is not an archive file.

• getFileId

FileFormat getFileId(FileIdInfoFlagValue dwFlags) throws OutsideInException

Gets the format of the file based on the technology's content-based file
identification process.

dwFlags: Option to retrieve the file identification pre-Extended or post-Extended
Test

Returns the format identifier of the file.

• getArchiveNode

ArchiveNode getArchiveNode(int nNodeNum) throws OutsideInException

Retrieves information about a record in an archive file. You may get the number of
nodes in an archive using getArchiveNodeCount.

nNodeNum: The number of the record to retrieve information about. The first node
is node 0.

Return Value: An ArchiveNode object with the information about the record

• saveArchiveNode

void saveArchiveNode(
 int nNodeNum,
 File file) throws OutsideInException

Extracts a record in an archive file to disk.

nNodeNumType: The number of the record to retrieve information about. The first
node is node 0.

file: The destination file to which the file will be extracted.

• saveArchiveNode with Search Export Flags

void saveArchiveNode(
 int flags,
 int params1,
 int params2,
 File file) throws OutsideInException

Chapter 12
Exporter Interface

12-11

Extracts a record in an archive file to disk without reading the data for all nodes in
the archive in a sequential order. To use this function, you must first process the
archive with Search Export and save the Node data for later use in this function.

flagsType: Special flags value from Search Export

params1: Data1 from Search Export

params2: Data2 from Search Export

file: The destination file to which the file will be extracted

• setSourceFile

OptionsCache setSourceFile(String filename) throws OutsideInException

Set the source document.

filename: Full path of the source document

Returns: The options cache object associated with this document

12.5.3 SeekableByteChannel6 Interface
Enables API users to handle I/O for the source and destination documents. Implement
this interface to control I/O operations such as reading, writing, and seeking. This
interface mimics the java.nio.channels.SeekableByteChannel interface which is only
available in Java 7 and later. Note that SeekableByteChannel6 will be removed in
favor of java.nio.channels.SeekableByteChannel if support for Java 6 is dropped in a
future release of the Outside In Java API. Until then, this interface must be used if
redirected I/O is required.

Namespace

com.oracle.outsidein

Methods

• Get position

long position()

Returns this channel's position.

• Set position

SeekableByteChannel6 position(long newPosition)

Sets this channel's position.

• read

int read(java.nio.ByteBuffer dst)

Reads a sequence of bytes from this channel into the given buffer. Bytes are read
starting at this channel's current position, and then the position is updated with the
number of bytes actually read.

• size

long size()

Returns the current size of the entity to which this channel is connected.

Chapter 12
Exporter Interface

12-12

• truncate

SeekableByteChannel6 truncate(long size)

Truncates the entity, to which this channel is connected, to the given size. Never
invoked by Outside In and may be implemented by just returning this.

• write

int write(java.io.nio.ByteBuffer src)

Writes a sequence of bytes to this channel from the given buffer. Bytes are written
starting at this channel's current position. The entity to which the channel is
connected is grown, if necessary, to accommodate the written bytes, and then the
position is updated with the number of bytes actually written.

• close

void close()

Closes this channel. If this channel is already closed then invoking this method
has no effect.

• isOpen

boolean isOpen()

Tells whether or not this channel is open.

12.5.4 OptionsCache Class
This section describes the OptionsCache class.

The options that configure the way outputs are generated are accessed through the
OptionsCache class.

All of the options described in the following subsections are available through this
interface. Other methods in this interface are described below.

Namespace

com.oracle.outsidein.options

Methods

• OptionsCache setSourceFile(File file) throws OutsideInException

Sets the source document to be opened.

file: Full path to source file

• OptionsCache setSourceFile(SeekableByteChannel6 redirect) throws
OutsideInException

Sets an object that implements SeekableByteChannel6 to be used as the source
document. Exporting a file using this method may have issues with files that
require the original name of the file (examples: if the extension of the file is needed
for identification purposes or if the name of a secondary file depends on the name/
path of the original source file).

redirect: Object implementing SeekableByteChannel6 to be used to read the
source data containing the input file

Chapter 12
Exporter Interface

12-13

• OptionsCache setSourceFile(SeekableByteChannel6 redirect, String filename)
throws OutsideInException

Sets an object that implements SeekableByteChannel6 to be used as the source
document and provides information about the filename.

redirect: Object implementing SeekableByteChannel6 to be used to read the
source data containing the input file

filename: A fully qualified path or file name that may be used to derive the
extension of the file or name of a secondary file that is dependent on the name/
path of the source file

• OptionsCache addSourceFile(File file) throws OutsideInException

Sets the next source document file to be exported in sequence. This allows
multiple documents to be exported to the same output destination.

file: Full path to source file

• OptionsCache addSourceFile(SeekableByteChannel6 redirect)

Set a redirected channel as the next source document to be exported to the
original destination file. This method has the same limitations as the similar
setSourceFile(SeekableByteChannel6 redirect) method.

• OptionsCache addSourceFile(SeekableByteChannel6 redirect, String Filename)

Set a redirected channel as the next source document to be exported to the
original destination file. The file name provided is used as in the method
setSourceFile(SeekableByteChannel6 redirect, String Filename)

• OptionsCache setSourceFormat(FileFormat fileId)

Sets the source format to process the input file as, ignoring the algorithmic
detection of the file type.

fileId: the format to treat the input document as.

• OptionsCache setDestinationFile(File file) throws OutsideInException

Sets the location of the destination file.

file: Full path to the destination file

• OptionsCache setDestinationFile(SeekableByteChannel6 redirect) throws
OutsideInException

Sets an object that implements SeekableByteChannel6 to be used as the
destination document. An Exporter.export() operation will write the output data to
the provided SeekableByteChannel6 object.

redirect: Object implementing SeekableByteChannel6 to be used as the
destination document written during an Exporter.export() operation

• OptionsCache setDestinationFormat(FileFormat fileId)

Sets the destination file format to which the file should be converted.

fileId: the format to convert the input document(s) to.

• OptionsCache setCallbackHandler(Callback callback)

Sets the object to use to handle callbacks.

callback: the callback handling object.

• OptionsCache setPasswordsList(List<String> Passwords)

Chapter 12
Exporter Interface

12-14

Provides a list of strings to use as passwords for encrypted documents. The
technology will cycle through this list until a successful password is found or the
list is exhausted.

Passwords: List of strings to be used as passwords.

• OptionsCache setLotusNotesId(String NotesIdFile)

Sets the Lotus Notes ID file location.

NotesIdFile: Full path to the Notes ID file.

• OptionsCache setOpenForNonSequentialAccess(boolean
bOpenForNonSequentialAccess)

Setting this option causes the technology to open archive files in a special mode
that is only usable for non-sequential access of nodes.

bOpenForNonSequentialAccess : If set to true would open the archive file in the
special access mode. Note that turning this flag on a non-archive file will throw an
exception at RunExport time.

12.5.4.1 AppendEMailAttachments
This option toggles whether or not email attachments will be output as PDF. For input
files in all OIT-supported email formats that contain attachments, this option instructs
the PDF Export process to export the contents of the attachments to PDF. The
contents of the export are attached to the end of the email message so that only one
PDF output file is produced. In addition, hyperlinks are provided that link to bookmarks
marking the beginning of each attachment in the resulting PDF.

Data Type

boolean

Data

• true: Email attachments are output as PDF.

• false: Email attachments are not included in the PDF.

Default

false

12.5.4.2 ApplyZLIBCompression
OIT Option ID: SCCOPT_APPLYFILTER

This option determines if ZLIB compression will be applied to all object streams when
generating the PDF output file.

Data Type

boolean

Data

• true: ZLIB compression is applied to all output streams.

• false: ZLIB compression is not applied to any output stream

Chapter 12
Exporter Interface

12-15

Default

true

12.5.4.3 BiDiReorderMethod
OIT Option ID: SCCOPT_REORDERMETHOD

This option controls how the technology reorders bidirectional text.

Data Type

• BiDiReorderMethodValue

BiDiReorderMethodValue Enumeration

One of the following values:

• UNICODEOFF: This disables any processing for bidirectional characters. This
option is the default.

• UNICODELTOR: Characters displayed using the Unicode bidirectional algorithm
assuming a base left-to-right order. Use this option to enable bidirectional
rendering.

• UNICODERTOL: Characters displayed using the Unicode bidirectional algorithm
assuming a base right-to-left order. Use this option to force starting bidirectional
rendering in the right-to-left.

Default

UNICODEOFF

12.5.4.4 DefaultInputCharacterSet
OIT Option ID: SCCOPT_DEFAULTINPUTCHARSET

This option is used in cases where Outside In cannot determine the character set used
to encode the text of an input file. When all other means of determining the file's
character set are exhausted, Outside In will assume that an input document is
encoded in the character set specified by this option. This is most often used when
reading plain-text files, but may also be used when reading HTML or PDF files.

Data Type

DefaultInputCharacterSetValue

DefaultInputCharacterSetValue Enumeration

DefaultInputCharacterSetValue can be one of the following enumerations:

SYSTEMDEFAULT

UNICODE

BIGENDIANUNICODE

LITTLEEENDIANUNICODE

Chapter 12
Exporter Interface

12-16

UTF8

UTF7

ASCII

UNIXJAPANESE

UNIXJAPANESEEUC

UNIXCHINESETRAD1

UNIXCHINESEEUCTRAD1

UNIXCHINESETRAD2

UNIXCHINESEEUCTRAD2

UNIXKOREAN

UNIXCHINESESIMPLE

EBCDIC37

EBCDIC273

EBCDIC274

EBCDIC277

EBCDIC278

EBCDIC280

EBCDIC282

EBCDIC284

EBCDIC285

EBCDIC297

EBCDIC500

EBCDIC1026

DOS437

DOS737

DOS850

DOS852

DOS855

DOS857

DOS860

DOS861

DOS863

DOS865

Chapter 12
Exporter Interface

12-17

DOS866

DOS869

WINDOWS874

WINDOWS932

WINDOWS936

WINDOWS949

WINDOWS950

WINDOWS1250

WINDOWS1251

WINDOWS1252

WINDOWS1253

WINDOWS1254

WINDOWS1255

WINDOWS1256

WINDOWS1257

ISO8859_1

ISO8859_2

ISO8859_3

ISO8859_4

ISO8859_5

ISO8859_6

ISO8859_7

ISO8859_8

ISO8859_9

MACROMAN

MACCROATIAN

MACROMANIAN

MACTURKISH

MACICELANDIC

MACCYRILLIC

MACGREEK

MACCE

MACHEBREW

Chapter 12
Exporter Interface

12-18

MACARABIC

MACJAPANESE

HPROMAN8

BIDIOLDCODE

BIDIPC8

BIDIE0

RUSSIANKOI8

JAPANESEX0201

Default

SYSTEMDEFAULT

12.5.4.5 DefaultPageSize
This option allows the developer to specify the size of each page in the generated
output file. The size may be specified in inches, points, centimeters or picas. This
option is only valid when UseDocumentPageSettings is set to false. 1 inch = 6 picas =
72 points = ~ 2.54 cm.

Data Type

PageInfo

Data

A PageInfo object with the page size information.

Default

8.5 inches by 11 inches

12.5.4.6 DefaultRenderFont
OIT Option ID: SCCOPT_DEFAULTPRINTFONT

This option sets the font to use when the chunker-specified font is not available on the
system. It is also the font used when the font in source file is not available on the
system performing the conversion.

Class members:

string strFaceName

UInt16 FontHeight

12.5.4.7 DefaultPageMargins
This option specifies the top, left, bottom and right margins in twips from the edges of
the page. For instance, setting all the values to 1440 creates a 1-inch margin on all
sides. Page margins will only be applied when formatting word processing, database
and spreadsheet files.

Chapter 12
Exporter Interface

12-19

Please note all margins are applied before scaling with the PageFitMode option. This
option is overridden when the UseDocumentPageSettings option is set to true and
print margins are specified in the input document. This option does not affect the
output of bitmap, presentation, vector or archive files.

Data Type

Margins

Data

A Margins object with the margins on the 4 sides defined.

Default

1 inch for all margins (1440, 1440, 1440, 1440)

12.5.4.8 DocumentMemoryMode
OIT Option ID: SCCOPT_DOCUMENTMEMORYMODE

This option determines the maximum amount of memory that the chunker may use to
store the document's data, from 4 MB to 1 GB. The more memory the chunker has
available to it, the less often it needs to re-read data from the document.

Data

• SMALLEST: 1 - 4MB

• SMALL: 2 - 16MB

• MEDIUM: 3 - 64MB

• LARGE: 4 - 256MB

• LARGEST: 5 - 1 GB

Default

SMALL: 2 - 16MB

12.5.4.9 EmailHeaders
OIT Option ID: SCCOPT_WPEMAILHEADEROUTPUT

This option controls rendering of email headers.

Data

• ALL: Displays all available email headers.

• STANDARD: Displays "To," "From," "Subject," "CC," "BCC," "Date Sent," and
"Attachments" header fields only. The filter outputs any fields not listed above as
hidden fields, so they will not display.

• NONE: Displays no email header fields.

• CUSTOM

Chapter 12
Exporter Interface

12-20

Default

STANDARD

12.5.4.10 EmbedFonts
This option allows the developer to specify whether or not fonts should be embedded
in the file. In order to comply with the PDF/A-1a spec, this option is forced to a value of
ALL when PDF/A is selected for the output type.

Data Type

EmbedFontsValue

EmbedFontsValue Enumeration

• REDUCESIZE: Do not embed base fonts

• ALL: Embed all fonts

• NONE: Do not embed base fonts

Default

REDUCESIZE

12.5.4.11 EnableAlphaBlending
This option allows the user to enable alpha-channel blending (transparency) in
rendering vector images. This is primarily useful to improve fidelity when rendering
with a slower graphics engine, such as X-Windows over a network when performance
is not an issue.

Data

Boolean

Default

False

12.5.4.12 FallbackFormat
This option controls how files are handled when their specific application type cannot
be determined. This normally affects all plain-text files, because plain-text files are
generally identified by process of elimination, for example, when a file isn't identified as
having been created by a known application, it is treated as a plain-text file. It is
recommended that None be set to prevent the conversion from exporting unidentified
binary files as though they were text, which could generate many pages of "garbage"
output.

Data Type

FallbackFormatValue

Chapter 12
Exporter Interface

12-21

FallbackFormatValue Enumeration

• TEXT: Unidentified file types will be treated as text files.

• NONE: Outside In will not attempt to process files whose type cannot be identified

Default

TEXT

12.5.4.13 FitHeightToPages
OIT Option ID: SCCOPT_SSPRINTSCALEXHIGH

This option will fit the spreadsheet image to the number of vertical pages specified.
The setting for this option will have no effect unless the SSPrintFitToPage option is set
to FitToPages.

Data Type

long

Default

1

12.5.4.14 FitWidthToPages
OIT Option ID: SCCOPT_SSPRINTSCALEXWIDE

This option will fit the spreadsheet image to the number of horizontal pages specified.
The setting for this option will have no effect unless the SSPrintFitToPage option is set
to FitToPages.

Data Type

long

Default

1

12.5.4.15 FontAliasList
This option enables the capability to specify which font on the system should be used
when a specific font referenced in the original file is not available. A different alias can
be set for each font desired to be mapped.

Data Type

FontAliases

Data

A FontAliases object with a list of font matchings.

Chapter 12
Exporter Interface

12-22

Default

Windows and Unix PrintAlias defaults

12.5.4.16 FontDirectories
This option allows the developer to specify one or more font directories where fonts
are located for use by the technology. If multiple font directories are specified, they
should be delimited by a colon on Linux and UNIX systems and a semi-colon on
Windows systems.

Data Type

List<File>

Data

A list of directories where fonts are located.

Default

None

12.5.4.17 FontFilter
This option allows the developer to specify a list of fonts to be included or excluded
during the export process.

Data Type

FontList

Data

A FontFilter object describing the inclusion or exclusion list.

Default

None

12.5.4.18 GraphicOutputDPI
OIT Option ID: SCCOPT_GRAPHIC_OUTPUTDPI

This option allows the user to specify the output graphics device's resolution in DPI
and only applies to images whose size is specified in physical units (in/cm). For
example, consider a 1" square, 100 DPI graphic that is to be rendered on a 50 DPI
device (GraphicOutputDPI is set to 50). In this case, the size of the resulting TIFF,
BMP, JPEG, GIF, or PNG will be 50 x 50 pixels.

In addition, the special #define of SCCGRAPHIC_MAINTAIN_IMAGE_DPI, which is
defined as 0, can be used to suppress any dimensional changes to an image. In other
words, a 1" square, 100 DPI graphic will be converted to an image that is 100 x 100
pixels in size. This value indicates that the DPI of the output device is not important. It
extracts the maximum resolution from the input image with the smallest exported
image size.

Chapter 12
Exporter Interface

12-23

Setting this option to SCCGRAPHIC_MAINTAIN_IMAGE_DPI may result in the
creation of extremely large images. Be aware that there may be limitations in the
system running this technology that could result in undesirably large bandwidth
consumption or an error message. Additionally, an out of memory error message will
be generated if system memory is insufficient to handle a particularly large image.

Also note that the SCCGRAPHIC_MAINTAIN_IMAGE_DPI setting will force the
technology to use the DPI settings already present in raster images, but will use the
current screen resolution as the DPI setting for any other type of input file.

For some output graphic types, there may be a discrepancy between the value set by
this option and the DPI value reported by some graphics applications. The discrepancy
occurs when the output format uses metric units (DPM, or dots per meter) instead of
English units (DPI, or dots per inch). Depending on how the graphics application
performs rounding on meters to inches conversions, the DPI value reported may be 1
unit more than expected. An example of a format which may exhibit this problem is
PNG.

The maximum value that can be set is 2400 DPI; the default is 96 DPI.

Data Type

long

12.5.4.19 GridMaxPageHeight
OIT Option ID: SCCOPT_MAXSSDBPAGEHEIGHT

Normally, the size of images generated from spreadsheet worksheets and database
tables is limited to the size of the page defined by the input document's page size
information and how the UseDocumentPageSettings, GraphicWidth and
GraphicHeight options are set. If, after scaling is factored in, the resulting image is too
large to fit on a single page, it is split up into multiple pages.

The GridMaxPageWidth and GridMaxPageHeight options are used to change the size
of a page to match the scaled size of the page being rendered - within limits. The key
reason for those limits is that rendering very large pages can easily overwhelm the
memory available on the system. When using this feature, a calculation should be
made to be sure that the values passed in work within said memory limits. The values
for these two options will override the current page dimensions if necessary.

Data Type

long

Data

The maximum page height (including margins) specified in twips (1440 twips are in 1
inch). If the value specified is smaller than the page height, then an error will be
returned.

