
Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 1

Outside In Clean Content SDK

Technical Note

PDF Extraction, Analysis, and Scrubbing Support
Version 3.0 – November 1, 2013

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 2

Change History

Version 1.0 – January 18, 2008

Initial version

Version 1.1 – November 10, 2008

Updated to include description of image extraction support

Version 1.2 – June 2, 2010

Updated to include description of features added with the release of Clean Content 2010.1

Version 1.3 – December 15, 2010

Updated to include description of features added with the release of Clean Content 2010.3

Version 2.0 – October 1, 2012

Updated to include description of features added with the release of Clean Content 2012.1, the first

release of Clean Content that included scrubbing of PDF documents.

Version 3.0 – November 1, 2013

Updated to include description of features added with the release of Clean Content 2013.1

Overview

The Adobe Portable Document Format (PDF) is a rich and complex file format that has become a

de facto standard for the exchange of electronic information. The ability to extract useful content

from PDF documents is a requirement of many software applications. The ability to sanitize PDF

documents has also become an important step in many security related applications. This document

outlines the PDF extraction, analysis, and scrubbing features supported by the Outside In Clean

Content SDK.

PDF Extraction and Analysis Features

File Identification and Version Coverage

Clean Content supports identification and processing of all versions of PDF through version 1.8 and

applicable extensions of the file format. This is the version associated with Acrobat Professional 9

and Acrobat X, which may use extensions through Level 8. The PDF file format is now under the

control of the ISO 32000 committee but it is common for Adobe to extend the PDF file format with

new functionality that may or may not be accepted and documented in a future release of the ISO

controlled version. Future versions that may be released later than 1.8 require validation upon

release. Clean Content will use the PDF signature and the PDF version explicitly stated in the PDF

Catalog in order to identify the correct version and extension level.

In addition to recognizing the standard and required PDF signatures at the top of a PDF file, Clean

Content will detect and support PDF documents that include a 128-byte non-standard header at the

top of the file. This header may be found in PDF documents that have been processed in a Mac

environment.

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 3

Malformed Document Support

There are many ways in which a PDF document can violate the file format specification. Two

common causes include document truncation and the dropping of specific byte values from the

document. Both of these likely occur during the transport of PDF documents. A third cause of

malformed documents occurs when PDF generation software simply creates documents that do not

follow the specification at some level. However, in many cases Acrobat Reader can successfully

recover the malformed document, occasionally displaying a warning though often simply ignoring

the problem area. In some ways, this has allowed PDF generation software to create technically

malformed PDF without awareness since Acrobat can load them fine.

Like Acrobat itself, Clean Content includes numerous recovery features that enable the extraction of

content from otherwise malformed PDF documents. The first recovery feature involves the ability

to regenerate an internal PDF structure that defines the PDF object hierarchy. This structure is often

missing or broken in malformed documents. The second recovery feature is the ability to detect,

trap, and recover from invalid PDF syntax. For example, if the processor encounters a violation of

the allowable PDF operations within a page, it will flag a warning to that effect and recover

processing on the following page. Lastly, the component has specifically addressed some of the

most common violations in order to recover immediately within the page where the error occurred.

Each recovery is reported through the Clean Content logging feature.

Text Content and Unicode Character Mapping

The Clean Content PDF component includes robust support for converting PDF text content into

Unicode. The process of converting PDF text to Unicode, while seemingly straightforward, is

actually fairly complex. Each PDF Text operation includes a string of bytes that represent a series of

character codes. The character code is used to select the glyph to be drawn from the current font.

Converting each character code to its Unicode equivalent requires that the encoding of the font is

well defined or that a Unicode mapping of its character codes is included in the PDF document.

There is also the possibility that the characters are tagged with an alternate text replacement

definition that overrides the text operation.

Most PDF creation tools follow the recommendations of the PDF specification with regard to

creating PDF that allows consuming applications to correctly convert character content to Unicode.

In fact, this is a requirement for a class of PDF documents known as Tagged PDF. Unfortunately,

there are numerous cases where a PDF document can be created in such a way that it prevents the

consuming application from being able to guarantee the mapping of characters to Unicode or any

other known character set. In such cases, even though the glyphs are displayed perfectly, there is no

way of knowing what character the glyph represents short of using OCR or some other heuristic

technique. In many of these cases the consuming application can make certain assumptions about

the character encoding that allows most characters to be correctly converted. However, even in such

cases, the application cannot be sure that the mapping is correct.

The Clean Content PDF component supports correct conversion of character content to Unicode for

all well-defined font encodings or when a Unicode map is provided. When the encoding is poorly

defined the component will apply reasonable assumptions that improve the likelihood that the

characters are converted correctly. Additionally, in an effort to identify poorly defined fonts, Clean

Content will log debug information for font definitions that flag the most common cases of

potentially incorrect character conversion.

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 4

It is extremely unfortunate, but the reality is that PDF generation tools have managed to create

documents that have incorrect encoding definitions for nearly every example listed below.

The list below describes the specific character mapping use cases that can exist related to PDF font

definitions.

To Unicode Map - The font definition includes an explicit mapping of character codes to Unicode.

When a To Unicode Map is provided it will override any other encoding definition for the purpose

of converting character codes to Unicode. In this case the encoding will still be used to correctly

establish character metrics (width, encoding length …) but not for character mapping. In general,

this is a very well defined use case that normally results in correct character conversion. However,

there are examples where applications generate partial and even incorrect Unicode maps so even

this case cannot always be trusted.

Named Encoding - The font definition uses one of the predefined simple encodings that include:

StandardEncoding, MacRomanEncoding, WinAnsiEncoding, PDF-DocEncoding, and

MacExpertEncoding. This is a well-defined encoding that will result in valid character mapping

unless the font definition has misrepresented the encoding and uses glyphs that don’t match the

stated encoding.

Named Encoding with Differences – This is an extension of the Named Encoding case that allows

a font definition to leverage a simple encoding listed above while making adjustments that swap out

some character codes for different glyphs. This is a well-defined encoding that requires that all

differences be stated using the list of named characters in the Adobe Glyph List. If any of the

differences use names that are not defined in the Adobe Glyph List then the case will be treated as a

Named Encoding with Unknown Differences.

