
Oracle® Fusion Middleware
Developing Jakarta Enterprise Beans for
Oracle WebLogic Server

15c (15.1.1.0.0)
G31650-01
October 2025

Oracle Fusion Middleware Developing Jakarta Enterprise Beans for Oracle WebLogic Server, 15c (15.1.1.0.0)

G31650-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation ii

Conventions ii

1 Understanding EJBs

New Features and Changes in EJB 1

Understanding EJB Components 1

Session EJBs Implement Business Logic 1

Stateful Session Beans 2

Stateless Session Beans 2

Singleton Session Beans 2

Message-Driven Beans Implement Loosely Coupled Business Logic 3

EJB Anatomy and Environment 3

EJB Components 3

The EJB Container 4

EJB Metadata Annotations 4

Optional EJB Deployment Descriptors 5

EJB Clients and Communications 5

Accessing EJBs 5

EJB Communications 6

Securing EJBs 6

2 Simple EJB Examples

Simple Java Examples of EJBs 1

Example of a Simple No-interface Stateless EJB 1

Example of a Simple Business Interface Stateless EJB 2

Example of a Simple Stateful EJB 3

Example of an Interceptor Class 5

Packaged EJB 3.2 Examples in WebLogic Server 6

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page i of vi

EJB 3.2: Example of Using the Session Bean Lifecyle 6

EJB 3.2: Example of a Message-Driven Bean with No-Methods Listener 6

Packaged EJB 3.1 Examples in WebLogic Server 6

EJB 3.1: Example of a Singleton Session Bean 7

EJB 3.1: Example of an Asynchronous Method EJB 7

EJB 3.1: Example of a Calendar-based Timer EJB 7

EJB 3.1: Example of Simplified No-interface Programming and Packaging in a WAR File 8

EJB 3.1: Example of Using a Portable Global JNDI Name in an EJB 8

EJB 3.1: Example of Using the Embeddable EJB Container in Java SE 8

EJB 3.0: Example of Invoking an Entity From A Session Bean 9

3 Iterative Development of EJBs

Overview of the EJB Development Process 1

Create a Source Directory 2

Directory Structure for Packaging a JAR 3

Directory Structure for Packaging a WAR 3

Program the Annotated EJB Class 3

Program the EJB Interface 4

Accessing EJBs Using the No-Interface Client View 4

Accessing EJBs Using the Business Interface 4

Business Interface Application Exceptions 5

Using Generics in EJBs 5

Serializing and Deserializing Business Objects 6

Optionally Program Interceptors 6

Optionally Program the EJB Timer Service 7

Overview of the Timer Service 7

Calendar-based EJB Timers 8

Automatically-created EJB Timers 8

Non-persistent Timers 8

Clustered Versus Local EJB Timer Services 9

Clustered EJB Timer Services 9

Local EJB Timer Services 9

Configuring Clustered EJB Timers 10

Using Java Programming Interfaces to Program Timer Objects 11

EJB Timer-related Programming Interfaces 11

WebLogic Server-specific Timer-related Programming Interfaces 11

Programming Access to EJB Clients 13

Remote Clients 14

Local Clients 14

Looking Up EJBs From Clients 14

Using Dependency Injection 15

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of vi

Using the JNDI Portable Syntax 15

Customizing JNDI Names 16

Configuring EJBs to Send Requests to a URL 16

Specifying an HTTP Resource by URL 16

Specifying an HTTP Resource by Its JNDI Name 17

Accessing HTTP Resources from Bean Code 17

Configuring Network Communications for an EJB 17

Programming and Configuring Transactions 17

Programming Container-Managed Transactions 18

Configuring Automatic Retry of Container-Managed Transactions 18

Programming Bean-Managed Transactions 20

Programming Transactions That Are Distributed Across EJBs 21

Calling multiple EJBs from a client's transaction context 21

Using an EJB "Wrapper” to Encapsulate a Cross-EJB Transaction 21

Compile Java Source 21

Optionally Create and Edit Deployment Descriptors 22

Packaging EJBs 23

Packaging EJBs in a JAR 23

Packaging an EJB In a WAR 23

Deploying EJBs 24

4 Programming the Annotated EJB Class

Overview of Metadata Annotations and EJB Bean Files 1

Programming the Bean File: Requirements and Changes From EJB 2.x 2

Bean Class Requirements and Changes From EJB 2.x 2

Bean Class Method Requirements 3

Programming the Bean File 3

Typical Steps When Programming the Bean File 4

Specifying the Business and Other Interfaces 5

Specifying the Business Interface 5

Specifying the No-interface View 5

Specifying the Bean Type (Stateless, Singleton, Stateful, or Message-Driven) 6

Injecting Resource Dependency into a Variable or Setter Method 7

Invoking an Entity Bean 8

Injecting Persistence Context Using Metadata Annotations 8

Finding an Entity Using the EntityManager API 9

Creating and Updating an Entity Using EntityManager 10

Specifying Interceptors for Business Methods or Life Cycle Callback Events 11

Specifying Business or Life Cycle Interceptors: Typical Steps 11

Programming the Interceptor Class 12

Programming Business Method Interceptor Methods 13

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page iii of vi

Programming Asynchronous Business Methods 13

Programming Life Cycle Callback Interceptor Methods 14

Specifying Default Interceptor Methods 15

Saving State Across Interceptors With the InvocationContext API 16

Programming Application Exceptions 16

Securing Access to the EJB 17

Specifying Transaction Management and Attributes 18

Complete List of Metadata Annotations By Function 19

Annotations to Specify the Bean Type 19

Annotations to Specify the Local or Remote Interfaces 20

Annotations to Support EJB Client View 20

Annotations to Invoke an Entity Bean 21

Transaction-Related Annotations 21

Annotations to Specify Interceptors 22

Annotations to Specify Life Cycle Callbacks 22

Security-Related Annotations 23

Context Dependency Annotations 23

Timeout and Exceptions Annotations 24

Timer and Scheduling Annotations 24

5 Deployment Guidelines for EJBs

Before You Deploy an EJB 1

Understanding and Performing Deployment Tasks 2

Deployment Guidelines for EJBs 2

Deploying Standalone EJBs as Part of an Enterprise Application 2

Deploying EJBs as Part of an Web Application 3

Deploying EJBs That Call Each Other in the Same Application 3

Switching Protocol Limitation 3

Deploying EJBs That Use Dependency Injection 3

Deploying Homogeneously to a Cluster 4

Deploying EJBs to a Cluster 4

Redeploying an EJB 4

Using FastSwap Deployment to Minimize Deployment 5

Understanding Warning Messages 5

Disabling EJB Deployment Warning Messages 5

6 Using an Embedded EJB Container in Oracle WebLogic Server

Overview of the Embeddable EJB Container 1

EJB Lite Functionality Supported in the Embedded EJB Container 1

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page iv of vi

7 Configuring the Persistence Provider in Oracle WebLogic Server

Overview of Oracle TopLink 1

Specifying a Persistence Provider 2

Setting the Default Provider for the Domain 2

Specifying the Persistence Provider in an Application 2

A EJB Metadata Annotations Reference

Overview of EJB Annotations A-1

WebLogic Annotations A-1

weblogic.javaee.AllowRemoveDuringTransaction A-2

Description A-2

weblogic.javaee.CallByReference A-2

Description A-2

weblogic.javaee.DisableWarnings A-3

Description A-3

Attributes A-3

weblogic.javaee.EJBReference A-3

Description A-4

Attribute A-4

weblogic.javaee.Idempotent A-4

Description A-4

Attributes A-4

weblogic.javaee.JMSClientID A-5

Description A-5

Attributes A-5

weblogic.javaee.JNDIName A-6

Description A-6

Attributes A-6

weblogic.javaee.JNDINames A-6

Description A-6

Attributes A-6

weblogic.javaee.MessageDestinationConfiguration A-7

Description A-7

Attributes A-7

weblogic.javaee.TransactionIsolation A-7

Description A-8

Attributes A-8

weblogic.javaee.TransactionTimeoutSeconds A-8

Description A-8

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page v of vi

Attributes A-9

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page vi of vi

Preface

This document is a resource for software developers who develop applications that include
WebLogic Server EJBs using the Jakarta Platform, Enterprise Edition.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Conventions

Audience
This document is a resource for software developers who develop applications that include
WebLogic Server EJBs. It is assumed that the reader is familiar with Jakarta EE and basic EJB
programming concepts.

The document mostly discusses the EJB programming model, in particular the use of metadata
annotations to simplify development. This document does not address EJB topics that are
different between different versions of EJB, such as design considerations, EJB container
architecture, entity beans, deployment descriptor use, and so on. This document also does not
address production phase administration, monitoring, or performance tuning.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page i of iii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Related Documentation
General EJB Design and Architecture

For information about developing and deploying EJBs with WebLogic Server, see:

• Enterprise Java Beans (EJBs) in Understanding Oracle WebLogic Server.

• For instructions on how to organize and build WebLogic Server EJBs in a split directory
environment, see Creating a Split Development Directory Environment in Developing
Applications for Oracle WebLogic Server.

• For information on programming and packaging EJBs, see Developing Jakarta Enterprise
Beans Using Deployment Descriptors.

• Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications in development and production
environments.

Basic EJB Concepts

For complete information about basic EJB concepts, such as the benefits of enterprise beans,
the types of enterprise beans, and their life cycles, visit the following sites:

• The Jakarta Enterprise Beans 4.0 specification at https://jakarta.ee/specifications/
enterprise-beans/

• The Enterprise Beans chapter of the Jakarta EE Tutorial.

Samples and Tutorials

Oracle provides a variety of code examples and tutorials that show WebLogic Server
configuration and API use, and provide practical instructions on how to perform key
development tasks. For more information, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

In addition, Oracle provides basic EJB examples described in Simple EJB Examples. Oracle
recommends that you run these examples before programming your own application that uses
EJBs.

• Packaged EJB 3.2 Examples in WebLogic Server

• Packaged EJB 3.1 Examples in WebLogic Server

• EJB 3.0: Example of Invoking an Entity From A Session Bean

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page ii of iii

https://jakarta.ee/specifications/enterprise-beans/
https://jakarta.ee/specifications/enterprise-beans/
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/entbeans/ejb-intro/ejb-intro.html

Preface

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page iii of iii

1
Understanding EJBs

This chapter describes the new features and programming model of the EJB specification
supported by WebLogic Server and also provides a basic overview EJB components, anatomy,
and features.
This chapter includes the following sections:

• New Features and Changes in EJB

• Understanding EJB Components

• EJB Anatomy and Environment

• EJB Clients and Communications

• Securing EJBs

New Features and Changes in EJB
WebLogic Server 15.1.1.0.0 supports the Jakarta Enterprise Beans 4.0 specification.

Note

In EJB 4.0, the package namespace changed from javax.* to jakarta.*.

For a complete list of changes and comparisons to previous EJB specifications, see
What is New in This Release in the Jakarta Enterprise Beans 4.0 Specification.

Understanding EJB Components
Jakarta Enterprise Beans (EJB) technology is the server-side component architecture for
Jakarta EE. EJB technology enables rapid and simplified development of distributed,
transactional, secure and portable applications based on Java technology.

• Session EJBs Implement Business Logic

• Message-Driven Beans Implement Loosely Coupled Business Logic

Session EJBs Implement Business Logic
Session beans implement business logic. There are three types of session beans: stateful,
stateless, and singleton. Stateful and stateless session beans serve one client at a time;
whereas, singleton session beans can be invoked concurrently.

For detailed information about the types of session beans and when to use them, see "What Is
a Session Bean" in the Enterprise Beans chapter of the Jakarta EE Tutorial.

• Stateful Session Beans

• Stateless Session Beans

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 6

https://jakarta.ee/specifications/enterprise-beans/4.0/jakarta-enterprise-beans-spec-core-4.0#a6
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/entbeans/ejb-intro/ejb-intro.html

• Singleton Session Beans

Stateful Session Beans
Stateful session beans maintain state information that reflects the interaction between the bean
and a particular client across methods and transactions. A stateful session bean can manage
interactions between a client and other enterprise beans, or manage a workflow.

Example: A company Web site that allows employees to view and update personal profile
information could use a stateful session bean to call a variety of other beans to provide the
services required by a user, after the user clicks View my Data on a page:

• Accept the login data from a JSP, and call another EJB whose job it is to validate the login
data.

• Send confirmation of authorization to the JSP.

• Call a bean that accesses profile information for the authorized user.

Stateless Session Beans
A stateless session bean does not store session or client state information between
invocations—the only state it might contain is not specific to a client, for instance, a cached
database connection or a reference to another EJB. At most, a stateless session bean may
store state for the duration of a method invocation. When a method completes, state
information is not retained.

Any instance of a stateless session bean can serve any client—any instance is equivalent.
Stateless session beans can provide better performance than stateful session beans, because
each stateless session bean instance can support multiple clients, albeit one at a time. The
client of a stateless session bean can be a web service endpoint.

Example: An Internet application that allows visitors to click a Contact Us link and send an
email could use a stateless session bean to generate the email, based on the to and from
information gathered from the user by a JSP.

Singleton Session Beans
Singleton session beans provide a formal programming construct that guarantees a session
bean will be instantiated once per application in a particular Java Virtual Machine (JVM), and
that it will exist for the life cycle of the application. With singletons, you can easily share state
between multiple instances of an enterprise bean component or between multiple enterprise
bean components in the application.

Singleton session beans offer similar functionality to stateless session beans but differ from
them in that there is only one singleton session bean per application, as opposed to a pool of
stateless session beans, any of which may respond to a client request. Like stateless session
beans, singleton session beans can implement Web service endpoints. Singleton session
beans maintain their state between client invocations but are not required to maintain their
state across server crashes or shutdowns.

Example: The Apache Web site provides a Simple Singleton: ComponentRegistry example
that demonstrates how a singleton bean uses Container-Managed Concurrency to utilize the
Read (@Lock(READ)) functionality, to allow multi-threaded access to the bean, and the Write
(@Lock(WRITE)) functionality, to enforce single-threaded access to the bean.

Chapter 1
Understanding EJB Components

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 6

https://tomee.apache.org/latest/examples/simple-singleton.html

Message-Driven Beans Implement Loosely Coupled Business Logic
A message-driven bean implements loosely coupled or asynchronous business logic in which
the response to a request need not be immediate. A message-driven bean receives messages
from a JMS Queue or Topic, and performs business logic based on the message contents. It is
an asynchronous interface between EJBs and JMS.

Throughout its life cycle, an MDB instance can process messages from multiple clients,
although not simultaneously. It does not retain state for a specific client. All instances of a
message-driven bean are equivalent—the EJB container can assign a message to any MDB
instance. The container can pool these instances to allow streams of messages to be
processed concurrently.

The EJB container interacts directly with a message-driven bean—creating bean instances and
passing JMS messages to those instances as necessary. The container creates bean
instances at deployment time, adding and removing instances during operation based on
message traffic.

For detailed information, see Developing Message-Driven Beans for Oracle WebLogic Server.

Example: In an on-line shopping application, where the process of taking an order from a
customer results in a process that issues a purchase order to a supplier, the supplier ordering
process could be implemented by a message-driven bean. While taking the customer order
always results in placing a supplier order, the steps are loosely coupled because it is not
necessary to generate the supplier order before confirming the customer order. It is acceptable
or beneficial for customer orders to "stack up" before the associated supplier orders are
issued.

EJB Anatomy and Environment
These sections briefly describe classes required for each bean type, the EJB run-time
environment, and the deployment descriptor files that govern a bean's run-time behavior.

• EJB Components

• The EJB Container

• EJB Metadata Annotations

• Optional EJB Deployment Descriptors

EJB Components
Every bean type requires a bean class. Table 1-1 defines the supported client views that make
up each type of EJB, and defines any additional required classes.

Chapter 1
EJB Anatomy and Environment

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 6

Note

The EJB 2.1 and earlier API required that Local and Remote clients access the
stateful or stateless session bean by means of the session bean's local or remote
home and the local or remote component interfaces. These interfaces remain
available for use with EJB 4.0; however, the EJB 2.1 Remote and Local client view is
not supported for singleton session beans.

See Create EJB Classes and Interfaces in Developing Jakarta Enterprise Beans Using
Deployment Descriptors.

Table 1-1 Supported Client Views in EJB 3.2

Client Views Session Bean Types Additional Required Classes

Remote Client Stateful, Stateless, and Singleton
session beans

Remote business interface that
defines the bean's business and
lifecycle methods.

Local Client Stateful, Stateless, and Singleton
session beans

Local business interface that
defines the bean's business and
lifecycle methods.

Local No- interface Stateful, Stateless, and Singleton
session beans

Only requires the bean class.

Web Service Clients Stateless and Singleton session
beans

A Web service endpoint that is
accessed as a JAX-WS service
endpoint using the JAX-WS client
view APIs.

The EJB Container
An EJB container is a run-time container for beans that are deployed to an application server.
The container is automatically created when the application server starts up, and serves as an
interface between a bean and run-time services such as:

• Life cycle management

• Code generation

• Security

• Transaction management

• Locking and concurrency control

EJB Metadata Annotations
The WebLogic Server EJB programming model uses the Jakarta EE metadata annotations
feature in which you create an annotated EJB bean file, and then compile the class with
standard Java compiler, which can then be packaged into a target module for deployment. At
runtime, WebLogic Server parses the annotations and applies the required behavioral aspects
to the bean file.

See Programming the Annotated EJB Class.

Chapter 1
EJB Anatomy and Environment

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 6

Optional EJB Deployment Descriptors
As of EJB 3.0, you are no longer required to create the EJB deployment descriptor files (such
as ejb-jar.xml). However, you can still use XML deployment descriptors if you want. In the
case of conflicts, the deployment descriptor value overrides the annotation value.

If you are continuing to use deployment descriptors in your EJB implementation, refer to EJB
Deployment Descriptors in Developing Jakarta Enterprise Beans Using Deployment
Descriptors.

The WebLogic Server EJB container supports three deployment descriptors:

• ejb-jar.xml—The standard Jakarta EE deployment descriptor. The ejb-jar.xml may be
used to define EJBs and to specify standard configuration settings for the EJBs. An ejb-
jar.xml can specify multiple beans that will be deployed together.

• weblogic-ejb-jar.xml—WebLogic Server-specific deployment descriptor that contains
elements related to WebLogic Server features such as clustering, caching, and
transactions. This file is required if your beans take advantage of WebLogic Server-specific
features. Like ejb-jar.xml, weblogic-ejb-jar.xml can specify multiple beans that will be
deployed together.

• weblogic-cmp-jar.xml—WebLogic Server-specific deployment descriptor that contains
elements related to container-managed persistence for entity beans. Entity beans that use
container-managed persistence must be specified in a weblogic-cmp-jar.xml file.

For descriptions of the WebLogic Server EJB deployment descriptors, refer to Deployment
Descriptor Schema and Document Type Definitions Reference in Developing Jakarta
Enterprise Beans Using Deployment Descriptors.

EJB Clients and Communications
An EJB can be accessed by server-side or client-side objects such as servlets, Java client
applications, other EJBs, web services, and non-Java clients. Any client of an EJB, whether in
the same or a different application, accesses it in a similar fashion. WebLogic Server
automatically creates implementations of an EJB's remote home and remote business
interfaces, which can function remotely.

• Accessing EJBs

• EJB Communications

Accessing EJBs
Clients access enterprise beans either through a no-interface view or through a business
interface. A no-interface view of an enterprise bean exposes the public methods of the
enterprise bean implementation class to clients. Clients using the no-interface view of an
enterprise bean may invoke any public methods in the enterprise bean implementation class or
any super-classes of the implementation class. A business interface is a standard Java
programming language interface that contains the business methods of the enterprise bean.

The client of an enterprise bean obtains a reference to an instance of an enterprise bean
through either dependency injection, using Java programming language annotations, or JNDI
lookup, using the Java Naming and Directory Interface (JNDI) syntax to find the enterprise
bean instance.

Chapter 1
EJB Clients and Communications

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 6

Dependency injection is the simplest way of obtaining an enterprise bean reference. Clients
that run within a Jakarta EE server-managed environment, Jakarta Server Faces web
applications, JAX-RS web services, other enterprise beans, or Jakarta EE application clients,
support dependency injection using the jakarta.ejb.EJB annotation.

Applications that run outside a Jakarta EE server-managed environment, such as Java SE
applications, must perform an explicit lookup. JNDI supports a global syntax for identifying
Jakarta EE components to simplify this explicit lookup. For more information see, Using the
JNDI Portable Syntax.

Because of network overhead, it is more efficient to access beans from a client on the same
machine than from a remote client, and even more efficient if the client is in the same
application.

For information on programming client access to an EJB, see "Accessing Enterprise Beans" in
the Enterprise Beans chapter of the Jakarta EE Tutorial.

EJB Communications
WebLogic Server EJBs use:

• T3—To communicate with remote objects. T3 is a WebLogic-proprietary remote network
protocol that implements the Remote Method Invocation (RMI) protocol.

• RMI—To communicate with remote objects. RMI enables an application to obtain a
reference to an object located elsewhere in the network, and to invoke methods on that
object as though it were co-located with the client on the same JVM locally in the client's
virtual machine. An EJB with a remote interface is an RMI object. For more information on
WebLogic RMI, see Developing RMI Applications for Oracle WebLogic Server.

• HTTP—An EJB can obtain an HTTP connection to a Web server external to the WebLogic
Server environment by using the java.net.URL resource connection factory. See
Configuring EJBs to Send Requests to an URL in Developing Jakarta Enterprise Beans
Using Deployment Descriptors.