12.5.4.20 GridMaxPageWidth
OIT Option ID: SCCOPT_MAXSSDBPAGEWIDTH

See the documentation for GridMaxPageHeight for a full discussion of how this option
works and interacts with other options affecting the page size of images generated
from spreadsheet and database pages.

Chapter 12
Exporter Interface

12-24

Data Type

long

Data

The maximum page width (including margins) specified in twips (1440 twips are in 1
inch). If the value specified is smaller than the page width, then Image Export will
return an error.

12.5.4.21 IECondCommentMode
OIT Option ID: SCCOPT_HTML_COND_COMMENT_MODE

Some HTML input files may include "conditional comments", which are HTML
comments that mark areas of HTML to be interpreted in specific versions of Internet
Explorer, while being ignored by other browsers. This option allows you to control how
the content contained within conditional comments will be interpreted by Outside In's
HTML parsing code.

Data

• NONE: Don't output any conditional comment

• IE5: Include the IE5 comments

• IE6: Include the IE6 comments

• IE7: Include the IE7 comments

• IE8: Include the IE8 comments

• IE9: Include the IE9 comments

• ALL: Include all conditional comments

12.5.4.22 IgnorePassword
OIT Option ID: SCCOPT_IGNORE_PASSWORD

This option can disable the password verification of files where the contents can be
processed without validation of the password. If this option is not set, the filter should
prompt for a password if it handles password-protected files.

Data Type

boolean

12.5.4.23 ImagePassthrough
This feature is used to allow certain input files to circumvent the normal filtering
process and to be 'wrapped' in a PDF output file directly. This allows for much faster
exporting of the supported file formats, which currently are JPEG, JPEG2000, and
TIFF.

Data Type

boolean

Chapter 12
Exporter Interface

12-25

Default

false

12.5.4.24 ISODateTimes
OIT Option ID: SCCOPT_FORMATFLAGS

When this flag is set, all Date and Time values are converted to the ISO 8601
standard. This conversion can only be performed using dates that are stored as
numeric data within the original file.

Data Type

boolean

Default

false

12.5.4.25 JPEGQuality
OIT Option ID: SCCOPT_JPEG_QUALITY

This option allows the developer to specify the lossyness of JPEG compression. The
option is only valid if the dwOutputID parameter of the EXOpenExport function is set to
FI_JPEGFIF, FI_PDF, FI_PDFA, or FI_PDFA_2.

Data Type

long

Data

A value from 1 to 100, with 100 being the highest quality but the least compression,
and 1 being the lowest quality but the most compression.

Default

100

12.5.4.26 LinearizePDFOutput
Linearization is a method by which PDF renderers are able to render pages of the PDF
file before the entire document is loaded. Linearized output is both larger and takes
longer to produce; this option allows you to produce non-linearized PDF so that the
export process will be quicker and result in a smaller output file.

Data Type

boolean

Default

false

Chapter 12
Exporter Interface

12-26

12.5.4.27 LotusNotesDirectory
OIT Option ID: SCCOPT_LOTUSNOTESDIRECTORY

This option allows the developer to specify the location of a Lotus Notes or Domino
installation for use by the NSF filter. A valid Lotus installation directory must contain
the file nnotes.dll.

Type (Common): String

Data

A path to the Lotus Notes directory.

Default

If this option isn't set, then OIT will first attempt to load the Lotus library according to
the operating system's PATH environment variable, and then attempt to find and load
the Lotus library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

12.5.4.28 MarginText
This option lets you specify a text string for margin text.

Data Type

MarginText

Default

None

12.5.4.29 MarginTextFont
This option lets you set the font and font size for margin text.

Data Type

FontInfo

Default

Arial, 9 pt.

12.5.4.30 PageDirection
OIT Option ID: SCCOPT_SSPRINTDIRECTION

This option controls the pattern in which the pages are rendered, either across first
and then down, or down first and then across.

This option is overridden when the UseDocumentPageSettings option is set to TRUE
and print direction is specified in the input document.

Chapter 12
Exporter Interface

12-27

Data

• PageDirectionValue.ACROSS: Specifies that pages are printed across first and
then down.

• PageDirectionValue.DOWN: Specifies that pages are printed down first and then
across.

Default

PageDirectionValue.DOWN

12.5.4.31 PageFitMode
OIT Option ID: SCCOPT_DBPRINTFITTOPAGE

OIT Option ID: SCCOPT_SSPRINTFITTOPAGE

This option scales a spreadsheet file or database image to a certain percent or to a
page width or height. However, in an effort to preserve readability after scaling, Image
Export will not shrink a database document to under approximately one-third of its
original size.

It should be noted that when this option is set to NOMAP, the pages of the database
file are printed down first and then across.

Please note that any margins applied as a result of settings for the
DefaultPageMargins option will be included in any scaling that is applied to the output
image as a result of settings for this option.

This option is overridden when the UseDocumentPageSettings option is set to TRUE
and fitting the page to the printer's image limits is specified in the input document.

Data

• NOMAP: No scaling is performed on the spreadsheet or database image. It will
render in its original size onto as many pages as are required to fit the data.

• FITTOWIDTH: Scale the spreadsheet or database image in the rendered image so
it is no larger than one page wide.

• FITTOHEIGHT: Scale the spreadsheet or database image in the rendered image
so it is no larger than one page high.

• SCALE: Scale the spreadsheet or the database image in the rendered image
using the scale value stored in the PageScalePercent option.

• FITTOPAGES: Scale the spreadsheet or the database image in the rendered
image to fit to the number of pages specified in the FitHeightToPages and
FitWidthToPages options. Since aspect ratio is maintained, the lesser of the two
dimensions (width or height) will determine the scale factor. Note that if either
FitHeightToPages or FitWidthToPages is set to 0, the value in the other option will
be nullified.

Default

• SCALE: Scales the rendered image of the spreadsheet or database image using
the scale value stored in the PageScalePercent option (which is 100 by default).

Chapter 12
Exporter Interface

12-28

12.5.4.32 PageRange
OIT Option ID: SCCOPT_WHATTOPRINT

OIT Option ID: SCCOPT_PRINTSTARTPAGE

OIT Option ID: SCCOPT_PRINTENDPAGE

This option indicates whether the whole file or a selected range of pages should be
rendered. When selecting a range, the start and ending pages are specified.

Data Type

PageRange

Data

The page range to be exported.

Default

All pages are printed

12.5.4.33 PageScalePercent
OIT Option ID: SCCOPT_SSPRINTSCALEPERCENT

This option will scale spreadsheet pages by the percentage specified. The option has
no effect unless the SSPrintFitToPage option is set to Scale.

This option must take a value between 1 and 100. If any value outside of this range is
used, the option will be ignored.

Data Type

long

Default

100

12.5.4.34 PDFInputMaxEmbeddedObjects
This option allows the user to limit the number of embedded objects that are produced
in a PDF file.

Data Type

long

Data

The maximum number of embedded objects to produce in PDF output. Setting this to
0 would produce an all embedded objects in the input document.

Default

0 – produce all objects.

Chapter 12
Exporter Interface

12-29

12.5.4.35 PDFInputMaxVectorPaths
This option allows the user to limit the number of vector paths that are produced in a
PDF file.

Data Type

long

Data

The maximum number of paths to produce in PDF output. Setting this to 0 would
produce an all vector objects in the input document.

Default

0 – produce all vector objects.

12.5.4.36 PDFReorderBiDi
OIT Option ID: SCCOPT_PDF_FILTER_REORDER_BIDI

This option controls whether or not the PDF filter will attempt to reorder bidirectional
text runs so that the output is in standard logical order as used by the Unicode 2.0 and
later specification. This additional processing will result in slower filter performance
according to the amount of bidirectional data in the file.

PDFReorderBiDiValue Enumeration

This enumeration defines the type of Bidirection text reordering the PDF filter should
perform.

• STANDARDBIDI: Do not attempt to reorder bidirectional text runs.

• REORDEREDBIDI: Attempt to reorder bidirectional text runs.

12.5.4.37 PDFWordSpacingFactor
This option controls the spacing threshold in PDF input documents. Most PDF
documents do not have an explicit character denoting a word break. The PDF filter
calculates the distance between two characters to determine if they are part of the
same word or if there should be a word break inserted. The space between characters
is compared to the length of the space character in the current font multiplied by this
fraction. If the space between characters is larger, then a word break character is
inserted into the text stream. Otherwise, the characters are considered to be part of
the same word and no word break is inserted.

Data Type

float

Data

A value representing the percentage of the space character used to trigger a word
break. Valid values are positive values less than 2.

Chapter 12
Exporter Interface

12-30

Default

0.85

12.5.4.38 PerformExtendedFI
OIT Option ID: SCCOPT_FIFLAGS

This option affects how an input file's internal format (application type) is identified
when the file is first opened by the Outside In technology. When the extended test flag
is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC, or
Unicode, the file's contents will be interpreted as such by the export process.

The extended test is optional because it requires extra processing and cannot
guarantee complete accuracy (which would require the inspection of every single byte
in a file to eliminate false positives.)

Data Type

boolean

Data

One of the following values:

• false: When this is set, standard file identification behavior occurs.

• true: If set, the File Identification code will run an extended test on all files that are
not identified.

Default

• true

12.5.4.39 RedactionColor
This option provides the ability to specify the color used for a redaction rectangle
(black or white) as well as the color used (black or white) for the redaction code. When
the colors match, the redaction code is effectively invisible. Settings should default to
Black redactions with White codes if not explicitly set. The values may be set on each
redaction individually, both in the UI and in the rendered output.

Value

ColorInfo

Data

Any valid CSS color

12.5.4.40 RedactionLabelFont
This option sets the name and size of font to use for redaction labels. The font size
may be reduced to allow text to fit within a redaction rectangle.

Chapter 12
Exporter Interface

12-31

Data Type

FontInfo

Default

Default display font, 9 pt.

12.5.4.41 RedactionLabelsVisible
This option allows you to display redaction labels in your output.

Data Type

boolean

Default

False (no labels)

12.5.4.42 RedactionsEnabled
This option tells the export to format the output to be redaction-capable. In practical
terms what this means is that all embeddings will be rasterized (routed through
sccimg) so that a rectangle in an embedding is consistent across all output formats.

Data Type

boolean

Default

False

12.5.4.43 RenderEmbeddedFonts
This option allows you to disable the use of embedded fonts in PDF input files. If the
option is set to true, the embedded fonts in the PDF input are used to render text; if the
option is set to false, the embedded fonts are not used and the fallback is to use fonts
available to Outside In to render text.

Data Type

boolean

Default

true

12.5.4.44 RenderGridlines
OIT Option ID: SCCOPT_DBPRINTGRIDLINES

OIT Option ID: SCCOPT_SSPRINTGRIDLINES

If this option is TRUE, a line is generated between cells in the rendered image.

Chapter 12
Exporter Interface

12-32

This option is overridden when the UseDocumentPageSettings option is set to TRUE
and printing grid lines between cells is specified in the input document.

Data Type

boolean

Default

true

12.5.4.45 RenderHeadings
OIT Option ID: SCCOPT_DBPRINTHEADINGS

OIT Option ID: SCCOPT_SSPRINTHEADINGS

If this option is TRUE, field, row and column headings will be generated along with the
data.

This option is overridden when the UseDocumentPageSettings option is set to TRUE
and printing column and row headers is specified in the input document.

Data Type

boolean

Default

true

12.5.4.46 ShowArchiveFullPath
OIT Option ID: SCCOPT_ARCFULLPATH

This option causes the full path of a node to be returned in "GetArchiveNodeInfo" and
"GetObjectInfo".

Data Type

boolean

Data

• true: Provide the full path.

• false: Do not provide the path.

Default

false

12.5.4.47 ShowHiddenCells
OIT Option ID: SCCOPT_SSSHOWHIDDENCELLS

This option lets you determine whether or not to show hidden rows or columns when
rendering spreadsheets. It is used to expand the widths of cells that are hidden by
virtue of having their row height or column width reduced to 0. This is a Boolean option

Chapter 12
Exporter Interface

12-33

that will leave the data hidden when it is FALSE, and show all hidden rows and
columns when it is TRUE, displayed using the default row width or default column
height.

Data Type

boolean

Default

false

12.5.4.48 ShowHiddenSpreadSheetData
The setting for this option determines whether or not hidden data (hidden columns,
rows or sheets) in a spreadsheet will be included in the output. When set to false (the
default), the hidden elements are not written. When set to true, they are placed in the
output in the same manner as regular spreadsheet data.

Data Type

boolean

Default

false

12.5.4.49 StrictFile
When an embedded file or URL can't be opened with the full path, OutsideIn will
sometimes try and open the referenced file from other locations, including the current
directory. When this option is set, it will prevent OutsideIn from trying to open the file
from any location other than the fully qualified path or URL.

Data Type

boolean

Default

false

12.5.4.50 TimeZoneOffset
OIT Option ID: SCCOPT_TIMEZONE

This option allows the user to define an offset to GMT that will be applied during date
formatting, allowing date values to be displayed in a selectable time zone. This option
affects the formatting of numbers that have been defined as date values. This option
will not affect dates that are stored as text.

Chapter 12
Exporter Interface

12-34

Note:

Daylight savings is not supported. The sent time in msg files when viewed in
Outlook can be an hour different from the time sent when an image of the
msg file is created.

Data Type

long

Data

Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query
the operating system for the time zone set on the machine, specify
SCC_TIMEZONE_USENATIVE.

Default

• 0: GMT time

12.5.4.51 UnmappableCharacter
OIT Option ID: SCCOPT_UNMAPPABLECHAR

This option selects the character used when a character cannot be found in the output
character set. This option takes the Unicode value for the replacement character. It is
left to the user to make sure that the selected replacement character is available in the
output character set.

Data Type

int

Data

The Unicode value for the character to use.

Default

• 0x002a = "*"

12.5.4.52 UseDocumentPageSettings
OIT Option ID: SCCOPT_USEDOCPAGESETTINGS

This option is used to select the document's page layout information when rendering.

If true, the document's native (or author selected) page margins, paper size, page
scaling and page orientation are used when available from the filter.

The values of the DefaultPageMargins, RenderGridlines, RenderHeadings,
PageDirection, and PageFitMode options are overridden if this option is set to TRUE
and the properties associated with those options are specified in the input document.
Additionally, print area and page breaks in spreadsheet documents are ignored unless
this option is set to true.

Chapter 12
Exporter Interface

12-35

If false, the page margins, size, orientation and scaling are set to specific values rather
than those in the native document. The page size is forced to 8 1/2" x 11" in portrait
orientation, but this may be changed by setting the GraphicHeight and/or
GraphicWidth options. The margins are forced 1" all around, but may be changed by
setting the defaultMargins option. The scaling for the document will be set to 100%,
although this may be changed by setting any of the various scaling options.

It should be noted that this option also affects page orientation for both input
spreadsheets and word processing documents.

Data Type

boolean

Default

true

12.6 ExportStatus Class
The ExportStatus class provides access to information about a conversion. This
information may include information about sub-document failures, areas of a
conversion that may not have high fidelity with the original document. When applicable
the number of pages in the output is also provided.

Namespace

com.oracle.outsidein

Accessors

• long getPageCount() - A count of all of the output pages produced during an
export operation.

• EnumSet<ExportStatusFlags> getStatusFlags() - Gets the information about
possible fidelity issues with the original document.

• long getSubDocsFailed() - Number of sub documents that were not converted.

• long getSubDocsPassed() - Number of sub documents that were successfully
converted.

ExportStatusFlags Enumeration

This enumeration is the set of possible known problems that can occur during an
export process.

• NoInformationAvailable: No Information is available

• MissingMap: A PDF text run was missing the toUnicode table

• VerticalText: A vertical text run was present

• TextEffects: A run that had unsupported text effects applied. One example is Word
Art

• UnsupportedCompression: A graphic had an unsupported compression

• UnsupportedColorSpace: A graphic had an unsupported color space

• Forms: A sub documents had forms

Chapter 12
ExportStatus Class

12-36

• RightToLeftTables: A table had right to left columns

• Equations: A file had equations

• AliasedFont: The desired font was missing, but a font alias was used

• MissingFont: The desired font wasn't present on the system

• SubDocFailed: a sub-document was not converted

• TypeThreeFont: A type 3 font was encountered.

• UnsupportedShading: An unsupported shading pattern was encountered.

• InvalidHTML: An HTML parse error, as defined by the W3C, was encountered.

• bInvalidAnnotationNotApplied: Unsupported annotation/redaction wasn't rendered.

12.7 FileFormat Class
This class defines the identifiers for file formats.

Namespace

com.oracle.outsidein.options

Methods

• GetDescription

String GetDescription()

This method returns the description of the format.

• GetId

int GetId()

This method returns the numeric identifier of the format.

• ForId

FileFormat ForId(int id)

This method returns the FileFormat object for the given identifier.

id: The numeric identifier for which the corresponding FileFormat object is
returned.

12.8 FontAliases Class
FontAliases is a class for providing font matching of unknown fonts.

Namespace

com.oracle.outsidein.options

Constructor

FontAliases(boolean clearDefaults, Map<String, String> aliasList)
 useDefaults Option whether to initialize the list to a set of platform-
specific default aliases (true) or to an empty list (false)
 aliasList Aliases list as a key-value pair with original name as key

Chapter 12
FileFormat Class

12-37

Accessors

• Map<String, String> getAliasList() - List of font aliases set.

• Map<String, String> getDefaultAliases() - List of platform-specific default font
aliases that are applied when "true" is passed as the first argument of the
constructor.

12.9 FontInfo Class
FontInfo is a class to define a font for use in the OutsideIn API.

Namespace

com.oracle.outsidein.options

Constructors

FontInfo(String fontface, int height)
 fontface The name of the font
 height Size of the font in half points

FontInfo()

Constructs a FontInfo object with a 10 point Arial Font.

Accessors

• String getFontface() - The name of the font

• int getHeight() - Size of the font in half points

12.10 FontList Class
FontList is a class for inclusion or exclusion of fonts in exported documents.

Namespace

com.oracle.outsidein.options

Constructor

FontList(boolean isExclusion, String[] fonts)
 IsExclusion If set then accompanying list is an exclusion list
 fonts List of fonts to include or exclude

Accessors

• boolean isExcludeList() - If set, then accompanying list is an exclusion list.

• String[] getFontsList - List of fonts to include or exclude.

12.11 HighlightTextAnnotation Class
HighlightTextAnnotation is a class for defining Text highlighted Annotations. This class
derives from the Annotation class.

Chapter 12
FontInfo Class

12-38

Namespace

com.oracle.outsidein.annotations

Constructors

HighlightTextAnnotation(long StartCharCount,
 long EndCharCount,
 EnumSet<CharAttributeValues> CharAttrs,
 Enumset<CharAttributeValues> CharMask)
HighlightTextAnnotation(long StartCharCount,
 long EndCharCount,
 ColorInfo Foreground,
 ColorInfo Background)
HighlightTextAnnotation(long StartCharCount,
 long EndCharCount,
 ColorInfo Foreground,
 ColorInfo Background,
 EnumSet<CharAttributeValues> CharAttrs,
 EnumSet<CharAttributeValues> CharMask)
StartCharCount The character count of the starting position
EndCharCount The character count of the end position
Foreground The text color of the highlight
Background The background color of the highlight
CharAttrs the character attributes to use
CharMask character attributes to change

Initializes a new instance of the HighlightTextAnnotation class.