Named CMap with Known Collection – This is a well-defined encoding that is used in composite

fonts, particularly for Chinese, Japanese, and Korean character sets. The named encoding matches

one of the pre-defined PDF CMaps listed in table 5.15 of the PDF specification and called out

below. These fonts leverage one of the Adobe registered character collections and its associated

mapping to Unicode. Supported registered collections include the Adobe-GB1, Adobe-CNS1,

Adobe-Japan1, and Adobe-Korea1 collections. The list of supported pre-defined Cmaps includes all

of those documented in the PDF specification through version 1.7.

Simplified Chinese

Simplified Chinese

GB-EUC-H Microsoft Code Page 936 (lfCharSet 0x86), GB 2312-80 character

set, EUC-CN encoding

GB-EUC-V Vertical version of GB-EUC-H

GBpc-EUC-H Mac OS, GB 2312-80 character set, EUC-CN encoding, Script

Manager code 19

GBpc-EUC-V Vertical version of GBpc-EUC-H

GBK-EUC-H Microsoft Code Page 936 (lfCharSet 0x86), GBK character set,

GBK encoding

GBK-EUC-V Vertical version of GBK-EUC-H

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 5

GBKp-EUC-H Same as GBK-EUC-H but replaces half-width Latin characters

with proportional forms and maps character code 0x24 to a dollar

sign ($) instead of a yuan symbol (¥)

GBKp-EUC-V Vertical version of GBKp-EUC-H

GBK2K-H GB 18030-2000 character set, mixed 1-, 2-, and 4-byte encoding

GBK2K-V Vertical version of GBK2K-H

UniGB-UCS2-H Unicode (UCS-2) encoding for the Adobe-GB1 character

collection

UniGB-UCS2-V Vertical version of UniGB-UCS2-H

UniGB-UTF16-H Unicode (UTF-16BE) encoding for the Adobe-GB1 character

collection; contains mappings for all characters in the GB18030-

2000 character set

UniGB-UTF16-V Vertical version of UniGB-UTF16-H

Chinese (Traditional)

B5pc-H Mac OS, Big Five character set, Big Five encoding, Script

Manager code 2

B5pc-V Vertical version of B5pc-H

HKscs-B5-H Hong Kong SCS, an extension to the Big Five character set and

encoding

HKscs-B5-V Vertical version of HKscs-B5-H

ETen-B5-H Microsoft Code Page 950 (lfCharSet 0x88), Big Five character set

with ETen extensions

ETen-B5-V Vertical version of ETen-B5-H

ETenms-B5-H Same as ETen-B5-H but replaces half-width Latin characters with

proportional forms

ETenms-B5-V Vertical version of ETenms-B5-H

CNS-EUC-H CNS 11643-1992 character set, EUC-TW encoding

CNS-EUC-V Vertical version of CNS-EUC-H

UniCNS-UCS2-H Unicode (UCS-2) encoding for the Adobe-CNS1 character

collection

UniCNS-UCS2-V Vertical version of UniCNS-UCS2-H

UniCNS-UTF16-H Unicode (UTF-16BE) encoding for the Adobe-CNS1 character

collection; contains mappings for all the characters in the HKSCS-

2001 character set and contains both 2- and 4-byte character codes

UniCNS-UTF16-V Vertical version of UniCNS-UTF16-H

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 6

Japanese

83pv-RKSJ-H Mac OS, JIS X 0208 character set with KanjiTalk6 extensions,

Shift-JIS encoding, Script Manager code 1

90ms-RKSJ-H Microsoft Code Page 932 (lfCharSet 0x80), JIS X 0208 character

set with NEC and IBM®extensions

90ms-RKSJ-V Vertical version of 90ms-RKSJ-H

90msp-RKSJ-H Same as 90ms-RKSJ-H but replaces half-width Latin characters

with proportional forms

90msp-RKSJ-V Vertical version of 90msp-RKSJ-H

90pv-RKSJ-H Mac OS, JIS X 0208 character set with KanjiTalk7 extensions,

Shift-JIS encoding, Script Manager code 1

Add-RKSJ-H JIS X 0208 character set with Fujitsu FMR extensions, Shift-JIS

encoding

Add-RKSJ-V Vertical version of Add-RKSJ-H

EUC-H JIS X 0208 character set, EUC-JP encoding

EUC-V Vertical version of EUC-H

Ext-RKSJ-H JIS C 6226 (JIS78) character set with NEC extensions, Shift-JIS

encoding

Ext-RKSJ-V Vertical version of Ext-RKSJ-H

H JIS X 0208 character set, ISO-2022-JP encoding

V Vertical version of H

UniJIS-UCS2-H Unicode (UCS-2) encoding for the Adobe-Japan1 character

collection

UniJIS-UCS2-V Vertical version of UniJIS-UCS2-H

UniJIS-UCS2-HW-H Same as UniJIS-UCS2-H but replaces proportional Latin

characters with half-width forms

UniJIS-UCS2-HW-V Vertical version of UniJIS-UCS2-HW-H

UniJIS-UTF16-H Unicode (UTF-16BE) encoding for the Adobe-Japan1 character

collection; contains mappings for all characters in the JIS X

0213:1000 character set

UniJIS-UTF16-V Vertical version of UniJIS-UTF16-H

Korean

KSC-EUC-H KS X 1001:1992 character set, EUC-KR encoding

KSC-EUC-V Vertical version of KSC-EUC-H

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 7

KSCms-UHC-H Microsoft Code Page 949 (lfCharSet 0x81), KS X 1001:1992

character set plus 8822 additional hangul, Unified Hangul Code

(UHC) encoding

KSCms-UHC-V Vertical version of KSCms-UHC-H

KSCms-UHC-HW-H Same as KSCms-UHC-H but replaces proportional Latin

characters with half-width forms

KSCms-UHC-HW-V Vertical version of KSCms-UHC-HW-H

KSCpc-EUC-H Mac OS, KS X 1001:1992 character set with Mac OS KH

extensions, Script Manager Code 3

UniKS-UCS2-H Unicode (UCS-2) encoding for the Adobe-Korea1 character

collection

UniKS-UCS2-V Vertical version of UniKS-UCS2-H

UniKS-UTF16-H Unicode (UTF-16BE) encoding for the Adobe-Korea1 character

collection

UniKS-UTF16-V Vertical version of UniKS-UTF16-H

CMap with Known Collection- This is a well-defined encoding that provides an explicit mapping of

character codes to one of the registered CJK character collections.

