Oracle® Fusion Middleware
Deploying Applications with the WebLogic
Deployment API

15¢ (15.1.1.0.0)
(G31586-01
October 2025

ORACLE"



Oracle Fusion Middleware Deploying Applications with the WebLogic Deployment API, 15¢ (15.1.1.0.0)
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

Preface

Audience i
Documentation Accessibility i
Diversity and Inclusion i
Related Documentation ii
Conventions ii

1 Understanding the WebLogic Deployment API

The WebLogic Deployment API
WebLogic Deployment APl Deployment Phases
Configure an Application for Deployment
Deploy an Application
weblogic.Deployer Implementation of the WebLogic Deployment API
When to Use the WebLogic Deployment API
Jakarta Deployment APl Compliance
WebLogic Server Value-Added Deployment Features
The Service Provider Interface Package
weblogic.deploy.api.spi
weblogic.deploy.api.spi.factories
Module Targeting
Support for Querying WebLogic Target Types
Server Staging Modes
Deployment Plan Staging Modes
DConfigBean Validation
The Model Package
weblogic.deploy.api.model
Accessing Deployment Descriptors
The Shared Package
weblogic.deploy.api.shared
Command Types for Deploy and Update
Support for Module Types
Support for all WebLogic Server Target Types

0 NN ~N~N~NOOO OO DNDD®WWWNNNRR R

The Tools Package

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of iii



weblogic.deploy.api.tools 8
SessionHelper 8
Deployment Plan Creation 9
The JMX API for Deployment Operations 9
Supported Deployment Options 10
Using the JMX API for Deployment Operations 11
Using a Deployment Validation Plug-In with WebLogic Server 15
Configuring the Deployment Validation Plug-In 16
Using the Deployment Validation Plug-In 16
2 Configuring Applications for Deployment

Overview of the Configuration Process 1
Types of Configuration Information 2
Jakarta EE Configuration 2
WebLogic Server Configuration 2
Representing Jakarta EE and WebLogic Server Configuration Information 3
DDBeans 3

The Relationship Between Jakarta EE and WebLogic Server Descriptors 4
DConfigBeans 4
Application Evaluation 5
Obtain a Deployment Manager 5
Types of Deployment Managers 5
Connected and Disconnected Deployment Manager URIs 6

Using SessionHelper to Obtain a Deployment Manager 7

Create a Deployable Object 7
Using the WebLogicDeployableObject class 7

Using SessionHelper to obtain a Deployable Object 7
Perform Front-End Configuration 8
What is Front-End Configuration 8
Deployment Configuration 8
Example Code 9
Reading In Information with SessionHelper 10
Validating a Configuration 11
Customizing Deployment Configuration 11
Modifying Configuration Values 11
Targets 14
Application Naming 14
Deployment Preparation 14
Session Cleanup 15

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of iii



3 Performing Deployment Operations

Register Deployment Factory Objects
Allocate a DeploymentManager
Getting a DeploymentManager Object
Understanding DeploymentManager URI Implementations
Server Connectivity
Deployment Processing
DeploymentOptions
Distribution
Application Start
Application Deploy
Application Stop
Undeployment
Production Redeployment
In-Place Redeployment
Module Level Targeting
Retirement Policy
Version Support
Administration (Test) Mode
Progress Reporting
Target Objects
Module Types
Extended Module Support
Web Services
CMP
JDBC
JMS
INTERCEPT
Recognition of Target Types
TargetModulelD Objects
WebLogic Server TargetModulelD Extensions
Example Module Deployment

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

© © © © O© 0 0 0 0 0 W O O O O U1 O O O U O B W W W W NN P =

=
=

October 6, 2025
Page iii of iii



ORACLE’

Preface

Audience

This guide emphasizes about value-added features of the WebLogic Deployment API and how
to manage application deployment using the WebLogic Deployment API.

This document is a resource for:

e Software developers who want to understand the WebLogic Deployment API. This API
adheres to the specifications described in the Jakarta EE Deployment API standard, see
https://jakarta.eel/specifications/depl oynent/ and extends the interfaces provided
by that standard.

« Developers and Independent Software Vendors (ISVs) who want to perform deployment
operations programmatically for WebLogic Server applications.

«  System architects who are evaluating WebLogic Server or considering the use of the
WebLogic Deployment API.

« Design, development, test, and pre-production phases of a software project. It does not
directly address production phase administration, monitoring, or tuning application
performance with the WebLogic Deployment API. The deployment API includes utilities to
make software updates during production but it mirrors the functionality of the deployment
tools already available.

It is assumed that the reader is familiar with Jakarta EE concepts, the Jakarta Deployment API
standard at ht t ps: //j akart a. ee/ speci fi cati ons/ depl oynent/, the Java programming
language, EJBs, and web technologies.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of ii


https://jakarta.ee/specifications/deployment/
https://jakarta.ee/specifications/deployment/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE
Preface

the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation

For additional information about deploying applications and modules to WebLogic Server, see
these documents:

»  Developing Applications for Oracle WebLogic Server describes how to deploy applications
during development using the W depl oy Ant task, and provides information about the
WebLogic Server deployment descriptor for enterprise applications.

* The WebLogic Server programming guides describe the Jakarta EE and WebLogic Server
deployment descriptors used with each Jakarta EE application and module:

— Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
— Developing Jakarta Enterprise Beans Using Deployment Descriptors

— Developing Resource Adapters for Oracle WebLogic Server

— Developing JAX-WS Web Services for Oracle WebLogic Server

— Deploying Applications to Oracle WebLogic Server

»  Developing JDBC Applications for Oracle WebLogic Server describes the XML deployment
descriptors for JDBC application modules.

»  Developing JMS Applications for Oracle WebLogic Server describes the XML deployment
descriptors for JMS application modules.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of ii



Understanding the WebLogic Deployment API

This chapter describes the structure and functionality of the WebLogic Deployment API, which
implements and extends the Jakarta EE Deployment API specification. It also describes the
JMX API for deployment operations, which can be used as an alternative.

For information on the Jakarta Deployment 1.7 specification, see https://j akarta. ee/
specifications/deploynent/1.7/.

This chapter includes the following sections:

The WebLogic Deployment API

@® Note

WebLogic Server 9.0 deprecates the use of the webl ogi c. managenent . depl oy API
used in earlier releases.

The following sections provide an overview of the WebLogic Server Deployment API:

WebLogic Deployment API Deployment Phases

The Jakarta Deployment API specification (see https://j akarta. ee/ specifications/
depl oynent/ 1. 7/) differentiates between a configuration session and deployment. They are
distinguished as follows:

e Application configuration which involves the generation of descriptors for a deployment
plan

* Deployment tasks such as distributing, starting, stopping, redeploying, undeploying

In order to effectively manage the deployment process in your environment, you must use the
WebLogic Deployment API to:

Configure an Application for Deployment

In this document, the term configuration refers to the process of preparing an application or
deployable resource for deployment to a WebLogic Server instance. Configuring an application
consists of the following phases:

e Application Evaluation—Inspection and evaluation of application files to determine the
structure of the application and content of the embedded descriptors. See Application
Evaluation.

*  Front-End Configuration—Creation of configuration information based on content
embedded within the application. This content may be in the form of WebLogic Server
descriptors, defaults, and user provided deployment plans. See Perform Front-End

Configuration.

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 17


https://jakarta.ee/specifications/deployment/1.7/
https://jakarta.ee/specifications/deployment/1.7/
https://jakarta.ee/specifications/deployment/1.7/
https://jakarta.ee/specifications/deployment/1.7/

ORACLE’

Chapter 1
The WebLogic Deployment API

Deployment Configuration—Maodification of individual WebLogic Server configuration
values based on user inputs and the selected WebLogic Server targets. See Customizing
Deployment Configuration.

Deployment preparation—Generation of the final deployment plan and preliminary client-
side validation of the application. See Deployment Preparation.

Deploy an Application

Application deployment is the process of distributing an application and plan to the
Administration Server for server-side processing and application startup. See Performing
Deployment Operations.

weblogic.Deployer Implementation of the WebLogic Deployment AP

WebLogic Server provides a packaged deployment tool, webl ogi ¢. Depl oyer, to provide
deployment services for WebLogic Server. Any deployment operation that can be implemented
using the WebLogic Deployment API is implemented, either in part or in full, by

webl ogi c. Depl oyer . For more information, see the weblogic.Deployer Command-Line
Reference.

When to Use the WebLogic Deployment API

@® Note

For the WebLogic Server environment, the recommended deployment tools are
webl ogi c. Depl oyer and the WebLogic Remote Console. For information on how to
use weblogic.Deployer, see Deploying Applications to Oracle WebLogic Server.

You may need to implement the WebLogic Deployment API in the following cases:

You need to model your own implementation and interface with the WebLogic Service
Provider Interface (SPI). In this case, the WebLogic Deployment API deployment factory is
used to obtain a \WebLogi cDepl oynent Manager , which extends

j avax. enterprise. depl oy. spi . Depl oynent Manager (see https://jakarta. ee/
specifications/depl oyment/ 1.7/ api docs/|avax/ enterprise/ depl oy/ spi/

depl oynent manager ) for use with the webl ogi c. depl oy. api . spi . See Application
Evaluation and the Jakarta Deployment API specification at ht t ps: / /] akart a. ee/
specifications/deployment/1.7/.

You need to create your own deployment interface instead of using the WebLogic Remote
Console or webl ogi c. Depl oyer . In this case, you may implement some or all WeblL ogic
Deployment API Deployment Phases using the WebLogic Deployment API classes and
interfaces.

@® Note

To access the WebLogi cDepl oyment Manager API from a client program, run $MN HOVE/
oracl e_common/ common/ bi n/ set W sEnv. sh, which sets the required classpath.

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 17


https://jakarta.ee/specifications/deployment/1.7/apidocs/javax/enterprise/deploy/spi/deploymentmanager
https://jakarta.ee/specifications/deployment/1.7/apidocs/javax/enterprise/deploy/spi/deploymentmanager
https://jakarta.ee/specifications/deployment/1.7/apidocs/javax/enterprise/deploy/spi/deploymentmanager
https://jakarta.ee/specifications/deployment/1.7/
https://jakarta.ee/specifications/deployment/1.7/

ORACLE Chapter 1
Jakarta Deployment APl Compliance

Jakarta Deployment APl Compliance

The WebLogic Deployment API classes and interfaces extend and implement the Jakarta
Deployment API specification interfaces, which are described in the j avax. ent er pri se. depl oy
sub-packages (see https://jakarta. ee/ specifications/depl oynment/1.7/apidocs/). The
WebLogic Deployment API provides the following packages:

WebLogic Server Value-Added Deployment Features

WebLogic supports the "Product Provider" role described in the Jakarta Deployment API
specification, htt ps://j akarta. ee/ specifications/depl oyment/ 1.7/ and provides utilities
specific to the WebLogic Server environment in addition to extensible components for any
Jakarta EE network client. These extended features include:

e Support for WebLogic features, such as starting in adm n mode or redeploying with
versioning.

*  Fine grain control, such as:
— Module level targeting
— Partial Redeployment, the redeployment or removal of parts of an application
— Dynamic configuration changes

e Support of WebLogic module extensions such as JMS, JDBC, Interception, and
Application Specific Configuration (Custom/Configuration) modules.

* Additional operations, such as the Depl oy verb which combines di stribute and start.

@® Note

The WebLogic Deployment API does not support an automated fallback procedure
for a failed application update. The policy and procedures for this behavior must
be defined and configured by the developers and administrators for each
deployment environment.

The Service Provider Interface Package

As a Jakarta EE product provider, Oracle extends the j avax Service Provider Interface (SPI)
package to provide specific configuration and deployment control for WebLogic Server. The
core interface for this package is the Depl oyment Manager , from which all other deployment
activities are initiated, monitored, and controlled.

The WebLogi cDepl oynment Manager interface provides WebLogic Server extensions to the

javax. enterprise. depl oy. spi . Depl oynent Manager interface. A WebLogi cDepl oynent Manager
object is a stateless interface for the WebLogic Server deployment framework. It provides basic
deployment features as well as extended WebLogic Server deployment features such as
production redeployment and partial deployment for modules in an enterprise application. You
generally acquire a WebLogi cDepl oynment Manager object using

Sessi onHel per. get Depl oynent Manager method from the Sessi onHel per helper class from the
Tools package. See Application Evaluation.

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 17


https://jakarta.ee/specifications/deployment/1.7/apidocs/
https://jakarta.ee/specifications/deployment/1.7/

ORACLE

Chapter 1
The Service Provider Interface Package

The following sections provide basic information on the functionality of the WebLogic Server
SPI:

weblogic.deploy.api.spi

The webl ogi c. depl oy. api . spi package provides the interfaces required to configure and
deploy applications to a target (see Support for Querying WebLogic Target Types for valid
target types). This package enables you to create deployment tools that can implement a
WebLogic Server-specific deployment configuration for an enterprise application or stand-alone
module.

webl ogi c. depl oy. api . spiincludes the WebLogi cDepl oynent Manager interface. Use this
deployment manager to perform all deployment-related operations such as distributing,
starting, and stopping applications in WebLogic Server. The WebLogi cDepl oynent Manager also
provides important extensions to the Jakarta EE Depl oyment Manager interface for features
such as module-level targeting for enterprise application modules, production redeployment,
application versioning, application staging modes, and constraints on Administrative access to
deployed applications.