You can specify the attributes of the network connection an EJB uses by binding the EJB to a
WebLogic Server custom network channel. See Configuring Network Resources in
Administering Server Environments for Oracle WebLogic Server.

Securing EJBs
By default, any user can invoke the public methods of an EJB. Therefore, if you want to restrict
access to the EJB, you can use security-related annotations to specify the roles that are
allowed to invoke all, or a subset, of the methods, which is explained in Securing Access to the
EJB.

For additional information about security and EJBs, see:

• Security Fundamentals in Understanding Security for Oracle WebLogic Server has
introductory information about authentication, authorization and other security topics.

• Securing Jakarta Enterprise Beans (EJBs) in Developing Applications with the WebLogic
Security Service provides instructions for configuring authentication and authorization for
EJBs.

Chapter 1
Securing EJBs

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 6

https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/entbeans/ejb-intro/ejb-intro.html

2
Simple EJB Examples

This chapter provides Java examples of the EJB programming model.
This chapter includes the following sections:

• Simple Java Examples of EJBs

• Packaged EJB 3.2 Examples in WebLogic Server

• Packaged EJB 3.1 Examples in WebLogic Server

Simple Java Examples of EJBs
The following sections describe simple Java examples of EJBs that use the new metadata
annotation programming model. Some procedural sections in this guide that describe how to
program an EJB may reference these examples.

• Example of a Simple No-interface Stateless EJB

• Example of a Simple Business Interface Stateless EJB

• Example of a Simple Stateful EJB

• Example of an Interceptor Class

Example of a Simple No-interface Stateless EJB
The EJB no-interface local client view type simplifies EJB development by providing local
session bean access without requiring a separate local business interface, allowing
components to have EJB bean class instances directly injected.

The following code shows a simple no-interface view for the ServiceBean stateless session
EJB:

package examples;
@Stateless
public class ServiceBean {
 public void sayHelloFromServiceBean() {
 System.out.println("Hello From Service Bean!");
 }
}

The main points to note about the preceding code are:

• The EJB automatically exposes the no-interface view because no other client views are
exposed and its bean class implements clause is empty.

• The ServiceBean bean file is a plain Java file; it is not required to implement any EJB-
specific interface.

• The class-level @Stateless metadata annotation specifies that the EJB is of type stateless
session.

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 9

Example of a Simple Business Interface Stateless EJB
The following code shows a simple business interface for the ServiceBean stateless session
EJB:

package examples;
/**
* Business interface of the Service stateless session EJB
*/
public interface Service {
 public void sayHelloFromServiceBean();
}

The code shows that the Service business interface has one method,
sayHelloFromServiceBean(), that takes no parameters and returns void.

The following code shows the bean file that implements the preceding Service interface; the
code in bold is described after the example:

package examples;
import jakarta.ejb.Stateless;
import jakarta.interceptor.ExcludeDefaultInterceptors;
/**
 * Bean file that implements the Service business interface.
 * Class uses following EJB annotations:
 * - @Stateless - specifies that the EJB is of type stateless session
 * - @ExcludeDefaultInterceptors - specifies any configured default
 * interceptors should not be invoked for this class
 */
@Stateless
@ExcludeDefaultInterceptors
public class ServiceBean
 implements Service
{
 public void sayHelloFromServiceBean() {
 System.out.println("Hello From Service Bean!");
 }
}

The main points to note about the preceding code are:

• Use standard import statements to import the metadata annotations you use in the bean
file:

import jakarta.ejb.Stateless;
import jakarta.interceptor.ExcludeDefaultInterceptors

The annotations that apply only to EJB are in the jakarta.ejb package. Annotations that
can be used by other Jakarta EE components are in more generic packages, such
jakarta.interceptor or jakarta.annotation.

• The ServiceBean bean file is a plain Java file that implements the Service business
interface; it is not required to implement any EJB-specific interface. This means that the
bean file does not need to implement the lifecycle methods, such as ejbCreate and
ejbPassivate, that were required in the 2.x programming model.

• The class-level @Stateless metadata annotation specifies that the EJB is of type stateless
session.

Chapter 2
Simple Java Examples of EJBs

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 9

• The class-level @ExcludeDefaultInterceptors annotation specifies that default
interceptors, if any are defined in the ejb-jar.xml deployment descriptor file, should never
be invoked for any method invocation of this particular EJB.

Example of a Simple Stateful EJB
The following code shows a simple business interface for the AccountBean stateful session
EJB:

package examples;
/**
 * Business interface for the Account stateful session EJB.
 */
public interface Account {
 public void deposit(int amount);
 public void withdraw(int amount);
 public void sayHelloFromAccountBean();
}

The code shows that the Account business interface has three methods, deposit, withdraw,
and sayHelloFromAccountBean.

The following code shows the bean file that implements the preceding Account interface; the
code in bold is described after the example:

package examples;
import jakarta.ejb.Stateful;
import jakarta.ejb.Remote;
import jakarta.ejb.EJB;
import jakarta.annotation.PreDestroy;
import jakarta.interceptor.Interceptors;
import jakarta.interceptor.ExcludeClassInterceptors;
/**
 * Bean file that implements the Account business interface.
 * Uses the following EJB annotations:
 * - @Stateful: specifies that this is a stateful session EJB
 * - @Remote - specifies the Remote interface for this EJB
 * - @EJB - specifies a dependency on the ServiceBean stateless
 * session ejb
 * - @Interceptors - Specifies that the bean file is associated with an
 * Interceptor class; by default all business methods invoke the
 * method in the interceptor class annotated with @AroundInvoke.
 * - @ExcludeClassInterceptors - Specifies that the interceptor methods
 * defined for the bean class should NOT fire for the annotated
 * method.
 * - @PreDestroy - Specifies lifecycle method that is invoked when the
 * bean is about to be destoryed by EJB container.
 *
 */
@Stateful
@Remote({examples.Account.class})
@Interceptors({examples.AuditInterceptor.class})
public class AccountBean
 implements Account
{
 private int balance = 0;
 @EJB(beanName="ServiceBean")
 private Service service;
 public void deposit(int amount) {
 balance += amount;
 System.out.println("deposited: "+amount+" balance: "+balance);

Chapter 2
Simple Java Examples of EJBs

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 9

 }
 public void withdraw(int amount) {
 balance -= amount;
 System.out.println("withdrew: "+amount+" balance: "+balance);
 }
 @ExcludeClassInterceptors
 public void sayHelloFromAccountBean() {
 service.sayHelloFromServiceBean();
 }
 @PreDestroy
 public void preDestroy() {
 System.out.println("Invoking method: preDestroy()");
 }
}

The main points to note about the preceding code are:

• Use standard import statements to import the metadata annotations you use in the bean
file:

import jakarta.ejb.Stateful;
import jakarta.ejb.Remote;
import jakarta.ejb.EJB;

import jakarta.annotation.PreDestroy;

import jakarta.interceptor.Interceptors;
import jakarta.interceptor.ExcludeClassInterceptors;

The annotations that apply only to EJB are in the jakarta.ejb package. Annotations that
can be used by other Jakarta EE components are in more generic packages, such
jakarta.interceptor or jakarta.annotation.

• The AccountBean bean file is a plain Java file that implements the Account business
interface; it is not required to implement any EJB-specific interface. This means that the
bean file does not need to implement the lifecycle methods, such as ejbCreate and
ejbPassivate, that were required in the 2.x programming model.

• The class-level @Stateful metadata annotation specifies that the EJB is of type stateful
session.

• The class-level @Remote annotation specifies the name of the remote interface of the EJB;
in this case it is the same as the business interface, Account.

• The class-level @Interceptors({examples.AuditInterceptor.class}) annotation
specifies the interceptor class that is associated with the bean file. This class typically
includes a business method interceptor method, as well as lifecycle callback interceptor
methods. See Example of an Interceptor Class for details about this class.

• The field-level @EJB annotation specifies that the annotated variable, service, is injected
with the dependent ServiceBean stateless session bean context. The data type of the
injected field, Service, is the business interface of the ServiceBean EJB. The following
code in the sayHelloFromAccountBean method shows how to invoke the
sayHelloFromServiceBean method of the dependent ServiceBean:

service.sayHelloFromServiceBean();

• The method-level @ExcludeClassInterceptors annotation specifies that the
@AroundInvoke method specified in the associated interceptor class (AuditInterceptor)
should not be invoked for the sayHelloFromAccountBean method.

• The method-level @PreDestroy annotation specifies that the EJB container should invoke
the preDestroy method before the container destroys an instance of the AccountBean. This

Chapter 2
Simple Java Examples of EJBs

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 9

shows how you can specify interceptor methods (for both business methods and lifecycle
callbacks) in the bean file itself, in addition to using an associated interceptor class.

Example of an Interceptor Class
The following code shows an example of an interceptor class, specifically the
AuditInterceptor class that is referenced by the preceding AccountBean stateful session
bean with the @Interceptors({examples.AuditInterceptor.class}) annotation; the code in
bold is described after the example:

package examples;
import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;
import javax.ejb.PostActivate;
import javax.ejb.PrePassivate;
/**
 * Interceptor class. The interceptor method is annotated with the
 * @AroundInvoke annotation.
 */
public class AuditInterceptor {
 public AuditInterceptor() {}
 @AroundInvoke
 public Object audit(InvocationContext ic) throws Exception {
 System.out.println("Invoking method: "+ic.getMethod());
 return ic.proceed();
 }
 @PostActivate
 public void postActivate(InvocationContext ic) {
 System.out.println("Invoking method: "+ic.getMethod());
 }
 @PrePassivate
 public void prePassivate(InvocationContext ic) {
 System.out.println("Invoking method: "+ic.getMethod());
 }
}

The main points to notice about the preceding example are:

• As usual, import the metadata annotations used in the file:

import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;
import javax.ejb.PostActivate;
import javax.ejb.PrePassivate;

• The interceptor class is a plain Java class.

• The class has an empty constructor:

public AuditInterceptor() {}

• The method-level @AroundInvoke specifies the business method interceptor method. You
can use this annotation only once in an interceptor class.

• The method-level @PostActivate and @PrePassivate annotations specify the methods that
the EJB container should call after reactivating and before passivating the bean,
respectively.

Chapter 2
Simple Java Examples of EJBs

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 9

Note

These lifecycle callback interceptor methods apply only to stateful session beans.

Packaged EJB 3.2 Examples in WebLogic Server
The following sections describe the packaged Java EE 7 examples included with Oracle
WebLogic Server, which demonstrate new features in EJB 3.2.

• EJB 3.2: Example of Using the Session Bean Lifecyle

• EJB 3.2: Example of a Message-Driven Bean with No-Methods Listener

EJB 3.2: Example of Using the Session Bean Lifecyle
This example shows the new session bean lifecycle callback interceptor methods API,
including @AroundConstruct and @AroundInvoke.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee7/ejb/lifecylce

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

EJB 3.2: Example of a Message-Driven Bean with No-Methods Listener
This example shows how a message-driven bean to implement a listener interface with no
methods. A bean that implements a no-methods interface exposes all non-static public
methods of the bean class and of any superclasses, except java.lang.Object, as message
listener methods.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee7/ejb/no-method-listener

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

Packaged EJB 3.1 Examples in WebLogic Server
The following sections describe the packaged Java EE 6 examples included with Oracle
WebLogic Server, which demonstrate new features in EJB 3.1.

• EJB 3.1: Example of a Singleton Session Bean

• EJB 3.1: Example of an Asynchronous Method EJB

• EJB 3.1: Example of a Calendar-based Timer EJB

• EJB 3.1: Example of Simplified No-interface Programming and Packaging in a WAR File

• EJB 3.1: Example of Using a Portable Global JNDI Name in an EJB

• EJB 3.1: Example of Using the Embeddable EJB Container in Java SE

Chapter 2
Packaged EJB 3.2 Examples in WebLogic Server

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 9

• EJB 3.0: Example of Invoking an Entity From A Session Bean

EJB 3.1: Example of a Singleton Session Bean
This example demonstrates the use of the EJB 3.1 singleton session bean, which provides
application developers with a formal programming construct that guarantees a session bean
will be instantiated once for an application in a particular Java Virtual Machine (JVM). In this
example, a @Singleton session bean provides a central counter service. The Counter EJB is
called from a Java client to demonstrate it is being used, with the count being consistently
incremented by "1" as the client is invoked multiple times.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee6/ejb/singletonBean

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

EJB 3.1: Example of an Asynchronous Method EJB
This example demonstrates the use of the EJB 3.1 asynchronous method invocation. Adding
the @Asynchronous annotation to an EJB class or specific method will direct the EJB container
to return control immediately to the client when the method is invoked. The method may return
a Future object to allow the client to check on the status of the method invocation, and then
retrieve result values that are asynchronously produced.

In this example, an @Stateless bean is annotated at the class level, with @Asynchronous
indicating its methods are all asynchronous, with each of the methods simulating a long-
running calculation. A servlet is used to call the various asynchronous methods, keeping track
of the invocation and completion times to demonstrate the asynchronous nature of the method
calls.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee6/ejb/asyncMethodOfEJB

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

EJB 3.1: Example of a Calendar-based Timer EJB
This example demonstrates the enhanced scheduling capabilities of EJB 3.1. This scheduling
functionality takes the form of CRON-styled schedule definitions that can be placed on EJB
methods, in order for the methods to be automatically invoked according to the defined
schedule. This example shows the use of the @Schedule annotation defined for a method of a
@Singleton session bean, which generates and stores the timestamp of when the method was
called. A corresponding servlet is provided, into which the TimerBean is injected, which
retrieves the list of timestamps to display in a browser.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee6/ejb/calendarStyledTimer

Chapter 2
Packaged EJB 3.1 Examples in WebLogic Server

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 9

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

EJB 3.1: Example of Simplified No-interface Programming and Packaging in
a WAR File

This example demonstrates the simplified programming and packaging model changes
provided in EJB 3.1. Since the mandatory use of Java interfaces from previous versions has
been removed in EJB 3.1, plain-old Java objects can be annotated and used as EJB
components. The simplification is further enhanced by the ability to place EJB components
directly inside of Web applications, thereby removing the need to produce archives to store the
Web and EJB components and combine them together in an enterprise archive (EAR) file.

In this example, a @Stateless annotation is provided on a plain-old Java class that exposes it
as an EJB session bean. This is then injected into a @WebServlet class using an @EJB
annotation to demonstrate that it is being used as an EJB module. The EJB session bean and
servlet classes are then packaged and deployed together in a single WAR file, which
demonstrates the simplified packaging and deployment changes available in Java EE 6.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee6/ejb/noInterfaceViewInWAR

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

EJB 3.1: Example of Using a Portable Global JNDI Name in an EJB
This example demonstrates the use of the Portable Global JNDI naming option that is available
in EJB 3.1. Portable Global JNDI provides a number of common, well-known namespaces in
which EJB components can be registered and looked up from using the pattern java:global[/
<app-name>]/<module-name>/<bean-name>. This standardizes how and where EJB
components are registered in JNDI and how they can be looked up and used by applications.
In this example, a servlet is used to look up an EJB session bean using its portable JNDI name
java:module/HelloBean.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee6/ejb/portableGlobalJNDIName

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

EJB 3.1: Example of Using the Embeddable EJB Container in Java SE
This example demonstrates using the embeddable EJB container available in EJB 3.1, which
allows client code and its corresponding enterprise beans to run in a Java SE environment
without having to deploy them to a Java EE server.

The example uses the embeddable WebLogic EJB container to view all the user objects being
invoked from a Java SE environment. All the user objects are predefined during eager
initialization of a singleton component InitBean when the application is started, using the
annotations @Startup and @PostConstruct. An instance of EJBContainer is created in the

Chapter 2
Packaged EJB 3.1 Examples in WebLogic Server

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 9

Java client UserClient to look up the session bean reference UserBean and call its business
method viewUsers in the application.

After running the example, the client class is executed automatically and prints run-time
messages in the command shell in which the example was built. All the existing user objects
are retrieved from the samples database and are displayed in detail in the command shell.

After you have installed WebLogic Server, the example is in the following directory:

EXAMPLES_HOME/examples/src/examples/javaee6/ejb/embeddableContainer

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

EJB 3.0: Example of Invoking an Entity From A Session Bean
For an example of invoking an entity from a session bean, see the EJB 3.0 example in the
distribution kit. After you have installed WebLogic Server, the example is in the following
directory:

EXAMPLES_HOME/examples/src/examples/ejb/ejb30

EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. See Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

Chapter 2
Packaged EJB 3.1 Examples in WebLogic Server

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 9

3
Iterative Development of EJBs

This chapter describes the general EJB implementation process, and provides guidance for
how to get an EJB up and running in WebLogic Server.
This chapter includes the following sections:

• Overview of the EJB Development Process

• Create a Source Directory

• Program the Annotated EJB Class

• Program the EJB Interface

• Optionally Program Interceptors

• Optionally Program the EJB Timer Service

• Programming Access to EJB Clients

• Programming and Configuring Transactions

• Compile Java Source

• Optionally Create and Edit Deployment Descriptors

• Packaging EJBs

• Deploying EJBs

Overview of the EJB Development Process
This section is a brief overview of the EJB development process. It describes the key
implementation tasks and associated results.

The following section mostly discusses the EJB 3.2 programming model and points out the
differences between the EJB 3.x and EJB 2.x programming model in only a few places. If you
are an experienced EJB 2.x programmer and want the full list of differences between the two
models, see What is New in This Release in the Jakarta Enterprise Beans 4.0 Specification.
Developing Jakarta Enterprise Beans Using Deployment Descriptors may also provide useful
information.

Table 3-1 EJB Development Tasks and Results

Step Description Result

1 Create a Source
Directory

Create the directory structure for your Java
source files, and optional deployment
descriptors.

A directory structure on your
local drive.

2 Program the Annotated
EJB Class

Create the Java file that implements the
interface and includes the EJB 3.2
metadata annotations that describe how
your EJB behaves.

.java file.

3 Program the EJB
Interface

Create no-interface client views or
business interfaces that describe your
EJB.

.java file for each interface.

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 24

https://jakarta.ee/specifications/enterprise-beans/4.0/jakarta-enterprise-beans-spec-core-4.0#a6

Table 3-1 (Cont.) EJB Development Tasks and Results

Step Description Result

4 Optionally Program
Interceptors

Optionally, create the interceptor classes
that describe the interceptors that
intercept a business method invocation or
a life cycle callback event.

.java file for each interceptor
class.

5 Optionally Program the
EJB Timer Service

Optionally, create timers that schedule
callbacks to occur when a timer object
expires for timed event.

Either metadata (for automatic
timers) and/or bean class
changes (for programmatic
timers).

6 Programming Access
to EJB Clients

Obtain a reference to an EJB through
either dependency injection or JNDI
lookup.

Metadata (annotations and/or
deployment descriptor
settings) and/or code changes
to the client.

7 Programming and
Configuring
Transactions

Program container-managed or bean-
managed transactions.

Metadata and possibly logic to
handle exceptions (retry logic
or calls to
setRollbackOnly).

8 Compile Java Source Compile source code. .class file for each class and
interface.

9 Optionally Create and
Edit Deployment
Descriptors

Optionally create the EJB-specific
deployment descriptors, although this step
is no longer required when using the EJB
3.2 programming model.

• ejb-jar.xml,
• weblogic-ejb-

jar.xml, which contains
elements that control
WebLogic Server-specific
features.

10 Packaging EJBs Package compiled classes and optional
deployment descriptors for deployment.

If appropriate, you can leave your files
unarchived in an exploded directory.

Archive file (either an EJB
JAR or Enterprise Application
EAR) or equivalent exploded
directory.

11 Deploying EJBs Target the archive or application directory
to desired Managed Server, or a
WebLogic Server cluster, in accordance
with selected staging mode.

Deployed EJBs are ready to
service invocations.

Create a Source Directory
Create a source directory where you will assemble the EJB module.

Oracle recommends a split development directory structure, which segregates source and
output files in parallel directory structures. For instructions on how to set up a split directory
structure and package your EJB as an enterprise application archive (EAR), see Overview of
the Split Development Directory Environment in Developing Applications for Oracle WebLogic
Server.

• Directory Structure for Packaging a JAR

• Directory Structure for Packaging a WAR

Chapter 3
Create a Source Directory

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 24

Directory Structure for Packaging a JAR
If you prefer to package and deploy your EJBs in a JAR file, create a directory for your class
files. If you are also using the EJB deployment descriptor (which is optional but supported in
the EJB 3.2 programming model), you can package it as META-INF/ejb-jar.xml.

For more information see, Packaging EJBs in a JAR.

Example 3-1 Directory Structure for Packaging a JAR

myEJBjar/
 META-INF/
 ejb-jar.xml
 weblogic-ejb-jar.xml
 weblogic-cmp-jar.xml
 foo.class
 fooBean.class

Directory Structure for Packaging a WAR
EJBs can also be packaged directly in a web application module (WAR) by putting the EJB
classes in a subdirectory named WEB-INF/classes or in a JAR file within WEB-INF/lib
directory. Optionally, if you are also using the EJB deployment descriptor, you can package it
as WEB-INF/ejb-jar.xml.

Note

EJB 2.1 Entity Beans and EJB 1.1 Entity Beans are not supported within WAR files.
These component types must only be packaged in a stand-alone ejb-jar file or an
ejb-jar file packaged within an EAR file.

For more information see, Packaging an EJB In a WAR.

