
Oracle® Fusion Middleware
Integrating Oracle WebLogic Server with
Helidon

14c (14.1.1.0.0)
F78421-01
July 2023

Oracle Fusion Middleware Integrating Oracle WebLogic Server with Helidon, 14c (14.1.1.0.0)

F78421-01

Copyright © 2023, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion vi

Related Resources vi

Conventions vi

1 About the Oracle WebLogic Server and Helidon Integration

Preparing the Kubernetes Cluster for WebLogic Server and Helidon Integration 1-2

Downloading the WebLogic Server Java Clients with Jakarta Package Names 1-3

2 Integrating WebLogic Server REST Services with Helidon

Prerequisites 2-2

Using the JAX-RS Server 2-3

Using the JAX-RS Client 2-3

3 Integrating WebLogic Server JMS with Helidon

Prerequisites 3-2

Enabling the T3/T3S Channel in the WebLogic Kubernetes Operator 3-2

Creating the T3/T3S Channel Using the Administration Console 3-3

Creating the T3/T3S Channel Using the WLST Script 3-4

Creating the T3/T3S Channel Using WebLogic Deploy Tooling 3-5

Creating the Kubernetes Service for T3/T3S Channel for Communication 3-6

Configuring the JMS Resources in WebLogic Server Using WebLogic Deploy Tooling 3-7

Setting Up the JMS Integration with Helidon 3-8

Troubleshooting Common JMS Issues 3-14

4 Integrating WebLogic Server Web Services with Helidon

Prerequisites 4-2

iii

Setting Up the Web Services Integration with Helidon 4-2

5 Integrating WebLogic Cluster and Helidon Applications for Single Sign-
On on OCI Using IDCS

Prerequisites 5-3

Setting Up the WebLogic Cluster Integration with Helidon for Single Sign-On 5-4

6 Integrating XA Global Transactions Between WebLogic Server and
Helidon Using MicroTx

Prerequisites 6-2

Preparing WebLogic Server to Work with MicroTx 6-4

Creating the JDBC Data Sources Using WebLogic Deploy Tooling 6-4

Configuring the JTA Transaction Log as a JDBC Store 6-5

Modifying the MicroTx Configurations 6-7

Allowing Communication Between Peers Across Namespaces 6-7

Creating Routing Rules 6-8

Setting Up the Integration of WebLogic Server with Helidon and MicroTx Applications and
Services 6-9

Building and Deploying the Helidon Teller Application 6-10

Building and Deploying the Helidon Participant Application 6-12

Building and Deploying the MicroTx Application WAR File in the WebLogic Server
Domain 6-14

Deploying the Web Application in the WebLogic Cluster Using WebLogic Deploy
Tooling 6-17

Deploying the MicroTx Coordinator Service 6-18

Troubleshooting Common Issues 6-20

iv

Preface

The Integrating Oracle WebLogic Server with Helidon document provides guidance on
leveraging the integration of Oracle WebLogic Server and Helidon to establish a connection
between applications deployed on Oracle WebLogic Server and Helidon microservice
applications running in a Kubernetes cluster.

This preface includes the following topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Resources

• Conventions

Audience
This document is intended for users who are responsible for using the Oracle WebLogic
Server integration with Helidon in the following areas:

• WebLogic Java Message Service (JMS)

• REST Services

• Web Services

• Single sign-on (SSO) on Oracle Cloud Infrastructure (OCI)

• MicroTx (with Helidon 2.x)

This document provides information about integrating Oracle WebLogic Server 14c (14.1.1.0)
with Helidon 3.x and 2.x.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://support.oracle.com/portal/ or visit Oracle
Accessibility Learning and Support if you are hearing impaired.

v

https://www.oracle.com/corporate/accessibility/
https://support.oracle.com/portal/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Resources
For more information, see these Oracle resources:

• WebLogic Kubernetes Operator

• Helidon MP 2.x Upgrade Guide

• Helidon MP 3.x Upgrade Guide

• Helidon MP Tutorial

• Helidon MP Quickstart

Conventions
The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

https://oracle.github.io/weblogic-kubernetes-operator/
https://helidon.io/docs/v2/#/mp/guides/15_migration
https://helidon.io/docs/v3/#/mp/guides/migration_3x
https://helidon.io/docs/v3/#/mp/guides/mp-tutorial
https://helidon.io/docs/v3/#/mp/guides/quickstart

1
About the Oracle WebLogic Server and
Helidon Integration

The Oracle WebLogic Server (WebLogic Server) and Helidon integration enables interaction
between a Helidon microservice application and an application installed on WebLogic Server,
which is deployed in a Kubernetes cluster managed by the WebLogic Kubernetes Operator
(Operator).

Note:

This document provides information about the WebLogic Server and Helidon
integration when both products are deployed in a Kubernetes environment.
However, you can implement this integration on any supported platform.

WebLogic Server on Kubernetes enables you to efficiently build modern container
applications with comprehensive Java services. Helidon is an open source, lightweight, fast,
reactive, cloud native framework for developing Java microservices.

Owners of applications based on WebLogic Server seeking to modernize applications with
microservices can use WebLogic Server and Helidon integration to implement communication
and coordination between WebLogic Server-based applications and Helidon-based
microservices. Such communication and coordination enables enterprise applications and
microservices to coexist and cooperate in the realization of modernized architecture meeting
the owners' requirements. The communication can take multiple forms, unidirectional or bi-
directional, and the coordination targets security simplifications and transaction management
between WebLogic Server applications and Helidon microservices.

This document provides information about the WebLogic Server integration with Helidon 3.x
and 2.x releases. To understand the differences between the two Helidon releases, see
Helidon MP 2.x Upgrade Guide and Helidon MP 3.x Upgrade Guide.

The WebLogic Server and Helidon integration enables you to:

• Initiate bidirectional REST calls between Helidon and WebLogic Server. The REST
integration enables WebLogic Server applications and Helidon microservices to
communicate through RESTful Web Service invocations.

• Generate, produce, and consume a JMS message to and from a WebLogic Server
Queue, Topic, Distributed Queue, and so on. The JMS integration enables Helidon
microservices to publish and consume messages from WebLogic JMS Server.

• Initiate communication between a Helidon client and WebLogic Server Web Services.
This integration enables Helidon microservices to interact with WebLogic Server
applications through SOAP (Simple Object Access Protocol) Web Service calls from
Helidon to WebLogic Server.

• The WebLogic Server and Helidon integration enables communication between a
WebLogic cluster-hosted application and a Helidon microservice application by

1-1

https://helidon.io/docs/v2/#/mp/guides/15_migration
https://helidon.io/docs/v3/#/mp/guides/migration_3x

implementing Single Sign-on (SSO) authentication using Oracle Identity Cloud
Service (IDCS).

• Coordinate distributed XA transactions initiated by Helidon and spanning
WebLogic Server and Helidon applications and data sources. Transaction
coordination between WebLogic Server and Helidon ensures data correctness
within modernized applications requiring ACID (Atomicity, Consistency, Isolation,
and Durability) transactions.

This chapter includes the following topics:

• Preparing the Kubernetes Cluster for WebLogic Server and Helidon Integration
Preparing the Kubernetes cluster for WebLogic Server and Helidon integration for
REST, Java Message Service, Web Services, Single Sign-on and Distributed XA
Transactions includes provisioning the WebLogic Server domain and the Helidon
instances in a Kubernetes cluster, deploying the Operator, and deploying a load
balancer or the Istio service mesh.

• Downloading the WebLogic Server Java Clients with Jakarta Package Names

Preparing the Kubernetes Cluster for WebLogic Server and
Helidon Integration

Preparing the Kubernetes cluster for WebLogic Server and Helidon integration for
REST, Java Message Service, Web Services, Single Sign-on and Distributed XA
Transactions includes provisioning the WebLogic Server domain and the Helidon
instances in a Kubernetes cluster, deploying the Operator, and deploying a load
balancer or the Istio service mesh.

Installing the Ingress Load Balancer

For effective traffic management between WebLogic Server and Helidon, you will need
to deploy an Ingress controller or an Istio service mesh in the Kubernetes cluster. You
can deploy any load balancer (or Ingress controller) in the Kubernetes cluster to
balance traffic between WebLogic Server and the Helidon instances.

For more information about creating Traefik or Nginx Ingress controllers, see Ingress
Controllers in the WebLogic Kubernetes Operator documentation.

Istio is a service mesh that provides a separate infrastructure layer to handle inter-
service communication. For instructions to install Istio, see Install Istio.

Installing the WebLogic Kubernetes Operator

In this integration, the applications installed on WebLogic Server are deployed in a
Kubernetes cluster that is managed by the Operator. You should install the Operator
before provisioning the WebLogic Server domain. The Operator helps you manage all
lifecycle operations of the WebLogic Server domain, such as provisioning, scaling,
security, and lifecycle management which includes applying updates of the
applications or to the WebLogic Server binaries in a rolling fashion.

For information about setting up the Operator, see Install the Operator.

Provisioning the WebLogic Server Domain

The Operator supports the following WebLogic Server domain home source types:

Chapter 1
Preparing the Kubernetes Cluster for WebLogic Server and Helidon Integration

1-2

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/accessing-the-domain/ingress/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/accessing-the-domain/ingress/
https://istio.io/latest/docs/setup/getting-started/#install
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-operator

• Model in Image: The primary image contains the JDK and the WebLogic Server
binaries. A separate, auxiliary image contains the WebLogic Deployment Tooling (WDT)
model files, WDT variable files, and the application archive file. See Auxiliary Images in
the WebLogic Kubernetes Operator documentation.

• Domain Home in Persistent Volume (PV): The primary image contains the JDK and the
WebLogic Server binaries. The domain home and application binaries are in a shared PV.
See Domain Home on a PV .

One of the many differences between these domain home source types is how you use them
to create and update the WebLogic Server images so that the Operator can apply the update
in a rolling fashion to ensure application availability. For information about the differences
between these domain home source type, see Choose a Domain Home Source Type.

This document describes the provisioning of the WebLogic Server domain using the 'Model in
Image' pattern. For a step-by-step guide on how to provision a domain with the 'Model in
Image' pattern and create the required data sources, see Model in Image.

The Operator starts the WebLogic Server domain by using the Domain Custom Resource.
There are two ways to start the domain:

• If you are starting the domain for the first time, you should provision the domain by
creating the Domain Custom Resource.

• If the domain is already provisioned, you should edit the Domain Custom Resource to
instruct the Operator to start the domain.

For more information about starting and stopping the WebLogic Server instances in your
domain, see Domain Life Cycle.

For an overall understanding of running and managing the WebLogic Server domains, see
Manage Domains.

Deploying Helidon

For information about the prerequisites and getting started with Helidon:

• See Get Started for Helidon 3.x.

• See Get Started for Helidon 2.x.

Downloading the WebLogic Server Java Clients with Jakarta
Package Names

You can download the WebLogic Server 14.1.1.0 Java clients with Jakarta packages from
Oracle Technology Network (OTN) or Oracle Software Delivery Cloud (OSDC). You can use
these clients in remote Java client applications that contain libraries using the jakarta.*
package naming convention and connect to server-side applications hosted in WebLogic
Server 12.2.1.4 or WebLogic Server 14.1.1. 0.

To download the WebLogic Server Jakarta thin clients from OTN:

1. Go to the Free Oracle WebLogic Server Installers for Development page or the Oracle
WebLogic Server Installers page. The following downloads are available under
WebLogic Server 14.1.1 Java clients with Jakarta package names:

• WebLogic Server 14.1.1 Thin T3 Jakarta client (wlthint3client.jakarta.jar
file)

Chapter 1
Downloading the WebLogic Server Java Clients with Jakarta Package Names

1-3

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/model-in-image/auxiliary-images/
https://oracle.github.io/weblogic-kubernetes-operator/samples/domains/domain-home-on-pv/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/choosing-a-model/
https://oracle.github.io/weblogic-kubernetes-operator/samples/domains/model-in-image/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-lifecycle/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/
https://helidon.io/docs/v3/#/about/prerequisites
https://helidon.io/docs/v2/#/about/03_prerequisites
https://www.oracle.com/middleware/technologies/weblogic-server-downloads.html
https://www.oracle.com/middleware/technologies/weblogic-server-installers-downloads.html
https://www.oracle.com/middleware/technologies/weblogic-server-installers-downloads.html

• WebLogic Server 14.1.1 Web Services Jakarta client
(com.oracle.webservices.wls.jaxws-wlss-client.jakarta.jar
file)

2. Select the required file, check the Oracle License Agreement, and then click the
file to download.

To download the clients from OSDC:

1. Sign in to Oracle Software Delivery Cloud.

2. Type in the search term 'Oracle WebLogic Server 14c' and click Search.

3. From the search results, select Oracle WebLogic Server 14c 14.1.1.0.0 (Oracle
WebLogic Server Enterprise Edition, Oracle WebLogic Server Standard
Edition). It gets added to the downloads queue.

4. Click View Items and select Continue to view the list of items in your download
queue. By default, all the items are selected for download.

5. Select only Oracle WebLogic Server 14.1.1.0 from the list (uncheck the others),
select Platforms as GENERIC (ALL Platforms), and then click Continue.

6. Review and accept the Oracle License Agreement and click Continue.

7. From the downloads queue, select Oracle WebLogic Server 14.1.1.0.0 for
GENERIC (All Platforms) if you want to download both the WebLogic 14.1.1
Jakarta clients, and click Download.

8. Sign out of the page after the download process is complete.

9. Before you extract the Jar files, rename the WebLogic Server 14.1.1 Web Services
Jakarta client to com.oracle.webservices.wls.jaxws-wlswss-
client.jakarta.jar and WebLogic Server 14.1.1 Thin T3 client to
wlthint3client.jakarta.jar.

Chapter 1
Downloading the WebLogic Server Java Clients with Jakarta Package Names

1-4

https://edelivery.oracle.com/osdc/faces/SoftwareDelivery

2
Integrating WebLogic Server REST Services
with Helidon

The REST services integration with Helidon enables bidirectional REST calls between
Helidon and Oracle WebLogic Server (WebLogic Server). RESTful integration between
WebLogic Server and Helidon MP is easy to develop and maintain because both runtimes
support JAX-RS for serving and calling the RESTful resources. With the Jakarta EE support,
you can create the same RESTful resource or client, which will work in both environments.
The following graphic illustrates the bidirectional communication between REST services,
Helidon, Kubernetes cluster, VCN, and load balancer:

Figure 2-1 REST Services Integration with Helidon

Kubernetes Cluster

VCN

Users Internet Load

 Balancer

HTTP

Oracle WebLogic Server

Helidon Server

Helidon

Client

JAX-RS

 REST Service

REST API

Calls
HTTP

TCP

TCP

The main difference in the usage of JAX-RS between Helidon and WebLogic Server is the
version of the supported Jakarta specification. While WebLogic Server supports Jakarta EE
8, Helidon supports JAX-RS or the new Jakarta RESTful Web Services from Jakarta EE 9.1.
The most notable difference between these two versions of Jakarta EE is the change in the
package name, where javax is replaced with jakarta.

