
Oracle® Fusion Middleware
Developing WebLogic SCA Applications for
Oracle WebLogic Server

14c (14.1.1.0.0)
F18279-03
January 2023

Oracle Fusion Middleware Developing WebLogic SCA Applications for Oracle WebLogic Server, 14c
(14.1.1.0.0)

F18279-03

Copyright © 2007, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Related Documentation vi

Conventions vii

1 Overview

WebLogic Spring SCA Applications 1-1

WebLogic SCA Runtime 1-1

Limitations 1-2

2 Tools Support

Standalone WebLogic Server 2-1

Oracle Enterprise Pack for Eclipse (OEPE) 2-1

3 Deploying WebLogic SCA Runtime to WebLogic Server

Deploying a Library Using the WebLogic Server Administration Console 3-1

4 WebLogic Spring SCA Application Overview

5 Configuring the Spring Application Context

Specifying References and Services 5-1

sca:reference Element 5-1

sca:service Element 5-1

Binding Subelements 5-2

Sample Spring Application Context 5-2

iii

6 Configuring EJB Session Bean Bindings

binding.ejb Element Attributes 6-1

Binding to Services 6-2

Binding to References 6-2

EJB2 Programming Model 6-3

EJB3 Programming Model 6-3

7 Configuring Web Service Bindings

binding.ws Element Attributes 7-2

binding.ws Subelements 7-3

PolicyReference Element 7-3

property Element 7-3

Configuring Security 7-4

Security Configuration Examples 7-4

Configuring Databinding 7-5

Configuring TopLink/EclipseLink JAXB Binding 7-5

Configuring TopLink/EclipseLink SDO Databinding 7-5

Configuring Glassfish JAXB Databinding 7-6

About Configuring Custom Databinding 7-6

Configuring Custom Databinding 7-6

Custom Databinding Examples 7-7

Configuring Databinding for SOAP Attachments 7-8

Configuring Attachments Using MTOM 7-9

Configuring Attachments Using SwA 7-11

Configuring Collection and Map Objects 7-13

Externalizing Generic Type for Map 7-14

Precedence of Configuration Settings 7-16

Deployment 7-16

Runtime 7-16

8 Deploying WebLogic Spring SCA Applications

Preparing Deployment Units 8-1

Configuring the Deployment Descriptor 8-1

Bundling Libraries 8-2

Deploying in a Cluster 8-2

Deploying WebLogic Spring SCA Applications Using Other Tools 8-3

Runtime 8-3

iv

9 Viewing WebLogic SCA Application Configurations

Prerequisites for Viewing Application Configurations 9-1

Enabling the WebLogic Server Administration Console Extension 9-1

Viewing Details about Configured Services and References 9-2

A WebLogic SCA Schemas

WebLogic Spring SCA Schema (weblogic-sca.xsd) A-1

WebLogic SCA Binding Schema (weblogic-sca-binding.xsd) A-1

Web Service Policy Schema (ws-policy.xsd) A-1

WebLogic SCA Databindings Customization Descriptor Schema (weblogic-wsee-
databinding.xsd) A-2

v

Preface

WebLogic SCA provides support for creating and deploying WebLogic SCA
applications. This book describes how to work with WebLogic SCA in Oracle
WebLogic Server.

Audience
This document is intended for administrators who configure WebLogic Server to host
applications and for application developers who develop WebLogic Spring SCA
applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Documentation
See the following documentation for related information:

• For information about Oracle WebLogic Server, see Understanding Oracle
WebLogic Server.

• WebLogic SCA is based in part on the following specifications:

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

– OASIS SCA Service Component Architecture Assembly Model Specification at:

http://www.oasis-opencsa.org/sca-assembly
– OASIS SCA Service Component Architecture Spring Component Implementation

Specification at: http://www.oasis-open.org/committees/download.php/25529/
sca-springci-draft-20070926.doc

– OASIS SCA Service Component Architecture EJB Session Bean Binding
specification at:

http://www.oasis-opencsa.org/sca-bindings
• See Spring Source Community for information about the Spring Framework at:

http://www.springsource.org/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vii

http://www.oasis-opencsa.org/sca-assembly
http://www.oasis-open.org/committees/download.php/25529/sca-springci-draft-20070926.doc
http://www.oasis-open.org/committees/download.php/25529/sca-springci-draft-20070926.doc
http://www.oasis-opencsa.org/sca-bindings
http://www.springsource.org/

1
Overview

This chapter describes how Oracle WebLogic Server SCA provides a model for building
enterprise applications and systems as modular business services that can be integrated and
reused. WebLogic SCA provides support for developing and deploying SCA applications
using Plain Old Java Objects (POJOs).

• WebLogic Spring SCA Applications

• WebLogic SCA Runtime

• Limitations

WebLogic SCA is based on a subset of the OASIS Service Component Architecture Spring
Component Implementation Specification at http://www.oasis-open.org/committees/
download.php/25529/sca-springci-draft-20070926.doc. Features not supported are listed
in Limitations.

WebLogic Spring SCA Applications
In SCA, the implementation of a component and its communication are clearly separated. In
WebLogic SCA, you can write Java applications using POJOs and, through different
protocols, expose components as SCA services and access other components via
references. You do this using SCA semantics configured in a Spring application context. In
SCA terms, a WebLogic Spring SCA application is a collection of POJOs plus a Spring SCA
context file that wires the classes together with SCA services and references.

WebLogic SCA Runtime
In WebLogic Sever, WebLogic Spring SCA applications run in the WebLogic SCA Runtime.
The runtime must be deployed to WebLogic Server as a shared Web application library
before applications can be deployed to it. WebLogic SCA Runtime includes the following:

• A Spring container with support for configuring SCA references and services using the
WebLogic SCA schemas.

• A message processor that routes incoming messages (only Java parameters supported)
to the appropriate services.

• SCA binding component implementations responsible for listening for requests,
publishing services, and invoking references. Two binding component implementations
are included in this release: Web Service and EJB session bean.

Figure 1-1 shows a representation of a deployed WebLogic Spring SCA application.

1-1

http://www.oasis-open.org/committees/download.php/25529/sca-springci-draft-20070926.doc
http://www.oasis-open.org/committees/download.php/25529/sca-springci-draft-20070926.doc

Figure 1-1 Deployed WebLogic Spring SCA Application

Oracle SCA Application

SCA
Reference

+
Specified
Binding

Spring
Bean

SCA
Service

+
Specified
Binding

Limitations
WebLogic SCA does not support some features from the OASIS Service Component
Architecture Spring Component Implementation Specification. The limitations are as
follows:

• For WebLogic SCA in standalone WebLogic Server, service and reference
bindings are specified in the Spring context only, not in a separate SCDL
(.composite) file.

• SCA annotations are not supported in this release.

• The <sca:property> element is not supported in this release.

The following are not supported for EJB session bean bindings in this release:

• EJB policies

• Stateful EJB bindings

• EJB 2.x service bindings

• <ejb-link> element

• Local EJB service bindings

The following limitations apply to Web Service bindings in this release:

• For SCA references, the type used must be a JAX-WS compatible interface
generated from the external WSDL, using a JAX-WS compatible client generation
tool such as the JAX-WS wsimport tool, the WebLogic clientgen Ant task, Oracle
JDeveloper, or Oracle Enterprise Pack for Eclipse (OEPE).

Chapter 1
Limitations

1-2

2
Tools Support

This chapter describes tools that support Oracle WebLogic Server SCA.

