
Oracle Fusion Middleware
Developing Resource Adapters for Oracle
WebLogic Server

15c (15.1.1.0.0)
G32015-01
October 2025

Oracle Fusion Middleware Developing Resource Adapters for Oracle WebLogic Server, 15c (15.1.1.0.0)

G32015-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation ii

Conventions ii

1 Understanding Resource Adapters

Overview of Resource Adapters 1

Comparing WebLogic Server and WebLogic Integration Resource Adapters 1

Inbound, Outbound, and Bidirectional Resource Adapters 1

Connector Architecture 1.7 Support 2

Connector Architecture 1.6 Support 2

Comparing 1.0 Resource Adapters to 1.5 and 1.6 3

Additional Support Provided by the WebLogic Server Connector Container 3

Jakarta EE Connector Architecture 5

Jakarta EE Architecture Diagram and Components 5

System-Level Contracts 7

Resource Adapter Deployment Descriptors 8

2 Creating and Configuring Resource Adapters

Creating and Configuring Resource Adapters: Main Steps 1

Modifying an Existing Resource Adapter 3

Configuring the ra.xml File 3

Creating the ra.xml File Manually 4

Using Metadata Annotations to Specify Deployment Information 4

Resource Adapter XML Schema Definitions 4

Configuring the weblogic-ra.xml File 4

Editing Resource Adapter Deployment Descriptors 5

Editing Considerations 5

Schema Header Information 6

Conforming Deployment Descriptor Files to Schema 6

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page i of vi

Dynamic Descriptor Updates: Console Configuration Tabs 7

Dynamic Reconfigurable Configuration Properties 7

Dynamic Configuration Parameters 7

Dynamic Pool Parameters 8

Dynamic Logging Parameters 8

Automatic Generation of the weblogic-ra.xml File 8

(Deprecated) Configuring the Link-Ref Mechanism 9

Bean Validation Configuration File 9

Long-Running Work Support 10

Tooling Support 10

Monitoring Resource Adapter Health 11

Obtaining Resource Adapter Health State 11

Deployment Requirements for Monitoring Health 11

3 Programming Tasks

Required Classes for Resource Adapters 1

Generic Work Context 2

Interfaces, Classes, and Methods Added to Support the Generic Work Context 2

Deployment Descriptor Element Added to Support the Generic Work Context 3

Programming a Resource Adapter to Perform as a Startup Class 3

Minimum Content of a Resource Adapter 3

Submitting a Work Instance 4

Retrying a Work Submission 6

Suspending and Resuming Resource Adapter Activity 6

Extended BootstrapContext 9

Diagnostic Context ID 9

Dye Bits 10

Callback Capabilities 10

Bean Validation 10

BeanManager 10

Administered Object Uniqueness 11

4 Using Contexts and Dependency Injection in Resource Adapters

Overview 1

Resource Adapter Bean Discovery 1

Obtaining Contextual References to Resource Adapter Beans 1

Invoking Resource Adapter Beans From Other Application Types 2

Using Resource Adapters Deployed as CDI Bean Archives 2

BeanManager Support 2

Injection Points 3

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of vi

Using CDI with Resource Adapter Component Beans 4

Resource Adapter Component Beans Must Not Be Managed Beans 4

Using Dependency Injection 5

Notes on Injection Usage 6

Example 6

5 Connection Management

Connection Management Contract 1

Connection Factory and Connection 1

Resource Adapters Bound in JNDI Tree 2

Obtaining the ConnectionFactory (Client-JNDI Interaction) 2

Specifying and Obtaining Transaction Support Level 3

Specifying an Unshareable ManagedConnectionFactory 3

Configuring Outbound Connections 4

Connection Pool Configuration Levels 4

Retrying a Connection Attempt 4

Isolating, Troubleshooting, and Fixing Outbound Connection Pool Failures Without
Redeploying the Adapter 5

Using the Deploy-As-A-Whole Option 5

Troubleshooting Failed Connection Pools 6

Connection Pool Recovery Steps 6

Other Options for Recovering Failed Connection Pools 7

Multiple Outbound Connections Example 7

Configuring Inbound Connections 9

Configuring Connection Pool Parameters 10

initial-capacity: Setting the Initial Number of ManagedConnections 10

max-capacity: Setting the Maximum Number of ManagedConnections 11

capacity-increment: Controlling the Number of ManagedConnections 11

shrinking-enabled: Controlling System Resource Usage 11

shrink-frequency-seconds: Setting the Wait Time Between Attempts to Reclaim Unused
ManagedConnections 11

highest-num-waiters: Controlling the Number of Clients Waiting for a Connection 12

highest-num-unavailable: Controlling the Number of Unavailable Connections 12

connection-creation-retry-frequency-seconds: Recreating Connections 12

match-connections-supported: Matching Connections 12

test-frequency-seconds: Testing the Viability of Connections 12

test-connections-on-create: Testing Connections upon Creation 13

test-connections-on-release: Testing Connections upon Release to Connection Pool 13

test-connections-on-reserve: Testing Connections upon Reservation 13

deploy-as-a-whole: Isolating Outbound Connection Pool Failures from the Whole
Adapter Deployment 13

Connection Proxy Wrapper - 1.0 Resource Adapters 13

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page iii of vi

Possible ClassCastException 13

Turning Proxy Generation On and Off 14

Reset a Connection Pool 14

Testing Connections 15

Configuring Connection Testing 15

6 Transaction Management

Supported Transaction Levels 1

XA Transaction Support 1

Local Transaction Support 1

No Transaction Support 2

Runtime Transaction Support Level Specification 2

Configuring Transaction Levels 2

Configure XA Transaction Recovery Credential Mapping 3

7 Message and Transactional Inflow

Overview of Message and Transactional Inflow 1

Architecture Components 2

Inbound Communication Scenario 2

How Message Inflow Works 3

Handling Inbound Messages 3

Proprietary Communications Channel and Protocol 4

Message Inflow to Message Endpoints (Message-Driven Beans) 4

Deployment-Time Binding Between an MDB and a Resource Adapter 4

Binding an MDB and a Resource Adapter 5

Dispatching a Message 5

Activation Specifications 5

Administered Objects 6

Transactional Inflow 6

Using the Transactional Inflow Model for Locally Managed Transactions 7

Configuring and Managing Long-Running Work 8

Setting the Maximum Number of Concurrent Long-Running Work Instances 8

Monitoring Long-Running Work 8

8 Security

Container-Managed and Application-Managed Sign-on 1

Application-Managed Sign-on 1

Container-Managed Sign-on 1

Credential Mapping for Making Outbound Connections 2

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page iv of vi

Authentication Mechanisms 2

Outbound Credential Mappings 2

Non-initial Connection: Requires ManagedConnection from Adapter Upon
Application's Request 3

Initial Connection: Requires a ManagedConnection from Adapter Without
Application's Request 4

Special Users 5

Creating Outbound Credential Mappings Using the Console 6

Security Inflow 6

Inbound Principal Mappings 6

Security Inflow Callback Requirements 7

Backward Compatibility with Connector Architecture 1.5 and 1.0 8

Security Policy Processing 8

Configuring Security Identities for Resource Adapters 9

default-principal-name: Default Identity 10

manage-as-principal-name: Identity for Running Management Tasks 10

run-as-principal-name: Identity Used for Connection Calls from the Connector Container
into the Resource Adapter 11

run-work-as-principal-name: Identity Used for Performing Resource Adapter
Management Tasks 11

Configuring Connection Factory-Specific Authentication and Re-authentication Mechanisms 12

9 Packaging and Deploying Resource Adapters

Packaging Resource Adapters 1

Packaging Directory Structure 1

Packaging Considerations 1

Packaging Limitation 2

Packaging Resource Adapter Archives (RARs) 2

Deploying Resource Adapters 3

Deployment Options 3

Resource Adapter Deployment Names 4

Production Redeployment 4

Suspendable Interface and Production Redeployment 4

Production Redeployment Requirements 4

Production Redeployment Process 5

Deploying a Resource Adapter Configured with Multiple Outbound Connection Pools 5

A weblogic-ra.xml Schema

weblogic-connector A-1

work-manager A-4

connector-work-manager A-6

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page v of vi

security A-6

default-principal-name A-8

manage-as-principal-name A-8

run-as-principal-name A-9

run-work-as-principal-name A-9

security-work-context A-9

caller-principal-default-mapped A-10

caller-principal-mapping A-10

group-principal-mapping A-11

properties A-11

admin-objects A-12

admin-object-group A-12

admin-object-instance A-13

outbound-resource-adapter A-13

default-connection-properties A-14

pool-params A-15

logging A-17

connection-definition-group A-18

connection-instance A-19

B Resource Adapter Best Practices

Classloading Optimizations for Resource Adapters B-1

Connection Optimizations B-1

Thread Management B-1

InteractionSpec Interface B-2

Using javax.jms.ConnectionFactory B-2

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page vi of vi

Preface

This document describes how to develop applications that include Jakarta EE resource
adapters and how to deploy them on WebLogic Server.

Audience
This document is written for resource adapter users, deployers, and software developers, and
also contains information that is useful for business analysts and system architects who are
evaluating WebLogic Server or considering the use of WebLogic Server resource adapters for
a particular application.

The topics in this document are relevant during the design and development phases of a
software project. The document also includes topics that are useful in solving application
problems that are discovered during test and pre-production phases of a project.

This document does not address production phase administration, monitoring, or performance
tuning topics. For links to WebLogic Server documentation and resources for these topics, see
Related Documentation.

It is assumed that the reader is familiar with Jakarta EE and resource adapter concepts. The
foundation document for resource adapter development is the JSR 322: Jakarta EE Connector
Architecture 1.7. See http://jcp.org/aboutJava/communityprocess/final/jsr322/
index.html. Resource adapter developers should become familiar with the Jakarta EE
Connector Architecture 1.7 specification. This document, Developing Resource Adapters for
Oracle WebLogic Server, emphasizes the value-added features provided by WebLogic Server
resource adapters and key information about how to use WebLogic Server features and
facilities to get a resource adapter up and running.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page i of ii

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
The foundation document for resource adapter development is JSR 322: Java EE Connector
Architecture 1.7. Developing Resource Adapters for Oracle WebLogic Server document
assumes you are familiar with the Jakarta EE Connector Architecture specification, which
contains design and development information that is specific to developing WebLogic Server
resource adapters.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

• Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic
Server applications.

• Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

• Tuning Performance of Oracle WebLogic Server contains information on monitoring and
improving the performance of WebLogic Server applications.

Examples for the Resource Adapter Developer
In addition to this document, Oracle provides resource adapter examples for software
developers. WebLogic Server optionally installs API code examples in the ORACLE_HOME/
wlserver/samples/server/examples/src/examples directory. For more information about the
WebLogic Server code examples, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

The resource adapter example provided with this release of WebLogic Server is compliant with
the 1.7 Connector Architecture. Oracle recommends that you examine, run, and understand
these resource adapter examples before developing your own resource adapters.

New and Changed WebLogic Server Features
For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server15.1.1.0.0.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of ii

1
Understanding Resource Adapters

Resource adapters play a central role in the integration and connectivity between enterprise
information systems (EIS) and applications deployed on Oracle WebLogic Server by
communicating through well-defined contracts that are specified in the Jakarta EE Connector
Architecture. This chapter explains resource adapter concepts, and also describes the
deployment descriptors that define the structure and runtime behavior of a resource adapter
that is deployed on WebLogic Server.

Overview of Resource Adapters
A resource adapter is a system library specific to an Enterprise Information System (EIS) and
provides connectivity to an EIS. A resource adapter is analogous to a JDBC driver, which
provides connectivity to a database management system. The interface between a resource
adapter and the EIS is specific to the underlying EIS; it can be a native interface. The resource
adapter plugs into an application server, such as WebLogic Server, and provides seamless
connectivity between the EIS, application server, and enterprise application.
Multiple resource adapters can plug in to an application server. This capability enables
application components deployed on the application server to access the underlying EISes. An
application server and an EIS collaborate to keep all system-level mechanisms — transactions,
security, and connection management — transparent to the application components. As a
result, an application component provider can focus on the development of business and
presentation logic for application components and need not get involved in the system-level
issues related to EIS integration. This leads to an easier and faster cycle for the development
of scalable, secure, and transactional enterprise applications that require connectivity with
multiple EISes.

Comparing WebLogic Server and WebLogic Integration Resource Adapters
It is important to note the difference between WebLogic Integration (WLI) resource adapters
and WebLogic Server resource adapters. WebLogic Integration resource adapters are written
to be specific to WebLogic Server and, in general, are not deployable to other application
servers. However, WebLogic Server resource adapters written without WLI extensions are
deployable in any Jakarta EE-compliant application server. This document discusses the
design and implementation of non-WLI resource adapters.

Inbound, Outbound, and Bidirectional Resource Adapters
WebLogic Server supports three types of resource adapters:

• Outbound resource adapter — Allows an application to connect to an EIS system and
perform work. All communication is initiated by the application. In this case, the resource
adapter serves as a passive library for connecting to an EIS and executes in the context of
the application threads.

Outbound resource adapters based on the Jakarta EE Connector Architecture 1.5 and 1.6
can be configured to have more than one simultaneous outbound connection. You can
configure each outbound connection to have its own WebLogic Server-specific
authentication and transaction support. See Configuring Outbound Connections.

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 8

Outbound resource adapters based on the Jakarta EE Connector Architecture 1.0 are also
supported. These resource adapters can have only one outbound connection.

• Inbound resource adapter (1.5 and 1.6 only) — Allows an EIS to call application
components and perform work. All communication is initiated by the EIS. The resource
adapter may request threads from WebLogic Server or create its own threads; however,
this is not the Oracle-recommended approach. Oracle recommends that the resource
adapter submit work by way of the WorkManager. See Message and Transactional Inflow.

Note

The WebLogic Server thin-client JAR also supports the WorkManager contracts
and thus can be used by non-managed resource adapters (resource adapters not
running in WebLogic Server).

• Bi-directional resource adapter (1.5 and 1.6 only) — Supports both outbound and inbound
communication.

Connector Architecture 1.7 Support
WebLogic Server supports the following Jakarta EE Connector Architecture (1.7) features:

• Supports @AdministeredObjectDefinition/@AdministeredObjectDefinitions
annotations and equivalent deployment descriptors for defining an administered object
resource.

• Supports @ConnectionFactoryDefinition/@ConnectionFactoryDefinitions and
equivalent deployment descriptors for defining a connection factory resource.

Connector Architecture 1.6 Support
The major themes of Connector Architecture 1.6 that are supported in WebLogic Server Full
Platform include the following:

• Ease of development features

Connector Architecture 1.6 adds a number of features to simplify the development
process, such as metadata annotations and support for sparse deployment descriptors.
Metadata annotations can be embedded within resource adapter class files to specify
deployment information, minimizing or even eliminating the need to manually create the
ra.xml file. See Using Metadata Annotations to Specify Deployment Information.

• Generic work context

A generic work context is the mechanism used by the resource adapter to propagate
contextual information, such as the transaction context and security context, from the EIS
to WebLogic Server during message delivery or submitting a work instance. For more
information, see Generic Work Context.

• Security context

Connector Architecture 1.6 defines a standard, generic security context that leverages the
work done in JSR 196: Java Authentication Service Provider Interface for Containers. For
more information, see Security Inflow.

• Miscellaneous improvements, including:

– Integration of JSR 303: Bean Validation

Chapter 1
Overview of Resource Adapters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 8

http://jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/summary?id=303

– Dynamic Reconfigurable Configuration Properties

This includes the ability to designate specific properties of resource adapter
component beans to be dynamically configurable, enabling those properties to be
reconfigured at run time without requiring adapter restart or redeployment. See
Dynamic Reconfigurable Configuration Properties.

– The ability for a resource adapter to determine and classify the level of transaction
support it can provide at run time. See Specifying and Obtaining Transaction Support
Level.

– Optional distributed Work processing, which gives an application server instance's
WorkManager the choice to distribute a Work instance submitted by a resource adapter
to another WorkManager residing in a different application server instance.

Comparing 1.0 Resource Adapters to 1.5 and 1.6
WebLogic Server supports resource adapters developed under versions 1.0, 1.5, and 1.6 of
the Jakarta EE Connector Architecture. Jakarta EE Connector Architecture 1.0 restricts
resource adapter communication to a single external system using one-way outbound
communication. Jakarta EE Connector Architecture 1.5 lifts this restriction. Other capabilities
provided by and for 1.5 and 1.6 resource adapters that do not apply to 1.0 resource adapters
include:

• Outbound communication from the application to multiple systems, such as Enterprise
Information Systems (EISes) and databases. See Inbound, Outbound, and Bidirectional
Resource Adapters.

• Inbound communication from one or more external systems such as an EIS to the
resource adapter. See Handling Inbound Messages.

• Transactional inflow to enable a Jakarta EE application server to participate in an XA
transaction controlled by an external Transaction Manager by way of a resource adapter.
See Transactional Inflow.

• A Work Manager provided by WebLogic Server to enable resource adapters to create
threads through Work instances. See work-manager.

• A life cycle contract for calling start() and stop() methods of the resource adapter by the
application server. See Programming a Resource Adapter to Perform as a Startup Class.

Another important difference between 1.0 resource adapters and 1.5 and 1.6 resource
adapters is regarding connection pools. For 1.5 and 1.6 resource adapters, you do not
automatically get one connection pool per connection factory; you must configure a connection
instance. You do so by setting the connection-instance element in the weblogic-ra.xml
deployment descriptor.

Although WebLogic Server Full Platform is now compliant with JSR 322: Java EE Connector
Architecture 1.6, it continues to fully support versions 1.0 and 1.5. In accordance with
Connector Architecture 1.6, WebLogic Server supports schema-based deployment descriptors.
Resource adapters that have been developed based on the Jakarta EE Connector Architecture
1.0 use Document Type Definition (DTD)-based deployment descriptors. Resource adapters
that are built on DTD-based deployment descriptors are still supported.

This document describes the development and use of 1.6 resource adapters.

Additional Support Provided by the WebLogic Server Connector Container
WebLogic Server provides a number of features in its Connector container that supplement the
JSR 322: Java EE Connector Architecture 1.6, including the following:

Chapter 1
Overview of Resource Adapters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 8

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

• Support for JSR 299: Contexts and Dependency Injection for the Java EE Platform (CDI) in
embedded and global resource adapters. CDI defines a set of services for using injection
to specify dependencies in an application. For more information, see Using Contexts and
Dependency Injection in Resource Adapters.

• Additional runtime transaction level specification. WebLogic Server exposes information
about the runtime transaction level in the
ConnectorConnectionPoolRuntimeMBean.RuntimeTransactionSupport MBean attribute
and in the WebLogic Remote Console. For more information, see Supported Transaction
Levels.

• Ability to lookup the TransactionSynchronizationRegistry object in JNDI, using the
standard name of java:comp/TransactionSynchronizationRegistry. Oracle extends
support by providing two additional global JNDI names: javax/transaction/
TransactionSynchronizationRegistry and weblogic/transaction/
TransactionSynchronizationRegistry. For more information, see
javax.transaction.TransactionSynchronizationRegistry.

• Management and monitoring of long-running Work instances, including the number of
current active work requests and the number of completed work requests, which WebLogic
Server exposes on the ConnectorWorkManagerRuntimeMBean and in the WebLogic Remote
Console. See Long-Running Work Support.

• Additional support for the javax.resource.spi.RetryableException exception by
extending it to outbound connection pools. When you try to get a connection from a
suspended connection pool, WebLogic Server throws a
RetryableApplicationServerInternalException that implements the
RetryableException interface. You can then use the RetryableException instance to
determine whether the failure is transient.

• Supplemental support for the security context in the WebLogic Remote Console by
providing a means to create inbound EIS-to-WebLogic principal mappings, which map EIS
principals, such as users or groups defined in the EIS security domain, to corresponding
principals in the WebLogic domain. For more information, see Inbound Principal Mappings.

• Support for module-level JSR 303: Bean Validation configuration. WebLogic Server
extends Jakarta EE 6 by supporting the optional use this bean configuration file to validate
a resource adapter module.

• New methods on the weblogic.connector.extensions.ExtendedBootstrapContext that:

– Provide a means for a resource adapter to look up the Validator and
ValidatorFactory instances of its own beans for validation. See Bean Validation.

– Return the resource adapter's BeanManager instance to support CDI injection. See
BeanManager, and Using Resource Adapters Deployed as CDI Bean Archives.

• Work Name Hint — Names a Work instance and is used as part of the thread name
assigned to a long-running Work instance. The nameHint forms part of the thread name
and is used only for long-running work. For more information, see Long-Running Work
Support.

• In resource adapters configured with multiple connection pools, the ability to isolate failed
connection pools from healthy ones during deployment. This enables you to locate,
diagnose, and fix failed connection pools, and then dynamically update the adapter
deployment, without redeploying the resource adapter.

The ability to detect outbound connection pool failures is available through the health
monitoring feature, which is extended to resource adapters. You can access the health
state of a resource adapter deployment using WLST or the WebLogic Remote Console.

Chapter 1
Overview of Resource Adapters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 8

http://www.jcp.org/en/jsr/summary?id=299
http://docs.oracle.com/javaee/6/api/index.html?javax/transaction/TransactionSynchronizationRegistry.html
http://jcp.org/en/jsr/detail?id=303

For more information, see Monitoring Resource Adapter Health, and Deploying a Resource
Adapter Configured with Multiple Outbound Connection Pools .

Jakarta EE Connector Architecture
The Jakarta EE Connector Architecture defines a standard architecture for connecting the
Jakarta EE platform to heterogeneous Enterprise Information Systems (EISes), such as
Enterprise Resource Planning (ERP) systems, mainframe transaction processing (TP), and
database systems.

The resource adapter serves as a protocol adapter that allows any arbitrary EIS
communication protocol to be used for connectivity. An application server vendor extends its
system once to support the Jakarta EE Connector Architecture and is then assured of
seamless connectivity to multiple EISes. Likewise, an EIS vendor provides one standard
resource adapter that can plug in to any application server that supports the Jakarta EE
Connector Architecture.

See Resource Adapters and Contracts in Java Platform, Enterprise Edition: The Java EE
Tutorial.

Jakarta EE Architecture Diagram and Components
Figure 1-1 and the discussion that follows describe a WebLogic Server implementation of
Connector Architecture 1.6.

Chapter 1
Jakarta EE Connector Architecture

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 8

https://docs.oracle.com/javaee/7/tutorial/resources.htm#BNCJH

Figure 1-1 Connector Architecture Overview

Connector Container

Resource Adapter

MC1

C-handle

C-handle

Act Spec MLT-j

Act Spec MLT-j

MCn

MC1

MCn
Client Application

WebLogic Server

Application
Component

Message
Endpoint

Application

Connection
Pool MCF1

Connection
Pool MCF2

External System
EIS1

External System
EIS2

Message Source
(EIS or Message
Provider) MS1

Message Source
(EIS or Message
Provider) MS2

Message
Endpoint
Factory

Message
Endpoint

Proxy
MDB

Connector
Container Supports:

• Transactions
• Security
• Connection Mgmt
• Message Inflow
• Work Manager
• Lifecycle Mgmt
• Transaction Inflow

Resource Adapter May:

• Be non-transactional
• Support local transactions
• Support XA transactions
• Be inbound only
• Be outbound only
• Be bi-directional

Key

MCF1 – ManagedConnectionFactory 1 MCF2 – ManagedConnectionFactory 2

MC1 – ManagedConnection 1 MCn – ManagedConnection n

C-handle – Connection Handle Handed to Client MS1 – Message Source 1

Act Spec MLT-j – ActivationSpec Corresponding to MessageListener type-j

The connector architecture shown in Figure 1-1 demonstrates a bi-directional resource
adapter. The following components are used in outbound connection operations:

• A client application that connects to WebLogic Server, but also needs to interact with the
EIS.

• An application component (an EJB or servlet) that the client application uses to submit
outbound requests to the EIS through the resource adapter

• The WebLogic Server Connector container in which the resource adapter is deployed. The
container in this example holds the following:

– A deployed resource adapter that provides bi-directional (inbound and outbound)
communication to and from the EIS.

– One or more connection pools maintained by the container for the management of
outbound managed connections for a given ManagedConnectionFactory (in this case,
MCF-2 - there may be more corresponding to different types of connections to a single
EIS or even different EISes)

– Multiple managed connections (MC1, MCn), which are objects representing the
outbound physical connections from the resource adapter to the EIS.

Chapter 1
Jakarta EE Connector Architecture

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 8

– Connection handles (C-handle) returned to the application component from the
connection factory of the resource adapter and used by the application component for
communicating with the EIS.

The following components are used for inbound connection operations:

• One or more external message sources (MS1, MS2), which could be an Enterprise
Information System (EIS) or Message Provider, and which send messages inbound to
WebLogic Server.

• One or more ActivationSpecs (Act Spec), each of which corresponds to a single
MessageListener type (MLT-i).

• A MessageEndpointFactory created by the EJB container and used by the resource
adapter for inbound messaging to create proxies to MessageEndpoint instances (MDB
instances from the MDB pool).

• A message endpoint application (a message-driven bean (MDB) and possibly other
Jakarta EE components) that receives and handles inbound messages from the EIS
through the resource adapter.

System-Level Contracts
To achieve a standard system-level pluggability between WebLogic Server and an EIS,
WebLogic Server has implemented the standard set of system-level contracts defined by the
Jakarta EE Connector Architecture. These contracts consist of SPI classes and interfaces that
are required to be implemented in the application server and the EIS, so that the two systems
can work cooperatively. The EIS side of these system-level contracts are implemented in the
resource adapter's Java classes. The following standard contracts are supported:

• Connection management contract — Enables WebLogic Server to pool connections to an
underlying EIS and enables application components to connect to an EIS. Also allows
efficient use of connection resources through resource sharing and provides controls for
associating and disassociating connection handles with EIS connections.

• Transaction management contract — A contract between the transaction manager and an
EIS that supports transactional access to EIS resource managers. Enables WebLogic
Server to use its transaction manager to manage transactions across multiple resource
managers.

• Transaction inflow contract — Allows a resource adapter to propagate an imported
transaction to WebLogic Server. Allows a resource adapter to flow-in transaction
completion and crash recovery calls initiated by an EIS. Transaction inflow involves the use
of an external transaction manager to coordinate transactions.

• Security contract — Extends the connection management contract by providing secure
access to an EIS and support for a secure application environment that reduces security
threats to the EIS and protects valuable information resources managed by the EIS.

• Life cycle management contract — Enables WebLogic Server to manage the life cycle of a
resource adapter. This allows bootstrapping a resource adapter instance during its
deployment or application server startup, and notification to the resource adapter instance
when it is undeployed or when the application server is being shut down.

• Work management contract — Allows a resource adapter to do work (monitor network
endpoints, call application components, and so on) by submitting Work instances to
WebLogic Server for execution.

• Generic work context contract — Enables a resource adapter to control the contexts in
which the Work instances that it submits are executed by the WorkManager in WebLogic
Server. A generic work context mechanism also enables WebLogic Server to support new

Chapter 1
Jakarta EE Connector Architecture

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 8

message inflow and delivery schemes, providing the resource adapter with a robust
contextual Work execution environment that includes the ability to manage concurrent
activity.

The generic work context contract standardizes the transaction context and the security
context. JSR 322: Java EE Connector Architecture 1.6 defines this contract between the
resource adapter and the application server in detail, including interfaces and classes, the
thread model, rules for verifying and establishing contexts, error handling, event
notifications, and so on.

• Message inflow contract — Allows a resource adapter to asynchronously or synchronously
deliver messages to message endpoints residing in WebLogic Server independent of the
specific messaging style, messaging semantics, and messaging infrastructure used to
deliver messages. Also serves as the standard message provider pluggability contract that
enables a wide range of message providers (Jakarta Messaging Service, Java API for
XML Messaging, and so on) to be plugged into WebLogic Server through a resource
adapter.