While imports from the jakarta namespace needs to be used in Helidon 3.x, for WebLogic
Server and Helidon 2.x, javax should be used for the same JAX-RS code.

2-1

Helidon JAX-RS Imports for 3.x

import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.core.Context;
import jakarta.ws.rs.core.MediaType;

Helidon JAX-RS Imports for 2.x

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.MediaType;

WebLogic Server JAX-RS Imports

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.MediaType;

This chapter includes the following topics:

• Prerequisites

• Using the JAX-RS Server

• Using the JAX-RS Client
JAX-RS provides a convenient client API for calling the RESTful resources. The
client enables you to prepare and execute the RESTful request call with a simple
builder pattern API.

Prerequisites
To integrate WebLogic Server with Helidon for REST services, it is assumed that you
have already deployed WebLogic Server and Helidon in a Kubernetes cluster with the
WebLogic Kubernetes Operator (Operator). See Preparing the Kubernetes Cluster for
WebLogic Server and Helidon Integration.
To deploy WebLogic Server, ensure that you have:

• A good understanding about the Operator. See WebLogic Kubernetes Operator.

• Installed and configured the Operator. See Model in Image.

To deploy Helidon, see:

• Prerequisites for 3.x

• Prerequisites for 2.x

To download the WebLogic Server Java clients with Jakarta packages, see
Downloading the WebLogic Server Java Clients with Jakarta Package Names.

Chapter 2
Prerequisites

2-2

https://oracle.github.io/weblogic-kubernetes-operator/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/model-in-image/
https://helidon.io/docs/v3/#/about/prerequisites
https://helidon.io/docs/v2/#/about/03_prerequisites

Using the JAX-RS Server
The JAX-RS resource is a simple bean with annotated methods representing routes and
HTTP methods under a specific path. Annotated methods are invoked when a particular
REST endpoint is called. All the mapping and routing are done by the actual implementation
of the JAX-RS standard according to the JAX-RS annotations.
JAX-RS Example Resource

@Path("/greet") (1)
public class GreetResource {

 @Path("/hello")
 @GET (2)
 @Produces(MediaType.TEXT_PLAIN) (3)
 public Response getHello() {
 return Response.ok("Hello World!") (4)
 .build();
 }
}

A brief description of the above example:

(1) Path of the resource.

(2) HTTP method.

(3) Expected response content type.

(4) Returns the text payload with status 200.

JAX-RS is a very powerful tool where you can register your message body writers, readers,
filters, or exception mappers. In both Helidon and WebLogic Server, Eclipse Jersey is used
as the JAX-RS implementation. See Jersey User Guide.

For information about creating and deploying the JAX-RS RESTful resources in Helidon, see
JAX-RS applications.

For information about developing and deploying the JAX-RS resources on WebLogic Server,
see Developing RESTful Web Services.

Using the JAX-RS Client
JAX-RS provides a convenient client API for calling the RESTful resources. The client
enables you to prepare and execute the RESTful request call with a simple builder pattern
API.

JAX-RS Client Example

Client client = ClientBuilder.newClient();
String res = client
 .target("http://localhost:8080") (1)
 .path("/greet") (2)
 .request("text/plain") (3)
 .get(String.class); (4) (5)

Chapter 2
Using the JAX-RS Server

2-3

https://eclipse-ee4j.github.io/jersey.github.io/documentation/latest/
https://helidon.io/docs/v3/#/mp/jaxrs/jaxrs-applications

A brief description of the above example:

(1) Creates a new WebTarget with the default root URL.

(2) Prepares the request to a particular context path.

(3) Sets the expected response content type.

(4) Executes the GET request and blocks until the response is received.

(5) Parameter sets the expected response payload type; available body readers are
used for parsing to the correct response payload type.

You can also register your own message body writers, readers, filters, or exception
mappers.

For information about creating JAX-RS clients in Helidon, see Jakarta REST (JAX-RS)
Client.

For information about developing and deploying JAX-RS clients on WebLogic Server,
see Developing RESTful Web Services.

Chapter 2
Using the JAX-RS Client

2-4

https://helidon.io/docs/v3/#/mp/jaxrs/jaxrs-client
https://helidon.io/docs/v3/#/mp/jaxrs/jaxrs-client

3
Integrating WebLogic Server JMS with
Helidon

Integrating the Oracle WebLogic Server (WebLogic Server) Java Message Service (JMS)
with Helidon enables the Helidon applications to send and receive messages to and from
WebLogic Server asynchronously. The WebLogic Server applications and Helidon
microservices communicate through messaging, in one or both directions.
The following graphic illustrates the transmission of messages between WebLogic Server
JMS and Helidon:

Figure 3-1 WebLogic Server JMS Integration with Helidon

Kubernetes Cluster

Users Internet Load
 Balancer

HTTP HTTP

TCP

TCP

Helidon

helidon-jms connector

Oracle WebLogic Server

JMS Resources

Send JMS
Messages

Receive JMS
Messages

This chapter includes the following topics:

• Prerequisites

• Setting Up the JMS Integration with Helidon

• Troubleshooting Common JMS Issues
Learn about the common issues you may encounter when setting up the integration
between WebLogic Server and Helidon 3.x or 2.x.

3-1

Prerequisites
To integrate WebLogic Server with Helidon for JMS, it is assumed that you have
already deployed WebLogic Server and Helidon in a Kubernetes cluster. See
Preparing the Kubernetes Cluster for WebLogic Server and Helidon Integration.
In addition, ensure that you complete the following tasks:

• Configure/create the WebLogic Server JMS resources, before adding them as part
of the Helidon JMS connector configurations.

• To send/receive JMS messages from Helidon to WebLogic Server JMS
destinations, specify the WebLogic Server T3/T3S connection details. Enable the
T3/T3S channels for communication in WebLogic Server and ensure that you are
able to connect to T3/T3S from the Helidon application.

• Add the thin client JAR files to the local Maven repository and refer to it as part of
the Maven dependencies.

– For Helidon 3.x
You can download the WebLogic Server 14.1.1 Thin T3 Jakarta client from
Oracle Software Delivery Cloud (OSDC) for commercial use under WebLogic
Server commercial licenses. Go to https://edelivery.oracle.com and download
the package for Oracle WebLogic Server 14c 14.1.1.0.0 (Oracle WebLogic
Server Enterprise Edition, Oracle WebLogic Server Standard Edition). To
download the client for development use under the "Oracle Technology
Network Free Developer License Terms", go to https://www.oracle.com/
middleware/technologies/weblogic-server-downloads.html. For the steps to
download, see Downloading the WebLogic Server Java Clients with Jakarta
Package Names.

– For Helidon 2.x
You can locate the WebLogic Server Thin T3 client in your WebLogic Server
installation under the WL_HOME\server\lib directory.

• Enabling the T3/T3S Channel in the WebLogic Kubernetes Operator

• Creating the Kubernetes Service for T3/T3S Channel for Communication

• Configuring the JMS Resources in WebLogic Server Using WebLogic Deploy
Tooling

Enabling the T3/T3S Channel in the WebLogic Kubernetes Operator
WebLogic Server supports several ways to configure the T3/T3S channel in the
WebLogic Kubernetes Operator (Operator). You can create the T3/T3S channel using
one of the following options:

• WebLogic Server Administration Console: The Domain in Persistent Volume (PV)
domain home pattern enables you to configure the channel using the WebLogic
Server Administration Console. For more information about this pattern, see
Domain Home on a PV.

• WebLogic Scripting Tool (WLST): The Domain in Persistent Volume (PV) domain
home pattern enables you to configure the channel using WLST. See Domain
Home on a PV.

Chapter 3
Prerequisites

3-2

https://edelivery.oracle.com/
https://www.oracle.com/middleware/technologies/weblogic-server-downloads.html
https://www.oracle.com/middleware/technologies/weblogic-server-downloads.html
https://oracle.github.io/weblogic-kubernetes-operator/samples/azure-kubernetes-service/domain-on-pv/
https://oracle.github.io/weblogic-kubernetes-operator/samples/azure-kubernetes-service/domain-on-pv/
https://oracle.github.io/weblogic-kubernetes-operator/samples/azure-kubernetes-service/domain-on-pv/

• WebLogic Deploy Tooling (WDT) model: The Model in Image domain home pattern
enables you to configure the channel using the WDT model files and application archives.
See Model in Image.

For information about external WebLogic clients in WebLogic Kubernetes Operator, see
External WebLogic Clients.

• Creating the T3/T3S Channel Using the Administration Console

• Creating the T3/T3S Channel Using the WLST Script

• Creating the T3/T3S Channel Using WebLogic Deploy Tooling

Creating the T3/T3S Channel Using the Administration Console
To create the T3/T3S channel for the Administration Server:

1. Log in to the WebLogic Server Administration Console and click Lock & Edit to obtain
the configuration lock.

2. In the left pane of the console, expand Environment and select Servers.

3. On the Servers page, select the WebLogic Server Administration Server (for example:
admin-server) from the list of servers.

4. Go to the Protocols tab, select the Channels tab, and then click New.

5. In the network channel Name field, enter admin-t3-channel, select Protocol as t3,
and then click Next.

6. In the Listen Port field, enter 30014, for External Listen Address, enter <Master
IP>, and for External Listen Port, enter 30014. Leave the Listen Address field blank.

7. Click Finish to create the network channel for admin-server.

To create the T3 channel for the dynamic cluster:

1. Log in to the WebLogic Server Administration Console and click Lock & Edit to obtain
the configuration lock.

2. In the left pane of the console, expand Environment and select Clusters, and then
select Server Template.

3. From the list of server templates, select the target server template (for example: server-
template-1).

4. Go to the Protocols tab, click the Channels tab, and then click New.

5. In the network channel Name field, enter the name of the network channel (for example:
cluster-t3-channel), select Protocol as t3 or t3s, and then click Next.

6. In the Listen Port field, enter 30016, for External Listen Address, enter <Master
IP>, and for External Listen Port, enter 30016. Leave the Listen Address field blank.

7. Click Finish to create the network channel for the dynamic cluster.

Chapter 3
Prerequisites

3-3

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/model-in-image/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/accessing-the-domain/external-clients/#overview

Note:

When WebLogic Server and Helidon are part of the same Kubernetes
cluster, you can use the Fully Qualified Kubernetes Service Name as part of
the public IP address.

Example of the FQDN name for the Administration Server:

wls-domain-admin-server.wls-domain-ns.svc.cluster.local

Example of the FQDN name for the dynamic cluster:

wls-domain-managed-server${id}.wls-domain-ns.svc.cluster.local

Creating the T3/T3S Channel Using the WLST Script
The following example script creates the T3 channel called admin-t3-channel that has
a listen port 30014 and a public port 30014:

import sys

admin_server = sys.argv[1]
admin_port = sys.argv[2]
user_name = sys.argv[3]
password = sys.argv[4]
domain_ns = sys.argv[5]

connect(user_name, password, 't3://' + admin_server + ':' + admin_port)

edit()
startEdit()
cd('/')

print('Create channel for admin server')
cd('/Servers/admin-server')
cmo.createNetworkAccessPoint('admin-t3-channel')
cd('NetworkAccessPoints/admin-t3-channel')
cmo.setProtocol('t3')
cmo.setListenPort(30014)
cmo.setPublicPort(30014)
##You need to use public IP address when Helidon and WebLogic Server
are in different Kubernetes clusters.
cmo.setPublicAddress('wls-domain-admin-server.' + domain_ns +
'.svc.cluster.local')
print('admin-t3-channel added')

print('Create channel for cluster')
cd('/ServerTemplates/server-template_1')
cmo.createNetworkAccessPoint('cluster-t3-channel')
cd('/ServerTemplates/server-template_1/NetworkAccessPoints/cluster-t3-
channel')

Chapter 3
Prerequisites

3-4

cmo.setProtocol('t3')
cmo.setListenPort(30016)
##You need to use public IP address when Helidon and WebLogic Server are in
different Kubernetes.
cmo.setPublicAddress('wls-domain-managed-server${id}.' + domain_ns +
'.svc.cluster.local')
cmo.setEnabled(true)
cmo.setHttpEnabledForThisProtocol(true)
cmo.setTunnelingEnabled(false)
cmo.setOutboundEnabled(false)
cmo.setTwoWaySSLEnabled(false)
cmo.setClientCertificateEnforced(false)
print('cluster-t3-channel added')

activate()
disconnect()

Creating the T3/T3S Channel Using WebLogic Deploy Tooling
You can create the T3/T3S channel resources by using WDT. The following example uses the
WDT model configuration for creating the T3 channels for the Administration Server and the
dynamic cluster:

topology:
 Server:
 admin-server:
 ListenAddress: wls-domain-admin-server
 NetworkAccessPoint:
 internal-t3:
 ListenAddress: localhost
 ListenPort: 7001
 admin-t3-channel:
 # You need to use public IP address when Helidon and
WebLogic Server are in different Kubernetes.
 PublicAddress: wls-domain-admin-server.wls-domain-
ns.svc.cluster.local
 ListenPort: 30014
 PublicPort: 30014
 ServerTemplate:
 server-template_1:
 Cluster: cluster-1
 ListenAddress: wls-domain-managed-server${id}
 ListenPort: 8001
 NetworkAccessPoint:
 cluster-t3-channel:
 # You need to use public IP address when Helidon and
WebLogic Server are in different Kubernetes clusters.
 PublicAddress: wls-domain-managed-server${id}.wls-domain-
ns.svc.cluster.local
 ListenPort: 30016

Chapter 3
Prerequisites

3-5

Creating the Kubernetes Service for T3/T3S Channel for
Communication

After you create the T3/T3S channels in the WebLogic Server domain, you should
enable the channel for communication in the Kubernetes cluster. The following is an
example of creating the Kubernetes service for T3 communication:

apiVersion: v1
kind: Service
metadata:
 name: adminserver-t3-external
 namespace: wls-domain-ns
 labels:
 weblogic.serverName: admin-server
spec:
 type: NodePort
 selector:
 weblogic.serverName: admin-server
 ports:
 - name: t3adminport
 protocol: TCP
 port: 30014
 targetPort: 30014
 nodePort: 30014

apiVersion: v1
kind: Service
metadata:
 name: cluster-t3-external
 namespace: wls-domain-ns
 labels:
 weblogic.clusterName: cluster-1
spec:
 type: NodePort
 selector:
 weblogic.clusterName: cluster-1
 ports:
 - name: t3clusterport
 protocol: TCP
 port: 30016
 targetPort: 30016
 nodePort: 30016

Chapter 3
Prerequisites

3-6

Note:

With this sample code, you can refer the T3/T3S Kubernetes services by using the
following sample URLs:

• Refer the admin T3 external URL using t3://adminserver-t3-external.wls-
domain-ns.svc.cluster.local:30014.