Identity Encoding with Known Collection – This is a well-defined encoding that uses character

codes that map directly to one of the registered CJK character collections.

Implicit Encoding based on Font Name – This is a well-defined encoding based on using the font

name to determine the encoding. It specifically allows for correctly mapping the ZapfDingbats and

Symbol fonts that are included in what is commonly referred to as the base14 fonts. Clean Content

also includes support for the Wingdings font under this use case.

Named Encoding with Unknown Differences – This type of encoding cannot be trusted to result in

correct character conversion to Unicode. It indicates that the font declaration leverages a simple

named encoding but includes a list of differences containing character names that do not match a

name from the Adobe Glyph List. It is not all that uncommon for some PDF generation tools to

obfuscate the glyph names when embedding a subset of a font. While this does not adversely affect

the display of the glyph when the document is viewed, it does prevent the consuming application

from determining what character the glyph represents. It turns out that many applications, though

renaming the character to an ambiguous name when font sub-setting, have maintained the original

simple encoding. Clean Content applies this assumption to improve the likelihood that the

characters are correctly converted. Unfortunately use of this encoding may often result in incorrect

character conversion.

Named CMap with Unknown Collection – This type of encoding indicates a named pre-defined

encoding combined with a character collection that is not known to the component. The component

will make an assumption that the target collection is Unicode. The testing of Clean Content against

a large set of documents has not resulted in any known real life examples of this use case but its

possibility is accounted for.

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 8

CMap with Unknown Collection – This character encoding is extremely uncommon, but cannot be

trusted for correct character conversion. It indicates that the font is mapping character codes to

values in a collection that is not known to the component and therefore not an Adobe registered

character collection. A few examples of this have been seen in CJK documents using embedded

fonts to support symbol characters.

Identity Encoding with Unknown Collection – The identity encoding is commonly used in a

composite font to directly select a glyph from the font using a 2-byte code. The character collection

is often declared as the Adobe-Identity collection, which simply indicates that the character code

can be used to directly select the glyph but does not indicate the character set being used. This

encoding cannot be trusted to result in a correct conversion of text to Unicode because the character

collection being leveraged is not a well-defined collection. When encountering this encoding, Clean

Content will assume that the target collection is Unicode in order to improve the likelihood of

correct character conversion.

Symbolic Font with Unknown Encoding – This encoding is reasonably common and cannot be

trusted. It indicates that the font contains symbol characters that are not part of the simple encoding

that would otherwise be in place. However, it is also common that the majority of the characters do

match the default standard encoding. Clean Content will fall back to the default encoding in order to

improve the likelihood that characters are correctly converted under this encoding.

Word Boundary Structure Enhancement

The origin of PDF as a page description language that was focused on accurate and consistent

display across many platforms and devices has contributed to a significant lack of structure within

PDF documents. The text drawn on a page of PDF can often be characterized as a sequence of

glyphs drawn at x/y locations on the page canvas without any regard for structure. For example,

there is usually no information to indicate where a paragraph starts and ends, or whether content is

part of a header, footer, or footnote, table, column, or caption. Even worse, the content may not

even contain spaces between words. The Word Boundary Structure Enhancement feature is

specifically designed to address the lack of spaces between words by monitoring the PDF drawing

operations in an attempt to infer word boundaries and generate space characters accordingly.

Clean Content infers the location of spaces by continuously projecting where the next text operation

would be drawn if a space were added to the previous text operation. If the next character falls at or

beyond a tolerance factor of that location then a space is inferred. If the previous character was

already a space, soft hyphen, or hard hyphen, then a space is not inferred since those are already

valid word boundaries.

Care is taken to ensure that this algorithm is effective regardless of the rotation, skewing, scaling,

font size, kerning, and character spacing applied to the text. Numerous special cases are addressed.

Initial caps applied to the first character of a paragraph, superscripting and subscripting, shifting

from a small font to a large font, are all examples where the distance from one piece of text to

another has special consideration.

There are three situations where this algorithm is disabled.

 If the document is marked as tagged PDF then this algorithm is not applied. By definition,

tagged PDF is required to be well formed with respect to including sufficient structure to

establish word boundaries without the need to infer spaces.

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 9

 This feature is also disabled when a font definition lacks the character metrics required to

establish the width of each character. By specification, a font is required to supply the

character widths unless it is one of the Base 14 fonts that have predefined width tables.

However, though uncommon and not recommended, it is possible for a PDF document to

rely entirely on Acrobats ability to locate and leverage an operating environment dependent

font for its character metrics. In these cases Clean Content cannot be certain of the exact

location of each character and disables this algorithm to avoid inferring spaces incorrectly.

 Lastly, Clean Content does not attempt to infer spaces for text drawn in a vertical writing

mode, instead relying on the PDF creator to include valid space characters.

Line Boundary Structure Enhancement

As mentioned earlier, PDF generally is lacking in document structure. Clean Content includes a

feature designed to infer line elements based on the location of text pieces. Line structure by itself is

of limited value, but it is a requirement of several features that depend upon it. Specifically, word

boundary detection, hyphenation adjustment, overlapping text filtering, and Arabic/Hebrew text re-

ordering all rely on line detection to varying degrees. Providing the line structure also has the

benefit of making the extracted output slightly more manageable to read. It is not necessary to treat

line elements as a word-boundary because inferred spaces will be added at the end of the line where

applicable.

Hyphenation Adjustment

Hyphenation adjustment is an optional feature designed to remove soft and hard hyphens found at

the end of a line. This feature is designed to cleanup the extracted output by removing hyphens that

were likely the result of an automatic hyphenation process. Unfortunately, the vast majority of

hyphens found at the end of a line in PDF are output as hard hyphens even though they originated as

syllable hyphens in the authoring application. This makes it impossible to distinguish between what

was intended to be a hard or soft hyphen.