Accessors

• StartCharCount: The character count of the starting position

• EndCharCount: The character count of the end position

• Foreground: The text color of the highlight

• Background: The background color of the highlight

• CharAttrs: The character attributes to use

• CharMask: Character attributes to change

CharAttributeValues Enumeration

This enumeration is the list of all character attributes to apply for the text highlight.

• NORMAL: Normal text - All attributes off

• UNDERLINE: Underline attribute

• ITALIC: Italic attribute

• BOLD: Bold attribute

• STRIKEOUT: Strike out text

• SMALLCAPS: Small caps

• OUTLINE: Outline Text

• SHADOW: Shadow text

• CAPS: All Caps

Chapter 12
HighlightTextAnnotation Class

12-39

• SUBSCRIPT: Subscript text

• SUPERSCRIPT: Superscript text

• DUNDERLINE: Double Underline

• WORDUNDERLINE: Word Underline

• DOTUNDERLINE: Dotted Underline

• DASHUNDERLINE: Dashed Underline

• ALL: All attributes

12.12 MailHeaders Class
MailHeaders class is a class describing the Mail Headers to be displayed, hidden or
modified.

Namespace

com.oracle.outsidein.options

Constructors

MailHeaders()

Constructs a MailHeaders object with standard headers only.

MailHeaders(MailHeaders.BaselineValue baseline)
 baseline The starting point to add or delete headers.

Accessors

void setBaseline(MailHeaders.BaselineValue)
MailHeaders.BaselineValue getBaseline()

The starting point to add or delete headers.

Methods

MailHeaders excludeHeader(MailHeaders.MailTypeValue mtype,
MailHeaders.MailHeaderValue mhdr)

This method adds a standard header to the hidden list.

• mtype: The type of documents in which to hide this header

• mhdr: The header to hide

This method returns a reference to the updated MailHeaders object.

MailHeaders excludeHeader(MailHeaders.MailTypeValue mtype, String Exclusion)

This method adds a custom header to be the hidden list.

• mtype: The type of documents in which to hide this header

• Exclusion: User-specified MIME header name to be excluded

This method returns a reference to the updated MailHeaders object.

Chapter 12
MailHeaders Class

12-40

MailHeaders includeHeader(MailHeaders.MailTypeValue mtype,
MailHeaders.MailHeaderValue mhdr)

This method adds a standard header to the visible list.

• mtype: The type of documents in which to show this header

• mhdr: The header to hide

This method returns a reference to the updated MailHeaders object.

MailHeaders includeHeader(MailHeaders.MailTypeValue mtype, String Original, String
Replacement)

This method adds a custom header to the visible list.

• mtype: The type of documents in which to show this header

• Original: User-specified MIME header name

• Replacement: String that will be used as the label for the user-defined MIME
header

This method returns a reference to the updated MailHeaders object.

void setVisibleHeaders(Map<MailHeaders.MailTypeValue, Map<String, String>> headers)

This method sets a series of custom headers to the visible headers list.

• headers: A key value pair of user-specified MIME headers and their replacement
strings

void setHiddenHeaders(Map<MailHeaderValue.MailTypeValue, List<String>> headers)

This method sets a series of custom headers to the hidden headers list.

• headers: A list of user-specified MIME headers to be hidden

MailHeaders.BaselineValue Enumeration

The BaselineValue is an enumeration of the possible baselines (starting points to add
or exclude headers).

MailHeaders.MailTypeValue Enumeration

The MailTypeValue is an enumeration of the types of mail documents.

12.13 Margins Class
The Margins Class is used to describe the page margins.

Namespace

com.oracle.outsidein.options

Constructors

Margins()

Chapter 12
Margins Class

12-41

Constructs a Margins object with a 1 inch margins for top, bottom, left and right
margins.

Margins(long top,
 long bottom,
 long left,
 long right)
top Margin from the top edge of the page (in twips)
bottom Margin from the bottom edge of the page (in twips)
left Margin from the left edge of the page (in twips)
right Margin from the right edge of the page (in twips)

Accessors

• long getTop() - Margin from the top edge of the page (in twips)

• long getBottom() - Margin from the bottom edge of the page (in twips)

• long getLeft() - Margin from the left edge of the page (in twips)

• long getRight() - Margin from the right edge of the page (in twips)

12.14 MarginText Class
This class provides a mechanism to define the Margin text to be applied to a page/
document.

Namespace

OutsideIn

Constructors

MarginText(Map<MarginText.Location, String>)

Constructs a Margin text object with a list of lines.

MarginText(MarginText.Location, String)

Constructs a Margin text object with a single line.

Methods

void addMarginText(Map<MarginText.Location, String>)

Adds a set of Margin text lines.

void addMarginText(MarginText.Location, String)

Adds a line of Margin text.

Location Enumeration

This enumeration is the list of all the locations margin text can be applied to.

• TOPLEFTLINE1: Line 1 of Top Left Corner of page

• TOPLEFTLINE2: Line 2 of Top Left Corner of page

• TOPLEFTLINE3: Line 3 of Top Left Corner of page

Chapter 12
MarginText Class

12-42

• TOPCENTERLINE1: Line 1 of Top Center of page

• TOPCENTERLINE2: Line 2 of Top Center of page

• TOPCENTERLINE3: Line 3 of Top Center of page

• TOPRIGHTLINE1: Line 1 of Top Right Corner of page

• TOPRIGHTLINE2: Line 2 of Top Right Corner of page

• TOPRIGHTLINE3: Line 3 of Top Right Corner of page

• BOTTOMLEFTLINE1: Line 1 of Bottom Left Corner of page

• BOTTOMLEFTLINE2: Line 2 of Bottom Left Corner of page

• BOTTOMLEFTLINE3: Line 3 of Bottom Left Corner of page

• BOTTOMCENTERLINE1: Line 1 of Bottom Center of page

• BOTTOMCENTERLINE2: Line 2 of Bottom Center of page

• BOTTOMCENTERLINE3: Line 3 of Bottom Center of page

• BOTTOMRIGHTLINE1: Line 1 of Bottom Right Corner of page

• BOTTOMRIGHTLINE2: Line 2 of Bottom Right Corner of page

• BOTTOMRIGHTLINE3: Line 3 of Bottom Right Corner of page

12.15 Option Interface
The Option Interface provides the methods and properties to retrieve information about
an Outside In Option.

Package

com.oracle.outsidein.options

Accessors

• String getName() — Gets the name of the option

• String getDescription() — Gets the description of the option

• Class<?> getDataType() — Gets the type of the option value.

• Class<?>[] getItemTypes() — Gets the type parameters for option values that are
generics

• EnumSet<Option.OutsideInProducts> getSupportingProducts() — Gets the list of
products that support this option

Methods

void set(OptionsCache exporter, Object objValue) throws OutsideInException;

This method sets the option to the exporter object and returns the exporter object
itself.

• exporter — The exporter object

• objValue — Value of the option

Chapter 12
Option Interface

12-43

Note:

If the type of objValue cannot be converted to the data type the option is
expecting, an OutsideInException is thrown.

Object get(OptionsCache exporter)

This method gets the currently set value for the option.

• exporter: The exporter object who’s option value is requested.

OutsideInProducts Enumeration

• HTMLEXPORT — Outside In HTML Export

• IMAGEEXPORT — Outside In Image Export

• PDFEXPORT — Outside In PDF Export

• SEARCHEXPORT — Outside In Search Export

• WEBVIEWEXPORT — Outside In Web View Export

• XMLEXPORT — Outside In XML Export

12.16 OutsideIn Class
This is a utility class that creates an instance of an Exporter object on request.

Namespace

com.oracle.outsidein

Methods

static Exporter newLocalExporter()

This method creates an instance of an Exporter object. It returns a newly created
Exporter object.

static Exporter newLocalExporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the
source Exporter. All the options of source are copied to the new Exporter. The source
and destination file information will not be copied.

OutsideInVersion getCoreVersion()

This static method returns an OutsideInVersion object with information describingthe
Outside In Core Technology used.

void setLocation(File oilinkDir)

Sets an explicit path to the native Outside In libraries and oilink.exe. If used, this
method must be called prior to any other Outside In method or this method will throw
an exception. If setLocation() is not used, the location will be determined by searching
for the Outside In libraries in the following order:

Chapter 12
OutsideIn Class

12-44

1. the location specified in the 'OILinkLocation' Java property

2. the 'oit' subdirectory under the directory containing oilink.jar

3. the directory containing oilink.jar

12.17 OutsideInVersion Class
The OutsideIn Class is used to describe the version of the Outside In Core Module.

Namespace

com.oracle.outsidein

Methods

String GetVersion()

This method returns the version information as a string in the format of
“MajorVersion.MinorVersion.DotVersion”.

int getMajorVersion()

The major version component.

int getMinorVersion()

The minor version component.

int getDotVersion()

The dot version component.

12.18 OutsideInException Class
This is the exception that is thrown when an Outside In Technology error occurs.

This class derives from the Exception class. This class has no public methods or
properties except those of the parent Exception class.

Namespace

com.oracle.outsidein

12.19 PageInfo Class
PageInfo is a class for defining page dimensions.

Namespace

com.oracle.outsidein.options

Constructor

PageInfo(PageInfo.PageSizeUnitsValue units,
 float width,
 float height)
units Units used to specify width and height

Chapter 12
OutsideInVersion Class

12-45

width Width of the page
height Height of the page

Accessors

• PageInfo.PageSizeUnitsValue getUnits() - Units used to specify width and height

• float getWidth() - Width of the page

• float getHeight() - Height of the page

PageInfo.PageSizeUnitsValue Enumeration

PageSizeUnitsValue is an enumeration of the various units that can be used to specify
the width and height of a page.

• Inches: Units are in Inches

• Points: Units are in Points (1/72th of an inch)

• Centimeters: Units are in Centimeters

• Picas: Units are in Picas (1/6th of an inch)

12.20 Watermark Class
This class describes the watermark to be applied to a document.

Namespace

com.oracle.outsidein.options

Constructors

Watermark(File file) throws OutsideInException

Creates a watermark object with the image to be used.

file: A File object with the image file to be used as a watermark.

Watermark(SeekableByteChannel6 redirect) throws OutsideInException

Creates a watermark object with the image to be used.

redirect: A redirected I/O object with the image to be used as a watermark.

Watermark(File file, int opacity, int percent, AnchorPosition anchor, int
vertOffset, int horzOffset) throws OutsideInException

file: A File object with the image file to be used as a watermark.

opacity: The opacity of the watermark. Opacity is in the range of 1-255.

percent: The percentage the watermark image is scaled by. A value of 0 indicates no
scaling.

anchor: The position from which the watermark image is offset.

vertOffset: The vertical offset to shift the image by

horzOffset: The horizontal offset to shift the image by.

Chapter 12
Watermark Class

12-46

Watermark(SeekableByteChannel6 redirect, int opacity, int percent, AnchorPosition
anchor, int vertOffset, int horzOffset) throws OutsideInException

redirect: A redirected I/O objectwith the image to be used as a watermark.

opacity: The opacity of the watermark. Opacity is in the range of 1-255.

percent: The percentage the watermark image is scaled by. A value of 0 indicates no
scaling.

anchor: The position from which the watermark image is offset.

vertOffset: The vertical offset to shift the image by.

horzOffset: The horizontal offset to shift the image by

Methods

AnchorPosition getAnchorPosition()

Retrieves the Watermark's Anchor position. This is the position from which the
horizontal and vertical offsets are applied.

void setAnchorPosition(AnchorPosition position)

Sets the Watermark's Anchor position. This is the position from which the horizontal
and vertical offsets are applied.

int getHorzOffset()

Gets the horizontal offset to shift the image by.

void setHorzOffset(int offset)

Sets the horizontal offset to shift the image by.

int getOpacity()

Gets the opacity of the watermark. Opacity is in the range of 1-255. 0 disables the
watermark.

void setOpacity(int opacity)

Sets the opacity of the watermark. Opacity is in the range of 1-255. 0 disables the
watermark.

int getPercent()

Gets the percentage amount by which the image is to be scaled. A value of 0 indicates
no scaling.

void setPercent(int percent)

Sets the percentage amount by which the image is to be scaled. A value of 0 indicates
no scaling.

int getVertOffset()

Gets the vertical offset to shift the image by.

void setVertOffset(int offset)

Chapter 12
Watermark Class

12-47

Sets the vertical offset to shift the image by.

12.21 PageRange Class
PageRange is a class for defining page ranges for exporting purposes.

Namespace

com.oracle.outsidein.options

Constructors

PageRange()

Creates an instance of the PageRangeObject for printing all pages.

PageRange(long StartPage)
StartPage Starting page number of the print range

Creates an instance of the PageRangeObject for printing from a page until end of
document.

PageRange(
 long StartPage,
 long StopPage) throws OutsideInException
StartPage Starting page number of the print range
StopPage End page number of the print range

Creates an instance of the PageRangeObject for printing a range of pages.

Accessors

• boolean getPrintAll() - If set to true, all pages of the document will be printed

• long getStartPage() - The start page of the print range. 0 indicates printing will
begin with the first page of the document.

• long getStopPage() - The last page of the print range. 0 indicates the last page at
the end of the document.

Chapter 12
PageRange Class

12-48

Part IV
Using the .NET API

This section provides details about using the SDK with the .NET API.

Part IV contains the following chapters:

• Introduction to the .NET API

• PDF Export .NET Classes

13
Introduction to the .NET API

This chapter is an introduction to the .NET API for PDF Export.
Outside In .NET is a set of class libraries and Windows DLLs that provides developers
an easy interface to create .NET applications using Outside In Technology.

The following topics are covered:

• Requirements

• Getting Started

13.1 Requirements
To develop applications using the .NET APIs, the following set of modules and tools
are required:

• The Outside In Technology (OIT) developer's redistributable modules for your
product

• Visual Studio 2010 or later

• NET Framework 4.0 or later

• The API libraries:

outsidein.dll - The .NET libraries to access the Outside In technologies

oilink.dll and oilink.exe- The bridge modules between .NET and the C-APIs.

Google.ProtocolBuffers.dll - The cross language binary serialization provider.

13.2 Getting Started
There are two steps in developing applications using the APIs. In the first step, you
would need to configure the environment to create your application (typical
programming tasks not directly related to these APIs) and in the second step you
would generate code to utilize the functionality of these libraries.

13.2.1 Configuring your Environment
To setup the environment to create a .NET application, you would need to add
references to all the libraries. In order to use the Outside In components in your
application, the following component should be referenced: outsidein.dll. (This can be
done by using the Add Reference dialog box in Visual Studio.)

13.2.2 Generate Code
The sample application included with the SDK, OITsample, is a minimal demonstration
of how to use this API.

13-1

All the functionality required to perform a conversion is provided in an Exporter object.
The basic process of exporting a file involves the following tasks:

1. Create an Exporter object. To obtain access to the Outside In functionality, you
should call the utility function in the "OutsideIn" class. This will provide you an
instance of an Exporter Object.

2. Configure the export. The Outside In API is highly configurable, and presents
numerous options to fine-tune the way a document is exported. Each option has a
"set" and "get" method to set or retrieve the currently set value.

3. Set the source and primary destination files. You are required to specify the
source file and the destination file. This is done similar to setting options using
"set" methods.

4. Set the output type. In this step, you specify the output format.

5. (Optional) Provide a callback handler. The Outside In Technology provides
callbacks that allow the developer to intervene at critical points in the export
process. To respond to these callbacks, you would have to subscribe to any
messages that you are interested in by overriding the message handlers from the
"Callback" class. After creating an object of this class, set the callback option to
this object and the messages will be passed to your object.

6. Run the export. After all the previous steps are completed, you can produce the
desired output.

13.2.2.1 Create an Exporter Object
To obtain access to the Outside In functionality, you should call the utility function in
the "OutsideIn" class. This will provide you an instance of an Exporter Object.

Exporter exporter = OutsideIn.OutsideIn.NewLocalExporter();

13.2.2.2 Configure the Output
The Outside In API is highly configurable, and presents numerous options to fine-tune
the way a document is exported. Each option has a "set" and "get" method to set or
retrieve the currently set value.

exporter.SetPerformExtendedFI(true);
int timezoneOffset = exporter.GetTimeZoneOffset();

13.2.2.3 Set the Source and Primary Destination Files
You are required to specify the source file and the destination file. This is done
similarly to setting options using "set" methods.

exporter.SetSourceFile(inputFilename);

exporter.SetDestinationFile(outputFilename);

There are other options that can be set at this time to specify the way to handle the
input file, such as providing a SourceFormat to provide a mechanism to handle the
input file in a different format than that which it is identified as.

The API also supports opening certain types of embedded documents from within an
input file. For example, a .zip file may contain a number of embedded documents; and

Chapter 13
Getting Started

13-2

an email message saved as a .msg file may contain attachments. The API provides
the means of opening these types of embedded documents. This can be done by
opening the parent document and then the embedded document can be opened
through this exporter object.

// subdocId is the sequential number of the node in the archive file

Exporter exporterNode = exporter.NewTreeNodeExporter(subdocId);

13.2.2.4 Set the Output Type
In this step, you specify the output format.

exporter.SetDestinationFormat(FileFormat.FI_PDF);

13.2.2.5 Provide a Callback Handler
Outside In Technology provides callbacks that allow the developer to intervene at
critical points in the export process. To respond to these callbacks, you have to
subscribe to any messages that you are interested in by overriding the message
handlers from the Callback class. After creating an object of this class, set the callback
option to this object and the messages will be passed to your object.

class CallbackHandler : Callback

{

 … // implementation of messages to handle - described in the next section

}

CallbackHandler callback = new CallbackHandler();

exporter.SetCallbackHandler(callback);

13.2.2.6 Run the Export
After all the previous steps are completed, you can produce the desired output.

exporter.Export();

13.2.3 Redirected I/O Support in .NET
Support for redirected I/O is supported through .NET Streams. Streams that are
readable and seekable can be used as input files, while streams that are readable,
writable and seekable can be used for output.

Using streams is very similar to using standard I/O in the .NET API. To use streams,
the stream object is passed as a parameter to the "SetSourceFile" or
"SetDestinationFile". When using Output streams, handling callbacks is mandatory
when secondary files are expected to be generated.