The WebLogi cDepl oynent Confi gurati on and WebLogi cDConf i gBean classes in the
webl ogi c. depl oy. api . spi package represent the deployment and configuration descriptors
(WebLogic Server deployment descriptors) for an application.

e AWebLogi cDepl oynent Confi gurati on object is a wrapper for a deployment plan.

A WeblLogi cDConfi gBean encapsulates the properties in WebLogic deployment descriptors.

weblogic.deploy.api.spi.factories

This package contains only one interface, the \WebLogi cDepl oynment Fact ory. This is a
WebLogic extension to j avax. enterpri se. depl oy. spi . fact ori es. Depl oynent Fact ory. Use
this factory interface to select and allocate Depl oynent Manager objects that have different
characteristics. The WebLogi cDepl oynent Manager characteristics are defined by public fields in
the WebLogi cDepl oynent Fact ory.

Module Targeting

Module targeting is deploying specific modules in an application to different targets as opposed
to deploying all modules to the same set of targets as specified by the Deployment API.
Module targeting is supported by the Wbl ogi cDepl oynent Manager . cr eat eTar get Modul el D
methods.

The WebLogi cTar get Modul el D class contains the WebLogic Server extensions to the

j avax. enterprise. depl oy. spi . Tar get Modul el Dinterface. This class is closely related to the
configured Tar get | nf oMBeans (AppDepl oynent MBean and SubDepl oyment MBean). The

\WebLogi cTar get Modul el D class provides more detailed descriptions of the application modules
and their relationship to targets than those in Tar get | nf oMBeans. See Module Types.

Support for Querying WebLogic Target Types

For WebLogic Server, the WebLogi cTar get class provides a direct interface for maintaining the
target types available to WebLogic Server. Target accessor methods are described in
Table 1-1.

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 17



ORACLE Chapter 1
The Model Package

Table 1-1 Target Accessor Methods

Method Description

bool ean i sC uster() Indicates whether this target represents a cluster target.
bool ean i sJMSServer () Indicates whether this target represents a JMS server target.
bool ean i sSAFAgent () Indicates whether this target represents a SAF agent target.
bool ean i sServer () Indicates whether this target represents a server target.

bool ean i sVirtual Host () Indicates whether this target represents a virtual host target.

Server Staging Modes

The staging mode of an application affects its deployment behavior. The application's staging
behavior is set using Depl oynment Opt i ons. set St ageMbde( st age node) where the value of
stage node is one of the following:

e STAGE—Force copying of files to target servers.
* NO _STAGE—Files are not copied to target servers.
e EXTERNAL_STAGE—Files are staged manually.

Deployment Plan Staging Modes

An application's deployment plan can be staged independently of the application archive,
allowing you to stage a deployment plan when the application is not staged. You can configure
the staging behavior of the deployment plan by using Depl oynent Opt i ons. set Pl anSt ageMbde
(pl an stage mode), where the value of pl an stage node is one of the following:

e STAGE—Deployment plan is copied to target servers.
*  NO STAGE—Deployment plan is not copied to target servers.
e EXTERNAL_STAGE—Deployment plan is copied manually to target servers.

If you do not specify a staging mode, the deployment plan uses the value specified for
application staging as the default. For example, if deployment plan staging is not specified and
application staging is set to STACE, the deployment plan staging mode is set to STAGE.

DConfigBean Validation

The property setters in a DConf i gBean reject attempts to set invalid values. This includes
property type validation such as attempting to set an integer property to a non-numeric value.
Some properties perform semantic validations, such as ensuring a maximum value is not
smaller than its associated minimum value.

The Model Package

These classes are the WebLogic Server extensions to and implementations of the

j avax. enterprise. depl oy. model interfaces (see https://jakarta. ee/specifications/
depl oynent /1. 7/ api docs/ | avax/ ent er pri se/ depl oy/ nodel / package- summary. ht i ). The
model interfaces describes the standard elements, such as deployment descriptors, of a
Jakarta EE application.

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 17


https://jakarta.ee/specifications/deployment/1.7/apidocs/javax/enterprise/deploy/model/package-summary.html
https://jakarta.ee/specifications/deployment/1.7/apidocs/javax/enterprise/deploy/model/package-summary.html

ORACLE Chapter 1
The Model Package

weblogic.deploy.api.model

This package contains the interfaces used to represent the Jakarta EE configuration of a
deployable object. A deployable object is a deployment container for an enterprise application
or stand-alone module.

The WebLogic Server implementation of the j avax. ent erpri se. depl oy. nodel interfaces
enable you to work with applications that are stored in a WebLogic Server application
installation directory, a formal directory structure used for managing application deployment
files, deployments, and external WebLogic deployment descriptors generated during the
configuration process. See Preparing Applications and Modules for Deployment for more
information about the layout of an application installation directory. It supports any Jakarta EE
application, with extensions to support applications residing in an application installation
directory.

® Note

webl ogi c. depl oy. api . nodel does not support dynamic changes to Jakarta EE
deployment descriptor elements during configuration and therefore does not support
registration and removal of XPath listeners. DDBean. addXPat hLi st ener and

r emoveXPat hLi st ener are not supported.

The WebLogi cDepl oyabl eChj ect class and WebLogi cDDBean interface in the
webl ogi c. depl oy. api . nodel package represent the standard deployment descriptors in an
application.

Accessing Deployment Descriptors

Jakarta Deployment API dictates that Jakarta EE deployment descriptors be accessed through
a Depl oyabl eChj ect (see https://jakarta.ee/specifications/deploynent/1.7/apidocs/
javax/ ent erprise/ depl oy/ nodel / depl oyabl eobj ect . ht m ). A Depl oyabl e(bj ect represents
a module in an application. Elements in the descriptors are represented by DDBeans, one for
each element in a deployment descriptor. The root element of a descriptor is represented by a
DDBeanRoot object. All of these interfaces are implemented in corresponding interfaces and
classes in this package.

The WebLogi cDepl oyabl eChj ect class, which is the WebLogic Server implementation of

Depl oyabl eQbj ect , provides the cr eat eDepl oyabl e(hj ect methods, which create the

WebLogi cDepl oyabl ethj ect and WebLogi cDDBean for the application's deployment descriptors.
Basic configuration tasks are accomplished by associating the WebLogi cDDBean with a

WebLogi cDConf i gBean, which represent the server configuration properties required for
deploying the application on a WebLogic Server. See Application Evaluation.

Unlike a DConf i gBean, which contain configuration information specifically for a server
environment (in this case WebLogic Server instance), a DDBean object takes in the general
deployment descriptor elements for the application. For example, if you were deploying a web
application, the deployment descriptors in WebLogi cDDBeans come from VEB- | NF/ web. xm file in
the . war archive. The information for the WebLogi cDConf i gBeans would come from WEB- | NF/
webl ogi c. xm in the . war archive based on the WebLogi cDDBeans. Though they serve the
same fundamental purpose of holding configuration information, they are logically separate as
a DDBean describes the application while a DConf i gBeans configures the application for a
specific environment.

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 17


https://jakarta.ee/specifications/deployment/1.7/apidocs/javax/enterprise/deploy/model/deployableobject.html
https://jakarta.ee/specifications/deployment/1.7/apidocs/javax/enterprise/deploy/model/deployableobject.html

ORACLE’

Chapter 1
The Shared Package

Both of these objects are generated during the initiation of a configuration session. The
VebLogi cDepl oyabl ethj ect , WebLogi cDDBeans, and WebLogi cDConf i gBeans are all instantiated
and manipulated in a configuration session. See Overview of the Configuration Process.

The Shared Package

The following sections provide information on classes that represent WebLogic Server-specific
deployment commands, module types, and target types as classes:

weblogic.deploy.api.shared

The webl ogi c. depl oy. api . shar ed package provides classes that represent the WebLogic
Server-specific deployment commands, module types, and target types as classes. These
objects can be shared by weblogic.deploy.api.model and weblogic.deploy.api.spi packages.

The definitions of the standard j avax. ent er pri se. depl oy. shar ed classes Mdul eType and
CommandType are extended to provide support for:

e The module type, see Support for Module Types

¢ Commands, see Command Types for Deploy and Update

The WebLogi cTar get Type class, which is not required by the Jakarta Deployment API
specification, see https: //j akarta. ee/ specifications/depl oynent/1.7/), enumerates the
different types of deployment targets supported by WebLogic Server. This class does not
extend a j avax deployment class. See Support for all WebLogic Server Target Types.

Command Types for Deploy and Update

The depl oy and updat e command types are added to the required command types defined in
the j avax. ent erpri se. spi . shar ed package and are available to a
VWebLogi cDepl oynment Manager .

Support for Module Types

Supported module types include JMS, JDBC, Interception, WSEE, Config, and WLDF. These
are defined in the webl ogi c. depl oy. api . shar ed. WebLogi cMbdul eType class as fields.

Support for all WebLogic Server Target Types

Targets, which were not implemented in the Jakarta Deployment API specification, are
implemented in the WebLogic Deployment API. The valid target values are:

e Cluster

* JMS Server

e SAF (Store-and-Forward) Agent
e Server

e Virtual Host

These are enumerated field values in the webl ogi c. depl oy. api . shar ed. \ebLogi cTar get Type
class.

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 17


https://jakarta.ee/specifications/deployment/1.7/

ORACLE Chapter 1
The Tools Package

The Tools Package

The following sections provide information on API tools you can use to perform common
deployment tool tasks with a minimum number of controls and explicit object manipulations:

weblogic.deploy.api.tools

The webl ogi c. depl oy. api . t ool s package provides convenience classes that can help you:

e Obtain a WbLogi cDepl oynent Manager
* Populate a configuration for an application
* Create a new or updated deployment plan

The classes in the tools package are not extensions of the Jakarta Deployment API
specification (see https://j akarta. ee/ specifications/depl oyment/1. 7/) interfaces. They
provide easy access to deployment operations provided by the WebLogic Deployment API.

SessionHelper

Although configuration sessions can be controlled from a WebLogi cDepl oyment Manager directly,
Sessi onHel per provides simplified methods. If your tools code directly to the WebLogic Server
Jakarta Deployment APl implementation, you should always use Sessi onHel per.

Use Sessi onHel per to obtain a WebLogi cDepl oynent Manager with one method call. To do this
effectively, it must be able to locate the application. The Sessi onHel per views an application
and deployment plan artifacts using an "install root" abstraction, which ideally is the actual
organization of the application. The install root appears as follows:

install-root (eg nyapp)

-- app

----- archive (eg nyapp. ear)

- plan

----- depl oynent plan (eg plan.xm)

----- external descriptors (eg META-|NF/ webl ogi c-application.xm...)

There is no requirement to mandate that this structure be used for applications. It is a preferred
approach because it serves to keep the application and its configuration artifacts under a
common root and provides Sessi onHel per with a format it can interpret.

Sessi onHel per. get Modul el nfo() returns an object that is useful for understanding the
structure of an application without having to work directly with DDBeans and
Depl oyabl eQbj ect s. It provides such information as:

* Names and types of modules and submodules in the application
* Names of Web services provided by the application

*  Context roots for web applications

* Names of enterprise beans in an EJB

Internally, the deployment descriptors are represented as descriptor bean trees and trees of
typed Java Bean objects that represent the individual descriptor elements. These bean trees
are easier to work with than the more generic DDBean and DConf i gBean objects. The descriptor
bean trees for each module are directly accessible from the associated WebLogi cDDBeanRoot
and VWebLogi cDConf i gBeanRoot objects for each module using their get Descri pt or Bean

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 17


https://jakarta.ee/specifications/deployment/1.7/

ORACLE

Chapter 1
The JMX API for Deployment Operations

methods. Modifying the bean trees obtained from a \WebLogi cDConf i gBean has the same effect
as modifying the associated DConf i gBean, and therefore the application's deployment plan.

Deployment Plan Creation

webl ogi c. Pl anGener at or creates a deployment plan template based on the Jakarta EE and
WebLogic Server descriptors included in an application. The resulting plan describes the
application structure, identifies all deployment descriptors, and exports a subset of the
application's configurable properties. Export properties to expose them to tools like the
WebLogic Remote Console, which then uses the plan to assist the administrator in providing
appropriate values for those properties. By default, the webl ogi c. Pl anGener at or tool only
exports application dependencies; those properties required for a successful deployment. This
behavior can be overridden using of the following options:

» Dependenci es: Export resources referenced by the application (default)

e Decl arati ons: Export resources defined by the application

e Configurabl es: Export non-resource oriented configurable properties

e Dynani cs: Export properties that may be changed in a running application
e Al Export all changeable properties

e None: Export no properties

The JMX API for Deployment Operations

The Java Management Extensions (JMX) API for deployment operations supports all of the
common functionality available in the Jakarta Deployment API specification. You can use the
JMX API as an alternative to the Jakarta Deployment API for performing deployment tasks on
specified target servers, such as:

e Starting

e Stopping

e Distributing

e Deploying

* Redeploying

e Undeploying

* Updating deployment plans without redeploying applications

The JMX API for deployment operations uses open MBean data types so that no WebLogic
Server classes are required on the client side. These new MBeans for deployment are similar
conceptually to the Jakarta Deployment API and are located in the Domain Runtime MBean
Server. In this model, you must initiate deployment operations on the Administration Server.