This feature is optional and is off by default because consuming applications with linguistic analysis

features may prefer to differentiate soft and hard hyphens using a combination of linguistic analysis

and the line position of the hyphen rather than have Clean Content make this determination based

solely on line position. This is true because hard hyphens can be valid at the end of a line and

should not be removed in such cases.

Tagged PDF and Paragraph Boundary Support

The PDF file format includes a feature called tagged PDF that allows PDF authoring applications to

include a rich structure hierarchy that tags the text of the document beneath a hierarchy of elements.

For example, the document may include tags that declare the content of headers, footers, hyperlinks,

tables, paragraphs, formatted text spans, and many other structures. However, the use of this feature

is often application specific and often lacks a consistent form of structure. For this reason Clean

Content only leverages the use of paragraph elements when generating the extracted output.

Paragraph elements will be passed through to the extracted output but all other elements will be

ignored. Paragraph elements should be treated as valid word boundaries.

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 10

Overlapped Text Filtering

It is not uncommon for PDF creators to produce multiple layers of identical text for the purpose of

accomplishing specific graphic effects. For example, text shadowing, 3D text, embossing, and other

effects may be accomplished by writing each character multiple times, with slight position,

transformation, and font attribute changes. Unfiltered extraction of this situation results in duplicate

characters, words, or lines in the extracted output that is far from ideal for any subsequent text

analysis. This feature attempts to detect this type of overlapping and clean up the extracted output

so that only a single instance of each overlapped character is generated, thus improving the search-

ability of the output. This feature is turned off by default due to the performance cost of testing

every line for overlapping conditions, and because specific use cases exist where only some of the

overlapped characters within a line fall within the overlapping tolerance resulting in only partial

cleanup of the line.

Reading Order Extraction of Middle Eastern Scripts (i.e. Arabic and
Hebrew)

Most applications produce text that is read from right to left (i.e. Arabic and Hebrew) by drawing it

from left to right. In such cases, extracting the text in the order that it is drawn will result in lines of

text being in reverse reading order when extracted. This feature will automatically detect the use of

characters found in scripts that read from right to left and then validate or re-order the characters

within the line to match the proper reading order. This algorithm includes consideration for mixed

mode writing that includes words read from both right to left and left to right. There are specific

mixed mode use cases where the word ordering cannot be properly established without linguistic

consideration not included in this algorithm. In such cases the text of each word will be correctly

ordered but specific words within the line may be out of order. This algorithm is dependent on the

accuracy of the line boundary algorithm since re-ordering must be done a line at a time.

Comment/Annotation Support

The PDF format includes the ability to layer annotations of many forms over the top of a page.

Clean Content supports extracting annotations that contain text, file attachments, and URL links.

Clean Content also identifies the type of annotation extracted. Certain types of annotations include

an appearance stream that describes how the text is drawn while others simply include the text and

leave the display format to the viewing application. Both types are supported by Clean Content

during extraction. Annotations that do not contain text, attachment content, or URL’s are

intentionally not extracted.

The annotations that will be extracted by Clean Content when they include some supported form of

content include the following types: 3D, Caret, Circle, File Attachment, Free Text, Highlight, Ink,

Line, Link, Polygon, PolyLine, Printer Mark, Square, Squiggly, Stamp, Strike Out, Text, TrapNet,

Underline, Watermark, Widget, Popup, Sound, Movie, Screen. Only text, URL’s, and attachment

content will be extracted with the associated annotations, Movie and sounds objects are not

extracted in the current release of Clean Content.

Standard Document Property Support

The PDF file format can include document properties in two different ways. The first is through the

document information dictionary with specific entries for Title, Author, Subject, Keywords,

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 11

Creator, Producer, Creation Date, Modification Date, and a field that indicates whether the

document was trapped (a technique used to address certain visual artifacts that occur in some

printing environments). This feature supports extraction of these properties into a property

collection during the extraction process. The second method of handling document properties is

outlined below.

XMP Document Property Support

In addition to the standard document property storage format, PDF allows an XML metadata stream

to be attached to nearly any content component in the document. The format of the XML is XMP

(Extensible Metadata Platform) making it very customizable. In PDF, document property metadata

is commonly attached to the PDF Document Catalog. Clean Content supports exporting the XMP

metadata stream that is attached to the document catalog to a stream accessible to the consumer for

further processing. An XML header is added to the XMP stream in order to allow the XMP to

become a valid XML stand-alone file. Optional control over the extraction of the XMP stream is

provided through the Clean Content options that control embedded content extraction.

Clean Content only reports and exports the XMP stream attached to the PDF document catalog.

XMP streams can also be attached to many other content elements including pages and images but

these XMP streams often lack any useful properties and are not the standard method of including

document wide properties. Support for extraction of these additional XMP streams has been

intentionally disabled for the sake of performance and clarity. This decision can be reconsidered

should valid use cases be encountered.

Acrobat Highlighting Support

In Acrobat X, Adobe Systems has chosen to remove the "hit highlighting" feature Clean Content

can leverage to highlight search terms in PDF documents. This feature was available but disabled in

Acrobat 9. These changes call into question the usefulness of the

GenerateAcrobatHighlightPositions option in Clean Content. Use of this feature is no longer

supported but remains documented for historical purposes.

The Acrobat Professional and Acrobat Reader applications provide a useful API that enables web

applications to highlight text found in a PDF document when the document is viewed in Acrobat

and is served as a URL. This is done by including a reference to an additional file as a parameter to

the URL. This additional file is referred to as a highlight file that specifies the text locations to be

highlighted. Enabling this feature requires a component that can extract the text from a PDF

document while properly tracking the page and highlight location for every piece of text in the file.

Clean Content includes the ability to provide the highlight locations for every piece of PDF text that

can be highlighted. This allows applications that include Clean Content to develop a powerful

search and highlight feature for PDF documents. The SDK includes sample source code that

demonstrates how to generate the Acrobat highlight file and further demonstrates an

implementation of this feature through the SDK demo application. A detailed description of the

PDF highlight algorithm and Clean Content usage notes is documented in the PDF Highlight

Algorithm Tech Note included in the Clean Content SDK.