• Refer the cluster T3 external URL using t3://cluster-t3-external.wls-
domain-ns.svc.cluster.local:30016.

For information about external WebLogic clients in WebLogic Kubernetes Operator, see
External WebLogic Clients.

Configuring the JMS Resources in WebLogic Server Using WebLogic
Deploy Tooling

A simple example of a model to deploy the JMS resources by targeting them to the WebLogic
Administration Server and the dynamic cluster using WDT.

resources:
 FileStore:
 FileStoreCluster:
 Target: cluster-1
 Directory: wlsdeploy/stores/FileStoreCluster/
 FileStoreAdmin:
 Target: admin-server
 Directory: wlsdeploy/stores/FileStoreAdmin/
 JMSServer:
 JMSServerCluster:
 Target: cluster-1
 PersistentStore: FileStoreCluster
 JMSServerAdmin:
 Target: admin-server
 PersistentStore: FileStoreAdmin
 JmsSessionPool:
 JMSSessionPool0: {}
 JMSSystemResource:
 jmsmodulecluster:
 Target: cluster-1
 SubDeployment:
 jmssdcluster:
 Target: JMSServerCluster
 JmsResource:
 ConnectionFactory:
 dqcf:
 DefaultTargetingEnabled: true
 JNDIName: dqcf
 ClientParams:
 MessagesMaximum: 1
 LoadBalancingParams:
 ServerAffinityEnabled: false

Chapter 3
Prerequisites

3-7

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/accessing-the-domain/external-clients/#overview

 TransactionParams:
 XAConnectionFactoryEnabled: true
 UniformDistributedQueue:
 udq:
 JNDIName: udq
 SubDeploymentName: jmssdcluster
 MessagingPerformancePreference: 0
 DeliveryFailureParams:
 RedeliveryLimit: 600
 DeliveryParamsOverrides:
 RedeliveryDelay: 1000
 DeliveryMode: Persistent
 jmsmoduleadmin:
 Target: admin-server
 SubDeployment:
 jmssdadmin:
 Target: JMSServerAdmin
 JmsResource:
 ConnectionFactory:
 qcf:
 DefaultTargetingEnabled: true
 JNDIName: qcf
 ClientParams:
 MessagesMaximum: 1
 LoadBalancingParams:
 ServerAffinityEnabled: false
 TransactionParams:
 XAConnectionFactoryEnabled: true
 Queue:
 queue:
 JNDIName: queuejndi
 SubDeploymentName: jmssdadmin
 MessagingPerformancePreference: 0
 DeliveryFailureParams:
 RedeliveryLimit: 600
 DeliveryParamsOverrides:
 RedeliveryDelay: 1000
 DeliveryMode: Persistent
 Topic:
 myTopic:
 JNDIName: myTopic
 SubDeploymentName: jmssdadmin

Setting Up the JMS Integration with Helidon
Before you begin the integration steps, ensure that you have created the required JMS
resources and the T3/T3S channels. For information about creating the T3/T3S
channels, see Enabling the T3/T3S Channel in the WebLogic Kubernetes Operator.
Set up the integration between WebLogic Server Java Message Service (JMS) and
Helidon by adding the required dependencies in the pom.xml file and configuring the
WebLogic Server JMS connector. These dependencies enable reactive streaming and
messaging along with JMS.

To set up the integration:

Chapter 3
Setting Up the JMS Integration with Helidon

3-8

1. Add the following dependencies to the pom.xml file of Helidon:

Dependency for Reactive Messaging

<dependency>
 <groupId>io.helidon.microprofile.messaging</groupId>
 <artifactId>helidon-microprofile-messaging</artifactId>
</dependency>

Dependency for JMS Connector

<dependency>
 <groupId>io.helidon.messaging.jms</groupId>
 <artifactId>helidon-messaging-jms</artifactId>
</dependency>

Dependency for Messaging Health

<dependency>
 <groupId>io.helidon.microprofile.messaging</groupId>
 <artifactId>helidon-microprofile-messaging-health</artifactId>
</dependency>

Dependencies for the WLS Thin Client JAR File

If you are using Helidon 3.x, add the jakarta thin client JAR file as part of the Maven
compilation/runtime dependencies, as shown below:

<dependency>
 <groupId>wlthint3client.jakarta</groupId>
 <artifactId>wlthint3client-jakarta</artifactId>
 <version>1.0</version>
</dependency>

The following example shows how you can add the jakarta thin client to the Maven
repository:

mvn install:install-file -Dfile=<JAR_FILE_PATH>/
wlthint3client.jakarta.jar -DgroupId=wlthint3client.jakarta -
DartifactId=wlthint3client-jakarta -Dversion=1.0

If you are using Helidon 2.x, add the javax thin client JAR file as part of the Maven
compilation/runtime dependencies, as shown below:

<dependency>
 <groupId>wlthint3client</groupId>
 <artifactId>wlthint3client</artifactId>
 <version>1.0</version>
</dependency>

Chapter 3
Setting Up the JMS Integration with Helidon

3-9

The following example shows how you can add the javax thin client to the Maven
repository:

mvn install:install-file -Dfile=<WLS_ORACLE_HOME>/wlserver/
server/lib/wlthint3client.jar -DgroupId=wlthint3client -
DartifactId=wlthint3client -Dversion=1.0

Note:

Ensure that the values for groupId, artifactId, and the version are
identical to the values used in the mvn install:install-file
command.

2. Configure the Helidon JMS connector. For more information about the connector,
see the following documents:

• For Helidon 3.x: Helidon MP - JMS Connector

• For Helidon 2.x: Helidon MP - JMS Connector

The configuration includes the following information:

• The JMS environment properties that are used to lookup resources on the
WebLogic Server:

– WLS INITIAL_CONTEXT_FACTORY (java.naming.factory.initial):
weblogic.jms.WLInitialContextFactory

– SECURITY_PRINCIPAL (java.naming.security.principal): The user
name for WebLogic Server.

– SECURITY_CREDENTIALS (java.naming.security.credentials): The
password for WebLogic Server.

– PROVIDER_URL (java.naming.provider.url): The WebLogic Server
T3/T3S connection URL.

• The JMS resource details for the following:

– JMS connection factory

– JMS destination

– JMS destination type

The following example shows the helidon-jms connector configurations added to
the <src>/main/resources/application.yaml file. In this example, JMS
clients use the Java Naming and Directory Interface (JNDI) naming service.
Hence, this example uses the jndi.destination key to refer the JMS destination
name instead of using the destination key.

User-defined properties
wls-username: <wls_username>
wls-password: <wls_password>
WLS Admin server t3 connection URL
wls-admin-url: t3://localhost:7001
WLS Admin T3 Kubernetes Service URL format within the same
kubernetes cluster
wls-admin-url: t3://adminserver-t3-external.wls-domain-

Chapter 3
Setting Up the JMS Integration with Helidon

3-10

https://helidon.io/docs/v3/#/mp/reactivemessaging/jms
https://helidon.io/docs/v2/#/mp/reactivemessaging/05_jms

ns.svc.cluster.local:30014
WLS Cluster t3 connection URL
wls-cluster-url: t3://localhost:7003,localhost:7005,localhost:7007
WLS Cluster T3 Kubernetes Service URL format within same Kubernetes
cluster
wls-cluster-url: t3://cluster-t3-external.wls-domain-
ns.svc.cluster.local:30016

mp:
 messaging:
 connector:
 helidon-jms:
 jndi:
 #Default connection factory name. This can be overridden in
individual resource configurations
 jms-factory: qcf
 #JMS environment properties to lookup resources
 env-properties:
 java.naming.factory.initial:
weblogic.jms.WLInitialContextFactory
 java.naming.provider.url: ${wls-admin-url}
 java.naming.security.principal: ${wls-username}
 java.naming.security.credentials: ${wls-password}

 # Add all consumer resources-related configurations below incoming.
 incoming:
 #Identifier "from-wls-q" is used with the @Incoming annotation.
 from-wls-q:
 #Connector Name as specific in connector section. It is
predefined.
 connector: helidon-jms
 #JMS Destination Name in JNDI format.
 jndi.destination: queuejndi
 #JMS Destination Type.
 type: queue
 #JMS Connection Factory.
 jndi.jms-factory: qcf

 # Add all producer resources-related configurations below outgoing.
 outgoing:
 #Identifier "to-wls-q" is used with the @Outgoing annotation.
 to-wls-q:
 connector: helidon-jms
 jndi.destination: queuejndi
 type: queue
 jndi.jms-factory: qcf

This is an example of the helidon-jms connector configurations for a distributed queue:

mp:
 messaging:
 connector:
 helidon-jms:
 jndi:

Chapter 3
Setting Up the JMS Integration with Helidon

3-11

 #Default connection factory name. This can be overridden
in individual resource configurations.
 jms-factory: qcf
 #JMS environment properties to lookup resources.
 env-properties:
 # Env properties
 outgoing:
 #Sample configurations for distributed queue.
 to-wls-dq:
 #Connector Name.
 connector: helidon-jms
 #JMS Dqueue JNDI Name.
 jndi.destination: dqcf
 type: queue
 #JMS DQueue Connection factory JNDI value.
 jndi.jms-factory: dqcf
 #Here wls-cluster-url refers to t3/t3s URL of WebLogic
Cluster.
 #JMS DQueue provider URL. It Overrides the default provider
value specified in the helidon-jms.jndi.env-properties section.
 jndi.env-properties.java.naming.provider.url: ${wls-cluster-
url}

Note:

The helidon-jms connector can also be used with the Create
Destination Identifier (CDI) naming service to look up the configured JMS
objects. In this case, you should use the destination key to refer to the
JMS destination name instead of using the jndi.destination key.

3. After configuring the WebLogic Server JMS connector, add the Java code to send
and receive messages to and from WebLogic Server.

If you are using Helidon 3.x, you may use the following Java code example as
reference:

package helidon.examples.quickstart.mp;
import org.eclipse.microprofile.reactive.messaging.Incoming;
import org.eclipse.microprofile.reactive.messaging.Outgoing;
import org.eclipse.microprofile.reactive.messaging.Channel;
import org.eclipse.microprofile.reactive.messaging.Emitter;
import jakarta.enterprise.context.ApplicationScoped;
import jakarta.inject.Inject;

@ApplicationScoped
public class JMSQueue {
 //Inject channel to produce messages
 @Inject
 @Channel("to-wls-q")
 private Emitter<String> emitter;

 //Send Message
 public void sendMessage(String msg) {

Chapter 3
Setting Up the JMS Integration with Helidon

3-12

 emitter.send(msg);
 }

 //Sample script to consume Messages
 @Incoming("from-wls-q")
 public void receive(String msg) {
 System.out.println("Process JMS message as per business
logic"+msg);
 }
}

If you are using Helidon 2.x, you may use the following Java code example as reference:

package helidon.examples.quickstart.mp;
import org.reactivestreams.FlowAdapters;
import org.reactivestreams.Publisher;
import java.util.concurrent.SubmissionPublisher;
import org.eclipse.microprofile.reactive.messaging.Incoming;
import org.eclipse.microprofile.reactive.messaging.Outgoing;
import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class JMSQueue {
 SubmissionPublisher<String> emitter = new SubmissionPublisher<>();

 //Register publisher
 @Outgoing("to-wls-q")
 public Publisher<String> registerPublisher() {
 return FlowAdapters.toPublisher(emitter);
 }

 //Send Messages
 public void sendMessage(String msg) {
 emitter.submit(msg);
 }

 //Sample Script To Consume Messages
 @Incoming("from-wls-q")
 public void receive(String msg) {
 System.out.println("Process JMS message as per business
logic"+msg);
 }
}

4. (This step is applicable only for Helidon 3.x.) Add the serial-config.properties
file in the <src>/main/resources/META-INF/helidon/ location with the following
content to address the deserialization filter issue reported with Helidon JEP-290
Implementation.

pattern=weblogic.**;java.util.**;java.lang.**;java.io.**;java.rmi.**;javax
.naming.**;jakarta.jms.**

For more information about deserialization filters, see JEP-290.

Chapter 3
Setting Up the JMS Integration with Helidon

3-13

https://helidon.io/docs/v3/#/mp/security/jep-290

Note:

The suggested filter configuration helps only for selected use cases. In
case of issues, you may need to use your own pattern that is suitable for
your use case.

5. Start the WebLogic Server if it is not already up and running. For information about
starting the WebLogic domain in Kubernetes, see Preparing the Kubernetes
Cluster for WebLogic Server and Helidon Integration.

You should have also created the JMS resources (such as Queue, Topic, Uniform
Distributed Queue, and so on) and the T3/T3S channels.

6. Build the Helidon application using the following command:

mvn clean package -DskipTests=true

7. Run the Helidon application using the following command:

java -jar target/<Helidion-Project-Name>.jar

Troubleshooting Common JMS Issues
Learn about the common issues you may encounter when setting up the integration
between WebLogic Server and Helidon 3.x or 2.x.

Issue 1

The filter status: REJECTED error is reported with the latest Patch Set Updated
(PSU) for the WebLogic Server thin client jar file. Here is a sample of the error
message:

<Error> <RJVM> <WL-000503> <Incoming message header or abbreviation
processing failed.
 java.io.InvalidClassException: filter status: REJECTED
 at java.base/
java.io.ObjectInputStream.filterCheck(ObjectInputStream.java:1414)
 at java.base/
java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:2055)
 at java.base/
java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1909)
 at java.base/
java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:223
5)
 at java.base/
java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1744)
 at java.base/
java.io.ObjectInputStream.readObject(ObjectInputStream.java:514)
 at java.base/
java.io.ObjectInputStream.readObject(ObjectInputStream.java:472)
 at thinClientClassLoader//
weblogic.utils.io.FilteringObjectInputStream.readObjectValidated(Filter
ingObjectInputStream.java:177)

Chapter 3
Troubleshooting Common JMS Issues

3-14

. . . .
>
023.02.04 13:57:10 INFO io.helidon.messaging.connectors.jms.JmsConnector
Thread[main,5,main]: JMS Connector gracefully stopped.
Exception in thread "main" io.helidon.messaging.MessagingException: Error
when preparing JNDI context.
 at
io.helidon.messaging.connectors.jms.ConnectionContext.<init>(ConnectionContex
t.java:64)
 at
io.helidon.messaging.connectors.jms.JmsConnector.getPublisherBuilder(JmsConne
ctor.java:429)
. . . .

