
Oracle® Fusion Middleware
Deploying Applications with the WebLogic
Deployment API

15c (15.1.1.0.0)
G31586-01
October 2025

Oracle Fusion Middleware Deploying Applications with the WebLogic Deployment API, 15c (15.1.1.0.0)

G31586-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation ii

Conventions ii

1 Understanding the WebLogic Deployment API

The WebLogic Deployment API 1

WebLogic Deployment API Deployment Phases 1

Configure an Application for Deployment 1

Deploy an Application 2

weblogic.Deployer Implementation of the WebLogic Deployment API 2

When to Use the WebLogic Deployment API 2

Jakarta Deployment API Compliance 3

WebLogic Server Value-Added Deployment Features 3

The Service Provider Interface Package 3

weblogic.deploy.api.spi 4

weblogic.deploy.api.spi.factories 4

Module Targeting 4

Support for Querying WebLogic Target Types 4

Server Staging Modes 5

Deployment Plan Staging Modes 5

DConfigBean Validation 5

The Model Package 5

weblogic.deploy.api.model 6

Accessing Deployment Descriptors 6

The Shared Package 7

weblogic.deploy.api.shared 7

Command Types for Deploy and Update 7

Support for Module Types 7

Support for all WebLogic Server Target Types 7

The Tools Package 8

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page i of iii

weblogic.deploy.api.tools 8

SessionHelper 8

Deployment Plan Creation 9

The JMX API for Deployment Operations 9

Supported Deployment Options 10

Using the JMX API for Deployment Operations 11

Using a Deployment Validation Plug-In with WebLogic Server 15

Configuring the Deployment Validation Plug-In 16

Using the Deployment Validation Plug-In 16

2 Configuring Applications for Deployment

Overview of the Configuration Process 1

Types of Configuration Information 2

Jakarta EE Configuration 2

WebLogic Server Configuration 2

Representing Jakarta EE and WebLogic Server Configuration Information 3

DDBeans 3

The Relationship Between Jakarta EE and WebLogic Server Descriptors 4

DConfigBeans 4

Application Evaluation 5

Obtain a Deployment Manager 5

Types of Deployment Managers 5

Connected and Disconnected Deployment Manager URIs 6

Using SessionHelper to Obtain a Deployment Manager 7

Create a Deployable Object 7

Using the WebLogicDeployableObject class 7

Using SessionHelper to obtain a Deployable Object 7

Perform Front-End Configuration 8

What is Front-End Configuration 8

Deployment Configuration 8

Example Code 9

Reading In Information with SessionHelper 10

Validating a Configuration 11

Customizing Deployment Configuration 11

Modifying Configuration Values 11

Targets 14

Application Naming 14

Deployment Preparation 14

Session Cleanup 15

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of iii

3 Performing Deployment Operations

Register Deployment Factory Objects 1

Allocate a DeploymentManager 1

Getting a DeploymentManager Object 2

Understanding DeploymentManager URI Implementations 2

Server Connectivity 3

Deployment Processing 3

DeploymentOptions 3

Distribution 3

Application Start 4

Application Deploy 5

Application Stop 5

Undeployment 5

Production Redeployment 5

In-Place Redeployment 5

Module Level Targeting 5

Retirement Policy 6

Version Support 6

Administration (Test) Mode 6

Progress Reporting 6

Target Objects 8

Module Types 8

Extended Module Support 8

Web Services 8

CMP 8

JDBC 8

JMS 9

INTERCEPT 9

Recognition of Target Types 9

TargetModuleID Objects 9

WebLogic Server TargetModuleID Extensions 9

Example Module Deployment 11

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page iii of iii

Preface

This guide emphasizes about value-added features of the WebLogic Deployment API and how
to manage application deployment using the WebLogic Deployment API.

Audience
This document is a resource for:

• Software developers who want to understand the WebLogic Deployment API. This API
adheres to the specifications described in the Jakarta EE Deployment API standard, see
https://jakarta.ee/specifications/deployment/ and extends the interfaces provided
by that standard.

• Developers and Independent Software Vendors (ISVs) who want to perform deployment
operations programmatically for WebLogic Server applications.

• System architects who are evaluating WebLogic Server or considering the use of the
WebLogic Deployment API.

• Design, development, test, and pre-production phases of a software project. It does not
directly address production phase administration, monitoring, or tuning application
performance with the WebLogic Deployment API. The deployment API includes utilities to
make software updates during production but it mirrors the functionality of the deployment
tools already available.

It is assumed that the reader is familiar with Jakarta EE concepts, the Jakarta Deployment API
standard at https://jakarta.ee/specifications/deployment/, the Java programming
language, EJBs, and web technologies.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page i of ii

https://jakarta.ee/specifications/deployment/
https://jakarta.ee/specifications/deployment/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
For additional information about deploying applications and modules to WebLogic Server, see
these documents:

• Developing Applications for Oracle WebLogic Server describes how to deploy applications
during development using the wldeploy Ant task, and provides information about the
WebLogic Server deployment descriptor for enterprise applications.

• The WebLogic Server programming guides describe the Jakarta EE and WebLogic Server
deployment descriptors used with each Jakarta EE application and module:

– Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

– Developing Jakarta Enterprise Beans Using Deployment Descriptors

– Developing Resource Adapters for Oracle WebLogic Server

– Developing JAX-WS Web Services for Oracle WebLogic Server

– Deploying Applications to Oracle WebLogic Server

• Developing JDBC Applications for Oracle WebLogic Server describes the XML deployment
descriptors for JDBC application modules.

• Developing JMS Applications for Oracle WebLogic Server describes the XML deployment
descriptors for JMS application modules.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of ii

1
Understanding the WebLogic Deployment API

This chapter describes the structure and functionality of the WebLogic Deployment API, which
implements and extends the Jakarta EE Deployment API specification. It also describes the
JMX API for deployment operations, which can be used as an alternative.
For information on the Jakarta Deployment 1.7 specification, see https://jakarta.ee/
specifications/deployment/1.7/.

This chapter includes the following sections:

The WebLogic Deployment API

Note

WebLogic Server 9.0 deprecates the use of the weblogic.management.deploy API
used in earlier releases.

The following sections provide an overview of the WebLogic Server Deployment API:

WebLogic Deployment API Deployment Phases
The Jakarta Deployment API specification (see https://jakarta.ee/specifications/
deployment/1.7/) differentiates between a configuration session and deployment. They are
distinguished as follows:

• Application configuration which involves the generation of descriptors for a deployment
plan

• Deployment tasks such as distributing, starting, stopping, redeploying, undeploying

In order to effectively manage the deployment process in your environment, you must use the
WebLogic Deployment API to:

Configure an Application for Deployment
In this document, the term configuration refers to the process of preparing an application or
deployable resource for deployment to a WebLogic Server instance. Configuring an application
consists of the following phases:

• Application Evaluation—Inspection and evaluation of application files to determine the
structure of the application and content of the embedded descriptors. See Application
Evaluation.

• Front-End Configuration—Creation of configuration information based on content
embedded within the application. This content may be in the form of WebLogic Server
descriptors, defaults, and user provided deployment plans. See Perform Front-End
Configuration.

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 17

https://jakarta.ee/specifications/deployment/1.7/
https://jakarta.ee/specifications/deployment/1.7/
https://jakarta.ee/specifications/deployment/1.7/
https://jakarta.ee/specifications/deployment/1.7/

• Deployment Configuration—Modification of individual WebLogic Server configuration
values based on user inputs and the selected WebLogic Server targets. See Customizing
Deployment Configuration.

• Deployment preparation—Generation of the final deployment plan and preliminary client-
side validation of the application. See Deployment Preparation.

Deploy an Application
Application deployment is the process of distributing an application and plan to the
Administration Server for server-side processing and application startup. See Performing
Deployment Operations.

weblogic.Deployer Implementation of the WebLogic Deployment API
WebLogic Server provides a packaged deployment tool, weblogic.Deployer, to provide
deployment services for WebLogic Server. Any deployment operation that can be implemented
using the WebLogic Deployment API is implemented, either in part or in full, by
weblogic.Deployer. For more information, see the weblogic.Deployer Command-Line
Reference.

When to Use the WebLogic Deployment API

Note

For the WebLogic Server environment, the recommended deployment tools are
weblogic.Deployer and the WebLogic Remote Console. For information on how to
use weblogic.Deployer, see Deploying Applications to Oracle WebLogic Server.

You may need to implement the WebLogic Deployment API in the following cases:

• You need to model your own implementation and interface with the WebLogic Service
Provider Interface (SPI). In this case, the WebLogic Deployment API deployment factory is
used to obtain a WebLogicDeploymentManager, which extends
javax.enterprise.deploy.spi.DeploymentManager (see https://jakarta.ee/
specifications/deployment/1.7/apidocs/javax/enterprise/deploy/spi/
deploymentmanager) for use with the weblogic.deploy.api.spi. See Application
Evaluation and the Jakarta Deployment API specification at https://jakarta.ee/
specifications/deployment/1.7/.

• You need to create your own deployment interface instead of using the WebLogic Remote
Console or weblogic.Deployer. In this case, you may implement some or all WebLogic
Deployment API Deployment Phases using the WebLogic Deployment API classes and
interfaces.

Note

To access the WebLogicDeploymentManager API from a client program, run $MW_HOME/
oracle_common/common/bin/setWlsEnv.sh, which sets the required classpath.

Chapter 1
The WebLogic Deployment API

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 17

https://jakarta.ee/specifications/deployment/1.7/apidocs/javax/enterprise/deploy/spi/deploymentmanager
https://jakarta.ee/specifications/deployment/1.7/apidocs/javax/enterprise/deploy/spi/deploymentmanager
https://jakarta.ee/specifications/deployment/1.7/apidocs/javax/enterprise/deploy/spi/deploymentmanager
https://jakarta.ee/specifications/deployment/1.7/
https://jakarta.ee/specifications/deployment/1.7/

Jakarta Deployment API Compliance
The WebLogic Deployment API classes and interfaces extend and implement the Jakarta
Deployment API specification interfaces, which are described in the javax.enterprise.deploy
sub-packages (see https://jakarta.ee/specifications/deployment/1.7/apidocs/). The
WebLogic Deployment API provides the following packages:

WebLogic Server Value-Added Deployment Features
WebLogic supports the "Product Provider" role described in the Jakarta Deployment API
specification, https://jakarta.ee/specifications/deployment/1.7/ and provides utilities
specific to the WebLogic Server environment in addition to extensible components for any
Jakarta EE network client. These extended features include:

• Support for WebLogic features, such as starting in admin mode or redeploying with
versioning.

• Fine grain control, such as:

– Module level targeting

– Partial Redeployment, the redeployment or removal of parts of an application

– Dynamic configuration changes

• Support of WebLogic module extensions such as JMS, JDBC, Interception, and
Application Specific Configuration (Custom/Configuration) modules.

• Additional operations, such as the Deploy verb which combines distribute and start.

Note

The WebLogic Deployment API does not support an automated fallback procedure
for a failed application update. The policy and procedures for this behavior must
be defined and configured by the developers and administrators for each
deployment environment.

The Service Provider Interface Package
As a Jakarta EE product provider, Oracle extends the javax Service Provider Interface (SPI)
package to provide specific configuration and deployment control for WebLogic Server. The
core interface for this package is the DeploymentManager, from which all other deployment
activities are initiated, monitored, and controlled.

The WebLogicDeploymentManager interface provides WebLogic Server extensions to the
javax.enterprise.deploy.spi.DeploymentManager interface. A WebLogicDeploymentManager
object is a stateless interface for the WebLogic Server deployment framework. It provides basic
deployment features as well as extended WebLogic Server deployment features such as
production redeployment and partial deployment for modules in an enterprise application. You
generally acquire a WebLogicDeploymentManager object using
SessionHelper.getDeploymentManager method from the SessionHelper helper class from the
Tools package. See Application Evaluation.

Chapter 1
Jakarta Deployment API Compliance

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 17

https://jakarta.ee/specifications/deployment/1.7/apidocs/
https://jakarta.ee/specifications/deployment/1.7/

The following sections provide basic information on the functionality of the WebLogic Server
SPI:

weblogic.deploy.api.spi
The weblogic.deploy.api.spi package provides the interfaces required to configure and
deploy applications to a target (see Support for Querying WebLogic Target Types for valid
target types). This package enables you to create deployment tools that can implement a
WebLogic Server-specific deployment configuration for an enterprise application or stand-alone
module.

weblogic.deploy.api.spi includes the WebLogicDeploymentManager interface. Use this
deployment manager to perform all deployment-related operations such as distributing,
starting, and stopping applications in WebLogic Server. The WebLogicDeploymentManager also
provides important extensions to the Jakarta EE DeploymentManager interface for features
such as module-level targeting for enterprise application modules, production redeployment,
application versioning, application staging modes, and constraints on Administrative access to
deployed applications.