Example 3-2 Directory Structure for Packaging a WAR

myEJBwar/
 WEB-INF/
 ejb-jar.xml
 weblogic.xml
 weblogic-ejb-jar.xml
 /classes
 foo.class
 fooServlet.class
 fooBean.class

Program the Annotated EJB Class
The EJB bean class is the main EJB programming artifact. It implements the EJB business
interface and contains the EJB metadata annotations that specify semantics and requirements
to the EJB container, request container services, and provide structural and configuration
information to the application deployer or the container runtime.

In the EJB programming model, there is only one required annotation: either
@jakarta.ejb.Stateful, @jakarta.ejb.Stateless, or @jakarta.ejb.MessageDriven to
specify the type of EJB. Although there are many other annotations you can use to further

Chapter 3
Program the Annotated EJB Class

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 24

configure your EJB, these annotations have typical default values so that you are not required
to explicitly use the annotation in your bean class unless you want it to behave other than in
the default manner. This programming model makes it very easy to program an EJB that
exhibits typical behavior.

For additional details and examples of programming the bean class, see Programming the
Annotated EJB Class.

Program the EJB Interface
Clients access enterprise beans either through a no-interface view or through a business
interface.

• Accessing EJBs Using the No-Interface Client View

• Accessing EJBs Using the Business Interface

Accessing EJBs Using the No-Interface Client View
The EJB 3.2 No-interface local client view type simplifies EJB development by providing local
session bean access without requiring a separate local business interface, allowing
components to have EJB bean class instances directly injected.

The no-interface view has the same behavior as the EJB 3.0 local view. For example, it
supports features such as pass-by-reference calling semantics and transaction, and security
propagation. However, a no-interface view does not require a separate interface. That is, all
public methods of the bean class are automatically exposed to the caller. By default, any
session bean that has an empty implements clause and does not define any other local or
remote client views, exposes a no-interface client view.

You can follow these links to explore code examples of a no-interface client view:

• Example of a Simple No-interface Stateless EJB

• EJB 3.1: Example of Simplified No-interface Programming and Packaging in a WAR File .

• EJB 3.2: Example of a Message-Driven Bean with No-Methods Listener.

For more detailed information about the implementing the no-interface client view, see
"Accessing Local Enterprise Beans Using the No-Interface View" in the Enterprise Beans
chapter of the Jakarta EE Tutorial.

Accessing EJBs Using the Business Interface
The EJB business interface is a plain Java interface that describes the full signature of all the
business methods of the EJB. For example, assume an Account EJB represents a client's
checking account; its business interface might include three methods (withdraw, deposit, and
balance) that clients can use to manage their bank accounts.

The business interface can extend other interfaces. In the case of message-driven beans, the
business interface is typically the message-listener interface that is determined by the
messaging type used by the bean, such as jakarta.jms.MessageListener in the case of JMS.
The interface for a session bean has not such defining type; it can be anything that suits your
business needs.

Chapter 3
Program the EJB Interface

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 24

https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/entbeans/ejb-intro/ejb-intro.html

Note

The only requirement for an EJB 3.2 or later business interface is that it must not
extend jakarta.ejb.EJBObject or jakarta.ejb.EJBLocalObject, as required in EJB
2.x.

See Example of a Simple Business Interface Stateless EJB and Example of a Simple Stateful
EJB for examples of business interfaces implemented by stateless and stateful session beans.

For additional details and examples of specifying the business interface, see Specifying the
Business and Other Interfaces.

• Business Interface Application Exceptions

• Using Generics in EJBs

• Serializing and Deserializing Business Objects

Business Interface Application Exceptions
When you design the business methods of your EJB, you can define an application exception
in the throws clause of a method of the EJB's business interface. An application exception is
an exception that you program in your bean class to alert a client of abnormal application-level
conditions. For example, a withdraw() method in an Account EJB that represents a bank
checking account might throw an application exception if the client tries to withdraw more
money than is available in their account.

Application exceptions are different from system exceptions, which are thrown by the EJB
container to alert the client of a system-level exception, such as the unavailability of a
database management system. You should not report system-level errors in your application
exceptions.

Finally, your business methods should not throw the java.rmi.RemoteException, even if the
interface is a remote business interface, the bean class is annotated with the @WebService
JWS annotation, or the method is annotated with @WebMethod. The only exception is if the
business interface extends java.rmi.Remote. If the EJB container encounters problems at the
protocol level, the container throws an EJBException which wraps the underlying
RemoteException.

Note

The @WebService and @WebMethod annotations are in the jakarta.jws package; you
use them to specify that your EJB implements a Web Service and that the EJB
business will be exposed as public Web Service operations. For details about these
annotations and programming Web Services in general, see Developing JAX-WS Web
Services for Oracle WebLogic Server.

Using Generics in EJBs
The EJB 3.2 programming model supports the use of generics in the business interface at the
class level.

Chapter 3
Program the EJB Interface

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 24

Oracle recommends as a best practice that you first define a super-interface that uses the
generics, and then have the actual business interface extend this super-interface with a
specific data type.

The following example shows how to do this. First, program the super-interface that uses
generics:

 public interface RootI<T> {
 public T getObject();
 public void updateObject(T object);
 }

Then program the actual business interface to extend RootI<T> for a particular data type:

 @Remote
 public interface StatelessI extends RootI<String> { }

Finally, program the actual stateless session bean to implement the business interface; use the
specified data type, in this case String, in the implementation of the methods:

 @Stateless
 public class StatelessSample implements StatelessI {
 public String getObject() {
 return null;
 }
 public void updateObject(String object) {
 }
 }

If you define the type variables on the business interface or class, they will be erased. In this
case, the EJB application can be deployed successfully only when the bean class
parameterizes the business interface with upper bounds of the type parameter and no other
generic information. For example, in the following example, the upper bound is Object:

public class StatelessSample implements StatelessI<Object> {
 public Object getObject() {
 return null;
 }
 public void updateObject(Object object) {
 }
}

Serializing and Deserializing Business Objects
Business object serialization and deserialization are supported by the following interfaces,
which are implemented by all business objects:

• weblogic.ejb.spi.BusinessObject

• weblogic.ejb.spi.BusinessHandle

Use the BusinessObject._WL_getBusinessObjectHandle() method to get the business handle
object and serialize the business handle object.

To deserialize a business object, deserialize the business handle object and use the
BusinessHandle.getBusinessObject() method to get the business object.

Optionally Program Interceptors
An interceptor is a method that intercepts the invocation of a business method or a life cycle
callback event.

Chapter 3
Optionally Program Interceptors

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 24

You can define an interceptor method within the actual bean class, or you can program an
interceptor class (distinct from the bean class itself) and associate it with the bean class using
the @jakarta.Interceptor annotation.

See Specifying Interceptors for Business Methods or Life Cycle Callback Events for
information on programming the bean class to use interceptors.

Optionally Program the EJB Timer Service
WebLogic Server supports the EJB timer service defined in the EJB 3.2 Specification. As per
the EJB 3.2 "specification, the EJB Timer Service is a "container-managed service that allows
callbacks to be scheduled for time-based events. The container provides a reliable and
transactional notification service for timed events. Timer notifications may be scheduled to
occur according to a calendar-based schedule, at a specific time, after a specific elapsed
duration, or at specific recurring intervals."

The Timer Service is implemented by the EJB container. An enterprise bean accesses this
service by means of dependency injection, through the EJBContext interface, or through
lookup in the JNDI namespace.

The Timer Service is intended to be used as a coarse-grained timer service. Rather than
having a large number of timer objects performing the same task on a unique set of data,
Oracle recommends using a small number of timers that perform bulk tasks on the data. For
example, assume you have an EJB that represents an employee's expense report. Each
expense report must be approved by a manager before it can be processed. You could use
one EJB timer to periodically inspect all pending expense reports and send an email to the
corresponding manager to remind them to either approve or reject the reports that are waiting
for their approval.

• Overview of the Timer Service

• Calendar-based EJB Timers

• Automatically-created EJB Timers

• Non-persistent Timers

• Clustered Versus Local EJB Timer Services

• Configuring Clustered EJB Timers

• Using Java Programming Interfaces to Program Timer Objects

Overview of the Timer Service
The timer service provides methods for the programmatic creation and cancellation of timers,
as well as for locating the timers that are associated with a bean. Timers can also be created
automatically by the container at deployment time based on metadata in the bean class or in
the deployment descriptor. Timer objects can be created for stateless session beans, singleton
session beans, message-driven beans, and 2.1 entity beans. Timers cannot be created for
stateful session beans.

A timer is created to schedule timed callbacks. The bean class of an enterprise bean that uses
the timer service must provide one or more timeout callback methods, as follows:

• Programmatic Timers – For programmatically-created timers, this method may be a
method that is annotated with the Timeout annotation, or the bean may implement the
jakarta.ejb.TimedObject interface. The jakarta.ejb.TimedObject interface has a single
method, the timer callback method ejbTimeout.

Chapter 3
Optionally Program the EJB Timer Service

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 24

• Automatic Timers – For automatically-created timers, the timeout method may be a
method that is annotated with the Schedule annotation.

• 2.1 Entity Bean Timers – A timer that is created for a 2.1 entity bean is associated with
the entity bean's identity. The timeout callback method invocation for a timer that is created
for a stateless session bean or a message-driven bean may be called on any bean
instance in the pooled state.

Calendar-based EJB Timers
The EJB Timer Service supports calendar-based EJB Timer expressions. The scheduling
functionality takes the form of CRON-styled schedule definitions that can be placed on EJB
methods, in order to have the methods be automatically invoked according to the defined
schedule.

Note

Calendar-based timers are not supported for entity beans.

Calendar-based timers can be created programmatically using the two methods in the
jakarta.ejb.TimerService that accept a jakarta.ejb.ScheduleExpression as an argument.
The ScheduleExpression is constructed and populated prior to creating the Timer. For creating
automatic calendar-base timers, the jakarta.ejb.Schedule annotation (and its corresponding
ejb-jar.xml element) contains a number of attributes that allow for calendar-based timer
expressions to be configured.

For detailed information about the seven attributes in a calendar-based time expression, see
"Calendar Based Time Expressions" in the Jakarta Enterprise Beans Specification at https://
jakarta.ee/specifications/enterprise-beans/.

Automatically-created EJB Timers
The EJB Timer Service supports the automatic creation of a timer based on metadata in the
bean class or deployment descriptor. This allows the bean developer to schedule a timer
without relying on a bean invocation to programmatically invoke one of the Timer Service timer
creation methods. Automatically created timers are created by the container as a result of
application deployment.

The jakarta.ejb.Schedule annotation can be used to automatically create a timer with a
particular timeout schedule. This annotation is applied to a method of a bean class (or super-
class) that should receive the timer callbacks associated with that schedule. Multiple automatic
timers can be applied to a single timeout callback method using the jakarta.ejb.Schedules
annotation.

When the clustered EJB Timer implementation is used, each Schedule annotation corresponds
to a single persistent timer, regardless of the number of servers across which the EJB is
deployed.

Non-persistent Timers
By default, EJB timers are persistent. A non-persistent timer is a timer whose lifetime is tied to
the JVM in which it is created. A non-persistent timer is considered canceled in the event of
application shutdown, container crash, or a failure/shutdown of the JVM on which the timer
was started.

Chapter 3
Optionally Program the EJB Timer Service

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 24

https://jakarta.ee/specifications/enterprise-beans/
https://jakarta.ee/specifications/enterprise-beans/

Note

Non-persistent timers are not supported for Entity Beans.

Non-persistent timers can be created programmatically or automatically (using @Schedule or
the deployment descriptor).

Automatic non-persistent timers can be specified by setting the persistent attribute of the
@Schedule annotation to false. For automatic non-persistent timers, the container creates a
new non-persistent timer during application initialization for each JVM across which the
container is distributed.

Clustered Versus Local EJB Timer Services
You can configure two types of EJB timer services: clustered or local.

• Clustered EJB Timer Services

• Local EJB Timer Services

Clustered EJB Timer Services
Clustered EJB timer services provide the following advantages:

• Better visibility.

Timers are accessible from any node in a cluster. For example, the
jakarta.ejb.TimerService.getTimers() method returns a complete list of all stateless
session or message-driven bean timers in a cluster that were created for the EJB. If you
pass the primary key of the entity bean to the getTimers() method, a list of timers for that
entity bean are returned.

• Automatic load balancing and failover.

Clustered EJB timer services take advantage of the load balancing and failover capabilities
of the Job Scheduler.

For information about the configuring a clustered EJB timer service, see Configuring Clustered
EJB Timers.

Local EJB Timer Services
Local EJB timer services execute only on the server on which they are created and are visible
only to the beans on that server. With a local EJB timer service, you do not have to configure a
cluster, database, JDBC data source, or leasing service, as you do for clustered EJB timer
services.

You cannot migrate a local EJB timer object from one server to another; timer objects can only
be migrated as part of an entire server. If a server that contains EJB timers goes down for any
reason, you must restart the server or migrate the entire server in order for the timers to
execute.

Chapter 3
Optionally Program the EJB Timer Service

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 24

Caution

In a clustered environment, the local timer implementation has severe limitations;
therefore Oracle recommends not using local timers in a clustered environment.
Instead, use the clustered timer implementation in a clustered environment. A
deployment-time warning will be thrown when a local timer implementation is
configured to be used in a clustered environment.

Configuring Clustered EJB Timers

Note

To review the advantages of using clustered EJB timers, see Clustered Versus Local
EJB Timer Services.

To configure the clustering of EJB timers, perform the following steps:

1. Ensure that you have configured the following:

• A clustered domain. See Setting up WebLogic Clusters in Administering Clusters for
Oracle WebLogic Server.

• Features of the Job Scheduler, including:

– HA database, such as Oracle, DB2, Informix, MySQL, Sybase, or MSSQL.

– JDBC data source that is mapped to the HA database using the <data-source-
for-job-scheduler> element in the config.xml file.

– Leasing service. By default, database leasing will be used and the JDBC data
source defined by the <data-source-for-job-scheduler> element in the
config.xml file will be used.

For more information about configuring the Job Scheduler, see The Timer and Work
Manager API in Developing CommonJ Applications for Oracle WebLogic Server.

2. To enable the clustered EJB timer service, set the timer-implementation element in the
weblogic-ejb-jar.xml deployment descriptor to Clustered:

<timer-implementation>Clustered</timer-implementation>

For more information, see the timer-implementation element description in the weblogic-
ejb-jar.xml Deployment Descriptor Reference in Developing Jakarta Enterprise Beans
Using Deployment Descriptors.

Please note the following changes in the behavior of the clustered EJB timer service:

• The weblogic.ejb.WLTimer* interfaces are not supported with clustered EJB timer
services.

• When creating a new clustered EJB timer using the createTimer() method, you may
notice a delay in timeout execution during the initial setup of the timer.

• The Job Scheduler provides an "at least once" execution guarantee. When a clustered
EJB timer expires, the database is not updated until the timer listener callback method
completes. If the server were to crash before the database is updated, the timer expiration
would be executed twice.

Chapter 3
Optionally Program the EJB Timer Service

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 24

• Timer configuration options related to the actions to take in the event of failure are not valid
for the clustered EJB timer service. These configuration options include: retry delay,
maximum number of retry attempts, maximum number of time-outs, and time-out failure
actions.

• The Job Scheduler queries the database every 30 seconds to identify timers that are due
to expire. Execution may be delayed for timers with an interval duration less than 30
seconds.

• Only transactional timers will be retried in the event of failure.

• Fixed rate scheduling of timer execution is not supported.

Using Java Programming Interfaces to Program Timer Objects
This section summarizes the Java programming interfaces defined in the EJB 4.0 specification
that you can use to program timers. For detailed information on these interfaces, refer to the
EJB 4.0 specification. This section also provides details about the WebLogic Server-specific
timer-related interfaces.

• EJB Timer-related Programming Interfaces

• WebLogic Server-specific Timer-related Programming Interfaces

EJB Timer-related Programming Interfaces
EJB interfaces you can use to program timers are described in the following table.

Table 3-2 EJB Timer-related Programming Interfaces

Programming Interface Description

javax.ejb.ScheduleExpress
ion

Create calendar-based EJB Timer expressions.

javax.ejb.Schedule Automatically create a timer with a particular timeout schedule.

Multiple automatic timers can be applied to a single timeout callback
method using the javax.ejb.Schedules annotation.

javax.ejb.TimedObject Implement for the enterprise bean class of a bean that will be
registered with the timer service for timer callbacks. This interface
has a single method, ejbTimeout.

EJBContext Access the timer service using the getTimerService method.

javax.ejb.TimerService Create new EJB timers or access existing EJB timers for the EJB.

javax.ejb.Timer Access information about a particular EJB timer.

javax.ejb.TimerHandle Define a serializable timer handle that can be persisted. Since timers
are local objects, a TimerHandle must not be passed through a
bean's remote interface or Web service interface.

For more information on EJB timer-related programming interfaces, see the EJB specification.

WebLogic Server-specific Timer-related Programming Interfaces
WebLogic Server-specific interfaces you can use to program timers include:

• weblogic.management.runtime.EJBTimerRuntimeMBean—provides runtime information
and administrative functionality for timers from a particular EJBHome. The

Chapter 3
Optionally Program the EJB Timer Service

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 24

weblogic.management.runtime.EJBTimerRuntimeMBean interface is shown in
Example 3-3.

Example 3-3 weblogic.management.runtime.EJBTimerRuntimeMBean Interface

public interface weblogic.management.runtime.EJBTimerRuntimeMBean {
 public int getTimeoutCount(); // get the number of successful timeout notifications
that have been made
 public int getActiveTimerCount(); // get the number of active timers for this EJBHome
 public int getCancelledTimerCount(); // get the number of timers that have been
cancelled for this EJBHome
 public int getDisabledTimerCount(); // get the number of timers temporarily disabled
for this EJBHome
 public void activateDisabledTimers(); // activate any temporarily disabled timers
}

• weblogic.ejb.WLTimerService interface—extends the jakarta.ejb.TimerService
interface to allow users to specify WebLogic Server-specific configuration information for a
timer. The weblogic.ejb.WLTimerService interface is shown in Example 3-4; for
information on the jakarta.ejb.TimerService, see the EJB Specification.

Note

The weblogic.ejb.WLTimerService interface is not supported by the clustered
EJB timer service, as described in Configuring Clustered EJB Timers.

Example 3-4 weblogic.ejb.WLTimerService Interface

public interface WLTimerService extends TimerService {
 public Timer createTimer(Date initial, long duration, Serializable info,
 WLTimerInfo wlTimerInfo)
 throws IllegalArgumentException, IllegalStateException, EJBException;
 public Timer createTimer(Date expiration, Serializable info,
 WLTimerInfo wlTimerInfo)
 throws IllegalArgumentException, IllegalStateException, EJBException;
 public Timer createTimer(long initial, long duration, Serializable info
 WLTimerInfo wlTimerInfo)
 throws IllegalArgumentException, IllegalStateException, EJBException;
 public Timer createTimer(long duration, Serializable info,
 WLTimerInfo wlTimerInfo)
 throws IllegalArgumentException, IllegalStateException, EJBException;
}

• weblogic.ejb.WLTimerInfo interface—used in the weblogic.ejb.WLTimerService
interface to pass WebLogic Server-specific configuration information for a timer. The
weblogic.ejb.WLTimerInfo method is shown in Example 3-5.

Note

The weblogic.ejb.WLTimerService interface is not supported by the clustered
EJB timer service, as described in Configuring Clustered EJB Timers.

Example 3-5 weblogic.ejb.WLTimerInfo Interface

public final interface WLTimerInfo {
 public static int REMOVE_TIMER_ACTION = 1;
 public static int DISABLE_TIMER_ACTION = 2;
 public static int SKIP_TIMEOUT_ACTION = 3;

Chapter 3
Optionally Program the EJB Timer Service

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 12 of 24

 /**
 * Sets the maximum number of retry attempts that will be
 * performed for this timer. If all retry attempts
 * are unsuccesful, the timeout failure action will
 * be executed.
 */
 public void setMaxRetryAttempts(int retries);
 public int getMaxRetryAttempts();
 /**
 * Sets the number of milliseconds that should elapse
 * before any retry attempts are made.
 */
 public void setRetryDelay(long millis);
 public long getRetryDelay();
 /**
 * Sets the maximum number of timeouts that can occur
 * for this timer. After the specified number of
 * timeouts have occurred successfully, the timer
 * will be removed.
 */
 public void setMaxTimeouts(int max);
 public int getMaxTimeouts();
/**
 * Sets the action the container will take when ejbTimeout
 * and all retry attempts fail. The REMOVE_TIMER_ACTION,
 * DISABLE_TIMER_ACTION, and SKIP_TIMEOUT_ACTION fields
 * of this interface define the possible values.
 */
 public void setTimeoutFailureAction(int action);
 public int getTimeoutFailureAction();
}

• weblogic.ejb.WLTimer interface—extends the jakarta.ejb.Timer interface to provide
additional information about the current state of the timer. The weblogic.ejb.WLTimer
interface is shown in Example 3-6.

Note

The weblogic.ejb.WLTimerService interface is not supported by the clustered
EJB timer service, as described in Configuring Clustered EJB Timers.

Example 3-6 weblogic.ejb.WLTimer Interface

public interface WLTimer extends Timer {
 public int getRetryAttemptCount();
 public int getMaximumRetryAttempts();
 public int getCompletedTimeoutCount();
}

Programming Access to EJB Clients
This section provides some guidelines in determining the client view to provide for accessing
an enterprise bean.