Chapter 13
Getting Started

13-3

14
PDF Export .NET Classes

This chapter describes PDF Export .NET classes.
The following classes are covered:

• Annotation Class

• ArchiveNode Class

• Callback Class

• ColorInfo Class

• Exporter Interface

• ExportStatus Class

• FileFormat Class

• FontAliases Class

• FontInfo Class

• FontList Class

• HighlightTextAnnotation Class

• MailHeaders Class

• Margins Class

• MarginText Class

• Option Interface

• OutsideIn Class

• OutsideInException Class

• PageInfo Class

• PageRange Class

• Watermark Class

14.1 Annotation Class
Annotation is an abstract base class for the Annotation objects.

Namespace

OutsideIn.Annotations

Properties

• Height (Int64) Height of area in coordinates or rows

• Left (Int64) Leftmost coordinate or column

14-1

• Opacity (Single) Opacity of the annotation. Range 0.0 - 1.0; setting opacity to 0
makes the annotation invisible

• SectionIndex (Int64) 0-based page/sheet/image/slide index

• Top (Int64) Top coordinate or row

• Units (Annotation.UnitTypeValue) Type of units in which Height, Width, Left and
Top are described

• UserId (Int64) User Data

• Width (Int64) Width of area in coordinates or columns

Annotation.UnitTypeValue Enumeration

The UnitTypeValue is an enumeration of the various unit types that annotation
positions can be described in.

• Pixels: Units specified in Pixels. This Unit type should be used for Graphic files.

• Twips: Units specified in Twips (1/1440th of an inch). This Unit type should be
used for Word Processing documents.

• Cells: Units specified in cell positions. This Unit type should be used for
Spreadsheets.

14.2 ArchiveNode Class
ArchiveNode provides information about an archive node. This is a read-only class
where the technology fills in all the values.

Namespace

OutsideIn

Properties

• IsDirectory (Boolean) A value of true indicates that the record is an archive node.

• FileSize (Int32) File size of the archive node

• NodeTime (Int32) Time the archive node was created

• NodeNum (Int32) Serial number of the archive node in the archive

• NodeName (String) The name of the archive node

14.3 Callback Class
Callback messages are notifications that come from Outside In during the export
process, providing information and sometimes the opportunity to customize the
generated output.

Namespace

OutsideIn

To access callback messages, your code must create an object that inherits from
Callback and pass it through the API's SetCallbackHandler method. Your object can

Chapter 14
ArchiveNode Class

14-2

implement methods that override the default behavior for whichever methods your
application is interested in.

Callback has three methods: OpenFile, CreateNewFile and NewFileInfo.

14.3.1 OpenFile
OpenFileResponse OpenFile(
 FileTypeValue fileType,
 string fileName
)

This callback is made any time a new file needs to be opened.

Parameters

• fileType: Type of file being requested to be opened.

• filename: Name of the file to be open

Return Value

To take action in response to this method, return an OpenFileResponse object.

FileTypeValue Enumeration

This enumeration defines the type of file being requested to be opened. Its value may
be one of the following:

• Input: File to be opened (path unknown)

• Template: Template file to be opened

• Path: Full file name of the file to be opened.

• Other: Not used.

14.3.1.1 OpenFileResponse Class
This is a class to define a new file or stream object in response to an OpenFile
callback.

Constructor

OpenFileResponse(FileInfo file)

File: File object with full path to the new file.

OpenFileResponse(Stream file)

File: A stream to which the file data will be written.

14.3.2 CreateNewFile
CreateNewFileResponse CreateNewFile(FileFormat ParentOutputId, FileFormat OutputId,
 Association Association, string Path)

This callback is made any time a new output file needs to be generated. This gives the
developer the chance to affect where the new output file is created, how it is named,
and the URL (if any) used to reference the file.

Chapter 14
Callback Class

14-3

Parameters

• ParentOutputId: File format identifier of the parent file.

• OutputId: File format identifier of the file created.

• Association: An Association that describes relationship between the primary output
file and the new file.

• Path: Full path of the file to be created.

Return Value

To take action in response to this notification, return a CreateNewFileResponse object
with the new file information. If you wish to accept the defaults for the path and URL,
you may return null.

14.3.2.1 CreateNewFileResponse Class
This is a class to define a new output file location in response to a CreateNewFile
callback. If you do not wish to change the path to the new output file, you may use the
path as received. If you do not wish to specify the URL for the new file, you many
specify it as null.

Constructor

CreateNewFileResponse(FileInfo File, string URL)

• File: File object with full path to new file.

• URL: A new URL that references the newly created file. This parameter can be
null.

Association Enumeration

This enumeration defines, for a new file created by an export process, the different
possible associations between the new file and the primary output file. Its value may
be one of the following:

• Root - indicates the primary output file

• Child - a new file linked (directly or indirectly) from the primary output file

• Sibling - indicates new files not linked from the primary output file

• Copy - the file was copied as a part of a template macro operation.

• RequiredName - not used

Note that some of these relationships will not be possible in all Outside In Export
SDKs.

14.3.3 NewFileInfo
void NewFileInfo(FileFormat ParentOutputId, FileFormat OutputId,
 Association Association, string Path, string URL)

This informational callback is made just after each new file has been created.

Chapter 14
Callback Class

14-4

Parameters

• ParentOutputId: File format identifier of the parent file

• OutputId: File format identifier of the file created

• Association: An Association that describes relationship between the primary output
file and the new file.

• Path: Full path of the file created

• URL: URL that references the newly created file

14.3.4 CreateTempFile
CreateTempFileResponse CreateTempFile()

This callback is made any time a new temporary file needs to be generated. This gives
the developer the chance to handle the reading and writing of the temporary file.

Return Value

To take action in response to this notification, return a CreateTempFileResponse
object with the temporary file information.

14.3.4.1 CreateTempFileResponse Class
This is a class to define a new file or stream object in response to an CreateTempFile
callback.

Constructor

CreateTempFileResponse (Stream file)

File: A stream to which the file data will be written and read from.

14.4 ColorInfo Class
ColorInfo is a class to define a color or to use a default color in appropriate cases.

Namespace

OutsideIn

Constructors

ColorInfo()

Initializes an ColorInfo object to use the default color.

public ColorInfo(Byte red,
 Byte green,
 Byte blue)

Initializes an ColorInfo object with the specified RGB values.

Chapter 14
ColorInfo Class

14-5

Properties

• Blue (Byte) - Blue component of the color

• Green (Byte) - Green component of the color

• Red (Byte) - Red component of the color

• UseDefault (Byte) - Set to true if the default color is used

14.5 Exporter Interface
This section describes the properties and methods of Exporter.

All of Outside In's Exporter functionality can be accessed through the Exporter
Interface. The object returned by OutsideIn class is an implementation of this interface.
This class derives from the Document Interface, which in turn is derived from the
OptionsCache Interface.

Namespace

OutsideIn

Methods

• GetExportStatus

ExportStatus GetExportStatus()

This function is used to determine if there were conversion problems during an
export. The ExportStatus object returned may have information about sub-
document failures, areas of a conversion that may not have high fidelity with the
original document. When applicable the number of pages in the output is also
provided.

• NewSubDocumentExporter

Exporter NewSubDocumentExporter(
 int SubDocId,
 SubDocumentIdentifierTypeValue idType
)

Create a new Exporter for a subdocument.

SubDocId: Identifier of the subdocument

idType: Type of subdocument

SubDocumentIdentifierTypeValue: This is an enumeration for the type of
subdocument being opened.

– IDTYPE_XX: Subdocument to be opened is based on output of XML Export
(SubdocId is the value of the object_id attribute of a locator element.)

– IDTYPE_ATTACHMENT_LOCATOR: Subdocument to be opened is based on
the locator value provided by the one of the Export SDKs.

– IDTYPE_ATTACHMENT_INDEX: Subdocument to be opened is based on the
index of the attachment from an email message. (SubdocId is the zero-based
index of the attachment from an email message file. The first attachment

Chapter 14
Exporter Interface

14-6

presented by OutsideIn has the index value 0, the second has the index value
1, etc.)

Returns: A new Exporter object for the subdocument

• NewSubObjectExporter

Exporter NewSubObjectExporter(
 SubObjectTypeValue objType,
 uint data1,
 uint data2,
 uint data3,
 uint data4
)

Create a new Exporter for a subobject.

objType: Type of subobject

data1: Data identifying the subobject from SearchML

data2: Data identifying the subobject from SearchML

data3: Data identifying the subobject from SearchML

data4: Data identifying the subobject from SearchML

Returns: A new Exporter object for the subobject

SubObjectTypeValue: An enumeration to describe the type of SubObject to open.

– LinkedObject

– EmbeddedObject

– CompressedFile

– Attachment

• NewArchiveNodeExporter

Exporter NewArchiveNodeExporter(
 int dwRecordNum
)

Create a new Exporter for an archive node. You may get the number of nodes in
an archive using getArchiveNodeCount. The nodes are numbered from 0 to
getArchiveNodeCount -1.

dwRecordNum: The number of the record to retrieve information about. The first
node is node 0 and the total number of nodes may be obtained from
GetArchiveNodeCount.

Returns: A new Exporter object for the archive node

• NewArchiveNodeExporter with Search Export Data

Exporter NewArchiveNodeExporter(
 uint flags,
 uint params1,
 uint params2
)

Create a new Exporter for an archive node. To use this function, you must first
process the archive with Search Export and save the Node data for later use in
this function.

Chapter 14
Exporter Interface

14-7

Flags: Special flags value from Search Export

Params1: Data1 from Search Export

Params2: Data2 from Search Export

Returns: A new Exporter object for the archive node

• Export

void Export()

Perform the conversion and close the Export process keeping the source
document open.

void Export(bool bLeaveSourceOpen)

Perform the conversion and close the Export process keep the source document
open or close it based on the value of bLeaveSourceOpen.

bLeaveSourceOpen: If set to true, keeps the source document open for next
export process.

Note:

Before Release 8.5.3, calling Export() with no parameters, would leave
the source document open. The default behavior starting with Release
8.5.3 is to close the document after exporting the file. If you would like to
keep the file open for other conversions, please use this method with
"bLeaveSourceOpen" set to true.

• SetExportTimeout

OptionsCache SetExportTimeout(int millisecondsTimeout);

This method sets the time that the export process should wait for a response from
the Outside In export engine to complete the export of a document, setting an
upper limit on the time that will elapse during a call to Export(). If the specified
length of time or the default timeout amount is reached before the export has
completed, the export operation is terminated and an OutsideInException is
thrown. If this option is not set, the default timeout is 5 minutes.

• Close

Close()

This function closes the current Export process.

• NewLocalExporter

static Exporter NewLocalExporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the
source Exporter. All the options of source are copied to the new Exporter. The
source and destination file information will not be copied.

14.5.1 lAnnotatable Interface
All of the Outside In annotation-related methods are accessed through the
IAnnotatable Interface.

Chapter 14
Exporter Interface

14-8

NameSpace

OutsideIn.Annotations

Methods

• AddTextHighlight

void AddTextHighlight(
 HighlightTextAnnotation textanno
)

Highlight text in a document.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

• AddTextHighlight and Add Annotation Properties

void AddTextHighlight(
 HighlightTextAnnotation textanno,
 Dictionary<string, string> Properties
)

Highlight text in a document and associate properties with the annotation.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

Properties: Key value pairs of name/value of properties associated with this
annotation

• AddTextHighlight and Associate a Comment

void AddTextHighlight(
 HighlightTextAnnotation textanno,
 string Comment
)

Highlight text in a document and associate a comment with the highlight.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

Comment: Comment text to associate with the annotation

• AddTextHighlight with Comment and Properties to Annotation

void AddTextHighlight(
 HighlightTextAnnotation textanno,
 string Comment,
 Dictionary<string, string> Properties
)

Highlight text in a document and provide comment text and properties to be
associated with the annotation.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

Comment: Comment text to associate with the annotation

Properties: Key value pairs of name/value of properties associated with this
annotation

Chapter 14
Exporter Interface

14-9

14.5.2 Document Interface
All of the Outside In document-related methods are accessed through the Document
Interface.

Namespace

OutsideIn

Methods

• Close

void Close()

Closes the currently open document

• GetArchiveNodeCount

Int32 GetArchiveNodeCount()

Retrieves the number of nodes in an archive file.

Returns the number of nodes in the archive file or 0 if the file is not an archive file.

• GetFileId

FileFormat GetFileId(FileIdInfoFlagValue dwFlags)

Gets the format of the file based on the technology's content-based file
identification process.

dwFlags: Option to retrieve the file identification pre-Extended or post-Extended
Test

Returns the format identifier of the file.

• GetArchiveNode

TreeRecord GetArchiveNode(Int32 nNodeNum)

Retrieves information about a record in an archive file. You may get the number of
nodes in an archive using getArchiveNodeCount.

nNodeNum: The number of the record to retrieve information about. The first node
is node 0.

Return Value: An ArchiveNode object with the information about the record

• SaveArchiveNode

void SaveArchiveNode(
 Int32 nNodeNum,
 FileInfo fileinfo)
void SaveArchiveNode(
 Int32 nNodeNum,
 string strFileName)

Extracts a record in an archive file to disk.

nNodeNumType: The number of the record to retrieve information about. The first
node is node 0.

Chapter 14
Exporter Interface

14-10

strFileNameType/fileinfo: Full path of the destination file to which the file will be
extracted

• SaveArchiveNode with ArchiveNode

void SaveArchiveNode(
 ArchiveNode arcNode,
 FileInfo fileinfo)
void SaveArchiveNode(
 ArchiveNode arcNode,
 string strFileName)

Extracts a record in an archive file to disk.

arcNode: An ArchiveNode object retrieved from GetArchiveNodeInfo with
information about the node to extract

strFileNameType/fileinfo: Full path of the destination file to which the file will be
extracted

• SaveArchiveNode with Search Export Flags

void SaveArchiveNode(
 uint flags,
 uint params1,
 uint params2,
 FileInfo fileinfo)
void SaveArchiveNode(
 uint flags,
 uint params1,
 uint params2,
 string strFileName)

Extracts a record in an archive file to disk without reading the data for all nodes in
the archive in a sequential order. To use this function, you must first process the
archive with Search Export and save the Node data for later use in this function.

flagsType: Special flags value from Search Export

params1: Data1 from Search Export

params2: Data2 from Search Export

strFileNameType/fileinfo: Full path of the destination file to which the file will be
extracted

14.5.3 OptionsCache Class
This section describes the OptionsCache class.

The options that configure the way outputs are generated are accessed through the
OptionsCache class.

All of the options described in the following subsections are available through this
interface. Other methods in this interface are described below.

Namespace

OutsideIn.Options

Methods

• OptionsCache SetSourceFile(FileInfo file)

Chapter 14
Exporter Interface

14-11

Sets the source document to be opened.

file: Full path to source file

• OptionsCache SetSourceFile(string filename)

Set the source document.

filename: Full path of the source document

Returns: The options cache object associated with this document

• OptionsCache AddSourceFile(FileInfo file)

Sets the next source document file to be exported in sequence. This allows
multiple documents to be exported to the same output destination.

file: Full path to source file

• OptionsCache AddSourceFile(string filename)

Set the next source document file to be exported in sequence. This allows multiple
documents to be exported to the same output destination.

filename: Full path to the source file

returns: The updated options object

• OptionsCache SetSourceFormat(FileFormat fileId)

Sets the source format to process the input file as, ignoring the algorithmic
detection of the file type.

fileId: the format to treat the input document as.

• OptionsCache SetDestinationFile(FileInfo file)

Sets the location of the destination file.

file: Full path to the destination file

• OptionsCache SetDestinationFile(string filename)

Set the location of the destination file.

filename: Full path to the destination file

returns: The updated options object

• OptionsCache SetDestinationFormat(FileFormat fileId)

Sets the destination file format to which the file should be converted to.

fileId: the format to convert the input document(s) to.

• OptionsCache SetCallbackHandler(Callback callback)

Sets the object to use to handle callbacks.

callback: the callback handling object.

• OptionsCache SetPasswordsList(List<String> Passwords)

Provides a list of strings to use as passwords for encrypted documents. The
technology will cycle through this list until a successful password is found or the
list is exhausted.

Passwords: List of strings to be used as passwords.

• OptionsCache SetLotusNotesId(String NotesIdFile)

Chapter 14
Exporter Interface

14-12

Sets the Lotus Notes ID file location.

NotesIdFile: Full path to the Notes ID file.

• OptionsCache SetOpenForNonSequentialAccess(bool
bOpenForNonSequentialAccess)

Setting this option causes the technology to open archive files in a special mode
that is only usable for non-sequential access of nodes.

bOpenForNonSequentialAccess : If set to true would open the archive file in the
special access mode. Note that turning this flag on a non-archive file will throw an
exception at RunExport time.

• OptionsCache SetSourceFile(Stream file)

Set an input stream as the source document. Exporting a file using this method
may have issues with files that require the original name of the file (example:
extension of the file for identification purposes or name of a secondary file
dependent on the name/path of this file).

• OptionsCache SetSourceFile(Stream file, String Filename)

Set an input stream as the source document and provide information about the
filename (fully qualified path or file name that may be used to derive the extension
of the file or name of a secondary file dependent on the name/path of this file).

• OptionsCache SetNextSourceFile(Stream file)

Set an input stream as the next source document to be exported to the original
destination file. This method has the same limitations as the similar
SetSourceFile(Stream file) method.

• OptionsCache SetNextSourceFile(Stream file, String Filename)

Set an input stream as the next source document to be exported to the original
destination file. The file name provided is used as in the method
SetSourceFile(Stream file, String Filename)

• OptionsCache SetNextSourceFile(FileInfo file)

Set an input stream as the next source document to be exported to the original
destination file.

• OptionsCache SetDestinationFile(Stream file)

Set an output stream as the destination for an export.

14.5.3.1 AppendEMailAttachments
This option toggles whether or not email attachments will be output as PDF. For input
files in all OIT-supported email formats that contain attachments, this option instructs
the PDF Export process to export the contents of the attachments to PDF. The
contents of the export are attached to the end of the email message so that only one
PDF output file is produced. In addition, hyperlinks are provided that link to bookmarks
marking the beginning of each attachment in the resulting PDF.

Data Type

bool

Chapter 14
Exporter Interface

14-13

Data

• true: Email attachments are output as PDF.

• false: Email attachments are not included in the PDF.

Default

false

14.5.3.2 ApplyZLIBCompression
OIT Option ID: SCCOPT_APPLYFILTER

This option determines if ZLIB compression will be applied to all object streams when
generating the PDF output file

Data Type

bool

Data

• true: ZLIB compression is applied to all output streams.

• false: ZLIB compression is not applied to any output stream

Default

true

14.5.3.3 BiDiReorderMethod
OIT Option ID: SCCOPT_REORDERMETHOD

This option controls how the technology reorders bidirectional text.

Data Type

• BiDiReorderMethodValue

BiDiReorderMethodValue Enumeration

One of the following values:

• UnicodeOff: This disables any processing for bidirectional characters. This option
is the default.