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 12

File Attachments and Embedded Files

The PDF file format supports the ability to attach documents of any type to a PDF document. This

can be done through several mechanisms including the file attachment feature, multi-media

attachments, files associated with a comment, and file collections know as portfolios. Clean Content

supports exporting all forms of attachments to stand-alone files as well as the ability to recursively

extract content from attached files. The ability to recursively extract content requires that the

attachment be in one of the formats supported by Clean Content.

The Clean Content Embedded Objects target is set when any form of attachment is found. The

current release of Clean Content does not yet support replacing, removing, or scrubbing embedded

content found in PDF documents.

PDF Packages and Portfolios

Acrobat Professional includes the ability to combine a set of PDF documents into a PDF package.

This feature was substantially enhanced and renamed Portfolios with in Acrobat 8 and beyond. The

resulting PDF includes a cover sheet for the package and provides the ability to access each

packaged document independently. Similar to attachments, Clean Content supports exporting the

embedded files to stand-alone files and the ability to recursively extract content from all files in the

package that are supported by Clean Content.

Encrypted File Support

The PDF file format includes many security features, one of which is the ability to encrypt the

document. PDF allows many different encryption algorithms. The encryption may leverage a user

or owner password or may simply encrypt the document with a default password. Clean Content

automatically detects and decrypts documents leveraging RC4 or AES encryption that have been

encrypted with a default password and standard security handler. This covers most cases where an

encrypted PDF document can be opened without a user password. Clean Content also supports

authentication of from a list of passwords. If a PDF document uses an unsupported encryption

algorithm or requires a password that cannot be validated then Clean Content will flag the document

as encrypted and log a warning to that affect. A separate technical note, Encryption Support Tech

Note, provides additional details on encryption support within Clean Content for PDF and other

formats.

Clean Content leverages the Java™ Cryptography Extensions (JCE) for AES decryption. Due to

import control restrictions the version of the JCE policy files that are bundled with the JRE that

ships with Clean Content allow ‘strong’ but limited cryptography. If a PDF document is encrypted

with AES 256 bit encryption it can only be decrypted if the Java Runtime Environment leveraged

by Clean Content is updated to include the Unlimited Strength Java™ Cryptography Policy Files.

These files can be downloaded from the Sun Developer Network and installed into the appropriate

JRE location as documented in the download.

Raster Image Extraction

Raster images within the PDF file format can be implemented using a variety of methods. Unlike

many other formats, PDF does not rely upon industry standard image file formats for embedding

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 13

raster images. Instead, PDF has its own internal structures that combine to provide raster image

support. The description of an image generally involves a stream of image data, a set of filters

applied to the image data, a color space associated with the image, and additional options that

specify the format of the image data.

The goal of the Clean Content image extraction feature is to allow images to be extracted from the

source document into an industry standard file format so that the image can be repurposed as

needed. An ancillary goal is to limit the amount of conversion on the image data itself when

exporting the image to a stand-alone file. Limiting the conversion of image data is done to

maximize performance, avoid device dependent color conversion, and to maintain the original form

of image data so that stegongraphic detection may be implemented on the original image data.

As of version 1.7 of the PDF file format (Acrobat 8/9), there are nine different stream filters and

multiple encryption filters that could be applied to the image data any number of times or not at all.

The nine stream filters include ASCIIHexDecode, ASCII85Decode, LZWDecode, FlateDecode,

RunLengthDecode, CCITTFaxDecode, JBIG2Decode, DCTDecode, and JPXDecode. Additionally,

each filter may have specific options that tune the filter in various ways. Also note that PDF

supports TIFF and PNG predictor filters as options on Flate and LZW. TIFF prediction will be

maintained when going to TIFF but PNG predictors will applied to the data since TIFF does not

support them. The final filter remaining after applying decryption, ASCII decoding, and reduction

to at most one filter, determines the industry file format that will be used for extraction as outlined

in the table below.

Final Image Filter Target Image File Format

No Filter (Raw image data) TIFF (with no compression)

LZWDecode TIFF (with LZW compression)

FlateDecode TIFF (with Flate compression)

RunLengthDecode TIFF (with Packbits compression)

CCITTFaxDecode TIFF (with CCITT compression)

JBIG2Decode JBIG2 stand-alone file (JB2)

DCTDecode TIFF (with JPEG compression)

JPXDecode JPEG2000 (JPX)

This approach minimizes the amount of decompression and color conversion, often allowing for a

straight copy of the image data to the target file.

The PDF file format supports a wide variety of color spaces that can be applied to raster images.

These include DeviceGray, DeviceRGB, DeviceCMYK, CalGray, CalRGB, Lab, ICCBased,

Indexed, Separation, and DeviceN. The Indexed color space may index into any of the other color

spaces except Indexed, Separation, and DeviceN effectively allowing for 7 Index color spaces and a

total of 16 different color spaces. Both JPX and JBIG2 inherently define the applicable color space

within the image data. When converting to TIFF it is necessary to either select a matching TIFF

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 14

color space or, in some cases, transform the image data and/or color space to a reasonable

alternative. The table below outlines the color space conversion details when exporting to TIFF.

PDF Color Space TIFF Color Space

DeviceGray Grayscale (WhiteIsZero or BlackIsZero

depending on applicable PDF image parameters)

DeviceRGB RGB

DeviceCMYK CMYK

CalGray Grayscale (WhiteIsZero or BlackIsZero

depending on applicable PDF image parameters)

- Note, the resulting image is effectively device

dependent rather than explicitly calibrated.

CalRGB RGB - Note, the resulting image is effectively

device dependent rather than explicitly

calibrated.

Lab ICCLab

ICCBased The number of color components determines the

TIFF color space. 1=Grayscale, 3=RGB,

4=CMYK. The embedded ICC Profile is

transferred to the TIFF file.

Separation Grayscale – the image data is copied without

conversion and pixel values are effectively

matched to a shade of gray by applying a

grayscale color space. This may result in

unintended color application.