• Standalone WebLogic Server

• Oracle Enterprise Pack for Eclipse (OEPE)

Standalone WebLogic Server
In addition to all the other WebLogic Server features for developing, deploying, managing,
and monitoring applications—including the WebLogic SCA Runtime—the WebLogic Server
Administration Console provides runtime monitoring features for WebLogic Spring SCA
applications.

See Viewing WebLogic SCA Application Configurations .

Oracle Enterprise Pack for Eclipse (OEPE)
You can use Oracle Enterprise Pack for Eclipse to do the following:

• Deploy the WebLogic SCA Runtime as a WebLogic Server shared library

• Create Spring SCA context files using the sca:service, sca:reference, and binding
elements

• Define and generate WebLogic SCA service definitions

• Add WebLogic SCA support to existing project types

• Configure the project classpath and the weblogic.xml configuration file to have access to
the WebLogic SCA shared library

• Bundle WebLogic Spring SCA applications as part of any Java EE deployment unit,
including EAR and WAR archives

For more information about WebLogic SCA support in Oracle Enterprise Pack for Eclipse,
see "Oracle WebLogic Server Support: Configuring a Project to Use WebLogic SCA" at:

https://docs.oracle.com/cd/E15315_09/help/oracle.eclipse.tools.weblogic.doc/
html/sca.html

2-1

https://docs.oracle.com/cd/E15315_09/help/oracle.eclipse.tools.weblogic.doc/html/sca.html
https://docs.oracle.com/cd/E15315_09/help/oracle.eclipse.tools.weblogic.doc/html/sca.html

3
Deploying WebLogic SCA Runtime to
WebLogic Server

This chapter describes WebLogic SCA Runtime, which is installed by default with Oracle
WebLogic Server. However, it must be deployed as a shared Web application library.

Note:

WebLogic SCA applications are expected to bundle spring.jar, so the Spring
Framework does not have to be installed separately during WebLogic SCA Runtime
deployment.

Deploying a Library Using the WebLogic Server Administration
Console

In WebLogic Server, you can deploy the library using the WebLogic Server Administration
Console or the command-line weblogic.Deployer tool.

For information about weblogic.Deployer, see Deploying Applications and Modules with
weblogic.Deployer in Deploying Applications to Oracle WebLogic Server.

To deploy the library using the WebLogic Server Administration Console:

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

2. In the left pane of the WebLogic Server Administration Console, click Deployments.

3. In the right pane, click Install.

4. In the Install Application Assistant, navigate to the library file:

WL_HOME/common/deployable-libraries/weblogic-sca-1.0.war
5. Select the file and click Next.

6. Select Install this deployment as a library.

7. Click Next.

8. Select the servers and/or clusters to which you want to deploy the application or module.

9. Click Next.

10. Optionally update additional deployment settings.

11. Click Next.

12. Review the configuration settings you have specified, and click Finish to complete the
installation.

3-1

13. To activate these changes, in the Change Center of the WebLogic Server
Administration Console, click Activate Changes.

For more information about deployment in WebLogic Server, see Understanding
WebLogic Server Deployment in Deploying Applications to Oracle WebLogic Server.

Note:

You can deploy the WebLogic SCA Runtime library automatically by using
tools that support WebLogic Server SCA, such as Oracle Enterprise Pack for
Eclipse.

See Tools Support for more information on WebLogic SCA support in such
tools.

Chapter 3
Deploying a Library Using the WebLogic Server Administration Console

3-2

4
WebLogic Spring SCA Application Overview

This chapter describes the WebLogic Spring SCA applications that are deployed to Oracle
WebLogic Server. WebLogic Spring SCA applications can be run in a standalone instance of
Oracle WebLogic Server or can be assembled as components of SCA composites in Oracle
SOA.

Note:

WebLogic SCA applications need to bundle their own spring.jar, version 2.0.6 or
higher. Oracle recommends Spring 2.5.6.

WebLogic Spring SCA applications have the following characteristics:

• The Spring application context file inlcudes SCA elements to configure SCA references,
services, and their bindings. See Configuring the Spring Application Context , Configuring
EJB Session Bean Bindings , and Configuring Web Service Bindings.

• Deployment units are organized following guidelines described in Deploying WebLogic
Spring SCA Applications.

4-1

5
Configuring the Spring Application Context

This chapter describes how the Oracle WebLogic Server SCA services and references are
configured in the Spring application context. An SCA service represents program code that
provides a business function that is offered for use by other components. Services can be
invoked as SCA references by the other components.

• Specifying References and Services

• Sample Spring Application Context

See OASIS SCA Service Component Architecture Assembly Model Specification at https://
docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.html for strict definitions
of SCA services and references.

Specifying References and Services
WebLogic Spring SCA supports the following elements to specify SCA references and
bindings:

• sca:reference Element

• sca:service Element

sca:reference Element
The <sca:reference> element declares a Spring bean representing an SCA service external
to the Spring application context. This element takes the following attributes:

name
Required. The name of the reference.

type
Required. The fully-qualified Java type of the interface or class representing the remote
service. For example. if the external reference is to a Web Service, this would be the type of
the client-side proxy to the Web Service.
For SCA references using a Web Service binding, the type used must be a JAX-WS
compatible interface. The type used must be a JAX-WS compatible interface, generated
from the external WSDL, using a JAX-WS compatible client generation tool such as the JAX-
WS wsimport tool, the WebLogic clientgen Ant task, Oracle JDeveloper, or Oracle
Enterprise Pack for Eclipse (OEPE).

default
Optional. The target bean for the reference if none is specified. This will improve
performance by wiring to a local service, ignoring associated bindings.

sca:service Element
The <sca:service> element declares a Spring bean that WebLogic SCA exposes as a
service. This element takes the following attributes:

5-1

https://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.html
https://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.html

name
Required. The name of the service.
If a name is not specified in the name attribute of a binding.ws subelement (see
binding.ws Element Attributes), the name specified in the name attribute of the
sca:service is published as the service name in the WSDL. However, if a
binding.ws specifies a name, that name is published in the WSDL as the service
name for that binding.

type
Required. The fully-qualified Java type of the Java class to be exposed as an SCA
service.

target
Required. The bean to be exposed as a service.

See WebLogic Spring SCA Schema (weblogic-sca.xsd) for the WebLogic Spring SCA
schema.

Binding Subelements
sca:reference elements and sca:service elements contain binding subelements to
specify the binding(s) for the reference or service. An sca:reference element can
have only one binding subelement. If more are specified, only the first one is used. An
sca:service element can have none, one, or more binding subelements.

WebLogic Spring SCA supports the following binding elements:

• <binding.ws> specifies that the binding is a Web Service binding.

• <binding.ejb> specifies that the binding is an EJB session bean binding.

• <binding.sca is the default. If binding.sca is specified or if no binding is
specified, WebLogic SCA Runtime defaults to binding.ws.

See Configuring EJB Session Bean Bindings and Configuring Web Service Bindings
for more information on the binding elements and the WebLogic SCA Runtime binding
component implementations.

See WebLogic SCA Schemas for the binding element schemas.