Solution:

This issue is reported due to the deserialization filters used in Helidon. Add the serial-
config.properties file in the <src>/main/resources/META-INF/helidon/
location, with the following content to resolve the issue:

pattern=weblogic.**;java.util.**;java.lang.**;java.io.**;java.rmi.**;javax.na
ming.**;jakarta.jms.**

For more information about deserialization filters, see Helidon JEP-290 Implementation.

Note:

The suggested filter configuration helps only for selected use cases. In case of
issues, you may need to use your own pattern that is suitable for your use case.

Issue 2

The Helidon 2.x application hangs when you create the JMS connector during server startup.

Solution:

Ensure that the jaxws-wlswss-client and wlthint3client jars are not used together. These
jar files should not be used together.

Issue 3

In Helidon 3.x, class loader issues are reported with wlthint3client jar file. Here is a
sample of the error message:

SEVERE: Default error handler: Unhandled exception encountered.
java.util.concurrent.ExecutionException: Unhandled 'cause' of this exception
encountered.
 at
io.helidon.webserver.RequestRouting$RoutedRequest.defaultHandler(RequestRouting.java:39
8)
. . .
Caused by: java.lang.ExceptionInInitializerError
 at weblogic.utils.LocatorUtilities.getService(LocatorUtilities.java:37)
 at
weblogic.jms.WLInitialContextFactory.getInitialContext(WLInitialContextFactory.java:124

Chapter 3
Troubleshooting Common JMS Issues

3-15

https://helidon.io/docs/v3/#/mp/security/jep-290

)
. . .
Caused by: A MultiException has 2 exceptions. They are:
1. java.lang.NoSuchMethodException: The class GlobalServiceLocator has no
constructor marked @Inject and no zero argument constructor
2. java.lang.IllegalArgumentException: Errors were discovered while reifying
SystemDescriptor(
 implementation=weblogic.server.GlobalServiceLocator
. . .
Caused by: java.lang.NoSuchMethodException: The class GlobalServiceLocator has
no constructor marked @Inject and no zero argument constructor
 at
org.jvnet.hk2.internal.Utilities.findProducerConstructor(Utilities.java:1326)
. . .

Solution:

The thin client that uses the javax namespace does not work with Helidon 3.x that
uses the jakarta namespace. Therefore, download the jakarta thin client jar,
wlthint3client.jakarta.jar, that uses the jakarta namespace and also
handles multi-release jar files correctly. Add this jar to the local maven repository,
build, and then run the application.

Issue 4

WebLogic Server JMS connector issues reported in Helidon 3.x.

Solution:

The new WebLogic Server connector initializes the InitialContextFactory interface
within a different thread from the one which creates the destination. This feature
makes the WebLogic Server's thread-based security unusable. See Understanding
Thread-Based Security on Clients and Servers in Developing JMS Applications for
Oracle WebLogic Server. The solution for resolving these issues is to switch to object-
based security. See Understanding Object-Based Security in Developing JMS
Applications for Oracle WebLogic Server.

Issue 5

Helidon serialization config filter does not trace the actual rejected classes by default.
Here is a sample of the error message you will find in the logs:

java.io.InvalidClassException: filter status: REJECTED

Solution:

To find out which class has been actually rejected, set the
helidon.serialFilter.trace system property to either basic or full.

java -Dhelidon.serialFilter.trace=basic -jar ./target/custom-mp.jar

Each accepted or rejected class is logged only once with the basic trace filter setting.

ALLOWED class: class java.util.LinkedList, arrayLength: -1, depth: 2,
references: 3, streamBytes: 84
REJECTED class: class java.util.ArrayList, arrayLength: -1, depth: 2,
references: 3, streamBytes: 90

Chapter 3
Troubleshooting Common JMS Issues

3-16

You can compose proper serialization filter pattern with the list of REJECTED classes.

Chapter 3
Troubleshooting Common JMS Issues

3-17

4
Integrating WebLogic Server Web Services
with Helidon

The Oracle WebLogic Server (WebLogic Server) Web Services integration with Helidon
enables a Helidon client to call on the WebLogic Server Web Services. This integration allows
the Helidon microservices to interact with the WebLogic Server applications by using the
SOAP Web Service calls from Helidon to WebLogic Server.

The following graphics illustrate the integration between WebLogic Server Web Services and
Helidon:

Figure 4-1 Web Services Integration with Helidon

This chapter includes the following topics:

• Prerequisites

• Setting Up the Web Services Integration with Helidon

4-1

Prerequisites
To integrate WebLogic Server with Helidon for SOAP (Simple Object Access Protocol)
Web Services, it is assumed that you have already deployed WebLogic Server and
Helidon in a Kubernetes cluster. See Preparing the Kubernetes Cluster for WebLogic
Server and Helidon Integration.
In addition, obtain the following jar files provided by WebLogic Server:

• For Helidon 3.x
You can download the WebLogic Server 14.1.1 Web Services Jakarta client from
Oracle Software Delivery Cloud (OSDC) for commercial use under WebLogic
Server commercial licenses. Go to https://edelivery.oracle.com and download the
package for Oracle WebLogic Server 14c 14.1.1.0.0 (Oracle WebLogic Server
Enterprise Edition, Oracle WebLogic Server Standard Edition). To download the
client for development use under the "Oracle Technology Network Free Developer
License Terms", go to https://www.oracle.com/middleware/technologies/weblogic-
server-downloads.html. For the steps to download the, see Downloading the
WebLogic Server Java Clients with Jakarta Package Names.

• For Helidon 2.x
You can locate the WebLogic Server 14.1.1 Web Services client in your WebLogic
Server installation under the WL_HOME/modules/clients directory.

Setting Up the Web Services Integration with Helidon
WebLogic Server Web Services and Helidon integration enables the Helidon
microservice application to communicate with the WebLogic Web Service deployed in
WebLogic Server. Before you begin the integration steps, you should have created the
JAX-WS Web Service using WebLogic Deploy Tooling (WDT) and included it as part of
an auxiliary image. See Auxiliary Images. For information about developing WebLogic
Server Web Services, see Examples of Developing JAX-WS Web Services in
Developing JAX-WS Web Services for Oracle WebLogic Server.

To initiate a call from Helidon to an existing WebLogic Server Web Service:

1. Install the client jar file and include it as part of the Maven dependencies, as
shown below:

If you are using Helidon 3.x, install the
com.oracle.webservices.wls.jaxws-wlswss-client.jakarta.jar
client jar file, as shown below:

<dependency>
 <groupId>com.oracle.webservices.wls.jaxws-wlswss-
client.jakarta</groupId>
 <artifactId>com.oracle.webservices.wls.jaxws-wlswss-
client.jakarta</artifactId>
 <version>1.0</version>
</dependency>

Chapter 4
Prerequisites

4-2

https://edelivery.oracle.com/
https://www.oracle.com/middleware/technologies/weblogic-server-downloads.html
https://www.oracle.com/middleware/technologies/weblogic-server-downloads.html
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/model-in-image/auxiliary-images/#introduction

If you are using Helidon 2.x, install the com.oracle.webservices.wls.jaxws-
wlswss-client.jar client jar file, as shown below:

<dependency>
 <groupId>com.oracle.webservices.wls.jaxws-wlswss-client</groupId>
 <artifactId>com.oracle.webservices.wls.jaxws-wlswss-client</
artifactId>
 <version>1.0</version>
</dependency>

2. Use the clientgen WebLogic Server Web Services Ant task from the client jar file
installed in Step 1 to generate the artifacts that client applications need. These artifacts
are generated and added to the target/generated-sources folder.

Add the maven-antrun-plugin plug-in to execute the clientgen Ant task during the
generate-sources build phase, as shown in the following example:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>3.1.0</version>
 <executions>
 <execution>
 <id>ws-client-gen</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>run</goal>
 </goals>
 <configuration>
 <target>
 <property name="wsdl-file">file://${basedir}/
DynamicWSImplService.wsdl</property>
 <property name="compile_classpath"
 refid="maven.compile.classpath"/>
 <taskdef name="clientgen"

classname="weblogic.wsee.tools.anttasks.ClientGenTask"
 classpath="${compile_classpath}"/>
 <clientgen wsdl="${wsdl-file}"
 wsdlLocation="${wsdl-file}"
 destDir="${project.build.directory}/
generated-sources"
 packageName="com.example.wlssoap"
 generateRuntimeCatalog="false"
 type="JAXWS"
 copyWsdl="false"/>
 </target>
 </configuration>
 </execution>
 </executions>
</plugin>

For more information about generating client artifacts, see Using the clientgen Ant Task
To Generate Client Artifacts.

Chapter 4
Setting Up the Web Services Integration with Helidon

4-3

3. Use the build-helper-maven-plugin plug-in to add the /target/generated-
sources directory with the generated client classes as an additional directory with
sources.

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>3.3.0</version>
 <executions>
 <execution>
 <id>add-source</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>add-source</goal>
 </goals>
 <configuration>
 <sources>
 <source>${pom.basedir}/target/generated-
sources</source>
 </sources>
 </configuration>
 </execution>
 </executions>
</plugin>

4. Create the Jakarta based (for Helidon 3.x) or javax based (for Helidon 2.x)
RESTful Web Service to invoke the WebLogic Web Service with the generated
client classes, as shown in the following example.

@Path("/helidon-client")
@ApplicationScoped
public class HelidonWSEEClient {

 @Inject
 @ConfigProperty(name = "remote.wsdl.location")
 private String remoteWsdlLocation;

 @GET
 @Path("/getWLSWebserviceResult/subtract/{y}/from/{x}")
 @Produces(MediaType.APPLICATION_JSON)
 public JsonObject invokeWLSWebservice(@PathParam("x") int x,
 @PathParam("y") int y) {
 DynamicWSImplService testService = new
DynamicWSImplService();
 DynamicWSImpl testPort = testService.getDynamicWSImplPort();
 ((BindingProvider) testPort).getRequestContext()
 .put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
remoteWsdlLocation);

 int response = testPort.subtract(x,y);

 return Json.createObjectBuilder().add("ws-response",
response).build();

Chapter 4
Setting Up the Web Services Integration with Helidon

4-4

 }
}

5. Build the Helidon client and invoke the WebLogic Server Web Service by compiling the
Maven REST client using the following command:

mvn clean package

6. Start the Helidon server using the following command:

java -jar target/<Helidion-Project-Name>.jar

When the Helidon server starts, the microservice gets deployed and becomes ready for
use. You can access the microservice application locally by using the http://
<HELIDON_HOST>:<HELIDON_PORT>/helidon-client/getWLSWebserviceResult/
subtract/5/from/10 URL.

Where <HELIDON_HOST> and <HELIDON_PORT> refer to the host where the Helidon
microservice application is running.

Chapter 4
Setting Up the Web Services Integration with Helidon

4-5

5
Integrating WebLogic Cluster and Helidon
Applications for Single Sign-On on OCI Using
IDCS

The Oracle WebLogic Server (WebLogic Server) and Helidon integration enables you to use
the single sign-on (SSO) authentication mechanism for applications deployed on WebLogic
Server and Helidon by using OpenID Connect (OIDC) with Oracle Identity Cloud Service
(IDCS) in a Kubernetes environment. Using SSO between WebLogic Server applications and
Helidon microservices simplifies security within a modernized application by sharing
authentication while ensuring secure services. You can implement SSO in different ways. A
common approach is to use a token-based authentication protocol such as OAuth or OIDC.
The WebLogic Server and Helidon integration in a Kubernetes cluster enables SSO
authentication to:

• Access the IDCS configured client application deployed in the WebLogic cluster.

• Access the Helidon REST endpoints configured with IDCS.

• Access the WebLogic Server application endpoints from the Helidon REST endpoints.

The following graphic illustrates the integration between WebLogic Server and Helidon for
SSO using IDCS in an Oracle Cloud Infrastructure (OCI) environment:

5-1

Figure 5-1 WebLogic Cluster and Helidon Integration for SSO

WebLogic Kubernetes Operator

WebLogic Cluster

Application

Browser

Oracle IDCS
(IDP)

Helidon

GET/oidc/redirect?code=(authorization_code)
Set-Cookie: JSESSIONID={jwt_token)

POST .../openid-connect/token + authorization_code
{jwt_token)

GET {wls.service.uri}
Authorization: Bearer {jwt_token}

200 OK

GET/helidon
307 Temporary redirect

302 Found + authorization_code

GET/helidon JSESSIONID={jwt_token)
200 OK

1

2

4

6

3

5

SSO Login

7

Validate
JWT token

The description of the steps in the illustration:

1. The client uses a browser to call the protected Helidon resource without bearer
token and gets redirected to the IDCS SSO login page.

2. The client is redirected back to the Helidon application with an authorization code
after a successful sign-in on the login page.

3. When Helidon receives the authorization code, the JWT token is requested from
IDCS, returned and saved as a JSESSIONID cookie.

4. The JWT token is requested with a new authorization code, client id, and client
secret.

5. The last redirect leads back to the originally called resource, Helidon; this time with
a valid bearer token in JSESSIONID.

6. The bearer token is propagated to the client call for the WebLogic Server
application resource.

7. The WebLogic Server application resource is also secured with OIDC and
validates the token against IDCS.

This chapter includes the following topics:

• Prerequisites

• Setting Up the WebLogic Cluster Integration with Helidon for Single Sign-On

Chapter 5

5-2

Prerequisites
The prerequisites are based on WebLogic Server and Helidon integration in a Kubernetes
cluster. The list may vary if you use any other supported platforms. See Preparing the
Kubernetes Cluster for WebLogic Server and Helidon Integration.
Ensure that you have the following:

• A local machine with kubectl setup to access the Kubernetes cluster. For more
information about this setup, see Set Up the kubeconfig File for the Cluster and Verify
kubectl and Kubernetes Dashboard Access to the Cluster in the Create a Cluster with
Oracle Cloud Infrastructure Container Engine for Kubernetes Tutorial.

• A WebLogic Kubernetes Operator (Operator) setup. See Operator Quick Start.