• Remote Clients

• Local Clients

• Looking Up EJBs From Clients

Chapter 3
Programming Access to EJB Clients

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 13 of 24

• Configuring EJBs to Send Requests to a URL

• Specifying an HTTP Resource by URL

• Specifying an HTTP Resource by Its JNDI Name

• Accessing HTTP Resources from Bean Code

• Configuring Network Communications for an EJB

Remote Clients
As stated in the EJB 3.2 specification, a remote client accesses a session bean through the
bean's remote business interface. For a session bean client and component written to the EJB
2.1 and earlier APIs, the remote client accesses the session bean through the session bean's
remote home and remote component interfaces.

Note

The EJB 2.1 and earlier API required that a remote client access the stateful or
stateless session bean by means of the session bean's remote home and remote
component interfaces. These interfaces remain available for use with EJB 3.x, and are
described in Create EJB Classes and Interfaces in Developing Jakarta Enterprise
Beans Using Deployment Descriptors.

The remote client view of an enterprise bean is location independent. A client running in the
same JVM as a bean instance uses the same API to access the bean as a client running in a
different JVM on the same or different machine.

Local Clients
As stated in the EJB 3.2 specification, a local client accesses a session bean through the
bean's local business interface or through a no-interface client view representing all the public
methods of the bean class. For a session bean or entity bean client and component written to
the EJB 2.1 and earlier APIs, the local client accesses the enterprise bean through the bean's
local home and local component interfaces. The container object that implements a local
business interface or the no-interface local view is a local Java object.

A local client is a client that is collocated in the same application with the session bean that
provides the local client view and which may be tightly coupled to the bean. A local client of a
session bean may be another enterprise bean or a Web component. Access to an enterprise
bean through the local client view requires the collocation in the same application of both the
local client and the enterprise bean that provides the local client view. The local client view
therefore does not provide the location transparency provided by the remote client view.

Looking Up EJBs From Clients
The client of an enterprise bean obtains a reference to an instance of an enterprise bean
through either dependency injection, using Java programming language annotations, or JNDI
lookup, using the Java Naming and Directory Interface syntax to find the enterprise bean
instance.

Chapter 3
Programming Access to EJB Clients

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 14 of 24

Note

For instructions on how clients can look up 2.x or earlier enterprise beans using EJB
Links, see Using EJB Links in Developing Jakarta Enterprise Beans Using
Deployment Descriptors.

• Using Dependency Injection

• Using the JNDI Portable Syntax

• Customizing JNDI Names

Using Dependency Injection
Dependency injection is when the EJB container automatically supplies (or injects) a bean's
variable or setter method with a reference to a resource or another environment entry in the
bean's context. Dependency injection is simply an easier-to-program alternative to using the
jakarta.ejb.EJBContext interface or JNDI APIs to look up resources.

You specify dependency injection by annotating a variable or setter method with one of the
following annotations, depending on the type of resource you want to inject:

• @jakarta.ejb.EJB—Specifies a dependency on another EJB.

• @jakarta.annotation.Resource—Specifies a dependency on an external resource, such
as a JDBC data source or a JMS destination or connection factory.

For detailed information, see Injecting Resource Dependency into a Variable or Setter Method.

Using the JNDI Portable Syntax
The Portable Global JNDI naming option in the EJB specification provides a number of
common, well-known namespaces in which EJB components can be registered and looked up
from using the patterns listed in this section. This standardizes how and where EJB
components are registered in JNDI, and how they can be looked up and used by applications.

Three JNDI namespaces are used for portable JNDI lookups: java:global, java:module, and
java:app.

• The java:global JNDI namespace is the portable way of finding remote enterprise beans
using JNDI lookups. JNDI addresses are of the following form:

java:global[/application name]/module name/enterprise bean name[/interface
name]

Application name and module name default to the name of the application and module
minus the file extension. Application names are required only if the application is packaged
within an EAR. The interface name is required only if the enterprise bean implements more
than one business interface.

• The java:module namespace is used to look up local enterprise beans within the same
module. JNDI addresses using the java:module namespace are of the following form:

java:module/enterprise bean name/[interface name]

The interface name is required only if the enterprise bean implements more than one
business interface.

Chapter 3
Programming Access to EJB Clients

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 15 of 24

• The java:app namespace is used to look up local enterprise beans packaged within the
same application. That is, the enterprise bean is packaged within an EAR file containing
multiple Java EE modules. JNDI addresses using the java:app namespace are of the
following form:

java:app[/module name]/enterprise bean name[/interface name]

The module name is optional. The interface name is required only if the enterprise bean
implements more than one business interface.

For example, if an enterprise bean, MyBean, is packaged within the Web application archive
myApp.war, the default module name is myApp. (In this example, the module name could be
explicitly configured in the web.xml file.) The portable JNDI name is java:module/MyBean. An
equivalent JNDI name using the java:global namespace is java:global/myApp/MyBean.

Customizing JNDI Names
Though global JNDI bindings are registered by default, you can also customize the JNDI
names of your EJB client view bindings by using the weblogic.javaee.JNDIName and
weblogic.javaee.JNDINames annotations. For more information, see
weblogic.javaee.JNDIName and weblogic.javaee.JNDINames.

For EJBs using deployment descriptors, you can specify the custom JNDI bindings in the
weblogic-ejb-jar.xml deployment descriptor by using the jndi-binding element. See EJB
Deployment Descriptors in Developing Jakarta Enterprise Beans Using Deployment
Descriptors.

Configuring EJBs to Send Requests to a URL
To enable an EJB to open an HttpURLConnection to an external HTTP server using the
java.net.URL resource manager connection factory type, specify the URL, or specify an object
bound in the JNDI tree that maps to a URL, using either the @Resource annotation in the bean
class, or if using deployment descriptors, by using the resource-ref element in ejb-jar.xml
and the res-ref-name element in weblogic-ejb-jar.xml.

Specifying an HTTP Resource by URL
When using annotations to specify the URL to which an EJB sends requests:

1. Annotate a URL field in your bean class with @Resource.

2. Specify the URL value using the look-up element of @Resource.

When using deployment descriptors to specify the URL to which an EJB sends requests:

1. In ejb-jar.xml, specify the URL in the <jndi-name> element of the resource-ref
element.

2. In weblogic-ejb-jar.xml, specify the URL in the <jndi-name> element of the resource-
description element:

<resource-description>
 <res-ref-name>url/MyURL</res-ref-name>
 <jndi-name>http://www.rediff.com/</jndi-name>
</resource-description>

WebLogic Server creates a URL object with the jndi-name provided and binds the object
to the java:comp/env.

Chapter 3
Programming Access to EJB Clients

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 16 of 24

Specifying an HTTP Resource by Its JNDI Name
When using annotations to specify an object that is bound in JNDI and maps to a URL, instead
of specifying a URL:

1. Annotate a URL field in your bean class with @Resource.

2. Specify the name by which the URL is bound in JNDI using the look-up element of
@Resource.

When using deployment descriptors to specify an object that is bound in JNDI and maps to a
URL, instead of specifying a URL:

1. In ejb-jar.xml, specify the name by which the URL is bound in JNDI in the <jndi-name>
element of the resource-ref element.

2. In weblogic-ejb-jar.xml, specify the name by which the URL is bound in JNDI in the
<jndi-name> element of the resource-description element:

<resource-description>
 <res-ref-name>url/MyURL1</res-ref-name>
 <jndi-name>firstName</jndi-name>
</resource-description>

where firstName is the object bound to the JNDI tree that maps to the URL. This binding
could be done in a startup class. When jndi-name is not a valid URL, WebLogic Server
treats it as an object that maps to a URL and is already bound in the JNDI tree, and binds
a LinkRef with that jndi-name.

Accessing HTTP Resources from Bean Code
Regardless of how you specified an HTTP resource—by its URL or a JNDI name that maps to
the URL—you can access it from EJB code in this way:

URL url = (URL) context.lookup("java:comp/env/url/MyURL");
connection = (HttpURLConnection)url.openConnection();

Configuring Network Communications for an EJB
You can control the attributes of the network connection an EJB uses for communications by
configuring a custom network channel and assigning it to the EJB. For information about
WebLogic Server network channels and associated configuration instructions see Configure
Network Resources in Administering Server Environments for Oracle WebLogic Server. After
you configure a custom channel, assign it to an EJB using the network-access-point element
in weblogic-ejb-jar.xml.

Programming and Configuring Transactions
The following sections contain guidelines for programming transactions.

• Programming Container-Managed Transactions

• Configuring Automatic Retry of Container-Managed Transactions

• Programming Bean-Managed Transactions

• Programming Transactions That Are Distributed Across EJBs

Chapter 3
Programming and Configuring Transactions

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 17 of 24

Programming Container-Managed Transactions
Container-managed transactions are simpler to program than bean-managed transactions,
because they leave the job of demarcation—starting and stopping the transaction—to the EJB
container. You configure the desired transaction behaviors using EJB annotations
jakarta.ejb.TransactionAttribute or by using EJB deployment descriptors ejb-jar.xml
and weblogic-ejb-jar.xml.

• For more information about using EJB annotations to specify container-managed
transactions in a bean file, see Specifying Transaction Management and Attributes.

• For more information about using EJB deployment descriptors to specify container-
managed transactions, see Container-Managed Transaction Elements in Developing
Jakarta Enterprise Beans Using Deployment Descriptors.

Key programming guidelines for container-managed transactions include:

• Preserve transaction boundaries—Do not invoke methods that interfere with the
transaction boundaries set by the container. Do not use:

– The commit, setAutoCommit, and rollback methods of java.sql.Connection

– The getUserTransaction method of jakarta.ejb.EJBContext

– Any method of jakarta.transaction.UserTransaction

• Roll back transactions explicitly—To cause the container to roll back a container-managed
transaction explicitly, invoke the setRollbackOnly method of the EJBContext interface. (If
the bean throws a non-application exception, typically an EJBException, the rollback is
automatic.)

• Avoid serialization problems—Many data stores provide limited support for detecting
serialization problems, even for a single user connection. In such cases, even with
transaction-isolation in weblogic-ejb-jar.xml set to TransactionSerializable,
exceptions or rollbacks in the EJB client might occur if contention occurs between clients
for the same rows. To avoid such exceptions, you can:

– Include code in your client application to catch SQL exceptions, and resolve them
appropriately; for example, by restarting the transaction.

– For Oracle databases, use the transaction isolation settings described in isolation-
level in the weblogic-ejb-jar.xml Deployment Descriptor Reference appendix in
Developing Jakarta Enterprise Beans Using Deployment Descriptors.

Configuring Automatic Retry of Container-Managed Transactions
In Oracle WebLogic Server, you can specify that, if a business method that has started a
transaction fails because of a transaction rollback that is not related to a system exception, the
EJB container will start a new transaction and retry the failed method up to a specified number
of times. If the method fails for the specified number of retry attempts, the EJB container
throws an exception.

Note

The EJB container does not retry any transactions that fail because of system
exception-based errors.

Chapter 3
Programming and Configuring Transactions

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 18 of 24

To configure automatic retry of container-managed transactions:

1. Make sure your bean is a container-managed session or entity bean.

You can configure automatic retry of container-managed transactions for container-
managed session and entity beans only. You cannot configure automatic retry of container-
managed transactions for message-driven beans because MDBs do not acknowledge
receipt of a message they are processing when the transaction that brackets the receipt of
the message is rolled back; messages are automatically retried until they are
acknowledged. You also cannot configure automatic retry of container-managed
transactions for timer beans because, when a timer bean's ejbTimeout method starts and
is rolled back, the timeout is always retried.

2. Make sure the business methods for which you want to configure automatic retry of
transactions are defined in the bean's remote or local interface or as home methods (local
home business logic that is not specific to a particular bean instance) in the home
interface; the methods must have one of the following container-managed transaction
attributes:

• RequiresNew. If a method's transaction attribute (trans-attribute element in ejb-
jar.xml) is RequiresNew, a new transaction is always started prior to the invocation of
the method and, if configured, automatic retry of transactions occurs if the transaction
fails.

• Required. If a method's transaction attribute (trans-attribute element in ejb-
jar.xml) is Required, the method is retried with a new transaction only if the failed
transaction was begun on behalf of the method.

For more information on:

• Programming interfaces, see Programming Access to EJB Clients.

• The trans-attribute element in ejb-jar.xml, see Container-Managed Transaction
Elements in Developing Jakarta Enterprise Beans Using Deployment Descriptors,
which provides detailed information about creating and editing EJB deployment
descriptors.

3. Make sure the methods for which you want to enable automatic retry of transactions are
safe to be re-invoked. A retry of a failed method must yield results that are identical to the
results the previous attempt, had it been successful, would have yielded. In particular:

• If invoking a method initiates a call chain, it must be safe to re-invoke the entire call
chain when the method is retried.

• All of the method's parameters must be safe for reuse; when a method is retried, it is
retried with the same parameters that were used to invoke the failed attempt. In
general, parameters that are primitives, immutable objects, or are references to read-
only objects are safe for reuse. If a parameter is a reference to an object that is to be
modified by the method, re-invoking the method must not negatively affect the result of
the method call.

• If the bean that contains the method that is being retried is a stateful session bean, the
bean's conversational state must be safe to re-invoke. Since a stateful session bean's
state is not transactional and is not restored during a transaction rollback, in order to
use the automatic retry of transactions feature, you must first be sure the bean's state
is still valid after a rollback.

4. Specify the methods for which you want the EJB container to automatically retry
transactions and the number of retry attempts you want the EJB container to make in the
retry-methods-on-rollback element in weblogic-ejb-jar.xml.

Chapter 3
Programming and Configuring Transactions

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 19 of 24

Programming Bean-Managed Transactions
This section contains programming considerations for bean-managed transactions.

• Demarcate transaction boundaries—To define transaction boundaries in EJB or client
code, you must obtain a UserTransaction object and begin a transaction before you
obtain a Java Transaction Service (JTS) or JDBC database connection. To obtain the
UserTransaction object, use this command:

ctx.lookup("jakarta.transaction.UserTransaction");

After obtaining the UserTransaction object, specify transaction boundaries with
tx.begin(), tx.commit(), tx.rollback().

If you start a transaction after obtaining a database connection, the connection has no
relationship to the new transaction, and there are no semantics to "enlist" the connection in
a subsequent transaction context. If a JTS connection is not associated with a transaction
context, it operates similarly to a standard JDBC connection that has autocommit equal to
true, and updates are automatically committed to the data store.

Once you create a database connection within a transaction context, that connection is
reserved until the transaction commits or rolls back. To optimize performance and
throughput, ensure that transactions complete quickly, so that the database connection can
be released and made available to other client requests.

Note

You can associate only a single database connection with an active transaction
context.

• Setting transaction isolation level—For bean-managed transactions, you define isolation
level in the bean code. Allowable isolation levels are defined on the java.sql.Connection
interface. For information on isolation level behaviors, see isolation-level in the
weblogic-ejb-jar.xml Deployment Descriptor Reference appendix in Developing Jakarta
Enterprise Beans Using Deployment Descriptors.

See Example 3-7 for a code sample.

Example 3-7 Setting Transaction Isolation Level in BMT

import jakarta.transaction.Transaction;
import java.sql.Connection
import weblogic.transaction.TxHelper:
import weblogic.transaction.Transaction;
import weblogic.transaction.TxConstants;
User Transaction tx = (UserTransaction)
ctx.lookup("jakarta.transaction.UserTransaction");
//Begin user transaction
 tx.begin();
//Set transaction isolation level to TransactionReadCommitted
Transaction tx = TxHelper.getTransaction();
 tx.setProperty (TxConstants.ISOLATION_LEVEL, new Integer
 (Connection.TransactionReadCommitted));
//perform transaction work
 tx.commit();

• Avoid restricted methods—Do not invoke the getRollbackOnly and setRollbackOnly
methods of the EJBContext interface in bean-managed transactions. These methods

Chapter 3
Programming and Configuring Transactions

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 20 of 24

should be used only in container-managed transactions. For bean-managed transactions,
invoke the getStatus and rollback methods of the UserTransaction interface.

• Use one connection per active transaction context—You can associate only a single
database connection with an active transaction context.

Programming Transactions That Are Distributed Across EJBs
This section describes two approaches for distributing a transaction across multiple beans,
which may reside on multiple server instances.

• Calling multiple EJBs from a client's transaction context

• Using an EJB "Wrapper” to Encapsulate a Cross-EJB Transaction

Calling multiple EJBs from a client's transaction context
The code fragment below is from a client application that obtains a UserTransaction object
and uses it to begin and commit a transaction. The client invokes two EJBs within the context
of the transaction.

import jakarta.transaction.*;
...
u = (UserTransaction) jndiContext.lookup("jakarta.transaction.UserTransaction");
u.begin();
account1.withdraw(100);
account2.deposit(100);
u.commit();
...

The updates performed by the account1 and account2 beans occur within the context of a
single UserTransaction. The EJBs commit or roll back together, as a logical unit, whether the
beans reside on the same server instance, different server instances, or a WebLogic Server
cluster.

All EJBs called from a single transaction context must support the client transaction—each
beans' trans-attribute element in ejb-jar.xml must be set to Required, Supports, or
Mandatory.

Using an EJB "Wrapper” to Encapsulate a Cross-EJB Transaction
You can use a wrapper EJB that encapsulates a transaction. The client calls the wrapper EJB
to perform an action such as a bank transfer, and the wrapper starts a new transaction and
invokes one or more EJBs to do the work of the transaction.

The wrapper EJB can explicitly obtain a transaction context before invoking other EJBs, or
WebLogic Server can automatically create a new transaction context, if the wrapper's trans-
attribute element in ejb-jar.xml is set to Required or RequiresNew.

All EJBs invoked by the wrapper EJB must support the wrapper EJB's transaction context—
their trans-attribute elements must be set to Required, Supports, or Mandatory.

Compile Java Source
Once you have written the Java source code for your EJB bean class and optional interceptor
class, you must compile it into class files, typically using the standard Java compiler. The

Chapter 3
Compile Java Source

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 21 of 24

resulting class files can then be packaged into a target module for deployment. Typical tools to
compile include:

• javac —The javac compiler provided with the Java SE SDK provides Java compilation
capabilities. See http://www.oracle.com/technetwork/java/javase/documentation/
index.html.

• weblogic.appc—To reduce deployment time, use the weblogic.appc Java class (or its
equivalent Ant task wlappc) to pre-compile a deployable archive file, (WAR, JAR, or EAR).
Precompiling with weblogic.appc generates certain helper classes and performs validation
checks to ensure your application is compliant with the current Jakarta EE specifications.
See Building Modules and Applications Using wlappc in Developing Applications for Oracle
WebLogic Server.

• wlcompile Ant task—Invokes the javac compiler to compile your application's Java
components in a split development directory structure. See Compiling Applications Using
wlcompile in Developing Applications for Oracle WebLogic Server.

Optionally Create and Edit Deployment Descriptors
An important aspect of the EJB 3.x programming model was the introduction of metadata
annotations. Annotations simplify the EJB development process by allowing a developer to
specify within the Java class itself how the bean behaves in the container, requests for
dependency injection, and so on. Annotations are an alternative to deployment descriptors that
were required by older versions (2.x and earlier) of EJB.

Later versions of the EJB programming model continue to fully support the use of deployment
descriptors, even though the standard Jakarta EE ones are not required. For example, you
may prefer to use the old 2.x programming model, or might want to allow further customizing of
the EJB at a later development or deployment stage; in these cases you can create the
standard deployment descriptors in addition to, or instead of, the metadata annotations.

Deployment descriptor elements always override their annotation counterparts. For example, if
you specify the @jakarta.ejb.TransactionManagement(BEAN) annotation in your bean class,
but then create an ejb-jar.xml deployment descriptor for the EJB and set the <transaction-
type> element to container, then the deployment descriptor value takes precedence and the
EJB uses container-managed transaction demarcation.

Note

This version of EJB also supports all 2.x WebLogic-specific EJB features. However,
the features that are configured in the weblogic-ejb-jar.xml or weblogic-cmp-
rdbms-jar.xml deployment descriptor files must continue to be configured that way
because currently they do not have any annotation equivalent.

Developing Jakarta Enterprise Beans Using Deployment Descriptors provides detailed
information about creating and editing EJB deployment descriptors, both the Jakarta EE
standard and WebLogic-specific ones. In particular, see the following sections:

• EJB Deployment Descriptors (Overview Information)

• Edit Deployment Descriptors

• Deployment Descriptor Schema and Document Type Definitions Reference

• weblogic-ejb-jar.xml Deployment Descriptor Reference

Chapter 3
Optionally Create and Edit Deployment Descriptors

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 22 of 24

http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/documentation/index.html

• weblogic-cmp-jar.xml Deployment Descriptor Reference

Packaging EJBs
Oracle recommends that you package EJBs as part of an enterprise application. See
Deploying and Packaging from a Split Development Directory in Developing Applications for
Oracle WebLogic Server.

EJB now provides the ability to place EJB components directly inside of Web application
archive (WAR) files, removing the need to produce separate archives to store the Web and
EJB components and combine them together in an enterprise application archive (EAR) file.

• Packaging EJBs in a JAR

• Packaging an EJB In a WAR

Packaging EJBs in a JAR
WebLogic Server supports the use of ejb-client.jar files for packaging the EJB classes that
a programmatic client in a different application requires to access the EJB.

Specify the name of the client JAR in the ejb-client-jar element of the bean's ejb-jar.xml
file. When you run the appc compiler, a JAR file with the classes required to access the EJB is
generated.

Make the client JAR available to the remote client. For Web applications, put the ejb-
client.jar in the /lib directory. For non-Web clients, include ejb-client.jar in the client's
classpath.

Note

WebLogic Server classloading behavior varies, depending on whether the client is
stand-alone. Stand-alone clients with access to the ejb-client.jar can load the
necessary classes over the network. However, for security reasons, programmatic
clients running in a server instance cannot load classes over the network.