These system-level contracts are described in detail in JSR 322: Java EE Connector
Architecture 1.6.

Resource Adapter Deployment Descriptors
The structure of a resource adapter and its runtime behavior are defined in deployment
descriptors. Programmers create the deployment descriptors during the packaging process,
and these become part of the application deployment when the application is compiled.

WebLogic Server resource adapters have two deployment descriptors, each of which has its
own XML schema:

• ra.xml — The standard Jakarta EE deployment descriptor. All resource adapters must be
specified in an ra.xml deployment descriptor file. The schema for ra.xml is http://
www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_7.xsd.

Note

Connector Architecture 1.6 introduces metadata annotations, which allow you to
specify deployment information in resource adapter class files, thereby minimizing
or eliminating the need to manually create the deployment descriptor file ra.xml.

• weblogic-ra.xml — This WebLogic Server-specific deployment descriptor contains
elements related to WebLogic Server features such as transaction management,
connection management, and security. This file is required for the resource adapter to be
deployed to WebLogic Server. The schema for the weblogic-ra.xml deployment
descriptor file is http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/
weblogic-connector.xsd. For a reference to the weblogic-ra.xml deployment descriptor,
see weblogic-ra.xml Schema.

Chapter 1
Resource Adapter Deployment Descriptors

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 8

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_7.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd

2
Creating and Configuring Resource Adapters

To create and configure a WebLogic Server resource adapter and prepare it for deployment,
you perform several tasks that include creating the resource adapter classes and configuring
the deployment descriptors, and may also include specifying metadata annotations, preparing
the bean validation configuration file, setting up health status monitoring of standalone and
embedded resource adapters, and more.

Creating and Configuring Resource Adapters: Main Steps
To create a new WebLogic resource adapter, you must create the classes for the particular
resource adapter, write the resource adapter's deployment descriptors, and then package
everything into an archive file to be deployed to WebLogic Server.

The following are the main steps for creating a resource adapter:

1. Write the Java code for the various classes required by resource adapter
(ConnectionFactory, Connection, and so on) in accordance with JSR 322: Java EE
Connector Architecture 1.7. These classes will be specified in the ra.xml file. For example:

<managedconnectionfactory-class>
com.sun.connector.blackbox.LocalTxManagedConnectionFactory
</managedconnectionfactory-class>

<connectionfactory-interface>
javax.sql.DataSource
</connectionfactory-interface>

<connectionfactory-impl-class>
com.sun.connector.blackbox.JdbcDataSource
</connectionfactory-impl-class>

<connection-interface>
java.sql.Connection
</connection-interface>

<connection-impl-class>
com.sun.connector.blackbox.JdbcConnection
</connection-impl-class>

For 1.6 adapters, you can embed metadata annotations in the resource adapter class files
to specify deployment information, eliminating the need to create the ra.xml file manually.
For more information, see Configuring the ra.xml File.

Note

The WebLogic Server implementation of Connector Architecture 1.6 includes
support for Contexts and Dependency Injection. This support has implications on
the set of annotations that may be used in resource adapter component beans,
which are beans that define special components managed by the Connector
container and that have a special life cycle. For more information, see

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 11

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

For more information about programming resource adapters, see Programming Tasks.

2. Compile the Java code for the interfaces and implementation into class files, using a
standard compiler.

3. Create the resource adapter's deployment descriptors. A WebLogic resource adapter uses
two deployment descriptor files:

• ra.xml describes the resource adapter-related attributes type and its deployment
properties using the standard XML schema specified by the Jakarta EE Connector
Architecture specification.

Note

Jakarta EE Connector Architecture 1.6 no longer requires the ra.xml file to be
created manually. Instead, deployment information can be specified in
metadata annotations. See Configuring the ra.xml File.

• weblogic-ra.xml adds additional WebLogic Server-specific deployment information,
including connection and connection pool properties, security identities, Work Manager
properties, and logging.

For detailed information about creating WebLogic Server-specific deployment descriptors
for resource adapters, refer to Configuring the weblogic-ra.xml File, and weblogic-ra.xml
Schema.

4. Package the Java classes into a Java archive (JAR) file with a .rar extension.

Create a staging directory anywhere on your hard drive. Place the JAR file in the staging
directory and the deployment descriptors in a subdirectory called META-INF.

Then create the resource adapter archive by executing a jar command similar to the
following in the staging directory:

jar cvf myRAR.rar *

Optionally, you can include the Bean Validation configuration file, META-INF/
validation.xml, inside the JAR file. WebLogic Server uses the Bean Validation
configuration file to validate the resource adapter module.

5. Deploy the resource adapter archive (RAR) file on WebLogic Server in a test environment
and test it.

During testing, you may need to edit the resource adapter deployment descriptors. You
can do this using the WebLogic Remote Console or manually using an XML editor or a text
editor. See also weblogic-ra.xml Schema, for detailed information on the elements in the
deployment descriptor.

6. Deploy the RAR resource adapter archive file on WebLogic Server or include it in an
enterprise archive (EAR) file to be deployed as part of an enterprise application.

For information about these steps, see Packaging and Deploying Resource Adapters. See
also Deploying Applications to Oracle WebLogic Server for detailed information about
deploying components and applications in general.

Chapter 2
Creating and Configuring Resource Adapters: Main Steps

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 11

Modifying an Existing Resource Adapter
If you already have a resource adapter that is packaged in a RAR file, you can modify it for
deployment to WebLogic Server. This task involves adding the weblogic-ra.xml deployment
descriptor and repackaging the resource adapter.
The follow example shows the steps for modifying an existing resource adapter packaged in a
RAR file named blackbox-notx.rar.

1. Create a temporary directory anywhere on your hard drive to stage the resource adapter:

mkdir c:/stagedir

2. Extract the contents of the resource adapter archive:

cd c:/stagedir
jar xf blackbox-notx.rar

The staging directory should now contain the following:

• A JAR file containing Java classes that implement the resource adapter

• A META-INF directory containing the Manifest.mf and ra.xml files

Execute these commands to see these files:

c:/stagedir> ls
 blackbox-notx.rar
 META-INF
c:/stagedir> ls META-INF
 Manifest.mf
 ra.xml

3. Create the weblogic-ra.xml file. This file is the WebLogic-specific deployment descriptor
for resource adapters. In this file, you specify parameters for connection factories,
connection pools, and security settings.

For more information, see Configuring the weblogic-ra.xml File, and also refer to weblogic-
ra.xml Schema, for information on the XML schema that applies to weblogic-ra.xml.

4. Copy the weblogic-ra.xml file into the temporary directory's META-INF subdirectory. The
META-INF directory is located in the temporary directory where you extracted the RAR file
or in the directory containing a resource adapter in exploded directory format. Use the
following command:

cp weblogic-ra.xml c:/stagedir/META-INF
c:/stagedir> ls META-INF
 Manifest.mf
 ra.xml
 weblogic-ra.xml

5. Create the resource adapter archive:

jar cvf blackbox-notx.rar -C c:/stagedir

6. Deploy the resource adapter to WebLogic Server. For more information about packaging
and deploying the resource adapter, see Packaging and Deploying Resource Adapters,
and Deploying Applications to Oracle WebLogic Server.

Configuring the ra.xml File
All resource adapters must be specified in an ra.xml deployment descriptor file. For 1.0 or 1.5
resource adapters, you must create this file manually. If you are creating a 1.6 resource

Chapter 2
Modifying an Existing Resource Adapter

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 11

adapter, you can optionally specify metadata annotations in the resource adapter classes,
eliminating the need to create the ra.xml file manually. The following sections explain how to
configure the ra.xml file:
For more information about creating a ra.xml file, you can also refer to JSR 322: Java EE
Connector Architecture 1.6.

Creating the ra.xml File Manually
If your resource adapter does not already contain a ra.xml file, and you are creating a
resource adapter, you must manually create or edit an existing one to set the necessary
deployment properties for the resource adapter. You can use a text editor or XML editor to edit
the properties.

Using Metadata Annotations to Specify Deployment Information
The Jakarta EE Connector Architecture 1.6 no longer requires you to manually create a ra.xml
file. Instead, metadata annotations can be included in resource adapter classes to provide the
same functions that are specified in the ra.xml file.

If you choose to specify all deployment information in a ra.xml file, the Jakarta EE Connector
Architecture 1.6 includes the metadata-complete element, which you include in the ra.xml file
and set to true. Setting the metadata-complete element to true causes all metadata
annotations included in the resource adapter classes to be ignored. If the metadata-complete
element is not specified, or is set to false, WebLogic Server merges the information specified
in the annotations with the information specified in the ra.xml file at run time, and uses this
merged information to deploy and manage the resource adapter.

For more information about deployment descriptors and annotations, see Chapter 18,
Metadata Annotations, of JSR 322: Java EE Connector Architecture 1.6. See also Metadata
Annotations in Java Platform, Enterprise Edition: The Java EE Tutorial.

Resource Adapter XML Schema Definitions
The Jakarta EE Connector Architecture 1.6 introduces changes to the ra.xml file schema,
primarily to support ease-of-development features such as metadata annotations. For details
about schema definition changes, see Section 20.7, Resource Adapter XML Schema
Definition, in JSR 322: Java EE Connector Architecture 1.6.

The schema for the ra-xml file for 1.0 and 1.5 resource adapters is http://
java.sun.com/xml/ns/j2ee/connector_1_5.xsd. For 1.6 and 1.7 adapters, the schema is at
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/index.html.

Configuring the weblogic-ra.xml File
In addition to supporting features of the standard resource adapter configuration ra.xml file,
WebLogic Server defines an additional deployment descriptor file, weblogic-ra.xml. This file
contains parameters that are specific to configuring and deploying resource adapters in
WebLogic Server. This functionality is consistent with the equivalent weblogic-*.xml
extensions for EJBs and Web applications in WebLogic Server, which also add WebLogic-
specific deployment descriptors to the deployable archive. The basic RAR or deployment
directory can be deployed to WebLogic Server without a weblogic-ra.xml file. If a resource
adapter is deployed in WebLogic Server without a weblogic-ra.xml file, a template weblogic-
ra.xml file populated with default element values is automatically added to the resource

Chapter 2
Configuring the weblogic-ra.xml File

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 11

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
https://docs.oracle.com/javaee/7/tutorial/resources002.htm#GIRDD
https://docs.oracle.com/javaee/7/tutorial/resources002.htm#GIRDD
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/index.html

adapter archive. However, this automatically generated weblogic-ra.xml file is not persisted to
the RAR; the RAR remains unchanged.
The following summarizes the most significant features you can configure in the weblogic-
ra.xml deployment descriptor file.

• Descriptive text about the connection factory.

• JNDI name bound to a connection factory. (Resource adapters developed based on JSR
322: Java EE Connector Architecture 1.6 are bound in the JNDI as objects independently
of their ConnectionFactory objects.)

• Reference to a separately deployed connection factory that contains resource adapter
components that can be shared with the current resource adapter.

• Connection pool parameters that set the following behavior:

– Initial number of ManagedConnections that WebLogic Server attempts to allocate at
deployment time.

– Maximum number of ManagedConnections that WebLogic Server allows to be allocated
at any one time.

– Number of ManagedConnections that WebLogic Server attempts to allocate when filling
a request for a new connection.

– Whether WebLogic Server attempts to reclaim unused ManagedConnections to save
system resources.

– The time WebLogic Server waits between attempts to reclaim unused
ManagedConnections.

• Logging properties to configure WebLogic Server logging for the
ManagedConnectionFactory or ManagedConnection.

• Transaction support levels (XA, local, or no transaction support).

• Principal names to use as security identities.

For detailed information about configuring the weblogic-ra.xml deployment descriptor file, see
the reference information in weblogic-ra.xml Schema. See also the configuration information in
the following sections:

• Connection Management

• Transaction Management

• Message and Transactional Inflow

• Security

Editing Resource Adapter Deployment Descriptors
To define or make changes to the XML descriptors used in the WebLogic Server resource
adapter archive, you must define or edit the XML elements in the weblogic-ra.xml and ra.xml
deployment descriptor files. You can edit the deployment descriptor files with any plain text
editor. However, to avoid introducing errors, use a tool designed for XML editing.You can also
edit most elements of the files using the WebLogic Remote Console.

Editing Considerations
To edit XML elements manually:

Chapter 2
Configuring the weblogic-ra.xml File

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 11

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

• If you use an ASCII text editor, make sure that it does not reformat the XML or insert
additional characters that could invalidate the file.

• Use the correct case for file and directory names, even if your operating system ignores
the case.

• To use the default value for an optional element, you can either omit the entire element
definition or specify a blank value. For example: <max-config-property></max-config-
property>

Schema Header Information
When editing or creating XML deployment files, it is critical to include the correct schema
header for each deployment file. The header refers to the location and version of the schema
for the deployment descriptor.

Although this header references an external URL at xmlns.jcp.org, WebLogic Server contains
its own copy of the schema, so your host server need not have access to the Internet.
However, you must still include this <?xml version...> element in your ra.xml file, and have it
reference the external URL because the version of the schema contained in this element is
used to identify the version of this deployment descriptor.

Table 2-1 shows the entire schema headers for the ra.xml and weblogic-ra.xml files.

Table 2-1 Schema Header

XML File Schema Header

ra.xml
<?xml version="1.0" encoding="UTF-8"?>
<connector xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee/
connector_1_7.xsd"
version="1.7">

weblogic-ra.xml
<?xml version = "1.5">
<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/
weblogic-connector">

XML files with incorrect header information may yield error messages similar to the following,
when used with a utility that parses the XML (such as ejbc):

SAXException: This document may not have the identifier 'identifier_name'

Conforming Deployment Descriptor Files to Schema
The contents and arrangement of elements in your deployment descriptor files must conform to
the schema for each file you use. The following links provide the public schema locations for
deployment descriptor files used with WebLogic Server:

• connector_1_7.xsd contains the schema for the standard ra.xml deployment file, required
for all resource adapters. This schema is maintained as part of JSR 322: Java EE
Connector Architecture 1.7 and is located at http://www.oracle.com/webfolder/
technetwork/jsc/xml/ns/javaee/index.html#8.

Chapter 2
Configuring the weblogic-ra.xml File

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 11

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/index.html#8
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/index.html#8

• weblogic-ra.xsd contains the schema used for creating weblogic-ra.xml, which defines
resource adapter properties used for deployment to WebLogic Server. This schema is
located at http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-
connector.xsd.

Note

Your browser might not display the contents of files having the .xsd extension. In
that case, to view the schema contents in your browser, save the links as text files
and view them with a text editor.

Dynamic Descriptor Updates: Console Configuration Tabs
You can use the WebLogic Remote Console to view, modify, and (when necessary) persist
deployment descriptor elements. Some descriptor element changes take place dynamically at
run time without requiring the resource adapter to be redeployed. Other descriptor elements
require redeployment after changes are made.

Dynamic Reconfigurable Configuration Properties
Dynamic reconfigurable configuration properties are described in Section 5.3.7.6 of JSR 322:
Java EE Connector Architecture 1.6. For 1.6 resource adapters, WebLogic Server supports
dynamic reconfigurable configuration properties for the following adapter component beans:

• ResourceAdapter beans

• ManagedConnectionFactory beans

• Administered object beans

At run time, after you update the dynamically configurable properties on any of these adapter
component beans, you must update the adapter to put changes into effect. Updating the
adapter is a relatively lightweight operation during which WebLogic Server modifies the run-
time bean instances without interfering with active connection pools or admin objects that do
not have configuration updates. You do not need to update the adapter immediately. However,
changes to properties on adapter component beans do not go into effect unless the beans are
dynamically updated or the resource adapter is restarted.

The resource adapter should be designed carefully with regard to support for dynamic changes
to its properties during run time. Depending on the services provided by the resource adapter,
it might be critically important that some properties should never be reconfigured when the
adapter is running; for example, the listen address and port number of a resource adapter used
for the EIS connection (any reconfiguration of those properties should require the adapter to be
shut down and restarted). WebLogic Server does not impose any requirements on an adapter
component bean with regard to whether specific properties may or may not be designated as
dynamically reconfigurable. It is entirely for the adapter developer to decide which adapter
component beans support dynamic update and which do not.

Dynamic Configuration Parameters
For 1.6 adapters, WebLogic Server supports dynamic update on properties of Resource
Adapter, ManagedConnectionFactory, and admin object beans. Using the WebLogic Remote
Console, you can modify the following configuration parameters on those beans dynamically,
without requiring the resource adapter to be redeployed:

Chapter 2
Configuring the weblogic-ra.xml File

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 11

http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

• Edit the adapter JNDI name

• Create and delete outbound connection pools

• Edit the connection pool JNDI name

• Create and delete admin objects

• Edit admin object JNDI names

Dynamic Pool Parameters
Using the WebLogic Remote Console, you can modify the following weblogic-ra.xml pool
parameters dynamically, without requiring the resource adapter to be redeployed:

• initial-capacity

• max-capacity

• capacity-increment

• shrink-frequency-seconds

• highest-num-waiters

• highest-num-unavailable

• connection-creation-retry-frequency-seconds

• connection-reserve-timeout-seconds

• test-frequency-seconds

Dynamic Logging Parameters
Using the WebLogic Remote Console, you can modify the following weblogic-ra.xml logging
parameters dynamically, without requiring the resource adapter to be redeployed:

• log-filename

• file-count

• file-size-limit

• log-file-rotation-dir

• rotation-time

• file-time-span

Automatic Generation of the weblogic-ra.xml File
A resource adapter archive (RAR) deployed on WebLogic Server must include a weblogic-
ra.xml deployment descriptor file in addition to the ra.xml deployment descriptor file specified
in JSR 322: Java EE Connector Architecture 1.6.

If a resource adapter is deployed in WebLogic Server without a weblogic-ra.xml file, a
template weblogic-ra.xml file populated with default element values is automatically added to
the resource adapter archive. However, this automatically generated weblogic-ra.xml file is
not persisted to the RAR; the RAR remains unchanged. WebLogic Server instead generates
internal data structures that correspond to default information in the weblogic-ra.xml file.

Chapter 2
Configuring the weblogic-ra.xml File

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 11

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

For a 1.0 resource adapter that is a single connection factory definition, the JNDI name will be
eis/ModuleName. For example, if the RAR is named MySpecialRA.rar, the JNDI name of the
connection factory will be eis/MySpecialRA.

For a 1.5 resource adapter with a ResourceAdapter bean class specified, the JNDI name of the
bean would be MySpecialRA. Each connection factory would also have a corresponding
instance created with a JNDI name of eis/ModuleName, eis/ModuleName_1, eis/ModuleName_2,
and so on.

(Deprecated) Configuring the Link-Ref Mechanism
The Link-Ref mechanism was introduced in the 8.1 release of WebLogic Server to enable the
deployment of a single base adapter whose code could be shared by multiple logical adapters
with various configuration properties. For 1.5 resource adapters in the current release, the
Link-Ref mechanism is deprecated and is replaced by the new Jakarta EE libraries feature.
However, the Link-Ref mechanism is still supported in this release for 1.0 resource adapters.
For more information on Jakarta EE libraries, see Creating Shared Java EE Libraries and
Optional Packages in Developing Applications for Oracle WebLogic Server. To use the Link-
Ref mechanism, use the ra-link-ref element in your resource adapter's weblogic-ra.xml
file.

The deprecated and optional ra-link-ref element allows you to associate multiple deployed
resource adapters with a single deployed resource adapter. In other words, it allows you to link
(reuse) resources already configured in a base resource adapter to another resource adapter,
modifying only a subset of attributes. The ra-link-ref element enables you to avoid - where
possible - duplicating resources (such as classes, JARs, image files, and so on). Any values
defined in the base resource adapter deployment are inherited by the linked resource adapter,
unless otherwise specified in the ra-link-ref element.

If you use the optional ra-link-ref element, you must provide either all or none of the values
in the pool-params element. The pool-params element values are not partially inherited by the
linked resource adapter from the base resource adapter.

Do one of the following:

• Assign the max-capacity element the value of 0 (zero). This allows the linked resource
adapter to inherit its pool-params element values from the base resource adapter.

• Assign the max-capacity element any value other than 0 (zero). The linked resource
adapter will inherit no values from the base resource adapter. If you choose this option,
you must specify all of the pool-params element values for the linked resource adapter.

For further instructions on editing the weblogic-ra.xml file, see weblogic-ra.xml Schema.

Bean Validation Configuration File
In its support of JSR 303: Bean Validation, WebLogic Server extends Jakarta EE 6 by
providing a module-level bean validation configuration file. WebLogic Server supports the
optional use of this file to validate a resource adapter module. The JSR 303: Bean Validation
specification is available at https://jcp.org/en/jsr/detail?id=303.
The bean validation configuration file can be specified for a resource adapter module
regardless of whether the resource adapter is deployed independently (as a standalone RAR)
or as part of an enterprise application (EAR). If no bean validation configuration file is specified
for an adapter module, WebLogic Server uses a default bean validation configuration to
validate the resource adapter module.

Chapter 2
Bean Validation Configuration File

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 11

https://jcp.org/en/jsr/detail?id=303

The bean validation configuration file is named validation.xml and is included among the
deployment descriptors in the META-INF subdirectory of the RAR.

For more information about bean validation, see Bean Validation.

Long-Running Work Support
Section 11.7 of the Jakarta EE Connector Architecture 1.6 specification defines two standard
hints to control the quality-of-service (QoS) characteristics afforded to it by the WorkManager.
These hints are:

• Work Name Hint — Names a Work instance and is used as part of the thread name
assigned to a long-running Work instance.

• Long-running Work instance Hint — Performs the same function as the WebLogic Server
extension annotation @LongRunning, which allows you to schedule a Work instance in a
separate thread and that also facilitates the control and monitoring capabilities of long-
running Work instances.

WebLogic Server allows you to configure a limit on the number of long-running Work
instances that can be submitted by a resource adapter to be executed concurrently. The
default limit is 10. You can change the limit to higher value, but you need to exercise care
not to overburden system resources.

This limit can be specified either by using the max-concurrent-long-running-requests
element in the weblogic-ra.xml file or by setting
ConnectorWorkManagerRuntimeMBean.ActiveLongRunningRequests attribute, which is
exposed in the WebLogic Remote Console. The ConnectorWorkManagerRuntimeMBean
includes getter and setter methods on the ActiveLongRunningRequests and
CompletedLongRunningRequests attributes that allow you to configure and monitor
information about long-running Work instances.

For more information, see Configuring and Managing Long-Running Work.

Tooling Support
WebLogic Server supports two tools, weblogic.appmerge and appc, which you can use to help
with resource adapter development and deployment.

• weblogic.appmerge

Performs validation checks metadata annotations. When used with the -
writeInferredDescriptors option, weblogic.appmerge generates a merged ra.xml that
combines deployment information specified in annotations with the contents of any pre-
existing ra.xml file.

Note

After you run the weblogic.appmerge tool, make sure the metadata-complete
element in the merged ra.xml is set to true. This prevents the deployer from
processing annotations again, which improves overall deployment performance
and reduces deployment time.

See Using weblogic.appmerge to Merge Libraries in Developing Applications for Oracle
WebLogic Server.

Chapter 2
Long-Running Work Support

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 11

• appc

Performs extensive validation checks on annotations, bean classes, ra.xml, weblogic-
ra.xml, and the resource adapter deployment plan (weblogic.appmerge validates
annotations only).

The appc tool also:

– Provides extensive reports that include both warnings and errors.

– Is particularly useful for validating a resource adapter and ensuring that its
configuration is correct without having to deploy it.

See appc Reference in Developing Enterprise JavaBeans, Version 3.2, for Oracle
WebLogic Server.

Monitoring Resource Adapter Health
WebLogic Server provides the ability to monitor the health status of standalone and embedded
resource adapters. By default if a standalone or embedded resource adapter has a deployment
error, the entire deployment of the adapter fails with a health status of HEALTH_FAILED.
However, if the resource adapter includes multiple outbound connection pools and its deploy-
as-a-whole flag is set to false, the adapter deployment can succeed even if one or more
outbound connection pool failures occur. You can use the health monitoring feature to detect
connection pool failures and repair them without needing to redeploy the adapter.
The following sections explain how resource adapter health status monitoring is available in
WebLogic Server:

Obtaining Resource Adapter Health State
To support health monitoring in both standalone and embedded resource adapters, WebLogic
Server provides the following MBean attributes, whose values can be obtained using the
WebLogic Remote Console, WLST, or JMX:

• ConnectorComponentRuntimeMBean.HealthState — Returns the overall health state of
either a standalone or embedded resource adapter. If an outbound connection pool has a
deployment failure, the health state of the resource adapter is HEALTH_CRITICAL.

• ApplicationRuntimeMBean.OverallHealthState — Returns the aggregated health state
of the application, including that of the embedded components that report health. If an
embedded resource adapter contains a failed outbound connection pool, the health state
of that connection pool is reflected in the overall health of the application.

• ConnectorConnectionPoolRuntimeMBean.HealthState — Returns health state of the
individual outbound connection pool in a resource adapter.

Deployment Requirements for Monitoring Health
To deploy a resource adapter that is configured with multiple outbound connection pools so
that a failed connection pool does not cause the whole adapter deployment to fail, you must
set the deploy-as-a-whole element in the weblogic-ra.xml file to false. (By default, this
element is set to true.) For information about setting this deployment option, see Deploying a
Resource Adapter Configured with Multiple Outbound Connection Pools .

Chapter 2
Monitoring Resource Adapter Health

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 11

3
Programming Tasks

When you implement a WebLogic Server resource adapter, you must include a specific set
Java classes that are required by the Jakarta EE Connector Architecture. Optionally, you can
create the resource adapter so that it can perform as a startup class. You should also
understand how to suspend and resume resource adapter activity and also how to use the
ExtendedBootstrapContext class.

Required Classes for Resource Adapters
In accordance with Java Connector Architecture, a resource adapter must include a specific
set of classes, and which must be specified in the ra.xml deployment descriptor file.

A resource adapter requires the following Java classes:

• ManagedConnectionFactory

• ConnectionFactory interface

• ConnectionFactory implementation

• Connection interface

• Connection implementation

You must specify these classes in the ra.xml file. For example:

<managedconnectionfactory-class>
com.sun.connector.blackbox.LocalTxManagedConnectionFactory
</managedconnectionfactory-class>

<connectionfactory-interface>
javax.sql.DataSource
</connectionfactory-interface>

<connectionfactory-impl-class>
com.sun.connector.blackbox.JdbcDataSource
</connectionfactory-impl-class>

<connection-interface>
java.sql.Connection
</connection-interface>

<connection-impl-class>
com.sun.connector.blackbox.JdbcConnection
</connection-impl-class>

In addition, if the resource adapter supports inbound messaging, the resource adapter will
require an ActivationSpec class for each supported inbound message type. See Message
and Transactional Inflow.

The specifics of these resource adapter classes depend on the nature of the resource adapter
you are developing.

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 11

Generic Work Context
Connector Architecture 1.6 defines the generic work context, which is a mechanism for a
resource adapter to propagate contextual information from an EIS to WebLogic Server during
message delivery or when submitting a Work instance. The generic work context comprises a
set of classes, interfaces, and methods, and also includes new schema elements supported in
WebLogic Server.
The following sections describe these entities added to support the generic work context:

Interfaces, Classes, and Methods Added to Support the Generic Work
Context

The following interfaces are added to support the generic work context:

Table 3-1 Interfaces

Interface Description

javax.resource.spi.work.WorkCon
text

Serves as a standard mechanism for a resource adapter to
propagate an imported context from an EIS to an application
server.

javax.resource.spi.work.WorkCon
textLifecycleListener

Models the various events that occur during the processing of
the WorkContexts associated with a Work instance. This
interface may be implemented by a WorkContext instance to
receive notifications from the WorkManager when the
WorkContext is set as the execution context of the Work
instance it is associated with.

javax.resource.spi.work.WorkCon
textProvider

Specifies the methods a Work instance uses to associate a
List of WorkContext instances to be set when the Work
instance gets executed by a WorkManager.