• An OCI load balancer with a public IP and the load balancer rules applied according to
the WebLogic Server and Helidon application URL pattern. The following example shows
the application of rules:

apiVersion: traefik.containo.us/v1alpha1
kind: IngressRoute
metadata:
 name: cquotes
 namespace: sample-domain1-ns
spec:
 routes:
 - kind: Rule
 match: PathPrefix(`/<WLS application url>)
 services:
 - kind: Service
 name: sample-domain1-cluster-cluster-1
 port: 8001
 sticky:
 cookie:
 httpOnly: true
 name: cookie
 secure: false
 sameSite: none

apiVersion: traefik.containo.us/v1alpha1
kind: IngressRoute
metadata:
 name: helidon-quickstart-mp
 namespace: default
spec:
 routes:
 - kind: Rule
 match: PathPrefix(`/<helidon rest url>`)
 services:
 - kind: Service
 name: helidon-quickstart-mp
 port: 8080

apiVersion: traefik.containo.us/v1alpha1
kind: IngressRoute

Chapter 5
Prerequisites

5-3

https://www.oracle.com/webfolder/technetwork/tutorials/obe/oci/oke-full/index.html#SetUpthekubeconfigFilefortheCluster
https://www.oracle.com/webfolder/technetwork/tutorials/obe/oci/oke-full/index.html#VerifykubectlandKubernetesDashboardAccesstotheCluster
https://www.oracle.com/webfolder/technetwork/tutorials/obe/oci/oke-full/index.html#VerifykubectlandKubernetesDashboardAccesstotheCluster
https://oracle.github.io/weblogic-kubernetes-operator/quickstart/

metadata:
 name: helidon-oidc
 namespace: default
spec:
 routes:
 - kind: Rule
 match: PathPrefix(`/oidc`)
 services:
 - kind: Service
 name: helidon-quickstart-mp
 port: 8080

• Access to IDCS with privileges to register applications. For instructions to create a
user, see Create User Accounts in Administering Oracle Identity Cloud Service.

• Supported JDK (for example JDK 8 or later) and Maven (if required) to build the
WebLogic cluster client applications.

• For deploying Helidon, see:

– Prerequisites for 3.x

– Prerequisites for 2.x

• A basic understanding of OpenID Connect (OIDC). See OpenID.

Setting Up the WebLogic Cluster Integration with Helidon for
Single Sign-On

To facilitate the integration between WebLogic cluster and Helidon, WebLogic Server
is deployed using the WebLogic Server Kubernetes Operator (Operator), in a
Kubernetes cluster. The Helidon container is also deployed within the same
Kubernetes cluster. The default OCI load balancer with a public IP is used to access
the WebLogic Server Administration Console, the client applications (deployed in the
WebLogic cluster), and the Helidon REST endpoints (exposed by the Helidon
microservice application). The Helidon microservice application communicates with the
WebLogic cluster applications through the REST endpoints that are integrated with
Oracle Identity Cloud Service for authentication and authorization using SSO.

To set up the integration:

1. Integrate the WebLogic cluster applications with Oracle Identity Cloud Service.

a. Register the application on Oracle Identity Cloud Service.

The following client configuration details are important because you will use
the values of these parameters in the source code of the client application to
enable the Oracle Identity Cloud Service to communicate securely with the
client application.

• Allowed Grant Types: The grant type that the client application is allowed
to use when it requests validation from Oracle Identity Cloud Service.

• Redirect URL: The absolute URL of the client application where a user
will be redirected to after successful authentication in Oracle Identity
Cloud Service.

• Logout URL: The URL that is called by Oracle Identity Cloud Service after
a user logs out of the client application.

Chapter 5
Setting Up the WebLogic Cluster Integration with Helidon for Single Sign-On

5-4

https://helidon.io/docs/v3/#/about/prerequisites
https://helidon.io/docs/v2/#/about/03_prerequisites
https://openid.net/connect

• Post Logout Redirect URL: The URL where a user will be redirected to after
logging out of Oracle Identity Cloud Service.

After you finish registering and activating the client application, make a note of the
Client ID and Client Secret. The client application will use the Client ID and Client
Secret (similar to a login credential such as user ID and password) to communicate
with Oracle Identity Cloud Service.

For more information about registering an application, see Add a Confidential
Application in Administering Oracle Identity Cloud Service.

b. Integrate the client application with Oracle Identity Cloud Service.

In this step, you have to configure the client application to connect with Oracle
Identity Cloud Service during authentication. Update the CLIENT_ID,
CLIENT_SECRET (you will use the Client ID and Client Secret generated at the
time of registering the client application in IDCS), and the IDCS_URL in the client
application source code, as shown in the following example:

//YOUR IDENTITY DOMAIN AND APPLICATION CREDENTIALS
public static final String CLIENT_ID = "<your client id>";
public static final String CLIENT_SECRET = "<your client secret>";
public static final String IDCS_URL = "https://
example.identity.oraclecloud.com";

Note:

The Client ID and Client Secret are used to obtain the access token for
SSO authentication.

c. Build and deploy the client application in the WebLogic cluster.

Build the client application using the WebLogic Server supported JDK, and then
deploy the application in the WebLogic cluster. After a successful deployment, the
client application will be displayed with an Active status in the Deployments section
of the WebLogic Server Administration Console.

d. Verify the WebLogic Server application for SSO.

Access the client application URL http://{OCI LB_IP}/<wls app> using a browser.
Here, OCI LB_IP is the public IP of the load balancer and wls app is the name of the
WebLogic cluster application. The SSO endpoints should redirect to the IDCS login
page for authentication.

After successful authentication, you should be able to view the application contents.

For an example of integrating an application with Oracle Identity Cloud Service, see
Integrating Customer Quotes and Oracle Identity Cloud Service.

2. Integrate the Helidon application with Oracle Identity Cloud Service.

a. Register the Helidon MP client application on Oracle Identity Cloud Service.

The following parameters are important:

• Redirect URL: <LB IP>/oidc/redirect
• Logout URL: <LB IP>/oidc/logout
• Post Logout Redirect URL: <Logout URL>

Chapter 5
Setting Up the WebLogic Cluster Integration with Helidon for Single Sign-On

5-5

https://www.oracle.com/webfolder/technetwork/tutorials/obe/cloud/idcs/idcs_clientapp_obe/clientapp.html#section4

• Primary Audience: <LB IP>/ as per the Helidon application REST
endpoints

• Secondary Audience: <IDCS URI> as per the IDCS tenancy

After you finish registering and activating the Helidon application, make a note
of the Client ID and Client Secret.

b. Set up the Helidon application.

Create the Helidon MP sample application using Maven , as shown in the
following example:

mvn -U archetype:generate -DinteractiveMode=false \
 -DarchetypeGroupId=io.helidon.archetypes \
 -DarchetypeArtifactId=helidon-quickstart-mp \
 -DarchetypeVersion=3.2.0 \
 -DgroupId=io.helidon.examples \
 -DartifactId=helidon-quickstart-mp \
 -Dpackage=io.helidon.examples.quickstart.mp

See Set up Helidon in the Helidon MP OIDC Security Provider Guide.

c. Configuring the OIDC dependencies for the Helidon application.

The project will be built and run from the helidon-quickstart-mp
directory. Navigate to the directory:

cd helidon-quickstart-mp

i. Add the Maven dependency to the pom.xml file, as shown in the following
example:

<dependency>
 <groupId>io.helidon.microprofile</groupId>
 <artifactId>helidon-microprofile-security</artifactId>
</dependency>
<dependency>
 <groupId>io.helidon.microprofile</groupId>
 <artifactId>helidon-microprofile-oidc</artifactId>
</dependency>
<dependency>
 <groupId>io.helidon.microprofile.jwt</groupId>
 <artifactId>helidon-microprofile-jwt-auth</artifactId>
</dependency>

ii. Update the application.yaml file according to your requirements and
the IDCS configuration, as shown in the following example:

These values should be as per IDCS configured application
values
security:
 config.require-encryption: false
 properties:
 # Oracle IDCS instance uri. Following URI may change
depending on IDCS instance.

Chapter 5
Setting Up the WebLogic Cluster Integration with Helidon for Single Sign-On

5-6

https://helidon.io/docs/v3/#/mp/guides/security-oidc

 idcs-uri: "${idcs-uri}"
 # IDCS Registered application client-id and secret
 # Register Confidential application for Helidon at IDCS and
provide the client id and secret below.
 idcs-client-id: "${helidon-idcs-client-id}"
 idcs-client-secret: "${helidon-idcs-client-secret}"
 # Configure proxy if required.
 proxy-host: ""
 # Helidon application listening at port
 port: 8080
 providers:
 - abac:
 - oidc:
 client-id: "${security.properties.idcs-client-id}"
 # See [EncryptionFilter](https://helidon.io/docs/latest/apidocs/
io.helidon.config.encryption/io/helidon/config/encryption/EncryptionFilter.html for
details about encrypting passwords in configuration files.
 client-secret: "${security.properties.idcs-client-secret}"
 identity-uri: "${security.properties.idcs-uri}"
 # This redirect URI which should match at IDCS registered
application Redirect URL
 # Redirect URL at IDCS follows http://<hostname:8080 or
Load Balancer>/oidc/redirect
 redirect-uri: "/oidc/redirect"
 # scope-audience should match with IDCS Primary Audience ,
except adding "/" trailing character.
 # At IDCS it will be http://<hostname:8080 or Load
Balancer>/<REST endpoint>/.
 # Mismatch in scope-audience causes failure in generating
access token
 scope-audience: "http://${load-balancer-ip}/<helidon REST
endpoint>"
 # Mismatch in audience causes failure in generating
access token
 audience: "${IDCS_URI}"
 # Front end host , it should be either hostname:8080 or
load balancer ip
 frontend-uri: "http://${load-balancer-ip}"
 server-type: "idcs"
 logout-enabled: true
 # Configured IDCS Logout URL "http://<LB|HOSTNAME:PORT>/
oidc/logout
 # Configured IDCS Post Logout Redirect URL "http://<LB|
HOSTNAME:PORT>/loggedout"
 # Post logout Helidon REST endpoint or URI
 post-logout-uri: "/${logout url}"
 propagate: true
 outbound:
 - name: "propagate-token"
 hosts: ["${load-balancer-ip}"]
 redirect: true
 cookie-use: true
 header-use: true

iii. Configure the Helidon REST endpoints for SSO.

Chapter 5
Setting Up the WebLogic Cluster Integration with Helidon for Single Sign-On

5-7

https://helidon.io/docs/latest/apidocs/io.helidon.config.encryption/io/helidon/config/encryption/EncryptionFilter.html
https://helidon.io/docs/latest/apidocs/io.helidon.config.encryption/io/helidon/config/encryption/EncryptionFilter.html

You can SSO secure the Helidon REST endpoints by adding the
@Authenticated annotation. See Section "Usage" in Adding Security.

The @Authenticated annotation is used to specify server resources with
enforced authentication. The following is an example of using this
annotation:

@Authenticated
@GET
@Produces(MediaType.APPLICATION_JSON)
 public JsonObject getDefaultMessage() {
 return createResponse("World");
 }

d. Deploy the Helidon MP application in the same Kubernetes cluster.

i. Build the Docker image using the following command:

docker build -t helidon-quickstart-mp .

ii. Update the app.yaml file for image reference, based on the Helidon
docker image created and hosted at the container registry:

kind: Service
apiVersion: v1
metadata:
 name: helidon-quickstart-mp
 labels:
 app: helidon-quickstart-mp
spec:
 type: NodePort
 selector:
 app: helidon-quickstart-mp
 ports:
 - port: 8080
 targetPort: 8080
 name: http

kind: Deployment
apiVersion: apps/v1
metadata:
 name: helidon-quickstart-mp
spec:
 replicas: 1
 selector:
 matchLabels:
 app: helidon-quickstart-mp
 template:
 metadata:
 labels:
 app: helidon-quickstart-mp
 version: v1
 spec:
 containers:

Chapter 5
Setting Up the WebLogic Cluster Integration with Helidon for Single Sign-On

5-8

https://helidon.io/docs/v3/#/mp/security/security

 - name: helidon-quickstart-mp
 image: ${docker image repo}/helidon-quickstart-mp
 imagePullPolicy: Always
 ports:
 - containerPort: 8080

iii. Deploy the Helidon application in the same Kubernetes cluster.
Run the following kubectl command on a local machine to deploy the Helidon
application in the Kubernetes cluster:

kubectl create -f app.yaml

iv. Verify whether the Helidon deployment is successful by running the following
kubectl commands:

kubectl get pods

kubectl get service helidon-quickstart-mp

For more information about the quickstart, see Helidon MP Quickstart.

e. Verify the Helidon application for SSO.

Access REST endpoint URL http://{LB IP}/<SSO configured REST endpoint>
using a browser. Here, LB_IP is the public IP of the load balancer and SSO
configured REST endpoint is the Helidon REST endpoint.

Upon successful SSO authentication at IDCS, you will receive a response from the
REST endpoint.

3. Integrate the Helidon application and the WebLogic cluster applications for SSO.

a. Access the WebLogic cluster application SSO endpoints from the Helidon SSO
REST endpoints. Helidon obtains the JWT token after the Helidon SSO endpoints are
authenticated. You can use the token manually for calling other services or have the
token propagated automatically with the JAX-RS client. You may use the following
example for reference:

@Path("/helidon")
@ApplicationScoped
@Authenticated
public class HelidonResource {

 @Inject
 @ConfigProperty(name = "wls.service.url")
 private URI wlsServiceUri;

 @Inject
 private JsonWebToken jwt;

 @Authenticated
 @GET
 @RolesAllowed({"secret_role"})
 @Produces(MediaType.APPLICATION_JSON)
 public JsonObject getDefaultMessage(@Context SecurityContext
secCtx) {

Chapter 5
Setting Up the WebLogic Cluster Integration with Helidon for Single Sign-On

5-9

https://helidon.io/docs/v3/#/mp/guides/quickstart

 var user = secCtx.userName();
 var isInRole = secCtx.isUserInRole("secret_role");

 // Manually access the raw bearer token
 var bearerToken = jwt.getRawToken();

 // Bearer token is propagated automatically with the
OIDC outbound propagation,
 // no manual action is needed with the JAX-RS client
 JsonObject response = ClientBuilder.newClient()
 .target(wlsServiceUri)
 .request()
 .buildGet()
 .invoke(JsonObject.class);

 return Json.createObjectBuilder()
 .add("user", user)
 .add("is_secret_role", isInRole)
 .add("wls-response", response)
 .build();
 }
}

b. Access the Helidon SSO REST endpoint to verify the integration between
Helidon application and the WebLogic cluster application.