Packaging an EJB In a WAR
EJB 3.2 removed the restriction that enterprise bean classes must be packaged in an ejb-jar
file. Therefore, EJB classes can be packaged directly inside a Web application archive (WAR)
using the same packaging guidelines that apply to Web application classes. Simply put your
EJB classes in the WEB-INF/classes directory or in a JAR file within WEB-INF/lib directory.
Optionally, if you are also using the EJB deployment descriptor, you can package it as WEB-
INF/ejb-jar.xml. When you run the appc compiler, a WAR file with the classes required to
access the EJB components is generated.

In a WAR file there is a single component naming environment shared between all the
components (web, enterprise bean, etc.) defined by the module. Each enterprise bean defined
by the WAR file shares this single component environment namespace with all other enterprise
beans defined by the WAR file and with all other web components defined by the WAR file.

Enterprise beans (and any related classes) packaged in a WAR file have the same class
loading requirements as other non-enterprise bean classes packaged in a WAR file. This

Chapter 3
Packaging EJBs

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 23 of 24

means, for example, that a servlet packaged within a WAR file is guaranteed to have visibility
to an enterprise bean component packaged within the same WAR file, and vice versa.

Caution

EJB 2.1 Entity Beans and EJB 1.1 Entity Beans are not supported within WAR files.
These component types must only be packaged in a stand-alone ejb-jar file or an
ejb-jar file packaged within an EAR file. Applications that violate this restriction will
fail to deploy.

There is an example of using the simplified WAR packaging method bundled in the WebLogic
Server distribution kit. See EJB 3.1: Example of Simplified No-interface Programming and
Packaging in a WAR File .

Deploying EJBs
Deploying an EJB enables WebLogic Server to serve the components of an EJB to clients. You
can deploy an EJB using one of several procedures, depending on your environment and
whether or not your EJB is in production.

For general instructions on deploying WebLogic Server applications and modules, including
EJBs, see Deploying Applications to Oracle WebLogic Server. For EJB-specific deployment
issues and procedures, see Deploying Standalone EJBs as Part of an Enterprise Application.
and Deploying EJBs as Part of an Web Application.

For more information about deploying an EJB created with the 2.x programming model, see
Deployment Guidelines For Enterprise JavaBeans in the Developing Jakarta Enterprise Beans
Using Deployment Descriptors guide, which concentrates on the 2.x programming model.

Chapter 3
Deploying EJBs

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 24 of 24

4
Programming the Annotated EJB Class

This chapter describes how to program the annotated EJB 3.2 class file.
This chapter includes the following sections:

• Overview of Metadata Annotations and EJB Bean Files

• Programming the Bean File: Requirements and Changes From EJB 2.x

• Programming the Bean File

• Complete List of Metadata Annotations By Function

Overview of Metadata Annotations and EJB Bean Files
The WebLogic Server EJB 4.0 programming model uses the Jakarta EE 8 metadata
annotations feature in which you create an annotated EJB 4.0 bean file, compile the class with
the standard Java compiler, and the resulting class can then be packaged into a target module
for deployment. At runtime, WebLogic Server parses the annotations and applies the required
behavioral aspects to the bean file.

Tip

To reduce deployment time, you can also use the WebLogic compile tool
weblogic.appc (or its Ant equivalent wlappc) to pre-compile a deployable archive file,
(WAR, JAR, or EAR). Precompiling with weblogic.appc generates certain helper
classes and performs validation checks to ensure your application is compliant.

The annotated 4.0 bean file is the core of your EJB. It contains the Java code that determines
how your EJB behaves. The 4.0 bean file is an ordinary Java class file that implements an EJB
business interface that outlines the business methods of your EJB. You then annotate the bean
file with JDK metadata annotations to specify the shape and characteristics of the EJB,
document your EJB, and provide special services such as enhanced business-level security or
special business logic during runtime.

See Complete List of Metadata Annotations By Function for a breakdown of the annotations
you can specify in a bean file, by function. These annotations include those described by the
following specifications:

• Jakarta Enterprise Beans 4.0 Specification at https://jakarta.ee/specifications/
enterprise-beans/4.0/

• Jakarta Annotations at https://jakarta.ee/specifications/annotations/2.0/

See EJB Metadata Annotations Reference, for reference information about the annotations,
listed in alphabetical order. This topic is part of the iterative development procedure for creating
an EJB 3.2, described in Iterative Development of EJBs.

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 24

https://jakarta.ee/specifications/enterprise-beans/4.0/
https://jakarta.ee/specifications/enterprise-beans/4.0/
https://jakarta.ee/specifications/annotations/2.0/

Programming the Bean File: Requirements and Changes From
EJB 2.x

The requirements for programming the EJB 3.2 bean class file are essentially the same as the
EJB 2.x requirements. This section briefly describes the basic mandatory requirements of the
bean class, mostly for overview purposes, as well as changes in requirements between EJB
2.x and EJB 3.2.

See Developing Jakarta Enterprise Beans Using Deployment Descriptors for detailed
information about the mandatory and optional requirements for programming the bean class.

• Bean Class Requirements and Changes From EJB 2.x

• Bean Class Method Requirements

Bean Class Requirements and Changes From EJB 2.x
The following bullets list the EJB 3.2 requirements for programming a bean class, as well as
the EJB 2.x requirements that no longer apply:

• The class must specify its bean type, typically using one of the following metadata
annotations, although you can also override this using a deployment descriptor:

– @javax.ejb.Stateless

– @javax.ejb.Stateful

– @javax.ejb.Singleton

– @javax.ejb.MessageDriven

Note

Oracle Kodo JPA/JDO is not supported in this release of WebLogic Server.
However, if you still using Oracle Kodo, programming a 3.0 entity bean
(@javax.ejb.Entity) is discussed in a separate document.

Customers are encouraged to use Oracle TopLink, which supports JPA 2.1.
Kodo supports only JPA 1.0. For more information, see Configuring the
Persistence Provider in Oracle WebLogic Server.

• If the bean is a session bean, the bean class can implement either:

– The no-interface local client view type, which simplifies EJB development by providing
local session bean access without requiring a separate local business interface. (As of
EJB 3.2, MDBs can also use the no-interface local client view.)

– The bean's business interface(s) or the methods of the bean's business interface(s), if
any.

• Session beans no longer need to implement javax.ejb.SessionBean, which means the
bean no longer needs to implement the ejbXXX() methods, such as ejbCreate(),
ejbPassivate(), and so on.

• Stateful session beans no longer need to implement java.io.Serializable.

• Message-driven beans no longer need to implement javax.ejb.MessageDrivenBean.

Chapter 4
Programming the Bean File: Requirements and Changes From EJB 2.x

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 24

The following requirements are the same as in EJB 2.x and are provided only as a brief
overview:

• The class must be defined as public, must not be final, and must not be abstract. The
class must be a top level class.

• The class must have a public constructor that takes no parameters.

• The class must not define the finalize() method.

• If the bean is message-driven, the bean class must implement, directly or indirectly, the
message listener interface required by the messaging type that it supports or the methods
of the message listener interface. In the case of JMS, this is the
javax.jms.MessageListener interface.

Bean Class Method Requirements
The method requirements have not changed since EJB 2.x and are provided in this section for
a brief overview only.

The requirements for programming the session bean class' methods (that implement the
business interface methods) are as follows:

• The method names can be arbitrary.

• The business method must be declared as public and must not be final or static.

• The argument and return value types for a method must be legal types for RMI/IIOP if the
method corresponds to a business method on the session bean's remote business
interface or remote interface.

• The throws clause may define arbitrary application exceptions.

The requirements for programming the message-driven bean class' methods are as follows:

• The methods must implement the listener methods of the message listener interface.

• The methods must be declared as public and must not be final or static.

Programming the Bean File
The sections that follow provide the recommended steps when programming the annotated
EJB 3.2 class file.

• Typical Steps When Programming the Bean File

• Specifying the Business and Other Interfaces

• Specifying the Bean Type (Stateless, Singleton, Stateful, or Message-Driven)

• Injecting Resource Dependency into a Variable or Setter Method

• Invoking an Entity Bean

• Specifying Interceptors for Business Methods or Life Cycle Callback Events

• Programming Application Exceptions

• Securing Access to the EJB

• Specifying Transaction Management and Attributes

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 24

Typical Steps When Programming the Bean File
The following procedure describes the typical basic steps when programming the bean file for
an EJB. The steps you follow depends, of course, on what your EJB does.

Refer to Simple EJB Examples, for code examples of the topics discussed in the remaining
sections.

1. Import the EJB and other common annotations that will be used in your bean file. The
general EJB annotations are in the jakarta.ejb package, the interceptor annotations are
in the jakarta.interceptor package, the annotations to invoke an entity are in the
jakarta.persistence package, and the common annotations are in the
jakarta.annotation or jakarta.annotation.security packages. For example:

import jakarta.ejb.Stateless;
import jakarta.ejb.TransactionAttribute;
import jakarta.interceptor.ExcludeDefaultInterceptors;

2. Specify the interface that your EJB is going to implement, either a business interface or a
no-interface view, as well as other standard interfaces. You can either explicitly implement
the interface, or use an annotation to specify it.

See Specifying the Business and Other Interfaces.

3. Use the required annotation to specify the type of bean you are programming (session or
message-driven).

See Specifying the Bean Type (Stateless, Singleton, Stateful, or Message-Driven).

4. Optionally, use dependency injection to use external resources, such as another EJB or
other Jakarta EE object.

See Injecting Resource Dependency into a Variable or Setter Method.

5. Optionally, create an EntityManager object and use the entity annotations to inject entity
information.

See Invoking an Entity Bean.

6. Optionally, program and configure business method or life cycle callback method
interceptor method. You can program the interceptor methods in the bean file itself, or in a
separate Java file.

See Specifying Interceptors for Business Methods or Life Cycle Callback Events.

7. If your business interface specifies that business methods throw application exceptions,
you must program the exception class, the same as in EJB 2.x.

See Programming Application Exceptions for EJB 3.2 specific information.

8. Optionally, specify the security roles that are allowed to invoke the EJB methods using the
security-related metadata annotations.

See Securing Access to the EJB.

9. Optionally, change the default transaction configuration in which the EJB runs.

See Specifying Transaction Management and Attributes.

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 24

Specifying the Business and Other Interfaces
The EJB 3.x local or remote client of a session bean written to the EJB 3.x API accesses a
session bean through its business interface. A local client may also access a session bean
through a no-interface view that exposes all public methods of the bean class.

• Specifying the Business Interface

• Specifying the No-interface View

Specifying the Business Interface
There are two ways you can specify the business interface for the EJB bean class:

• By explicitly implementing the business interface, using the implements Java keyword.

• By using metadata annotations (such as jakarta.ejb.Local and jakarta.ejb.Remote) to
specify the business interface. In this case, the bean class does not need to explicitly
implement the business interface.

Typically, if an EJB bean class implements an interface, it is assumed to be the business
interface of the EJB. Additionally, the business interface is assumed to be the local interface
unless you explicitly denote it as the remote interface, either by using the jakarta.ejb.Remote
annotation or updating the appropriate EJB deployment descriptor. You can specify the
jakarta.ejb.Remote annotation. as well as the jakarta.ejb.Local annotation, in either the
business interface itself, or the bean class that implements the interface.

A bean class can have more than one interface. In this case (excluding the interfaces listed
below), you must specify the business interface of the EJB by explicitly using the
jakarta.ejb.Local or jakarta.ejb.Remote annotations in either the business interface itself,
the bean class that implements the business interface, or the appropriate deployment
descriptor.

The following interfaces are excluded when determining whether the bean class has more than
one interface:

• java.io.Serializable

• java.io.Externalizable

• Any of the interfaces defined by the jakarta.ejb package

The following code snippet shows how to specify the business interface of a bean class by
explicitly implementing the interface:

public class ServiceBean
 implements Service

For the full example, see Example of a Simple Business Interface Stateless EJB.

Specifying the No-interface View
Client access to an enterprise bean that exposes a local, no-interface view is accomplished
through either dependency injection or JNDI lookup. As of EJB 3.2, MDBs can also use the no-
interface local client view.

• To obtain a reference to the no-interface view of an enterprise bean through dependency
injection, use the jakarta.ejb.EJB annotation and specify the enterprise bean's
implementation class:

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 24

@EJB
ExampleBean exampleBean;

• To obtain a reference to the no-interface view of an enterprise bean through JNDI lookup,
use the javax.naming.InitialContext interface's lookup method:

ExampleBean exampleBean = (ExampleBean)
InitialContext.lookup("java:module/ExampleBean");

Clients do not use the new operator to obtain a new instance of an enterprise bean that uses a
no-interface view.

There are code examples of using the No-interface client view bundled in the WebLogic Server
distribution kit. See EJB 3.1: Example of Simplified No-interface Programming and Packaging
in a WAR File and EJB 3.2: Example of a Message-Driven Bean with No-Methods Listener.

For more detailed information about the implementing the no-interface client view, see
"Accessing Local Enterprise Beans Using the No-Interface View" in the "Enterprise Beans
chapter of the Jakarta EE Tutorial.

Specifying the Bean Type (Stateless, Singleton, Stateful, or Message-
Driven)

There is only one required metadata annotation in a 3.2 bean class: an annotation that
specifies the type of bean you are programing. You must specify one, and only one, of the
following:

• @jakarta.ejb.Stateless—Specifies that you are programming a stateless session bean.

• @jakarta.ejb.Singleton—Specifies that you are programming a singleton session bean.

• @jakarta.ejb.Stateful—Specifies that you are programming a stateful session bean.

• @jakarta.ejb.MessageDriven—Specifies that you are programming a message-driven
bean.

Note

Oracle Kodo JPA/JDO is not supported in this release of WebLogic Server.
However, if you still using Oracle Kodo, programming a 3.0 entity bean
(@javax.ejb.Entity) is discussed in a separate document.

Customers are encouraged to use Oracle TopLink, which supports JPA 2.1. Kodo
supports only JPA 1.0. For more information, see Configuring the Persistence
Provider in Oracle WebLogic Server.

Although not required, you can specify attributes of the annotations to further describe the
bean type. For example, you can set the following attributes for all bean types:

• name—Name of the bean class; the default value is the unqualified bean class name.

• mappedName—Product-specific name of the bean.

• description—Description of what the bean does.

If you are programming a message-driven bean, then you can specify the following optional
attributes:

• messageListenerInterface—Specifies the message listener interface, if you haven't
explicitly implemented it or if the bean implements additional interfaces.

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 6 of 24

https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/entbeans/ejb-intro/ejb-intro.html

• activationConfig—Specifies an array of activation configuration name-value pairs that
configure the bean in its operational environment.

The following code snippet shows how to specify that a bean is a stateless session bean:

@Stateless
public class ServiceBean
 implements Service

For the full example, see Example of a Simple Business Interface Stateless EJB.

Injecting Resource Dependency into a Variable or Setter Method
Dependency injection is when the EJB container automatically supplies (or injects) a bean's
variable or setter method with a reference to a resource or another environment entry in the
bean's context. Dependency injection is simply an easier-to-program alternative to using the
jakarta.ejb.EJBContext interface or JNDI APIs to look up resources.

You specify dependency injection by annotating a variable or setter method with one of the
following annotations, depending on the type of resource you want to inject:

• @jakarta.ejb.EJB—Specifies a dependency on another EJB.

• @jakarta.annotation.Resource—Specifies a dependency on an external resource, such
as a JDBC datasource or a JMS destination or connection factory.

Note

This annotation is not specific to EJB; rather, it is part of the common set of
metadata annotations used by many different types of Jakarta EE components.

Both annotations have an equivalent grouping annotation to specify a dependency on multiple
resources (@jakarta.ejb.EJBs and @jakarta.annotation.Resources).

Although not required, you can specify attributes to these dependency annotations to explicitly
describe the dependent resource. The amount of information you need to specify depends
upon its usage context and how much information the EJB container can infer from that
context. See jakarta.ejb.EJB and jakarta.annotation.Resource in jakarta.ejb Package for
detailed information on the attributes and when you should specify them.

The following code snippet shows how to use the @jakarta.ejb.EJB annotation to inject a
dependency on an EJB into a variable; only the relevant parts of the bean file are shown:

package examples;
import jakarta.ejb.EJB;
...
@Stateful
public class AccountBean
 implements Account
{
 @EJB(beanName="ServiceBean")
 private Service service;
...
 public void sayHelloFromAccountBean() {
 service.sayHelloFromServiceBean();
 }

In the preceding example, the private variable service is annotated with the
@jakarta.ejb.EJB annotation, which makes reference to the EJB with a bean name of

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 7 of 24

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary

ServiceBean. The data type of the service variable is Service, which is the business interface
implemented by the ServiceBean bean class. As soon as the EJB container creates the
AccountBean EJB, the container injects a reference to ServiceBean into the service variable;
the variable then has direct access to all the business methods of SessionBean, as shown in
the sayHelloFromAccountBean method implementation in which the sayHelloFromServiceBean
method is invoked.

Invoking an Entity Bean
This section describes how to invoke and update an entity from within a session bean.

Note

Oracle TopLink, a JPA 2.1 persistence provider, is the default JPA provider, replacing
Kodo, which was the default provider in previous releases. Any application that does
not specify a JPA provider in persistence.xml will now use TopLink by default. For
more information, see Configuring the Persistence Provider in Oracle WebLogic
Server.

An entity is a persistent object that represents datastore records; typically an instance of an
entity represents a single row of a database table. Entities make it easy to query and update
information in a persistent store from within another Jakarta EE component, such as a session
bean. A Person entity, for example, might include name, address, and age fields, each of which
correspond to the columns of a table in a database. Using an
javax.persistence.EntityManager object to access and manage the entities, you can easily
retrieve a Person record, based on either their unique id or by using a SQL query, and then
change the information and automatically commit the information to the underlying datastore.

The following sections describe the typical programming tasks you perform in your session
bean to interact with entities:

• Injecting Persistence Context Using Metadata Annotations

• Finding an Entity Using the EntityManager API

• Creating and Updating an Entity Using EntityManager

Injecting Persistence Context Using Metadata Annotations
In your session bean, use the following metadata annotations inject entity information into a
variable:

• @javax.persistence.PersistenceContext—Injects a persistence context into a variable
of data type javax.persistence.EntityManager. A persistence context is simply a set of
entities such that, for any persistent identity, there is a unique entity instance. The
persistence.xml file defines and names the persistence contexts available to a session
bean.

• @javax.persistence.PersistenceContexts—Specifies a set of multiple persistence
contexts.

• @javax.persistence.PersistenceUnit—Injects a persistence context into a variable of
data type javax.persistence.EntityManagerFactory.

• @javax.persistence.PersistenceUnits—Specifies a set of multiple persistence contexts.

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 8 of 24

The @PersistenceContext and @PersistenceUnit annotations perform a similar function:
inject persistence context information into a variable; the main difference is the data type of the
instance into which you inject the information. If you prefer to have full control over the life
cycle of the EntityManager in your session bean, then use @PersistenceUnit to inject into an
EntityManagerFactory instance, and then write the code to manually create an
EntityManager and later destroy when you are done, to release resources. If you prefer that
the EJB container manage the life cycle of the EntityManager, then use the
@PersistenceContext annotation to inject directly into an EntityManager.

The following example shows how to inject a persistence context into the variable em of data
type EntityManager; relevant code is shown in bold:

package examples;

import javax.ejb.Stateless;

import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;

@Stateless
public class ServiceBean
 implements Service

{
 @PersistenceContext private EntityManager em;

...

Finding an Entity Using the EntityManager API
Once you have instantiated an EntityManager object, you can use its methods to interact with
the entities in the persistence context. This section discusses the methods used to identify and
manage the life cycle of an entity; see Configuring the Persistence Provider in Oracle
WebLogic Server for additional uses of the EntityManager, such as transaction management,
caching, and so on.

Note

For clarity, this section assumes that the entities are configured such that they
represent actual rows in a database table.

Use the EntityManager.find() method to find a row in a table based on its primary key. The
find method takes two parameters: the entity class that you are querying, such as
Person.class, and the primary key value for the particular row you want to retrieve. Once you
retrieve the row, you can use standard getXXX methods to get particular properties of the entity.
The following code snippet shows how to retrieve a Person with whose primary key value is 10,
and then get their address:

public List<Person> findPerson () {

 Person p = em.find(Person.class, 10);
 Address a = p.getAddress();

 Query q = em.createQuery("select p from Person p where p.name = :name");
 q.setParameter("name", "Patrick");
 List<Person> l = (List<Person>) q.getResultList();

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 9 of 24

 return l;

 }

The preceding example also shows how to use the EntityManager.createQuery() method to
create a Query object that contains a custom SQL query; by contrast, the
EntityManager.find() method allows you to query using only the table's primary key. In the
example, the table is queried for all Persons whose first name is Patrick; the resulting set of
rows populates the List<Person> object and is returned to the findPerson() invoker.

Creating and Updating an Entity Using EntityManager
To create a new entity instance (and thus add a new row to the database), use the
EntityManager.persist method, as shown in the following code snippet

 @TransactionAttribute(REQUIRED)
 public Person createNewPerson(String name, int age) {

 Person p = new Person(name, age);
 em.persist(p); // register the new object with the database

 Address a = new Address();
 p.setAddress(a);
 em.persist(a); // depending on how things are configured, this may or
 // may not be required
 return p;

 }

Note

Whenever you create or update an entity, you must be in a transaction, which is why
the @TransactionAttribute annotation in the preceding example is set to REQUIRED.