• UnicodeLToR: Characters displayed using the Unicode bidirectional algorithm
assuming a base left-to-right order. Use this option to enable bidirectional
rendering.

• UnicodeRToL: Characters displayed using the Unicode bidirectional algorithm
assuming a base right-to-left order. Use this option to force starting bidirectional
rendering in the right-to-left.

Default

UnicodeOff

Chapter 14
Exporter Interface

14-14

14.5.3.4 DefaultInputCharacterSet
OIT Option ID: SCCOPT_DEFAULTINPUTCHARSET

This option is used in cases where Outside In cannot determine the character set used
to encode the text of an input file. When all other means of determining the file's
character set are exhausted, Outside In will assume that an input document is
encoded in the character set specified by this option. This is most often used when
reading plain-text files, but may also be used when reading HTML or PDF files.

Data Type

DefaultInputCharacterSetValue

DefaultInputCharacterSetValue Enumeration

DefaultInputCharacterSetValue can be one of the following enumerations:

SystemDefault

Unicode

BigEndianUnicode

LittleEndianUnicode

Utf8

Utf7

Ascii

UnixJapanese

UnixJapaneseEuc

UnixChineseTrad1

UnixChineseEucTrad1

UnixChineseTrad2

UnixChineseEucTrad2

UnixKorean

UnixChineseSimple

Ebcdic37

Ebcdic273

Ebcdic274

Ebcdic277

Ebcdic278

Ebcdic280

Ebcdic282

Chapter 14
Exporter Interface

14-15

Ebcdic284

Ebcdic285

Ebcdic297

Ebcdic500

Ebcdic1026

Dos437

Dos737

Dos850

Dos852

Dos855

Dos857

Dos860

Dos861

Dos863

Dos865

Dos866

Dos869

Windows874

Windows932

Windows936

Windows949

Windows950

Windows1250

Windows1251

Windows1252

Windows1253

Windows1254

Windows1255

Windows1256

Windows1257

Iso8859_1

Iso8859_2

Iso8859_3

Chapter 14
Exporter Interface

14-16

Iso8859_4

Iso8859_5

Iso8859_6

Iso8859_7

Iso8859_8

Iso8859_9

MacRoman

MacCroatian

MacRomanian

MacTurkish

MacIcelandic

MacCyrillic

MacGreek

MacCE

MacHebrew

MacArabic

MacJapanese

HPRoman8

BiDiOldCode

BiDiPC8

BiDiE0

RussianKOI8

JapaneseX0201

Default

SystemDefault

14.5.3.5 DefaultPageSize
This option allows the developer to specify the size of each page in the generated
output file. The size may be specified in inches, points, centimeters or picas. This
option is only valid when UseDocumentPageSettings is set to false. 1 inch = 6 picas =
72 points = ~ 2.54 cm.

Data Type

PageInfo

Chapter 14
Exporter Interface

14-17

Data

A PageInfo object with the page size information.

Default

8.5 inches by 11 inches

14.5.3.6 DefaultRenderFont
OIT Option ID: SCCOPT_DEFAULTPRINTFONT

This option sets the font to use when the chunker-specified font is not available on the
system. It is also the font used when the font in source file is not available on the
system performing the conversion.

Class members:

string strFaceName

int FontHeight

14.5.3.7 DefaultPageMargins
This option specifies the top, left, bottom and right margins in twips from the edges of
the page. For instance, setting all the values to 1440 creates a 1-inch margin on all
sides. Page margins will only be applied when formatting word processing, database
and spreadsheet files.

Please note all margins are applied before scaling with the PageFitMode option. This
option is overridden when the UseDocumentPageSettings option is set to true and
print margins are specified in the input document. This option does not affect the
output of bitmap, presentation, vector or archive files.

Data Type

Margins

Data

A Margins object with the margins on the 4 sides defined.

Default

1 inch for all margins (1440, 1440, 1440, 1440)

14.5.3.8 DocumentMemoryMode
OIT Option ID: SCCOPT_DOCUMENTMEMORYMODE

This option determines the maximum amount of memory that the chunker may use to
store the document's data, from 4 MB to 1 GB. The more memory the chunker has
available to it, the less often it needs to re-read data from the document.

Data

• SMALLEST: 1 - 4MB

Chapter 14
Exporter Interface

14-18

• SMALL: 2 - 16MB

• MEDIUM: 3 - 64MB

• LARGE: 4 - 256MB

• LARGEST: 5 - 1 GB

Default

SMALL: 2 - 16MB

14.5.3.9 EmailHeaders
OIT Option ID: SCCOPT_WPEMAILHEADEROUTPUT

This option controls rendering of email headers.

Data

• ALL: Displays all available email headers.

• STANDARD: Displays "To," "From," "Subject," "CC," "BCC," "Date Sent," and
"Attachments" header fields only. The filter outputs any fields not listed above as
hidden fields, so they will not display.

• NONE: Displays no email header fields.

• CUSTOM

Default

STANDARD

14.5.3.10 EmbedFonts
This option allows the developer to specify whether or not fonts should be embedded
in the file. In order to comply with the PDF/A-1a spec, this option is forced to a value of
All when PDF/A is selected for the output type.

Data Type

EmbedFontsValue

EmbedFontsValue Enumeration

• ReduceSize: Do not embed base fonts

• All: Embed all fonts

• None: Do not embed base fonts

Default

ReduceSize

14.5.3.11 FallbackFormat
This option controls how files are handled when their specific application type cannot
be determined. This normally affects all plain-text files, because plain-text files are
generally identified by process of elimination, for example, when a file isn't identified as

Chapter 14
Exporter Interface

14-19

having been created by a known application, it is treated as a plain-text file. It is
recommended that None be set to prevent the conversion from exporting unidentified
binary files as though they were text, which could generate many pages of "garbage"
output.

Data Type

FallbackFormatValue

FallbackFormatValue Enumeration

• Text: Unidentified file types will be treated as text files.

• None: Outside In will not attempt to process files whose type cannot be identified

Default

Text

14.5.3.12 FitHeightToPages
OIT Option ID: SCCOPT_SSPRINTSCALEXHIGH

This option will fit the spreadsheet image to the number of vertical pages specified.
The setting for this option will have no effect unless the SSPrintFitToPage option is set
to FitToPages.

Data Type

Int32

Default

1

14.5.3.13 FitWidthToPages
OIT Option ID: SCCOPT_SSPRINTSCALEXWIDE

This option will fit the spreadsheet image to the number of horizontal pages specified.
The setting for this option will have no effect unless the SSPrintFitToPage option is set
to FitToPages.

Data Type

Int32

Default

1

14.5.3.14 FontAliasList
This option enables the capability to specify which font on the system should be used
when a specific font referenced in the original file is not available. A different alias can
be set for each font desired to be mapped.

Chapter 14
Exporter Interface

14-20

Data Type

FontAliases

Data

A FontAliases object with a list of font matchings

Default

Windows PrintAlias default

14.5.3.15 FontDirectories
This option allows the developer to specify one or more font directories where fonts
are located for use by the technology. If multiple font directories are specified, they
should be delimited by a semi-colon on Windows systems.

Data Type

List<DirectoryInfo>

Data

A list of directories where fonts are located.

Default

None

14.5.3.16 FontFilter
This option allows the developer to specify a list of fonts to be included or excluded
during the export process.

Data Type

FontList

Data

A FontFilter object describing the inclusion or exclusion list.

Default

None

14.5.3.17 GraphicOutputDPI
OIT Option ID: SCCOPT_GRAPHIC_OUTPUTDPI

This option allows the user to specify the output graphics device's resolution in DPI
and only applies to images whose size is specified in physical units (in/cm). For
example, consider a 1" square, 100 DPI graphic that is to be rendered on a 50 DPI
device (GraphicOutputDPI is set to 50). In this case, the size of the resulting TIFF,
BMP, JPEG, GIF, or PNG will be 50 x 50 pixels.

Chapter 14
Exporter Interface

14-21

In addition, the special #define of SCCGRAPHIC_MAINTAIN_IMAGE_DPI, which is
defined as 0, can be used to suppress any dimensional changes to an image. In other
words, a 1" square, 100 DPI graphic will be converted to an image that is 100 x 100
pixels in size. This value indicates that the DPI of the output device is not important. It
extracts the maximum resolution from the input image with the smallest exported
image size.

Setting this option to SCCGRAPHIC_MAINTAIN_IMAGE_DPI may result in the
creation of extremely large images. Be aware that there may be limitations in the
system running this technology that could result in undesirably large bandwidth
consumption or an error message. Additionally, an out of memory error message will
be generated if system memory is insufficient to handle a particularly large image.

Also note that the SCCGRAPHIC_MAINTAIN_IMAGE_DPI setting will force the
technology to use the DPI settings already present in raster images, but will use the
current screen resolution as the DPI setting for any other type of input file.

For some output graphic types, there may be a discrepancy between the value set by
this option and the DPI value reported by some graphics applications. The discrepancy
occurs when the output format uses metric units (DPM, or dots per meter) instead of
English units (DPI, or dots per inch). Depending on how the graphics application
performs rounding on meters to inches conversions, the DPI value reported may be 1
unit more than expected. An example of a format which may exhibit this problem is
PNG.

The maximum value that can be set is 2400 DPI; the default is 96 DPI.

Data Type

Int32

14.5.3.18 GridMaxPageHeight
OIT Option ID: SCCOPT_MAXSSDBPAGEHEIGHT

Normally, the size of images generated from spreadsheet worksheets and database
tables is limited to the size of the page defined by the input document's page size
information and how the UseDocumentPageSettings, GraphicWidth and
GraphicHeight options are set. If, after scaling is factored in, the resulting image is too
large to fit on a single page, it is split up into multiple pages.

The GridMaxPageWidth and GridMaxPageHeight options are used to change the size
of a page to match the scaled size of the page being rendered - within limits. The key
reason for those limits is that rendering very large pages can easily overwhelm the
memory available on the system. When using this feature, a calculation should be
made to be sure that the values passed in work within said memory limits. The values
for these two options will override the current page dimensions if necessary.

Data Type

Int32

Data

The maximum page height (including margins) specified in twips (1440 twips are in 1
inch). If the value specified is smaller than the page height, then an error will be
returned.

Chapter 14
Exporter Interface

14-22

14.5.3.19 GridMaxPageWidth
OIT Option ID: SCCOPT_MAXSSDBPAGEWIDTH

See the documentation for GridMaxPageHeight for a full discussion of how this option
works and interacts with other options affecting the page size of images generated
from spreadsheet and database pages.

Data Type

Int32

Data

The maximum page width (including margins) specified in twips (1440 twips are in 1
inch). If the value specified is smaller than the page width, then Image Export will
return an error.

14.5.3.20 IECondCommentMode
OIT Option ID: SCCOPT_HTML_COND_COMMENT_MODE

Some HTML input files may include "conditional comments", which are HTML
comments that mark areas of HTML to be interpreted in specific versions of Internet
Explorer, while being ignored by other browsers. This option allows you to control how
the content contained within conditional comments will be interpreted by Outside In's
HTML parsing code.

Data

• NONE: Don't output any conditional comment

• IE5: Include the IE5 comments

• IE6: Include the IE6 comments

• IE7: Include the IE7 comments

• IE8: Include the IE8 comments

• IE9: Include the IE9 comments

• ALL: Include all conditional comments

14.5.3.21 IgnorePassword
OIT Option ID: SCCOPT_IGNORE_PASSWORD

This option can disable the password verification of files where the contents can be
processed without validation of the password. If this option is not set, the filter should
prompt for a password if it handles password-protected files.

Data Type

bool

Chapter 14
Exporter Interface

14-23

14.5.3.22 ImagePassthrough
This feature is used to allow certain input files to circumvent the normal filtering
process and to be 'wrapped' in a PDF output file directly. This allows for much faster
exporting of the supported file formats, which currently are JPEG, JPEG2000, and
TIFF.

Data Type

bool

Default

false

14.5.3.23 ISODateTimes
OIT Option ID: SCCOPT_FORMATFLAGS

When this flag is set, all Date and Time values are converted to the ISO 8601
standard. This conversion can only be performed using dates that are stored as
numeric data within the original file.

Data

bool

Default

false

14.5.3.24 JPEGQuality
OIT Option ID: SCCOPT_JPEG_QUALITY

This option allows the developer to specify the lossyness of JPEG compression. The
option is only valid if the dwOutputID parameter of the EXOpenExport function is set to
FI_JPEGFIF, FI_PDF, FI_PDFA, or FI_PDFA_2.

Data Type

Int32

Data

A value from 1 to 100, with 100 being the highest quality but the least compression,
and 1 being the lowest quality but the most compression.

Default

100

14.5.3.25 LinearizePDFOutput
Linearization is a method by which PDF renderers are able to render pages of the PDF
file before the entire document is loaded. Linearized output is both larger and takes

Chapter 14
Exporter Interface

14-24

longer to produce; this option allows you to produce non-linearized PDF so that the
export process will be quicker and result in a smaller output file.

Data Type

bool

Default

false

14.5.3.26 LotusNotesDirectory
OIT Option ID: SCCOPT_LOTUSNOTESDIRECTORY

This option allows the developer to specify the location of a Lotus Notes or Domino
installation for use by the NSF filter. A valid Lotus installation directory must contain
the file nnotes.dll.

Data

A path to the Lotus Notes directory.

Default

If this option isn't set, then OIT will first attempt to load the Lotus library according to
the operating system's PATH environment variable, and then attempt to find and load
the Lotus library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

14.5.3.27 MarginText
This option lets you specify a text string for margin text.

Data Type

MarginText

Default

None

14.5.3.28 MarginTextFont
This option is used to set the margin text font and font size.

Data Type

FontInfo

Default

Arial, 9 pt.

14.5.3.29 PageDirection
OIT Option ID: SCCOPT_SSPRINTDIRECTION

Chapter 14
Exporter Interface

14-25

This option controls the pattern in which the pages are rendered, either across first
and then down, or down first and then across.

This option is overridden when the UseDocumentPageSettings option is set to true
and print direction is specified in the input document.

Data Type

PAGEDIRECTION_VALUES

Default

PageDirectionDown

14.5.3.30 PageFitMode
OIT Option ID: SCCOPT_DBPRINTFITTOPAGE

OIT Option ID: SCCOPT_SSPRINTFITTOPAGE

This option scales a spreadsheet file or database image to a certain percent or to a
page width or height. However, in an effort to preserve readability after scaling, Image
Export will not shrink a database document to under approximately one-third of its
original size.

It should be noted that when this option is set to NoMap, the pages of the database file
are printed down first and then across.

Please note that any margins applied as a result of settings for the DefaultPrintMargins
option will be included in any scaling that is applied to the output image as a result of
settings for this option.

This option is overridden when the UseDocumentPageSettings option is set to true
and fitting the page to the printer's image limits is specified in the input document.

Data

• NoMap: No scaling is performed on the spreadsheet or database image. It will
render in its original size onto as many pages as are required to fit the data.

• FitToWidth: Scale the spreadsheet or database image in the rendered image so it
is no larger than one page wide.

• FitToHeight: Scale the spreadsheet or database image in the rendered image so it
is no larger than one page high.

• Scale: Scale the spreadsheet or the database image in the rendered image using
the scale value stored in the PageScalePercent option.

• FitToPages: Scale the spreadsheet or the database image in the rendered image
to fit to the number of pages specified in the FitHeightToPages and
FitWidthToPages options. Since aspect ratio is maintained, the lesser of the two
dimensions (width or height) will determine the scale factor. Note that if either
FitHeightToPages or FitWidthToPages is set to 0, the value in the other option will
be nullified.

Default

• Scale: Scales the rendered image of the spreadsheet or database image using the
scale value stored in the PageScalePercent option (which is 100 by default).

Chapter 14
Exporter Interface

14-26

14.5.3.31 PageRange
OIT Option ID: SCCOPT_WHATTOPRINT

OIT Option ID: SCCOPT_PRINTSTARTPAGE

OIT Option ID: SCCOPT_PRINTENDPAGE

This option indicates whether the whole file or a selected range of pages should be
rendered. When selecting a range, the start and ending pages are specified.

Data Type

PageRange

Data

The page range to be exported.

Default

All pages are printed

14.5.3.32 PageScalePercent
OIT Option ID: SCCOPT_SSPRINTSCALEPERCENT

This option will scale spreadsheet pages by the percentage specified. The option has
no effect unless the SSPrintFitToPage option is set to Scale.

This option must take a value between 1 and 100. If any value outside of this range is
used, the option will be ignored.

Data Type

Int32

Default

100

14.5.3.33 PDFInputMaxEmbeddedObjects
This option allows the user to limit the number of embedded objects that are produced
in a PDF file.

Data Type

UInt32

Data

The maximum number of embedded objects to produce in PDF output. Setting this to
0 would produce an all embedded objects in the input document.

Default

0 – produce all objects.

Chapter 14
Exporter Interface

14-27

14.5.3.34 PDFInputMaxVectorPaths
This option allows the user to limit the number of vector paths that are produced in a
PDF file.

Data

The maximum number of paths to produce in PDF output. Setting this to 0 would
produce an all vector objects in the input document.

Default

0 – produce all vector objects.

14.5.3.35 PDFReorderBiDi
OIT Option ID: SCCOPT_PDF_FILTER_REORDER_BIDI

This option controls whether or not the PDF filter will attempt to reorder bidirectional
text runs so that the output is in standard logical order as used by the Unicode 2.0 and
later specification. This additional processing will result in slower filter performance
according to the amount of bidirectional data in the file.

PDFReorderBiDiValue Enumeration

This enumeration defines the type of Bidirection text reordering the PDF filter should
perform.

• StandardBiDi: Do not attempt to reorder bidirectional text runs.

• ReorderedBiDi: Attempt to reorder bidirectional text runs.

14.5.3.36 PDFWordSpacingFactor
This option controls the spacing threshold in PDF input documents. Most PDF
documents do not have an explicit character denoting a word break. The PDF filter
calculates the distance between two characters to determine if they are part of the
same word or if there should be a word break inserted. The space between characters
is compared to the length of the space character in the current font multiplied by this
fraction. If the space between characters is larger, then a word break character is
inserted into the text stream. Otherwise, the characters are considered to be part of
the same word and no word break is inserted.

Data Type

float

Data

A value representing the percentage of the space character used to trigger a word
break. Valid values are positive values less than 2.

Default

0.85

Chapter 14
Exporter Interface

14-28

14.5.3.37 PerformExtendedFI
OIT Option ID: SCCOPT_FIFLAGS

This option affects how an input file's internal format (application type) is identified
when the file is first opened by the Outside In technology. When the extended test flag
is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC, or
Unicode, the file's contents will be interpreted as such by the export process.

The extended test is optional because it requires extra processing and cannot
guarantee complete accuracy (which would require the inspection of every single byte
in a file to eliminate false positives.)