DeviceN Grayscale - the image data is copied without

conversion and pixel values are effectively

matched to a shade of gray by applying a

grayscale color space. This may result in

unintended color application.

Indexed DeviceGray PaletteRGB with grayscale color entries.

Indexed DeviceRGB PaletteRGB

Indexed DeviceCMYK CMYK - image data is expanded to continuous

tone and then recompressed using Flate because

TIFF does not support this palette type.

Indexed CalGray PaletteRGB with grayscale color entries.

Indexed CalRGB PaletteRGB

Indexed Lab Lab - image data is expanded to continuous tone

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 15

and then recompressed using Flate because TIFF

does not support this palette type.

Indexed ICCBased Grayscale, Palette RGB, or CMYK depending

on the number of color components. Grayscale

and CMYK image data is expanded to

continuous tone and then recompressed using

Flate because TIFF does not support this palette

type.

PDF allows images to be defined as either a named image resource or as an inline image. Clean

Content currently only exports named image resources. This is done because inline images are

intended to be used for only very small images (less than 4K) and are commonly used for graphic

elements like table borders or bullets. Ignoring inline images is a reasonable way to avoid exporting

a substantial amount of images that are not intended to be repurposed. This decision may be

revisited based on customer feedback.

It is reasonably common to find images within PDF that are stored upside down. Such images are

often flipped vertically when drawn on the page using a PDF transformation operation that is

independent of the image data. A single named image resource may be drawn any number of times

using any number of transformations making resolution of this issue less than exact. Clean Content

does not currently consider such transformations when extracting the image to a stand-alone file.

This decision may be revisited based on customer feedback.

Fast Save Data (Incremental Updates) Detection

The PDF file format supports a feature known as Incremental Updates that allows PDF objects to be

replaced with new versions or added to the file by appending the object and certain structure

information to the end of the document. This is done to allow quickly saving small changes (i.e.

replace or add one page) and in some cases to limit the complexity of modifying a PDF for limited

changes (i.e. add a Watermark). The result of this feature is that a reasonable percent of PDF

documents contain obsolete content and data. In many cases entire pages that have been visually

removed or replaced are still stored and can be extracted from the document. Clean Content will

detect the existence of obsolete content and report it as 'Fast Save Data'.

Document Outline Extraction

The PDF format includes the ability to describe a document outline that provides a hierarchy of

outline items that reference particular destinations within the document. This feature works in

tandem with a feature called “Structure Hierarchy” that effectively bookmarks locations within a

document. The text of the outline is stored independently from the destination of the bookmark.

Clean Content will extract the content and structure of the document outline during the extraction

process.

Article Thread Information Extraction

PDF allows for the definition of article threads that provide the data needed to navigate an article

that is logically connected but visually disconnected in the document. A page identifier and a

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 16

rectangle on that page define the location of each bead of an article. The actual content of each

article is extracted as part of the page on which it appears. Article threads may also contain

information such as the title, author, subject, keywords, and creation date. Clean Content will

generate a collection element of type ‘Article Thread’ and generate an articlethread element for each

article in the document. The articlethread element will include string elements with the appropriate

type that define the title, author, subject, and keywords, and will include a date element that defines

the creation date. Note that each of these is optional and will only be generated when defined in the

document.

Interactive Forms Extraction

PDF documents provide rich support for interactive forms. Fields are defined with a hierarchical

structure. Clean Content detects and extracts form data by generating a collection element with a

type of 'FormFields'. The collection is then populated with formfield elements that may in turn

contain child formfield elements. Each formfield may contain various string elements that define

the FIELDTYPE, FIELDNAME, FIELDALTNAME, and FIELDMAPPINGNAME. If the field is

populated with a text value it is extracted as a text element that contains that applicable value.

XFA Forms Export to stand-alone file

PDF 1.5 added support for interactive forms based on XFA (XML Forms Architecture). The result

is that an XFA resource may be stored inside the PDF document. XFA supports a more dynamic

interactive forms architecture than standard PDF interactive forms. Clean Content treats the XFA

resource as embedded content, allowing it to be identified and exported to a stand-alone file. This

includes piecing together the XFA from multiple XDP packets as allowed within PDF.

FDF Extraction/Inspection

Adobe FDF (Forms Data Format) is a stand-alone file format that is a subset of the PDF file format.

This format is designed to act as a transport format that allows exporting form fields, and importing

form fields, new pages, and annotations into an existing PDF document. Clean Content 2010.1

added support for extraction and analysis of FDF documents. The extraction functionally matches

PDF in all other features respects.

Obfuscated Text Detection

There are many ways that text in a PDF document may be hidden from view. Clean Content

includes several analysis targets intended to detect some of the most common mechanisms that

result in accidental or intentional obfuscation of text. Clean Content tracks the stroking (border) and

non-stroking (fill) color applied to all text operations on the page. It also tracks all the color and

location of all path and image related drawing operations. Clean Content monitors these operations

for any instances where text is either covered by drawing operations or text melts into the

background color so that it cannot be viewed. Clean Content considers many related attributes like

line width, transparency, and complex path definitions to limit the number of false positives while

still catching the most common cases. This approach will catch the vast majority of accidental poor

text redaction where users have inadvertently left text inside documents that they believe they have

redacted. The scrub targets that relate to these types of text redaction include Color Obfuscated

Text, Clipped Text, and Overlapped Text.

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 17

Digital Signatures Detection

Digital signatures are used to authenticate the identity of the author and the contents of the

document and may come in three forms. Digital signatures can be used for approval signatures,

modifications and detection prevention, and to enable usage rights that are not available without the

required signature. Signatures may contain information that is not viewable, introducing hidden data

risk. Signatures may also reveal the identity of the author and this might be undesirable in certain

environments. Scrubbing a document will almost certainly invalidate any digital signatures. Note

that it is common for the use of digital signatures to be accompanied by password protected

encryption that may prevent cleansing of the document entirely.