After a successful SSO authentication at the Helidon REST endpoint, you will
be able to get access to the WebLogic cluster application.

Chapter 5
Setting Up the WebLogic Cluster Integration with Helidon for Single Sign-On

5-10

6
Integrating XA Global Transactions Between
WebLogic Server and Helidon Using MicroTx

Oracle Transaction Manager for Microservices (MicroTx) Free ensures consistency of XA
transactions across Oracle WebLogic Server (WebLogic Server) applications, Helidon
microservices, and the JDBC resources deployed in both Helidon and WebLogic Server. At
this time, the integration with MicroTx Free is offered for evaluation purposes only.
This chapter explains how MicroTx ensures consistency of XA transactions using the
following distributed applications as an example. In this example, the applications are
deployed in a Kubernetes cluster. However, the integration of XA transactions described in
this example does not depend on Kubernetes, and can be implemented on any supported
platform.

• Helidon Teller Application (transaction initiator)

• Helidon Application (participant application)

• WebLogic Server (participant application)

• MicroTx Transaction Coordinator

The following graphic shows the flow of XA transactions between the various applications
and the role of MicroTx as the coordinator of the transactions. Here, the XA transaction is
initiated by the Helidon Teller Application, and then distributed to other Helidon and WebLogic
Server Applications (the participant applications in the transaction):

Figure 6-1 WebLogic Server, Helidon, and MicroTx Integration

OCI Region

Kubernetes Cluster

WebLogic Cluster

Helidon Teller
Application

MicroTx
Library

MicroTx Coordinator
Service

MicroTx
Library

Helidon
Application

MicroTx
Library

JAX-RS
 Based Web
 Application

Oracle DB

XA Connection
to Store Data

Oracle DB

DB Store Type
Configured

Oracle DB

XA Connection
to Store Data

Interact with Helidon
Participant

Interact with WebLogic
Participant

Tx Start

Tx End

Enlist
XA Con

Prepare and
Commit

Enlist
XA Con

Prepare and
Commit

Internet

Users

Load
 Balancer

HTTP

HTTP

TCP

6-1

This chapter includes the following topics:

• Prerequisites

• Setting Up the Integration of WebLogic Server with Helidon and MicroTx
Applications and Services

• Troubleshooting Common Issues
Learn about the common issues you may encounter when setting up the
integration between WebLogic Server and Helidon with MicroTx.

Prerequisites
In this example, it is assumed that the applications are running in Kubernetes and you
have already deployed WebLogic Server, the WebLogic Kubernetes Operator
(Operator), Helidon, and MicroTx in the same Kubernetes cluster.

See Preparing the Kubernetes Cluster for WebLogic Server and Helidon Integration.

Note:

Transaction integration with MicroTx is supported only with WebLogic Server
14c (14.1.1.0) and Helidon 2.x because these releases of the products
support JDK 11.

To deploy MicroTx in the Kubernetes cluster, obtain the MicroTx image from Oracle
Container Registry. To obtain samples, client libraries, and deployment scripts,
download the MicroTx binaries from Transaction Manager for Microservices Free.

Downloading MicroTx Binaries from Transaction Manager for Microservices Free

1. Go to https://www.oracle.com/database/transaction-manager-for-microservices/,
click Download MicroTx Free, and then download the installation bundle (.zip file)
for Oracle Transaction Manager for Microservices Free. You will be directed to
Oracle Software Delivery Cloud.

2. You can download the ZIP file using the Oracle Download Manager or simply by
clicking the file to download.

3. Extract the contents of the ZIP file, preferably in to a new directory. The
otmm-22.3.2 folder contains the following folders:

• lib: This folder contains the MicroTx library files. You must use these library
files in your application code to use MicroTx to manage transactions amongst
your application microservices.

• otmm: This folder contains the MicroTx image and YAML files which you can
use to install and configure MicroTx. The image in this folder is the same
image that is available in the Oracle Container Registry. Oracle recommends
that you use the MicroTx image from the Oracle Container Registry. For steps
to download, see Downloading the MicroTx image from Oracle Container
Registry.

• samples: This folder contains the source code for sample applications for
different transaction protocols. The source code of the sample applications
also includes the MicroTx libraries.

Chapter 6
Prerequisites

6-2

https://container-registry.oracle.com/
https://container-registry.oracle.com/
https://www.oracle.com/database/transaction-manager-for-microservices/
https://www.oracle.com/database/transaction-manager-for-microservices/

Note:

Oracle recommends that you review the sample documentation to become
familiar with the build and integration procedures.

Downloading the MicroTx image from Oracle Container Registry

1. Go to Oracle Container Registry.

2. In the search box, specify Oracle Transaction Manager and click otmm in the Search
Results page.

3. In the Tags section of the page, you can view the available versions of MicroTx. To
download the latest version, run the following command:

docker pull container-registry.oracle.com/database/otmm:latest

To download a specific version, for example version 22.3.2, run the following command:

docker pull container-registry.oracle.com/database/otmm:22.3.2

In addition, complete the following tasks as part of the prerequisites:

• Configure a WebLogic Server XA data source or emulate two-phase commit data source
and target it to the WebLogic cluster. This data source will be used by the WebLogic JAX-
RS based web application (which contains the MicroTx library) to connect to the
database.

• Configure the JTA Transaction Log as a JDBC store. See Using a JDBC TLog Store in
Administering the WebLogic Persistent Store.

• To enable communication between WebLogic Server and Helidon applications, ensure
that:

– The MicroTx Transaction Coordinator Service (TCS) is up and running.

– The Helidon Teller Application is up and running.

– WebLogic Server is able to communicate with MicroTx TCS and the Teller services.

• By default, all resources configured as part of the same Kubernetes cluster communicate
with each other using a short name or a fully qualified domain name (FQDN). In case of
any restrictions, you should add network rules to enable working with MicroTx TCS.

To configure the data sources, you can use one of the following options:

• WebLogic Deploy Tooling (WDT) Model: The Model in Image domain home pattern
enables you to configure the data source using the WDT model files. See Model in
Image.

• WebLogic Scripting Tool (WLST): The Domain in Persistent Volume (PV) domain home
pattern enables you to configure the data source using WLST. See Domain Home on a
PV.

• WebLogic Server Administration Console: The Domain in Persistent Volume (PV) domain
home pattern enables you to configure the data source using the Administration Console.
See Domain Home on a PV.

In addition, you should have completed the following:

Chapter 6
Prerequisites

6-3

https://container-registry.oracle.com/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/model-in-image/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/model-in-image/
https://oracle.github.io/weblogic-kubernetes-operator/samples/azure-kubernetes-service/domain-on-pv/
https://oracle.github.io/weblogic-kubernetes-operator/samples/azure-kubernetes-service/domain-on-pv/
https://oracle.github.io/weblogic-kubernetes-operator/samples/azure-kubernetes-service/domain-on-pv/

• Preparing WebLogic Server to Work with MicroTx

• Modifying the MicroTx Configurations

Preparing WebLogic Server to Work with MicroTx
To enable transaction coordination between WebLogic Server and Helidon applications
involving data sources, you should first create and deploy the data sources used by
the application to connect to the database. You should also configure the JTA TLog
JDBC Store for the WebLogic cluster.

• Creating the JDBC Data Sources Using WebLogic Deploy Tooling

• Configuring the JTA Transaction Log as a JDBC Store

Creating the JDBC Data Sources Using WebLogic Deploy Tooling
You will use WDT to create the XA and non-XA data sources. For more information
about WDT, see WebLogic Deploy Tooling.

• Creating the XA Data Source Using WebLogic Deploy Tooling

• Creating the Non-XA Data Source Using WebLogic Deploy Tooling

Creating the XA Data Source Using WebLogic Deploy Tooling
An example of creating the XA data source, oraxads, using WDT:

resources:
 JDBCSystemResource:
 oraxads:
 Target: cluster-1
 JdbcResource:
 DatasourceType: GENERIC
 JDBCConnectionPoolParams:
 TestFrequencySeconds: 600
 InitialCapacity: 2
 ConnectionReserveTimeoutSeconds: 10
 TestConnectionsOnReserve: true
 MaxCapacity: 30
 TestTableName: SQL SELECT 1 FROM DUAL
 MinCapacity: 3
 JDBCDataSourceParams:
 JNDIName: oraxads
 GlobalTransactionsProtocol: TwoPhaseCommit
 JDBCDriverParams:
 DriverName:
oracle.jdbc.xa.client.OracleXADataSource
 PasswordEncrypted: '@@PROP:oraxads.password@@'
 URL: jdbc:oracle:thin:@//@@PROP:oraxads.url@@
 Properties:
 user:
 Value: '@@PROP:oraxads.user@@'
 databaseName: {}

Chapter 6
Prerequisites

6-4

https://oracle.github.io/weblogic-deploy-tooling/

Creating the Non-XA Data Source Using WebLogic Deploy Tooling
An example of creating the non-XA data source, jtads, using WDT:

resources:
 JDBCSystemResource:
 jtads:
 Target: cluster-1
 JdbcResource:
 DatasourceType: GENERIC
 JDBCConnectionPoolParams:
 TestFrequencySeconds: 600
 InitialCapacity: 2
 ConnectionReserveTimeoutSeconds: 10
 TestConnectionsOnReserve: true
 MaxCapacity: 30
 TestTableName: SQL SELECT 1 FROM DUAL
 MinCapacity: 3
 JDBCDataSourceParams:
 JNDIName: jtads
 GlobalTransactionsProtocol: None
 JDBCDriverParams:
 DriverName: oracle.jdbc.OracleDriver
 PasswordEncrypted: '@@PROP:jtads.password@@'
 URL: jdbc:oracle:thin:@//@@PROP:jtads.url@@
 Properties:
 user:
 Value: '@@PROP:jtads.user@@'
 databaseName: {}

Configuring the JTA Transaction Log as a JDBC Store
Before you configure the JTA Transaction Log as a JDBC store, ensure that you have created
the data source used by the transaction log store to log transactions. See Creating the JDBC
Data Sources Using WebLogic Deploy Tooling.

You can configure the JTA Transaction Log as a JDBC store using one of the following
methods:

• Configuring the JTA Transaction Log as a JDBC Store Using WebLogic Deploy Tooling

• Configuring the JTA Transaction Log as a JDBC Store Using the WebLogic Scripting Tool

• Configuring the JTA Transaction Log as a JDBC Store Using the Administration Console

Configuring the JTA Transaction Log as a JDBC Store Using WebLogic Deploy Tooling
The following example of the WDT script uses the non-XA data source, jtads, to configure
the JTA Transaction Log as a JDBC store:

topology:
 ServerTemplate:
 server-template_1:
 TransactionLogJDBCStore:

Chapter 6
Prerequisites

6-5

 Enabled: true
 DataSource: jtads
 PrefixName: TLOG_${serverName}_

Configuring the JTA Transaction Log as a JDBC Store Using the WebLogic Scripting Tool
The following example of the WLST script uses the non-XA data source, jtads, to
configure the JTA Transaction Log as a JDBC store:

import sys,os,socket, traceback

adminUsername=sys.argv[1]
adminPassword=sys.argv[2]
adminT3URL=sys.argv[3]

connect(adminUsername,adminPassword,adminT3URL)
edit()
startEdit()
##Here SERVER_TEMPLATE_NAME refers to WebLogic dynamic-cluster Server
Template Name
cd('/ServerTemplates/SERVER_TEMPLATE_NAME')
cd('/ServerTemplates/SERVER_TEMPLATE_NAME/TransactionLogJDBCStore/
SERVER_TEMPLATE_NAME')
##Here jtads refers to datasource name used for Transaction Log JDBC
Store
cmo.setDataSource(getMBean('/JDBCSystemResources/jtads'))
cmo.setEnabled(true)
cmo.setPrefixName('TLOG_${serverName}_')
save()
activate()
disconnect()

Configuring the JTA Transaction Log as a JDBC Store Using the Administration Console
To configure the JTA Transaction Log as a JDBC store:

1. Log in to the WebLogic Server Administration Console.

2. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

3. In the left pane of the Console, expand Environment, expand Clusters, and then
click Server Templates.

4. On the right pane of the Console, select a template from the list of templates.

5. In the Server Template Settings screen, select the Configurations tab and click
the Services tab.

6. In the Transaction Log Store section of the screen, specify the following:

• In the Type field, select JDBC.

• In the Data Source field, select jtads.

Chapter 6
Prerequisites

6-6

Note:

Here the non-XA data source, jtads, is used. You have already created this
data source using the WDT script. See Creating the Non-XA Data Source
Using WebLogic Deploy Tooling.

• In the Prefix Name field, select TLOG_${serverName}_.

7. Save the changes.

Modifying the MicroTx Configurations
When running in Kubernetes, transaction integration between WebLogic Server and Helidon
coordinated by MicroTx requires that you deploy WebLogic Server, Helidon, and MicroTx in
the same Kubernetes cluster and that you configure all the Kubernetes resources and
services. See Preparing the Kubernetes Cluster for WebLogic Server and Helidon Integration.

The Kubernetes resources can be part of different namespaces. To work with all the
namespaces within the Kubernetes cluster, you should enable MicroTx TCS to communicate
with services across all the namespaces by modifying the MicroTx TCS PeerAuthentication
policy.

• Allowing Communication Between Peers Across Namespaces

• Creating Routing Rules

Allowing Communication Between Peers Across Namespaces
Peer authentication provides service-to-service authentication in a Kubernetes cluster with
Istio service mesh. For more information, see PeerAuthentication.

Change the Oracle Transaction Manager for Microservices (OTMM) PeerAuthentication
policy's spec.mtls.mode value from STRICT to PERMISSIVE in the <otmm>/
helmcharts/tmm/templates/auth.yaml file. The PERMISSIVE value facilitates
communication across all the namespaces in the Kubernetes cluster.

The spec.mtls.mode value before the change:

apiVersion: "security.istio.io/v1beta1"
kind: "PeerAuthentication"
metadata:
 name: "peer-auth"
 namespace: {{ .Values.applicationNameSpace }}
spec:
 mtls:
 mode: STRICT

The spec.mtls.mode value after the change:

apiVersion: "security.istio.io/v1beta1"
kind: "PeerAuthentication"
metadata:
 name: "peer-auth"
 namespace: {{ .Values.applicationNameSpace }}

Chapter 6
Prerequisites

6-7

https://istio.io/latest/docs/reference/config/security/peer_authentication/

spec:
 mtls:
 mode: PERMISSIVE

For more information about peer authentication, see PeerAuthentication.

Creating Routing Rules
Routing rules are created to access the WebLogic Servers, the WebLogic Server
Administration Console, applications, and Helidon.

