
Oracle® Outside In XML Export
Developer's Guide

Release 8.5
F10990-06
October 2023

Oracle Outside In XML Export Developer's Guide, Release 8.5

F10990-06

Copyright © 2010, 2023, Oracle and/or its affiliates.

Primary Author: Kalpana N

Contributing Authors: Promila Chitkara

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiii

Documentation Accessibility xiii

Related Documents xiii

Conventions xiii

Part I Getting Started with XML Export

1 Introduction

1.1 What Does This Technology Do? 1-1

1.1.1 Flexiondoc Schema 1-1

1.2 Architectural Overview 1-2

1.3 Definition of Terms 1-2

1.4 Directory Structure 1-3

1.4.1 Installing Multiple SDKs 1-3

1.5 How to Use XML Export 1-3

2 Implementation Issues

2.1 Running in 24x7 Environments 2-1

2.2 Running in Multiple Threads or Processes 2-1

3 Sample Applications

3.1 Building the Samples on a Windows System 3-1

3.2 An Overview of the Sample Applications 3-1

3.2.1 *sample 3-1

3.2.2 export (Windows Only) 3-1

3.2.2.1 The export Main Window 3-2

3.2.3 exsimple 3-2

3.2.4 extract_archive 3-3

iii

3.2.5 xxredir (XML Export) 3-3

3.3 Accessing the SDK via a Java Wrapper 3-3

3.3.1 The ExJava Wrapper API 3-3

3.3.2 The C-Based Exporter Application 3-4

3.3.3 Compiling the Executables 3-4

3.3.4 The ExportTest Sample Application 3-4

3.3.5 An Example Conversion Using the ExJava Wrapper 3-5

Part II Using the C/C++ API

4 Windows Implementation Details

4.1 Installation 4-1

4.1.1 NSF Support 4-2

4.2 Libraries and Structure 4-2

4.2.1 API DLLs 4-2

4.2.2 Support DLLs 4-2

4.2.3 Engine Libraries 4-4

4.2.4 Filter and Export Filter Libraries 4-4

4.2.5 Premier Graphics Filters 4-5

4.2.6 Additional Files 4-5

4.3 The Basics 4-6

4.3.1 What You Need in Your Source Code 4-6

4.3.2 Options and Information Storage 4-6

4.3.3 Structure Alignment 4-7

4.3.4 Character Sets 4-7

4.3.5 Runtime Considerations 4-7

4.4 Changing Resources 4-7

5 UNIX Implementation Details

5.1 Installation 5-1

5.1.1 NSF Support 5-2

5.2 Libraries and Structure 5-2

5.2.1 API Libraries 5-2

5.2.2 Support Libraries 5-3

5.2.3 Engine Libraries 5-4

5.2.4 Filter and Export Filter Libraries 5-4

5.2.5 Premier Graphics Filters 5-5

5.2.6 Additional Files 5-5

5.3 The Basics 5-6

iv

5.3.1 What You Need in Your Source Code 5-7

5.3.2 Information Storage 5-7

5.4 Character Sets 5-7

5.5 Runtime Considerations 5-8

5.5.1 X Server Requirement 5-8

5.5.2 OLE2 Objects 5-8

5.5.3 Machine-Dependent Graphics Context 5-8

5.5.4 Signal Handling 5-9

5.5.5 Runtime Search Path and $ORIGIN 5-9

5.6 Environment Variables 5-10

5.7 Changing Resources 5-10

5.8 HP-UX Compiling and Linking 5-11

5.8.1 HP-UX on RISC 5-11

5.8.2 HP-UX on Itanium (64 bit) 5-11

5.9 IBM AIX Compiling and Linking 5-12

5.9.1 IBM AIX (64-bit pSeries) 5-12

5.10 Linux Compiling and Linking 5-12

5.10.1 Library Compatibility 5-12

5.10.1.1 Motif Libraries 5-13

5.10.1.2 GLIBC and Compiler Versions 5-13

5.10.1.3 Other Libraries 5-13

5.10.2 Compiling and Linking 5-14

5.10.2.1 Linux 32-bit, including Linux PPC 5-14

5.10.2.2 Linux 64-bit 5-14

5.10.2.3 Linux zSeries 5-14

5.10.2.4 Linux zSeries 64bits 5-14

5.11 Oracle Solaris Compiling and Linking 5-15

5.11.1 Oracle Solaris SPARC 5-15

5.11.2 Oracle Solaris x86 5-15

6 Data Access Common Functions

6.1 Deprecated Functions 6-1

6.2 DAInitEx 6-1

6.3 DADeInit 6-3

6.4 DAOpenDocument 6-3

6.4.1 IOSPECLINKEDOBJECT Structure 6-4

6.4.2 IOSPECARCHIVEOBJECT Structure 6-5

6.5 DAOpenSubdocumentById 6-5

6.6 DACloseDocument 6-5

6.7 DARetrieveDocHandle 6-6

v

6.8 DASetOption 6-6

6.9 DAGetOption 6-7

6.10 DAGetFileId 6-8

6.11 DAGetFileIdEx 6-8

6.12 DAGetObjectInfo 6-9

6.13 DAGetErrorString 6-10

6.14 DAGetTreeCount 6-10

6.15 DAGetTreeRecord 6-11

6.15.1 SCCDATREENODE Structure 6-12

6.16 DAOpenTreeRecord 6-13

6.17 DASaveTreeRecord 6-13

6.18 DACloseTreeRecord 6-14

6.19 DASetStatCallback 6-15

6.20 DASetFileAccessCallback 6-16

7 Export Functions

7.1 EXOpenExport 7-1

7.2 EXCALLBACKPROC 7-3

7.3 EXCloseExport 7-3

7.4 EXRunExport 7-4

7.5 EXExportStatus 7-4

8 Redirected IO

8.1 Using Redirected IO 8-1

8.2 Opening Files 8-2

8.3 IOClose 8-2

8.4 IORead 8-3

8.5 IOWrite 8-3

8.6 IOSeek 8-4

8.7 IOTell 8-5

8.8 IOGetInfo 8-5

8.8.1 IOGENSECONDARY and IOGENSECONDARYW Structures 8-8

8.8.2 File Types That Cause IOGETINFO_GENSECONDARY 8-9

8.9 IOSEEK64PROC / IOTELL64PROC 8-10

8.9.1 IOSeek64 8-10

8.9.2 IOTell64 8-10

9 Callbacks

9.1 EX_CALLBACK_ID_CREATENEWFILE 9-1

vi

9.1.1 EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW Structures 9-3

9.2 EX_CALLBACK_ID_GRAPHICEXPORTFAILURE 9-3

9.3 EX_CALLBACK_ID_NEWFILEINFO 9-4

10

XML C/C++ Export Options

10.1 Character Mapping 10-1

10.1.1 SCCOPT_DEFAULTINPUTCHARSET 10-1

10.1.2 SCCOPT_UNMAPPABLECHAR 10-2

10.2 Output 10-2

10.2.1 SCCOPT_RENDERING_PREFER_OIT 10-3

10.3 Input Handling 10-4

10.3.1 SCCOPT_EXTRACTXMPMETADATA 10-4

10.3.2 SCCOPT_FALLBACKFORMAT 10-4

10.3.3 SCCOPT_FIFLAGS 10-5

10.3.4 SCCOPT_FORMATFLAGS 10-6

10.3.5 SCCOPT_SYSTEMFLAGS 10-6

10.3.6 SCCOPT_IGNORE_PASSWORD 10-7

10.3.7 SCCOPT_LOTUSNOTESDIRECTORY 10-7

10.3.8 SCCOPT_PARSEXMPMETADATA 10-8

10.3.9 SCCOPT_PDF_FILTER_REORDER_BIDI 10-8

10.3.10 SCCOPT_PROCESS_OLE_EMBEDDINGS 10-9

10.3.11 SCCOPT_TIMEZONE 10-10

10.3.12 SCCOPT_HTML_COND_COMMENT_MODE 10-10

10.3.13 SCCOPT_ARCFULLPATH 10-11

10.3.14 SCCOPT_STROKE_TEXT 10-11

10.3.15 SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS 10-12

10.3.16 SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS 10-12

10.3.17 SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION 10-13

10.3.18 SCCOPT_GENERATEEXCELREVISIONS 10-13

10.3.19 SCCOPT_TIMEZONE_USEDST 10-14

10.3.20 SCCOPT_TIMEZONETEXT 10-15

10.3.21 SCCOPT_TRACK_ANNOTATIONS 10-15

10.3.22 SCCOPT_READ_RECIPIENT_DELIVERY_INFO 10-16

10.4 Compression 10-17

10.4.1 SCCOPT_FILTERJPG 10-17

10.4.2 SCCOPT_FILTERLZW 10-17

10.5 Graphics 10-18

10.5.1 SCCOPT_ACCEPT_ALT_GRAPHICS 10-18

10.5.2 SCCOPT_GIF_INTERLACED 10-19

10.5.3 SCCOPT_GRAPHIC_HEIGHTLIMIT 10-20

vii

10.5.4 SCCOPT_GRAPHIC_OUTPUTDPI 10-20

10.5.5 SCCOPT_GRAPHIC_SIZELIMIT 10-21

10.5.6 SCCOPT_GRAPHIC_SIZEMETHOD 10-22

10.5.7 SCCOPT_GRAPHIC_TYPE 10-23

10.5.8 SCCOPT_GRAPHIC_WIDTHLIMIT 10-24

10.5.9 SCCOPT_JPEG_QUALITY 10-24

10.5.10 SCCOPT_RENDER_ENABLEALPHABLENDING 10-25

10.6 Callbacks 10-25

10.6.1 SCCOPT_EX_CALLBACKS 10-25

10.6.2 SCCOPT_EX_UNICODECALLBACKSTR 10-26

10.7 XML 10-27

10.7.1 SCCOPT_CCFLEX_FORMATOPTIONS 10-27

10.7.2 SCCOPT_CCFLEX_INCLUDETEXTOFFSETS 10-29

10.7.3 SCCOPT_CCFLEX_REMOVEFONTGROUPS 10-30

10.7.4 SCCOPT_EXXML_DEF_METHOD 10-30

10.7.5 SCCOPT_EXXML_DEF_REFERENCE 10-31

10.7.6 SCCOPT_EXXML_SUBSTREAMROOTS 10-31

10.8 File System 10-32

10.8.1 SCCOPT_IO_BUFFERSIZE 10-33

10.8.1.1 SCCBUFFEROPTIONS Structure 10-33

10.8.2 SCCOPT_TEMPDIR 10-34

10.8.2.1 SCCUTTEMPDIRSPEC Structure 10-35

10.8.3 SCCOPT_DOCUMENTMEMORYMODE 10-35

10.8.4 SCCOPT_REDIRECTTEMPFILE 10-36

Part III Using the Java API

11

Introduction to the Java API

11.1 Requirements 11-1

11.2 Getting Started 11-1

11.2.1 Configure the Environment 11-1

11.2.2 Generate Code 11-1

11.2.2.1 Create an Exporter Object 11-2

11.2.2.2 Configure the Output 11-2

11.2.2.3 Set the Source and Primary Destination Files 11-2

11.2.2.4 Set the Output Type 11-2

11.2.2.5 Provide a Callback Handler 11-3

11.2.2.6 Run the Export 11-3

viii

12

XML Export Java Classes

12.1 ArchiveNode Class 12-1

12.2 Callback Class 12-1

12.2.1 createNewFile 12-2

12.2.1.1 CreateNewFileResponse Class 12-2

12.2.2 newFileInfo 12-3

12.2.3 openFile 12-4

12.2.3.1 OpenFileResponse Class 12-4

12.2.4 createTempFile 12-4

12.2.4.1 CreateTempFileResponseClass 12-5

12.3 Exporter Interface 12-5

12.3.1 Document Interface 12-7

12.3.2 SeekableByteChannel6 Interface 12-8

12.3.3 OptionsCache Class 12-10

12.3.3.1 AcceptAlternateGraphics 12-11

12.3.3.2 DefaultInputCharacterSet 12-12

12.3.3.3 DocumentMemoryMode 12-15

12.3.3.4 EnableAlphaBlending 12-15

12.3.3.5 ExtractXMPMetadata 12-16

12.3.3.6 FallbackFormat 12-16

12.3.3.7 GraphicHeight 12-16

12.3.3.8 GraphicHeightLimit 12-17

12.3.3.9 GraphicOutputDPI 12-17

12.3.3.10 GraphicSizeLimit 12-18

12.3.3.11 GraphicSizeMethod 12-18

12.3.3.12 GraphicWidth 12-18

12.3.3.13 GraphicWidthLimit 12-19

12.3.3.14 IECondCommentMode 12-19

12.3.3.15 IgnorePassword 12-20

12.3.3.16 InterlacedGIFs 12-20

12.3.3.17 InternalRendering 12-20

12.3.3.18 ISODateTimes 12-20

12.3.3.19 JPEGQuality 12-21

12.3.3.20 LotusNotesDirectory 12-21

12.3.3.21 OutputGraphicType 12-21

12.3.3.22 ParseXMPMetadata 12-22

12.3.3.23 PDFInputMaxEmbeddedObjects 12-22

12.3.3.24 PDFInputMaxVectorPaths 12-23

12.3.3.25 PDFReorderBiDi 12-23

12.3.3.26 PDFWordSpacingFactor 12-23

ix

12.3.3.27 PerformExtendedFI 12-24

12.3.3.28 ProcessOLEEmbeddingMode 12-24

12.3.3.29 RenderEmbeddedFonts 12-25

12.3.3.30 ShowArchiveFullPath 12-25

12.3.3.31 StrictFile 12-25

12.3.3.32 TimeZoneOffset 12-26

12.3.3.33 UnmappableCharacter 12-26

12.3.3.34 XMLDefinitionReference 12-27

12.3.3.35 XXFormatOptions 12-27

12.3.3.36 DSTTimezone 12-28

12.3.3.37 GenerateExcelRevisions 12-29

12.4 ExportStatus Class 12-29

12.5 FileFormat Class 12-30

12.6 ObjectInfo Class 12-30

12.7 Option Interface 12-31

12.8 OutsideIn Class 12-32

12.9 OutsideInException Class 12-32

12.10 XMLReference Class 12-32

Part IV Using the .NET API

13

Introduction to the .NET API

13.1 Requirements 13-1

13.2 Getting Started 13-1

13.2.1 Configuring your Environment 13-1

13.2.2 Generate Code 13-1

13.2.2.1 Create an Exporter Object 13-2

13.2.2.2 Configure the Output 13-2

13.2.2.3 Set the Source and Primary Destination Files 13-2

13.2.2.4 Set the Output Type 13-3

13.2.2.5 Provide a Callback Handler 13-3

13.2.2.6 Run the Export 13-3

13.2.3 Redirected I/O Support in .NET 13-3

14

XML Export .NET Classes

14.1 ArchiveNode Class 14-1

14.2 Callback Class 14-1

14.2.1 OpenFile 14-2

14.2.1.1 OpenFileResponse Class 14-2

x

14.2.2 CreateNewFile 14-2

14.2.2.1 CreateNewFileResponse Class 14-3

14.2.3 NewFileInfo 14-3

14.2.4 CreateTempFile 14-4

14.2.4.1 CreateTempFileResponse Class 14-4

14.3 Exporter Interface 14-4

14.3.1 Document Interface 14-6

14.3.2 OptionsCache Class 14-8

14.3.2.1 AcceptAlternateGraphics 14-10

14.3.2.2 DefaultInputCharacterSet 14-11

14.3.2.3 DocumentMemoryMode 14-14

14.3.2.4 ExtractXMPMetadata 14-14

14.3.2.5 FallbackFormat 14-14

14.3.2.6 GraphicHeight 14-15

14.3.2.7 GraphicHeightLimit 14-15

14.3.2.8 GraphicOutputDPI 14-15

14.3.2.9 GraphicSizeLimit 14-16

14.3.2.10 GraphicSizeMethod 14-16

14.3.2.11 GraphicWidth 14-17

14.3.2.12 GraphicWidthLimit 14-17

14.3.2.13 IECondCommentMode 14-18

14.3.2.14 IgnorePassword 14-18

14.3.2.15 InterlacedGIFs 14-18

14.3.2.16 ISODateTimes 14-18

14.3.2.17 JPEGQuality 14-19

14.3.2.18 LotusNotesDirectory 14-19

14.3.2.19 OutputGraphicType 14-19

14.3.2.20 ParseXMPMetadata 14-20

14.3.2.21 PDFInputMaxEmbeddedObjects 14-21

14.3.2.22 PDFInputMaxVectorPaths 14-21

14.3.2.23 PDFReorderBiDi 14-21

14.3.2.24 PDFWordSpacingFactor 14-21

14.3.2.25 PerformExtendedFI 14-22

14.3.2.26 ProcessOLEEmbeddingMode 14-22

14.3.2.27 RenderEmbeddedFonts 14-23

14.3.2.28 ShowArchiveFullPath 14-23

14.3.2.29 StrictFile 14-24

14.3.2.30 TimeZoneOffset 14-24

14.3.2.31 UnmappableCharacter 14-24

14.3.2.32 XMLDefinitionReference 14-25

14.3.2.33 XXFormatOptions 14-25

xi

14.3.2.34 DSTTimezone 14-27

14.3.2.35 GenerateExcelRevisions 14-27

14.3.2.36 EnableAlphaBlending 14-27

14.3.2.37 InternalRendering 14-27

14.4 ExportStatus Class 14-28

14.5 FileFormat Class 14-29

14.6 ObjectInfo Class 14-29

14.7 Option Interface 14-30

14.8 OutsideIn Class 14-31

14.9 OutsideInException Class 14-31

14.9.1 OutsideInCastException Class 14-31

14.10 XMLReference Class 14-31

xii

Preface

This document describes the installation and usage of the Outside In XML Export Software
Developer's Kit (SDK).

Audience
This document is intended for developers who are integrating Outside In XML Export into
Original Equipment Manufacturer (OEM) applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Documents
The complete Oracle Outside In Technology documentation set is available from the Oracle
Help Center at http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage

Part I
Getting Started with XML Export

This section provides an introduction to the SDK.

Part I contains the following chapters:

• Introduction

• Implementation Issues

• Sample Applications

1
Introduction

This chapter provides an introduction to XML Export. XML Export allows developers to
implement sophisticated text extraction from standard business documents.

Note:

For new functionality information, see What's New guide.

With the current version of XML Export, an application can access documents through a C,
Java, or .NET API. Included with XML Export is the powerful Flexiondoc schema.

There may be references to other Outside In Technology SDKs within this manual. To obtain
complete documentation for any other Outside In product, see Middleware documentation
page and click Outside In Technology link below.

This chapter includes the following sections:

• What Does This Technology Do?

• Architectural Overview

• Definition of Terms

• Directory Structure

• How to Use XML Export

1.1 What Does This Technology Do?
XML Export can normalize all of a document's content to the Flexiondoc schema, provided in
the form of a DTD and an XML schema.

Note:

All XML Export output formats are UTF-8 encoded Unicode text.

1.1.1 Flexiondoc Schema
The Flexiondoc schema is designed to provide extremely dense, rich XML versions of input
documents, enabling powerful applications such as document assembly, portals and content
management systems.

Here are some of the schema's primary features:

• Translation of documents to XML, with all characters translated to Unicode

• A common interface to more than 600 file formats

1-1

https://docs.oracle.com/en/middleware/

• Access to document properties

• Support for word processor, spreadsheet, graphic, and archive formats

• Support for embeddings

• Special tags are created for hyperlinks, bookmarks, and sub-documents

1.2 Architectural Overview
The basic architecture of Outside In technologies is the same across all supported
platforms:

Filter/Module Description

Input Filter The input filters form the base of the architecture. Each one reads a
specific file format or set of related formats and sends the data to
OIT through a standard set of function calls. There are more than
150 of these filters that read more than 600 distinct file formats.
Filters are loaded on demand by the data access module.

Export Filter Architecturally similar to input filters, export filters know how to write
out a specific format based on information coming from the chunker
module. The export filters generate XML.

Export The Export module implements the export API and understands
how to load and run individual export filters.

Data Access The Data Access module implements a generic API for access to
files. It understands how to identify and load the correct filter for all
the supported file formats. The module delivers to the developer a
generic handle to the requested file, which can then be used to run
more specialized processes, such as the Export process.

Schema Schemas provide a means for defining the structure, content and
semantics of XML documents. XML Export ships with the
Flexiondoc schema. Schemas can be presented in the form of a
DTD (Document Type Definition) or XML Schema (schema). The
Flexiondoc schema is provided in both forms.

1.3 Definition of Terms
The following terms are used in this documentation.

Term Definition

Developer Someone integrating this technology into another technology or
application. Most likely this is you, the reader.

Source File The file the developer wishes to export.

Output File The file being written: FlexionDoc, XML, GIF, JPEG, and PNG.

Data Access Module The core of Outside In Data Access, in the SCCDA library.

Data Access Submodule
(also referred to as
"Submodule")

This refers to any of the Outside In Data Access modules, including
SCCEX (Export), but excluding SCCDA (Data Access).

Document Handle (also
referred to as "hDoc")

A Document Handle is created when a file is opened using Data
Access (see Data Access Common Functions). Each Document
Handle may have any number of Subhandles.

Chapter 1
Architectural Overview

1-2

Term Definition

Subhandle (also referred
to as "hItem")

Any of the handles created by a Submodule's Open function. Every
Subhandle has a Document Handle associated with it. For
example, the hExport returned by EXOpenExport is a Subhandle.
The DASetOption and DAGetOption functions in the Data Access
Module may be called with any Subhandle or Document Handle.
The DARetrieveDocHandle function returns the Document
Handle associated with any Subhandle.

1.4 Directory Structure
Each Outside In product has an sdk directory, under which there is a subdirectory for each
platform on which the product ships (for example, xx/sdk/xx_win-x86-32_sdk). Under each of
these directories are the following two subdirectories:

• redist - Contains only the files that the customer is allowed to redistribute. These include
all the compiled modules, filter support files, .xsd and .dtd files, cmmap000.bin, and third-
party libraries, like freetype.

• sdk - Contains the other subdirectories that used to be at the root-level of an sdk
(common, lib (windows only), resource, samplefiles, and samplecode (previously
samples). In addition, one new subdirectory has been added, demo, that holds all of the
compiled sample apps and other files that are needed to demo the products. These are
files that the customer should not redistribute (.cfg files, exportmaps, etc.).

In the root platform directory (for example, xx/sdk/xx_win-x86-32_sdk), there are two files:

• README - Explains the contents of the sdk, and that makedemo must be run in order to
use the sample applications.

• makedemo (either .bat or .sh – platform-based) - This script will either copy (on
Windows) or Symlink (on Unix) the contents of …/redist into …/sdk/demo, so that sample
applications can then be run out of the demo directory.

1.4.1 Installing Multiple SDKs
If you load more than one OIT SDK, you must copy files from the secondary installations into
the top-level OIT SDK directory as follows:

• redist – copy all binaries into this directory.

• sdk – this directory has several subdirectories: common, demo, lib, resource,
samplecode, samplefiles. In each case, copy all of the files from the secondary
installation into the top-level OIT SDK subdirectory of the same name. If the top-level OIT
SDK directory lacks any directories found in the directory being copied from, just copy
those directories over.

1.5 How to Use XML Export
Here's a step-by-step overview of how to export a source file to XML.

1. Call DAIniExt to initialize the Data Access technology. This function needs to be called
only once per application. If using threading, then pass in the correct ThreadOption.

Chapter 1
Directory Structure

1-3

2. Set any options that require a NULL handle type (optional). Certain options need
to be set before the desired source file is opened. These options are identified by
requiring a NULL handle type. They include, but aren't limited to:

• SCCOPT_FALLBACKFORMAT

• SCCOPT_FIFLAGS

• SCCOPT_TEMPDIR

3. Open the Source File. DAOpenDocument is called to create a document handle
that uniquely identifies the source file. This handle may be used in subsequent
calls to the EXOpenExport function or the open function of any other Data Access
Submodule, and will be used to close the file when access is complete. This
allows the file to be accessed from multiple Data Access Submodules without
reopening.

4. Set the Options. If you require option values other than the default settings, call
DASetOption to set options. Note that options listed in the Options Guide as
having "Handle Types" that accept VTHEXPORT may be set any time before
EXRunExport is called. See "DASetOption" for more information on options and
how to set them.

5. Open a Handle to XML Export. Using the document handle, EXOpenExport is
called to obtain an export handle that identifies the file to the specific export
product. This handle will be used in all subsequent calls to the specific export
functions. The dwOutputId parameter of this function is used to specify that the
output file type should be set to FI_XML_FLEXIONDOC_LATEST.

6. Export the File. EXRunExport is called to generate the output file(s) from the
source file.

7. Close the Handle to XML Export. EXCloseExport is called to terminate the export
process for the file. After this function is called, the export handle will no longer be
valid, but the document handle may still be used.

8. Close the Source File. DACloseDocument is called to close the source file. After
calling this function, the document handle will no longer be valid.

9. Close XML Export. DADeInit is called to de-initialize the Data Access technology.

Chapter 1
How to Use XML Export

1-4

2
Implementation Issues

This chapter describes the implementation issues specific to using XML Export.
The following issues are addressed:

• Running in 24x7 Environments

• Running in Multiple Threads or Processes

2.1 Running in 24x7 Environments
To ensure robust 24x7 performance in server applications embedding the different export
products, it is strongly recommended that the technology be run in a process separate from
the server's primary process.

The file filtering technology underlying the technology represents almost a quarter of a million
lines of code. This code is expected to robustly deal with any stream of bytes, of any length
(any file), in all cases. Oracle has dedicated, and continues to dedicate, significant effort into
making this technology extremely robust. However, in real world situations, expect that some
small number of malformed files may force the filters into unstable states. This generally
results in either a memory exception (which can be trapped and recovered from gracefully),
infinite loop or a wild pointer that causes the filter to write into memory that is part of the same
process but does not belong to the filter. In the latter situation, this wild pointer condition
cannot be trapped.

On the desktop this is not a significant problem since the number of files being dealt with is
relatively small. In a 24x7 server environment, however, a wild pointer can be extremely
disruptive to the server process and produce serious problems. The best solution for dealing
with this problem is to run any application that reads complex file formats in a separate
process. This solution protects the application from the susceptibility of filtering technology to
the unknown quality of input files.

It must be stressed that files that lead to wild pointers or infinite loops occur very infrequently,
usually as a result of a third-party conversion process or beta versions of applications. Oracle
is committed to addressing these issues and to updating and expanding its testing tools and
corpus of documents to proactively minimize this "garbage in-garbage out" problem.

2.2 Running in Multiple Threads or Processes
On certain platforms, export products may be run in a multithreaded or multiprocessing
application. The thing to remember when doing so is that each thread must go through all the
steps listed in Introduction.

2-1

3
Sample Applications

This chapter describes the sample applications for XML Export. Each of the sample
applications included in this SDK is designed to highlight a specific aspect of the technology's
functionality. We ship built versions of these sample applications. The compiled executables
should be in the root directory where the product is installed.
This chapter includes the following sections:

• Building the Samples on a Windows System

• An Overview of the Sample Applications

• Accessing the SDK via a Java Wrapper

3.1 Building the Samples on a Windows System
Microsoft Visual Studio 2013 files are provided for building each of the sample applications.

Because .vcxproj files may not pick up the right compiler on their own, you need to make sure
that you are building with the correct configuration in Visual Studio 2013 or higher.

The project files for the sample applications can be found in the \sdk\samplecode\win
subdirectory of the Outside In SDK.

See UNIX Implementation Details, for specific information about building the sample
applications on your UNIX OS.

3.2 An Overview of the Sample Applications
Here's a quick tour of the sample applications provided with this product. Not all of the
sample applications are provided for both the Windows and UNIX platforms. See the heading
of each application's subsection for clarification.

This section includes the following sample applications:

3.2.1 *sample
The name of this sample application varies according to product (xxsample for XML Export).

The following is a basic implementation that uses the default settings for every option.

xxsample Inputfile Outputfile

This sample app provides a very simple demonstration of creating FlexionDoc output.

3.2.2 export (Windows Only)
This application was designed to facilitate the testing of the software and should not be
assumed to be of commercial quality.

3-1

Note:

No default options are set at initial runtime. The time the software is used,
click the Options button and set the options. Failure to do this generates
export errors.

The application allows the user to run a single source file. The user can choose the
source file, an output file and set the various options. If you are going to rebuild this
application, be sure to set your INCLUDE and LIB paths to the \COMMON and \LIB
directories respectively.

3.2.2.1 The export Main Window
The Main Window contains the following fields.

• Output Format menu: This menu allows the user to select the type of output to
generate. An entry for the format(s) you license will appear in this drop-down
menu

• Options button: This opens up a new dialog with one or more tabs exposing the
options for the selected product.

• Source document field: This is the document to be exported. Use the Browse
button to pick the source file, or type in the path name.

• 'Export to' Field: This is the initial resulting output file. Type in a file name or use
the Browse button to choose a file. Other output files are named based on the one
chosen here.

• Delete button: Clicking this button deletes all files generated by the last export,
listed in the Status: field. This is useful when multiple output files are produced
because the default naming rules do not overwrite an existing file. If you run
Export over and over again with the same output file name, you can produce a
large number of files. Pressing Delete before each export solves this problem.

• 'After Export, view output file with default application' Check Box: If the export was
successful, checking this box launches the initial output file in the application
associated with the output flavor's default extension.

• Export button: Click to start the export process once you've determined the export
settings.

• Exit button: Click to close the Export application.

3.2.3 exsimple
This simple command line driven program allows the user to run a single source file
through the software. The user can choose the source file, an output file and set the
various options.

To run the program, type:

exsimple in_file out_file config_file

• in_file is the input file to be converted

• out_file is the output location

Chapter 3
An Overview of the Sample Applications

3-2

• config_file is the configuration file that sets the conversion options. If no configuration file
is specified, default.cfg in the current directory is used.

The configuration file is a text file used to set the conversion options. We recommend reading
through the configuration file for more information about valid options and their values (use of
invalid options results in exsimple not producing output).

Follow these instructions to set configurable options.

• Set the Output ID to FI_XML_FLEXIONDOC_LATEST before running the software.

3.2.4 extract_archive
extract_archive demonstrates using the DATree API to extract all nodes in an archive.

The application is executed from the command line and takes two parameters, the name of
the input file and the name of an output directory for the extracted files:

extract_archive input_file output_directory

3.2.5 xxredir (XML Export)
This sample application is based on the exsimple sample application. It is designed to
demonstrate how to use redirected IO and callbacks when using the software. It takes the
same arguments and command line structure as exsimple and the same configuration files
can be used. See "exsimple" for details.

3.3 Accessing the SDK via a Java Wrapper
The ExJava Java wrapper, working in tandem with the exporter sample application, provides
a working example of one method of interfacing with Oracle's C-based SDK products from a
Java application. Export.jar is a Java API wrapper used by a Java application to control the
exporter executable and set conversion options. exporter is a C-based executable which
performs conversions using the modules in the Outside In SDK.

The exporter executable should be placed in the root directory of the Outside In SDK being
used. If more than one Outside In SDK is being used, the contents of each SDK should be
unpacked to the same root directory. Export.jar should be placed somewhere in your
classpath.

On UNIX systems this sample application must be run from the directory containing the
Outside In technology.

Java version 1.6 or higher is required to run this sample application.

This section covers the following topics:

3.3.1 The ExJava Wrapper API
The JavaDocs documentation for the Java API is provided in the /sdk/samplecode/ExJava/
docs directory. Conversion options are set using the ExportProperties.

Additionally, the appropriate .cfg file for the ExportTest sample application found in the
Examples/ExportTest directory may provide further insight as to what properties are available
and how they correspond to options and values for options.

Chapter 3
Accessing the SDK via a Java Wrapper

3-3

The Export.jar and its source code can be found in the Java API directory. Place
Export.jar somewhere in your classpath. In order to use the ExportTest sample
application (which demonstrates how a Java application can use the ExJava API)
without modifying your system configuration or the ExJava sample application, you
should place the Export.jar file in the root directory of the Outside In SDK product you
are using.

3.3.2 The C-Based Exporter Application
This is a standalone executable that runs out of process from the Java API. The Java
API controls the conversion through command line parameters that are passed to the
executable. After the conversion completes, the executable returns a conversion
status code to the Java API. The command line parameters are base-64 encoded to
allow for the use of Unicode encoded paths.

As the exporter executable is a C-based application, you will need to make sure the
Java API can find the version of exporter appropriate for the platform you are using.
Generally, and specifically for the purpose of using the ExportTest sample application,
the correct executable should be copied to the root directory of the Oracle export SDK
product you are using.

A compiled version of the C exporter program is included in the SDK with the rest of
the Outside In binaries. The source for exporter is located in the /sdk/samplecode/
ExJava/exporter directory.

The current implementation of ExJava may not produce an error if it cannot find the
exporter application. This known issue may be corrected in a future version of ExJava.

3.3.3 Compiling the Executables
A Microsoft Visual Studio 6.0 project file and a UNIX makefile are provided in /sdk/
samplecode/ExJava/exporter/win and /sdk/samplecode/ExJava/exporter/unix,
respectively, so that you can modify the exporter executable or compile it for a platform
other than those for which compiled versions of exporter are provided. If you unpacked
the ExJava package into the root directory of one of Oracle's export SDK products,
you should be able to use the Visual Studio Project and makefile as is. Otherwise, you
will need to edit them in order to provide paths to the Oracle export SDK include and
library files.

If you are compiling ExJava for use on the Solaris platform, make sure your
LD_LIBRARY_PATH contains the Outside In SDK path before trying to build the
exporter module.

3.3.4 The ExportTest Sample Application
ExportTest is an example of how a Java developer could use the ExJava wrapper to
use one of the Outside In SDKs. The following is a list of the components that should
be placed in the root directory of the Outside In SDK you are using in order to run this
sample application:

1. Export.jar (from the Java API directory)

2. Exporter module for the platform you wish to use (located in the /sdk/samplecode/
ExJava/exporter/win or /sdk/samplecode/ExJava/exporter/unix directory,
depending on which platform you are using)

Chapter 3
Accessing the SDK via a Java Wrapper

3-4

3. xx.cfg (also in Examples/ExportTest directory)

4. If you are running ExportTest on a UNIX system, make sure to edit the .cfg file so it
reflects the correct name of the exporter module you renamed.

5. ExportTest.jar (also in Examples/ExportTest directory)

6. The appropriate batch file to run the ExportTest application (ExportTest.bat for Windows
and ExportTest.sh for UNIX, both located in the Examples/ExportTest directory)

Once these files are properly copied, execute the batch file with the name/path of an input file
to convert, the name for the base output file and the name of the configuration file to use for
setting conversion options.

ExportTest.jar uses the contents of the configuration file to determine what option/value pairs
it should use when doing the conversion. It is not necessary to use a configuration file when
developing your own application if you so choose not to.

3.3.5 An Example Conversion Using the ExJava Wrapper
This is a simple outline of the steps for using the ExJava wrapper on a Windows system to
convert a Word document called MyWordDoc.Doc. If you are using a UNIX system, see UNIX
Implementation Details for information about properly setting up your environment to use the
Outside In SDK:

1. Edit the .cfg file and make sure outputid is set to the FI* value appropriate for the Outside
In product you've licensed. Alter any other parameters in the .cfg file as needed then
save the file.

2. Execute the following command. The sample command below assumes XML as the
export type. Change this type accordingly:

ExportTest.bat myworddoc.doc output.xml xx.cfg

Chapter 3
Accessing the SDK via a Java Wrapper

3-5

Part II
Using the C/C++ API

This section provides details about using the SDK with the C/C++ API.

Part II contains the following chapters:

• Windows Implementation Details

• UNIX Implementation Details

• Data Access Common Functions

• Export Functions

• Redirected IO

• Callbacks

• XML C/C++ Export Options

4
Windows Implementation Details

This chapter discusses the Windows implementation of the XML Export SDK. The Windows
implementation of this software is delivered as a set of DLLs.
For a list of the currently supported platforms, see Outside In Technology and click links
under Certified Platforms and Supported Formats from Get Started page.

This chapter includes the following sections:

• Installation

• Libraries and Structure

• The Basics

• Changing Resources

4.1 Installation
To install the demo version of the SDK, copy the contents of the ZIP archive (available on the
Web site) to a local directory of your choice.

This product requires the Visual C++ libraries included in the Visual C++ Redistributable
Package available from Microsoft. There are versions of this package for the x86 and x64
versions of Windows. This can be downloaded from www.microsoft.com/downloads, by
searching on the site for the following packages:

• vcredist_x86.exe

• vcredist_x64.exe

The required download version is the "2013 SP1 Redistributable Package."

Outside In requires the msvcr80.dll redistributable module.

The installation directory should contain the following directory structure:

Directory Description

\redist Contains a working copy of the Windows version of the technology.

\sdk\common Contains the C include files needed to build or rebuild the technology.

\sdk\demo Contains the compiled executables of the sample applications.

\sdk\lib Contains the library (.lib) files needed for the products.

\sdk\resource Contains localization resource files.

\sdk\samplecode Contains a subdirectory holding the source code for a sample
application.

\sdk\samplefiles Contains sample input files authored in a variety of popular graphics,
word processor, compression, spreadsheet and presentation
applications, designed to exercise XML Export.

\sdk\XXSchemaDocs Contains the current Flexiondoc manual.

4-1

http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage

4.1.1 NSF Support
Notes Storage Format (NSF) files are produced by the Lotus Notes Client or the Lotus
Domino server. The NSF filter is the only Outside In filter that requires the native
application to be present to filter the input documents. Due to integration with an
outside application, NSF support will not work with redirected I/O, when an NSF file is
embedded in another file, or with IOTYPE_UNICODEPATH. Either Lotus Notes
version 8 or Lotus Domino version 8 must be installed on the same machine as OIT. A
32-bit version of the Lotus software must be used if you are using a 32-bit version of
OIT. A 64-bit version of the Lotus software must be used if you are using a 64-bit
version of OIT. On Windows, SCCOPT_LOTUSNOTESDIRECTORY should be set to
the directory containing the nnotes.dll. NSF support is only available on the Win32,
Win x86-64, Linux x86-32, and Solaris Sparc 32 platforms.

4.2 Libraries and Structure
The following is an overview of the files in the main installation directory for all five
Outside In export products.

4.2.1 API DLLs
These libraries implement the API. They should be linked with the developer's
application. Files with a .lib extension are included in the SDK.