The following class is added to support the generic work context:

Table 3-2 Classes

Class Description

javax.resource.spi.work.WorkCon
textErrorCodes

Models the possible error conditions that might occur during
associating a WorkContext with a Work instance.

The following method is added to BootstrapContext interface to support the generic work
context:

Table 3-3 Methods

Method Description

isContextSupported A resource adapter can check an application server's support for a
particular WorkContext type through this method. This mechanism
enables a resource adapter developer to dynamically change the
WorkContexts submitted with a Work instance based on the support
provided by the application server.

Chapter 3
Generic Work Context

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 11

Deployment Descriptor Element Added to Support the Generic Work
Context

To support the generic work context, the required-work-context element is added to the
ra.xml file schema to represent a WorkContext class that is required by the resource adapter
for WebLogic Server to support. For each WorkContext class that is required, an individual
required-work-context element is specified.

Note that the @Connector metadata annotation can be used in a resource adapter source file to
specify this deployment descriptor information. See Section 18.4, @Connector, in JSR 322:
Java EE Connector Architecture 1.6.

Programming a Resource Adapter to Perform as a Startup Class
As an alternative to using a WebLogic Server startup class, you can implement a simple
resource adapter to perform as a startup class.

The following sections describe programming a resource adapter to perform as a startup class:

Minimum Content of a Resource Adapter
As an alternative to using a WebLogic Server startup class, you can program a resource
adapter with a minimal resource adapter class that implements
javax.resource.ResourceAdapter, which defines a start() and stop() method.

Note

Because of the definition of the ResourceAdapter interface, you must also define the
endpointActivation(), Deactivation() and getXAResource() methods.

When the resource adapter is deployed, the start() method is invoked. When it is
undeployed, the stop() method is invoked. Any work that the resource adapter initiates can be
performed in the start() method as with a WebLogic Server startup class.

Example 3-1 shows a resource adapter having a minimum resource adapter class. It is the
absolute minimum resource adapter that you can develop (other than removing the println
statements). In this example, the only work performed by the start() method is to print a
message to stdout (standard out).

Example 3-1 Minimum Resource Adapter

import javax.resource.spi.ResourceAdapter;
import javax.resource.spi.endpoint.MessageEndpointFactory;
import javax.resource.spi.ActivationSpec;
import javax.resource.ResourceException;
import javax.transaction.xa.XAResource;
import javax.resource.NotSupportedException;
import javax.resource.spi.BootstrapContext;
/**
* This resource adapter is the absolute minimal resource adapter that anyone can build
(other than removing the println's.)
*/
public class ResourceAdapterImpl implements ResourceAdapter

Chapter 3
Programming a Resource Adapter to Perform as a Startup Class

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 11

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

{
 public void start(BootstrapContext bsCtx)
 {
 System.out.println("ResourceAdapterImpl started");
 }
 public void stop()
 {
 System.out.println("ResourceAdapterImpl stopped");
 }
 public void endpointActivation(MessageEndpointFactory messageendpointfactory,
ActivationSpec activationspec)
 throws ResourceException
 {
 throw new NotSupportedException();
 }
 public void endpointDeactivation(MessageEndpointFactory messageendpointfactory,
ActivationSpec activationspec)
 {
 }
 public XAResource[] getXAResources(ActivationSpec aactivationspec[])
 throws ResourceException
 {
 throw new NotSupportedException();
 }
}

Submitting a Work Instance
Because resource adapters have access to the Work Manager through the BootstrapContext
in the start() method, they should submit Work instances instead of using direct thread
management. This enables WebLogic Server to manage threads effectively through its self-
tuning Work Manager.

Once a Work instance is submitted for execution, the start() method should return promptly
so as not to interfere with the full deployment of the resource adapter. Thus, a scheduleWork()
or startWork() method should be invoked on the Work Manager rather than the doWork()
method.

Example 3-2 shows resource adapter that submits work instances to the Work Manager. The
resource adapter starts some work in the start() method, thus serving as a Jakarta EE-
compliant startup class.

Example 3-2 Resource Adapter Using the Work Manager and Submitting Work
Instances

import javax.resource.NotSupportedException;
import javax.resource.ResourceException;
import javax.resource.spi.ActivationSpec;
import javax.resource.spi.BootstrapContext;
import javax.resource.spi.ResourceAdapter;
import javax.resource.spi.endpoint.MessageEndpointFactory;
import javax.resource.spi.work.Work;
import javax.resource.spi.work.WorkException;
import javax.resource.spi.work.WorkManager;
import javax.transaction.xa.XAResource;
/**
* This Resource Adapter starts some work in the start() method,
* thus serving as a Java EE compliant "startup class"
*/
public class ResourceAdapterWorker implements ResourceAdapter
{

Chapter 3
Programming a Resource Adapter to Perform as a Startup Class

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 11

 private WorkManager wm;
 private MyWork someWork;
 public void start(BootstrapContext bsCtx)
 {
 System.out.println("ResourceAdapterWorker started");
 wm = bsCtx.getWorkManager();
 try
 {
 someWork = new MyWork();
 wm.startWork(someWork);
 }
 catch (WorkException ex)
 {
 System.err.println("Unable to start work: " + ex);
 }
 }
 public void stop()
 {
 // stop work that was started in the start() method
 someWork.release();
 System.out.println("ResourceAdapterImpl stopped");
 }
 public void endpointActivation(MessageEndpointFactory messageendpointfactory,
 ActivationSpec activationspec)
 throws ResourceException
 {
 throw new NotSupportedException();
 }
 public void endpointDeactivation(MessageEndpointFactory
 messageendpointfactory, ActivationSpec activationspec)
 {
 }
 public XAResource[] getXAResources(ActivationSpec activationspec[])
 throws ResourceException
 {
 throw new NotSupportedException();
 }
 // Work class
 private class MyWork implements Work
 {
 private boolean isRunning;
 public void run()
 {
 isRunning = true;
 while (isRunning)
 {
 // do a unit of work (e.g. listen on a socket, wait for an inbound msg,
 // check the status of something)
 System.out.println("Doing some work");
 // perhaps wait some amount of time or for some event
 try
 {
 Thread.sleep(60000); // wait a minute
 }
 catch (InterruptedException ex)
 {}
 }
 }
 public void release()
 {
 // signal the run() loop to stop
 isRunning = false;

Chapter 3
Programming a Resource Adapter to Perform as a Startup Class

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 11

 }
 }
}

Retrying a Work Submission
There are instances in which the submission of a Work instance by a resource adapter can
experience a transient failure. For example, JSR 322: Java EE Connector Architecture 1.6
describes how you can use the optional startTimeout parameter in a WorkManager interface
implementation to specify a time interval within which the execution of the Work instance must
start. If a Work submission times out, a work submission failure occurs and a
WorkRejectedException is generated.

JSR 322: Java EE Connector Architecture 1.6 states that the application server throws out a
RetryableWorkRejectedException when it determines that the failure of a Work submission may
due to transient causes. When it receives a RetryableWorkRejectedException, the resource
adapter may retry submitting the Work instance. WebLogic Server supports the
RetryableWorkRejectedException in the following transient failure situations:

• The Work instance was submitted to a suspended Work Manager.

• The Work submission has timed out.

Note

WebLogic Server extends retryable exception support to outbound connection pools if
a connection instance attempts to connect to a suspended connection pool. For more
information, see Retrying a Connection Attempt.

Suspending and Resuming Resource Adapter Activity
You can program your resource adapter to use the suspend() method, which provides custom
behavior for suspending activity. For example, using the suspend() method, you can queue up
all incoming messages while allowing in-flight transactions to complete, or you can notify the
Enterprise Information System (EIS) that reception of messages is temporarily blocked.
You then invoke the resume() method to signal that the inbound queue be drained and
messages be delivered, or notify the EIS that message receipt was re-enabled. Basically, the
resume() method allows the resource adapter to continue normal operations.

You initiate the suspend() and resume() methods by making a call on the resource adapter
runtime MBeans programmatically, using WebLogic Scripting Tool, or from the WebLogic
Remote Console.

The Suspendable.supportsSuspend() method determines whether a resource adapter
supports a particular type of suspension. The Suspendable.isSuspended() method determines
whether or not a resource adapter is presently suspended.

A resource adapter that supports suspend(), resume(), or production redeployment must
implement the Suspendable interface to inform WebLogic Server that these operations are
supported. These operations are invoked by WebLogic Server when the following occurs:

• Suspend is called by the suspend() method on the connector component MBean.

Chapter 3
Suspending and Resuming Resource Adapter Activity

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 11

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

• The production redeployment sequence of calls is invoked (when a new version of the
application is deployed that contains the resource adapter). See Suspendable Interface
and Production Redeployment.

Example 3-3 contains the Suspendable interface for resource adapters:

Example 3-3 Suspendable Interface

package weblogic.connector.extensions;
import java.util.Properties;
import javax.resource.ResourceException;
import javax.resource.spi.ResourceAdapter;
/**
* Suspendable may be implemented by a ResourceAdapter JavaBean if it
* supports suspend, resume or side-by-side versioning
* @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
* @since November 14, 2003
*/
public interface Suspendable
{
/**
* Used to indicate that inbound communication is to be suspended/resumed
*/
int INBOUND = 1;
/**
* Used to indicate that outbound communication is to be suspended/resumed
*/
int OUTBOUND = 2;
/**
* Used to indicate that submission of Work is to be suspended/resumed
*/
int WORK = 4;
/**
* Used to indicate that INBOUND, OUTBOUND & WORK are to be suspended/resumed
*/
int ALL = 7;
/**
* May be used to indicate a suspend() operation
*/
int SUSPEND = 1;
/**
* May be used to indicate a resume() operation
*/
int RESUME = 2;
/**
* Request to suspend the activity specified. The properties may be null or
* specified according to RA-specific needs
* @param type An int from 1 to 7 specifying the type of suspension being
* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of one
* or more of these, or the value Suspendable.ALL)
* @param props Optional Properties (or null) to be used for ResourceAdapter
* specific purposes
* @exception ResourceException If the resource adapter can't complete the
* request
*/
void suspend(int type, Properties props) throws ResourceException;
/**
* Request to resume the activity specified. The Properties may be null or
* specified according to RA-specific needs
*
* @param type An int from 1 to 7 specifying the type of resume being
* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of
* one or more of these, or the value Suspendable.ALL)

Chapter 3
Suspending and Resuming Resource Adapter Activity

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 11

* @param props Optional Properties (or null) to be used for ResourceAdapter
* specific purposes
* @exception ResourceException If the resource adapter can't complete the
* request
*/
void resume(int type, Properties props) throws ResourceException;
/**
*
* @param type An int from 1 to 7 specifying the type of suspend this inquiry
* is about (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of
* one or more of these, or the value Suspendable.ALL)
* @return true iff the specified type of suspend is supported
*/
boolean supportsSuspend(int type);
/**
*
* Used to determine whether the specified type of activity is
* currently suspended.
*
* @param type An int from 1 to 7 specifying the type of activity
* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of
* one or more of these, or the value Suspendable.ALL)
* @return true iff the specified type of activity is suspened by this
* resource adapter
*/
boolean isSuspended(int type);
/**
* Used to determine if this resource adapter supports the init() method used for
* resource adapter versioning (side-by-side deployment)
*
* @return true iff this resource adapter supports the init() method
*/
boolean supportsInit();
/**
* Used to determine if this resource adapter supports the startVersioning()
* method used for
* resource adapter versioning (side-by-side deployment)
*
* @return true iff this resource adapter supports the startVersioning() method
*/
boolean supportsVersioning();
/**
* Used by WLS to indicate to the current version of this resource adapter that
* a new version of the resource adapter is being deployed. This method can
* be used by the old RA to communicate with the new RA and migrate services
* from the old to the new.
* After being called, the ResourceAdapter is responsible for notifying the
* Connector container via the ExtendedBootstrapContext.complete() method, that
* it is safe to be undeployed.
*
* @param ra The new ResourceAdapter JavaBean
* @param props Properties associated with the versioning
* when it can be undeployed
* @exception ResourceException If something goes wrong
*/
void startVersioning(ResourceAdapter ra,
Properties props) throws ResourceException;
/**
* Used by WLS to inform a ResourceAdapter that it is a new version of an already
* deployed resource adapter. This method is called prior to start() so that
* the new resource adapter may coordinate its startup with the resource adapter
* it is replacing.

Chapter 3
Suspending and Resuming Resource Adapter Activity

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 11

* @param ra The old version of the resource adapter that is currently running
* @param props Properties associated with the versioning operation
* @exception ResourceException If the init() fails.
*/
void init(ResourceAdapter ra, Properties props) throws ResourceException;
}

Extended BootstrapContext
WebLogic Server extends the Jakarta EE Connector Architecture 1.6 specification by providing
the weblogic.connector.extensions.ExtendedBootstrapContext interface, which your
resource adapter can implement to obtain access to additional WebLogic Server-specific
diagnostics capabilities and that also support Contexts and Dependency Injection (CDI).

If, when a resource adapter is deployed, it has a resource adapter JavaBean specified in the
resource-adapter-class element of its ra.xml descriptor, the WebLogic Server connector
container calls the start() method on the resource adapter bean as required by JSR 322:
Java EE Connector Architecture 1.6. The resource adapter code can use the
BootstrapContext object that is passed in by the start() method to:

• Obtain a WorkManager object for submitting Work instances

• Create a Timer

• Obtain an XATerminator for use in transaction inflow

These capabilities are all prescribed by Connector Architecture 1.6.

In addition to implementing the required javax.resource.spi.BootstrapContext, the
BootstrapContext object passed to the resource adapter start() method also implements
weblogic.connector.extensions.ExtendedBootstrapContext, which gives the resource
adapter access to some additional WebLogic Server-specific extensions that enhance
diagnostic capabilities and that also support Contexts and Dependency Injection (CDI). These
extensions are described in the following sections:

Diagnostic Context ID
In the WebLogic Server Diagnostic Framework, a thread may have an associated diagnostic
context. A request on the thread carries its diagnostic context throughout its lifetime, as it
proceeds along its path of execution. The ExtendedBootstrapContext allows the resource
adapter developer to set a diagnostic context payload consisting of a String that can be used,
for example, to trace the execution of a request from an EIS all the way to a message
endpoint.

This capability can serve a variety of diagnostic purposes. For example, you can set the String
to the client ID or session ID on an inbound message from an EIS. During message dispatch,
various diagnostics can be gathered to show the request flow through the system. As you
develop your resource adapter classes, you can make use of the setDiagnosticContextID()
and getDiagnosticContextID() methods for this purpose.

Note the following regarding the contents of the diagnostic context payload:

• The payload can be viewed by other code in the same execution context, and it can also
flow out of the process along with the Work instance. Therefore, you should ensure that the
application does not include any sensitive data in the payload that, for example, could be
returned by the getDiagnosticContextID() method.

• The payload can be overwritten by other code in the same execution context. Therefore,
the application must never have a dependency on a specific context ID being available in

Chapter 3
Extended BootstrapContext

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 11

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

the payload. In addition, the application should also verify that the context ID in the payload
matches what is expected before using it.

For more information about the diagnostic context, see Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server.

Dye Bits
The WebLogic Server diagnostic framework also provides the ability to dye a request. The
ExtendedBootstrapContext allows you to set and retrieve four dye bits on the current thread
for whatever diagnostic purpose the resource adapter developer chooses. For example, you
might set priority of a request using the dye bits. For more information about request dyeing,
see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

Callback Capabilities
You can use the ExtendedBootstrapContext.complete() method as a callback to the
connector container. See Redeploying Applications in a Production Environment in Deploying
Applications to Oracle WebLogic Server.

Bean Validation
In its support of JSR 303: Bean Validation, WebLogic Server extends Jakarta EE 6 by
providing a module-level bean validation configuration file, which WebLogic Server uses to
validate the resource adapter module.

There are circumstances in which you might want a resource adapter to perform validation on
other bean instances that are managed by that resource adapter. Because a resource adapter
does not have its own JNDI namespace, it cannot look up its own Validator and
ValidatorFactory instances using JNDI. Instead, the resource adapter can inject those beans
using CDI, or use the following methods on the ExtendedBootstrapContext interface to obtain
instances of those beans:

• getValidator()

• getValidatorFactory()

BeanManager
To support JSR 299: Contexts and Dependency Injection for the Java EE Platform (CDI),
WebLogic Server implements the getBeanManager method on the ExtendedBootstrapContext
interface. A resource adapter can invoke this method to obtain its own BeanManager instance
and perform CDI-style injection of managed beans inside the resource adapter.

Note

Note the following restrictions:

• The use of a resource adapter's BeanManager instance by a separate, caller thread
is not supported.

• You cannot use a BeanManager instance to manage the life cycle of resource
adapter component beans.

Chapter 3
Extended BootstrapContext

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 11

http://jcp.org/en/jsr/detail?id=303
http://www.jcp.org/en/jsr/summary?id=299

For more information about using the getBeanManager method on the
ExtendedBootstrapContext interface to use CDI, see Using Contexts and Dependency
Injection in Resource Adapters.

Administered Object Uniqueness
Connector Architecture 1.6 allows a resource adapter to have multiple administered object
classes that implement the same interface. However, there must be no more than one
administered object definition with the same interface and class name combination (see
Section 20.4.1, Resource Adapter Provider in JSR 322: Java EE Connector Architecture 1.6).
The adminobject-type-uniqueness constraint has been added to the schema definition for the
ra.xml file to define the adminobject-interface and adminobject-class combination.
In previous releases of WebLogic Server, the mapping of an admin object group defined in
weblogic-ra.xml to the corresponding admin object defined in ra.xml was based on the
admin object interface only. However, to support multiple admin object classes that have the
same interface, WebLogic Server includes the optional admin-object-class sub-element of
the admin-object-group element in weblogic-ra.xml. You can use the admin-object-class
sub-element to define an admin object interface and class combination that WebLogic Server
is able to map to the corresponding admin object defined in ra.xml.

When mapping an admin object group, WebLogic Server uses the following rules, which also
ensure backward compatibility with 1.0 and 1.5 adapters:

• If the admin object group defined in weblogic-ra.xml includes both an admin object
interface and class, WebLogic Server attempts to match that interface and class to the
corresponding admin object definition in ra.xml.

• If the admin object group defined in weblogic-ra.xml includes only one admin object
interface, and more than one matching admin object interface is defined in ra.xml,
WebLogic Server generates an error.

• If the admin object group defined in weblogic-ra.xml includes only one admin object
interface, and only one matching admin object interface is defined in ra.xml, that specific
admin object interface is used.

Chapter 3
Administered Object Uniqueness

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 11

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

4
Using Contexts and Dependency Injection in
Resource Adapters

WebLogic Server provides full support for JSR 299: Contexts and Dependency Injection for the
Java EE Platform (CDI) in its implementation of Connector Architecture 1.7.

Overview
The CDI specification defines a set of services for using injection to specify dependencies in an
application. CDI provides contextual life cycle management of beans, type-safe injection
points, a loosely coupled event framework, loosely coupled interceptors and decorators,
alternative implementations of beans, bean navigation through the Unified Expression
Language (EL), and a service provider interface (SPI) that enables CDI extensions to support
third-party frameworks or future Jakarta EE components.
CDI support in the WebLogic Server implementation of Connector Architecture 1.7 is based on
the following related specifications:

• JSR 299: Contexts and Dependency Injection for the Jakarta EE Platform (http://
www.jcp.org/en/jsr/summary?id=299)

• JSR 330: Dependency Injection for Java (http://jcp.org/en/jsr/summary?id=330)

For additional general information about CDI, see:

• Using Contexts and Dependency Injection for the Java EE Platform in Developing
Applications for Oracle WebLogic Server

• Introduction to Contexts and Dependency Injection for Java EE in Java Platform,
Enterprise Edition: The Java EE Tutorial.

Resource Adapter Bean Discovery
A resource adapter RAR is a bean archive if it has a bean archive descriptor file, beans.xml, in
its META-INF directory. If a resource adapter RAR is a bean archive, then all JARs must
conform to the CDI 1.1 standard. See Using CDI With JCA Technology in Developing
Applications for Oracle WebLogic Server.
When an application is deployed as a resource adapter RAR bean archive, the WebLogic
Server Connector container searches the following for beans and bean references:

• The resource adapter RAR

• All classes packaged directly inside the resource adapter RAR

• Every bean archive referenced by the adapter RAR

Obtaining Contextual References to Resource Adapter Beans
A resource adapter is different from a Web application or an EJB in that a resource adapter
does not have its own JNDI namespace. That is, a resource adapter module does not have a
java:comp, java:module, or java:app namespace. Therefore, it is not possible to bind a
named managed bean to a resource adapter's JNDI namespace, and it is also not possible to

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 7

http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://jcp.org/en/jsr/summary?id=330
https://docs.oracle.com/javaee/7/tutorial/cdi-basic.htm#GIWHB

perform a lookup (as specified in the Jakarta EE 6 Managed Beans Specification) from a
resource adapter's JNDI namespace or to use the Jakarta EE 6 @Resource annotation to inject
a predefined bean.
However, WebLogic Server provides the ExtendedBootstrapContext.getBeanManager()
method. A resource adapter can invoke the getBeanManager method to expose the
BeanManager instance of its adapter module.

Invoking Resource Adapter Beans From Other Application Types
The WebLogic Server Connector container does not support injecting CDI bean classes
contained in a resource adapter RAR bean archive into other Web applications or EJBs.
WebLogic Server support is limited to permitting CDI beans within an adapter RAR bean
archive to be used or invoked by other caller Web applications or EJBs, provided that those
CDI beans are not client proxies.

Using Resource Adapters Deployed as CDI Bean Archives
If the resource adapter is deployed as a CDI bean archive, the WebLogic Server Connector
container provides support for several CDI features within the resource adapter itself. This
support includes:

• The ability to discover managed beans, decorators, interceptors, events, and so on, that
are inside the deployed resource adapter

• Support for third-party portable extensions, as defined in Portable Extensions of Chapter
11 in JSR 299: Contexts and Dependency Injection for the Java EE Platform

• Support for the CDI features that are exposed by the BeanManager

• Support for bean instantiation, injection, decorators, interceptors, events, and so on, for
managed beans inside the resource adapter

Note the following:

• A resource adapter's BeanManager instance is exposed by the getBeanManager method on
the ExtendedBootstrapContext object.

• WebLogic Server supports the use of an adapter's BeanManager only in the adapter's own
thread. An adapter's BeanManager cannot be used in another application's thread.

• The WebLogic Server Connector container supports the injection of built-in BeanManager
bean types that are inside the resource adapter module; for example, injecting into the
ResourceAdapter bean.

• The use of the Resource injection annotation on a resource adapter's managed beans is
not supported.

BeanManager Support
A resource adapter's BeanManager can be used in either of the following situations:

• During the adapter deployment process, such as when the ResourceAdapter.start
method is invoked

• Inside the Work.run method, which is scheduled by the resource adapter's WorkManager
instance

Chapter 4
Invoking Resource Adapter Beans From Other Application Types

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 7

http://www.jcp.org/en/jsr/summary?id=299

The WebLogic Server Connector container supports the injection of built-in BeanManager bean
types in the resource adapter module. However, the use of a resource adapter's BeanManager
instance by a caller thread is not supported.

Injection Points
The WebLogic Server Connector container supports injection points for the following beans
within a resource adapter deployed as a CDI bean archive:

• The following built-in beans, which JSR 299: Contexts and Dependency Injection for the
Java EE Platform requires to be provided in a Jakarta EE container:

– UserTransaction — Provided by WebLogic JTA.

– Principal — The caller principal set by the WebLogic Server Connector container. Its
value is the current principal on the thread at the time this instance is used, not when it
was injected.

– ValidationFactory — The ValidationFactory instance of the resource adapter
module itself and that is also accessible from the
ExtendedBootstrapContext.getValidatorFactory method.

– Validator — The Validator instance of the resource adapter module itself and that is
also accessible from the ExtendedBootstrapContext.getValidator method.

• The BeanManager instance, as defined in Section 11.3 of JSR 299: Contexts and
Dependency Injection for the Java EE Platform, of the resource adapter module itself that
is accessible from the ExtendedBootstrapContext.getBeanManager method.

• Any managed bean that conforms to JSR 299: Contexts and Dependency Injection for the
Java EE Platform and the Jakarta EE 6 Managed Beans Specification, which is a part of
JSR 316: Java Platform, Enterprise Edition 6 (Java EE 6) Specification.

• Any special Connector Architecture 1.7 built-in beans of the following types that are part of
the current resource adapter module:

– javax.resource.spi.ResourceAdapter allowing injection of a reference to the current
resource adapter bean, which always refers to either: the ResourceAdapter bean
instance of the current adapter module; or null if no ResourceAdapter bean is defined
for the current resource adapter module.

– javax.resource.spi.BootstrapContext or
weblogic.connector.extensions.ExtendedBootstrapContext allowing injection of a
reference to either: the current resource adapter's BootstrapContext bean instance;
or null if no ResourceAdapter bean is defined for the current resource adapter
module. This bean type is also available from a parameter in an invocation of the
ResourceAdapter.start(BootstrapContext ctx) method.

– javax.resource.spi.work.WorkManager allowing injection of a reference to either: the
current resource adapter's WorkManager instance, which is available also from the
BootstrapContext.getWorkManager() method; or null if no ResourceAdapter bean is
defined for the current resource adapter module.

– javax.resource.spi.XATerminator allowing injection of a reference to either: the
current resource adapter's XATerminator instance, which is also available from the
BootstrapContext.getXATerminator method; or null if no ResourceAdapter bean is
defined for the current resource adapter module.

– javax.transaction.TransactionSynchronizationRegistry allowing injection of a
reference to the JTA TransactionSynchronizationRegistry instance, which is also

Chapter 4
Using Resource Adapters Deployed as CDI Bean Archives

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 7

http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://jcp.org/en/jsr/summary?id=316

available also from the BootstrapContext.getTransactionSynchronizationRegistry
method.

Using CDI with Resource Adapter Component Beans
WebLogic Server supports four types of beans called resource adapter component beans,
which define special components managed by the WebLogic Server Connector container.
Resource adapter component beans are POJOs (Plain Old Java Objects), but are created and
managed by the resource adapter container and have a special life cycle.

The adapter component bean types are:

• ResourceAdapter bean — Resource adapter class that implements
javax.resource.spi.ResourceAdapter interface, which contains operations for life cycle
management and message endpoint setup.

• ManagedConnectionFactory bean — JavaBean class that implements the
javax.resource.spi.ManagedConnectionFactory interface and is a factory of both
ManagedConnection and EIS-specific connection factory instances. This interface
supports connection pooling by providing methods for matching and creation of a
ManagedConnection instance.

• ActivationSpec bean — JavaBean class that implements the
javax.resource.spi.ActivationSpec interface and that holds the activation configuration
information for a message endpoint.

• Administered objects, or admin objects — Optional set of JavaBean classes that represent
objects specific to a messaging style or message provider.

The following metadata annotations may be used within resource adapter component beans:

• @Connector

• @Activation

• @ConnectionDefinition

• @ConnectionDefinitions

• @AdministeredObject

Note

The preceding annotations are new in Connector Architecture 1.7 and are
recommended for use instead of the corresponding ra.xml elements.

The following sections include important information about the programming requirements for
resource adapter component beans:

For information about setting dynamically configurable properties on resource adapter
component beans, see Dynamic Reconfigurable Configuration Properties.

Resource Adapter Component Beans Must Not Be Managed Beans
Resource adapter component beans must not be managed beans. However, the WebLogic
Server Connector container does support CDI injection of managed beans, as defined in JSR
299: Contexts and Dependency Injection for the Java EE Platform, into a resource adapter

Chapter 4
Using CDI with Resource Adapter Component Beans

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 7

http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299

component bean. WebLogic Server also supports the PostConstruct and PreDestroy
annotations in adapter component beans as well.