The WebLogicDeploymentConfiguration and WebLogicDConfigBean classes in the
weblogic.deploy.api.spi package represent the deployment and configuration descriptors
(WebLogic Server deployment descriptors) for an application.

• A WebLogicDeploymentConfiguration object is a wrapper for a deployment plan.

• A WebLogicDConfigBean encapsulates the properties in WebLogic deployment descriptors.

weblogic.deploy.api.spi.factories
This package contains only one interface, the WebLogicDeploymentFactory. This is a
WebLogic extension to javax.enterprise.deploy.spi.factories.DeploymentFactory. Use
this factory interface to select and allocate DeploymentManager objects that have different
characteristics. The WebLogicDeploymentManager characteristics are defined by public fields in
the WebLogicDeploymentFactory.

Module Targeting
Module targeting is deploying specific modules in an application to different targets as opposed
to deploying all modules to the same set of targets as specified by the Deployment API.
Module targeting is supported by the WebLogicDeploymentManager.createTargetModuleID
methods.

The WebLogicTargetModuleID class contains the WebLogic Server extensions to the
javax.enterprise.deploy.spi.TargetModuleID interface. This class is closely related to the
configured TargetInfoMBeans (AppDeploymentMBean and SubDeploymentMBean). The
WebLogicTargetModuleID class provides more detailed descriptions of the application modules
and their relationship to targets than those in TargetInfoMBeans. See Module Types.

Support for Querying WebLogic Target Types
For WebLogic Server, the WebLogicTarget class provides a direct interface for maintaining the
target types available to WebLogic Server. Target accessor methods are described in
Table 1-1.

Chapter 1
The Service Provider Interface Package

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 17

Table 1-1 Target Accessor Methods

Method Description

boolean isCluster() Indicates whether this target represents a cluster target.

boolean isJMSServer() Indicates whether this target represents a JMS server target.

boolean isSAFAgent() Indicates whether this target represents a SAF agent target.

boolean isServer() Indicates whether this target represents a server target.

boolean isVirtualHost() Indicates whether this target represents a virtual host target.

Server Staging Modes
The staging mode of an application affects its deployment behavior. The application's staging
behavior is set using DeploymentOptions.setStageMode(stage mode) where the value of
stage mode is one of the following:

• STAGE—Force copying of files to target servers.

• NO_STAGE—Files are not copied to target servers.

• EXTERNAL_STAGE—Files are staged manually.

Deployment Plan Staging Modes
An application's deployment plan can be staged independently of the application archive,
allowing you to stage a deployment plan when the application is not staged. You can configure
the staging behavior of the deployment plan by using DeploymentOptions.setPlanStageMode
(plan stage mode), where the value of plan stage mode is one of the following:

• STAGE—Deployment plan is copied to target servers.

• NO_STAGE—Deployment plan is not copied to target servers.

• EXTERNAL_STAGE—Deployment plan is copied manually to target servers.

If you do not specify a staging mode, the deployment plan uses the value specified for
application staging as the default. For example, if deployment plan staging is not specified and
application staging is set to STAGE, the deployment plan staging mode is set to STAGE.

DConfigBean Validation
The property setters in a DConfigBean reject attempts to set invalid values. This includes
property type validation such as attempting to set an integer property to a non-numeric value.
Some properties perform semantic validations, such as ensuring a maximum value is not
smaller than its associated minimum value.

The Model Package
These classes are the WebLogic Server extensions to and implementations of the
javax.enterprise.deploy.model interfaces (see https://jakarta.ee/specifications/
deployment/1.7/apidocs/javax/enterprise/deploy/model/package-summary.html). The
model interfaces describes the standard elements, such as deployment descriptors, of a
Jakarta EE application.

Chapter 1
The Model Package

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 17

https://jakarta.ee/specifications/deployment/1.7/apidocs/javax/enterprise/deploy/model/package-summary.html
https://jakarta.ee/specifications/deployment/1.7/apidocs/javax/enterprise/deploy/model/package-summary.html

weblogic.deploy.api.model
This package contains the interfaces used to represent the Jakarta EE configuration of a
deployable object. A deployable object is a deployment container for an enterprise application
or stand-alone module.

The WebLogic Server implementation of the javax.enterprise.deploy.model interfaces
enable you to work with applications that are stored in a WebLogic Server application
installation directory, a formal directory structure used for managing application deployment
files, deployments, and external WebLogic deployment descriptors generated during the
configuration process. See Preparing Applications and Modules for Deployment for more
information about the layout of an application installation directory. It supports any Jakarta EE
application, with extensions to support applications residing in an application installation
directory.

Note

weblogic.deploy.api.model does not support dynamic changes to Jakarta EE
deployment descriptor elements during configuration and therefore does not support
registration and removal of XPath listeners. DDBean.addXPathListener and
removeXPathListener are not supported.

The WebLogicDeployableObject class and WebLogicDDBean interface in the
weblogic.deploy.api.model package represent the standard deployment descriptors in an
application.

Accessing Deployment Descriptors
Jakarta Deployment API dictates that Jakarta EE deployment descriptors be accessed through
a DeployableObject (see https://jakarta.ee/specifications/deployment/1.7/apidocs/
javax/enterprise/deploy/model/deployableobject.html). A DeployableObject represents
a module in an application. Elements in the descriptors are represented by DDBeans, one for
each element in a deployment descriptor. The root element of a descriptor is represented by a
DDBeanRoot object. All of these interfaces are implemented in corresponding interfaces and
classes in this package.

The WebLogicDeployableObject class, which is the WebLogic Server implementation of
DeployableObject, provides the createDeployableObject methods, which create the
WebLogicDeployableObject and WebLogicDDBean for the application's deployment descriptors.
Basic configuration tasks are accomplished by associating the WebLogicDDBean with a
WebLogicDConfigBean, which represent the server configuration properties required for
deploying the application on a WebLogic Server. See Application Evaluation.

Unlike a DConfigBean, which contain configuration information specifically for a server
environment (in this case WebLogic Server instance), a DDBean object takes in the general
deployment descriptor elements for the application. For example, if you were deploying a web
application, the deployment descriptors in WebLogicDDBeans come from WEB-INF/web.xml file in
the .war archive. The information for the WebLogicDConfigBeans would come from WEB-INF/
weblogic.xml in the .war archive based on the WebLogicDDBeans. Though they serve the
same fundamental purpose of holding configuration information, they are logically separate as
a DDBean describes the application while a DConfigBeans configures the application for a
specific environment.

Chapter 1
The Model Package

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 17

https://jakarta.ee/specifications/deployment/1.7/apidocs/javax/enterprise/deploy/model/deployableobject.html
https://jakarta.ee/specifications/deployment/1.7/apidocs/javax/enterprise/deploy/model/deployableobject.html

Both of these objects are generated during the initiation of a configuration session. The
WebLogicDeployableObject, WebLogicDDBeans, and WebLogicDConfigBeans are all instantiated
and manipulated in a configuration session. See Overview of the Configuration Process.

The Shared Package
The following sections provide information on classes that represent WebLogic Server-specific
deployment commands, module types, and target types as classes:

weblogic.deploy.api.shared
The weblogic.deploy.api.shared package provides classes that represent the WebLogic
Server-specific deployment commands, module types, and target types as classes. These
objects can be shared by weblogic.deploy.api.model and weblogic.deploy.api.spi packages.

The definitions of the standard javax.enterprise.deploy.shared classes ModuleType and
CommandType are extended to provide support for:

• The module type, see Support for Module Types

• Commands, see Command Types for Deploy and Update

The WebLogicTargetType class, which is not required by the Jakarta Deployment API
specification, see https://jakarta.ee/specifications/deployment/1.7/), enumerates the
different types of deployment targets supported by WebLogic Server. This class does not
extend a javax deployment class. See Support for all WebLogic Server Target Types.

Command Types for Deploy and Update
The deploy and update command types are added to the required command types defined in
the javax.enterprise.spi.shared package and are available to a
WebLogicDeploymentManager.

Support for Module Types
Supported module types include JMS, JDBC, Interception, WSEE, Config, and WLDF. These
are defined in the weblogic.deploy.api.shared.WebLogicModuleType class as fields.

Support for all WebLogic Server Target Types
Targets, which were not implemented in the Jakarta Deployment API specification, are
implemented in the WebLogic Deployment API. The valid target values are:

• Cluster

• JMS Server

• SAF (Store-and-Forward) Agent

• Server

• Virtual Host

These are enumerated field values in the weblogic.deploy.api.shared.WebLogicTargetType
class.

Chapter 1
The Shared Package

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 17

https://jakarta.ee/specifications/deployment/1.7/

The Tools Package
The following sections provide information on API tools you can use to perform common
deployment tool tasks with a minimum number of controls and explicit object manipulations:

weblogic.deploy.api.tools
The weblogic.deploy.api.tools package provides convenience classes that can help you:

• Obtain a WebLogicDeploymentManager

• Populate a configuration for an application

• Create a new or updated deployment plan

The classes in the tools package are not extensions of the Jakarta Deployment API
specification (see https://jakarta.ee/specifications/deployment/1.7/) interfaces. They
provide easy access to deployment operations provided by the WebLogic Deployment API.

SessionHelper
Although configuration sessions can be controlled from a WebLogicDeploymentManager directly,
SessionHelper provides simplified methods. If your tools code directly to the WebLogic Server
Jakarta Deployment API implementation, you should always use SessionHelper.

Use SessionHelper to obtain a WebLogicDeploymentManager with one method call. To do this
effectively, it must be able to locate the application. The SessionHelper views an application
and deployment plan artifacts using an "install root" abstraction, which ideally is the actual
organization of the application. The install root appears as follows:

install-root (eg myapp)
-- app
----- archive (eg myapp.ear)
-- plan
----- deployment plan (eg plan.xml)
----- external descriptors (eg META-INF/weblogic-application.xml...)

There is no requirement to mandate that this structure be used for applications. It is a preferred
approach because it serves to keep the application and its configuration artifacts under a
common root and provides SessionHelper with a format it can interpret.

SessionHelper.getModuleInfo() returns an object that is useful for understanding the
structure of an application without having to work directly with DDBeans and
DeployableObjects. It provides such information as:

• Names and types of modules and submodules in the application

• Names of Web services provided by the application

• Context roots for web applications

• Names of enterprise beans in an EJB

Internally, the deployment descriptors are represented as descriptor bean trees and trees of
typed Java Bean objects that represent the individual descriptor elements. These bean trees
are easier to work with than the more generic DDBean and DConfigBean objects. The descriptor
bean trees for each module are directly accessible from the associated WebLogicDDBeanRoot
and WebLogicDConfigBeanRoot objects for each module using their getDescriptorBean

Chapter 1
The Tools Package

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 17

https://jakarta.ee/specifications/deployment/1.7/

methods. Modifying the bean trees obtained from a WebLogicDConfigBean has the same effect
as modifying the associated DConfigBean, and therefore the application's deployment plan.

Deployment Plan Creation
weblogic.PlanGenerator creates a deployment plan template based on the Jakarta EE and
WebLogic Server descriptors included in an application. The resulting plan describes the
application structure, identifies all deployment descriptors, and exports a subset of the
application's configurable properties. Export properties to expose them to tools like the
WebLogic Remote Console, which then uses the plan to assist the administrator in providing
appropriate values for those properties. By default, the weblogic.PlanGenerator tool only
exports application dependencies; those properties required for a successful deployment. This
behavior can be overridden using of the following options:

• Dependencies: Export resources referenced by the application (default)

• Declarations: Export resources defined by the application

• Configurables: Export non-resource oriented configurable properties

• Dynamics: Export properties that may be changed in a running application

• All: Export all changeable properties

• None: Export no properties

The JMX API for Deployment Operations
The Java Management Extensions (JMX) API for deployment operations supports all of the
common functionality available in the Jakarta Deployment API specification. You can use the
JMX API as an alternative to the Jakarta Deployment API for performing deployment tasks on
specified target servers, such as:

• Starting

• Stopping

• Distributing

• Deploying

• Redeploying

• Undeploying

• Updating deployment plans without redeploying applications

The JMX API for deployment operations uses open MBean data types so that no WebLogic
Server classes are required on the client side. These new MBeans for deployment are similar
conceptually to the Jakarta Deployment API and are located in the Domain Runtime MBean
Server. In this model, you must initiate deployment operations on the Administration Server.