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

sccda.dll Data Access module X X X X X X

sccex.dll Export module X X X X X X

sccfi.dll File Identification
module (identifies
files based on their
contents).

X X X X X X

The File ID Specification may not be used directly by any application or workflow
without it being separately licensed expressly for that purpose.

4.2.2 Support DLLs
The following libraries are used for support.

Chapter 4
Libraries and Structure

4-2

Library Description HTML
Expo
rt

Imag
eExp
ort

PDF
Expo
rt

Searc
h
Export

XML
Expor
t

Web
View
Export

ccflex.dll A data model adapter that converts
from stream model utilized by
Oracle Outside In filters to the
FlexionDoc Tree model used as a
basis by XML Export.

X

libexpatw.dll A third-part XML parser X

ocemul.dll Output component emulation
module

X X X X X X

oswin*.dll Interface to the native GDI
implementation

oswin32.dll is the 32-bit version,
oswin64.dll is the 64-bit version

X X X X X

sccanno.dll The annotation module X X X

sccca.dll Content Access module (provides
organized chunker data for the
developer)

X X X X

sccch.dll Chunker (provides caching of and
access to filter data for the export
engines)

X X X X X X

sccdu.dll Display Utilities module (includes
text formatting)

X X X X X X

sccexind.dll The core engine for all Search
Export formats: SearchText,
SearchHTML, SearchML and
PageML

X X

sccfmt.dll Formatting module (resolves
numbers to formatted strings)

X X X X X

sccfut.dll Filter utility module X X X X X X

sccind.dll Indexing engine. In Search Export,
it handles common functionality.

X X X X X

scclo.dll Localization library (all strings,
menus, dialogs and dialog
procedures reside here)

X X X X X X

sccole2.dll OLE rendering module X X X X X X

sccsd.dll Schema Definition Module Manager
(brokers multiple Schema Definition
Modules)

X X

sccut.dll Utility functions, including IO
subsystem

X X X X X X

sccxt.dll XTree module X

sdflex.dll Schema Definition module (handles
conversion of XML string names
and attribute values to compact
binary representations and vice
versa)

X X

wvcore.dll The GDI Abstraction layer X X X X X

Chapter 4
Libraries and Structure

4-3

4.2.3 Engine Libraries
The following libraries are used for display purposes.

Library Description HTML
Expor
t

Image
Expor
t

PDF
Export

Searc
h
Expor
t

XML
Expor
t

Web
View
Export

debmp.dll Raster rendering engine
(TIFF, GIF, BMP, PNG,
PCX…)

X X

devect.dll Vector/Presentation
rendering engine
(PowerPoint, Impress,
Freelance…)

X X X X X

dess.dll Spreadsheet/Database
(Excel, Calc, Lotus 123…)

X X X

detree.dll Archive (ZIP, GZIP, TAR…) X X

dewp.dll Document (Word, Writer,
WordPerfect…)

X X X X

4.2.4 Filter and Export Filter Libraries
The following libraries are used for filtering.

Library Description HTM
L
Expo
rt

Imag
e
Expo
rt

PDF
Expo
rt

Sear
ch
Expo
rt

XML
Expo
rt

Web
View
Expo
rt

vs*.dll Filters for specific file types
(there are more than 150 of
these filters, covering more than
600 file formats)

X X X X X X

oitnsf.id Support file for the vsnsf filter. X X X X X X

exgdsf.dll Export filter for GIF, JPEG, and
PNG graphics files

X X X

eximg.dll Extended image conversion
module

X

exh5.dll Export filter for HTML5 files X

exhtml.dll Export filter for HTML files X

exihtml.dll Export filter for SearchHTML X

exitext.dll Export filter for SearchText X

exixml.dll Export filters for XML files using
the SearchML schema

X

expage.dll Export filter for XML files using
the PageML schema

X

expagelayout.dll Page layout module X

exxml.dll XML Export module X

Chapter 4
Libraries and Structure

4-4

Library Description HTM
L
Expo
rt

Imag
e
Expo
rt

PDF
Expo
rt

Sear
ch
Expo
rt

XML
Expo
rt

Web
View
Expo
rt

sccimg.dll Image conversion module X X X X

4.2.5 Premier Graphics Filters
The following are graphics filters.

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

i*2.dll Import filters for premier
graphics formats

X X X X X X

isgdi32.dll Interface to premier
graphics filters

X X X X X X

4.2.6 Additional Files
The following files are also used.

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

adinit.dat Support file for the
vsacad filter

X X X X X X

cmmap000.bin Tables for character
mapping (all character
sets)

X X X X X X

cmmap000.sbc Tables for character
mapping (single-byte
character sets). This file
is located in the /sdk/
common directory.

X X X X X X

cmmap000.dbc Identical to
cmmap000.bin, but
renamed for clarity (.dbc
= double-byte character).
This file is located in
the /sdk/common
directory.

X X X X X X

exbf.dll Internal X

pageml.dtd The Document Type
Definition for the
PageML schema

X

pageml.xsd The Extensible Schema
Definition for the
PageML schema

X

Chapter 4
Libraries and Structure

4-5

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

searchml3.dtd The Document Type
Definitions for the
SearchML schema

X

searchml3.xsd The Extensible Schema
Definitions for the
SearchML schema

X

flexiondoc.dtd The DTD version of the
Flexiondoc schema

X

flexiondoc.xsd The schema version of
the Flexiondoc schema

X

4.3 The Basics
The following is a discussion of some basic usage and installation features.

All the steps outlined in this section are used in the sample applications provided with
the SDK. Looking at the code for the exsimple sample application is recommended for
those wishing to see a real-world example of this process.

4.3.1 What You Need in Your Source Code
Any source code that uses this product should #include the file sccex.h and #define
WINDOWS and WIN32 or WIN64. For example, a Windows application might have a source
file with the following lines:

#define WINDOWS /* Will be automatically defined if your
 compiler defines _WINDOWS */
#define WIN32
#include <sccex.h>

The developer's application should be linked to the product DLLs through the provided
libraries.

4.3.2 Options and Information Storage
This software is based on the Outside In Viewer Technology (or simply "Viewer
Technology"). When using the Export products, a list of available filters and a list of
available display engines are built by the technology, usually the first time the product
runs. You do not need to ship these lists with your application. The lists are
automatically recreated if corrupted or deleted.

The files used to store this information are stored in an .oit subdirectory in \Documents
and Settings\user name\Application Data.

If an .oit directory does not exist in the user's directory, the directory is created
automatically. The files are automatically regenerated if corrupted or deleted.

The files are:

• *.f = Filter lists

Chapter 4
The Basics

4-6

• *.d = Display Engine lists

• *.opt = Persistent options

Some applications and services may run under a local system account for which there is no
users "application data" folder. The technology first does a check for an environment variable
called OIT_DATA_PATH. Then it checks for APPDATA, and then LOCALAPPDATA. If none of
those exist, the options files are put into the executable path of the UT module.

These file names are intended to be unique enough to avoid conflict for any combination of
machine name and install directory. This allows the user to run products in separate
directories without having to reload the files above. The file names are built from an 11-
character string derived from the directory the Outside In technology resides in and the name
of the machine it is being run on. The string is generated by code derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm.

The software still functions if these lists cannot be created for some reason. In that situation,
however, significant performance degradation should be expected.

4.3.3 Structure Alignment
Outside In is built with 8-byte structure alignment. This is the default setting for most
Windows compilers. This and other compiler options that should be used are demonstrated in
the files provided with the sample applications in samples\win.

4.3.4 Character Sets
The strings passed in the Windows API are ANSI1252 by default.

To optimize performance on systems that do not require DBCS support, a second character
mapping bin file, that does not contain any of the DBCS pages, is now included. The second
bin file gives additional performance benefits for English documents, but cannot handle
DBCS documents. To use the new bin file, replace the cmmap000.bin with the new bin file,
cmmap000.sbc. For clarity, a copy of the cmmap000.bin file (cmmap000.dbc) is also
included. Both cmmap000.sbc and cmmap000.dbc are located in the \common directory of
the technology.

4.3.5 Runtime Considerations
The files used by the product must be in the same directory as the developer's executable.

4.4 Changing Resources
Outside In XML Export ships with the necessary files for OEMs to change any of the strings
in the technology as they see fit.

Strings are stored in the lodlgstr.h file found in the resource directory. The file can be edited
using any text editor.

Chapter 4
Changing Resources

4-7

Note:

Do not directly edit the scclo.rc file. Strings are saved with their identifiers in
lodlgstr.h. If a new scclo.rc file is saved, it will contain numeric identifiers for
strings, instead of their #define'd names.

Once the changes have been made, the updated scclo.dll file can be rebuilt using the
following steps:

1. Compile the .res file:

rc /fo ".\scclo.res" /i "<path to header (.h) files folder>" /d "NDEBUG"
scclo.rc

2. Link the scclo.res file you've created with the scclo.obj file found in the resource
directory to create a new scclo.dll:

link /DLL /OUT:scclo.dll scclo.obj scclo.res

Note:

Developers should make sure they have set up their environment
variables to build the library for their specific architecture. For Windows
x86_32, when compiling with VS 2005, the solution is to run
vsvars32.bat (in a standard VS 2005 installation, this is found in
C:\Program Files\Microsoft Visual Studio 8\Common7\Tools\). If this
works correctly, you will see the statement, "Setting environment for
using Microsoft Visual Studio 2005 x86 tools." If you do not complete this
step, you may have conflicts that lead to unresolved symbols due to
conflicts with the Microsoft CRT.

3. Embed the manifest (which is created in the \resource directory during step 2) into
the new DLL:

mt -manifest scclo.dll.manifest -outputresource:scclo.dll;2
If you are not using Microsoft Visual Studio, substitute the appropriate development
tools from your environment.

Note:

In previous versions of Outside In, it was possible to directly edit the
SCCLO.DLL using Microsoft Visual Studio. Outside In DLLs are now digitally
signed. Editing the signed DLL is not advisable.

Chapter 4
Changing Resources

4-8

5
UNIX Implementation Details

This chapter discusses the UNIX implementation of XML Export. The UNIX implementation of
the Export product set is delivered as a set of shared libraries.
For a list of the currently supported platforms, see Outside In Technology and click links
under Certified Platforms and Supported Formats from Get Started page.

This chapter includes the following sections:

• Installation

• Libraries and Structure

• The Basics

• Character Sets

• Runtime Considerations

• Environment Variables

• Changing Resources

• HP-UX Compiling and Linking

• IBM AIX Compiling and Linking

• Linux Compiling and Linking

• Oracle Solaris Compiling and Linking

5.1 Installation
To install the demo version of the SDK, copy the tgz file corresponding to your platform
(available on the Web site) to a local directory of your choice. Decompress the tgz file and
then extract from the resulting tar file as follows:

gunzip tgzfile
tar xvf tarfile

The installation directory should contain the following directory structure:

Directory Description

/redist Contains a working copy of the UNIX version of the technology.

/sdk/common Contains the C include files needed to build or rebuild the technology.

/sdk/demo Contains the compiled executables of the sample applications.

/sdk/resource Contains localization resource files. See Changing Resources for details.

/sdk/samplecode Contains a subdirectory holding the source code for a sample
application. See Sample Applications for more details.

/sdk/samplefiles Contains sample input files authored in a variety of popular graphics,
word processor, compression, spreadsheet and presentation
applications, designed to exercise XML Export.

5-1

http://www.oracle.com/pls/topic/lookup?ctx=oitlatest&id=homepage

Directory Description

/sdk/XXSchemaDocs Contains a Flexiondoc manual, version 5.4

5.1.1 NSF Support
Notes Storage Format (NSF) files are produced by the Lotus Notes Client or the Lotus
Domino server. The NSF filter is the only Outside In filter that requires the native
application to be present to filter the input documents. Due to integration with an
outside application, NSF support will not work with redirected I/O nor will it work when
an NSF file is embedded in another file. Lotus Domino version 8 must be installed on
the same machine as OIT. The NSF filter is currently only supported on the Win32,
Win x86-64, Linux x86-32, and Solaris Sparc 32 platforms.
SCCOPT_LOTUSNOTESDIRECTORY is a Windows-only option and is ignored on
Unix.

Additional steps must be taken to prepare the system. It is necessary to know the
name of the directory in which Lotus Domino has been installed. On Linux, this default
directory is /opt/ibm/lotus/notes/latest/linux. On Solaris, it is /opt/ibm/lotus/notes/latest/
sunspa.

• In the Lotus Domino directory, check for the existence of a file called "notes.ini". If
the file "notes.ini" does not exist, create it in that directory and ensure that it
contains the following single line:

[Notes]

• Add the Lotus Domino directory to the $LD_LIBRARY_PATH environment
variable.

• Set the environment variable $Notes_ExecDirectory to the Lotus Domino directory.

5.2 Libraries and Structure
On UNIX platforms the Outside In products are delivered with a set of shared libraries.
All libraries should be installed to a single directory. Depending upon your application,
you may also need to add that directory to the system's runtime search path. See
Environment Variables for more details.

The following is a brief description of the included libraries and support files. In
instances where a file extension is listed as .*, the file extension varies for each UNIX
platform (sl on HP-UX, so on Linux and Solaris).

5.2.1 API Libraries
These libraries implement the API. They should be linked with the developer's
application.

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

libsc_da.* Data Access module X X X X X X

libsc_ex.* Export module X X X X X X

Chapter 5
Libraries and Structure

5-2

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

libsc_fi.* File Identification
module (identifies files
based on their
contents).

X X X X X X

The File ID Specification may not be used directly by any application or workflow without it
being separately licensed expressly for that purpose.

5.2.2 Support Libraries
The following libraries are used for support.

Library Description HTML
Expo
rt

Imag
e
Expo
rt

PDF
Expo
rt

Searc
h
Export

XML
Expor
t

Web
View
Expo
rt

libccflex.* A data model adapter that converts
from stream model utilized by Outside
In filters to the FlexionDoc Tree model
used as a basis by XML Export.

X

libexpatw.* A third-party XML parser. X

liboc_emul.* Output component emulation module X X X X X X

libos_gd.* The internal rendering GDI
implementation. This library is only
supported on Linux (32- and 64-bit
Intel), Solaris (32-bit SPARC), HP-UX
(32-bit RISC), and AIX (32-bit PPC).

X X X X

libos_pdf.* PDF generation module X

libos_xwin.* The native GDI implementation X X X X

libsc_anno.* The annotation module X X X X

libsc_ca.* Content Access module (provides
organized chunker data for the
developer)

X X X X

libsc_ch.* Chunker (provides caching of and
access to filter data for the export
engines)

X X X X X X

libsc_du.* Display Utilities module (includes text
formatting)

X X X X X X

libsc_fmt.* Formatting module (resolves numbers
to formatted strings)

X X X X X X

libsc_fut.* Filter utility module X X X X X X

libsc_ind.* Indexing engine. In Search Export, it
handles common functionality.

X X X X X

libsc_lo.* Localization library (all strings, menus,
dialogs and dialog procedures reside
here)

X X X X X X

Chapter 5
Libraries and Structure

5-3

Library Description HTML
Expo
rt

Imag
e
Expo
rt

PDF
Expo
rt

Searc
h
Export

XML
Expor
t

Web
View
Expo
rt

libsc_sd.* Schema Definition Module Manager
(brokers multiple Schema Definition
Modules)

X

libsc_ut.* Utility functions, including IO
subsystem

X X X X X X

libsc_xp.* XPrinter bridge X X X X

libsdflex.* Schema Definition module (handles
conversion of XML string names and
attribute values to compact binary
representations and vice versa)

X

libwv_core.* The Abstraction layer X X X X X X

libwv_gdlib.so The GDI rendering module. This
library is only supported on Linux (32-
and 64-bit Intel), Solaris (32-bit
SPARC), HP-UX (32-bit RISC), and
AIX (32-bit PPC).

X X X X

5.2.3 Engine Libraries
The following libraries are used for display purposes.

Library Description HTM
L
Expo
rt

Imag
e
Expo
rt

PDF
Expo
rt

Searc
h
Expor
t

XML
Expor
t

Web
View
Expo
rt

libde_bmp.* Raster rendering engine (TIFF, GIF,
BMP, PNG, PCX…)

X X X

libde_vect.* Vector/Presentation rendering
engine (PowerPoint, Impress,
Freelance)

X X X X X

libde_ss.* Spreadsheet/Database (Excel,
Calc, Lotus 123)

X X X

libde_tree* Archive (ZIP, GZIP, TAR…) X X

libde_wp.* Document (Word, Writer,
WordPerfect)

X X X X

5.2.4 Filter and Export Filter Libraries
The following libraries are used for filtering.

libex_gdsf must be linked with libsc_img.* at compile time. This forces the filter to be
dependent on libsc_img.* at runtime, even though that module may not be used
directly. If you want to reduce your application's physical footprint, you can experiment
with unlinking libsc_img.*.

Chapter 5
Libraries and Structure

5-4

Library Description HTML
Expo
rt

Imag
e
Expo
rt

PDF
Expo
rt

Searc
h
Export

XML
Expor
t

Web
View
Expo
rt

libvs_*.* Filters for specific file types (there are
more than 150 of these filters,
covering more than 600 file formats)

X X X X X X

libex_gdsf.* Export filter for GIF, JPEG, and PNG
graphics files

X X X

libex_h5.* Export filter for HTML5 files X

libsc_img.* Image conversion module X X X X

libex_itext.* Export filter for SearchText X

libex_html.* Export filter for HTML files X

libex_img.* Extended image conversion module X

libex_xml.* Export filter for XML files using the
Flexiondoc schema

X

libex_page.* Export filter for XML files using the
PageML schema

X

libex_pagelay
out.*

Page Layout module X

libex_ixml.* Export filters for XML files using the
SearchML schema

X

libex_ihtml.* Export filter for SearchHTML X

5.2.5 Premier Graphics Filters
The following are graphics filters.

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

libi*.* These files are the
import filters for premier
graphics formats.

X X X X X X

libis_unx2.* Interface to premier
graphics filters

X X X X X X

5.2.6 Additional Files
The following files are also used.

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

adinit.dat Support file for the
vsacad and vsacd2
filters

X X X X X X

Chapter 5
Libraries and Structure

5-5

Library Description HTML
Export

Image
Export

PDF
Export

Search
Export

XML
Export

Web
View
Export

ccbf.so Internal X

cmmap000.bin Tables for character
mapping (all character
sets)

X X X X X X

cmmap000.sbc Tables for character
mapping (single-byte
character sets). This file
is located in the /
common directory.

X X X X X X

cmmap000.dbc Identical to
cmmap000.bin, but
renamed for clarity (.dbc
= double-byte
character). This file is
located in the common
directory.

X X X X X X

exbf.so Internal X

flexiondoc.dtd The DTD version of the
Flexiondoc schema

X

flexiondoc.xsd The schema version of
the Flexiondoc schema

X

libfreetype.so.6 TrueType font rendering
module for the GD
output solution. 32-bit
Linux and Solaris
Sparc only.

X X X X X

oitnsf.id Support file for the vsnsf
filter.

X X X X X X

pageml.dtd The Document Type
Definition for the
PageML schema

X

pageml.xsd The Extensible Schema
Definition for the
PageML schema

X

searchml3.dtd The Document Type
Definitions for the
SearchML schema

X

searchml3.xsd The Extensible Schema
Definitions for the
SearchML schema

X

5.3 The Basics
Sample applications are provided with the SDK. These applications demonstrate most
of the concepts described in this manual. See Sample Applications for a complete
description of the sample applications.

Chapter 5
The Basics

5-6

5.3.1 What You Need in Your Source Code
Any source code that uses this product should #include the file sccex.h and #define UNIX.
For example, a 32-bit UNIX application might have a source file with the following lines:

#define UNIX
#include <sccex.h>

and a 64-bit UNIX application might have a source file with the following lines:

#define UNIX
#define UNIX_64
#include <sccex.h>

5.3.2 Information Storage
This software is based on the Outside In Viewer Technology (or simply "Viewer Technology").
A file of default options is always created, and a list of available filters and a list of available
display engines are also built by the technology, usually the first time the product runs (for
UNIX implementations). You do not need to ship these lists with your application.

Lists are stored in the $HOME/.oit directory. If the $HOME environment variable is not set,
the files are put in the same directory as the Outside In Technology. If a /.oit directory does
not exist in the user's $HOME directory, the .oit directory is created automatically by the
technology. The files are automatically regenerated if corrupted or deleted.

The files are:

• *.f: Filter lists

• *.d: Display engine list

• *.opt: Persistent options

The technology does not actually use the list of default options created by the Viewer
Technology.

The filenames are intended to be unique enough to avoid conflict for any combination of
machine name and install directory. This is intended to prevent problems with version
conflicts when multiple versions of the Viewer Technology and/or other Viewer Technology-
based products are installed on a single system. The filenames are built from an 11-character
string derived from the directory the Outside In technology resides in and the name of the
machine it is being run on. The string is generated by code derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm.

The products still function if these files cannot be created for some reason. In that situation,
however, significant performance degradation should be expected.

5.4 Character Sets
The strings passed in the UNIX API are ISO8859-1 by default.

To optimize performance on systems that do not require DBCS support, a second character
mapping bin file, that does not contain any of the DBCS pages, is now included. The second
bin file gives additional performance benefits for English documents, but cannot handle
DBCS documents. To use the new bin file, replace the cmmap000.bin with the new bin file,
cmmap000.sbc. For clarity, a copy of the cmmap000.bin file (cmmap000.dbc) is also

Chapter 5
Character Sets

5-7

included. Both cmmap000.sbc and cmmap000.dbc are located in the /sdk/common
directory of the technology.

5.5 Runtime Considerations
The following is information to consider during run-time.

5.5.1 X Server Requirement

Note:

The X Server requirement can be eliminated by setting the
SCCOPT_RENDERING_PREFER_OIT option to TRUE.

Access to a running X Windows server and the presence of Motif (or LessTif on Linux)
are required to convert from vector formats on UNIX systems. Examples of vector
graphics files include CAD drawings and presentation files such as Power Point 97
files. Bitmap graphic conversion (handled in XML Export by the libde_bmp.* engine)
does not require access to a running X Windows server. Examples of bitmap file
formats include GIF, JPEG, TIFF, and Windows BMP files.

A runtime check for the presence of X libraries is performed to accommodate system
with and without available X servers. This check looks on the system-specific library
path variable for the X libraries. If the X libraries are not found, this product does not
perform vector graphics conversion.

Be sure to set the $DISPLAY environment variable before running this product when
non-raster/vector graphic conversion is needed. This is especially important to
remember in situations such as CGI programs that start with a limited environment.

For example, when running the technology from a remote session, setting
DISPLAY=:0.0 tells the system to use the X Windows server on the console.

5.5.2 OLE2 Objects
Some documents that the developer is attempting to convert may contain embedded
OLE2 objects. There are platform-dependent limits on what the technology can do with
OLE2 objects. However, Outside In attempts to take advantage of the fact that some
documents accompany an OLE2 embedding with a graphic "snapshot," in the form of
a Windows metafile.

On all platforms, when a metafile snapshot is available, the technology uses it to
convert the object. When a metafile snapshot is not available on UNIX platforms, the
technology is unable to convert the OLE2 object.

5.5.3 Machine-Dependent Graphics Context
The system uses a machine configuration dependent graphics context to render some
images. The number of colors available in the systems graphics context is a
particularly important limiting factor. For example, if the video driver for a system

Chapter 5
Runtime Considerations

5-8

running Outside In is set up to display 256 colors, images produced on that system would be
limited to 256 colors.

• For all vector image formats that HX converts, we require that the X11 display support
either 1 bit, 4 bits, 8 bits, 24 bits, or 32 bits.

• If SCCOPT_RENDERING_PREFER_OIT = TRUE on UNIX then we're using internal
rendering of vector formats, and we don't use the X11 display.

• Raster image formats when converted do not need the X11 display, so are not sensitive
to the bit depth of the display.

Note:

SCCOPT_RENDERING_PREFER_OIT is only supported on Linux x86-32 and
Solaris Sparc-32 platforms.

5.5.4 Signal Handling
These products trap and handle the following signals:

• SIGABRT

• SIGBUS

• SIGFPE

• SIGILL

• SIGINT

• SIGSEGV

• SIGTERM

Developers who wish to override our default handling of these signals should set up their own
signal handlers. This may be safely done after the developer's application has called
DAInitEx().

Note:

The Java Native Interface (JNI) allows Java code to call and be called by native
code (C/C++ in the case of OIT). You may run into problems if Java isn't allowed to
handle signals and forward them to OIT. If OIT catches the signals and forwards
them to Java, the JVMs will sometimes crash. OIT installs signal handlers when
DAInitEx() is called, so if you call OIT after the JVM is created, you will need to use
libjsig. Refer here for more information:

http://www.oracle.com/technetwork/java/javase/index-137495.html

5.5.5 Runtime Search Path and $ORIGIN
Libraries and sample applications are all built with the $ORIGIN variable as part of the
binaries' runtime search path. This means that at runtime, OIT libraries will automatically look

Chapter 5
Runtime Considerations

5-9

http://www.oracle.com/technetwork/java/javase/index-137495.html

in the directory they were loaded from to find their dependent libraries. You don't
necessarily need to include the technology directory in your LD_LIBRARY_PATH or
SHLIB_PATH.

As an example, an application that resides in the same directory as the OIT libraries
and includes $ORIGIN in its runtime search path will have its dependent OIT libraries
found automatically. You will still need to include the technology directory in your
linker's search path at link time using something like -L and possibly -rpath-link.

Another example is an application that loads OIT libraries from a known directory. The
loading of the first OIT library will locate the dependent libraries.

Note:

This feature does not work on AIX and FreeBSD.

5.6 Environment Variables
Several environment variables may be use at run time. Following is a short summary
of those variables and their usage.

Variable Description

$LD_LIBRARY_PATH (FreeBSD, HP-
UX Itanium 64, Linux, Solaris)

$SHLIB_PATH (HP-UX RISC 32)

$LIBPATH (AIX, iSeries)

These variables help your system's dynamic loader
locate objects at runtime. If you have problems with
libraries failing to load, try adding the path to the
Outside In libraries to the appropriate environment
variable. See your system's manual for the dynamic
loader and its configuration for details.

Note that for products that have a 64-bit PA/RISC, 64-
bit Solaris and Linux PPC/PPC64 distributable, they
will also go under $LD_LIBRARY_PATH.

$GDFONTPATH This variable must be set. It includes one or more
paths to fonts for use with Outside In's internal
graphics rendering code.

$HOME Must be set to allow the system to write the option,
filter and display engine lists. See "Information
Storage" for details.

5.7 Changing Resources
All of the strings used in the UNIX versions of Outside In products are contained in the
lodlgstr.h file. This file, located in the resource directory, can be modified for
internationalization and other purposes. Everything necessary to rebuild the resource
library to use the modified source file is included with the SDK.

In addition to lodlgstr.h, the scclo.o object file is provided. This is necessary for the
linking phase of the build. A makefile has also been provided for building the library.
The makefile allows building on all of the UNIX platforms supported by Outside In. It
may be necessary to make minor modifications to the makefile so the system header
files and libraries can be found for compiling and linking.

Chapter 5
Environment Variables

5-10

Standard INCLUDE and LIB make variables are defined for each platform in the makefile.
Edit these variables to point to the header files and libraries on your particular system. Other
make variables are:

• TECHINCLUDE: May need to be edited to point to the location of the Outside In /
common header files supplied with the SDK.

• BUILDDIR: May need to be edited to point to the location of the makefile, lodlgstr.h, and
scclo.o (which should all be in the same directory).

After these variables are set, change to the build directory and type make. The libsc_lo
resource library is built and placed in the appropriate platform-specific directory. To use this
library, copy it into the directory where the Outside In product is stored and the new, modified
resource strings are used by the technology.

Menu constants are included in lomenu.h in the common directory.

5.8 HP-UX Compiling and Linking
The libsc_ex.sl and libsc_da.sl libraries are the only ones that must be linked with your
application. They can be loaded when your application starts by linking them directly at
compile time or they can be loaded dynamically by your application using library load
functions (for example, shl_load).

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if
vector graphics support is required. It is the application developer's responsibility to ensure
that the needed functions from these libraries are present before the product libraries are
used.

The following are example command lines used to compile the sample application exsimple
from the /sdk/samplecode/unix directory. The command lines are separated into sections for
HP-UX and HP-UX on Itanium (which requires GCC). This command line is only an example.
The actual command line required on the developer's system may vary. The example
assumes that the include and library file search paths for the technology libraries and any
required X libraries are set correctly. If they are not set correctly, the search paths for the
include and/or library files must be explicitly specified via the -I include file path and/or -L
library file path options, respectively, so that the compiler and linker can locate all required
files.

5.8.1 HP-UX on RISC

Note:

HP-UX on RISC is not supported release 8.5.6 onward.

cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c +DAportable -Ae -I/usr/
include -I../../common -L../../demo -L/usr/lib -lsc_ex -lsc_da -Wl,+s,+b,'$ORIGIN'

5.8.2 HP-UX on Itanium (64 bit)
cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c +DD64 -I../../common -
L../../demo -lsc_ex -lsc_da -DUNIX_64 -Wl,+s,+b,'$ORIGIN'

Chapter 5
HP-UX Compiling and Linking

5-11

5.9 IBM AIX Compiling and Linking
All libraries should be installed into a single directory and the directory must be
included in the system's shared library path ($LIBPATH). $LIBPATH must be set and
must point to the directory containing the Outside In Technology.

Outside In Technology has been updated to increase performance, at a cost of using
more memory. It is possible that this increased memory usage may cause a problem
on AIX systems, which can be very conservative in the amount of memory they grant
to processes. If your application experiences problems due to memory limitations with
Outside In, you may be able to fix this problem by using the "large page" memory
model.

If you anticipate viewing or converting very large files with Outside In technology, we
recommend linking your applications with the -bmaxdata flag. For example:

cc -o foo foo.c -bmaxdata:0x80000000

If you are currently seeing "illegal instruction" errors followed by immediate program
exit, this is likely due to not using the large data model.

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11
if vector graphics support is required. It is the application developer's responsibility to
ensure that the needed functions from these libraries are present before the product
libraries are used.

The following is an example command line used to compile the sample application
exsimple from the /sdk/samplecode/unix directory. This command line is only an
example. The actual command line required on the developer's system may vary. The
example assumes that the include and library file search paths for the technology
libraries and any required X libraries are set correctly. If they are not set correctly, the
search paths for the include and/or library files must be explicitly specified via the -I
include file path and/or -Llibrary file path options, respectively, so that the compiler and
linker can locate all required files. Developers need to pass -brtl to the linker to list
libraries in the link command as dependencies of their applications.

Developers may need to use the -qcpluscmt flag to allow C++ style comments.

5.9.1 IBM AIX (64-bit pSeries)
gcc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I../../common -
L../../demo -lsc_ex -lsc_da -DFUNCPROTO -Wl, -brtl

5.10 Linux Compiling and Linking
This section discusses issues involving Linux compiling and linking.

5.10.1 Library Compatibility
This section discusses Linux compatibility issues when using libraries.

Chapter 5
IBM AIX Compiling and Linking

5-12

5.10.1.1 Motif Libraries
Problems can be seen when using Export products and trying to convert graphics files. For
example, zero-byte graphics files are generated if the technology cannot find the proper Motif
library. You can check to see if this is the case by running the following command:

ldd libos_xwin.so

This prints a list of the dependencies that this library has. If the line for the Motif library is
similar to the following then your system may not have a compatible Motif library:

libXm.so.3 => not found

The solution is to install a compatible Motif library and use it to build your application. Often,
the installation discs for your particular Linux platform have the proper libraries. If your
installation discs do not have the libraries, instructions for downloading a binary rpm can be
found at http://rpmfind.net/linux/RPM.

If you are doing development, you must use the proper header files, as well.

The following is a list of the Motif library versions used by Oracle when building and testing
the Outside In binaries.

• x86 Linux - OpenMotif v. 2.2.3

• zSeries Linux - OpenMotif v. 2.2.3

• Itanium Linux - OpenMotif v. 2.1.30

If a directory needs to be specified for the compiler to find the shared libraries,
the $LD_LIBRARY_PATH environment variable is recommended. This prevents the compiler
from hard-coding the library's current directory into the executable as the only directory to
search for the library at run time. Instead, the system first searches the directories specified
by $LD_LIBRARY_PATH for the library.

5.10.1.2 GLIBC and Compiler Versions
The following table indicates the compiler version used and the minimum required version of
the GNU standard C library needed for Outside In operation.

Distribution Compiler Version GLIBC Version

x86 Linux 3.3.2 libc.so.6 (2.3.2 or newer)

Itanium Linux 3.3.2 libc.so.6 (2.3.2 or newer)

zSeries Linux 3.3.6 libc.so.6 (2.3.2 or newer)

5.10.1.3 Other Libraries
In addition to libc.so.6, Outside In is dependent upon the following libraries:

• libXm.so.3 (in particular, libXm.so.3.0.2 or newer, due to issues in OpenMotif 2.2.2)

• libXt.so.6

• libstdc++.so.6

• libgcc_so.1

Chapter 5
Linux Compiling and Linking

5-13

http://rpmfind.net/linux/RPM

libgcc_s.so.1 was introduced with GCC 3.0, so any distribution based on a pre-GCC
3.0 compiler does not include libgcc_s.so.1.

5.10.2 Compiling and Linking
The libsc_ex.so and libsc_da.so are the only libraries that must be linked with your
applications. They can be loaded when your application starts by linking them directly
at compile time or they can be loaded dynamically by your application using library
load functions (for example, dlopen).

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11
if vector graphics support is required. It is the application developer's responsibility to
ensure that the needed functions from these libraries are present before the product
libraries are used.

The following are example command lines used to compile the sample application
exsimple from the /sdk/samplecode/unix directory. This command line is only an
example. The actual command line required on the developer's system may vary.

The example assumes that the include and library file search paths for the technology
libraries and any required X libraries are set correctly. If they are not set correctly, the
search paths for the include and/or library files must be explicitly specified via the -I
include file path and/or -L library file path options, respectively, so the compiler and
linker can locate all required files.

The -L/usr/X11R6/lib option is also available.

5.10.2.1 Linux 32-bit, including Linux PPC

Note:

Linux 32-bit, including Linux PPC is not supported release 8.5.6 onward.

gcc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/local/
include -I../../common -L../../demo -L/usr/local/lib -lsc_ex -lsc_da -Wl,-
rpath,../../demo -Wl,-rpath,'${ORIGIN}'

5.10.2.2 Linux 64-bit
gcc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/local/
include -I../../common -L../../demo -L/usr/local/lib -lsc_ex -lsc_da -DUNIX_64 -
Wl,-rpath,../../demo -Wl,-rpath,'${ORIGIN}'

5.10.2.3 Linux zSeries
gcc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/local/
include -I../../common -L../../demo -L/usr/local/lib -lsc_ex -lsc_da -Wl,-
rpath,../../demo -Wl,-rpath,'${ORIGIN}'

5.10.2.4 Linux zSeries 64bits
gcc -DUNIX_64 -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/
local/include -I../../common -L../../demo -L/usr/local/lib -lsc_ex -lsc_da -Wl,-
rpath,../../demo -Wl,-rpath,'${ORIGIN}'

Chapter 5
Linux Compiling and Linking

5-14

5.11 Oracle Solaris Compiling and Linking

Note:

These products do not support the "Solaris BSD" mode.

All libraries should be installed into a single directory. The libsc_ex.so, and libsc_da.so
libraries must be linked with your application. It can be loaded when your application starts by
linking them directly at compile time or they can be loaded dynamically by your application
using library load functions (for example, dlopen).

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if
vector graphics support is required. It is the application developer's responsibility to ensure
that the needed functions from these libraries are present before the product libraries are
used.

The following examples command line used to compile the sample application exsimple from
the /sdk/samplecode/unix directory. This command line is only an example. The actual
command line required on the developer's system may vary. The example assumes that the
include and library file search paths for the technology libraries and any required X libraries
are set correctly. If they are not set correctly, the search paths for the include and/or library
files must be explicitly specified via the -I include file path> and/or -L library file path options,
respectively, so that the compiler and linker can locate all required files.

Developers may need to use the -xcc flag to allow C++ style comments.

5.11.1 Oracle Solaris SPARC
cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/include -
I/usr/dt/share/include -I../../common -L../../demo -L/usr/lib -L/lib -lsc_ex -lsc_da -
Wl,-R,../../demo -Wl,-R,'${ORIGIN}'

Note: When running the 32-bit SPARC binaries on Solaris 9 systems, you may see the
following error:

ld.so.1: simple: fatal: libm.so.1: version `SUNW_1.1.1' not found
(required by file ./libsc_vw.so)

This is due to a missing system patch. Please apply one of the following patches (or its
successor) to your system to correct.

• For Solaris 9 - Patch 111722-04

5.11.2 Oracle Solaris x86

Note:

Your system will require Solaris patch 108436, which contains the C++ library
libCstd.so.1.

Chapter 5
Oracle Solaris Compiling and Linking

5-15

cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/include -
I/usr/dt/share/include -I../../common -L../../demo -L/usr/lib -L/lib -lsc_ex -
lsc_da -Wl,-R,../../demo -Wl,-R,'${ORIGIN}'

Chapter 5
Oracle Solaris Compiling and Linking

5-16

6
Data Access Common Functions

This chapter describes common data access functions for XML Export. The Data Access
module is common to all Outside In technologies. It provides a way to open a generic handle
to a source file. This handle can then be used in the functions described in this chapter.
This chapter includes the following sections:

• Deprecated Functions

• DAInitEx

• DADeInit

• DAOpenDocument

• DAOpenSubdocumentById

• DACloseDocument

• DARetrieveDocHandle

• DASetOption

• DAGetOption

• DAGetFileId

• DAGetFileIdEx

• DAGetObjectInfo

• DAGetErrorString

• DAGetTreeCount

• DAGetTreeRecord

• DAOpenTreeRecord

• DASaveTreeRecord

• DACloseTreeRecord

• DASetStatCallback

• DASetFileAccessCallback

6.1 Deprecated Functions
DAInit and DaThreadInit have both been deprecated. DAInitEx now replaces these two
functions. All new implementations should use DAInitEX, although the other two functions will
continue to be supported.

6.2 DAInitEx
This function tells the Data Access module to perform any necessary initialization it needs to
prepare for document access. This function must be called before the first time the

6-1

application uses the module to retrieve data from any document. This function
supersedes the old DAInit and DAThreadInit functions.