Sample Spring Application Context
The following example shows a spring application context. The context includes two
Spring beans, beanX and beanY. The bean beanX represents the entry point from
WebLogic Spring SCA into the Spring application context and the bean beanY includes
a reference to an external SCA service.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
 xmlns:wlsb="http://xmlns.oracle.com/weblogic/weblogic-sca-binding"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca
 http://xmlns.oracle.com/weblogic/weblogic-sca/1.0/weblogic-sca.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca-binding

Chapter 5
Sample Spring Application Context

5-2

 http://xmlns.oracle.com/weblogic/weblogic-sca-binding/1.0/weblogic-sca-
binding.xsd">
 <!-- Expose the bean "X" as an SCA service named "SCAService"-->
 <sca:service name="SCAService"
 type="org.xyz.someapp.SomeInterface"
 target="X">
 <wlsb:binding.ws uri="/testService"/>
 </sca:service>
 <sca:reference name="SCAReference" type="org.xyz.someapp.SomeOtherInterface">
 <wlsb:binding.ws
 location="http://localhost:7001/jscaliteapp/myrefsvcnameuri"
 port="http://test.oracle.com#wsdl.endpoint(SCAService2/myrefportname)"/>
 </sca:reference>
 <bean id="X" class="org.xyz.someapp.SomeClass">
 <property name="foo" ref="Y"/>
 </bean>
 <bean id="Y" class="org.xyz.someapp.SomeOtherClass">
 <property name="bar" ref="SCAReference"/>
 </bean>
</beans>

Chapter 5
Sample Spring Application Context

5-3

6
Configuring EJB Session Bean Bindings

This chapter describes how to configure EJB session bean bindings for SCA services and
SCA references in Oracle WebLogic Server.

• binding.ejb Element Attributes

• Binding to Services

• Binding to References

The EJB session bean binding can be applied to both SCA services and SCA references.
Configure EJB session bean bindings in the <binding.ejb> element in the Spring application
context file for your application.

• For general information about configuring the Spring application context configuration for
a WebLogic Spring SCA application, see Configuring the Spring Application Context .

• For the schema that defines the <binding.ejb> element, see WebLogic SCA Binding
Schema (weblogic-sca-binding.xsd).

Note:

The EJB Binding Component implementation is based on the SCA EJB Session
Bean Binding specification at http://www.oasis-opencsa.org/sca-bindings.

However, in this release of WebLogic SCA, the following features are not
supported:

• Stateful session bean binding (conversations are not supported)

• <ejb-link> elements

• Local EJB service binding

• Local EJB reference binding

binding.ejb Element Attributes
Attributes of the binding.ejb element are as follows:

name

Optional. Specifies the name of the binding.

uri

Required. For EJB bindings on references, uri specifies the JNDI name of the target EJB.
For EJB bindings on services, the uri value is the JNDI name at which the EJB is bound.

6-1

http://www.oasis-opencsa.org/sca-bindings

Advanced CORBA name URIs are not supported. The following two simplified patterns
are supported. Both result in the service implementation being bound to the JNDI
name ejb/MyHome:

• uri="corbaname:rir:#ejb/MyHome"
• uri="ejb/MyHome"

dispatchPolicy

Optional. Used with service bindings. Specifies the name of a WorkManager to be
used for incoming invocations.

Binding to Services
When binding.ejb is configured on an SCA service, an implementation of the service
interface becomes available in JNDI when the application is deployed. That service
can then be invoked using the EJB programming model. For example, this allows a
client to look up and invoke the service as if the underlying service were a deployed
EJB. This may be useful in a situation where you want to replace an existing EJB
service with an SCA implementation, without requiring clients of the legacy EJB to be
updated.

Only the EJB3 programming model is supported for EJB session bean service
bindings.

Use the uri attribute of binding.ejb to specify the JNDI name.

See binding.ejb Element Attributes.

All EJB service bindings are remote and can therefore be looked up and invoked
remotely.

Remote service implementations are clusterable. You can configure a client timeout for
service bindings. To specify a client timeout, edit the EJBServiceDelegateImplRTD.xml
file located in the binding.ejb jar file.

EJB service bindings can optionally specify a dispatch policy. To configure a dispatch
policy, set the dispatchPolicy attribute of <binding.ejb> to the name of the
WorkManager to be used for incoming invocations. If the configured WorkManager is
not found, a warning is issued at runtime and the default WorkManager is used.

Binding to References
When binding.ejb is configured on an SCA reference, the target EJB is resolved and
invoked without any knowledge of the EJB programming model. (WebLogic SCA
Runtime determines the programming model of the target EJB based on whether the
object returned from the JNDI lookup implements javax.ejb.EJBHome.)

The target EJB is resolved lazily, that is, it is resolved at runtime as necessary to
service an invocation.

This allows an SCA POJO implementation to invoke a deployed EJB in the same way
it invokes any other SCA reference. WebLogic SCA Runtime looks up the target EJB
from JNDI and delegates any method calls to the EJB. Using binding.ejb in this way
provides the flexibility to replace an EJB service with a non-EJB service without having
to update the dependent component implementation.

Chapter 6
Binding to Services

6-2

The EJB2 and EJB3 programming models are supported for reference bindings, as described
below.

EJB2 Programming Model
If the target EJB uses an EJB 2.x client view, the binding implementation invokes the
home.create() method to obtain the EJB's remote interface implementation. The binding
implementation also translates reference interface method invocations to EJB remote
interface invocations.

Methods of the reference interface are mapped to the remote interface according to the rules
in SCA EJB Session Bean Binding specification at http://www.oasis-opencsa.org/sca-
bindings.

EJB3 Programming Model
If the EJB3 programming model is used, the target EJB may implement the reference
interface, but it is not required to so. If it does not implement the reference interface, the rules
in Section 2.2 of the SCA EJB Session Bean Binding specification apply. The EJB binding
code is responsible for translating reference interface method invocations to EJB business
interface invocations.

Chapter 6
Binding to References

6-3

http://www.oasis-opencsa.org/sca-bindings
http://www.oasis-opencsa.org/sca-bindings

7
Configuring Web Service Bindings

This chapter describes how to configure Web Service bindings for SCA services and SCA
references in Oracle WebLogic Server.

• binding.ws Element Attributes

• binding.ws Subelements

• Configuring Security

• Configuring Databinding

• Precedence of Configuration Settings

• Deployment

• Runtime

You can configure Web Service bindings in the <binding.ws> element in the Spring
application context file for your application.

• For general information about configuring the Spring application context for a WebLogic
Spring SCA application, see Configuring the Spring Application Context .

• For the schema that defines the <binding.ws> element, see WebLogic SCA Binding
Schema (weblogic-sca-binding.xsd).

You can apply the Web Service binding to SCA services and SCA references as follows:

• Parses the <binding.ws> element and, for service bindings, generates a WSDL of the
service to be published.

• For service bindings, publishes the "Plain Old Java Object" (POJO) as a Java API for
XML-Based Web Services (JAX-WS) Web Service.

• Accepts requests for the published services and performs reference invocations to the
Web Services.

An example of a Web Service binding on a service is shown in the following example:

<sca:service name="SCAService"
 type="com.oracle.test.SayHello"
 target="hello">
 <wlsb:binding.ws"
 name="mysvcname"
 port="myportname"
 uri="/mysvcnameuri"/>
</sca:service>

The following example represents a Web Service binding on a reference:

<sca:reference name="SCAReference" type="com.oracle.test.SayHelloRef">
 <wlsb:binding.ws"
 location="http://localhost:7001/wlscaapp/myrefsvcnameuri"
 port="http://test.oracle.com#wsdl.endpoint(SCAService2/myrefportname)"/>
</sca:reference>

7-1

For reference bindings that refer to services outside the current application, it is
expected that the contract class used for the reference is generated from the WSDL
using client tools such as the WebLogic clientgen Ant task or Oracle JDeveloper.

Caution:

If the contract class is not generated from JAX-WS compatible client tools,
certain types of functionality may not work correctly.