The following four runtime MBeans support the IMX API for deployment operations:

e Depl oynent Manager MBean

The Depl oynment Manager MBean provides deployment operations, including deploy and
distribute, and provides access to the AppDepl oynent Runt i re MBeans for each application
deployed to the domain. It also manages the deployment progress objects and emits
notifications when an application is created or removed and when the application state
changes.

e AppDepl oynent Runt i neMBean

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 17



ORACLE

Chapter 1
The JMX API for Deployment Operations

The AppDepl oynment Runt i meMBean provides the deployment operations for an application,
including start, stop, undeploy, redeploy, and updating a deployment plan without

redeploying the application.

e Depl oynent Progr essObj ect MBean

The Depl oynent Progr essChj ect MBean monitors deployment operations initiated by the
AppDepl oyment Runt i ne MBeans.

e Li bDepl oynent Runt i neMBean

The Li bDepl oynment Runt i mreMBean provides deployment operations for a library, including

undeploy and redeploy.

See the MBean Reference for Oracle WebLogic Server.

Supported Deployment Options

The JMX API for deployment operations supports all of the deployment options available in the
Jakarta Deployment API, which are specified as Pr operty name-value pairs. By specifying
deployment options, you can override the default values. Table 1-2 summarizes the supported
deployment option names and values.

Table 1-2 Deployment Options Supported by the JIMX API
]

Deployment Option

Description

adm nhbde

al t DD
al t WsDD

appVersion
cl ust er Depl oynent Ti neout

createPl an

def aul t Subnodul eTar get s

depl oynent O der

depl oynment Pri nci pal Nane

f or ceUndepl oy Ti meout
gracef ul I gnor eSessi ons

gracef ul Producti onToAdni n

Deploying Applications with the WebLogic Deployment API

G31586-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Option that indicates that a running application should switch to
ADM N mode and accept only administration requests over a
configured administration channel.

Location of the alternate application deployment descriptor on
the Administration Server.

Location of the alternate WebLogic application deployment
descriptor on the Administration Server.

Version identifier of the application.

Time, in milliseconds, granted for a cluster deployment task on
this application.

Boolean value indicating that the user wants to create a default
plan. The default value for this option is false.

Boolean value indicating that targeting for qualifying IMS
submodules should be derived by the system. The default value
for this option is true.

Option that controls the load order of deployments relative to
one another.

String value specifying the principal for deploying the file or
archive during server starts (static deployment; it does not affect
the current deployment task).

Force undeployment timeout value.

Boolean value specifying whether graceful production to ADM N
mode operation should ignore pending HTTP sessions. The
default value of this option is false and only applies if

gracef ul Producti onToAdmi n is set to true.

Boolean value specifying whether the production to ADM N mode
operation should be graceful. The default value for this option is
false.

October 6, 2025
Page 10 of 17



ORACLE Chapter 1
The JMX API for Deployment Operations

Table 1-2 (Cont.) Deployment Options Supported by the JMX API
]

Deployment Option Description

library The deployment as a shared Jakarta EE library or optional
package.

['i bl npl Ver Implementation version of the library, if it is not present in the
manifest.

| i bSpecVer Specification version of the library, if it is not present in the
manifest.

noVer si on Versioning information is ignored.

pl anVer si on Version identifier of the deployment plan.

retireGaceful ly Retirement policy to gracefully retire an application only after it

completes all in-flight work. This policy is only meaningful for
stop and redeploy operations and is mutually exclusive to the
retire timeout policy.

retireTi meout Time (in seconds) WebLogic Server waits before retiring an
application that is replaced with a newer version. The default
value for this option is -1, which specifies graceful timeout.

rm G acePeriod The amount of time, in seconds, that the Work Manager accepts
and schedules RMI calls until there are no more RMI requests
arriving within the RMI grace period during a gr acef ul
shutdown oraretirenent.

securityMdel Security model. Valid values include: DDOnl y, Cust onRol es,
Cust onRol esAndPol i ci es, and Advanced.

securityValidationEnabl ed Boolean value specifying whether security validation is enabled.

st ageMode The staging mode for the application you are deploying. Valid

values are st age, nost age, and ext er nal _st age. If not
specified, WebLogic Server uses the default stage mode. The
default stage mode is nost age for the Administration Server and
st age for Managed Servers.

subModul eTar get s Submodule level targets for IMS modules. For example:
submod@mod-j mx. xml @ar get | submodul eNane@'t ar get .
ti meout Time (in milliseconds) WebLogic Server waits for the deployment

process to complete before canceling the operation. A value of 0
indicates no timeout for the operation. The default value for this
argument is 300, 000 ns (or five minutes).

useNonExcl usi veLock Deployment operation uses an existing lock, already acquired by
the same user, on the domain. This option is helpful in
environments where multiple deployment tools are used
simultaneously and one of the tools has already acquired a lock
on the domain configuration.

versionldentifier Version identifier.

Using the JMX API for Deployment Operations

Example 1-1 demonstrates the use of the WebLogic Server IMX API for deployment
operations. The example includes inline comments and demonstrates how to:

e Deploy an application both synchronously and asynchronously

e Monitor the progress of a deployment operation

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 17



ORACLE Chapter 1
The JMX API for Deployment Operations

e Stop an application
* Undeploy an application

» Handle naotifications

® Note

This example uses JMX proxies for readability. The WebLogic Server IMX API uses
open types so it can be run in a JMX client without WebLogic Server classes. In
addition, error handling has been omitted to keep the example as small as possible.

For more information about understanding and using JMX, see Developing Custom
Management Ultilities Using JMX for Oracle WebLogic Server and Developing Manageable
Applications Using JMX for Oracle WebLogic Server.

Example 1-1 Using the JMX API for Deployment Operations

i mport webl ogi c. managenent . mheanser vers. domai nrunt i ne. Domai nRunt i neSer vi ceMBean;
i mport webl ogi c. managenent . runti me. AppDepl oyment Runt i neMBean;

i mport webl ogi c. managenent . runt i me. Depl oynent Manager MBean;

i mport webl ogi c. managenent . runti me. Depl oynent Progr essChj ect MBean;

import java.util.Hashtable;
import java.util.Properties;

i mport j avax. managenent. MBeanSer ver Connect i on;

i mport javax.managenent. Notification;

i mport javax. managenent. Noti ficati onLi stener;

i mport j avax. managenent. bj ect Nane;

i mport j avax. managenent. r enot e. JMXConnect or;

i nport javax. managenent . renot e. JMXConnect or Fact ory;
i mport j avax. managenent.renote. JMXServi ceURL;

i mport j avax. nam ng. Cont ext ;

public class JMXDepl oyment Exanpl e {

/'l Depl oyment Manager JMX proxy
Depl oyment Manager MBean depl oynent Manager ;

/1 Domain Runtime MBean Server connection
MBeanSer ver Connecti on connecti on;

private void setUp() throws Exception {
Systemout.println("*** Setting up...");

/1 Get connection to the Domain Runtime MBean Server.

/1l For nore information, see Make Renpte Connections to an MBean Server.

/1 in Devel opi ng Custom Managenent Wilities Using JMX for Oracle WebLogic Server.
connection = get Donmai nRunti meJMXConnection();

/'l Get Depl oynent Manager JMX proxy.
/1 For nore information, see Oracle WebLogi c Server MBean Reference.
Domai nRunt i neSer vi ceMBean svcBean = (Domai nRunti meServi ceMBean)
webl ogi c. managenent . j nx. MBeanSer ver | nvocat i onHandl er . newPr oxyl nst ance(
connection, new (bj ect Nanme( Domai nRunt i meSer vi ceMBean. OBJECT_NAME) ) ;
depl oynent Manager = svcBean. get Domai nRunti ne() . get Depl oynent Manager () ;

/1 Add a JMX notification listener that outputs the JMX notifications generated during depl oyment
operati ons.

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 17



ORACLE Chapter 1
The JMX API for Deployment Operations

connection. addNoti fi cati onLi st ener (new
bj ect Nane( " com bea: Name=Depl oynent Manager, Type=Depl oynent Manager"),
new Depl oyLi stener(), null, null);
}

/*
* Denonstrates synchronously depl oying an application.
*/

private void depl oySynchronousl y() throws Exception {
Systemout. println("*** Deploying SinpleApp...");

/1 This formof the deploy operation is synchronous.
/] Errors are still returned through a progress object.
/1 By default, the SinpleApp is deployed to all servers.

Depl oynent Progr essObj ect MBean progressChj = depl oyment Manager . depl oy(
"Si npl eApp", "/apps/sinpleapp.war”, /* no plan */ null);
print Conpl eti onSt at us(progressj);
}

/*
* Denonstrates asynchronously deploying an application to a server instance.
*/

private void depl oyASynchronously() throws Exception {
Systemout. println("*** Deploying VersionedApp...");

/1 This formof the deploy operation is asynchronous.
/1 The caller should utilize the returned progress object to nonitor the progress of the depl oynent.

Properties depl oynent Options = new Properties();
depl oynent Opt i ons. put ("appVersion", "V1");
depl oynent Opti ons. put ("pl anVersion", "P1");

Depl oynent Progr essChj ect MBean progressChj = depl oynent Manager . depl oy(" Ver si onedApp", "/apps/ app-
vl war",

new String[] { "myserver" },
"/ apps/ app-vl-plan.xm ", depl oynment Options);

wai t For Conpl eti on(progressChj, 200);
}

/*

* Denpnstrates using a depl oynment progress object to display the status of the depl oynent operation.
*/

private void printConpletionStatus(Depl oynent ProgressChj ect MBean progressQoj) throws Exception {

Systemout.println(" State: " + progresshj.getState());
i f ("STATE_FAILED'. equal s(progressQhj.getState())) {
Exception[] exceptions = progressQhj. get Root Exceptions();
for (int i =0; exceptions != null & i < exceptions.length; i++)
Systemout. println(" Exception: " + exceptions[i]);
}

}

/*

* Denpnstrates using a depl oyment progress object to wait for the conpletion of the deploynment
operati on.

*/

Deploying Applications with the WebLogic Deployment API

G31586-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 17



ORACLE Chapter 1
The JMX API for Deployment Operations

private void waitForConpl eti on(Depl oynent ProgressChj ect MBean progresshj, int timeoutSecs) throws
Exception {

for (int i =0; i < timeoutSecs; i++) {
String state = progressChj.getState();
if ("STATE_COWPLETED'. equal s(state) || "STATE_FAI LED'. equal s(state))
br eak;
try {

Thread. current Thread(). sl eep(1000);
} catch (InterruptedException ex) {

/lignore
}

}

print Conpl eti onSt at us(progressj);
}
/*
* Denonstrates stopping an application asynchronously.
*/

private void stopAsynchonously() throws Exception {
Systemout.println("*** Stopping SinpleApp...");

/1 The Depl oynent Manager MBean is used for the initial deploynent of an application.
/1 After the initial deployment, the AppDepl oynent Runti meMBean is used for stop, start,
/'l redepl oy, and undepl oy of an application.

AppDepl oynent Runt i mreMBean appRunti ne = depl oynent Manager . | ookupAppDepl oynent Runti me(" Si npl eApp");

Properties depl oynent Options = new Properties();
depl oynent Opt i ons. put ("graceful | gnoreSessi ons", "true");

Depl oynent Progr essChj ect MBean progressChj = appRuntine.stop(new String[]{"nyserver"},
depl oynent Opti ons) ;
wai t For Conpl eti on(progressChj, 200);

}

/*
* Denonstrates using an AppDepl oyment Runti neMBean to undepl oy an application.
*/

private void undepl oySynchronously() throws Exception {
Systemout. println("*** Undepl oying Sinmpl eApp...");

/1 The Depl oynent Manager MBean is used for the initial deploynent of an application.
/1 After the initial deployment, the AppDepl oynent Runti meMBean is used for stop, start,
/'l redepl oy, and undepl oy of an application.

AppDepl oynent Runt i mreMBean appRunti ne = depl oynment Manager . | ookupAppDepl oynent Runti me(" Si npl eApp");

Depl oynment Progr essCbj ect MBean progressChj = appRunti ne. undepl oy();
print Conpl eti onSt at us(progressj);

}

/*
* Denonstrates the notifications that are generated by WeblLogi c Server depl oynent operations.
*/

private class DeployListener inplements NotificationListener {
Deploying Applications with the WebLogic Deployment API

G31586-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 17



ORACLE Chapter 1

}

}

Using a Deployment Validation Plug-In with WebLogic Server

public void handl eNotification(Notification notification, Object handback) {
Systemout. println(" Notification from Depl oynent Manager MBean");

Systemout.println(" notification type: " + notification.getType());
String userData = (String)notification.getUserData();
Systemout.println(" wuserData: " + userData);

}

private MBeanServer Connection get Domai nRunti meJMXConnection() throws Exception {

}

JMXServi ceURL serviceURL = new JMXServi ceURL("t3", "local host", 7001,
"/j ndi / webl ogi c. managenent . mheanser vers. domai nrunti me");

Hashtabl e h = new Hashtabl e();

h. put (Cont ext . SECURI TY_PRI NCl PAL, "webl ogic");

h. put ( Cont ext . SECURI TY_CREDENTI ALS, "password");

h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES, "webl ogi c. managenent. renote");

JMXConnect or connector = JMXConnect or Fact ory. connect (servi ceURL, h);
MBeanSer ver Connecti on connection = connector. get MBeanSer ver Connection();
return connection;

public static void nmain(String args[]) throws Exception {

JMXDepl oynent Exanpl e exanpl e = new JMXDepl oynent Exanpl e() ;

exampl e. set Up();
exanpl e. depl oySynchronousl y();

exanpl e. depl oyASynchronousl y();
exanpl e. st opAsynchonousl y();
exanpl e. undepl oySynchronousl y();

Using a Deployment Validation Plug-In with WebLogic Server

You can validate applications before allowing them to be deployed to your WebLogic Server
domain by creating a deployment validation plug-in. At the start of the deployment process, the
Administration Server executes the plug-in, which determines whether the application is valid
for the domain. If validation passes, the application is deployed. If validation fails, the
application is not deployed, and there is no configuration change or evidence of deployment.