The preceding example shows how to create a new Person, based on parameters passed to
the createNewPerson method, and then call the EntityManager.persist method to
automatically add the row to the database table.

The preceding example also shows how to update the newly-created Person entity (and thus
new table row) with an Address by using the setAddress() entity method. Depending on the
cascade configuration of the Person entity, the second persist() call may not be necessary;
this is because the call to the setAddress() method might have automatically triggered an
update to the database. For more information about cascading operations, see Configuring the
Persistence Provider in Oracle WebLogic Server.

If you use the EntityManager.find() method to find an entity instance, and then use a setXXX
method to change a property of the entity, the database is automatically updated and you do
not need to explicitly call the EntityManager.persist() method, as shown in the following
code snippet:

 @TransactionAttribute(REQUIRED)
 public Person changePerson(int id, int newAge) {
 Person p = em.find(Person.class, id);
 p.setAge(newAge);
 return p;
 }

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 10 of 24

In the preceding example, the call to the Person.setAge() method automatically triggered an
update to the appropriate row in the database table.

Finally, you can use the EntityManager.merge() method to quickly and easily update a row in
the database table based on an update to an entity made by a client, as shown in the following
example:

 @TransactionAttribute(REQUIRED)
 public Person applyOfflineChanges(Person pDTO) {
 return em.merge(pDTO);
 }

In the example, the applyOfflineChanges() method is a business method of the session bean
that takes as a parameter a Person, which has been previously created by the session bean
client. When you pass this Person to the EntityManager.merge() method, the EJB container
automatically finds the existing row in the database table and automatically updates the row
with the new data. The merge() method then returns a copy of this updated row.

Specifying Interceptors for Business Methods or Life Cycle Callback Events
An interceptor is a method that intercepts a business method invocation or a life cycle callback
event. There are two types of interceptors: those that intercept business methods and those
that intercept life cycle callback methods.

Interceptors can be specified for session and message-driven beans.

You can program an interceptor method inside the bean class itself, or in a separate interceptor
class which you then associate with the bean class with the
@jakarta.interceptor.Interceptors annotation. You can create multiple interceptor methods
that execute as a chain in a particular order.

Interceptor instances may hold state. The life cycle of an interceptor instance is the same as
that of the bean instance with which it is associated. Interceptors can invoke JNDI, JDBC,
JMS, other enterprise beans, and the EntityManager. Interceptor methods share the JNDI
name space of the bean for which they are invoked. Programming restrictions that apply to
enterprise bean components to apply to interceptors as well.

Interceptors are configured using metadata annotations in the jakarta.interceptor package,
as described in later sections.

The following topics discuss how to actually program interceptors for your bean class:

• Specifying Business or Life Cycle Interceptors: Typical Steps

• Programming the Interceptor Class

• Programming Business Method Interceptor Methods

• Programming Asynchronous Business Methods

• Programming Life Cycle Callback Interceptor Methods

• Specifying Default Interceptor Methods

• Saving State Across Interceptors With the InvocationContext API

Specifying Business or Life Cycle Interceptors: Typical Steps
The following procedure provides the typical steps to specify and program interceptors for your
bean class.

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 24

See Example of a Simple Stateful EJB for an example of specifying interceptors and Example
of an Interceptor Class for an example of programming an interceptor class.

1. Decide whether interceptor methods are programmed in bean class or in a separate
interceptor class.

2. If you decide to program the interceptor methods in a separate interceptor class

a. Program the class, as described in Programming the Interceptor Class.

b. In your bean class, use the @jakarta.interceptor.Interceptors annotation to
associate the interceptor class with the bean class. The method in the interceptor class
annotated with the @jakarta.interceptor.AroundInvoke annotation then becomes a
business method interceptor method of the bean class. Similarly, the methods
annotated with the life cycle callback annotations become the life cycle callback
interceptor methods of the bean class.

You can specify any number of interceptor classes for a given bean class—the order in
which they execute is the order in which they are listed in the annotation. If you specify the
interceptor class at the class-level, the interceptor methods apply to all appropriate bean
class methods. If you specify the interceptor class at the method-level, the interceptor
methods apply to only the annotated method.

3. In the bean class or interceptor class (wherever you are programming the interceptor
methods), program business method interceptor methods, as described in Programming
Business Method Interceptor Methods.

4. In the bean class or interceptor class (wherever you are programming the interceptor
methods), program life cycle callback interceptor methods, as described in Programming
Business Method Interceptor Methods.

5. In the bean class, optionally annotate methods with the
@jakarta.interceptor.ExcludeClassInterceptors annotation to exclude any
interceptors defined at the class-level.

6. In the bean class, optionally annotate the class or methods with the
@jakarta.interceptor.ExcludeDefaultInterceptors annotation to exclude any default
interceptors that you might define later. Default interceptors are configured in the ejb-
jar.xml deployment descriptor, and apply to all EJBs in the JAR file, unless you explicitly
use the annotation to exclude them.

7. Optionally specify default interceptors for the entire EJB JAR file, as described in
Specifying Default Interceptor Methods.

Programming the Interceptor Class
The interceptor class is a plain Java class that includes the interceptor annotations to specify
which methods intercept business methods and which intercept life cycle callback methods.

Interceptor classes support dependency injection, which is performed when the interceptor
class instance is created, using the naming context of the associated enterprise bean.

You must include a public no-argument constructor.

You can have any number of methods in the interceptor class, but restrictions apply as to how
many methods can be annotated with the interceptor annotations, as described in the following
sections.

For an example, see Example of an Interceptor Class.

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 12 of 24

Programming Business Method Interceptor Methods
You specify business method interceptor methods by annotating them with the @AroundInvoke
annotation.

An interceptor class or bean class can have only one method annotated with @AroundInvoke.
To specify that multiple interceptor methods execute for a given business method, you must
associate multiple interceptor classes with the bean file, in addition to optionally specifying an
interceptor method in the bean file itself. The order in which the interceptor methods execute is
the order in which the associated interceptor classes are listed in the @Interceptor annotation.
Interceptor methods in the bean class itself execute after those defined in the interceptor
classes.

You cannot annotate a business method itself with the @AroundInvoke annotation.

The signature of an @AroundInvoke method must be:

 Object <METHOD>(InvocationContext) throws Exception

The method annotated with the @AroundInvoke annotation must always call
InvocationContext.proceed() or neither the business method will be invoked nor any
subsequent @AroundInvoke methods. See Saving State Across Interceptors With the
InvocationContext API for additional information about the InvocationContext API.

Business method interceptor method invocations occur within the same transaction and
security context as the business method for which they are invoked. Business method
interceptor methods may throw runtime exceptions or application exceptions that are allowed
in the throws clause of the business method.

For an example, see Example of an Interceptor Class.

Programming Asynchronous Business Methods
Session beans can implement asynchronous methods, business methods where control is
returned to the client by the enterprise bean container before the method is invoked on the
session bean instance. Clients may then use the Java SE concurrency API to retrieve the
result, cancel the invocation, and check for exceptions. Asynchronous methods are typically
used for long-running operations, for processor-intensive tasks, for background tasks, to
increase application throughput, or to improve application response time if the method
invocation result isn't required immediately.

When a session bean client invokes a typical non-asynchronous business method, control is
not returned to the client until the method has completed. Clients calling asynchronous
methods, however, immediately have control returned to them by the enterprise bean
container. This allows the client to perform other tasks while the method invocation completes.
If the method returns a result, the result is an implementation of the
java.util.concurrent.Future<V> interface, where “V" is the result value type. The Future<V>
interface defines methods the client may use to check if the computation is completed, wait for
the invocation to complete, retrieve the final result, and cancel the invocation.

Asynchronous method invocation semantics only apply to the no-interface, local business, and
remote business client views. Methods exposed through the EJB 2.x local, EJB 2.x remote,
and Web service client views must not be designated as asynchronous.

For detailed instructions on creating an asynchronous business method, see "Asynchronous
Method Invocation" in the Enterprise Beans chapter of the Jakarta EE Tutorial.

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 13 of 24

https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/entbeans/ejb-intro/ejb-intro.html

Programming Life Cycle Callback Interceptor Methods
You specify a method to be a life cycle callback interceptor method so that it can receive
notification of life cycle events from the EJB container. Life cycle events include creation,
passivation, and destruction of the bean instance.

You can name the life cycle callback interceptor method anything you want; this is different
from the EJB 2.x programming model in which you had to name the methods ejbCreate(),
ejbPassivate(), and so on.

You use the following life cycle interceptor annotations to specify that a method is a life cycle
callback interceptor method:

• @jakarta.ejb.PrePassivate—Specifies the method that the EJB container notifies when it
is about to passivate a stateful session bean.

• @jakarta.ejb.PostActivate—Specifies the method that the EJB container notifies right
after it has reactivated a stateful session bean.

• @jakarta.annotation.PostConstruct—Specifies the method that the EJB container
notifies before it invokes the first business method and after it has done dependency
injection. You typically apply this annotation to the method that performs initialization.

Note

This annotation is in the jakarta.annotation package, rather than jakarta.ejb.

• @jakarta.annotation.PreDestroy—Specifies the method that the EJB container notifies
right before it destroys the bean instance. You typically apply this annotation to the method
that release resources that the bean class has been holding.

Note

This annotation is in the jakarta.annotation package, rather than jakarta.ejb.

You use the preceding annotations the same way, whether the annotated method is in the
bean class or in a separate interceptor class. You can annotate the same method with more
than one annotation.

You can also specify any subset or combination of life cycle callback annotations in the bean
class or in an associated interceptor class. However, the same callback annotation may not be
specified more than once in a given class. If you do specify a callback annotation more than
once in a given class, the EJB will not deploy.

To specify that multiple interceptor methods execute for a given life cycle callback event, you
must associate multiple interceptor classes with the bean file, in addition to optionally
specifying the life cycle callback interceptor method in the bean file itself. The order in which
the interceptor methods execute is the order in which the associated classes are listed in the
@Interceptor annotation. Interceptor methods in the bean class itself execute after those
defined in the interceptor classes.

The signature of the annotated methods depends on where the method is defined:

• Life cycle callback methods defined on a bean class have the following signature:

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 14 of 24

 void <METHOD>()

• Life cycle callback methods defined on an interceptor class have the following signature:

 void <METHOD>(InvocationContext)

See Saving State Across Interceptors With the InvocationContext API for additional information
about the InvocationContext API.

See jakarta.ejb.PostActivate, jakarta.ejb.PrePassivate,
jakarta.annotation.PostConstruct, and jakarta.annotation.PreDestroy in jakarta.ejb
Package and jakarta.annotation Package for additional requirements when programming the
life cycle interceptor class.

For an example, see Example of an Interceptor Class.

Specifying Default Interceptor Methods
Default interceptor methods apply to all components in a particular EJB JAR file or exploded
directory, and thus can only be configured in the ejb-jar.xml deployment descriptor file and
not with metadata annotations, which apply to a particular EJB.

The EJB container invokes default interceptor methods, if any, before all other interceptors
defined for an EJB (both business and life cycle). If you do not want the EJB container to
invoke the default interceptors for a particular EJB, specify the class-level
@jakarta.interceptor.ExcludeDefaultInterceptors annotation in the bean file.

In the ejb-jar.xml file, use the <interceptor-binding> child element of <assembly-
descriptor> to specify default interceptors. In particular, set the <ejb-name> child element to *,
which means the class applies to all EJBs, and then the <interceptor-class> child element to
the name of the interceptor class.

The following snippet from an ejb-jar.xml file shows how to specify the default interceptor
class org.mycompany.DefaultIC:

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar version="4.0"
 xmlns="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://jakarta.ee/xml/ns/jakartaee https://jakarta.ee/xml/ns/
jakartaee/ejb-jar_4_0.xsd">

...

 <assembly-descriptor>

...

 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>org.mycompany.DefaultIC</interceptor-class>
 </interceptor-binding>

 </assembly-descriptor>

</ejb-jar>

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 15 of 24

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/package-summary

Saving State Across Interceptors With the InvocationContext API
Use the jakarta.interceptor.InvocationContext API to pass state information between the
interceptors that execute for a given business method or life cycle callback. The EJB Container
passes the same InvocationContext instance to each interceptor method, so you can, for
example save information when the first business method interceptor method executes, and
then retrieve this information for all subsequent interceptor methods that execute for this
business method. The InvocationContext instance is not shared between business method or
life cycle callback invocations.

All interceptor methods must have an InvocationContext parameter. You can then use the
methods of the InvocationContext interface to get and set context information. The
InvocationContext interface is shown below:

public interface InvocationContext {
 public Object getBean();
 public Method getMethod();
 public Object[] getParameters();
 public void setParameters(Object[]);
 public java.util.Map getContextData();
 public Object proceed() throws Exception;
}

The getBean method returns the bean instance. The getMethod method returns the name of
the business method for which the interceptor method was invoked; in the case of life cycle
callback interceptor methods, getMethod returns null.

The proceed method causes the invocation of the next interceptor method in the chain, or the
business method itself if called from the last @AroundInvoke interceptor method.

For an example of using InvocationContext, see Example of an Interceptor Class.

Programming Application Exceptions
If you specified in the business interface that a method throws an application method, then you
must program the exception as a separate class from the bean class.

Use the @jakarta.ejb.ApplicationException annotation to specify that an exception class is
an application exception thrown by a business method of the EJB. The EJB container reports
the exception directly to the client in the event of the application error.

Use the rollback Boolean attribute of the @ApplicationException annotation to specify
whether the application error causes the current transaction to be rolled back. By default, the
current transaction is not rolled back in event of the error.

You can annotate both checked and unchecked exceptions with this annotation.

The following ProcessingException.java file shows how to use the @ApplicationException
annotation to specify that an exception class is an application exception thrown by one of the
business methods of the EJB:

package examples;

import jakarta.ejb.ApplicationException;

/**
 * Application exception class thrown when there was a processing error
 * with a business method of the EJB. Annotated with the
 * @ApplicationException annotation.

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 16 of 24

 */

@ApplicationException()
public class ProcessingException extends Exception {

 /**
 * Catches exceptions without a specified string
 *
 */
 public ProcessingException() {}

 /**
 * Constructs the appropriate exception with the specified string
 *
 * @param message Exception message
 */
 public ProcessingException(String message) {super(message);}
}

Securing Access to the EJB
By default, any user can invoke the public methods of an EJB. If you want to restrict access to
the EJB, you can use the following security-related annotations to specify the roles that are
allowed to invoke all, or a subset, of the methods:

• jakarta.annotation.security.DeclareRoles—Explicitly lists the security roles that will
be used to secure the EJB.

• jakarta.annotation.security.RolesAllowed—Specifies the security roles that are
allowed to invoke all the methods of the EJB (when specified at the class-level) or a
particular method (when specified at the method-level.)

• jakarta.annotation.security.DenyAll—Specifies that the annotated method can not be
invoked by any role.

• jakarta.annotation.security.PermitAll—Specifies that the annotated method can be
invoked by all roles.

• jakarta.annotation.security.RunAs—Specifies the role which runs the EJB. By default,
the EJB runs as the user who actually invokes it.

The preceding annotations can be used with many Jakarta EE components that allow
metadata annotations, not just EJB.

You create security roles and map users to roles using the WebLogic Remote Console to
update your security realm. See Security Policies and Roles in the Oracle WebLogic Remote
Console Online Help.

The following example shows a simple stateless session EJB that uses all of the security-
related annotations; the code in bold is discussed after the example:

package examples;

import jakarta.ejb.Stateless;

import jakarta.annotation.security.DeclareRoles;
import jakarta.annotation.security.PermitAll;
import jakarta.annotation.security.DenyAll;
import jakarta.annotation.security.RolesAllowed;
import jakarta.annotation.security.RunAs;

/**

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 17 of 24

 * Bean file that implements the Service business interface.
 */

@Stateless
@DeclareRoles({ "admin", "hr" })
@RunAs ("admin")

public class ServiceBean
 implements Service
{
 @RolesAllowed ({"admin", "hr"})
 public void sayHelloRestricted() {
 System.out.println("Only some roles can invoke this method.");
 }

 @DenyAll
 public void sayHelloSecret() {
 System.out.println("No one can invoke this method.");
 }

 @PermitAll
 public void sayHelloPublic() {
 System.out.println("Everyone can invoke this method.");
 }
}

The main points to note about the preceding example are:

• Import the security-related metadata annotations:

import jakarta.annotation.security.DeclareRoles;
import jakarta.annotation.security.PermitAll;
import jakarta.annotation.security.DenyAll;
import jakarta.annotation.security.RolesAllowed;
import jakarta.annotation.security.RunAs;

• The class-level @DeclareRoles annotation explicitly specifies that the admin and hr
security roles will later be used to secure some or all of the methods. This annotation is not
required; any security role referenced in, for example, the @RolesReferenced annotation is
implicitly declared. However, explicitly declaring the security roles makes your code easier
to read and understand.

• The class-level @RunAs annotation specifies that, regardless of the user who actually
invokes a particular method of the EJB, the EJB container runs the method as the admin
role, assuming, of course, that the original user is allowed to invoke the method.

• The @RolesAllowed annotation on the sayHelloRestricted method specifies that only
users mapped to the admin and hr roles are allowed to invoke the method.

• The @DenyAll annotation on the sayHelloSecret method specifies that no one is allowed
to invoke the method.

• The @PermitAll annotation on the sayHelloPublic method specifies that all users
mapped to any roles are allowed to invoke the method.

Specifying Transaction Management and Attributes
By default, the EJB container invokes a business method within a transaction context.
Additionally, the EJB container itself decides whether to commit or rollback a transaction; this is
called container-managed transaction demarcation.

You can change this default behavior by using the following annotations in your bean file:

Chapter 4
Programming the Bean File

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 18 of 24

• jakarta.ejb.TransactionManagement—Specifies whether the EJB container or the bean
file manages the demarcation of transactions. If you specify that the bean file manages it,
then you must program transaction management in your bean file, typically using the Java
Transaction API (JTA).

• jakarta.ejb.TransactionAttribute—Specifies whether the EJB container invokes
methods within a transaction.

For an example of using the jakarta.ejb.TransactionAttribute annotation, see Example of
a Simple Stateful EJB.

Complete List of Metadata Annotations By Function
The tables in the sections that follow group the annotations based on what task they perform.
EJB Metadata Annotations Reference, provides additional reference information about the EJB
metadata annotations.

• Annotations to Specify the Bean Type

• Annotations to Specify the Local or Remote Interfaces

• Annotations to Support EJB Client View

• Annotations to Invoke an Entity Bean

• Transaction-Related Annotations

• Annotations to Specify Interceptors

• Annotations to Specify Life Cycle Callbacks

• Security-Related Annotations

• Context Dependency Annotations

• Timeout and Exceptions Annotations

• Timer and Scheduling Annotations

Annotations to Specify the Bean Type
The following summarize the annotations used to specify the bean type.

Table 4-1 Annotations to Specify the Bean Type

Annotation Description

@jakarta.ejb.Stateless Specifies that the bean class is a stateless session bean. For
more information, see jakarta.ejb.Stateless in jakarta.ejb
Package.

@jakarta.ejb.Singleton Specifies that the bean class is a singleton session bean. For
more information, see jakarta.ejb.Singleton in jakarta.ejb
Package.

@jakarta.ejb.Stateful Specifies that the bean class is a stateful session bean. For
more information, see jakarta.ejb.Stateful in jakarta.ejb
Package.

@jakarta.ejb.Init Specifies the correspondence of a stateful session bean class
method with a create<METHOD> method for an adapted EJB 2.1
EJBHome and/or EJBLocalHome client view. For more
information, see jakarta.ejb.Init in jakarta.ejb Package.

Chapter 4
Complete List of Metadata Annotations By Function

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 19 of 24

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary

Table 4-1 (Cont.) Annotations to Specify the Bean Type

Annotation Description

@jakarta.ejb.Remove Specifies a remove method of a stateful session bean. For more
information, see jakarta.ejb.Remove in jakarta.ejb Package.

@jakarta.ejb.MessageDriven Specifies that the bean class is a message-driven bean. For
more information, see jakarta.ejb.MessageDriven in
jakarta.ejb Package.

@jakarta.ejb.ActivationConfig
Property

Specifies properties used to configure a message-driven bean in
its operational environment. For more information, see
jakarta.ejb.ActivationConfigProperty in jakarta.ejb
Package.

Note

Based on the Enterprise JavaBean
specification, the
jakarta.ejb.ActivationConfig
Property annotation is used for
MDBs only. This annotation is not
used for session or entity beans.

Additionally, this annotation is used
only as a value to the
activationConfig attribute of the
@jakarta.ejb.MessageDriven
annotation. For more information
about this annotation, see Using
EJB 3.2 Compliant MDBs and
Deployment Elements and
Annotations for MDBs in Developing
Message-Driven Beans for Oracle
WebLogic Server.

Annotations to Specify the Local or Remote Interfaces
The following summarize the annotations used to specify the local or remote interfaces.

Table 4-2 Annotations to Specify the Local or Remote Interfaces

Annotation Description

@jakarta.ejb.Local Specifies a local interface of the bean. For more information, see
jakarta.ejb.Local in jakarta.ejb Package.

@jakarta.ejb.Remote Specifies a remote interface of the bean. For more information,
see jakarta.ejb.Remote in jakarta.ejb Package.

Annotations to Support EJB Client View
The following summarize the annotations used to support EJB client view.

Chapter 4
Complete List of Metadata Annotations By Function

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 20 of 24

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary

Table 4-3 Annotations to Support EJB Client View

Annotation Description

@jakarta.ejb.LocalHome Specifies a local home interface of the bean. For more
information, see jakarta.ejb.LocalHome in jakarta.ejb
Package.