The following four runtime MBeans support the JMX API for deployment operations:

• DeploymentManagerMBean

The DeploymentManagerMBean provides deployment operations, including deploy and
distribute, and provides access to the AppDeploymentRuntime MBeans for each application
deployed to the domain. It also manages the deployment progress objects and emits
notifications when an application is created or removed and when the application state
changes.

• AppDeploymentRuntimeMBean

Chapter 1
The JMX API for Deployment Operations

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 17

The AppDeploymentRuntimeMBean provides the deployment operations for an application,
including start, stop, undeploy, redeploy, and updating a deployment plan without
redeploying the application.

• DeploymentProgressObjectMBean

The DeploymentProgressObjectMBean monitors deployment operations initiated by the
AppDeploymentRuntime MBeans.

• LibDeploymentRuntimeMBean

The LibDeploymentRuntimeMBean provides deployment operations for a library, including
undeploy and redeploy.

See the MBean Reference for Oracle WebLogic Server.

Supported Deployment Options
The JMX API for deployment operations supports all of the deployment options available in the
Jakarta Deployment API, which are specified as Property name-value pairs. By specifying
deployment options, you can override the default values. Table 1-2 summarizes the supported
deployment option names and values.

Table 1-2 Deployment Options Supported by the JMX API

Deployment Option Description

adminMode Option that indicates that a running application should switch to
ADMIN mode and accept only administration requests over a
configured administration channel.

altDD Location of the alternate application deployment descriptor on
the Administration Server.

altWlsDD Location of the alternate WebLogic application deployment
descriptor on the Administration Server.

appVersion Version identifier of the application.

clusterDeploymentTimeout Time, in milliseconds, granted for a cluster deployment task on
this application.

createPlan Boolean value indicating that the user wants to create a default
plan. The default value for this option is false.

defaultSubmoduleTargets Boolean value indicating that targeting for qualifying JMS
submodules should be derived by the system. The default value
for this option is true.

deploymentOrder Option that controls the load order of deployments relative to
one another.

deploymentPrincipalName String value specifying the principal for deploying the file or
archive during server starts (static deployment; it does not affect
the current deployment task).

forceUndeployTimeout Force undeployment timeout value.

gracefulIgnoreSessions Boolean value specifying whether graceful production to ADMIN
mode operation should ignore pending HTTP sessions. The
default value of this option is false and only applies if
gracefulProductionToAdmin is set to true.

gracefulProductionToAdmin Boolean value specifying whether the production to ADMIN mode
operation should be graceful. The default value for this option is
false.

Chapter 1
The JMX API for Deployment Operations

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 17

Table 1-2 (Cont.) Deployment Options Supported by the JMX API

Deployment Option Description

library The deployment as a shared Jakarta EE library or optional
package.

libImplVer Implementation version of the library, if it is not present in the
manifest.

libSpecVer Specification version of the library, if it is not present in the
manifest.

noVersion Versioning information is ignored.

planVersion Version identifier of the deployment plan.

retireGracefully Retirement policy to gracefully retire an application only after it
completes all in-flight work. This policy is only meaningful for
stop and redeploy operations and is mutually exclusive to the
retire timeout policy.

retireTimeout Time (in seconds) WebLogic Server waits before retiring an
application that is replaced with a newer version. The default
value for this option is -1, which specifies graceful timeout.

rmiGracePeriod The amount of time, in seconds, that the Work Manager accepts
and schedules RMI calls until there are no more RMI requests
arriving within the RMI grace period during a graceful
shutdown or a retirement.

securityModel Security model. Valid values include: DDOnly, CustomRoles,
CustomRolesAndPolicies, and Advanced.

securityValidationEnabled Boolean value specifying whether security validation is enabled.

stageMode The staging mode for the application you are deploying. Valid
values are stage, nostage, and external_stage. If not
specified, WebLogic Server uses the default stage mode. The
default stage mode is nostage for the Administration Server and
stage for Managed Servers.

subModuleTargets Submodule level targets for JMS modules. For example:
submod@mod-jmx.xml@target | submoduleName@!target.

timeout Time (in milliseconds) WebLogic Server waits for the deployment
process to complete before canceling the operation. A value of 0
indicates no timeout for the operation. The default value for this
argument is 300,000 ms (or five minutes).

useNonExclusiveLock Deployment operation uses an existing lock, already acquired by
the same user, on the domain. This option is helpful in
environments where multiple deployment tools are used
simultaneously and one of the tools has already acquired a lock
on the domain configuration.

versionIdentifier Version identifier.

Using the JMX API for Deployment Operations
Example 1-1 demonstrates the use of the WebLogic Server JMX API for deployment
operations. The example includes inline comments and demonstrates how to:

• Deploy an application both synchronously and asynchronously

• Monitor the progress of a deployment operation

Chapter 1
The JMX API for Deployment Operations

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 17

• Stop an application

• Undeploy an application

• Handle notifications

Note

This example uses JMX proxies for readability. The WebLogic Server JMX API uses
open types so it can be run in a JMX client without WebLogic Server classes. In
addition, error handling has been omitted to keep the example as small as possible.

For more information about understanding and using JMX, see Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server and Developing Manageable
Applications Using JMX for Oracle WebLogic Server.

Example 1-1 Using the JMX API for Deployment Operations

import weblogic.management.mbeanservers.domainruntime.DomainRuntimeServiceMBean;
import weblogic.management.runtime.AppDeploymentRuntimeMBean;
import weblogic.management.runtime.DeploymentManagerMBean;
import weblogic.management.runtime.DeploymentProgressObjectMBean;

import java.util.Hashtable;
import java.util.Properties;

import javax.management.MBeanServerConnection;
import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

public class JMXDeploymentExample {

 // Deployment Manager JMX proxy
 DeploymentManagerMBean deploymentManager;

 // Domain Runtime MBean Server connection
 MBeanServerConnection connection;

 private void setUp() throws Exception {
 System.out.println("*** Setting up...");

 // Get connection to the Domain Runtime MBean Server.
 // For more information, see Make Remote Connections to an MBean Server.
 // in Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.
 connection = getDomainRuntimeJMXConnection();

 // Get DeploymentManager JMX proxy.
 // For more information, see Oracle WebLogic Server MBean Reference.
 DomainRuntimeServiceMBean svcBean = (DomainRuntimeServiceMBean)
 weblogic.management.jmx.MBeanServerInvocationHandler.newProxyInstance(
 connection, new ObjectName(DomainRuntimeServiceMBean.OBJECT_NAME));
 deploymentManager = svcBean.getDomainRuntime().getDeploymentManager();

 // Add a JMX notification listener that outputs the JMX notifications generated during deployment
operations.

Chapter 1
The JMX API for Deployment Operations

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 12 of 17

 connection.addNotificationListener(new
ObjectName("com.bea:Name=DeploymentManager,Type=DeploymentManager"),
 new DeployListener(), null, null);
 }

 /*
 * Demonstrates synchronously deploying an application.
 */

 private void deploySynchronously() throws Exception {
 System.out.println("*** Deploying SimpleApp...");

 // This form of the deploy operation is synchronous.
 // Errors are still returned through a progress object.
 // By default, the SimpleApp is deployed to all servers.

 DeploymentProgressObjectMBean progressObj = deploymentManager.deploy(
 "SimpleApp", "/apps/simpleapp.war", /* no plan */ null);
 printCompletionStatus(progressObj);
 }

 /*
 * Demonstrates asynchronously deploying an application to a server instance.
 */

 private void deployASynchronously() throws Exception {
 System.out.println("*** Deploying VersionedApp...");

 // This form of the deploy operation is asynchronous.
 // The caller should utilize the returned progress object to monitor the progress of the deployment.

 Properties deploymentOptions = new Properties();
 deploymentOptions.put("appVersion", "V1");
 deploymentOptions.put("planVersion", "P1");

 DeploymentProgressObjectMBean progressObj = deploymentManager.deploy("VersionedApp", "/apps/app-
v1.war",
 new String[] { "myserver" },
 "/apps/app-v1-plan.xml", deploymentOptions);

 waitForCompletion(progressObj, 200);
 }

 /*
 * Demonstrates using a deployment progress object to display the status of the deployment operation.
 */

 private void printCompletionStatus(DeploymentProgressObjectMBean progressObj) throws Exception {

 System.out.println(" State: " + progressObj.getState());
 if ("STATE_FAILED".equals(progressObj.getState())) {
 Exception[] exceptions = progressObj.getRootExceptions();
 for (int i = 0; exceptions != null && i < exceptions.length; i++)
 System.out.println(" Exception: " + exceptions[i]);
 }
 }

 /*
 * Demonstrates using a deployment progress object to wait for the completion of the deployment
operation.
 */

Chapter 1
The JMX API for Deployment Operations

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 13 of 17

 private void waitForCompletion(DeploymentProgressObjectMBean progressObj, int timeoutSecs) throws
Exception {

 for (int i = 0; i < timeoutSecs; i++) {
 String state = progressObj.getState();
 if ("STATE_COMPLETED".equals(state) || "STATE_FAILED".equals(state))
 break;
 try {
 Thread.currentThread().sleep(1000);
 } catch (InterruptedException ex) {
 //ignore
 }
 }

 printCompletionStatus(progressObj);
 }

 /*
 * Demonstrates stopping an application asynchronously.
 */

 private void stopAsynchonously() throws Exception {
 System.out.println("*** Stopping SimpleApp...");

 // The DeploymentManagerMBean is used for the initial deployment of an application.
 // After the initial deployment, the AppDeploymentRuntimeMBean is used for stop, start,
 // redeploy, and undeploy of an application.

 AppDeploymentRuntimeMBean appRuntime = deploymentManager.lookupAppDeploymentRuntime("SimpleApp");

 Properties deploymentOptions = new Properties();
 deploymentOptions.put("gracefulIgnoreSessions", "true");

 DeploymentProgressObjectMBean progressObj = appRuntime.stop(new String[]{"myserver"},
deploymentOptions);
 waitForCompletion(progressObj, 200);

 }

 /*
 * Demonstrates using an AppDeploymentRuntimeMBean to undeploy an application.
 */

 private void undeploySynchronously() throws Exception {
 System.out.println("*** Undeploying SimpleApp...");

 // The DeploymentManagerMBean is used for the initial deployment of an application.
 // After the initial deployment, the AppDeploymentRuntimeMBean is used for stop, start,
 // redeploy, and undeploy of an application.

 AppDeploymentRuntimeMBean appRuntime = deploymentManager.lookupAppDeploymentRuntime("SimpleApp");

 DeploymentProgressObjectMBean progressObj = appRuntime.undeploy();
 printCompletionStatus(progressObj);

 }

 /*
 * Demonstrates the notifications that are generated by WebLogic Server deployment operations.
 */

 private class DeployListener implements NotificationListener {

Chapter 1
The JMX API for Deployment Operations

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 14 of 17

 public void handleNotification(Notification notification, Object handback) {
 System.out.println(" Notification from DeploymentManagerMBean");
 System.out.println(" notification type: " + notification.getType());
 String userData = (String)notification.getUserData();
 System.out.println(" userData: " + userData);
 }

 }

 private MBeanServerConnection getDomainRuntimeJMXConnection() throws Exception {

 JMXServiceURL serviceURL = new JMXServiceURL("t3", "localhost", 7001,
 "/jndi/weblogic.management.mbeanservers.domainruntime");

 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, "weblogic");
 h.put(Context.SECURITY_CREDENTIALS, "password");
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES, "weblogic.management.remote");

 JMXConnector connector = JMXConnectorFactory.connect(serviceURL, h);
 MBeanServerConnection connection = connector.getMBeanServerConnection();
 return connection;
 }

 public static void main(String args[]) throws Exception {
 JMXDeploymentExample example = new JMXDeploymentExample();

 example.setUp();
 example.deploySynchronously();
 example.deployASynchronously();
 example.stopAsynchonously();
 example.undeploySynchronously();
 }

}

Using a Deployment Validation Plug-In with WebLogic Server
You can validate applications before allowing them to be deployed to your WebLogic Server
domain by creating a deployment validation plug-in. At the start of the deployment process, the
Administration Server executes the plug-in, which determines whether the application is valid
for the domain. If validation passes, the application is deployed. If validation fails, the
application is not deployed, and there is no configuration change or evidence of deployment.