Note

Note the following:

• The WebLogic Server Connector container does not support managed beans that
conform to the Jakarta EE 6 Managed Beans Specification, which is a part of JSR
316: Java Platform, Enterprise Edition 6 (Java EE 6) Specification.

• For information about designing a managed bean that meets the conditions
required by JSR 299, see About Managed Beans in The Java EE 6 Tutorial.

To ensure that a resource adapter component bean is not treated as a managed bean,
WebLogic Server will fail to deploy the adapter if any of the following class-level annotations
are used within an adapter component bean:

• The javax.annotation.ManagedBean annotation

• Any scope annotation

• Any qualifier annotation

• Any stereotype annotation

• javax.inject.Named annotation

• javax.enterprise.inject.Alternative annotation

• javax.enterprise.inject.Specializes annotation

• javax.enterprise.inject.Typed annotation

• javax.decorator.Decorator annotation

• javax.decorator.Delegate annotation

Using Dependency Injection
In a resource adapter that is deployed as a CDI bean archive, the WebLogic Server Connector
container supports CDI for adapter component beans once they are created and initialized.

To support Dependency Injection for resource adapter component beans, consistent with
Section EE.5.20, Support for Dependency Injection (JSR-330) in the Java Platform, Enterprise
Edition (Java EE) Specification, Version 6, the WebLogic Connector container does the
following when initializing these beans:

1. Initializes the resource adapter component bean configuration properties using values in
deployment descriptors.

2. Uses the PostConstruct annotation after dependency injection is done to perform any
initialization.

3. Performs bean validation, consistent with JSR 303: Bean Validation, and for an
ActivationSpec bean, invokes the validate() method.

4. For a ResourceAdapter bean, invokes the start() method.

5. Makes all resource adapter component beans available either by binding them to JNDI or
exposing them to endpoint applications.

Chapter 4
Using CDI with Resource Adapter Component Beans

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 7

http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=316
http://docs.oracle.com/javaee/6/tutorial/doc/gjfzi.html
http://docs.oracle.com/javaee/6/api/javax/annotation/ManagedBean.html
http://docs.oracle.com/javaee/6/api/javax/inject/Named.html
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Alternative.html
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Specializes.html
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Typed.html
http://docs.oracle.com/javaee/6/api/javax/decorator/Decorator.html
http://docs.oracle.com/javaee/6/api/javax/decorator/Delegate.html
http://download.oracle.com/otndocs/jcp/javaee-6.0-fr-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/javaee-6.0-fr-eval-oth-JSpec/
http://jcp.org/en/jsr/detail?id=303

Notes on Injection Usage
Resource adapter component beans cannot be injected into other beans outside of the
resource adapter module because they are not standard managed beans. That is, they are not
visible outside the resource adapter module in a way that is consistent with JSR 299: Contexts
and Dependency Injection for the Java EE Platform. You can design adapter component beans
to support injection, but it is important to ensure that they are not treated like managed beans
because the notion of request scope or session scope is meaningless in resource adapter
component beans.

Injection is supported as follows:

• Field and method injection, but not constructor injection, is supported using the
javax.inject.Inject annotation.

• Injected Fields, as defined in Section 3.8 of JSR 299: Contexts and Dependency Injection
for the Java EE Platform, is supported.

• All injection points listed in Injection Points, are supported, such as
weblogic.transaction.UserTransaction or javax.resource.spi.BootstrapContext.

• The PostConstruct and PreDestroy injection annotations are supported as follows:

– For ResourceAdapter bean types, the @PostConstruct method is called after the
configuration properties are initialized but before the start() method is called. In
addition, the @PreDestroy method is after the stop() method.

– For other bean types, the @PostConstruct method is called after the configuration
properties are initialized but before the bean is bound to JNDI. In addition, the
@PreDestroy method is called when the resource adapter is undeployed or when the
server is shut down.

– For all beans, WebLogic Server performs bean validation consistent with its support for
JSR 303: Bean Validation and also call the validate() method, if applicable, after
calling the @PostConstruct method.

• Events, as defined in Chapter 10, Events, in JSR 299: Contexts and Dependency Injection
for the Java EE Platform, are supported.

• In releases prior to WebLogic Server 12.2.1, the annotation "@Inject Validator v" injects
only the default validator, even if you specify a customized validator as per the
specification in CDI 1.0. However, since 12.2.1 release of WebLogic Server, the annotation
"@Inject Validator v" injects even the customized validator as per the specification in CDI
1.1.

The Resource injection annotation is not supported in a resource adapter module.

Example
The following example shows that during resource adapter deployment, WebLogic Server first
instantiates a MyResourceAdapter instance consistent with CDI. MyResourceAdapter is the
ResourceAdapter component bean of the resource adapter module shown in this example
because it is annotated with the Connector annotation. During deployment, WebLogic Server
also:

• Instantiates MyBean and injects it into the MyResourceAdapter instance using the
javax.inject.Inject annotation.

• Injects the Validator instance of this adapter module into the MyResourceAdapter
instance.

Chapter 4
Using CDI with Resource Adapter Component Beans

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 7

http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://docs.oracle.com/javaee/6/api/javax/inject/Inject.html
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://docs.oracle.com/javaee/6/api/javax/resource/spi/BootstrapContext.html
http://jcp.org/en/jsr/detail?id=303
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://docs.oracle.com/javaee/6/api/javax/inject/Inject.html

• Injects the WorkManager and UserTransaction instances of this adapter module into
MyBean.

@Connector
public class MyResourceAdapter implements ResourceAdapter{
 private @Inject MyBean bean;
private @Validator v;

public void start(BootstrapContext ctx){
 v.validate(this, AnotherGroup.class);
 bean.do();
 .
 .
 .
}
 .
 .
 .
}

public class MyBean{
 private String name;
private @WorkManager wm;
private @UserTransaction ut;

public String getName(){
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void do(){
 Work w = …
 wm.scheduleWork(w);
 }
}

Chapter 4
Using CDI with Resource Adapter Component Beans

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 7

5
Connection Management

WebLogic Server supports connection management in accordance with Connector Architecture
1.6 and includes support for the connection management contract, a standard model for
configuring outbound and inbound connections and connection pooling, support for testing
connections, and more.

For more information about the connection management contract, see Chapter 6, Connection
Management, of JSR 322: Java EE Connector Architecture 1.6.

Connection Management Contract
The connection management contract is a requirement of Connector Architecture 1.6 and
specifies a consistent model for connection management, a set of services that must be
provided by the application server to its resource adapters, and more.

The connection management contract between WebLogic Server and a resource adapter:

• Provides a consistent application programming model for connection acquisition for both
managed and non-managed (two-tier) applications.

• Enables a resource adapter to provide a connection factory and connection interfaces
based on the common client interface (CCI) specific to the type of resource adapter and
EIS. This enables JDBC drivers to be aligned with the Jakarta EE Connector Architecture
1.6 with minimum impact on the existing JDBC APIs.

• Enables an application server to provide various services — transactions, security,
advanced pooling, error tracing/logging — for its configured set of resource adapters.

• Supports connection pooling.

The resource adapter's side of the connection management contract is embodied in the
resource adapter's Connection, ConnectionFactory, ManagedConnection, and
ManagedConnectionFactory classes.

Connection Factory and Connection
A Jakarta EE application component uses a public interface called a connection factory to
access a connection instance, which the component then uses to connect to the underlying
EIS. Examples of connections include database connections and JMS (Jakarta Message
Service) connections.

A resource adapter provides connection and connection factory interfaces, acting as a
connection factory for EIS connections. For example, the javax.sql.DataSource and
java.sql.Connection interfaces are JDBC-based interfaces for connecting to a relational
database.

An application looks up a connection factory instance in the Java Naming and Directory
Interface (JNDI) namespace and uses it to obtain EIS connections. See Obtaining the
ConnectionFactory (Client-JNDI Interaction).

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 15

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Resource Adapters Bound in JNDI Tree
Version 1.5 and 1.6 resource adapters can be bound in the JNDI tree as independent objects,
making them available as system resources in their own right or as message sources for
message-driven beans (MDBs). In contrast, version 1.0 resource adapters are identified by
their ConnectionFactory objects bound in the JNDI tree.

In a version 1.5 or 1.6 resource adapter, at deployment time, the ResourceAdapter Bean (if it
exists) is bound into the JNDI tree using the value of the jndi-name element, shown in the
weblogic-ra.xml file. As a result, administrators can view resource adapters as single
deployable entities, and they can interact with resource adapter capabilities publicly exposed
by the resource adapter provider. For more information, see jndi-name in weblogic-ra.xml
Schema.

Obtaining the ConnectionFactory (Client-JNDI Interaction)
The application assembler or component provider configures the Connection Factory
requirements for an application component in the application's deployment descriptor. For
example:

res-ref-name: eis/myEIS
res-type: javax.resource.cci.ConnectionFactory
res-auth: Application or Container

The resource adapter deployer provides the configuration information for the resource adapter.

An application looks up a ConnectionFactory instance in the Java Naming and Directory
Interface (JNDI) namespace and uses it to obtain EIS connections. The following events occur
when an application in a managed environment obtains a connection to an EIS instance from a
Connection Factory, as specified in the res-type variable.

Note

A managed application environment defines an operational environment for a Jakarta
EE-based, multi-tier, Web-enabled application that accesses EISes.

1. The application server uses a configured resource adapter to create physical connections
to the underlying EIS.

2. The application component looks up a ConnectionFactory instance in the component's
environment by using the JNDI interface, as shown in Example 5-1.

3. The application component uses the returned connection to access the underlying EIS.

4. The application component invokes the getConnection method on the ConnectionFactory
to obtain an EIS connection. The returned connection instance represents an application
level handle to an underlying physical connection. An application component obtains
multiple connections by calling the method getConnection on the connection factory
multiple times:

javax.resource.cci.Connection cx = cxf.getConnection();

5. After the component finishes with the connection, it closes the connection using the close
method on the Connection interface:

cx.close();

Chapter 5
Connection Management Contract

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 15

If an application component fails to close an allocated connection after its use, that
connection is considered an unused connection. The application server manages the
cleanup of unused connections.

Example 5-1 JNDI Lookup

//obtain the initial JNDI Naming context
Context initctx = new InitialContext();

// perform JNDI lookup to obtain the connection factory
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)
 initctx.lookup("java:comp/env/eis/MyEIS");

The JNDI name passed in the method NamingContext.lookup is the same as that specified in
the res-ref-name element of the deployment descriptor. The JNDI lookup results in an
instance of type java.resource.cci.ConnectionFactory as specified in the res-type
element.

Specifying and Obtaining Transaction Support Level
Section 7.13 of JSR 322: Java EE Connector Architecture 1.6 specifies that a resource adapter
may determine and classify the level of transaction support it can provide at run time. To have
the ability to specify the level of transaction support, a resource adapter's
ManagedConnectionFactory class must implement the TransactionSupport interface. If this
interface is not implemented, the Connector container uses the transaction support specified in
the merged result of the resource adapter's ra.xml file and Connector annotations.

JSR 322: Java EE Connector Architecture 1.6 also defines the rules and priorities on the
transaction support level determined from the ra.xml file, Connector annotation, and the
TransactionSupport interface.

WebLogic Server supplements support for obtaining transaction support level by exposing the
following two methods on the ConnectorConnectionPoolRuntimeMBean:

• ConnectorConnectionPoolRuntimeMBean.getRuntimeTransactionSupport() — Return
the real transaction support level in use for this Connector connection pool.

This value may also be viewed in the WebLogic Remote Console.

• ConnectorConnectionPoolRuntimeMBean.getTransactionSupport() — Returns the static
transaction support level, which is configured either in ra.xml or using the @Connector
annotation, for the resource adapter for this Connector connection pool.

Specifying an Unshareable ManagedConnectionFactory
In most cases, an adapter's ManagedConnectionFactory supports connection sharing, as
defined in section 7.9 of JSR 322: Java EE Connector Architecture 1.6. The specification also
says that a connection can be made unshareable by setting res-sharing-scope to
Unshareable in the caller application's deployment descriptor or annotation.

However, it can be inconvenient to define an unshareable resource reference in the caller
application. For example, the caller application may perform a look up to a ConnectionFactory
pool from WebLogic's global JNDI directly, but the application does not define unshareable
resource references to this pool. WebLogic Server treats such use of the pools as shareable by
default. As a result, if an adapter does not support connection sharing, the adapter will not
work.

Chapter 5
Connection Management Contract

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 15

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

To circumvent this problem, WebLogic Server supports the public annotation
weblogic.connector.extensions.Unshareable. This annotation can be used on a
ManagedConnectionFactory class if the ManagedConnectionFactory does not support sharing.
When such an adapter is deployed, WebLogic Server checks the ManagedConnectionFactory
class and treats the ManagedConnectionFactory and related pools as unshareable. If you
configure a sharable resource reference to this unshareable pool in a Web application or an
Jakarta Enterprise Beans, WebLogic Server issues a warning message—but the Web
application or the EJB nevertheless treats the pool as unshareable. There is no need to
configure anything in weblogic-ra.xml or in the WebLogic Remote Console.

If a ManagedConnectionFactory is shareable, nothing needs to be changed in the adapter's
code. All ManagedConnectionFactory instances and pools are considered shareable by
default, unless the ManagedConnectionFactory contains an Unshareable annotation.

Configuring Outbound Connections
Outbound resource adapters based on Connector Architecture 1.6 can be configured to have
one or more outbound connections, each having its own WebLogic Server-specific
authentication and transaction support. You configure outbound connection properties in the
ra.xml and weblogic-ra.xml deployment descriptor files.

Connection Pool Configuration Levels
You use the outbound-resource-adapter element and its subelements in the weblogic-
ra.xml deployment descriptor to describe the outbound components of a resource adapter.

You can define outbound connection pools at three levels:

• Global - Specify parameters that apply to all outbound connection groups in the resource
adapter using the default-connection-properties element. See default-connection-
properties.

• Group - Specify parameters that apply to all outbound connection instances belonging to a
particular connection factory specified in the ra.xml deployment descriptor using the
connection-definition-group element. A one-to-one correspondence exists from a
connection factory in ra.xml to a connection definition group in weblogic-ra.xml. The
properties specified in a group override any parameters specified at the global level. See
connection-definition-group.

The connection-factory-interface element (a subelement of the connection-
definition-group element) serves as a required unique element (a key) to each
connection-definition-group. There must be a one-to-one relationship between the
connection-definition-interface element in weblogic-ra.xml and the
connectiondefinition-interface element in ra.xml.

• Instance - Under each connection definition group, you can specify connection instances
using the connection-instance element of the weblogic-ra.xml deployment descriptor.
These correspond to the individual connection pools for the resource adapter. You can use
the connection-properties subelement to specify properties at the instance level too;
properties specified at the instance level override those provided at the group and global
levels. See connection-instance.

Retrying a Connection Attempt
If an application component attempts to obtain a connection instance from a connection pool
using the getConnection() method on the ConnectionFactory, but the pool is temporarily

Chapter 5
Configuring Outbound Connections

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 15

suspended, WebLogic Server generates an exception that implements
javax.resource.spi.RetryableException. The application component can use an instance of
RetryableException to determine whether the connection failure is transient.

Isolating, Troubleshooting, and Fixing Outbound Connection Pool Failures
Without Redeploying the Adapter

By default, if a resource adapter has multiple outbound connection pools, a failure in any one
connection pool causes the entire deployment of the resource adapter to fail. However, the
deploy-as-a-whole deployment option is available, which you can set to isolate individual
outbound connection pool failures from the resource adapter deployment. Using this
deployment option enables you to use the adapter health monitoring feature to identify
connection pool failures, which you can troubleshoot and repair without the need to redeploy
the resource adapter.

For general information about the resource adapter health monitoring features, see Monitoring
Resource Adapter Health. For information about setting the deploy-as-a-whole element in the
weblogic-ra.xml file, see the following topics:

• deploy-as-a-whole: Isolating Outbound Connection Pool Failures from the Whole Adapter
Deployment

• Deploying a Resource Adapter Configured with Multiple Outbound Connection Pools

The following sections explain how to use the deploy-as-a-whole deployment option and how
to diagnose and recover from outbound connection pool failures:

Using the Deploy-As-A-Whole Option
To deploy a resource adapter so that the failure of an individual outbound connection pool does
not cause the whole adapter deployment to fail, set the deploy-as-whole element of the
weblogic-ra.xml file to false (by default, this element is set to true). For details about setting
this deployment option, see Deploying a Resource Adapter Configured with Multiple Outbound
Connection Pools .

If the deploy-as-a-whole option is set to false, note the following:

• If there is no error during deployment, the resource adapter deployment succeeds and is
placed in an active state, with a health state of HEALTH_OK.

• If an error occurs when creating or configuring at least one outbound connection pool, the
health state of the adapter deployment is set to HEALTH_CRITICAL.

• If any other failure occurs, such as the following, the adapter deployment fails:

– An error parsing or validating the ra.xml file, the weblogic-ra.xml file, or the
deployment plan.

– An error occurs when creating or configuring the ResourceAdapter or admin object
beans.

– Any pool-related classes failing to meet basic requirements defined by JSR 322: Java
EE Connector Architecture 1.6 that can be detected statically; for example, the
adapter's ManagedConnectionFactory class not implementing the required standard
interface javax.resource.spi.ManagedConnectionFactory.

Chapter 5
Configuring Outbound Connections

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 15

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Troubleshooting Failed Connection Pools
If a connection pool is in a HEALTH_CRITICAL state, invoking most methods on the
ConnectorConnectionPoolRuntimeMBean, such as testPool, may simply throw an
IllegalStateException. You can invoke only the following methods, which provide static
information and are not affected by connection pool failures:

• getKey()

• getPoolName()

• getState() (always returns Shutdown for failed pools)

• getHealthState()

• getManagedConnectionFactoryClassName()

• getMCFClassName() (same as getManagedConnectionFactoryClassName())

• getConnectionFactoryClassName() (returns the ConnectionFactoryName of the
connection pool)

• reset()

• forceReset()

Note the following:

• A resource adapter module's health state may change from HEALTH_OK to
HEALTH_CRITICAL after one of the following actions:

– Performing a dynamic update.

– Performing either a reset or force reset of outbound connection pools

– Stopping then restarting the resource adapter

– Redeploying the adapter

• If a connection pool is in the HEALTH_CRITICAL state, the suspend and resume actions on
the pool have no effect.

Connection Pool Recovery Steps
Once a connection pool has failed and is in the HEALTH_CRITICAL state, check the failure
reason and correct the error. For example, ensure that updated values for the pool's properties
are valid and properly assigned.

For most failures that are caused by an incorrect configuration, Oracle recommends taking the
following steps:

1. Modify the configuration of each failed pool, if necessary.

2. Save the new configuration to the adapter's deployment plan.

3. Using the updated adapter's deployment plan, perform a dynamic update of the resource
adapter.

The preceding steps can recover failed pools without affecting properly functioning and in-use
connection pools. During the dynamic update process, all failed connection pools are recreated
using the new configuration data, regardless of whether the configuration changes for the
pools have been made in the new deployment plan or whether the configuration changes are
dynamically updatable. For existing connection pools that are functioning properly, non-

Chapter 5
Configuring Outbound Connections

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 15

dynamic configuration changes are ignored. However, for failed connection pools, the
configuration updates go into effect from the dynamic update process.

Other Options for Recovering Failed Connection Pools
As an alternative to performing a dynamic update to recover a failed connection pool, you can
try one of the following methods. If the failure is due to causes other than an invalid pool
configuration, one of these method might be appropriate:

• Reset or force reset the failed connection pool, as described in Reset a Connection Pool..
Depending on the reason for the failure, these actions may or may not recover the failed
pool. However, because no connections with failed pools are active, reset and force reset
have the same effect. Note the following:

– If the pool failure is not caused by an invalid configuration, the pool can potentially be
recovered by resetting it, which uses the existing configuration data. For example, if
the failure is due to a JNDI conflict, the pool can be recovered if the conflicting object
from JNDI tree is removed. Resetting the connection pool would be recommended in
this scenario.

– If the connection pool has failed due to an invalid configuration, resetting the
connection pool is not recommended. Resetting uses the existing deployment plan, or
existing deployment descriptor information, which contain the invalid configuration
data.

• Redeploy the adapter. Note that this action affects all outbound connection pools in the
resource adapter, including any that are functioning properly

• Stop and then restart the resource adapter. This action also affects all outbound
connection pools in the adapter. This method has drawbacks similar to performing a reset
or force reset action because it also uses the pre-existing configuration data without first
performing a dynamic update. In addition, configuration data that has been revised that is
not made available by dynamic update is not used. For this reason, stopping and then
restarting the resource adapter is not a recommended option for recovering failed
connection pools in most cases.

Multiple Outbound Connections Example
Example 5-2 is an example of a weblogic-ra.xml deployment descriptor that configures
multiple outbound connections:

Example 5-2 weblogic-ra.xml Deployment Descriptor: Multiple Outbound Connections

<?xml version="1.0" ?>
<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector">
<jndi-name>900eisaNameOfBlackBoxXATx</jndi-name>
 <outbound-resource-adapter>
 <connection-definition-group>
 <connection-factory-interface>javax.sql.DataSource
 </connection-factory-interface>
 <connection-instance>
 <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME1
 </jndi-name>
 <connection-properties>
 <pool-params>
 <initial-capacity>2</initial-capacity>
 <max-capacity>10</max-capacity>
 <capacity-increment>1</capacity-increment>
 <shrinking-enabled>true</shrinking-enabled>
 <shrink-frequency-seconds>60</shrink-frequency-seconds>

Chapter 5
Configuring Outbound Connections

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 15

 </pool-params>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>
 jdbc:oracle:thin:@bcpdb:1531:bay920;create=true;autocommit=false
 </value>
 </property>
 <property>
 <name>XADataSourceName</name>
 <value>OracleXAPool</value>
 </property>
 <property>
 <name>TestClassPath</name>
 <value>HelloFromsetTestClassPathGoodDay</value>
 </property>
 <property>
 <name>unique_ra_id</name>
 <value>eisablackbox-xa.oracle.900</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 <connection-instance>
 <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME2
 </jndi-name>
 <connection-properties>
 <pool-params>
 <initial-capacity>2</initial-capacity>
 <max-capacity>10</max-capacity>
 <capacity-increment>1</capacity-increment>
 <shrinking-enabled>true</shrinking-enabled>
 <shrink-frequency-seconds>60
 </shrink-frequency-seconds>
 </pool-params>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>
 jdbc:oracle:thin:@bcpdb:1531:bay920;create=true;autocommit=false
 </value>
 </property>
 <property>
 <name>XADataSourceName</name>
 <value>OracleXAPool</value>
 </property>
 <property>
 <name>TestClassPath</name>
 <value>HelloFromsetTestClassPathGoodDay</value>
 </property>
 <property>
 <name>unique_ra_id</name>
 <value>eisablackbox-xa.oracle.900</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 </connection-definition-group>
 <connection-definition-group>
 <connection-factory-interface>javax.sql.DataSourceCopy
 </connection-factory-interface>
 <connection-instance>

Chapter 5
Configuring Outbound Connections

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 15

 <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME3</jndi-name>
 <connection-properties>
 <pool-params>
 <initial-capacity>2</initial-capacity>
 <max-capacity>10</max-capacity>
 <capacity-increment>1</capacity-increment>
 <shrinking-enabled>true</shrinking-enabled>
 <shrink-frequency-seconds>60</shrink-frequency-seconds>
 </pool-params>
 <properties>
 <property>
 <name>ConnectionURL</name>

<value>jdbc:oracle:thin:@bcpdb:1531:bay920;create=true;autocommit=false</value>
 </property>
 <property>
 <name>XADataSourceName</name>
 <value>OracleXAPoolB</value>
 </property>
 <property>
 <name>TestClassPath</name>
 <value>HelloFromsetTestClassPathGoodDay</value>
 </property>
 <property>
 <name>unique_ra_id</name>
 <value>eisablackbox-xa-two.oracle.900</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 </connection-definition-group>
 </outbound-resource-adapter>
</weblogic-connector>

Configuring Inbound Connections
The Jakarta EE Connector Architecture 1.7 permits you to configure a resource adapter to
support inbound message connections.

The following are the main steps for configuring an inbound connection:

1. Provide a JNDI name for the resource adapter in the weblogic-ra.xml deployment
descriptor. See jndi-name in Table A-1

2. Configure a message listener and ActivationSpec for each supported inbound message
type in the ra.xml deployment descriptor. For information about requirements for an
ActivationSpec class, see Chapter 13, Message Inflow in JSR 322: Java EE Connector
Architecture 1.6.

3. Within the packaged enterprise application, include a configured EJB message-driven
bean (MDB). In the resource-adapter-jndi-name element of the weblogic-ejb-jar.xml
deployment descriptor, provide the same JNDI name assigned to the resource adapter in
the previous step. Setting this value enables the MDB and resource adapter to
communicate with each other.

4. Configure the security identity to be used by the resource adapter for inbound connections.
When messages are received by the resource adapter, work must be performed under a
particular security identity. See Configuring Security Identities for Resource Adapters.

5. Deploy the resource adapter as discussed in Deploying Applications to Oracle WebLogic
Server.

Chapter 5
Configuring Inbound Connections

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 15

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

6. Deploy the MDB. See Deploying MDBs in Developing Message-Driven Beans for Oracle
WebLogic Server and Deploying Applications to Oracle WebLogic Server.

Example 5-3 Example of Configuring an Inbound Connection

<inbound-resourceadapter>
 <messageadapter>
 <messagelistener>
 <messagelistener-type>
 weblogic.qa.tests.connector.adapters.flex.InboundMsgListener
 </messagelistener-type>
 <activationspec>
 <activationspec-class>
 weblogic.qa.tests.connector.adapters.flex.ActivationSpecImpl
 </activationspec-class>
 </activationspec>
 </messagelistener>
 <messagelistener>
 <messagelistener-type>
 weblogic.qa.tests.connector.adapters.flex.ServiceRequestMsgListener
 </messagelistener-type>
 <activationspec>
 <activationspec-class>
 weblogic.qa.tests.connector.adapters.flex.ServiceRequestActivationSpec
 </activationspec-class>
 </activationspec>
 </messagelistener>
 </messageadapter>
</inbound-resourceadapter>

Example 5-3 shows how an inbound connection with two message listener/activation specs
could be configured in the ra.xml deployment descriptor:

Configuring Connection Pool Parameters
You configure WebLogic Server resource adapter connection pool parameters in the
weblogic-ra.xml deployment descriptor.

initial-capacity: Setting the Initial Number of ManagedConnections
Depending on the complexity of the Enterprise Information System (EIS) that the
ManagedConnection is representing, creating ManagedConnections can be expensive. You may
decide to populate the connection pool with an initial number of ManagedConnections upon
startup of WebLogic Server and therefore avoid creating them at run time. You can configure
this setting using the initial-capacity element in the weblogic-ra.xml descriptor file. The
default value for this element is 1 ManagedConnection.

Because no initiating security principal or request context information is known at WebLogic
Server startup, a server instance creates initial connections using a security subject by looking
up special credential mappings for the initial connection. See Initial Connection: Requires a
ManagedConnection from Adapter Without Application's Request .

Note

WebLogic Server uses null as Subject if a mapping is not found.

Chapter 5
Configuring Connection Pool Parameters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 15

max-capacity: Setting the Maximum Number of ManagedConnections
As more ManagedConnections are created, they consume more system resources - such as
memory and disk space. Depending on the Enterprise Information System (EIS), this
consumption may affect the performance of the overall system. To control the effects of
ManagedConnections on system resources, you can specify a maximum number of allocated
ManagedConnections in the max-capacity element of the weblogic-ra.xml descriptor file.