Note:

DAInitEx should only be called once per application, at application startup
time. Any number of documents can be opened for access between calls to
DAInitEx and DADeInit. If DAInitEx succeeds, DADeInit must be called
regardless of any other API calls.

If the ThreadOption parameter is set to something other than
DATHREAD_INIT_NOTHREADS, then this function's preparation includes setting up
mutex function pointers to prevent threads from clashing in critical sections of the
technology's code. The developer must actually code the threads after this function
has been called. DAInitEx should be called only once per process and should be
called before the developer's application begins the thread.

Note:

Multiple threads are supported for all Windows platforms, the 32-bit versions
of Linux x86 and Solaris SPARC, Linux x64 and Solaris SPARC 64. Failed
initialization of the threading function will not impair other API calls. If
threading isn't initialized or fails, stub functions are called instead of mutex
functions.

Prototype

DAERR DAInitEx(VTSHORT ThreadOption, VTDWORD dwFlags);

Parameters

• ThreadOption: can be one of the following values:

– DATHREAD_INIT_NOTHREADS: No thread support requested.

– DATHREAD_INIT_PTHREADS: Support for PTHREADS requested.

– DATHREAD_INIT_NATIVETHREADS: Support for native threading requested.
Supported only on Microsoft Windows platforms and Oracle Solaris.

• dwFlags: can be one or more of the following flags OR-ed together:

– OI_INIT_DEFAULT: Options Load and Save are performed normally.

– OI_INIT_NOSAVEOPTIONS: The options file will not be saved on exit.

– OI_INIT_NOLOADOPTIONS: The options file will not be read during
initialization.

Return Values

• DAERR_OK: If the initialization was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

Chapter 6
DAInitEx

6-2

6.3 DADeInit
This function tells the Data Access module that it will not be asked to read additional
documents, so it should perform any cleanup tasks that may be necessary. This function
should be called at application shutdown time, and only if the module was successfully
initialized with a call to DAInitEx.

Prototype

DAERR DADeInit();

Return Values

• DAERR_OK: If the de-initialization was successful. Otherwise, one of the other DAERR_
values in sccda.h or one of the SCCERR_ values in sccerr.h is returned..

6.4 DAOpenDocument
Opens a source file to make it accessible by one or more of the data access technologies. If
DAOpenDocument succeeds, DACloseDocument must be called regardless of any other API
calls.

For IO types other than IOTYPE_REDIRECT, the subdocument specification may be
specified as part of the file's path. This is accomplished by appending a question mark
delimiter to the path, followed by the subdocument specification. For example, to specify the
third item within the file c:\docs\file.zip, specify the path c:\docs\file.zip?item.3 in the call to
DAOpenDocument. DAOpenDocument always attempts to open the specification as a file
first. In the unlikely event there is a file with the same name (including the question mark) as
a file plus the subdocument specification, that file is opened instead of the archive item.

To take advantage of this feature when providing access to the input file using redirected IO,
a subdocument specification must be provided via a response to an IOGetInfo message,
IOGETINFO_SUBDOC_SPEC. To specify an item in an archive, first follow the standard
redirected IO methods to provide a BASEIO pointer to the archive file itself. To specify an
item within the archive, a redirected IO object must respond to the
IOGETINFO_SUBDOC_SPEC message by copying to the supplied buffer the subdocument
specification of the archive item to be opened. This message is received during the
processing of DAOpenDocument.

Prototype

DAERR DAOpenDocument(
 VTLPHDOC lphDoc,
 VTDWORD dwSpecType,
 VTLPVOID pSpec,
 VTDWORD dwFlags);

Parameters

• lphDoc: Pointer to a handle that will be filled with a value uniquely identifying the
document to data access. The developer uses this handle in subsequent calls to data
access to identify this particular source file. This is not an operating system file handle.

• dwSpecType: Describes the contents of pSpec. Together, dwSpecType and pSpec
describe the location of the source file.

Chapter 6
DADeInit

6-3

Note:

The values used within IOTYPE_ARCHIVEOBJECT,
IOTYPE_LINKEDOBJECT, and IOTYPE_OBJECT may change if
different options are applied, with different versions of the technology, or
after patches are applied.

Must be one of the following values:

– IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32
and Win64) file name conventions.

– IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS (Win32 and Win64)
file name conventions.

– IOTYPE_UNIXPATH: UNIX platforms only. pSpec points to a NULL-terminated
full path name using the system default character set and UNIX path
conventions. Unicode paths can be accessed on UNIX platforms by using a
UTF-8 encoded path with IOTYPE_UNIXPATH.

– IOTYPE_REDIRECT: All platforms. pSpec points to a developer-defined struct
that allows the developer to redirect the IO routines used to read the file. See
Redirected IO for more information.

– IOTYPE_ARCHIVEOBJECT: All platforms. Opens an embedded archive
object for data access. pSpec points to a structure IOSPECARCHIVEOBJECT
(see "IOSPECARCHIVEOBJECT Structure" for details) that has been filled
with values returned in a SCCCA_OBJECT content entry from Content
Access.

– IOTYPE_LINKEDOBJECT: All platforms. Opens an object specified by a
linked object for data access. pSpec points to a structure
IOSPECLINKEDOBJECT (see "IOSPECLINKEDOBJECT Structure") that has
been filled with values returned in an SCCCA_BEGINTAG or
SCCCA_ENDTAG with a subtype of SCCCA_LINKEDOBJECT content entry
from Content Access.

• pSpec: File location specification.

• dwFlags: The low WORD is the file ID for the document (0 by default). If you set
the file ID incorrectly, the technology fails. If set to 0, the file identification
technology determines the input file type automatically. The high WORD should be
set to 0.

Return Values

• DAERR_OK: Returned if the open was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.4.1 IOSPECLINKEDOBJECT Structure
Structure used by DAOpenDocument.

Chapter 6
DAOpenDocument

6-4

Prototype

typedef struct IOSPECLINKEDOBJECTtag
 {
 VTDWORD dwStructSize;
 VTSYSPARAM hDoc;
 VTDWORD dwObjectId; /* Object identifier. */
 VTDWORD dwType; /* Linked Object type */
 /* (SO_LOCATORTYPE_*) */
 VTDWORD dwParam1; /* parameter for DoSpecial call */
 VTDWORD dwParam2; /* parameter for DoSpecial call */
 VTDWORD dwReserved1; /* Reserved. */
 VTDWORD dwReserved2; /* Reserved. */
} IOSPECLINKEDOBJECT, * PIOSPECLINKEDOBJECT;

6.4.2 IOSPECARCHIVEOBJECT Structure
Structure used by DAOpenDocument.

Prototype

typedef struct IOSPECARCHIVEOBJECTtag
 {
 VTDWORD dwStructSize;
 VTSYSPARAM hDoc; /* Parent Doc hDoc */
 VTDWORD dwNodeId; /* Node ID */
 VTDWORD dwStreamId; /*stream ID*/
 VTDWORD dwReserved1; /* Must always be 0 */
 VTDWORD dwReserved2; /* Must always be 0 */
} IOSPECARCHIVEOBJECT, * PIOSPECARCHIVEOBJECT;

6.5 DAOpenSubdocumentById
Allows an embedding to be opened using the integer value of the object_id attribute from the
locator element.

Prototype

DAERR DAOpenSubdocumentById(
 VTHDOC hDoc,
 VTLPHDOC lphDoc,
 VTDWORD dwSubdocumentId,
 VTDWORD dwFlags);

Parameters

• hDoc: The document handle for the document containing the locator.

• lphDoc: Receives the document handle for the embedding.

• dwSubdocumentId: The integer value of the object_id attribute from the locator.

• dwFlags: Must be set to 0.

6.6 DACloseDocument
This function is called to close a file opened by the reader that has not encountered a fatal
error.

Chapter 6
DAOpenSubdocumentById

6-5

Prototype

DAERR DACloseDocument(
 VTHDOC hDoc);

Parameters

• hDoc: Identifier of open document. Must be a handle returned by the
DAOpenDocument function.

Return Value

• DAERR_OK: Returned if close succeeded. Otherwise, one of the other DAERR_
values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.7 DARetrieveDocHandle
This function returns the document handle associated with any type of Data Access
handle. This allows the developer to only keep the value of hItem, instead of both
hItem and hDoc.

Prototype

DAERR DARetrieveDocHandle(
 VTHDOC hItem,
 VTLPHDOC phDoc);

Parameters

• hItem: Identifier of open document. May be the subhandle returned by the
DAOpenDocument or DAOpenTreeRecord functions in the data access
submodule. Passing in an hDoc created by DAOpenDocument for this parameter
results in an error.

• phDoc: Pointer to a handle to be filled with the document handle associated with
the passed subhandle.

Return Value

• DAERR_OK: Returned if the handle in phDoc is valid. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.8 DASetOption
This function is called to set the value of a data access option.

Prototype

DAERR DASetOption(
 VTHDOC hDoc,
 VTDWORD dwOptionId,
 VTLPVOID pValue,
 VTDWORD dwValueSize);

Chapter 6
DARetrieveDocHandle

6-6

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument or
DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Setting an option for a
VTHDOC affects all subhandles opened under it, while setting an option for a subhandle
affects only that handle.

If this parameter is NULL, then setting the option affects all documents opened thereafter.
Once an option is set using the NULL handle, this option becomes the default option
thereafter. This parameter should only be set to NULL if the option being set can take that
value.

• dwOptionId: The identifier of the option to be set.

• pValue: Pointer to a buffer containing the value of the option.

• dwValueSize: The size in bytes of the data pointed to by pValue. For a string value, the
NULL terminator should be included when calculating dwValueSize.

Return Value

• DAERR_OK: Returned if DASetOption succeeded. Otherwise, one of the other DAERR_
values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.9 DAGetOption
This function is called to retrieve the value of a data access option. The results of a call to this
option are only valid if DASetOption has already been called on the option.

Prototype

DAERR DAGetOption(
 VTHDOC hItem,
 VTDWORD dwOptionId,
 VTLPVOID pValue,
 VTLPDWORD pSize);

Parameters

• hItem: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument or
DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Getting an option for a
VTHDOC gets the value of that option for that handle, which may be different than the
subhandle's value.

• dwOptionId: The identifier of the option to be returned.

• pValue: Pointer to a buffer containing the value of the option.

• pSize: This VTDWORD should be initialized by the caller to the size of the buffer pointed
to by pValue. If this size is sufficient, the option value is copied into pValue and pSize is
set to the actual size of the option value. If the size is not sufficient, pSize is set to the
size of the buffer needed for the option and an error is returned.

Return Value

• DAERR_OK: Returned if DAGetOption was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

Chapter 6
DAGetOption

6-7

6.10 DAGetFileId
This function allows the developer to retrieve the format of the file based on the
technology's content-based file identification process. This can be used to make
intelligent decisions about how to process the file and to give the user feedback about
the format of the file they are working with.

Note: in cases where File ID returns a value of FI_UNKNOWN, then this function will
apply the Fallback Format before returning a result.

Prototype

DAERR DAGetFileId(
 VTHDOC hDoc,
 VTLPDWORD pdwFileId);

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, a VTHEXPORT returned by the EXOpenExport
function, or the subhandle returned by the DAOpenDocument or
DAOpenTreeRecord functions (VTHEXPORT, VTHCONTENT, VTHTEXT, etc.).

• pdwFileId: Pointer to a DWORD that receives a file identification number for the
file. These numbers are defined in sccfi.h.

Return Value

• DAERR_OK: Returned if DAGetFileId was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.11 DAGetFileIdEx
This function allows the developer to retrieve the format of the file based on the
technology's content-based file identification process. This can be used to make
intelligent decisions about how to process the file and to give the user feedback about
the format of the file they are working with. This function has all the functionality of
DAGetFileID and adds the ability to return the raw FI value; in other words, the value
returned by normal FI, without applying the FallbackFI setting.

Prototype

DAERR DAGetFileIdEx(
 VTHDOC hDoc,
 VTLPDWORD pdwFileId,
 VTDWORD dwFlags);

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHEXPORT, VTHCONTENT, VTHTEXT, etc.).

• pdwFileId: Pointer to a DWORD that receives a file identification number for the
file. These numbers are defined in sccfi.h.

• dwFlags: DWORD that allows user to request specific behavior.

Chapter 6
DAGetFileId

6-8

– DA_FILEINFO_RAWFI: This flag tells DAGetFileIdEx() to return the result of the File
Identification operation before Extended File Ident. is performed and without applying
the FallbackFI value.

Return Value

• DAERR_OK: Returned if DAGetFileIdEx was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned. See
the following tables for examples of expected output depending on the value of various
options.

Values with RAWFI turned off

Input file type ExtendedFI FallbackID DAGetFileId DAGetFileIdEx

true binary off fallback value fallback value fallback value

true binary on fallback value fallback value fallback value

true text off fallback value fallback value fallback value

true text on fallback value 40XX 40XX

Values with RAWFI turned on

Input file type ExtendedFI FallbackID DAGetFileId DAGetFileIdEx

true binary off fallback value fallback value 1999

true binary on fallback value fallback value 1999

true text off fallback value fallback value 1999

true text on fallback value 40XX 1999

6.12 DAGetObjectInfo
This function returns information about the document or object pointed to by hDoc. The object
may be an embedded object, a linked object, or a compressed file.

DAERR DAGetObjectInfo(
 VTHDOC hDoc,
 VTDWORD dwInfoId,
 VTLPVOID pInfo);

Parameters

• hDoc: The handle returned by DAOpenDocument.

• dwInfoId: The identifier of the requested information. Can be any of the following values:

– DAOBJECT_NAME_A: Retrieves the name of the object, in 8-bit characters. pInfo
points to a buffer of size DA_PATHSIZE.

– DAOBJECT_NAME_W: Retrieves the name of the object in Unicode characters.
pInfo points to a buffer of 16 bit characters of size DA_PATHSIZE.

– DAOBJECT_FORMATID: Retrieves the file ID of the object. pInfo points to a
VTDWORD value.

– DAOBJECT_COMPRESSIONTYPE: Retrieves an identifier of the type of
compression used to store the object, if known. pInfo points to a VTDWORD value.

Chapter 6
DAGetObjectInfo

6-9

– DAOBJECT_FLAGS: Retrieves a bitfield of flags indicating additional
attributes of the object. pInfo points to a VTDWORD value. Possible flag
values include DAOBJECTFLAG_PARTIALFILE (would not normally exist
outside the source document), DAOBJECTFLAG_PROTECTEDFILE
(encrypted or password protected), DAOBJECTFLAG_LINKTOFILE (indicates
that an OLE object is linked to the file and a corresponding file is not found on
the host machine), DAOBJECTFLAG_UNIDENTIFIEDFILE (indicates that an
object could not be identified), and DAOBJECTFLAG_UNSUPPORTEDCOMP
(compressed with an unsupported compression), and
DAOBJECTFLAG_ARCKNOWNENCRYPT (see note below).

• pInfo: Destination of the requested information. The possible types are described
in the preceding section about dwInfoId.

Note:

DAOBJECTFLAG_ARCKNOWNENCRYPT indicates that the object is
protected by a known encryption. It can be accessed after the correct
credentials (password and/or Lotus Notes id file) are provided through the
File Access Callback. For details, see DASetFileAccessCallback.

Return Values

• DAERR_OK: Returned if the save was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.13 DAGetErrorString
This function returns to the developer a string describing the input error code. If the
error string returned does not fit the buffer provided, it is truncated.

VTVOID DAGetErrorString(
 DAERR deError,
 VTLPVOID pBuffer,
 VTDWORD dwBufSize);

Parameters

• Error: Error code passed in by the developer for which an error message is to be
returned.

• pBuffer: This buffer is allocated by the caller and is filled in with the error message
by this routine. The error message will be a NULL-terminated string.

• dwBufSize: Size of what pBuffer points to in bytes.

Return Value

• none

6.14 DAGetTreeCount
This function is called to retrieve the number of records in an archive file.

Chapter 6
DAGetErrorString

6-10

DAERR DAGetTreeCount(
 VTHDOC hDoc,
 VTLPDWORD lpRecordCount);

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by any of the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.).

• lpRecordCount: A pointer to a VTLPDWORD that is filled with the number of stored
archive records.

Return Value

• DAERR_OK: DAGetTreeCount was successful. Otherwise, one of the other DAERR_
values in sccda.h or one of the SCCERR_ values in sccerr.his returned.

• DAERR_BADPARAM: The selected file does not contain an archive section, or the
requested record does not exist.

6.15 DAGetTreeRecord
This function is called to retrieve information about a record in an archive file.

DAERR DAGetTreeRecord(
 VTHDOC hDoc,
 PSCCDATREENODE pTreeNode);

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle by any of the DAOpenDocument or
DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.).

• pTreeNode: A pointer to a PSCCDATREENODE structure that is filled with information
about the selected record.

Return Values

• DAERR_OK: DAGetTreeRecord was successful. Otherwise, one of the other DAERR_
values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_BADPARAM: The selected file does not contain an archive section, or the
requested record does not exist.

• DAERR_EMPTYFILE: Empty file.

• DAERR_PROTECTEDFILE: Password protected or encrypted file.

• DAERR_SUPFILEOPENFAILS: Supplementary file open failed.

• DAERR_FILTERNOTAVAIL: The file's type is known, but the appropriate filter is not
available.

• DAERR_FILTERLOADFAILED: An error occurred during the initialization of the
appropriate filter.

Chapter 6
DAGetTreeRecord

6-11

6.15.1 SCCDATREENODE Structure
This structure is passed by the OEM through the DAGetTreeRecord function. The
structure is defined in sccda as follows:

typedef struct SCCDATREENODEtag {
 VTDWORD dwSize;
 VTDWORD dwNode;
 VTBYTE szName[DA_PATHSIZE];
 VTDWORD dwFileNameLen;
 VTDWORD dwFileSize;
 VTDWORD dwTime;
 VTDWORD dwFlags;
 VTDWORD dwCharSet;
#define SCCDA_TREENODEFLAG_FOLDER (0x00000001)
#define SCCDA_TREENODEFLAG_SELECTED (0x00000002)
#define SCCDA_TREENODEFLAG_FOCUS (0x00000004)
#define SCCDA_TREENODEFLAG_ENCRYPT (0x00000010)
#define SCCDA_TREENODEFLAG_ARCKNOWNENCRYPT (0x00000020)
#define SCCDA_TREENODEFLAG_BUFFEROVERFLOW (0x00000100)
} SCCDATREENODE, *PSCCDATREENODE;

Parameters

• dwSize: Must be set by the OEM to sizeof(SCCDATREENODE).

• dwNode: The number of the record to retrieve information about. The first node is
node 0.

• szName: A buffer to hold the name of the record.

• dwFileSize: Returns the file size, in bytes, of the requested record.

• dwTime: Returns the timestamp of the requested record, in MS‐DOS time.

• dwFlags: Returns additional information about the node. It can be a combination of
the following:

– SCCDA_TREENODEFLAG_FOLDER: Indicating that the selected node is a
folder and not a file.

– SCCDA_TREENODEFLAG_SELECTED: Indicating that the node is selected.

– SCCDA_TREENODEFLAG_FOCUS: Indicating that the node has focus.

– SCCDA_TREENODEFLAG_ENCRYPT: Indicating that the node is encrypted
and can not be decrypted.

– SCCDA_TREENODEFLAG_ARCKNOWNENCRYPT: indicating that the node
is encrypted with an unknown encryption and can not be decrypted.

– SCCDA_TREENODEFLAG_BUFFEROVERFLOW: the name of the node was
too long for the szName field.

Chapter 6
DAGetTreeRecord

6-12

Note:

DAOBJECTFLAG_ARCKNOWNENCRYPT indicates that the object is
protected by a known encryption. It can be accessed after the correct
credentials (password and/or Lotus Notes id file) are provided through the File
Access Callback. See DASetFileAccessCallback.

• dwCharSet: Returns the SO_* (charsets.h) character set of the characters in szName.
The output character set is either the default native environment character set or Unicode
if the SCCOPT_SYSTEMFLAGS option is set to SCCVW_SYSTEM_UNICODE.

6.16 DAOpenTreeRecord
This function is called to open a record within an archive file and make it accessible by one or
more of the data access technologies.

Search Export Only: Search Export's default behavior is to automatically open and process
the contents of an archive. Use DAOpenTreeRecord and
SCCOPT_XML_SEARCHML_FLAGS to change the default behavior if discrete processing of
each document in an archive is desired.

DAERR DAOpenTreeRecord(
 VTHDOC hDoc,
 VTLPHDOC lphDoc,
 VTDWORD dwRecord);

lphDoc is not a file handle.

Parameters

• hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument or
DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.).

• lphDoc: Pointer to a handle that is filled with a value uniquely identifying the document to
data access. The developer uses this handle in subsequent calls to data access to
identify this particular document.

• dwRecord: The record in the archive file to be opened.

Return Value

• DAERR_OK: Returned if DAOpenTreeRecord was successful. Otherwise, one of the
other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.17 DASaveTreeRecord
This function is called to extract a record in an archive file to disk.

DAERR DASaveTreeRecord(
 VTHDOC hDoc,
 VTDWORD dwRecord,
 VTDWORD dwSpecType,
 VTLPVOID pSpec,
 VTDWORD dwFlags);

Chapter 6
DAOpenTreeRecord

6-13

Parameters

• hDoc: Handle that uniquely identifies the document to data access. This is not an
operating system file handle.

• dwRecord: The record in the archive file to be extracted.

• dwSpecType: Describes the contents of pSpec. Together, dwSpecType and pSpec
describe the location of the source file to which the file will be extracted. Must be
one of the following values:

– IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32
and Win64) filename conventions.

– IOTYPE_REDIRECT: Specifies that redirected I/O will be used to save the file.

– IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS (Win32 and Win64)
file name conventions.

– IOTYPE_UNIXPATH: UNIX platforms only. pSpec points to a NULL-terminated
full path name using the system default character set and UNIX path
conventions. Unicode paths can be accessed on UNIX platforms by using a
UTF-8 encoded path with IOTYPE_UNIXPATH.

• pSpec: File location specification. See the descriptions for individual dwSpecType
values.

• dwFlags: Currently not used. Should be set to 0.

Return Values

• DAERR_OK: Returned if the save was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

• DAERR_UNSUPPORTEDCOMP: Unsupported Compression Encountered.

• DAERR_PROTECTEDFILE: The file is encrypted.

• DAERR_BADPARAM: The request option is invalid. The record is possibly a
directory.

Currently, only extracting a single file is supported. There is a known limitation where
files in a Microsoft Binder file cannot be extracted.

6.18 DACloseTreeRecord
This function is called to close an open record file handle.

Search Export Only: Search Export's default behavior is to automatically open and
process the contents of an archive. Use DACloseTreeRecord and
SCCOPT_XML_SEARCHML_FLAGS to change the default behavior if discrete
processing of each document in an archive is desired.

DAERR DACloseTreeRecord(
 VTHDOC hDoc);

Parameters

• hDoc: Identifier of open record document.

Chapter 6
DACloseTreeRecord

6-14

Return Value

• DAERR_OK: Returned if DACloseTreeRecord was successful. Otherwise, one of the
other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

6.19 DASetStatCallback
This function sets up a callback that the technology periodically calls to verify the file is still
being processed. The customer can use this with a monitoring process to help identify files
that may be hung. Because this function is called more frequently than other callbacks, it is
implemented as a separate function.

Use of the Status Callback Function

An application's status callback function will be called periodically by Outside In to provide a
status message. Currently, the only status message defined is OIT_STATUS_WORKING,
which provides a "sign of life" that can be used during unusually long processing operations
to verify that Outside In has not stopped working. If the application decides that it would not
like to continue processing the current document, it may use the return value from this
function to tell Outside In to abort.

The status callback function has two return values defined:

• OIT_STATUS_CONTINUE: Tells Outside In to continue processing the current document.

• OIT_STATUS_ABORT: Tells Outside In to stop processing the current document.

The following is an example of a minimal status callback function.

VTDWORD MyStatusCallback(VTHANDLE hUnique, VTDWORD dwID, VTSYSVAL
pCallbackData, VTSYSVAL pAppData)
{
 if(dwID == OIT_STATUS_WORKING)
 {
 if(checkNeedToAbort(pAppData))
 return (OIT_STATUS_ABORT);
 }

 return (OIT_STATUS_CONTINUE);
}

Prototype

DAERR DASetStatCallback(DASTATCALLBACKFN pCallback,
 VTHANDLE hUnique,
 VTLPVOID pAppData)

Parameters

• pCallback: Pointer to the callback function.

• hUnique: Handle that may either be an hDoc or an hExport.

• pAppData: User-defined data. Outside In never uses this value other than to provide it to
the callback function.

The callback function should be of type DASTATCALLBACKFN. This function has the
following signature:

(VTHANDLE hUnique, VTDWORD dwID, VTSYSVAL pCallbackData, VTSYSVAL pAppData)

Chapter 6
DASetStatCallback

6-15

• hUnique: Handle that may either be an hDoc or an hExport

• dwID: Handle that indicates the callback status.

– OIT_STATUS_WORKING

– OIT_STATUS_CONTINUE

– OIT_STATUS_CANCEL

– OIT_STATUS_ABORT

• pCallbackData: Currently always NULL

• pAppData: User-defined data provided to DASetStatCallback

Return Values

• DAERR_OK: If successful. Otherwise, one of the other DAERR_ values in sccda.h
or one of the SCCERR_ values in sccerr.h is returned.

6.20 DASetFileAccessCallback
This function sets up a callback that the technology will call into to request information
required to open an input file. This information may be the password of the file or a
support file location.

Use of the File Access Callback

When the technology encounters a file that requires additional information to access
its contents, the application's callback function will be called for this information.
Currently, only two different forms of information will be requested: the password of a
document, or the file used by Lotus Notes to authenticate the user information.

The status callback function has two return values defined:

• SCCERR_OK: Tells Outside In that the requested information is provided.

• SCCERR_CANCEL: Tells Outside In that the requested information is not
available.

This function will be repeatedly called if the information provided is not valid (such as
the wrong password). It is the responsibility of the application to provide the correct
information or return SCCERR_CANCEL.

Prototype

DAERR DASetFileAccessCallback (DAFILEACCESSCALLBACKFN pCallback);
 VTHANDLE hUnique,
 VTLPVOID pAppData)

Parameters

• pCallback: Pointer to the callback function.

Return Values

• DAERR_OK: If successful. Otherwise, one of the other DAERR_ values defined in
sccda.h or one of the SCCERR_ values in sccerr.h is returned.

The callback function should be of type DAFILEACCESSCALLBACKFN. This function
has the following signature:

Chapter 6
DASetFileAccessCallback

6-16

typedef VTDWORD (* DAFILEACCESSCALLBACKFN)(VTDWORD dwID, VTSYSVAL pRequestData,
VTSYSVAL pReturnData, VTDWORD dwReturnDataSize);

• dwID – ID of information requested:

– OIT_FILEACCESS_PASSWORD – Requesting the password of the file

– OIT_FILEACCESS_NOTESID – Requesting the Notes ID file location

• pRequestData – Information about the file.

typedef struct IOREQUESTDATAtag {
 VTDWORD dwSize; /* size of this structure */
 VTWORD wFIId; /* FI id of reference file */
 VTDWORD dwSpecType; /* file spec type */
 VTVOID *pSpec; /* pointer to a file spec */
 VTDWORD dwRootSpecType; /* root file spec type */
 VTVOID *pRootSpec; /* pointer to the root file spec */
 VTDWORD dwAttemptNumber; /* The number of times the callback has */
 /* already been called for the currently */
 /* requested item of information */
} IOREQUESTDATA, * PIOREQUESTDATA;

• pReturnData – Pointer to the buffer to hold the requested information – for
OIT_FILEACCESS_PASSWORD and OIT_FILEACCESS_NOTESID, the buffer is an
array of WORD characters.

• dwReturnDataSize – Size of the return buffer.

Note:

Not all formats that use passwords are
supported. DASetFileAccessCallback applies to filters that support password
protected files. Check filter for any or all calls to UTGetFileAccess in filters and core
modules.

Only Microsoft Office binary (97-2003), Microsoft Office 2010-2013, Microsoft
Outlook PST 97-2016, Lotus NSF, PDF (with RC4 encryption), and 7zip (with AES
128 & 256 bit, ZipCrypto) are currently supported.

Passwords for PST/OST files must be in the Windows single-byte character set. For
example, Cyrillic characters should use the 1252 character set. For PST/OST files,
Unicode password characters are not supported.

Chapter 6
DASetFileAccessCallback

6-17

7
Export Functions

This chapter outlines the basic functions used to initiate the conversion of documents using
the XML Export SDK.
This chapter describes the following functions:

• EXOpenExport

• EXCALLBACKPROC

• EXCloseExport

• EXRunExport

• EXExportStatus

7.1 EXOpenExport
This function is used to initiate the export process for a file that has been opened by
DAOpenDocument. If EXOpenExport succeeds, EXCloseExport must be called regardless of
any other API calls.

Note:

SCCOPT_GRAPHIC_TYPE = FI_NONE must be set (via DASetOption) before the
call to EXOpenExport. Otherwise, the SCCUT_FILTEROPTIMIZEDFORTEXT
speed enhancement for the PDF filter is not set. This will result in slower exports of
PDFs when graphic output is not required.

Prototype

SCCERR EXOpenExport(
 VTHDOC hDoc,
 VTDWORD dwOutputId,
 VTDWORD dwSpecType,
 VTLPVOID pSpec,
 VTDWORD dwFlags,
 VTSYSPARAM dwReserved,
 VTLPVOID pCallbackFunc,
 VTSYSPARAM dwCallbackData,
 VTLPHEXPORT phExport);

phExport is not a file handle.

Parameters

• hDoc: A handle that identifies the source file, created by DAOpenDocument. XML Export
does this internally (when exporting graphics). Knowledge of this should only affect
OEMs under the most unusual of circumstances.

7-1

• dwOutputId: File ID of the desired format of the output file. This value should be
set to FI_XML_FLEXIONDOC_LATEST.

• dwSpecType: Describes the contents of pSpec. Together, dwSpecType and pSpec
describe the location of the initial output file. Must be one of the following values:

– IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32
and Win64) file name conventions.

– IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS file name
conventions.

Note:

If you are using IOTYPE_UNICODEPATH as a file spec type, if the
calling application is providing an export callback function, you
should set the option SCCOPT_EX_UNICODECALLBACKSTR to
TRUE. Refer to the documentation on callbacks such as
EX_CALLBACK_ID_CREATENEWFILE and the
EXURLFILEIOCALLBACKDATAW structure for details

– IOTYPE_UNIXPATH: UNIX platforms only. pSpec points to a NULL-terminated
full path name using the system default character set and UNIX path
conventions. Unicode paths can be accessed on UNIX platforms by using a
UTF-8 encoded path with IOTYPE_UNIXPATH.

– IOTYPE_REDIRECT: All platforms. A pointer to a BASEIO structure filled in by
your application. This must not be set to NULL or conversion fails.

• pSpec: Initial output file location specification. The form of this data depends on
the value of the dwSpecType parameter (see above). This is either a pointer to a
buffer or NULL.

• dwFlags: Must be set by developer to 0.

• dwReserved: Reserved. Must be set by developer to 0.

• pCallbackFunc: Pointer to a function of the type EXCALLBACKPROC. This
function is used to give the developer control of certain aspects of the export
process as they occur. See the definition for EXCALLBACKPROC in
"EXCALLBACKPROC" for more details. This parameter may be set to NULL if the
developer does not wish to handle callbacks.

• dwCallbackData: This parameter ispassed transparently to the function specified
by pCallbackFunc. The developer may use this value for any purpose, including
passing context information into the callback function.

• phExport: Pointer to a handle that receives a value uniquely identifying the
document to the product routines. If the function fails, this value is set to
VTHDOC_INVALID.

Return Values

• SCCERR_OK: If the open was successful. Otherwise, one of the other SCCERR_
values in sccerr.h is returned.

Chapter 7
EXOpenExport

7-2

7.2 EXCALLBACKPROC
Type definition for the developer's callback function.

Prototype

DAERR (DA_ENTRYMODPTR EXCALLBACKPROC)(
 VTHEXPORT hExport,
 VTSYSPARAM dwCallbackData,
 VTDWORD dwCommandOrInfoId,
 VTLPVOID pCommandOrInfoData);

Parameters

• hExport: Export handle for the document. Must be a handle returned by the
EXOpenExport function.

• dwCallbackData: This value is passed to EXOpenExport in the dwCallbackData
parameter.

• dwCommandOrInfoId: Indicates the type of callback. See Callbacks for information about
supported callbacks.

• pCommandOrInfoData: Data associated with dwCommandOrInfoId. See Callbacks for
information about supported callbacks.

Return Values

• SCCERR_OK: Command was handled by the callback function.

• SCCERR_BADPARAM: One of the function parameters was invalid.

• SCCERR_NOTHANDLED: Callback function did not handle the command. This return
value must be the default for all values of dwCommandOrInfoId the developer does not
handle.

7.3 EXCloseExport
This function is called to terminate the export process for a file.

Prototype

SCCERR EXCloseExport(
 VTHEXPORT hExport);

Parameters

• hExport: Export handle for the document. Must be a handle returned by the
EXOpenExport function.

Return Values

• SCCERR_OK: Returned if the close was successful. Otherwise, one of the other
SCCERR_ values in sccerr.h is returned.

Chapter 7
EXCALLBACKPROC

7-3

7.4 EXRunExport
This function is called to run the export process.

Prototype

SCCERR EXRunExport(
 VTHEXPORT hExport);

Parameters

• hExport: Export handle for the document. Must be a handle returned by the
EXOpenExport function.

Return Values

• SCCERR_OK: Returned if the export was successful. Otherwise, one of the other
SCCERR_ values in sccerr.h is returned.

7.5 EXExportStatus
This function is used to determine if there were conversion problems during an export.
It returns a structure that describes areas of a conversion that may not have high
fidelity with the original document.

Prototype

SCCERR EXExportStatus(VTHEXPORT hExport, VTDWORD dwStatusType, VTLPVOID pStatus)

Parameters

• hExport: Export handle for the document.

• dwStatusType: Specifies which status information should be filled in pStatus.

– EXSTATUS_SUBDOC – fills in the EXSUBDOCSTATUS structure (only
implemented in Search Export and XML Export)

– EXSTATUS_INFORMATION - fills in the EXSTATUSINFORMATION structure.

• pStatus: Either a pointer to a EXSUBDOCSTATUS or EXSTATUSINFORMATION
data structure depending on the value of dwStatusType.

Return Values

SCCERR_OK: Returned if there were no problems. Otherwise, one of the other
SCCERR_ values in sccerr.h is returned.

EXSUBDOCSTATUS Structure

The EXSUBDOCSTATUS structure is defined as follows:

typedef struct EXSUBDOCSTATUStag
{
VTDWORD dwSize; /* size of this structure */
VTDWORD dwSucceeded; /* number of sub documents that were converted */
VTDWORD dwFailed; /* number of sub documents that were not converted */
} EXSUBDOCSTATUS;

Chapter 7
EXRunExport

7-4

EXSTATUSINFORMATION Structure

The EXSTATUSINFORMATION structure is defined as follows:

typedef struct EXSTATUSINFORMATIONtag
{
 VTDWORD dwVersion; /* version of this structure */
 VTBOOL bMissingMap; /* a PDF text run was missing the toUnicode table
*/
 VTBOOL bVerticalText; /* a vertical text run was present */
 VTBOOL bTextEffects; /* a run that had unsupported text effects
applied. One example is Word Art */
 VTBOOL bUnsupportedCompression; /* a graphic had an unsupported compression */
 VTBOOL bUnsupportedColorSpace; /* a graphic had an unsupported color space */
 VTBOOL bForms; /* a sub documents had forms */
 VTBOOL bRightToLeftTables; /* a table had right to left columns */
 VTBOOL bEquations; /* a file had equations */
 VTBOOL bAliasedFont; /* The desired font was missing, but a font alias
was used*/
 VTBOOL bMissingFont; /* The desired font wasn't present on the system
*/
 VTBOOL bSubDocFailed; /* a sub document was not converted */
 VTBOOL bTypeThreeFont; /* a PDF Type 3 embedded font was encountered */
 VTBOOL bUnsupportedShading; /* a PDF input file had an unsupported shading type
*/
 VTBOOL bInvalidHTML; /* invalid HTML was encountered */
 VTBOOL bVectorObjectLimit; /* The vector object limit was reached */
 VTBOOL bInvalidAnnotationNotApplied; /* Annotation/Redaction wasn't displayed
*/
 VTBOOL bInlineImageFound; /* An inline image was found and may not have been
rendered */
 VTBOOL bIncorrectPageSize; /* a PDF file was larger than 200 in x 200 in, as
specified in the PDF reference guide */
 VTBOOL bIncorrectPageSize_lower;/* a PDF file was smaller than 3 units x 3 units,
as specified in the PDF reference guide */
 VTBOOL bPDFOneToMany; /* A PDF input file contained an embedded font with
a ToUnicode table which maps one Unicode value to multiple glyphs */
 VTBOOL bIsBidi; /* a PDF file contains Bi-Directional Text*/
 VTBOOL bUnsupportedFont; /* an unsupported font was encountered */
 VTDWORD currPathSize, maxPathLimit; // Current size of the paths seen, Max number
of Paths allowed
 VTDWORD currVectSize, maxVectLimit; // Current size of the Vectors seen, Max number
of Vectors allowed
 VTDWORD currObjtSize, maxObjtLimit; // Current size of the Objects seen, Max number
of Objects allowed
 VTBOOL bFontWidthUsed; /* a PDF file is using Width parameter to change
widths of glyphs */
} EXSTATUSINFORMATION;

#define EXSTATUSVERSION2 0X0002

Chapter 7
EXExportStatus

7-5

Note:

When processing the main document, Search Export, HTML Export, and
XML Export never use fonts, so bAliasedFont and bMissingFont will never
report TRUE; however, when doing graphics conversions XML Export and
HTML Export may use fonts, so bAliasedFont and bMissingFont may report
TRUE.

bVectorObjectLimit applies only to WebView Export, and
bInvalidAnnotationNotApplied applies only to Image Export, PDF Export, and
Web View Export.

Chapter 7
EXExportStatus

7-6

8
Redirected IO

This chapter covers the use of Redirected IO for XML Export. Anywhere a file specification
(dwSpecType and pSpec parameters) is passed to a function in the product, the developer
may use Redirected IO to completely take over responsibility for the low level IO calls of that
particular file. The source file and all output files can be redirected in this way.
Redirected IO allows the developer great flexibility in the storage of, and access to, converted
documents. For example, documents may be stored on file systems not supported natively by
the software, or in a unique directory tree structure determined by the type of file.