When using a deployment validation plug-in, you determine what it should consider invalid
based on the specific needs of your domain. For example, you can configure the plug-in to
reject bad formats or EJBs. You can only register one deployment validation plug-in per
domain, and the plug-in must be unique to the domain. You can configure a new deployment
validation plug-in to replace the original, but you cannot add a second plug-in to the same
domain.

Using a deployment validation plug-in with WebLogic Server provides the following capabilities:

• Rejects invalid application code to protect your domain from malicious applications

• Modifies the deployment plan of an application

• Tailors the plug-in to suit your specific needs through configuration parameters

• Logs messages

Chapter 1
Using a Deployment Validation Plug-In with WebLogic Server

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 15 of 17

The deployment process is the same with or without a deployment validation plug-in, as
validation is an optional step. The validation process occurs when deploying an application for
the first time, not at server startup for applications that are already deployed or during auto-
deployment.

The following sections describe how to validate applications using a deployment validation
plug-in with WebLogic Server:

Configuring the Deployment Validation Plug-In
To enable the deployment validation plug-in to run with WebLogic Server, you must add the
<deployment-validation-plugin> element to the config.xml file so that the Administration
Server can access and use the plug-in classes. The <deployment-validation-plugin>
element should contain the fully qualified class name of the plug-in and declare any
parameters. You can add the <deployment-validation-plugin> element manually or by using
the DeploymentConfigurationMBean available from the DomainMBean.

The following three configuration MBeans support the deployment validation plug-in:

• DeploymentConfigurationMBean

The DeploymentConfigurationMBean contains the DeploymentValidationPlugIn attribute.
This attribute is a DeploymentValidationPluginMBean and corresponds to the
<deployment-validation-plugin> element, which enables or disables the deployment
validation plug-in.

• DeploymentValidationPluginMBean

The DeploymentValidationPluginMBean specifies the deployment validation plug-in
configuration information. This MBean includes the FactoryClassname attribute, which is
the fully qualified plug-in class name. This class must be available from the Administration
Server CLASSPATH. The DeploymentValidationPluginMBean also includes parameters that
can be passed to the plug-in. You declare these parameters with the ParameterMBean.

• ParameterMBean

The ParameterMBean specifies the configuration and user parameters for the deployment
validation plug-in, including Name, Value, and Description.

Using the Deployment Validation Plug-In
WebLogic Server does not provide the code for the deployment validation plug-in itself, but
provides a way to run a plug-in as part of the deployment process to validate and protect your
domain from malicious applications. As the domain administrator, you program and compile the
code for your domain-specific plug-in according to the needs and specifications of your
environment. The plug-in class and other classes it uses need to be available from the
Administration Server CLASSPATH.

The deployment validation plug-in must implement the plug-in factory interface,
weblogic.deployment.configuration.DeploymentValidationPlugin. The implementation
must contain an empty constructor in order to create an instance of the deployment validation
plug-in.

The weblogic.deployment.configuration interface includes an initialize method and a
validation method. The initialize method provides the parameters that are declared in the
<deployment-validation-plugin> element of the config.xml file to the instance of the
deployment validation plug-in. The validation method provides the context of the application
information and returns the validation result for the application.

Chapter 1
Using a Deployment Validation Plug-In with WebLogic Server

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 16 of 17

The validation result is a class that implements the ValidationResult interface. Implement the
isDeploymentValid method to indicate whether the deployment is valid and should proceed.
Implement the getException method to provide an exception that should be set as the cause if
the deployment is not valid. The argument passed to the validate method is
DeploymentValidationContext, which provides access to the proposed application through an
instance of SessionHelper. The deployment validation plug-in can then use the
getSessionHelper attribute on the DeploymentValidationContext argument to examine the
application information that SessionHelper allows.

The DeploymentValidationContext argument also provides access to the
DeploymentValidationLogger. The DeploymentValidationLogger logs messages about the
actions the plug-in takes to validate the application or the reasons the application is invalid.

If the validation result indicates that the application is valid, the deployment passes and
continues the deployment process. If the validation result indicates that the application is
invalid, the plug-in sends an exception message describing the reason the application failed to
validate, and the application is not deployed. There is no configuration change or evidence of
deployment. Since the validation process occurs on the Administration Server, if the
deployment fails, the Managed Servers are not aware of the deployment, and you would not
have to undeploy or undo any configuration.

Chapter 1
Using a Deployment Validation Plug-In with WebLogic Server

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 17 of 17

2
Configuring Applications for Deployment

This chapter describes how to configure an application or deployable resource for deployment
to a WebLogic Server instance using deployment descriptors. Certain elements in these
descriptors refer to external objects and may require special handling depending on the server
vendor. WebLogic Server uses descriptor extensions—WebLogic Server specific deployment
descriptors. The mapping between standard descriptors and WebLogic Server descriptors is
managed using DDBeans and DConfigBeans.
This chapter includes the following sections:

Overview of the Configuration Process
This section provides information on the basic steps a deployment tool must implement to
configure an application for deployment:

1. Application Evaluation—Inspection and evaluation of application files to determine the
structure of the application and content of the embedded descriptors.

• Initialize a deployment session by obtaining a WebLogicDeploymentManager. See
Application Evaluation.

• Create a WebLogicJ2eeApplicationObject or WebLogicDeployableObject to
represent the Jakarta EE configuration of an enterprise application (EAR) or
standalone module (WAR, EAR, RAR, or CAR). If the object is an EAR, child objects
are generated. See Jakarta Deployment API standard at https://jakarta.ee/
specifications/deployment/1.7/ and Create a Deployable Object.

2. Front-End Configuration—Creation of configuration information based on content
embedded within the application. This content may be in the form of WebLogic Server
descriptors, defaults, and user provided deployment plans.

• Create a WebLogicDeploymentConfiguration object to represent the WebLogic
Server configuration of an application. This is the first step in creating a deployment
plan for this object. See Deployment Configuration.

• Restore existing WebLogic Server configuration values from an existing deployment
plan, if available. See Perform Front-End Configuration.

3. Deployment Configuration—Modification of individual WebLogic Server configuration
values based on user inputs and the selected WebLogic Server targets.

A deployment tool must provide the ability to modify individual WebLogic Server
configuration values based on user inputs and selected WebLogic Server targets. See
Customizing Deployment Configuration.

4. Deployment Preparation—Generation of the final deployment plan and preliminary client-
side validation of the application.

A deployment tool must have the ability to save the modified WebLogic Server
configuration information to a new deployment plan or to variable definitions in an existing
Deployment Plan.

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 15

https://jakarta.ee/specifications/deployment/1.7/
https://jakarta.ee/specifications/deployment/1.7/

Types of Configuration Information
The following sections provide background information on the types of configuration
information, how it is represented, and the relationship between Jakarta EE and WebLogic
Server descriptors:

Jakarta EE Configuration
The Jakarta EE configuration for an application defines the basic semantics and run-time
behavior of the application, as well as the external resources that are required for the
application to function. This configuration information is stored in the standard Jakarta
deployment descriptor files associated with the application, as listed in Table 2-1.

Table 2-1 Standard Jakarta EE Deployment Descriptors

Application or Standalone Module Jakarta EE Descriptor

Enterprise Application META-INF/application.xml

Web Application WEB-INF/web.xml

Jakarta Enterprise Bean META-INF/ejb.xml

Resource Adapter META-INF/ra.xml

Client Application Archive META-INF/application-client.xml

Complete and valid Jakarta EE deployment descriptors are a required input to any application
configuration session.

Because the Jakarta EE configuration controls the fundamental behavior of an application, the
Jakarta EE descriptors are typically defined only during the application development phase,
and are not modified when the application is later deployed to a different environment. For
example, when you deploy an application to a testing or production domain, the application's
behavior (and therefore its Jakarta EE configuration) should remain the same as when
application was deployed in the development domain. See Perform Front-End Configuration for
more information.

WebLogic Server Configuration
The WebLogic Server descriptors provide for enhanced features, resolution of external
resources, and tuning associated with application semantics. Applications may or may not
have these descriptors embedded in the application. The WebLogic Server configuration for an
application:

• Binds external resource names to resource definitions in the Jakarta EE deployment
descriptor so that the application can function in a given WebLogic Server domain

• Defines tuning parameters for the application containers

• Provides enhanced features for Jakarta EE applications and stand-alone modules

The attributes and values of a WebLogic Server configuration are stored in the WebLogic
Server deployment descriptor files, as shown in Table 2-2.

Chapter 2
Types of Configuration Information

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 15

Table 2-2 WebLogic Server Deployment Descriptors

Application or Standalone Module WebLogic Server Descriptor

Enterprise Application META-INF/weblogic-application.xml

Web Application WEB-INF/weblogic.xml

Jakarta Enterprise Bean META-INF/weblogic-ejb-jar.xml

Resource Adapter META-INF/weblogic-ra.xml

Client Archive META-INF/weblogic-appclient.xml

Because different WebLogic Server domains provide different types of external resources and
different levels of service for the application, the WebLogic Server configuration for an
application typically changes when the application is deployed to a new environment. For
example, a production staging domain might use a different database vendor and provide more
usable memory than a development domain. Therefore, when moving the application from
development to the staging domain, the application's WebLogic Server descriptor values need
to be updated in order to make use of the new database connection and available memory.

The primary job of a deployment configuration tool is to ensure that an application's WebLogic
Server configuration is valid for the selected WebLogic targets.

Representing Jakarta EE and WebLogic Server Configuration Information
Both the Jakarta EE deployment descriptors and any available WebLogic Server descriptors
are used as inputs to the application configuration process. You use the deployment API to
represent both the Jakarta EE configuration and WebLogic Server configuration as Java
objects.

The Jakarta EE configuration for an application is obtained by creating either a
WebLogicJ2eeApplicationObject for an EAR, or a WeblogicDeployableObject for a stand-
alone module. (A WebLogicJ2eeApplicationObject contains multiple DeployableObject
instances to represent individual modules included in the EAR.)

Each WebLogicJ2eeApplicationObject or WeblogicDeployableObject contains a DDBeanRoot
to represent a corresponding Jakarta EE deployment descriptor file. Jakarta EE descriptor
properties for EARs and modules are represented by one or more DDBean objects that reside
beneath the DDBeanRoot. DDBean components provide standard getter methods to access
individual deployment descriptor properties, values, and nested descriptor elements.

DDBeans
DDBeans are described by the javax.enterprise.deploy.model package. These objects
provide a generic interface to elements in standard deployment descriptors, but can also be
used as an XPath based mechanism to access arbitrary XML files that follow the basic form of
the standard descriptors. Examples of such files would be WebLogic Server descriptors and
Web services descriptors.

The DDBean representation of a descriptor is a tree of DDBeans, with a specialized DDBean, a
DDBeanRoot, at the root of the tree. DDBeans provide accessors for the element name, ID
attribute, root, and text of the descriptor element they represent.

The DDBeans for an application are populated by the model plug-in, the tool provider
implementation of javax.enterprise.deploy.model. An application is represented by the
DeployableObject interface. The WebLogic Server implementation of this interface is a public

Chapter 2
Types of Configuration Information

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 15

class, weblogic.deploy.api.model.WebLogicDeployableObject. A WebLogic Server based
deployment tool acquires an instance of WebLogicDeployableObject object for an application
using the createDeployableObject factory methods. This results in the DDBean tree for the
application being created and populated by the elements in the Jakarta EE descriptors
embedded in the application. If the application is an EAR, multiple WebLogicDeployableObject
objects are created. The root WebLogicDeployableObject, extended as
WebLogicJ2eeApplicationObject, would represent the EAR module, with its child
WebLogicDeployableObject instances being the modules contained within the application,
such as WARs, EJBs, RARs and CARs.

The Relationship Between Jakarta EE and WebLogic Server Descriptors
Jakarta EE descriptors and WebLogic Server descriptors are directly related in the
configuration of external resources. A Jakarta EE descriptor defines the types of resources that
the application requires to function, but it does not identify the actual resource names to use.
The WebLogic Server descriptor binds the resource definition in the Jakarta EE descriptor
name to the name of an actual resource in the target domain.

The process of binding external resources is a required part of the configuration process.
Binding resources to the target domain ensures that the application can locate resources and
successfully deploy.