If a new ManagedConnection (or more than one ManagedConnection in the case of capacity-
increment being greater than one) needs to be created during a connection request, WebLogic
Server ensures that no more than the maximum number of allowed ManagedConnections are
created. Requests for newly allocated ManagedConnections beyond this limit results in a
ResourceAllocationException being returned to the caller.

capacity-increment: Controlling the Number of ManagedConnections
In compliance with Connector Architecture 1.6, when an application component requests a
connection to an EIS through the resource adapter, WebLogic Server first tries to match the
type of connection being requested with an existing and available ManagedConnection in the
connection pool. However, if a match is not found, a new ManagedConnection may be created
to satisfy the connection request.

Using the capacity-increment element in the weblogic-ra.xml descriptor file, you can specify
a number of additional ManagedConnections to be created automatically when a match is not
found. This feature provides give you the flexibility to control connection pool growth over time
and the performance hit on the server each time this growth occurs.

shrinking-enabled: Controlling System Resource Usage
Although setting the maximum number of ManagedConnections prevents the server from
becoming overloaded by more allocated ManagedConnections than it can handle, it does not
control the efficient amount of system resources needed at any given time. WebLogic Server
provides a service that monitors the activity of ManagedConnections in the connection pool of a
resource adapter. If the usage decreases and remains at this level over a period of time, the
size of the connection pool is reduced to the initial capacity or as close to this as possible to
adequately satisfy ongoing connection requests.

This system resource usage service is turned on by default. However, to turn off this service,
you can set the shrinking-enabled element in the weblogic-ra.xml descriptor file to false.

shrink-frequency-seconds: Setting the Wait Time Between Attempts to
Reclaim Unused ManagedConnections

Use the shrink-frequency-seconds element in the weblogic-ra.xml descriptor file to identify
the amount of time (in seconds) the Connection Pool Manager will wait between attempts to
reclaim unused ManagedConnections. The default value of this element is 900 seconds.

Chapter 5
Configuring Connection Pool Parameters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 15

highest-num-waiters: Controlling the Number of Clients Waiting for a
Connection

If the maximum number of connections has been reached and there are no available
connections, WebLogic Server retries until the call times out. The highest-num-waiters
element controls the number of clients that can be waiting at any given time for a connection.

highest-num-unavailable: Controlling the Number of Unavailable
Connections

When a connection is created and fails, the connection is placed on an unavailable list.
WebLogic Server attempts to recreate failed connections on the unavailable list. The highest-
num-unavailable element controls the number of unavailable connections that can exist on the
unavailable list at one time.

connection-creation-retry-frequency-seconds: Recreating Connections
To configure WebLogic Server to attempt to recreate a connection that fails while creating
additional ManagedConnections, enable the connection-creation-retry-frequency-seconds
element. By default, this feature is disabled.

match-connections-supported: Matching Connections
A connection request contains parameter information. By default, the connector container calls
the matchManagedConnections() method on the ManagedConnectionFactory to match the
available connection in the pool to the parameters in the request. The connection that is
successfully matched is returned.

It may be that the ManagedConnectionFactory does not support the call to
matchManagedConnections(). If so, the matchManagedConnections() method call throws a
javax.resource.NotSupportedException. If the exception is caught, the connector container
automatically stops calling the matchManagedConnections() method on the
ManagedConnectionFactory.

You can set the match-connections-supported element to specify whether the resource
adapter supports connection matching. By default, this element is set to true and the
matchManagedConnections() method is called at least once. If it is set to false, the method call
is never made.

If connection matching is not supported, a new resource is created and returned if the
maximum number of resources has not been reached; otherwise, the oldest unavailable
resource is refreshed and returned.

test-frequency-seconds: Testing the Viability of Connections
The test-frequency-seconds element allows you to specify how frequently (in seconds)
connections in the pool are tested for viability.

Chapter 5
Configuring Connection Pool Parameters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 12 of 15

test-connections-on-create: Testing Connections upon Creation
You can set the test-connections-on-create element to enable the testing of connections as
they are created. The default value is false.

test-connections-on-release: Testing Connections upon Release to
Connection Pool

You can set the test-connections-on-release element to enable the testing of connections
as they are released back into the connection pool. The default value is false.

test-connections-on-reserve: Testing Connections upon Reservation
You can set the test-connections-on-reserve element to enable the testing of connections
as they are reserved from the connection pool. The default value is false.

deploy-as-a-whole: Isolating Outbound Connection Pool Failures from the
Whole Adapter Deployment

You can set the deploy-as-a-whole element to determine whether or not the deployment of a
resource adapter, which contains multiple outbound connection pools, should fail if a failure
occurs in any connection pool. The default value is true, which causes the whole resource
adapter deployment to fail if any error occurs (not just with connection pools).

Setting this element to false enables the resource adapter deployment to succeed as long as
at least one outbound connection pool remains healthy, allowing you isolate, diagnose, repair,
and dynamically update the resource adapter without the need to redeploy it.

Connection Proxy Wrapper - 1.0 Resource Adapters
The connection proxy wrapper feature is valid only for resource adapters that are created
based on the Jakarta EE Connector Architecture 1.0. When a connection request is made,
WebLogic Server returns to the client (by way of the resource adapter) a proxy object that
wraps the connection object. WebLogic Server uses this proxy to provide the following
features:

• Connection leak detection capabilities

• Late XAResource enlistment when a connection request is made before starting a global
transaction that uses that connection

Possible ClassCastException
If the connection object returned from a connection request is cast as a Connection
implementation class (rather than an interface implemented by the Connection class), a
ClassCastException can occur. This exception is caused by one of the following:

• The resource adapter performing the cast

• The client performing the cast during a connection request

An attempt is made by WebLogic Server to detect the ClassCastException caused by the
resource adapter. If the server detects that this cast is failing, it turns off the proxy wrapper

Chapter 5
Connection Proxy Wrapper - 1.0 Resource Adapters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 13 of 15

feature and proceeds by returning the unwrapped connection object during a connection
request. The server logs a warning message to indicate that proxy generation has been turned
off. When this occurs, connection leak detection and late XAResource enlistment features are
also turned off.

WebLogic Server attempts to detect the ClassCastException by performing a test at resource
adapter deployment time by acting as a client using container-managed security. This requires
the resource adapter to be deployed with security credentials defined.

If the client is performing the cast and receiving a ClassCastException, the client code can be
modified, as in the following example.

Assume the client is casting the connection object to MyConnection.

1. Rather than having MyConnection be a class that implements the resource adapter's
Connection interface, modify MyConnection to be an interface that extends Connection.

2. Implement a MyConnectionImpl class that implements the MyConnection interface.

Turning Proxy Generation On and Off
If you know for sure whether or not a connection proxy can be used in the resource adapter,
you can avoid a proxy test by explicitly setting the use-connection-proxies element in the
WebLogic Server 8.1 version of weblogic-ra.xml to true or false.

Note

WebLogic Server still supports Jakarta EE Connector Architecture 1.0 resource
adapters. For 1.0 resource adapters, continue to use the WebLogic Server 8.1
deployment descriptors found in weblogic-ra.xml. It contains elements that continue to
accommodate 1.0 resource adapters.

If set to true, the proxy test is not performed and connection properties are generated.

If set to false, the proxy test is not performed and connection proxies are generated.

If use-connection-proxies is unspecified, the proxy test is performed and proxies are
generated if the test passes. (The test passes if a ClassCastException is not thrown by the
resource adapter).

Note

The test cannot detect a ClassCastException caused by the client code.

Reset a Connection Pool
You may need to reset a connection pool to recover a connection pool that is in an unhealthy
state without interfering other running connection pools, or to make nondynamic configuration
changes that could not take effect through an update operation. For example, changing
properties on a ManagedConnectionFactory or changing transaction support for connection.
You can reset a connection pool in one of two ways:

Chapter 5
Reset a Connection Pool

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 14 of 15

• Reset—If no connections in the pool are in use, the pool is recreated. The new pool
includes any configuration changes you may have made prior to the reset. If a connection
is in use, the pool is not reset.

• Force Reset—Immediately discards all used and unused connections and the pool is
recreated. The new pool includes any configuration changes you may have made prior to
the reset.

Testing Connections
If a resource adapter's ManagedConnectionFactory implements the Validating interface, then
the application server can test the validity of existing connections. You can test either a specific
outbound connection or the entire pool of outbound connections for a particular
ManagedConnectionFactory. Testing the entire pool results in testing each connection in the
pool individually. See section 6.5.3.4 Detecting Invalid Connections in JSR 322: Java EE
Connector Architecture 1.6.

Configuring Connection Testing
The following optional elements in the weblogic-ra.xml deployment descriptor allow you to
control the testing of connections in the pool.

• test-frequency-seconds - The connector container periodically tests all the free
connections in the pool. Use this element to specify the frequency with which the
connections are tested. The default is 0, which means the connections will not be tested.

• test-connections-on-create - Determines whether the connection should be tested upon
its creation. By default it is false.

• test-connections-on-release - Determines whether the connection should be tested
upon its release. By default it is false.

• test-connections-on-reserve - Determines whether the connection should be tested
upon its reservation. By default it is false.

Chapter 5
Testing Connections

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 15 of 15

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

6
Transaction Management

The system-level transaction management contract that is defined by the Java Connector
Architecture is a contract between the transaction manager and an EIS that supports
transactional access to EIS resource managers. This contract enables WebLogic Server to use
its transaction manager to manage transactions across multiple resource managers for
outbound communication to EISes.
For more information about transaction management, see Chapter 7, Transaction
Management, in JSR 322: Java EE Connector Architecture 1.6. For information about
transaction management for inbound communication from EISes to WebLogic Server, see
Transactional Inflow.

Supported Transaction Levels
A transaction is a set of operations that must be committed together or not at all for the data to
remain consistent and to maintain data integrity. Transactional access to EISes is an important
requirement for business applications. The Jakarta EE Connector Architecture 1.7 supports the
use of transactions.
WebLogic Server utilizes the WebLogic Server Transaction Manager implementation and
supports resource adapters having XA, local, or no transaction support. You define the type of
transaction support in the transaction-support element in the ra.xml file; a resource adapter
can support only one type. You can use the transaction-support element in the weblogic-
ra.xml deployment descriptor to override the value specified in ra.xml. See Configuring
Transaction Levels, and #unique_112/unique_112_Connect_42_I1082166 in Table A-18 for
details.

Resource adapters conforming to Jakarta EE Connector Architecture 1.7 can optionally specify
the level of transaction support at run time. This requires the implementation of the
TransactionSupport interface. For more information, see Specifying and Obtaining
Transaction Support Level.

XA Transaction Support
XA transaction support allows a transaction to be managed by a transaction manager external
to a resource adapter (and therefore external to an EIS). When an application component
demarcates an EIS connection request as part of a transaction, the application server is
responsible for enlisting the XA resource with the transaction manager. When the application
component closes that connection, the application server cleans up the EIS connection once
the transaction has completed.

Oracle recommends creating a LocalTransaction outbound connection pool for an XA
transaction capable resource adapter for improved performance.

Local Transaction Support
Local transaction support allows WebLogic Server to manage resources that are local to the
resource adapter. Unlike XA transaction, local transaction generally cannot participate in a two-
phase commit protocol (2PC). The only way a local transaction resource adapter can be
involved in a 2PC transaction is if it is the only local transaction resource involved in the

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 3

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

transaction and if the WebLogic Server Connector container uses a Last Resource Commit
Optimization whereby the outcome of the transaction is governed by the resource adapter's
local transaction.

A local transaction is normally started by using the API that is specific to that resource adapter,
or the CCI interface if it is supported for that adapter. When a resource adapter connection that
is configured to use local transaction support is created and used within the context of an XA
transaction, WebLogic Server automatically starts a local transaction to be used for this
connection. When the XA transaction completes and is ready to commit, prepare is first called
on the XA resources that are part of the XA transaction. Next, the local transaction is
committed.

If the commit fails on the local transaction, the XA transaction and all the XA resources are
rolled back. If the commit succeeds, all the XA resources for the XA transaction are committed.
When an application component closes the connection, WebLogic Server cleans up the
connection once the transaction has completed.

No Transaction Support
If a resource adapter is configured to use no transaction support, the resource adapter can still
be used in the context of a transaction. However, in this case, the connections used for that
resource adapter are never enlisted in a transaction and behave as if no transaction was
present. In other words, operations performed using these connections are made to the
underlying EIS immediately, and if the transaction is rolled back, the changes are not undone
for these connections.

Runtime Transaction Support Level Specification
JSR 322: Java EE Connector Architecture 1.6 states that a resource adapter may optionally
determine and classify the level of transaction support it can provide at run time. To expose
information about the level of transaction support at run time, a ManagedConnectionFactory
must implement the TransactionSupport interface. JSR 322: Java EE Connector Architecture
1.6 also defines rules and priorities on transaction support levels set in descriptors,
annotations, and the TransactionSupport interface. For example, WebLogic Server uses the
value returned by the getTransactionSupport method and ignores the value specified by the
resource adapter's deployment descriptor and the @Connector metadata annotation.

WebLogic Server exposes information about the runtime transaction support level in the
ConnectorConnectionPoolRuntimeMBean.RuntimeTransactionSupport MBean attribute and
also in the WebLogic Remote Console.

Configuring Transaction Levels
You specify a transaction support level for a resource adapter in the Jakarta EE standard
resource adapter deployment descriptor, ra.xml. To specify the transaction support level:

• For No Transaction, add the following entry to the ra.xml deployment descriptor file:
<transaction-support>NoTransaction</transaction-support>

• For XA Transaction, add the following entry to the ra.xml deployment descriptor file:
<transaction-support>XATransaction</transaction-support>

• For Local Transaction, add the following entry to the ra.xml deployment descriptor file:
<transaction-support>LocalTransaction</transaction-support>

Resource adapters conforming to Jakarta EE Connector Architecture 1.6 can optionally specify
the level of transaction support at run time. This requires the implementation of the

Chapter 6
Configuring Transaction Levels

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 3

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

TransactionSupport interface. For more information, see Specifying and Obtaining
Transaction Support Level.

The transaction support value specified in the ra.xml deployment descriptor is the default
value for all Connection Factories of the resource adapter. You can override this value for a
particular Connection Factory by specifying a value in the transaction-support element of the
weblogic-ra.xml deployment descriptor.

The value of transaction-support must be one of the following:

• NoTransaction

• LocalTransaction

• XATransaction

For more information on specifying the transaction level in the ra.xml deployment descriptor,
see Section 20.7, Resource Adapter XML Schema Definition, in JSR 322: Java EE Connector
Architecture 1.6. For more information on specifying the transaction level in the weblogic-
ra.xml deployment descriptor, see weblogic-ra.xml Schema.

Configure XA Transaction Recovery Credential Mapping
For pools which support XA Transactions, WebLogic Server may try to perform transaction
recovery for the Jakarta EE Connector Architecture connection pool if WebLogic Server finds
pending transactions in the pool during a server startup. If pending transactions are found,
WebLogic Server gets a ManagedConnection to EIS during recovery using
ManagedConnectionFactory.createManagedConnection(javax.security.auth.Subject
subject, ConnectionRequestInfo cxRequestInfo).

If EIS requires explicit credentials (such as user name and password) to sign-on, the you need
to configure WebLogic Server with appropriate credentials by configuring a special credential
mapping for the initial connection. See Initial Connection: Requires a ManagedConnection
from Adapter Without Application's Request . WebLogic Server uses null as Subject if a
mapping is not found.

Note

You do not need to configure this special credential mapping if the EIS doesn't require
explicit credentials.

Chapter 6
Configuring Transaction Levels

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 3

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

7
Message and Transactional Inflow

WebLogic resource adapters use inbound connections to handle message inflow as well as
transactional inflow. These inbound connections require several key components, such as a
communications channel and protocol to be used with the EIS, message types recognized by
the resource adapter, a Work instance to process the incoming message and deliver it to a
message endpoint, and much more.

Overview of Message and Transactional Inflow
Message inflow refers to inbound communication from an EIS to the application server, using a
resource adapter. Inbound messages can be part of a transaction that is governed by a
Transaction Manager that is external to WebLogic Server and the resource adapter.

The following diagram provides an overview of how messaging and transaction inflow occurs
within a resource adapter and the role played by the Work Manager. For details about
transactional inflow, see also Transactional Inflow.

Figure 7-1 Messaging and Transactional Inflow Architecture

Connector Container

Resource Adapter

MC1

C-handle

Work

Act Spec MLT-j

MCn

Client Application

WebLogic Server

Application
Component

Message
Endpoint

Application

Connection
Pool

MCF2

Work
ManagerThread

External
Transaction

Manager

Message
Source

(EIS or Message
Provider)

Message
Endpoint
Factory

Message
Endpoint

ProxyMDB

Key

MCF2 – ManagedConnectionFactory 2 MC1 – ManagedConnection 1

MCn – ManagedConnection n C-handle – Connection Handle Handed to Client

Act Spec MLT-j – ActivationSpec Corresponding to MessageListener type-j

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 8

Architecture Components
Figure 7-1 contains the following components:

• A client application, which connects to an application running on WebLogic Server, but
which also needs to connect to an EIS

• An external system (in this case, an EIS or Enterprise Information System)

• An application component (an EJB) that the client application uses to submit outbound
requests to the EIS through the resource adapter

• A message endpoint application (a message-driven bean and possibly other Jakarta EE
components) used for the receipt of inbound messages from the EIS through the resource
adapter

• The WebLogic Server Work Manager and an associated thread (or threads) to which the
resource adapter submits Work instances to process inbound messages and possibly
process other actions.

• An external Transaction Manager, to which the WebLogic Server Transaction Manager is
subordinate for transactional inflow of messages from the EIS

• The WebLogic Server Connector container in which the resource adapter is deployed. The
container manages the following:

– A deployed resource adapter that provides bi-directional (inbound and outbound)
communication to and from the EIS.

– An active Work instance.

– Multiple managed connections (MC1, ..., MCn), which are objects representing the
outbound physical connections from the resource adapter to the EIS.

– Connection handles (C-handle) returned to the application component from the
connection factory of the resource adapter and used by the application component for
communicating with the EIS.

– One of perhaps many activation specifications. There is an activation specification
(ActivationSpec) that corresponds to each specific message listener type, MLT-j. For
information about requirements for an ActivationSpec class, see Chapter 13,
Message Inflow in JSR 322: Java EE Connector Architecture 1.6.

– One of the connection pools maintained by the container for the management of
managed connections for a given ManagedConnectionFactory (in this case, MCF-2. A
Connector container could include multiple connection pools, each corresponding to a
different type of connections to a single EIS or even different EISes).

– A MessageEndpointFactory created by the EJB container and used by the resource
adapter to create proxies to MessageEndpoint instances (MDB instances from the
MDB pool).

• An external message source, which could be an EIS or Message Provider

Inbound Communication Scenario
This section describes a basic inbound communication scenario that may be described using
the diagram, showing how inbound messages originate in an EIS, flow into the resource
adapter, and are handled by a Message-driven Bean. For related information, see Figure 1-1.

A typical simplified inbound sequence involves the following steps:

Chapter 7
Overview of Message and Transactional Inflow

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 8

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

1. The EIS sends a message to the resource adapter.

2. The resource adapter inspects the message and determines what type of message it is.

3. The resource adapter may create a Work object and submit it to the Work Manager. The
Work Manager performs the succeeding work in a separate Thread, while the resource
adapter can continue waiting for other incoming messages.

4. Based on the message type, the resource adapter (either directly or as part of a Work
instance) looks up the correct message endpoint to which it will send the message.

5. Using the message endpoint factory corresponding to the type of message endpoint it
needs, the resource adapter creates a message endpoint (which is a proxy to a message-
driven bean instance from the MDB pool).

6. The resource adapter invokes the message listener method on the endpoint, passing it
message content based on the message it received from the EIS.

7. The message is handled by the MDB in one of several possible ways:

a. the MDB may handle the message directly and possibly return a result to the EIS
through the resource adapter

b. the MDB may distribute the message to some other application component

c. the MDB may place the message on a queue to be picked up by the client

d. the MDB may directly communicate with the client application.

How Message Inflow Works
To manage message inflow, a resource adapter that supports inbound communication from an
EIS to the application server typically includes a proprietary communications channel and
protocol, a set of recognized message types, and a dispatching mechanism.

• A proprietary communications channel and protocol is required for connecting to and
communicating with an EIS. The communications channel and protocol are not visible to
the application server in which the resource adapter is deployed. See Proprietary
Communications Channel and Protocol.

• One or more message types that are recognized by the resource adapter must be
established.

• A dispatching mechanism is required for dispatching a message of a given type to another
component in the application server.

Handling Inbound Messages
A resource adapter may handle an inbound message in a variety of ways. For example, it may:

• Handle the message locally, that is, within the ResourceAdapter bean, without involving
other components.

• Pass the message off to another application component. For example, it may look up an
EJB and invoke a method on it.

• Send the message to a message endpoint. Typically, a message endpoint is a message-
driven bean (MDB). For more information, see Message Inflow to Message Endpoints
(Message-Driven Beans).

Inbound messages may return a result to the EIS that is sending the message. A message
requiring an immediate response is referred to as synchronous (the sending system waits for a
response). This is also referred to as request-response messaging. A message that does not

Chapter 7
How Message Inflow Works

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 8

expect a response as part of the same exchange with the resource adapter is referred to as
asynchronous or event notification-based communication. A resource adapter can support
asynchronous or synchronous communications for all three destinations listed above.

Depending upon the transactional capabilities of the resource adapter and the EIS, inbound
messages can be either part of a transaction (XA) or not (non-transactional). If the messages
are XA, the controlling transaction may be coordinated by an external Transaction Manager
(transaction inflow) or by the application server's Transaction Manager. See Transactional
Inflow.

In most cases, inbound messages in a resource adapter are dispatched through a Work
instance in a separate thread. The resource adapter wraps the work to be done in a Work
instance and submits it to the application server's Work Manager for execution and
management. A resource adapter can submit a Work instance using the doWork(),
startWork(), or scheduleWork() methods depending upon the scheduling requirements of the
work.

Proprietary Communications Channel and Protocol
The resource adapter can expose connection configuration information to the deployer by
various means; for example, as properties on the ResourceAdapter bean or properties on the
ActivationSpec object. An alternative is to use the same communication channel for inbound
as well as outbound traffic. Thus you can also set configuration information on the outbound
connection pool.

Message Inflow to Message Endpoints (Message-Driven Beans)
As of EJB 2.1, message-driven beans (MDBs) accommodate the delivery of messages from
inbound resource adapters. Prior to EJB 2.1, an MDB supported only Jakarta Message Service
(JMS) messaging. That is, an MDB had to implement the javax.jms.MessageListener
interface, including the onMessage(javax.jms.Message) message listener method. MDBs were
bound to JMS components and the JMS subsystem delivered the messages to MDBs by
invoking the onMessage() method on an instance of the MDB. With EJB 2.1, the JMS-only
MDB restriction has been lifted.
The main ingredients for message delivery to an MDB by way of a resource adapter are:

• An inbound message of a certain type (determined by the resource adapter/EIS contract)

• An ActivationSpec object implemented by the resource adapter

• A mapping between message types and message listener interfaces

• An MDB that implements a given message listener interface

• A deployment-time binding between an MDB and a resource adapter

For more information about message-driven Beans, see Message-Driven EJBs in Developing
Enterprise JavaBeans, Version 3.2, for Oracle WebLogic Server.

Deployment-Time Binding Between an MDB and a Resource Adapter
A resource adapter can be deployed independently (as a standalone RAR) or as part of an
enterprise application (EAR). An MDB can also be deployed independently (as a standalone
JAR) or as part of an enterprise application (EAR). In either case, an MDB whose messages
are derived from a resource adapter must be bound to the resource adapter. The following
sections describe binding the MDB and resource adapter and subsequent messaging
operations.

Chapter 7
Message Inflow to Message Endpoints (Message-Driven Beans)

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 8

Binding an MDB and a Resource Adapter
To bind an MDB and a resource adapter, you must:

1. Set the jndi-name element in the weblogic-ra.xml deployment descriptor for the resource
adapter. See jndi-name in weblogic-ra.xml Schema.

2. Set the adapter-jndi-name element in the weblogic-ejb-jar.xml deployment descriptor
to match the value set in the corresponding jndi-name element in the resource adapter.

3. Assume that the resource adapter is deployed prior to the MDB. (The MDB could be
deployed before the resource adapter is deployed; in that case, the deployed MDB polls
until the resource adapter is deployed.) When the resource adapter is deployed, the
ResourceAdapter bean is bound into JNDI using the name specified.

4. The MDB is deployed, and the MDB container invokes an application server-specific API
that looks up the resource adapter by its JNDI name and invokes the specification-
mandated endpointActivation(MessageEndpointFactory, ActivationSpec) method on
the resource adapter.

5. The MDB container provides the resource adapter with a configured ActivationSpec
(containing configuration information) and a factory for the creation of message endpoint
instances.

6. The resource adapter saves this information for later use in message delivery. The
resource adapter thereby knows what message listener interface the MDB implements.
This information is important for determining what kind of messages to deliver to the MDB.

Dispatching a Message
When a message arrives from the EIS to the resource adapter, the resource adapter
determines where to dispatch it. The following is a possible sequence of events:

1. A message arrives from the EIS to the resource adapter.

2. The resource adapter examines the message and determines its type by looking it up in an
internal table. The resource adapter determines the message type corresponds to a
particular pair (MessageEndpointFactory, ActivationSpec).

3. The resource adapter determines the message should be dispatched to an MDB.

4. Using the MessageEndpointFactory for that type of message endpoint (one to be
dispatched to an MDB), the resource adapter creates an MDB instance by invoking
createEndpoint() on the factory.

5. The resource adapter then invokes the message listener method on the MDB instance,
passing any required information (such as the body of the incoming message) to the MDB.

6. If the message listener does not return a value, the message dispatching process is
complete.

7. If the message listener returns a value, the resource adapter determines how to handle
that value. This may or may not result in further communication with the EIS, depending
upon the contract with the EIS.

Activation Specifications
A resource adapter is configured with a mapping of message types and activation
specifications. The activation specification is a JavaBean that implements
javax.resource.spi.ActivationSpec. The resource adapter has an ActivationSpec class for

Chapter 7
Message Inflow to Message Endpoints (Message-Driven Beans)

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 8

each supported message type. The mapping of message types and activation specifications is
configured in the ra.xml deployment descriptor, as described in Configuring Inbound
Connections, For more information about ActivationSpecs, see Chapter 13, Message Inflow,
in JSR 322: Java EE Connector Architecture 1.6.

Administered Objects
As described in section 13.4.2.3 of JSR 322: Java EE Connector Architecture 1.6, a resource
adapter may provide the Java class name and the interface type of an optional set of
JavaBean classes representing administered objects that are specific to a messaging style or
message provider. You configure administered objects in the admin-objects elements of the
ra.xml and weblogic-ra.xml deployment descriptor files. As with outbound connections and
other WebLogic resource adapter configuration elements, you can define administered objects
at three configuration scope levels:

• Global - Specify parameters that apply to all administered objects in the resource adapter
using the default-properties element. See weblogic-ra.xml Schema in Table A-15

• Group - Specify parameters that apply to all administered objects belonging to a particular
administered object group specified in the ra.xml deployment descriptor using the admin-
object-group element. The properties specified in a group override any parameters
specified at the global level. See admin-object-group.

The admin-object-interface element (a subelement of the admin-object-group
element) serves as a required unique element (a key) to each admin-object-group. There
must be a one-to-one relationship between the admin-object-interface element in
weblogic-ra.xml and the admin-object-interface element in ra.xml.

• Instance - Under each admin object group, you can specify administered object instances
using the admin-object-instance element of the weblogic-ra.xml deployment descriptor.
These correspond to the individual administered objects for the resource adapter. You can
use the admin-object-properties subelement to specify properties at the instance level
too; properties specified at the instance level override those provided at the group and
global levels. See admin-object-instance.