This chapter includes the following sections:

• Using Redirected IO

• Opening Files

• IOClose

• IORead

• IOWrite

• IOSeek

• IOTell

• IOGetInfo

• IOSEEK64PROC / IOTELL64PROC

8.1 Using Redirected IO
A developer can redirect the IO for an input or output file by providing a data structure that
contains pointers to custom IO routines for reading and writing. This data structure is passed
in place of a typical file specification. The developer must set the dwSpecType parameter of
the DAOpenDocument call to IOTYPE_REDIRECT when the DAOpenDocument call is sent.

When dwSpecType is set this way, the pSpec element must contain a pointer to a developer-
defined data structure that begins with a BASEIO structure (defined in baseIO.H). The
BASEIO structure contains pointers to the basic IO functions for the IO system such as Read,
Seek, Tell, etc. The developer must initialize these function pointers to their own functions
that perform IO tasks. Beyond the BASEIO element, the developer may place any data he or
she likes. For instance, a developer's structure may be similar to the following:

typedef struct MYFILEtag
{
 BASEIO sBaseIO; /* must be the first element */
 VTDWORD dwMyInfo1;
 VTDWORD dwMyInfo2;
 .
 .
 .
} MYFILE;

8-1

Because the pSpec passed is essentially the "file handle" used by the software, the
developer can redirect the IO on a file-by-file basis while still exporting "regular" disk-
based files.

The BASEIO structure is defined as follows:

typedef struct BASEIOtag
{
 IOCLOSEPROC pClose;
 IOREADPROC pRead;
 IOWRITEPROC pWrite;
 IOSEEKPROC pSeek;
 IOTELLPROC pTell;
 IOGETINFOPROC pGetInfo;
 IOOPENPROC pOpen; /* pOpen *MUST* be set to NULL. */
#ifndef NLM
 IOSEEK64PROC pSeek64;
 IOTELL64PROC pTell64;
#endif
 VTVOID *aDummy[3];
} BASEIO, * PBASEIO;

The developer must implement the Close, Read, Write, Seek, Tell and GetInfo
routines. The Open routine must be set to NULL. The first parameter to each of these
routines is called hFile and is of the type HIOFILE. HIOFILE is simply the VTLPVOID
to your data structure that was passed in the pSpec parameter of the
DAOpenDocument call.

The sample source code for a simple implementation of Redirected IO is in the
samples directory. This sample redirects the technology's IO through the fopen, fgetc,
fseek, ftell and fclose run-time library routines.

Note:

Redirected IO does not cache the whole file. Seeks can occur throughout the
file during the course of conversion. If the developer is implementing
redirected IO on a slow or sequential link, it is the developer's responsibility
to cache the file locally.

8.2 Opening Files
The developer does not see a call to pOpen when using redirected IO. When
IOTYPE_REDIRECT is used, the structure passed in pSpec is defined to represent a
file that is already open. The software can immediately call the pRead, pSeek, pTell
and pWrite functions.

Files specified as using redirected IO must be open by the time they are handed off to
the software.

8.3 IOClose
Closes the file identified by hFile and cleans up all memory associated with the file.

Chapter 8
Opening Files

8-2

If you dynamically allocate your own file structures (MYFILE in the preceding discussion) it is
required that the memory allocated be freed inside the call to IOClose or sometime thereafter.

Prototype

IOERR IOClose(
 HIOFILE hFile);

Parameters

• hFile: Identifies the file to be closed. Should be cast into a pointer to your data structure
(MYFILE in the preceding discussion).

Return Values

• IOERR_OK: Close was successful.

• IOERR_UNKNOWN: Some error occurred on close.

8.4 IORead
Reads data from the current file position forward and resets the position to the byte after the
last byte read.

Prototype

IOERR IORead(
 HIOFILE hFile,
 VTBYTE * pData,
 VTDWORD dwSize,
 VTDWORD * pCount);

Parameters

• hFile: Identifies the file to be read. Should be cast into a pointer to your data structure
(MYFILE in the preceding discussion).

• pData: Points to the buffer into which the bytes should be read. Will be at least dwSize
bytes big.

• dwSize: Number of bytes to read.

• pCount: Points to the number of bytes actually read by the function. This value is only
valid if the return value is IOERR_OK.

Return Values

• IOERR_OK: Read was successful. pCount contains the number of bytes read and pData
contains the bytes themselves.

• IOERR_EOF: Read failed because the file pointer was beyond the end of the file at the
time of the read.

• IOERR_UNKNOWN: Read failed for some other reason.

8.5 IOWrite
Writes data from the current file position forward and resets the position to the byte after the
last byte written.

Chapter 8
IORead

8-3

Prototype

IOERR IOWrite(
 HIOFILE hFile,
 VTBYTE * pData,
 VTDWORD dwSize,
 VTDWORD * pCount);

Parameters

• hFile: Identifies the file where the data is to be written. Should be cast into a
pointer to your data structure (MYFILE in the preceding discussion).

• pData: Points to the buffer from which the bytes should be written. It must be at
least dwSize bytes big. It is good practice to treat the data passed in by pData as
"read only." This helps prevent unexpected behavior elsewhere in the system.

• dwSize: Number of bytes to write.

• pCount: Points to the number of bytes actually written by the function. This value is
only valid if the return value is IOERR_OK.

Return Values

• IOERR_OK: Write was successful, pCount contains the number of bytes written.

• IOERR_UNKNOWN: Write failed for some reason.

8.6 IOSeek
Moves the current file position.

Prototype

IOERR IOSeek(
 HIOFILE hFile,
 VTWORD wFrom,
 VTLONG lOffset);

Parameters

• hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

• wFrom: One of the following values:

– IOSEEK_TOP: Move the file position lOffset bytes from the top (beginning) of
the file.

– IOSEEK_BOTTOM: Move the file position lOffset bytes from the bottom (end)
of the file.

– IOSEEK_CURRENT: Move the file position lOffset bytes from the current file
position.

• lOffset: Number of bytes to move the file pointer. A positive value moves the file
pointer forward in the file and a negative value moves it backward. If a requested
seek value would move the file pointer before the beginning of the file, the file
pointer should remain unchanged and IOERR_UNKNOWN should be returned.
Seeking past EOF is allowed. In that case IOERR_OK should be returned. IOTell

Chapter 8
IOSeek

8-4

would return the requested seek position and IORead should return IOERR_EOF and 0
bytes read.

Return Values

• IOERR_OK: Seek was successful.

• IOERR_UNKNOWN: Seek failed for some reason.

8.7 IOTell
Returns the current file position.

Prototype

IOERR IOTell(
 HIOFILE hFile,
 VTDWORD * pOffset);

Parameters

• hFile: Identifies the file to be read. Should be cast into a pointer to your data structure
(MYFILE in the preceding discussion).

• pOffset: Points to the current file position returned by the function.

Return Values

• IOERR_OK: Tell was successful.

• IOERR_UNKNOWN: Tell failed for some reason.

8.8 IOGetInfo
Returns information about an open file.

Prototype

IOERR IOGetInfo(
 HIOFILE hFile,
 VTDWORD dwInfoId,
 VTVOID * pInfo);

Parameters

• hFile: Identifies the file to be read. Should be cast into a pointer to your data structure
(MYFILE in the previous discussion).

• dwInfoId: One of the following values:

– IOGETINFO_FILENAME: pInfo points to a string that should be filled with the base
file name (no path) of the open file (for example TEST.DOC). If you do not know the
file name, return IOERR_UNKNOWN. Certain file types (such as DataEase) must
know the original file name in order to open secondary files required to correctly view
the original file. If you return IOERR_UNKNOWN, these file types do not convert. See
"IOGENSECONDARY and IOGENSECONDARYW Structures".

Chapter 8
IOTell

8-5

– IOGETINFO_PATHNAME: pInfo points to a string that should be filled with the
fully qualified path name (including the file name) of the open file. For
example, C:\MYDIR\TEST.DOC. If you do not know the path name, return
IOERR_UNKNOWN.

– IOGETINFO_PATHTYPE: pInfo points to a DWORD that should be filled with
the IOTYPE of the path returned by IOGETINFO_PATHNAME. For instance, if
you return a DOS path name in the Unicode character set, you should return
IOTYPE_UNICODEPATH. Even if redirected IO is in use, this should not be
set to IOTYPE_REDIRECT. The value should reflect the style of path to be
returned or any other values detailed in "EXOpenExport".

– IOGETINFO_ISOLE2STORAGE: Must return IOERR_FALSE. pInfo is not
used.

– IOGETINFO_GENSECONDARY: pInfo points to a structure of type
IOGENSECONDARY. Some file types require supporting files to be opened.
These supporting files may contain formatting information or extra data. When
using HTML Export, templates may link to other templates, and the paths to
those templates must be resolved. Correct handling of
IOGETINFO_GENSECONDARY is critical to the operation of the Outside In
technology. See "File Types That Cause IOGETINFO_GENSECONDARY" for
a list of these file types.

Because the developer is in total control of the IO for the primary file, the
technology does not know how to generate a path to these secondary files or
even if the secondary files are accessible through the regular file system. The
IOGETINFO_GENSECONDARY call gives the developer a chance to resolve
this problem by generating a new IO specification for the secondary file in
question. The developer gets just the base file name (often embedded in the
original document or generated from the primary file's name) of the secondary
file.

The developer may either use one of the standard Outside In IO types or
totally redirect the IO for the secondary file, as well. For more details, see
"IOGENSECONDARY and IOGENSECONDARYW Structures".

– IOGETINFO_SUBDOC_SPEC: This message should be handled only if the
currently open file is an archive and a particular item within the archive is
intended to be specified as the input file in a call to DAOpenDocument. In this
case, pInfo points to a single-byte character string that should be filled with the
subdocument specification of an item within the open file. For example, item.2
specifies item 2 within the archive file. When specifying a subdocument
specification, return IOERR_OK. Any other return values cause the results of
this message to be ignored.

– IOGETINFO_64BITIO: For redirected I/O that wishes to use 64-bit seek/tell
functions, your IOGetInfo function must respond IOERR_TRUE to this
dwInfoId. In addition, the pSeek64/pTell64 items in the baseio structure must
be valid pointers to the proper function types.

– IOGETINFO_DPATHNAME: pInfo points to a structure of type DPATHNAME,
which should be filled with the fully qualified path name (including the file
name) of the open file, for example, C:\MYDIR\TEST.DOC. If you do not know
the path name, return IOERR_UNKNOWN. The dwPathLen element contains
the size of the buffer pointed to by the pPath element. If the buffer size is too
small to contain the full path, modify dwPathLen to be the correct size of the
buffer required to hold the path name in its IOTYPE character width including
the NULL terminator and return IOERR_INSUFFICIENTBUFFER.

Chapter 8
IOGetInfo

8-6

The following is a C data structure defined in SCCIO.H:

typedef struct DPATHNAMEtag
{
 VTDWORD dwPathLen;
 VTVOID *pPath;
} DPATHNAME, * PDPATHNAME;

Parameters

dwPathLen: Will be set to the number of bytes in the buffer pointed to by pPath. If the
size of the buffer is insufficient, reset this element to the number of bytes required
and return IOERR_INSUFFICIENTBUFFER.

pPath: Points to the buffer to be filled with the path name.

– IOGETINFO_GENSECONDARYDP: pInfo points to a structure of type
IOGENSECONDARYDP. The dwSpecLen element contains the size of the buffer
pointed to by the pSpec element. If the buffer size is too small to contain the spec,
modify dwSpecLen to be the correct size of the buffer required to hold the path in its
IOTYPE character width including the NULL terminator and return
IOERR_INSUFFICIENTBUFFER.

The following is a C data structure defined in SCCIO.H:

typedef struct IOGENSECONDARYDPtag
{
 VTDWORD dwSize;
 VTVOID * pFileName;
 VTDWORD dwSpecType;
 VTVOID * pSpec;
 VTDWORD dwSpecLen;
 VTDWORD dwOpenFlags;
} IOGENSECONDARYDP, * PIOGENSECONDARYDP;

Parameters

dwSize: Will be set to sizeof (IOGENSECONDARYDP)

pFileName: A pointer to a string representing the file name of the secondary file that
the technology requires. It is usually a name stored in the primary file (such as
MYSTYLE.STY for a Word for DOS file) or a name generated from the primary file
name. The primary file for a DataEase database has a .dba extension. The
secondary name is the same file name but with a .dbm extension.

dwSpecType: The developer must fill this with the IOSPEC for the secondary file.

pSpec: On entry, this pointer points to an array of bytes or may be NULL (see
dwSpecLen below). If the dwSpecType is set a regular IOTYPE such as
IOTYPE_ANSIPATH, the developer may fill this array with the path name or structure
required for that IOTYPE. If the developer is redirecting access to the secondary file,
then dwSpecType will be IOTYPE_REDIRECT and the developer should replace
pSpec with a pointer to a developer-defined structure that begins with the BASEIO
structure (see Using Redirected IO).

The file is supposed to be opened by the OEM's redirected IO code by the time they
return the BASEIO struct. This is because the pOpen routine in the BASEIO struct is
supposed to be NULL.

dwSpecLen: On entry, this is set to the size of the pSpec buffer. If the size of the
buffer is insufficient, replace the value with the number of bytes required and return
IOERR_INSUFFICIENTBUFFER.

Chapter 8
IOGetInfo

8-7

dwOpenFlags: Set by the technology. A set of bit flags describing how the
secondary file should be opened. Multiple flags may be used by bitwise OR-
ing them together. The following flags are currently used:

- IOOPEN_READ: The secondary file should be opened for read.

- IOOPEN_WRITE: The secondary file should be opened for write. If the
specified file already exists, its contents are erased when this flag is set.

- IOOPEN_CREATE: The secondary file should be created (if it does not
already exist) and opened for write.

Any other value should return IOERR_BADINFOID.

• pInfo: The size of the pInfo buffer depends on the dwInfoId selected. For
IOGETINFO_FILENAME and IOGETINFO_PATHNAME, the buffer is of size
MAX_PATH characters (each character is either one byte or two, depending on
PATHTYPE). The IOGETINFO_PATHTYPE buffer is the size of a VTDWORD.

Return Values

• IOERR_OK: GetInfo was successful.

• IOERR_TRUE: Affirmative response from a true or false GetInfo.

• IOERR_FALSE: Negative response from a true or false GetInfo.

• IOERR_BADINFOID: dwInfoId can not be handled by this file type.

• IOERR_INVALIDSPEC: The file spec is bad for this type.

• IOERR_UNKNOWN: GetInfo failed for some other reason.

8.8.1 IOGENSECONDARY and IOGENSECONDARYW Structures
These structures are passed to the developer through the IOGetInfo function. They
allow the developer to tell the technology where a secondary file, needed by the
conversion process, is located.

The SpecType of the original file determines which of these two structures is used. If
the SpecType is IOTYPE_UNICODEPATH, IOGENSECONDARYW is used.
pFileName points to a Unicode string terminated with a NULL WORD. For all other
SpecTypes, IOGENSECONDARY is used and pFileName points to a string terminated
with a NULL BYTE.

When using HTML Export, consider the situation where the software must access a
secondary template file. In that case, the SpecType of the original template specified
by the option SCCOPT_EX_TEMPLATE determines which of the two structures is
used.

The following is a C data structure defined in SCCIO.H:

typedef struct
{
 VTDWORD dwSize;
 VTLPBYTE pFileName;
 VTDWORD dwSpecType;
 VTLPVOID pSpec;
 VTDWORD dwOpenFlags
} IOGENSECONDARY, * PIOGENSECONDARY;

typedef struct

Chapter 8
IOGetInfo

8-8

{
 VTDWORD dwSize;
 VTLPWORD pFileName;
 VTDWORD dwSpecType;
 VTLPVOID pSpec;
 VTDWORD dwOpenFlags
} IOGENSECONDARYW, * PIOGENSECONDARYW;

Parameters

• dwSize: Will be set to sizeof (IOGENSECONDARY) or sizeof (IOGENSECONDARYW)
(both of these values are the same).

• pFileName: A pointer to a string representing the file name of the secondary file that the
technology requires. It is usually a name stored in the primary file (such as
MYSTYLE.STY for a Word for DOS file) or a name generated from the primary file name.
The primary file for a DataEase database has a .dba extension. The secondary name is
the same file name but with a .dbm extension.

• dwSpecType: The developer must fill this with the IOSPEC for the secondary file.

• pSpec: On entry, this pointer points to an array of 1024 bytes. If the dwSpecType is set a
regular IOTYPE such as IOTYPE_ANSIPATH, the developer may fill this array with the
path name or structure required for that IOTYPE. If the developer is redirecting access to
the secondary file, then dwSpecType will be IOTYPE_REDIRECT and the developer
should replace pSpec with a pointer to a developer-defined structure that begins with the
BASEIO structure (see "Using Redirected IO").

The file is supposed to be opened by the OEM's redirected IO code by the time they
return the BASEIO struct. This is because the pOpen routine in the BASEIO struct is
supposed to be NULL.

• dwOpenFlags: Set by the technology. A set of bit flags describing how the secondary file
should be opened. Multiple flags may be used by bitwise OR-ing them together. The
following flags are currently used:

– IOOPEN_READ: The secondary file should be opened for read.

– IOOPEN_WRITE: The secondary file should be opened for write. If the specified file
already exists, its contents are erased when this flag is set.

– IOOPEN_CREATE: The secondary file should be created (if it does not already exist)
and opened for write.

8.8.2 File Types That Cause IOGETINFO_GENSECONDARY
The following file types cause IOGETINFO_GENSECONDARY:

• Microsoft Word for DOS Versions 4, 5 and 6: Used to open and read the style sheet file
associated with the document. The filter degrades if the style sheet is not present.

• Harvard Graphics DOS 3.x: Used to open and read the individual slides within
ScreenShow and palette files. Files with the extension .ch3 are individual graphics or
slides that can be opened using no secondary files. Files with the extension .sy3 are
ScreenShows that reference a list of .ch3 files via the secondary file mechanism. There is
also an optional palette file that can be referenced from a .ch3 file, but the filter degrades
if the palette file is not present.

• R:Base: Used to open and read required schema file. The R:Base data files are
named ????2.rbf but the data is useless without the schema file named ????1.rbf. There
is also a ????3.rbf file associated with each database, but it is not used.

Chapter 8
IOGetInfo

8-9

• Paradox 4.0 and Above: Used to open and read memo field data file. Paradox
uses a separate file for all memo field data larger than 32 bytes.

• DataEase: Used to open and read the data file. DataEase databases include
a .dba file that contains the schema (the file that the technology can identify as
DataEase) and a .dbm file that contains the actual data.

• Templates (HTML Export): Any template that contains a {## link} will need to
open the linked files. Additionally, when the root template is opened using
redirected IO, each {## copy} macro in the template will result in a
IOGETINFO_GENSECONDARY call, as well.

8.9 IOSEEK64PROC / IOTELL64PROC
These functions are for seek/tell using 64-bit offsets. These functions are not used by
default. Rather, they are used if the IOGETINFO_64BITIO message returns
IOERR_TRUE. This is so redirected I/O using strictly 32-bit I/O is unaffected.

8.9.1 IOSeek64
Moves the current file position.

Prototype

IOERR IOSeek64(
HIOFILE hFile,
VTWORD wFrom,
VTOFF_T offset);

Parameters

The parameter information is the same as for IOSeek(). However, the size of the
VTOFF_T offset for IOSeek64() is 64-bit unlike the 32-bit offset in IOSeek().

8.9.2 IOTell64
Returns the current file position.

Prototype

IOERR IOTell64(
HIOFILE hFile,
VTOFF_T * pOffset);

Parameters

The parameter information is the same as for IOTell(). The only change is the use of a
pointer to a 64-bit parameter for returning the offset.

Chapter 8
IOSEEK64PROC / IOTELL64PROC

8-10

9
Callbacks

This chapter describes the use of callbacks in XML Export. Callbacks allow the developer to
intervene at critical points in the export process. Each heading in this chapter is a possible
value for the dwCommandOrInfoId parameter passed to the developer's callback.
The new SCCOPT_EX_CALLBACKS option allows developers to enable or disable some or
all of these callbacks. See the Options documentation for details.

This section describes callbacks set in EXOpenExport. Read more about the callback
procedure and the EXOpenExport function call in EXOpenExport.

A second callback function, DASetStartCallback, can provide information about the progress
of a file conversion. See Data Access Common Functions for more details.

This chapter includes the following sections:

• EX_CALLBACK_ID_CREATENEWFILE

• EX_CALLBACK_ID_GRAPHICEXPORTFAILURE

• EX_CALLBACK_ID_NEWFILEINFO

9.1 EX_CALLBACK_ID_CREATENEWFILE
This callback is made any time a new output file needs to be generated. This gives the
developer the chance to execute routines before each new file is created.

It allows the developer to override the standard naming for a file or to redirect entirely the IO
calls for a file. This callback is made for all output files that are created.

These include all output text and graphics files that are created. However, it does not include
the already open initial file passed to EXOpenExport, unless of course redirected IO is in use
with a pSpec of NULL.

If redirected IO is being used on output files, this callback must be implemented.

For this callback, the pCommandOrInfoData parameter points to a structure of type
EXFILEIOCALLBACKDATA:

typedef struct EXFILEIOCALLBACKDATAtag
{
 HIOFILE hParentFile;
 VTDWORD dwParentOutputId;
 VTDWORD dwAssociation;
 VTDWORD dwOutputId;
 VTDWORD dwFlags;
 VTDWORD dwSpecType;
 VTLPVOID pSpec;
 VTLPVOID pExportData;
 VTLPVOID pTemplateName;
} EXFILEIOCALLBACKDATA;

9-1

• hParentFile: Handle to the initial output file with which the new file is associated.
The dwAssociation describes the relationship. This handle is not intended for use
by the developer. Set by caller.

• dwParentOutputId: Set by caller. The type of the parent file. This value is
FI_XML_FLEXIONDOC_LATEST.

• dwAssociation: One of the following values:

– CU_ROOT: For the initial output file.

– CU_SIBLING: For new files that are not somehow owned by the parent file.

– CU_CHILD: For new files (usually GIFs, JPEGs, or PNGs) that are embedded
in the parent file.

dwAssociation used in conjunction with dwOutputId can be used to segregate
various types of files. For instance, the developer might want to place all GIFs in a
sub-directory named GRAPHICS. Set by caller.

• dwOutputId: The type of the new file. This value is
FI_XML_FLEXIONDOC_LATEST, FI_JPEGFIF, FI_GIF or FI_PNG.

• dwFlags: Reserved

• dwSpecType: IO specification type. See Data Access Common Functions for
details about IO specifications.

This member in conjunction with pSpec allows the developer to choose any
location for the new file or even redirect its IO calls entirely. See Redirected IO for
more details. When the developer receives this callback, the value of this element
is undefined. Must be set by developer if this callback returns SCCERR_OK.

• pSpec: This field holds the IO specification of the output file to be created. pSpec
points to a buffer that is 1024 bytes in size. If your application needs to set the
specification of the output file, it may do so by either writing new data into this
buffer, or by changing the value of pSpec to point to memory owned by your
application. If pSpec is set to a new value, then your application must ensure that
this memory stays valid for an appropriate length of time, at least until the next
callback message is received, or EXRunExport returns.

If the current export operation is using redirected IO, your application must create
a redirected IO data structure for the new file and set pSpec to point to it. This
pointer must stay valid until the structure's pClose function is called.

If your application sets dwSpecType to IOTYPE_UNICODEPATH, the specification
must contain UCS-2 encoded Unicode characters.

When your application receives this callback, the contents of the buffer pointed to
by pSpec contain a proposed filename for the new file. When the
SCCOPT_UNICODECALLBACKSTR option is set to TRUE, this filename is in
Unicode. Otherwise, it is in single-byte characters. It is suggested, although not
required, that this filename be used for the new file. Often the proposed filename
will be referenced from within the output XML, so if the developer chooses a
different one it may prevent consumers of the output from locating the files
referenced from within the output.

• pExportData: Pointer to data specific to the individual export. In this case, always a
pointer to either an EXURLFILEIOCALLBACKDATA structure or an
EXURLFILEIOCALLBACKDATAW structure. The
EXURLFILEIOCALLBACKDATAW struct is only used when the
SCCOPT_UNICODECALLBACKSTR option is set to TRUE. These two structures

Chapter 9
EX_CALLBACK_ID_CREATENEWFILE

9-2

are defined in EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW
Structures. Set by caller.

• pTemplateName: Not used in XML Export.

9.1.1 EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW
Structures

The EXURLFILEIOCALLBACKDATA and EXURLFILEIOCALLBACKDATAW structures are
defined as follows:

typedef struct EXURLFILEIOCALLBACKDATAtag
{
 VTDWORD dwSize;
 VTBYTE szURLString[VT_MAX_URL];
 VTDWORD dwFileID;
} EXURLFILEIOCALLBACKDATA;

typedef struct EXURLFILEIOCALLBACKDATAWtag
{
 VTDWORD dwSize;
 VTWORD wzURLString[VT_MAX_URL];
 VTDWORD dwFileID;
} EXURLFILEIOCALLBACKDATAW;

• dwSize: Set to sizeof(EXURLFILEIOCALLBACKDATA) or
sizeof(EXURLFILEIOCALLBACKDATAW).

• szURLString / wzURLString: This parameter can be set by the developer to a new URL
that references the newly created file. This parameter is optional unless the pSpec
provided by the developer points to something that cannot be used as a URL (as when
using redirected IO, for example). In that case, this parameter must be set.

This string is written into any output file that needs to reference the newly created file,
with appropriate conversions between single and double byte output. Because this
parameter is a URL, it is assumed to be URL encoded. When used in conjunction with
dwSpecType and pSpec, this parameter can be used to generate almost any structure or
location for the output files, including things like writing the output files into a database
and then using a CGI mechanism to retrieve them.

The current size limitation is 2048 characters. If the size exceeds this limit, the URL will
be truncated and rendered useless.

• dwFileID: Set by the product. This is used as a unique identifier for each output file
generated. It may be used for an OEM-specific purpose.

Return Value

• SCCERR_OK: dwSpecType, pSpec and szURLString (or wzURLString) have been
populated with valid values.

• SCCERR_NOTHANDLED: Default naming should be used.

• SCCERR_FILEOPENFAILED: Some error was encountered creating a new output.

9.2 EX_CALLBACK_ID_GRAPHICEXPORTFAILURE
This callback only occurs when an error is encountered exporting a graphic. It allows the
OEM to customize their handling of this type of error. This callback does not occur for

Chapter 9
EX_CALLBACK_ID_GRAPHICEXPORTFAILURE

9-3

graphics exports that are successful. It also does not occur for graphics that cannot be
converted due to the lack of an appropriate type of import filter. If the appropriate
import filter is not present, EXOpenExport returns SCCERR_NOFILTER.

The pCommandOrInfoData field points to a structure of type
EXGRAPHICEXPORTINFO:

typedef struct EXGRAPHICEXPORTINFOtag
{
 HIOFILE hFile;
 VTLPDWORD pXSize;
 VTLPDWORD pYSize;
 VTDWORD dwOutputId;
 SCCERR ExportGraphicStatus;
 VTLPDWORD pImageSize;
} EXGRAPHICEXPORTINFO;

• hFile: A handle to the current graphic output file. An OEM can substitute their own
graphic by writing the desired graphic image to the beginning of the hFile (via an
IOSEEK (hFile, IOSEEK_TOP, 0L), etc. The export function closes the file when
control is returned from the callback. The contents of hFile on entry to the callback
handler are unpredictable.

• pXSize/pYsize: Pointers to the dimensions of the image that would have been
exported. An OEM can set and use these values to control the image size
displayed by browsers. These dimensions are placed in the associated tag.

• dwOutputId: The type of graphics file that was being created (FI_GIF, FI_JPEGFIF,
or FI_PNG).

• ExportGraphicStatus: The error code from the operation that caused the graphic
image conversion to fail.

• pImageSize: The maximum size for the image in bytes is filled in by HTML Export
here (0 = no limit). If this callback is handled, on return the OEM should set this
field to the size of the image the OEM created. This image should be no larger
than the maximum size HTML Export entered into this variable.

Return Value

The callback handler should return SCCERR_NOTHANDLED unless the OEM has
written an image to hFile in which case a value of SCCERR_OK should be returned.

9.3 EX_CALLBACK_ID_NEWFILEINFO
This informational callback is made just after each new file has been created. Like the
EX_CALLBACK_ID_CREATENEWFILE callback, the pExportData parameter points to
an EXURLFILEIOCALLBACKDATA or an EXURLFILEIOCALLBACKDATW structure,
but in this case the structure should be treated as read-only and the dwSpecType,
pSpec and szURLString (or wzURLString) will be filled in.

This callback occurs for every new file. If the developer has used the
EX_CALLBACK_ID_CREATENEWFILE notification to change the location of (or to set
up redirected IO for) the new file, the data structure echoes back the information set by
the developer during the EX_CALLBACK_ID_CREATENEWFILE callback.

Chapter 9
EX_CALLBACK_ID_NEWFILEINFO

9-4

Return Value

Must be either SCCERR_OK or SCCERR_NOTHANDLED. Return value is currently ignored.

Chapter 9
EX_CALLBACK_ID_NEWFILEINFO

9-5

10
XML C/C++ Export Options

Options are parameters affecting the behavior of an export or transformation. This chapter
presents C/C++ options available to the developer when using the XML Export engine.
While default values are provided, users are encouraged to set all options for a number of
reasons. In some cases, the default values were chosen to provide backwards compatibility.
In other cases, the default values were chosen arbitrarily from a range of possibilities.

Options may be Local, in which case they only affect the handle for which they are set, or
Global, in which case they automatically affect all handles associated with the hDoc and must
be set before the call to DAOpenDocument.

While default values are provided, users are encouraged to set all options for a number of
reasons. In some cases, the default values were chosen to provide backwards compatibility.
In other cases, the default values were chosen arbitrarily from a range of possibilities.

The following types of options are covered:

• Character Mapping

• Output

• Input Handling

• Compression

• Graphics

• Callbacks

• XML

• File System

10.1 Character Mapping
This section pertains to character mapping options.

10.1.1 SCCOPT_DEFAULTINPUTCHARSET
This option is used in cases where Outside In cannot determine the character set used to
encode the text of an input file. When all other means of determining the file's character set
are exhausted, Outside In will assume that an input document is encoded in the character set
specified by this option. This is most often used when reading plain-text files, but may also be
used when reading HTML or PDF files. The possible character sets are listed in charsets.h.

When "extended test for text" is enabled (see SCCOPT_FIFLAGS), this option will still apply
to plain-text input files that are not identified as EBCDIC or Unicode.

This option supersedes the SCCOPT_FALLBACKFORMAT option for selecting the character
set assumed for plain-text files. For backwards compatibility, use of deprecated character-set
-related values is still currently supported for SCCOPT_FALLBACKFORMAT, though
internally such values will be translated into equivalent values for the

10-1

SCCOPT_DEFAULTINPUTCHARSET. As a result, if an application were to set both
options, the last such value set for either option would be the value that takes effect.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTDWORD

Default

• CS_SYSTEMDEFAULT: Query the operating system.

Data

The data types are listed in charsets.h.

10.1.2 SCCOPT_UNMAPPABLECHAR
This option selects the character used when a character is not a valid Unicode
character, or does not conform to the XML specification for valid characters. This
option takes the Unicode value for the replacement character. It is left to the user to
make sure that the selected replacement character is available in the output character
set.

Handle Types

VTHDOC

Scope

Local

Data Type

VTWORD

Data

The Unicode value for the character to use.

Default

• 0xfffd

10.2 Output
This information pertains to output options.

Chapter 10
Output

10-2

10.2.1 SCCOPT_RENDERING_PREFER_OIT

Note:

This option is valid on 64-bit Linux (Red Hat and Suse), Linux x86-64, Linux-
s390-64, Linux-PPC-64, Linux-ARM-64, Solaris Sparc 64-bit, Solaris Intel 64-bit,
IBM AIX 64-bit, and HP-UX Itanium 64-bit platforms.

When this option is set to TRUE, the technology will attempt to use its internal graphics code
to render fonts and graphics. When set to FALSE, the technology will render images using
the operating system's native graphics subsystem (X11 on UNIX/Linux platforms). Note that
this option only works when at least one of the appropriate output solutions is present. For
example, if the UNIX $DISPLAY variable does not point to a valid X Server, but the OSGD
and/or WV_GD modules required for the Outside In output solution exist, Outside In will
default to the Outside In rendering code. The option will fail if neither of these output solutions
is present.

Note:

It is important for the system to be able to locate useable fonts when this option is
set to TRUE. Only TrueType fonts (*.ttf or *.ttc files) are currently supported. To
ensure that the system can find them, make sure that the environment variable
GDFONTPATH includes one or more paths to these files. If the variable
GDFONTPATH can't be found, the current directory is used. If fonts are called for
and cannot be found, XML Export will exit with an error. Oracle does not provide
fonts with any Outside In product.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTBOOL

Data

One of the following values:

• TRUE: Use the technology's internal graphics rendering code to produce bitmap output
files whenever possible.

• FALSE: Use the operating system's native graphics subsystem.

Default

FALSE

Chapter 10
Output

10-3

10.3 Input Handling
This section pertains to input handling options.

10.3.1 SCCOPT_EXTRACTXMPMETADATA
Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
the XMP feature, which does not interpret the XMP metadata, but passes it straight
through without any interpretation. This option will be ignored if the
SCCOPT_PARSEXMPMETADATA option is enabled.

Handle Types

VTHDOC

Scope

Local (was Global prior to release 8.2.2)

Data Type

VTBOOL

Data

• TRUE: This setting enables XMP extraction.

• FALSE: This setting disables XMP extraction.

Default

• FALSE

10.3.2 SCCOPT_FALLBACKFORMAT
This option controls how files are handled when their specific application type cannot
be determined. This normally affects all plain-text files, because plain-text files are
generally identified by process of elimination, for example, when a file isn't identified as
having been created by a known application, it is treated as a plain-text file.

This option must be set for an hDoc before any subhandle has been created for that
hDoc.

A number of values that were formerly allowed for this option have been deprecated.
Specifically, the values that selected specific plain-text character sets are no longer to
be used. Instead, applications should use the SCCOPT_DEFAULTINPUTCHARSET
option for such functionality.

Handle Types

NULL, VTHDOC

Scope

Global

Chapter 10
Input Handling

10-4

Data Type

VTDWORD

Data

The high VTWORD of this value is reserved and should be set to 0, and the low VTWORD
must have one of the following values:

• FI_TEXT: Unidentified file types will be treated as text files.

• FI_NONE: Outside In will not attempt to process files whose type cannot be identified.
This will include text files. When this option is selected, an attempt to process a file of
unidentified type will cause Outside In to return an error value of
DAERR_FILTERNOTAVAIL (or SCCERR_NOFILTER).

Default

• FI_TEXT

10.3.3 SCCOPT_FIFLAGS
This option affects how an input file's internal format (application type) is identified when the
file is first opened by the Outside In technology. When the extended test flag is in effect, and
an input file is identified as being either 7-bit ASCII, EBCDIC, or Unicode, the file's contents
will be interpreted as such by the export process.

The extended test is optional because it requires extra processing and cannot guarantee
complete accuracy (which would require the inspection of every single byte in a file to
eliminate false positives).

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTDWORD

Data

One of the following values:

• SCCUT_FI_NORMAL: This is the default value. When this is set, standard file
identification behavior occurs.

• SCCUT_FI_EXTENDEDTEST: If set, the File Identification code will run an extended test
on all files that are not identified.

Default

• SCCUT_FI_NORMAL

Chapter 10
Input Handling

10-5

10.3.4 SCCOPT_FORMATFLAGS
This option allows the developer to set flags that enable options that span multiple
export products.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

• SCCOPT_FLAGS_ISODATETIMES: When this flag is set, all Date and Time
values are converted to the ISO 8601 standard. This conversion can only be
performed using dates that are stored as numeric data within the original file.

• SCCOPT_FLAGS_STRICTFILEACCESS: When an embedded file or URL can't
be opened with the full path, OIT will sometimes try and open the referenced file
from other locations, including the current directory. When this flag is set, it will
prevent OIT from trying to open the file from any location other than the fully
qualified path or URL.

Default

0: All flags turned off

10.3.5 SCCOPT_SYSTEMFLAGS
This option controls a number of miscellaneous interactions between the developer
and the Outside In Technology.

Handle Type

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

• SCCVW_SYSTEM_UNICODE: This flag causes the strings in SCCDATREENODE
to be returned in Unicode.

Chapter 10
Input Handling

10-6

Default

0

10.3.6 SCCOPT_IGNORE_PASSWORD
This option can disable the password verification of files where the contents can be
processed without validation of the password. If this option is not set, the filter should prompt
for a password if it handles password-protected files.

As of Release 8.4.0, only the PST and MDB Filters support this option.

Scope

Global

Data Type

VTBOOL

Data

• TRUE: Ignore validation of the password

• FALSE: Prompt for the password

Default

FALSE

10.3.7 SCCOPT_LOTUSNOTESDIRECTORY
This option allows the developer to specify the location of a Lotus Notes or Domino
installation for use by the NSF filter. A valid Lotus installation directory must contain the file
nnotes.dll.

Note:

Please see NSF Support on Win x86-32 or Win x86-64 or NSF Support on Linux
x86-32 or Solaris Sparc 32.

Handle Types

NULL

Scope

Global

Data Type

VTLPBYTE

Chapter 10
Input Handling

10-7

Data

A path to the Lotus Notes directory.

Default

If this option isn't set, then OIT will first attempt to load the Lotus library according to
the operating system's PATH environment variable, and then attempt to find and load
the Lotus library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

10.3.8 SCCOPT_PARSEXMPMETADATA
Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
parsing of the XMP data into normal OIT document properties. Enabling this option
may cause the loss of some regular data in premium graphics filters (such as
Postscript), but won't affect most formats (such as PDF).

Handle Types

VTHDOC

Scope

Local

Data Type

VTBOOL

Data

• TRUE: This setting enables parsing XMP.

• FALSE: This setting disables parsing XMP.

Default

FALSE

10.3.9 SCCOPT_PDF_FILTER_REORDER_BIDI
This option controls whether or not the PDF filter will attempt to reorder bidirectional
text runs so that the output is in standard logical order as used by the Unicode 2.0 and
later specification. This additional processing will result in slower filter performance
according to the amount of bidirectional data in the file.