@jakarta.ejb.RemoteHome Specifies a remote home interface of the bean. For more
information, see jakarta.ejb.RemoteHome in jakarta.ejb
Package.

Annotations to Invoke an Entity Bean
The following summarize the annotations used to invoke an entity bean.

Table 4-4 Annotations to Invoke an Entity Bean

Annotation Description

@jakarta.persistence.PersistenceContex
t

Specifies a dependency on an EntityManager
persistence context. For more information, see
jakarta.persistence.PersistenceContext in
jakarta.persistence Package.

@jakarta.persistence.PersistenceContex
ts

Specifies one or more PersistenceContext
annotations. For more information, see
jakarta.persistence.PersistenceContexts in
jakarta.persistence Package.

@jakarta.persistence.PersistenceUnit Specifies a dependency on an
EntityManagerFactory. For more information, see
jakarta.persistence.PersistenceUnit in
jakarta.persistence Package.

@jakarta.persistence.PersistenceUnits Specifies one or more PersistenceUnit
annotations. For more information, see
jakarta.persistence.PersistenceUnits in
jakarta.persistence Package.

Transaction-Related Annotations
The following summarize the annotations used for transactions.

Table 4-5 Transaction-Related Annotations

Annotation Description

@jakarta.ejb.TransactionManagement Specifies the transaction management demarcation
type (container- or bean-managed). For more
information, see
jakarta.ejb.TransactionManagement in
jakarta.ejb Package.

Chapter 4
Complete List of Metadata Annotations By Function

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 21 of 24

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/persistence/package-summary#package.description
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/persistence/package-summary#package.description
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/persistence/package-summary#package.description
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/persistence/package-summary#package.description
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary

Table 4-5 (Cont.) Transaction-Related Annotations

Annotation Description

@jakarta.ejb.TransactionAttribute Specifies whether a business method is invoked within
the context of a transaction. For more information, see
jakarta.ejb.TransactionAttribute in
jakarta.ejb Package.

Note: If you specify this annotation, you are also
required to use the @TransactionManagement
annotation to specify container-managed transaction
demarcation.

Annotations to Specify Interceptors
The following summarize the annotations used to specify interceptors.

Table 4-6 Annotations to Specify Interceptors

Annotation Description

@jakarta.interceptor.Interceptors Specifies the list of interceptor classes associated with
a bean class or method. For more information, see
jakarta.interceptor.Interceptors in
jakarta.interceptor Package.

@jakarta.interceptor.AroundInvoke Specifies an interceptor method. For more information,
see jakarta.interceptor.AroundInvoke in
jakarta.interceptor Package.

@jakarta.interceptor.ExcludeClassInte
rceptors

Specifies that, when the annotated method is invoked,
the class-level interceptors should not invoke. For
more information, see
jakarta.interceptor.ExcludeClassIntercepto
rs in jakarta.interceptor Package.

@jakarta.interceptor.ExcludeDefaultIn
terceptors

Specifies that, when the annotated method is invoked,
the default interceptors should not invoke. For more
information, see
jakarta.interceptor.ExcludeDefaultIntercep
tors in jakarta.interceptor Package.

Annotations to Specify Life Cycle Callbacks
The following summarize the annotations used to specify life cycle callbacks.

Table 4-7 Annotations to Specify Life Cycle Callbacks

Annotation Description

@jakarta.ejb.PostActivate Designates a method to receive a callback after a
stateful session bean has been activated. For more
information, see jakarta.ejb.PostActivate in
jakarta.ejb Package.

Chapter 4
Complete List of Metadata Annotations By Function

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 22 of 24

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/interceptors/2.0/apidocs/jakarta/interceptor/package-summary.html
https://jakarta.ee/specifications/interceptors/2.0/apidocs/jakarta/interceptor/package-summary.html
https://jakarta.ee/specifications/interceptors/2.0/apidocs/jakarta/interceptor/package-summary.html
https://jakarta.ee/specifications/interceptors/2.0/apidocs/jakarta/interceptor/package-summary.html
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary

Table 4-7 (Cont.) Annotations to Specify Life Cycle Callbacks

Annotation Description

@jakarta.ejb.PrePassivate Designates a method to receive a callback before a
stateful session bean is passivated. For more
information, see jakarta.ejb.PrePassivate in
jakarta.ejb Package.

@jakarta.annotation.PostConstruct Specifies the method that needs to be executed after
dependency injection is done to perform any
initialization. For more information, see
jakarta.annotation.PostConstruct in
jakarta.annotation Package.

@jakarta.annotation.PreDestroy Specifies a method to be a callback notification to
signal that the instance is in the process of being
removed by the container. For more information, see
jakarta.annotation.PreDestroy in
jakarta.annotation Package.

Security-Related Annotations
The following metadata annotations are not specific to EJB, but rather, are general security-
related annotations in the jakarta.annotation.security package.

Table 4-8 Security-Related Annotations

Annotation Description

@jakarta.annotation.security.DeclareR
oles

Specifies the references to security roles in the bean
class. For more information, see
jakarta.annotation.security.DeclareRoles in
jakarta.annotation.security Package.

@jakarta.annotation.security.RolesAll
owed

Specifies the list of security roles that are allowed to
invoke the bean's business methods. For more
information, see
jakarta.annotation.security.RolesAllowed in
jakarta.annotation.security Package.

@jakarta.annotation.security.PermitAl
l

Specifies that all security roles are allowed to invoke
the method. For more information, see
jakarta.annotation.security.PermitAll in
jakarta.annotation.security Package.

@jakarta.annotation.security.DenyAll Specifies that no security roles are allowed to invoke
the method. For more information, see
jakarta.annotation.security.DenyAll in
jakarta.annotation.security Package.

@jakarta.annotation.security.RunAs Specifies the security role which the method is run as.
For more information, see
jakarta.annotation.security.RunAs in
jakarta.annotation.security Package.

Context Dependency Annotations
The following summarize the annotations used for context dependency.

Chapter 4
Complete List of Metadata Annotations By Function

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 23 of 24

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/security/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/security/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/security/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/security/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/security/package-summary

Table 4-9 Context Dependency Annotations

Annotation Description

@jakarta.ejb.EJB Specifies a dependency to an EJB business interface
or home interface. For more information, see
jakarta.ejb.EJB in jakarta.ejb Package.

@jakarta.ejb.EJBs Specifies one or more @EJB annotations. For more
information, see jakarta.ejb.EJBs in jakarta.ejb
Package.

@jakarta.annotation.Resource Specifies a dependency on an external resource in the
bean's environment. For more information, see
jakarta.annotation.Resource in
jakarta.annotation Package.

@jakarta.annotation.Resources Specifies one or more @Resource annotations. For
more information, see
jakarta.annotation.Resources in
jakarta.annotation Package.

Timeout and Exceptions Annotations
The following summarize the annotations used for timeout and exceptions.

Table 4-10 Timeout and Exception Annotations

Annotation Description

@jakarta.ejb.Timeout Specifies the timeout method of the bean class. For
more information, see jakarta.ejb.Timeout in
jakarta.ejb Package.

@jakarta.ejb.ApplicationException Specifies that an exception is an application exception
and should be reported to the client directly. For more
information, see
jakarta.ejb.ApplicationException in
jakarta.ejb Package.

Timer and Scheduling Annotations
The following summarize the annotations used for timers scheduling-specific annotations.

Table 4-11 Timer and Scheduling Annotations

Annotation Description

@jakarta.ejb.Timeout Specifies the timeout method of the bean class. For
more information, see jakarta.ejb.Timeout in
jakarta.ejb Package.

@jakarta.ejb.ApplicationException Specifies that an exception is an application exception
and should be reported to the client directly. For more
information, see
jakarta.ejb.ApplicationException in
jakarta.ejb Package.

Chapter 4
Complete List of Metadata Annotations By Function

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 24 of 24

https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary

5
Deployment Guidelines for EJBs

This chapter provides EJB-specific deployment guidelines. For deployment topics that are
common to all deployable application units, this chapter gives cross-references to topics in
Deploying Applications to Oracle WebLogic Server, a comprehensive guide to deploying
WebLogic Server applications and modules.
This chapter includes the following sections:

• Before You Deploy an EJB

• Understanding and Performing Deployment Tasks

• Deployment Guidelines for EJBs

Before You Deploy an EJB
Before starting the deployment process you should have:

• Functional, tested bean code, in an exploded directory format or packaged in an archive
file—a JAR for a stand-alone EJB, an EAR if the EJB is part of an enterprise application, or
a WAR if the EJB is part of a Web application—along with the deployment descriptors. For
production environments, Oracle recommends that you package your application as an
EAR.

Note

EJB 3.1 (and later) removed the restriction that enterprise bean classes must be
packaged in an ejb-jar file. Therefore, EJB classes can be packaged directly
inside a Web application archive (WAR) using the same packaging guidelines that
apply to Web application classes. See Deploying EJBs as Part of an Web
Application.

For an overview of the steps required to create and package an EJB, see Overview of the
EJB Development Process.

• Programmed the required annotated EJB class to specify the type of EJB—either:
@jakarta.ejb.Stateful, @jakarta.ejb.Stateless, @jakarta.ejb.Singleton, or
@jakarta.ejb.MessageDriven.

For additional details and examples of programming the bean class, see Programming the
Annotated EJB Class.

• Configured the optional, but supported, deployment descriptors—ejb-jar.xml and
weblogic-ejb-jar.xml, and, for entity EJBs that use container-managed persistence,
weblogic-cmp-jar.xml.

To create EJB deployment descriptors, see Generate Deployment Descriptors in
Developing Jakarta Enterprise Beans Using Deployment Descriptors.

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 5

Understanding and Performing Deployment Tasks
Table 5-1 is a guide to WebLogic Server documentation topics that help you make decisions
about deployment strategies and provide instructions for performing deployment tasks. For
EJB-specific deployment topics, see Deployment Guidelines for EJBs.

Table 5-1 Deployment Tasks and Topics

If You Want To.... See This Topic

Deploy in a development environment Deploying and Packaging from a Split Development Directory in
Developing Applications for Oracle WebLogic Server.

Select a deployment tool Deployment Tools in Deploying Applications to Oracle WebLogic
Server

Determine appropriate packaging for
a deployment

Preparing Applications and Modules for Deployment in Deploying
Applications to Oracle WebLogic Server.

Organizing EJB components in a split
directory structure.

EJBs in Developing Applications for Oracle WebLogic Server.

Select staging mode Controlling Deployment File Copying with Staging Modes in
Deploying Applications to Oracle WebLogic Server.

Perform specific deployment tasks Overview of the Deployment Process in Deploying Applications
to Oracle WebLogic Server.

Deployment Guidelines for EJBs
The following sections provide guidelines for deploying EJBs.

• Deploying Standalone EJBs as Part of an Enterprise Application

• Deploying EJBs as Part of an Web Application

• Deploying EJBs That Call Each Other in the Same Application

• Deploying EJBs That Use Dependency Injection

• Deploying Homogeneously to a Cluster

• Deploying EJBs to a Cluster

• Redeploying an EJB

• Using FastSwap Deployment to Minimize Deployment

• Understanding Warning Messages

• Disabling EJB Deployment Warning Messages

Deploying Standalone EJBs as Part of an Enterprise Application
Oracle recommends that you package and deploy your stand-alone EJB applications as part of
an Enterprise application. An Enterprise application is a Jakarta EE 8 deployment unit that
bundles together Web applications, EJBs, and Resource Adapters into a single deployable
unit.

This is a Oracle best practice, which allows for easier application migration, additions, and
changes. Also, packaging your applications as part of an Enterprise application allows you to

Chapter 5
Understanding and Performing Deployment Tasks

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 5

take advantage of the split development directory structure, which provides a number of
benefits over the traditional single directory structure.

See Overview of the Split Development Directory Environment in Developing Applications for
Oracle WebLogic Server.

Deploying EJBs as Part of an Web Application
Enterprise beans can also be packaged within a web application module (WAR).

EJB 3.1 (and later) removed the restriction that enterprise bean classes must be packaged in
an ejb-jar file. Therefore, EJB classes can be packaged directly inside a Web application
archive (WAR) using the same packaging guidelines that apply to Web application classes.
Simply put your EJB classes in the WEB-INF/classes directory or in a JAR file within WEB-
INF/lib directory. Optionally, if you are also using the EJB deployment descriptor, you can
package it as WEB-INF/ejb-jar.xml. When you run the appc compiler, a WAR file with the
classes required to access the EJB components is generated.

See Packaging an EJB In a WAR.

Deploying EJBs That Call Each Other in the Same Application
When an EJB in one application calls an EJB in another application, WebLogic Server passes
method arguments by value, due to classloading requirements. When EJBs are in the same
application, WebLogic Server can pass method arguments by reference; this improves the
performance of method invocation because parameters are not copied.

For best performance, package components that call each other in the same application, and
set enable-call-by-reference in weblogic-ejb-jar.xml to True. (By default, enable-call-
by-reference is False.)

• Switching Protocol Limitation

Switching Protocol Limitation

If an application client request has multiple hops, and QOS is configured differently between
servers, then you must switch the protocol.

For example, when a client sends an SSL request to a JMS front-end cluster, the JMS front-
end cluster then forwards the request to the JMS back-end cluster using clear text. In this
case, you may need to switch from the t3s protocol to the t3 protocol.

Note

You can switch the protocol only in a default channel. Custom channels do not support
protocol switching.

Deploying EJBs That Use Dependency Injection
When an EJB uses dependency injection, the resource name defined in the class and the
superclass must be unique. For example:

public class ClientServlet extends HttpServlet {
 @EJB(name = 'DateServiceBean', beanInterface = DateService.class)
 private DateService bean; }

Chapter 5
Deployment Guidelines for EJBs

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 5

public class DerivedClientServlet extends ClientServlet {
 @EJB(name = MyDateServiceBean', beanInterface = DateService.class)
 private DateService bean; }

For more information about dependency injection, see Using Jakarta Annotations and
Dependency Injection in Developing Applications for Oracle WebLogic Server.

Deploying Homogeneously to a Cluster
If your EJBs will run on a WebLogic Server cluster, Oracle recommends that you deploy them
homogeneously—to each Managed Server in the cluster. Alternatively, you can deploy an EJB
to only to a single server in the cluster (that is, "pin" a module to a server). This type of
deployment is less common, and should be used only in special circumstances where pinned
services are required. See Understanding Cluster Configuration in Administering Clusters for
Oracle WebLogic Server.

Deploying EJBs to a Cluster
During deployment, the uncompiled EJB is copied to every server instance in the cluster, but it
is compiled only on the server instance to which it has been deployed. As a result, the server
instances in the cluster to which the EJB was not targeted lack the classes necessary to invoke
the EJB.

If you are deploying or redeploying an EJB to a single server instance in a cluster, a client can
now invoke the EJB application through other servers in the cluster.

For information on pinned deployments, see Deploying to a Single Server Instance (Pinned
Deployment) in Administering Clusters for Oracle WebLogic Server.

Redeploying an EJB
When you make changes to a deployed EJB's classes, you must redeploy the EJB. If you use
automatic deployment, deployment occurs automatically when you restart WebLogic Server.
Otherwise, you must explicitly redeploy the EJB.

Redeploying an EJB deployment enables an EJB provider to make changes to a deployed
EJB's classes, recompile, and then "refresh" the classes in a running server.

When you redeploy, the classes currently loaded for the EJB are immediately marked as
unavailable in the server, and the EJB's classloader and associated classes are removed. At
the same time, a new EJB classloader is created, which loads and maintains the revised EJB
classes.

When clients next acquire a reference to the EJB, their EJB method calls use the changed EJB
classes.

You can redeploy an EJB that is standalone or part of an application using any of the
administration tools listed in Summary of System Administration Tools and APIs in
Understanding Oracle WebLogic Server. See Redeploying Applications in a Production
Environment in Deploying Applications to Oracle WebLogic Server.

Production redeployment is not supported for:

• applications that use JTS drivers.

Chapter 5
Deployment Guidelines for EJBs

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 4 of 5

• applications that include EJB 1.1 container-managed persistence (CMP) EJBs. To use
production redeployment with applications that include CMP EJBs, use EJB 2.x CMP
instead of EJB 1.1 CMP.

For more information on production redeployment limitations, see Requirements and
Restrictions for Production Redeployment in Deploying Applications to Oracle WebLogic
Server.

Using FastSwap Deployment to Minimize Deployment
During iterative development of an EJB application, you make many modifications to the EJB
implementation class file, typically redeploying an EJB module multiple times during its
development.

Java EE 5 introduced the ability to redefine a class at runtime without dropping its ClassLoader
or abandoning existing instances. This allows containers to reload altered classes without
disturbing running applications, vastly speeding up iterative development cycles and improving
the overall development and testing experiences.

With FastSwap, Java classes are redefined in-place without reloading the ClassLoader,
thereby having the decided advantage of fast turnaround times. This means that you do not
have to wait for an application to redeploy for your changes to take affect. Instead, you can
make your changes, auto compile, and then see the effects immediately.

For more information about FastSwap, see Using FastSwap Deployment to Minimize
Redeployment in Deploying Applications to Oracle WebLogic Server.

Understanding Warning Messages
To get information about a particular warning, use the weblogic.GetMessage tool. For example:

java weblogic.GetMessage -detail -id BEA-010202

Disabling EJB Deployment Warning Messages
You can disable certain WebLogic Server warning messages that occur during deployment.
You may find this useful if the messages provide information of which you are already aware.

For example, if the methods in your EJB makes calls by reference rather than by value,
WebLogic Server generates this warning during deployment: "Call-by-reference not
enabled."

You can use the disable-warning element in weblogic-ejb-jar.xml to disable certain
messages. For a list of messages you can disable, and instructions for disabling the
messages, see disable-warning in the weblogic-ejb-jar.xml Deployment Descriptor Reference
chapter of Developing Jakarta Enterprise Beans Using Deployment Descriptors.

Chapter 5
Deployment Guidelines for EJBs

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 5

6
Using an Embedded EJB Container in Oracle
WebLogic Server

This chapter provides an overview of using an embeddable EJB container in Oracle WebLogic
Server.
This chapter includes the following sections:

• Overview of the Embeddable EJB Container

• EJB Lite Functionality Supported in the Embedded EJB Container

Overview of the Embeddable EJB Container
Unlike traditional Jakarta EE server-based execution, embeddable container usage allows
client code and its corresponding enterprise beans to run in a Java SE environment without
having to deploy them to a Jakarta EE server. This provides better support for testing, offline
processing (e.g., batch jobs), and the use of the EJB programming model in desktop
applications.

Most of the services present in the enterprise bean container in a Jakarta EE server are
available in the embedded enterprise bean container, including injection, container-managed
transactions, and security. Enterprise bean components execute similarly in both embedded
and Jakarta EE environments, and therefore the same enterprise bean can be easily reused in
both standalone and networked applications.

For a detailed example of using the Embedded EJB container in a Java SE environment, see
EJB 3.1: Example of Using the Embeddable EJB Container in Java SE.

EJB Lite Functionality Supported in the Embedded EJB
Container

The EJB Lite subset of the EJB 3.2 API is supported in the Embedded EJB Container. EJB Lite
is by definition a subset of functionality and doesn't describe any new feature or functionality.
This section outlines the requirements of EJB Lite support as defined by the EJB 3.2
specification.

Table 6-1 represents the official requirements for EJB Lite functionality support as defined by
the EJB 3.2 specification.

Table 6-1 Requirements for EJB Lite vs. EJB 3.2 Full

Requirements EJB Lite EJB 3.2 Full

Components

Session Beans (stateful, stateless, singleton) Yes Yes

Message-Driven Beans No Yes

2.x/1.1 CMP/BMP Entity Beans No Yes

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 2

Table 6-1 (Cont.) Requirements for EJB Lite vs. EJB 3.2 Full

Requirements EJB Lite EJB 3.2 Full

JPA 2.1 Yes Yes

Session Bean Client Views

Local/No Interface Yes Yes

3.x Remote No Yes

2.x Remote Home/Component No Yes

JAX-WS Web Services Endpoint No Yes

Services

EJB Timer Service (non-persistent) Yes Yes

Asynchronous Session Bean Invocations (local) Yes Yes

Interceptors Yes Yes

RMI-IIOP Interoperability No Yes

Container-managed Transactions/Bean-managed
Transactions

Yes Yes

Declarative and Programmatic Security Yes Yes

Miscellaneous

Embeddable API Yes Yes

Chapter 6
EJB Lite Functionality Supported in the Embedded EJB Container

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 2

7
Configuring the Persistence Provider in Oracle
WebLogic Server

This chapter describes Oracle TopLink, the default persistence provider in Oracle WebLogic
Server, and introduces how to use it. This chapter also tells how to set the default persistence
provider in WebLogic Server.
This chapter includes the following sections:

• Overview of Oracle TopLink

• Specifying a Persistence Provider

Overview of Oracle TopLink
Oracle TopLink is the default persistence provider in WebLogic Server 12c and later. It is a
comprehensive standards-based object-persistence and object-transformation framework that
provides APIs, schemas, and run-time services for the persistence layer of an application.

The core component of TopLink is the EclipseLink project's produced libraries and utilities.
EclipseLink is the open source implementation of the development framework and the runtime
provided in TopLink. EclipseLink implements the following specifications, plus value-added
extensions:

• Jakarta Persistence (JPA)

For the complete JPA specification, see https://jakarta.ee/specifications/
persistence/.

• Jakarta XML Binding (JAXB). The EclipseLink JAXB implementation, plus EclipseLink
extensions, is called MOXy.