PDF Extraction, Analysis and Scrubbing Features

Macros and Code (Javascript) Detection, Extraction, and Removal

PDF allows JavaScript to be executed through numerous mechanisms. This feature of PDF has been

identified as a possible security risk. Clean Content will detect and flag the existence of JavaScript

under the Macros and Code target. Document level JavaScript actions are found in the

DocumentCatalog.Names.JavaScript name tree that maps name strings to JavaScript Actions.

JavaScript defined in this manner typically is executed when the document is opened, providing

methods that may be called from other JavaScript in the document. JavaScript action dictionaries

can be found as the K, F, V, and C entries in the Additional Actions dictionary that is referenced

from a Form Field Dictionary AA entry. JavaScript action dictionaries may also be found in the

WC, WS, DS, WP, and DP, entries of the Additional Actions dictionary referenced from the

Document Catalog dictionaries AA entry. The JS entry of an Action Dictionary of type Rendition is

another mechanism for PDF to include JavaScript. Clean Content will report the existence of

JavaScript found in any of these locations. Clean Content also allows fine control over the detection

and removal of any PDF Action including those that contain JavaScript.

Clean Content supports removal and replacement of JavaScript found in PDF documents. Setting

the MacrosAndCode option to REMOVE will remove all JavaScript that is defined through one of

the above mechanisms and also remove the action that may have in initiated the JavaScript

execution. It is also possible to leave document level JavaScript in place while removing only

Action specific JavaScript through the JavaScript Actions target.

JavaScript content is treated as embedded content in the Clean Content extraction process allowing

validly defined JavaScript to be exported to a stand-alone file for further analysis. JavaScript can be

extracted in this manner whether it is embedded as a stream or a string in the PDF file.

JavaScript may also be optionally replaced using the Clean Content embedded content replacement

feature. Use of this feature requires tight integration of the Clean Content SDK.

Note that PDF malware approaches have found many ways to leverage JavaScript activation to

enable malware functions. These approaches include unique methods of hiding JavaScript inside

PDF documents. Many of these techniques depend on at least one valid JavaScript instance to

effectively start the process. Removal of valid JavaScript using the MacrosAndCode target will

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 18

often disable many of these techniques even if some hidden JavaScript remains in the file. However,

Clean Content cannot guarantee that all mechanisms of activating JavaScript can be prevented.

Actions

The PDF file format supports a set of interactive features called actions. Actions can be associated

with outline items, annotations, form fields, individual pages, or the document as a whole. Example

actions include jumping to a particular destination in a document, thread, or URI location, launching

an external file, playing a sound or movie, importing or submitting form data, executing JavaScript

code, and numerous other actions. An action can be triggered based on specific user or document

interactions like opening the document, viewing a page, or selecting an outline item. Each triggering

event can execute one or more actions in sequence.

Some actions are very innocuous and don’t present any obvious risk. Other actions can be very

dangerous and have been maliciously leveraged to introduce malware into PDF documents. For

example, a user may open a document that automatically launches a malicious executable or runs

malicious JavaScript code as soon as the user opens the document.

Clean Content allows every type of PDF action to be scrubbed from the document. Each type of

action can be individually targeted for scrubbing in order to allow a particular application

environment to dictate the level of risk each type of action may present. The list of PDF actions that

can be scrubbed include Goto, GoToR, GoToE, Launch, Thread, URI, Sound, Movie, Hide, Named,

Set OCG State, Rendition, GoTo3DView, Rich Media, JavaScript, SubmitForm, Reset Form,

Import Data, Transition, and a general category of Unknown that applies to actions that may be

added to the PDF format at a later date.

The level of risk represented by each type of action is very dependent on the origin and lifecycle of

the document. The Launch and JavaScript actions provide a mechanism to execute malicious code.

The Sound, Movie, Rendition, and Rich Media actions provide a mechanism to execute media

players that may target known exploits in those players. The GoToR, GoToE, and URI actions may

link to external resources that present their own risk when activated. The various form actions may

cause data to be retrieved from or sent to an external server. The Hide and Set OCG State actions

may cause specific content in the PDF document to remain hidden from view. These interactive

features, when leveraged appropriately, allow PDF documents to provide a rich level of

functionality ranging from interactive presentations to powerful forms processing.

Clean Content is designed to remove the entire sequence of actions if a sequence includes any

action that is a scrub target. This was done in order to avoid complexities related to removing a

subset of actions from a sequence that may have interdependencies. There is one exception to this

rule. If the first action in a sequence is not a scrub target but some other action in the sequence is a

scrub target, then only the first action will remain after scrubbing. This approach was taken because

there are many cases where the first action may be a simple GoTo (internal hyperlink) action while

a more risky action follows; leaving the GoTo action allows expected outline and linking behavior

to be maintained while still removing the risky action.

Private Application Data

The PDF file format supports storing private data in PDF documents to allow extended functionality

to be created by an application. This data is stored in the Page-Piece dictionary construct in the PDF

file. For example, it is common for applications such as Adobe Illustrator and Adobe PhotoShop to

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 19

store additional data using this feature. This mechanism may present a security risk simply because

it provides a well defined mechanism for inserting additional data into a PDF document that will be

ignored by most filtering applications. This scrub target provides a general target for removing all

private application data stored in a PDF using this construct. Clean Content also allows specific

uses to be detected and removed through the PDF Embedded Search Index and the PDF Other

Private Application Data targets.

Embedded Search Index

Adobe Acrobat supports an option to embed a search index into a PDF document. The search index

makes user searches faster, particularly in large documents. Including a search index is an option

made available in Acrobat. This index is a private data structure stored using a specific instance of

Private Application Data. This target allows for detection and removal of the specific use of Private

Application Data for storing an Embedded Search Index. Removal of this index is useful for

decreasing the file size and removing hidden content that may in fact be an outdated search index.

Document Property Modification

The Clean Content API includes interfaces that allow document properties to be added, modified,

and removed. As described earlier in this document, PDF document properties may come in two

forms; Standard and XMP. The 2012.1 release of Clean Content only supports modifying properties

stored as Standard properties. XMP property modification is under consideration.