Transactional Inflow
Transactional inflow is established by a transaction inflow contract, which allows the resource
adapter to handle transaction completion and crash recovery calls that are initiated by an EIS.
The transactional inflow contract also ensures that ACID properties of the imported transaction
are preserved. For more information about transaction inflow, see Chapter 15, Transaction
Inflow, in JSR 322: Java EE Connector Architecture 1.6.
When an EIS passes a message through a resource adapter to the application server, it may
pass a transactional context under which messages are delivered or work is performed. The
inbound transaction will be controlled by a transaction manager external to the resource
adapter and application server. See Message Inflow to Message Endpoints (Message-Driven
Beans).

A resource adapter may act as a bridge between the EIS and the application server for
transactional control. That is, the resource adapter receives messages that it interprets as XA
callbacks for participating in a transaction with a external Transaction Manager.

WebLogic Server can function as an XA resource to a external Transaction Manager through
its interposed Transaction Manager. The WebLogic Server Transaction Manager maps external
transaction IDs to WebLogic Server-specific transaction IDs for such transactions.

Chapter 7
Transactional Inflow

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 8

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

The WebLogic Server Transaction Manager is subordinate to the external Transaction
Manager, which means that the external Transaction Manager ultimately determines whether
the transaction succeeds or is rolled back. See Participating in Transactions Managed by a
Third-Party Transaction Manager in Developing JTA Applications for Oracle WebLogic Server.
As part of the Jakarta EE Connector Architecture 1.6, the ability for a resource adapter to
participate in such a transaction is now exposed through a Jakarta EE standard API.

The following process explains how a resource adapter would participate in a external
transaction. For more information, see section 15.4, Transaction Inflow Model, in JSR 322:
Java EE Connector Architecture 1.6.

1. The resource adapter receives an inbound message with the transaction context that
arrived along with the incoming message.

2. The resource adapter represents the transaction context using the
javax.transaction.xa.Xid instance.

3. The resource adapter creates a new Work instance to process the incoming message and
deliver it to a message endpoint, and also creates an instance of an ExecutionContext
(javax.resource.spi.work.ExecutionContext), setting the Xid it created and also setting
a transaction timeout value. Version 1.6 of the Connector Architecture defines a standard
class, TransactionContext, which resource adapters may use instead of the
ExecutionContext for propagating the transaction context from the EIS to the application
server.

4. The resource adapter submits the Work object and the TransactionContext (or
ExecutionContext) to the Work Manager for processing. At this point, the Work Manager
performs the necessary work to enlist the transaction and start it with the WebLogic Server
Transaction Manager.

To use a TransactionContext, the Work class must:

a. Implement the javax.resource.spi.work.WorkContextProvider interface.

b. Create and return a TransactionContext instance in the getWorkContexts() method.

Note

If the resource adapter uses a TransactionContext, the adapter must not use an
ExecutionContext.

5. Subsequent XA calls from the external Transaction Manager are sent through the resource
adapter and communicated to the WebLogic Server Transaction Manager. In this way, the
resource adapter acts as a bridge for the XA calls between the external Transaction
Manager and the WebLogic Server Transaction Manager, which is acting as a resource
manager.

Using the Transactional Inflow Model for Locally Managed Transactions
When the resource adapter receives requests from application components running in the
same server instance as the resource adapter that need to be delivered to an MDB as part of
the same transaction as the resource adapter request, the transaction ID must be obtained
from the transaction on the current thread and placed in a TransactionContext (or
ExecutionContext).

In this case, WebLogic Server does not use the Interposed Transaction Manager but simply
passes the transaction on to the Work Thread used for message delivery to the MDB.

Chapter 7
Transactional Inflow

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 8

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Configuring and Managing Long-Running Work
WebLogic Server supports the use of HintsContext.LONGRUNNING_HINT, which if set to true in
a resource adapter Work class, causes a Work instance to be established as a long-running
work item that WebLogic Server schedules in a separate daemon thread, not in a Work thread.
LONGRUNNING_HINT performs the same function as the WebLogic Server extension annotation
@LongRunning.
WebLogic Server extends Connector Architecture 1.6 by providing the
ConnectorWorkManagerRuntimeMBean, which contains attributes for configuring and
monitoring long-running Work instances. These attributes, described in the following sections,
are also exposed in the WebLogic Remote Console.

For more information about the @LongRunning extension annotation, see LongRunning in Java
API Reference for Oracle WebLogic Server.

Setting the Maximum Number of Concurrent Long-Running Work Instances
Oracle recommends that you minimize the number of long-running Work instances executing
concurrently because each long running work runs in its own daemon thread. Having too many
concurrent long-running Work instances can exhaust the thread resources in WebLogic Server
and cause a negative impact on server performance and stability. WebLogic Server may
introduce restrictions on maximum concurrent long running works allowed in a future release.

Note the following:

• You can also view the maximum number of concurrent Work instance requests allowed
from the Resource Adapter: Monitoring: Workload page in the WebLogic Remote Console.

• As an alternative to using the WebLogic Remote Console, you can use the max-
concurrent-long-running-requests element in the weblogic-ra.xml file to set the
maximum allowed number of concurrent Work instance requests. For information, see
connector-work-manager.

Monitoring Long-Running Work
The ConnectorWorkManagerRuntimeMBean exposes long-running run-time information about the
resource adapter's specific Work Manager in the following MBean attributes:

• ConnectorWorkManagerRuntimeMBean.ActiveLongRunningRequests — Returns the
number of current active long-running Work instance requests.

• ConnectorWorkManagerRuntimeMBean.CompletedLongRunningRequests — Returns the
number of completed long-running Work instance requests.

• ConnectorWorkManagerRuntimeMBean.MaxConcurrentLongRunningRequests — Returns
the maximum number of concurrent Work instance requests allowed.

Chapter 7
Configuring and Managing Long-Running Work

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 8

8
Security

WebLogic Server provides several security services for resource adapters for inbound and
outbound communication. Resource adapters must be configured with authentication and other
necessary security information to be able to establish connections with external systems.

For more information about WebLogic security, see Understanding Security for Oracle
WebLogic Server and Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

Container-Managed and Application-Managed Sign-on
When a resource adapter makes an outbound connection to an Enterprise Information System
(EIS), it needs to sign on with valid security credentials. In accordance with the Java Connector
Architecture 1.6 specification, WebLogic Server supports both container-managed and
application-managed sign-on for outbound connections. At runtime, WebLogic Server
determines the chosen sign-on mechanism, based on the information specified in either the
invoking client component's deployment descriptor or the res-auth element of the resource
adapter deployment descriptor. A sign-on mechanism specified in a resource adapter's
deployment descriptor takes precedence over one specified in the calling component's
deployment descriptor. Even when using container-managed sign-on, any security information
explicitly specified by the client component is presented on the call to obtain the connection.
If the WebLogic Server Jakarta EE 1.6 Connector Architecture implementation cannot
determine the sign-on mechanism that is being requested by the client component, the
connector container attempts container-managed sign-on.

Application-Managed Sign-on
With application-managed sign-on, the client component supplies the necessary security
credentials (typically a user name and password) when making the call to obtain a connection
to an EIS. In this scenario, the application server provides no additional security processing
other than to pass along this information in the request for the connection.

Container-Managed Sign-on
WebLogic Server and an EIS each maintain independent security realms. A goal of container-
managed sign-on is to permit a user to sign on to WebLogic Server and be able to use
applications that access an EIS through a resource adapter without having to sign on
separately to the EIS. Container-managed sign-on in WebLogic Server uses outbound
credential mappings, which map credentials (either username/password pairs or security
tokens) of WebLogic security principals (which may be either authenticated individual users or
client applications) to the corresponding credentials required to access the EIS. For any
deployed resource adapter, you can configure outbound credential mappings for applicable
security principals. For related information, see Outbound Credential Mappings.

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 12

Credential Mapping for Making Outbound Connections
The Java Connector Architecture 1.6 specification requires that credentials are stored in a
javax.security.auth.Subject. When an outbound connection is being made, these
credentials are passed to either the createManagedConnection or the
matchManagedConnection method of the ManagedConnectionFactory object. Outbound
credential mappings, which are stored in the WebLogic Server embedded LDAP server, are
specific to outbound resource adapters.
When creating outbound credential mappings of WebLogic Server users to usernames in an
EIS to which you want to connect using a resource adapter, note the following:

• WebLogic Server supports creating outbound credential mappings for WebLogic Server
users who are defined in the default security realm only. If you are using a security realm
that you have customized, you need to define it as the default security realm before
configuring outbound credential mappings for resource adapters. See Customizing the
Default Security Configuration in Administering Security for Oracle WebLogic Server.

• You must define the authentication-mechanism element for the connection pool in either
of the following deployment descriptor files:

– ra.xml, which works for all connection pools of the resource adapter

– weblogic-ra.xml for each individual connection pool

If there is no valid authentication-mechanism element defined, the outbound credential
mapping will not take effect, as explained in Authentication Mechanisms. The following is a
sample ra.xml file snippet:

<authentication-mechanism>
<authentication-mechanism-type>BasicPassword</authentication-mechanism-type>
<credential-interface>javax.resource.spi.security.PasswordCredential</credential-
interface>
</authentication-mechanism>

Authentication Mechanisms
WebLogic Server users must be authenticated whenever they request access to a protected
WebLogic Server resource. For this reason, each user is required to provide a credential (a
username/password pair or a digital certificate) to WebLogic Server.

Password authentication is the only authentication mechanism supported by WebLogic Server
out of the box. Password authentication consists of a user ID and password. Based on the
configured mappings, when a user requests connection to a resource adapter, the appropriate
credentials for that user are supplied to the resource adapter.

The SSL (or HTTPS) protocol can be used to provide an additional level of security to
password authentication. Because the SSL protocol encrypts the data transferred between the
client and WebLogic Server, the user ID and password of the user do not flow in clear text.
Using SSL, WebLogic Server can authenticate the user without compromising the
confidentiality of the user's ID and password. See Configuring SSL in Administering Security
for Oracle WebLogic Server.

Outbound Credential Mappings
Outbound credential mappings are specific to outbound resource adapters. You configure
outbound credential mappings using the WebLogic Remote Console. Before you can configure
credential mappings, you must successfully deploy the resource adapter.

Chapter 8
Credential Mapping for Making Outbound Connections

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 12

Note

The first time you deploy a resource adapter, it has no configured outbound credential
mappings and the initial connections will fail until they are configured.

If the resource adapter requires credentials and is configured to create connections at
deployment time (meaning the initial-capacity element in the weblogic-ra.xml is set to
greater than 0), the initial connection may fail. To prevent initial connection failure, Oracle
recommends you set the initial-capacity element the connection pool to 0 for its connection
pool for the initial installation and deployment of a resource adapter. Once the resource
adapter is deployed for the first time, you can change the value of the initial-capacity
element. For more information, see initial-capacity: Setting the Initial Number of
ManagedConnections.

You can configure outbound credential mappings for individual outbound connection pools or
globally for all the connection pools in the resource adapter. When the resource adapter
receives a request for a connection, WebLogic Server searches for outbound credential
mappings configured for a specific connection pool and then checks the mappings configured
globally for the resource adapter.

Review the situations described in the following sections:

Non-initial Connection: Requires ManagedConnection from Adapter Upon
Application's Request

WebLogic Server requires a ManagedConnection from the adapter upon an application's
request. For example, an application wants to get a connection from a pool but there is no
available ManagedConnection in the pool so WebLogic Server needs to make a request to the
adapter to create a new ManagedConnection.

Note

Applies only to Container-Managed sign-on.

The server searches for outbound mappings in the following order:

1. Specific mappings (or anonymous mapping if unauthenticated) at the connection factory
level.

2. Specific mappings (or anonymous mapping if unauthenticated) at the global level.

3. Default mappings at the connection factory level.

4. Default mappings at the global level.

Example 8-1 Outbound Credential Mapping Examples

poolA
 system user name: admin
 system password: admin_password
 default user name: guest1
 default password: guest1_password

poolB
 wlsjoe user name: harry

Chapter 8
Credential Mapping for Making Outbound Connections

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 12

 wlsjoe password: harry_password

global
 system user name: sysman
 system password: sysman_password
 wlsjoe user name: scott
 wlsjoe password: scott_password
 default user name: viewer
 default password: viewer_password
 anonymous user name: foo
 anonymous password: foo_password

Referring to the example provided in Example 8-1, consider an application authenticated as
system that makes a connection request against poolA. Because a specific outbound
credential mapping is defined for system for poolA, the resource adapter uses this mapping
(admin/admin_password).

If the application makes the same request against poolB as system, there is no corresponding
specific outbound credential mapping for system. Therefore, the server searches for the
credential mapping at the global level where it finds a mapping (sysman/sysman_password).

If another application authenticates as wlsjoe and makes a request against poolA, it finds no
mapping for wlsjoe defined for poolA. It then searches at the global level and finds a mapping
for wlsjoe (scott/scott_password). Against poolB, the application would find the mapping
defined for poolB (harry/happy_password).

If an application authenticated as user1 makes a request against poolA, it finds no mapping for
user1 for poolA. The following sequence occurs:

1. The application searches at the global level, which also has no mapping for user1.

2. The application searches the poolA outbound mappings for a default mapping and finds a
default mapping.

If an application does not authenticate to WebLogic Server and makes a request against
poolA, it finds no outbound mapping for anonymous user for poolA. It then searches at the
global level and finds a mapping for the anonymous user (foo/foo_password).

For example, in Example 8-1, consider two connection pools with the following outbound
credential mappings:

Initial Connection: Requires a ManagedConnection from Adapter Without
Application's Request

WebLogic Server requires a ManagedConnection from an adapter without the application's
request. This can either be when WebLogic Server creates initial connections at deployment
time (meaning the initial-capacity element in weblogic-ra.xml is set to greater than 0), or
when WebLogic Server needs to get a ManagedConnection specifically for XA recovery.

Note

Applies to both Container-Managed sign-on and Application-Managed sign-on.

WebLogic Server searches for outbound mappings in the following order:

1. Initial mappings at the connection factory level.

Chapter 8
Credential Mapping for Making Outbound Connections

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 12

2. Initial mappings at the global level.

3. Default mappings at the connection factory level.

4. Default mappings at the global level.

Example 8-2 Credential Mapping Examples

poolA
 initial user name: admin
 initial password: admin_password

poolB
 default user name: harry
 default password: harry_password

global
 initial user name: sysman
 initial password: sysman_password

Referring to Example 8-2, WebLogic Server needs to perform XA Recovery for poolA and so
makes a connection request against poolA. Because the initial outbound credential mapping is
defined for system for poolA, the resource adapter uses this mapping (admin/admin_password).

If WebLogic Server makes the same request against poolB, there is no corresponding initial
outbound credential mapping for poolB. WebLogic Server then searches for the initial
credential mapping at the global level where it finds a mapping (sysman/sysman_password).

If neither an initial nor default mapping is defined, WebLogic Server uses null as the Subject
when making calls to the adapter to create a ManagedConnection.

For example, consider two connection pools with the following outbound credential mappings:

Special Users
Three special users are provided for use by resource adapters:

• Initial User (user for creating initial connections) — If you define an outbound credential
mapping for this user, the specified credentials are used for the initial connections created
when:

– Starting the connection pool for this resource adapter

– Doing XA transaction recovery for the connection pool

The InitialCapacity parameter on the pool specifies the number of initial connections. If
you do not define a mapping for this user, the default mapping (if provided) is used.
Otherwise, no credentials are provided for the initial connections.

• Anonymous User (unauthenticated WebLogic Server user) — If you define a mapping for
this user, the specified credentials are used when no user is authenticated for the
connection request on the resource adapter.

• Default User — If you define a mapping for this user, the specified credentials are used
when:

– No other mapping applies for the current user.

– No anonymous mapping is provided in the case where there is no authenticated user.

Chapter 8
Credential Mapping for Making Outbound Connections

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 12

Creating Outbound Credential Mappings Using the Console
You can create outbound credential maps with the WebLogic Remote Console. If you are using
the WebLogic Credential Mapping provider, the outbound credential maps are stored in the
embedded LDAP server.

Security Inflow
The Java Connector Architecture 1.6 specification defines a standard, generic security context
shared among the EIS, the resource adapter, and the application server that leverages the
work done in the resource adapter container, as specified in JSR 196: Java Authentication
Service Provider Interface for Containers. The security context enables a resource adapter to
establish security information that is used when submitting a Work instance for execution and
delivering messages to message endpoints that are hosted in WebLogic Server.
The Java Connector Architecture 1.6 specification:

• Defines an abstract class SecurityContext as the contract between the resource adapter
and the application server

• Defines two scenarios on how to handle flown-in identities based on whether or not they
belong to the application server's security domain:

– Case 1 (see Section 16.4.3, Case 1: Identity in the Container Security Domain, in JSR
322: Java EE Connector Architecture 1.6.)

– Case 2 (Section 16.4.4, Case 2: Identity Translated Between Security Domains.)

• Uses the CallbackHandler defined in the JSR 196: Java Authentication Service Provider
Interface for Containers.

• Uses three callbacks from JSR 196: CallerPrincipalCallback, GroupPrincipalCallback, and
PasswordValidationCallback.

Note

When the WebLogic Server Connector container calls the setupSecurityContext
method of the SecurityContext implementation provided by the resource adapter, the
serviceSubject passed to the adapter will always be null.

Inbound Principal Mappings
A resource adapter deployed in the WebLogic Connector container can flow in an identity (that
is, a caller principal, a group principal, or both) into a container, and the identity may be defined
in either the WebLogic domain (as in the Case 1 scenario) or in the EIS security domain (as in
the Case 2 scenario).

If the identity is defined in the EIS security domain, the WebLogic Connector container must be
able to map the flown-in principal to a principal defined in the WebLogic domain. To support
this scenario, WebLogic Server provides the ability to create an inbound principal mapping
between the EIS principal and the corresponding WebLogic domain.

The following mappings can be created:

• Default mapping of EIS user names to either a specific WebLogic user, or the WebLogic
user anonymous

Chapter 8
Security Inflow

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 12

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/en/jsr/detail?id=196
http://jcp.org/en/jsr/detail?id=196

• A specific EIS user name to either a specific WebLogic user, or the WebLogic user
anonymous

• Default mapping of EIS group names to a WebLogic group name

• A specific EIS group name to a WebLogic group name

A principal name defined in an inbound principal mapping configuration must contain at least
one non-space character. A string that contains only space characters is not a valid principal
name (and is not accepted by the WebLogic Remote Console).

Note the following behavior regarding inbound principal mapping:

• Although JSR 322: Java EE Connector Architecture 1.6 allows a resource adapter to pass
any user and group combination to the container, Connector Architecture 1.6 also allows
the container to apply security restrictions. In the case of WebLogic Server, not all user and
group combinations are valid: the WebLogic principals specified in the mapping must
currently be defined in the WebLogic security realm, and the user must be defined in the
WebLogic security realm as being a valid member of the group specified in the mapping.
This is a requirement imposed by WebLogic Server.

For example, if a mapping specifies a particular user and group combination, and either
the user or the group is not defined in the WebLogic Server security realm, the mapping is
not valid. Additionally, if both the user and group are defined in the security realm, but the
user is not a member of the particular group specified in the mapping, the mapping is not
valid. When WebLogic Server determines that a mapping is not valid, it throws an
exception.

Note also that WebLogic Server does not validate users or groups at the time an inbound
principal mapping is configured. Because a security realm can be modified after the
resource adapter has been deployed, WebLogic principals specified in an inbound
principal mapping are validated only at run time.

• A flown-in identity cannot run as a principal (that is, a user or group) that is mapped to an
administrator role, such as Admin, AdminChannelUser, Deployer, Operator, or Monitor.

• If no default inbound mapping is configured for an EIS user principal, and no mapping
specific to the EIS user is configured, the user is mapped to an unauthenticated user.

• If no default inbound mapping is configured for a EIS group principal, and no mapping
specific to the EIS group is configured, the group principal is ignored.

• Inbound principal mappings can be configured after the resource adapter has been
deployed.

Security Inflow Callback Requirements
When a resource adapter flows in a identity that is used by the application server through
handling CallerPrincipalCallback, GroupPrincipalCallback, and PasswordValidationCallback,
JSR 322: Java EE Connector Architecture 1.6 does not specify any restrictions how those
callbacks may be combined. However, not all combinations are valid in WebLogic Server
Connector Architecture 1.6. The WebLogic Connector container validates these callbacks
according to the requirements described in this section. You must design resource adapters so
that they meet these requirements when they pass callbacks to the WebLogic Connector
container. Otherwise, those callbacks are rejected.

WebLogic Server imposes the following requirements on callbacks passed to the Connector
container:

• If a resource adapter handles a PasswordValidationCallback, the adapter must also handle
a CallerPrincipalCallback. The WebLogic Security Service requires that a caller principal

Chapter 8
Security Inflow

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 12

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

that is established by means of a CallerPrincipalCallback must match the user name that is
authenticated by means of the PasswordValidationCallBack.

• If a resource adapter handles a GroupPrincipalCallback, the adapter must also handle a
CallerPrincipalCallback.

• A resource adapter must not handle a PasswordValidationCallback in Case 2 (see Section
16.4.4, Case 2: Identity Translated Between Security Domains, in JSR 322: Java EE
Connector Architecture 1.6). Because the username and password in the
PasswordValidationCallback belong to the EIS security domain, the application server (that
is, WebLogic Server) cannot authenticate them.

Backward Compatibility with Connector Architecture 1.5 and 1.0
WebLogic Server allows a resource adapter to use a configured principal to execute the
Work.run() method. This principal can be configured in the WebLogic Remote Console.

The Work.run() method then executes using the principal, if configured, or anonymous, by
default, if this principal is not configured.

This mechanism provides a basic security configuration at the adapter level that applies to all
Work instances submitted by the adapter. However, other security principals cannot be used
selectively for different Work instances.

The security context feature in Connector Architecture 1.6 provides more flexibility by allowing
each Work instance to provide its own SecurityContext, allowing each Work instance to be run
under a different security principal.

Because the WebLogic Server Connector container is backward compatible with 1.0 and 1.5
adapters, note the following behavior when a resource adapter submits a Work instance:

• If the Work instance is submitted without a SecurityContext, the Work instance uses the
principal defined in the run-work-as-principal-name and default-principal-name
elements in the weblogic-ra.xml file.

• If the Work instance is submitted with a SecurityContext, the Work instance runs under the
security principals that are defined according to the description of the SecurityContext
class in JSR 322: Java EE Connector Architecture 1.6. The principals defined in the run-
work-as-principal-name and default-principal-name elements, if present, are ignored.

Security Policy Processing
A security policy is an association between a WebLogic resource and one or more users,
groups, or security roles and is designed to protect the WebLogic resource against
unauthorized access. JSR 322: Java EE Connector Architecture 1.6 defines default security
policies for resource adapters running in an application server. It also defines how resource
adapters can provide their own specific security policies overriding the default. The
weblogic.policy file that ships with WebLogic Server establishes the default security policies
as specified in the Jakarta EE Connector Architecture Specification.
If the resource adapter does not have a specific security policy defined, WebLogic Server
establishes the runtime environment for the resource adapter with the default security policies
specified in the weblogic.policy file, which conforms to the defaults specified by the Jakarta
EE Connector Architecture Specification. If the resource adapter has defined specific security
policies, WebLogic Server establishes the runtime environment for the resource adapter with a
combination of the default security policies for resource adapters and the specific policies
defined for the resource adapter. You define specific security policies for resource adapters
using the security-permission-spec element in the ra.xml deployment descriptor file.

Chapter 8
Security Policy Processing

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 12

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

For more information on security policy processing requirements, see the Security Permissions
section of Chapter 21, Runtime Environment, in JSR 322: Java EE Connector Architecture 1.6.
For more information about security policies and the WebLogic security framework, see
Security Policies in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Configuring Security Identities for Resource Adapters
Security identities determine the security principals that can perform particular resource
adapter functions. In a WebLogic resource adapter, you can either have a single security
identity that can perform all functions, or separate identities for separate classes of functions.
You can define the following four types of security identities in the weblogic-ra.xml
deployment descriptor:

• default principal — Security principal that can perform all resource adapter tasks.

• run-as principal — Security principal used by calls from the connector container into the
resource adapter code during connection requests.

• run-work-as principal — Security principal used for Work instances launched by the
resource adapter.

• manage-as principal — Security principal used for resource adapter management tasks,
such as startup, shutdown, testing, and transaction management.

Example 8-3 is an excerpt from a weblogic-ra.xml deployment descriptor that illustrates how
you would configure all four of these available security identities for performing different
resource adapter tasks.

Example 8-3 Configuring All Security Identities for Resource Adapters

<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector">
 <jndi-name>900blackbox-notx</jndi-name>
 <security>
 <default-principal-name>
 <principal-name>system</principal-name>
 </default-principal-name>
 <run-as-principal-name>
 <principal-name>raruser</principal-name>
 </run-as-principal-name>
 <run-work-as-principal-name>
 <principal-name>workuser</principal-name>
 </run-work-as-principal-name>
 <manage-as-principal-name>
 <principal-name>raruser</principal-name>
 </manage-as-principal-name>
 </security>
</weblogic-connector>

Example 8-4 illustrates how you could use the default-principal-name element to configure
a single default principal security identity for performing all resource adapter tasks.

Example 8-4 Configuring a Single Default Principal Identity for a Resource Adapter

<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector">
 <jndi-name>900blackbox-notx</jndi-name>
 <security>
 <default-principal-name>
 <principal-name>system</principal-name>
 </default-principal-name>
 </security>
</weblogic-connector>

Chapter 8
Configuring Security Identities for Resource Adapters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 12

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

For more information on setting security identity properties, see security.

default-principal-name: Default Identity
You can define a single security identity that can be used for all resource adapter purposes
using the default-principal-name element. If values are not specified for run-as-principal-
name, manage-as-principal-name, and run-work-as-principal-name, they default to the
value set for default-principal-name.

The value of default-principal-name can be set to a defined WebLogic Server user name
such as system or to use an anonymous identity (which is the equivalent of having no security
identity) as shown inExample 8-5

For example, you can create a single security identity that makes all calls from WebLogic
Server into the resource adapter and manages all resource adapter management tasks with a
default system identity as shown in Example 8-6:

Example 8-5 Using a Defined WebLogic Server Name

<security>
 <default-principal-name>
 <principal-name>system</principal-name>
 </default-principal-name>
</security>

You can set the default-principal-name element to anonymous as follows:

Example 8-6 Setting Up an Anonymous Identity

<security>
 <default-principal-name>
 <use-anonymous-identity>true</use-anonymous-identity>
 </default-principal-name>
</security>

manage-as-principal-name: Identity for Running Management Tasks
You can define a management identity that is used for running various resource adapter
management tasks such as startup, shutdown, testing, shrinking, and transaction management
using the manage-as-principal-name element.

As with default-principal-name, the value of manage-as-principal-name can be set to a
defined WebLogic Server user name such as system or to use an anonymous identity (which is
the equivalent of having no security identity). If you do not set up a value for the manage-as-
principal-name element, it defaults to the value set up for default-principal-name. If no
value is set up for default-principal-name, it defaults to the anonymous identity.

Example 8-7 illustrates how you can configure a resource adapter to run management calls
using the WebLogic Server-defined user name system.

Example 8-7 Using a Defined WebLogic Server Name

<security>
 <manage-as-principal-name>
 <principal-name>system</principal-name>
 </manage-as-principal-name>
</security>

Example 8-8 illustrates how you can configure a resource adapter to run management calls
using an anonymous identity.

Chapter 8
Configuring Security Identities for Resource Adapters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 12

Example 8-8 Setting Up an Anonymous Identity

<security>
 <manage-as-principal-name>
 <use-anonymous-identity>true</use-anonymous-identity>
 </manage-as-principal-name>
</security>

run-as-principal-name: Identity Used for Connection Calls from the
Connector Container into the Resource Adapter

You define the principal name that should be used by all calls from the connector container into
the resource adapter code during connection requests in the run-as-principal-name element.
This principal name is used, for example, when resource adapter objects such as the
ManagedConnectionFactory are instantiated - in other words, when the WebLogic Server
connector container makes calls to the resource adapter, the identity defined in the run-as-
principal-name element is used. This may include calls as part of either inbound or outbound
requests or setup, or as part of initialization not specific to either inbound or outbound resource
adapters (for example, ResourceAdapter.start()).