Data Type

bool

Data

One of the following values:

• false: When this is set, standard file identification behavior occurs.

• true: If set, the File Identification code will run an extended test on all files that are
not identified.

Default

true

14.5.3.38 RedactionColor
This option provides the ability to specify the color used for a redaction rectangle
(black or white) as well as the color used (black or white) for the redaction code. When
the colors match, the redaction code is effectively invisible. Settings should default to
Black redactions with White codes if not explicitly set. The values may be set on each
redaction individually, both in the UI and in the rendered output.

Value

ColorInfo

Data

Any valid CSS color

14.5.3.39 RedactionLabelFont
This option sets the name and size of font to use for redaction labels. The font size
may be reduced to allow text to fit within a redaction rectangle.

Data Type

FontInfo

Chapter 14
Exporter Interface

14-29

Default

Default display font, 9 pt.

14.5.3.40 RedactionLabelsVisible
This option allows you to display redaction labels in your output.

Data Type

Boolean

Default

False (no labels)

14.5.3.41 RedactionsEnabled
This option tells the export to format the output to be redaction-capable. In practical
terms what this means is that all embeddings will be rasterized (routed through
sccimg) so that a rectangle in an embedding is consistent across all output formats.

Data Type

Boolean

Default

False

14.5.3.42 RenderEmbeddedFonts
This option allows you to disable the use of embedded fonts in PDF input files. If the
option is set to true, the embedded fonts in the PDF input are used to render text; if the
option is set to false, the embedded fonts are not used and the fallback is to use fonts
available to Outside In to render text.

Data Type

bool

Default

true

14.5.3.43 RenderGridlines
OIT Option ID: SCCOPT_DBPRINTGRIDLINES

OIT Option ID: SCCOPT_SSPRINTGRIDLINES

If this option is true, a line is generated between cells in the rendered image.

This option is overridden when the UseDocumentPageSettings option is set to true
and printing grid lines between cells is specified in the input document.

Chapter 14
Exporter Interface

14-30

Data Type

bool

Default

true

14.5.3.44 RenderHeadings
OIT Option ID: SCCOPT_DBPRINTHEADINGS

OIT Option ID: SCCOPT_SSPRINTHEADINGS

If this option is true, field, row and column headings will be generated along with the
data.

This option is overridden when the UseDocumentPageSettings option is set to true
and printing column and row headers is specified in the input document.

Data Type

bool

Default

true

14.5.3.45 ShowArchiveFullPath
OIT Option ID: SCCOPT_ARCFULLPATH

This option causes the full path of a node to be returned in "GetArchiveNodeInfo" and
"GetObjectInfo".

Data Type

bool

Data

• true: Provide the full path.

• false: Do not provide the path.

Default

false

14.5.3.46 ShowHiddenCells
OIT Option ID: SCCOPT_SSSHOWHIDDENCELLS

This option lets you determine whether or not to show hidden rows or columns when
rendering spreadsheets. It is used to expand the widths of cells that are hidden by
virtue of having their row height or column width reduced to 0. This is a Boolean option
that will leave the data hidden when it is false, and show all hidden rows and columns
when it is true, displayed using the default row width or default column height.

Chapter 14
Exporter Interface

14-31

Data Type

bool

Default

false

14.5.3.47 ShowHiddenSpreadSheetData
The setting for this option determines whether or not hidden data (hidden columns,
rows or sheets) in a spreadsheet will be included in the output. When set to false (the
default), the hidden elements are not written. When set to true, they are placed in the
output in the same manner as regular spreadsheet data.

Data Type

bool

Default

false

14.5.3.48 StrictFile
When an embedded file or URL can't be opened with the full path, OutsideIn will
sometimes try and open the referenced file from other locations, including the current
directory. When this option is set, it will prevent OutsideIn from trying to open the file
from any location other than the fully qualified path or URL.

Data Type

bool

Default

false

14.5.3.49 TimeZoneOffset
OIT Option ID: SCCOPT_TIMEZONE

This option allows the user to define an offset to GMT that will be applied during date
formatting, allowing date values to be displayed in a selectable time zone. This option
affects the formatting of numbers that have been defined as date values. This option
will not affect dates that are stored as text. To query the operating system for the time
zone set on the machine, specify TimeZoneOffset_UseNative.

Note:

Daylight savings is not supported. The sent time in msg files when viewed in
Outlook can be an hour different from the time sent when an image of the
msg file is created.

Chapter 14
Exporter Interface

14-32

Data Type

Int32

Data

Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query
the operating system for the time zone set on the machine, specify
SCC_TIMEZONE_USENATIVE.

Default

• 0: GMT time

14.5.3.50 UnmappableCharacter
OIT Option ID: SCCOPT_UNMAPPABLECHAR

This option selects the character used when a character cannot be found in the output
character set. This option takes the Unicode value for the replacement character. It is
left to the user to make sure that the selected replacement character is available in the
output character set.

Data Type

UShort

Data

The Unicode value for the character to use.

Default

• 0x002a = "*"

14.5.3.51 UseDocumentPageSettings
OIT Option ID: SCCOPT_USEDOCPAGESETTINGS

This option is used to select the document's page layout information when rendering.

If true, the document's native (or author selected) page margins, paper size, page
scaling and page orientation are used when available from the filter.

The values of the DefaultPrintMargins, RenderGridlines, RenderHeadings,
PageDirection, and PageFitMode options are overridden if this option is set to true and
the properties associated with those options are specified in the input document.
Additionally, print area and page breaks in spreadsheet documents are ignored unless
this option is set to true.

If false, the page margins, size, orientation and scaling are set to specific values rather
than those in the native document. The page size is forced to 8 1/2" x 11" in portrait
orientation, but this may be changed by setting the GraphicHeight and/or
GraphicWidth options. The margins are forced 1" all around, but may be changed by
setting the defaultMargins option. The scaling for the document will be set to 100%,
although this may be changed by setting any of the various scaling options.

Chapter 14
Exporter Interface

14-33

It should be noted that this option also affects page orientation for both input
spreadsheets and word processing documents.

Data Type

bool

Default

true

14.6 ExportStatus Class
The ExportStatus class provides access to information about a conversion. This
information may include information about sub-document failures, areas of a
conversion that may not have high fidelity with the original document. When applicable
the number of pages in the output is also provided.

Namespace

OutsideIn

Properties

• PageCount (Int32) - A count of all of the output pages produced during an export
operation.

• StatusFlags (ExportStatusFlags) - Gets the information about possible fidelity
issues with the original document.

• SubDocsFailed (Int32) - Number of sub documents that were not converted.

• SubDocsPassed (Int32) - Number of sub documents that were successfully
converted.

ExportStatusFlags Enumeration

This enumeration is the set of possible known problems that can occur during an
export process.

• NoInformationAvailable: No Information is available

• MissingMap: A PDF text run was missing the toUnicode table

• VerticalText: A vertical text run was present

• TextEffects: A run that had unsupported text effects applied. One example is Word
Art

• UnsupportedCompression: A graphic had an unsupported compression

• UnsupportedColorSpace: A graphic had an unsupported color space

• Forms: A sub documents had forms

• RightToLeftTables: A table had right to left columns

• Equations: A file had equations

• AliasedFont: The desired font was missing, but a font alias was used

• MissingFont: The desired font wasn't present on the system

Chapter 14
ExportStatus Class

14-34

• SubDocFailed: a sub-document was not converted

• TypeThreeFont: A type 3 font was encountered.

• UnsupportedShading: An unsupported shading pattern was encountered.

• InvalidHTML: An HTML parse error, as defined by the W3C, was encountered.

• bInvalidAnnotationNotApplied: Unsupported annotation/redaction wasn't rendered.

14.7 FileFormat Class
This class defines the identifiers for file formats.

Namespace

OutsideIn

Methods

• getDescription

String getDescription()

This method returns the description of the format.

• getId

int getId()

This method returns the numeric identifier of the format.

• forId

FileFormat forId(int id)

This method returns the FileFormat object for the given identifier.

id : The numeric identifier for which the corresponding FileFormat object is
returned.

14.8 FontAliases Class
FontAliases is a class for providing font matching of unknown fonts.

Namespace

OutsideIn.Options

Constructor

FontAliases(Dictionary<string, string> aliasList)
 aliasList Aliases list as a key-value pair with original name as key

Properties

• AliasList (Dictionary<String, String>) - List of font aliases set.

14.9 FontInfo Class
FontInfo is a class to define a font for use in the OutsideIn API.

Chapter 14
FileFormat Class

14-35

Namespace

OutsideIn.Options

Constructor

FontInfo()

Constructs a FontInfo object with a 10 point Arial Font.

FontInfo(String fontface, Int16 height)
 fontface The name of the font
 height Size of the font in half points

Properties

• Fontface (String) - The name of the font

• Height (Int16) - Size of the font in half points

14.10 FontList Class
FontList is a class for inclusion or exclusion of fonts in exported documents.

Namespace

OutsideIn.Options

Constructor

FontList(Boolean IsExclusion, String[] fonts)
 IsExclusion If set then accompanying list is an exclusion list
 fonts List of fonts to include or exclude

Properties

• IsExclusion (Boolean) - If set, then accompanying list is an exclusion list.

• FontsList (String[]) - List of fonts to include or exclude.

14.11 HighlightTextAnnotation Class
The HighlightTextAnnotation class applies to characteristics of a highlighted text
annotation. This class derives from the Annotation class.

Namespace

OutsideIn.Annotations

Constructors

HighlightTextAnnotation(Int64 StartCharCount,
 Int64 EndCharCount,
 CharAttributeValues CharAttrs,
 CharAttributeValues CharMask)
HighlightTextAnnotation(Int64 StartCharCount,
 Int64 EndCharCount,
 ColorInfo Foreground,

Chapter 14
FontList Class

14-36

 ColorInfo Background)
HighlightTextAnnotation(Int64 StartCharCount,
 Int64 EndCharCount,
 ColorInfo Foreground,
 ColorInfo Background,
 CharAttributeValues CharAttrs,
 CharAttributeValues CharMask)

Initializes a new instance of the HighlightTextAnnotation class.

Parameters

• StartCharCount: The character count of the starting position

• EndCharCount: The character count of the end position

• Foreground: The text color of the highlight

• Background: The background color of the highlight

• CharAttrs: The character attributes to use

• CharMask: Character attributes to change

CharAttributeValues Enumeration

This enumeration is the list of all character attributes to apply for the text highlight.

• Normal: Normal text - All attributes off

• Underline: Underline attribute

• Italic: Italic attribute

• Bold: Bold attribute

• StrikeOut: Strike out text

• SmallCaps: Small caps

• Outline: Outline Text

• Shadow: Shadow text

• Caps: All Caps

• Subscript: Subscript text

• Superscript: Superscript text

• DoubleUnderline: Double Underline

• WordUnderline: Word Underline

• DottedUnderline: Dotted Underline

• DashedUnderline: Dashed Underline

• All: All attributes

14.12 MailHeaders Class
MailHeaders class is a class describing the Mail Headers to be displayed, hidden or
modified.

Chapter 14
MailHeaders Class

14-37

Namespace

OutsideIn.Options

Constructors

MailHeaders()

Constructs a MailHeaders object with a standard headers only.

MailHeaders(MailHeaders.BaselineValue baseline)

baseline: The starting point to add or delete headers.

Properties

Baseline (MailHeaders.BaselineValue) The starting point to add or delete headers.

Methods

MailHeaders ExcludeHeader(MailHeaders.MailTypeValue mtype,
MailHeaders.MailHeaderValue mhdr)

This method adds a standard header to the hidden list.

• mtype: The type of documents in which to hide this header

• mhdr: The header to hide

This method returns a reference to the updated MailHeaders object.

MailHeaders ExcludeHeader(MailHeaders.MailTypeValue mtype, String Exclusion)

This method adds a custom header to be the hidden list.

• mtype: The type of documents in which to hide this header

• Exclusion: User-specified MIME header name to be excluded

This method returns a reference to the updated MailHeaders object.

MailHeaders IncludeHeader(MailHeaders.MailTypeValue mtype,
MailHeaders.MailHeaderValue mhdr)

This method adds a standard header to the visible list.

• mtype: The type of documents in which to show this header

• mhdr: The header to hide

This method returns a reference to the updated MailHeaders object.

MailHeaders IncludeHeader(MailHeaders.MailTypeValue mtype, String Original, String
Replacement)

This method adds a custom header to the visible list.

• mtype: The type of documents in which to show this header

• Original: User-specified MIME header name

Chapter 14
MailHeaders Class

14-38

• Replacement: String that will be used as the label for the user-defined MIME
header

This method returns a reference to the updated MailHeaders object.

void SetHeader(Dictionary<MailHeaders.MailTypeValue, Dictionary<String, String>>
headers)

This method sets a series of custom headers to the visible headers list.

• headers: A key value pair of user-specified MIME headers and their replacement
strings

void SetHeader(Dictionary<MailHeaders.MailTypeValue, List<String>> headers)

This method sets a series of custom headers to the hidden headers list.

• headers: A list of user-specified MIME headers to be hidden

MailHeaders.BaselineValue Enumeration

The BaselineValue is an enumeration of the possible baselines (starting points to add
or exclude headers).

MailHeaders.MailTypeValue Enumeration

The MailTypeValue is an enumeration of the types of mail documents.

14.13 Margins Class
The Margins Class is used to describe the page margins.

Namespace

OutsideIn.Options

Constructors

Margins()

Constructs a Margins object with a 1 inch margins for top, bottom, left and right
margins.

Margins(Int64 top,
 Int64 bottom,
 Int64 left,
 Int64 right)
top Margin from the top edge of the page (in twips)
bottom Margin from the bottom edge of the page (in twips)
left Margin from the left edge of the page (in twips)
right Margin from the right edge of the page (in twips)

Properties

• Top (Int64) Margin from the top edge of the page (in twips)

• Bottom (Int64) Margin from the bottom edge of the page (in twips)

• Left (Int64) Margin from the left edge of the page (in twips)

Chapter 14
Margins Class

14-39

• Right (Int64) Margin from the right edge of the page (in twips)

14.14 MarginText Class
This class provides a mechanism to define the Margin text to be applied to a page/
document.

Namespace

OutsideIn

Constructors

MarginText(Map<MarginText.Location, String>)

Constructs a Margin text object with a list of lines.

MarginText(MarginText.Location, String)

Constructs a Margin text object with a single line.

Methods

void AddMarginText(Map<MarginText.Location, String>)

Adds a set of Margin text lines.

void AddMarginText(MarginText.Location, String)

Adds a line of Margin text.

Location Enumeration

This enumeration is the list of all the locations margin text can be applied to.

• TopLeftLine1: Line 1 of Top Left Corner of page

• TopLeftLine2: Line 2 of Top Left Corner of page

• TopLeftLine3: Line 3 of Top Left Corner of page

• TopCenterLine1: Line 1 of Top Center of page

• TopCenterLine2: Line 2 of Top Center of page

• TopCenterLine3: Line 3 of Top Center of page

• TopRightLine1: Line 1 of Top Right Corner of page

• TopRightLine2: Line 2 of Top Right Corner of page

• TopRightLine3: Line 3 of Top Right Corner of page

• BottomLeftLine1: Line 1 of Bottom Left Corner of page

• BottomLeftLine2: Line 2 of Bottom Left Corner of page

• BottomLeftLine3: Line 3 of Bottom Left Corner of page

• BottomCenterLine1: Line 1 of Bottom Center of page

• BottomCenterLine2: Line 2 of Bottom Center of page

Chapter 14
MarginText Class

14-40

• BottomCenterLine3: Line 3 of Bottom Center of page

• BottomRightLine1: Line 1 of Bottom Right Corner of page

• BottomRightLine2: Line 2 of Bottom Right Corner of page

• BottomRightLine3: Line 3 of Bottom Right Corner of page

14.15 Option Interface
The Option Interface provides the methods and properties to retrieve information about
an Outside In Option.

Namespace

Outside In

Properties

• Name — Name of the option

• Description — Description of the option

• DataType — The type of the option value

• SupportingProducts — The list of products that support this option

Methods

void Set(OptionsCache exporter, Object objValue);

This method sets the option to the exporter object.

• exporter — The exporter object

• objValue — Value of the option

Note:

If the type of objValue cannot be converted to the data type the option is
expecting, an OutsideInCastException is thrown.

void Get(OptionsCache exporter)

This method gets the currently set value for the option.

• exporter — The exporter object who’s option value is requested.

OutsideInProducts Enumeration

• HTMLExport — Outside In HTML Export

• ImageExport — Outside In Image Export

• PDFExport — Outside In PDF Export

• SearchExport — Outside In Search Export

• WebViewExport — Outside In Web View Export

Chapter 14
Option Interface

14-41

• XMLExport — Outside In XML Export

• AllExports — All Outside In export products

14.16 OutsideIn Class
This is a utility class that creates an instance of an Exporter object on request.

Namespace

OutsideIn

Methods

static Exporter NewLocalExporter()

This method creates an instance of an Exporter object. It returns a newly created
Exporter object.

static Exporter NewLocalExporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the
source Exporter. All the options of source are copied to the new Exporter. The source
and destination file information will not be copied.

OutsideInVersion GetCoreVersion()

This static method returns an OutsideInVersion object with information of the Outside
In Core Technology used.

14.17 OutsideInVersion Class
The OutsideIn Class is used to describe the version of the Outside In Core Module.

Namespace

OutsideIn

Methods

String GetVersion()

This method returns the version information as a string in the format of
“MajorVersion.MinorVersion.DotVersion”.

Properties

• int MajorVersion: The major version component

• int MinorVersion: The minor version component

• int DotVersion: The dot version component

14.18 OutsideInConfig Class
The OutsideInConfig Class is used to describe the Outside In Configuration Options.

Chapter 14
OutsideIn Class

14-42

Namespace

OutsideIn

Constructors

OutsideInConfig()

Creates a OutsideInConfig instance with default values.

OutsideInConfig(DirectoryInfo InstallLocation, UInt32 IdleWorkerTimeout, UInt32
MinimumWorkerCount)

Creates a OutsideInConfig instance with specified values.

Properties

DirectoryInfo InstallLocation: The Location of the technology directory.

UInt32 IdleWorkerTimeout: value indicating the number of milliseconds that an idle
process in excess of the minimum worker count is kept alive before being terminated.
This timeout only applies to worker processes created beyond the number of
MinimumWorkerCount processes.

UInt32 MinimumWorkerCount: Specifies the minimum number of running worker
processes kept available for export operations. If there is a higher number of exporter
objects performing simultaneous export operations, additional worker processes will
be created. Those additional worker processes will be terminated according to the
IdleWorkerTimeout setting. If any of these processes are terminated due to errors,
they will be replaced by a new process to maintain this minimum count of loaded
worker processes.

14.19 OutsideInException Class
This is the exception that is thrown when an Outside In Technology error occurs.

This class derives from the Exception class. This class has no public methods or
properties except those of the parent Exception class.