The type that is specified in the type attribute of sca:reference must be a JAX-WS
compatible interface, generated from the external WSDL using a JAX-WS compatible
client generation tool such as the JAX-WS wsimport tool, the WebLogic clientgen Ant
task, Oracle JDeveloper, or Oracle Enterprise Pack for Eclipse (OEPE).

binding.ws Element Attributes
Attributes of the <binding.ws> element are as follows:

databinding

Optional. Specifies the type of databinding to use for converting SOAP messages to
and from Java. Valid values are:

• toplink.jaxb (default)

Specifies that the databinding use TopLink/EclipseLink JAXB (JAXB2) from
EclipseLink 2.0. For information about those technologies, see the EclipseLink
developer guides at http://www.eclipse.org/eclipselink/#documentation.

• toplink.sdo - Toplink/EclipseLink SDO from EclipseLink 2.0
Specifies that the databinding use Toplink/EclipseLink Service Data Objects (SDO)
available from EclipseLink 2.0. More information is available at https://
wiki.eclipse.org/EclipseLink/Examples/SDO/JPA.

Depending on the type of databinding, you may also have to use the <property>
subelement of binding.ws.

– See About Configuring Custom Databinding

– See Configuring TopLink/EclipseLink SDO Databinding

– See Configuring Glassfish JAXB Databinding

• glassfish.jaxb
Specifies that the databinding use the Java Architecture for XML Binding 2.x
(JAXB2) Reference Implementation (JAXB RI). For information about the JAXB RI,
see Glassfish > Metro > JAXB at http://jaxb.java.net/.

location

Required for sca:reference bindings only. Specifies the location (that is, URL) where
the external reference can be found. The WSDL must be made available by
appending ?wsdl to this location.

Chapter 7
binding.ws Element Attributes

7-2

http://www.eclipse.org/eclipselink/#documentation
https://wiki.eclipse.org/EclipseLink/Examples/SDO/JPA
https://wiki.eclipse.org/EclipseLink/Examples/SDO/JPA
http://jaxb.java.net/

name

Optional. Specifies the name of the binding.

For sca:service bindings, this name is published as the service name in the WSDL. It
overrides the name specified in name attribute of the sca:service element.

port

Optional for sca:service bindings. Specifies the port name to use for the service endpoint.

Required for sca:reference bindings. Specifies the WSDL port that this reference points to in
the external Web Service.

This should be of the form namespace uri#wsdl.endpoint(servicename/portname).

soapversion

Optional. Specifies the SOAP version of the Web Service. Valid values are 1.1 and 1.2.
Defaults to 1.1.

uri

Required for sca:service bindings only. Specifies the location, relative to the context-root of
the SCA application, where the Web Service must be published for this SCA service.

binding.ws Subelements
The <binding.ws> element can have the following subelements:

• PolicyReference Element

• property Element

PolicyReference Element
The <PolicyReference> subelement of <binding.ws> specifies a reference to the security
policy to use. It has the following attributes:

uri

Specifies the location of the policy. Only built-in WebLogic Server security policies are
supported in this release.

direction

Optional. Specifies whether the policy is inbound, outbound, or both. The default is both.

See Configuring Security for more information about using the PolicyReference element to
configure security policies.

property Element
The <property> subelement of <binding.ws> has a name attribute that accepts the following
property names:

Chapter 7
binding.ws Subelements

7-3

• weblogic.sca.binding.ws.sdoSchemaFile
Specifies the location of the schema file for SDO bindings.

See Configuring TopLink/EclipseLink SDO Databinding.

• weblogic.sca.binding.ws.externalCustomizationFile
Specifies an external databinding customizing XML file.

See About Configuring Custom Databinding.

• weblogic.sca.binding.ws.referenceWsdlCacheTimeoutMins
Configures WSDL caching when invoking references. To enable caching and to
specify the caching timeout period, specify a positive number to indicate the
number of minutes. To disable WSDL caching, specify zero or a negative value. If
this property is not set, caching is enabled with a default timeout of 60 (minutes).

Configuring Security
You need to use the <PolicyReference> element to configure security policies for Web
Services bindings. See PolicyReference Element.

The following security mechanisms are supported:

• Username token with message protection (WS-Security 1.1)

• X509 certificate authentication with message protection (WS-Security 1.1)

• Anonymous with message protection (WS-Security 1.1)

• ID Propagation using SAML token (sender-vouches) with message protection
(WS-Security 1.1)

• Username token over SSL

• SAML token (Sender Vouches) over SSL

Security Configuration Examples
The following is an example of a security configuration for an SCA service:

<sca:service
 name="SCAServicePolicy"
 type="com.oracle.test.SayHelloRefImpl"
 target="hello2">
 <binding.ws
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-sca-binding"
 name="mypolicysvcname"
 port="uri:myns#wsdl.endpoint(mypolicysvc/mypolicyport)"
 uri="/mypolicyuri">
 <PolicyReference
 xmlns="http://schemas.xmlsoap.org/ws/2004/09/policy"
 uri="policy:Wssp1.2-Https-UsernameToken-Plain.xml"
 direction="inbound" />
 </binding.ws>
</sca:service>

Chapter 7
Configuring Security

7-4

Configuring Databinding
You need to implement databinding by:

• Specifying the databinding type to use in the databinding attribute of <binding.ws>.

• Specifying additional details in the <property> subelement of <binding.ws> for SDO and
customization files.

For information about configuring different kinds of databinding, see the following topics:

• Configuring TopLink/EclipseLink JAXB Binding.

• Configuring TopLink/EclipseLink SDO Databinding.

• Configuring Glassfish JAXB Databinding.

• About Configuring Custom Databinding.

If a databinding type is not specified, toplink.jaxb is used.

Configuring TopLink/EclipseLink JAXB Binding
To configure TopLink/EclipseLink JAXB databinding, enter toplink.jaxb as the value for the
databinding attribute in the binding.ws element.

Note:

This is the default databinding type. If nothing is specified for the databinding
attribute, toplink.jaxb is used.

The following example represents TopLink/EclipseLink JAXB databinding:

<sca:service
 name="SCAComplexService" type="com.oracle.test.ComplexHello"
 target="complexHello">
 <wlsb:binding.ws
 name="mycomplexsvc"
 port="mycomplexport" uri="/mycomplexsvcuri"
 databinding="toplink.jaxb"/>
</sca:service>

Configuring TopLink/EclipseLink SDO Databinding
To configure databinding TopLink/EclipseLink SDO:

1. In the <binding.ws> element, enter toplink.sdo as the value for the databinding
attribute.

2. In the <property> subelement of <binding.ws>:

a. Enter weblogic.sca.binding.ws.sdoSchemaFile as the value for the name attribute.

b. Enter the location of the schema file for the SDO bindings as the content of the
element. The path must be relative to the application root, and the schema file must
be bundled with the application.

Chapter 7
Configuring Databinding

7-5

The following example represents TopLink/EclipseLink SDO databinding:

<sca:service name="SCASDOService"
 type="com.oracle.test.sdo.HelloSDO" target="sdoHello">
 <wlsb:binding.ws
 name="mysdosvc"
 port="mysdoport" uri="/mysdosvcuri"
 databinding="toplink.sdo">
 <property name="weblogic.sca.binding.ws.sdoSchemaFile">
 MySDO.xsd
 </property>
 </wlsb:binding.ws>
</sca:service>

Configuring Glassfish JAXB Databinding
If you need to configure Glassfish JAXB databinding, enter glassfish.jaxb as the
value for the databinding attribute in the binding.ws element.

The following example represents GlassFish JAXB binding:

<sca:service
 name="SCAComplexService" type="com.oracle.test.ComplexHello"
 target="complexHello">
 <wlsb:binding.ws
 name="mycomplexsvc"
 port="mycomplexport" uri="/mycomplexsvcuri"
 databinding="glassfish.jaxb"/>
</sca:service>

About Configuring Custom Databinding
You can provide an external databinding customization XML file that provides
additional information on the Web Service binding. This file provides mapping
metadata to define the attributes of a Java Web Service endpoint. The external
customization file can be used to customize both WSDL and schema.