When using a deployment validation plug-in, you determine what it should consider invalid
based on the specific needs of your domain. For example, you can configure the plug-in to
reject bad formats or EJBs. You can only register one deployment validation plug-in per
domain, and the plug-in must be unique to the domain. You can configure a new deployment
validation plug-in to replace the original, but you cannot add a second plug-in to the same
domain.

Using a deployment validation plug-in with WebLogic Server provides the following capabilities:
* Rejects invalid application code to protect your domain from malicious applications

* Modifies the deployment plan of an application

e Tailors the plug-in to suit your specific needs through configuration parameters

* Logs messages

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 17



ORACLE

Chapter 1
Using a Deployment Validation Plug-In with WebLogic Server

The deployment process is the same with or without a deployment validation plug-in, as
validation is an optional step. The validation process occurs when deploying an application for
the first time, not at server startup for applications that are already deployed or during auto-
deployment.

The following sections describe how to validate applications using a deployment validation
plug-in with WebLogic Server:

Configuring the Deployment Validation Plug-In

To enable the deployment validation plug-in to run with WebLogic Server, you must add the
<depl oynent - val i dat i on- pl ugi n> element to the confi g. xm file so that the Administration
Server can access and use the plug-in classes. The <depl oynment - val i dat i on- pl ugi n>
element should contain the fully qualified class name of the plug-in and declare any
parameters. You can add the <depl oynent - val i dati on- pl ugi n> element manually or by using
the Depl oynment Conf i gur at i onMBean available from the Donai nMBean.

The following three configuration MBeans support the deployment validation plug-in:

e Depl oynent Confi gur ati onMBean

The Depl oynent Confi gur ati onMBean contains the Depl oyment Val i dati onPl ugl n attribute.
This attribute is a Depl oynent Val i dati onPl ugi nMBean and corresponds to the

<depl oynent - val i dat i on- pl ugi n> element, which enables or disables the deployment
validation plug-in.

e Depl oynent Val i dati onPl ugi nMBean

The Depl oynent Val i dat i onPl ugi nMBean specifies the deployment validation plug-in
configuration information. This MBean includes the Fact or yd assnane attribute, which is
the fully qualified plug-in class name. This class must be available from the Administration
Server CLASSPATH. The Depl oyrent Val i dat i onPl ugi nMBean also includes parameters that
can be passed to the plug-in. You declare these parameters with the Par aret er MBean.

e Paranet er MBean

The Par anet er MBean specifies the configuration and user parameters for the deployment
validation plug-in, including Nane, Val ue, and Descri pti on.

Using the Deployment Validation Plug-In

WebLogic Server does not provide the code for the deployment validation plug-in itself, but
provides a way to run a plug-in as part of the deployment process to validate and protect your
domain from malicious applications. As the domain administrator, you program and compile the
code for your domain-specific plug-in according to the needs and specifications of your
environment. The plug-in class and other classes it uses need to be available from the
Administration Server CLASSPATH.

The deployment validation plug-in must implement the plug-in factory interface,
webl ogi c. depl oynment . confi guration. Depl oynent Val i dati onPl ugi n. The implementation
must contain an empty constructor in order to create an instance of the deployment validation

plug-in.

The webl ogi c. depl oynent . conf i gurati on interface includes an initialize method and a
validation method. The initialize method provides the parameters that are declared in the
<depl oynent - val i dat i on- pl ugi n> element of the confi g. xm file to the instance of the
deployment validation plug-in. The validation method provides the context of the application
information and returns the validation result for the application.

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 17



ORACLE

Chapter 1
Using a Deployment Validation Plug-In with WebLogic Server

The validation result is a class that implements the Val i dati onResul t interface. Implement the
i sDepl oyment Val i d method to indicate whether the deployment is valid and should proceed.
Implement the get Except i on method to provide an exception that should be set as the cause if
the deployment is not valid. The argument passed to the validate method is

Depl oynent Val i dat i onCont ext , which provides access to the proposed application through an
instance of Sessi onHel per. The deployment validation plug-in can then use the

get Sessi onHel per attribute on the Depl oynent Val i dat i onCont ext argument to examine the
application information that Sessi onHel per allows.

The Depl oynent Val i dat i onCont ext argument also provides access to the
Depl oynent Val i dati onLogger . The Depl oynment Val i dati onLogger logs messages about the
actions the plug-in takes to validate the application or the reasons the application is invalid.

If the validation result indicates that the application is valid, the deployment passes and
continues the deployment process. If the validation result indicates that the application is
invalid, the plug-in sends an exception message describing the reason the application failed to
validate, and the application is not deployed. There is no configuration change or evidence of
deployment. Since the validation process occurs on the Administration Server, if the
deployment fails, the Managed Servers are not aware of the deployment, and you would not
have to undeploy or undo any configuration.

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 17 of 17



Configuring Applications for Deployment

This chapter describes how to configure an application or deployable resource for deployment
to a WebLogic Server instance using deployment descriptors. Certain elements in these
descriptors refer to external objects and may require special handling depending on the server
vendor. WebLogic Server uses descriptor extensions—WebLogic Server specific deployment
descriptors. The mapping between standard descriptors and WebLogic Server descriptors is
managed using DDBeans and DConf i gBeans.

This chapter includes the following sections:

Overview of the Configuration Process

This section provides information on the basic steps a deployment tool must implement to
configure an application for deployment:

1. Application Evaluation—Inspection and evaluation of application files to determine the
structure of the application and content of the embedded descriptors.

< Initialize a deployment session by obtaining a WebLogi cDepl oynent Manager . See
Application Evaluation.

» Create a \\ebLogi cJ2eeAppl i cati onCbj ect or WebLogi cDepl oyabl eChj ect to
represent the Jakarta EE configuration of an enterprise application (EAR) or
standalone module (WAR, EAR, RAR, or CAR). If the object is an EAR, child objects
are generated. See Jakarta Deployment APl standard at htt ps: //j akarta. ee/
specifications/deploynent/ 1.7/ and Create a Deployable Object.

2. Front-End Configuration—Creation of configuration information based on content
embedded within the application. This content may be in the form of WebLogic Server
descriptors, defaults, and user provided deployment plans.

e Create a WebLogi cDepl oynment Confi gurati on obj ect to represent the WebLogic
Server configuration of an application. This is the first step in creating a deployment
plan for this object. See Deployment Configuration.

* Restore existing WebLogic Server configuration values from an existing deployment
plan, if available. See Perform Front-End Configuration.

3. Deployment Configuration—Modification of individual WebLogic Server configuration
values based on user inputs and the selected WebLogic Server targets.

A deployment tool must provide the ability to modify individual WebLogic Server
configuration values based on user inputs and selected WebLogic Server targets. See
Customizing Deployment Configuration.

4. Deployment Preparation—Generation of the final deployment plan and preliminary client-
side validation of the application.

A deployment tool must have the ability to save the modified WebLogic Server
configuration information to a new deployment plan or to variable definitions in an existing
Deployment Plan.

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 15


https://jakarta.ee/specifications/deployment/1.7/
https://jakarta.ee/specifications/deployment/1.7/

ORACLE Chapter 2
Types of Configuration Information

Types of Configuration Information

The following sections provide background information on the types of configuration
information, how it is represented, and the relationship between Jakarta EE and WebLogic
Server descriptors:

Jakarta EE Configuration

The Jakarta EE configuration for an application defines the basic semantics and run-time
behavior of the application, as well as the external resources that are required for the
application to function. This configuration information is stored in the standard Jakarta
deployment descriptor files associated with the application, as listed in Table 2-1.

Table 2-1 Standard Jakarta EE Deployment Descriptors

Application or Standalone Module Jakarta EE Descriptor

Enterprise Application META- | NF/ appl i cati on. xm

Web Application VEB- | NF/ web. xm

Jakarta Enterprise Bean VETA- | NF/ e b. xm

Resource Adapter META- | NF/ ra. xm

Client Application Archive META- | NF/ appl i cation-client.xm

Complete and valid Jakarta EE deployment descriptors are a required input to any application
configuration session.

Because the Jakarta EE configuration controls the fundamental behavior of an application, the
Jakarta EE descriptors are typically defined only during the application development phase,
and are not modified when the application is later deployed to a different environment. For
example, when you deploy an application to a testing or production domain, the application's
behavior (and therefore its Jakarta EE configuration) should remain the same as when
application was deployed in the development domain. See Perform Front-End Configuration for
more information.

WebLogic Server Configuration

The WebLogic Server descriptors provide for enhanced features, resolution of external
resources, and tuning associated with application semantics. Applications may or may not
have these descriptors embedded in the application. The WebLogic Server configuration for an
application:

*  Binds external resource names to resource definitions in the Jakarta EE deployment
descriptor so that the application can function in a given WebLogic Server domain

» Defines tuning parameters for the application containers
* Provides enhanced features for Jakarta EE applications and stand-alone modules

The attributes and values of a WebLogic Server configuration are stored in the WebLogic
Server deployment descriptor files, as shown in Table 2-2.

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 15



ORACLE Chapter 2
Types of Configuration Information

Table 2-2 WebLogic Server Deployment Descriptors
]

Application or Standalone Module WebLogic Server Descriptor

Enterprise Application META- | NF/ webl ogi c-appl i cation. xm
Web Application VAEB- | NF/ webl ogi ¢. xni

Jakarta Enterprise Bean META- | NF/ webl ogi c-ej b-j ar. xm
Resource Adapter VETA- | NF/ webl ogi c-ra. xm

Client Archive META- | NF/ webl ogi c-appclient. xm

Because different WebLogic Server domains provide different types of external resources and
different levels of service for the application, the WebLogic Server configuration for an
application typically changes when the application is deployed to a new environment. For
example, a production staging domain might use a different database vendor and provide more
usable memory than a development domain. Therefore, when moving the application from
development to the staging domain, the application's WebLogic Server descriptor values need
to be updated in order to make use of the new database connection and available memory.

The primary job of a deployment configuration tool is to ensure that an application's WebLogic
Server configuration is valid for the selected WebLogic targets.

Representing Jakarta EE and WebLogic Server Configuration Information

Both the Jakarta EE deployment descriptors and any available WebLogic Server descriptors
are used as inputs to the application configuration process. You use the deployment API to
represent both the Jakarta EE configuration and WebLogic Server configuration as Java
objects.

The Jakarta EE configuration for an application is obtained by creating either a

VebLogi cJ2eeAppl i cati onObj ect for an EAR, or a bl ogi cDepl oyabl eCbj ect for a stand-
alone module. (A WebLogi cJ2eeAppl i cati onCbj ect contains multiple Depl oyabl eQhj ect
instances to represent individual modules included in the EAR.)

Each WebLogi cJ2eeAppl i cati on(oj ect or bl ogi cDepl oyabl ethj ect contains a DDBeanRoot
to represent a corresponding Jakarta EE deployment descriptor file. Jakarta EE descriptor
properties for EARs and modules are represented by one or more DDBean objects that reside
beneath the DDBeanRoot . DDBean components provide standard getter methods to access
individual deployment descriptor properties, values, and nested descriptor elements.

DDBeans

DDBeans are described by the j avax. enterpri se. depl oy. nodel package. These objects
provide a generic interface to elements in standard deployment descriptors, but can also be
used as an XPath based mechanism to access arbitrary XML files that follow the basic form of
the standard descriptors. Examples of such files would be WebLogic Server descriptors and
Web services descriptors.

The DDBean representation of a descriptor is a tree of DDBeans, with a specialized DDBean, a
DDBeanRoot , at the root of the tree. DDBeans provide accessors for the element name, 1D
attribute, root, and text of the descriptor element they represent.

The DDBeans for an application are populated by the model plug-in, the tool provider
implementation of j avax. ent er pri se. depl oy. nodel . An application is represented by the
Depl oyabl eQbj ect interface. The WebLogic Server implementation of this interface is a public

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 15



ORACLE

Chapter 2
Types of Configuration Information

class, weblogic.deploy.api.model.WebLogi cDepl oyabl etoj ect . A WebLogic Server based
deployment tool acquires an instance of \\ebLogi cDepl oyabl eChj ect object for an application
using the cr eat eDepl oyabl eQbj ect factory methods. This results in the DDBean tree for the
application being created and populated by the elements in the Jakarta EE descriptors
embedded in the application. If the application is an EAR, multiple ebLogi cDepl oyabl eQoj ect
objects are created. The root WebLogi cDepl oyabl eQbj ect, extended as

WebLogi cJ2eeAppl i cati onCbj ect , would represent the EAR module, with its child

WebLogi cDepl oyabl ethj ect instances being the modules contained within the application,
such as WARs, EJBs, RARs and CARs.

The Relationship Between Jakarta EE and WebLogic Server Descriptors

Jakarta EE descriptors and WebLogic Server descriptors are directly related in the
configuration of external resources. A Jakarta EE descriptor defines the types of resources that
the application requires to function, but it does not identify the actual resource hames to use.
The WebLogic Server descriptor binds the resource definition in the Jakarta EE descriptor
name to the name of an actual resource in the target domain.