Handle Types

VTHDOC, NULL

Scope

Global

Chapter 10
Input Handling

10-8

Data Type

VTDWORD

Data

• SCCUT_FILTER_STANDARD_BIDI

• SCCUT_FILTER_REORDERED_BIDI

Default

SCCUT_FILTER_STANDARD_BIDI

10.3.10 SCCOPT_PROCESS_OLE_EMBEDDINGS
Microsoft Powerpoint versions from 1997 through 2003 had the capability to embed OLE
documents in the Powerpoint files. This option controls which embeddings are to be
processed as native (OLE) documents and which are processed using the alternate graphic.

Note:

The Microsoft Powerpoint application sometimes does embed known Microsoft OLE
embeddings (such as Visio, Project) as an "Unknown" type. To process these
embeddings, the SCCOPT_PROCESS_OLEEMBED_ALL option is required. Post
Office-2003 products such as Office 2007 embeddings also fall into this category.

Handle Types

VTHDOC, NULL

Scope

Global

Data Type

VTWORD

Data

• SCCOPT_PROCESS_OLEEMBED_ALL : Process all embeddings in the file

• SCCOPT_PROCESS_OLEEMBED_NONE : Process none of the embeddings in the file

• SCCOPT_PROCESS_OLEEMBED_STANDARD (default) : Process embeddings that are
known standard embeddings. These include Office 2003 versions of Word, Excel, Visio
etc.

Default

SCCOPT_PROCESS_OLEEMBED_STANDARD

Chapter 10
Input Handling

10-9

10.3.11 SCCOPT_TIMEZONE
This option allows the user to define an offset to GMT that will be applied during date
formatting, allowing date values to be displayed in a selectable time zone. This option
affects the formatting of numbers that have been defined as date values. This option
will not affect dates that are stored as text.

Note:

Daylight savings is not supported. The sent time in msg files when viewed in
Outlook can be an hour different from the time sent when an image of the
msg file is created.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTLONG

Data

Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query
the operating system for the time zone set on the machine, specify
SCC_TIMEZONE_USENATIVE.

Default

• 0: GMT time

10.3.12 SCCOPT_HTML_COND_COMMENT_MODE
Some HTML includes a special type of comment that will be read by particular
versions of browsers or other products. This option allows you to control which of
those comments are included in the output.

Handle Type

VTHDOC

Scope

Local

Data Type

VTDWORD

Chapter 10
Input Handling

10-10

Data

• One or more of the following values OR-ed together:

• HTML_COND_COMMENT_NONE: Don't output any conditional comments. Note: setting
any other flag will negate this.

• HTML_COND_COMMENT_IE5: include the IE 5 comments

• HTML_COND_COMMENT_IE6: include the IE 6 comments

• HTML_COND_COMMENT_IE7: include the IE 7 comments

• HTML_COND_COMMENT_IE8: include the IE 8 comments

• HTML_COND_COMMENT_IE9: include the IE 9 comments

• HTML_COND_COMMENT_ALL: include all conditional comments including the versions
listed above and any other versions that might be in the HTML.

Default

HTML_COND_COMMENT_NONE

10.3.13 SCCOPT_ARCFULLPATH
In the Viewer and rendering products, this option tells the archive display engine to show the
full path to a node in the szNode field in response to a SCCVW_GETTREENODE message.
It also causes the name fields in DAGetTreeRecord and DAGetObjectInfo to contain the full
path instead of just the archive node name.

Data Type

VTBOOL

Data

• TRUE: Display the full path.

• FALSE: Do not display the path.

Default

FALSE

10.3.14 SCCOPT_STROKE_TEXT
This option is used to stroke out (display as graphical primitives) text in an AutoCAD file.
Setting this option to FALSE would improve performance, but the visual fidelity may be
compromised.

• If the export for the conversion is text only, text is never stroked out.

• If the export is not text only, and the drawing is perspective, text will always be stroked
out (regardless of this option). This is due to the fact that in non-text only situations visual
fidelity is of importance, and handling of textual objects in perspective drawings is more
accurate with stroked out text. If the conversion is non-text only and the drawing is not
perspective, this option determines if text should be stroked.

Chapter 10
Input Handling

10-11

Note that when this option is TRUE, some special characters appear as asterisks or
question marks due to limited support of characters for stroking out text.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

TRUE

10.3.15 SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS
PDF files sometimes have a very large number of embedded objects. This option
allows the user to limit the number of embedded objects that are produced in a PDF
file. Setting this option to 0 produces an unlimited number of embedded objects.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

The maximum number of embedded objects to produce in PDF output.

Default

0

10.3.16 SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS
PDF files sometimes have a very large number of vector paths. This option allows the
user to limit the number of vector paths that are produced in a PDF file. Setting this
option to 0 produces an unlimited amount of vector paths.

Handle Types

VTHDOC

Scope

Local

Chapter 10
Input Handling

10-12

Data Type

VTDWORD

Data

The maximum number of vector paths to produce in PDF output.

Default

0

10.3.17 SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION
This option controls the spacing threshold in PDF input documents. Most PDF documents do
not have an explicit character denoting a word break. The PDF filter calculates the distance
between two characters to determine if they are part of the same word or if there should be a
word break inserted. The space between characters is compared to the length of the space
character in the current font multiplied by this fraction. If the space between characters is
larger, then a word break character is inserted into the text stream. Otherwise, the characters
are considered to be part of the same word and no word break is inserted.

Handle Types

NULL, VTHDOC

Scope

Local

Data Type

VTFLOAT

Data

A fraction representing the percentage of the space character used to trigger a word
break. Valid values are 0<value<=2.

Default

0.85

10.3.18 SCCOPT_GENERATEEXCELREVISIONS
This option enables you to extract tracked changes from Excel. Extracted content shall
include location (worksheet, row, column), author, date, and time. Note that Excel has an
option to display the changes inline or on a different sheet. Either case should be extracted
along with where the comments are displayed in the Excel file (inline or separate sheet).

Handle Types

VTHDOC

Scope

Global

Chapter 10
Input Handling

10-13

Data Type

VTBOOL

Data

• TRUE: The setting enables generating Excel revision data

• FALSE: This setting disables generating Excel revision data

Default

FALSE

10.3.19 SCCOPT_TIMEZONE_USEDST

Note:

SCCOPT_TIMEZONE_USEDST is supported in releases 8.5.5 onward.

This option allows you to enable Daylight Saving Time (DST) that will be applied
during date formatting, allowing date values to be displayed in a selectable time zone
or system time zone. DST affects the formatting of numbers that have been defined as
date values. The date in textual format is converted to number format.

TRUE/1: Enables Daylight Saving Time (DST) format.

FALSE/0: Disables Daylight Saving Time (DST) format.

Handle Type

NULL, VTHDOC

Scope

Global

Data Type

VTBOOL

Default Value

FALSE

Note:

The DST Set option is disabled for platforms other than Windows. An error
message with invalid set option will be displayed if an attempt is made to set
this option on non-Windows platforms.

Chapter 10
Input Handling

10-14

10.3.20 SCCOPT_TIMEZONETEXT

Note:

SCCOPT_TIMEZONETEXT is supported in releases 8.5.5 onward.

This option allows you to enable the display of user-provided time zone text appended with
date/time in the email header and spreadsheets.

C++ API

This option is available in the DASetOption API. It can be set as shown below:

VTWORD szTimeZoneText[SCCUT_FILENAMEMAX - 1] =
{'U', 'T', 'C', 0};
DASetOption(hDoc,
SCCOPT_TIMEZONETEXT,VTLPVOID)szTimeZoneText,SCCUT_FILENAMEMAX)

JAVA API before ExportTest:

private static String m_TimeZoneText = "UTC";
 exporter.setTimeZoneText(m_TimeZoneText);
 exporter.export();

Handle Type

VTHDOC

Scope

local

Data Type

VTLONG

Default Value

0 : GMT Time

10.3.21 SCCOPT_TRACK_ANNOTATIONS

Note:

SCCOPT_TRACK_ANNOTATIONS is supported in releases 8.5.5 onward.

Chapter 10
Input Handling

10-15

This option enables you to create a JSON output file with an appended extension. For
example, exporting native file abcd.xxx to PDF would result in the files abcd.pdf and
abcd.xxx.anno.json.

#define SCCOPT_TRACK_REDACTIONS 0x0001 // only to track redaction

#define SCCOPT_TRACK_HIGHLIGHTS 0x0002 //only to track annotation

#define SCCOPT_TRACK_ALL 0x0003

Handle Type

VTHDOC, VTHEXPORT

Scope

local

Data Type

VTWORD

Default Value

0x0001

10.3.22 SCCOPT_READ_RECIPIENT_DELIVERY_INFO

Note:

SCCOPT_READ_RECIPIENT_DELIVERY_INFO is supported in releases
8.5.5 onward.

This option allows you to enable additional MAPI property tags from winmail.dat of the
EML file format through which the Recipient or Delivery information is extracted.

• 0: Default Value

• 1: Extract Recipient Information

• 2: Extract Delivery Notification

Handle Type

NULL, VTHDOC

Scope

Global

Data Type

VTWORD

Default Value

0

Chapter 10
Input Handling

10-16

10.4 Compression
This section discusses compression options.

10.4.1 SCCOPT_FILTERJPG
This option can disable access to any files using JPEG compression, such as JPG graphic
files or TIFF files using JPEG compression, or files with embedded JPEG graphics. Attempts
to read or write such files when this option is enabled will fail and return the error
SCCERR_UNSUPPORTEDCOMPRESSION if the entire file is JPEG compressed, and grey
boxes for embedded JPEG-compressed graphics.

The following is a list of file types affected when this option is disabled:

• JPG files

• Postscript files containing JPG images

• PDFs containing JPEG images

Note that the setting for this option overrides the requested output graphic format when there
is a conflict.

Handle Types

VTHDOC, HEXPORT

Scope

Global

Data Type

VTDWORD

Data

• SCCVW_FILTER_JPG_ENABLED: Allow access to files that use JPEG compression

• SCCVW_FILTER_JPG_DISABLED: Do not allow access to files that use JPEG
compression

Default

SCCVW_FILTER_JPG_ENABLED

10.4.2 SCCOPT_FILTERLZW
This option can disable access to any files using Lempel-Ziv-Welch (LZW) compression, such
as .GIF files, .ZIP files or self-extracting archive (.EXE) files containing "shrunk" files.
Attempts to read or write such files when this option is enabled will fail and return the error
SCCERR_UNSUPPORTEDCOMPRESSION if the entire file is LZW compressed, and grey
boxes for embedded LZW-compressed graphics.

The following is a list of file types affected when this option is disabled:

• GIF files

Chapter 10
Compression

10-17

• TIF files using LZW compression

• PDF files that use internal LZW compression

• TAZ and TAR archives containing files that are identified as FI_UNIXCOMP
• ZIP and self-extracting archive (.EXE) files containing "shrunk" files

• Postscript files using LZW compression

Note:

Although this option can disable access to files in ZIP or EXE archives
stored using LZW compression, any files in such archives that were
stored using any other form of compression will still be accessible. The
setting for this option overrides the requested output graphic format
when there is a conflict.

Handle Types

VTHDOC, HEXPORT

Scope

Global

Data Type

VTDWORD

Data

• SCCVW_FILTER_LZW_ENABLED: LZW compressed files will be read and written
normally.

• SCCVW_FILTER_LZW_DISABLED: LZW compressed files will not be read or
written.

Default

SCCVW_FILTER_LZW_ENABLED

10.5 Graphics
This information pertains to graphics options.

10.5.1 SCCOPT_ACCEPT_ALT_GRAPHICS
This option enables an optimization in XML Export's graphics output when exporting
embedded graphics from an input document. When this option is set to TRUE and the
input document contains embedded graphics that are already in one of our supported
output formats, they will be copied to output files rather than converted to the selected
output format specified by the SCCOPT_GRAPHIC_TYPE option.

For example, if this option is set to TRUE and the selected output graphics type is GIF,
an input document's embedded JPEG graphic will be copied to a JPEG output file

Chapter 10
Graphics

10-18

rather than being converted to the GIF format. The same behavior applies to all of XML
Export's supported graphics output formats (currently GIF, JPEG, and PNG).

If this option is set to FALSE, all graphics output will be in the format specified by the
SCCOPT_GRAPHIC_TYPE option.

Note:

When using this option, JPEG files will be transferred directly to their output file
location, without being filtered. This presents the possibility that any JPEG viruses
in the file can be transferred to that location, as well.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Data

• TRUE: FI_GIF, FI_JPEGFIF, and FI_PNG embeddings will be extracted, not converted.
All other embeddings will be converted to the format specified by
SCCOPT_GRAPHIC_TYPE. If graphicType is set to FI_NONE, no embeddings will be
extracted or converted.

• FALSE: All embeddings will be converted to the format specified by
SCCOPT_GRAPHIC_TYPE. Embeddings that are already in that format will be
extracted, not converted. If graphicType is set to FI_NONE, no embeddings will be
extracted or converted.

Default

FALSE

10.5.2 SCCOPT_GIF_INTERLACED
This option allows the developer to specify interlaced or non-interlaced GIF output. Interlaced
GIFs are useful when graphics are to be downloaded over slow Internet connections. They
allow the browser to begin to render a low-resolution view of the graphic quickly and then
increase the quality of the image as it is received. There is no real penalty for using interlaced
graphics.

This option is only valid if the SCCOPT_GRAPHIC_TYPE option is set to FI_GIF.

Handle Types

VTHDOC, VTHEXPORT

Chapter 10
Graphics

10-19

Scope

Local

Data Type

VTBOOL

Data

One of the following values:

• TRUE: Produce interlaced GIFs.

• FALSE: Produce non-interlaced GIFs.

Default

TRUE

10.5.3 SCCOPT_GRAPHIC_HEIGHTLIMIT
This is an advanced option that casual users of this technology may safely ignore. It
allows a hard limit to be set for how tall in pixels an exported graphic may be. Any
images taller than this limit will be resized to match the limit. It should be noted that
regardless whether the SCCOPT_GRAPHIC_WIDTHLIMIT option is set or not, any
resized images will preserve their original aspect ratio.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

The maximum height of the output graphic in pixels. A value of zero is equivalent to
SCCGRAPHIC_NOLIMIT, which causes this option to be ignored.

Default

• SCCGRAPHIC_NOLIMIT: No absolute height limit specified.

10.5.4 SCCOPT_GRAPHIC_OUTPUTDPI
This is an advanced option that casual users of this technology may safely ignore.

This option allows the user to specify the output graphics device's resolution in DPI
and only applies to images whose size is specified in physical units (in/cm). For
example, consider a 1" square, 100 DPI graphic that is to be rendered on a 50 DPI
device (SCCOPT_GRAPHIC_OUTPUTDPI is set to 50). In this case, the size of the
resulting JPEG, GIF, or PNG will be 50 x 50 pixels.

Chapter 10
Graphics

10-20

In addition, the special #define of SCCGRAPHIC_MAINTAIN_IMAGE_DPI, which is defined
as 0, can be used to suppress any dimensional changes to an image. In other words, a 1"
square, 100 DPI graphic will be converted to an image that is 100 x 100 pixels in size. This
value indicates that the DPI of the output device is not important. It extracts the maximum
resolution from the input image with the smallest exported image size.

Note:

Setting this option to SCCGRAPHIC_MAINTAIN_IMAGE_DPI may result in the
creation of extremely large images. Be aware that there may be limitations in the
system running this technology that could result in undesirably large bandwidth
consumption or an error message. Additionally, an out of memory error message
will be generated if system memory is insufficient to handle a particularly large
image.

Also note that the SCCGRAPHIC_MAINTAIN_IMAGE_DPI setting will force the
technology to use the DPI settings already present in raster images, but will use the
current screen resolution as the DPI setting for any other type of input file.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

The DPI to use when exporting graphic images. The maximum value allowed is
SCCGRAPHIC_MAX_SANE_BITMAP_DPI, which is currently defined to be 2400 DPI.

Default

• SCCGRAPHIC_DEFAULT_OUTPUT_DPI: Currently defined to be 96 dots per inch.

10.5.5 SCCOPT_GRAPHIC_SIZELIMIT
This option is used to set the maximum size of the exported graphic in pixels. It may be used
to prevent inordinately large graphics from being converted to equally cumbersome output
files, thus preventing bandwidth waste.

SCCOPT_GRAPHIC_SIZELIMIT takes precedence over all other options and settings that
affect the size of a converted graphic.

Handle Types

VTHDOC, VTHEXPORT

Chapter 10
Graphics

10-21

Scope

Local

Data Type

VTDWORD

Data

The total number of pixels in the output graphic. A value of zero ("0"), which is
equivalent to SCCGRAPHIC_NOLIMIT, causes this option to be ignored.

Default

• SCCGRAPHIC_NOLIMIT: Option is turned off.

10.5.6 SCCOPT_GRAPHIC_SIZEMETHOD
This option determines the method used to size graphics. The developer can choose
among three methods, each of which involves some degree of trade off between the
quality of the resulting image and speed of conversion.

Using the quick sizing option results in the fastest conversion of color graphics, though
the quality of the converted graphic will be somewhat degraded. The smooth sizing
option results in a more accurate representation of the original graphic, as it uses anti-
aliasing. Antialiased images may appear smoother and can be easier to read, but
rendering when this option is set will require additional processing time. The grayscale
only option also uses antialiasing, but only for grayscale graphics, and the quick sizing
option for any color graphics.

Note:

The smooth sizing option does not work on images which have a width or
height of more than 4096 pixels.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

One of the following values:

• SCCGRAPHIC_QUICKSIZING: Resize without antialiasing

• SCCGRAPHIC_SMOOTHSIZING: Resize using antialiasing

Chapter 10
Graphics

10-22

• SCCGRAPHIC_SMOOTHGRAYSCALESIZING: Resize using antialiasing for grayscale
graphics only (no antialiasing for color graphics)

Default

SCCGRAPHIC_SMOOTHSIZING

10.5.7 SCCOPT_GRAPHIC_TYPE
This option allows the developer to specify the format of the graphics produced by the
technology when it converts document embeddings.

When setting this option, remember that the JPEG file format does not support transparency.

Though the GIF file format supports transparency, it is limited to using only one of its 256
available colors to represent a transparent pixel ("index transparency").

PNG supports many types of transparency. The PNG files written by XML Export are created
so that various levels of transparency are possible for each pixel. This is achieved through
the implementation of an 8-bit "alpha channel."

There is a special optimization that XML Export can make when this option is set to
FI_NONE. Some of the Outside In Viewer Technology's import filters can be optimized to
ignore certain types of graphics. To take advantage of this optimization, the option must be
set before EXOpenExport is called.

Note:

SCCOPT_GRAPHIC_TYPE = FI_NONE must be set (via DASetOption) before the
call to EXOpenExport. Otherwise, the SCCUT_FILTEROPTIMIZEDFORTEXT
speed enhancement for the PDF filter is not set. This will result in slower exports of
PDFs when graphic output is not required.

Note:

The settings for options in Compression may force an override of the value for this
option.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

One of the following values:

Chapter 10
Graphics

10-23

• FI_GIF: GIF graphics

• FI_JPEGFIF: JPEG graphics

• FI_PNG: PNG graphics

• FI_NONE: Graphic conversion will be turned off

Default

FI_JPEGFIF

10.5.8 SCCOPT_GRAPHIC_WIDTHLIMIT
This is an advanced option that casual users of this technology may safely ignore. It
allows a hard limit to be set for how wide in pixels an exported graphic may be. Any
images wider than this limit will be resized to match the limit. It should be noted that
regardless whether the SCCOPT_GRAPHIC_HEIGHTLIMIT option is set or not, any
resized images will preserve their original aspect ratio.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

The maximum width of the output graphic in pixels. A value of zero is equivalent to
SCCGRAPHIC_NOLIMIT, which causes this option to be ignored.

Default

• SCCGRAPHIC_NOLIMIT: No absolute width limit specified.

10.5.9 SCCOPT_JPEG_QUALITY
This option allows the developer to specify the lossyness of JPEG compression. The
option is only valid if the SCCOPT_GRAPHIC_TYPE option is set to FI_JPEGFIF.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Chapter 10
Graphics

10-24

Data

A value from 1 to 100, with 100 being the highest quality but the least compression, and 1
being the lowest quality but the most compression.

Default

100

10.5.10 SCCOPT_RENDER_ENABLEALPHABLENDING
This option allows the user to enable alpha-channel blending (transparency) in rendering
vector images when using an X-Windows output solution. This may improve fidelity on
documents that use these transparent images, but will result in performance degradation.
This option does not affect Microsoft Windows or Unix implementations where
SCCOPT_RENDERING_PREFER_OIT is set to TRUE.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

False

10.6 Callbacks
This information pertains to callback options.

10.6.1 SCCOPT_EX_CALLBACKS
This is an advanced option that casual users of XML Export may ignore.

This option is used to disable callbacks being made from XML Export. Callbacks that are
disabled will behave as if they were made and the developer had returned
SCCERR_NOTHANDLED.

The option takes a VTDWORD field of flags. When the flag is set, the callback is enabled. By
default, all callbacks are enabled. You can activate multiple callbacks by bitwise OR-ing them
together. You can also disable multiple callbacks by bitwise &-ing the
SCCEX_CALLBACKFLAG_ALLENABLED value with the one's complement of the
corresponding callback flags. The following #defines are to be used for enabling the various
callbacks:

Flag Associated Callbacks

SCCEX_CALLBACKFLAG_CREATENEWFILE EX_CALLBACK_ID_CREATENEWFILE

Chapter 10
Callbacks

10-25

Flag Associated Callbacks

SCCEX_CALLBACKFLAG_NEWFILEINFO EX_CALLBACK_ID_NEWFILEINFO

In addition, the following two special values are available:

• SCCEX_CALLBACKFLAG_ALLDISABLED: Disables the receipt of all callbacks.
Additionally, bitwise OR-ing this value with one or more flags enables the
corresponding callbacks.

• SCCEX_CALLBACKFLAG_ALLENABLED: Enables the receipt of all callbacks.
Additionally, bitwise &-ing this value with the one's complement of one or more
flags disables the corresponding callbacks. For example,
SCCEX_CALLBACKFLAG_ALLENABLED&
(~SCCEX_CALLBACKFLAG_CREATENEWFILE) disables the CREATENEWFILE
callbacks, but enables all others.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

One or more of the valid flags, bitwise OR-ed together

Default

• SCCEX_CALLBACKFLAG_ALLENABLED: All callbacks are available to the
developer.

10.6.2 SCCOPT_EX_UNICODECALLBACKSTR
This option determines the format of strings used in the callback functions. For those
structures that contain a field of type BYTE or LPBYTE, a comparable structure has
been added which has a similar field of type WORD or LPWORD. These structures will
have the same name as the original structure, with the addition of a "W" at the end.

When this option is set to TRUE, any time a callback uses a structure with a string, it
will use the new structure. Also, any strings that the callback function returns will be
expected to follow the same guidelines. If the option is set to FALSE, all callbacks will
use single-byte character strings.

For example, if this option is set to TRUE, and the
EX_CALLBACK_ID_CREATENEWFILE callback is called, the pExportData parameter
to the callback will point to an EXURLFILEIOCALLBACKDATAW structure. If the option
is set to FALSE, the pCommandOrInfoData parameter will point to an
EXURLFILEIOCALLBACKDATA structure.

Chapter 10
Callbacks

10-26

Note:

This option should be set before EXOpenExport is called.

Handle Types

VTHDOC

Scope

Local

Data Type

VTBOOL

Data

One of the following values:

• TRUE: Use Unicode strings in callbacks.

• FALSE: Do not use Unicode strings in callbacks.

Default

FALSE

10.7 XML
This information pertains to XML options.

10.7.1 SCCOPT_CCFLEX_FORMATOPTIONS
This option is a set of flags that can be set to affect the output.

Handle Types

VTHDOC

Scope

Local

Data Type

DWORD

Data

The following are the available flags for this option:

• CCFLEX_FORMATOPTIONS_DELIMITERS: Often, files have individual characters that
are placed at specific draw locations. Consequently, the Flexiondoc converter produces
individual draw_text characters without any indication of word boundaries. This flag
forces the Flexiondoc converter to attempt to determine where words and lines end. The

Chapter 10
XML

10-27

input filters indicate these positions by producing a WORD_DELIMITER for word
endings, and a DELIMITER for line endings. These delimiters are passed along in
the Flexiondoc output to assist the user in reconstructing words and lines.

• CCFLEX_FORMATOPTIONS_OPTIMIZESECTIONS: Use wp.section elements to
delineate column references.

• CCFLEX_FORMATOPTIONS_FLATTENSTYLES: Flatten styles to eliminate the
need to process the "based-on" attribute. By turning on this option, paragraph style
should all be fully attributed. Character styles can't be fullly attributed, that is, they
won't always be completely flattened.

• SCCOPT_FLAGS_ALLISODATETIMES: Use ISO 8601 formatting for all date and
date/time values.

• CCFLEX_FORMATOPTIONS_PROCESSARCHIVESUBDOCS: Process all
archive sub-objects and put the output in the main Flexiondoc output

• CCFLEX_FORMATOPTIONS_PROCESSATTACHMENTSUBDOCS: Process all
attachments and put the output in the main Flexiondoc output

• CCFLEX_FORMATOPTIONS_PROCESSEMBEDDINGSUBDOCS: Process all
embeddings and put the output in the main Flexiondoc output

• CCFLEX_FORMATOPTIONS_REMOVEFONTGROUPS: Replace font groups
with references to individual fonts.

• CCFLEX_FORMATOPTIONS_INCLUDETEXTOFFSETS: Include text_offset
attribute on tx.p and tx.r elements.

• CCFLEX_FORMATOPTIONS_SEPARATESTYLETABLES: Enabling this flag will
cause the style_tables subtree to be streamed to a separate output unit. This
item is deprecated.

• CCFLEX_FORMATOPTIONS_USEFULLFILEPATHS: Locators for externalized
embeddings will contain full, absolute path names.

• CCFLEX_FORMATOPTIONS_BITMAPASBITMAP: dr.image objects are
converted to a graphic file and the resulting file is referenced by the locator child of
the dr.image.

• CCFLEX_FORMATOPTIONS_CHARTASBITMAP: ch.chart objects are converted
to a graphic file and the resulting file is referenced by the locator child of the
ch.chart.

• CCFLEX_FORMATOPTIONS_PRESENTATIONASBITMAP: pr.slide objects are
converted to a graphic file and the resulting file is referenced by the locator child of
the pr.slide.

• CCFLEX_FORMATOPTIONS_VECTORASBITMAP: dr.drawing objects are
converted to a graphic file and the resulting file is referenced by the locator child of
the dr.drawing.

• CCFLEX_FORMATOPTIONS_GENERATESYSTEMMETADATA: When this flag is
set, system metadata will be genetated. This information is gathered through
system calls and may adversely affect performance.

The following set of flags is useful if the caller is uninterested in certain kinds of
elements. Setting these flags will eliminate entire categories of data from the
conversion. Note: setting these flags may also remove part or all of the document
properties or XMP data.

Chapter 10
XML

10-28

• CCFLEX_FORMATOPTIONS_NOBITMAPELEMENTS: Bitmap graphics are suppressed;
no dr.image content will appear in the converted document.

• CCFLEX_FORMATOPTIONS_NOCHARTELEMENTS: Charts are suppressed; no
ch.chart content will appear in the converted document.

• CCFLEX_FORMATOPTIONS_NOPRESENTATIONELEMENTS: Presentation slides are
suppressed; no pr.slide content will appear in the converted document.

• CCFLEX_FORMATOPTIONS_NOVECTORELEMENTS: Vector drawings are
suppressed; no dr.drawing content will appear in the converted document.

The following set of flags is useful when dealing with characters that can not be mapped to
Unicode.

• CCFLEX_CHARMAPPING_DEFAULT (off): Default behavior: All text is mapped to
Unicode, in tx.text elements.

• CCFLEX_CHARMAPPING_NOMAPPING: All text is left in the original character set, in
tx.utext elements.

• CCFLEX_CHARMAPPING_MAPTEXT: Text is mapped to Unicode where possible,
unmappable text is left in the original character set.

• CCFLEX_CHARMAPPING_BOTH: Both mapped and unmapped text is included as an
alt element containing tx.text and tx.utext.

Default Value

All flags turned off, with the exception of:
CCFLEX_FORMATOPTIONS_REMOVEFONTGROUPS.

10.7.2 SCCOPT_CCFLEX_INCLUDETEXTOFFSETS

Note:

This option is obsolete, having been superseded by the
CCFLEX_FORMATOPTIONS_INCLUDETEXTOFFSETS flag in the
SCCOPT_CCFLEX_FORMATOPTIONS option. However, it has been retained for
backwards compatibility.

The value of this option is a Boolean that if set to TRUE will include offset information in the
Flexiondoc output according to the schema. If the option is set to FALSE, no offset
information is produced.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Chapter 10
XML

10-29

Default

FALSE

10.7.3 SCCOPT_CCFLEX_REMOVEFONTGROUPS

Note:

This option is obsolete, having been superseded by the
CCFLEX_FORMATOPTIONS_REMOVEFONTGROUPS flag in the
SCCOPT_CCFLEX_FORMATOPTIONS option. However, it has been
retained for backwards compatibility.

Some word processing formats contain styles that reference font groups, forcing the
user to interpret the correct font from that group by other means. If this option is set to
TRUE, references to font groups in input documents are replaced with references to
individual fonts.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

TRUE

10.7.4 SCCOPT_EXXML_DEF_METHOD
This option determines whether XML Export will reference the Flexiondoc schema, the
Flexiondoc DTD, or no reference when generating output.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Chapter 10
XML

10-30

Data

One of the following values:

• SCCEX_XML_XDM_DTD: Document Type Definition (DTD)

• SCCEX_XML_XDM_XSD: Extensible Schema Definition

• SCCEX_XML_XDM_NONE: No XML definition reference

Default

SCCEX_XML_XDM_NONE

10.7.5 SCCOPT_EXXML_DEF_REFERENCE
This option allows the developer to set a particular file as the XML definition reference.

If the SCCOPT_EXXML_DEF_METHOD xmlDefinitionMethod option is set to
SCCEX_XML_XDM_XSD or SCCEX_XML_XDM_DTD, the value of this option will be used
to reference the schema or DTD, respectively.

Handle Types

VTHDOC

Scope

Local

Data Type

Size (in bytes) of the data being passed, including a terminating NULL.

Data

The size of an array that holds WORD-sized characters terminated with a WORD-sized NULL
(a UCS-2 string). The size passed is the total number of bytes that this UCS-2 string
comprises. It includes in its size the bytes occupied by the terminating NULL.

Default

None

10.7.6 SCCOPT_EXXML_SUBSTREAMROOTS

Note:

As of the 8.1 release of Outside In XML Export, this option has been deprecated.
Use the CCFLEX_FORMATOPTIONS_SEPARATESTYLETABLES flag in
SCCOPT_CCFLEX_FORMATOPTIONS option instead.

Chapter 10
XML

10-31

This option selects the element which will be the root of a subtree of Flexiondoc output
to be placed in a separate output document (a file or redirected IO stream). Currently,
the only element supported for this option is the style_tables element.

When set to a non-empty or non-NULL value, this option specifies the subtree that
should be exported to a separate document. This document, if it is a file, will be
created in the same directory as the primary output document and will be named
xxx.subtree.xml, where xxx.xml is the name of the primary document and subtree is
the name of the exported element (for example, if output.xml is the primary output file,
then the style_tables subtree would be exported to a file named
output.style_tables.xml). When this option is set to an empty or NULL value, all
elements will be placed in the primary output document.

An element specified in this option must include its namespace, followed by a comma,
then the element name. Currently, the allowable values for this option are NULL, an
empty string, or the following string:

http://www.outsideinsdk.com/xmlns/flexiondoc5_6,style_tables

Note:

This option will only work correctly if the SCCOPT_EXXML_DEF_METHOD
option is set (to any value). If SCCOPT_EXXML_DEF_METHOD isn't set,
the result will be an invalid output file.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

The data for this option is a UCS-2 string (a NULL-terminated array of 16 bit Unicode
characters). The data size should be specified as the length of the string in bytes (not
characters), and should include the size of the terminating NULL.

Default

NULL

10.8 File System
This section discusses file system options.

Chapter 10
File System

10-32

10.8.1 SCCOPT_IO_BUFFERSIZE
This set of three options allows the user to adjust buffer sizes to tailor memory usage to the
machine's ability. The numbers specified in these options are in kilobytes. These are
advanced options that casual users of XML Export may ignore.

Handle Type

NULL, VTHDOC

Scope

Global

Data Type

SCCBUFFEROPTIONS Structure

Data

A buffer options structure

10.8.1.1 SCCBUFFEROPTIONS Structure

typedef struct SCCBUFFEROPTIONStag
{
 VTDWORD dwReadBufferSize; /* size of the I/O Read buffer
 in KB */
 VTDWORD dwMMapBufferSize; /* maximum size for the I/O
 Memory Map buffer in KB */
 VTDWORD dwTempBufferSize; /* maximum size for the memory-
 mapped temp files in KB */
 VTDWORD dwFlags; /* use flags */
} SCCBUFFEROPTIONS, *PSCCBUFFEROPTIONS;

Parameters

• dwReadBufferSize: Used to define the number of bytes that will read from disk into
memory at any given time. Once the buffer has data, further file reads will proceed within
the buffer until the end of the buffer is reached, at which point the buffer will again be
filled from the disk. This can lead to performance improvements in many file formats,
regardless of the size of the document.

• dwMMapBufferSize: Used to define a maximum size that a document can be and use a
memory-mapped I/O model. In this situation, the entire file is read from disk into memory
and all further I/O is performed on the data in memory. This can lead to significantly
improved performance, but note that either the entire file can be read into memory, or it
cannot. If both of these buffers are set, then if the file is smaller than the
dwMMapBufferSize, the entire file will be read into memory; if not, it will be read in blocks
defined by the dwReadBufferSize.

• dwTempBufferSize: The maximum size that a temporary file can occupy in memory
before being written to disk as a physical file. Storing temporary files in memory can
boost performance on archives, files that have embedded objects or attachments. If set
to 0, all temporary files will be written to disk.

• dwFlags

Chapter 10
File System

10-33

– SCCBUFOPT_SET_READBUFSIZE 1

– SCCBUFOPT_SET_MMAPBUFSIZE 2

– SCCBUFOPT_SET_TEMPBUFSIZE 4

To set any of the three buffer sizes, set the corresponding flag while calling
dwSetOption.

Default

The default settings for these options are:

• #define SCCBUFOPT_DEFAULT_READBUFSIZE 2: A 2KB read buffer.

• #define SCCBUFOPT_DEFAULT_MMAPBUFSIZE 8192: An 8MB memory-map
size.

• #define SCCBUFOPT_DEFAULT_TEMPBUFSIZE 2048: A 2MB temp-file limit.

Minimum and maximum sizes for each are:

• SCCBUFOPT_MIN_READBUFSIZE 1: Read one Kbyte at a time.

• SCCBUFOPT_MIN_MMAPBUFSIZE 0: Don't use memory-mapped input.

• SCCBUFOPT_MIN_TEMPBUFSIZE 0: Don't use memory temp files

• SCCBUFOPT_MAX_READBUFSIZE 0x003fffff,
SCCBUFOPT_MAX_MMAPBUFSIZE 0x003fffff,
SCCBUFOPT_MAX_TEMPBUFSIZE 0x003fffff: These maximums correspond to
the largest file size possible under the 4GB DWORD limit.

10.8.2 SCCOPT_TEMPDIR
From time to time, the technology needs to create one or more temporary files. This
option sets the directory to be used for those files.

It is recommended that this option be set as part of a system to clean up temporary
files left behind in the event of abnormal program termination. By using this option with
code to delete files older than a predefined time limit, the OEM can help to ensure that
the number of temporary files does not grow without limit.

Note:

This option will be ignored if SCCOPT_REDIRECTTEMPFILE is set.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

SCCUTTEMPDIRSPEC structure

Chapter 10
File System

10-34

10.8.2.1 SCCUTTEMPDIRSPEC Structure
This structure is used in the SCCOPT_TEMPDIR option.

SCCUTTEMPDIRSPEC is a C data structure defined in sccvw.h as follows:

typedef struct SCCUTTEMPDIRSPEC
{
 VTDWORD dwSize;
 VTDWORD dwSpecType;
 VTBYTE szTempDirName[SCCUT_FILENAMEMAX];
} SCCUTTEMPDIRSPEC, * LPSCCUTTEMPDIRSPEC;

There is a limitation in the current release. dwSpecType describes the contents of
szTempDirName. Together, dwSpecType and szTempDirName describe the location of the
source file. The only dwSpecType values supported at this time are:

• IOTYPE_ANSIPATH: Windows only. szTempDirName points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32 and
Win64) file name conventions.

• IOTYPE_UNICODEPATH: Windows only. szTempDirName points to a NULL-terminated
full path name using the Unicode character set and NTFS file name conventions. Note
that the length of the path name is limited to SCCUT_FILENAMEMAX bytes, or
(SCCUT_FILENAMEMAX / 2) double byte Unicode characters.

• IOTYPE_UNIXPATH: UNIX platforms only. szTempDirName points to a NULL-terminated
full path name using the system default character set and UNIX path conventions.

Specifically not supported at this time is IOTYPE_REDIRECT.

Parameters

• dwSize: Set to sizeof(SCCUTTEMPDIRSPEC).

• dwSpecType: IOTYPE_ANSIPATH, IOTYPE_UNICODEPATH, or IOTYPE_UNIXPATH

• szTempDirName: The path to the directory to use for the temporary files. Note that if all
SCCUT_FILENAMEMAX bytes in the buffer are filled, there will not be space left for file
names.

Default

The system default directory for temporary files. On UNIX systems, this is the value of
environment variable $TMP. On Windows systems, it is the value of environment variable
%TMP%.

10.8.3 SCCOPT_DOCUMENTMEMORYMODE
This option determines the maximum amount of memory that the chunker may use to store
the document's data, from 4 MB to 1 GB. The more memory the chunker has available to it,
the less often it needs to re-read data from the document.