One example scenario of the use of the customization file is when the contract class
for an SCA service contains overloaded methods that you want to expose as Web
Service operations. The customization file can be used to disambiguate operation
names for the Web Service.

Another example scenario (schema customization) is to change the name or the order
of elements in a generated complex type.

Configuring Custom Databinding
To configure custom databinding:

1. Create the customization file in the same location as the implementation class file.
The schema for the customization file, weblogic-wsee-databinding.xsd, must
also be bundled with the application.

See WebLogic SCA Databindings Customization Descriptor Schema (weblogic-
wsee-databinding.xsd) for the schema.

This schema defines three kinds of XML constructs:

Chapter 7
Configuring Databinding

7-6

a. Constructs that are analogous to those in JAX-WS and JSR 181 (Web Services
Metadata for the Java Platform). These constructs (a) override or define attributes on
the Service Endpoint Interface (SEI) and (b) override or specify information that
would normally be part of Java Architecture for XML Binding (JAXB) annotations for
the value types used in the interfaces of the SEI.

b. Additional mapping specifications not available using standard JAX-WS or JAXB
annotations, primarily for use with the java.util.Collections API.

c. References to external JAXB mapping metadata from a Toplink Object-XML (OXM)
file. This is only relevant for the toplink.jaxb databinding.

When a construct is the direct analog of a JAX-WS, JSR 181, or JAXB annotation, the
schema includes a comment with notation such as:

Corresponding Java annotation javax.jws.WebParam.Mode
2. In the <property> subelement of <binding.ws>:

• Enter weblogic.sca.binding.ws.externalCustomizationFile as the value for the
name attribute.

• Enter the name of the customization file as the content of the <property> element.

Custom Databinding Examples

The following example represents the <property> element that is configured to point to a
customization file:

<sca:service name="SCAServiceOverloaded"
 type="com.oracle.test.SayHelloOverloaded" target="overloadedHello">
 <wlsb:binding.ws"
 name="myoverloadedsvcname" port="myoverloadedportname"
 uri="/myoverloadedsvcnameuri">
 <property

name="weblogic.sca.binding.ws.externalCustomizationFile">overloading_mapping_
file.xml
 </property>
 </wlsb:binding.ws>
 </sca:service>

A sample customization file is shown in the following example. It shows how an overloaded
sayHello() method in the POJO is to be supported. The methods are mapped to two
operations in the WSDL called sayHello and sayHelloWithString.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<java-wsdl-mapping name="com.oracle.test.SayHelloOverloaded"
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding"
 xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
 databinding="toplink.jaxb">
 <java-methods>
 <java-method name="sayHello">
 <web-method operation-name="sayHello"/>
 </java-method>
 <java-method name="sayHello">

Chapter 7
Configuring Databinding

7-7

 <web-method operation-name="sayHelloWithString"/>
 <java-params>
 <java-param java-type="java.lang.String"/>
 </java-params>
 </java-method>
 </java-methods>
</java-wsdl-mapping>

The customization file shown below in the following example illustrates the use of an
inline <toplink-oxm> element to customize the order of elements in the generated
schema. This example specifies that the schema generated for the ShoppingCartItem
object includes the quantity, price, and id properties in the specified order instead of
the default ordering.

<java-wsdl-mapping name="com.oracle.test.GetPriceRemote"
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-
databinding"
 xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/
oxm"
 databinding="toplink.jaxb">
 <xml-schema-mapping>
 <toplink-oxm java-package="com.oracle.test">
 <oxm:xml-bindings>
 <oxm:xml-schema/>
 <oxm:java-types>
 <oxm:java-type name="com.oracle.test.ShoppingCartItem">
 <oxm:xml-type prop-order="quantity price id"/>
 </oxm:java-type>
 </oxm:java-types>
 </oxm:xml-bindings>
 </toplink-oxm>
 </xml-schema-mapping>
</java-wsdl-mapping>

Configuring Databinding for SOAP Attachments
Simple Object Access Protocol, (SOAP) attachments are supported when using
TopLink/EclipseLink JAXB databinding. These types are supported:

• SOAP Message Transmission Optimization Mechanism (MTOM)

• SOAP Messages with Attachments (SwA)

To configure databinding for SOAP attachments:

1. Specify TopLink/EclipseLink JAXB databinding by entering toplink.jaxb as the
value for the databinding attribute in the binding.ws element.

Chapter 7
Configuring Databinding

7-8

Note:

In practice, this step is not necessary, because toplink.jaxb is the default
value for databinding. However, you cannot use any other value for
databinding.

2. Configure for MTOM or SwA, as described in the following topics:

• See Configuring Attachments Using MTOM.

• See Configuring Attachments Using SwA.

Configuring Attachments Using MTOM
You can enable MTOM in either of the following ways:

1. Put an @MTOM annotation on an SEI or contract class, as shown in the following example.
This enables MTOM for base64Binary types.

@MTOM
public class SayHelloMtom {
public HasArray modifyArray(String name, int b) {
 HasArray ha = new HasArray();
 ha.b = b;
 ha.arr = ("<?xml version='1.0' ?><z>" + name + "</z>").getBytes();
 return ha;
 }
}

2. Include a <mtom> element as an immediate child of the <java-wsdl-mapping> element in
the external mapping file, as shown in the following example. The attributes for the
<mtom> element are optional. The default for enabled is true, and the default for
threshold is 0.

<java-wsdl-mapping name="com.hello.sei.MyServiceEndpointInterface"
 <web-service name="hello-ws" target-namespace="hello-ns"/>
 <mtom enabled="true" threshold="50"/>
 ...

The examples illustrated in Configuring Attachments Using MTOM: Examples use an external
customization file to enable MTOM on an SCA POJO to be used as a Web Service endpoint.

Configuring Attachments Using MTOM: Examples
Example 7-1 Spring Context

The following example shows the Spring context, with a reference to the external
customization file mtomCustomizationMapping.xml.

<sca:service name="SCAMtomService" type="com.oracle.test.SayHelloMtom"
target="helloMtom">
 <binding.ws
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-sca-binding"
 name="myMtomSvc"

Chapter 7
Configuring Databinding

7-9

 port="myMtomPort"
 uri="/myMtomSvcUri"
 databinding="toplink.jaxb">
 <property

name="weblogic.sca.binding.ws.externalCustomizationFile">mtomCustomizat
ionMapping.xml
 </property>
 </binding.ws>
</sca:service>

Example 7-2 External Customization File mtomCustomizationMapping.xml

The following example shows the external customization file
mtomCustomizationMapping.xml.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<java-wsdl-mapping name="com.oracle.test.SayHelloMtom"
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding"
 xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
 databinding="toplink.jaxb">
 <xml-schema-mapping>
 <toplink-oxm java-package="com.oracle.test">
 <xml-bindings xmlns="http://www.eclipse.org/eclipselink/xsds/
persistence/oxm">
 <java-types>
 <java-type name="com.oracle.test.HasArray">
 <java-attributes>
 <xml-element java-attribute="arr" xml-mime-type="text/
xml" />
 </java-attributes>
 </java-type>
 </java-types>
 </xml-bindings>
 </toplink-oxm>
 </xml-schema-mapping>
 <mtom threshold="2"/>
</java-wsdl-mapping>

Example 7-3 Java Classes

The following example shows the Java classes.