The process of binding external resources is a required part of the configuration process.
Binding resources to the target domain ensures that the application can locate resources and
successfully deploy.

Jakarta EE descriptors and WebLogic Server descriptors are also indirectly related in the
configuration of tuning parameters for WebLogic Server. Although no elements in the standard
Jakarta EE descriptors require tuning parameters to be set in WebLogic Server, the presence
of individual descriptor files indicates which tuning parameters are of interest during the
configuration of an application. For example, although the ej b. xml descriptor does not contain
elements related to tuning the WebLogic Server EJB container, the presence of an gj b. xn file
in the Jakarta EE configuration indicates that tuning properties can be configured before
deployment.

DConfigBeans

DConf i gBeans (config beans) are the objects used to convey server configuration requirements
to a deployment tool, and are also the primary source of information used to create deployment
plans. Config beans are Java Beans and can be introspected for their properties. They also
provide basic property editing capabilities.

DConf i gBeans are created from information in embedded WebLogic Server descriptors,
deployment plans, and input from an IDE deployment tool.

A DConf i gBean is potentially created for every weblogic Descriptor element that is associated
with a dependency of the application. Descriptors are entities that describe resources that are
available to the application, represented by a JNDI name provided by the server.

Descriptors are parsed into memory as a typed bean tree while setting up a configuration
session. The DConf i gBean implementation classes delegate to the WebLogic Server descriptor
beans. Only beans with dependency properties, such as resource references, have a

DConf i gBean. The root of descriptor always has a DConf i gBeanRoot .

Bean Property accessors return a child DConf i gBean for elements that require configuration or
a descriptor bean for those that do not. Property accessors return data from the descriptor
beans.

Modifications to bean properties result in plan overrides. Plan overrides for existing descriptors
are handled using variable assignments. If the application does not come with the relevant
WebLogic Server descriptors, they are automatically created and placed in an external plan

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 15



ORACLE

Chapter 2
Application Evaluation

directory. For external deployment descriptors, the change is made directly to the descriptor.
Embedded descriptors are never modified on disk.

Application Evaluation

Application evaluation consists of obtaining a deployment manager and a deployable object
container for your application. Use the following steps:

1.

3.
4.

Obtain a deployment factory class by specifying its name,
webl ogi c. depl oyer. spi . factories.internal.Depl oyment Factoryl npl .

Register the factory class with a
javax. enterprise. depl oy. spi . Depl oynent Fact or yManager instance.

For instance:

O ass WsFactoryd ass =
C ass. forname( " webl ogi c. depl oyer. spi . factories.internal.Depl oyment Factorylnpl");
Depl oynment Fact ory myDepl oynment Factory =
(Depl oynment Fact ory) WsFact oryd ass. newl nst ance();
Depl oyment Fact or yManager . get I nst ance() . r egi st er Depl oynent Fact or y( myDepl oyment Fact ory)

Obtain a Deployment Manager.

Create a Deployable Object.

Obtain a Deployment Manager

The following sections provide information on how to obtain a deployment manager:

Types of Deployment Managers

WebLogic Server provides a single implementation for

javax. enterprise. depl oy. spi . Depl oynent Manager that behaves differently depending on the
URI specified when instantiating the class from a factory. WebLogic Server provides two basic
types of deployment manager:

A disconnected deployment manager has no connection to a WebLogic Server instance.
Use a disconnected deployment manager to configure an application on a remote client
machine. It cannot be used it to perform deployment operations. (For example, a
deployment tool cannot use a disconnected deployment manager to distribute an
application.)

A connected deployment manager has a connection to the Administration Server for the
WebLogic Server domain, and by a deployment tool to both to configure and deploy
applications.

A connected deployment manager is further classified as being either local to the
Administration Server, or running on a remote machine that is connected to the Administration
Server. The local or remote classification determines whether file references are treated as
being local or remote to the Administration Server.

Table 2-3 summarizes deployment manager types.

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 15



ORACLE Chapter 2
Application Evaluation

Table 2-3 WebLogic Server Deployment Manager Usage
|

Deployment Type Usage Notes

Manager

Connectivity

Disconnected n/a Configuration tools only Cannot perform deployment operations

Connected Local Configuration and deployment tools local to All files are local to the Administration
the Administration Server Server machine

Connected Remote Configuration and Deployment for Tools on Distribution and Deployment operations
a remote machine (not on the cause local files to be uploaded to the
Administration Server) Administration Server

Connected and Disconnected Deployment Manager URIs

Each Depl oynment Manager obtained from the WebLogi cDepl oynment Fact ory supports WebLogic
Server extensions. When creating deployment tools, obtain a specific type of deployment
manager by calling the correct method on the deployment factory instance and supplying a
string constant defined in webl ogi c. depl oyer. spi . factori es. WebLogi cDepl oynent Fact ory
that describes the type of deployment manager required. Connected deployment managers
require a valid server URI and credentials to the method in order to obtain a connection to the
Administration Server.

Table 2-4 summarizes the method signatures and constants used to obtain the different types
of deployment managers.

Table 2-4 URIs for Obtaining a WebLogic Server Deployment Manager
|

Type of Deployment Method Argument
Manager
disconnected get Di sconnect edDepl oynent Mana  String value of
ger() \WebLogi cDepl oynent Fact ory. LOCAL_DM URl
connected, local get Depl oynment Manager () URI consisting of:

- \eébLogi cDepl oyment Fact ory. LOCAL_DM URI
*  Administration Server host name
*  Administration Server port
*  Administrator username
e Administrator password
connected, remote get Depl oynment Manager () URI consisting of:
e \WebLogi cDepl oynent Fact ory. REMOTE_DM URI
e Administration Server host name
*  Administration Server port
e Administrator username
*  Administrator password

The sample code in Example 2-1 shows how to obtain a disconnected deployment manager.
Example 2-1 Obtaining a Disconnected Deployment Manager

O ass WsFactoryd ass = O ass. fornane("webl ogi c. depl oyer. spi.factories.internal.Depl oyment Factorylnpl");
Depl oyrment Fact ory nyDepl oynent Factory = (Depl oynent Factory) W sFact oryd ass. new nstance();

Depl oyment Fact or yManager . get | nst ance() . regi st er Depl oynent Fact or y( myDepl oynent Fact ory) ;

\ebLogi cDepl oynent Manager nyDi sconnect edManager =

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 15



ORACLE Chapter 2
Application Evaluation

(WebLogi cDepl oynment Manager ) myDepl oynent Fact ory. get Di sconnect edDepl oynment Manager (\WebLogi cDepl oynent Fact ory
. LOCAL_DM URI);

The deployment factory contains a helper method, createUri () to help you form the URI
argument for creating connected deployment managers. For example, to create a
disconnected remote deployment manager, replace the final line of code with:

(WebLogi cDepl oynment Manager ) myDepl oynent Fact ory. get Depl oynment Manager (myDepl oynent Fact ory. creat eUri (WebLogi
cDepl oyment Fact ory. REMOTE_DM URI, "l ocal host", "7001", "weblogic", "weblogic"));

Using SessionHelper to Obtain a Deployment Manager

The Sessi onHel per helper class provides several convenience methods to help you easily
obtain a deployment manager without manually creating and registering the deployment
factories as shown in Example 2-1. The Sessi onHel per code required to obtain a disconnected
deployment manager consists of a single line:

Depl oyment Manager nyDi sconnect edMVanager =
Sessi onHel per. get Di sconnect edDepl oynent Manager () ;

You can use the Sessi onHel per to obtain a connected deployment manager, as shown below:

Depl oyment Manager nyConnect edManager =
Sessi onHel per. get Depl oynment Manager (“admi nhost ", "7001", "weblogic", "weblogic"));

This method assumes a remote connection to an Administration Server (adni nhost ). See the
Javadocs for more information about Sessi onHel per .

Create a Deployable Object

The following sections provide information on how to create a deployable object, which is the
container your deployment tool uses to deploy applications. Once you have initialized a
configuration session by Obtain a Deployment Manager, create a deployable object for your
deployment tool in one of the following ways:

Using the WebLogicDeployableObject class

The direct approach uses the WebLogi cDepl oyabl eQbj ect class of the model package as
shown below:

WebLogi cDepl oyabl eCbj ect nmyDepl oyabl eCbj ect =
VebLogi cDepl oyabl e(bj ect . cr eat eWebLogi cDepl oyabl eCbj ect (" myAppFi | eNarme") ;

Once the deployable object is created, a configuration can be created for the applications
deployment.

Using SessionHelper to obtain a Deployable Object

The Sessi onHel per helper class provides a convenient method to obtain a deployable object.
The Sessi onHel per code required to obtain a deployable object is shown below:

Sessi onHel per. set Appl i cati onRoot (root);
\ebLogi cDepl oyabl eChj ect nyDepl oyabl eChj ect = Sessi onHel per. get Depl oyabl eChj ect () ;

There is no application specified in the get Depl oyabl eQbj ect () call. Sessi onHel per uses the
application in the root directory set by set Appl i cati onRoot () . Once the application root
directory is set, Sessi onHel per can be used to perform other operations, such as explicitly
naming the dispatch file location or the deployment plan location.

Deploying Applications with the WebLogic Deployment API

G31586-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 15



ORACLE

Chapter 2
Perform Front-End Configuration

You can also set the application file name using the set Appl i cati on method as shown below:

Sessi onHel per. set Appl i cati on( AppFi | eNane) ;

This method allows you to continue using Sessi onHel per independent of the directory
structure. The get Depl oyabl etbj ect method returns the application specified.

Perform Front-End Configuration

Front-end configuration involves creating a \WebLogi cDepl oynent Pl an and populating it and its
associated bean trees with configuration information:

What is Front-End Configuration

Front-end configuration phase consists of two logical operations:

* Loading information from a deployment plan to a deployment configuration. If a
deployment configuration does not yet exist, this includes creating a
WebLogi cDepl oynent Confi gur ati on object to represent the WebLogic Server configuration
of an application. This is the first step in the process of process of creating a deployment
plan for this object.

* Restoring any existing WebLogic Server configuration values from an existing deployment
plan.

A deployment tool must be able to:

« Extract information from a deployment configuration. The deployment configuration is the
active Java object that is used by the Deployment Manager to obtain configuration
information. The deployment plan exists outside of the application so that it can be
changed without manipulating the application.

A deployment plan is an XML document that contains the environmental configuration for an
application and is sometimes referred to as an application's front-end configuration. A
deployment plan:

e Separates the environment specific details of an application from the logic of the
application.

* Is not required for every application. However, a deployment plan typically exists for each
environment an application is deployed to.

« Describes the application structure, such as what modules are in the application.

< Allows developers and administrators to update the configuration of an application without
modifying the application archive.

e Contains environment-specific descriptor override information (tunables). By modifying a
deployment plan, you can provide environment specific values for tunable variables in an
application.

Deployment Configuration

The server configuration for an application is encapsulated in the

j avax. enterprise. depl oy. spi . Depl oynent Confi gur ati on interface. A

Depl oyment Conf i gur ati on provides an object representation of a deployment plan. A

Depl oynment Confi gurati on is associated with a Depl oyabl e(hj ect using the

Depl oyment Manager . cr eat eConf i gur ati on method. Once a Depl oyment Confi gur ati on object
is created, a DConf i gBean tree representing the configurable and tunable elements contained

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 15



ORACLE Chapter 2
Perform Front-End Configuration

in any and all WebLogic Server descriptors is available. If there are no WebLogic Server
descriptors for an application, then a DConf i gBean tree is created using available default
values. Binding properties that have no defaults are left unset.

When creating a deployment tool, you must ensure that the DConf i gBean tree is fully populated
before the tool distributes an application.

Example Code

The following code provides an example on how to populate DConf i gBeans:
Example 2-2 Example Code to Populate DConfigBeans

public class Depl oynment Session {
Depl oyment Manager dm
Depl oyabl eQbj ect dbj ect = nul |;
Depl oyment Confi guration dConfig = null;
Map beanMap = new HashMap();

Il Assumes app is a Wb app.
public void initializeConfig(File app) throws Throwable {
/**
* |nit the wapper for the DDBeans for this module. This exanpl e assumes
* it is using the WS inplenmentation of the nodel api.
*/
dObj ect = WebLogi cDepl oyabl eChj ect . cr eat eDepl oyabl eQbj ect (app) ;
/1 Get basic configuration for the nodule
dConfig = dmcreateConfiguration(dbject);
/**
* At this point the Depl oyabl eCbject is popul ated. Popul ate the
* Depl oynent Confi gurationbased on its content.
* W first ask the Depl oyabl eQbject for its root.
*/
DDBeanRoot root = dbj ect. get DDBeanRoot ();
/**
* The root DDBean is used to start the process of identifying the
* necessary DConfigBeans for configuring this nodule.
*/
Systemout. println("Looking up DCB for "+root.getXpath());
DConf i gBeanRoot root Config = dConfi g. get DConfi gBeanRoot (root);
col | ect ConfigBeans(root, rootConfig);
/**
* The Depl oynent Configuration is now initialized, although not necessarily
* conpletely setup.
*/
FileQutputStream fos = new FileQutput Strean{"test.xm");
dConfi g. save(fos);

}

/'l bean and dcb are a related DDBean and DConfi gBean.
private void col | ect Confi gBeans(DDBean bean, DConfigBean dcb) throws Throwabl e{
DConf i gBean confi gBean;
DDBean[] beans;
if (dcb == null) return;
/**
* Maintain some sort of napping between DDBeans and DConfi gBeans
* for later processing.
*/
beanMap. put ( bean, dcb) ;

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 15



ORACLE Chapter 2
Perform Front-End Configuration

/**

* The config bean advertises xpaths into the web.xml descriptor it
* needs to know about.