Jakarta EE descriptors and WebLogic Server descriptors are also indirectly related in the
configuration of tuning parameters for WebLogic Server. Although no elements in the standard
Jakarta EE descriptors require tuning parameters to be set in WebLogic Server, the presence
of individual descriptor files indicates which tuning parameters are of interest during the
configuration of an application. For example, although the ejb.xml descriptor does not contain
elements related to tuning the WebLogic Server EJB container, the presence of an ejb.xml file
in the Jakarta EE configuration indicates that tuning properties can be configured before
deployment.

DConfigBeans
DConfigBeans (config beans) are the objects used to convey server configuration requirements
to a deployment tool, and are also the primary source of information used to create deployment
plans. Config beans are Java Beans and can be introspected for their properties. They also
provide basic property editing capabilities.

DConfigBeans are created from information in embedded WebLogic Server descriptors,
deployment plans, and input from an IDE deployment tool.

A DConfigBean is potentially created for every weblogic Descriptor element that is associated
with a dependency of the application. Descriptors are entities that describe resources that are
available to the application, represented by a JNDI name provided by the server.

Descriptors are parsed into memory as a typed bean tree while setting up a configuration
session. The DConfigBean implementation classes delegate to the WebLogic Server descriptor
beans. Only beans with dependency properties, such as resource references, have a
DConfigBean. The root of descriptor always has a DConfigBeanRoot.

Bean Property accessors return a child DConfigBean for elements that require configuration or
a descriptor bean for those that do not. Property accessors return data from the descriptor
beans.

Modifications to bean properties result in plan overrides. Plan overrides for existing descriptors
are handled using variable assignments. If the application does not come with the relevant
WebLogic Server descriptors, they are automatically created and placed in an external plan

Chapter 2
Types of Configuration Information

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 15

directory. For external deployment descriptors, the change is made directly to the descriptor.
Embedded descriptors are never modified on disk.

Application Evaluation
Application evaluation consists of obtaining a deployment manager and a deployable object
container for your application. Use the following steps:

1. Obtain a deployment factory class by specifying its name,
weblogic.deployer.spi.factories.internal.DeploymentFactoryImpl.

2. Register the factory class with a
javax.enterprise.deploy.spi.DeploymentFactoryManager instance.

For instance:

Class WlsFactoryClass =
Class.forname("weblogic.deployer.spi.factories.internal.DeploymentFactoryImpl");
DeploymentFactory myDeploymentFactory =
 (DeploymentFactory) WlsFactoryClass.newInstance();
DeploymentFactoryManager.getInstance().registerDeploymentFactory(myDeploymentFactory)
;

3. Obtain a Deployment Manager.

4. Create a Deployable Object.

Obtain a Deployment Manager
The following sections provide information on how to obtain a deployment manager:

Types of Deployment Managers
WebLogic Server provides a single implementation for
javax.enterprise.deploy.spi.DeploymentManager that behaves differently depending on the
URI specified when instantiating the class from a factory. WebLogic Server provides two basic
types of deployment manager:

• A disconnected deployment manager has no connection to a WebLogic Server instance.
Use a disconnected deployment manager to configure an application on a remote client
machine. It cannot be used it to perform deployment operations. (For example, a
deployment tool cannot use a disconnected deployment manager to distribute an
application.)

• A connected deployment manager has a connection to the Administration Server for the
WebLogic Server domain, and by a deployment tool to both to configure and deploy
applications.

A connected deployment manager is further classified as being either local to the
Administration Server, or running on a remote machine that is connected to the Administration
Server. The local or remote classification determines whether file references are treated as
being local or remote to the Administration Server.

Table 2-3 summarizes deployment manager types.

Chapter 2
Application Evaluation

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 15

Table 2-3 WebLogic Server Deployment Manager Usage

Deployment
Manager
Connectivity

Type Usage Notes

Disconnected n/a Configuration tools only Cannot perform deployment operations

Connected Local Configuration and deployment tools local to
the Administration Server

All files are local to the Administration
Server machine

Connected Remote Configuration and Deployment for Tools on
a remote machine (not on the
Administration Server)

Distribution and Deployment operations
cause local files to be uploaded to the
Administration Server

Connected and Disconnected Deployment Manager URIs
Each DeploymentManager obtained from the WebLogicDeploymentFactory supports WebLogic
Server extensions. When creating deployment tools, obtain a specific type of deployment
manager by calling the correct method on the deployment factory instance and supplying a
string constant defined in weblogic.deployer.spi.factories.WebLogicDeploymentFactory
that describes the type of deployment manager required. Connected deployment managers
require a valid server URI and credentials to the method in order to obtain a connection to the
Administration Server.

Table 2-4 summarizes the method signatures and constants used to obtain the different types
of deployment managers.

Table 2-4 URIs for Obtaining a WebLogic Server Deployment Manager

Type of Deployment
Manager

Method Argument

disconnected getDisconnectedDeploymentMana
ger()

String value of
WebLogicDeploymentFactory.LOCAL_DM_URI

connected, local getDeploymentManager() URI consisting of:

• WebLogicDeploymentFactory.LOCAL_DM_URI
• Administration Server host name
• Administration Server port
• Administrator username
• Administrator password

connected, remote getDeploymentManager() URI consisting of:

• WebLogicDeploymentFactory.REMOTE_DM_URI
• Administration Server host name
• Administration Server port
• Administrator username
• Administrator password

The sample code in Example 2-1 shows how to obtain a disconnected deployment manager.

Example 2-1 Obtaining a Disconnected Deployment Manager

Class WlsFactoryClass = Class.forname("weblogic.deployer.spi.factories.internal.DeploymentFactoryImpl");
DeploymentFactory myDeploymentFactory = (DeploymentFactory) WlsFactoryClass.newInstance();
DeploymentFactoryManager.getInstance().registerDeploymentFactory(myDeploymentFactory);
WebLogicDeploymentManager myDisconnectedManager =

Chapter 2
Application Evaluation

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 15

(WebLogicDeploymentManager)myDeploymentFactory.getDisconnectedDeploymentManager(WebLogicDeploymentFactory
.LOCAL_DM_URI);

The deployment factory contains a helper method, createUri() to help you form the URI
argument for creating connected deployment managers. For example, to create a
disconnected remote deployment manager, replace the final line of code with:

(WebLogicDeploymentManager)myDeploymentFactory.getDeploymentManager(myDeploymentFactory.createUri(WebLogi
cDeploymentFactory.REMOTE_DM_URI, "localhost", "7001", "weblogic", "weblogic"));

Using SessionHelper to Obtain a Deployment Manager
The SessionHelper helper class provides several convenience methods to help you easily
obtain a deployment manager without manually creating and registering the deployment
factories as shown in Example 2-1. The SessionHelper code required to obtain a disconnected
deployment manager consists of a single line:

 DeploymentManager myDisconnectedManager =
SessionHelper.getDisconnectedDeploymentManager();

You can use the SessionHelper to obtain a connected deployment manager, as shown below:

 DeploymentManager myConnectedManager =
SessionHelper.getDeploymentManager("adminhost", "7001", "weblogic", "weblogic"));

This method assumes a remote connection to an Administration Server (adminhost). See the
Javadocs for more information about SessionHelper.

Create a Deployable Object
The following sections provide information on how to create a deployable object, which is the
container your deployment tool uses to deploy applications. Once you have initialized a
configuration session by Obtain a Deployment Manager, create a deployable object for your
deployment tool in one of the following ways:

Using the WebLogicDeployableObject class
The direct approach uses the WebLogicDeployableObject class of the model package as
shown below:

 WebLogicDeployableObject myDeployableObject =
WebLogicDeployableObject.createWebLogicDeployableObject("myAppFileName");

Once the deployable object is created, a configuration can be created for the applications
deployment.

Using SessionHelper to obtain a Deployable Object
The SessionHelper helper class provides a convenient method to obtain a deployable object.
The SessionHelper code required to obtain a deployable object is shown below:

 SessionHelper.setApplicationRoot(root);
 WebLogicDeployableObject myDeployableObject = SessionHelper.getDeployableObject();

There is no application specified in the getDeployableObject() call. SessionHelper uses the
application in the root directory set by setApplicationRoot(). Once the application root
directory is set, SessionHelper can be used to perform other operations, such as explicitly
naming the dispatch file location or the deployment plan location.

Chapter 2
Application Evaluation

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 15

You can also set the application file name using the setApplication method as shown below:

SessionHelper.setApplication(AppFileName);

This method allows you to continue using SessionHelper independent of the directory
structure. The getDeployableObject method returns the application specified.

Perform Front-End Configuration
Front-end configuration involves creating a WebLogicDeploymentPlan and populating it and its
associated bean trees with configuration information:

What is Front-End Configuration
Front-end configuration phase consists of two logical operations:

• Loading information from a deployment plan to a deployment configuration. If a
deployment configuration does not yet exist, this includes creating a
WebLogicDeploymentConfiguration object to represent the WebLogic Server configuration
of an application. This is the first step in the process of process of creating a deployment
plan for this object.

• Restoring any existing WebLogic Server configuration values from an existing deployment
plan.

A deployment tool must be able to:

• Extract information from a deployment configuration. The deployment configuration is the
active Java object that is used by the Deployment Manager to obtain configuration
information. The deployment plan exists outside of the application so that it can be
changed without manipulating the application.

A deployment plan is an XML document that contains the environmental configuration for an
application and is sometimes referred to as an application's front-end configuration. A
deployment plan:

• Separates the environment specific details of an application from the logic of the
application.

• Is not required for every application. However, a deployment plan typically exists for each
environment an application is deployed to.

• Describes the application structure, such as what modules are in the application.

• Allows developers and administrators to update the configuration of an application without
modifying the application archive.

• Contains environment-specific descriptor override information (tunables). By modifying a
deployment plan, you can provide environment specific values for tunable variables in an
application.

Deployment Configuration
The server configuration for an application is encapsulated in the
javax.enterprise.deploy.spi.DeploymentConfiguration interface. A
DeploymentConfiguration provides an object representation of a deployment plan. A
DeploymentConfiguration is associated with a DeployableObject using the
DeploymentManager.createConfiguration method. Once a DeploymentConfiguration object
is created, a DConfigBean tree representing the configurable and tunable elements contained

Chapter 2
Perform Front-End Configuration

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 15

in any and all WebLogic Server descriptors is available. If there are no WebLogic Server
descriptors for an application, then a DConfigBean tree is created using available default
values. Binding properties that have no defaults are left unset.

When creating a deployment tool, you must ensure that the DConfigBean tree is fully populated
before the tool distributes an application.

Example Code
The following code provides an example on how to populate DConfigBeans:

Example 2-2 Example Code to Populate DConfigBeans

public class DeploymentSession {
 DeploymentManager dm;
 DeployableObject dObject = null;
 DeploymentConfiguration dConfig = null;
 Map beanMap = new HashMap();
.
.
.
 // Assumes app is a Web app.
 public void initializeConfig(File app) throws Throwable {
 /**
 * Init the wrapper for the DDBeans for this module. This example assumes
 * it is using the WLS implementation of the model api.
 */
 dObject= WebLogicDeployableObject.createDeployableObject(app);
 //Get basic configuration for the module
 dConfig = dm.createConfiguration(dObject);
 /**
 * At this point the DeployableObject is populated. Populate the
 * DeploymentConfigurationbased on its content.
 * We first ask the DeployableObject for its root.
 */
 DDBeanRoot root = dObject.getDDBeanRoot();
 /**
 * The root DDBean is used to start the process of identifying the
 * necessary DConfigBeans for configuring this module.
 */
 System.out.println("Looking up DCB for "+root.getXpath());
 DConfigBeanRoot rootConfig = dConfig.getDConfigBeanRoot(root);
 collectConfigBeans(root, rootConfig);
 /**
 * The DeploymentConfiguration is now initialized, although not necessarily
 * completely setup.
 */
 FileOutputStream fos = new FileOutputStream("test.xml");
 dConfig.save(fos);

 }

 // bean and dcb are a related DDBean and DConfigBean.
 private void collectConfigBeans(DDBean bean, DConfigBean dcb) throws Throwable{
 DConfigBean configBean;
 DDBean[] beans;
 if (dcb == null) return;
 /**
 * Maintain some sort of mapping between DDBeans and DConfigBeans
 * for later processing.
 */
 beanMap.put(bean,dcb);

Chapter 2
Perform Front-End Configuration

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 15

 /**
 * The config bean advertises xpaths into the web.xml descriptor it
 * needs to know about.
 */
 String[] xpaths = dcb.getXpaths();
 if (xpaths == null) return;
 /**
 * For each xpath get the associated DDBean and collect its associated
 * DConfigBeans. Continue this recursively until we have all DDBeans and
 * DConfigBeans collected.
 */
 for (int i=0; i<xpaths.length; i++) {
 beans = bean.getChildBean(xpaths[i]);
 for (int j=0; j<beans.length; j++) {
 /**
 * Init the DConfigBean associated with each DDBean
 */
 System.out.println("Looking up DCB for "+beans[j].getXpath());
 configBean = dcb.getDConfigBean(beans[j]);
 collectConfigBeans(beans[j], configBean);
 }
 }

This example merely iterates through the DDBean tree, requesting the DConfigBean for each
DDBean to be instantiated.