Obsolete Content due to Incremental Updates (Fast Save Data)

The PDF file format is designed to allow minor changes to a PDF document to be stored as changes

at the end of the previous version of the file. PDF generation tools can then simply append the

required changes without rewriting the entire document. This has performance benefits but can also

cause PDF documents to retain obsolete content unbeknownst to the author and can also cause an

unexpected increase in the file size. The Clean Content scrubbing process will automatically

remove obsolete content stored due to incremental updates.

Extraneous Data Removal

The PDF file format is designed around an object referencing scheme. This structure makes it

possible for rogue data to be stored in a PDF document that is not really part of the object hierarchy.

This hole can be exploited to store unexpected data as unused objects or before and after valid

objects that can later be extracted or leveraged by malware. The Clean Content scrubbing process

will automatically remove extraneous data that is between two valid objects or prefixed or appended

to an otherwise valid PDF document.

Image Replacement

In addition to exporting embedded images as described earlier in this document, Clean Content

supports replacing any image that has been exported. This is done using the Clean Content

embedded content replacement API defined in the general SDK documentation. PDF image

replacement has several constraints described below.

Clean Content only allows TIFF images as the replacement format when replacing images

embedded in PDF. It also requires that the replacement TIFF does not use horizontal tiling. This

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 20

limitation is due to the fact that PDF does not support storing pixel data in tiles and this problem is

generally best solved when creating the replacement image rather than addressed during the

replacement process. Clean Content supports a large set of TIFF color models during the

replacement conversion back into the PDF image form. However, there are some color model

parameters and types that are not supported and will generate an error if replacement is attempted.

There are numerous parameters associated with a PDF image that cannot be mapped into TIFF

during the export process. For this reason, the image replacement process attempts to inherit the

color space parameters of the original image where applicable. Example parameters include the

black point, gamma array, and image mask associated with the original image. This approach is

only applied when the new image is a near match with the original color space.

Web Capture Information

The PDF file format supports creating information from web or local files using a method called

Web Capture. Content can be retrieved from the referenced external files, either once or through

additional updates. The original web capture information is maintained in the PDF file. Web capture

information includes references to web based URL's or local file references that may represent a

data disclosure risk.

When this scrub target is enabled the web capture description information, including references to

URL's or local files, is removed from the scrubbed document. Any content that was already

imported into the PDF document during the creation process will remain visible in the PDF

document.

Legal Attestation Information

The PDF file format supports including information that describes the existence of any content that

may result in unexpected rendering of a document. This information is commonly included in

documents that also include a document certification signature. It can be used by PDF applications

to determine the trustworthiness of a document. The information primarily indicates the use of

certain PDF features like JavaScript, Launching, URI's, multi-media objects, and the like that may

result in a document that will render differently in different environments. There is very little risk to

this information with the exception that it may be inaccurate, particularly if left in a document

across multiple modifications by applications that do not keep it up to date. This can result in

unworthy trust of the document content.

When this scrub target is enabled the legal attestation dictionary of information is removed from the

PDF document.

Page and Embedded File Thumbnail Images

Each page of a PDF document may optionally include a thumbnail image. A thumbnail image may

also be associated with a file embedded within a PDF. Clean Content extraction will produce a

thumbnail element prior to the applicable page or embedded file during the extraction process. The

thumbnail element includes an embeddedcontent element of type ‘Image’ that represents the

thumbnail image. The form of the extracted image is consistent with the Raster Image Extraction

feature described earlier.

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 21

Thumbnail images are typically used to provide a representation of each page in a PDF document

that allows viewers to quickly render an image of each page. They can also be associated with an

external file reference. Thumbnails have been deprecated from use in PDF as of ISO 32000-1 and

can safely be scrubbed from files. Thumbnail images can be used to hide data from the user since

they are often ignored by viewing technology in favor of regenerating an image when required.

When this scrub target is enabled all thumbnail images are removed from the scrubbed document.

Deprecated Postscript Objects

Early versions of the PDF specification allowed embedded Postscript objects to be rendered on a

page. This feature has been deprecated and is not recommended to be included in PDF documents.

Postscript Objects run a risk of hiding data since some PDF readers may not process the content.

When this target is enabled the postscript objects will be replaced by a blank image.

Alternate Presentations

The alternate presentations feature of PDF allows a PDF document to be viewed in a slide show like

manner. PDF 1.4 allowed a page to be viewed for a specified duration before moving into an

automatic or user enabled page transition phase. PDF 1.5 allowed for a more extensive, JavaScript

driven, alternate presentation rendering. This PDF feature is seldom used and has been deprecated

by ISO 32000-1. Alternate presentations carry some risk because they can be used to hide data from

the user by presenting only a subset, or even a completely different rendering, of the documents

content. This can be done through transition effects, using an alternate image of the page, or even

ignoring pages found in the document.

All data associated with the alternate presentation form of the document is removed when this scrub

target is enabled. This includes the /Dur and /Trans keys in a page node dictionary and the

/AlternatePresentations key found in the document’s name dictionary.

Alternate Images

Alternate images are additional versions of an image that may be used by PDF Readers rather than

rendering the primary image. This might be used in environments where one image is better suited

for viewing while another is better suited for printing. The risk of alternate images is that the

secondary images can carry hidden data that is not viewable in a typical environment.

Exporting of alternate images is supported during the extraction process.

When this scrub target is enabled all alternate images are removed from the document.

Annotations

The PDF format supports a set of interactive features called annotations. Example annotations

include text, file attachments, watermarks, redaction, rich-media, and numerous other interactive

features. Each type of annotations has been categorized into a scrub target in order to provide finer

control over detection and removal of the various types of annotations.

Each different type of annotation poses a particular type of risk. Referencing external links,

embedding malicious rich-media, and hiding text content, are examples of potential vulnerabilities.

Restricted and confidential property of Oracle.
Solely for use by recipient under agreement forbidding disclosure.

 22

Sensitive Content Links

Sensitive content links are links to external data sources that can be used during the processing of

the document to update or replace content previously created. In PDF documents the Open Press

Interface feature and the Reference XObject feature fall in this category. Either may reference

external data used to replace or update existing content. When this scrub target is enabled all OPI

data and Reference XObject data will be removed.