Namespace

OutsideIn

14.19.1 OutsideInCastException Class
This exception is thrown when an invalid value is provided as an option value.

This class derives from the OutsideInException class. This class has no public
methods or properties except those of the parent Exception class.

Namespace

OutsideIn

Chapter 14
OutsideInException Class

14-43

14.20 PageInfo Class
PageInfo is a class for defining page dimensions.

Namespace

OutsideIn.Options

Constructor

PageInfo(PageInfo.PageSizeUnitsValue units,
 Single width,
 Single height)
units Units used to specify width and height
width Width of the page
height Height of the page

Properties

• Units: Units used to specify width and height

• Width: Width of the page

• Height: Height of the page

PageInfo.PageSizeUnitsValue Enumeration

PageSizeUnitsValue is an enumeration of the various units that can be used to specify
the width and height of a page.

• Inches: Units are in Inches

• Points: Units are in Points (1/72th of an inch)

• Centimeters: Units are in Centimeters

• Picas: Units are in Picas (1/6th of an inch)

14.21 PageRange Class
PageRange is a class for defining page ranges for exporting purposes.

Namespace

OutsideIn.Options

Constructors

PageRange()

Creates an instance of the PageRangeObject for printing all pages.

PageRange(Int32 StartPage)
StartPage Starting page number of the print range

Creates an instance of the PageRangeObject for printing from a page until end of
document.

Chapter 14
PageInfo Class

14-44

PageRange(
 Int32 StartPage,
 Int32 StopPage)
StartPage Starting page number of the print range
StopPage End page number of the print range

Creates an instance of the PageRangeObject for printing a range of pages.

Properties

• PrintAll (Boolean) - If set to true, all pages of the document will be printed

• StartPage (Int32) - The start page of the print range. 0 indicates printing will begin
with the first page of the document.

• StopPage (Int32) - The last page of the print range. 0 indicates the last page at the
end of the document.

14.22 Watermark Class
This class describes the watermark to be applied to a document.

Namespace

OutsideIn.Options

Constructors

Watermark (FileInfo file)

Creates a watermark object with the image to be used.

• file: A FileInfo object with the image file to be used as a watermark

Watermark (String filename)

Creates a watermark object with the image to be used.

• filename: The name of the image file to be used as a watermark

Watermark (Stream stream)

Creates a watermark object with the image to be used.

• stream: A stream with the image to be used as a watermark

Watermark (FileInfo file, int Opacity, int Percent, ANCHORPOSITION Anchor, int
VerticalOffset, int HorizontalOffset)

• file: A FileInfo object with the image file to be used as a watermark

• Opacity: The Opacity of the watermark. Opacity is in the range of 1-255

• Percent: The Percentage the watermark image is scaled by. A value of 0 indicates
no scaling

• Anchor: The position from which the watermark image is offset

• VerticalOffset: vertical offset to shift the image by

• HorizontalOffset: horizontal offset to shift the image by

Chapter 14
Watermark Class

14-45

Watermark (String filename, int Opacity, int Percent, ANCHORPOSITION Anchor, int
VerticalOffset, int HorizontalOffset)

• filename: The name of the image file to be used as a watermark

• Opacity: The Opacity of the watermark. Opacity is in the range of 1-255

• Percent: The Percentage the watermark image is scaled by. A value of 0 indicates
no scaling

• Anchor: The position from which the watermark image is offset

• VerticalOffset: vertical offset to shift the image by

• HorizontalOffset: horizontal offset to shift the image by

Watermark (Stream stream, int Opacity, int Percent, ANCHORPOSITION Anchor, int
VerticalOffset, int HorizontalOffset)

• stream: A stream with the image to be used as a watermark

• Opacity : The Opacity of the watermark. Opacity is in the range of 1-255

• Percent: The Percentage the watermark image is scaled by. A value of 0 indicates
no scaling

• Anchor: The position from which the watermark image is offset

• VerticalOffset: vertical offset to shift the image by

• HorizontalOffset: horizontal offset to shift the image by

Properties

• AnchorPosition: Watermark's Anchor position. This is the position from which the
Horizontal and Vertical offsets are applied

• HorzOffset: Gets or sets the horizontal offset to shift the image by

• Opacity: Gets or sets the Opacity of the watermark. Opacity is in the range of
1-255. 0 disables the watermark

• Percent: Gets or sets the percentage amount by which the image is to be scaled.
A value of 0 indicates no scaling

• VertOffset: Gets or sets the vertical offset to shift the image by

Chapter 14
Watermark Class

14-46

Index

Symbols
$HOME, 5-9
$LD_LIBRARY_PATH, 5-9
$LIBPATH, 5-9
$ORIGIN, 5-9
$SHLIB_PATH, 5-9

A
Annotation, 12-1, 14-1
AppendEMailAttachments, 12-15, 14-13
ApplyZLIBCompression, 12-15, 14-14
Architectural Overview, 1-1

B
BiDiReorderMethod, 12-16, 14-14

C
Callback, 12-3, 14-2
Callbacks, 9-1
Character Mapping, 10-1
ColorInfo, 12-6, 14-5
Compression, 10-12
createNewFile, 12-3
CreateNewFile, 14-3
CreateNewFileResponse, 12-3, 14-4
createTempFile, 12-5
CreateTempFileResponse, 12-6

D
DACloseDocument, 6-7
DACloseTreeRecord, 6-17
DADeInit, 6-3
DAGetErrorString, 6-12
DAGetFileId, 6-10
DAGetFileIdEx, 6-11
DAGetObjectInfo, 6-12
DAGetOption, 6-10
DAGetTreeCount, 6-13
DAGetTreeRecord, 6-14

DAInitEx, 6-2
DAOpenDocument, 6-3
DAOpenNextDocument, 6-6
DAOpenSubdocumentById, 6-6
DAOpenTreeRecord, 6-15
DARetrieveDocHandle, 6-8
DASaveInputObject, 6-16
DASaveTreeRecord, 6-16
DASetFileAccessCallback, 6-19
DASetFileSpecOption, 6-9
DASetOption, 6-8
DASetStatCallback, 6-18
Data Access Common Functions, 6-1
Default Font Aliases, 4-8, 5-10
DefaultInputCharacterSet, 12-16, 14-15
DefaultPageMargins, 12-19, 14-18
DefaultPageSize, 12-19, 14-17
DEFAULTPAGESIZE Structure, 10-26
DefaultRenderFont, 12-19, 14-18
Deprecated Functions, 6-1
Directory Structure, 1-2
Document, 12-10, 14-10
DocumentMemoryMode, 12-20, 14-18

E
EmailHeaders, 12-20, 14-19
EmbedFonts, 12-21, 14-19
environment variables, 5-9

$HOME, 5-9
$LD_LIBRARY_PATH, 5-9
$LIBPATH, 5-9
$SHLIB_PATH, 5-9

EX_CALLBACK_ID_BEGINPAGE, 9-4
EX_CALLBACK_ID_CREATENEWFILE, 9-1
EX_CALLBACK_ID_NEWFILEINFO, 9-3
EX_CALLBACK_ID_PAGECOUNT, 9-4
EXCALLBACKPROC, 7-3
EXCloseExport, 7-4
EXExportStatus, 7-4
EXOpenExport, 7-1
export, 3-2

Main Window, 3-2
Export Functions, 7-1
Exporter, 12-6, 14-6

Index-1

ExportStatus, 12-36, 14-34
ExportStatusFlags, 14-34
ExportTest, 3-5
EXRedactText, 7-12
exredir, 3-3
EXRunExport, 7-4
exsimple, 3-3
extract_archive, 3-3

F
FallbackFormat, 12-21, 14-19
File System, 10-47
FileFormat, 12-37, 14-35
FitHeightToPages, 12-22, 14-20
FitWidthToPages, 12-22, 14-20
Font Rendering, 10-37
FontAliases, 12-37, 14-35
FontAliasList, 12-22, 14-20
FontDirectories, 12-23, 14-21
FontFilter, 12-23, 14-21
FONTFILTERLIST Structure, 10-40
FontInfo, 12-38, 14-35
FontList, 12-38, 14-36
FONTNAMELIST Structure, 10-40

G
GraphicOutputDPI, 12-23, 14-21
Graphics, 10-14
GridMaxPageHeight, 12-24, 14-22
GridMaxPageWidth, 12-24, 14-23

H
HighlightTextAnnotation, 12-38, 14-36
How to Use PDF Export, 1-3
HP-UX on Itanium (64 bit), 5-13
HP-UX on RISC, 5-13

I
IECondCommentMode, 12-25, 14-23
IgnorePassword, 12-25, 14-23
ImagePassthrough, 12-25, 14-24
Implementation Issues, 2-1
Input Handling, 10-2
Introduction, 1-1
IOClose, 8-3
IOGENSECONDARY and

IOGENSECONDARYW Structures, 8-8
IOGetInfo, 8-5
IOGETINFO_GENSECONDARY, 8-9
IORead, 8-3

IOSeek, 8-4
IOSPECARCHIVEOBJECT Structure, 6-5
IOSPECLINKEDOBJECT Structure, 6-5
IOTell, 8-5
IOWrite, 8-4
ISODateTimes, 12-26, 14-24

J
Java Wrapper, 3-4
JPEGQuality, 12-26, 14-24

L
LinearizePDFOutput, 12-26, 14-24
LotusNotesDirectory, 12-27, 14-25

M
MailHeaders, 12-40, 14-37
Margins, 12-41, 14-39
MarginText, 12-27, 14-25
MarginText Class, 12-42, 14-40
MarginTextFont, 12-27, 14-25

N
newFileInfo, 12-4
NewFileInfo, 14-4
NSF Support, 4-2, 5-2

O
OLE2, 5-8
openFile, 12-5
OpenFileResponse, 12-5
Option Interface, 12-43, 14-41
OptionsCache, 12-13, 14-11
Oracle Solaris Compiling and Linking, 5-14
OutsideIn, 12-44, 14-42
OutsideInCastException Class, 14-43
OutsideInConfig, 14-42
OutsideInException, 12-45, 14-43
OutsideInVersion, 12-45, 14-42

P
Page Rendering, 10-26
PageDirection, 12-27, 14-25
PageFitMode, 12-28, 14-26
PageInfo, 12-45, 14-44
PageRange, 12-29, 12-48, 14-27, 14-44
PageScalePercent, 12-29, 14-27
PDF Export Options, 10-1

Index

Index-2

PDFInputMaxEmbeddedObjects, 12-29, 14-27
PDFInputMaxVectorPaths, 12-30, 14-28
PDFReorderBiDi, 12-30, 14-28
PDFWordSpacingFactor, 12-30, 14-28
PerformExtendedFI, 12-31, 14-29
pxanno, 3-3

R
RedactionColor, 12-31, 14-29
RedactionLabelFont, 12-31, 14-29
RedactionLabelsVisible, 12-32, 14-30
RedactionsEnabled, 12-32, 14-30
RenderGridlines, 12-32, 14-30
RenderHeadings, 12-33, 14-31
Running in 24x7 Environments, 2-1
Running in Multiple Threads or Processes, 2-1
Runtime Search Path, 5-9

S
Sample Applications, 3-1
SCCBUFFEROPTIONS Structure, 10-47
SCCDAOBJECT Structure, 6-6
SCCDATREENODE Structure, 6-14
SCCOPT_APPLYFILTER, 10-12
SCCOPT_ARCFULLPATH, 10-10
SCCOPT_DBPRINTFITTOPAGE, 10-17
SCCOPT_DBPRINTGRIDLINES, 10-18
SCCOPT_DBPRINTHEADINGS, 10-18
SCCOPT_DEFAULTINPUTCHARSET, 10-1
SCCOPT_DEFAULTPAGESIZE, 10-26
SCCOPT_DEFAULTPRINTFONT, 10-37
SCCOPT_DEFAULTPRINTMARGINS, 10-27
SCCOPT_DOCUMENTMEMORYMODE, 10-50
SCCOPT_DOLINEARIZATION, 10-32
SCCOPT_EMBEDFONTS, 10-38
SCCOPT_EX_CALLBACKS, 10-45
SCCOPT_EX_SHOWHIDDENSSDATA, 10-25
SCCOPT_EX_UNICODECALLBACKSTR, 10-46
SCCOPT_EXPORTEMAILATTACHMENTS,

10-35
SCCOPT_FALLBACKFORMAT, 10-3
SCCOPT_FIFLAGS, 10-3
SCCOPT_FILTERJPG, 10-13
SCCOPT_FILTERLZW, 10-13
SCCOPT_FILTERNOBLANK, 10-25
SCCOPT_FONTDIRECTORY, 10-39
SCCOPT_FONTEMBEDPOLICY, 10-42
SCCOPT_FONTFILTER, 10-39
SCCOPT_FORMATFLAGS, 10-4
SCCOPT_GRAPHIC_OUTPUTDPI, 10-14
SCCOPT_GRAPHIC_SIZEMETHOD, 10-15
SCCOPT_GRAPHIC_WATERMARK_OPACITY,

10-44

SCCOPT_GRAPHIC_WATERMARK_SCALEPE
RCENT, 10-45

SCCOPT_GRAPHIC_WATERMARK_SCALETY
PE, 10-44

SCCOPT_HTML_COND_COMMENT_MODE,
10-10

SCCOPT_IGNORE_PASSWORD, 10-5
SCCOPT_IMAGE_PASSTHROUGH, 10-16
SCCOPT_IO_BUFFERSIZE, 10-47
SCCOPT_LOTUSNOTESDIRECTORY, 10-6
SCCOPT_MAILHEADERHIDDEN, 10-34
SCCOPT_MAILHEADERVISIBLE, 10-33
SCCOPT_MARGIN_TEXT_FONT_NAME, 10-35
SCCOPT_MARGIN_TEXT_FONT_SIZE, 10-35
SCCOPT_MARGIN_TEXT_LINE, 10-36
SCCOPT_MAXSSDBPAGEHEIGHT, 10-18
SCCOPT_MAXSSDBPAGEWIDTH, 10-20
SCCOPT_NUMBERFORMAT, 10-30
SCCOPT_PDF_FILTER_BIDI_LIFEBIT, 10-7
SCCOPT_PDF_FILTER_MAX_EMBEDDED_OB

JECTS, 10-11
SCCOPT_PDF_FILTER_MAX_VECTOR_PATH

S, 10-11
SCCOPT_PDF_FILTER_REORDER_BIDI, 10-6
SCCOPT_PDF_FILTER_WORD_DELIM_FRAC

TION, 10-12
SCCOPT_PRINTENDPAGE, 10-28
SCCOPT_PRINTFONTALIAS, 10-40
SCCOPT_PRINTSTARTPAGE, 10-28
SCCOPT_REDACTION_COLOR, 10-36
SCCOPT_REDACTION_LABEL_FONT_NAME,

10-36
SCCOPT_REDACTION_LABEL_FONT_SIZE,

10-36
SCCOPT_REDACTIONS_ENABLED, 10-37
SCCOPT_REDIRECTTEMPFILE, 10-51
SCCOPT_RENDER_EMBEDDED_FONTS,

10-42
SCCOPT_REORDERMETHOD, 10-9
SCCOPT_SHOW_REDACTION_LABELS, 10-37
SCCOPT_SSPRINTDIRECTION, 10-21
SCCOPT_SSPRINTFITTOPAGE, 10-21
SCCOPT_SSPRINTGRIDLINES, 10-22
SCCOPT_SSPRINTHEADINGS, 10-23
SCCOPT_SSPRINTSCALEPERCENT, 10-23
SCCOPT_SSPRINTSCALEXHIGH, 10-24
SCCOPT_SSPRINTSCALEXWIDE, 10-24
SCCOPT_SSSHOWHIDDENCELLS, 10-24
SCCOPT_STROKE_TEXT, 10-43
SCCOPT_SYSTEMFLAGS, 10-5
SCCOPT_TEMPDIR, 10-49
SCCOPT_TIMEZONE, 10-9
SCCOPT_UNMAPPABLECHAR, 10-2
SCCOPT_USEDOCPAGESETTINGS, 10-29
SCCOPT_WHATTOPRINT, 10-29

Index

3

SCCOPT_WPEMAILHEADEROUTPUT, 10-32
SCCUTTEMPDIRSPEC Structure, 10-49
SCCVWFONTALIAS Structure, 10-41
SCCVWNUMBERFORMAT775 and

SCCVWNUMBERFORMAT Structures,
10-30

SCCVWPRINTMARGINS Structure, 10-27
ShowArchiveFullPath, 12-33, 14-31
ShowHiddenCells, 12-33, 14-31
ShowHiddenSpreadSheetData, 12-34, 14-32
Solaris SPARC, 5-14
Spreadsheet and Database File Rendering,

10-17
Status Callback Function, 6-18
StrictFile, 12-34, 14-32

T
TimeZoneOffset, 12-34, 14-32

U
UNIX

API Libraries, 5-2
Changing Resources, 5-12
Character Sets, 5-8
Engine Libraries, 5-4
Environment Variables, 5-9
Filter and Export Filter Libraries, 5-4
HP-UX Compiling and Linking, 5-12

UNIX (continued)
IBM AIX Compiling and Linking, 5-13
Information Storage, 5-7
Installation, 5-1
Libraries and Structure, 5-2
OLE2, 5-8
Premier Graphics Filters, 5-5
Runtime Considerations, 5-8
Signal Handling, 5-8
Support Libraries, 5-3

UNIX Implementation Details, 5-1
UnmappableCharacter, 12-35, 14-33
UseDocumentPageSettings, 12-35, 14-33
Using Redirected IO, 8-1

W
Watermark, 12-46, 14-45
Watermarks, 10-43
Windows

API DLLs, 4-2
Changing Resources, 4-8
Character Sets, 4-7
Engine Libraries, 4-4
Filter and Export Filter Libraries, 4-4
Installation, 4-1
Libraries and Structure, 4-2
Options and Information Storage, 4-7
Premier Graphics Filters, 4-5
Support DLLs, 4-2

Windows Implementation Details, 4-1

Index

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Getting Started with PDF Export
	1 Introduction
	1.1 Architectural Overview
	1.2 Definition of Terms
	1.3 Directory Structure
	1.3.1 Installing Multiple SDKs

	1.4 How to Use PDF Export

	2 Implementation Issues
	2.1 Running in 24x7 Environments
	2.2 Running in Multiple Threads or Processes
	2.3 PDF Export Issues

	3 Sample Applications
	3.1 Building the Samples on a Windows System
	3.2 An Overview of the Sample Applications
	3.2.1 pxsample
	3.2.2 export (Windows Only)
	3.2.2.1 The export Main Window

	3.2.3 exsimple
	3.2.4 exredir
	3.2.5 extract_archive
	3.2.6 pxanno

	3.3 Accessing the SDK via a Java Wrapper
	3.3.1 The ExJava Wrapper API
	3.3.2 The C-Based Exporter Application
	3.3.3 Compiling the Executables
	3.3.4 The ExportTest Sample Application
	3.3.5 An Example Conversion Using the ExJava Wrapper