Handle Types

NULL, VTHDOC

Chapter 10
File System

10-35

Scope

Global

Data Type

VTDWORD

Parameters

• SCCDOCUMENTMEMORYMODE_SMALLEST (4MB)

• SCCDOCUMENTMEMORYMODE_SMALL (16MB)

• SCCDOCUMENTMEMORYMODE_MEDIUM (64MB)

• SCCDOCUMENTMEMORYMODE_LARGE (256MB)

• SCCDOCUMENTMEMORYMODE_LARGEST (1 GB)

Default

SCCDOCUMENTMEMORYMODE_LARGE (256MB)

10.8.4 SCCOPT_REDIRECTTEMPFILE
This option is set when the developer wants to use redirected IO to completely take
over responsibility for the low level IO calls of the temp file.

Handle Types

NULL, VTHDOC

Scope

Global (not persistent)

Data Type

VTLPVOID: pCallbackFunc

Function pointer of the redirect IO callback.

Redirect call back function:

typedef
{
 VTDWORD (* REDIRECTTEMPFILECALLBACKPROC)
 (HIOFILE *phFile,
 VTVOID *pSpec,
 VTDWORD dwFileFlags);

There is another option to handle the temp directory, SCCOPT_TEMPDIR. Only one of
these two can be set by the developer. The SCCOPT_TEMPDIR option will be ignored
if SCCOPT_REDIRECTTEMPFILE is set. These files may be safely deleted when the
Close function is called.

Chapter 10
File System

10-36

Part III
Using the Java API

This section provides details about using the SDK with the Java API.

Part III contains the following chapters:

• Introduction to the Java API

• XML Export Java Classes

11
Introduction to the Java API

This chapter provides an introduction to the Java API for XML Export. The Java API is an
add-on to the Outside In Export SDKs that enables developers to use Java to create
applications using Outside In Technology.
The following topics are covered:

• Requirements

• Getting Started

11.1 Requirements
To use the API, the following set of modules and tools are required:

• Java JDK 6 or later

• The Outside In developer's redistributable modules for your product(s)

• The API libraries:

– oilink.jar - The Java library to access the Outside In technologies

– oilink (on Unix)/oilink.exe (on Windows) - The bridge modules between Java and the
C-APIs.

All of the Outside In modules should be in the same directory as oilink.jar.

The SDK includes sample source code to demonstrate how such web applications may be
written. These sample applications are written as simply and generically as possible, and will
not fill all of the needs of your particular application. They are intended for instructional
purposes only.

11.2 Getting Started
There are two steps in developing applications using the APIs. In the first step, you configure
the environment to create your application (typical programming tasks not directly related to
these APIs); and in the second step, you generate code to utilize the functionality of these
libraries.

11.2.1 Configure the Environment
To set up the environment to create a Java application, you need to add the oilink.jar library
to your project. (This can be done in Eclipse in the Project Properties dialog by selecting Java
Build Path properties > Libraries tab > Add external JARs > browse to oilink.jar.)

11.2.2 Generate Code
Sample application code included with the SDK, OITSample, is a minimal demonstration of
how to use this API.

11-1

All the functionality required to perform a conversion is provided in an Exporter object.
The basic process of exporting a file involves the following tasks:

1. Create an Exporter object.

2. Configure the export.

3. Set the source and primary destination files.

4. Set the output type.

5. (Optional) Provide a callback handler.

6. Run the export.

Tasks 2 through 5 can be done in any order between the first and last task.

11.2.2.1 Create an Exporter Object
To obtain access to the Outside In functionality, you should call the utility function in
the "OutsideIn" class. This will provide you an instance of an Exporter Object.

Exporter exporter = OutsideIn.newLocalExporter();

11.2.2.2 Configure the Output
The Outside In API is highly configurable, and presents numerous options to fine-tune
the way a document is exported. Each option has a "set" and "get" method to set or
retrieve the currently set value.

exporter.setPerformExtendedFI(true);
int timezoneOffset = exporter.getTimeZoneOffset();

11.2.2.3 Set the Source and Primary Destination Files
You are required to specify the source file and the destination file. This is done
similarly to setting options using "set" methods.

exporter.setSourceFile(inputFile);
exporter.setDestinationFile(outputFile);

There are other options that can be set at this time to specify the way to handle the
input file, such as providing a SourceFormat to provide a mechanism to handle the
input file in a different format than that which it is identified as.

The API also supports opening certain types of embedded documents from within an
input file. For example, a .zip file may contain a number of embedded documents; and
an email message saved as a .msg file may contain attachments. The API provides
the means of opening these types of embedded documents. This can be done by
opening the parent document and then the embedded document can be opened
through this exporter object.

// subdocId is the sequential number of the node in the archive file
Exporter exporterNode = exporter.newArchiveNodeExporter(subdocId);

11.2.2.4 Set the Output Type
In this step, you specify the output format.

exporter.setDestinationFormat(FileFormat.FI_XML_FLEXIONDOC_LATEST);

Chapter 11
Getting Started

11-2

11.2.2.5 Provide a Callback Handler
Outside In Technology provides callbacks that allow the developer to intervene at critical
points in the export process. To respond to these callbacks, you have to subscribe to any
messages that you are interested in by overriding the message handlers from the Callback
class. After creating an object of this class, set the callback option to this object and the
messages will be passed to your object.

class CallbackHandler extends Callback
{
 … // implementation of messages to handle - described in the API documentation
}
CallbackHandler callback = new CallbackHandler();
exporter.setCallbackHandler(callback);

11.2.2.6 Run the Export
After all the previous steps are completed, you can produce the desired output.

exporter.export();

Chapter 11
Getting Started

11-3

12
XML Export Java Classes

This chapter describes the XML Export Java classes.
The following classes are covered:

• ArchiveNode Class

• Callback Class

• Exporter Interface

• ExportStatus Class

• FileFormat Class

• ObjectInfo Class

• Option Interface

• OutsideIn

• OutsideInException Class

• XMLReference Class

12.1 ArchiveNode Class
ArchiveNode provides information about an archive node. This is a read-only class where the
technology fills in all the values.

Namespace

com.oracle.outsidein

Accessors

• boolean isFolder() - A value of true indicates that the record is an archive node.

• int getFileSize() - File size of the archive node

• java.util.Date getTime() - Time the archive node was created

• int getNodeNum() - Serial number of the archive node in the archive

• String getNodeName() - The name of the archive node

12.2 Callback Class
Callback messages are notifications that come from Outside In during the export process,
providing information and sometimes the opportunity to customize the generated output.

Namespace

com.oracle.outsidein

12-1

To access callback messages, your code must create an object that inherits from
Callback and pass it through the API's SetCallbackHandler method. Your object can
implement methods that override the default behavior for whichever methods your
application is interested in.

Callback has two methods that you can override: createNewFile and newFileInfo.

12.2.1 createNewFile
CreateNewFileResponse createNewFile(FileFormat parentOutputId, FileFormat
outputId,
 AssociationValue association, String path) throws IOException

This callback is made any time a new output file needs to be generated. This gives the
developer the chance to affect where the new output file is created, how it is named,
and the URL (if any) used to reference the file.

Parameters

• parentOutputId: File format identifier of the parent file

• outputId: File format identifier of the file created

• association: An AssociationValue that describes relationship between the primary
output file and the new file.

• path: Full path of the file to be created

Return Value

To take action in response to this notification, return a CreateNewFileResponse object
with the new file information. If you wish to accept the defaults for the path and URL,
you may return null.

12.2.1.1 CreateNewFileResponse Class
This is a class to define a new output file location in response to a CreateNewFile
callback. If you do not wish to change the path to the new output file, you may use the
path as received. If you do not wish to specify the URL for the new file, you many
specify it as null.

Constructor

CreateNewFileResponse(File file, String url) throws IOException

• file: File object containing the full path to the new file

• url: A new URL that references the newly created file. This parameter can be null.

CreateNewFileResponse(SeekableByteChannel6 redirect, String url) throws
IOException

• redirect: Object that will be written to as the destination of the transform

• url: A new URL that references the newly created file.This parameter can be null.

Chapter 12
Callback Class

12-2

AssociationValue Enumeration

This enumeration defines, for a new file created by an export process, the different possible
associations between the new file and the primary output file. Its value may be one of the
following:

• ROOT - indicates the primary output file

• CHILD - a new file linked (directly or indirectly) from the primary output file

• SIBLING - indicates new files not linked from the primary output file

• COPY - the file was copied as a part of a template macro operation.

• REQUIREDNAME - not used

Note that some of these relationships will not be possible in all Outside In Export SDKs.

12.2.2 newFileInfo
void newFileInfo(FileFormat parentOutputId, FileFormat outputId,
 AssociationValue association, String path, String url) throws IOException

This informational callback is made just after each new file has been created.

Parameters

• parentOutputId: File format identifier of the parent file

• outputId: File format identifier of the file created

• association: An AssociationValue that describes relationship between the primary output
file and the new file.

• path: Full path of the file created

• url: URL that references the newly created file

Example

Here is a basic callback handler that notifies an application that it has received newFileInfo
notifications.

 public static class CallbackHandler extends Callback
 {
 myApplication m_theApp;

 public CallbackHandler(myApplication app)
 {
 m_theApp = app;
 }

 public void newFileInfo(FileFormat parentOutputId,
 FileFormat outputId, AssociationValue association,
 String path, String url) throws IOException
 {
 if(association == AssociationValue.ROOT)
 m_theApp.primaryOutputIsReady(true);

 m_theApp.newOutputFile(path);
 }
 }

Chapter 12
Callback Class

12-3

12.2.3 openFile
OpenFileResponse openFile(FileTypeFalue fileType, String fileName) throws
IOException

This callback is made any time a new file needs to be opened.

Parameters

• fileType: Type of file being requested to be opened

• fileName: Name of the file to be opened

Return Value

To take action in response to this method, return an OpenFileResponse object.

FileTypeValue Enumeration

This enumeration defines the type of file being requested to be opened. Its value may
be one of the following:

• INPUT: File to be opened (path unknown)

• TEMPLATE: Template file to be opened

• PATH: Full file name of the file to be opened

• OTHER: Not used

12.2.3.1 OpenFileResponse Class
This is a class to define a new file or redirected I/O object in response to an openFile()
callback.

Constructors

OpenFileResponse(File file)

• file: File object with full path to the new file

OpenFileResponse(SeekableByteChannel6 redirect)

• redirect: A redirected I/O object to which the file data will be written

12.2.4 createTempFile
CreateTempFileResponse createTempFile() throws IOException

This callback is made any time a new temporary file needs to be generated. This gives
the developer the chance to handle the reading and writing of the temporary file.

Return Value

To take action in response to this notification, return a CreateTempFileResponse
object with the temporary file information.

Chapter 12
Callback Class

12-4

12.2.4.1 CreateTempFileResponseClass
This is a class to define a new redirected I/O object in response to a createTempFile()
callback.

Constructors

CreateTempFileResponse(SeekableByteChannel6 redirect)

• redirect: A redirected I/O object to which the file data will be written and read from

12.3 Exporter Interface
This section describes the properties and methods of Exporter.

All of Outside In's Exporter functionality can be accessed through the Exporter Interface. The
object returned by OutsideIn class is an implementation of this interface. This class derives
from the Document Interface, which in turn is derived from the OptionsCache Interface.

Namespace

com.oracle.outsidein

Methods

• getExportStatus

ExportStatus getExportStatus()

This function is used to determine if there were conversion problems during an export.
The ExportStatus object returned may have information about sub-document failures,
areas of a conversion that may not have high fidelity with the original document. When
applicable the number of pages in the output is also provided.

• newSubDocumentExporter

Exporter newSubDocumentExporter(
 int SubDocId,
 SubDocumentIdentifierTypeValue idType
) throws OutsideInException

Create a new Exporter for a subdocument.

SubDocId: Identifier of the subdocument

idType: Type of subdocument

SubDocumentIdentifierTypeValue: This is an enumeration for the type of subdocument
being opened.

– XMLEXPORTLOCATOR: Subdocument to be opened is based on output of XML
Export (SubdocId is the value of the object_id attribute of a locator element.)

– ATTACHMENTLOCATOR: Subdocument to be opened is based on the locator value
provided by the one of the Export SDKs.

– EMAILATTACHMENTINDEX: Subdocument to be opened is based on the index of
the attachment from an email message. (SubdocId is the zero-based index of the
attachment from an email message file. The first attachment presented by OutsideIn
has the index value 0, the second has the index value 1, etc.)

Chapter 12
Exporter Interface

12-5

Returns: A new Exporter object for the subdocument

• newSubObjectExporter

Exporter newSubObjectExporter(
 SubObjectTypeValue objType,
 int data1,
 int data2,
 int data3,
 int data4
) throws OutsideInException

Create a new Exporter for a subobject.

objType: Type of subobject

data1: Data identifying the subobject from SearchML

data2: Data identifying the subobject from SearchML

data3: Data identifying the subobject from SearchML

data4: Data identifying the subobject from SearchML

Returns: A new Exporter object for the subobject

SubObjectTypeValue: An enumeration to describe the type of SubObject to open.

– LinkedObject

– EmbeddedObject

– CompressedFile

– Attachment

• newArchiveNodeExporter

Exporter newArchiveNodeExporter(
 int dwRecordNum
) throws OutsideInException

Create a new Exporter for an archive node. You may get the number of nodes in
an archive using getArchiveNodeCount. The nodes are numbered from 0 to
getArchiveNodeCount -1.

dwRecordNum: The number of the record to retrieve information about. The first
node is node 0 and the total number of nodes may be obtained from
GetArchiveNodeCount.

Returns: A new Exporter object for the archive node

• export

void export() throws OutsideInException

Perform the conversion.

• setDestinationFile

OptionsCache setDestinationFile(
 String filename
) throws OutsideInException

Set the location of the destination file

filename: Full path to the destination file

Chapter 12
Exporter Interface

12-6

Returns: The updated options object

• setExportTimeout

OptionsCache setExportTimeout(int millisecondsTimeout)

This method sets the time that the export process should wait for a response from the
Outside In export engine to complete the export of a document, setting an upper limit on
the time that will elapse during a call to export(). If the specified length of time is reached
before the export has completed, the export operation will be terminated and an
OutsideInException will be thrown. If this option is not set, the default timeout is 5
minutes.

• newLocalExporter

static Exporter newLocalExporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the source
Exporter. All the options of source are copied to the new Exporter. The source and
destination file information will not be copied.

12.3.1 Document Interface
All of the Outside In document-related methods are accessed through the Document
Interface.

Namespace

com.oracle.outsidein

Methods

• close

void close()

Closes the currently open document.

• getArchiveNodeCount

int getArchiveNodeCount() throws OutsideInException

Retrieves the number of nodes in an archive file.

Returns the number of nodes in the archive file or 0 if the file is not an archive file.

• getFileId

FileFormat getFileId(FileIdInfoFlagValue dwFlags) throws OutsideInException

Gets the format of the file based on the technology's content-based file identification
process.

dwFlags: Option to retrieve the file identification pre-Extended or post-Extended Test

Returns the format identifier of the file.

• getObjectInfo

ObjectInfo getObjectInfo() throws OutsideInException

Retrieves the information about an embedded object.

Chapter 12
Exporter Interface

12-7

Return: An ObjectInfo object with the information about the embedded object

• getArchiveNode

ArchiveNode getArchiveNode(int nNodeNum) throws OutsideInException

Retrieves information about a record in an archive file. You may get the number of
nodes in an archive using getArchiveNodeCount.

nNodeNum: The number of the record to retrieve information about. The first node
is node 0.

Return Value: An ArchiveNode object with the information about the record

• saveArchiveNode

void saveArchiveNode(
 int nNodeNum,
 File file) throws OutsideInException

Extracts a record in an archive file to disk.

nNodeNumType: The number of the record to retrieve information about. The first
node is node 0.

file: The destination file to which the file will be extracted.

• saveArchiveNode with Search Export Flags

void saveArchiveNode(
 int flags,
 int params1,
 int params2,
 File file) throws OutsideInException

Extracts a record in an archive file to disk without reading the data for all nodes in
the archive in a sequential order. To use this function, you must first process the
archive with Search Export and save the Node data for later use in this function.

flagsType: Special flags value from Search Export

params1: Data1 from Search Export

params2: Data2 from Search Export

file: The destination file to which the file will be extracted

• setSourceFile

OptionsCache setSourceFile(String filename) throws OutsideInException

Set the source document.

filename: Full path of the source document

Returns: The options cache object associated with this document

12.3.2 SeekableByteChannel6 Interface
Enables API users to handle I/O for the source and destination documents. Implement
this interface to control I/O operations such as reading, writing, and seeking. This
interface mimics the java.nio.channels.SeekableByteChannel interface which is only
available in Java 7 and later. Note that SeekableByteChannel6 will be removed in
favor of java.nio.channels.SeekableByteChannel if support for Java 6 is dropped in a

Chapter 12
Exporter Interface

12-8

future release of the Outside In Java API. Until then, this interface must be used if redirected
I/O is required.

Namespace

com.oracle.outsidein

Methods

• Get position

long position()

Returns this channel's position.

• Set position

SeekableByteChannel6 position(long newPosition)

Sets this channel's position.

• read

int read(java.nio.ByteBuffer dst)

Reads a sequence of bytes from this channel into the given buffer. Bytes are read
starting at this channel's current position, and then the position is updated with the
number of bytes actually read.

• size

long size()

Returns the current size of the entity to which this channel is connected.

• truncate

SeekableByteChannel6 truncate(long size)

Truncates the entity, to which this channel is connected, to the given size. Never invoked
by Outside In and may be implemented by just returning this.

• write

int write(java.io.nio.ByteBuffer src)

Writes a sequence of bytes to this channel from the given buffer. Bytes are written
starting at this channel's current position. The entity to which the channel is connected is
grown, if necessary, to accommodate the written bytes, and then the position is updated
with the number of bytes actually written.

• close

void close()

Closes this channel. If this channel is already closed then invoking this method has no
effect.

• isOpen

boolean isOpen()

Tells whether or not this channel is open.

Chapter 12
Exporter Interface

12-9

12.3.3 OptionsCache Class
This section describes the OptionsCache class.

The options that configure the way outputs are generated are accessed through the
OptionsCache class.

All of the options described in the following subsections are available through this
interface. Other methods in this interface are described below.

Namespace

com.oracle.outsidein.options

Methods

• OptionsCache setSourceFile(File file) throws OutsideInException

Sets the source document to be opened.

file: Full path to source file

• OptionsCache setSourceFile(SeekableByteChannel6 redirect) throws
OutsideInException

Sets an object that implements SeekableByteChannel6 to be used as the source
document. Exporting a file using this method may have issues with files that
require the original name of the file (examples: if the extension of the file is needed
for identification purposes or if the name of a secondary file depends on the name/
path of the original source file).

redirect: Object implementing SeekableByteChannel6 to be used to read the
source data containing the input file

• OptionsCache setSourceFile(SeekableByteChannel6 redirect, String filename)
throws OutsideInException

Sets an object that implements SeekableByteChannel6 to be used as the source
document and provides information about the filename.

redirect: Object implementing SeekableByteChannel6 to be used to read the
source data containing the input file

filename: A fully qualified path or file name that may be used to derive the
extension of the file or name of a secondary file that is dependent on the name/
path of the source file

• OptionsCache addSourceFile(File file) throws OutsideInException

Sets the next source document file to be exported in sequence. This allows
multiple documents to be exported to the same output destination.

file: Full path to source file

• OptionsCache addSourceFile(SeekableByteChannel6 redirect)

Set a redirected channel as the next source document to be exported to the
original destination file. This method has the same limitations as the similar
setSourceFile(SeekableByteChannel6 redirect) method.

• OptionsCache addSourceFile(SeekableByteChannel6 redirect, String Filename)

Chapter 12
Exporter Interface

12-10

Set a redirected channel as the next source document to be exported to the original
destination file. The file name provided is used as in the method
setSourceFile(SeekableByteChannel6 redirect, String Filename)

• OptionsCache setSourceFormat(FileFormat fileId)

Sets the source format to process the input file as, ignoring the algorithmic detection of
the file type.

fileId: the format to treat the input document as.

• OptionsCache setDestinationFile(File file) throws OutsideInException

Sets the location of the destination file.

file: Full path to the destination file

• OptionsCache setDestinationFile(SeekableByteChannel6 redirect) throws
OutsideInException

Sets an object that implements SeekableByteChannel6 to be used as the destination
document. An Exporter.export() operation will write the output data to the provided
SeekableByteChannel6 object.

redirect: Object implementing SeekableByteChannel6 to be used as the destination
document written during an Exporter.export() operation

• OptionsCache setCallbackHandler(Callback callback)

Sets the object to use to handle callbacks.

callback: the callback handling object.

• OptionsCache setPasswordsList(List<String> Passwords)

Provides a list of strings to use as passwords for encrypted documents. The technology
will cycle through this list until a successful password is found or the list is exhausted.

Passwords: List of strings to be used as passwords.

• OptionsCache setLotusNotesId(String NotesIdFile)

Sets the Lotus Notes ID file location.

NotesIdFile: Full path to the Notes ID file.

• OptionsCache setOpenForNonSequentialAccess(boolean
bOpenForNonSequentialAccess)

Setting this option causes the technology to open archive files in a special mode that is
only usable for non-sequential access of nodes.

bOpenForNonSequentialAccess : If set to true would open the archive file in the special
access mode. Note that turning this flag on a non-archive file will throw an exception at
RunExport time.

12.3.3.1 AcceptAlternateGraphics
OIT Option ID: SCCOPT_ACCEPT_ALT_GRAPHICS

This option enables an optimization in XML Export's graphics output when exporting
embedded graphics from an input document. When this option is set to TRUE and the input
document contains embedded graphics that are already in one of our supported output
formats, they will be copied to output files rather than converted to the selected output format
specified by the GraphicType option.

Chapter 12
Exporter Interface

12-11

For example, if this option is set to TRUE and the selected output graphics type is GIF,
an input document's embedded JPEG graphic will be copied to a JPEG output file
rather than being converted to the GIF format. The same behavior applies to all of
XML Export's supported graphics output formats (currently GIF, JPEG, and PNG.)

If this option is set to FALSE, all graphics output will be in the format specified by the
GraphicType option.

Note:

When using this option, JPEG files will be transferred directly to their output
file location, without being filtered. This presents the possibility that any
JPEG viruses in the file can be transferred to that location, as well.

Data Type

boolean

Data

• true: FI_GIF, FI_JPEGFIF, and FI_PNG embeddings will be extracted, not
converted. All other embeddings will be converted to the format specified by
GraphicType. If graphicType is set to FI_NONE, no embeddings will be extracted
or converted.

• false: All embeddings will be converted to the format specified by GraphicType.
Embeddings that are already in that format will be extracted, not converted. If
graphicType is set to FI_NONE, no embeddings will be extracted or converted.

Default

false

12.3.3.2 DefaultInputCharacterSet
OIT Option ID: SCCOPT_DEFAULTINPUTCHARSET

This option is used in cases where Outside In cannot determine the character set used
to encode the text of an input file. When all other means of determining the file's
character set are exhausted, Outside In will assume that an input document is
encoded in the character set specified by this option. This is most often used when
reading plain-text files, but may also be used when reading HTML or PDF files.

Data Type

DefaultInputCharacterSetValue

DefaultInputCharacterSetValue Enumeration

DefaultInputCharacterSetValue can be one of the following enumerations:

SYSTEMDEFAULT

UNICODE

BIGENDIANUNICODE

Chapter 12
Exporter Interface

12-12

LITTLEEENDIANUNICODE

UTF8

UTF7

ASCII

UNIXJAPANESE

UNIXJAPANESEEUC

UNIXCHINESETRAD1

UNIXCHINESEEUCTRAD1

UNIXCHINESETRAD2

UNIXCHINESEEUCTRAD2

UNIXKOREAN

UNIXCHINESESIMPLE

EBCDIC37

EBCDIC273

EBCDIC274

EBCDIC277

EBCDIC278

EBCDIC280

EBCDIC282

EBCDIC284

EBCDIC285

EBCDIC297

EBCDIC500

EBCDIC1026

DOS437

DOS737

DOS850

DOS852

DOS855

DOS857

DOS860

DOS861

DOS863

Chapter 12
Exporter Interface

12-13

DOS865

DOS866

DOS869

WINDOWS874

WINDOWS932

WINDOWS936

WINDOWS949

WINDOWS950

WINDOWS1250

WINDOWS1251

WINDOWS1252

WINDOWS1253

WINDOWS1254

WINDOWS1255

WINDOWS1256

WINDOWS1257

ISO8859_1

ISO8859_2

ISO8859_3

ISO8859_4

ISO8859_5

ISO8859_6

ISO8859_7

ISO8859_8

ISO8859_9

MACROMAN

MACCROATIAN

MACROMANIAN

MACTURKISH

MACICELANDIC

MACCYRILLIC

MACGREEK

MACCE

Chapter 12
Exporter Interface

12-14

MACHEBREW

MACARABIC

MACJAPANESE

HPROMAN8

BIDIOLDCODE

BIDIPC8

BIDIE0

RUSSIANKOI8

JAPANESEX0201

Default

SYSTEMDEFAULT

12.3.3.3 DocumentMemoryMode
OIT Option ID: SCCOPT_DOCUMENTMEMORYMODE

This option determines the maximum amount of memory that the chunker may use to store
the document's data, from 4 MB to 1 GB. The more memory the chunker has available to it,
the less often it needs to re-read data from the document.

Data

• SMALLEST: 1 - 4MB

• SMALL: 2 - 16MB

• MEDIUM: 3 - 64MB

• LARGE: 4 - 256MB

• LARGEST: 5 - 1 GB

Default

SMALL: 2 - 16MB

12.3.3.4 EnableAlphaBlending
This option allows the user to enable alpha-channel blending (transparency) in rendering
vector images. This is primarily useful for improving fidelity when vector images are rendered
with a slower graphics engine such as X-Windows, over a network where performance is not
an issue.

Data

Boolean

Default

False

Chapter 12
Exporter Interface

12-15

12.3.3.5 ExtractXMPMetadata
OIT Option ID: SCCOPT_EXTRACTXMPMETADATA

Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
the XMP feature, which does not interpret the XMP metadata, but passes it straight
through without any interpretation. This option will be ignored if the
ParseXMPMetadata option is enabled.

Data Type

boolean

Data

• true: This setting enables XMP extraction.

• false: This setting disables XMP extraction.

Default

• false

12.3.3.6 FallbackFormat
This option controls how files are handled when their specific application type cannot
be determined. This normally affects all plain-text files, because plain-text files are
generally identified by process of elimination, for example, when a file isn't identified as
having been created by a known application, it is treated as a plain-text file. It is
recommended that None be set to prevent the conversion from exporting unidentified
binary files as though they were text, which could generate many pages of "garbage"
output.

Data Type

FallbackFormatValue

FallbackFormatValue Enumeration

• TEXT: Unidentified file types will be treated as text files.

• NONE: Outside In will not attempt to process files whose type cannot be identified

Default

TEXT

12.3.3.7 GraphicHeight
OIT Option ID: SCCOPT_GRAPHIC_HEIGHT

This option defines the absolute height in pixels to which exported graphics will be
resized. If this option is set and the GraphicWidth option is not, the width of the image
will be calculated based on the aspect ratio of the source image. The developer should
be aware that very large values for this option or GraphicWidth could produce images
whose size exceeds available system memory, resulting in conversion failure.

Chapter 12
Exporter Interface

12-16

If you are exporting a non-graphic file (word processing, spreadsheet or archive) and the
settings for GraphicHeight and GraphicWidth do not match the aspect ratio of the original
document, the exported image will have whitespace added so that the original file's aspect
ratio is maintained.

The settings for the GraphicHeightLimit and GraphicWidth options can override the setting for
GraphicHeight.

Data Type

long

12.3.3.8 GraphicHeightLimit
OIT Option ID: SCCOPT_GRAPHIC_HEIGHTLIMIT

Note that this option differs from the behavior of setting the height of graphics in that it sets an
upper limit on the image height. Images larger than this limit will be reduced to the limit value.
However, images smaller than this height will not be enlarged when using this option. Setting
the height using GraphicHeight causes all output images to be reduced or enlarged to be of
the specified height.

Data Type

long

12.3.3.9 GraphicOutputDPI
OIT Option ID: SCCOPT_GRAPHIC_OUTPUTDPI

This option allows the user to specify the output graphics device's resolution in DPI and only
applies to images whose size is specified in physical units (in/cm). For example, consider a 1"
square, 100 DPI graphic that is to be rendered on a 50 DPI device (GraphicOutputDPI is set
to 50). In this case, the size of the resulting TIFF, BMP, JPEG, GIF, or PNG will be 50 x 50
pixels.

In addition, the special #define of SCCGRAPHIC_MAINTAIN_IMAGE_DPI, which is defined
as 0, can be used to suppress any dimensional changes to an image. In other words, a 1"
square, 100 DPI graphic will be converted to an image that is 100 x 100 pixels in size. This
value indicates that the DPI of the output device is not important. It extracts the maximum
resolution from the input image with the smallest exported image size.

Setting this option to SCCGRAPHIC_MAINTAIN_IMAGE_DPI may result in the creation of
extremely large images. Be aware that there may be limitations in the system running this
technology that could result in undesirably large bandwidth consumption or an error
message. Additionally, an out of memory error message will be generated if system memory
is insufficient to handle a particularly large image.

Also note that the SCCGRAPHIC_MAINTAIN_IMAGE_DPI setting will force the technology to
use the DPI settings already present in raster images, but will use the current screen
resolution as the DPI setting for any other type of input file.

For some output graphic types, there may be a discrepancy between the value set by this
option and the DPI value reported by some graphics applications. The discrepancy occurs
when the output format uses metric units (DPM, or dots per meter) instead of English units
(DPI, or dots per inch). Depending on how the graphics application performs rounding on
meters to inches conversions, the DPI value reported may be 1 unit more than expected. An
example of a format which may exhibit this problem is PNG.

Chapter 12
Exporter Interface

12-17

The maximum value that can be set is 2400 DPI; the default is 96 DPI.

Data Type

long

12.3.3.10 GraphicSizeLimit
OIT Option ID: SCCOPT_GRAPHIC_SIZELIMIT

This option is used to set the maximum size of the exported graphic in pixels. It may
be used to prevent inordinately large graphics from being converted to equally
cumbersome output files, thus preventing bandwidth waste.

This setting takes precedence over all other options and settings that affect the size of
a converted graphic.

When creating a multi-page TIFF file, this limit is applied on a per page basis. It is not
a pixel limit on the entire output file.

Data Type

long

12.3.3.11 GraphicSizeMethod
OIT Option ID: SCCOPT_GRAPHIC_SIZEMETHOD

This option determines the method used to size graphics. The developer can choose
among three methods, each of which involves some degree of trade off between the
quality of the resulting image and speed of conversion.

Using the quick sizing option results in the fastest conversion of color graphics, though
the quality of the converted graphic will be somewhat degraded. The smooth sizing
option results in a more accurate representation of the original graphic, as it uses anti-
aliasing. Antialiased images may appear smoother and can be easier to read, but
rendering when this option is set will require additional processing time. The grayscale
only option also uses antialiasing, but only for grayscale graphics, and the quick sizing
option for any color graphics.

The smooth sizing option does not work on images which have a width or height of
more than 4096 pixels.

Data

• QUICKSIZING

• SMOOTHSIZING

• SMOOTHGRAYSCALESIZING

12.3.3.12 GraphicWidth
OIT Option ID: SCCOPT_GRAPHIC_WIDTH

This option defines the absolute width in pixels to which exported graphics will be
resized. If this option is set and the GraphicHeight option is not, the height of the
image will be calculated based on the aspect ratio of the source image. The developer

Chapter 12
Exporter Interface

12-18

should be aware that very large values for this option or GraphicHeight could produce images
whose size exceeds available system memory, resulting in conversion failure.

If you are exporting a non-graphic file (word processing, spreadsheet or archive) and the
settings for GraphicHeight and GraphicWidth do not match the aspect ratio of the original
document, the exported image will have whitespace added so that the original file's aspect
ratio is maintained.

The settings for the GraphicHeightLimit and GraphicWidthLimit options can override the
setting for GraphicWidth.

Data Type

long

12.3.3.13 GraphicWidthLimit
OIT Option ID: SCCOPT_GRAPHIC_WIDTHLIMIT

This option allows a hard limit to be set for how wide in pixels an exported graphic may be.
Any images wider than this limit will be resized to match the limit. It should be noted that
regardless whether the GraphicHeightLimit option is set or not, any resized images will
preserve their original aspect ratio.

Note that this option differs from the behavior of setting the width of graphics by using
GraphicWidth in that it sets an upper limit on the image width. Images larger than this limit will
be reduced to the limit value. However, images smaller than this width will not be enlarged
when using this option. Setting the width using GraphicWidth causes all output images to be
reduced or enlarged to be of the specified width.

Data Type

long

12.3.3.14 IECondCommentMode
OIT Option ID: SCCOPT_HTML_COND_COMMENT_MODE

Some HTML input files may include "conditional comments", which are HTML comments that
mark areas of HTML to be interpreted in specific versions of Internet Explorer, while being
ignored by other browsers. This option allows you to control how the content contained within
conditional comments will be interpreted by Outside In's HTML parsing code.

Data

• NONE: Don't output any conditional comment

• IE5: Include the IE5 comments

• IE6: Include the IE6 comments

• IE7: Include the IE7 comments

• IE8: Include the IE8 comments

• IE9: Include the IE9 comments

• ALL: Include all conditional comments

Chapter 12
Exporter Interface

12-19

12.3.3.15 IgnorePassword
OIT Option ID: SCCOPT_IGNORE_PASSWORD

This option can disable the password verification of files where the contents can be
processed without validation of the password. If this option is not set, the filter should
prompt for a password if it handles password-protected files.

Data Type

boolean

12.3.3.16 InterlacedGIFs
OIT Option ID: SCCOPT_GIF_INTERLACED

This option allows the developer to specify interlaced or non-interlaced GIF output.
Interlaced GIFs are useful when graphics are to be downloaded over slow Internet
connections. They allow the browser to begin to render a low-resolution view of the
graphic quickly and then increase the quality of the image as it is received. There is no
real penalty for using interlaced graphics.

This option is only valid if the dwOutputID parameter of the EXOpenExport function is
set to FI_GIF.

Data Type

boolean

12.3.3.17 InternalRendering

Note:

This option is no longer relevant. Outside In no longer performs graphic
rendering through X11 on Linux/Unix platforms.The internal rendering engine
is available on all of these platforms. If this option is set, the results will
always use the internal rendering engine regardless of the value of this
option. The $GDFONTPATH environment variable must be set to specify
where to reference fonts. On Windows systems, the Windows graphical
rendering engine is always used.

12.3.3.18 ISODateTimes
OIT Option ID: SCCOPT_FORMATFLAGS

When this flag is set, all Date and Time values are converted to the ISO 8601
standard. This conversion can only be performed using dates that are stored as
numeric data within the original file.

Data Type

boolean

Chapter 12
Exporter Interface

12-20

Default

false

12.3.3.19 JPEGQuality
OIT Option ID: SCCOPT_JPEG_QUALITY

This option allows the developer to specify the lossyness of JPEG compression. The option is
only valid if the dwOutputID parameter of the EXOpenExport function is set to FI_JPEGFIF.

Data Type

long

Data

A value from 1 to 100, with 100 being the highest quality but the least compression, and 1
being the lowest quality but the most compression.

Default

100

12.3.3.20 LotusNotesDirectory
OIT Option ID: SCCOPT_LOTUSNOTESDIRECTORY

This option allows the developer to specify the location of a Lotus Notes or Domino
installation for use by the NSF filter. A valid Lotus installation directory must contain the file
nnotes.dll.

Type (Common): String

Data

A path to the Lotus Notes directory.

Default

If this option isn't set, then OIT will first attempt to load the Lotus library according to the
operating system's PATH environment variable, and then attempt to find and load the Lotus
library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

12.3.3.21 OutputGraphicType
OIT Option ID: SCCOPT_GRAPHIC_TYPE

This option allows the developer to specify the format of the graphics produced by the
technology.

• When setting this option, remember that the JPEG file format does not support
transparency.

• Though the GIF file format supports transparency, it is limited to using only one of its 256
available colors to represent a transparent pixel ("index transparency").

Chapter 12
Exporter Interface

12-21

• PNG supports many types of transparency. The PNG files written by HTML Export
are created so that various levels of transparency are possible for each pixel. This
is achieved through the implementation of an 8-bit "alpha channel".

There is a special optimization that HTML Export can make when this option is set to
None. Some of the Outside In Viewer Technology's import filters can be optimized to
ignore certain types of graphics.

Data Type

OutputGraphicTypeValue

OutputGraphicTypeValue Enumeration

These are the possible values for OutputGraphicType:

• GIF: Create GIF images

• JPEG: Create JPEG/JFIF images

• PNG: Create PNG images

• NONE: Turn off graphic conversions

Default

JPEG

12.3.3.22 ParseXMPMetadata
OIT Option ID: SCCOPT_PARSEXMPMETADATA

Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
parsing of the XMP data into normal OIT document properties. Enabling this option
may cause the loss of some regular data in premium graphics filters (such as
Postscript), but won't affect most formats (such as PDF).

Data Type

boolean

Data

• true: This setting enables parsing XMP.

• false: This setting disables parsing XMP.

Default

false

12.3.3.23 PDFInputMaxEmbeddedObjects
This option allows the user to limit the number of embedded objects that are produced
in a PDF file.

Data Type

long

Chapter 12
Exporter Interface

12-22

Data

The maximum number of embedded objects to produce in PDF output. Setting this to 0 would
produce an all embedded objects in the input document.

Default

0 – produce all objects.

12.3.3.24 PDFInputMaxVectorPaths
This option allows the user to limit the number of vector paths that are produced in a PDF file.

Data Type

long

Data

The maximum number of paths to produce in PDF output. Setting this to 0 would produce an
all vector objects in the input document.

Default

0 – produce all vector objects.

12.3.3.25 PDFReorderBiDi
OIT Option ID: SCCOPT_PDF_FILTER_REORDER_BIDI

This option controls whether or not the PDF filter will attempt to reorder bidirectional text runs
so that the output is in standard logical order as used by the Unicode 2.0 and later
specification. This additional processing will result in slower filter performance according to
the amount of bidirectional data in the file.

PDFReorderBiDiValue Enumeration

This enumeration defines the type of Bidirection text reordering the PDF filter should perform.

• STANDARDBIDI: Do not attempt to reorder bidirectional text runs.

• REORDEREDBIDI: Attempt to reorder bidirectional text runs.