DeploymentConfiguration objects may be persisted as deployment plans using
DeploymentConfiguration.save(). A deployment tool may allow the user to import a saved
deployment plan into the DeploymentConfiguration object instead of populating it from
scratch. DeploymentConfiguration.restore() provides this capability. This supports the idea
of having a repository of deployment plans for an application, with different plans being
applicable to different environments.

Similarly the DeploymentConfiguration may be pieced together using partial plans, which
were presumably saved in a repository from a previous configuration session. A partial plan
maps to a module-root of a DConfigBean tree. DeploymentConfiguration.saveDConfigBean()
and DeploymentConfiguration.restoreDConfigBean() provide this capability.

Parsing of the WebLogic Server descriptors in an application occurs automatically when a
DeploymentConfiguration is created. The descriptors ideally conform to the most current
schema. For older applications that include descriptors based on WebLogic Server 8.1 and
earlier DTDs, a transformation is performed. Old descriptors are supported but they cannot be
modified using a deployment plan. Therefore, any DOCTYPE declarations must be converted
to name space references and element specific transformations must be performed.

Reading In Information with SessionHelper
SessionHelper.initializeConfiguration processes all standard and WebLogic Server
descriptors in the application.

Prior to invoking initializeConfiguration, you can specify an existing deployment plan to
associate with the application using the SessionHelper.setPlan() method. With a plan set,
you can read in a deployment plan using the DeploymentConfiguration.restore() method. In
addition, the DeploymentConfiguration.initializeConfiguration() method automatically
restores configuration information once a plan is set.

When initiating a configuration session with the SessionHelper class, you can easily initiate
and fill a deploymentConfiguration object with deployment plan information as illustrated
below:

Chapter 2
Perform Front-End Configuration

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 15

 DeploymentManager dm = SessionHelper.getDisconnectedDeploymentManager();
 SessionHelper helper = SessionHelper.getInstance(dm);
 // specify location of archive
 helper.setApplication(app);
 // specify location of existing deployment plan
 helper.setPlan(plan);
 // initialize the configuration session
 helper.initializeConfiguration();
 DeploymentConfiguration dc = helper.getConfiguration();

The above code produces the deployment configuration and its associated
WebLogicDDBeanTree.

Validating a Configuration
Validation of the configuration occurs mostly during the parsing of the descriptors which occurs
when an application's descriptors are processed. Validation consists of ensuring the
descriptors are valid XML documents and that the descriptors conform to their respective
schemas.

Customizing Deployment Configuration
The Customizing Deployment Configuration phase involves modifying individual WebLogic
Server configuration values based on user inputs and the selected WebLogic Server targets.

Modifying Configuration Values
In this phase, a configuration is only as good as the descriptors or pre-existing plan associated
with the application. The DConfigBeans are designed as Java Beans and can be introspected,
allowing a tool to present their content in some meaningful way. The properties of a
DConfigBean are, for the most part, those that are configurable. Key properties (those that
provide uniqueness) are also exposed. Setters are only exposed on those properties that can
be safely modified. In general, properties that describe application behavior are not modifiable.
All properties are typed as defined by the descriptor schemas.

The property getters return subordinate DConfigBeans, arrays of DConfigBeans, descriptor
beans, arrays of descriptor beans, simple values (primitives and java.lang objects), or arrays
of simple values. Descriptor beans represent descriptor elements that, while modifiable, do not
require DConfigBean features, meaning there are no standard descriptor elements they are
directly related to. Editing a configuration is accomplished by invoking the property setters.

The Jakarta DConfigBean class allows a tool to access beans using the
getDConfigBean(DDBean) method or introspection. The former approach is convenient for a
tool that presents the standard descriptor based on the DDBeans in the application's
DeployableObject and provides direct access to each DDBean's configuration (its
DConfigBean). This provides configuration of the essential resource requirements an
application may have. Introspection allows a tool to present the application's entire
configuration, while highlighting the required resource requirements.

Introspection is required in both approaches in order to present or modify descriptor properties.
The difference is in how a tool presents the information:

• Driven by standard descriptor content or

• WebLogic Server descriptor content.

Chapter 2
Customizing Deployment Configuration

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 15

A system of modifying configuration information must include a user interface to ask for
configuration changes. See Example 2-3.

Example 2-3 Code Example to Modify Configuration Information

.

.

.
// Introspect the DConfigBean tree and ask for input on properties with setters
 private void processBean(DConfigBean dcb) throws Exception {
 if (dcb instanceof DConfigBeanRoot) {
 System.out.println("Processing configuration for descriptor:
"+dcb.getDDBean().getRoot().getFilename());
 }
 // get property descriptor for the bean
 BeanInfo info =
 Introspector.getBeanInfo(dcb.getClass(),Introspector.USE_ALL_BEANINFO);
 PropertyDescriptor[] props = info.getPropertyDescriptors();
 String bean = info.getBeanDescriptor().getDisplayName();
 PropertyDescriptor prop;
 for (int i=0;i<props.length;i++) {
 prop = props[i];
 // only allow primitives to be updated
 Method getter = prop.getReadMethod();
 if (isPrimitive(getter.getReturnType())) // see isPrimitive method below
 {
 writeProperty(dcb,prop,bean); //see writeProperty method below
 }
 // recurse on child properties
 Object child = getter.invoke(dcb,new Object[]{});
 if (child == null) continue;
 // traversable if child is a DConfigBean.
 Class cc = child.getClass();
 if (!isPrimitive(cc)) {
 if (cc.isArray()) {
 Object[] cl = (Object[])child;
 for (int j=0;j<cl.length;j++) {
 if (cl[j] instanceof DConfigBean) processBean((DConfigBean) cl[j]);
 }
 } else {
 if (child instanceof DConfigBean) processBean((DConfigBean) child);
 }
 }
 }
 }

 // if the property has a setter then invoke it with user input
 private void writeProperty(DConfigBean dcb, PropertyDescriptor prop, String bean)
 throws Exception {
 Method getter = prop.getReadMethod();
 Method setter = prop.getWriteMethod();
 if (setter != null) {
 PropertyEditor pe =
 PropertyEditorManager.findEditor(prop.getPropertyType());
 if (pe == null &&
String[].class.isAssignableFrom(getter.getReturnType())) pe =
new StringArrayEditor(); // see StringArrayEditor class below
 if (pe != null) {
 Object oldValue = getter.invoke(dcb,new Object[0]);
 pe.setValue(oldValue);
 String val =
 getUserInput(bean,prop.getDisplayName(),pe.getAsText());
 // see getUserInput method below

Chapter 2
Customizing Deployment Configuration

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 12 of 15

 if (val == null || val.length() == 0) return;
 pe.setAsText(val);
 Object newValue = pe.getValue();
 prop.getWriteMethod().invoke(dcb,new Object[]{newValue});
 }
 }
 }

 private String getUserInput(String element, String property, String curr) {
 try {
 System.out.println("Enter value for "+element+"."+property+". Current value is: "+curr);
 return br.readLine();
 } catch (IOException ioe) {
 return null;
 }
 }
 // Primitive means a java primitive or String object here
 private boolean isPrimitive(Class cc) {
 boolean prim = false;
 if (cc.isPrimitive() || String.class.isAssignableFrom(cc)) prim = true;
 if (!prim) {
 // array of primitives?
 if (cc.isArray()) {
 Class ccc = cc.getComponentType();
 if (ccc.isPrimitive() || String.class.isAssignableFrom(ccc)) prim = true;
 }
 }
 return prim;
 }

 /**
 * Custom editor for string arrays. Input text is converted into tokens using
 * commas as delimiters
 */
 private class StringArrayEditor extends PropertyEditorSupport {
 String[] curr = null;

 public StringArrayEditor() {super();}

 // comma separated string
 public String getAsText() {
 if (curr == null) return null;
 StringBuffer sb = new StringBuffer();
 for (int i=0;i<curr.length;i++) {
 sb.append(curr[i]);
 sb.append(',');
 }
 if (curr.length > 0) sb.deleteCharAt(sb.length()-1);
 return sb.toString();
 }

 public Object getValue() { return curr; }

 public boolean isPaintable() { return false; }

 public void setAsText(String text) {
 if (text == null) curr = null;
 StringTokenizer st = new StringTokenizer(text,",");
 curr = new String[st.countTokens()];
 for (int i=0;i<curr.length;i++) curr[i] = new String(st.nextToken());
 }

Chapter 2
Customizing Deployment Configuration

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 13 of 15

 public void setValue(Object value) {
 if (value == null) {
 curr = null;
 } else {
 String[] v = (String[])value; // let caller handle class cast issues
 curr = new String[v.length];
 for (int i=0;i<v.length;i++) curr[i] = new String(v[i]);
 }
 }
 }
.
.
.

Beyond the mechanics of the rudimentary user interface, any interface that enables changes to
the configuration by an administrator or user can use the property setters shown in
Example 2-3.

Targets
Targets are associated with WebLogic Servers, clusters, Web servers, virtual hosts and JMS
servers. See weblogic.deploy.api.spi.WebLogicTarget and Support for Querying WebLogic
Target Types.

Application Naming
In WebLogic Server, application names are provided by a deployment tool. Names of modules
contained within an application are based on the associated archive or root directory name of
the modules. These names are persisted in the configuration MBeans constructed for the
application.

In Jakarta EE deployment there is no mention of the configured name of an application or its
constituent modules, other than in the TargetModuleID object. Yet TargetModuleIDs exist only
for applications that have been distributed to a WebLogic Server domain. Hence there is a
need to represent application and module names in a deployment tool prior to distribution. This
representation should be consistent with the names assigned by the server when the
application is finally distributed.

Your deployment tool plug-in must construct a view of an application using the
DeployableObject and J2eeApplicationObject classes. These classes represent stand-alone
modules and EARs, respectively. Each of these classes is directly related to a DDBeanRoot
object. When presented with a distribution where the name is not configured, the deployment
tool must create a name for the distribution. If the distribution is a File object, use the filename
of the distribution. If an archive is offered as an input stream, a random name is used for the
root module.

Deployment Preparation
The deployment preparation phase involves saving the resulting plan from a configuration
session. Use the DeploymentConfiguration.save() method (a standard Jakarta EE
Deployment API method). You can also use the SessionHelper.savePlan() method to save a
new copy of deployment plan along with any external documents in the plan directory.

The DeploymentConfiguration.save methods creates an XML file based on the deployment
plan schema that consists of a serialization of the current collection of DConfigBeans, along
with any variable assignments and definitions. DConfigBean trees are always saved as external

Chapter 2
Deployment Preparation

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 14 of 15

descriptors. These descriptors are only be saved if they do not already exist in the application
archive or the external configuration area, meaning a save operation does not overwrite
existing descriptors. The DeploymentConfiguration.saveDConfigBean method does overwrite
files. This is does not mean that any changes made to a configuration are lost, it means that
they are handled using variable assignments.

As noted before, the DeploymentConfiguration.restore methods are used to create
configuration beans based on a previously saved deployment plan (see Perform Front-End
Configuration). You can restore an entire collection of configuration beans or you can restore a
subset of the configuration beans. It is also possible to save or restore the configuration beans
for a specific module in an application.

Session Cleanup
Temporary files are created during a configuration session. Archives are exploded into the
temp area and can only be removed after session configuration is complete. There is no
standard API defined to close out a session. Use the close() methods to
WebLogicDeployableObject and WebLogicDeploymentConfiguration. SessionHelper.close()
to clean up after a session. If you do not clean up after closing sessions, the disk containing
your temp directories may fill up over time.