	Part II Using the C/C++ API
	4 Windows Implementation Details
	4.1 Installation
	4.1.1 NSF Support

	4.2 Libraries and Structure
	4.2.1 API DLLs
	4.2.2 Support DLLs
	4.2.3 Engine Libraries
	4.2.4 Filter and Export Filter Libraries
	4.2.5 Premier Graphics Filters
	4.2.6 Additional Files

	4.3 The Basics
	4.3.1 What You Need in Your Source Code
	4.3.2 Options and Information Storage
	4.3.3 Structure Alignment
	4.3.4 Character Sets
	4.3.5 Runtime Considerations

	4.4 Default Font Aliases
	4.5 Changing Resources

	5 UNIX Implementation Details
	5.1 Installation
	5.1.1 NSF Support

	5.2 Libraries and Structure
	5.2.1 API Libraries
	5.2.2 Support Libraries
	5.2.3 Engine Libraries
	5.2.4 Filter and Export Filter Libraries
	5.2.5 Premier Graphics Filters
	5.2.6 Additional Files

	5.3 The Basics
	5.3.1 What You Need in Your Source Code
	5.3.2 Information Storage

	5.4 Character Sets
	5.5 Runtime Considerations
	5.5.1 OLE2 Objects
	5.5.2 Signal Handling
	5.5.3 Runtime Search Path and ⁠$ORIGIN

	5.6 Environment Variables
	5.7 Default Font Aliases
	5.8 Changing Resources
	5.9 HP-UX Compiling and Linking
	5.9.1 HP-UX on RISC
	5.9.2 HP-UX on Itanium (64 bit)

	5.10 IBM AIX Compiling and Linking
	5.10.1 IBM AIX (32-bit pSeries)

	5.11 Oracle Solaris Compiling and Linking
	5.11.1 Oracle Solaris SPARC

	5.12 Linux Compiling and Linking
	5.12.1 Library Compatibility
	5.12.1.1 GLIBC and Compiler Versions
	5.12.1.2 Other Libraries

	5.12.2 Compiling and Linking
	5.12.2.1 Linux 32-bit
	5.12.2.2 Linux 64-bit

	6 Data Access Common Functions
	6.1 Deprecated Functions
	6.2 DAInitEx
	6.3 DADeInit
	6.4 DAOpenDocument
	6.4.1 IOSPECLINKEDOBJECT Structure
	6.4.2 IOSPECARCHIVEOBJECT Structure
	6.4.3 SCCDAOBJECT Structure

	6.5 DAOpenSubdocumentById
	6.6 DAOpenNextDocument
	6.7 DACloseDocument
	6.8 DARetrieveDocHandle
	6.9 DASetOption
	6.10 DASetFileSpecOption
	6.11 DAGetOption
	6.12 DAGetFileId
	6.13 DAGetFileIdEx
	6.14 DAGetErrorString
	6.15 DAGetObjectInfo
	6.16 DAGetTreeCount
	6.17 DAGetTreeRecord
	6.17.1 SCCDATREENODE Structure

	6.18 DAOpenTreeRecord
	6.19 DASaveInputObject
	6.20 DASaveTreeRecord
	6.21 DACloseTreeRecord
	6.22 DASetStatCallback
	6.23 DASetFileAccessCallback

	7 Export Functions
	7.1 General Functions
	7.1.1 EXOpenExport
	7.1.2 EXCALLBACKPROC
	7.1.3 EXCloseExport
	7.1.4 EXRunExport
	7.1.5 EXExportStatus

	7.2 Annotation Functions
	7.2.1 EXHiliteText
	7.2.2 EXInsertText
	7.2.3 EXHideText
	7.2.3.1 EXANNOHIDETEXT Structure

	7.2.4 EXApplyHilites
	7.2.5 EXRedactText

	8 Redirected IO
	8.1 Using Redirected IO
	8.2 Opening Files
	8.3 IOClose
	8.4 IORead
	8.5 IOWrite
	8.6 IOSeek
	8.7 IOTell
	8.8 IOGetInfo
	8.8.1 IOGENSECONDARY and IOGENSECONDARYW Structures
	8.8.2 File Types That Cause IOGETINFO_GENSECONDARY

	8.9 IOSEEK64PROC / IOTELL64PROC
	8.9.1 IOSeek64
	8.9.2 IOTell64

	9 Callbacks
	9.1 EX_CALLBACK_ID_CREATENEWFILE
	9.1.1 EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW Structures

	9.2 EX_CALLBACK_ID_NEWFILEINFO
	9.3 EX_CALLBACK_ID_PAGECOUNT
	9.4 EX_CALLBACK_ID_BEGINPAGE

	10 PDF Export C/C++ Options
	10.1 Character Mapping
	10.1.1 SCCOPT_DEFAULTINPUTCHARSET
	10.1.2 SCCOPT_UNMAPPABLECHAR

	10.2 Input Handling
	10.2.1 SCCOPT_FALLBACKFORMAT
	10.2.2 SCCOPT_FIFLAGS
	10.2.3 SCCOPT_FORMATFLAGS
	10.2.4 SCCOPT_SYSTEMFLAGS
	10.2.5 SCCOPT_IGNORE_PASSWORD
	10.2.6 SCCOPT_LOTUSNOTESDIRECTORY
	10.2.7 SCCOPT_PDF_FILTER_REORDER_BIDI
	10.2.8 SCCOPT_PDF_FILTER_BIDI_LIFEBIT
	10.2.9 SCCOPT_REORDERMETHOD
	10.2.10 SCCOPT_TIMEZONE
	10.2.11 SCCOPT_HTML_COND_COMMENT_MODE
	10.2.12 SCCOPT_ARCFULLPATH
	10.2.13 SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS
	10.2.14 SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS
	10.2.15 SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION

	10.3 Compression
	10.3.1 SCCOPT_APPLYFILTER
	10.3.2 SCCOPT_FILTERJPG
	10.3.3 SCCOPT_FILTERLZW

	10.4 Graphics
	10.4.1 SCCOPT_GRAPHIC_OUTPUTDPI
	10.4.2 SCCOPT_GRAPHIC_SIZEMETHOD
	10.4.3 SCCOPT_IMAGE_PASSTHROUGH
	10.4.4 SCCOPT_RENDER_ENABLEALPHABLENDING

	10.5 Spreadsheet and Database File Rendering
	10.5.1 SCCOPT_DBPRINTFITTOPAGE
	10.5.2 SCCOPT_DBPRINTGRIDLINES
	10.5.3 SCCOPT_DBPRINTHEADINGS
	10.5.4 SCCOPT_MAXSSDBPAGEHEIGHT
	10.5.5 SCCOPT_MAXSSDBPAGEWIDTH
	10.5.6 SCCOPT_SSPRINTDIRECTION
	10.5.7 SCCOPT_SSPRINTFITTOPAGE
	10.5.8 SCCOPT_SSPRINTGRIDLINES
	10.5.9 SCCOPT_SSPRINTHEADINGS
	10.5.10 SCCOPT_SSPRINTSCALEPERCENT
	10.5.11 SCCOPT_SSPRINTSCALEXHIGH
	10.5.12 SCCOPT_SSPRINTSCALEXWIDE
	10.5.13 SCCOPT_SSSHOWHIDDENCELLS
	10.5.14 SCCOPT_EX_SHOWHIDDENSSDATA
	10.5.15 SCCOPT_FILTERNOBLANK

	10.6 Page Rendering
	10.6.1 SCCOPT_DEFAULTPAGESIZE
	10.6.1.1 DEFAULTPAGESIZE Structure

	10.6.2 SCCOPT_DEFAULTPRINTMARGINS
	10.6.2.1 SCCVWPRINTMARGINS Structure

	10.6.3 SCCOPT_PRINTENDPAGE
	10.6.4 SCCOPT_PRINTSTARTPAGE
	10.6.5 SCCOPT_USEDOCPAGESETTINGS
	10.6.6 SCCOPT_WHATTOPRINT
	10.6.7 SCCOPT_NUMBERFORMAT
	10.6.7.1 SCCVWNUMBERFORMAT775 and SCCVWNUMBERFORMAT Structures

	10.6.8 SCCOPT_DOLINEARIZATION
	10.6.9 SCCOPT_WPEMAILHEADEROUTPUT
	10.6.10 SCCOPT_MAILHEADERVISIBLE
	10.6.11 SCCOPT_MAILHEADERHIDDEN
	10.6.12 SCCOPT_EXPORTEMAILATTACHMENTS
	10.6.13 SCCOPT_MARGIN_TEXT_FONT_NAME
	10.6.14 SCCOPT_MARGIN_TEXT_FONT_SIZE
	10.6.15 SCCOPT_MARGIN_TEXT_LINE
	10.6.16 SCCOPT_REDACTION_COLOR
	10.6.17 SCCOPT_REDACTION_LABEL_FONT_NAME
	10.6.18 SCCOPT_REDACTION_LABEL_FONT_SIZE
	10.6.19 SCCOPT_REDACTIONS_ENABLED
	10.6.20 SCCOPT_SHOW_REDACTION_LABELS

	10.7 Font Rendering
	10.7.1 SCCOPT_DEFAULTPRINTFONT
	10.7.1.1 SCCVWFONTSPEC Structure

	10.7.2 SCCOPT_EMBEDFONTS
	10.7.3 SCCOPT_FONTDIRECTORY
	10.7.4 SCCOPT_FONTFILTER
	10.7.4.1 FONTFILTERLIST Structure
	10.7.4.2 FONTNAMELIST Structure

	10.7.5 SCCOPT_PRINTFONTALIAS
	10.7.5.1 SCCVWFONTALIAS Structure

	10.7.6 SCCOPT_FONTEMBEDPOLICY
	10.7.7 SCCOPT_RENDER_EMBEDDED_FONTS
	10.7.8 SCCOPT_STROKE_TEXT

	10.8 Watermarks
	10.8.1 SCCOPT_GRAPHIC_WATERMARK_OPACITY
	10.8.2 SCCOPT_GRAPHIC_WATERMARK_SCALETYPE
	10.8.3 SCCOPT_GRAPHIC_WATERMARK_SCALEPERCENT

	10.9 Callbacks
	10.9.1 SCCOPT_EX_CALLBACKS
	10.9.2 SCCOPT_EX_UNICODECALLBACKSTR

	10.10 File System
	10.10.1 SCCOPT_IO_BUFFERSIZE
	10.10.1.1 SCCBUFFEROPTIONS Structure

	10.10.2 SCCOPT_TEMPDIR
	10.10.2.1 SCCUTTEMPDIRSPEC Structure

	10.10.3 SCCOPT_DOCUMENTMEMORYMODE
	10.10.4 SCCOPT_REDIRECTTEMPFILE

	Part III Using the Java API
	11 Introduction to the Java API
	11.1 Requirements
	11.2 Getting Started
	11.2.1 Configure the Environment
	11.2.2 Generate Code
	11.2.2.1 Create an Exporter Object
	11.2.2.2 Configure the Output
	11.2.2.3 Set the Source and Primary Destination Files
	11.2.2.4 Set the Output Type
	11.2.2.5 Provide a Callback Handler
	11.2.2.6 Run the Export

	12 PDF Export Java Classes
	12.1 Annotation Class
	12.2 ArchiveNode Class
	12.3 Callback Class
	12.3.1 createNewFile
	12.3.1.1 CreateNewFileResponse Class

	12.3.2 newFileInfo
	12.3.3 openFile
	12.3.3.1 OpenFileResponse Class

	12.3.4 createTempFile
	12.3.4.1 CreateTempFileResponseClass

	12.4 ColorInfo Class
	12.5 Exporter Interface
	12.5.1 Annotatable Interface
	12.5.2 Document Interface
	12.5.3 SeekableByteChannel6 Interface
	12.5.4 OptionsCache Class
	12.5.4.1 AppendEMailAttachments
	12.5.4.2 ApplyZLIBCompression
	12.5.4.3 BiDiReorderMethod
	12.5.4.4 DefaultInputCharacterSet
	12.5.4.5 DefaultPageSize
	12.5.4.6 DefaultRenderFont
	12.5.4.7 DefaultPageMargins
	12.5.4.8 DocumentMemoryMode
	12.5.4.9 EmailHeaders
	12.5.4.10 EmbedFonts
	12.5.4.11 EnableAlphaBlending
	12.5.4.12 FallbackFormat
	12.5.4.13 FitHeightToPages
	12.5.4.14 FitWidthToPages
	12.5.4.15 FontAliasList
	12.5.4.16 FontDirectories
	12.5.4.17 FontFilter
	12.5.4.18 GraphicOutputDPI
	12.5.4.19 GridMaxPageHeight
	12.5.4.20 GridMaxPageWidth
	12.5.4.21 IECondCommentMode
	12.5.4.22 IgnorePassword
	12.5.4.23 ImagePassthrough
	12.5.4.24 ISODateTimes
	12.5.4.25 JPEGQuality
	12.5.4.26 LinearizePDFOutput
	12.5.4.27 LotusNotesDirectory
	12.5.4.28 MarginText
	12.5.4.29 MarginTextFont
	12.5.4.30 PageDirection
	12.5.4.31 PageFitMode
	12.5.4.32 PageRange
	12.5.4.33 PageScalePercent
	12.5.4.34 PDFInputMaxEmbeddedObjects
	12.5.4.35 PDFInputMaxVectorPaths
	12.5.4.36 PDFReorderBiDi
	12.5.4.37 PDFWordSpacingFactor
	12.5.4.38 PerformExtendedFI
	12.5.4.39 RedactionColor
	12.5.4.40 RedactionLabelFont
	12.5.4.41 RedactionLabelsVisible
	12.5.4.42 RedactionsEnabled
	12.5.4.43 RenderEmbeddedFonts
	12.5.4.44 RenderGridlines
	12.5.4.45 RenderHeadings
	12.5.4.46 ShowArchiveFullPath
	12.5.4.47 ShowHiddenCells
	12.5.4.48 ShowHiddenSpreadSheetData
	12.5.4.49 StrictFile
	12.5.4.50 TimeZoneOffset
	12.5.4.51 UnmappableCharacter
	12.5.4.52 UseDocumentPageSettings

	12.6 ExportStatus Class
	12.7 FileFormat Class
	12.8 FontAliases Class
	12.9 FontInfo Class
	12.10 FontList Class
	12.11 HighlightTextAnnotation Class
	12.12 MailHeaders Class
	12.13 Margins Class
	12.14 MarginText Class
	12.15 Option Interface
	12.16 OutsideIn Class
	12.17 OutsideInVersion Class
	12.18 OutsideInException Class
	12.19 PageInfo Class
	12.20 Watermark Class
	12.21 PageRange Class

	Part IV Using the .NET API
	13 Introduction to the .NET API
	13.1 Requirements
	13.2 Getting Started
	13.2.1 Configuring your Environment
	13.2.2 Generate Code
	13.2.2.1 Create an Exporter Object
	13.2.2.2 Configure the Output
	13.2.2.3 Set the Source and Primary Destination Files
	13.2.2.4 Set the Output Type
	13.2.2.5 Provide a Callback Handler
	13.2.2.6 Run the Export

	13.2.3 Redirected I/O Support in .NET

	14 PDF Export .NET Classes
	14.1 Annotation Class
	14.2 ArchiveNode Class
	14.3 Callback Class
	14.3.1 OpenFile
	14.3.1.1 OpenFileResponse Class

	14.3.2 CreateNewFile
	14.3.2.1 CreateNewFileResponse Class

	14.3.3 NewFileInfo
	14.3.4 CreateTempFile
	14.3.4.1 CreateTempFileResponse Class

	14.4 ColorInfo Class
	14.5 Exporter Interface
	14.5.1 lAnnotatable Interface
	14.5.2 Document Interface
	14.5.3 OptionsCache Class
	14.5.3.1 AppendEMailAttachments
	14.5.3.2 ApplyZLIBCompression
	14.5.3.3 BiDiReorderMethod
	14.5.3.4 DefaultInputCharacterSet
	14.5.3.5 DefaultPageSize
	14.5.3.6 DefaultRenderFont
	14.5.3.7 DefaultPageMargins
	14.5.3.8 DocumentMemoryMode
	14.5.3.9 EmailHeaders
	14.5.3.10 EmbedFonts
	14.5.3.11 FallbackFormat
	14.5.3.12 FitHeightToPages
	14.5.3.13 FitWidthToPages
	14.5.3.14 FontAliasList
	14.5.3.15 FontDirectories
	14.5.3.16 FontFilter
	14.5.3.17 GraphicOutputDPI
	14.5.3.18 GridMaxPageHeight
	14.5.3.19 GridMaxPageWidth
	14.5.3.20 IECondCommentMode
	14.5.3.21 IgnorePassword
	14.5.3.22 ImagePassthrough
	14.5.3.23 ISODateTimes
	14.5.3.24 JPEGQuality
	14.5.3.25 LinearizePDFOutput
	14.5.3.26 LotusNotesDirectory
	14.5.3.27 MarginText
	14.5.3.28 MarginTextFont
	14.5.3.29 PageDirection
	14.5.3.30 PageFitMode
	14.5.3.31 PageRange
	14.5.3.32 PageScalePercent
	14.5.3.33 PDFInputMaxEmbeddedObjects
	14.5.3.34 PDFInputMaxVectorPaths
	14.5.3.35 PDFReorderBiDi
	14.5.3.36 PDFWordSpacingFactor
	14.5.3.37 PerformExtendedFI
	14.5.3.38 RedactionColor
	14.5.3.39 RedactionLabelFont
	14.5.3.40 RedactionLabelsVisible
	14.5.3.41 RedactionsEnabled
	14.5.3.42 RenderEmbeddedFonts
	14.5.3.43 RenderGridlines
	14.5.3.44 RenderHeadings
	14.5.3.45 ShowArchiveFullPath
	14.5.3.46 ShowHiddenCells
	14.5.3.47 ShowHiddenSpreadSheetData
	14.5.3.48 StrictFile
	14.5.3.49 TimeZoneOffset
	14.5.3.50 UnmappableCharacter
	14.5.3.51 UseDocumentPageSettings

	14.6 ExportStatus Class
	14.7 FileFormat Class
	14.8 FontAliases Class
	14.9 FontInfo Class
	14.10 FontList Class
	14.11 HighlightTextAnnotation Class
	14.12 MailHeaders Class
	14.13 Margins Class
	14.14 MarginText Class
	14.15 Option Interface
	14.16 OutsideIn Class
	14.17 OutsideInVersion Class
	14.18 OutsideInConfig Class
	14.19 OutsideInException Class
	14.19.1 OutsideInCastException Class

	14.20 PageInfo Class
	14.21 PageRange Class
	14.22 Watermark Class