Create an Istio VirtualService to define a set of traffic routing rules that apply to all
the applications of the WebLogic cluster, Helidon, and the teller service. You may use
the following example of the script as reference:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: wls-domain-virtualservice
 namespace: wls-domain-ns
spec:
 gateways:
 - otmm/otmm-gateway
 hosts:
 - '*'
 http:
 - match:
 - uri:
 prefix: /console
 - uri:
 prefix: /management
 - port: 7001
 route:
 - destination:
 host: wls-domain-admin-server
 port:
 number: 7001

 - match:
 - uri:
 prefix: /mtxwls
 - port: 8001
 route:
 - destination:
 host: wls-domain-cluster-cluster-1
 port:
 number: 8001

 - match:
 - uri:
 prefix: /mtxhelidon
 - port: 8084
 route:
 - destination:

Chapter 6
Prerequisites

6-8

https://istio.io/latest/docs/reference/config/security/peer_authentication/

 host: microtx-helidon.helidon-ns.svc.cluster.local
 port:
 number: 8084

 - match:
 - uri:
 prefix: /mtxteller
 - port: 8087
 route:
 - destination:
 host: microtx-teller.helidon-ns.svc.cluster.local
 port:
 number: 8087

For more information about the Istio virtual service specifications, see Istio Gateway.

WebLogic Server and MicroTx have their own Administration Consoles. By default, the
MicroTx Console is not supported. You will experience path collision if you access the
WebLogic Server Administration Console using http(s)://LoadBalancer/console. In this
case, you need to change the notpaths value in the Oracle Transaction Manager for
Microservices (OTMM) Authorization Policy rules in <otmm>/helmcharts/tmm/
templates/auth.yaml file, as shown below. However, you can also use different URLs by
rewriting the paths.

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:
 name: "frontend-ingress"
 namespace: {{ .Values.istioSystemNameSpace }}
spec:
 selector:
 matchLabels:
 istio: {{ .Values.istioIngressGateway.name }}
 action: {{ .Values.authentication.requestsWithNoJWT }}
 rules:
 - from:
 - source:
 notRequestPrincipals: ["*"]
 to:
 - operation:
 ###########notPaths Value before change ["/
console*"]######################
 notPaths: ["/mtxconsole*"]

Setting Up the Integration of WebLogic Server with Helidon and
MicroTx Applications and Services

With MicroTx, you can ensure a spectrum of data consistency across microservices and
cloud native applications without writing any complex code. With a choice of transaction
protocols and use of APIs and annotations included in the client libraries, MicroTx makes it
easy to use distributed transactions in applications deployed in Kubernetes. In this

Chapter 6
Setting Up the Integration of WebLogic Server with Helidon and MicroTx Applications and Services

6-9

https://istio.io/latest/docs/reference/config/networking/gateway/

integration, MicroTx coordinates the distributed XA transactions that span Helidon and
WebLogic Server applications.
As part of the MicroTx and WebLogic Server integration, MicroTx uses WebLogic
Server Interposed Transaction Manager (ITM) to coordinate the transactions with
WebLogic Server.

To enable the JDBC resources deployed in the WebLogic Server domain (as
javax.transaction.xa.XAResource) to participate in the transaction, MicroTx must
interface with WebLogic Server using ITM. The WebLogic Server ITM exposes a
javax.transaction.xa.XAResource implementation using the
weblogic.transaction.InterposedTransactionManager interface. The MicroTx
transaction manager accesses the InterposedTransactionManager interface to
coordinate with the WebLogic Server transaction manager XAResource during its
commit processing. See Participating in Transactions Managed by a Third-Party
Transaction Manager in Developing JTA Applications for Oracle WebLogic Server.

Download the MicroTx binaries from the MicroTx Downloads page (see Prerequisites)
and complete the following tasks to enable the integration between WebLogic Server,
Helidon, and MicroTx applications and services:

• Building and Deploying the Helidon Teller Application

• Building and Deploying the Helidon Participant Application

• Building and Deploying the MicroTx Application WAR File in the WebLogic Server
Domain

• Deploying the Web Application in the WebLogic Cluster Using WebLogic Deploy
Tooling

• Deploying the MicroTx Coordinator Service

Building and Deploying the Helidon Teller Application
To build and deploy the teller application:

1. Obtain the OTMM library from the <OTMM_BINARIES_EXTRACTED_PATH>/lib/
java/ location and install it to the local Maven repository using the following
command:

mvn install:install-file -Dfile=<OTMM_BINARIES_EXTRACTED_PATH>/lib/
java/TmmLib-22.3.2.jar -DpomFile=<OTMM_BINARIES_EXTRACTED_PATH>/lib/
java/TmmLib-22.3.2.pom

Chapter 6
Setting Up the Integration of WebLogic Server with Helidon and MicroTx Applications and Services

6-10

https://www.oracle.com/database/technologies/transaction-manager-for-microservices-downloads.html

Note:

The following Maven dependency is used to refer to the installed OTMM library:

<dependency>
 <groupId>com.oracle.tmm.jta</groupId>
 <artifactId>TmmLib</artifactId>
 <version>22.3.2</version>
</dependency>

2. Create the Docker image for the Helidon Teller Application and deploy it in the
Kubernetes cluster.

In the MicroTx binaries, the Helidon Teller Application samples are available in the
<OTMM_BINARIES_EXTRACTED_PATH>/samples/xa/java/weblogic/teller
location.

a. Update the application.yaml file available in the
<OTMM_BINARIES_EXTRACTED_PATH>/samples/xa/java/weblogic/
teller/src/main/resources location. In this file, specify the endpoint URLs of
the Helidon Teller Application along with the authentication details, if any.

helidonServiceEndpoint: http://
<HELIDON_APP_K8S_SERVICE_NAME>:<HELIDON_APP_K8S_SERVICE_PORT>/
<HELIDON_APP_CONTEXT_PATH>
weblogicServiceEndpoint: http://
<WEBLOGIC_APP_K8S_SERVICE_NAME>:<WEBLOGIC_APP_K8S_SERVICE_PORT>/
<WEBLOGIC_APP_CONTEXT_PATH>
Weblogic:
 BasicAuth:
 UserName: <wls_username>
 Password: <wls_password>

For example:

helidonServiceEndpoint: http://microtx-helidon.helidon-
ns.svc.cluster.local:8084/mtxhelidon
weblogicServiceEndpoint: http://wls-domain-cluster-cluster-1.wls-
domain-ns.svc.cluster.local:8001/mtxwls
Weblogic:
 BasicAuth:
 UserName: <wls_username>
 Password: <wls_password>

b. Update the tmm.properties file available in the
<OTMM_BINARIES_EXTRACTED_PATH>/samples/xa/java/weblogic/
teller/src/main/resources location.

oracle.tmm.TcsUrl value refers to the MicroTx coordinator URL
oracle.tmm.TcsUrl = http(s)://
<OTMM_K8S_SERVICE_NAME>:<OTMM_SERVICE_PORT>/api/v1
oracle.tmm.TcsConnPoolSize = 15

Chapter 6
Setting Up the Integration of WebLogic Server with Helidon and MicroTx Applications and Services

6-11

oracle.tmm.CallbackUrl refers to the Helidon Teller
Application call-back URL along with the context path
oracle.tmm.CallbackUrl = http://
<HELIDON_TELLER_APP_K8s_SERVICE_NAME>:<HELIDON_TELLER_APP_K8s_SER
VICE_NAME>/<HELIDON_TELLER_APP_CONTEXTPATH>

Transaction Timeout Out value in milli seconds
oracle.tmm.TransactionTimeout = 60000

oracle.tmm.PropagateTraceHeaders = false

For example:

oracle.tmm.TcsUrl = http://otmm-
tcs.otmm.svc.cluster.local:9000/api/v1
oracle.tmm.TcsConnPoolSize = 15
oracle.tmm.CallbackUrl = http://microtx-teller.heidon-
ns.svc.cluster.local:8087/mtxteller
oracle.tmm.TransactionTimeout = 60000
oracle.tmm.PropagateTraceHeaders = false

c. Go to the teller directory and create the Docker image:

cd <OTMM_BINARIES_EXTRACTED_PATH>/samples/xa/java/weblogic/teller

docker build -t <IMAGE_NAME>

d. Tag and upload the image to the container registry, and then refer the image in
the Kubernetes pods. Use the following commands to tag and upload the
image:

docker tag <IMAGE_NAME> <CONTAINER_REGISTRY>:<IMAGE_NAME>

docker push <CONTAINER_REGISTRY>:<IMAGE_NAME>

Building and Deploying the Helidon Participant Application
To build and deploy the participant application:

1. Obtain the OTMM library from the <OTMM_BINARIES_EXTRACTED_PATH>/lib/
java/ location and install it to the local Maven repository using the following
command:

mvn install:install-file -Dfile=<OTMM_BINARIES_EXTRACTED_PATH>/lib/
java/TmmLib-22.3.2.jar -DpomFile=<OTMM_BINARIES_EXTRACTED_PATH>/lib/
java/TmmLib-22.3.2.pom

Chapter 6
Setting Up the Integration of WebLogic Server with Helidon and MicroTx Applications and Services

6-12

Note:

The following MVN dependency is used to refer to the installed OTMM library:

<dependency>
 <groupId>com.oracle.tmm.jta</groupId>
 <artifactId>TmmLib</artifactId>
 <version>22.3.2</version>
</dependency>

2. Create the Docker image for the Helidon Participant Application and deploy it in the
Kubernetes cluster.

In the MicroTx binaries, the Helidon Participant Application samples are available in the
<OTMM_BINARIES_EXTRACTED_PATH>/samples/xa/java/weblogic/helidon-
app location.

a. Update the application.yaml file available in the
<OTMM_BINARIES_EXTRACTED_PATH>/samples/xa/java/weblogic/
helidon-app/src/main/resources location. In this file, specify the database
XA connection details of the Helidon Participant Application.

Note:

In this application.yaml file, the local data source, orcl, is referred in
the application code. If you want to use a different data source, you should
also change the name in the application code.

oracle:
 ucp:
 jdbc:
 PoolXADataSource:
 localOrcl:
 URL: jdbc:oracle:thin:@127.0.0.1:1521/orcl
 connectionFactoryClassName:
oracle.jdbc.xa.client.OracleXADataSource
 user: <db-username>
 password: <db-password>

b. Update the tmm.properties file available in the
<OTMM_BINARIES_EXTRACTED_PATH>/samples/xa/java/weblogic/
helidon-app/src/main/resources location.

oracle.tmm.TcsUrl value the MicroTx coordinator URL
oracle.tmm.TcsUrl = http(s)://
<OTMM_K8S_SERVICE_NAME>:<OTMM_SERVICE_PORT>/api/v1
oracle.tmm.TcsConnPoolSize = 15
oracle.tmm.CallbackUrl refers to the Helidon Teller Application
call-back URL along with context path
oracle.tmm.CallbackUrl = http://

Chapter 6
Setting Up the Integration of WebLogic Server with Helidon and MicroTx Applications and Services

6-13

<HELIDON_PARTICIPANT_APP_K8s_SERVICE_NAME>:<HELIDON_PARTICIPANT_A
PP_K8s_SERVICE_PORT>/<HELIDON_PARTICIPANT_APP_CONTEXTPATH>
##RM Id
oracle.tmm.xa.<rmid> = HELIDON-TX-RM-ID-FOR-MICROTX-TESTS

For example:

oracle.tmm.TcsUrl = http://otmm-
tcs.otmm.svc.cluster.local:9000/api/v1
oracle.tmm.TcsConnPoolSize = 15
oracle.tmm.CallbackUrl = http://microtx-helidon.helidon-
ns.svc.cluster.local:8084/mtxhelidon
Resource Manager(RM) Unique Id. Make sure to replace the id
value with the RM used in the application
oracle.tmm.xa.rmid = HELIDON-TX-RM-ID-FOR-MICROTX-TESTS

c. Go to the Dockerfile location and create the Docker image:

cd <OTMM_BINARIES_EXTRACTED_PATH>/samples/xa/java/weblogic/
helidon-app

docker build -t <IMAGE_NAME>

d. Tag and upload the image to the container registry, and then refer the image in
the Kubernetes pods. Use the following commands to tag and upload the
image:

docker tag <IMAGE_NAME> <CONTAINER_REGISTRY>:<IMAGE_NAME>

docker push <CONTAINER_REGISTRY>:<IMAGE_NAME>

Building and Deploying the MicroTx Application WAR File in the
WebLogic Server Domain

To build an application WAR (Web Application Resource or Web Application ARchive)
file for WebLogic Server and target the file to the WebLogic cluster or the Managed
Server resources:

1. Create the database resources (such as a database user, tables, views, and so
on) required for the application.

2. In WebLogic Server, create the required XA and non-XA JDBC data sources used
by the current application.

3. Create and deploy the data source for the JDBC TLog store (non-XA data source).
See Using a JDBC Store in Administering the WebLogic Persistent Store. You will
set the JTA Transaction Log Store attribute for this data source. Target the data
source to the WebLogic cluster.

4. Add the TmmLib library to the local Maven repository. This library is available in the
<OTMM_BINARIES_EXTRACTED_PATH>/lib/java/ location.

Chapter 6
Setting Up the Integration of WebLogic Server with Helidon and MicroTx Applications and Services

6-14

5. Install the OTMM library to the local Maven repository using the following command:

mvn install:install-file -Dfile=<OTMM_BINARIES_EXTRACTED_PATH>/lib/java/
TmmLib-22.3.2.jar -DpomFile=<OTMM_BINARIES_EXTRACTED_PATH>/lib/java/
weblogic/TmmLib-weblogic-22.3.2.pom

Note:

The following MVN dependency is used to refer to the installed OTMM library:

<dependency>
 <groupId>com.oracle.tmm.jta</groupId>
 <artifactId>TmmLib</artifactId>
 <version>22.3.2</version>
</dependency>

6. Build the application for WebLogic Server.

The sample WebLogic Server application is a JAX-RS based web application. This
service participates in the transactions. Therefore, it is also called as an XA participant
service. It provides the required business logic and uses Oracle database (RDBMS) as
the resource manager.