*/

String[] xpaths = dch. get Xpat hs();

if (xpaths == null) return;

/**

* For each xpath get the associated DDBean and collect its associated
* DConfigBeans. Continue this recursively until we have all DDBeans and
* DConfi gBeans col | ect ed.
*/
for (int i=0; i<xpaths.length; i++) {
beans = bean. get Chi | dBean(xpaths[i]);
for (int j=0; j<beans.length; j++) {

/**

* |nit the DConfigBean associated with each DDBean

*/

Systemout. println("Looking up DCB for "+beans[j].get Xpath());
confi gBean = dch. get DConfi gBean( beans[j]);

col | ect Confi gBeans(beans[j], configBean);

This example merely iterates through the DDBean tree, requesting the DConf i gBean for each
DDBean to be instantiated.

Depl oynent Confi gur at i on objects may be persisted as deployment plans using

Depl oyment Conf i guration. save() . A deployment tool may allow the user to import a saved
deployment plan into the Depl oyment Conf i gur ati on object instead of populating it from
scratch. Depl oynent Confi gurati on. restore() provides this capability. This supports the idea
of having a repository of deployment plans for an application, with different plans being
applicable to different environments.

Similarly the Depl oyment Conf i gur ati on may be pieced together using partial plans, which
were presumably saved in a repository from a previous configuration session. A partial plan
maps to a module-root of a DConf i gBean tree. Depl oynment Confi gur ati on. saveDConf i gBean()
and Depl oynment Confi gurati on. rest or eDConfi gBean() provide this capability.

Parsing of the WebLogic Server descriptors in an application occurs automatically when a
Depl oyment Conf i gurati on is created. The descriptors ideally conform to the most current
schema. For older applications that include descriptors based on WebLogic Server 8.1 and
earlier DTDs, a transformation is performed. Old descriptors are supported but they cannot be
modified using a deployment plan. Therefore, any DOCTYPE declarations must be converted
to name space references and element specific transformations must be performed.

Reading In Information with SessionHelper

Sessi onHel per.initializeConfiguration processes all standard and WebLogic Server
descriptors in the application.

Prior to invoking i ni ti al i zeConfi gurati on, you can specify an existing deployment plan to
associate with the application using the Sessi onHel per. set Pl an() method. With a plan set,
you can read in a deployment plan using the Depl oyment Confi gurati on. restore() method. In
addition, the Depl oyment Configuration.initializeConfiguration() method automatically
restores configuration information once a plan is set.

When initiating a configuration session with the Sessi onHel per class, you can easily initiate
and fill a depl oyment Conf i gur ati on object with deployment plan information as illustrated
below:

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 15



ORACLE

Chapter 2
Customizing Deployment Configuration

Depl oynment Manager dm = Sessi onHel per. get Di sconnect edDepl oynent Manager () ;
Sessi onHel per hel per = Sessi onHel per. getlnstance(dnj;
/'l specify location of archive
hel per. set Appl i cation(app);
/'l specify location of existing deploynent plan
hel per. set Pl an(pl an);
/] initialize the configuration session
hel per.initializeConfiguration();
Depl oynment Confi guration dc = hel per. get Configuration();

The above code produces the deployment configuration and its associated
WebLogi cDDBeanTr ee.

Validating a Configuration

Validation of the configuration occurs mostly during the parsing of the descriptors which occurs
when an application's descriptors are processed. Validation consists of ensuring the
descriptors are valid XML documents and that the descriptors conform to their respective
schemas.

Customizing Deployment Configuration

The Customizing Deployment Configuration phase involves modifying individual WebLogic
Server configuration values based on user inputs and the selected WebLogic Server targets.

Modifying Configuration Values

In this phase, a configuration is only as good as the descriptors or pre-existing plan associated
with the application. The DConf i gBeans are designed as Java Beans and can be introspected,
allowing a tool to present their content in some meaningful way. The properties of a

DConf i gBean are, for the most part, those that are configurable. Key properties (those that
provide uniqueness) are also exposed. Setters are only exposed on those properties that can
be safely modified. In general, properties that describe application behavior are not modifiable.
All properties are typed as defined by the descriptor schemas.

The property getters return subordinate DConf i gBeans, arrays of DConf i gBeans, descriptor
beans, arrays of descriptor beans, simple values (primitives and j ava. | ang objects), or arrays
of simple values. Descriptor beans represent descriptor elements that, while modifiable, do not
require DConf i gBean features, meaning there are no standard descriptor elements they are
directly related to. Editing a configuration is accomplished by invoking the property setters.

The Jakarta DConf i gBean class allows a tool to access beans using the

get DConf i gBean( DDBean) method or introspection. The former approach is convenient for a
tool that presents the standard descriptor based on the DDBeans in the application's

Depl oyabl eChj ect and provides direct access to each DDBean's configuration (its

DConf i gBean). This provides configuration of the essential resource requirements an
application may have. Introspection allows a tool to present the application's entire
configuration, while highlighting the required resource requirements.

Introspection is required in both approaches in order to present or modify descriptor properties.
The difference is in how a tool presents the information:

»  Driven by standard descriptor content or

* WebLogic Server descriptor content.

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 15



ORACLE Chapter 2
Customizing Deployment Configuration

A system of modifying configuration information must include a user interface to ask for
configuration changes. See Example 2-3.

Example 2-3 Code Example to Modify Configuration Information

/'l Introspect the DConfigBean tree and ask for input on properties with setters
private void processBean(DConfigBean dcb) throws Exception {
i f (dcb instanceof DConfigBeanRoot) {
Systemout. println("Processing configuration for descriptor:
"+dch. get DDBean() . get Root (). get Fi l enane());
1
/1 get property descriptor for the bean
BeanInfo info =
I ntrospector. get Beanl nf o(dch. get G ass(), I ntrospect or. USE_ALL_BEANI NFO) ;
PropertyDescriptor[] props = info.getPropertyDescriptors();
String bean = info.getBeanDescriptor().getD splayNane();
PropertyDescriptor prop;
for (int i=0;i<props.length;i++) {
prop = props[i];
/] only allow primtives to be updated
Met hod getter = prop. get ReadMet hod();
if (isPrimtive(getter.getReturnType())) // see isPrimtive method bel ow
{
writeProperty(dch, prop, bean); //see witeProperty nethod bel ow
}
Il recurse on child properties
bj ect child = getter.invoke(dch, new Ghject[]{});
if (child == null) continue;
Il traversable if child is a DConfigBean.
Cass cc = child. getdass();
if (lisPrinmitive(cc)) {
if (cc.isArray()) {
oject[] cl = (Cbject[])child;
for (int j=0;j<cl.length;j++) {
if (cl[j] instanceof DConfigBean) processBean((DConfigBean) cl[j]);
}

} else {
if (child instanceof DConfigBean) processBean((DConfigBean) child);
}
}
}
}

[l if the property has a setter then invoke it with user input
private void witeProperty(DConfigBean dch, PropertyDescriptor prop, String bean)
throws Exception {
Met hod getter = prop. get ReadMet hod();
Met hod setter = prop.getWiteMethod();
if (setter !'=null) {
PropertyEditor pe =
Propert yEdi t or Manager . fi ndEdi t or ( pr op. get PropertyType());
if (pe == null &&
String[].class.isAssignabl eFromgetter.getReturnType())) pe =
new StringArrayEditor(); // see StringArrayEditor class bel ow
if (pe!=null) {
bj ect ol dval ue = getter.invoke(dch, new Qbject[0]);
pe. set Val ue(ol dval ue);
String val =
get User | nput (bean, prop. get Di spl ayName(), pe. get AsText ());
/'l see getUserlnput nethod bel ow

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 15



ORACLE’

Chapter 2

Customizing Deployment Configuration

if (val == null || val.length() == 0) return;
pe. set AsText (val );
(bj ect newval ue = pe. getVal ue();
prop. get Wi teMet hod().invoke(dch, new Cbject[]{newal ue});
}
}
}

private String getUserlnput(String element, String property, String curr) {
try {

Systemout.println("Enter value for "+el enent+"."+property+". Current value is:

return br.readLine();
} catch (1 OException ioe) {
return nul l;
1
}

[l Primtive means a java primtive or String object here
private boolean isPrimtive(dass cc) {
bool ean prim = fal se;
if (cc.isPrimitive() || String.class.isAssignableFron(cc)) prim= true;
if (‘prim {
/] array of primtives?
if (cc.isArray()) {
C ass ccc = cc. get Conponent Type();

if (ccc.isPrimtive() || String.class.isAssignabl eFron{ccc)) prim= true;
}
}
return prim
}
/**

* Customeditor for string arrays. Input text is converted into tokens using
* commas as deliniters
*/
private class StringArrayEditor extends PropertyEditorSupport {
String[] curr = null;

public StringArrayEditor() {super();}

/1 comma separated string
public String getAsText() {
if (curr == null) return null;
StringBuffer sbh = new StringBuffer();
for (int i=0;i<curr.length;i++) {
sh. append(curr[i]);
sh. append(',");

if (curr.length > 0) sh.del eteCharAt(sh.length()-1);
return sh.toString();

}

public Chject getValue() { return curr; }
public bool ean isPaintable() { return false; }

public void setAsText(String text) {
if (text == null) curr = null;
StringTokeni zer st = new StringTokeni zer(text,",");
curr = new String[st.countTokens()];
for (int i=0;i<curr.length;i++) curr[i] = new String(st.nextToken());

}

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

"+curr);

October 6, 2025
Page 13 of 15



ORACLE Chapter 2
Deployment Preparation

public void setVal ue(Gbject value) {
if (value == null) {
curr = null;
} else {
String[] v = (String[])value; // let caller handle class cast issues
curr = new String[v.length];

for (int i=0;i<v.length;i++) curr[i] = new String(v[i]);
}
1
}

Beyond the mechanics of the rudimentary user interface, any interface that enables changes to
the configuration by an administrator or user can use the property setters shown in

Example 2-3.

Targets

Targets are associated with WebLogic Servers, clusters, Web servers, virtual hosts and JMS
servers. See webl oqgi c. depl oy. api . spi . WebLogi cTar get and Support for Querying WebL ogic
Target Types.

Application Naming

In WebLogic Server, application names are provided by a deployment tool. Names of modules
contained within an application are based on the associated archive or root directory name of
the modules. These names are persisted in the configuration MBeans constructed for the
application.

In Jakarta EE deployment there is no mention of the configured name of an application or its
constituent modules, other than in the Tar get Modul el D object. Yet Tar get Modul el Ds exist only
for applications that have been distributed to a WebLogic Server domain. Hence there is a
need to represent application and module names in a deployment tool prior to distribution. This
representation should be consistent with the names assigned by the server when the
application is finally distributed.

Your deployment tool plug-in must construct a view of an application using the

Depl oyabl eQbj ect and J2eeAppl i cati onQbj ect classes. These classes represent stand-alone
modules and EARSs, respectively. Each of these classes is directly related to a DDBeanRoot
object. When presented with a distribution where the name is not configured, the deployment
tool must create a name for the distribution. If the distribution is a Fi | e object, use the filename
of the distribution. If an archive is offered as an input stream, a random name is used for the
root module.

Deployment Preparation

The deployment preparation phase involves saving the resulting plan from a configuration
session. Use the Depl oynent Confi gurati on. save() method (a standard Jakarta EE
Deployment APl method). You can also use the Sessi onHel per. savePl an() method to save a
new copy of deployment plan along with any external documents in the plan directory.

The Depl oynment Confi gur ati on. save methods creates an XML file based on the deployment
plan schema that consists of a serialization of the current collection of DConf i gBeans, along
with any variable assignments and definitions. DConf i gBean trees are always saved as external

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 15



ORACLE

Chapter 2
Session Cleanup

descriptors. These descriptors are only be saved if they do not already exist in the application
archive or the external configuration area, meaning a save operation does not overwrite
existing descriptors. The Depl oyment Conf i gur ati on. saveDConf i gBean method does overwrite
files. This is does not mean that any changes made to a configuration are lost, it means that
they are handled using variable assignments.

As noted before, the Depl oynent Confi gur ati on. rest or e methods are used to create
configuration beans based on a previously saved deployment plan (see Perform Front-End
Configuration). You can restore an entire collection of configuration beans or you can restore a
subset of the configuration beans. It is also possible to save or restore the configuration beans
for a specific module in an application.

Session Cleanup

Temporary files are created during a configuration session. Archives are exploded into the
temp area and can only be removed after session configuration is complete. There is no
standard API defined to close out a session. Use the cl ose() methods to

WebLogi cDepl oyabl ethj ect and WebLogi cDepl oynent Confi gurati on. Sessi onHel per. cl ose()
to clean up after a session. If you do not clean up after closing sessions, the disk containing
your temp directories may fill up over time.