The value of the run-as-principal-name element can be set in one of three ways:

• To a defined WebLogic Server name

• To use an anonymous identity

• To use the security identity of the calling code.

If the value of the run-as-principal-name element is not defined, it defaults to the value of the
default-principal-name element. If the default-principal-name element is not defined, it
defaults to the identity of the requesting caller.

run-work-as-principal-name: Identity Used for Performing Resource Adapter
Management Tasks

For inbound resource adapters, Oracle recommends that you use Work instances to execute
inbound requests. To establish the security identity for Work instances launched by a resource
adapter, you specify this value using the run-work-as-principal-name element. However,
Work instances can also be created as part of outbound resource adapters to execute
outbound requests. If an adapter does not use Work instances to handle inbound requests,
then inbound requests are either run with no security context established (anonymous) or the
resource adapter can make WebLogic Server-specific calls to authenticate as a WebLogic
Server user. In this case, the WebLogic Server user security context is used.

The value of the run-work-as-principal-name element can be set in one of three ways:

• To a defined WebLogic Server name

• To use an anonymous identity

• To use the security identity of the calling code

If the value of the run-work-as-principal-name element is not defined, it defaults to the value
of the default-principal-name element. If the default-principal-name element is not
defined, it defaults to the identity of the requesting caller.

To run work using the requesting caller's identity, you specify the run-work-as-principal-
name element as shown in Example 8-9:

Chapter 8
Configuring Security Identities for Resource Adapters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 12

Example 8-9 Using the Requesting Caller's Identity

<security>
 <run-work-as-principal-name>
 <use-caller-identity>true</use-caller-identity>
 </run-work-as-principal-name>
</security>

Configuring Connection Factory-Specific Authentication and Re-
authentication Mechanisms

You specify authentication and re-authentication mechanisms for a resource adapter in the
Jakarta EE standard resource adapter deployment descriptor, ra.xml. These settings apply to
all outbound connection factories.

• The authentication-mechanism element specifies an authentication mechanism to be
used by all outbound connection factories.

• The reauthentication-support element specifies whether outbound connection factories
support re-authentication of existing Managed-Connection instances. This is intended to be
the default value for all connection factories of the resource adapter.

You can override the authentication-mechanism and reauthentication-support values in
the ra.xml deployment descriptor by specifying them in the weblogic-ra.xml deployment
descriptor. Doing so allows you to apply these settings to a specific connection factory rather
than to all connection factories. See authentication-mechanism and reauthentication-support in
Table A-18.

Chapter 8
Configuring Connection Factory-Specific Authentication and Re-authentication Mechanisms

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 12 of 12

9
Packaging and Deploying Resource Adapters

To deploy a WebLogic resource adapter, you first package it in a resource adapter archive
(RAR) file, and them deploy it in either an exploded directory format or as an archive file. There
are requirements for creating the RAR file depending on several factors, such as whether the
resource adapter is deployed standalone or with a Jakarta EE application EAR, and also
considerations regarding how you want to deploy it.

Deploying applications on WebLogic Server is covered in more detail in Deploying and
Packaging from a Split Development Directory in Developing Applications for Oracle WebLogic
Server.

Packaging Resource Adapters
For production and development purposes, Oracle recommends packaging your assembled
resource adapter (RAR) as part of an enterprise application (EAR). There are several factors to
consider when packaging resources adapters, such as the packaging directory structure,
dependencies on platform-specific native libraries, and more.

Packaging Directory Structure
A resource adapter is a WebLogic Server component contained in a resource adapter archive
(RAR) within the applications/ directory. The deployment process begins with the RAR or a
deployment directory, both of which contain the compiled resource adapter interfaces and
implementation classes created by the resource adapter provider. Regardless of whether the
compiled classes are stored in a RAR or a deployment directory, they must reside in
subdirectories that match their Java package structures.

Resource adapters use the same directory format, whether the resource adapter is packaged
in an exploded directory format or as a RAR. A typical directory structure of a resource adapter
is shown in Example 9-1:

Example 9-1 Resource Adapter Directory Structure

/META-INF/ra.xml
/META-INF/weblogic-ra.xml
/META-INF/MANIFEST.MF (optional)
/images/ra.jpg
/readme.html
/eis.jar
/utilities.jar
/windows.dll
/unix.so

Packaging Considerations
The following are packaging requirements for resource adapters:

• Deployment descriptors (ra.xml and weblogic-ra.xml) must be in a directory called META-
INF.

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 6

• An optional MANIFEST.MF also resides in META-INF. A manifest file is automatically
generated by the JAR tool and is always the first entry in the JAR file. By default, it is
named META-INF/MANIFEST.MF. The manifest file is the place where any meta-information
about the archive is stored.

• A resource adapter deployed in WebLogic Server supports the class-path entry in
MANIFEST.MF to reference a class or resource such as a property.

• The resource adapter can contain multiple JARs that contain the Java classes and
interfaces used by the resource adapter. (For example, eis.jar and utilities.jar.)
Ensure that any dependencies of a resource adapter on platform-specific native libraries
are resolved.

• The resource adapter can contain native libraries required by the resource adapter for
interacting with the EIS. (For example, windows.dll and unix.so.)

• The resource adapter can include documentation and related files not directly used by the
resource adapter. (For example, readme.html and /images/ra.jpg.)

• When a standalone resource adapter RAR is deployed, the resource adapter must be
made available to all Jakarta EE applications in the application server.

• When a resource adapter RAR packaged within a Jakarta EE application EAR is deployed,
the resource adapter must be made available only to the Jakarta EE application with which
it is packaged. This specification-compliant behavior may be overridden if required.

Packaging Limitation
If you reload a standalone resource adapter without reloading the client that is using it, the
client may cease to function properly. This limitation is due to JSR 322: Java EE Connector
Architecture 1.6 limitation of not providing a remotable interface.

Packaging Resource Adapter Archives (RARs)
After you stage one or more resource adapters in a directory, you package them in a Java
Archive (JAR) with a .rar file extension.

Note

Once you have assembled the resource adapter, Oracle recommends that you
package it as part of an enterprise application. This allows you to take advantage of
the split development directory structure, which provides a number of benefits over the
traditional single directory structure. See Creating a Split Development Directory
Environment in Developing Applications for Oracle WebLogic Server.

To stage and package a resource adapter:

1. Create a temporary staging directory anywhere on your hard drive.

2. Compile or copy the resource adapter Java classes into the staging directory.

3. Create a JAR to store the resource adapter Java classes. Add this JAR to the top level of
the staging directory.

4. Create a META-INF subdirectory in the staging directory.

5. Create an ra.xml deployment descriptor in the META-INF subdirectory and add entries for
the resource adapter.

Chapter 9
Packaging Resource Adapters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 6

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Note

Refer to the following document for information about the ra.xml document type
definition: http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/
connector_1_7.xsd.

6. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory and add
entries for the resource adapter.

Note

Refer to weblogic-ra.xml Schema for information on the contents of the weblogic-
ra.xml file.

7. When the resource adapter classes and deployment descriptors are set up in the staging
directory, you can create the RAR with a JAR command such as:

jar cvf jar-file.rar -C staging-dir

This command creates a RAR that you can deploy on a WebLogic Server or package in an
enterprise application archive (EAR).

The -C staging-dir option instructs the JAR command to change to the staging-dir
directory so that the directory paths recorded in the JAR are relative to the directory where
you staged the resource adapters.

For more information on this topic, see Creating and Configuring Resource Adapters: Main
Steps.

Deploying Resource Adapters
The deployment of a resource adapter is similar to the deployment of web applications, EJBs,
and Enterprise Applications. As with these deployment units, you can deploy a resource
adapter in an exploded directory format or as an archive file. WebLogic Server also provides a
number of deployment options to choose from, including whether to use the production
redeployment feature, which allows you to redeploy a new version of an application alongside
an older version of the same application and thereby eliminate downtime.

Deployment Options
You can deploy a standalone resource adapter (or a resource adapter packaged as part of an
enterprise application) using any one of these tools:

• WebLogic Remote Console

• weblogic.Deployer tool

• wldeploy Ant task

• WebLogic Scripting Tool (WLST)

For information about these application deployment techniques, see Deploying Applications
and Modules with weblogic.deployer in Deploying Applications to Oracle WebLogic Server.

Chapter 9
Deploying Resource Adapters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 6

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_7.xsd

You can use a deployment plan to deploy a resource adapter deployment. For a resource
adapter, a WebLogic Server deployment plan is an optional XML document that resides
outside of the RAR and configures the resource adapter for deployment to a specific WebLogic
Server environment. A deployment plan works by setting deployment property values that
would normally be defined in the resource adapter's deployment descriptors, or by overriding
property values that are already defined in the deployment descriptors. For information on
deployment plans, see Configuring Applications for Production Deployment in Deploying
Applications to Oracle WebLogic Server.

You can also deploy a resource adapter using auto-deployment. This may be useful during
development and early testing. For more information, see Auto-Deploying Applications in
Development Domains in Deploying Applications to Oracle WebLogic Server

Resource Adapter Deployment Names
When you deploy a resource adapter archive (RAR) or deployment directory, you must specify
a name for the deployment unit, for example, myResourceAdapter. This name provides a
shorthand reference to the resource adapter deployment that you can later use to undeploy or
update the resource adapter.

When you deploy a resource adapter, WebLogic Server implicitly assigns a deployment name
that matches the path and filename of the RAR or deployment directory. You can use this
assigned name to undeploy or update the resource adapter after the server has started.

The resource adapter deployment name remains active in WebLogic Server until the server is
rebooted. Undeploying a resource adapter does not remove the associated deployment name;
you can use the same deployment name to redeploy the resource adapter at a later time.

Production Redeployment
Using WebLogic Server's production redeployment feature, you can redeploy a new version of
a WebLogic Server application alongside an older version of the same application. By default,
WebLogic Server immediately routes new client requests to the new version of the application,
while routing existing client connections to the older version. After all clients using the older
application version complete their work, WebLogic Server retires the older application so that
only the new application version is active.

Suspendable Interface and Production Redeployment
Typically, a resource adapter bean implements the javax.resource.spi.ResourceAdapter
interface. This interface defines start() and stop() methods. This type of resource adapter is
not eligible for production redeployment. Resource adapters connect to one or more EISes for
incoming/outgoing communication. All communication is performed in a resource adapter-
proprietary way with no knowledge of the application server. If on-the-fly production
redeployment is attempted, the application server can only provide notifications to the resource
adapter to manage the migration of connections from the existing resource adapter to a new
instance. However, the resource adapter can implement the Suspendable interface, which
provides the capability to allow resource adapters to participate in production redeployment.
For information about implementing the Suspendable interface, see Suspending and Resuming
Resource Adapter Activity.

Production Redeployment Requirements
All of the following requirements must be met by both the old and new version of the resource
adapter in order for production redeployment to work; otherwise, the redeployment fails.

Chapter 9
Deploying Resource Adapters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 6

• The resource adapter must be based on Connector Architecture 1.7. (Support for
production redeployment of 1.0 resource adapters is not available.)

• The resource adapter must implement the Suspendable interface (see Example 3-3).

• The resource adapter must be packaged inside an enterprise application (EAR file).
Production redeployment of standalone resource adapters is not supported.

• The Suspendable.supportsVersioning() method must return true when invoked by
WebLogic Server.

• The enable-access-outside-app element in the weblogic-ra.xml descriptor must be set
to false.

Production Redeployment Process
The following process assumes the older version of the resource adapter is deployed and
running. It also assumes that the older version (named old) as well as the newer version
(named new) of the resource adapter meet all of the requirements mentioned in Production
Redeployment Requirements, as well as the application requirements described in
Redeploying Applications in a Production Environment in Deploying Applications to Oracle
WebLogic Server.

The following calls are made into the resource adapters during production redeployment:

1. WebLogic Server calls new.init(old, null) to inform the new resource adapter that it is
replacing the old resource adapter.

2. WebLogic Server calls old.startVersioning(new, null) to inform the old resource
adapter to start its production redeployment operation with the new resource adapter.

3. WebLogic Server calls new.start(extendedBootstrapContext). See Extended
BootstrapContext.

4. When the old resource adapter is finished (meaning it has succeeded in migrating all
clients and inbound connections to the new resource adapter), it calls
(ExtendedBootstrapContext)bsCtx.complete(). This informs WebLogic Server that it is
safe to undeploy the old resource adapter.

5. When undeployment occurs, WebLogic Server calls old.stop() and production
redeployment is complete.

The calls to new.init() and old.startVersioning() give the old and new resource adapters
an opportunity to migrate inbound or outbound communications from the old to the new
resource adapter. How this is done is up to the individual resource adapter developer.

Deploying a Resource Adapter Configured with Multiple Outbound
Connection Pools

By default, when deploying a resource adapter that is configured with multiple outbound
connection pools, the adapter deployment fails if a failure occurs in any connection pool.
However, a deployment option is available that enables deployment to succeed, with the failed
connection pools isolated from the healthy ones. This enables you to isolate, diagnose, and
repair the failed connection pools and dynamically update the deployment without the need to
redeploy the whole adapter.

To configure resource adapter deployment to succeed if a failure occurs with an outbound
connection pool, you can do either of the following:

Chapter 9
Deploying Resource Adapters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 6

• Using the WebLogic Remote Console, make sure the Deploy As A Whole flag is not
checked.

• Set the deploy-as-a-whole element in the weblogic-ra.xml file to false.

Chapter 9
Deploying Resource Adapters

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 6

A
weblogic-ra.xml Schema

You can configure WebLogic Server-specific deployment descriptor elements inside the
weblogic-ra.xml file. The schema for weblogic-ra.xml is http://xmlns.oracle.com/
weblogic/weblogic-connector/1.5/weblogic-connector.xsd. If your resource adapter
archive (RAR) does not contain a weblogic-ra.xml deployment descriptor, WebLogic Server
automatically selects the default values of the deployment descriptor elements.

weblogic-connector
The weblogic-connector element is the root element of the WebLogic-specific deployment
descriptor for the deployed resource adapter. You can define the following elements within the
weblogic-connector element.

Table A-1 weblogic-connector subelements

Element Required/Optional Description

native-libdir Required if native
libraries are present.

Specifies the directory where all the native libraries exist that
are required by the resource adapter.

jndi-name Required only if a
resource adapter bean
is specified.

Specifies the JNDI name for the resource adapter. The
resource adapter bean is registered into the JNDI tree with
this name. It is not a required element if no resource adapter
bean is specified. It is not a functional element if a JNDI
name is specified for a resource adapter without a resource
adapter bean.

enable-access-outside-app Optional As stated byJSR 322: Java EE Connector Architecture 1.6 , if
the resource adapter is packaged within an application (in
other words, within an EAR), only components within the
application should have access to the resource adapter. This
element allows you to override this functionality.

Note: This element does not apply for standalone resource
adapters.

Default Value: false

Note: When set to false, the resource adapter can only be
accessed by clients that reside within the same application in
which the resource adapter resides.

For version 1.0 resource adapters (supported in this release),
the default value for this element is set to true.

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-1 of A-19

http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Table A-1 (Cont.) weblogic-connector subelements

Element Required/Optional Description

enable-global-access-to-
classes

Optional When set to true, the resource adapter allows global access
to its classes, and the adapter's classes are loaded by the
WebLogic Server system classpath classloader directly so
that these classes can be accessed by all applications.

When set to true, the EE compliant setting of resource
adapter in the domain configuration is ignored. See About
Resource Adapter Classes in Developing Applications for
Oracle WebLogic Server.

The default value is false, in which case the adapter's
classes are loaded by a classloader that is a child of the
EAR's application classloader.

This value normally should be set to true for standalone
adapters.

When set to true, you must restart WebLogic Server if you
change the adapter's classes and want to redeploy the
adapter.

deploy-as-a-whole Optional When set to true, the resource adapter deployment fails if
any error occurs, such as a failure with an outbound
connection pool or an admin object bean.

When set to false, the resource adapter deployment
succeeds, but in a HEALTH_CRITICAL state, if an error
occurs when creating or configuring at least one outbound
connection pool. This setting enables you to isolate,
diagnose, and correct a failed outbound connection pool
without needing to redeploy the resource adapter. If any
other error occurs during deployment, such as the inability to
parse or validate the ra.xml or weblogic-ra.xml files, a
ResourceAdapter bean failure, or an admin object bean
failure, the resource adapter deployment fails.

Default value: true

work-manager Optional This complex element is used to specify all the configurable
elements for creating the Work Manager that will be used by
the resource adapter bean. The work-manager element is
imported from the weblogic-javaee.xsd schema.

The Work Manager dynamically adjusts the number of work
threads to avoid deadlocks and achieve optimal throughput
subject to concurrency constraints. It also meets objectives
for response time goals, shares, and priorities.

For subelements of work-manager, see work-manager .

connector-work-manager Optional This complex element is used to specify all the configurable
elements for the Connector Work Manager for this adapter
module itself.

This element provides configurations that are not supported
by the standard Work Manager.

For subelements of connector-work-manager, see
connector-work-manager .

security Optional This complex element is used to specify all the security
parameters for the operation of the resource adapter.

See security, for information on the security defaults that will
be taken by the connector container.

Appendix A
weblogic-connector

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-2 of A-19

Table A-1 (Cont.) weblogic-connector subelements

Element Required/Optional Description

properties Optional This complex element is used to override any properties that
have been specified for the resource adapter bean in the
ra.xml file.

For subelements of properties, see properties.

admin-objects Optional This complex element defines all of the admin objects in a
resource adapter. As with the outbound-resource-
adapter complex element (see outbound-resource-adapter),
the admin-objects complex element has four hierarchical
property levels that specify the configuration scope:

1. Global level — at this level, you specify parameters that
apply to all admin objects in the resource adapter; you
do so using the default-properties element. See
Table A-14.

2. Group level — at this level, you specify parameters that
apply to all admin objects belonging to a particular
admin object group specified in the ra.xml deployment
descriptor; you do so using the admin-object-group
element. The properties specified in the group override
any parameters that are specified at the global level.
See admin-object-group.

3. Instance level — under each admin object group, you
can use the admin-object-instance element to
specify admin object instances. These correspond to the
admin object instances for the resource adapter. You can
specify properties at the instance level and override
those properties provided in the group and global levels.
See admin-object-instance.

For admin-objects subelements, see admin-objects .

Appendix A
weblogic-connector

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-3 of A-19

Table A-1 (Cont.) weblogic-connector subelements

Element Required/Optional Description

outbound-resource-adapter Optional This complex element is used to describe the outbound
components of a resource adapter. As with the admin-objects
complex element, this element has three hierarchical
property levels that specify the configuration scope for
defining outbound connection pools:

1. Global level — at this level, you specify parameters that
apply to all outbound connection pools in the resource
adapter using the default-connection-properties
element. See default-connection-properties .

2. Group level — at this level, you specify parameters that
apply to all outbound connections belonging to a
particular connection factory specified in the ra.xml
deployment descriptor using the connection-
definition-group element. A one-to-one
correspondence exists from a connection factory in
ra.xml to a connection definition group in weblogic-
ra.xml. The properties specified in a group override
any parameters specified at the global level. See
connection-definition-group.

3. The instance level — under each connection definition
group, you can specify connection instances. These
correspond to the individual connection pools for the
resource adapter. Parameters can be specified at this
level too and these override those provided at the group
and global levels. See connection-instance.

For outbound-resource-adapter subelements, see
outbound-resource-adapter .

work-manager
The work-manager element is a complex element that is used to specify all the configurable
elements for creating the Work Manager that will be used by the resource adapter bean. The
work-manager element is imported from the weblogic-javaee.xsd schema. The following
subelements can be configured in the work-manager element.

Table A-2 work-manager subelements

Element Required/
Optional

Description

name Required Specifies the name of the Work Manager.

JSR 322: Java EE Connector Architecture 1.6
describes how a resource adapter can submit work
threads to the application server. These work
threads are managed by the WebLogic Server
Work Manager. The Work Manager dynamically
adjusts the number of work threads to avoid
deadlocks and achieve optimal throughput subject
to concurrency constraints. It also meets objectives
for response time goals, shares, and priorities.

Appendix A
work-manager

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-4 of A-19

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Table A-2 (Cont.) work-manager subelements

Element Required/
Optional

Description

response-time-request-
class
fair-share-request-class
context-request-class
request-class-name

Optional A work-manager element can include one and
only one of the following four elements:

response-time-request-class - Defines the
response time request class for the application.
Response time is defined with attribute goal-ms in
milliseconds. The increment is ((goal - T) Cr)/R,
where T is the average thread use time, R the
arrival rate, and Cr a coefficient to prioritize
response time goals over fair shares.

fair-share-request-class - Defines the fair
share request class. Fair share is defined with
attribute percentage of default share. Therefore, the
default is 100. The increment is Cf/(P R T), where
P is the percentage, R the arrival rate, T the
average thread use time, and Cf a coefficient for
fair shares to prioritize them lower than response
time goals.

context-request-class - Defines the context
class. Context is defined with multiple cases
mapping contextual information, like current user or
its role, cookie, or work area fields to named
service classes.

request-class-name - Defines the request class
name.

min-threads-constraint
min-threads-constraint-
name

Optional You can choose between the following two
elements:

min-threads-constraint - Used to guarantee a
number of threads the server allocates to requests
of the constrained work set to avoid deadlocks. The
default is zero. A min-threads value of one is
useful, for example, for a replication update
request, which is called synchronously from a peer.

min-threads-constraint-name - Defines a
name for the min-threads-constraint element.

max-threads-constraint
max-threads-constraint-
name

Optional You can choose between the following two
elements:

max-threads-constraint - Limits the number of
concurrent threads executing requests from the
constrained work set. The default is unlimited. For
example, consider a constraint defined with
maximum threads of 10 and shared by 3 entry
points. The scheduling logic ensures that not more
than 10 threads are executing requests from the
three entry points combined.

max-threads-constraint-name - Defines a
name for the max-threads-constraint element.

Appendix A
work-manager

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-5 of A-19

Table A-2 (Cont.) work-manager subelements

Element Required/
Optional

Description

capacity
capacity-name

Optional You can choose between the following two
elements:

capacity - Constraints can be defined and applied
to sets of entry points, called constrained work
sets. The server starts rejecting requests only
when the capacity is reached. The default is zero.
Note that the capacity includes all requests,
queued or executing, from the constrained work
set. This constraint is primarily intended for
subsystems like JMS, which do their own flow
control. This constraint is independent of the global
queue threshold.

capacity-name - Defines a name for the
capacity element.

connector-work-manager
The connector-work-manager element is a complex element that is used to specify all the
configurable elements for the Connector Work Manager for the resource adapter module. This
element provides configurations that are not supported by the standard WebLogic Work
Manager. The following subelement can be configured in the connector-work-manager
element.

Table A-3 connector-work-manager subelement

Element Required/
Optional

Description

max-concurrent-long-running-
requests

Optional Specifies the maximum number of concurrent long-running Work
instance requests allowed for a resource adapter instance.

Because each long-running Work instance request executes in its
own thread, an excessive number of long-running Work requests
can have a negative affect on server performance and stability. A
resource adapter typically needs only a few long-running Work
requests, such as periodically listening to a socket or scheduling
other Work instances. New long-running Work request submissions
are rejected if the number of currently active long-running Work
requests exceeds the specified limit.

Default value: 10

security
The security complex element contains default security information that can be configured for
the connector container. For more information, see Configuring Security Identities for Resource
Adapters.

Appendix A
connector-work-manager

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-6 of A-19

Table A-4 security subelements

Element Required/
Optional

Description

default-principal-name Optional Specifies the default secure ID to be used for calls into the resource
adapter.

If this value is not specified, the default is the anonymous identity,
which is the same as no security identity.

See default-principal-name for subelements of this element.

manage-as-principal-name Optional Specifies the secure ID to be used for running various resource
adapter management tasks, including startup, shutdown, testing,
shrinking, and transaction management.

If not specified, it defaults to the default-principal-name value.
If default-principal-name is not specified, it defaults to the
anonymous identity.

See manage-as-principal-name for subelements of this element.

run-as-principal-name Optional Specifies the secure ID to be used by all calls from the connector
container into the resource adapter code during connection
requests. (This element currently applies only to outbound
functions.)

If not specified, it defaults to the default-principal-name value.
If default-principal-name is not specified, it uses the identity
of the requesting caller.

See run-as-principal-name for subelements of this element.

run-work-as-principal-name Optional Specifies the secure ID to be used to run all work instances started
by the resource adapter.

If not specified, it defaults to the default-principal-name value.
If default-principal-name is not specified, it uses the identity
that was used to start the work.

See run-work-as-principal-name for subelements of this element.

Appendix A
security

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-7 of A-19

Table A-4 (Cont.) security subelements

Element Required/
Optional

Description

security-work-context Optional This complex element specifies all security contextual parameters
of the WorkContext.

Two choices related to establishing the caller identity for a work
instance are described in JSR 322: Java EE Connector
Architecture 1.6:

• Case 1: The resource adapter flows an identity into the
application server's security policy domain. In this case, the
application server may just use the initiating principal, flown-in
from the resource adapter, as the caller principal in the security
context that the Work instance executes as.

• Case 2: The resource adapter flows in an identity belonging to
the EIS security domain. The resource adapter establishes a
connection to the EIS and executes a Work instance in the
context of an EIS identity. In this case, the initiating or caller
principal does not exist in the application server's security
domain. A translation from one domain to the other is required
to be performed. That is, the user or group name in the EIS
security domain is mapped to a corresponding user or group
name in the application server's security domain. If no such a
user or group mapping is found, the default mapping is applied.

The element inbound-mapping-required specifies whether the
flown in identity translation from the EIS security domain to the
application server's security domain is required.

See security-work-context, for subelements of this element.

default-principal-name
The default-principal-name element contains the following subelements.

Table A-5 default-principal-name subelements

Element Required/
Optional

Description

use-anonymous-identity Required Specifies that the anonymous identity should be used.

principal-name Required Specifies that the principal name should be used. This
should match a defined WebLogic Server user name.

manage-as-principal-name
The manage-as-principal-name element contains the following subelements.

Table A-6 manage-as-principal-name subelements

Element Required/
Optional

Description

use-anonymous-identity Required Specifies that the anonymous identity should be used.

Appendix A
security

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-8 of A-19

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Table A-6 (Cont.) manage-as-principal-name subelements

Element Required/
Optional

Description

principal-name Required Specifies that the principal name should be used. This
should match a defined WebLogic Server user name.

run-as-principal-name
The run-as-principal-name element contains the following subelements.

Table A-7 run-as-principal-name subelements

Element Required/
Optional

Description

use-anonymous-identity Required Specifies that the anonymous identity should be used.

principal-name Required Specifies that the principal name should be used. This
should match a defined WebLogic Server user name.

use-caller-identity Required Specifies that the caller's identity should be used.

run-work-as-principal-name
The run-work-as-principal-name element contains the following subelements.

Table A-8 run-work-as-principal-name subelements

Element Required/
Optional

Description

use-anonymous-identity Required Specifies that the anonymous identity should be used.

principal-name Required Specifies that the principal name should be used. This
should match a defined WebLogic Server user name.

use-caller-identity Required Specifies that the caller's identity should be used.

security-work-context
The security-work-context element contains the following subelements.

Appendix A
security

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-9 of A-19

Table A-9 security-work-context subelements

Element Required/
Optional

Description

inbound-mapping-required Optional The default value is false, which means Case 1. All caller-
principal-mapping and group-principal-mapping
subelements are ignored.

If set to true, it means Case 2. All caller-principal-mapping
and group-principal-mapping elements are used to determine
the correct mapping from the EIS security domain to the WebLogic
domain.