12.3.3.26 PDFWordSpacingFactor
This option controls the spacing threshold in PDF input documents. Most PDF documents do
not have an explicit character denoting a word break. The PDF filter calculates the distance
between two characters to determine if they are part of the same word or if there should be a
word break inserted. The space between characters is compared to the length of the space
character in the current font multiplied by this fraction. If the space between characters is
larger, then a word break character is inserted into the text stream. Otherwise, the characters
are considered to be part of the same word and no word break is inserted.

Data Type

float

Chapter 12
Exporter Interface

12-23

Data

A value representing the percentage of the space character used to trigger a word
break. Valid values are positive values less than 2.

Default

0.85

12.3.3.27 PerformExtendedFI
OIT Option ID: SCCOPT_FIFLAGS

This option affects how an input file's internal format (application type) is identified
when the file is first opened by the Outside In technology. When the extended test flag
is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC, or
Unicode, the file's contents will be interpreted as such by the export process.

The extended test is optional because it requires extra processing and cannot
guarantee complete accuracy (which would require the inspection of every single byte
in a file to eliminate false positives).

Data Type

boolean

Data

One of the following values:

• false: When this is set, standard file identification behavior occurs.

• true: If set, the File Identification code will run an extended test on all files that are
not identified.

Default

• true

12.3.3.28 ProcessOLEEmbeddingMode
OIT Option ID: SCCOPT_PROCESS_OLE_EMBEDDINGS

Microsoft Powerpoint versions from 1997 through 2003 had the capability to embed
OLE documents in the Powerpoint files. This option controls which embeddings are to
be processed as native (OLE) documents and which are processed using the alternate
graphic.

Note:

The Microsoft Powerpoint application sometimes does embed known
Microsoft OLE embeddings (such as Visio, Project) as an "Unknown" type.
To process these embeddings, the ProcessOLEEmbedAll option is required.
Post Office-2003 products such as Office 2007 embeddings also fall into this
category.

Chapter 12
Exporter Interface

12-24

Data

• STANDARD: Process embeddings that are known standard embeddings. These include
Office 2003 versions of Word, Excel, Visio, etc.

• ALL: Process all embeddings in the file.

• NONE: Process none of the embeddings in the file.

Default

STANDARD

12.3.3.29 RenderEmbeddedFonts
This option allows you to disable the use of embedded fonts in PDF input files. If the option is
set to true, the embedded fonts in the PDF input are used to render text; if the option is set to
false, the embedded fonts are not used and the fallback is to use fonts available to Outside In
to render text.

Data Type

boolean

Default

true

12.3.3.30 ShowArchiveFullPath
OIT Option ID: SCCOPT_ARCFULLPATH

This option causes the full path of a node to be returned in "GetArchiveNodeInfo" and
"GetObjectInfo".

Data Type

boolean

Data

• true: Provide the full path.

• false: Do not provide the path.

Default

false

12.3.3.31 StrictFile
When an embedded file or URL can't be opened with the full path, OutsideIn will sometimes
try and open the referenced file from other locations, including the current directory. When
this option is set, it will prevent OutsideIn from trying to open the file from any location other
than the fully qualified path or URL.

Chapter 12
Exporter Interface

12-25

Data Type

boolean

Default

false

12.3.3.32 TimeZoneOffset
OIT Option ID: SCCOPT_TIMEZONE

This option allows the user to define an offset to GMT that will be applied during date
formatting, allowing date values to be displayed in a selectable time zone. This option
affects the formatting of numbers that have been defined as date values. This option
will not affect dates that are stored as text.

Note:

Daylight savings is not supported. The sent time in msg files when viewed in
Outlook can be an hour different from the time sent when an image of the
msg file is created.

Data Type

long

Data

Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query
the operating system for the time zone set on the machine, specify
SCC_TIMEZONE_USENATIVE.

Default

• 0: GMT time

12.3.3.33 UnmappableCharacter
OIT Option ID: SCCOPT_UNMAPPABLECHAR

This option selects the character used when a character cannot be found in the output
character set. This option takes the Unicode value for the replacement character. It is
left to the user to make sure that the selected replacement character is available in the
output character set.

Data Type

int

Data

The Unicode value for the character to use.

Chapter 12
Exporter Interface

12-26

Default

• 0x002a = "*"

12.3.3.34 XMLDefinitionReference
This option determines whether the converted file will reference a specified schema, DTD, or
no reference when generating output.

Data Type

XMLReference

Data

A XMLReference object that defines the XML Definition Reference to be used.

Default

No reference defined

12.3.3.35 XXFormatOptions
This option is a set of flags that are specific to XML Export output files.

Data Type

EnumSet<XXFormatOptionValues>

XXFormatOptionValues Enumeration

The following set of flags:

• DELIMITERS: Often, files have individual characters that are placed at specific draw
locations. Consequently, the Flexiondoc converter produces individual draw_text
characters without any indication of word boundaries. This flag forces the Flexiondoc
converter to attempt to determine where words and lines end. The input filters indicate
these positions by producing a WORD_DELIMITER for word endings, and a DELIMITER
for line endings. These delimiters are passed along in the Flexiondoc output to assist the
user in reconstructing words and lines.

• OPTIMIZESECTIONS: Use wp.section elements to delineate column references.

• FLATTENSTYLES: Flatten styles to eliminate the need to process the "based-on="
attribute. By turning on this option, paragraph style should all be fully attributed.
Character styles can't be fullly attributed, that is, they won't always be completely
flattened.

• PROCESSARCHIVESUBDOCUMENTS: Process all archive sub-objects and put the
output in the main Flexiondoc output

• PROCESSATTACHMENTSUBDOCUMENTS: Process all attachments and put the output
in the main Flexiondoc output

• PROCESSEMBEDDINGSUBDOCUMENTS: Process all embeddings and put the output
in the main Flexiondoc output

• REMOVEFONTGROUPS: Replace font groups with references to individual fonts.

• INCLUDETEXTOFFSETS: Include text_offset attribute on tx.p and tx.r elements.

Chapter 12
Exporter Interface

12-27

• SEPARATESTYLETABLES: Enabling this flag will cause the style_tables subtree
to be streamed to a separate output unit. This item is deprecated.

• USEFULLFILEPATHS: Locators for externalized embeddings will contain full,
absolute path names.

• BITMAPASBITMAP: dr.image objects are converted to a graphic file and the
resulting file is referenced by the locator child of the dr.image.

• CHARTASBITMAP: ch.chart objects are converted to a graphic file and the
resulting file is referenced by the locator child of the ch.chart.

• PRESENTATIONASBITMAP: pr.slide objects are converted to a graphic file and
the resulting file is referenced by the locator child of the pr.slide.

• VECTORASBITMAP: dr.drawing objects are converted to a graphic file and the
resulting file is referenced by the locator child of the dr.drawing.

• GENERATESYSTEMMETADATA: When this flag is set, system metadata will be
generated. This information is gathered through system calls and may adversely
affect performance.

• NOBITMAPELEMENTS: Bitmap graphics are suppressed; no dr.image content will
appear in the converted document.

• NOCHARTELEMENTS: Charts are suppressed; no ch.chart content will appear in
the converted document.

• NOPRESENTATIONELEMENTS: Presentation slides are suppressed; no pr.slide
content will appear in the converted document.

• NOVECTORELEMENTS: Vector drawings are suppressed; no dr.drawing content
will appear in the converted document.

• These next four flags are mutually exclusive:

– DEFAULTCHARACTERMAPPING: Default behavior: All text is mapped to
Unicode, in tx.text elements.

– NOCHARARACTERMAPPING: All text is left in the original character set, in
tx.utext elements.

– MAPTEXT: Text is mapped to Unicode where possible, unmappable text is left
in the original character set.

– MAPPEDANDUNMAPPEDCHARACTERS: Both mapped and unmapped text
is included as an alt element containing tx.text and tx.utext.

Default

REMOVEFONTGROUPS

12.3.3.36 DSTTimezone
This option uses the time zone of the system (computer) and calculates the time
based on the system time offset.

Data Type

Boolean

Chapter 12
Exporter Interface

12-28

Default

False

12.3.3.37 GenerateExcelRevisions
This option controls the extraction of tracked changes from Excel files.

Data Type

Boolean

Default

False

12.4 ExportStatus Class
The ExportStatus class provides access to information about a conversion. This information
may include information about sub-document failures, areas of a conversion that may not
have high fidelity with the original document. When applicable the number of pages in the
output is also provided.

Namespace

com.oracle.outsidein

Accessors

• long getPageCount() - A count of all of the output pages produced during an export
operation.

• EnumSet<ExportStatusFlags> getStatusFlags() - Gets the information about possible
fidelity issues with the original document.

• long getSubDocsFailed() - Number of sub documents that were not converted.

• long getSubDocsPassed() - Number of sub documents that were successfully converted.

ExportStatusFlags Enumeration

This enumeration is the set of possible known problems that can occur during an export
process.

• NoInformationAvailable: No Information is available

• MissingMap: A PDF text run was missing the toUnicode table

• VerticalText: A vertical text run was present

• TextEffects: A run that had unsupported text effects applied. One example is Word Art

• UnsupportedCompression: A graphic had an unsupported compression

• UnsupportedColorSpace: A graphic had an unsupported color space

• Forms: A sub documents had forms

• RightToLeftTables: A table had right to left columns

• Equations: A file had equations

Chapter 12
ExportStatus Class

12-29

• AliasedFont: The desired font was missing, but a font alias was used

• MissingFont: The desired font wasn't present on the system

• SubDocFailed: a sub-document was not converted

• TypeThreeFont: A type 3 font was encountered.

• UnsupportedShading: An unsupported shading pattern was encountered.

• InvalidHTML: An HTML parse error, as defined by the W3C, was encountered.

12.5 FileFormat Class
This class defines the identifiers for file formats.

Namespace

com.oracle.outsidein

Methods

• GetDescription

String GetDescription()
This method returns the description of the format.

• GetId

int GetId()
This method returns the numeric identifier of the format.

• ForId

FileFormat ForId(int id)
This method returns the FileFormat object for the given identifier.

id: The numeric identifier for which the corresponding FileFormat object is
returned.

12.6 ObjectInfo Class
ObjectInfo provides all the information available about the OIT Object. This is a read-
only class where the technology fills in all the values.

Namespace

com.oracle.outsidein.options

Accessors

• ObjectInfo.CompressionValues getCompression() - the type of compression used
to store the object, if known.

• EnumSet<ObjectInfo.ObjectInfoFlagValues> getFlags() - flags indicating attributes
of the object.

• FileFormat getFormatId() - the format Identifier of the object.

• String getName() - name of the object.

Chapter 12
FileFormat Class

12-30

ObjectInfoFlags Enumeration

Bit fields to describe information about an object.

• PARTIALFILE: Object would not normally exist outside the source document

• PROTECTEDFILE: Object is encrypted or password protected

• UNSUPPORTEDCOMPRESSION: Object uses an unsupported compression mechanism

• DRMFILE: Object uses Digital Rights Management protection

• UNIDENTIFIEDFILE: Object is extracted, but can not successfully identified

• LINKTOFILE: Object links to file, it can not be extracted

• ENCRYPTEDFILE: Object is encrypted and can be decrypted with the known password

12.7 Option Interface
The Option Interface provides the methods and properties to retrieve information about an
Outside In Option.

Namespace

Outside In

Properties

• Name — Name of the option

• Description — Description of the option

• DataType — The type of the option value

• SupportingProducts — The list of products that support this option

Method

void Set(OptionsCache exporter, Object objValue);

This method sets the option to the exporter object.

• exporter — The exporter option

• objValue — Value of the option

Note:

If the type of objValue cannot be converted to the data type the option is expecting,
an OutsideInCastException is thrown.

OutsideInProducts Enumeration

• HTMLExport — Outside In HTML Export

• ImageExport — Outside In Image Export

• PDFExport — Outside In PDF Export

Chapter 12
Option Interface

12-31

• SearchExport — Outside In Search Export

• WebViewExport — Outside In Web View Export

• XMLExport — Outside In XML Export

• AllExports — All Outside In export products

12.8 OutsideIn Class
This is a utility class that creates an instance of an Exporter object on request.

Namespace

com.oracle.outsidein

Methods

static Exporter newLocalExporter()

This method creates an instance of an Exporter object. It returns a newly created
Exporter object.

static Exporter newLocalExporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the
source Exporter. All the options of source are copied to the new Exporter. The source
and destination file information will not be copied.

12.9 OutsideInException Class
This is the exception that is thrown when an Outside In Technology error occurs.

This class derives from the Exception class. This class has no public methods or
properties except those of the parent Exception class.

Namespace

com.oracle.outsidein

12.10 XMLReference Class
The XMLReference class is a data class used to define the XML definition reference to
be used.

Namespace

com.oracle.outsidein.options

Constructors

XMLReference()
Create an instance of a XMLReference object using No XML definition reference

XMLReference(XMLReference.ReferenceMethodValue, String)
Create an instance of a XMLReference object to provide a DTD/XSD

Chapter 12
OutsideIn Class

12-32

ReferenceMethodValue Enumeration

This enumeration is used to set whether Export will reference a schema, a DTD, or no
reference when generating output.

• DTD: Document Type Definition (DTD)

• XSD: Extensible Schema Definition

• NONE: No definition reference

Chapter 12
XMLReference Class

12-33

Part IV
Using the .NET API

This section provides details about using the SDK with the .NET API.

Part IV contains the following chapters:

• Introduction to the .NET API

• XML Export .NET Classes

13
Introduction to the .NET API

This chapter is an introduction to the .NET API for XML Export. Outside In .NET is a set of
class libraries and Windows DLLs that provides developers an easy interface to create .NET
applications using Outside In Technology.

The following topics are covered:

• Requirements

• Getting Started

13.1 Requirements
To develop applications using the .NET APIs, the following set of modules and tools are
required:

• The Outside In Technology (OIT) developer's redistributable modules for your product

• Visual Studio 2010 or later

• NET Framework 4.0 or later

• The API libraries:

outsidein.dll - The .NET libraries to access the Outside In technologies

oilink.dll and oilink.exe- The bridge modules between .NET and the C-APIs.

Google.ProtocolBuffers.dll - The cross language binary serialization provider.

13.2 Getting Started
There are two steps in developing applications using the APIs. In the first step, you would
need to configure the environment to create your application (typical programming tasks not
directly related to these APIs) and in the second step you would generate code to utilize the
functionality of these libraries.

13.2.1 Configuring your Environment
To setup the environment to create a .NET application, you would need to add references to
all the libraries. In order to use the Outside In components in your application, the following
component should be referenced: outsidein.dll. (This can be done by using the Add
Reference dialog box in Visual Studio.)

13.2.2 Generate Code
The sample application included with the SDK, OITsample, is a minimal demonstration of how
to use this API.

All the functionality required to perform a conversion is provided in an Exporter object. The
basic process of exporting a file involves the following tasks:

13-1

1. Create an Exporter object. To obtain access to the Outside In functionality, you
should call the utility function in the "OutsideIn" class. This will provide you an
instance of an Exporter Object.

2. Configure the export. The Outside In API is highly configurable, and presents
numerous options to fine-tune the way a document is exported. Each option has a
"set" and "get" method to set or retrieve the currently set value.

3. Set the source and primary destination files. You are required to specify the source
file and the destination file. This is done similar to setting options using "set"
methods.

4. Set the output type. In this step, you specify the output format.

5. (Optional) Provide a callback handler. The Outside In Technology provides
callbacks that allow the developer to intervene at critical points in the export
process. To respond to these callbacks, you would have to subscribe to any
messages that you are interested in by overriding the message handlers from the
"Callback" class. After creating an object of this class, set the callback option to
this object and the messages will be passed to your object.

6. Run the export. After all the previous steps are completed, you can produce the
desired output.

13.2.2.1 Create an Exporter Object
To obtain access to the Outside In functionality, you should call the utility function in
the "OutsideIn" class. This will provide you an instance of an Exporter Object.

Exporter exporter = OutsideIn.OutsideIn.NewLocalExporter();

13.2.2.2 Configure the Output
The Outside In API is highly configurable, and presents numerous options to fine-tune
the way a document is exported. Each option has a "set" and "get" method to set or
retrieve the currently set value.

exporter.SetPerformExtendedFI(true);
int timezoneOffset = exporter.GetTimeZoneOffset();

13.2.2.3 Set the Source and Primary Destination Files
You are required to specify the source file and the destination file. This is done
similarly to setting options using "set" methods.

exporter.SetSourceFile(inputFilename);

exporter.SetDestinationFile(outputFilename);

There are other options that can be set at this time to specify the way to handle the
input file, such as providing a SourceFormat to provide a mechanism to handle the
input file in a different format than that which it is identified as.

The API also supports opening certain types of embedded documents from within an
input file. For example, a .zip file may contain a number of embedded documents; and
an email message saved as a .msg file may contain attachments. The API provides
the means of opening these types of embedded documents. This can be done by

Chapter 13
Getting Started

13-2

opening the parent document and then the embedded document can be opened through this
exporter object.

// subdocId is the sequential number of the node in the archive file

Exporter exporterNode = exporter.NewTreeNodeExporter(subdocId);

13.2.2.4 Set the Output Type
In this step, you specify the output format.

exporter.SetDestinationFormat(FileFormat.FI_HTML5);

13.2.2.5 Provide a Callback Handler
Outside In Technology provides callbacks that allow the developer to intervene at critical
points in the export process. To respond to these callbacks, you have to subscribe to any
messages that you are interested in by overriding the message handlers from the Callback
class. After creating an object of this class, set the callback option to this object and the
messages will be passed to your object.

class CallbackHandler : Callback

{

 … // implementation of messages to handle - described in the next section

}

CallbackHandler callback = new CallbackHandler();

exporter.SetCallbackHandler(callback);

13.2.2.6 Run the Export
After all the previous steps are completed, you can produce the desired output.

exporter.Export();

13.2.3 Redirected I/O Support in .NET
Support for redirected I/O is supported through .NET Streams. Streams that are readable and
seekable can be used as input files, while streams that are readable, writable and seekable
can be used for output.

Using streams is very similar to using standard I/O in the .NET API. To use streams, the
stream object is passed as a parameter to the "SetSourceFile" or "SetDestinationFile". When
using Output streams, handling callbacks is mandatory when secondary files are expected to
be generated.

Chapter 13
Getting Started

13-3

14
XML Export .NET Classes

This chapter describes the XML Export .NET classes.
The following classes are covered:

• ArchiveNode Class

• Callback Class

• Exporter Interface

• ExportStatus Class

• FileFormat Class

• ObjectInfo Class

• Option Interface

• OutsideIn Class

• OutsideInException Class

• XMLReference Class

14.1 ArchiveNode Class
ArchiveNode provides information about an archive node. This is a read-only class where the
technology fills in all the values.

Namespace

OutsideIn

Properties

• IsDirectory (Boolean) A value of true indicates that the record is an archive node.

• FileSize (Int32) File size of the archive node

• NodeTime (Int32) Time the archive node was created

• NodeNum (Int32) Serial number of the archive node in the archive

• NodeName (String) The name of the archive node

14.2 Callback Class
Callback messages are notifications that come from Outside In during the export process,
providing information and sometimes the opportunity to customize the generated output.

Namespace

OutsideIn

14-1

To access callback messages, your code must create an object that inherits from
Callback and pass it through the API's SetCallbackHandler method. Your object can
implement methods that override the default behavior for whichever methods your
application is interested in.

Callback has three methods: OpenFile, CreateNewFile and NewFileInfo.

14.2.1 OpenFile
OpenFileResponse OpenFile(
 FileTypeValue fileType,
 string fileName
)

This callback is made any time a new file needs to be opened.

Parameters

• fileType: Type of file being requested to be opened.

• filename: Name of the file to be open

Return Value

To take action in response to this method, return an OpenFileResponse object.

FileTypeValue Enumeration

This enumeration defines the type of file being requested to be opened. Its value may
be one of the following:

• Input: File to be opened (path unknown)

• Template: Template file to be opened

• Path: Full file name of the file to be opened.

• Other: Not used.

14.2.1.1 OpenFileResponse Class
This is a class to define a new file or stream object in response to an OpenFile
callback.

Constructor

OpenFileResponse(FileInfo file)

File: File object with full path to the new file.

OpenFileResponse(Stream file)

File: A stream to which the file data will be written.

14.2.2 CreateNewFile
CreateNewFileResponse CreateNewFile(FileFormat ParentOutputId, FileFormat
OutputId,
 Association Association, string Path)

Chapter 14
Callback Class

14-2

This callback is made any time a new output file needs to be generated. This gives the
developer the chance to affect where the new output file is created, how it is named, and the
URL (if any) used to reference the file.

Parameters

• ParentOutputId: File format identifier of the parent file.

• OutputId: File format identifier of the file created.

• Association: An Association that describes relationship between the primary output file
and the new file.

• Path: Full path of the file to be created.

Return Value

To take action in response to this notification, return a CreateNewFileResponse object with
the new file information. If you wish to accept the defaults for the path and URL, you may
return null.

14.2.2.1 CreateNewFileResponse Class
This is a class to define a new output file location in response to a CreateNewFile callback. If
you do not wish to change the path to the new output file, you may use the path as received.
If you do not wish to specify the URL for the new file, you many specify it as null.

Constructor

CreateNewFileResponse(FileInfo File, string URL)

• File: File object with full path to new file.

• URL: A new URL that references the newly created file. This parameter can be null.

Association Enumeration

This enumeration defines, for a new file created by an export process, the different possible
associations between the new file and the primary output file. Its value may be one of the
following:

• Root - indicates the primary output file

• Child - a new file linked (directly or indirectly) from the primary output file

• Sibling - indicates new files not linked from the primary output file

• Copy - the file was copied as a part of a template macro operation.

• RequiredName - not used

Note that some of these relationships will not be possible in all Outside In Export SDKs.

14.2.3 NewFileInfo
void NewFileInfo(FileFormat ParentOutputId, FileFormat OutputId,
 Association Association, string Path, string URL)

This informational callback is made just after each new file has been created.

Chapter 14
Callback Class

14-3

Parameters

• ParentOutputId: File format identifier of the parent file

• OutputId: File format identifier of the file created

• Association: An Association that describes relationship between the primary output
file and the new file.

• Path: Full path of the file created

• URL: URL that references the newly created file

14.2.4 CreateTempFile
CreateTempFileResponse CreateTempFile()

This callback is made any time a new temporary file needs to be generated. This gives
the developer the chance to handle the reading and writing of the temporary file.

Return Value

To take action in response to this notification, return a CreateTempFileResponse
object with the temporary file information.

14.2.4.1 CreateTempFileResponse Class
This is a class to define a new file or stream object in response to an CreateTempFile
callback.

Constructor

CreateTempFileResponse (Stream file)

File: A stream to which the file data will be written and read from.

14.3 Exporter Interface
This section describes the properties and methods of Exporter.

All of Outside In's Exporter functionality can be accessed through the Exporter
Interface. The object returned by OutsideIn class is an implementation of this interface.
This class derives from the Document Interface, which in turn is derived from the
OptionsCache Interface.

Namespace

OutsideIn

Methods

• GetExportStatus

ExportStatus GetExportStatus()

This function is used to determine if there were conversion problems during an
export. The ExportStatus object returned may have information about sub-
document failures, areas of a conversion that may not have high fidelity with the

Chapter 14
Exporter Interface

14-4

original document. When applicable the number of pages in the output is also provided.

• NewSubDocumentExporter

Exporter NewSubDocumentExporter(
 int SubDocId,
 SubDocumentIdentifierTypeValue idType
)

Create a new Exporter for a subdocument.

SubDocId: Identifier of the subdocument

idType: Type of subdocument

SubDocumentIdentifierTypeValue: This is an enumeration for the type of subdocument
being opened.

– IDTYPE_XX: Subdocument to be opened is based on output of XML Export
(SubdocId is the value of the object_id attribute of a locator element.)

– IDTYPE_ATTACHMENT_LOCATOR: Subdocument to be opened is based on the
locator value provided by the one of the Export SDKs.

– IDTYPE_ATTACHMENT_INDEX: Subdocument to be opened is based on the index
of the attachment from an email message. (SubdocId is the zero-based index of the
attachment from an email message file. The first attachment presented by OutsideIn
has the index value 0, the second has the index value 1, etc.)

Returns: A new Exporter object for the subdocument

• NewSubObjectExporter

Exporter NewSubObjectExporter(
 SubObjectTypeValue objType,
 uint data1,
 uint data2,
 uint data3,
 uint data4
)

Create a new Exporter for a subobject.

objType: Type of subobject

data1: Data identifying the subobject from SearchML

data2: Data identifying the subobject from SearchML

data3: Data identifying the subobject from SearchML

data4: Data identifying the subobject from SearchML

Returns: A new Exporter object for the subobject

SubObjectTypeValue: An enumeration to describe the type of SubObject to open.

– LinkedObject

– EmbeddedObject

– CompressedFile

– Attachment

• NewArchiveNodeExporter

Chapter 14
Exporter Interface

14-5

Exporter NewArchiveNodeExporter(
 int dwRecordNum
)

Create a new Exporter for an archive node. You may get the number of nodes in
an archive using getArchiveNodeCount. The nodes are numbered from 0 to
getArchiveNodeCount -1.

dwRecordNum: The number of the record to retrieve information about. The first
node is node 0 and the total number of nodes may be obtained from
GetArchiveNodeCount.

Returns: A new Exporter object for the archive node

• Export

void Export()

Perform the conversion and close the Export process.

• SetExportTemplate

SetExportTemplate(FileInfo template)

This method sets the template file to be used for export.

template: A FileInfo object representing the template to be used for export.

• SetExportTimeout

OptionsCache SetExportTimeout(int millisecondsTimeout);

This method sets the time that the export process should wait for a response from
the Outside In export engine to complete the export of a document, setting an
upper limit on the time that will elapse during a call to Export(). If the specified
length of time or the default timeout amount is reached before the export has
completed, the export operation is terminated and an OutsideInException is
thrown. If this option is not set, the default timeout is 5 minutes.

• Close

Close()

This function closes the current Export process.

• NewLocalExporter

static Exporter NewLocalExporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the
source Exporter. All the options of source are copied to the new Exporter. The
source and destination file information will not be copied.

14.3.1 Document Interface
All of the Outside In document-related methods are accessed through the Document
Interface.

Namespace

OutsideIn

Chapter 14
Exporter Interface

14-6

Methods

• Close

void Close()

Closes the currently open document

• GetArchiveNodeCount

Int32 GetArchiveNodeCount()

Retrieves the number of nodes in an archive file.

Returns the number of nodes in the archive file or 0 if the file is not an archive file.

• GetFileId

FileFormat GetFileId(FileIdInfoFlagValue dwFlags)

Gets the format of the file based on the technology's content-based file identification
process.

dwFlags: Option to retrieve the file identification pre-Extended or post-Extended Test

Returns the format identifier of the file.

• GetObjectInfo

ObjectInfo GetObjectInfo()

Retrieves the information about an embedded object.

Return: An ObjectInfo object with the information about the embedded object

• GetArchiveNode

ArchiveNode GetArchiveNode(Int32 nNodeNum)

Retrieves information about a record in an archive file. You may get the number of nodes
in an archive using getArchiveNodeCount.

nNodeNum: The number of the record to retrieve information about. The first node is
node 0.

Return Value: An ArchiveNode object with the information about the record

• SaveArchiveNode

void SaveArchiveNode(
 Int32 nNodeNum,
 FileInfo fileinfo)
void SaveArchiveNode(
 Int32 nNodeNum,
 string strFileName)

Extracts a record in an archive file to disk.

nNodeNumType: The number of the record to retrieve information about. The first node is
node 0.

strFileNameType/fileinfo: Full path of the destination file to which the file will be extracted

• SaveArchiveNode with ArchiveNode

Chapter 14
Exporter Interface

14-7

void SaveArchiveNode(
 ArchiveNode arcNode,
 FileInfo fileinfo)
void SaveRecord(
 ArchiveNode arcNode,
 string strFileName)

Extracts a record in an archive file to disk.

arcNode: An ArchiveNode object retrieved from GetArchiveNodeInfo with
information about the node to extract

strFileNameType/fileinfo: Full path of the destination file to which the file will be
extracted

• SaveArchiveNode with Search Export Flags

void SaveArchiveNode(
 uint flags,
 uint params1,
 uint params2,
 FileInfo fileinfo)
void SaveArchiveNode(
 uint flags,
 uint params1,
 uint params2,
 string strFileName)

Extracts a record in an archive file to disk without reading the data for all nodes in
the archive in a sequential order. To use this function, you must first process the
archive with Search Export and save the Node data for later use in this function.

flagsType: Special flags value from Search Export

params1: Data1 from Search Export

params2: Data2 from Search Export

strFileNameType/fileinfo: Full path of the destination file to which the file will be
extracted

14.3.2 OptionsCache Class
This section describes the OptionsCache class.

The options that configure the way outputs are generated are accessed through the
OptionsCache class.

All of the options described in the following subsections are available through this
interface. Other methods in this interface are described below.

Namespace

OutsideIn.Options

Methods

• OptionsCache SetSourceFile(FileInfo file)

Sets the source document to be opened.

file: Full path to source file

Chapter 14
Exporter Interface

14-8

• OptionsCache SetSourceFile(string filename)

Set the source document.

filename: Full path of the source document

Returns: The options cache object associated with this document

• OptionsCache AddSourceFile(FileInfo file)

Sets the next source document file to be exported in sequence. This allows multiple
documents to be exported to the same output destination.

file: Full path to source file

• OptionsCache SetSourceFormat(FileFormat fileId)

Sets the source format to process the input file as, ignoring the algorithmic detection of
the file type.

fileId: the format to treat the input document as.

• OptionsCache SetDestinationFile(FileInfo file)

Sets the location of the destination file.

file: Full path to the destination file

• OptionsCache SetDestinationFile(string filename)

Set the location of the destination file.

filename: Full path to the destination file

returns: The updated options object

• OptionsCache SetDestinationFormat(FileFormat fileId)

Sets the destination file format to which the file should be converted to.

fileId: the format to convert the input document(s) to.

• OptionsCache SetCallbackHandler(Callback callback)

Sets the object to use to handle callbacks.

callback: the callback handling object.

• OptionsCache SetPasswordsList(List<String> Passwords)

Provides a list of strings to use as passwords for encrypted documents. The technology
will cycle through this list until a successful password is found or the list is exhausted.

Passwords: List of strings to be used as passwords.

• OptionsCache SetLotusNotesId(String NotesIdFile)

Sets the Lotus Notes ID file location.

NotesIdFile: Full path to the Notes ID file.

• OptionsCache SetOpenForNonSequentialAccess(bool bOpenForNonSequentialAccess)

Setting this option causes the technology to open archive files in a special mode that is
only usable for non-sequential access of nodes.

bOpenForNonSequentialAccess : If set to true would open the archive file in the special
access mode. Note that turning this flag on a non-archive file will throw an exception at
RunExport time.

• OptionsCache SetSourceFile(Stream file)

Chapter 14
Exporter Interface

14-9

Set an input stream as the source document. Exporting a file using this method
may have issues with files that require the original name of the file (example:
extension of the file for identification purposes or name of a secondary file
dependent on the name/path of this file).

• OptionsCache SetSourceFile(Stream file, String Filename)

Set an input stream as the source document and provide information about the
filename (fully qualified path or file name that may be used to derive the extension
of the file or name of a secondary file dependent on the name/path of this file).

• OptionsCache SetNextSourceFile(Stream file)

Set an input stream as the next source document to be exported to the original
destination file. This method has the same limitations as the similar
SetSourceFile(Stream file) method.

• OptionsCache SetNextSourceFile(Stream file, String Filename)

Set an input stream as the next source document to be exported to the original
destination file. The file name provided is used as in the method
SetSourceFile(Stream file, String Filename)

• OptionsCache SetNextSourceFile(FileInfo file)

Set an input stream as the next source document to be exported to the original
destination file.

• OptionsCache SetDestinationFile(Stream file)

Set an output stream as the destination for an export.

14.3.2.1 AcceptAlternateGraphics
OIT Option ID: SCCOPT_ACCEPT_ALT_GRAPHICS

This option enables an optimization in XML Export's graphics output when exporting
embedded graphics from an input document. When this option is set to true and the
input document contains embedded graphics that are already in one of our supported
output formats, they will be copied to output files rather than converted to the selected
output format specified by the GraphicType option.

For example, if this option is set to true and the selected output graphics type is GIF,
an input document's embedded JPEG graphic will be copied to a JPEG output file
rather than being converted to the GIF format. The same behavior applies to all of
XML Export's supported graphics output formats (currently GIF, JPEG, and PNG.)

If this option is set to false, all graphics output will be in the format specified by the
GraphicType option.

Note:

When using this option, JPEG files will be transferred directly to their output
file location, without being filtered. This presents the possibility that any
JPEG viruses in the file can be transferred to that location, as well.

Chapter 14
Exporter Interface

14-10

Data Type

bool

Data

• true: FI_GIF, FI_JPEGFIF, and FI_PNG embeddings will be extracted, not converted. All
other embeddings will be converted to the format specified by GraphicType. If
graphicType is set to FI_NONE, no embeddings will be extracted or converted.

• false: All embeddings will be converted to the format specified by GraphicType.
Embeddings that are already in that format will be extracted, not converted. If
graphicType is set to FI_NONE, no embeddings will be extracted or converted.

Default

false

14.3.2.2 DefaultInputCharacterSet
OIT Option ID: SCCOPT_DEFAULTINPUTCHARSET

This option is used in cases where Outside In cannot determine the character set used to
encode the text of an input file. When all other means of determining the file's character set
are exhausted, Outside In will assume that an input document is encoded in the character set
specified by this option. This is most often used when reading plain-text files, but may also be
used when reading HTML or PDF files.

Data Type

DefaultInputCharacterSetValue

DefaultInputCharacterSetValue Enumeration

DefaultInputCharacterSetValue can be one of the following enumerations:

SystemDefault

Unicode

BigEndianUnicode

LittleEndianUnicode

Utf8

Utf7

Ascii

UnixJapanese

UnixJapaneseEuc

UnixChineseTrad1

UnixChineseEucTrad1

UnixChineseTrad2

UnixChineseEucTrad2

Chapter 14
Exporter Interface

14-11

UnixKorean

UnixChineseSimple

Ebcdic37

Ebcdic273

Ebcdic274

Ebcdic277

Ebcdic278

Ebcdic280

Ebcdic282

Ebcdic284

Ebcdic285

Ebcdic297

Ebcdic500

Ebcdic1026

Dos437

Dos737

Dos850

Dos852

Dos855

Dos857

Dos860

Dos861

Dos863

Dos865

Dos866

Dos869

Windows874

Windows932

Windows936

Windows949

Windows950

Windows1250

Windows1251

Chapter 14
Exporter Interface

14-12

Windows1252

Windows1253

Windows1254

Windows1255

Windows1256

Windows1257

Iso8859_1

Iso8859_2

Iso8859_3

Iso8859_4

Iso8859_5

Iso8859_6

Iso8859_7

Iso8859_8

Iso8859_9

MacRoman

MacCroatian

MacRomanian

MacTurkish

MacIcelandic

MacCyrillic

MacGreek

MacCE

MacHebrew

MacArabic

MacJapanese

HPRoman8

BiDiOldCode

BiDiPC8

BiDiE0

RussianKOI8

JapaneseX0201

Chapter 14
Exporter Interface

14-13

Default

SystemDefault

14.3.2.3 DocumentMemoryMode
OIT Option ID: SCCOPT_DOCUMENTMEMORYMODE

This option determines the maximum amount of memory that the chunker may use to
store the document's data, from 4 MB to 1 GB. The more memory the chunker has
available to it, the less often it needs to re-read data from the document.

Data

• SMALLEST: 1 - 4MB

• SMALL: 2 - 16MB

• MEDIUM: 3 - 64MB

• LARGE: 4 - 256MB

• LARGEST: 5 - 1 GB

Default

SMALL: 2 - 16MB

14.3.2.4 ExtractXMPMetadata
OIT Option ID: SCCOPT_EXTRACTXMPMETADATA

Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
the XMP feature, which does not interpret the XMP metadata, but passes it straight
through without any interpretation. This option will be ignored if the
ParseXMPMetadata option is enabled.

Data Type

bool

Data

• true: This setting enables XMP extraction.

• false: This setting disables XMP extraction.

Default

• false

14.3.2.5 FallbackFormat
This option controls how files are handled when their specific application type cannot
be determined. This normally affects all plain-text files, because plain-text files are
generally identified by process of elimination, for example, when a file isn't identified as
having been created by a known application, it is treated as a plain-text file. It is
recommended that None be set to prevent the conversion from exporting unidentified

Chapter 14
Exporter Interface

14-14

binary files as though they were text, which could generate many pages of "garbage" output.

Data Type

FallbackFormatValue

FallbackFormatValue Enumeration

• Text: Unidentified file types will be treated as text files.

• None: Outside In will not attempt to process files whose type cannot be identified

Default

Text

14.3.2.6 GraphicHeight
OIT Option ID: SCCOPT_GRAPHIC_HEIGHT

This option defines the absolute height in pixels to which exported graphics will be resized. If
this option is set and the GraphicWidth option is not, the width of the image will be calculated
based on the aspect ratio of the source image. The developer should be aware that very
large values for this option or GraphicWidth could produce images whose size exceeds
available system memory, resulting in conversion failure.

If you are exporting a non-graphic file (word processing, spreadsheet or archive) and the
settings for GraphicHeight and GraphicWidth do not match the aspect ratio of the original
document, the exported image will have whitespace added so that the original file's aspect
ratio is maintained.

The settings for the GraphicHeightLimit and GraphicWidth options can override the setting for
GraphicHeight.

Data Type

Int32

14.3.2.7 GraphicHeightLimit
OIT Option ID: SCCOPT_GRAPHIC_HEIGHTLIMIT

Note that this option differs from the behavior of setting the height of graphics in that it sets an
upper limit on the image height. Images larger than this limit will be reduced to the limit value.
However, images smaller than this height will not be enlarged when using this option. Setting
the height using GraphicHeight causes all output images to be reduced or enlarged to be of
the specified height.

Data Type

Int32

14.3.2.8 GraphicOutputDPI
OIT Option ID: SCCOPT_GRAPHIC_OUTPUTDPI

This option allows the user to specify the output graphics device's resolution in DPI and only
applies to images whose size is specified in physical units (in/cm). For example, consider a 1"

Chapter 14
Exporter Interface

14-15

square, 100 DPI graphic that is to be rendered on a 50 DPI device (GraphicOutputDPI
is set to 50). In this case, the size of the resulting TIFF, BMP, JPEG, GIF, or PNG will
be 50 x 50 pixels.