Chapter 2
Session Cleanup

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 15 of 15

3
Performing Deployment Operations

This chapter describes application deployment in WebLogic Server. Application deployment
distributes the information created inConfiguring Applications for Deployment to the
Administration Server for server-side processing and application startup. Your deployment tool
must be able to successfully complete the deployment operations outlined in this chapter.
This chapter includes the following sections:

Register Deployment Factory Objects
Your deployment tool must instantiate and register the DeploymentFactory objects it uses. You
can implement your own mechanism for managing DeploymentFactory objects. WebLogic
Server DeploymentFactory objects are advertised in a manifest file stored in the wldeploy.jar
file. The manifest contains entries of the fully qualified class names of the factories, separated
by whitespace. For example, if you assume that the DeploymentFactory- objects reside in a
fixed location and are included in the deployment tool classpath, the deployment tool registers
any DeploymentFactory objects it recognizes at startup. See Example 3-1.

Example 3-1 Registered Deployment Factory in the Manifest File

 MANIFEST.MF:
 Manifest-version: 1.0
 Implementation-Vendor: BEA Systems
 Implementation-Title: WebLogic Server 9.0 Mon May 29 08:16:47 PST 2006 221755
 Implementation-Version: 9.0.0.0
 J2EE-DeploymentFactory-Implementation-Class:
 weblogic.deploy.spi.factories.DeploymentFactoryImpl
 .
 .
 .

The standard DeploymentFactory interface is extended by
weblogic.deploy.api.WebLogicDeploymentFactory. The additional methods provided in the
extension are:

• String[] getUris(): Returns an array of URI's that are recognized by
getDeploymentManager. The first URI in the array is guaranteed to be the default
DeploymentManager URI, deployer:WebLogic. Only published URI's are returned in this
array.

• String createUri(String protocol, String host, String port): Returns a usable
URI based on the arguments.

Allocate a DeploymentManager
Your deployment tool must allocate a DeploymentManager from a DeploymentFactory, which is
registered with the DeploymentFactoryManager class, in order to perform deployment
operations. In addition to configuring an application for deployment, the DeploymentManager is
responsible for establishing a connection to a Jakarta EE server. The DeploymentManager
implementation is accessed using a DeploymentFactory.

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 11

The following sections provide information on how a DeploymentManager connects to a server
instance:

Getting a DeploymentManager Object
Use the DeploymentFactory.getDeploymentManager method to get a DeploymentManager
object. This method takes a URI, user ID and password as arguments. The URI has the
following patterns:

• deployer:WebLogic<:host:port>

• deployer:WebLogic.remote<:host:port>

• deployer:WebLogic.authenticated<:host:port>

When connecting to an Administration Server, the URI must also include the host and port,
such as deployer:WebLogic:localhost:7001. See Understanding DeploymentManager URI
Implementations.

The following provides additional information on DeploymentManager arguments:

• When obtaining a disconnected DeploymentManager, you do not need to include the
host:port because there is no connection to an Administration Server. For example, the
URI can be deployer:WebLogic.

• The user ID and password arguments are ignored if the deployment tool uses a pre-
authenticated DeploymentManager.

• You can access the URI of any DeploymentManager implementation using the
DeploymentFactory.getUris() method. getUris is an extension of DeploymenFactory.

Understanding DeploymentManager URI Implementations
Depending on the URI specified during allocation, the DeploymentManager object will have one
of the following characteristics:

• deployer:WebLogic: The DeploymentManager is running locally on an Administration
Server and any files referenced during the deployment session are treated as if they are
local to the Administration Server.

• deployer:WebLogic.remote: The DeploymentManager is running remotely to the WebLogic
Server Administration Server and any files referenced during the deployment session are
treated as being remote to the Administration Server and may require uploading. For
example, a distribute operation includes uploading the application files to the
Administration Server.

• deployer:WebLogic.authenticated: This is an internal, unpublished URI, usable by
internal applications provided as part of the WebLogic Server product that are already
authenticated and have access to domain management information. The
DeploymentManager is running locally on a WebLogic Administration Server and any files
referenced during the deployment session are treated as if they are local to the
Administration Server.

You can explicitly force the uploading of application files by using the
WebLogicDeploymentManager method enableFileUploads() method.

Chapter 3
Allocate a DeploymentManager

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 11

Server Connectivity
DeploymentManagers are either connected or disconnected. Connected DeploymentManagers
imply a connection to a WebLogic Server Administration Server. This connection is maintained
until it is explicitly disconnected or the connection is lost. If the connection is lost, the
DeploymentManager reverts to a disconnected state.

Explicitly disconnecting a DeploymentManager is accomplished using the
DeploymentManager.release method. There is no corresponding method for reconnecting the
DeploymentManager. Instead the deployment tool must allocate a new DeploymentManager.

Note

Allocating a new DeploymentManager does not affect any configuration information
being maintained within the tool through a DeploymentConfiguration object.

Deployment Processing
Most of the functional components of a DeploymentManager are defined in the Jakarta EE
Deployment API specification. However, Oracle has extended the DeploymentManager
interface with the capabilities required by existing WebLogic Server-based deployment tools.
Oracle WebLogic Server deployment extensions are documented at
weblogic.deploy.api.spi.WebLogicDeploymentManager.

The Jakarta EE programming model revolves around employing TargetModuleID objects
(TargetModuleIDs) and ProgressObject objects. In general, target modules are specified by a
list of TargetModuleIDs which are roughly equivalent to deployable root modules and sub-
module level MBeans. The DeploymentManager applies the TargetModuleIDs to deployment
operations and tracks their progress. A deployment tool needs to query progress using a
ProgressObject returned for each operation. When the ProgressObject indicates the
operation is completed or failed, the operation is done.

The following sections provide an overview of WebLogic DeploymentManager features:

DeploymentOptions
WebLogic Server allows for a DeploymentOptions argument
(weblogic.deploy.api.spi.DeploymentOptions) which supports the overriding of certain
deployment behaviors. The argument may be null, which provides standard behavior. Some
of the options supported in this release are:

• admin (test) mode

• Retirement Policy

• Staging

See DeploymentOptions Javadoc.

Distribution
Distribution of new applications results in:

Chapter 3
Deployment Processing

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 11

• the application archive and plan is staged on all targets.

• the application being configured into the domain.

Note

Redistribution honors the staging mode already configured for an application.

The standard distribute operations does not support version naming. WebLogic Server
provides WebLogicDeploymentManager to extend the standard with a distribute operation that
allows you to associate a version name with an application.

The ProgressObject returned from a distribute provides a list of TargetModuleIDs representing
the application as it exists on the target servers. The targets used in the distribute are any of
the supported targets. The TargetModuleID represents the application's module availability on
each target.

For new applications, TargetModuleIDs represent the top level AppDeploymentMBean objects.
TargetModuleIDs do not have child TargetModuleIDs based on the modules and sub-modules
in the application since the underlying MBeans would only represent the root module. For pre-
existing applications, the TargetModuleIDs are based on DeployableMBeans and any
AppDeploymentMBean and SubAppDeploymentMBean in the configuration.

If you use the distribute(Target[],InputStream,InputStream) method to distribute an
application, the archive and plan represented by the input streams are copied from the streams
into a temporary area prior to deployment which impacts performance.

Application Start
The standard start operation only supports root modules; implying only entire applications can
be started. Consider the following configuration.

<AppDeployment Name="myapp">
 <SubDeployment Name="webapp1", Targets="serverx"/>
 <SubDeployment Name="webapp2", Targets="serverx"/>
</AppDeployment>

The TargetModuleID returned from getAvailableModules(ModuleType.EAR) looks like:

myapp on serverx (implied)
 webapp1 on serverx
 webapp2 on serverx

and start(tmid) would start webapp1 and webapp2 on serverx.

To start webapp1, module level control is required. Configure module level control by manually
creating a TargetModuleID hierarchy.

 WebLogicTargetModuleID root =
dm.createTargetModuleID("myapp",ModuleType.EAR,getTarget(serverx));
 WebLogicTargetModuleID web = dm.createTargetModuleID(root,"webapp1",ModuleType.WAR);
 dm.start(new TargetModuleID[]{web});

This approach uses the TargetModuleID creation extension to manually create an explicit
TargetModuleID hierarchy. In this case the created TargetModuleID would look like

myapp on serverx (implied)
 webapp1 on serverx

Chapter 3
Deployment Processing

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 11

The start operation does not modify the application configuration. Version support is built into
the TargetModuleIDs, allowing the user to start a specific version of an application.
Applications may be started in normal or administration (test) mode.

Application Deploy
The deploy operation combines a distribute and start operation. Web applications may be
deployed in normal or administration (test) mode. You can specify application staging using the
DeploymentOptions argument. deploy operations use TargetModuleIDs instead of Targets for
targeting, allowing for module level configuration.

The deploy operation may change the application configuration based on the
TargetModuleIDs provided.

Application Stop
The standard stop operation only supports root modules; implying only entire applications can
be stopped. See the Application Start.

Oracle provides versioning support, allowing you to stop a specific version of an application.
The stop operation does not modify the application configuration. See Version Support.

Undeployment
The standard undeploy operation removes an application from the configuration, as specified
by the TargetModuleIDs. Individual modules can be undeployed. The result is that the
application remains on the target, but certain modules are not actually configured to run on it.
See the Application Start section for more detail on module level control.

The WebLogicDeploymentManager extends undeploy in support of removing files from a
distribution. This is a form of in-place redeployment that is only supported in web applications,
and is intended to allow you to remove static pages. See Version Support.

Production Redeployment
Standard redeployment support only applies to entire applications and employs side-by-side
versioning to ensure uninterrupted session management. The WebLogicDeploymentManager
extends the redeploy() method and provides the following additional support:

In-Place Redeployment
The in-place redeployment strategy works by immediately replacing a running application's
deployment files with updated deployment files, such as:

• Partial redeployment which involves adding or replacing specific files in an existing
deployment.

• Updating a configuration using a redeployment of a deployment plan

Module Level Targeting
A DeploymentManager implements the Jakarta Deployment specification and restricts
operations to root modules. Module level control is provided by manually constructing a

Chapter 3
Production Redeployment

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 11

module specific TargetModuleID hierarchy using
WebLogicDeploymentManager.createTargetModuleID

Retirement Policy
When a new version of an application is redeployed, the old version should eventually be
retired and undeployed. There are 2 policies for retiring old versions of applications:

1. (Default) The old version is retired when new version is active and old version finishes its
in-flight operations.

2. The old version is retired when new version is active, retiring the old after some specified
time limit of the new version being active.

Note

The old version is not retired if the new version is in administration (test) mode.

Version Support
Side-by-side versioning is used to provide retirement extensions, as suggested in the
redeployment specification. This ensures that an application can be redeployed without
interruption in service to its current clients. Details on deploying side-by-side versions can be
found in Redeploying Applications in a Production Environment in Deploying Applications to
Oracle WebLogic Server.

Administration (Test) Mode
A web application may be started in normal or administration (test) mode. Normal mode
indicates the web application is fully accessible to clients. Administration (test) mode indicates
the application only listens for requests using the admin channel. Administration (test) mode is
specified by the DeploymentOptions argument on the WebLogic Server extensions for start,
deploy and redeploy. See DeploymentOptions Javadoc.

Progress Reporting
Use ProgressObjects to determine deployment state of your applications. These objects are
associated with DeploymentTaskRuntimeMBeans.ProgressObjects support the cancel
operation but not the stop operation.

ProgessObjects are associated with one or more TargetModuleIDs, each of which represents
an application and its association with a particular target. For any ProgressObject, its
associated TargetModuleIDs represent the application that is being monitored.

The ProgressObject maintains a connection with the deployment framework, allowing it to
provide a deployment tool with up-to-date deployment status. The deployment state transitions
from running to completed or failed only after all TargetModuleIDs involved have completed
their individual deployments. The resulting state is completed only if all TargetModuleIDs are
successfully deployed.

The released state means that the DeploymentManager was disconnected during the
deployment. This may be due to a manual release, a network outage, or similar communication
failures.