Default value: false

caller-principal-default-
mapped

Optional Specifies the default mapping for EIS user names to either a
specific WebLogic user name or the WebLogic user anonymous.

That is, if no WebLogic user name is found for an EIS user, this
default mapping is used. See caller-principal-default-mapped, for
subelements of this element.

caller-principal-mapping Optional Specifies the mapping of an EIS user name to either a specific
WebLogic user name or the WebLogic anonymous identity. There
may be zero or more caller-principal-mapping elements
specified in weblogic-ra.xml.

See caller-principal-mapping, for subelements of this element.

group-principal-default-
mapped

Optional Specifies the default mapping for EIS group names to a specific
WebLogic group name.

That is, if no WebLogic group name is found for an EIS group, this
default mapping is used.

group-principal-mapping Optional Specifies the mapping of an EIS group name to specific WebLogic
group name. There may be zero or more group-principal-
mapping elements specified in weblogic-ra.xml.

See group-principal-mapping, for subelements of this mapping.

caller-principal-default-mapped
The caller-principal-default-mapped element contains the following subelements.

Table A-10 caller-principal-default-mapped subelements

Element Required/
Optional

Description

use-anonymous-identity Required Specifies that the WebLogic anonymous user identity
should be used. Note that you can choose either use-
anonymous-identity or principal-name, but not
both.

principal-name Required Specifies that the principal name should be used. This
should match a WebLogic user name defined in the
WebLogic security realm.

caller-principal-mapping
The caller-principal-mapping complex element is used to specify a mapping from an EIS
group name to WebLogic group name. It contains the following subelements.

Appendix A
security

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-10 of A-19

Table A-11 caller-principal-mapping subelements

Element Required/
Optional

Description

eis-caller-principal Required Specifies an EIS user principal name.

mapped-caller-principal Required Specifies either the mapped WebLogic user principal
name or the anonymous user identity (but not both).

group-principal-mapping
The group-principal-mapping element contains the following subelements.

Table A-12 group-principal-mapping subelements

Element Required/
Optional

Description

eis-group-principal Required Specifies an EIS group principal name.

mapped-group-principal Required Specifies the mapped WebLogic group principal name.

properties
The properties element, a subelement of weblogic-connector, is a container for properties
specified for the resource adapter bean in ra.xml. It holds one more or more property
elements.

You define property elements within the properties element as follows.

Table A-13 properties subelements

Element Required/
Optional

Description

property Required The property element is used to override a property
that has been specified for the resource adapter bean in
the ra.xml file.

It holds two subelements:

name - Specifies the same name as the config-
property-name element (a subelement of config-
property in the ra.xml deployment descriptor). Setting
this parameter causes the associated config-
property-value element in ra.xml to be overridden.
This is a required element.

value - Specifies the value that overrides config-
property-value element (a subelement of config-
property in the ra.xml deployment descriptor). This is
an optional element.

Appendix A
properties

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-11 of A-19

admin-objects
The admin-objects complex element defines all of the admin objects in the resource adapter.
As with the outbound-resource-adapter complex element, the admin-objects complex element
has three hierarchical property levels that you can specify.
The admin-objects element is a sub-element of the weblogic-connector element. You can
define the following elements within the admin-objects element.

Table A-14 admin-objects subelements

Element Required/
Optional

Description

default-properties Optional Specifies the default properties that apply to all admin
objects (at the global level) in the resource adapter.

The default-properties element can contain one or
more property elements, each holding a name and
value pair. See properties .

admin-object-group One or more Specifies the default parameters that apply to all admin
objects belonging to a particular admin object group
specified in the ra.xml deployment descriptor. The
properties specified in the group override any
parameters that are specified at the global level.

For admin-object-group subelements, see admin-
object-group .

admin-object-group
The admin-object-group element is used to define an admin object group. At the group level,
you specify parameters that apply to all admin objects belonging to a particular admin object
group specified in the ra.xml deployment descriptor. The properties specified in the group
override any parameters that are specified at the global level.

The admin-object-interface element (a subelement of the admin-object-group element)
serves as a required unique element (a key) to each admin-object-group. There must be a
one-to-one relationship between the weblogic-ra.xml admin-object-interface element and
the ra.xml adminobject-interface element.

The admin-object-group element is a sub-element of the weblogic-connector element. You
can define the following elements within the admin-object-group element

Table A-15 admin-object-group

Element Required/
Optional

Description

admin-object-interface Required The admin-object-interface element serves as a
required unique element (a key) to each admin-
object-group. There must be a one-to-one
relationship between the weblogic-ra.xml admin-
object-interface element and the ra.xml
adminobject-interface element.

Appendix A
admin-objects

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-12 of A-19

Table A-15 (Cont.) admin-object-group

Element Required/
Optional

Description

admin-object-class Required in
1.6 adapters

The combination of the admin-object-interface
element and the admin-object-class element serves
as a required unique element (a key) to each admin-
object-group. There must be a one-to-one
relationship between the following two pairs:

• The admin-object-interface and admin-
object-class element pair defined in weblogic-
ra.xml

• admin-object-interface and admin-object-
class element pair defined in ra.xml

default-properties Optional Specifies all the default properties that apply to all admin
objects in this admin object group.

The default-properties element can contain one or
more property elements, each holding a name and
value pair. See properties.

admin-object-instance One or more Specifies one or more admin object instances within the
admin object group, corresponding to the admin object
instances for the resource adapter. You can specify
properties at the instance level and override those
provided in the group and global levels. For
subelements, see admin-object-instance.

admin-object-instance
You can define the following subelements under admin-object-instance.

Table A-16 admin-object-instance subelements

Element Required/
Optional

Description

jndi-name Required The JNDI name used to define the reference name for
the connection instance.

The connection pool is bound into a JNDI that clients
outside the application can see.

Note: The enable-access-outside-app element must be
set to true.

properties Optional Defines all the properties that apply to the admin object
instance.

The properties element can contain one or more
property elements, each holding a name and value
pair. See properties.

outbound-resource-adapter
The outbound-resource-adapter element is a sub-element of the weblogic-connector
element. You can define the following elements within the outbound-resource-adapter
element.

Appendix A
outbound-resource-adapter

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-13 of A-19

Table A-17 outbound-resource-adapter subelements

Element Required/
Optional

Description

default-connection-
properties

Optional This complex element is used to specify the properties
at an global level. At this level, the user is able to specify
parameters that apply to all outbound connection pools
in the resource adapter.

For subelements, see default-connection-properties.

connection-definition-
group

One or more This element is used to specify all the connection
definition groups. There must be a one-to-one
correspondence relationship between the connection
factories in the ra.xml deployment descriptor and the
groups in the weblogic-ra.xml deployment descriptor.
A group does not have to exist in the weblogic-ra.xml
deployment descriptor for every connection factory in
ra.xml. However, if a group exists, there must be at
least one connection instance in the group.

The properties specified in the group override any
parameters that are specified at the global level using
default-connection-properties.

For subelements, see connection-definition-group.

default-connection-properties
The default-connection-properties element is a sub-element of the outbound-resource-
adapter element. You can define the following elements within the default-connection-
properties element.

Table A-18 default-connection-properties subelements

Element Required/
Optional

Description

pool-params Optional Serves as the root element for providing connection
pool-specific parameters for this connection factory.
WebLogic Server uses these specifications to control the
behavior of the maintained pool of
ManagedConnections.

This is an optional element. Failure to specify this
element or any of its specific element items results in
default values being assigned. Refer to the description of
each individual element for the designated default value.

For subelements, see pool-params.

logging Optional Contains parameters for configuring logging of the
ManagedConnectionFactory and
ManagedConnection objects of the resource adapter.

For subelements, see logging.

Appendix A
outbound-resource-adapter

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-14 of A-19

Table A-18 (Cont.) default-connection-properties subelements

Element Required/
Optional

Description

transaction-support Optional Specifies the level of transaction support for a particular
Connection Factory. It provides the ability to override the
transaction-support value specified in the ra.xml
deployment descriptor that is intended to be the default
value for all Connection Factories of the resource
adapter.

The value of transaction-support must be one of the
following:

NoTransaction
LocalTransaction
XATransaction

For related information, see Connection Management.

authentication-mechanism Optional The authentication-mechanism element specifies
an authentication mechanism supported by a particular
Connection Factory in the resource adapter. It provides
the ability to override the authentication-mechanism
value specified in the ra.xml deployment descriptor that
is intended to be the default value for all Connection
Factories of the resource adapter.

Note that BasicPassword mechanism type should
support the
javax.resource.spi.security.PasswordCredent
ial interface.

reauthentication-support Optional A Boolean that specifies whether a particular connection
factory supports re-authentication of an existing
ManagedConnection instance. It provides the ability to
override the reauthentication-support value
specified in the ra.xml deployment descriptor that is
intended to be the default value for all Connection
Factories of the resource adapter.

properties Optional The properties element includes one or more
property elements, which define name and value
subelements that apply to the default connections.

res-auth Optional Specifies whether to use container- or application-
managed security. The values for this element can be
one of Application or Container. The default value is
Container.

pool-params
The pool-params element is a sub-element of the default-connection-properties element.
You can define the following elements within the pool-params element.

Appendix A
outbound-resource-adapter

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-15 of A-19

Table A-19 pool-params subelements

Element Required/
Optional

Description

initial-capacity Optional Specifies the initial number of ManagedConnections, which
WebLogic Server attempts to create during deployment.

Default Value: 1

max-capacity Optional Specifies the maximum number of ManagedConnections, which
WebLogic Server will allow. Requests for newly allocated
ManagedConnections beyond this limit results in a
ResourceAllocationException being returned to the caller.

Default Value: 10

capacity-increment Optional Specifies the maximum number of additional ManagedConnections
that WebLogic Server attempts to create during resizing of the
maintained connection pool.

Default Value: 1

shrinking-enabled Optional Specifies whether unused ManagedConnections will be destroyed
and removed from the connection pool as a means to control
system resources.

Default Value: true

shrink-frequency-seconds Optional Specifies the amount of time (in seconds) the Connection Pool
Management waits between attempts to destroy unused
ManagedConnections.

Default Value: 900 seconds

highest-num-waiters Optional Specifies the maximum number of threads that can concurrently
block waiting to reserve a connection from the pool.

Default Value: 0

highest-num-unavailable Optional Specifies the maximum number of ManagedConnections in the
pool that can be made unavailable to the application for purposes
such as refreshing the connection.

Note that in cases like the backend system being unavailable, this
specified value could be exceeded due to factors outside the pool's
control.

Default Value: 0

connection-creation-retry-
frequency-seconds

Optional The periodicity of retry attempts by the pool to create connections.

Default Value: 0

connection-reserve-timeout-
seconds

Optional Sets the number of seconds after which the call to reserve a
connection from the pool will timeout.

Default Value: -1 (do not block when reserving resources)

test-frequency-seconds Optional The frequency with which connections in the pool are tested.

Default Value: 0

test-connections-on-create Optional Enables the testing of newly created connections.

Default Value: false

test-connections-on-release Optional Enables testing of connections when they are being released back
into the pool.

Default Value: false

test-connections-on-reserve Optional Enables testing of connections when they are being reserved.

Default Value: false

Appendix A
outbound-resource-adapter

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-16 of A-19

Table A-19 (Cont.) pool-params subelements

Element Required/
Optional

Description

profile-harvest-frequency-
seconds

Optional Specifies how frequently the profile for the connection pool is being
harvested.

ignore-in-use-connections-
enabled

Optional When the connection pool is being shut down, this element is used
to specify whether it is acceptable to ignore connections that are in
use at that time.

match-connections-supported Optional Indicates whether the resource adapter supports the
ManagedConnectionFactory.matchManagedConnections()
method. If the resource adapter does not support this method
(always returns null for this method), then WebLogic Server
bypasses this method call during a connection request.

Default Value: true

logging
The logging element is a sub-element of the default-connection-properties element. You
can define the following elements within the logging element.

Table A-20 logging subelements

Element Required/
Optional

Description

log-filename Optional Specifies the name of the log file from which output generated from
the ManagedConnectionFactory or a ManagedConnection is
sent.

The full address of the filename is required.

logging-enabled Optional Indicates whether or not the log writer is set for either the
ManagedConnectionFactory or ManagedConnection. If this
element is set to true, output generated from either the
ManagedConnectionFactory or ManagedConnection will be
sent to the file specified by the log-filename element.

Default Value: false

rotation-type Optional Sets the file rotation type.

Possible values are bySize, byTime, none

bySize - When the log file reaches the size that you specify in
file-size-limit, the server renames the file as FileName.n.

byTime - At each time interval that you specify in file-time-
span, the server renames the current log file. After the server
renames a file, subsequent messages accumulate in a new file with
the name that you specified in log-filename.

none - Messages accumulate in a single file. You must erase the
contents of the file if the log size becomes unwieldy.

Default Value: bySize

Appendix A
outbound-resource-adapter

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-17 of A-19

Table A-20 (Cont.) logging subelements

Element Required/
Optional

Description

number-of-files-limited Optional Specifies whether to limit the number of files that this server
instance creates to store old log messages. (Requires that you
specify a rotation-type of bySize or byTime). After the server
reaches this limit, it overwrites the oldest file. If you do not enable
this option, the server creates new files indefinitely and you must
clean up these files as you require.

If you enable number-of-files-limited by setting it to true, the
server refers to your rotationType variable to determine how to
rotate the log file. Rotate means that you override your existing file
instead of creating a new file. If you specify false for number-of-
files-limited, the server creates numerous log files rather than
overriding the same one.

Default Value: false

file-count Optional The maximum number of log files that the server creates when it
rotates the log. This number does not include the file that the server
uses to store current messages. (Requires that you enable
number-of-files-limited.)

Default Value: 7

file-size-limit Optional The size that triggers the server to move log messages to a
separate file. (Requires that you specify a rotation-type of bySize.)
After the log file reaches the specified minimum size, the next time
the server checks the file size, it will rename the current log file as
FileName.n and create a new one to store subsequent messages.

Default Value: 500

rotate-log-on-startup Optional Specifies whether a server rotates its log file during its startup
cycle.

Default Value: true

log-file-rotation-dir Optional Specifies the directory path where the rotated log files will be
stored.

rotation-time Optional The start time for a time-based rotation sequence of the log file, in
the format k:mm, where k is 1-24. (Requires that you specify a
rotation-type of byTime.) At the specified time, the server renames
the current log file. Thereafter, the server renames the log file at an
interval that you specify in file-time-span.

If the specified time has already past, then the server starts its file
rotation immediately.

By default, the rotation cycle begins immediately.

file-time-span Optional The interval (in hours) at which the server saves old log messages
to another file. (Requires that you specify a rotation-type of
byTime.)

Default Value: 24

connection-definition-group
The connection-definition-group element is used to define a connection definition group. At
the group level, you specify parameters that apply to all outbound connections belonging to a
particular connection factory specified in the ra.xml deployment descriptor using the
connection-definition-group element. A one-to-one correspondence exists from a

Appendix A
outbound-resource-adapter

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-18 of A-19

connection factory in ra.xml to a connection definition group in weblogic-ra.xml. The
properties specified in a group override any parameters specified at the global level.

The connection-factory-interface element (a subelement of the connection-definition-
group element) serves as a required unique element (a key) to each connection-definition-
group. There must be a one-to-one relationship between the weblogic-ra.xml connection-
definition-interface element and the ra.xml connectiondefinition-interface element.

The connection-definition-group element is a sub-element of the outbound-resource-
adapter element. You can define the following elements within the connection-definition-
group element.

Table A-21 connection-definition-group subelements

Element Description

connection-factory-
interface

Every connection definition group has a key (a required unique
element). This key is the connection-factory-interface.

The value specified for connection-factory-interface must
be equal to the value specified for connection-
factory-interface in ra.xml.

default-connection-
properties

This complex element is used to define properties for outbound
connections at the group level.

See default-connection-properties.

connection-instance Under each connection definition group, the user can specify
connection instances. These correspond to the individual
connection pools for the resource adapter. Parameters can be
specified at this level too and these override those provided in the
group and global levels.

This element specifies a description of the connection pool. (A
connection instance is equivalent to a connection pool.) It is used
to document the connection pool.

See connection-instance.

connection-instance
You can define the following subelements under connection-instance.

Table A-22 connection-instance subelements

Element Required/
Optional

Description

description Optional Specifies a description of the connection instance.

jndi-name Required The JNDI name used to define the reference name for
the connection instance.

connection-properties Optional Defines all the properties that apply to the connection
instance.

The connection-properties element can contain
one or more property elements, each holding a name
and value pair. See properties.

Appendix A
outbound-resource-adapter

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-19 of A-19

B
Resource Adapter Best Practices

When developing and deploying WebLogic resource adapters, consider Oracle’s best
practices.

Classloading Optimizations for Resource Adapters
When preparing resource adapter classes for packaging in a RAR file, consider Oracle’s best
practices for classloading optimizations.

You can package resource adapter classes in one or more JAR files, and then place the JAR
files in the RAR file. These are called nested JARs. When you nest JAR files in the RAR file,
and classes need to be loaded by the classloader, the JARs within the RAR file must be
opened and closed and iterated through for each class that must be loaded.

If there are very few JARs in the RAR file and if the JARs are relatively small in size, there will
be no significant performance impact. On the other hand, if there are many JARs and the JARs
are large in size, the performance impact can be great.

To avoid such performance issues, you can do either of the following:

1. Deploy the resource adapter in an exploded format. This eliminates the nesting of JARs
and hence reduces the performance hit involved in looking for classes.

2. If deploying the resource adapter in exploded format is not an option, the JARs can be
exploded within the RAR file. This also eliminates the nesting of JARs and thus improves
the performance of classloading significantly.

Connection Optimizations
Oracle recommends that resource adapters implement the optional enhancements described
in sections 7.16.1 and 7.16.2 of the Jakarta EE Connector Architecture 1.6 specification.
Implementing these interfaces allows WebLogic Server to provide several features that will not
be available without them.
Lazy Connection Association Optimization, as described in section 7.16.1, allows the server to
automatically clean up unused connections and prevent applications from hogging resources.
Lazy Transaction Enlistment Optimization, as described in 7.16.2, allows applications to start a
transaction after a connection is already opened.

Thread Management
Resource adapter implementations should use the WorkManager to launch operations that need
to run in a new thread, rather than creating new threads directly. This allows WebLogic Server
to manage and monitor these threads. For more information, see Chapter 10, Work
Management, in JSR 322: Java EE Connector Architecture 1.6.

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-1 of B-2

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

InteractionSpec Interface
For EIS access, WebLogic Server supports the Common Client Interface (CCI), which defines
a standard client API for application components that enables application components and EAI
frameworks to drive interactions across heterogeneous EISes. For more information, see
Chapter 17, Common Client Interface, in JSR 322: Java EE Connector Architecture 1.6.
As a best practice, you should not store the InteractionSpec class that the CCI resource
adapter is required to implement in the RAR file. Instead, you should package it in a separate
JAR file outside of the RAR file, so that the client can access it without having to put the
InteractionSpec interface class in the generic CLASSPATH.

With respect to the InteractionSpec interface, it is important to note that when all application
components (EJBs, resource adapters, Web applications) are packaged in an EAR file, all
common classes can be placed in the APP-INF/lib directory. This is the easiest possible
scenario.

This is not the case for standalone resource adapters (packaged as RAR files). If the interface
is serializable (as is the case with InteractionSpec), then both the client and the resource
adapter need access to the InteractionSpec interface as well as the implementation classes.
However, if the interface extends java.io.Remote, then the client only needs access to the
interface class.

Using javax.jms.ConnectionFactory
When using an EJB or servlet to send messages using a JCA adapter backing a JMS provider
using XA transactions, the resource-ref needs to be java.lang.object.

In a WebLogic Server environment, specifying javax.jms.ConnectionFactory implements
WebLogic JMS Wrappers which are not compatible with this JCA adapter configuration. See
Enhanced Support for Using WebLogic JMS with EJBs and Servlets in Developing JMS
Applications for Oracle WebLogic Server.

Appendix B
InteractionSpec Interface

Developing Resource Adapters for Oracle WebLogic Server
G32015-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix B-2 of B-2

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Examples for the Resource Adapter Developer
	New and Changed WebLogic Server Features

	Conventions

	1 Understanding Resource Adapters
	Overview of Resource Adapters
	Comparing WebLogic Server and WebLogic Integration Resource Adapters
	Inbound, Outbound, and Bidirectional Resource Adapters
	Connector Architecture 1.7 Support
	Connector Architecture 1.6 Support
	Comparing 1.0 Resource Adapters to 1.5 and 1.6
	Additional Support Provided by the WebLogic Server Connector Container

	Jakarta EE Connector Architecture
	Jakarta EE Architecture Diagram and Components
	System-Level Contracts

	Resource Adapter Deployment Descriptors

	2 Creating and Configuring Resource Adapters
	Creating and Configuring Resource Adapters: Main Steps
	Modifying an Existing Resource Adapter
	Configuring the ra.xml File
	Creating the ra.xml File Manually
	Using Metadata Annotations to Specify Deployment Information
	Resource Adapter XML Schema Definitions

	Configuring the weblogic-ra.xml File
	Editing Resource Adapter Deployment Descriptors
	Editing Considerations
	Schema Header Information
	Conforming Deployment Descriptor Files to Schema

	Dynamic Descriptor Updates: Console Configuration Tabs
	Dynamic Reconfigurable Configuration Properties
	Dynamic Configuration Parameters
	Dynamic Pool Parameters
	Dynamic Logging Parameters

	Automatic Generation of the weblogic-ra.xml File
	(Deprecated) Configuring the Link-Ref Mechanism

	Bean Validation Configuration File
	Long-Running Work Support
	Tooling Support
	Monitoring Resource Adapter Health
	Obtaining Resource Adapter Health State
	Deployment Requirements for Monitoring Health

	3 Programming Tasks
	Required Classes for Resource Adapters
	Generic Work Context
	Interfaces, Classes, and Methods Added to Support the Generic Work Context
	Deployment Descriptor Element Added to Support the Generic Work Context

	Programming a Resource Adapter to Perform as a Startup Class
	Minimum Content of a Resource Adapter
	Submitting a Work Instance
	Retrying a Work Submission

	Suspending and Resuming Resource Adapter Activity
	Extended BootstrapContext
	Diagnostic Context ID
	Dye Bits
	Callback Capabilities
	Bean Validation
	BeanManager

	Administered Object Uniqueness

	4 Using Contexts and Dependency Injection in Resource Adapters
	Overview
	Resource Adapter Bean Discovery
	Obtaining Contextual References to Resource Adapter Beans
	Invoking Resource Adapter Beans From Other Application Types
	Using Resource Adapters Deployed as CDI Bean Archives
	BeanManager Support
	Injection Points

	Using CDI with Resource Adapter Component Beans
	Resource Adapter Component Beans Must Not Be Managed Beans
	Using Dependency Injection
	Notes on Injection Usage
	Example

	5 Connection Management
	Connection Management Contract
	Connection Factory and Connection
	Resource Adapters Bound in JNDI Tree
	Obtaining the ConnectionFactory (Client-JNDI Interaction)
	Specifying and Obtaining Transaction Support Level
	Specifying an Unshareable ManagedConnectionFactory

	Configuring Outbound Connections
	Connection Pool Configuration Levels
	Retrying a Connection Attempt
	Isolating, Troubleshooting, and Fixing Outbound Connection Pool Failures Without Redeploying the Adapter
	Using the Deploy-As-A-Whole Option
	Troubleshooting Failed Connection Pools
	Connection Pool Recovery Steps
	Other Options for Recovering Failed Connection Pools

	Multiple Outbound Connections Example

	Configuring Inbound Connections
	Configuring Connection Pool Parameters
	initial-capacity: Setting the Initial Number of ManagedConnections
	max-capacity: Setting the Maximum Number of ManagedConnections
	capacity-increment: Controlling the Number of ManagedConnections
	shrinking-enabled: Controlling System Resource Usage
	shrink-frequency-seconds: Setting the Wait Time Between Attempts to Reclaim Unused ManagedConnections
	highest-num-waiters: Controlling the Number of Clients Waiting for a Connection
	highest-num-unavailable: Controlling the Number of Unavailable Connections
	connection-creation-retry-frequency-seconds: Recreating Connections
	match-connections-supported: Matching Connections
	test-frequency-seconds: Testing the Viability of Connections
	test-connections-on-create: Testing Connections upon Creation
	test-connections-on-release: Testing Connections upon Release to Connection Pool
	test-connections-on-reserve: Testing Connections upon Reservation
	deploy-as-a-whole: Isolating Outbound Connection Pool Failures from the Whole Adapter Deployment

	Connection Proxy Wrapper - 1.0 Resource Adapters
	Possible ClassCastException
	Turning Proxy Generation On and Off

	Reset a Connection Pool
	Testing Connections
	Configuring Connection Testing

	6 Transaction Management
	Supported Transaction Levels
	XA Transaction Support
	Local Transaction Support
	No Transaction Support
	Runtime Transaction Support Level Specification

	Configuring Transaction Levels
	Configure XA Transaction Recovery Credential Mapping

	7 Message and Transactional Inflow
	Overview of Message and Transactional Inflow
	Architecture Components
	Inbound Communication Scenario

	How Message Inflow Works
	Handling Inbound Messages
	Proprietary Communications Channel and Protocol

	Message Inflow to Message Endpoints (Message-Driven Beans)
	Deployment-Time Binding Between an MDB and a Resource Adapter
	Binding an MDB and a Resource Adapter

	Dispatching a Message
	Activation Specifications
	Administered Objects

	Transactional Inflow
	Using the Transactional Inflow Model for Locally Managed Transactions

	Configuring and Managing Long-Running Work
	Setting the Maximum Number of Concurrent Long-Running Work Instances
	Monitoring Long-Running Work

	8 Security
	Container-Managed and Application-Managed Sign-on
	Application-Managed Sign-on
	Container-Managed Sign-on

	Credential Mapping for Making Outbound Connections
	Authentication Mechanisms
	Outbound Credential Mappings
	Non-initial Connection: Requires ManagedConnection from Adapter Upon Application's Request
	Initial Connection: Requires a ManagedConnection from Adapter Without Application's Request
	Special Users

	Creating Outbound Credential Mappings Using the Console

	Security Inflow
	Inbound Principal Mappings
	Security Inflow Callback Requirements
	Backward Compatibility with Connector Architecture 1.5 and 1.0

	Security Policy Processing
	Configuring Security Identities for Resource Adapters
	default-principal-name: Default Identity
	manage-as-principal-name: Identity for Running Management Tasks
	run-as-principal-name: Identity Used for Connection Calls from the Connector Container into the Resource Adapter
	run-work-as-principal-name: Identity Used for Performing Resource Adapter Management Tasks

	Configuring Connection Factory-Specific Authentication and Re-authentication Mechanisms

	9 Packaging and Deploying Resource Adapters
	Packaging Resource Adapters
	Packaging Directory Structure
	Packaging Considerations
	Packaging Limitation
	Packaging Resource Adapter Archives (RARs)

	Deploying Resource Adapters
	Deployment Options
	Resource Adapter Deployment Names
	Production Redeployment
	Suspendable Interface and Production Redeployment
	Production Redeployment Requirements
	Production Redeployment Process

	Deploying a Resource Adapter Configured with Multiple Outbound Connection Pools

	A weblogic-ra.xml Schema
	weblogic-connector
	work-manager
	connector-work-manager
	security
	default-principal-name
	manage-as-principal-name
	run-as-principal-name
	run-work-as-principal-name
	security-work-context
	caller-principal-default-mapped
	caller-principal-mapping
	group-principal-mapping

	properties
	admin-objects
	admin-object-group
	admin-object-instance

	outbound-resource-adapter
	default-connection-properties
	pool-params
	logging

	connection-definition-group
	connection-instance

	B Resource Adapter Best Practices
	Classloading Optimizations for Resource Adapters
	Connection Optimizations
	Thread Management
	InteractionSpec Interface
	Using javax.jms.ConnectionFactory