//SayHelloMtom.java
public class SayHelloMtom {
 public HasArray modifyArray(String name, int b) {
 HasArray ha = new HasArray();
 ha.b = b;
 ha.arr = ("<?xml version='1.0' ?><z>" + name + "</
z>").getBytes();
 return ha;
 }
}

Chapter 7
Configuring Databinding

7-10

//HasArray.java
package com.oracle.test;

public class HasArray {
 public byte[] arr = "<?xml version='1.0' ?><xy/>".getBytes();
 public int b = 5;
}

Configuring Attachments Using SwA
The SwA attachment type SwaRef is supported in two ways:

1. Use the @XmlAttachmentRef annotation on a DataHandler type parameter and/or return
type, as shown in the following example:

@XmlAttachmentRef
DataHandler echoDataHandler(@XmlAttachmentRef DataHandler dh);

2. Use the xml-attachment-ref attribute in the external customization file, as shown in the
following example.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<java-wsdl-mapping name="com.oracle.test.SayHelloSwa"
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-
databinding"
 xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/
oxm"
 databinding="toplink.jaxb">
 <xml-schema-mapping>
 <toplink-oxm java-package="com.oracle.test">
 <xml-bindings xmlns="http://www.eclipse.org/eclipselink/xsds/
persistence/oxm">
 <java-types>
 <java-type name="com.oracle.test.HasDataHandler">
 <java-attributes>
 <xml-element java-attribute="data" xml-attachment-
ref="true" />
 </java-attributes>
 </java-type>
 </java-types>
 </xml-bindings>
 </toplink-oxm>
 </xml-schema-mapping>
</java-wsdl-mapping>

For examples, see Configuring Attachments Using SwA: Examples.

Configuring Attachments Using SwA: Examples
Example 7-4 and Example 7-5show SwA enabled on an SCA POJO to be used as a Web
Service endpoint. An alternative to using a wrapper class like the HasDataHandler class is to
use the DataHandler as a parameter to the Web Service directly. To do so, you must modify
the customization file as shown in Example 7-6. The corresponding SayHelloSwa.java file is
shown in Example 7-7.

Chapter 7
Configuring Databinding

7-11

Example 7-4 Spring Context with Reference to External Customization File

The following example shows the Spring context with reference to an external
customization file.

<sca:service name="SCAMtomService" type="com.oracle.test.SayHelloSwa"
target="helloSwa">
 <binding.ws
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-sca-binding"
 name="mySwaSvc"
 port="mySwaPort"
 uri="/mySwaSvcUri"
 databinding="toplink.jaxb">
 <property

name="weblogic.sca.binding.ws.externalCustomizationFile">swaCustomizati
onMapping.xml
 </property>
 </binding.ws>
 </sca:service>

Example 7-5 Java Classes

This example demonstrates using Java Classes to enable SwA on an SCA POJO to
be used as a Web Service endpoint.

//SayHelloSwa.java
package com.oracle.test;

public class SayHelloSwa {
 public HasDataHandler echoDataHandler(HasDataHandler dh) {
 return dh;
 }
}

//HasDataHandler.java
package com.oracle.test;

import javax.activation.DataHandler;

public class HasDataHandler {
 public DataHandler data;
}

Example 7-6 Customization File Using a DataHandler as a Parameter to a Web
Service

This example shows how to use DataHandler as a parameter to a Web Service. This
is an alternative to using a wrapper class like the HasDataHandler class.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<java-wsdl-mapping name="com.oracle.test.SayHelloSwa"
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-
databinding"

Chapter 7
Configuring Databinding

7-12

 xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/
oxm"
 databinding="toplink.jaxb">
 <java-methods>
 <java-method name="echoDataHandler">
 <java-params>
 <java-param>
 <oxm:xml-element xml-attachment-ref="true" xml-mime-type="text/
xml"/>
 </java-param>
 </java-params>
 </java-method>
 </java-methods>
</java-wsdl-mapping>

Example 7-7 Java Class

This example shows how to use the Java file, SayHelloSwa.java, corresponding to the
DataHandler parameter used in the above example.

//SayHelloSwa.java
package com.oracle.test;

import javax.activation.DataHandler;
import javax.mail.util.ByteArrayDataSource;

public class SayHelloSwa {
 public DataHandler echoDataHandler(DataHandler dh) {
 byte[] b = new byte[1024];
 try {
 int len = dh.getInputStream().read(b);
 String resp = "<swarefresponse>" + new
String(b,0,len) + "</swarefresponse>";
 return new DataHandler(new
ByteArrayDataSource(resp.getBytes(), "text/xml"));
 } catch (Exception e) {
 String err = "<err>An error occurred: " +
e.getClass().getName() + " - " + e.getMessage() + "</err>";
 return new DataHandler(new
ByteArrayDataSource(err.getBytes(), "text/xml"));
 }
 }
}
s

Configuring Collection and Map Objects
Java Collection and Map objects are supported when using TopLink/EclipseLink JAXB
databinding.

Chapter 7
Configuring Databinding

7-13

Note:

Built in Java subclasses of java.util.List and java.util.Map are
supported. Multi-dimensional support (that is, Array of Arrays, Array of
HashMaps, List of Lists, etc) will be supported in a future release

You can express the generics type argument of a Collection (or members of the
Collection family) with either an annotation or an external mapping file. For example,
the two methods in the interface that is shown in Example 7-8 are equivalent in their
input types if the processItems2 method uses the external mapping file that is shown
in Example 7-9.

Example 7-8 Methods in an Interface (1)

The following example shows two methods in an interface.

public interface CollectionProcessor {
 public String processItems1(Collection<ItemType> items);
 public String processItems2(Collection items);
}

Example 7-9 External Mapping File for Configuring Collection Objects [1]

The following example shows the fragment of the external mapping file for the
processItems2 method shown in

<java-method name="processItems2">
 <java-params>
 <java-param>
 <oxm:xml-element type="mypackage.ItemType"/>
 </java-param>
 </java-params>
</java-method>

Example 7-10 External Mapping File for Configuring Collection Objects [2]

The following is another example of an external mapping file for configuring
Collection objects.

<java-method name="testListOfCustomer">
 <java-params>
 <java-param>
 <oxm:xml-element type="mypackage.Customer"/>
 </java-param>
 </java-params>
</java-method>

Externalizing Generic Type for Map
Currently, externalizing the generic types is not directly supported for java.util.Map
types.

Chapter 7
Configuring Databinding

7-14

However, if it is not possible to specify the generic type for the Map directly in the Java class,
it can be indirectly supported by using the Java XML type adapter feature of the
toplink.jaxb binding. This involves writing custom serializers for the desired generic Map
types and specifying the custom serializers in the external mapping file, as shown in.

Example 7-11 POJO to be Exposed as a Web Service (Without Generic Types on the
Map)

The following example demonstrates POJO that can be exposed as a Web Service.

//Implementation class
public class CollectionMapExtTypeArgImpl {
 public Map testMapOfCustomAdapters(Map map) {
 //implementation goes here
 }
}

Example 7-12 Custom Adapter Classes

The following example specifies the custom adapter classes.