The sample application is available in the <OTMM_BINARIES_EXTRACTED_PATH>/
samples/xa/java/weblogic/weblogic-jaxrs-app location. You may use this
sample as a reference when building your own applications.

a. Update the MicroTx TCS configuration file (tmm.properties available in the
<OTMM_BINARIES_EXTRACTED_PATH>/samples/xa/java/weblogic/
weblogic-jaxrs-app/src/main/resources location.

oracle.tmm.TcsUrl value refer to OTMM Service URL
oracle.tmm.TcsUrl = http(s)://
<OTMM_K8S_SERVICE_NAME>:<OTMM_K8S_SERVICE_PORT>/api/v1
oracle.tmm.TcsConnPoolSize = 15
oracle.tmm.CallbackUrl refers to weblogic application callback
URL along with context path
oracle.tmm.CallbackUrl = http://
<WEBLOGIC_APP_K8S_SERVICE_NAME>:<WEBLOGIC_APP_K8S_SERVICE_PORT>/
<WEBLOGIC_APP_CONTEXT_PATH>
WebLogic Name Space. This is mandatory for WebLogic Apps. We are
using this to derive the WLS Managed Server Name to maintain Tx
affinity
oracle.tmm.WeblogicNamespace = <WLS_DOMAIN_NAME_SPACE>

Resource Manager(RM) Unique Id. Make sure to replace the id value
with the RM used in the application
oracle.tmm.xa.<rmid> = DEPT-JPA-0DE1-453C-B872-291FDBF49CFF
oracle.tmm.UseApacheConnectorProvider=false
oracle.tmm.WeblogicTxnSupport should be set to true for WebLogic
MicroTx Applications
oracle.tmm.WeblogicTxnSupport = true

Chapter 6
Setting Up the Integration of WebLogic Server with Helidon and MicroTx Applications and Services

6-15

For example, the following sample of the tmm.properties file is used to
work with the WebLogic cluster deployed in Kubernetes. Here, the MicroTx
application is deployed in the WebLogic cluster and is accessed using the
cluster URL 'http://wls-domain-cluster-cluster-1.wls-domain-
ns.svc.cluster.local:8001/mtxwls/'. The WebLogic Server domain
namespace used in this sample is wls-domain-ns.

oracle.tmm.TcsUrl = http://otmm-
tcs.otmm.svc.cluster.local:9000/api/v1
oracle.tmm.TcsConnPoolSize = 15
oracle.tmm.CallbackUrl = http://wls-domain-cluster-cluster-1.wls-
domain-ns.svc.cluster.local:8001/mtxwls
oracle.tmm.WeblogicNamespace = wls-domain-ns
Resource Manager(RM) Unique Id. Make sure to replace the id
value with the RM used in the application
oracle.tmm.xa.Rmid = WLS-TX-RM-ID-FOR-MICROTX-TESTS
oracle.tmm.UseApacheConnectorProvider=false
oracle.tmm.WeblogicTxnSupport = true

b. Build the project using the following command:

mvn clean package -DskipTests=true

c. Deploy the generated WebLogic Server JAX-RS web application WAR file
(which includes the MicroTx library) in the WebLogic cluster. If you are using
the 'Model in Image' pattern, you will deploy the application using WDT. If you
are using the 'Domain home on PV' pattern, you can use WLST or the
WebLogic Server Administration Console to deploy the application.

Chapter 6
Setting Up the Integration of WebLogic Server with Helidon and MicroTx Applications and Services

6-16

Note:

If you want to work with your own JAX-RS application, ensure that you add the
following pom dependency and the javax.ws.rs.core.Application subclass to
your JAX-RS application. However, you need to use the WebLogic data source
connection in your application.

This following dependency is referred from the local Maven repository. Therefore,
you should add this artifactory to the local Maven repository before packaging the
project.

<dependency>
 <groupId>com.oracle.tmm.jta</groupId>
 <artifactId>TmmLib</artifactId>
 <version>22.3.2</version>
</dependency>

Also, add the javax.ws.rs.core.Application subclass to scan all the resource
classes annotated with @Provider and @Path. This subclass is required to register
the MicroTx filter classes, callback resources, and connection factory classes.

The javax.ws.rs.core.Application subclass method 'getClasses()' or
'getSingletons()' return the relevant JAX-RS resources and providers. If empty
sets are returned in both the getClasses() and getSingletons() methods, all the
JAX-RS resource and provider classes that are found in the application are added
to the JAX-RS application subclass.

package com.oracle.mtm.sample;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/")
public class WebLogicWebApp extends Application {
}

Deploying the Web Application in the WebLogic Cluster Using WebLogic
Deploy Tooling

The following example script is used to deploy the WebLogic Server JAX-RS web application
WAR file in the WebLogic cluster using WDT:

appDeployments:
 Application:
 mtxwwls :
 SourcePath: wlsdeploy/applications/mtxwls.war
 Target: cluster-1
 ModuleType: war

Chapter 6
Setting Up the Integration of WebLogic Server with Helidon and MicroTx Applications and Services

6-17

Deploying the MicroTx Coordinator Service
Before you deploy the MicroTx Coordinator Service, ensure that you have deployed
the Istio service mesh in the Kubernetes cluster.

To deploy the MicroTx Coordinator Service:

1. Navigate to the OTMM helmcharts directory:

cd <OTMM_BINARIES_EXTRACTED_PATH>/otmm/helmcharts/tmm

2. Change the following properties in the values.yaml file.

• tmmReplicaCount: By default, this value is set to 1. Change this count based
on your requirement.

• tmmImage: By default, this value is set to tmm:22.3.x. You should use the URL
of the OTMM image.

• tmmExternalURL (in the tmmConfiguration section): Update the host and port
details. The host value should be the public IP of Istio or the name of the host.
The port value should be set to the SSL or non-SSL port associated with Istio.

• xaCoordinator.enabled (in the tmmConfiguration section): Set this property
to true for XA transactions.

• storage.type (in the tmmConfiguration section): By default, the storage type
is set to memory. Oracle recommends you to use db for HA.

• Database connection details (in the tmmConfiguration section): Update these
details if the storage type is set to db.

3. Create the OTMM namespace and install the OTMM Helmchart using the following
commands:

cd <OTMM_BINARIES_EXTRACTED_PATH>/helmcharts

kubectl create ns otmm

kubectl label namespace otmm istio-injection=enabled

helm install otmm --namespace otmm tmm --values ./tmm/values.yaml

A few samples of the values.yaml file:

• A sample of the configuration values in the tmmImage section of the file (you can
refer the tmmImage image from Oracle Container Registry instead of storing and
referring the image from the local container registry):

tmmImage:
 image: <Image_Registry>/tmm:22.3.x
 imagePullPolicy: Always
 imagePullSecret: regcred

Chapter 6
Setting Up the Integration of WebLogic Server with Helidon and MicroTx Applications and Services

6-18

https://container-registry.oracle.com/

• A sample of the configuration values for the tmmExternalURL, xaCoordinator, and
storage.type properties in the tmmConfiguration section of file:

tmmConfiguration:
 tmmId: "TCS01"
 tmmAppName: otmm-tcs
 port: 9000
 tmmExternalURL:
 protocol: http
 host: x.x.x.x
 port: 80

 xaCoordinator:
 enabled: "true"
 txMaxTimeout: 600000
 lraCoordinator:
 enabled: "false"
 tccCoordinator:
 enabled: "false"

 storage:
 type: db
 db:
 connectionString: "tcps://<ORACLE_DB_HOST>:<ORACLE_DB_PORT>/
<ORACLE_DB_SERVICE>?retry_count=20&retry_delay=3"
 credentialSecretName: "walletsecret"
 connectionParams: ""
 walletConfigMap:
 configMapName: "db-wallet-cmap"
 completedTransactionTTL: 60

 # Sample configuration values for Retry settings
 #The maximum number of times the TMM (Transaction Coordinator) will
retry an operation in case of certain failures
 maxRetryCount: 10
 #The minimum retry interval in milliseconds
 minRetryInterval: 1000
 #The maximum retry interval in milliseconds
 maxRetryInterval: 10000
 # Coordinator HTTP client timeout value in seconds. A Timeout of zero
means no timeout. Max allowed value is 900 seconds
 httpClientTimeoutInSecs: 180

Note:

By default, the OTMM Coordinator Service's httpClientTimeoutInSecs value is set
to 180 seconds. This timeout is considered when OTMM coordinator service
communicates with the transaction participants to complete the transaction. This
value is used along with the other retry settings parameters in values.yaml.

Chapter 6
Setting Up the Integration of WebLogic Server with Helidon and MicroTx Applications and Services

6-19

Troubleshooting Common Issues
Learn about the common issues you may encounter when setting up the integration
between WebLogic Server and Helidon with MicroTx.

Issue 1

In the Helidon applications, the XA connections fail and report an error when the
Application Context Path is defined by extending the javax.ws.rs.core.Application
class provided by the JAX-RS implementation. Here is a sample of the error message:

2023.03.17 11:39:16 WARNING io.helidon.microprofile.server.JaxRsCdiExtension
!thread!: Internal server error java.lang.NullPointerException
 at
oracle.tmm.jta.common.TrmConnectionFactory.getXAConn(TrmConnectionFactory.java:47
)
 at java.base/
jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at java.base/
jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAcc
essorImpl.java:62)
. . . .

The following sample code shows the exception that is reported (after you create the
Helidon Application/Context path by extending javax.ws.rs.core.Application):

package com.oracle.mtm.sample.resource;

import java.util.Set;

import javax.enterprise.context.ApplicationScoped;
import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

//Adding Application Context path by extending
javax.ws.rs.core.Application
@ApplicationScoped
@ApplicationPath("/helidonapp")
public class HelidonApplication extends Application {
 @Override
 public Set<Class<?>> getClasses() {
 return Set.of(AccountsResource.class);
 }
}

Solution:

Create the Application/Context path by extending
org.glassfish.jersey.server.ResourceConfig, as shown below:

package com.oracle.mtm.sample.resource;

import java.util.Set;

Chapter 6
Troubleshooting Common Issues

6-20

import javax.enterprise.context.ApplicationScoped;
import org.glassfish.jersey.server.ResourceConfig;
import javax.ws.rs.ApplicationPath;

//Adding Application Context path by extending
org.glassfish.jersey.server.ResourceConfig
@ApplicationPath("/helidonapp")
public class HelidonApplication extends ResourceConfig {
}

Issue 2

The Helidon Teller Application reports the transaction limit error. Here is a sample of the error
message:

2023.04.10 06:03:05 INFO TMMLibDefaultLogger !thread!: begin response from TCS:
transaction limit error. Reached total allowed transactions count of 4800. Please try
after one hour
---429
2023.04.10 06:03:05 WARNING io.helidon.microprofile.server.JaxRsCdiExtension !thread!:
Internal server error
javax.transaction.SystemException: transaction limit error. Reached total allowed
transactions count of 4800. Please try after one hour

 at oracle.tmm.jta.TrmUserTransaction.begin(TrmUserTransaction.java:183)
 at oracle.tmm.jta.TrmUserTransaction.begin(TrmUserTransaction.java:124)
 at
oracle.tmm.jta.transactional.TrmTransactionalRequired.intercept(TrmTransactionalRequire
d.java:51)
. . . .
. . . .

Solution:

The MicroTx Free release 22.3.1 and earlier have restrictions on the number of transactions
allowed per hour. Use MicroTx Free 22.3.2 and later to remove this restriction.

Issue 3

When the correct privileges are not granted in the database, Helidon and WebLogic Server
report an error (XAER_RMERR error) when trying to recover transactions. Here is a sample of
the error message:

2023.05.02 11:47:09 SEVERE TMMLibDefaultLogger !thread!: RMID : <RMID> XA Exception:
XAErr: -3 XAErrString: XAER_RMERR
javax.transaction.xa.XAException
 at oracle.jdbc.xa.OracleXAResource.recover(OracleXAResource.java:754)
 at oracle.tmm.jta.common.TrmXAResource.xaop(TrmXAResource.java:225)
. . . .

Solution:

Provide the following database privileges to the Helidon and WebLogic database users:

GRANT SELECT ON sys.dba_pending_transactions TO <DB_USERNAME>;
GRANT SELECT ON sys.dba_2pc_pending TO <DB_USERNAME>;
GRANT EXECUTE ON sys.dbms_xa TO <DB_USERNAME>;
GRANT FORCE ANY TRANSACTION TO <DB_USERNAME>;

Chapter 6
Troubleshooting Common Issues

6-21

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	1 About the Oracle WebLogic Server and Helidon Integration
	Preparing the Kubernetes Cluster for WebLogic Server and Helidon Integration
	Downloading the WebLogic Server Java Clients with Jakarta Package Names

	2 Integrating WebLogic Server REST Services with Helidon
	Prerequisites
	Using the JAX-RS Server
	Using the JAX-RS Client

	3 Integrating WebLogic Server JMS with Helidon
	Prerequisites
	Enabling the T3/T3S Channel in the WebLogic Kubernetes Operator
	Creating the T3/T3S Channel Using the Administration Console
	Creating the T3/T3S Channel Using the WLST Script
	Creating the T3/T3S Channel Using WebLogic Deploy Tooling

	Creating the Kubernetes Service for T3/T3S Channel for Communication
	Configuring the JMS Resources in WebLogic Server Using WebLogic Deploy Tooling

	Setting Up the JMS Integration with Helidon
	Troubleshooting Common JMS Issues

	4 Integrating WebLogic Server Web Services with Helidon
	Prerequisites
	Setting Up the Web Services Integration with Helidon

	5 Integrating WebLogic Cluster and Helidon Applications for Single Sign-On on OCI Using IDCS
	Prerequisites
	Setting Up the WebLogic Cluster Integration with Helidon for Single Sign-On

	6 Integrating XA Global Transactions Between WebLogic Server and Helidon Using MicroTx
	Prerequisites
	Preparing WebLogic Server to Work with MicroTx
	Creating the JDBC Data Sources Using WebLogic Deploy Tooling
	Creating the XA Data Source Using WebLogic Deploy Tooling
	Creating the Non-XA Data Source Using WebLogic Deploy Tooling

	Configuring the JTA Transaction Log as a JDBC Store
	Configuring the JTA Transaction Log as a JDBC Store Using WebLogic Deploy Tooling
	Configuring the JTA Transaction Log as a JDBC Store Using the WebLogic Scripting Tool
	Configuring the JTA Transaction Log as a JDBC Store Using the Administration Console

	Modifying the MicroTx Configurations
	Allowing Communication Between Peers Across Namespaces
	Creating Routing Rules

	Setting Up the Integration of WebLogic Server with Helidon and MicroTx Applications and Services
	Building and Deploying the Helidon Teller Application
	Building and Deploying the Helidon Participant Application
	Building and Deploying the MicroTx Application WAR File in the WebLogic Server Domain
	Deploying the Web Application in the WebLogic Cluster Using WebLogic Deploy Tooling
	Deploying the MicroTx Coordinator Service

	Troubleshooting Common Issues