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 15



Performing Deployment Operations

This chapter describes application deployment in WebLogic Server. Application deployment
distributes the information created inConfiguring Applications for Deployment to the
Administration Server for server-side processing and application startup. Your deployment tool
must be able to successfully complete the deployment operations outlined in this chapter.
This chapter includes the following sections:

Register Deployment Factory Objects

Your deployment tool must instantiate and register the Depl oyment Fact ory objects it uses. You
can implement your own mechanism for managing Depl oynent Fact ory objects. WebLogic
Server Depl oynent Fact ory objects are advertised in a manifest file stored in the W depl oy. j ar
file. The manifest contains entries of the fully qualified class names of the factories, separated
by whitespace. For example, if you assume that the Depl oynent Fact or y- objects reside in a
fixed location and are included in the deployment tool classpath, the deployment tool registers
any Depl oynent Fact ory objects it recognizes at startup. See Example 3-1.

Example 3-1 Registered Deployment Factory in the Manifest File

MANI FEST. MF:

Mani fest-version: 1.0

| npl ement ati on- Vendor: BEA Systens

Inpl enentation-Title: WbLogic Server 9.0 Mon May 29 08:16:47 PST 2006 221755
I npl ement ati on-Version: 9.0.0.0

J2EE- Depl oynent Fact ory- | npl enent ati on- 0 ass:

webl ogi c. depl oy. spi . factori es. Depl oynent Fact oryl npl

The standard Depl oyment Fact ory interface is extended by
webl ogi c. depl oy. api . WebLogi cDepl oynent Fact ory. The additional methods provided in the
extension are:

e String[] getUis(): Returns an array of URI's that are recognized by
get Depl oynment Manager . The first URI in the array is guaranteed to be the default
Depl oynment Manager URI, depl oyer: WebLogi c. Only published URI's are returned in this
array.

e String createUri(String protocol, String host, String port): Returns a usable
URI based on the arguments.

Allocate a DeploymentManager

Your deployment tool must allocate a Depl oynent Manager from a Depl oyment Fact ory, which is
registered with the Depl oyment Fact or yManager class, in order to perform deployment
operations. In addition to configuring an application for deployment, the Depl oynent Manager is
responsible for establishing a connection to a Jakarta EE server. The Depl oynment Manager
implementation is accessed using a Depl oynment Fact ory.

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 11



ORACLE Chapter 3
Allocate a DeploymentManager

The following sections provide information on how a Depl oynent Manager connects to a server
instance:

Getting a DeploymentManager Object

Use the Depl oynent Fact ory. get Depl oynent Manager method to get a Depl oyment Manager
object. This method takes a URI, user ID and password as arguments. The URI has the
following patterns:

e depl oyer: WebLogi c<: host : port >
e depl oyer: WblLogi c. renmot e<: host : port >
e depl oyer: WebLogi c. aut hent i cat ed<: host : port >

When connecting to an Administration Server, the URI must also include the host and port,
such as depl oyer: WebLogi c¢: | ocal host: 7001. See Understanding DeploymentManager URI
Implementations.

The following provides additional information on Depl oyment Manager arguments:

*  When obtaining a disconnected Depl oynment Manager , you do not need to include the
host : port because there is no connection to an Administration Server. For example, the
URI can be depl oyer: \WebLogi c.

* The user ID and password arguments are ignored if the deployment tool uses a pre-
authenticated Depl oyment Manager .

e You can access the URI of any Depl oynent Manager implementation using the
Depl oynment Fact ory. get Uri s() method. get Uri s is an extension of Depl oynenFact ory.

Understanding DeploymentManager URI Implementations

Depending on the URI specified during allocation, the Depl oyment Manager object will have one
of the following characteristics:

e depl oyer: WebLogi c: The Depl oynent Manager is running locally on an Administration
Server and any files referenced during the deployment session are treated as if they are
local to the Administration Server.

e depl oyer: WebLogi c. renot e: The Depl oynent Manager is running remotely to the WebLogic
Server Administration Server and any files referenced during the deployment session are
treated as being remote to the Administration Server and may require uploading. For
example, a distribute operation includes uploading the application files to the
Administration Server.

« depl oyer: WebLogi c. aut henti cat ed: This is an internal, unpublished URI, usable by
internal applications provided as part of the WebLogic Server product that are already
authenticated and have access to domain management information. The
Depl oynment Manager is running locally on a WebLogic Administration Server and any files
referenced during the deployment session are treated as if they are local to the
Administration Server.

You can explicitly force the uploading of application files by using the
VWebLogi cDepl oynment Manager met hod enabl eFi | eUpl oads() method.

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 11



ORACLE Chapter 3
Deployment Processing

Server Connectivity

Depl oyment Manager s are either connected or disconnected. Connected Depl oynent Manager s
imply a connection to a WebLogic Server Administration Server. This connection is maintained
until it is explicitly disconnected or the connection is lost. If the connection is lost, the

Depl oyment Manager reverts to a disconnected state.

Explicitly disconnecting a Depl oynent Manager is accomplished using the
Depl oynment Manager . r el ease method. There is no corresponding method for reconnecting the
Depl oyment Manager . Instead the deployment tool must allocate a new Depl oynment Manager .

@® Note

Allocating a new Depl oynment Manager does not affect any configuration information
being maintained within the tool through a Depl oynent Conf i gur ati on object.

Deployment Processing

Most of the functional components of a Depl oynent Manager are defined in the Jakarta EE
Deployment API specification. However, Oracle has extended the Depl oyment Manager
interface with the capabilities required by existing WebLogic Server-based deployment tools.
Oracle WebLogic Server deployment extensions are documented at

webl ogi c. depl oy. api . spi . WebLogi cDepl oynent Manager .

The Jakarta EE programming model revolves around employing Tar get Modul el D objects

(Tar get Mbdul el Ds) and Progr essChj ect objects. In general, target modules are specified by a
list of Tar get Modul el Ds which are roughly equivalent to deployable root modules and sub-
module level MBeans. The Depl oynment Manager applies the Tar get Modul el Ds to deployment
operations and tracks their progress. A deployment tool needs to query progress using a
ProgressObj ect returned for each operation. When the Progr essCbj ect indicates the
operation is completed or failed, the operation is done.

The following sections provide an overview of WebLogic Depl oynent Manager features:

DeploymentOptions

WebLogic Server allows for a Depl oynent Opt i ons argument

(webl ogi c. depl oy. api . spi . Depl oyment Opt i ons) which supports the overriding of certain
deployment behaviors. The argument may be nul | , which provides standard behavior. Some
of the options supported in this release are:

e adnin (test) mode
* Retirement Policy
e Staging

See DeploymentOptions Javadoc.

Distribution

Distribution of new applications results in:

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 11



ORACLE

Chapter 3
Deployment Processing

« the application archive and plan is staged on all targets.

» the application being configured into the domain.

® Note

Redistribution honors the staging mode already configured for an application.

The standard distribute operations does not support version naming. WebLogic Server
provides WebLogi cDepl oyrment Manager to extend the standard with a distribute operation that
allows you to associate a version name with an application.

The ProgressQbj ect returned from a distribute provides a list of Tar get Modul el Ds representing
the application as it exists on the target servers. The targets used in the distribute are any of
the supported targets. The Tar get Modul el D represents the application's module availability on
each target.

For new applications, Tar get Modul el Ds represent the top level AppDepl oynent MBean objects.
Tar get Modul el Ds do not have child Tar get Mbdul el Ds based on the modules and sub-modules
in the application since the underlying MBeans would only represent the root module. For pre-
existing applications, the Tar get Modul el Ds are based on Depl oyabl eMBeans and any

AppDepl oynment MBean and SubAppDepl oynment MBean in the configuration.

If you use the di stribute(Target[], | nput Stream I nput St ream) method to distribute an
application, the archive and plan represented by the input streams are copied from the streams
into a temporary area prior to deployment which impacts performance.

Application Start

The standard start operation only supports root modules; implying only entire applications can
be started. Consider the following configuration.

<AppDepl oyment Name="myapp">
<SubDepl oyment Name="webappl", Targets="serverx"/>
<SubDepl oynment Name="webapp2", Targets="serverx"/>
</ AppDepl oynent >

The Tar get Modul el Dreturned from get Avai | abl eMbdul es( Modul eType. EAR) looks like:

nyapp on serverx (inplied)
webappl on serverx
webapp2 on serverx

and start (tnid) would start webappl and webapp2 on ser ver X.

To start webappl, module level control is required. Configure module level control by manually
creating a Tar get Modul el D hierarchy.

\WWebLogi cTar get Modul el D root =

dm creat eTar get Modul el D( " nyapp", Modul eType. EAR, get Tar get (serverx));
\WebLogi cTar get Modul el D web = dm creat eTar get Modul el D(r oot , "webappl", Modul eType. WAR) ;
dm start (new Target Modul el O ] {web});

This approach uses the Tar get Mbdul el D creation extension to manually create an explicit
Tar get Modul el D hierarchy. In this case the created Tar get Modul el D would look like

nyapp on serverx (inplied)
webappl on serverx

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 11



ORACLE Chapter 3
Production Redeployment

The st art operation does not modify the application configuration. Version support is built into
the Tar get Modul el Ds, allowing the user to start a specific version of an application.
Applications may be started in normal or administration (test) mode.

Application Deploy

The depl oy operation combines a di stri bute and start operation. Web applications may be
deployed in normal or administration (test) mode. You can specify application staging using the
Depl oynment Opt i ons argument. depl oy operations use Tar get Modul el Ds instead of Tar get s for
targeting, allowing for module level configuration.

The depl oy operation may change the application configuration based on the
Tar get Modul el Ds provided.

Application Stop

The standard st op operation only supports root modules; implying only entire applications can
be stopped. See the Application Start.

Oracle provides versioning support, allowing you to stop a specific version of an application.
The st op operation does not modify the application configuration. See Version Support.

Undeployment

The standard undeploy operation removes an application from the configuration, as specified
by the Tar get Modul el Ds. Individual modules can be undeployed. The result is that the
application remains on the target, but certain modules are not actually configured to run on it.
See the Application Start section for more detail on module level control.

The WebLogi cDepl oynent Manager extends undeploy in support of removing files from a
distribution. This is a form of in-place redeployment that is only supported in web applications,
and is intended to allow you to remove static pages. See Version Support.

Production Redeployment

Standard redeployment support only applies to entire applications and employs side-by-side
versioning to ensure uninterrupted session management. The WebLogi cDepl oynent Manager
extends the redepl oy() method and provides the following additional support:

In-Place Redeployment

The in-place redeployment strategy works by immediately replacing a running application's
deployment files with updated deployment files, such as:

e Partial redeployment which involves adding or replacing specific files in an existing
deployment.

e Updating a configuration using a redeployment of a deployment plan

Module Level Targeting

A Depl oynent Manager implements the Jakarta Deployment specification and restricts
operations to root modules. Module level control is provided by manually constructing a

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 11



ORACLE Chapter 3
Progress Reporting

module specific Tar get Modul el D hierarchy using
\WebLogi cDepl oynent Manager . cr eat eTar get Modul el D

Retirement Policy

When a new version of an application is redeployed, the old version should eventually be
retired and undeployed. There are 2 policies for retiring old versions of applications:

1. (Default) The old version is retired when new version is active and old version finishes its
in-flight operations.

2. The old version is retired when new version is active, retiring the old after some specified
time limit of the new version being active.

@® Note

The old version is not retired if the new version is in administration (test) mode.

Version Support

Side-by-side versioning is used to provide retirement extensions, as suggested in the
redeployment specification. This ensures that an application can be redeployed without
interruption in service to its current clients. Details on deploying side-by-side versions can be
found in Redeploying Applications in a Production Environment in Deploying Applications to
Oracle WebLogic Server.

Administration (Test) Mode

A web application may be started in normal or administration (test) mode. Normal mode
indicates the web application is fully accessible to clients. Administration (test) mode indicates
the application only listens for requests using the adni n channel. Administration (test) mode is
specified by the Depl oynent Opt i ons argument on the WebLogic Server extensions for start,
depl oy and r edepl oy. See DeploymentOptions Javadoc.

Progress Reporting

Use ProgressQbj ect s to determine deployment state of your applications. These objects are
associated with Depl oyment TaskRunt i meMBeans. Pr ogr essCbj ect s support the cancel
operation but not the stop operation.

Progessbj ect s are associated with one or more Tar get Mdul el Ds, each of which represents
an application and its association with a particular target. For any Progr essQbj ect , its
associated Tar get Mobdul el Ds represent the application that is being monitored.

The ProgressChj ect maintains a connection with the deployment framework, allowing it to
provide a deployment tool with up-to-date deployment status. The deployment state transitions
from running to completed or failed only after all Tar get Modul el Ds involved have completed
their individual deployments. The resulting state is conpl et ed only if all Tar get Modul el Ds are
successfully deployed.

The r el eased state means that the Depl oynent Manager was disconnected during the
deployment. This may be due to a manual release, a network outage, or similar communication
failures.

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 11



ORACLE

Chapter 3
Progress Reporting

Example 3-2 shows how a ProgressQbj ect can be used to wait for a deployment to complete:
Example 3-2 Example Code to Wait for Completion of a Deployment

package webl ogi c. depl oyer.tool s;

i mport javax.enterprise.deploy.shared. *;
import javax.enterprise.deploy.spi.*;
i mport javax.enterprise.deploy.spi.status.*;

/**

* Example of class that waits for the conpletion of a depl oynent
* using ProgressEvent's.