//Custom Adapter class for Map<String, Integer> (JAXB Xml Adapter)
public class MapStringIntegerAdapter extends XmlAdapter<MapStringInteger,
HashMap> {
 public HashMap unmarshal(MapStringInteger m) throws Exception {
 HashMap map = new HashMap();
 for (StringIntegerEntry e: m.entry) map.put(e.key, e.value);
 return map;
 }
 public MapStringInteger marshal(HashMap m) throws Exception {
 MapStringInteger map = new MapStringInteger();
 map.entry = new ArrayList<StringIntegerEntry>();
 for (Object k: m.keySet()) {
 StringIntegerEntry e = new StringIntegerEntry();
 e.key = (String) k;
 e.value = (Integer) m.get(k);
 map.entry.add(e);
 }
 return map;
 }
}

//MapStringInteger.java
public class MapStringInteger {
 public static class StringIntegerEntry {
 @XmlAttribute
 public String key;
 @XmlValue
 public Integer value;
 }
 public List<StringIntegerEntry> entry;
}

//Similar implementation for MapStringCustomerAdapter would be needed

Chapter 7
Configuring Databinding

7-15

Example 7-13 Customization file fragment showing return type of Map<String,
Integer> and parameter type of Map<String, Customer>

The following example demonstrates the customization file fragment showing return
type of Map<String, Integer> and parameter type of Map<String, Customer>.

<java-method name="testMapOfCustomAdapters">
 <oxm:xml-element xmlns='http://www.eclipse.org/eclipselink/xsds/
persistence/oxm'>
 <oxm:xml-java-type-adapter
value='com.oracle.test.MapStringIntegerAdapter'/>
 </oxm:xml-element>
 <java-params>
 <java-param>
 <oxm:xml-element xmlns='http://www.eclipse.org/eclipselink/
xsds/persistence/oxm'>
 <oxm:xml-java-type-adapter
value='com.oracle.test.MapStringCustomerAdapter'/>
 </oxm:xml-element>
 </java-param>
 </java-params>
 </java-method>

Precedence of Configuration Settings
You can specify several configuration settings in more than one place, including
databinding mode, SOAP version, target namespace, service name, and port name. If
one of those settings is specified in multiple places, they are evaluated in the following
order of precedence:

1. If a configuration option is specified (and is not empty) in the Spring context in the
binding.ws configuration, that setting is used. This setting takes precedence over
all others.

2. If a configuration option is not specified in the Spring context in the binding.ws
configuration, the value in the external customization file is used. This setting
takes precedence over the next setting mentioned below.

3. If a configuration option is not specified in the Spring context or the external
customization file but is specified in annotations on the POJO, the annotations on
the POJO are used.

Deployment
At deployment, WebLogic SCA Runtime:

1. Uses the service interface information to generate a WSDL.

2. Publishes the service at the specified URI (relative to the context root) as a JAX-
WS endpoint.

Runtime
The runtime behavior of Web Service bindings is described as follows:

Chapter 7
Precedence of Configuration Settings

7-16

• Service Requests— Requests to services are handled in the following manner:

1. The appropriate data binding converts the incoming SOAP message payload into
Java objects.

2. Any policies are handled by the JAX-WS runtime.

3. The POJO implementing the service is invoked by the WebLogic SCA Runtime.

• Reference Invocations— WebLogic SCA Runtime recognizes that a reference
invocation is for an external reference. It acts as a JAX-WS client to the external Web
Service, unmarshals the result to Java and returns it in a manner transparent to the
calling Java code.

Chapter 7
Runtime

7-17

8
Deploying WebLogic Spring SCA Applications

This chapter describes how to deploy WebLogic Spring SCA applications to Oracle WebLogic
Server.

• Preparing Deployment Units

• Configuring the Deployment Descriptor

• Bundling Libraries

• Deploying in a Cluster

• Deploying WebLogic Spring SCA Applications Using Other Tools

• Runtime

Preparing Deployment Units
WebLogic SCA Runtime supports Enterprise Archive (EAR) and Web Archive (WAR) formats
as deployment units.

A typical WebLogic SCA application bundles the Spring application context file in the META-
INF/jsca/ directory, along with the application's POJO classes.

The organization of a sample WebLogic Spring SCA application EAR archive is shown in the
following example:

META-INF/application.xml
META-INF/weblogic-application.xml
META-INF/jsca/spring-context.xml
MyEJBApp.jar
MyWebApp.war
APP-INF/lib/MyScaClasses.jar
 META-INF/jsca/spring-context.xml
APP-INF/classes/MyScaPojo.class

The organization of a sample WebLogic Spring SCA application WAR archive is shown in the
following example:

WEB-INF/web.xml
WEB-INF/weblogic.xml
WEB-INF/lib/MyScaClasses.jar
 META-INF/jsca/spring-context.xml
 MyScaPojo1.class
 MyScaPojo2.class

Configuring the Deployment Descriptor
You must add a <library-ref> element to the deployment descriptor for a application.

When referring to a shared Web application library, you can also add an optional <context-
root> element to declare the context root of the library module. This ensures that the context

8-1

root is set to the configured value and will not conflict with other WebLogic SCA
applications deployed on the same server and referring to the same shared library.

Note:

Oracle recommends that you provide a unique <context-root> for each
WebLogic Spring SCA application. When multiple applications are deployed
into a single server or a cluster, each application has its own library reference
to weblogic-sca-1.0.war. Not specifying different context roots for each
application results in a context root conflict because every WebLogic SCA
application uses the default context root specified in weblogic-sca-1.0.war.

The following example represents a <library-ref> and <context-root> in an EAR's
weblogic-application.xml descriptor:

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-application xmlns="http://www.bea.com/ns/weblogic/90">
 <library-ref>
 <library-name>weblogic-sca</library-name>
 <context-root>weblogic-sca-ctx-root1</context-root>
 </library-ref>
</weblogic-application>

The following example represents a <library-ref> and <context-root> in a WAR's
weblogic.xml descriptor.

<?xml version="1.0" encoding="UTF-8859-1"?>
<weblogic-application xmlns="http://www.bea.com/ns/weblogic/90">
 <library-ref>
 <library-name>weblogic-sca</library-name>
 <context-root>weblogic-sca-ctx-root1</context-root>
 </library-ref>
</weblogic-application>

Bundling Libraries
WebLogic Spring SCA applications must bundle spring.jar under APP-INF/lib for
EARs and under WEB-INF/lib for WARs). Spring has a dependency on commons-
logging. Therefore the jar must also be bundled with the application.

WebLogic SCA supports Spring 2.0.6 or later. Spring 2.5.3 is recommended.

Deploying in a Cluster
A WebLogic Spring SCA application can be deployed in a homogenous clustered
environment. Cluster deployment deploys the application to every node, and since
most request processing is stateless (stateful ones use the database for storing their
state), a load balancer or a plug-in can route the request to any node.

Chapter 8
Bundling Libraries

8-2

Deploying WebLogic Spring SCA Applications Using Other Tools
You can also deploy WebLogic Spring SCA applications in standalone WebLogic Server
using Oracle Enterprise Pack for Eclipse (OEPE) and Oracle JDeveloper.

See Tools Support for more information about WebLogic SCA support in those tools.

Runtime
When a WebLogic Spring SCA application is deployed, its services are exposed by the
appropriate binding component implementations. For a service defined with binding.ws, the
Web Service binding component implementation publishes a Web Services endpoint. For a
service defined with binding.ejb, the EJB binding component makes the EJB available in
JNDI.

If multiple Spring application context files are used during a deploy within the same
application, WebLogic SCA Runtime wires the matching services and references, ignoring the
bindings for internal wiring. This requires use of the optional default attribute in an
sca:reference element.

See sca:reference Element.

Note:

A WebLogic Spring SCA application with two or more Spring application context
files can be nested into other composites only in Oracle SOA, since this requires an
enclosing SCDL file.

Chapter 8
Deploying WebLogic Spring SCA Applications Using Other Tools

8-3

9
Viewing WebLogic SCA Application
Configurations

This chapter describes how to view the configuration details of a WebLogic Spring SCA
application in the Oracle WebLogic Server Administration Console. These configuration
details can be viewed in the Administration Console after the WebLogic SCA console
extension has been enabled.