Chapter 3
Progress Reporting

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 11

Example 3-2 shows how a ProgressObject can be used to wait for a deployment to complete:

Example 3-2 Example Code to Wait for Completion of a Deployment

package weblogic.deployer.tools;

import javax.enterprise.deploy.shared.*;
import javax.enterprise.deploy.spi.*;
import javax.enterprise.deploy.spi.status.*;

/**
 * Example of class that waits for the completion of a deployment
 * using ProgressEvent's.
 */
public class ProgressExample implements ProgressListener {

 private boolean failed = false;
 private DeploymentManager dm;
 private TargetModuleID[] tmids;

 public void main(String[] args) {
 // set up DeploymentManager, TargetModuleIDs, etc
 try {
 wait(dm.start(tmids));
} catch (IllegalStateException ise) {
 //... dm not connected
}
 if (failed) System.out.println("oh no!");
}

 void wait(ProgressObject po) {
 ProgressHandler ph = new ProgressHandler();
 if (!po.getDeploymentStatus().isRunning()) {
 failed = po.getDeploymentStatus().isFailed();
 return;
}
 po.addProgressListener(ph);
 ph.start();
 while (ph.getCompletionState() == null) {
 try {
 ph.join();
} catch (InterruptedException ie) {
 if (!ph.isAlive()) break;
}
}
 StateType s = ph.getCompletionState();
 failed = (s == null ||
 s.getValue() == StateType.FAILED.getValue());
 po.removeProgressListener(ph);
}

 class ProgressHandler extends Thread implements ProgressListener {
 boolean progressDone = false;
 StateType finalState = null;
 public void run(){
 while(!progressDone){
 Thread.currentThread().yield();
}
}
 public void handleProgressEvent(ProgressEvent event){
 DeploymentStatus ds = event.getDeploymentStatus();
 if (ds.getState().getValue() != StateType.RUNNING.getValue()) {

Chapter 3
Progress Reporting

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 11

 progressDone = true;
 finalState = ds.getState();
}
}
 public StateType getCompletionState(){
 return finalState;
}
}
}

Target Objects
The following sections provide information on how to target objects:

Module Types
The standard modules types are defined by javax.enterprise.deploy.shared.ModuleType.
This is extended to support WebLogic Server-specific module types: JMS, JDBC, INTERCEPT
and CONFIG.

Extended Module Support
The Jakarta Deployment specification defines a secondary descriptor as additional descriptors
that a module can refer to or make use of. These descriptors are linked to the root
DConfigBean of a module such that they are visible to a Java Beans based tool as they are
child properties of a DConfigBeanRoot object. Secondary descriptors are automatically included
in the configuration process for a module.

Web Services
An EJB or web application may include a webservers.xml descriptor. If present, the module is
automatically configured with the WebLogic Server equivalent descriptor for configuring Web
services as secondary descriptors. The deployment plan includes these descriptors as part of
the module, not as a separate module.

CMP
CMP support in EJBs is configured using RDBMS descriptors that are identified for CMP
beans in the weblogic-ejb-jar.xml descriptor. The RDBMS descriptors support CMP11 and
CMP20. Any number of RDBMS descriptors may be included with an EJB module. Provide
these descriptors in the application archive or configuration area (approot/plan). Although
they are not created by the configuration process, they may be modified like any other
descriptor. RDBMS descriptors are treated as secondary descriptors in the deployment plan.

JDBC
JDBC modules are described by a single deployment descriptor with no archive. If the module
is part of an EAR, the JDBC descriptors are specified in weblogic-application.xml as
configurable properties. You can deploy JDBC modules to WebLogic servers and clusters.
Configuration changes to JDBC descriptors are handled as overrides to the descriptor.

If a JDBC module is part of an EAR, its configuration overrides are incorporated in the
deployment plan as part of the EAR, not as separate modules.

Chapter 3
Target Objects

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 11

JMS
JMS modules are described by a single deployment descriptor with no archive. If the module is
part of an EAR, the JMS descriptors are specified in weblogic-application.xml as
configurable properties. JMS modules are deployed to JMS servers. Configuration changes to
JMS descriptors are handled as overrides to the descriptor. JMS descriptors may identify
"targetable groups". These groups are treated as sub-modules during deployment.

If the JMS module is part of an EAR, its configuration overrides are incorporated in the
deployment plan as part of the EAR, not as separate modules.

INTERCEPT
Intercept modules are described by a single deployment descriptor with no archive. If the
module is part of an EAR, the Intercept descriptors are specified in weblogic-
application.xml as configurable properties. Intercept modules are deployed to WebLogic
Server servers and clusters. Configuration changes to Intercept descriptors are handled as
overrides to the descriptor.

If the Intercept module is part of an EAR, its configuration overrides are incorporated in the
deployment plan as part of the EAR, not as separate modules.

Recognition of Target Types
The Jakarta EE Deployment API specification's definition of a target does not include any
notion of its type. WebLogic Server supports standard modules and Oracle-specific module
types as valid deployment targets. Target support is provided by the
weblogic.deploy.api.spi.WebLogicTarget and
weblogic.deploy.api.spi.WebLogicTargetType classes. See Module Types.

TargetModuleID Objects
The TargetModuleID objects uniquely identify a module and a target it is associated with.
TargetModuleIDs are the objects that specify where modules are to be started and stopped.
The object name used to identify the TargetModuleID is of the form:

Application=parent-name,Name=configured-name,Target=target-
name,TWebLogicTargetType=target-type

where

• parent-name is the name of the ear this module is part of.

• configured-name is the name used in the WebLogic Server configuration for this
application or module

• target-name is the server, cluster or virtual host where there module is targeted

• target-type is the description of the target derived from Target.getDescription.

TargetModuleID.toString() will return this object name.

WebLogic Server TargetModuleID Extensions
TargetModuleID is extended by weblogic.deploy.api.spi.WebLogicTargetModuleID. This
class provides the following additional functionality:

Chapter 3
Target Objects

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 11

• getServers—servers associated with the TargetModuleID's target

• isOnCluster—whether target is a cluster

• isOnServer—whether target is a server

• isOnHost—whether target is a virtual host

• isOnJMSServer—whether target is a JMS server

• getVersion—the version name

• createTargetModuleID—factory for creating module specific targeting

WebLogicTargetModuleID is defined in more detail in the Javadocs.

The WebLogicDeploymentManager is also extended with convenience methods that simplify
working with TargetModuleIDs. They are:

• filter—returns a list of TargetModuleIDs that match on application, module, and version

• getModules—creates TargetModuleIDs based on an AppDeploymentMBean

TargetModuleIDs have a hierarchical relationship based on the application upon which they
are based. The root TargetModuleID of an application represents an EAR module or a stand-
alone module. Child TargetModuleIDs are modules that are defined by the root module's
descriptor. For EARs, these are the modules identified in the application.xml descriptor for
the EAR. JMS modules may have child TargetModuleIDs (sub-modules) as dictated by the
JMS deployment descriptor. These may be children of an embedded module or the root
module. Therefore, JMS modules can have three levels of TargetModuleIDs for an application.

Typically, you get TargetModuleIDs in a deployment operation or one of the
DeploymentManager.get*Modules() methods. These operations provide TargetModuleIDs
based on the existing configuration. In certain scenarios where more specific targeting is
desired than is currently defined in the configuration, you may use the createTargetModuleID
method. This method creates a root TargetModuleID that is specific to a module or sub-module
within the application. This TargetModuleID can then be used in any deployment operation.
For operations that include the application archive, such as deploy(), using one of these
TargetModuleIDs may result in the application being reconfigured. For example:

<AppDeployment Name="myapp", Targets="s1,s2"/>

The application is currently configured for all modules to run on s1 and s2. To provide more
specific targeting, a deployment tool can do the following:

Target s1 = find("s1",dm.getTargets());
// find() is not part of this api
WebLogicTargetModuleID root =
 dm.createTargetModuleID("myapp",ModuleType.EAR,s1);
WebLogicTargetModuleID web =
 dm.createTargetModuleID(root,"webapp1",ModuleType.WAR);
dm.deploy(new TargetModuleID[]{web},myapp,myplan,null);

myapp is reconfigured and webapp is specifically targeted to only run on s1. The new
configuration is:

<AppDeployment Name="myapp", Targets="s1,s2">
 <SubDeployment Name="webapp", Targets="s1"/>
</AppDeployment>

Chapter 3
Target Objects

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 11

Example Module Deployment
Consider the deployment of a stand-alone JMS module, one that employs sub-modules. The
module is defined by the file, simple-jms.xml, which defines sub-modules, sub1 and sub2. The
descriptor is fully configured for the environment hence no deployment plan is required,
although the scenario described here would be the same if there was a deployment plan.

The tool to deploy this module performs the following steps:

// init the jsr88 session. This uses a WLS specific helper class,
// which does not employ any WLS extensions
DeploymentManager dm = SessionHelper.getDeploymentManager(host,port,user,pword);

// get list of all configured targets
// The filter method is a location where you could ask the user
// to select from the list of all configured targets

Target[] targets = filter(dm.getTargets());

// the module is distributed to the selected targets
ProgressObject po = dm.distribute(targets,new File("jms.xml"),plan);

// when the wait comes back the task is done
waitForCompletion(po);

// It is assumed here that it worked (there is no exception handling)
// the TargetModuleIDs (tmids) returned from the PO correspond to all the
// configured app/module mbeans for each target the app was distributed to.
// This should include 3 tmids per target: the root module tmid and the
// submodules' tmids.
TargetModuleID[] tmids = po.getResultTargetModuleIDs();

// then to deploy the whole thing everywhere you would do this
po = dm.start(tmids);
// the result is that all sub-modules would be deployed on all the selected
// targets, since they are implicitly targeted wherever the their parent is
// targeted

// To get sub-module level deployment you need to use WebLogic Server
// extensions to create TargetModuleIDs that support module level targeting.
// The following deploys the topic "xyz" on a JMS server
WebLogicTargetModuleID root =
 dm.createTargetModuleID(tmids[i].getModuleID(),tmids[i],jmsServer);
WebLogicTargetModuleID topic =
 dm.createTargetModuleID(root,"xyz",WebLogicModuleType.JMS);

// now we can take the original list of tmids and let the user select
// specific tmids to deploy
po = dm.start(topic);

Chapter 3
Target Objects

Deploying Applications with the WebLogic Deployment API
G31586-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 11

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Understanding the WebLogic Deployment API
	The WebLogic Deployment API
	WebLogic Deployment API Deployment Phases
	Configure an Application for Deployment
	Deploy an Application

	weblogic.Deployer Implementation of the WebLogic Deployment API
	When to Use the WebLogic Deployment API

	Jakarta Deployment API Compliance
	WebLogic Server Value-Added Deployment Features
	The Service Provider Interface Package
	weblogic.deploy.api.spi
	weblogic.deploy.api.spi.factories
	Module Targeting
	Support for Querying WebLogic Target Types
	Server Staging Modes
	Deployment Plan Staging Modes
	DConfigBean Validation

	The Model Package
	weblogic.deploy.api.model
	Accessing Deployment Descriptors

	The Shared Package
	weblogic.deploy.api.shared
	Command Types for Deploy and Update
	Support for Module Types
	Support for all WebLogic Server Target Types

	The Tools Package
	weblogic.deploy.api.tools
	SessionHelper
	Deployment Plan Creation

	The JMX API for Deployment Operations
	Supported Deployment Options
	Using the JMX API for Deployment Operations

	Using a Deployment Validation Plug-In with WebLogic Server
	Configuring the Deployment Validation Plug-In
	Using the Deployment Validation Plug-In

	2 Configuring Applications for Deployment
	Overview of the Configuration Process
	Types of Configuration Information
	Jakarta EE Configuration
	WebLogic Server Configuration
	Representing Jakarta EE and WebLogic Server Configuration Information
	DDBeans

	The Relationship Between Jakarta EE and WebLogic Server Descriptors
	DConfigBeans

	Application Evaluation
	Obtain a Deployment Manager
	Types of Deployment Managers
	Connected and Disconnected Deployment Manager URIs
	Using SessionHelper to Obtain a Deployment Manager

	Create a Deployable Object
	Using the WebLogicDeployableObject class
	Using SessionHelper to obtain a Deployable Object

	Perform Front-End Configuration
	What is Front-End Configuration
	Deployment Configuration
	Example Code
	Reading In Information with SessionHelper

	Validating a Configuration

	Customizing Deployment Configuration
	Modifying Configuration Values
	Targets
	Application Naming

	Deployment Preparation
	Session Cleanup

	3 Performing Deployment Operations
	Register Deployment Factory Objects
	Allocate a DeploymentManager
	Getting a DeploymentManager Object
	Understanding DeploymentManager URI Implementations
	Server Connectivity

	Deployment Processing
	DeploymentOptions
	Distribution
	Application Start
	Application Deploy
	Application Stop
	Undeployment

	Production Redeployment
	In-Place Redeployment
	Module Level Targeting
	Retirement Policy
	Version Support
	Administration (Test) Mode

	Progress Reporting
	Target Objects
	Module Types
	Extended Module Support
	Web Services
	CMP
	JDBC
	JMS
	INTERCEPT

	Recognition of Target Types
	TargetModuleID Objects
	WebLogic Server TargetModuleID Extensions
	Example Module Deployment