*/

public class ProgressExanpl e inplenments ProgressListener {

private boolean failed = fal se;
private Depl oyment Manager dm
private TargetMdul el D[] tmds;

public void main(String[] args) {
/1 set up Depl oynent Manager, Target Modul el Ds, etc
try {
wait(dmstart(tmds));
} catch (I11legal StateException ise) {
//... dmnot connected

}
}

if (failed) Systemout.println("oh no!");

voi d wait (ProgressChject po) {
ProgressHandl er ph = new ProgressHandl er();
if (!po.getDeploynment Status().isRunning()) {
failed = po.getDepl oyment Status().isFailed();
return;

po. addPr ogr essLi st ener (ph);
ph.start();
whil e (ph. getConpletionState() == null) {
try {
ph.join();
} catch (InterruptedException ie) {
if (!ph.isAlive()) break;

}
}
StateType s = ph. get Conpl etionState();
failed = (s == null ||
S.getVal ue() == StateType. FAI LED. get Val ue());
po. renovePr ogr essLi st ener (ph);
}

cl ass ProgressHandl er extends Thread inpl ements ProgressListener {
bool ean progressDone = fal se;
StateType final State = nul l;
public void run(){
whi | e(! progressDone) {
Thread. current Thread().yiel d();

public void handl eProgressEvent (ProgressEvent event){
Depl oyment Status ds = event. get Depl oynent Status();
if (ds.getState().getValue() != StateType. RUNNI NG get Val ue()) {

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 11



ORACLE

Chapter 3
Target Objects

progressDone = true;
final State = ds.getState();

}
}
public StateType getConpletionState(){
return final State;
}
}
}

Target Objects

The following sections provide information on how to target objects:

Module Types

The standard modules types are defined by j avax. ent er pri se. depl oy. shar ed. Modul eType.
This is extended to support WebLogic Server-specific module types: JMS, JDBC, INTERCEPT
and CONFIG.

Extended Module Support

The Jakarta Deployment specification defines a secondary descriptor as additional descriptors
that a module can refer to or make use of. These descriptors are linked to the root

DConf i gBean of a module such that they are visible to a Java Beans based tool as they are
child properties of a DConf i gBeanRoot object. Secondary descriptors are automatically included
in the configuration process for a module.

Web Services

CMP

JDBC

An EJB or web application may include a webser vers. xn descriptor. If present, the module is
automatically configured with the WebLogic Server equivalent descriptor for configuring Web
services as secondary descriptors. The deployment plan includes these descriptors as part of
the module, not as a separate module.

CMP support in EJBs is configured using RDBMS descriptors that are identified for CMP
beans in the webl ogi c- ej b-j ar. xm descriptor. The RDBMS descriptors support CMP11 and
CMP20. Any number of RDBMS descriptors may be included with an EJB module. Provide
these descriptors in the application archive or configuration area (appr oot / pl an). Although
they are not created by the configuration process, they may be modified like any other
descriptor. RDBMS descriptors are treated as secondary descriptors in the deployment plan.

JDBC modules are described by a single deployment descriptor with no archive. If the module
is part of an EAR, the JDBC descriptors are specified in webl ogi c- appl i cation. xm as
configurable properties. You can deploy JDBC modules to WebLogic servers and clusters.
Configuration changes to JDBC descriptors are handled as overrides to the descriptor.

If a JIDBC module is part of an EAR, its configuration overrides are incorporated in the
deployment plan as part of the EAR, not as separate modules.

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 11



ORACLE Chapter 3
Target Objects

JMS

JMS modules are described by a single deployment descriptor with no archive. If the module is
part of an EAR, the JMS descriptors are specified in webl ogi c-appl i cation. xm as
configurable properties. JMS modules are deployed to JMS servers. Configuration changes to
JMS descriptors are handled as overrides to the descriptor. JMS descriptors may identify
"targetable groups". These groups are treated as sub-modules during deployment.

If the IMS module is part of an EAR, its configuration overrides are incorporated in the
deployment plan as part of the EAR, not as separate modules.

INTERCEPT

Intercept modules are described by a single deployment descriptor with no archive. If the
module is part of an EAR, the Intercept descriptors are specified in webl ogi c-
application.xn as configurable properties. Intercept modules are deployed to WebLogic
Server servers and clusters. Configuration changes to Intercept descriptors are handled as
overrides to the descriptor.

If the Intercept module is part of an EAR, its configuration overrides are incorporated in the
deployment plan as part of the EAR, not as separate modules.

Recognition of Target Types

The Jakarta EE Deployment API specification's definition of a target does not include any
notion of its type. WebLogic Server supports standard modules and Oracle-specific module
types as valid deployment targets. Target support is provided by the

webl ogi c. depl oy. api . spi . WebLogi cTar get and

webl ogi c. depl oy. api . spi . WebLogi cTar get Type classes. See Module Types.

TargetModulelD Objects

The Tar get Modul el D objects uniquely identify a module and a target it is associated with.
Tar get Modul el Ds are the objects that specify where modules are to be started and stopped.
The object name used to identify the Tar get Modul el Dis of the form:

Appl i cati on=par ent - name, Nane=conf i gur ed- nane, Tar get =t ar get -
nane, TWebLogi cTar get Type=t ar get -t ype

where

e parent-nane is the name of the ear this module is part of.

e configured-nane is the name used in the WebLogic Server configuration for this
application or module

e target-nane is the server, cluster or virtual host where there module is targeted
* target-type is the description of the target derived from Tar get . get Descri pti on.

Tar get Modul el D. t oSt ri ng() will return this object name.

WebLogic Server TargetModulelD Extensions

Tar get Modul el Dis extended by webl ogi c. depl oy. api . spi . WebLogi cTar get Modul el D. This
class provides the following additional functionality:

Deploying Applications with the WebLogic Deployment API
G31586-01 October 6, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 11



ORACLE

Chapter 3
Target Objects

e get Server s—servers associated with the Tar get Modul el D's target

e isOd ust er—whether target is a cluster

e isOnServer—whether target is a server

* i sOnHost —whether target is a virtual host

e i sOnJMsSer ver —whether target is a JMS server

e get Ver si on—the version name

e createTarget Modul el D—factory for creating module specific targeting

VebLogi cTar get Modul el Dis defined in more detail in the Javadocs.

The WebLogi cDepl oynment Manager is also extended with convenience methods that simplify
working with Tar get Modul el Ds. They are:

e filter—returns a list of Tar get Modul el Ds that match on application, module, and version
e get Modul es—creates Tar get Modul el Ds based on an AppDepl oynent MBean

Tar get Modul el Ds have a hierarchical relationship based on the application upon which they
are based. The root Tar get Modul el D of an application represents an EAR module or a stand-
alone module. Child Tar get Modul el Ds are modules that are defined by the root module's
descriptor. For EARSs, these are the modules identified in the appl i cati on. xnl descriptor for
the EAR. JMS modules may have child Tar get Modul el Ds (sub-modules) as dictated by the
JMS deployment descriptor. These may be children of an embedded module or the root
module. Therefore, IMS modules can have three levels of Tar get Modul el Ds for an application.

Typically, you get Tar get Modul el Ds in a deployment operation or one of the

Depl oynment Manager . get * Modul es() methods. These operations provide Tar get Modul el Ds
based on the existing configuration. In certain scenarios where more specific targeting is
desired than is currently defined in the configuration, you may use the cr eat eTar get Modul el D
method. This method creates a root Tar get Modul el D that is specific to a module or sub-module
within the application. This Tar get Modul el D can then be used in any deployment operation.
For operations that include the application archive, such as depl oy(), using one of these

Tar get Modul el Ds may result in the application being reconfigured. For example:

<AppDepl oyment Name="nyapp", Targets="sl,s2"/>

The application is currently configured for all modules to run on s1 and s2. To provide more
specific targeting, a deployment tool can do the following:

Target s1 = find("s1",dmgetTargets());
/1 find() is not part of this api
VebLogi cTar get Modul el D root =

dm creat eTar get Modul el D( " myapp", Modul eType. EAR s1);
WebLogi cTar get Modul el D web =

dm creat eTar get Modul el D(r oot , "webappl”, Modul eType. WAR) ;
dm depl oy(new Tar get Modul el Of ] {web}, nyapp, nypl an, nul ') ;

myapp is reconfigured and webapp is specifically targeted to only run on s1. The new
configuration is:

<AppDepl oynent Name="nyapp", Targets="s1,s2">
<SubDepl oyment Nanme="webapp", Targets="sl1"/>
</ AppDepl oynent >

Deploying Applications with the WebLogic Deployment API

G31586-01

October 6, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 11



ORACLE

Example Module Deployment

Consider the deployment of a stand-alone JMS module, one that employs sub-modules. The
module is defined by the file, simple-j nms. xn , which defines sub-modules, subl and sub2. The
descriptor is fully configured for the environment hence no deployment plan is required,
although the scenario described here would be the same if there was a deployment plan.

The tool to deploy this module performs the following steps:

/1 init the jsr88 session. This uses a WS specific hel per class,
/1 which does not enploy any WS extensions

Chapter 3
Target Objects

Depl oyment Manager dm = Sessi onHel per. get Depl oynment Manager (host, port, user, pword);

/1 get list of all configured targets
/1 The filter method is a location where you could ask the user
/] to select fromthe list of all configured targets

Target[] targets = filter(dmgetTargets());

/1 the nodule is distributed to the selected targets
ProgressObject po = dmdistribute(targets,new File("jms.xm"), plan);

/] when the wait cones back the task is done
wai t For Conpl et i on( po);

/1 1t is assumed here that it worked (there is no exception handling)

/1 the TargetMdul elDs (tnmids) returned fromthe PO correspond to all the
/1 configured app/ modul e nbeans for each target the app was distributed to.
/1 This should include 3 tmds per target: the root nodule tmd and the

/'l subrmodul es’ tmds.

Target Modul el D[] tnids = po. get Resul t Tar get Modul el Ds() ;

/1 then to deploy the whole thing everywhere you would do this

po = dmstart(tmds);

/1 the result is that all sub-modul es woul d be deployed on all the selected
/] targets, since they are inplicitly targeted wherever the their parent is
/] targeted

/1 To get sub-modul e | evel deployment you need to use WebLogi c Server

/] extensions to create Target Mdul el Ds that support nodul e |evel targeting.

/1 The follow ng deploys the topic "xyz" on a JMS server
\WebLogi cTar get Modul el D root =

dm createTarget Modul el D(tmi ds[i].get Modul el D(),tmids[i],]nmsServer);
WebLogi cTar get Modul el D topic =

dm creat eTar get Modul el D(r oot , "xyz", WebLogi cMbdul eType. IMS) ;

/1 now we can take the original list of tmds and let the user select
/'l specific tnids to deploy
po = dmstart(topic);

Deploying Applications with the WebLogic Deployment API

G31586-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 11



	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Understanding the WebLogic Deployment API
	The WebLogic Deployment API
	WebLogic Deployment API Deployment Phases
	Configure an Application for Deployment
	Deploy an Application

	weblogic.Deployer Implementation of the WebLogic Deployment API
	When to Use the WebLogic Deployment API

	Jakarta Deployment API Compliance
	WebLogic Server Value-Added Deployment Features
	The Service Provider Interface Package
	weblogic.deploy.api.spi
	weblogic.deploy.api.spi.factories
	Module Targeting
	Support for Querying WebLogic Target Types
	Server Staging Modes
	Deployment Plan Staging Modes
	DConfigBean Validation

	The Model Package
	weblogic.deploy.api.model
	Accessing Deployment Descriptors

	The Shared Package
	weblogic.deploy.api.shared
	Command Types for Deploy and Update
	Support for Module Types
	Support for all WebLogic Server Target Types

	The Tools Package
	weblogic.deploy.api.tools
	SessionHelper
	Deployment Plan Creation

	The JMX API for Deployment Operations
	Supported Deployment Options
	Using the JMX API for Deployment Operations

	Using a Deployment Validation Plug-In with WebLogic Server
	Configuring the Deployment Validation Plug-In
	Using the Deployment Validation Plug-In


	2 Configuring Applications for Deployment
	Overview of the Configuration Process
	Types of Configuration Information
	Jakarta EE Configuration
	WebLogic Server Configuration
	Representing Jakarta EE and WebLogic Server Configuration Information
	DDBeans

	The Relationship Between Jakarta EE and WebLogic Server Descriptors
	DConfigBeans


	Application Evaluation
	Obtain a Deployment Manager
	Types of Deployment Managers
	Connected and Disconnected Deployment Manager URIs
	Using SessionHelper to Obtain a Deployment Manager

	Create a Deployable Object
	Using the WebLogicDeployableObject class
	Using SessionHelper to obtain a Deployable Object


	Perform Front-End Configuration
	What is Front-End Configuration
	Deployment Configuration
	Example Code
	Reading In Information with SessionHelper

	Validating a Configuration

	Customizing Deployment Configuration
	Modifying Configuration Values
	Targets
	Application Naming

	Deployment Preparation
	Session Cleanup

	3 Performing Deployment Operations
	Register Deployment Factory Objects
	Allocate a DeploymentManager
	Getting a DeploymentManager Object
	Understanding DeploymentManager URI Implementations
	Server Connectivity

	Deployment Processing
	DeploymentOptions
	Distribution
	Application Start
	Application Deploy
	Application Stop
	Undeployment

	Production Redeployment
	In-Place Redeployment
	Module Level Targeting
	Retirement Policy
	Version Support
	Administration (Test) Mode

	Progress Reporting
	Target Objects
	Module Types
	Extended Module Support
	Web Services
	CMP
	JDBC
	JMS
	INTERCEPT

	Recognition of Target Types
	TargetModuleID Objects
	WebLogic Server TargetModuleID Extensions
	Example Module Deployment