• Prerequisites for Viewing Application Configurations

• Enabling the WebLogic Server Administration Console Extension

• Viewing Details about Configured Services and References

Prerequisites for Viewing Application Configurations
You must complete the following tasks before you can view an application's configuration in
the console extension:

• Deploy the WebLogic SCA Runtime module if it is not already deployed.

See Deploying WebLogic SCA Runtime to WebLogic Server.

• Enable the weblogic-sca-console extension.

See Enabling the WebLogic Server Administration Console Extension .

• Deploy the application, if it is not already deployed.

See Deploying WebLogic Spring SCA Applications.

Enabling the WebLogic Server Administration Console
Extension

You must enable the Administration Console extension before you can view details about
configuration services and references.

To enable the extension, perform the following steps:

1. Start the WebLogic Server Administration Console.

2. In the banner toolbar region at the top of the right pane of the Console, click
Preferences.

3. Click the Extensions tab.

4. Select the checkbox next to weblogic-sca-console.

5. Click Enable.

6. Restart the Administration Server.

9-1

Viewing Details about Configured Services and References
To view details about configured services and references, perform the following steps:

1. In the left pane of the Console, select Deployments.

2. In the Deployments table, click the name of theWebLogic Spring SCA application
whose configuration you want to view.

3. On the Settings for application_name page, click the WebLogic SCA tab.

4. In the WebLogic SCA Artifacts table, click the name of the service or reference
you want to view.

For explanations of the fields, click Help in the banner toolbar which is a region at
the top of the Console.

Chapter 9
Viewing Details about Configured Services and References

9-2

A
WebLogic SCA Schemas

This chapter describes the WebLogic SCA schemas in Oracle WebLogic Server.

• WebLogic Spring SCA Schema (weblogic-sca.xsd)

• WebLogic SCA Binding Schema (weblogic-sca-binding.xsd)

• Web Service Policy Schema (ws-policy.xsd)

• WebLogic SCA Databindings Customization Descriptor Schema (weblogic-wsee-
databinding.xsd)

WebLogic Spring SCA Schema (weblogic-sca.xsd)
WebLogic SCA provides extensions to the OASIS Spring SCA schema to support the
sca:reference and sca:service elements used in Spring application contexts to configure
WebLogic SCA applications. The schema is available at http://www.oracle.com/
technology/weblogic/weblogic-sca/1.0/weblogic-sca.xsd.

See Configuring the Spring Application Context for information about how this schema is
used.

Note:

See Appendix A of the SCA Spring Component Implementation Specification at
http://www.oasis-open.org/committees/download.php/25529/sca-springci-
draft-20070926.doc for the complete OASIS Spring SCA schema.

WebLogic SCA Binding Schema (weblogic-sca-binding.xsd)
The binding.ejb element and binding.ws elements are defined in the weblogic-sca-
binding.xsd schema. The schema is available at http://xmlns.oracle.com/weblogic/
weblogic-sca-binding/1.0/weblogic-sca-binding.xsd.

See Configuring EJB Session Bean Bindings for information on how the binding.ejb
element is used to configure EJB session bean bindings.

See Configuring Web Service Bindings for information on how the binding.ws element is
used to configure Web Service bindings.

Web Service Policy Schema (ws-policy.xsd)
Policies for Web Service bindings are based on the ws-policy.xsd schema, as shown in the
following example.

See Configuring Security for information on how this schema is used.

A-1

http://www.oracle.com/technology/weblogic/weblogic-sca/1.0/weblogic-sca.xsd
http://www.oracle.com/technology/weblogic/weblogic-sca/1.0/weblogic-sca.xsd
http://www.oasis-open.org/committees/download.php/25529/sca-springci-draft-20070926.doc%20
http://www.oasis-open.org/committees/download.php/25529/sca-springci-draft-20070926.doc%20
http://xmlns.oracle.com/weblogic/weblogic-sca-binding/1.0/weblogic-sca-binding.xsd
http://xmlns.oracle.com/weblogic/weblogic-sca-binding/1.0/weblogic-sca-binding.xsd

<schema targetNamespace="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:tns="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="PolicyReference" >
 <complexType>
 <attribute name="URI" type="anyURI" use="required" />
 <attribute name="Digest" type="base64Binary" />
 <attribute name="DigestAlgorithm"
 type="anyURI"
 default="http://schemas.xmlsoap.org/ws/2004/09/policy/
Sha1Exc"/>
 <anyAttribute namespace="##any" processContents="lax" />
 </complexType>
 </element>
</schema>

WebLogic SCA Databindings Customization Descriptor
Schema (weblogic-wsee-databinding.xsd)

The schema for providing an external databinding customization XML file is available
at http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding/1.2/weblogic-
wsee-databinding.xsd.

The customization file provides mapping metadata for databinding. The data is used to
define the attributes of a Java Web Service endpoint. See About Configuring Custom
Databinding.

Appendix A
WebLogic SCA Databindings Customization Descriptor Schema (weblogic-wsee-databinding.xsd)

A-2

http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding/1.2/weblogic-wsee-databinding.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding/1.2/weblogic-wsee-databinding.xsd

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Overview
	WebLogic Spring SCA Applications
	WebLogic SCA Runtime
	Limitations

	2 Tools Support
	Standalone WebLogic Server
	Oracle Enterprise Pack for Eclipse (OEPE)

	3 Deploying WebLogic SCA Runtime to WebLogic Server
	Deploying a Library Using the WebLogic Server Administration Console

	4 WebLogic Spring SCA Application Overview
	5 Configuring the Spring Application Context
	Specifying References and Services
	sca:reference Element
	sca:service Element
	Binding Subelements

	Sample Spring Application Context

	6 Configuring EJB Session Bean Bindings
	binding.ejb Element Attributes
	Binding to Services
	Binding to References
	EJB2 Programming Model
	EJB3 Programming Model

	7 Configuring Web Service Bindings
	binding.ws Element Attributes
	binding.ws Subelements
	PolicyReference Element
	property Element

	Configuring Security
	Security Configuration Examples

	Configuring Databinding
	Configuring TopLink/EclipseLink JAXB Binding
	Configuring TopLink/EclipseLink SDO Databinding
	Configuring Glassfish JAXB Databinding
	About Configuring Custom Databinding
	Configuring Custom Databinding
	Custom Databinding Examples

	Configuring Databinding for SOAP Attachments
	Configuring Attachments Using MTOM
	Configuring Attachments Using MTOM: Examples

	Configuring Attachments Using SwA
	Configuring Attachments Using SwA: Examples

	Configuring Collection and Map Objects
	Externalizing Generic Type for Map

	Precedence of Configuration Settings
	Deployment
	Runtime

	8 Deploying WebLogic Spring SCA Applications
	Preparing Deployment Units
	Configuring the Deployment Descriptor
	Bundling Libraries
	Deploying in a Cluster
	Deploying WebLogic Spring SCA Applications Using Other Tools
	Runtime

	9 Viewing WebLogic SCA Application Configurations
	Prerequisites for Viewing Application Configurations
	Enabling the WebLogic Server Administration Console Extension
	Viewing Details about Configured Services and References

	A WebLogic SCA Schemas
	WebLogic Spring SCA Schema (weblogic-sca.xsd)
	WebLogic SCA Binding Schema (weblogic-sca-binding.xsd)
	Web Service Policy Schema (ws-policy.xsd)
	WebLogic SCA Databindings Customization Descriptor Schema (weblogic-wsee-databinding.xsd)