For the JAXB specification, see https://jakarta.ee/specifications/xml-binding/.

• EclipseLink also includes Database Web Service (DBWS), which provides access to
relational database artifacts by using a Jakarta XML Web Services (JAX-WS) 2 Web
service.

EclipseLink also provides support for Oracle Spatial and Oracle XDB mapping.

For more information about EclipseLink, including other supported services, see the
EclipseLink project home at http://wiki.eclipse.org/EclipseLink and the EclipseLink
Documentation Center at http://wiki.eclipse.org/EclipseLink/UserGuide.

In addition to all of EclipseLink, Oracle TopLink includes:

• TopLink Grid, an integration between EclipseLink JPA with Oracle Coherence that allows
EclipseLink to use Oracle Coherence as a level 2 (L2) cache and persistence layer for
entities. See Developing Applications with Oracle Coherence.

Note

You must have a license for Oracle Coherence to be able to use TopLink Grid.

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 1 of 3

https://jakarta.ee/specifications/persistence/
https://jakarta.ee/specifications/persistence/
https://jakarta.ee/specifications/xml-binding/
http://wiki.eclipse.org/EclipseLink
http://wiki.eclipse.org/EclipseLink/UserGuide

• Logging integration with WebLogic Server.

• MBean support in WebLogic Server.

For information about developing, deploying, and configuring Oracle TopLink applications, see
the following:

• Understanding TopLink

• Java API Reference for Oracle TopLink

See also the following EclipseLink resources:

• EclipseLink Documentation Center at http://www.eclipse.org/eclipselink/
documentation/

• EclipseLink examples at http://wiki.eclipse.org/EclipseLink/Examples.

Specifying a Persistence Provider
You can specify what persistence provider to use for a persistence unit in the application code
or by accepting the default persistence provider set for the WebLogic Server domain, as
described in the following sections:

• Setting the Default Provider for the Domain

• Specifying the Persistence Provider in an Application

Setting the Default Provider for the Domain
Unless you specify otherwise, TopLink is used as the default persistence provider for a
WebLogic Server domain. The default provider is used for any entities in an application that are
not configured to use a different persistence provider. The default provider is used for both
injected and application-managed entity managers and factories.

You can set the default provider in the WebLogic Remote Console or by directly setting
JPAMBean.DefaultJPAProvider.

If you change the default provider, you must do the following for any deployed applications that
do not specify a JPA provider:

• Restart applications that use application-managed entity manager factories.

• Redeploy applications that use injected entity manager factories or entity managers.

Specifying the Persistence Provider in an Application
A persistence provider specified in an application takes precedence over the default provider
set for the WebLogic Server domain.

You can set the provider to use in the following ways:

• Specify the provider in the <provider> element for a persistence unit in the
persistence.xml file, for example:

 <persistence-unit name="example">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
...
 </persistence-unit>

• Specify the provider in the jakarta.persistence.provider property passed to the Map
parameter of the

Chapter 7
Specifying a Persistence Provider

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 2 of 3

http://www.eclipse.org/eclipselink/documentation/
http://www.eclipse.org/eclipselink/documentation/
http://wiki.eclipse.org/EclipseLink/Examples

jakarta.persistence.Persistence.createEntityManagerFactory(String, Map)
method.

Chapter 7
Specifying a Persistence Provider

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 3

A
EJB Metadata Annotations Reference

This appendix provides reference information for the EJB metadata annotations.

• Overview of EJB Annotations

• WebLogic Annotations

Overview of EJB Annotations
The WebLogic Server EJB programming model uses the Jakarta EE metadata annotations
feature in which you create an annotated EJB bean file, and then compile the class with
standard Java compiler, which can then be packaged into a target module for deployment. At
runtime, WebLogic Server parses the annotations and applies the required behavioral aspects
to the bean file.

For detailed reference information regarding which metadata annotations you can specify in
the EJB bean file, see the package summaries in Jakarta EE Platform API.

Some of the annotations are in the jakarta.ejb package, and are thus specific to EJBs;
others are more common and are used by other Jakarta EE components, and are thus in more
generic packages, such as jakarta.annotation. See:

• jakarta.ejb Package

• jakarta.interceptor Package

• jakarta.persistence Package

• jakarta.annotation Package

• jakarta.annotation.security Package

Note

If you are continuing to use deployment descriptors in your EJB implementation, refer
to EJB Deployment Descriptors in Developing Jakarta Enterprise Beans Using
Deployment Descriptors.

WebLogic Annotations
This section provides reference information for WebLogic annotations.

• weblogic.javaee.AllowRemoveDuringTransaction

• weblogic.javaee.CallByReference

• weblogic.javaee.DisableWarnings

• weblogic.javaee.EJBReference

• weblogic.javaee.Idempotent

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-1 of A-9

https://jakarta.ee/specifications/platform/9.1/apidocs/overview-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/ejb/package-summary
https://jakarta.ee/specifications/interceptors/2.0/apidocs/jakarta/interceptor/package-summary.html
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/persistence/package-summary#package.description
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/package-summary
https://jakarta.ee/specifications/platform/9.1/apidocs/jakarta/annotation/security/package-summary

• weblogic.javaee.JMSClientID

• weblogic.javaee.JNDIName

• weblogic.javaee.JNDINames

• weblogic.javaee.MessageDestinationConfiguration

• weblogic.javaee.TransactionIsolation

• weblogic.javaee.TransactionTimeoutSeconds

weblogic.javaee.AllowRemoveDuringTransaction
The following sections describe the annotation in more detail.

• Description

Description
Target: Class (Stateful session EJBs only)

Flag that specifies whether an instance can be removed during a transaction.

Note

This annotation is overridden by the allow-remove-during-transaction element in
the weblogic-ejb-jar.xml deployment descriptor. See weblogic-ejb-jar.xml
Deployment Descriptor Reference in Developing Jakarta Enterprise Beans Using
Deployment Descriptors.

weblogic.javaee.CallByReference
The following sections describe the annotation in more detail.

• Description

Description
Target: Class (Stateful or stateless sessions EJBs only)

Flag that specifies whether parameters are copied—or passed by reference—regardless of
whether the EJB is called remotely or from within the same EAR.

Note

Method parameters are always passed by value when an EJB is called remotely. This
annotation is overridden by the enable-call-by-reference element in the weblogic-
ejb-jar.xml deployment descriptor. See weblogic-ejb-jar.xml Deployment Descriptor
Reference in Developing Jakarta Enterprise Beans Using Deployment Descriptors.

Appendix A
WebLogic Annotations

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-2 of A-9

weblogic.javaee.DisableWarnings
The following sections describe the annotation in more detail.

• Description

• Attributes

Description
Target: Class

Specifies that WebLogic Server should disable the warning message whose ID is specified.

Note

This annotation is overridden by the disable-warning element in the weblogic-ejb-
jar.xml deployment descriptor. See weblogic-ejb-jar.xml Deployment Descriptor
Reference in Developing Jakarta Enterprise Beans Using Deployment Descriptors.

Attributes
The following table summarizes the attributes.

Table A-1 Attributes of the weblogic.javaee.DisableWarnings

Name Description Data Type Required?

WarningCode Specifies the warning code. Set this element
to one of the following four values:

• BEA-010001—Disables this warning
message: "EJB class loaded from
system classpath during deployment."

• BEA-010054—Disables this warning
message: "EJB class loaded from
system classpath during compilation."

• BEA-010200—Disables this warning
message: "EJB impl class contains a
public static field, method or class."

• BEA-010202—Disables this warning
message: "Call-by-reference not
enabled."

String Yes

weblogic.javaee.EJBReference
The following sections describe the annotation in more detail.

• Description

• Attribute

Appendix A
WebLogic Annotations

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-3 of A-9

Description
Target: Class, Method, Field

Maps EJB reference name to its JNDI name.

Attribute
The following table summarizes the attributes.

Table A-2 Attribute of the weblogic.javaee.EJBReference Annotation

Name Description Data Type Required?

name Specifies the name by which the referenced EJB
is to be looked up in the environment.

This name must be unique within the deployment
unit, which consists of the class and its
superclass.

String Yes

jndiName Specifies the JNDI name of an actual EJB,
resource, or reference available in WebLogic
Server.

String Yes

weblogic.javaee.Idempotent
The following sections describe the annotation in more detail.

• Description

• Attributes

Description
Target: Class

Specifies an EJB that is written in such a way that repeated calls to the same method with the
same arguments has exactly the same effect as a single call. This allows the failover handler to
retry a failed call without knowing whether the call actually compiled on the failed server. When
you enable idempotent for a method, the EJB stub can automatically recover from any failure
as long as it can reach another server hosting the EJB.

Note

This annotation is overridden by the idempotent-method and retry-methods-on-
rollback elements in the weblogic-ejb-jar.xml deployment descriptor. See
weblogic-ejb-jar.xml Deployment Descriptor Reference in Developing Jakarta
Enterprise Beans Using Deployment Descriptors.

Attributes
The following table summarizes the attributes.

Appendix A
WebLogic Annotations

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-4 of A-9

Table A-3 Attributes of the weblogic.javaee.Idempotent

Name Description Data Type Required?

retryOnRollbackCount Number of times to automatically retry container-
managed transactions that have rolled back.

This attribute defaults to 0.

int No

weblogic.javaee.JMSClientID
The following sections describe the annotation in more detail.

• Description

• Attributes

Description
Target: Method

Specifies a client ID for the MDB when it connects to a JMS destination. Required for durable
subscriptions to JMS topics.

If you specify the connection factory that the MDB uses in
weblogic.javaee.MessageDestinationConfiguration, the client ID can be defined in the
ClientID element of the associated JMSConnectionFactory element in config.xml.

If JMSConnectionFactory in config.xml does not specify a ClientID, or if you use the default
connection factory, (you do not specify weblogic.javaee.MessageDestinationConfiguration) the
MDB uses the jms-client-id value as its client id.

Note

This annotation is overridden by the jms-client-id element in the weblogic-ejb-
jar.xml deployment descriptor. See weblogic-ejb-jar.xml Deployment Descriptor
Reference in Developing Jakarta Enterprise Beans Using Deployment Descriptors.

Attributes
The following table summarizes the attributes.

Table A-4 Attributes of the weblogic.javaee.JMSClientID

Name Description Data Type Required?

value Client ID. String No

generateUniqueID Flag that indicates whether or not you want the
EJB container to generate a unique client ID for
every instance of an MDB. Enabling this flag
makes it easier to deploy durable MDBs to multiple
server instances in a WebLogic Server cluster.

Class No

Appendix A
WebLogic Annotations

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-5 of A-9

weblogic.javaee.JNDIName
The following sections describe the annotation in more detail.

• Description

• Attributes

Description
Target: Class (Stateful or stateless session EJBs only)

Specifies a custom JNDI name that can be applied to a bean class for a certain client view.
When applied to a bean class to indicate the JNDI name of a no-interface view, the className
is optional.

Note

This annotation is overridden by the jndi-binding element in the weblogic-ejb-
jar.xml deployment descriptor. See weblogic-ejb-jar.xml Deployment Descriptor
Reference in Developing Jakarta Enterprise Beans Using Deployment Descriptors.

Attributes
The following table summarizes the attributes.

Table A-5 Attributes of the weblogic.javaee.JNDIName

Name Description Data Type Required?

classname Class name of the client view. String No

value JNDI name of the client view. String No

weblogic.javaee.JNDINames
The following sections describe the annotation in more detail.

• Description

• Attributes

Description
Target: Class (Stateful or stateless session EJBs only)

Specifies the multiple, custom JNDI names that can be applied to an EJB.

Attributes
The following table summarizes the attributes.

Appendix A
WebLogic Annotations

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-6 of A-9

Table A-6 Attributes of the weblogic.javaee.JNDINames

Name Description Data Type Required?

value Multiple, custom JNDI names for the EJB. JNDIName No

weblogic.javaee.MessageDestinationConfiguration
The following sections describe the annotation in more detail.

• Description

• Attributes

Description
Target: Class (Message-driven EJBs only)

Specifies the JNDI name of the JMS Connection Factory that a message-driven EJB looks up
to create its queues and topics.

Note

This annotation is overridden by the connection-factory-jndi-name element in the
weblogic-ejb-jar.xml deployment descriptor. See weblogic-ejb-jar.xml Deployment
Descriptor Reference in Developing Jakarta Enterprise Beans Using Deployment
Descriptors.

Attributes
The following table summarizes the attributes.

Table A-7 Attributes of the weblogic.javaee.MessageDestinationConfiguration

Name Description Data Type Required?

connectionFactoryJN
DIName

Connection factory JNDI name. This
attribute defaults to an empty string.

String No

initialContextFactory WebLogic initial context factory. This
attribute defaults to
weblogic.jndi.WLInitialContextF
actory.class.

Class No

providerURL URL of the provider. This attribute
defaults to t3://localhost:7001.

String No

weblogic.javaee.TransactionIsolation
The following sections describe the annotation in more detail.

• Description

• Attributes

Appendix A
WebLogic Annotations

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-7 of A-9

Description
Target: Method

Method-level transaction isolation settings for an EJB.

Note

This annotation is overridden by the trans-timeout-seconds element in the
weblogic-ejb-jar.xml deployment descriptor. See weblogic-ejb-jar.xml Deployment
Descriptor Reference in Developing Jakarta Enterprise Beans Using Deployment
Descriptors.

Attributes
The following table summarizes the attributes.

Table A-8 Attributes of the weblogic.javaee.Idempotent

Name Description Data Type Required?

IsolationLevel Isolation level. Valid values include:

• READ_COMMITTED—Transaction can view
only committed updates from other
transactions.

• READ_UNCOMITTED—Transactions can
view uncomitted updates from other
transactions.

• REPEATABLE_READ—Once the transaction
reads a subset of data, repeated reads of the
same data return the same values, even if
other transactions have subsequently
modified the data.

• SERIALIZABLE—Simultaneously executing
this transaction multiple times has the same
effect as executing the transaction multiple
times in a serial fashion.

This attribute defaults to DEFAULT.

int No

weblogic.javaee.TransactionTimeoutSeconds
The following sections describe the annotation in more detail.

• Description

• Attributes

Description
Target: Class

Defines the timeout for transactions in seconds.

Appendix A
WebLogic Annotations

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-8 of A-9

Attributes
The following table summarizes the attributes.

Table A-9 Attributes of the weblogic.javaee.TransactionTimeoutSeconds

Name Description Data Type Required?

value Transaction timeout value in seconds. This
attribute defaults to 30 (seconds).

int No

Appendix A
WebLogic Annotations

Developing Jakarta Enterprise Beans for Oracle WebLogic Server
G31650-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 6, 2025
Appendix A-9 of A-9

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Understanding EJBs
	New Features and Changes in EJB
	Understanding EJB Components
	Session EJBs Implement Business Logic
	Stateful Session Beans
	Stateless Session Beans
	Singleton Session Beans

	Message-Driven Beans Implement Loosely Coupled Business Logic

	EJB Anatomy and Environment
	EJB Components
	The EJB Container
	EJB Metadata Annotations
	Optional EJB Deployment Descriptors

	EJB Clients and Communications
	Accessing EJBs
	EJB Communications

	Securing EJBs

	2 Simple EJB Examples
	Simple Java Examples of EJBs
	Example of a Simple No-interface Stateless EJB
	Example of a Simple Business Interface Stateless EJB
	Example of a Simple Stateful EJB
	Example of an Interceptor Class

	Packaged EJB 3.2 Examples in WebLogic Server
	EJB 3.2: Example of Using the Session Bean Lifecyle
	EJB 3.2: Example of a Message-Driven Bean with No-Methods Listener

	Packaged EJB 3.1 Examples in WebLogic Server
	EJB 3.1: Example of a Singleton Session Bean
	EJB 3.1: Example of an Asynchronous Method EJB
	EJB 3.1: Example of a Calendar-based Timer EJB
	EJB 3.1: Example of Simplified No-interface Programming and Packaging in a WAR File
	EJB 3.1: Example of Using a Portable Global JNDI Name in an EJB
	EJB 3.1: Example of Using the Embeddable EJB Container in Java SE
	EJB 3.0: Example of Invoking an Entity From A Session Bean

	3 Iterative Development of EJBs
	Overview of the EJB Development Process
	Create a Source Directory
	Directory Structure for Packaging a JAR
	Directory Structure for Packaging a WAR

	Program the Annotated EJB Class
	Program the EJB Interface
	Accessing EJBs Using the No-Interface Client View
	Accessing EJBs Using the Business Interface
	Business Interface Application Exceptions
	Using Generics in EJBs
	Serializing and Deserializing Business Objects

	Optionally Program Interceptors
	Optionally Program the EJB Timer Service
	Overview of the Timer Service
	Calendar-based EJB Timers
	Automatically-created EJB Timers
	Non-persistent Timers
	Clustered Versus Local EJB Timer Services
	Clustered EJB Timer Services
	Local EJB Timer Services

	Configuring Clustered EJB Timers
	Using Java Programming Interfaces to Program Timer Objects
	EJB Timer-related Programming Interfaces
	WebLogic Server-specific Timer-related Programming Interfaces

	Programming Access to EJB Clients
	Remote Clients
	Local Clients
	Looking Up EJBs From Clients
	Using Dependency Injection
	Using the JNDI Portable Syntax
	Customizing JNDI Names

	Configuring EJBs to Send Requests to a URL
	Specifying an HTTP Resource by URL
	Specifying an HTTP Resource by Its JNDI Name
	Accessing HTTP Resources from Bean Code
	Configuring Network Communications for an EJB

	Programming and Configuring Transactions
	Programming Container-Managed Transactions
	Configuring Automatic Retry of Container-Managed Transactions
	Programming Bean-Managed Transactions
	Programming Transactions That Are Distributed Across EJBs
	Calling multiple EJBs from a client's transaction context
	Using an EJB "Wrapper” to Encapsulate a Cross-EJB Transaction

	Compile Java Source
	Optionally Create and Edit Deployment Descriptors
	Packaging EJBs
	Packaging EJBs in a JAR
	Packaging an EJB In a WAR

	Deploying EJBs

	4 Programming the Annotated EJB Class
	Overview of Metadata Annotations and EJB Bean Files
	Programming the Bean File: Requirements and Changes From EJB 2.x
	Bean Class Requirements and Changes From EJB 2.x
	Bean Class Method Requirements

	Programming the Bean File
	Typical Steps When Programming the Bean File
	Specifying the Business and Other Interfaces
	Specifying the Business Interface
	Specifying the No-interface View

	Specifying the Bean Type (Stateless, Singleton, Stateful, or Message-Driven)
	Injecting Resource Dependency into a Variable or Setter Method
	Invoking an Entity Bean
	Injecting Persistence Context Using Metadata Annotations
	Finding an Entity Using the EntityManager API
	Creating and Updating an Entity Using EntityManager

	Specifying Interceptors for Business Methods or Life Cycle Callback Events
	Specifying Business or Life Cycle Interceptors: Typical Steps
	Programming the Interceptor Class
	Programming Business Method Interceptor Methods
	Programming Asynchronous Business Methods
	Programming Life Cycle Callback Interceptor Methods
	Specifying Default Interceptor Methods
	Saving State Across Interceptors With the InvocationContext API

	Programming Application Exceptions
	Securing Access to the EJB
	Specifying Transaction Management and Attributes

	Complete List of Metadata Annotations By Function
	Annotations to Specify the Bean Type
	Annotations to Specify the Local or Remote Interfaces
	Annotations to Support EJB Client View
	Annotations to Invoke an Entity Bean
	Transaction-Related Annotations
	Annotations to Specify Interceptors
	Annotations to Specify Life Cycle Callbacks
	Security-Related Annotations
	Context Dependency Annotations
	Timeout and Exceptions Annotations
	Timer and Scheduling Annotations

	5 Deployment Guidelines for EJBs
	Before You Deploy an EJB
	Understanding and Performing Deployment Tasks
	Deployment Guidelines for EJBs
	Deploying Standalone EJBs as Part of an Enterprise Application
	Deploying EJBs as Part of an Web Application
	Deploying EJBs That Call Each Other in the Same Application
	Switching Protocol Limitation

	Deploying EJBs That Use Dependency Injection
	Deploying Homogeneously to a Cluster
	Deploying EJBs to a Cluster
	Redeploying an EJB
	Using FastSwap Deployment to Minimize Deployment
	Understanding Warning Messages
	Disabling EJB Deployment Warning Messages

	6 Using an Embedded EJB Container in Oracle WebLogic Server
	Overview of the Embeddable EJB Container
	EJB Lite Functionality Supported in the Embedded EJB Container

	7 Configuring the Persistence Provider in Oracle WebLogic Server
	Overview of Oracle TopLink
	Specifying a Persistence Provider
	Setting the Default Provider for the Domain
	Specifying the Persistence Provider in an Application

	A EJB Metadata Annotations Reference
	Overview of EJB Annotations
	WebLogic Annotations
	weblogic.javaee.AllowRemoveDuringTransaction
	Description

	weblogic.javaee.CallByReference
	Description

	weblogic.javaee.DisableWarnings
	Description
	Attributes

	weblogic.javaee.EJBReference
	Description
	Attribute

	weblogic.javaee.Idempotent
	Description
	Attributes

	weblogic.javaee.JMSClientID
	Description
	Attributes

	weblogic.javaee.JNDIName
	Description
	Attributes

	weblogic.javaee.JNDINames
	Description
	Attributes

	weblogic.javaee.MessageDestinationConfiguration
	Description
	Attributes

	weblogic.javaee.TransactionIsolation
	Description
	Attributes

	weblogic.javaee.TransactionTimeoutSeconds
	Description
	Attributes