In addition, the special #define of SCCGRAPHIC_MAINTAIN_IMAGE_DPI, which is
defined as 0, can be used to suppress any dimensional changes to an image. In other
words, a 1" square, 100 DPI graphic will be converted to an image that is 100 x 100
pixels in size. This value indicates that the DPI of the output device is not important. It
extracts the maximum resolution from the input image with the smallest exported
image size.

Setting this option to SCCGRAPHIC_MAINTAIN_IMAGE_DPI may result in the
creation of extremely large images. Be aware that there may be limitations in the
system running this technology that could result in undesirably large bandwidth
consumption or an error message. Additionally, an out of memory error message will
be generated if system memory is insufficient to handle a particularly large image.

Also note that the SCCGRAPHIC_MAINTAIN_IMAGE_DPI setting will force the
technology to use the DPI settings already present in raster images, but will use the
current screen resolution as the DPI setting for any other type of input file.

For some output graphic types, there may be a discrepancy between the value set by
this option and the DPI value reported by some graphics applications. The discrepancy
occurs when the output format uses metric units (DPM, or dots per meter) instead of
English units (DPI, or dots per inch). Depending on how the graphics application
performs rounding on meters to inches conversions, the DPI value reported may be 1
unit more than expected. An example of a format which may exhibit this problem is
PNG.

The maximum value that can be set is 2400 DPI; the default is 96 DPI.

Data Type

Int32

14.3.2.9 GraphicSizeLimit
OIT Option ID: SCCOPT_GRAPHIC_SIZELIMIT

This option is used to set the maximum size of the exported graphic in pixels. It may
be used to prevent inordinately large graphics from being converted to equally
cumbersome output files, thus preventing bandwidth waste.

This setting takes precedence over all other options and settings that affect the size of
a converted graphic.

When creating a multi-page TIFF file, this limit is applied on a per page basis. It is not
a pixel limit on the entire output file.

Data Type

Int32

14.3.2.10 GraphicSizeMethod
OIT Option ID: SCCOPT_GRAPHIC_SIZEMETHOD

Chapter 14
Exporter Interface

14-16

This option determines the method used to size graphics. The developer can choose among
three methods, each of which involves some degree of trade off between the quality of the
resulting image and speed of conversion.

Using the quick sizing option results in the fastest conversion of color graphics, though the
quality of the converted graphic will be somewhat degraded. The smooth sizing option results
in a more accurate representation of the original graphic, as it uses anti-aliasing. Antialiased
images may appear smoother and can be easier to read, but rendering when this option is
set will require additional processing time. The grayscale only option also uses antialiasing,
but only for grayscale graphics, and the quick sizing option for any color graphics.

The smooth sizing option does not work on images which have a width or height of more than
4096 pixels.

Data Type

• GRAPHICSIZEMETHOD_VALUES

14.3.2.11 GraphicWidth
OIT Option ID: SCCOPT_GRAPHIC_WIDTH

This option defines the absolute width in pixels to which exported graphics will be resized. If
this option is set and the GraphicHeight option is not, the height of the image will be
calculated based on the aspect ratio of the source image. The developer should be aware
that very large values for this option or GraphicHeight could produce images whose size
exceeds available system memory, resulting in conversion failure.

If you are exporting a non-graphic file (word processing, spreadsheet or archive) and the
settings for GraphicHeight and GraphicWidth do not match the aspect ratio of the original
document, the exported image will have whitespace added so that the original file's aspect
ratio is maintained.

The settings for the GraphicHeightLimit and GraphicWidthLimit options can override the
setting for GraphicWidth.

Data Type

Int32

14.3.2.12 GraphicWidthLimit
OIT Option ID: SCCOPT_GRAPHIC_WIDTHLIMIT

This option allows a hard limit to be set for how wide in pixels an exported graphic may be.
Any images wider than this limit will be resized to match the limit. It should be noted that
regardless whether the GraphicHeightLimit option is set or not, any resized images will
preserve their original aspect ratio.

Note that this option differs from the behavior of setting the width of graphics by using
GraphicWidth in that it sets an upper limit on the image width. Images larger than this limit will
be reduced to the limit value. However, images smaller than this width will not be enlarged
when using this option. Setting the width using GraphicWidth causes all output images to be
reduced or enlarged to be of the specified width.

Data Type

Int32

Chapter 14
Exporter Interface

14-17

14.3.2.13 IECondCommentMode
OIT Option ID: SCCOPT_HTML_COND_COMMENT_MODE

Some HTML input files may include "conditional comments", which are HTML
comments that mark areas of HTML to be interpreted in specific versions of Internet
Explorer, while being ignored by other browsers. This option allows you to control how
the content contained within conditional comments will be interpreted by Outside In's
HTML parsing code.

Data

• NONE: Don't output any conditional comment

• IE5: Include the IE5 comments

• IE6: Include the IE6 comments

• IE7: Include the IE7 comments

• IE8: Include the IE8 comments

• IE9: Include the IE9 comments

• ALL: Include all conditional comments

14.3.2.14 IgnorePassword
OIT Option ID: SCCOPT_IGNORE_PASSWORD

This option can disable the password verification of files where the contents can be
processed without validation of the password. If this option is not set, the filter should
prompt for a password if it handles password-protected files.

Data Type

bool

14.3.2.15 InterlacedGIFs
OIT Option ID: SCCOPT_GIF_INTERLACED

This option allows the developer to specify interlaced or non-interlaced GIF output.
Interlaced GIFs are useful when graphics are to be downloaded over slow Internet
connections. They allow the browser to begin to render a low-resolution view of the
graphic quickly and then increase the quality of the image as it is received. There is no
real penalty for using interlaced graphics.

This option is only valid if the dwOutputID parameter of the EXOpenExport function is
set to FI_GIF.

Data Type

bool

14.3.2.16 ISODateTimes
OIT Option ID: SCCOPT_FORMATFLAGS

Chapter 14
Exporter Interface

14-18

When this flag is set, all Date and Time values are converted to the ISO 8601 standard. This
conversion can only be performed using dates that are stored as numeric data within the
original file.

Data

bool

Default

false

14.3.2.17 JPEGQuality
OIT Option ID: SCCOPT_JPEG_QUALITY

This option allows the developer to specify the lossyness of JPEG compression. The option is
only valid if the dwOutputID parameter of the EXOpenExport function is set to FI_JPEGFIF.

Data Type

Int32

Data

A value from 1 to 100, with 100 being the highest quality but the least compression, and 1
being the lowest quality but the most compression.

Default

100

14.3.2.18 LotusNotesDirectory
OIT Option ID: SCCOPT_LOTUSNOTESDIRECTORY

This option allows the developer to specify the location of a Lotus Notes or Domino
installation for use by the NSF filter. A valid Lotus installation directory must contain the file
nnotes.dll.

Data

A path to the Lotus Notes directory.

Default

If this option isn't set, then OIT will first attempt to load the Lotus library according to the
operating system's PATH environment variable, and then attempt to find and load the Lotus
library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

14.3.2.19 OutputGraphicType
OIT Option ID: SCCOPT_GRAPHIC_TYPE

This option allows the developer to specify the format of the graphics produced by the
technology.

Chapter 14
Exporter Interface

14-19

• When setting this option, remember that the JPEG file format does not support
transparency.

• Though the GIF file format supports transparency, it is limited to using only one of
its 256 available colors to represent a transparent pixel ("index transparency").

• PNG supports many types of transparency. The PNG files written by HTML Export
are created so that various levels of transparency are possible for each pixel. This
is achieved through the implementation of an 8-bit "alpha channel".

There is a special optimization that HTML Export can make when this option is set to
None. Some of the Outside In Viewer Technology's import filters can be optimized to
ignore certain types of graphics.

Data Type

OutputGraphicTypeValue

OutputGraphicTypeValue Enumeration

These are the possible values for OutputGraphicType:

• GIF: Create GIF images

• JPEG: Create JPEG/JFIF images

• PNG: Create PNG images

• NONE: Turn off graphic conversions

Default

JPEG

14.3.2.20 ParseXMPMetadata
OIT Option ID: SCCOPT_PARSEXMPMETADATA

Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
parsing of the XMP data into normal OIT document properties. Enabling this option
may cause the loss of some regular data in premium graphics filters (such as
Postscript), but won't affect most formats (such as PDF).

Data Type

bool

Data

• true: This setting enables parsing XMP.

• false: This setting disables parsing XMP.

Default

false

Chapter 14
Exporter Interface

14-20

14.3.2.21 PDFInputMaxEmbeddedObjects
This option allows the user to limit the number of embedded objects that are produced in a
PDF file.

Data Type

UInt32

Data

The maximum number of embedded objects to produce in PDF output. Setting this to 0 would
produce an all embedded objects in the input document.

Default

0 – produce all objects.

14.3.2.22 PDFInputMaxVectorPaths
This option allows the user to limit the number of vector paths that are produced in a PDF file.

Data

The maximum number of paths to produce in PDF output. Setting this to 0 would produce an
all vector objects in the input document.

Default

0 – produce all vector objects.

14.3.2.23 PDFReorderBiDi
OIT Option ID: SCCOPT_PDF_FILTER_REORDER_BIDI

This option controls whether or not the PDF filter will attempt to reorder bidirectional text runs
so that the output is in standard logical order as used by the Unicode 2.0 and later
specification. This additional processing will result in slower filter performance according to
the amount of bidirectional data in the file.

PDFReorderBiDiValue Enumeration

This enumeration defines the type of Bidirection text reordering the PDF filter should perform.

• StandardBiDi: Do not attempt to reorder bidirectional text runs.

• ReorderedBiDi: Attempt to reorder bidirectional text runs.

14.3.2.24 PDFWordSpacingFactor
This option controls the spacing threshold in PDF input documents. Most PDF documents do
not have an explicit character denoting a word break. The PDF filter calculates the distance
between two characters to determine if they are part of the same word or if there should be a
word break inserted. The space between characters is compared to the length of the space
character in the current font multiplied by this fraction. If the space between characters is

Chapter 14
Exporter Interface

14-21

larger, then a word break character is inserted into the text stream. Otherwise, the
characters are considered to be part of the same word and no word break is inserted.

Data Type

float

Data

A value representing the percentage of the space character used to trigger a word
break. Valid values are positive values less than 2.

Default

0.85

14.3.2.25 PerformExtendedFI
OIT Option ID: SCCOPT_FIFLAGS

This option affects how an input file's internal format (application type) is identified
when the file is first opened by the Outside In technology. When the extended test flag
is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC, or
Unicode, the file's contents will be interpreted as such by the export process.

The extended test is optional because it requires extra processing and cannot
guarantee complete accuracy (which would require the inspection of every single byte
in a file to eliminate false positives).

Data Type

bool

Data

One of the following values:

• false: When this is set, standard file identification behavior occurs.

• true: If set, the File Identification code will run an extended test on all files that are
not identified.

Default

true

14.3.2.26 ProcessOLEEmbeddingMode
OIT Option ID: SCCOPT_PROCESS_OLE_EMBEDDINGS

Microsoft Powerpoint versions from 1997 through 2003 had the capability to embed
OLE documents in the Powerpoint files. This option controls which embeddings are to
be processed as native (OLE) documents and which are processed using the alternate
graphic.

Chapter 14
Exporter Interface

14-22

Note:

The Microsoft Powerpoint application sometimes does embed known Microsoft OLE
embeddings (such as Visio, Project) as an "Unknown" type. To process these
embeddings, the ProcessOLEEmbedAll option is required. Post Office-2003
products such as Office 2007 embeddings also fall into this category.

Data

• Standard: Process embeddings that are known standard embeddings. These include
Office 2003 versions of Word, Excel, Visio, etc.

• All: Process all embeddings in the file.

• None: Process none of the embeddings in the file.

Default

Standard

14.3.2.27 RenderEmbeddedFonts
This option allows you to disable the use of embedded fonts in PDF input files. If the option is
set to true, the embedded fonts in the PDF input are used to render text; if the option is set to
false, the embedded fonts are not used and the fallback is to use fonts available to Outside In
to render text.

Data Type

bool

Default

true

14.3.2.28 ShowArchiveFullPath
OIT Option ID: SCCOPT_ARCFULLPATH

This option causes the full path of a node to be returned in "GetArchiveNodeInfo" and
"GetObjectInfo".

Data Type

bool

Data

• true: Provide the full path.

• false: Do not provide the path.

Default

false

Chapter 14
Exporter Interface

14-23

14.3.2.29 StrictFile
When an embedded file or URL can't be opened with the full path, OutsideIn will
sometimes try and open the referenced file from other locations, including the current
directory. When this option is set, it will prevent OutsideIn from trying to open the file
from any location other than the fully qualified path or URL.

Data Type

bool

Default

false

14.3.2.30 TimeZoneOffset
OIT Option ID: SCCOPT_TIMEZONE

This option allows the user to define an offset to GMT that will be applied during date
formatting, allowing date values to be displayed in a selectable time zone. This option
affects the formatting of numbers that have been defined as date values. This option
will not affect dates that are stored as text. To query the operating system for the time
zone set on the machine, specify TimeZoneOffset_UseNative.

Note:

Daylight savings is not supported. The sent time in msg files when viewed in
Outlook can be an hour different from the time sent when an image of the
msg file is created.

Data Type

Int32

Data

Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query
the operating system for the time zone set on the machine, specify
SCC_TIMEZONE_USENATIVE.

Default

• 0: GMT time

14.3.2.31 UnmappableCharacter
OIT Option ID: SCCOPT_UNMAPPABLECHAR

This option selects the character used when a character cannot be found in the output
character set. This option takes the Unicode value for the replacement character. It is
left to the user to make sure that the selected replacement character is available in the
output character set.

Chapter 14
Exporter Interface

14-24

Data Type

UShort

Data

The Unicode value for the character to use.

Default

• 0x002a = "*"

14.3.2.32 XMLDefinitionReference
This option determines whether the converted file will reference a specified schema, DTD, or
no reference when generating output.

Data Type

XMLReference

Data

A XMLReference object that defines the XML Definition Reference to be used.

Default

No reference defined

14.3.2.33 XXFormatOptions
This option is a set of flags that are specific to XML Export output files.

Data Type

XXFormatOptionValues

XXFormatOptionValues Enumeration

The following set of flags:

• Delimiters: Often, files have individual characters that are placed at specific draw
locations. Consequently, the Flexiondoc converter produces individual draw_text
characters without any indication of word boundaries. This flag forces the Flexiondoc
converter to attempt to determine where words and lines end. The input filters indicate
these positions by producing a WORD_DELIMITER for word endings, and a DELIMITER
for line endings. These delimiters are passed along in the Flexiondoc output to assist the
user in reconstructing words and lines.

• OptimizeSections: Use wp.section elements to delineate column references.

• FlattenStyles: Flatten styles to eliminate the need to process the "based-on=" attribute.
By turning on this option, paragraph style should all be fully attributed. Character styles
can't be fullly attributed, that is, they won't always be completely flattened.

• ProcessArchiveSubDocuments: Process all archive sub-objects and put the output in the
main Flexiondoc output

Chapter 14
Exporter Interface

14-25

• ProcessAttachmentSubDocuments: Process all attachments and put the output in
the main Flexiondoc output

• ProcessEmbeddingSubDocuments: Process all embeddings and put the output in
the main Flexiondoc output

• RemoveFontGroups: Replace font groups with references to individual fonts.

• IncludeTextOffsets: Include text_offset attribute on tx.p and tx.r elements.

• SeparateStyleTables: Enabling this flag will cause the style_tables subtree to be
streamed to a separate output unit. This item is deprecated.

• UseFullFilePaths: Locators for externalized embeddings will contain full, absolute
path names.

• BitmapAsBitmap: dr.image objects are converted to a graphic file and the resulting
file is referenced by the locator child of the dr.image.

• ChartAsBitmap: ch.chart objects are converted to a graphic file and the resulting
file is referenced by the locator child of the ch.chart.

• PresentationAsBitmap: pr.slide objects are converted to a graphic file and the
resulting file is referenced by the locator child of the pr.slide.

• VectorAsBitmap: dr.drawing objects are converted to a graphic file and the
resulting file is referenced by the locator child of the dr.drawing.

• GenerateSystemMetaData: When this flag is set, system metadata will be
generated. This information is gathered through system calls and may adversely
affect performance.

• NoBitmapElements: Bitmap graphics are suppressed; no dr.image content will
appear in the converted document.

• NoChartElements: Charts are suppressed; no ch.chart content will appear in the
converted document.

• NoPresentationElements: Presentation slides are suppressed; no pr.slide content
will appear in the converted document.

• NoVectorElements: Vector drawings are suppressed; no dr.drawing content will
appear in the converted document.

• These next four flags are mutually exclusive:

– DefaultCharacterMapping: Default behavior: All text is mapped to Unicode, in
tx.text elements.

– NoCharacterMapping: All text is left in the original character set, in tx.utext
elements.

– MapText: Text is mapped to Unicode where possible, unmappable text is left in
the original character set.

– MappedAndUnmappedCharacters: Both mapped and unmapped text is
included as an alt element containing tx.text and tx.utext.

Default

RemoveFontGroups

Chapter 14
Exporter Interface

14-26

14.3.2.34 DSTTimezone
This option uses the time zone of the system (computer) and calculates the time based on
the system time offset.

Data Type

Boolean

Default

False

14.3.2.35 GenerateExcelRevisions
This option controls the extraction of tracked changes from Excel files.

Data Type

Boolean

Default

False

14.3.2.36 EnableAlphaBlending
This option allows the user to enable alpha-channel blending (transparency) in rendering
vector images. This is primarily useful for improving fidelity when vector images are rendered
with a slower graphics engine such as X-Windows, over a network where performance is not
an issue.

Data

Boolean

Default

False

14.3.2.37 InternalRendering

Note:

This option is no longer relevant. Outside In no longer performs graphic rendering
through X11 on Linux/Unix platforms.The internal rendering engine is available on
all of these platforms. If this option is set, the results will always use the internal
rendering engine regardless of the value of this option. The $GDFONTPATH
environment variable must be set to specify where to reference fonts. On Windows
systems, the Windows graphical rendering engine is always used.

Chapter 14
Exporter Interface

14-27

14.4 ExportStatus Class
The ExportStatus class provides access to information about a conversion. This
information may include information about sub-document failures, areas of a
conversion that may not have high fidelity with the original document. When applicable
the number of pages in the output is also provided.

Namespace

OutsideIn

Properties

• PageCount (Int32) - A count of all of the output pages produced during an export
operation.

• StatusFlags (ExportStatusFlags) - Gets the information about possible fidelity
issues with the original document.

• SubDocsFailed (Int32) - Number of sub documents that were not converted.

• SubDocsPassed (Int32) - Number of sub documents that were successfully
converted.

ExportStatusFlags Enumeration

This enumeration is the set of possible known problems that can occur during an
export process.

• NoInformationAvailable: No Information is available.

• MissingMap: A PDF text run was missing the toUnicode table.

• VerticalText: A vertical text run was present.

• TextEffects: A run that had unsupported text effects applied. One example is Word
Art.

• UnsupportedCompression: A graphic had an unsupported compression.

• UnsupportedColorSpace: A graphic had an unsupported color space.

• Forms: A sub documents had forms.

• RightToLeftTables: A table had right to left columns.

• Equations: A file had equations.

• AliasedFont: The desired font was missing, but a font alias was used.

• MissingFont: The desired font wasn't present on the system.

• SubDocFailed: a sub-document was not converted.

• TypeThreeFont: A type 3 font was encountered.

• UnsupportedShading: An unsupported shading pattern was encountered.

• InvalidHTML: An HTML parse error, as defined by the W3C, was encountered.

Chapter 14
ExportStatus Class

14-28

14.5 FileFormat Class
This class defines the identifiers for file formats.

Namespace

OutsideIn

Methods

• getDescription

String getDescription()
This method returns the description of the format.

• getId

int getId()
This method returns the numeric identifier of the format.

• forId

FileFormat forId(int id)
This method returns the FileFormat object for the given identifier.

id : The numeric identifier for which the corresponding FileFormat object is returned.

14.6 ObjectInfo Class
ObjectInfo provides all the information available about an Outside In Object (object may be
an embedded object, a linked object, or a compressed file). This is a read only class where
the technology fills in all the values.

Namespace

OutsideIn.Options

Properties

• Compression (Int32) The type of compression used to store the object, if known.

• Flags (ObjectInfoFlags) Flags indicating attributes of the object.

• FormatId (FileFormat) The format Identifier of the object.

• Name (String) Name of the object.

ObjectInfoFlags Enumeration

Bit fields to describe information about an object.

• PartialFile: Object would not normally exist outside the source document

• ProtectedFile: Object is encrypted or password protected

• UnsupportedCompression: Object uses an unsupported compression mechanism

• DRMFile: Object uses Digital Rights Management protection

• UnidentifiedFile: Object is extracted, but can not successfully identified

Chapter 14
FileFormat Class

14-29

• LinkToFile: Object links to file, it can not be extracted

• EncryptedFile: Object is encrypted and can be decrypted with the known password

14.7 Option Interface
The Option Interface provides the methods and properties to retrieve information about
an Outside In Option.

Package

com.oracle.outsidein.options

Accessors

• String getName() — Gets the name of the option

• String getDescription() — Gets the description of the option

• Class<?> getDataType() — Gets the type of the option value.

• Class<?>[] getItemTypes() — Gets the type parameters for option values that are
generics

• EnumSet<Option.OutsideInProducts> getSupportingProducts() — Gets the list of
products that support this option

Method

void set(OptionsCache exporter, Object objValue) throws OutsideInException;

This method sets the option to the exporter object and returns the exporter object
itself.

• exporter — The exporter option

• objValue — Value of the option

Note:

If the type of objValue cannot be converted to the data type the option is
expecting, an OutsideInException is thrown.

OutsideInProducts Enumeration

• HTMLEXPORT — Outside In HTML Export

• IMAGEEXPORT — Outside In Image Export

• PDFEXPORT — Outside In PDF Export

• SEARCHEXPORT — Outside In Search Export

• WEBVIEWEXPORT — Outside In Web View Export

• XMLEXPORT — Outside In XML Export

Chapter 14
Option Interface

14-30

14.8 OutsideIn Class
This is a utility class that creates an instance of an Exporter object on request.

Namespace

OutsideIn

Methods

static Exporter NewLocalExporter()

This method creates an instance of an Exporter object. It returns a newly created Exporter
object.

static Exporter NewLocalExporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the source
Exporter. All the options of source are copied to the new Exporter. The source and
destination file information will not be copied.

14.9 OutsideInException Class
This is the exception that is thrown when an Outside In Technology error occurs.

This class derives from the Exception class. This class has no public methods or properties
except those of the parent Exception class.

Namespace

OutsideIn

14.9.1 OutsideInCastException Class
This exception is thrown when an invalid value is provided as an option value.

This class derives from the OutsideInException class. This class has no public methods or
properties except those of the parent Exception class.

Namespace

OutsideIn

14.10 XMLReference Class
The XMLReference class is a data class used to define the XML definition reference to be
used.

Namespace

OutsideIn.Options

Constructors

XMLReference()

Chapter 14
OutsideIn Class

14-31

Create an instance of a XMLReference object using No XML defintion reference

XMLReference(XMLReference.ReferenceMethodValue, String)
Create an instance of a XMLReference object to provide a DTD/XSD

ReferenceMethodValue Enumeration

This enumeration is used to set whether Export will reference a schema, a DTD, or no
reference when generating output.

• DTD: Document Type Definition (DTD)

• XSD: Extensible Schema Definition

• NONE: No definition reference

Chapter 14
XMLReference Class

14-32

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Getting Started with XML Export
	1 Introduction
	1.1 What Does This Technology Do?
	1.1.1 Flexiondoc Schema

	1.2 Architectural Overview
	1.3 Definition of Terms
	1.4 Directory Structure
	1.4.1 Installing Multiple SDKs

	1.5 How to Use XML Export

	2 Implementation Issues
	2.1 Running in 24x7 Environments
	2.2 Running in Multiple Threads or Processes

	3 Sample Applications
	3.1 Building the Samples on a Windows System
	3.2 An Overview of the Sample Applications
	3.2.1 *sample
	3.2.2 export (Windows Only)
	3.2.2.1 The export Main Window

	3.2.3 exsimple
	3.2.4 extract_archive
	3.2.5 xxredir (XML Export)

	3.3 Accessing the SDK via a Java Wrapper
	3.3.1 The ExJava Wrapper API
	3.3.2 The C-Based Exporter Application
	3.3.3 Compiling the Executables
	3.3.4 The ExportTest Sample Application
	3.3.5 An Example Conversion Using the ExJava Wrapper

	Part II Using the C/C++ API
	4 Windows Implementation Details
	4.1 Installation
	4.1.1 NSF Support

	4.2 Libraries and Structure
	4.2.1 API DLLs
	4.2.2 Support DLLs
	4.2.3 Engine Libraries
	4.2.4 Filter and Export Filter Libraries
	4.2.5 Premier Graphics Filters
	4.2.6 Additional Files

	4.3 The Basics
	4.3.1 What You Need in Your Source Code
	4.3.2 Options and Information Storage
	4.3.3 Structure Alignment
	4.3.4 Character Sets
	4.3.5 Runtime Considerations

	4.4 Changing Resources

	5 UNIX Implementation Details
	5.1 Installation
	5.1.1 NSF Support

	5.2 Libraries and Structure
	5.2.1 API Libraries
	5.2.2 Support Libraries
	5.2.3 Engine Libraries
	5.2.4 Filter and Export Filter Libraries
	5.2.5 Premier Graphics Filters
	5.2.6 Additional Files

	5.3 The Basics
	5.3.1 What You Need in Your Source Code
	5.3.2 Information Storage

	5.4 Character Sets
	5.5 Runtime Considerations
	5.5.1 X Server Requirement
	5.5.2 OLE2 Objects
	5.5.3 Machine-Dependent Graphics Context
	5.5.4 Signal Handling
	5.5.5 Runtime Search Path and ⁠$ORIGIN

	5.6 Environment Variables
	5.7 Changing Resources
	5.8 HP-UX Compiling and Linking
	5.8.1 HP-UX on RISC
	5.8.2 HP-UX on Itanium (64 bit)

	5.9 IBM AIX Compiling and Linking
	5.9.1 IBM AIX (64-bit pSeries)

	5.10 Linux Compiling and Linking
	5.10.1 Library Compatibility
	5.10.1.1 Motif Libraries
	5.10.1.2 GLIBC and Compiler Versions
	5.10.1.3 Other Libraries

	5.10.2 Compiling and Linking
	5.10.2.1 Linux 32-bit, including Linux PPC
	5.10.2.2 Linux 64-bit
	5.10.2.3 Linux zSeries
	5.10.2.4 Linux zSeries 64bits

	5.11 Oracle Solaris Compiling and Linking
	5.11.1 Oracle Solaris SPARC
	5.11.2 Oracle Solaris x86

	6 Data Access Common Functions
	6.1 Deprecated Functions
	6.2 DAInitEx
	6.3 DADeInit
	6.4 DAOpenDocument
	6.4.1 IOSPECLINKEDOBJECT Structure
	6.4.2 IOSPECARCHIVEOBJECT Structure

	6.5 DAOpenSubdocumentById
	6.6 DACloseDocument
	6.7 DARetrieveDocHandle
	6.8 DASetOption
	6.9 DAGetOption
	6.10 DAGetFileId
	6.11 DAGetFileIdEx
	6.12 DAGetObjectInfo
	6.13 DAGetErrorString
	6.14 DAGetTreeCount
	6.15 DAGetTreeRecord
	6.15.1 SCCDATREENODE Structure

	6.16 DAOpenTreeRecord
	6.17 DASaveTreeRecord
	6.18 DACloseTreeRecord
	6.19 DASetStatCallback
	6.20 DASetFileAccessCallback

	7 Export Functions
	7.1 EXOpenExport
	7.2 EXCALLBACKPROC
	7.3 EXCloseExport
	7.4 EXRunExport
	7.5 EXExportStatus

	8 Redirected IO
	8.1 Using Redirected IO
	8.2 Opening Files
	8.3 IOClose
	8.4 IORead
	8.5 IOWrite
	8.6 IOSeek
	8.7 IOTell
	8.8 IOGetInfo
	8.8.1 IOGENSECONDARY and IOGENSECONDARYW Structures
	8.8.2 File Types That Cause IOGETINFO_GENSECONDARY

	8.9 IOSEEK64PROC / IOTELL64PROC
	8.9.1 IOSeek64
	8.9.2 IOTell64

	9 Callbacks
	9.1 EX_CALLBACK_ID_CREATENEWFILE
	9.1.1 EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW Structures

	9.2 EX_CALLBACK_ID_GRAPHICEXPORTFAILURE
	9.3 EX_CALLBACK_ID_NEWFILEINFO

	10 XML C/C++ Export Options
	10.1 Character Mapping
	10.1.1 SCCOPT_DEFAULTINPUTCHARSET
	10.1.2 SCCOPT_UNMAPPABLECHAR

	10.2 Output
	10.2.1 SCCOPT_RENDERING_PREFER_OIT

	10.3 Input Handling
	10.3.1 SCCOPT_EXTRACTXMPMETADATA
	10.3.2 SCCOPT_FALLBACKFORMAT
	10.3.3 SCCOPT_FIFLAGS
	10.3.4 SCCOPT_FORMATFLAGS
	10.3.5 SCCOPT_SYSTEMFLAGS
	10.3.6 SCCOPT_IGNORE_PASSWORD
	10.3.7 SCCOPT_LOTUSNOTESDIRECTORY
	10.3.8 SCCOPT_PARSEXMPMETADATA
	10.3.9 SCCOPT_PDF_FILTER_REORDER_BIDI
	10.3.10 SCCOPT_PROCESS_OLE_EMBEDDINGS
	10.3.11 SCCOPT_TIMEZONE
	10.3.12 SCCOPT_HTML_COND_COMMENT_MODE
	10.3.13 SCCOPT_ARCFULLPATH
	10.3.14 SCCOPT_STROKE_TEXT
	10.3.15 SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS
	10.3.16 SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS
	10.3.17 SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION
	10.3.18 SCCOPT_GENERATEEXCELREVISIONS
	10.3.19 SCCOPT_TIMEZONE_USEDST
	10.3.20 SCCOPT_TIMEZONETEXT
	10.3.21 SCCOPT_TRACK_ANNOTATIONS
	10.3.22 SCCOPT_READ_RECIPIENT_DELIVERY_INFO

	10.4 Compression
	10.4.1 SCCOPT_FILTERJPG
	10.4.2 SCCOPT_FILTERLZW

	10.5 Graphics
	10.5.1 SCCOPT_ACCEPT_ALT_GRAPHICS
	10.5.2 SCCOPT_GIF_INTERLACED
	10.5.3 SCCOPT_GRAPHIC_HEIGHTLIMIT
	10.5.4 SCCOPT_GRAPHIC_OUTPUTDPI
	10.5.5 SCCOPT_GRAPHIC_SIZELIMIT
	10.5.6 SCCOPT_GRAPHIC_SIZEMETHOD
	10.5.7 SCCOPT_GRAPHIC_TYPE
	10.5.8 SCCOPT_GRAPHIC_WIDTHLIMIT
	10.5.9 SCCOPT_JPEG_QUALITY
	10.5.10 SCCOPT_RENDER_ENABLEALPHABLENDING

	10.6 Callbacks
	10.6.1 SCCOPT_EX_CALLBACKS
	10.6.2 SCCOPT_EX_UNICODECALLBACKSTR

	10.7 XML
	10.7.1 SCCOPT_CCFLEX_FORMATOPTIONS
	10.7.2 SCCOPT_CCFLEX_INCLUDETEXTOFFSETS
	10.7.3 SCCOPT_CCFLEX_REMOVEFONTGROUPS
	10.7.4 SCCOPT_EXXML_DEF_METHOD
	10.7.5 SCCOPT_EXXML_DEF_REFERENCE
	10.7.6 SCCOPT_EXXML_SUBSTREAMROOTS

	10.8 File System
	10.8.1 SCCOPT_IO_BUFFERSIZE
	10.8.1.1 SCCBUFFEROPTIONS Structure

	10.8.2 SCCOPT_TEMPDIR
	10.8.2.1 SCCUTTEMPDIRSPEC Structure

	10.8.3 SCCOPT_DOCUMENTMEMORYMODE
	10.8.4 SCCOPT_REDIRECTTEMPFILE

	Part III Using the Java API
	11 Introduction to the Java API
	11.1 Requirements
	11.2 Getting Started
	11.2.1 Configure the Environment
	11.2.2 Generate Code
	11.2.2.1 Create an Exporter Object
	11.2.2.2 Configure the Output
	11.2.2.3 Set the Source and Primary Destination Files
	11.2.2.4 Set the Output Type
	11.2.2.5 Provide a Callback Handler
	11.2.2.6 Run the Export

	12 XML Export Java Classes
	12.1 ArchiveNode Class
	12.2 Callback Class
	12.2.1 createNewFile
	12.2.1.1 CreateNewFileResponse Class

	12.2.2 newFileInfo
	12.2.3 openFile
	12.2.3.1 OpenFileResponse Class

	12.2.4 createTempFile
	12.2.4.1 CreateTempFileResponseClass

	12.3 Exporter Interface
	12.3.1 Document Interface
	12.3.2 SeekableByteChannel6 Interface
	12.3.3 OptionsCache Class
	12.3.3.1 AcceptAlternateGraphics
	12.3.3.2 DefaultInputCharacterSet
	12.3.3.3 DocumentMemoryMode
	12.3.3.4 EnableAlphaBlending
	12.3.3.5 ExtractXMPMetadata
	12.3.3.6 FallbackFormat
	12.3.3.7 GraphicHeight
	12.3.3.8 GraphicHeightLimit
	12.3.3.9 GraphicOutputDPI
	12.3.3.10 GraphicSizeLimit
	12.3.3.11 GraphicSizeMethod
	12.3.3.12 GraphicWidth
	12.3.3.13 GraphicWidthLimit
	12.3.3.14 IECondCommentMode
	12.3.3.15 IgnorePassword
	12.3.3.16 InterlacedGIFs
	12.3.3.17 InternalRendering
	12.3.3.18 ISODateTimes
	12.3.3.19 JPEGQuality
	12.3.3.20 LotusNotesDirectory
	12.3.3.21 OutputGraphicType
	12.3.3.22 ParseXMPMetadata
	12.3.3.23 PDFInputMaxEmbeddedObjects
	12.3.3.24 PDFInputMaxVectorPaths
	12.3.3.25 PDFReorderBiDi
	12.3.3.26 PDFWordSpacingFactor
	12.3.3.27 PerformExtendedFI
	12.3.3.28 ProcessOLEEmbeddingMode
	12.3.3.29 RenderEmbeddedFonts
	12.3.3.30 ShowArchiveFullPath
	12.3.3.31 StrictFile
	12.3.3.32 TimeZoneOffset
	12.3.3.33 UnmappableCharacter
	12.3.3.34 XMLDefinitionReference
	12.3.3.35 XXFormatOptions
	12.3.3.36 DSTTimezone
	12.3.3.37 GenerateExcelRevisions

	12.4 ExportStatus Class
	12.5 FileFormat Class
	12.6 ObjectInfo Class
	12.7 Option Interface
	12.8 OutsideIn Class
	12.9 OutsideInException Class
	12.10 XMLReference Class

	Part IV Using the .NET API
	13 Introduction to the .NET API
	13.1 Requirements
	13.2 Getting Started
	13.2.1 Configuring your Environment
	13.2.2 Generate Code
	13.2.2.1 Create an Exporter Object
	13.2.2.2 Configure the Output
	13.2.2.3 Set the Source and Primary Destination Files
	13.2.2.4 Set the Output Type
	13.2.2.5 Provide a Callback Handler
	13.2.2.6 Run the Export

	13.2.3 Redirected I/O Support in .NET

	14 XML Export .NET Classes
	14.1 ArchiveNode Class
	14.2 Callback Class
	14.2.1 OpenFile
	14.2.1.1 OpenFileResponse Class

	14.2.2 CreateNewFile
	14.2.2.1 CreateNewFileResponse Class

	14.2.3 NewFileInfo
	14.2.4 CreateTempFile
	14.2.4.1 CreateTempFileResponse Class

	14.3 Exporter Interface
	14.3.1 Document Interface
	14.3.2 OptionsCache Class
	14.3.2.1 AcceptAlternateGraphics
	14.3.2.2 DefaultInputCharacterSet
	14.3.2.3 DocumentMemoryMode
	14.3.2.4 ExtractXMPMetadata
	14.3.2.5 FallbackFormat
	14.3.2.6 GraphicHeight
	14.3.2.7 GraphicHeightLimit
	14.3.2.8 GraphicOutputDPI
	14.3.2.9 GraphicSizeLimit
	14.3.2.10 GraphicSizeMethod
	14.3.2.11 GraphicWidth
	14.3.2.12 GraphicWidthLimit
	14.3.2.13 IECondCommentMode
	14.3.2.14 IgnorePassword
	14.3.2.15 InterlacedGIFs
	14.3.2.16 ISODateTimes
	14.3.2.17 JPEGQuality
	14.3.2.18 LotusNotesDirectory
	14.3.2.19 OutputGraphicType
	14.3.2.20 ParseXMPMetadata
	14.3.2.21 PDFInputMaxEmbeddedObjects
	14.3.2.22 PDFInputMaxVectorPaths
	14.3.2.23 PDFReorderBiDi
	14.3.2.24 PDFWordSpacingFactor
	14.3.2.25 PerformExtendedFI
	14.3.2.26 ProcessOLEEmbeddingMode
	14.3.2.27 RenderEmbeddedFonts
	14.3.2.28 ShowArchiveFullPath
	14.3.2.29 StrictFile
	14.3.2.30 TimeZoneOffset
	14.3.2.31 UnmappableCharacter
	14.3.2.32 XMLDefinitionReference
	14.3.2.33 XXFormatOptions
	14.3.2.34 DSTTimezone
	14.3.2.35 GenerateExcelRevisions
	14.3.2.36 EnableAlphaBlending
	14.3.2.37 InternalRendering

	14.4 ExportStatus Class
	14.5 FileFormat Class
	14.6 ObjectInfo Class
	14.7 Option Interface
	14.8 OutsideIn Class
	14.9 OutsideInException Class
	14.9.1 OutsideInCastException Class

	14.10 XMLReference Class

